< prev index next >

src/hotspot/share/opto/library_call.cpp

Print this page

   1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"



  26 #include "ci/ciSymbols.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"

  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "oops/klass.inline.hpp"

  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"

  43 #include "opto/idealKit.hpp"

  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"

  49 #include "opto/parse.hpp"
  50 #include "opto/rootnode.hpp"
  51 #include "opto/runtime.hpp"
  52 #include "opto/subnode.hpp"

  53 #include "opto/vectornode.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/unsafe.hpp"

  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/mountUnmountDisabler.hpp"
  59 #include "runtime/objectMonitor.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/stubRoutines.hpp"

  62 #include "utilities/macros.hpp"
  63 #include "utilities/powerOfTwo.hpp"
  64 
  65 //---------------------------make_vm_intrinsic----------------------------
  66 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  67   vmIntrinsicID id = m->intrinsic_id();
  68   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  69 
  70   if (!m->is_loaded()) {
  71     // Do not attempt to inline unloaded methods.
  72     return nullptr;
  73   }
  74 
  75   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  76   bool is_available = false;
  77 
  78   {
  79     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  80     // the compiler must transition to '_thread_in_vm' state because both
  81     // methods access VM-internal data.

 392   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 393   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 394   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 395   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 396   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 397   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 398   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 399   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 400   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 401 
 402   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 403   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 404   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 405   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 406   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 407   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 408   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 409   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 410   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 411 



 412   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 413   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 414   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 415   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 416   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 417 
 418   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 419   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 420   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 421   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 422   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 423   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 424   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 425   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 426   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 427   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 428   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 429   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 430   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 431   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);

 451   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 452   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 453   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 454 
 455   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 456   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 457   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 458   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 459 
 460   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 461   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 462   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 463   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 464   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 465 
 466   case vmIntrinsics::_loadFence:
 467   case vmIntrinsics::_storeFence:
 468   case vmIntrinsics::_storeStoreFence:
 469   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 470 





 471   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 472 
 473   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 474   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 475   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 476 
 477   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 478   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 479 
 480   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 481   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 482 
 483   case vmIntrinsics::_vthreadEndFirstTransition:    return inline_native_vthread_end_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_end_first_transition_Java()),
 484                                                                                                 "endFirstTransition", true);
 485   case vmIntrinsics::_vthreadStartFinalTransition:  return inline_native_vthread_start_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_start_final_transition_Java()),
 486                                                                                                   "startFinalTransition", true);
 487   case vmIntrinsics::_vthreadStartTransition:       return inline_native_vthread_start_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_start_transition_Java()),
 488                                                                                                   "startTransition", false);
 489   case vmIntrinsics::_vthreadEndTransition:         return inline_native_vthread_end_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_end_transition_Java()),
 490                                                                                                 "endTransition", false);

 499 #endif
 500   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 501   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 502   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 503   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 504   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 505   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 506   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 507   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 508   case vmIntrinsics::_getLength:                return inline_native_getLength();
 509   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 510   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 511   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 512   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 513   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 514   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 515   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 516 
 517   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 518   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);






 519 
 520   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 521 
 522   case vmIntrinsics::_isInstance:
 523   case vmIntrinsics::_isHidden:
 524   case vmIntrinsics::_getSuperclass:            return inline_native_Class_query(intrinsic_id());
 525 
 526   case vmIntrinsics::_floatToRawIntBits:
 527   case vmIntrinsics::_floatToIntBits:
 528   case vmIntrinsics::_intBitsToFloat:
 529   case vmIntrinsics::_doubleToRawLongBits:
 530   case vmIntrinsics::_doubleToLongBits:
 531   case vmIntrinsics::_longBitsToDouble:
 532   case vmIntrinsics::_floatToFloat16:
 533   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 534   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 535   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 536   case vmIntrinsics::_floatIsFinite:
 537   case vmIntrinsics::_floatIsInfinite:
 538   case vmIntrinsics::_doubleIsFinite:

2303     case vmIntrinsics::_remainderUnsigned_l: {
2304       zero_check_long(argument(2));
2305       // Compile-time detect of null-exception
2306       if (stopped()) {
2307         return true; // keep the graph constructed so far
2308       }
2309       n = new UModLNode(control(), argument(0), argument(2));
2310       break;
2311     }
2312     default:  fatal_unexpected_iid(id);  break;
2313   }
2314   set_result(_gvn.transform(n));
2315   return true;
2316 }
2317 
2318 //----------------------------inline_unsafe_access----------------------------
2319 
2320 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2321   // Attempt to infer a sharper value type from the offset and base type.
2322   ciKlass* sharpened_klass = nullptr;

2323 
2324   // See if it is an instance field, with an object type.
2325   if (alias_type->field() != nullptr) {
2326     if (alias_type->field()->type()->is_klass()) {
2327       sharpened_klass = alias_type->field()->type()->as_klass();

2328     }
2329   }
2330 
2331   const TypeOopPtr* result = nullptr;
2332   // See if it is a narrow oop array.
2333   if (adr_type->isa_aryptr()) {
2334     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2335       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();

2336       if (elem_type != nullptr && elem_type->is_loaded()) {
2337         // Sharpen the value type.
2338         result = elem_type;
2339       }
2340     }
2341   }
2342 
2343   // The sharpened class might be unloaded if there is no class loader
2344   // contraint in place.
2345   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2346     // Sharpen the value type.
2347     result = TypeOopPtr::make_from_klass(sharpened_klass);



2348   }
2349   if (result != nullptr) {
2350 #ifndef PRODUCT
2351     if (C->print_intrinsics() || C->print_inlining()) {
2352       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2353       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2354     }
2355 #endif
2356   }
2357   return result;
2358 }
2359 
2360 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2361   switch (kind) {
2362       case Relaxed:
2363         return MO_UNORDERED;
2364       case Opaque:
2365         return MO_RELAXED;
2366       case Acquire:
2367         return MO_ACQUIRE;

2456 #endif // ASSERT
2457  }
2458 #endif //PRODUCT
2459 
2460   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2461 
2462   Node* receiver = argument(0);  // type: oop
2463 
2464   // Build address expression.
2465   Node* heap_base_oop = top();
2466 
2467   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2468   Node* base = argument(1);  // type: oop
2469   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2470   Node* offset = argument(2);  // type: long
2471   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2472   // to be plain byte offsets, which are also the same as those accepted
2473   // by oopDesc::field_addr.
2474   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2475          "fieldOffset must be byte-scaled");




































2476   // 32-bit machines ignore the high half!
2477   offset = ConvL2X(offset);
2478 
2479   // Save state and restore on bailout
2480   SavedState old_state(this);
2481 
2482   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2483   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2484 
2485   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2486     if (type != T_OBJECT) {
2487       decorators |= IN_NATIVE; // off-heap primitive access
2488     } else {
2489       return false; // off-heap oop accesses are not supported
2490     }
2491   } else {
2492     heap_base_oop = base; // on-heap or mixed access
2493   }
2494 
2495   // Can base be null? Otherwise, always on-heap access.

2499     decorators |= IN_HEAP;
2500   }
2501 
2502   Node* val = is_store ? argument(4) : nullptr;
2503 
2504   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2505   if (adr_type == TypePtr::NULL_PTR) {
2506     return false; // off-heap access with zero address
2507   }
2508 
2509   // Try to categorize the address.
2510   Compile::AliasType* alias_type = C->alias_type(adr_type);
2511   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2512 
2513   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2514       alias_type->adr_type() == TypeAryPtr::RANGE) {
2515     return false; // not supported
2516   }
2517 
2518   bool mismatched = false;
2519   BasicType bt = alias_type->basic_type();




























2520   if (bt != T_ILLEGAL) {
2521     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2522     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2523       // Alias type doesn't differentiate between byte[] and boolean[]).
2524       // Use address type to get the element type.
2525       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2526     }
2527     if (is_reference_type(bt, true)) {
2528       // accessing an array field with getReference is not a mismatch
2529       bt = T_OBJECT;
2530     }
2531     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2532       // Don't intrinsify mismatched object accesses
2533       return false;
2534     }
2535     mismatched = (bt != type);
2536   } else if (alias_type->adr_type()->isa_oopptr()) {
2537     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2538   }
2539 
2540   old_state.discard();
2541   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2542 
2543   if (mismatched) {
2544     decorators |= C2_MISMATCHED;
2545   }
2546 
2547   // First guess at the value type.
2548   const Type *value_type = Type::get_const_basic_type(type);
2549 
2550   // Figure out the memory ordering.
2551   decorators |= mo_decorator_for_access_kind(kind);
2552 
2553   if (!is_store && type == T_OBJECT) {
2554     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2555     if (tjp != nullptr) {
2556       value_type = tjp;


2557     }
2558   }
2559 
2560   receiver = null_check(receiver);
2561   if (stopped()) {
2562     return true;
2563   }
2564   // Heap pointers get a null-check from the interpreter,
2565   // as a courtesy.  However, this is not guaranteed by Unsafe,
2566   // and it is not possible to fully distinguish unintended nulls
2567   // from intended ones in this API.
2568 
2569   if (!is_store) {
2570     Node* p = nullptr;
2571     // Try to constant fold a load from a constant field
2572     ciField* field = alias_type->field();
2573     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2574       // final or stable field
2575       p = make_constant_from_field(field, heap_base_oop);
2576     }
2577 
2578     if (p == nullptr) { // Could not constant fold the load
2579       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);





2580       // Normalize the value returned by getBoolean in the following cases
2581       if (type == T_BOOLEAN &&
2582           (mismatched ||
2583            heap_base_oop == top() ||                  // - heap_base_oop is null or
2584            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2585                                                       //   and the unsafe access is made to large offset
2586                                                       //   (i.e., larger than the maximum offset necessary for any
2587                                                       //   field access)
2588             ) {
2589           IdealKit ideal = IdealKit(this);
2590 #define __ ideal.
2591           IdealVariable normalized_result(ideal);
2592           __ declarations_done();
2593           __ set(normalized_result, p);
2594           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2595           __ set(normalized_result, ideal.ConI(1));
2596           ideal.end_if();
2597           final_sync(ideal);
2598           p = __ value(normalized_result);
2599 #undef __

2603       p = gvn().transform(new CastP2XNode(nullptr, p));
2604       p = ConvX2UL(p);
2605     }
2606     // The load node has the control of the preceding MemBarCPUOrder.  All
2607     // following nodes will have the control of the MemBarCPUOrder inserted at
2608     // the end of this method.  So, pushing the load onto the stack at a later
2609     // point is fine.
2610     set_result(p);
2611   } else {
2612     if (bt == T_ADDRESS) {
2613       // Repackage the long as a pointer.
2614       val = ConvL2X(val);
2615       val = gvn().transform(new CastX2PNode(val));
2616     }
2617     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2618   }
2619 
2620   return true;
2621 }
2622 









































































































































































2623 //----------------------------inline_unsafe_load_store----------------------------
2624 // This method serves a couple of different customers (depending on LoadStoreKind):
2625 //
2626 // LS_cmp_swap:
2627 //
2628 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2629 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2630 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2631 //
2632 // LS_cmp_swap_weak:
2633 //
2634 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2635 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2636 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2637 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2638 //
2639 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2640 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2641 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2642 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

2805     }
2806     case LS_cmp_swap:
2807     case LS_cmp_swap_weak:
2808     case LS_get_add:
2809       break;
2810     default:
2811       ShouldNotReachHere();
2812   }
2813 
2814   // Null check receiver.
2815   receiver = null_check(receiver);
2816   if (stopped()) {
2817     return true;
2818   }
2819 
2820   int alias_idx = C->get_alias_index(adr_type);
2821 
2822   if (is_reference_type(type)) {
2823     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2824 













2825     // Transformation of a value which could be null pointer (CastPP #null)
2826     // could be delayed during Parse (for example, in adjust_map_after_if()).
2827     // Execute transformation here to avoid barrier generation in such case.
2828     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2829       newval = _gvn.makecon(TypePtr::NULL_PTR);
2830 
2831     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2832       // Refine the value to a null constant, when it is known to be null
2833       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2834     }
2835   }
2836 
2837   Node* result = nullptr;
2838   switch (kind) {
2839     case LS_cmp_exchange: {
2840       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2841                                             oldval, newval, value_type, type, decorators);
2842       break;
2843     }
2844     case LS_cmp_swap_weak:

2873   insert_mem_bar(Op_MemBarCPUOrder);
2874   switch(id) {
2875     case vmIntrinsics::_loadFence:
2876       insert_mem_bar(Op_LoadFence);
2877       return true;
2878     case vmIntrinsics::_storeFence:
2879       insert_mem_bar(Op_StoreFence);
2880       return true;
2881     case vmIntrinsics::_storeStoreFence:
2882       insert_mem_bar(Op_StoreStoreFence);
2883       return true;
2884     case vmIntrinsics::_fullFence:
2885       insert_mem_bar(Op_MemBarVolatile);
2886       return true;
2887     default:
2888       fatal_unexpected_iid(id);
2889       return false;
2890   }
2891 }
2892 






























































































2893 bool LibraryCallKit::inline_onspinwait() {
2894   insert_mem_bar(Op_OnSpinWait);
2895   return true;
2896 }
2897 
2898 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2899   if (!kls->is_Con()) {
2900     return true;
2901   }
2902   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2903   if (klsptr == nullptr) {
2904     return true;
2905   }
2906   ciInstanceKlass* ik = klsptr->instance_klass();
2907   // don't need a guard for a klass that is already initialized
2908   return !ik->is_initialized();
2909 }
2910 
2911 //----------------------------inline_unsafe_writeback0-------------------------
2912 // public native void Unsafe.writeback0(long address)

2991                     Deoptimization::Action_make_not_entrant);
2992     }
2993     if (stopped()) {
2994       return true;
2995     }
2996 #endif //INCLUDE_JVMTI
2997 
2998   Node* test = nullptr;
2999   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3000     // Note:  The argument might still be an illegal value like
3001     // Serializable.class or Object[].class.   The runtime will handle it.
3002     // But we must make an explicit check for initialization.
3003     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3004     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3005     // can generate code to load it as unsigned byte.
3006     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3007     Node* bits = intcon(InstanceKlass::fully_initialized);
3008     test = _gvn.transform(new SubINode(inst, bits));
3009     // The 'test' is non-zero if we need to take a slow path.
3010   }
3011 
3012   Node* obj = new_instance(kls, test);





3013   set_result(obj);
3014   return true;
3015 }
3016 
3017 //------------------------inline_native_time_funcs--------------
3018 // inline code for System.currentTimeMillis() and System.nanoTime()
3019 // these have the same type and signature
3020 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3021   const TypeFunc* tf = OptoRuntime::void_long_Type();
3022   const TypePtr* no_memory_effects = nullptr;
3023   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3024   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3025 #ifdef ASSERT
3026   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3027   assert(value_top == top(), "second value must be top");
3028 #endif
3029   set_result(value);
3030   return true;
3031 }
3032 

3807   Node* thread = _gvn.transform(new ThreadLocalNode());
3808   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3809   Node* thread_obj_handle
3810     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3811   thread_obj_handle = _gvn.transform(thread_obj_handle);
3812   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3813   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3814 
3815   // Change the _monitor_owner_id of the JavaThread
3816   Node* tid = load_field_from_object(arr, "tid", "J");
3817   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3818   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3819 
3820   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3821   return true;
3822 }
3823 
3824 const Type* LibraryCallKit::scopedValueCache_type() {
3825   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3826   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3827   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3828 
3829   // Because we create the scopedValue cache lazily we have to make the
3830   // type of the result BotPTR.
3831   bool xk = etype->klass_is_exact();
3832   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3833   return objects_type;
3834 }
3835 
3836 Node* LibraryCallKit::scopedValueCache_helper() {
3837   Node* thread = _gvn.transform(new ThreadLocalNode());
3838   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3839   // We cannot use immutable_memory() because we might flip onto a
3840   // different carrier thread, at which point we'll need to use that
3841   // carrier thread's cache.
3842   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3843   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3844   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3845 }
3846 
3847 //------------------------inline_native_scopedValueCache------------------
3848 bool LibraryCallKit::inline_native_scopedValueCache() {
3849   Node* cache_obj_handle = scopedValueCache_helper();
3850   const Type* objects_type = scopedValueCache_type();
3851   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3852 

3988   }
3989   return kls;
3990 }
3991 
3992 //--------------------(inline_native_Class_query helpers)---------------------
3993 // Use this for JVM_ACC_INTERFACE.
3994 // Fall through if (mods & mask) == bits, take the guard otherwise.
3995 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3996                                                  ByteSize offset, const Type* type, BasicType bt) {
3997   // Branch around if the given klass has the given modifier bit set.
3998   // Like generate_guard, adds a new path onto the region.
3999   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4000   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4001   Node* mask = intcon(modifier_mask);
4002   Node* bits = intcon(modifier_bits);
4003   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4004   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4005   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4006   return generate_fair_guard(bol, region);
4007 }

