< prev index next >

src/hotspot/share/opto/library_call.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"



  26 #include "ci/ciSymbols.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"

  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "oops/klass.inline.hpp"

  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"

  43 #include "opto/idealKit.hpp"

  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"

  49 #include "opto/parse.hpp"
  50 #include "opto/rootnode.hpp"
  51 #include "opto/runtime.hpp"
  52 #include "opto/subnode.hpp"

  53 #include "opto/vectornode.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/unsafe.hpp"

  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/mountUnmountDisabler.hpp"
  59 #include "runtime/objectMonitor.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/stubRoutines.hpp"

  62 #include "utilities/macros.hpp"
  63 #include "utilities/powerOfTwo.hpp"
  64 
  65 //---------------------------make_vm_intrinsic----------------------------
  66 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  67   vmIntrinsicID id = m->intrinsic_id();
  68   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  69 
  70   if (!m->is_loaded()) {
  71     // Do not attempt to inline unloaded methods.
  72     return nullptr;
  73   }
  74 
  75   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  76   bool is_available = false;
  77 
  78   {
  79     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  80     // the compiler must transition to '_thread_in_vm' state because both
  81     // methods access VM-internal data.

 302   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 303   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 304   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 305   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 306   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 307 
 308   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 309 
 310   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 311 
 312   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 313   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 314   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 315   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 316 
 317   case vmIntrinsics::_compressStringC:
 318   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 319   case vmIntrinsics::_inflateStringC:
 320   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 321 


 322   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 323   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 324   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 325   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 326   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 327   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 328   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 329   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 330   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 331 
 332   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 333   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 334   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 335   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 336   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 337   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 338   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 339   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 340   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 341 

 392   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 393   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 394   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 395   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 396   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 397   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 398   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 399   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 400   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 401 
 402   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 403   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 404   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 405   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 406   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 407   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 408   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 409   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 410   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 411 



 412   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 413   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 414   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 415   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 416   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 417 
 418   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 419   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 420   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 421   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 422   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 423   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 424   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 425   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 426   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 427   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 428   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 429   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 430   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 431   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);

 451   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 452   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 453   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 454 
 455   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 456   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 457   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 458   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 459 
 460   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 461   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 462   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 463   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 464   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 465 
 466   case vmIntrinsics::_loadFence:
 467   case vmIntrinsics::_storeFence:
 468   case vmIntrinsics::_storeStoreFence:
 469   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 470 





 471   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 472 
 473   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 474   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 475   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 476 
 477   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 478   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 479 
 480   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 481   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 482 
 483   case vmIntrinsics::_vthreadEndFirstTransition:    return inline_native_vthread_end_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_end_first_transition_Java()),
 484                                                                                                 "endFirstTransition", true);
 485   case vmIntrinsics::_vthreadStartFinalTransition:  return inline_native_vthread_start_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_start_final_transition_Java()),
 486                                                                                                   "startFinalTransition", true);
 487   case vmIntrinsics::_vthreadStartTransition:       return inline_native_vthread_start_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_start_transition_Java()),
 488                                                                                                   "startTransition", false);
 489   case vmIntrinsics::_vthreadEndTransition:         return inline_native_vthread_end_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_end_transition_Java()),
 490                                                                                                 "endTransition", false);

 499 #endif
 500   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 501   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 502   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 503   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 504   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 505   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 506   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 507   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 508   case vmIntrinsics::_getLength:                return inline_native_getLength();
 509   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 510   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 511   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 512   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 513   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 514   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 515   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 516 
 517   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 518   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);






 519 
 520   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 521 
 522   case vmIntrinsics::_isInstance:
 523   case vmIntrinsics::_isHidden:
 524   case vmIntrinsics::_getSuperclass:            return inline_native_Class_query(intrinsic_id());
 525 
 526   case vmIntrinsics::_floatToRawIntBits:
 527   case vmIntrinsics::_floatToIntBits:
 528   case vmIntrinsics::_intBitsToFloat:
 529   case vmIntrinsics::_doubleToRawLongBits:
 530   case vmIntrinsics::_doubleToLongBits:
 531   case vmIntrinsics::_longBitsToDouble:
 532   case vmIntrinsics::_floatToFloat16:
 533   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 534   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 535   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 536   case vmIntrinsics::_floatIsFinite:
 537   case vmIntrinsics::_floatIsInfinite:
 538   case vmIntrinsics::_doubleIsFinite:

2316     case vmIntrinsics::_remainderUnsigned_l: {
2317       zero_check_long(argument(2));
2318       // Compile-time detect of null-exception
2319       if (stopped()) {
2320         return true; // keep the graph constructed so far
2321       }
2322       n = new UModLNode(control(), argument(0), argument(2));
2323       break;
2324     }
2325     default:  fatal_unexpected_iid(id);  break;
2326   }
2327   set_result(_gvn.transform(n));
2328   return true;
2329 }
2330 
2331 //----------------------------inline_unsafe_access----------------------------
2332 
2333 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2334   // Attempt to infer a sharper value type from the offset and base type.
2335   ciKlass* sharpened_klass = nullptr;

2336 
2337   // See if it is an instance field, with an object type.
2338   if (alias_type->field() != nullptr) {
2339     if (alias_type->field()->type()->is_klass()) {
2340       sharpened_klass = alias_type->field()->type()->as_klass();

2341     }
2342   }
2343 
2344   const TypeOopPtr* result = nullptr;
2345   // See if it is a narrow oop array.
2346   if (adr_type->isa_aryptr()) {
2347     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2348       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();

2349       if (elem_type != nullptr && elem_type->is_loaded()) {
2350         // Sharpen the value type.
2351         result = elem_type;
2352       }
2353     }
2354   }
2355 
2356   // The sharpened class might be unloaded if there is no class loader
2357   // contraint in place.
2358   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2359     // Sharpen the value type.
2360     result = TypeOopPtr::make_from_klass(sharpened_klass);