4008 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4009   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4010                                     InstanceKlass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4011 }
4012 
4013 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4014 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4015   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4016                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4017 }
4018 
4019 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4020   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4021 }
4022 
4023 //-------------------------inline_native_Class_query-------------------
4024 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4025   const Type* return_type = TypeInt::BOOL;
4026   Node* prim_return_value = top();  // what happens if it's a primitive class?
4027   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4113 
4114 
4115   case vmIntrinsics::_getSuperclass:
4116     // The rules here are somewhat unfortunate, but we can still do better
4117     // with random logic than with a JNI call.
4118     // Interfaces store null or Object as _super, but must report null.
4119     // Arrays store an intermediate super as _super, but must report Object.
4120     // Other types can report the actual _super.
4121     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4122     if (generate_array_guard(kls, region) != nullptr) {
4123       // A guard was added.  If the guard is taken, it was an array.
4124       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4125     }
4126     // Check for interface after array since this checks AccessFlags offset into InstanceKlass.
4127     // In other words, we are accessing subtype-specific information, so we need to determine the subtype first.
4128     if (generate_interface_guard(kls, region) != nullptr) {
4129       // A guard was added.  If the guard is taken, it was an interface.
4130       phi->add_req(null());
4131     }
4132     // If we fall through, it's a plain class.  Get its _super.
4133     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4134     kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4135     null_ctl = top();
4136     kls = null_check_oop(kls, &null_ctl);
4137     if (null_ctl != top()) {
4138       // If the guard is taken, Object.superClass is null (both klass and mirror).
4139       region->add_req(null_ctl);
4140       phi   ->add_req(null());
4141     }
4142     if (!stopped()) {
4143       query_value = load_mirror_from_klass(kls);











4144     }
4145     break;
4146 
4147   default:
4148     fatal_unexpected_iid(id);
4149     break;
4150   }
4151 
4152   // Fall-through is the normal case of a query to a real class.
4153   phi->init_req(1, query_value);
4154   region->init_req(1, control());
4155 
4156   C->set_has_split_ifs(true); // Has chance for split-if optimization
4157   set_result(region, phi);
4158   return true;
4159 }
4160 

4161 //-------------------------inline_Class_cast-------------------
4162 bool LibraryCallKit::inline_Class_cast() {
4163   Node* mirror = argument(0); // Class
4164   Node* obj    = argument(1);
4165   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4166   if (mirror_con == nullptr) {
4167     return false;  // dead path (mirror->is_top()).
4168   }
4169   if (obj == nullptr || obj->is_top()) {
4170     return false;  // dead path
4171   }
4172   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4173 
4174   // First, see if Class.cast() can be folded statically.
4175   // java_mirror_type() returns non-null for compile-time Class constants.
4176   ciType* tm = mirror_con->java_mirror_type();
4177   if (tm != nullptr && tm->is_klass() &&
4178       tp != nullptr) {
4179     if (!tp->is_loaded()) {
4180       // Don't use intrinsic when class is not loaded.
4181       return false;
4182     } else {
4183       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());

4184       if (static_res == Compile::SSC_always_true) {
4185         // isInstance() is true - fold the code.
4186         set_result(obj);
4187         return true;
4188       } else if (static_res == Compile::SSC_always_false) {
4189         // Don't use intrinsic, have to throw ClassCastException.
4190         // If the reference is null, the non-intrinsic bytecode will
4191         // be optimized appropriately.
4192         return false;
4193       }
4194     }
4195   }
4196 
4197   // Bailout intrinsic and do normal inlining if exception path is frequent.
4198   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4199     return false;
4200   }
4201 
4202   // Generate dynamic checks.
4203   // Class.cast() is java implementation of _checkcast bytecode.
4204   // Do checkcast (Parse::do_checkcast()) optimizations here.
4205 
4206   mirror = null_check(mirror);
4207   // If mirror is dead, only null-path is taken.
4208   if (stopped()) {
4209     return true;
4210   }
4211 
4212   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4213   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4214   RegionNode* region = new RegionNode(PATH_LIMIT);
4215   record_for_igvn(region);
4216 
4217   // Now load the mirror's klass metaobject, and null-check it.
4218   // If kls is null, we have a primitive mirror and
4219   // nothing is an instance of a primitive type.
4220   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4221 
4222   Node* res = top();


4223   if (!stopped()) {

4224     Node* bad_type_ctrl = top();
4225     // Do checkcast optimizations.
4226     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4227     region->init_req(_bad_type_path, bad_type_ctrl);
4228   }
4229   if (region->in(_prim_path) != top() ||
4230       region->in(_bad_type_path) != top()) {

4231     // Let Interpreter throw ClassCastException.
4232     PreserveJVMState pjvms(this);
4233     set_control(_gvn.transform(region));



4234     uncommon_trap(Deoptimization::Reason_intrinsic,
4235                   Deoptimization::Action_maybe_recompile);
4236   }
4237   if (!stopped()) {
4238     set_result(res);
4239   }
4240   return true;
4241 }
4242 
4243 
4244 //--------------------------inline_native_subtype_check------------------------
4245 // This intrinsic takes the JNI calls out of the heart of
4246 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4247 bool LibraryCallKit::inline_native_subtype_check() {
4248   // Pull both arguments off the stack.
4249   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4250   args[0] = argument(0);
4251   args[1] = argument(1);
4252   Node* klasses[2];             // corresponding Klasses: superk, subk
4253   klasses[0] = klasses[1] = top();
4254 
4255   enum {
4256     // A full decision tree on {superc is prim, subc is prim}:
4257     _prim_0_path = 1,           // {P,N} => false
4258                                 // {P,P} & superc!=subc => false
4259     _prim_same_path,            // {P,P} & superc==subc => true
4260     _prim_1_path,               // {N,P} => false
4261     _ref_subtype_path,          // {N,N} & subtype check wins => true
4262     _both_ref_path,             // {N,N} & subtype check loses => false
4263     PATH_LIMIT
4264   };
4265 
4266   RegionNode* region = new RegionNode(PATH_LIMIT);

4267   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4268   record_for_igvn(region);

4269 
4270   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4271   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4272   int class_klass_offset = java_lang_Class::klass_offset();
4273 
4274   // First null-check both mirrors and load each mirror's klass metaobject.
4275   int which_arg;
4276   for (which_arg = 0; which_arg <= 1; which_arg++) {
4277     Node* arg = args[which_arg];
4278     arg = null_check(arg);
4279     if (stopped())  break;
4280     args[which_arg] = arg;
4281 
4282     Node* p = basic_plus_adr(arg, class_klass_offset);
4283     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4284     klasses[which_arg] = _gvn.transform(kls);
4285   }
4286 
4287   // Having loaded both klasses, test each for null.
4288   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4289   for (which_arg = 0; which_arg <= 1; which_arg++) {
4290     Node* kls = klasses[which_arg];
4291     Node* null_ctl = top();
4292     kls = null_check_oop(kls, &null_ctl, never_see_null);
4293     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4294     region->init_req(prim_path, null_ctl);



4295     if (stopped())  break;
4296     klasses[which_arg] = kls;
4297   }
4298 
4299   if (!stopped()) {
4300     // now we have two reference types, in klasses[0..1]
4301     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4302     Node* superk = klasses[0];  // the receiver
4303     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4304     // now we have a successful reference subtype check
4305     region->set_req(_ref_subtype_path, control());
4306   }
4307 
4308   // If both operands are primitive (both klasses null), then
4309   // we must return true when they are identical primitives.
4310   // It is convenient to test this after the first null klass check.
4311   set_control(region->in(_prim_0_path)); // go back to first null check

4312   if (!stopped()) {
4313     // Since superc is primitive, make a guard for the superc==subc case.
4314     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4315     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4316     generate_guard(bol_eq, region, PROB_FAIR);
4317     if (region->req() == PATH_LIMIT+1) {
4318       // A guard was added.  If the added guard is taken, superc==subc.
4319       region->swap_edges(PATH_LIMIT, _prim_same_path);
4320       region->del_req(PATH_LIMIT);
4321     }
4322     region->set_req(_prim_0_path, control()); // Not equal after all.
4323   }
4324 
4325   // these are the only paths that produce 'true':
4326   phi->set_req(_prim_same_path,   intcon(1));
4327   phi->set_req(_ref_subtype_path, intcon(1));
4328 
4329   // pull together the cases:
4330   assert(region->req() == PATH_LIMIT, "sane region");
4331   for (uint i = 1; i < region->req(); i++) {
4332     Node* ctl = region->in(i);
4333     if (ctl == nullptr || ctl == top()) {
4334       region->set_req(i, top());
4335       phi   ->set_req(i, top());
4336     } else if (phi->in(i) == nullptr) {
4337       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4338     }
4339   }
4340 
4341   set_control(_gvn.transform(region));
4342   set_result(_gvn.transform(phi));
4343   return true;
4344 }
4345 
4346 //---------------------generate_array_guard_common------------------------
4347 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4348                                                   bool obj_array, bool not_array, Node** obj) {
4349 
4350   if (stopped()) {
4351     return nullptr;
4352   }
4353 
4354   // If obj_array/non_array==false/false:
4355   // Branch around if the given klass is in fact an array (either obj or prim).
4356   // If obj_array/non_array==false/true:
4357   // Branch around if the given klass is not an array klass of any kind.
4358   // If obj_array/non_array==true/true:
4359   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4360   // If obj_array/non_array==true/false:
4361   // Branch around if the kls is an oop array (Object[] or subtype)
4362   //
4363   // Like generate_guard, adds a new path onto the region.
4364   jint  layout_con = 0;
4365   Node* layout_val = get_layout_helper(kls, layout_con);
4366   if (layout_val == nullptr) {
4367     bool query = (obj_array
4368                   ? Klass::layout_helper_is_objArray(layout_con)
4369                   : Klass::layout_helper_is_array(layout_con));
4370     if (query == not_array) {







4371       return nullptr;                       // never a branch
4372     } else {                             // always a branch
4373       Node* always_branch = control();
4374       if (region != nullptr)
4375         region->add_req(always_branch);
4376       set_control(top());
4377       return always_branch;
4378     }
4379   }





















4380   // Now test the correct condition.
4381   jint  nval = (obj_array
4382                 ? (jint)(Klass::_lh_array_tag_type_value
4383                    <<    Klass::_lh_array_tag_shift)
4384                 : Klass::_lh_neutral_value);
4385   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4386   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4387   // invert the test if we are looking for a non-array
4388   if (not_array)  btest = BoolTest(btest).negate();
4389   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4390   Node* ctrl = generate_fair_guard(bol, region);
4391   Node* is_array_ctrl = not_array ? control() : ctrl;
4392   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4393     // Keep track of the fact that 'obj' is an array to prevent
4394     // array specific accesses from floating above the guard.
4395     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4396   }
4397   return ctrl;
4398 }
4399 




































































































































4400 
4401 //-----------------------inline_native_newArray--------------------------
4402 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4403 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4404 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4405   Node* mirror;
4406   Node* count_val;
4407   if (uninitialized) {
4408     null_check_receiver();
4409     mirror    = argument(1);
4410     count_val = argument(2);
4411   } else {
4412     mirror    = argument(0);
4413     count_val = argument(1);
4414   }
4415 
4416   mirror = null_check(mirror);
4417   // If mirror or obj is dead, only null-path is taken.
4418   if (stopped())  return true;
4419 
4420   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4421   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4422   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4440     CallJavaNode* slow_call = nullptr;
4441     if (uninitialized) {
4442       // Generate optimized virtual call (holder class 'Unsafe' is final)
4443       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4444     } else {
4445       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4446     }
4447     Node* slow_result = set_results_for_java_call(slow_call);
4448     // this->control() comes from set_results_for_java_call
4449     result_reg->set_req(_slow_path, control());
4450     result_val->set_req(_slow_path, slow_result);
4451     result_io ->set_req(_slow_path, i_o());
4452     result_mem->set_req(_slow_path, reset_memory());
4453   }
4454 
4455   set_control(normal_ctl);
4456   if (!stopped()) {
4457     // Normal case:  The array type has been cached in the java.lang.Class.
4458     // The following call works fine even if the array type is polymorphic.
4459     // It could be a dynamic mix of int[], boolean[], Object[], etc.



4460     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4461     result_reg->init_req(_normal_path, control());
4462     result_val->init_req(_normal_path, obj);
4463     result_io ->init_req(_normal_path, i_o());
4464     result_mem->init_req(_normal_path, reset_memory());
4465 
4466     if (uninitialized) {
4467       // Mark the allocation so that zeroing is skipped
4468       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4469       alloc->maybe_set_complete(&_gvn);
4470     }
4471   }
4472 
4473   // Return the combined state.
4474   set_i_o(        _gvn.transform(result_io)  );
4475   set_all_memory( _gvn.transform(result_mem));
4476 
4477   C->set_has_split_ifs(true); // Has chance for split-if optimization
4478   set_result(result_reg, result_val);
4479   return true;

4528   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4529   { PreserveReexecuteState preexecs(this);
4530     jvms()->set_should_reexecute(true);
4531 
4532     array_type_mirror = null_check(array_type_mirror);
4533     original          = null_check(original);
4534 
4535     // Check if a null path was taken unconditionally.
4536     if (stopped())  return true;
4537 
4538     Node* orig_length = load_array_length(original);
4539 
4540     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4541     klass_node = null_check(klass_node);
4542 
4543     RegionNode* bailout = new RegionNode(1);
4544     record_for_igvn(bailout);
4545 
4546     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4547     // Bail out if that is so.
4548     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);















4549     if (not_objArray != nullptr) {
4550       // Improve the klass node's type from the new optimistic assumption:
4551       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4552       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4553       Node* cast = new CastPPNode(control(), klass_node, akls);
4554       klass_node = _gvn.transform(cast);


4555     }
4556 
4557     // Bail out if either start or end is negative.
4558     generate_negative_guard(start, bailout, &start);
4559     generate_negative_guard(end,   bailout, &end);
4560 
4561     Node* length = end;
4562     if (_gvn.type(start) != TypeInt::ZERO) {
4563       length = _gvn.transform(new SubINode(end, start));
4564     }
4565 
4566     // Bail out if length is negative (i.e., if start > end).
4567     // Without this the new_array would throw
4568     // NegativeArraySizeException but IllegalArgumentException is what
4569     // should be thrown
4570     generate_negative_guard(length, bailout, &length);
4571 







































4572     // Bail out if start is larger than the original length
4573     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4574     generate_negative_guard(orig_tail, bailout, &orig_tail);
4575 
4576     if (bailout->req() > 1) {
4577       PreserveJVMState pjvms(this);
4578       set_control(_gvn.transform(bailout));
4579       uncommon_trap(Deoptimization::Reason_intrinsic,
4580                     Deoptimization::Action_maybe_recompile);
4581     }
4582 
4583     if (!stopped()) {
4584       // How many elements will we copy from the original?
4585       // The answer is MinI(orig_tail, length).
4586       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4587 
4588       // Generate a direct call to the right arraycopy function(s).
4589       // We know the copy is disjoint but we might not know if the
4590       // oop stores need checking.
4591       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4597       // to the copyOf to be validated, including that the copy to the
4598       // new array won't trigger an ArrayStoreException. That subtype
4599       // check can be optimized if we know something on the type of
4600       // the input array from type speculation.
4601       if (_gvn.type(klass_node)->singleton()) {
4602         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4603         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4604 
4605         int test = C->static_subtype_check(superk, subk);
4606         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4607           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4608           if (t_original->speculative_type() != nullptr) {
4609             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4610           }
4611         }
4612       }
4613 
4614       bool validated = false;
4615       // Reason_class_check rather than Reason_intrinsic because we
4616       // want to intrinsify even if this traps.
4617       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4618         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4619 
4620         if (not_subtype_ctrl != top()) {
4621           PreserveJVMState pjvms(this);
4622           set_control(not_subtype_ctrl);
4623           uncommon_trap(Deoptimization::Reason_class_check,
4624                         Deoptimization::Action_make_not_entrant);
4625           assert(stopped(), "Should be stopped");
4626         }
4627         validated = true;
4628       }
4629 
4630       if (!stopped()) {
4631         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4632 
4633         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4634                                                 load_object_klass(original), klass_node);
4635         if (!is_copyOfRange) {
4636           ac->set_copyof(validated);
4637         } else {
4638           ac->set_copyofrange(validated);
4639         }
4640         Node* n = _gvn.transform(ac);
4641         if (n == ac) {
4642           ac->connect_outputs(this);
4643         } else {
4644           assert(validated, "shouldn't transform if all arguments not validated");
4645           set_all_memory(n);
4646         }
4647       }
4648     }
4649   } // original reexecute is set back here
4650 
4651   C->set_has_split_ifs(true); // Has chance for split-if optimization

4683 
4684 //-----------------------generate_method_call----------------------------
4685 // Use generate_method_call to make a slow-call to the real
4686 // method if the fast path fails.  An alternative would be to
4687 // use a stub like OptoRuntime::slow_arraycopy_Java.
4688 // This only works for expanding the current library call,
4689 // not another intrinsic.  (E.g., don't use this for making an
4690 // arraycopy call inside of the copyOf intrinsic.)
4691 CallJavaNode*
4692 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4693   // When compiling the intrinsic method itself, do not use this technique.
4694   guarantee(callee() != C->method(), "cannot make slow-call to self");
4695 
4696   ciMethod* method = callee();
4697   // ensure the JVMS we have will be correct for this call
4698   guarantee(method_id == method->intrinsic_id(), "must match");
4699 
4700   const TypeFunc* tf = TypeFunc::make(method);
4701   if (res_not_null) {
4702     assert(tf->return_type() == T_OBJECT, "");
4703     const TypeTuple* range = tf->range();
4704     const Type** fields = TypeTuple::fields(range->cnt());
4705     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4706     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4707     tf = TypeFunc::make(tf->domain(), new_range);
4708   }
4709   CallJavaNode* slow_call;
4710   if (is_static) {
4711     assert(!is_virtual, "");
4712     slow_call = new CallStaticJavaNode(C, tf,
4713                            SharedRuntime::get_resolve_static_call_stub(), method);
4714   } else if (is_virtual) {
4715     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4716     int vtable_index = Method::invalid_vtable_index;
4717     if (UseInlineCaches) {
4718       // Suppress the vtable call
4719     } else {
4720       // hashCode and clone are not a miranda methods,
4721       // so the vtable index is fixed.
4722       // No need to use the linkResolver to get it.
4723        vtable_index = method->vtable_index();
4724        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4725               "bad index %d", vtable_index);
4726     }
4727     slow_call = new CallDynamicJavaNode(tf,

4744   set_edges_for_java_call(slow_call);
4745   return slow_call;
4746 }
4747 
4748 
4749 /**
4750  * Build special case code for calls to hashCode on an object. This call may
4751  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4752  * slightly different code.
4753  */
4754 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4755   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4756   assert(!(is_virtual && is_static), "either virtual, special, or static");
4757 
4758   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4759 
4760   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4761   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4762   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4763   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4764   Node* obj = nullptr;







4765   if (!is_static) {
4766     // Check for hashing null object
4767     obj = null_check_receiver();
4768     if (stopped())  return true;        // unconditionally null
4769     result_reg->init_req(_null_path, top());
4770     result_val->init_req(_null_path, top());
4771   } else {
4772     // Do a null check, and return zero if null.
4773     // System.identityHashCode(null) == 0
4774     obj = argument(0);
4775     Node* null_ctl = top();
4776     obj = null_check_oop(obj, &null_ctl);
4777     result_reg->init_req(_null_path, null_ctl);
4778     result_val->init_req(_null_path, _gvn.intcon(0));
4779   }
4780 
4781   // Unconditionally null?  Then return right away.
4782   if (stopped()) {
4783     set_control( result_reg->in(_null_path));
4784     if (!stopped())
4785       set_result(result_val->in(_null_path));
4786     return true;
4787   }
4788 
4789   // We only go to the fast case code if we pass a number of guards.  The
4790   // paths which do not pass are accumulated in the slow_region.
4791   RegionNode* slow_region = new RegionNode(1);
4792   record_for_igvn(slow_region);
4793 
4794   // If this is a virtual call, we generate a funny guard.  We pull out
4795   // the vtable entry corresponding to hashCode() from the target object.
4796   // If the target method which we are calling happens to be the native
4797   // Object hashCode() method, we pass the guard.  We do not need this
4798   // guard for non-virtual calls -- the caller is known to be the native
4799   // Object hashCode().
4800   if (is_virtual) {
4801     // After null check, get the object's klass.
4802     Node* obj_klass = load_object_klass(obj);
4803     generate_virtual_guard(obj_klass, slow_region);
4804   }
4805 
4806   // Get the header out of the object, use LoadMarkNode when available
4807   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4808   // The control of the load must be null. Otherwise, the load can move before
4809   // the null check after castPP removal.
4810   Node* no_ctrl = nullptr;
4811   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4812 
4813   if (!UseObjectMonitorTable) {
4814     // Test the header to see if it is safe to read w.r.t. locking.


4815     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4816     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4817     Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4818     Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4819     Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4820 
4821     generate_slow_guard(test_monitor, slow_region);
4822   }
4823 
4824   // Get the hash value and check to see that it has been properly assigned.
4825   // We depend on hash_mask being at most 32 bits and avoid the use of
4826   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4827   // vm: see markWord.hpp.
4828   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4829   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4830   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4831   // This hack lets the hash bits live anywhere in the mark object now, as long
4832   // as the shift drops the relevant bits into the low 32 bits.  Note that
4833   // Java spec says that HashCode is an int so there's no point in capturing
4834   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).

4862     // this->control() comes from set_results_for_java_call
4863     result_reg->init_req(_slow_path, control());
4864     result_val->init_req(_slow_path, slow_result);
4865     result_io  ->set_req(_slow_path, i_o());
4866     result_mem ->set_req(_slow_path, reset_memory());
4867   }
4868 
4869   // Return the combined state.
4870   set_i_o(        _gvn.transform(result_io)  );
4871   set_all_memory( _gvn.transform(result_mem));
4872 
4873   set_result(result_reg, result_val);
4874   return true;
4875 }
4876 
4877 //---------------------------inline_native_getClass----------------------------
4878 // public final native Class<?> java.lang.Object.getClass();
4879 //
4880 // Build special case code for calls to getClass on an object.
4881 bool LibraryCallKit::inline_native_getClass() {
4882   Node* obj = null_check_receiver();









4883   if (stopped())  return true;
4884   set_result(load_mirror_from_klass(load_object_klass(obj)));
4885   return true;
4886 }
4887 
4888 //-----------------inline_native_Reflection_getCallerClass---------------------
4889 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4890 //
4891 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4892 //
4893 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4894 // in that it must skip particular security frames and checks for
4895 // caller sensitive methods.
4896 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4897 #ifndef PRODUCT
4898   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4899     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4900   }
4901 #endif
4902 

5284 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5285 //
5286 // The general case has two steps, allocation and copying.
5287 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5288 //
5289 // Copying also has two cases, oop arrays and everything else.
5290 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5291 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5292 //
5293 // These steps fold up nicely if and when the cloned object's klass
5294 // can be sharply typed as an object array, a type array, or an instance.
5295 //
5296 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5297   PhiNode* result_val;
5298 
5299   // Set the reexecute bit for the interpreter to reexecute
5300   // the bytecode that invokes Object.clone if deoptimization happens.
5301   { PreserveReexecuteState preexecs(this);
5302     jvms()->set_should_reexecute(true);
5303 
5304     Node* obj = null_check_receiver();

5305     if (stopped())  return true;
5306 
5307     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();






5308 
5309     // If we are going to clone an instance, we need its exact type to
5310     // know the number and types of fields to convert the clone to
5311     // loads/stores. Maybe a speculative type can help us.
5312     if (!obj_type->klass_is_exact() &&
5313         obj_type->speculative_type() != nullptr &&
5314         obj_type->speculative_type()->is_instance_klass()) {

5315       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5316       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5317           !spec_ik->has_injected_fields()) {
5318         if (!obj_type->isa_instptr() ||
5319             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5320           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5321         }
5322       }
5323     }
5324 
5325     // Conservatively insert a memory barrier on all memory slices.
5326     // Do not let writes into the original float below the clone.
5327     insert_mem_bar(Op_MemBarCPUOrder);
5328 
5329     // paths into result_reg:
5330     enum {
5331       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5332       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5333       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5334       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5335       PATH_LIMIT
5336     };
5337     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5338     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5339     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5340     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5341     record_for_igvn(result_reg);
5342 
5343     Node* obj_klass = load_object_klass(obj);





5344     Node* array_obj = obj;
5345     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5346     if (array_ctl != nullptr) {
5347       // It's an array.
5348       PreserveJVMState pjvms(this);
5349       set_control(array_ctl);
5350       Node* obj_length = load_array_length(array_obj);
5351       Node* array_size = nullptr; // Size of the array without object alignment padding.
5352       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5353 
5354       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5355       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5356         // If it is an oop array, it requires very special treatment,
5357         // because gc barriers are required when accessing the array.
5358         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5359         if (is_obja != nullptr) {
5360           PreserveJVMState pjvms2(this);
5361           set_control(is_obja);
5362           // Generate a direct call to the right arraycopy function(s).
5363           // Clones are always tightly coupled.
5364           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5365           ac->set_clone_oop_array();
5366           Node* n = _gvn.transform(ac);
5367           assert(n == ac, "cannot disappear");
5368           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5369 
5370           result_reg->init_req(_objArray_path, control());
5371           result_val->init_req(_objArray_path, alloc_obj);
5372           result_i_o ->set_req(_objArray_path, i_o());
5373           result_mem ->set_req(_objArray_path, reset_memory());
5374         }
5375       }
5376       // Otherwise, there are no barriers to worry about.
5377       // (We can dispense with card marks if we know the allocation
5378       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5379       //  causes the non-eden paths to take compensating steps to
5380       //  simulate a fresh allocation, so that no further
5381       //  card marks are required in compiled code to initialize
5382       //  the object.)
5383 
5384       if (!stopped()) {
5385         copy_to_clone(array_obj, alloc_obj, array_size, true);
5386 
5387         // Present the results of the copy.
5388         result_reg->init_req(_array_path, control());
5389         result_val->init_req(_array_path, alloc_obj);
5390         result_i_o ->set_req(_array_path, i_o());
5391         result_mem ->set_req(_array_path, reset_memory());




































5392       }
5393     }
5394 
5395     // We only go to the instance fast case code if we pass a number of guards.
5396     // The paths which do not pass are accumulated in the slow_region.
5397     RegionNode* slow_region = new RegionNode(1);
5398     record_for_igvn(slow_region);
5399     if (!stopped()) {
5400       // It's an instance (we did array above).  Make the slow-path tests.
5401       // If this is a virtual call, we generate a funny guard.  We grab
5402       // the vtable entry corresponding to clone() from the target object.
5403       // If the target method which we are calling happens to be the
5404       // Object clone() method, we pass the guard.  We do not need this
5405       // guard for non-virtual calls; the caller is known to be the native
5406       // Object clone().
5407       if (is_virtual) {
5408         generate_virtual_guard(obj_klass, slow_region);
5409       }
5410 
5411       // The object must be easily cloneable and must not have a finalizer.
5412       // Both of these conditions may be checked in a single test.
5413       // We could optimize the test further, but we don't care.
5414       generate_misc_flags_guard(obj_klass,
5415                                 // Test both conditions:
5416                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5417                                 // Must be cloneable but not finalizer:
5418                                 KlassFlags::_misc_is_cloneable_fast,

5510         set_jvms(sfpt->jvms());
5511         _reexecute_sp = jvms()->sp();
5512 
5513         return saved_jvms;
5514       }
5515     }
5516   }
5517   return nullptr;
5518 }
5519 
5520 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5521 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5522 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5523   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5524   uint size = alloc->req();
5525   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5526   old_jvms->set_map(sfpt);
5527   for (uint i = 0; i < size; i++) {
5528     sfpt->init_req(i, alloc->in(i));
5529   }












5530   // re-push array length for deoptimization
5531   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5532   old_jvms->set_sp(old_jvms->sp()+1);
5533   old_jvms->set_monoff(old_jvms->monoff()+1);
5534   old_jvms->set_scloff(old_jvms->scloff()+1);
5535   old_jvms->set_endoff(old_jvms->endoff()+1);











5536   old_jvms->set_should_reexecute(true);
5537 
5538   sfpt->set_i_o(map()->i_o());
5539   sfpt->set_memory(map()->memory());
5540   sfpt->set_control(map()->control());
5541   return sfpt;
5542 }
5543 
5544 // In case of a deoptimization, we restart execution at the
5545 // allocation, allocating a new array. We would leave an uninitialized
5546 // array in the heap that GCs wouldn't expect. Move the allocation
5547 // after the traps so we don't allocate the array if we
5548 // deoptimize. This is possible because tightly_coupled_allocation()
5549 // guarantees there's no observer of the allocated array at this point
5550 // and the control flow is simple enough.
5551 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5552                                                     int saved_reexecute_sp, uint new_idx) {
5553   if (saved_jvms_before_guards != nullptr && !stopped()) {
5554     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5555 
5556     assert(alloc != nullptr, "only with a tightly coupled allocation");
5557     // restore JVM state to the state at the arraycopy
5558     saved_jvms_before_guards->map()->set_control(map()->control());
5559     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5560     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5561     // If we've improved the types of some nodes (null check) while
5562     // emitting the guards, propagate them to the current state
5563     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5564     set_jvms(saved_jvms_before_guards);
5565     _reexecute_sp = saved_reexecute_sp;
5566 
5567     // Remove the allocation from above the guards
5568     CallProjections callprojs;
5569     alloc->extract_projections(&callprojs, true);
5570     InitializeNode* init = alloc->initialization();
5571     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5572     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5573     init->replace_mem_projs_by(alloc_mem, C);
5574 
5575     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5576     // the allocation (i.e. is only valid if the allocation succeeds):
5577     // 1) replace CastIINode with AllocateArrayNode's length here
5578     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5579     //
5580     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5581     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5582     Node* init_control = init->proj_out(TypeFunc::Control);
5583     Node* alloc_length = alloc->Ideal_length();
5584 #ifdef ASSERT
5585     Node* prev_cast = nullptr;
5586 #endif
5587     for (uint i = 0; i < init_control->outcnt(); i++) {
5588       Node* init_out = init_control->raw_out(i);
5589       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5590 #ifdef ASSERT
5591         if (prev_cast == nullptr) {
5592           prev_cast = init_out;

5594           if (prev_cast->cmp(*init_out) == false) {
5595             prev_cast->dump();
5596             init_out->dump();
5597             assert(false, "not equal CastIINode");
5598           }
5599         }
5600 #endif
5601         C->gvn_replace_by(init_out, alloc_length);
5602       }
5603     }
5604     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5605 
5606     // move the allocation here (after the guards)
5607     _gvn.hash_delete(alloc);
5608     alloc->set_req(TypeFunc::Control, control());
5609     alloc->set_req(TypeFunc::I_O, i_o());
5610     Node *mem = reset_memory();
5611     set_all_memory(mem);
5612     alloc->set_req(TypeFunc::Memory, mem);
5613     set_control(init->proj_out_or_null(TypeFunc::Control));
5614     set_i_o(callprojs.fallthrough_ioproj);
5615 
5616     // Update memory as done in GraphKit::set_output_for_allocation()
5617     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5618     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5619     if (ary_type->isa_aryptr() && length_type != nullptr) {
5620       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5621     }
5622     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5623     int            elemidx  = C->get_alias_index(telemref);
5624     // Need to properly move every memory projection for the Initialize
5625 #ifdef ASSERT
5626     int mark_idx = C->get_alias_index(ary_type->add_offset(oopDesc::mark_offset_in_bytes()));
5627     int klass_idx = C->get_alias_index(ary_type->add_offset(oopDesc::klass_offset_in_bytes()));
5628 #endif
5629     auto move_proj = [&](ProjNode* proj) {
5630       int alias_idx = C->get_alias_index(proj->adr_type());
5631       assert(alias_idx == Compile::AliasIdxRaw ||
5632              alias_idx == elemidx ||
5633              alias_idx == mark_idx ||
5634              alias_idx == klass_idx, "should be raw memory or array element type");

5944         top_src  = src_type->isa_aryptr();
5945         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5946         src_spec = true;
5947       }
5948       if (!has_dest) {
5949         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5950         dest_type  = _gvn.type(dest);
5951         top_dest  = dest_type->isa_aryptr();
5952         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5953         dest_spec = true;
5954       }
5955     }
5956   }
5957 
5958   if (has_src && has_dest && can_emit_guards) {
5959     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5960     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5961     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5962     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5963 
5964     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5965       // If both arrays are object arrays then having the exact types
5966       // for both will remove the need for a subtype check at runtime
5967       // before the call and may make it possible to pick a faster copy
5968       // routine (without a subtype check on every element)
5969       // Do we have the exact type of src?
5970       bool could_have_src = src_spec;
5971       // Do we have the exact type of dest?
5972       bool could_have_dest = dest_spec;
5973       ciKlass* src_k = nullptr;
5974       ciKlass* dest_k = nullptr;
5975       if (!src_spec) {
5976         src_k = src_type->speculative_type_not_null();
5977         if (src_k != nullptr && src_k->is_array_klass()) {
5978           could_have_src = true;
5979         }
5980       }
5981       if (!dest_spec) {
5982         dest_k = dest_type->speculative_type_not_null();
5983         if (dest_k != nullptr && dest_k->is_array_klass()) {
5984           could_have_dest = true;
5985         }
5986       }
5987       if (could_have_src && could_have_dest) {
5988         // If we can have both exact types, emit the missing guards
5989         if (could_have_src && !src_spec) {
5990           src = maybe_cast_profiled_obj(src, src_k, true);


5991         }
5992         if (could_have_dest && !dest_spec) {
5993           dest = maybe_cast_profiled_obj(dest, dest_k, true);


5994         }
5995       }
5996     }
5997   }
5998 
5999   ciMethod* trap_method = method();
6000   int trap_bci = bci();
6001   if (saved_jvms_before_guards != nullptr) {
6002     trap_method = alloc->jvms()->method();
6003     trap_bci = alloc->jvms()->bci();
6004   }
6005 
6006   bool negative_length_guard_generated = false;
6007 
6008   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6009       can_emit_guards &&
6010       !src->is_top() && !dest->is_top()) {
6011     // validate arguments: enables transformation the ArrayCopyNode
6012     validated = true;
6013 
6014     RegionNode* slow_region = new RegionNode(1);
6015     record_for_igvn(slow_region);
6016 
6017     // (1) src and dest are arrays.
6018     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6019     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6020 
6021     // (2) src and dest arrays must have elements of the same BasicType
6022     // done at macro expansion or at Ideal transformation time
6023 
6024     // (4) src_offset must not be negative.
6025     generate_negative_guard(src_offset, slow_region);
6026 
6027     // (5) dest_offset must not be negative.
6028     generate_negative_guard(dest_offset, slow_region);
6029 
6030     // (7) src_offset + length must not exceed length of src.
6031     generate_limit_guard(src_offset, length,
6032                          load_array_length(src),
6033                          slow_region);
6034 
6035     // (8) dest_offset + length must not exceed length of dest.
6036     generate_limit_guard(dest_offset, length,
6037                          load_array_length(dest),
6038                          slow_region);
6039 
6040     // (6) length must not be negative.
6041     // This is also checked in generate_arraycopy() during macro expansion, but
6042     // we also have to check it here for the case where the ArrayCopyNode will
6043     // be eliminated by Escape Analysis.
6044     if (EliminateAllocations) {
6045       generate_negative_guard(length, slow_region);
6046       negative_length_guard_generated = true;
6047     }
6048 
6049     // (9) each element of an oop array must be assignable
6050     Node* dest_klass = load_object_klass(dest);

6051     if (src != dest) {

6052       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6053 
6054       if (not_subtype_ctrl != top()) {
6055         PreserveJVMState pjvms(this);
6056         set_control(not_subtype_ctrl);
6057         uncommon_trap(Deoptimization::Reason_intrinsic,
6058                       Deoptimization::Action_make_not_entrant);
6059         assert(stopped(), "Should be stopped");
6060       }
6061     }





















6062     {
6063       PreserveJVMState pjvms(this);
6064       set_control(_gvn.transform(slow_region));
6065       uncommon_trap(Deoptimization::Reason_intrinsic,
6066                     Deoptimization::Action_make_not_entrant);
6067       assert(stopped(), "Should be stopped");
6068     }
6069 
6070     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6071     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();








6072     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6073     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6074   }
6075 
6076   if (stopped()) {
6077     return true;
6078   }
6079 



6080   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6081                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6082                                           // so the compiler has a chance to eliminate them: during macro expansion,
6083                                           // we have to set their control (CastPP nodes are eliminated).
6084                                           load_object_klass(src), load_object_klass(dest),
6085                                           load_array_length(src), load_array_length(dest));
6086 
6087   ac->set_arraycopy(validated);
6088 
6089   Node* n = _gvn.transform(ac);
6090   if (n == ac) {
6091     ac->connect_outputs(this);
6092   } else {
6093     assert(validated, "shouldn't transform if all arguments not validated");
6094     set_all_memory(n);
6095   }
6096   clear_upper_avx();
6097 
6098 
6099   return true;
6100 }
6101 
6102 
6103 // Helper function which determines if an arraycopy immediately follows
6104 // an allocation, with no intervening tests or other escapes for the object.