2361   }
2362   if (result != nullptr) {
2363 #ifndef PRODUCT
2364     if (C->print_intrinsics() || C->print_inlining()) {
2365       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2366       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2367     }
2368 #endif
2369   }
2370   return result;
2371 }
2372 
2373 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2374   switch (kind) {
2375       case Relaxed:
2376         return MO_UNORDERED;
2377       case Opaque:
2378         return MO_RELAXED;
2379       case Acquire:
2380         return MO_ACQUIRE;

2469 #endif // ASSERT
2470  }
2471 #endif //PRODUCT
2472 
2473   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2474 
2475   Node* receiver = argument(0);  // type: oop
2476 
2477   // Build address expression.
2478   Node* heap_base_oop = top();
2479 
2480   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2481   Node* base = argument(1);  // type: oop
2482   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2483   Node* offset = argument(2);  // type: long
2484   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2485   // to be plain byte offsets, which are also the same as those accepted
2486   // by oopDesc::field_addr.
2487   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2488          "fieldOffset must be byte-scaled");




































2489   // 32-bit machines ignore the high half!
2490   offset = ConvL2X(offset);
2491 
2492   // Save state and restore on bailout
2493   SavedState old_state(this);
2494 
2495   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2496   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2497 
2498   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2499     if (type != T_OBJECT) {
2500       decorators |= IN_NATIVE; // off-heap primitive access
2501     } else {
2502       return false; // off-heap oop accesses are not supported
2503     }
2504   } else {
2505     heap_base_oop = base; // on-heap or mixed access
2506   }
2507 
2508   // Can base be null? Otherwise, always on-heap access.

2512     decorators |= IN_HEAP;
2513   }
2514 
2515   Node* val = is_store ? argument(4) : nullptr;
2516 
2517   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2518   if (adr_type == TypePtr::NULL_PTR) {
2519     return false; // off-heap access with zero address
2520   }
2521 
2522   // Try to categorize the address.
2523   Compile::AliasType* alias_type = C->alias_type(adr_type);
2524   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2525 
2526   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2527       alias_type->adr_type() == TypeAryPtr::RANGE) {
2528     return false; // not supported
2529   }
2530 
2531   bool mismatched = false;
2532   BasicType bt = alias_type->basic_type();




























2533   if (bt != T_ILLEGAL) {
2534     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2535     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2536       // Alias type doesn't differentiate between byte[] and boolean[]).
2537       // Use address type to get the element type.
2538       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2539     }
2540     if (is_reference_type(bt, true)) {
2541       // accessing an array field with getReference is not a mismatch
2542       bt = T_OBJECT;
2543     }
2544     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2545       // Don't intrinsify mismatched object accesses
2546       return false;
2547     }
2548     mismatched = (bt != type);
2549   } else if (alias_type->adr_type()->isa_oopptr()) {
2550     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2551   }
2552 
2553   old_state.discard();
2554   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2555 
2556   if (mismatched) {
2557     decorators |= C2_MISMATCHED;
2558   }
2559 
2560   // First guess at the value type.
2561   const Type *value_type = Type::get_const_basic_type(type);
2562 
2563   // Figure out the memory ordering.
2564   decorators |= mo_decorator_for_access_kind(kind);
2565 
2566   if (!is_store && type == T_OBJECT) {
2567     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2568     if (tjp != nullptr) {
2569       value_type = tjp;


2570     }
2571   }
2572 
2573   receiver = null_check(receiver);
2574   if (stopped()) {
2575     return true;
2576   }
2577   // Heap pointers get a null-check from the interpreter,
2578   // as a courtesy.  However, this is not guaranteed by Unsafe,
2579   // and it is not possible to fully distinguish unintended nulls
2580   // from intended ones in this API.
2581 
2582   if (!is_store) {
2583     Node* p = nullptr;
2584     // Try to constant fold a load from a constant field
2585     ciField* field = alias_type->field();
2586     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2587       // final or stable field
2588       p = make_constant_from_field(field, heap_base_oop);
2589     }
2590 
2591     if (p == nullptr) { // Could not constant fold the load
2592       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);





2593       // Normalize the value returned by getBoolean in the following cases
2594       if (type == T_BOOLEAN &&
2595           (mismatched ||
2596            heap_base_oop == top() ||                  // - heap_base_oop is null or
2597            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2598                                                       //   and the unsafe access is made to large offset
2599                                                       //   (i.e., larger than the maximum offset necessary for any
2600                                                       //   field access)
2601             ) {
2602           IdealKit ideal = IdealKit(this);
2603 #define __ ideal.
2604           IdealVariable normalized_result(ideal);
2605           __ declarations_done();
2606           __ set(normalized_result, p);
2607           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2608           __ set(normalized_result, ideal.ConI(1));
2609           ideal.end_if();
2610           final_sync(ideal);
2611           p = __ value(normalized_result);
2612 #undef __

2616       p = gvn().transform(new CastP2XNode(nullptr, p));
2617       p = ConvX2UL(p);
2618     }
2619     // The load node has the control of the preceding MemBarCPUOrder.  All
2620     // following nodes will have the control of the MemBarCPUOrder inserted at
2621     // the end of this method.  So, pushing the load onto the stack at a later
2622     // point is fine.
2623     set_result(p);
2624   } else {
2625     if (bt == T_ADDRESS) {
2626       // Repackage the long as a pointer.
2627       val = ConvL2X(val);
2628       val = gvn().transform(new CastX2PNode(val));
2629     }
2630     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2631   }
2632 
2633   return true;
2634 }
2635 











































































































































































































