   1 /*
   2  * Copyright (c) 1999, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciInstanceKlass.hpp"
  29 #include "ci/ciSymbols.hpp"
  30 #include "ci/ciUtilities.inline.hpp"
  31 #include "classfile/vmIntrinsics.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/c2/barrierSetC2.hpp"
  36 #include "jfr/support/jfrIntrinsics.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/accessDecorators.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "oops/layoutKind.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "opto/addnode.hpp"
  43 #include "opto/arraycopynode.hpp"
  44 #include "opto/c2compiler.hpp"
  45 #include "opto/castnode.hpp"
  46 #include "opto/cfgnode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/countbitsnode.hpp"
  49 #include "opto/graphKit.hpp"
  50 #include "opto/idealKit.hpp"
  51 #include "opto/inlinetypenode.hpp"
  52 #include "opto/library_call.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/opaquenode.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "prims/jvmtiThreadState.hpp"
  66 #include "prims/unsafe.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/jniHandles.inline.hpp"
  69 #include "runtime/mountUnmountDisabler.hpp"
  70 #include "runtime/objectMonitor.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/powerOfTwo.hpp"
  76 
  77 //---------------------------make_vm_intrinsic----------------------------
  78 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  79   vmIntrinsicID id = m->intrinsic_id();
  80   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  81 
  82   if (!m->is_loaded()) {
  83     // Do not attempt to inline unloaded methods.
  84     return nullptr;
  85   }
  86 
  87   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  88   bool is_available = false;
  89 
  90   {
  91     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  92     // the compiler must transition to '_thread_in_vm' state because both
  93     // methods access VM-internal data.

 404   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 405   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 406   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 407   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 408   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 409   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 410   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 411   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 412   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 413 
 414   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 415   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 416   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 417   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 418   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 419   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 420   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 421   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 422   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 423 
 424   case vmIntrinsics::_getFlatValue:             return inline_unsafe_flat_access(!is_store, Relaxed);
 425   case vmIntrinsics::_putFlatValue:             return inline_unsafe_flat_access( is_store, Relaxed);
 426 
 427   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 428   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 429   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 430   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 431   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 432 
 433   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 434   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 435   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 436   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 437   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 438   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 439   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 440   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 441   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 442   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 443   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 444   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 445   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 446   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);

 466   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 467   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 468   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 469 
 470   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 471   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 472   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 473   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 474 
 475   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 476   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 477   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 478   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 479   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 480 
 481   case vmIntrinsics::_loadFence:
 482   case vmIntrinsics::_storeFence:
 483   case vmIntrinsics::_storeStoreFence:
 484   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 485 
 486   case vmIntrinsics::_arrayInstanceBaseOffset:  return inline_arrayInstanceBaseOffset();
 487   case vmIntrinsics::_arrayInstanceIndexScale:  return inline_arrayInstanceIndexScale();
 488   case vmIntrinsics::_arrayLayout:              return inline_arrayLayout();
 489   case vmIntrinsics::_getFieldMap:              return inline_getFieldMap();
 490 
 491   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 492 
 493   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 494   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 495   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 496 
 497   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 498   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 499 
 500   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 501   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 502 
 503   case vmIntrinsics::_vthreadEndFirstTransition:    return inline_native_vthread_end_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_end_first_transition_Java()),
 504                                                                                                 "endFirstTransition", true);
 505   case vmIntrinsics::_vthreadStartFinalTransition:  return inline_native_vthread_start_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_start_final_transition_Java()),
 506                                                                                                   "startFinalTransition", true);
 507   case vmIntrinsics::_vthreadStartTransition:       return inline_native_vthread_start_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_start_transition_Java()),
 508                                                                                                   "startTransition", false);
 509   case vmIntrinsics::_vthreadEndTransition:         return inline_native_vthread_end_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_end_transition_Java()),
 510                                                                                                 "endTransition", false);

 519 #endif
 520   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 521   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 522   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 523   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 524   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 525   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 526   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 527   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 528   case vmIntrinsics::_getLength:                return inline_native_getLength();
 529   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 530   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 531   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 532   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 533   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 534   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 535   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 536 
 537   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 538   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 539   case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false);
 540   case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true);
 541   case vmIntrinsics::_newNullableAtomicArray:     return inline_newArray(/* null_free */ false, /* atomic */ true);
 542   case vmIntrinsics::_isFlatArray:              return inline_getArrayProperties(IsFlat);
 543   case vmIntrinsics::_isNullRestrictedArray:    return inline_getArrayProperties(IsNullRestricted);
 544   case vmIntrinsics::_isAtomicArray:            return inline_getArrayProperties(IsAtomic);
 545 
 546   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 547 
 548   case vmIntrinsics::_isInstance:
 549   case vmIntrinsics::_isHidden:
 550   case vmIntrinsics::_getSuperclass:            return inline_native_Class_query(intrinsic_id());
 551 
 552   case vmIntrinsics::_floatToRawIntBits:
 553   case vmIntrinsics::_floatToIntBits:
 554   case vmIntrinsics::_intBitsToFloat:
 555   case vmIntrinsics::_doubleToRawLongBits:
 556   case vmIntrinsics::_doubleToLongBits:
 557   case vmIntrinsics::_longBitsToDouble:
 558   case vmIntrinsics::_floatToFloat16:
 559   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 560   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 561   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 562   case vmIntrinsics::_floatIsFinite:
 563   case vmIntrinsics::_floatIsInfinite:
 564   case vmIntrinsics::_doubleIsFinite:

2329     case vmIntrinsics::_remainderUnsigned_l: {
2330       zero_check_long(argument(2));
2331       // Compile-time detect of null-exception
2332       if (stopped()) {
2333         return true; // keep the graph constructed so far
2334       }
2335       n = new UModLNode(control(), argument(0), argument(2));
2336       break;
2337     }
2338     default:  fatal_unexpected_iid(id);  break;
2339   }
2340   set_result(_gvn.transform(n));
2341   return true;
2342 }
2343 
2344 //----------------------------inline_unsafe_access----------------------------
2345 
2346 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2347   // Attempt to infer a sharper value type from the offset and base type.
2348   ciKlass* sharpened_klass = nullptr;
2349   bool null_free = false;
2350 
2351   // See if it is an instance field, with an object type.
2352   if (alias_type->field() != nullptr) {
2353     if (alias_type->field()->type()->is_klass()) {
2354       sharpened_klass = alias_type->field()->type()->as_klass();
2355       null_free = alias_type->field()->is_null_free();
2356     }
2357   }
2358 
2359   const TypeOopPtr* result = nullptr;
2360   // See if it is a narrow oop array.
2361   if (adr_type->isa_aryptr()) {
2362     if (adr_type->offset() >= refArrayOopDesc::base_offset_in_bytes()) {
2363       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2364       null_free = adr_type->is_aryptr()->is_null_free();
2365       if (elem_type != nullptr && elem_type->is_loaded()) {
2366         // Sharpen the value type.
2367         result = elem_type;
2368       }
2369     }
2370   }
2371 
2372   // The sharpened class might be unloaded if there is no class loader
2373   // contraint in place.
2374   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2375     // Sharpen the value type.
2376     result = TypeOopPtr::make_from_klass(sharpened_klass);
2377     if (null_free) {
2378       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2379     }
2380   }
2381   if (result != nullptr) {
2382 #ifndef PRODUCT
2383     if (C->print_intrinsics() || C->print_inlining()) {
2384       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2385       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2386     }
2387 #endif
2388   }
2389   return result;
2390 }
2391 
2392 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2393   switch (kind) {
2394       case Relaxed:
2395         return MO_UNORDERED;
2396       case Opaque:
2397         return MO_RELAXED;
2398       case Acquire:
2399         return MO_ACQUIRE;

2488 #endif // ASSERT
2489  }
2490 #endif //PRODUCT
2491 
2492   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2493 
2494   Node* receiver = argument(0);  // type: oop
2495 
2496   // Build address expression.
2497   Node* heap_base_oop = top();
2498 
2499   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2500   Node* base = argument(1);  // type: oop
2501   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2502   Node* offset = argument(2);  // type: long
2503   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2504   // to be plain byte offsets, which are also the same as those accepted
2505   // by oopDesc::field_addr.
2506   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2507          "fieldOffset must be byte-scaled");
2508 
2509   if (base->is_InlineType()) {
2510     assert(!is_store, "InlineTypeNodes are non-larval value objects");
2511     InlineTypeNode* vt = base->as_InlineType();
2512     if (offset->is_Con()) {
2513       long off = find_long_con(offset, 0);
2514       ciInlineKlass* vk = vt->type()->inline_klass();
2515       if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2516         return false;
2517       }
2518 
2519       ciField* field = vk->get_non_flat_field_by_offset(off);
2520       if (field != nullptr) {
2521         BasicType bt = type2field[field->type()->basic_type()];
2522         if (bt == T_ARRAY || bt == T_NARROWOOP) {
2523           bt = T_OBJECT;
2524         }
2525         if (bt == type && !field->is_flat()) {
2526           Node* value = vt->field_value_by_offset(off, false);
2527           if (value->is_InlineType()) {
2528             value = value->as_InlineType()->adjust_scalarization_depth(this);
2529           }
2530           set_result(value);
2531           return true;
2532         }
2533       }
2534     }
2535     {
2536       // Re-execute the unsafe access if allocation triggers deoptimization.
2537       PreserveReexecuteState preexecs(this);
2538       jvms()->set_should_reexecute(true);
2539       vt = vt->buffer(this);
2540     }
2541     base = vt->get_oop();
2542   }
2543 
2544   // 32-bit machines ignore the high half!
2545   offset = ConvL2X(offset);
2546 
2547   // Save state and restore on bailout
2548   SavedState old_state(this);
2549 
2550   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2551   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2552 
2553   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2554     if (type != T_OBJECT) {
2555       decorators |= IN_NATIVE; // off-heap primitive access
2556     } else {
2557       return false; // off-heap oop accesses are not supported
2558     }
2559   } else {
2560     heap_base_oop = base; // on-heap or mixed access
2561   }
2562 
2563   // Can base be null? Otherwise, always on-heap access.

2567     decorators |= IN_HEAP;
2568   }
2569 
2570   Node* val = is_store ? argument(4) : nullptr;
2571 
2572   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2573   if (adr_type == TypePtr::NULL_PTR) {
2574     return false; // off-heap access with zero address
2575   }
2576 
2577   // Try to categorize the address.
2578   Compile::AliasType* alias_type = C->alias_type(adr_type);
2579   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2580 
2581   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2582       alias_type->adr_type() == TypeAryPtr::RANGE) {
2583     return false; // not supported
2584   }
2585 
2586   bool mismatched = false;
2587   BasicType bt = T_ILLEGAL;
2588   ciField* field = nullptr;
2589   if (adr_type->isa_instptr()) {
2590     const TypeInstPtr* instptr = adr_type->is_instptr();
2591     ciInstanceKlass* k = instptr->instance_klass();
2592     int off = instptr->offset();
2593     if (instptr->const_oop() != nullptr &&
2594         k == ciEnv::current()->Class_klass() &&
2595         instptr->offset() >= (k->size_helper() * wordSize)) {
2596       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2597       field = k->get_field_by_offset(off, true);
2598     } else {
2599       field = k->get_non_flat_field_by_offset(off);
2600     }
2601     if (field != nullptr) {
2602       bt = type2field[field->type()->basic_type()];
2603     }
2604     if (bt != alias_type->basic_type()) {
2605       // Type mismatch. Is it an access to a nested flat field?
2606       field = k->get_field_by_offset(off, false);
2607       if (field != nullptr) {
2608         bt = type2field[field->type()->basic_type()];
2609       }
2610     }
2611     assert(bt == alias_type->basic_type(), "should match");
2612   } else {
2613     bt = alias_type->basic_type();
2614   }
2615 
2616   if (bt != T_ILLEGAL) {
2617     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2618     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2619       // Alias type doesn't differentiate between byte[] and boolean[]).
2620       // Use address type to get the element type.
2621       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2622     }
2623     if (is_reference_type(bt, true)) {
2624       // accessing an array field with getReference is not a mismatch
2625       bt = T_OBJECT;
2626     }
2627     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2628       // Don't intrinsify mismatched object accesses
2629       return false;
2630     }
2631     mismatched = (bt != type);
2632   } else if (alias_type->adr_type()->isa_oopptr()) {
2633     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2634   }
2635 
2636   old_state.discard();
2637   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2638 
2639   if (mismatched) {
2640     decorators |= C2_MISMATCHED;
2641   }
2642 
2643   // First guess at the value type.
2644   const Type *value_type = Type::get_const_basic_type(type);
2645 
2646   // Figure out the memory ordering.
2647   decorators |= mo_decorator_for_access_kind(kind);
2648 
2649   if (!is_store) {
2650     if (type == T_OBJECT) {
2651       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2652       if (tjp != nullptr) {
2653         value_type = tjp;
2654       }
2655     }
2656   }
2657 
2658   receiver = null_check(receiver);
2659   if (stopped()) {
2660     return true;
2661   }
2662   // Heap pointers get a null-check from the interpreter,
2663   // as a courtesy.  However, this is not guaranteed by Unsafe,
2664   // and it is not possible to fully distinguish unintended nulls
2665   // from intended ones in this API.
2666 
2667   if (!is_store) {
2668     Node* p = nullptr;
2669     // Try to constant fold a load from a constant field
2670 
2671     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2672       // final or stable field
2673       p = make_constant_from_field(field, heap_base_oop);
2674     }
2675 
2676     if (p == nullptr) { // Could not constant fold the load
2677       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2678       const TypeOopPtr* ptr = value_type->make_oopptr();
2679       if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2680         // Load a non-flattened inline type from memory
2681         p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass());
2682       }
2683       // Normalize the value returned by getBoolean in the following cases
2684       if (type == T_BOOLEAN &&
2685           (mismatched ||
2686            heap_base_oop == top() ||                  // - heap_base_oop is null or
2687            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2688                                                       //   and the unsafe access is made to large offset
2689                                                       //   (i.e., larger than the maximum offset necessary for any
2690                                                       //   field access)
2691             ) {
2692           IdealKit ideal = IdealKit(this);
2693 #define __ ideal.
2694           IdealVariable normalized_result(ideal);
2695           __ declarations_done();
2696           __ set(normalized_result, p);
2697           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2698           __ set(normalized_result, ideal.ConI(1));
2699           ideal.end_if();
2700           final_sync(ideal);
2701           p = __ value(normalized_result);
2702 #undef __

2706       p = gvn().transform(new CastP2XNode(nullptr, p));
2707       p = ConvX2UL(p);
2708     }
2709     // The load node has the control of the preceding MemBarCPUOrder.  All
2710     // following nodes will have the control of the MemBarCPUOrder inserted at
2711     // the end of this method.  So, pushing the load onto the stack at a later
2712     // point is fine.
2713     set_result(p);
2714   } else {
2715     if (bt == T_ADDRESS) {
2716       // Repackage the long as a pointer.
2717       val = ConvL2X(val);
2718       val = gvn().transform(new CastX2PNode(val));
2719     }
2720     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2721   }
2722 
2723   return true;
2724 }
2725 
2726 bool LibraryCallKit::inline_unsafe_flat_access(bool is_store, AccessKind kind) {
2727 #ifdef ASSERT
2728   {
2729     ResourceMark rm;
2730     // Check the signatures.
2731     ciSignature* sig = callee()->signature();
2732     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base should be object, but is %s", type2name(sig->type_at(0)->basic_type()));
2733     assert(sig->type_at(1)->basic_type() == T_LONG, "offset should be long, but is %s", type2name(sig->type_at(1)->basic_type()));
2734     assert(sig->type_at(2)->basic_type() == T_INT, "layout kind should be int, but is %s", type2name(sig->type_at(3)->basic_type()));
2735     assert(sig->type_at(3)->basic_type() == T_OBJECT, "value klass should be object, but is %s", type2name(sig->type_at(4)->basic_type()));
2736     if (is_store) {
2737       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value, but returns %s", type2name(sig->return_type()->basic_type()));
2738       assert(sig->count() == 5, "flat putter should have 5 arguments, but has %d", sig->count());
2739       assert(sig->type_at(4)->basic_type() == T_OBJECT, "put value should be object, but is %s", type2name(sig->type_at(5)->basic_type()));
2740     } else {
2741       assert(sig->return_type()->basic_type() == T_OBJECT, "getter must return an object, but returns %s", type2name(sig->return_type()->basic_type()));
2742       assert(sig->count() == 4, "flat getter should have 4 arguments, but has %d", sig->count());
2743     }
2744  }
2745 #endif // ASSERT
2746 
2747   assert(kind == Relaxed, "Only plain accesses for now");
2748   if (callee()->is_static()) {
2749     // caller must have the capability!
2750     return false;
2751   }
2752   C->set_has_unsafe_access(true);
2753 
2754   const TypeInstPtr* value_klass_node = _gvn.type(argument(5))->isa_instptr();
2755   if (value_klass_node == nullptr || value_klass_node->const_oop() == nullptr) {
2756     // parameter valueType is not a constant
2757     return false;
2758   }
2759   ciType* mirror_type = value_klass_node->const_oop()->as_instance()->java_mirror_type();
2760   if (!mirror_type->is_inlinetype()) {
2761     // Dead code
2762     return false;
2763   }
2764   ciInlineKlass* value_klass = mirror_type->as_inline_klass();
2765 
2766   const TypeInt* layout_type = _gvn.type(argument(4))->isa_int();
2767   if (layout_type == nullptr || !layout_type->is_con()) {
2768     // parameter layoutKind is not a constant
2769     return false;
2770   }
2771   assert(layout_type->get_con() >= static_cast<int>(LayoutKind::REFERENCE) &&
2772          layout_type->get_con() <= static_cast<int>(LayoutKind::UNKNOWN),
2773          "invalid layoutKind %d", layout_type->get_con());
2774   LayoutKind layout = static_cast<LayoutKind>(layout_type->get_con());
2775   assert(layout == LayoutKind::REFERENCE || layout == LayoutKind::NULL_FREE_NON_ATOMIC_FLAT ||
2776          layout == LayoutKind::NULL_FREE_ATOMIC_FLAT || layout == LayoutKind::NULLABLE_ATOMIC_FLAT,
2777          "unexpected layoutKind %d", layout_type->get_con());
2778 
2779   null_check(argument(0));
2780   if (stopped()) {
2781     return true;
2782   }
2783 
2784   Node* base = must_be_not_null(argument(1), true);
2785   Node* offset = argument(2);
2786   const Type* base_type = _gvn.type(base);
2787 
2788   Node* ptr;
2789   bool immutable_memory = false;
2790   DecoratorSet decorators = C2_UNSAFE_ACCESS | IN_HEAP | MO_UNORDERED;
2791   if (base_type->isa_instptr()) {
2792     const TypeLong* offset_type = _gvn.type(offset)->isa_long();
2793     if (offset_type == nullptr || !offset_type->is_con()) {
2794       // Offset into a non-array should be a constant
2795       decorators |= C2_MISMATCHED;
2796     } else {
2797       int offset_con = checked_cast<int>(offset_type->get_con());
2798       ciInstanceKlass* base_klass = base_type->is_instptr()->instance_klass();
2799       ciField* field = base_klass->get_non_flat_field_by_offset(offset_con);
2800       if (field == nullptr) {
2801         assert(!base_klass->is_final(), "non-existence field at offset %d of class %s", offset_con, base_klass->name()->as_utf8());
2802         decorators |= C2_MISMATCHED;
2803       } else {
2804         assert(field->type() == value_klass, "field at offset %d of %s is of type %s, but valueType is %s",
2805                offset_con, base_klass->name()->as_utf8(), field->type()->name(), value_klass->name()->as_utf8());
2806         immutable_memory = field->is_strict() && field->is_final();
2807 
2808         if (base->is_InlineType()) {
2809           assert(!is_store, "Cannot store into a non-larval value object");
2810           set_result(base->as_InlineType()->field_value_by_offset(offset_con, false));
2811           return true;
2812         }
2813       }
2814     }
2815 
2816     if (base->is_InlineType()) {
2817       assert(!is_store, "Cannot store into a non-larval value object");
2818       base = base->as_InlineType()->buffer(this, true);
2819     }
2820     ptr = basic_plus_adr(base, ConvL2X(offset));
2821   } else if (base_type->isa_aryptr()) {
2822     decorators |= IS_ARRAY;
2823     if (layout == LayoutKind::REFERENCE) {
2824       if (!base_type->is_aryptr()->is_not_flat()) {
2825         const TypeAryPtr* array_type = base_type->is_aryptr()->cast_to_not_flat();
2826         Node* new_base = _gvn.transform(new CastPPNode(control(), base, array_type, ConstraintCastNode::DependencyType::NonFloatingNarrowing));
2827         replace_in_map(base, new_base);
2828         base = new_base;
2829       }
2830       ptr = basic_plus_adr(base, ConvL2X(offset));
2831     } else {
2832       if (UseArrayFlattening) {
2833         // Flat array must have an exact type
2834         bool is_null_free = !LayoutKindHelper::is_nullable_flat(layout);
2835         bool is_atomic = LayoutKindHelper::is_atomic_flat(layout);
2836         Node* new_base = cast_to_flat_array_exact(base, value_klass, is_null_free, is_atomic);
2837         replace_in_map(base, new_base);
2838         base = new_base;
2839         ptr = basic_plus_adr(base, ConvL2X(offset));
2840         const TypeAryPtr* ptr_type = _gvn.type(ptr)->is_aryptr();
2841         if (ptr_type->field_offset().get() != 0) {
2842           ptr = _gvn.transform(new CastPPNode(control(), ptr, ptr_type->with_field_offset(0), ConstraintCastNode::DependencyType::NonFloatingNarrowing));
2843         }
2844       } else {
2845         uncommon_trap(Deoptimization::Reason_intrinsic,
2846                       Deoptimization::Action_none);
2847         return true;
2848       }
2849     }
2850   } else {
2851     decorators |= C2_MISMATCHED;
2852     ptr = basic_plus_adr(base, ConvL2X(offset));
2853   }
2854 
2855   if (is_store) {
2856     Node* value = argument(6);
2857     const Type* value_type = _gvn.type(value);
2858     if (!value_type->is_inlinetypeptr()) {
2859       value_type = Type::get_const_type(value_klass)->filter_speculative(value_type);
2860       Node* new_value = _gvn.transform(new CastPPNode(control(), value, value_type, ConstraintCastNode::DependencyType::NonFloatingNarrowing));
2861       new_value = InlineTypeNode::make_from_oop(this, new_value, value_klass);
2862       replace_in_map(value, new_value);
2863       value = new_value;
2864     }
2865 
2866     assert(value_type->inline_klass() == value_klass, "value is of type %s while valueType is %s", value_type->inline_klass()->name()->as_utf8(), value_klass->name()->as_utf8());
2867     if (layout == LayoutKind::REFERENCE) {
2868       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2869       access_store_at(base, ptr, ptr_type, value, value_type, T_OBJECT, decorators);
2870     } else {
2871       bool atomic = LayoutKindHelper::is_atomic_flat(layout);
2872       bool null_free = !LayoutKindHelper::is_nullable_flat(layout);
2873       value->as_InlineType()->store_flat(this, base, ptr, atomic, immutable_memory, null_free, decorators);
2874     }
2875 
2876     return true;
2877   } else {
2878     decorators |= (C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
2879     InlineTypeNode* result;
2880     if (layout == LayoutKind::REFERENCE) {
2881       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2882       Node* oop = access_load_at(base, ptr, ptr_type, Type::get_const_type(value_klass), T_OBJECT, decorators);
2883       result = InlineTypeNode::make_from_oop(this, oop, value_klass);
2884     } else {
2885       bool atomic = LayoutKindHelper::is_atomic_flat(layout);
2886       bool null_free = !LayoutKindHelper::is_nullable_flat(layout);
2887       result = InlineTypeNode::make_from_flat(this, value_klass, base, ptr, atomic, immutable_memory, null_free, decorators);
2888     }
2889 
2890     set_result(result);
2891     return true;
2892   }
2893 }
2894 
2895 //----------------------------inline_unsafe_load_store----------------------------
2896 // This method serves a couple of different customers (depending on LoadStoreKind):
2897 //
2898 // LS_cmp_swap:
2899 //
2900 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2901 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2902 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2903 //
2904 // LS_cmp_swap_weak:
2905 //
2906 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2907 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2908 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2909 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2910 //
2911 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2912 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2913 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2914 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

3077     }
3078     case LS_cmp_swap:
3079     case LS_cmp_swap_weak:
3080     case LS_get_add:
3081       break;
3082     default:
3083       ShouldNotReachHere();
3084   }
3085 
3086   // Null check receiver.
3087   receiver = null_check(receiver);
3088   if (stopped()) {
3089     return true;
3090   }
3091 
3092   int alias_idx = C->get_alias_index(adr_type);
3093 
3094   if (is_reference_type(type)) {
3095     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
3096 
3097     if (oldval != nullptr && oldval->is_InlineType()) {
3098       // Re-execute the unsafe access if allocation triggers deoptimization.
3099       PreserveReexecuteState preexecs(this);
3100       jvms()->set_should_reexecute(true);
3101       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
3102     }
3103     if (newval != nullptr && newval->is_InlineType()) {
3104       // Re-execute the unsafe access if allocation triggers deoptimization.
3105       PreserveReexecuteState preexecs(this);
3106       jvms()->set_should_reexecute(true);
3107       newval = newval->as_InlineType()->buffer(this)->get_oop();
3108     }
3109 
3110     // Transformation of a value which could be null pointer (CastPP #null)
3111     // could be delayed during Parse (for example, in adjust_map_after_if()).
3112     // Execute transformation here to avoid barrier generation in such case.
3113     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3114       newval = _gvn.makecon(TypePtr::NULL_PTR);
3115 
3116     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
3117       // Refine the value to a null constant, when it is known to be null
3118       oldval = _gvn.makecon(TypePtr::NULL_PTR);
3119     }
3120   }
3121 
3122   Node* result = nullptr;
3123   switch (kind) {
3124     case LS_cmp_exchange: {
3125       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
3126                                             oldval, newval, value_type, type, decorators);
3127       break;
3128     }
3129     case LS_cmp_swap_weak:

3158   insert_mem_bar(Op_MemBarCPUOrder);
3159   switch(id) {
3160     case vmIntrinsics::_loadFence:
3161       insert_mem_bar(Op_LoadFence);
3162       return true;
3163     case vmIntrinsics::_storeFence:
3164       insert_mem_bar(Op_StoreFence);
3165       return true;
3166     case vmIntrinsics::_storeStoreFence:
3167       insert_mem_bar(Op_StoreStoreFence);
3168       return true;
3169     case vmIntrinsics::_fullFence:
3170       insert_mem_bar(Op_MemBarVolatile);
3171       return true;
3172     default:
3173       fatal_unexpected_iid(id);
3174       return false;
3175   }
3176 }
3177 
3178 // private native int arrayInstanceBaseOffset0(Object[] array);
3179 bool LibraryCallKit::inline_arrayInstanceBaseOffset() {
3180   Node* array = argument(1);
3181   Node* klass_node = load_object_klass(array);
3182 
3183   jint  layout_con = Klass::_lh_neutral_value;
3184   Node* layout_val = get_layout_helper(klass_node, layout_con);
3185   int   layout_is_con = (layout_val == nullptr);
3186 
3187   Node* header_size = nullptr;
3188   if (layout_is_con) {
3189     int hsize = Klass::layout_helper_header_size(layout_con);
3190     header_size = intcon(hsize);
3191   } else {
3192     Node* hss = intcon(Klass::_lh_header_size_shift);
3193     Node* hsm = intcon(Klass::_lh_header_size_mask);
3194     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3195     header_size = _gvn.transform(new AndINode(header_size, hsm));
3196   }
3197   set_result(header_size);
3198   return true;
3199 }
3200 
3201 // private native int arrayInstanceIndexScale0(Object[] array);
3202 bool LibraryCallKit::inline_arrayInstanceIndexScale() {
3203   Node* array = argument(1);
3204   Node* klass_node = load_object_klass(array);
3205 
3206   jint  layout_con = Klass::_lh_neutral_value;
3207   Node* layout_val = get_layout_helper(klass_node, layout_con);
3208   int   layout_is_con = (layout_val == nullptr);
3209 
3210   Node* element_size = nullptr;
3211   if (layout_is_con) {
3212     int log_element_size  = Klass::layout_helper_log2_element_size(layout_con);
3213     int elem_size = 1 << log_element_size;
3214     element_size = intcon(elem_size);
3215   } else {
3216     Node* ess = intcon(Klass::_lh_log2_element_size_shift);
3217     Node* esm = intcon(Klass::_lh_log2_element_size_mask);
3218     Node* log_element_size = _gvn.transform(new URShiftINode(layout_val, ess));
3219     log_element_size = _gvn.transform(new AndINode(log_element_size, esm));
3220     element_size = _gvn.transform(new LShiftINode(intcon(1), log_element_size));
3221   }
3222   set_result(element_size);
3223   return true;
3224 }
3225 
3226 // private native int arrayLayout0(Object[] array);
3227 bool LibraryCallKit::inline_arrayLayout() {
3228   RegionNode* region = new RegionNode(2);
3229   Node* phi = new PhiNode(region, TypeInt::POS);
3230 
3231   Node* array = argument(1);
3232   Node* klass_node = load_object_klass(array);
3233   generate_refArray_guard(klass_node, region);
3234   if (region->req() == 3) {
3235     phi->add_req(intcon((jint)LayoutKind::REFERENCE));
3236   }
3237 
3238   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3239   Node* layout_kind_addr = basic_plus_adr(klass_node, layout_kind_offset);
3240   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::POS, T_INT, MemNode::unordered);
3241 
3242   region->init_req(1, control());
3243   phi->init_req(1, layout_kind);
3244 
3245   set_control(_gvn.transform(region));
3246   set_result(_gvn.transform(phi));
3247   return true;
3248 }
3249 
3250 // private native int[] getFieldMap0(Class <?> c);
3251 //   int offset = c._klass._acmp_maps_offset;
3252 //   return (int[])c.obj_field(offset);
3253 bool LibraryCallKit::inline_getFieldMap() {
3254   Node* mirror = argument(1);
3255   Node* klass = load_klass_from_mirror(mirror, false, nullptr, 0);
3256 
3257   int field_map_offset_offset = in_bytes(InstanceKlass::acmp_maps_offset_offset());
3258   Node* field_map_offset_addr = basic_plus_adr(klass, field_map_offset_offset);
3259   Node* field_map_offset = make_load(nullptr, field_map_offset_addr, TypeInt::INT, T_INT, MemNode::unordered);
3260   field_map_offset = _gvn.transform(ConvI2L(field_map_offset));
3261 
3262   Node* map_addr = basic_plus_adr(mirror, field_map_offset);
3263   const TypeAryPtr* val_type = TypeAryPtr::INTS->cast_to_ptr_type(TypePtr::NotNull)->with_offset(0);
3264   // TODO 8350865 Remove this
3265   val_type = val_type->cast_to_not_flat(true)->cast_to_not_null_free(true);
3266   Node* map = access_load_at(mirror, map_addr, TypeAryPtr::INTS, val_type, T_ARRAY, IN_HEAP | MO_UNORDERED);
3267 
3268   set_result(map);
3269   return true;
3270 }
3271 
3272 bool LibraryCallKit::inline_onspinwait() {
3273   insert_mem_bar(Op_OnSpinWait);
3274   return true;
3275 }
3276 
3277 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3278   if (!kls->is_Con()) {
3279     return true;
3280   }
3281   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
3282   if (klsptr == nullptr) {
3283     return true;
3284   }
3285   ciInstanceKlass* ik = klsptr->instance_klass();
3286   // don't need a guard for a klass that is already initialized
3287   return !ik->is_initialized();
3288 }
3289 
3290 //----------------------------inline_unsafe_writeback0-------------------------
3291 // public native void Unsafe.writeback0(long address)

3370                     Deoptimization::Action_make_not_entrant);
3371     }
3372     if (stopped()) {
3373       return true;
3374     }
3375 #endif //INCLUDE_JVMTI
3376 
3377   Node* test = nullptr;
3378   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3379     // Note:  The argument might still be an illegal value like
3380     // Serializable.class or Object[].class.   The runtime will handle it.
3381     // But we must make an explicit check for initialization.
3382     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3383     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3384     // can generate code to load it as unsigned byte.
3385     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3386     Node* bits = intcon(InstanceKlass::fully_initialized);
3387     test = _gvn.transform(new SubINode(inst, bits));
3388     // The 'test' is non-zero if we need to take a slow path.
3389   }
3390   Node* obj = nullptr;
3391   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3392   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3393     obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3394   } else {
3395     obj = new_instance(kls, test);
3396   }
3397   set_result(obj);
3398   return true;
3399 }
3400 
3401 //------------------------inline_native_time_funcs--------------
3402 // inline code for System.currentTimeMillis() and System.nanoTime()
3403 // these have the same type and signature
3404 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3405   const TypeFunc* tf = OptoRuntime::void_long_Type();
3406   const TypePtr* no_memory_effects = nullptr;
3407   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3408   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3409 #ifdef ASSERT
3410   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3411   assert(value_top == top(), "second value must be top");
3412 #endif
3413   set_result(value);
3414   return true;
3415 }
3416 