2636 //----------------------------inline_unsafe_load_store----------------------------
2637 // This method serves a couple of different customers (depending on LoadStoreKind):
2638 //
2639 // LS_cmp_swap:
2640 //
2641 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2642 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2643 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2644 //
2645 // LS_cmp_swap_weak:
2646 //
2647 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2648 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2649 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2650 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2651 //
2652 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2653 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2654 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2655 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

2818     }
2819     case LS_cmp_swap:
2820     case LS_cmp_swap_weak:
2821     case LS_get_add:
2822       break;
2823     default:
2824       ShouldNotReachHere();
2825   }
2826 
2827   // Null check receiver.
2828   receiver = null_check(receiver);
2829   if (stopped()) {
2830     return true;
2831   }
2832 
2833   int alias_idx = C->get_alias_index(adr_type);
2834 
2835   if (is_reference_type(type)) {
2836     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2837 













2838     // Transformation of a value which could be null pointer (CastPP #null)
2839     // could be delayed during Parse (for example, in adjust_map_after_if()).
2840     // Execute transformation here to avoid barrier generation in such case.
2841     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2842       newval = _gvn.makecon(TypePtr::NULL_PTR);
2843 
2844     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2845       // Refine the value to a null constant, when it is known to be null
2846       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2847     }
2848   }
2849 
2850   Node* result = nullptr;
2851   switch (kind) {
2852     case LS_cmp_exchange: {
2853       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2854                                             oldval, newval, value_type, type, decorators);
2855       break;
2856     }
2857     case LS_cmp_swap_weak:

2886   insert_mem_bar(Op_MemBarCPUOrder);
2887   switch(id) {
2888     case vmIntrinsics::_loadFence:
2889       insert_mem_bar(Op_LoadFence);
2890       return true;
2891     case vmIntrinsics::_storeFence:
2892       insert_mem_bar(Op_StoreFence);
2893       return true;
2894     case vmIntrinsics::_storeStoreFence:
2895       insert_mem_bar(Op_StoreStoreFence);
2896       return true;
2897     case vmIntrinsics::_fullFence:
2898       insert_mem_bar(Op_MemBarVolatile);
2899       return true;
2900     default:
2901       fatal_unexpected_iid(id);
2902       return false;
2903   }
2904 }
2905 


































































































2906 bool LibraryCallKit::inline_onspinwait() {
2907   insert_mem_bar(Op_OnSpinWait);
2908   return true;
2909 }
2910 
2911 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2912   if (!kls->is_Con()) {
2913     return true;
2914   }
2915   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2916   if (klsptr == nullptr) {
2917     return true;
2918   }
2919   ciInstanceKlass* ik = klsptr->instance_klass();
2920   // don't need a guard for a klass that is already initialized
2921   return !ik->is_initialized();
2922 }
2923 
2924 //----------------------------inline_unsafe_writeback0-------------------------
2925 // public native void Unsafe.writeback0(long address)

3004                     Deoptimization::Action_make_not_entrant);
3005     }
3006     if (stopped()) {
3007       return true;
3008     }
3009 #endif //INCLUDE_JVMTI
3010 
3011   Node* test = nullptr;
3012   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3013     // Note:  The argument might still be an illegal value like
3014     // Serializable.class or Object[].class.   The runtime will handle it.
3015     // But we must make an explicit check for initialization.
3016     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3017     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3018     // can generate code to load it as unsigned byte.
3019     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3020     Node* bits = intcon(InstanceKlass::fully_initialized);
3021     test = _gvn.transform(new SubINode(inst, bits));
3022     // The 'test' is non-zero if we need to take a slow path.
3023   }
3024 
3025   Node* obj = new_instance(kls, test);





3026   set_result(obj);
3027   return true;
3028 }
3029 
3030 //------------------------inline_native_time_funcs--------------
3031 // inline code for System.currentTimeMillis() and System.nanoTime()
3032 // these have the same type and signature
3033 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3034   const TypeFunc* tf = OptoRuntime::void_long_Type();
3035   const TypePtr* no_memory_effects = nullptr;
3036   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3037   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3038 #ifdef ASSERT
3039   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3040   assert(value_top == top(), "second value must be top");
3041 #endif
3042   set_result(value);
3043   return true;
3044 }
3045 

3820   Node* thread = _gvn.transform(new ThreadLocalNode());
3821   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3822   Node* thread_obj_handle
3823     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3824   thread_obj_handle = _gvn.transform(thread_obj_handle);
3825   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3826   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3827 
3828   // Change the _monitor_owner_id of the JavaThread
3829   Node* tid = load_field_from_object(arr, "tid", "J");
3830   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3831   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3832 
3833   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3834   return true;
3835 }
3836 
3837 const Type* LibraryCallKit::scopedValueCache_type() {
3838   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3839   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3840   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3841 
3842   // Because we create the scopedValue cache lazily we have to make the
3843   // type of the result BotPTR.
3844   bool xk = etype->klass_is_exact();
3845   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3846   return objects_type;
3847 }
3848 
3849 Node* LibraryCallKit::scopedValueCache_helper() {
3850   Node* thread = _gvn.transform(new ThreadLocalNode());
3851   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3852   // We cannot use immutable_memory() because we might flip onto a
3853   // different carrier thread, at which point we'll need to use that
3854   // carrier thread's cache.
3855   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3856   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3857   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3858 }
3859 
3860 //------------------------inline_native_scopedValueCache------------------
3861 bool LibraryCallKit::inline_native_scopedValueCache() {
3862   Node* cache_obj_handle = scopedValueCache_helper();
3863   const Type* objects_type = scopedValueCache_type();
3864   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3865 

4001   }
4002   return kls;
4003 }
4004 
4005 //--------------------(inline_native_Class_query helpers)---------------------
4006 // Use this for JVM_ACC_INTERFACE.
4007 // Fall through if (mods & mask) == bits, take the guard otherwise.
4008 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4009                                                  ByteSize offset, const Type* type, BasicType bt) {
4010   // Branch around if the given klass has the given modifier bit set.
4011   // Like generate_guard, adds a new path onto the region.
4012   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4013   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4014   Node* mask = intcon(modifier_mask);
4015   Node* bits = intcon(modifier_bits);
4016   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4017   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4018   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4019   return generate_fair_guard(bol, region);
4020 }

4021 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4022   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4023                                     InstanceKlass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4024 }
4025 
4026 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4027 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4028   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4029                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4030 }
4031 
4032 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4033   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4034 }
4035 
4036 //-------------------------inline_native_Class_query-------------------
4037 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4038   const Type* return_type = TypeInt::BOOL;
4039   Node* prim_return_value = top();  // what happens if it's a primitive class?
4040   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4126 
4127 
4128   case vmIntrinsics::_getSuperclass:
4129     // The rules here are somewhat unfortunate, but we can still do better
4130     // with random logic than with a JNI call.
4131     // Interfaces store null or Object as _super, but must report null.
4132     // Arrays store an intermediate super as _super, but must report Object.
4133     // Other types can report the actual _super.
4134     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4135     if (generate_array_guard(kls, region) != nullptr) {
4136       // A guard was added.  If the guard is taken, it was an array.
4137       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4138     }
4139     // Check for interface after array since this checks AccessFlags offset into InstanceKlass.
4140     // In other words, we are accessing subtype-specific information, so we need to determine the subtype first.
4141     if (generate_interface_guard(kls, region) != nullptr) {
4142       // A guard was added.  If the guard is taken, it was an interface.
4143       phi->add_req(null());
4144     }
4145     // If we fall through, it's a plain class.  Get its _super.
4146     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4147     kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4148     null_ctl = top();
4149     kls = null_check_oop(kls, &null_ctl);
4150     if (null_ctl != top()) {
4151       // If the guard is taken, Object.superClass is null (both klass and mirror).
4152       region->add_req(null_ctl);
4153       phi   ->add_req(null());
4154     }
4155     if (!stopped()) {
4156       query_value = load_mirror_from_klass(kls);











4157     }
4158     break;
4159 
4160   default:
4161     fatal_unexpected_iid(id);
4162     break;
4163   }
4164 
4165   // Fall-through is the normal case of a query to a real class.
4166   phi->init_req(1, query_value);
4167   region->init_req(1, control());
4168 
4169   C->set_has_split_ifs(true); // Has chance for split-if optimization
4170   set_result(region, phi);
4171   return true;
4172 }
4173 

4174 //-------------------------inline_Class_cast-------------------
4175 bool LibraryCallKit::inline_Class_cast() {
4176   Node* mirror = argument(0); // Class
4177   Node* obj    = argument(1);
4178   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4179   if (mirror_con == nullptr) {
4180     return false;  // dead path (mirror->is_top()).
4181   }
4182   if (obj == nullptr || obj->is_top()) {
4183     return false;  // dead path
4184   }
4185   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4186 
4187   // First, see if Class.cast() can be folded statically.
4188   // java_mirror_type() returns non-null for compile-time Class constants.
4189   ciType* tm = mirror_con->java_mirror_type();
4190   if (tm != nullptr && tm->is_klass() &&
4191       tp != nullptr) {
4192     if (!tp->is_loaded()) {
4193       // Don't use intrinsic when class is not loaded.
4194       return false;
4195     } else {
4196       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());

4197       if (static_res == Compile::SSC_always_true) {
4198         // isInstance() is true - fold the code.
4199         set_result(obj);
4200         return true;
4201       } else if (static_res == Compile::SSC_always_false) {
4202         // Don't use intrinsic, have to throw ClassCastException.
4203         // If the reference is null, the non-intrinsic bytecode will
4204         // be optimized appropriately.
4205         return false;
4206       }
4207     }
4208   }
4209 
4210   // Bailout intrinsic and do normal inlining if exception path is frequent.
4211   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4212     return false;
4213   }
4214 
4215   // Generate dynamic checks.
4216   // Class.cast() is java implementation of _checkcast bytecode.
4217   // Do checkcast (Parse::do_checkcast()) optimizations here.
4218 
4219   mirror = null_check(mirror);
4220   // If mirror is dead, only null-path is taken.
4221   if (stopped()) {
4222     return true;
4223   }
4224 
4225   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4226   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4227   RegionNode* region = new RegionNode(PATH_LIMIT);
4228   record_for_igvn(region);
4229 
4230   // Now load the mirror's klass metaobject, and null-check it.
4231   // If kls is null, we have a primitive mirror and
4232   // nothing is an instance of a primitive type.
4233   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4234 
4235   Node* res = top();


4236   if (!stopped()) {

4237     Node* bad_type_ctrl = top();
4238     // Do checkcast optimizations.
4239     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4240     region->init_req(_bad_type_path, bad_type_ctrl);
4241   }
4242   if (region->in(_prim_path) != top() ||
4243       region->in(_bad_type_path) != top()) {

4244     // Let Interpreter throw ClassCastException.
4245     PreserveJVMState pjvms(this);
4246     set_control(_gvn.transform(region));



4247     uncommon_trap(Deoptimization::Reason_intrinsic,
4248                   Deoptimization::Action_maybe_recompile);
4249   }
4250   if (!stopped()) {
4251     set_result(res);
4252   }
4253   return true;
4254 }
4255 
4256 
4257 //--------------------------inline_native_subtype_check------------------------
4258 // This intrinsic takes the JNI calls out of the heart of
4259 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4260 bool LibraryCallKit::inline_native_subtype_check() {
4261   // Pull both arguments off the stack.
4262   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4263   args[0] = argument(0);
4264   args[1] = argument(1);
4265   Node* klasses[2];             // corresponding Klasses: superk, subk
4266   klasses[0] = klasses[1] = top();
4267 
4268   enum {
4269     // A full decision tree on {superc is prim, subc is prim}:
4270     _prim_0_path = 1,           // {P,N} => false
4271                                 // {P,P} & superc!=subc => false
4272     _prim_same_path,            // {P,P} & superc==subc => true
4273     _prim_1_path,               // {N,P} => false
4274     _ref_subtype_path,          // {N,N} & subtype check wins => true
4275     _both_ref_path,             // {N,N} & subtype check loses => false
4276     PATH_LIMIT
4277   };
4278 
4279   RegionNode* region = new RegionNode(PATH_LIMIT);