4191   Node* thread = _gvn.transform(new ThreadLocalNode());
4192   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
4193   Node* thread_obj_handle
4194     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
4195   thread_obj_handle = _gvn.transform(thread_obj_handle);
4196   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
4197   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
4198 
4199   // Change the _monitor_owner_id of the JavaThread
4200   Node* tid = load_field_from_object(arr, "tid", "J");
4201   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
4202   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
4203 
4204   JFR_ONLY(extend_setCurrentThread(thread, arr);)
4205   return true;
4206 }
4207 
4208 const Type* LibraryCallKit::scopedValueCache_type() {
4209   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
4210   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
4211   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true, true);
4212 
4213   // Because we create the scopedValue cache lazily we have to make the
4214   // type of the result BotPTR.
4215   bool xk = etype->klass_is_exact();
4216   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
4217   return objects_type;
4218 }
4219 
4220 Node* LibraryCallKit::scopedValueCache_helper() {
4221   Node* thread = _gvn.transform(new ThreadLocalNode());
4222   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
4223   // We cannot use immutable_memory() because we might flip onto a
4224   // different carrier thread, at which point we'll need to use that
4225   // carrier thread's cache.
4226   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
4227   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
4228   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
4229 }
4230 
4231 //------------------------inline_native_scopedValueCache------------------
4232 bool LibraryCallKit::inline_native_scopedValueCache() {
4233   Node* cache_obj_handle = scopedValueCache_helper();
4234   const Type* objects_type = scopedValueCache_type();
4235   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
4236 

4372   }
4373   return kls;
4374 }
4375 
4376 //--------------------(inline_native_Class_query helpers)---------------------
4377 // Use this for JVM_ACC_INTERFACE.
4378 // Fall through if (mods & mask) == bits, take the guard otherwise.
4379 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4380                                                  ByteSize offset, const Type* type, BasicType bt) {
4381   // Branch around if the given klass has the given modifier bit set.
4382   // Like generate_guard, adds a new path onto the region.
4383   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4384   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4385   Node* mask = intcon(modifier_mask);
4386   Node* bits = intcon(modifier_bits);
4387   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4388   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4389   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4390   return generate_fair_guard(bol, region);
4391 }
4392 
4393 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4394   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4395                                     InstanceKlass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4396 }
4397 
4398 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4399 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4400   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4401                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4402 }
4403 
4404 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4405   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4406 }
4407 
4408 //-------------------------inline_native_Class_query-------------------
4409 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4410   const Type* return_type = TypeInt::BOOL;
4411   Node* prim_return_value = top();  // what happens if it's a primitive class?
4412   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4498 
4499 
4500   case vmIntrinsics::_getSuperclass:
4501     // The rules here are somewhat unfortunate, but we can still do better
4502     // with random logic than with a JNI call.
4503     // Interfaces store null or Object as _super, but must report null.
4504     // Arrays store an intermediate super as _super, but must report Object.
4505     // Other types can report the actual _super.
4506     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4507     if (generate_array_guard(kls, region) != nullptr) {
4508       // A guard was added.  If the guard is taken, it was an array.
4509       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4510     }
4511     // Check for interface after array since this checks AccessFlags offset into InstanceKlass.
4512     // In other words, we are accessing subtype-specific information, so we need to determine the subtype first.
4513     if (generate_interface_guard(kls, region) != nullptr) {
4514       // A guard was added.  If the guard is taken, it was an interface.
4515       phi->add_req(null());
4516     }
4517     // If we fall through, it's a plain class.  Get its _super.









4518     if (!stopped()) {
4519       p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4520       kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4521       null_ctl = top();
4522       kls = null_check_oop(kls, &null_ctl);
4523       if (null_ctl != top()) {
4524         // If the guard is taken, Object.superClass is null (both klass and mirror).
4525         region->add_req(null_ctl);
4526         phi   ->add_req(null());
4527       }
4528       if (!stopped()) {
4529         query_value = load_mirror_from_klass(kls);
4530       }
4531     }
4532     break;
4533 
4534   default:
4535     fatal_unexpected_iid(id);
4536     break;
4537   }
4538 
4539   // Fall-through is the normal case of a query to a real class.
4540   phi->init_req(1, query_value);
4541   region->init_req(1, control());
4542 
4543   C->set_has_split_ifs(true); // Has chance for split-if optimization
4544   set_result(region, phi);
4545   return true;
4546 }
4547 
4548 
4549 //-------------------------inline_Class_cast-------------------
4550 bool LibraryCallKit::inline_Class_cast() {
4551   Node* mirror = argument(0); // Class
4552   Node* obj    = argument(1);
4553   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4554   if (mirror_con == nullptr) {
4555     return false;  // dead path (mirror->is_top()).
4556   }
4557   if (obj == nullptr || obj->is_top()) {
4558     return false;  // dead path
4559   }
4560   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4561 
4562   // First, see if Class.cast() can be folded statically.
4563   // java_mirror_type() returns non-null for compile-time Class constants.
4564   ciType* tm = mirror_con->java_mirror_type();
4565   if (tm != nullptr && tm->is_klass() &&
4566       tp != nullptr) {
4567     if (!tp->is_loaded()) {
4568       // Don't use intrinsic when class is not loaded.
4569       return false;
4570     } else {
4571       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4572       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4573       if (static_res == Compile::SSC_always_true) {
4574         // isInstance() is true - fold the code.
4575         set_result(obj);
4576         return true;
4577       } else if (static_res == Compile::SSC_always_false) {
4578         // Don't use intrinsic, have to throw ClassCastException.
4579         // If the reference is null, the non-intrinsic bytecode will
4580         // be optimized appropriately.
4581         return false;
4582       }
4583     }
4584   }
4585 
4586   // Bailout intrinsic and do normal inlining if exception path is frequent.
4587   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4588     return false;
4589   }
4590 
4591   // Generate dynamic checks.
4592   // Class.cast() is java implementation of _checkcast bytecode.
4593   // Do checkcast (Parse::do_checkcast()) optimizations here.
4594 
4595   mirror = null_check(mirror);
4596   // If mirror is dead, only null-path is taken.
4597   if (stopped()) {
4598     return true;
4599   }
4600 
4601   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4602   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4603   RegionNode* region = new RegionNode(PATH_LIMIT);
4604   record_for_igvn(region);
4605 
4606   // Now load the mirror's klass metaobject, and null-check it.
4607   // If kls is null, we have a primitive mirror and
4608   // nothing is an instance of a primitive type.
4609   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4610 
4611   Node* res = top();
4612   Node* io = i_o();
4613   Node* mem = merged_memory();
4614   if (!stopped()) {
4615 
4616     Node* bad_type_ctrl = top();
4617     // Do checkcast optimizations.
4618     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4619     region->init_req(_bad_type_path, bad_type_ctrl);
4620   }
4621   if (region->in(_prim_path) != top() ||
4622       region->in(_bad_type_path) != top() ||
4623       region->in(_npe_path) != top()) {
4624     // Let Interpreter throw ClassCastException.
4625     PreserveJVMState pjvms(this);
4626     set_control(_gvn.transform(region));
4627     // Set IO and memory because gen_checkcast may override them when buffering inline types
4628     set_i_o(io);
4629     set_all_memory(mem);
4630     uncommon_trap(Deoptimization::Reason_intrinsic,
4631                   Deoptimization::Action_maybe_recompile);
4632   }
4633   if (!stopped()) {
4634     set_result(res);
4635   }
4636   return true;
4637 }
4638 
4639 
4640 //--------------------------inline_native_subtype_check------------------------
4641 // This intrinsic takes the JNI calls out of the heart of
4642 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4643 bool LibraryCallKit::inline_native_subtype_check() {
4644   // Pull both arguments off the stack.
4645   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4646   args[0] = argument(0);
4647   args[1] = argument(1);
4648   Node* klasses[2];             // corresponding Klasses: superk, subk
4649   klasses[0] = klasses[1] = top();
4650 
4651   enum {
4652     // A full decision tree on {superc is prim, subc is prim}:
4653     _prim_0_path = 1,           // {P,N} => false
4654                                 // {P,P} & superc!=subc => false
4655     _prim_same_path,            // {P,P} & superc==subc => true
4656     _prim_1_path,               // {N,P} => false
4657     _ref_subtype_path,          // {N,N} & subtype check wins => true
4658     _both_ref_path,             // {N,N} & subtype check loses => false
4659     PATH_LIMIT
4660   };
4661 
4662   RegionNode* region = new RegionNode(PATH_LIMIT);
4663   RegionNode* prim_region = new RegionNode(2);
4664   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4665   record_for_igvn(region);
4666   record_for_igvn(prim_region);
4667 
4668   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4669   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4670   int class_klass_offset = java_lang_Class::klass_offset();
4671 
4672   // First null-check both mirrors and load each mirror's klass metaobject.
4673   int which_arg;
4674   for (which_arg = 0; which_arg <= 1; which_arg++) {
4675     Node* arg = args[which_arg];
4676     arg = null_check(arg);
4677     if (stopped())  break;
4678     args[which_arg] = arg;
4679 
4680     Node* p = basic_plus_adr(arg, class_klass_offset);
4681     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4682     klasses[which_arg] = _gvn.transform(kls);
4683   }
4684 
4685   // Having loaded both klasses, test each for null.
4686   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4687   for (which_arg = 0; which_arg <= 1; which_arg++) {
4688     Node* kls = klasses[which_arg];
4689     Node* null_ctl = top();
4690     kls = null_check_oop(kls, &null_ctl, never_see_null);
4691     if (which_arg == 0) {
4692       prim_region->init_req(1, null_ctl);
4693     } else {
4694       region->init_req(_prim_1_path, null_ctl);
4695     }
4696     if (stopped())  break;
4697     klasses[which_arg] = kls;
4698   }
4699 
4700   if (!stopped()) {
4701     // now we have two reference types, in klasses[0..1]
4702     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4703     Node* superk = klasses[0];  // the receiver
4704     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));

4705     region->set_req(_ref_subtype_path, control());
4706   }
4707 
4708   // If both operands are primitive (both klasses null), then
4709   // we must return true when they are identical primitives.
4710   // It is convenient to test this after the first null klass check.
4711   // This path is also used if superc is a value mirror.
4712   set_control(_gvn.transform(prim_region));
4713   if (!stopped()) {
4714     // Since superc is primitive, make a guard for the superc==subc case.
4715     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4716     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4717     generate_fair_guard(bol_eq, region);
4718     if (region->req() == PATH_LIMIT+1) {
4719       // A guard was added.  If the added guard is taken, superc==subc.
4720       region->swap_edges(PATH_LIMIT, _prim_same_path);
4721       region->del_req(PATH_LIMIT);
4722     }
4723     region->set_req(_prim_0_path, control()); // Not equal after all.
4724   }
4725 
4726   // these are the only paths that produce 'true':
4727   phi->set_req(_prim_same_path,   intcon(1));
4728   phi->set_req(_ref_subtype_path, intcon(1));
4729 
4730   // pull together the cases:
4731   assert(region->req() == PATH_LIMIT, "sane region");
4732   for (uint i = 1; i < region->req(); i++) {
4733     Node* ctl = region->in(i);
4734     if (ctl == nullptr || ctl == top()) {
4735       region->set_req(i, top());
4736       phi   ->set_req(i, top());
4737     } else if (phi->in(i) == nullptr) {
4738       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4739     }
4740   }
4741 
4742   set_control(_gvn.transform(region));
4743   set_result(_gvn.transform(phi));
4744   return true;
4745 }
4746 
4747 //---------------------generate_array_guard_common------------------------
4748 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) {

4749 
4750   if (stopped()) {
4751     return nullptr;
4752   }
4753 









4754   // Like generate_guard, adds a new path onto the region.
4755   jint  layout_con = 0;
4756   Node* layout_val = get_layout_helper(kls, layout_con);
4757   if (layout_val == nullptr) {
4758     bool query = 0;
4759     switch(kind) {
4760       case RefArray:       query = Klass::layout_helper_is_refArray(layout_con); break;
4761       case NonRefArray:    query = !Klass::layout_helper_is_refArray(layout_con); break;
4762       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4763       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4764       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4765       default:
4766         ShouldNotReachHere();
4767     }
4768     if (!query) {
4769       return nullptr;                       // never a branch
4770     } else {                             // always a branch
4771       Node* always_branch = control();
4772       if (region != nullptr)
4773         region->add_req(always_branch);
4774       set_control(top());
4775       return always_branch;
4776     }
4777   }
4778   unsigned int value = 0;
4779   BoolTest::mask btest = BoolTest::illegal;
4780   switch(kind) {
4781     case RefArray:
4782     case NonRefArray: {
4783       value = Klass::_lh_array_tag_ref_value;
4784       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4785       btest = (kind == RefArray) ? BoolTest::eq : BoolTest::ne;
4786       break;
4787     }
4788     case TypeArray: {
4789       value = Klass::_lh_array_tag_type_value;
4790       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4791       btest = BoolTest::eq;
4792       break;
4793     }
4794     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4795     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4796     default:
4797       ShouldNotReachHere();
4798   }
4799   // Now test the correct condition.
4800   jint nval = (jint)value;



4801   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));



4802   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4803   Node* ctrl = generate_fair_guard(bol, region);
4804   Node* is_array_ctrl = kind == NonArray ? control() : ctrl;
4805   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4806     // Keep track of the fact that 'obj' is an array to prevent
4807     // array specific accesses from floating above the guard.
4808     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4809   }
4810   return ctrl;
4811 }
4812 
4813 // public static native Object[] ValueClass::newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal);
4814 // public static native Object[] ValueClass::newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal);
4815 // public static native Object[] ValueClass::newNullableAtomicArray(Class<?> componentType, int length);
4816 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) {
4817   assert(null_free || atomic, "nullable implies atomic");
4818   Node* componentType = argument(0);
4819   Node* length = argument(1);
4820   Node* init_val = null_free ? argument(2) : nullptr;
4821 
4822   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4823   if (tp != nullptr) {
4824     ciInstanceKlass* ik = tp->instance_klass();
4825     if (ik == C->env()->Class_klass()) {
4826       ciType* t = tp->java_mirror_type();
4827       if (t != nullptr && t->is_inlinetype()) {
4828 
4829         ciArrayKlass* array_klass = ciArrayKlass::make(t, null_free, atomic, true);
4830         assert(array_klass->is_elem_null_free() == null_free, "inconsistency");
4831 
4832         // TOOD 8350865 ZGC needs card marks on initializing oop stores
4833         if (UseZGC && null_free && !array_klass->is_flat_array_klass()) {
4834           return false;
4835         }
4836 
4837         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4838           const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
4839           if (null_free) {
4840             if (init_val->is_InlineType()) {
4841               if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) {
4842                 // Zeroing is enough because the init value is the all-zero value
4843                 init_val = nullptr;
4844               } else {
4845                 init_val = init_val->as_InlineType()->buffer(this);
4846               }
4847             }
4848             // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)?
4849             // If we insert a checkcast here, we can be sure that init_val is an InlineTypeNode, so
4850             // when we folded a field load from an allocation (e.g. during escape analysis), we can
4851             // remove the check init_val->is_InlineType().
4852           }
4853           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val);
4854           const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr();
4855           assert(arytype->is_null_free() == null_free, "inconsistency");
4856           assert(arytype->is_not_null_free() == !null_free, "inconsistency");
4857           set_result(obj);
4858           return true;
4859         }
4860       }
4861     }
4862   }
4863   return false;
4864 }
4865 
4866 // public static native boolean ValueClass::isFlatArray(Object array);
4867 // public static native boolean ValueClass::isNullRestrictedArray(Object array);
4868 // public static native boolean ValueClass::isAtomicArray(Object array);
4869 bool LibraryCallKit::inline_getArrayProperties(ArrayPropertiesCheck check) {
4870   Node* array = argument(0);
4871 
4872   Node* bol;
4873   switch(check) {
4874     case IsFlat:
4875       // TODO 8350865 Use the object version here instead of loading the klass
4876       // The problem is that PhaseMacroExpand::expand_flatarraycheck_node can only handle some IR shapes and will fail, for example, if the bol is directly wired to a ReturnNode
4877       bol = flat_array_test(load_object_klass(array));
4878       break;
4879     case IsNullRestricted:
4880       bol = null_free_array_test(array);
4881       break;
4882     case IsAtomic:
4883       // TODO 8350865 Implement this. It's a bit more complicated, see conditions in JVM_IsAtomicArray
4884       // Enable TestIntrinsics::test87/88 once this is implemented
4885       // bol = null_free_atomic_array_test
4886       return false;
4887     default:
4888       ShouldNotReachHere();
4889   }
4890 
4891   Node* res = gvn().transform(new CMoveINode(bol, intcon(0), intcon(1), TypeInt::BOOL));
4892   set_result(res);
4893   return true;
4894 }
4895 
4896 // Load the default refined array klass from an ObjArrayKlass. This relies on the first entry in the
4897 // '_next_refined_array_klass' linked list being the default (see ObjArrayKlass::klass_with_properties).
4898 Node* LibraryCallKit::load_default_refined_array_klass(Node* klass_node, bool type_array_guard) {
4899   RegionNode* region = new RegionNode(2);
4900   Node* phi = new PhiNode(region, TypeInstKlassPtr::OBJECT_OR_NULL);
4901 
4902   if (type_array_guard) {
4903     generate_typeArray_guard(klass_node, region);
4904     if (region->req() == 3) {
4905       phi->add_req(klass_node);
4906     }
4907   }
4908   Node* adr_refined_klass = basic_plus_adr(klass_node, in_bytes(ObjArrayKlass::next_refined_array_klass_offset()));
4909   Node* refined_klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), adr_refined_klass, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4910 
4911   // Can be null if not initialized yet, just deopt
4912   Node* null_ctl = top();
4913   refined_klass = null_check_oop(refined_klass, &null_ctl, /* never_see_null= */ true);
4914 
4915   region->init_req(1, control());
4916   phi->init_req(1, refined_klass);
4917 
4918   set_control(_gvn.transform(region));
4919   return _gvn.transform(phi);
4920 }
4921 
4922 // Load the non-refined array klass from an ObjArrayKlass.
4923 Node* LibraryCallKit::load_non_refined_array_klass(Node* klass_node) {
4924   const TypeAryKlassPtr* ary_klass_ptr = _gvn.type(klass_node)->isa_aryklassptr();
4925   if (ary_klass_ptr != nullptr && ary_klass_ptr->klass_is_exact()) {
4926     return _gvn.makecon(ary_klass_ptr->cast_to_refined_array_klass_ptr(false));
4927   }
4928 
4929   RegionNode* region = new RegionNode(2);
4930   Node* phi = new PhiNode(region, TypeInstKlassPtr::OBJECT);
4931 
4932   generate_typeArray_guard(klass_node, region);
4933   if (region->req() == 3) {
4934     phi->add_req(klass_node);
4935   }
4936   Node* super_adr = basic_plus_adr(klass_node, in_bytes(Klass::super_offset()));
4937   Node* super_klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), super_adr, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
4938 
4939   region->init_req(1, control());
4940   phi->init_req(1, super_klass);
4941 
4942   set_control(_gvn.transform(region));
4943   return _gvn.transform(phi);
4944 }
4945 
4946 //-----------------------inline_native_newArray--------------------------
4947 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4948 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4949 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4950   Node* mirror;
4951   Node* count_val;
4952   if (uninitialized) {
4953     null_check_receiver();
4954     mirror    = argument(1);
4955     count_val = argument(2);
4956   } else {
4957     mirror    = argument(0);
4958     count_val = argument(1);
4959   }
4960 
4961   mirror = null_check(mirror);
4962   // If mirror or obj is dead, only null-path is taken.
4963   if (stopped())  return true;
4964 
4965   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4966   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4967   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4985     CallJavaNode* slow_call = nullptr;
4986     if (uninitialized) {
4987       // Generate optimized virtual call (holder class 'Unsafe' is final)
4988       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4989     } else {
4990       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4991     }
4992     Node* slow_result = set_results_for_java_call(slow_call);
4993     // this->control() comes from set_results_for_java_call
4994     result_reg->set_req(_slow_path, control());
4995     result_val->set_req(_slow_path, slow_result);
4996     result_io ->set_req(_slow_path, i_o());
4997     result_mem->set_req(_slow_path, reset_memory());
4998   }
4999 
5000   set_control(normal_ctl);
5001   if (!stopped()) {
5002     // Normal case:  The array type has been cached in the java.lang.Class.
5003     // The following call works fine even if the array type is polymorphic.
5004     // It could be a dynamic mix of int[], boolean[], Object[], etc.
5005 
5006     klass_node = load_default_refined_array_klass(klass_node);
5007 
5008     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
5009     result_reg->init_req(_normal_path, control());
5010     result_val->init_req(_normal_path, obj);
5011     result_io ->init_req(_normal_path, i_o());
5012     result_mem->init_req(_normal_path, reset_memory());
5013 
5014     if (uninitialized) {
5015       // Mark the allocation so that zeroing is skipped
5016       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
5017       alloc->maybe_set_complete(&_gvn);
5018     }
5019   }
5020 
5021   // Return the combined state.
5022   set_i_o(        _gvn.transform(result_io)  );
5023   set_all_memory( _gvn.transform(result_mem));
5024 
5025   C->set_has_split_ifs(true); // Has chance for split-if optimization
5026   set_result(result_reg, result_val);
5027   return true;