4280   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4281   record_for_igvn(region);

4282 
4283   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4284   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4285   int class_klass_offset = java_lang_Class::klass_offset();
4286 
4287   // First null-check both mirrors and load each mirror's klass metaobject.
4288   int which_arg;
4289   for (which_arg = 0; which_arg <= 1; which_arg++) {
4290     Node* arg = args[which_arg];
4291     arg = null_check(arg);
4292     if (stopped())  break;
4293     args[which_arg] = arg;
4294 
4295     Node* p = basic_plus_adr(arg, class_klass_offset);
4296     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4297     klasses[which_arg] = _gvn.transform(kls);
4298   }
4299 
4300   // Having loaded both klasses, test each for null.
4301   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4302   for (which_arg = 0; which_arg <= 1; which_arg++) {
4303     Node* kls = klasses[which_arg];
4304     Node* null_ctl = top();
4305     kls = null_check_oop(kls, &null_ctl, never_see_null);
4306     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4307     region->init_req(prim_path, null_ctl);



4308     if (stopped())  break;
4309     klasses[which_arg] = kls;
4310   }
4311 
4312   if (!stopped()) {
4313     // now we have two reference types, in klasses[0..1]
4314     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4315     Node* superk = klasses[0];  // the receiver
4316     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4317     // now we have a successful reference subtype check
4318     region->set_req(_ref_subtype_path, control());
4319   }
4320 
4321   // If both operands are primitive (both klasses null), then
4322   // we must return true when they are identical primitives.
4323   // It is convenient to test this after the first null klass check.
4324   set_control(region->in(_prim_0_path)); // go back to first null check

4325   if (!stopped()) {
4326     // Since superc is primitive, make a guard for the superc==subc case.
4327     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4328     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4329     generate_guard(bol_eq, region, PROB_FAIR);
4330     if (region->req() == PATH_LIMIT+1) {
4331       // A guard was added.  If the added guard is taken, superc==subc.
4332       region->swap_edges(PATH_LIMIT, _prim_same_path);
4333       region->del_req(PATH_LIMIT);
4334     }
4335     region->set_req(_prim_0_path, control()); // Not equal after all.
4336   }
4337 
4338   // these are the only paths that produce 'true':
4339   phi->set_req(_prim_same_path,   intcon(1));
4340   phi->set_req(_ref_subtype_path, intcon(1));
4341 
4342   // pull together the cases:
4343   assert(region->req() == PATH_LIMIT, "sane region");
4344   for (uint i = 1; i < region->req(); i++) {
4345     Node* ctl = region->in(i);
4346     if (ctl == nullptr || ctl == top()) {
4347       region->set_req(i, top());
4348       phi   ->set_req(i, top());
4349     } else if (phi->in(i) == nullptr) {
4350       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4351     }
4352   }
4353 
4354   set_control(_gvn.transform(region));
4355   set_result(_gvn.transform(phi));
4356   return true;
4357 }
4358 
4359 //---------------------generate_array_guard_common------------------------
4360 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4361                                                   bool obj_array, bool not_array, Node** obj) {
4362 
4363   if (stopped()) {
4364     return nullptr;
4365   }
4366 
4367   // If obj_array/non_array==false/false:
4368   // Branch around if the given klass is in fact an array (either obj or prim).
4369   // If obj_array/non_array==false/true:
4370   // Branch around if the given klass is not an array klass of any kind.
4371   // If obj_array/non_array==true/true:
4372   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4373   // If obj_array/non_array==true/false:
4374   // Branch around if the kls is an oop array (Object[] or subtype)
4375   //
4376   // Like generate_guard, adds a new path onto the region.
4377   jint  layout_con = 0;
4378   Node* layout_val = get_layout_helper(kls, layout_con);
4379   if (layout_val == nullptr) {
4380     bool query = (obj_array
4381                   ? Klass::layout_helper_is_objArray(layout_con)
4382                   : Klass::layout_helper_is_array(layout_con));
4383     if (query == not_array) {







4384       return nullptr;                       // never a branch
4385     } else {                             // always a branch
4386       Node* always_branch = control();
4387       if (region != nullptr)
4388         region->add_req(always_branch);
4389       set_control(top());
4390       return always_branch;
4391     }
4392   }





















4393   // Now test the correct condition.
4394   jint  nval = (obj_array
4395                 ? (jint)(Klass::_lh_array_tag_type_value
4396                    <<    Klass::_lh_array_tag_shift)
4397                 : Klass::_lh_neutral_value);
4398   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4399   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4400   // invert the test if we are looking for a non-array
4401   if (not_array)  btest = BoolTest(btest).negate();
4402   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4403   Node* ctrl = generate_fair_guard(bol, region);
4404   Node* is_array_ctrl = not_array ? control() : ctrl;
4405   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4406     // Keep track of the fact that 'obj' is an array to prevent
4407     // array specific accesses from floating above the guard.
4408     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4409   }
4410   return ctrl;
4411 }
4412 

































































































