5076   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
5077   { PreserveReexecuteState preexecs(this);
5078     jvms()->set_should_reexecute(true);
5079 
5080     array_type_mirror = null_check(array_type_mirror);
5081     original          = null_check(original);
5082 
5083     // Check if a null path was taken unconditionally.
5084     if (stopped())  return true;
5085 
5086     Node* orig_length = load_array_length(original);
5087 
5088     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
5089     klass_node = null_check(klass_node);
5090 
5091     RegionNode* bailout = new RegionNode(1);
5092     record_for_igvn(bailout);
5093 
5094     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
5095     // Bail out if that is so.
5096     // Inline type array may have object field that would require a
5097     // write barrier. Conservatively, go to slow path.
5098     // TODO 8251971: Optimize for the case when flat src/dst are later found
5099     // to not contain oops (i.e., move this check to the macro expansion phase).
5100     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5101     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
5102     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
5103     bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
5104                         // Can src array be flat and contain oops?
5105                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
5106                         // Can dest array be flat and contain oops?
5107                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
5108     Node* not_objArray = exclude_flat ? generate_non_refArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
5109 
5110     Node* refined_klass_node = load_default_refined_array_klass(klass_node, /* type_array_guard= */ false);
5111 
5112     if (not_objArray != nullptr) {
5113       // Improve the klass node's type from the new optimistic assumption:
5114       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
5115       bool not_flat = !UseArrayFlattening;
5116       bool not_null_free = !Arguments::is_valhalla_enabled();
5117       const Type* akls = TypeAryKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0), Type::trust_interfaces, not_flat, not_null_free, false, false, not_flat, true);
5118       Node* cast = new CastPPNode(control(), refined_klass_node, akls);
5119       refined_klass_node = _gvn.transform(cast);
5120     }
5121 
5122     // Bail out if either start or end is negative.
5123     generate_negative_guard(start, bailout, &start);
5124     generate_negative_guard(end,   bailout, &end);
5125 
5126     Node* length = end;
5127     if (_gvn.type(start) != TypeInt::ZERO) {
5128       length = _gvn.transform(new SubINode(end, start));
5129     }
5130 
5131     // Bail out if length is negative (i.e., if start > end).
5132     // Without this the new_array would throw
5133     // NegativeArraySizeException but IllegalArgumentException is what
5134     // should be thrown
5135     generate_negative_guard(length, bailout, &length);
5136 
5137     // Handle inline type arrays
5138     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
5139     if (!stopped()) {
5140       // TODO 8251971
5141       if (!orig_t->is_null_free()) {
5142         // Not statically known to be null free, add a check
5143         generate_fair_guard(null_free_array_test(original), bailout);
5144       }
5145       orig_t = _gvn.type(original)->isa_aryptr();
5146       if (orig_t != nullptr && orig_t->is_flat()) {
5147         // Src is flat, check that dest is flat as well
5148         if (exclude_flat) {
5149           // Dest can't be flat, bail out
5150           bailout->add_req(control());
5151           set_control(top());
5152         } else {
5153           generate_fair_guard(flat_array_test(refined_klass_node, /* flat = */ false), bailout);
5154         }
5155         // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy.
5156       } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) &&
5157                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
5158                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
5159         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
5160         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
5161         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
5162         if (orig_t != nullptr) {
5163           orig_t = orig_t->cast_to_not_flat();
5164           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
5165         }
5166       }
5167       if (!can_validate) {
5168         // No validation. The subtype check emitted at macro expansion time will not go to the slow
5169         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
5170         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
5171         generate_fair_guard(flat_array_test(refined_klass_node), bailout);
5172         generate_fair_guard(null_free_array_test(original), bailout);
5173       }
5174     }
5175 
5176     // Bail out if start is larger than the original length
5177     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
5178     generate_negative_guard(orig_tail, bailout, &orig_tail);
5179 
5180     if (bailout->req() > 1) {
5181       PreserveJVMState pjvms(this);
5182       set_control(_gvn.transform(bailout));
5183       uncommon_trap(Deoptimization::Reason_intrinsic,
5184                     Deoptimization::Action_maybe_recompile);
5185     }
5186 
5187     if (!stopped()) {
5188       // How many elements will we copy from the original?
5189       // The answer is MinI(orig_tail, length).
5190       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
5191 
5192       // Generate a direct call to the right arraycopy function(s).
5193       // We know the copy is disjoint but we might not know if the
5194       // oop stores need checking.
5195       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

5201       // to the copyOf to be validated, including that the copy to the
5202       // new array won't trigger an ArrayStoreException. That subtype
5203       // check can be optimized if we know something on the type of
5204       // the input array from type speculation.
5205       if (_gvn.type(klass_node)->singleton()) {
5206         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
5207         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
5208 
5209         int test = C->static_subtype_check(superk, subk);
5210         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
5211           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
5212           if (t_original->speculative_type() != nullptr) {
5213             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
5214           }
5215         }
5216       }
5217 
5218       bool validated = false;
5219       // Reason_class_check rather than Reason_intrinsic because we
5220       // want to intrinsify even if this traps.
5221       if (can_validate) {
5222         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
5223 
5224         if (not_subtype_ctrl != top()) {
5225           PreserveJVMState pjvms(this);
5226           set_control(not_subtype_ctrl);
5227           uncommon_trap(Deoptimization::Reason_class_check,
5228                         Deoptimization::Action_make_not_entrant);
5229           assert(stopped(), "Should be stopped");
5230         }
5231         validated = true;
5232       }
5233 
5234       if (!stopped()) {
5235         newcopy = new_array(refined_klass_node, length, 0);  // no arguments to push
5236 
5237         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
5238                                                 load_object_klass(original), klass_node);
5239         if (!is_copyOfRange) {
5240           ac->set_copyof(validated);
5241         } else {
5242           ac->set_copyofrange(validated);
5243         }
5244         Node* n = _gvn.transform(ac);
5245         if (n == ac) {
5246           ac->connect_outputs(this);
5247         } else {
5248           assert(validated, "shouldn't transform if all arguments not validated");
5249           set_all_memory(n);
5250         }
5251       }
5252     }
5253   } // original reexecute is set back here
5254 
5255   C->set_has_split_ifs(true); // Has chance for split-if optimization

5287 
5288 //-----------------------generate_method_call----------------------------
5289 // Use generate_method_call to make a slow-call to the real
5290 // method if the fast path fails.  An alternative would be to
5291 // use a stub like OptoRuntime::slow_arraycopy_Java.
5292 // This only works for expanding the current library call,
5293 // not another intrinsic.  (E.g., don't use this for making an
5294 // arraycopy call inside of the copyOf intrinsic.)
5295 CallJavaNode*
5296 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
5297   // When compiling the intrinsic method itself, do not use this technique.
5298   guarantee(callee() != C->method(), "cannot make slow-call to self");
5299 
5300   ciMethod* method = callee();
5301   // ensure the JVMS we have will be correct for this call
5302   guarantee(method_id == method->intrinsic_id(), "must match");
5303 
5304   const TypeFunc* tf = TypeFunc::make(method);
5305   if (res_not_null) {
5306     assert(tf->return_type() == T_OBJECT, "");
5307     const TypeTuple* range = tf->range_cc();
5308     const Type** fields = TypeTuple::fields(range->cnt());
5309     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
5310     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
5311     tf = TypeFunc::make(tf->domain_cc(), new_range);
5312   }
5313   CallJavaNode* slow_call;
5314   if (is_static) {
5315     assert(!is_virtual, "");
5316     slow_call = new CallStaticJavaNode(C, tf,
5317                            SharedRuntime::get_resolve_static_call_stub(), method);
5318   } else if (is_virtual) {
5319     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
5320     int vtable_index = Method::invalid_vtable_index;
5321     if (UseInlineCaches) {
5322       // Suppress the vtable call
5323     } else {
5324       // hashCode and clone are not a miranda methods,
5325       // so the vtable index is fixed.
5326       // No need to use the linkResolver to get it.
5327        vtable_index = method->vtable_index();
5328        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5329               "bad index %d", vtable_index);
5330     }
5331     slow_call = new CallDynamicJavaNode(tf,

5348   set_edges_for_java_call(slow_call);
5349   return slow_call;
5350 }
5351 
5352 
5353 /**
5354  * Build special case code for calls to hashCode on an object. This call may
5355  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
5356  * slightly different code.
5357  */
5358 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
5359   assert(is_static == callee()->is_static(), "correct intrinsic selection");
5360   assert(!(is_virtual && is_static), "either virtual, special, or static");
5361 
5362   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
5363 
5364   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5365   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
5366   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
5367   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5368   Node* obj = argument(0);
5369 
5370   // Don't intrinsify hashcode on inline types for now.
5371   // The "is locked" runtime check also subsumes the inline type check (as inline types cannot be locked) and goes to the slow path.
5372   if (gvn().type(obj)->is_inlinetypeptr()) {
5373     return false;
5374   }
5375 
5376   if (!is_static) {
5377     // Check for hashing null object
5378     obj = null_check_receiver();
5379     if (stopped())  return true;        // unconditionally null
5380     result_reg->init_req(_null_path, top());
5381     result_val->init_req(_null_path, top());
5382   } else {
5383     // Do a null check, and return zero if null.
5384     // System.identityHashCode(null) == 0

5385     Node* null_ctl = top();
5386     obj = null_check_oop(obj, &null_ctl);
5387     result_reg->init_req(_null_path, null_ctl);
5388     result_val->init_req(_null_path, _gvn.intcon(0));
5389   }
5390 
5391   // Unconditionally null?  Then return right away.
5392   if (stopped()) {
5393     set_control( result_reg->in(_null_path));
5394     if (!stopped())
5395       set_result(result_val->in(_null_path));
5396     return true;
5397   }
5398 
5399   // We only go to the fast case code if we pass a number of guards.  The
5400   // paths which do not pass are accumulated in the slow_region.
5401   RegionNode* slow_region = new RegionNode(1);
5402   record_for_igvn(slow_region);
5403 
5404   // If this is a virtual call, we generate a funny guard.  We pull out
5405   // the vtable entry corresponding to hashCode() from the target object.
5406   // If the target method which we are calling happens to be the native
5407   // Object hashCode() method, we pass the guard.  We do not need this
5408   // guard for non-virtual calls -- the caller is known to be the native
5409   // Object hashCode().
5410   if (is_virtual) {
5411     // After null check, get the object's klass.
5412     Node* obj_klass = load_object_klass(obj);
5413     generate_virtual_guard(obj_klass, slow_region);
5414   }
5415 
5416   // Get the header out of the object, use LoadMarkNode when available
5417   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5418   // The control of the load must be null. Otherwise, the load can move before
5419   // the null check after castPP removal.
5420   Node* no_ctrl = nullptr;
5421   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5422 
5423   if (!UseObjectMonitorTable) {
5424     // Test the header to see if it is safe to read w.r.t. locking.
5425     // We cannot use the inline type mask as this may check bits that are overriden
5426     // by an object monitor's pointer when inflating locking.
5427     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
5428     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5429     Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5430     Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5431     Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5432 
5433     generate_slow_guard(test_monitor, slow_region);
5434   }
5435 
5436   // Get the hash value and check to see that it has been properly assigned.
5437   // We depend on hash_mask being at most 32 bits and avoid the use of
5438   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5439   // vm: see markWord.hpp.
5440   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
5441   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
5442   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
5443   // This hack lets the hash bits live anywhere in the mark object now, as long
5444   // as the shift drops the relevant bits into the low 32 bits.  Note that
5445   // Java spec says that HashCode is an int so there's no point in capturing
5446   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).