4413 
4414 //-----------------------inline_native_newArray--------------------------
4415 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4416 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4417 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4418   Node* mirror;
4419   Node* count_val;
4420   if (uninitialized) {
4421     null_check_receiver();
4422     mirror    = argument(1);
4423     count_val = argument(2);
4424   } else {
4425     mirror    = argument(0);
4426     count_val = argument(1);
4427   }
4428 
4429   mirror = null_check(mirror);
4430   // If mirror or obj is dead, only null-path is taken.
4431   if (stopped())  return true;
4432 
4433   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4434   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4435   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4453     CallJavaNode* slow_call = nullptr;
4454     if (uninitialized) {
4455       // Generate optimized virtual call (holder class 'Unsafe' is final)
4456       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4457     } else {
4458       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4459     }
4460     Node* slow_result = set_results_for_java_call(slow_call);
4461     // this->control() comes from set_results_for_java_call
4462     result_reg->set_req(_slow_path, control());
4463     result_val->set_req(_slow_path, slow_result);
4464     result_io ->set_req(_slow_path, i_o());
4465     result_mem->set_req(_slow_path, reset_memory());
4466   }
4467 
4468   set_control(normal_ctl);
4469   if (!stopped()) {
4470     // Normal case:  The array type has been cached in the java.lang.Class.
4471     // The following call works fine even if the array type is polymorphic.
4472     // It could be a dynamic mix of int[], boolean[], Object[], etc.



4473     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4474     result_reg->init_req(_normal_path, control());
4475     result_val->init_req(_normal_path, obj);
4476     result_io ->init_req(_normal_path, i_o());
4477     result_mem->init_req(_normal_path, reset_memory());
4478 
4479     if (uninitialized) {
4480       // Mark the allocation so that zeroing is skipped
4481       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4482       alloc->maybe_set_complete(&_gvn);
4483     }
4484   }
4485 
4486   // Return the combined state.
4487   set_i_o(        _gvn.transform(result_io)  );
4488   set_all_memory( _gvn.transform(result_mem));
4489 
4490   C->set_has_split_ifs(true); // Has chance for split-if optimization
4491   set_result(result_reg, result_val);
4492   return true;

4541   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4542   { PreserveReexecuteState preexecs(this);
4543     jvms()->set_should_reexecute(true);
4544 
4545     array_type_mirror = null_check(array_type_mirror);
4546     original          = null_check(original);
4547 
4548     // Check if a null path was taken unconditionally.
4549     if (stopped())  return true;
4550 
4551     Node* orig_length = load_array_length(original);
4552 
4553     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4554     klass_node = null_check(klass_node);
4555 
4556     RegionNode* bailout = new RegionNode(1);
4557     record_for_igvn(bailout);
4558 
4559     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4560     // Bail out if that is so.
4561     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);















4562     if (not_objArray != nullptr) {
4563       // Improve the klass node's type from the new optimistic assumption:
4564       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4565       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4566       Node* cast = new CastPPNode(control(), klass_node, akls);
4567       klass_node = _gvn.transform(cast);


4568     }
4569 
4570     // Bail out if either start or end is negative.
4571     generate_negative_guard(start, bailout, &start);
4572     generate_negative_guard(end,   bailout, &end);
4573 
4574     Node* length = end;
4575     if (_gvn.type(start) != TypeInt::ZERO) {
4576       length = _gvn.transform(new SubINode(end, start));
4577     }
4578 
4579     // Bail out if length is negative (i.e., if start > end).
4580     // Without this the new_array would throw
4581     // NegativeArraySizeException but IllegalArgumentException is what
4582     // should be thrown
4583     generate_negative_guard(length, bailout, &length);
4584 







































4585     // Bail out if start is larger than the original length
4586     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4587     generate_negative_guard(orig_tail, bailout, &orig_tail);
4588 
4589     if (bailout->req() > 1) {
4590       PreserveJVMState pjvms(this);
4591       set_control(_gvn.transform(bailout));
4592       uncommon_trap(Deoptimization::Reason_intrinsic,
4593                     Deoptimization::Action_maybe_recompile);
4594     }
4595 
4596     if (!stopped()) {
4597       // How many elements will we copy from the original?
4598       // The answer is MinI(orig_tail, length).
4599       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4600 
4601       // Generate a direct call to the right arraycopy function(s).
4602       // We know the copy is disjoint but we might not know if the
4603       // oop stores need checking.
4604       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4610       // to the copyOf to be validated, including that the copy to the
4611       // new array won't trigger an ArrayStoreException. That subtype
4612       // check can be optimized if we know something on the type of
4613       // the input array from type speculation.
4614       if (_gvn.type(klass_node)->singleton()) {
4615         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4616         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4617 
4618         int test = C->static_subtype_check(superk, subk);
4619         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4620           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4621           if (t_original->speculative_type() != nullptr) {
4622             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4623           }
4624         }
4625       }
4626 
4627       bool validated = false;
4628       // Reason_class_check rather than Reason_intrinsic because we
4629       // want to intrinsify even if this traps.
4630       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4631         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4632 
4633         if (not_subtype_ctrl != top()) {
4634           PreserveJVMState pjvms(this);
4635           set_control(not_subtype_ctrl);
4636           uncommon_trap(Deoptimization::Reason_class_check,
4637                         Deoptimization::Action_make_not_entrant);
4638           assert(stopped(), "Should be stopped");
4639         }
4640         validated = true;
4641       }
4642 
4643       if (!stopped()) {
4644         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4645 
4646         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4647                                                 load_object_klass(original), klass_node);
4648         if (!is_copyOfRange) {
4649           ac->set_copyof(validated);
4650         } else {
4651           ac->set_copyofrange(validated);
4652         }
4653         Node* n = _gvn.transform(ac);
4654         if (n == ac) {
4655           ac->connect_outputs(this);
4656         } else {
4657           assert(validated, "shouldn't transform if all arguments not validated");
4658           set_all_memory(n);
4659         }
4660       }
4661     }
4662   } // original reexecute is set back here
4663 
4664   C->set_has_split_ifs(true); // Has chance for split-if optimization

4696 
4697 //-----------------------generate_method_call----------------------------
4698 // Use generate_method_call to make a slow-call to the real
4699 // method if the fast path fails.  An alternative would be to
4700 // use a stub like OptoRuntime::slow_arraycopy_Java.
4701 // This only works for expanding the current library call,
4702 // not another intrinsic.  (E.g., don't use this for making an
4703 // arraycopy call inside of the copyOf intrinsic.)
4704 CallJavaNode*
4705 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4706   // When compiling the intrinsic method itself, do not use this technique.
4707   guarantee(callee() != C->method(), "cannot make slow-call to self");
4708 
4709   ciMethod* method = callee();
4710   // ensure the JVMS we have will be correct for this call
4711   guarantee(method_id == method->intrinsic_id(), "must match");
4712 
4713   const TypeFunc* tf = TypeFunc::make(method);
4714   if (res_not_null) {
4715     assert(tf->return_type() == T_OBJECT, "");
4716     const TypeTuple* range = tf->range();
4717     const Type** fields = TypeTuple::fields(range->cnt());
4718     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4719     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4720     tf = TypeFunc::make(tf->domain(), new_range);
4721   }
4722   CallJavaNode* slow_call;
4723   if (is_static) {
4724     assert(!is_virtual, "");
4725     slow_call = new CallStaticJavaNode(C, tf,
4726                            SharedRuntime::get_resolve_static_call_stub(), method);
4727   } else if (is_virtual) {
4728     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4729     int vtable_index = Method::invalid_vtable_index;
4730     if (UseInlineCaches) {
4731       // Suppress the vtable call
4732     } else {
4733       // hashCode and clone are not a miranda methods,
4734       // so the vtable index is fixed.
4735       // No need to use the linkResolver to get it.
4736        vtable_index = method->vtable_index();
4737        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4738               "bad index %d", vtable_index);
4739     }
4740     slow_call = new CallDynamicJavaNode(tf,

4757   set_edges_for_java_call(slow_call);
4758   return slow_call;
4759 }
4760 
4761 
4762 /**
4763  * Build special case code for calls to hashCode on an object. This call may
4764  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4765  * slightly different code.
4766  */
4767 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4768   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4769   assert(!(is_virtual && is_static), "either virtual, special, or static");
4770 
4771   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4772 
4773   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4774   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4775   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4776   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4777   Node* obj = nullptr;







4778   if (!is_static) {
4779     // Check for hashing null object
4780     obj = null_check_receiver();
4781     if (stopped())  return true;        // unconditionally null
4782     result_reg->init_req(_null_path, top());
4783     result_val->init_req(_null_path, top());
4784   } else {
4785     // Do a null check, and return zero if null.
4786     // System.identityHashCode(null) == 0
4787     obj = argument(0);
4788     Node* null_ctl = top();
4789     obj = null_check_oop(obj, &null_ctl);
4790     result_reg->init_req(_null_path, null_ctl);
4791     result_val->init_req(_null_path, _gvn.intcon(0));
4792   }
4793 
4794   // Unconditionally null?  Then return right away.
4795   if (stopped()) {
4796     set_control( result_reg->in(_null_path));
4797     if (!stopped())
4798       set_result(result_val->in(_null_path));
4799     return true;
4800   }
4801 
4802   // We only go to the fast case code if we pass a number of guards.  The
4803   // paths which do not pass are accumulated in the slow_region.
4804   RegionNode* slow_region = new RegionNode(1);
4805   record_for_igvn(slow_region);
4806 
4807   // If this is a virtual call, we generate a funny guard.  We pull out
4808   // the vtable entry corresponding to hashCode() from the target object.
4809   // If the target method which we are calling happens to be the native
4810   // Object hashCode() method, we pass the guard.  We do not need this
4811   // guard for non-virtual calls -- the caller is known to be the native
4812   // Object hashCode().
4813   if (is_virtual) {
4814     // After null check, get the object's klass.
4815     Node* obj_klass = load_object_klass(obj);
4816     generate_virtual_guard(obj_klass, slow_region);
4817   }
4818 
4819   // Get the header out of the object, use LoadMarkNode when available
4820   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4821   // The control of the load must be null. Otherwise, the load can move before
4822   // the null check after castPP removal.
4823   Node* no_ctrl = nullptr;
4824   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4825 
4826   if (!UseObjectMonitorTable) {
4827     // Test the header to see if it is safe to read w.r.t. locking.


4828     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4829     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4830     Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4831     Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4832     Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4833 
4834     generate_slow_guard(test_monitor, slow_region);
4835   }
4836 
4837   // Get the hash value and check to see that it has been properly assigned.
4838   // We depend on hash_mask being at most 32 bits and avoid the use of
4839   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4840   // vm: see markWord.hpp.
4841   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4842   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4843   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4844   // This hack lets the hash bits live anywhere in the mark object now, as long
4845   // as the shift drops the relevant bits into the low 32 bits.  Note that
4846   // Java spec says that HashCode is an int so there's no point in capturing
4847   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).

4875     // this->control() comes from set_results_for_java_call
4876     result_reg->init_req(_slow_path, control());
4877     result_val->init_req(_slow_path, slow_result);
4878     result_io  ->set_req(_slow_path, i_o());
4879     result_mem ->set_req(_slow_path, reset_memory());
4880   }
4881 
4882   // Return the combined state.
4883   set_i_o(        _gvn.transform(result_io)  );
4884   set_all_memory( _gvn.transform(result_mem));
4885 
4886   set_result(result_reg, result_val);
4887   return true;
4888 }
4889 
4890 //---------------------------inline_native_getClass----------------------------
4891 // public final native Class<?> java.lang.Object.getClass();
4892 //
4893 // Build special case code for calls to getClass on an object.
4894 bool LibraryCallKit::inline_native_getClass() {
4895   Node* obj = null_check_receiver();