5474     // this->control() comes from set_results_for_java_call
5475     result_reg->init_req(_slow_path, control());
5476     result_val->init_req(_slow_path, slow_result);
5477     result_io  ->set_req(_slow_path, i_o());
5478     result_mem ->set_req(_slow_path, reset_memory());
5479   }
5480 
5481   // Return the combined state.
5482   set_i_o(        _gvn.transform(result_io)  );
5483   set_all_memory( _gvn.transform(result_mem));
5484 
5485   set_result(result_reg, result_val);
5486   return true;
5487 }
5488 
5489 //---------------------------inline_native_getClass----------------------------
5490 // public final native Class<?> java.lang.Object.getClass();
5491 //
5492 // Build special case code for calls to getClass on an object.
5493 bool LibraryCallKit::inline_native_getClass() {
5494   Node* obj = argument(0);
5495   if (obj->is_InlineType()) {
5496     const Type* t = _gvn.type(obj);
5497     if (t->maybe_null()) {
5498       null_check(obj);
5499     }
5500     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5501     return true;
5502   }
5503   obj = null_check_receiver();
5504   if (stopped())  return true;
5505   set_result(load_mirror_from_klass(load_object_klass(obj)));
5506   return true;
5507 }
5508 
5509 //-----------------inline_native_Reflection_getCallerClass---------------------
5510 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5511 //
5512 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5513 //
5514 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5515 // in that it must skip particular security frames and checks for
5516 // caller sensitive methods.
5517 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5518 #ifndef PRODUCT
5519   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5520     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5521   }
5522 #endif
5523 

5905 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5906 //
5907 // The general case has two steps, allocation and copying.
5908 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5909 //
5910 // Copying also has two cases, oop arrays and everything else.
5911 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5912 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5913 //
5914 // These steps fold up nicely if and when the cloned object's klass
5915 // can be sharply typed as an object array, a type array, or an instance.
5916 //
5917 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5918   PhiNode* result_val;
5919 
5920   // Set the reexecute bit for the interpreter to reexecute
5921   // the bytecode that invokes Object.clone if deoptimization happens.
5922   { PreserveReexecuteState preexecs(this);
5923     jvms()->set_should_reexecute(true);
5924 
5925     Node* obj = argument(0);
5926     obj = null_check_receiver();
5927     if (stopped())  return true;
5928 
5929     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5930     if (obj_type->is_inlinetypeptr()) {
5931       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5932       // no identity.
5933       set_result(obj);
5934       return true;
5935     }
5936 
5937     // If we are going to clone an instance, we need its exact type to
5938     // know the number and types of fields to convert the clone to
5939     // loads/stores. Maybe a speculative type can help us.
5940     if (!obj_type->klass_is_exact() &&
5941         obj_type->speculative_type() != nullptr &&
5942         obj_type->speculative_type()->is_instance_klass() &&
5943         !obj_type->speculative_type()->is_inlinetype()) {
5944       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5945       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5946           !spec_ik->has_injected_fields()) {
5947         if (!obj_type->isa_instptr() ||
5948             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5949           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5950         }
5951       }
5952     }
5953 
5954     // Conservatively insert a memory barrier on all memory slices.
5955     // Do not let writes into the original float below the clone.
5956     insert_mem_bar(Op_MemBarCPUOrder);
5957 
5958     // paths into result_reg:
5959     enum {
5960       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5961       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5962       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5963       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5964       PATH_LIMIT
5965     };
5966     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5967     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5968     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5969     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5970     record_for_igvn(result_reg);
5971 
5972     Node* obj_klass = load_object_klass(obj);
5973     // We only go to the fast case code if we pass a number of guards.
5974     // The paths which do not pass are accumulated in the slow_region.
5975     RegionNode* slow_region = new RegionNode(1);
5976     record_for_igvn(slow_region);
5977 
5978     Node* array_obj = obj;
5979     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5980     if (array_ctl != nullptr) {
5981       // It's an array.
5982       PreserveJVMState pjvms(this);
5983       set_control(array_ctl);



5984 
5985       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5986       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5987       if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5988           obj_type->can_be_inline_array() &&
5989           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5990         // Flat inline type array may have object field that would require a
5991         // write barrier. Conservatively, go to slow path.
5992         generate_fair_guard(flat_array_test(obj_klass), slow_region);













5993       }







5994 
5995       if (!stopped()) {
5996         Node* obj_length = load_array_length(array_obj);
5997         Node* array_size = nullptr; // Size of the array without object alignment padding.
5998         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5999 
6000         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
6001         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
6002           // If it is an oop array, it requires very special treatment,
6003           // because gc barriers are required when accessing the array.
6004           Node* is_obja = generate_refArray_guard(obj_klass, (RegionNode*)nullptr);
6005           if (is_obja != nullptr) {
6006             PreserveJVMState pjvms2(this);
6007             set_control(is_obja);
6008             // Generate a direct call to the right arraycopy function(s).
6009             // Clones are always tightly coupled.
6010             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
6011             ac->set_clone_oop_array();
6012             Node* n = _gvn.transform(ac);
6013             assert(n == ac, "cannot disappear");
6014             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
6015 
6016             result_reg->init_req(_objArray_path, control());
6017             result_val->init_req(_objArray_path, alloc_obj);
6018             result_i_o ->set_req(_objArray_path, i_o());
6019             result_mem ->set_req(_objArray_path, reset_memory());
6020           }
6021         }
6022         // Otherwise, there are no barriers to worry about.
6023         // (We can dispense with card marks if we know the allocation
6024         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
6025         //  causes the non-eden paths to take compensating steps to
6026         //  simulate a fresh allocation, so that no further
6027         //  card marks are required in compiled code to initialize
6028         //  the object.)
6029 
6030         if (!stopped()) {
6031           copy_to_clone(obj, alloc_obj, array_size, true);
6032 
6033           // Present the results of the copy.
6034           result_reg->init_req(_array_path, control());
6035           result_val->init_req(_array_path, alloc_obj);
6036           result_i_o ->set_req(_array_path, i_o());
6037           result_mem ->set_req(_array_path, reset_memory());
6038         }
6039       }
6040     }
6041 




6042     if (!stopped()) {
6043       // It's an instance (we did array above).  Make the slow-path tests.
6044       // If this is a virtual call, we generate a funny guard.  We grab
6045       // the vtable entry corresponding to clone() from the target object.
6046       // If the target method which we are calling happens to be the
6047       // Object clone() method, we pass the guard.  We do not need this
6048       // guard for non-virtual calls; the caller is known to be the native
6049       // Object clone().
6050       if (is_virtual) {
6051         generate_virtual_guard(obj_klass, slow_region);
6052       }
6053 
6054       // The object must be easily cloneable and must not have a finalizer.
6055       // Both of these conditions may be checked in a single test.
6056       // We could optimize the test further, but we don't care.
6057       generate_misc_flags_guard(obj_klass,
6058                                 // Test both conditions:
6059                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
6060                                 // Must be cloneable but not finalizer:
6061                                 KlassFlags::_misc_is_cloneable_fast,

6153         set_jvms(sfpt->jvms());
6154         _reexecute_sp = jvms()->sp();
6155 
6156         return saved_jvms;
6157       }
6158     }
6159   }
6160   return nullptr;
6161 }
6162 
6163 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
6164 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
6165 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
6166   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
6167   uint size = alloc->req();
6168   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
6169   old_jvms->set_map(sfpt);
6170   for (uint i = 0; i < size; i++) {
6171     sfpt->init_req(i, alloc->in(i));
6172   }
6173   int adjustment = 1;
6174   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
6175   if (ary_klass_ptr->is_null_free()) {
6176     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which
6177     // also requires the componentType and initVal on stack for re-execution.
6178     // Re-create and push the componentType.
6179     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
6180     ciInstance* instance = klass->component_mirror_instance();
6181     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
6182     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
6183     adjustment++;
6184   }
6185   // re-push array length for deoptimization
6186   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
6187   if (ary_klass_ptr->is_null_free()) {
6188     // Re-create and push the initVal.
6189     Node* init_val = alloc->in(AllocateNode::InitValue);
6190     if (init_val == nullptr) {
6191       init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass());
6192     } else if (UseCompressedOops) {
6193       init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr()));
6194     }
6195     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val);
6196     adjustment++;
6197   }
6198   old_jvms->set_sp(old_jvms->sp() + adjustment);
6199   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
6200   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
6201   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
6202   old_jvms->set_should_reexecute(true);
6203 
6204   sfpt->set_i_o(map()->i_o());
6205   sfpt->set_memory(map()->memory());
6206   sfpt->set_control(map()->control());
6207   return sfpt;
6208 }
6209 
6210 // In case of a deoptimization, we restart execution at the
6211 // allocation, allocating a new array. We would leave an uninitialized
6212 // array in the heap that GCs wouldn't expect. Move the allocation
6213 // after the traps so we don't allocate the array if we
6214 // deoptimize. This is possible because tightly_coupled_allocation()
6215 // guarantees there's no observer of the allocated array at this point
6216 // and the control flow is simple enough.
6217 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
6218                                                     int saved_reexecute_sp, uint new_idx) {
6219   if (saved_jvms_before_guards != nullptr && !stopped()) {
6220     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
6221 
6222     assert(alloc != nullptr, "only with a tightly coupled allocation");
6223     // restore JVM state to the state at the arraycopy
6224     saved_jvms_before_guards->map()->set_control(map()->control());
6225     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
6226     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
6227     // If we've improved the types of some nodes (null check) while
6228     // emitting the guards, propagate them to the current state
6229     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
6230     set_jvms(saved_jvms_before_guards);
6231     _reexecute_sp = saved_reexecute_sp;
6232 
6233     // Remove the allocation from above the guards
6234     CallProjections* callprojs = alloc->extract_projections(true);

6235     InitializeNode* init = alloc->initialization();
6236     Node* alloc_mem = alloc->in(TypeFunc::Memory);
6237     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
6238     init->replace_mem_projs_by(alloc_mem, C);
6239 
6240     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
6241     // the allocation (i.e. is only valid if the allocation succeeds):
6242     // 1) replace CastIINode with AllocateArrayNode's length here
6243     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
6244     //
6245     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
6246     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
6247     Node* init_control = init->proj_out(TypeFunc::Control);
6248     Node* alloc_length = alloc->Ideal_length();
6249 #ifdef ASSERT
6250     Node* prev_cast = nullptr;
6251 #endif
6252     for (uint i = 0; i < init_control->outcnt(); i++) {
6253       Node* init_out = init_control->raw_out(i);
6254       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
6255 #ifdef ASSERT
6256         if (prev_cast == nullptr) {
6257           prev_cast = init_out;

6259           if (prev_cast->cmp(*init_out) == false) {
6260             prev_cast->dump();
6261             init_out->dump();
6262             assert(false, "not equal CastIINode");
6263           }
6264         }
6265 #endif
6266         C->gvn_replace_by(init_out, alloc_length);
6267       }
6268     }
6269     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
6270 
6271     // move the allocation here (after the guards)
6272     _gvn.hash_delete(alloc);
6273     alloc->set_req(TypeFunc::Control, control());
6274     alloc->set_req(TypeFunc::I_O, i_o());
6275     Node *mem = reset_memory();
6276     set_all_memory(mem);
6277     alloc->set_req(TypeFunc::Memory, mem);
6278     set_control(init->proj_out_or_null(TypeFunc::Control));
6279     set_i_o(callprojs->fallthrough_ioproj);
6280 
6281     // Update memory as done in GraphKit::set_output_for_allocation()
6282     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
6283     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
6284     if (ary_type->isa_aryptr() && length_type != nullptr) {
6285       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
6286     }
6287     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
6288     int            elemidx  = C->get_alias_index(telemref);
6289     // Need to properly move every memory projection for the Initialize
6290 #ifdef ASSERT
6291     int mark_idx = C->get_alias_index(ary_type->add_offset(oopDesc::mark_offset_in_bytes()));
6292     int klass_idx = C->get_alias_index(ary_type->add_offset(oopDesc::klass_offset_in_bytes()));
6293 #endif
6294     auto move_proj = [&](ProjNode* proj) {
6295       int alias_idx = C->get_alias_index(proj->adr_type());
6296       assert(alias_idx == Compile::AliasIdxRaw ||
6297              alias_idx == elemidx ||
6298              alias_idx == mark_idx ||
6299              alias_idx == klass_idx, "should be raw memory or array element type");

6609         top_src  = src_type->isa_aryptr();
6610         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6611         src_spec = true;
6612       }
6613       if (!has_dest) {
6614         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6615         dest_type  = _gvn.type(dest);
6616         top_dest  = dest_type->isa_aryptr();
6617         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6618         dest_spec = true;
6619       }
6620     }
6621   }
6622 
6623   if (has_src && has_dest && can_emit_guards) {
6624     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6625     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6626     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6627     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6628 
6629     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6630       // If both arrays are object arrays then having the exact types
6631       // for both will remove the need for a subtype check at runtime
6632       // before the call and may make it possible to pick a faster copy
6633       // routine (without a subtype check on every element)
6634       // Do we have the exact type of src?
6635       bool could_have_src = src_spec;
6636       // Do we have the exact type of dest?
6637       bool could_have_dest = dest_spec;
6638       ciKlass* src_k = nullptr;
6639       ciKlass* dest_k = nullptr;
6640       if (!src_spec) {
6641         src_k = src_type->speculative_type_not_null();
6642         if (src_k != nullptr && src_k->is_array_klass()) {
6643           could_have_src = true;
6644         }
6645       }
6646       if (!dest_spec) {
6647         dest_k = dest_type->speculative_type_not_null();
6648         if (dest_k != nullptr && dest_k->is_array_klass()) {
6649           could_have_dest = true;
6650         }
6651       }
6652       if (could_have_src && could_have_dest) {
6653         // If we can have both exact types, emit the missing guards
6654         if (could_have_src && !src_spec) {
6655           src = maybe_cast_profiled_obj(src, src_k, true);
6656           src_type = _gvn.type(src);
6657           top_src = src_type->isa_aryptr();
6658         }
6659         if (could_have_dest && !dest_spec) {
6660           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6661           dest_type = _gvn.type(dest);
6662           top_dest = dest_type->isa_aryptr();
6663         }
6664       }
6665     }
6666   }
6667 
6668   ciMethod* trap_method = method();
6669   int trap_bci = bci();
6670   if (saved_jvms_before_guards != nullptr) {
6671     trap_method = alloc->jvms()->method();
6672     trap_bci = alloc->jvms()->bci();
6673   }
6674 
6675   bool negative_length_guard_generated = false;
6676 
6677   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6678       can_emit_guards && !src->is_top() && !dest->is_top()) {

6679     // validate arguments: enables transformation the ArrayCopyNode
6680     validated = true;
6681 
6682     RegionNode* slow_region = new RegionNode(1);
6683     record_for_igvn(slow_region);
6684 
6685     // (1) src and dest are arrays.
6686     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6687     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6688 
6689     // (2) src and dest arrays must have elements of the same BasicType
6690     // done at macro expansion or at Ideal transformation time
6691 
6692     // (4) src_offset must not be negative.
6693     generate_negative_guard(src_offset, slow_region);
6694 
6695     // (5) dest_offset must not be negative.
6696     generate_negative_guard(dest_offset, slow_region);
6697 
6698     // (7) src_offset + length must not exceed length of src.
6699     generate_limit_guard(src_offset, length,
6700                          load_array_length(src),
6701                          slow_region);
6702 
6703     // (8) dest_offset + length must not exceed length of dest.
6704     generate_limit_guard(dest_offset, length,
6705                          load_array_length(dest),
6706                          slow_region);
6707 
6708     // (6) length must not be negative.
6709     // This is also checked in generate_arraycopy() during macro expansion, but
6710     // we also have to check it here for the case where the ArrayCopyNode will
6711     // be eliminated by Escape Analysis.
6712     if (EliminateAllocations) {
6713       generate_negative_guard(length, slow_region);
6714       negative_length_guard_generated = true;
6715     }
6716 
6717     // (9) each element of an oop array must be assignable
6718     Node* dest_klass = load_object_klass(dest);
6719     Node* refined_dest_klass = dest_klass;
6720     if (src != dest) {
6721       dest_klass = load_non_refined_array_klass(refined_dest_klass);
6722       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6723       slow_region->add_req(not_subtype_ctrl);







6724     }
6725 
6726     // TODO 8350865 Improve this. What about atomicity? Make sure this is always folded for type arrays.
6727     // If destination is null-restricted, source must be null-restricted as well: src_null_restricted || !dst_null_restricted
6728     Node* src_klass = load_object_klass(src);
6729     Node* adr_prop_src = basic_plus_adr(src_klass, in_bytes(ArrayKlass::properties_offset()));
6730     Node* prop_src = _gvn.transform(LoadNode::make(_gvn, control(), immutable_memory(), adr_prop_src, TypeRawPtr::BOTTOM, TypeInt::INT, T_INT, MemNode::unordered));
6731     Node* adr_prop_dest = basic_plus_adr(refined_dest_klass, in_bytes(ArrayKlass::properties_offset()));
6732     Node* prop_dest = _gvn.transform(LoadNode::make(_gvn, control(), immutable_memory(), adr_prop_dest, TypeRawPtr::BOTTOM, TypeInt::INT, T_INT, MemNode::unordered));
6733 
6734     prop_dest = _gvn.transform(new XorINode(prop_dest, intcon(ArrayKlass::ArrayProperties::NULL_RESTRICTED)));
6735     prop_src = _gvn.transform(new OrINode(prop_dest, prop_src));
6736     prop_src = _gvn.transform(new AndINode(prop_src, intcon(ArrayKlass::ArrayProperties::NULL_RESTRICTED)));
6737 
6738     Node* chk = _gvn.transform(new CmpINode(prop_src, intcon(ArrayKlass::ArrayProperties::NULL_RESTRICTED)));
6739     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
6740     generate_fair_guard(tst, slow_region);
6741 
6742     // TODO 8350865 This is too strong
6743     generate_fair_guard(flat_array_test(src), slow_region);
6744     generate_fair_guard(flat_array_test(dest), slow_region);
6745 
6746     {
6747       PreserveJVMState pjvms(this);
6748       set_control(_gvn.transform(slow_region));
6749       uncommon_trap(Deoptimization::Reason_intrinsic,
6750                     Deoptimization::Action_make_not_entrant);
6751       assert(stopped(), "Should be stopped");
6752     }
6753 
6754     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->isa_klassptr();
6755     if (dest_klass_t == nullptr) {
6756       // refined_dest_klass may not be an array, which leads to dest_klass being top. This means we
6757       // are in a dead path.
6758       uncommon_trap(Deoptimization::Reason_intrinsic,
6759                     Deoptimization::Action_make_not_entrant);
6760       return true;
6761     }
6762 
6763     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6764     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6765     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6766   }
6767 
6768   if (stopped()) {
6769     return true;
6770   }
6771 
6772   Node* dest_klass = load_object_klass(dest);
6773   dest_klass = load_non_refined_array_klass(dest_klass);
6774 
6775   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6776                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6777                                           // so the compiler has a chance to eliminate them: during macro expansion,
6778                                           // we have to set their control (CastPP nodes are eliminated).
6779                                           load_object_klass(src), dest_klass,
6780                                           load_array_length(src), load_array_length(dest));
6781 
6782   ac->set_arraycopy(validated);
6783 
6784   Node* n = _gvn.transform(ac);
6785   if (n == ac) {
6786     ac->connect_outputs(this);
6787   } else {
6788     assert(validated, "shouldn't transform if all arguments not validated");
6789     set_all_memory(n);
6790   }
6791   clear_upper_avx();
6792 
6793 
6794   return true;
6795 }
6796 
6797 
6798 // Helper function which determines if an arraycopy immediately follows
6799 // an allocation, with no intervening tests or other escapes for the object.
< prev index next >