4896   if (stopped())  return true;
4897   set_result(load_mirror_from_klass(load_object_klass(obj)));
4898   return true;
4899 }
4900 
4901 //-----------------inline_native_Reflection_getCallerClass---------------------
4902 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4903 //
4904 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4905 //
4906 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4907 // in that it must skip particular security frames and checks for
4908 // caller sensitive methods.
4909 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4910 #ifndef PRODUCT
4911   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4912     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4913   }
4914 #endif
4915 

5297 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5298 //
5299 // The general case has two steps, allocation and copying.
5300 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5301 //
5302 // Copying also has two cases, oop arrays and everything else.
5303 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5304 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5305 //
5306 // These steps fold up nicely if and when the cloned object's klass
5307 // can be sharply typed as an object array, a type array, or an instance.
5308 //
5309 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5310   PhiNode* result_val;
5311 
5312   // Set the reexecute bit for the interpreter to reexecute
5313   // the bytecode that invokes Object.clone if deoptimization happens.
5314   { PreserveReexecuteState preexecs(this);
5315     jvms()->set_should_reexecute(true);
5316 
5317     Node* obj = null_check_receiver();

5318     if (stopped())  return true;
5319 
5320     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();






5321 
5322     // If we are going to clone an instance, we need its exact type to
5323     // know the number and types of fields to convert the clone to
5324     // loads/stores. Maybe a speculative type can help us.
5325     if (!obj_type->klass_is_exact() &&
5326         obj_type->speculative_type() != nullptr &&
5327         obj_type->speculative_type()->is_instance_klass()) {

5328       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5329       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5330           !spec_ik->has_injected_fields()) {
5331         if (!obj_type->isa_instptr() ||
5332             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5333           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5334         }
5335       }
5336     }
5337 
5338     // Conservatively insert a memory barrier on all memory slices.
5339     // Do not let writes into the original float below the clone.
5340     insert_mem_bar(Op_MemBarCPUOrder);
5341 
5342     // paths into result_reg:
5343     enum {
5344       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5345       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5346       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5347       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5348       PATH_LIMIT
5349     };
5350     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5351     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5352     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5353     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5354     record_for_igvn(result_reg);
5355 
5356     Node* obj_klass = load_object_klass(obj);





5357     Node* array_obj = obj;
5358     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5359     if (array_ctl != nullptr) {
5360       // It's an array.
5361       PreserveJVMState pjvms(this);
5362       set_control(array_ctl);
5363       Node* obj_length = load_array_length(array_obj);
5364       Node* array_size = nullptr; // Size of the array without object alignment padding.
5365       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5366 
5367       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5368       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5369         // If it is an oop array, it requires very special treatment,
5370         // because gc barriers are required when accessing the array.
5371         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5372         if (is_obja != nullptr) {
5373           PreserveJVMState pjvms2(this);
5374           set_control(is_obja);
5375           // Generate a direct call to the right arraycopy function(s).
5376           // Clones are always tightly coupled.
5377           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5378           ac->set_clone_oop_array();
5379           Node* n = _gvn.transform(ac);
5380           assert(n == ac, "cannot disappear");
5381           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5382 
5383           result_reg->init_req(_objArray_path, control());
5384           result_val->init_req(_objArray_path, alloc_obj);
5385           result_i_o ->set_req(_objArray_path, i_o());
5386           result_mem ->set_req(_objArray_path, reset_memory());
5387         }
5388       }
5389       // Otherwise, there are no barriers to worry about.
5390       // (We can dispense with card marks if we know the allocation
5391       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5392       //  causes the non-eden paths to take compensating steps to
5393       //  simulate a fresh allocation, so that no further
5394       //  card marks are required in compiled code to initialize
5395       //  the object.)
5396 
5397       if (!stopped()) {
5398         copy_to_clone(array_obj, alloc_obj, array_size, true);
5399 
5400         // Present the results of the copy.
5401         result_reg->init_req(_array_path, control());
5402         result_val->init_req(_array_path, alloc_obj);
5403         result_i_o ->set_req(_array_path, i_o());
5404         result_mem ->set_req(_array_path, reset_memory());




































5405       }
5406     }
5407 
5408     // We only go to the instance fast case code if we pass a number of guards.
5409     // The paths which do not pass are accumulated in the slow_region.
5410     RegionNode* slow_region = new RegionNode(1);
5411     record_for_igvn(slow_region);
5412     if (!stopped()) {
5413       // It's an instance (we did array above).  Make the slow-path tests.
5414       // If this is a virtual call, we generate a funny guard.  We grab
5415       // the vtable entry corresponding to clone() from the target object.
5416       // If the target method which we are calling happens to be the
5417       // Object clone() method, we pass the guard.  We do not need this
5418       // guard for non-virtual calls; the caller is known to be the native
5419       // Object clone().
5420       if (is_virtual) {
5421         generate_virtual_guard(obj_klass, slow_region);
5422       }
5423 
5424       // The object must be easily cloneable and must not have a finalizer.
5425       // Both of these conditions may be checked in a single test.
5426       // We could optimize the test further, but we don't care.
5427       generate_misc_flags_guard(obj_klass,
5428                                 // Test both conditions:
5429                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5430                                 // Must be cloneable but not finalizer:
5431                                 KlassFlags::_misc_is_cloneable_fast,

5523         set_jvms(sfpt->jvms());
5524         _reexecute_sp = jvms()->sp();
5525 
5526         return saved_jvms;
5527       }
5528     }
5529   }
5530   return nullptr;
5531 }
5532 
5533 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5534 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5535 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5536   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5537   uint size = alloc->req();
5538   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5539   old_jvms->set_map(sfpt);
5540   for (uint i = 0; i < size; i++) {
5541     sfpt->init_req(i, alloc->in(i));
5542   }












5543   // re-push array length for deoptimization
5544   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5545   old_jvms->set_sp(old_jvms->sp()+1);
5546   old_jvms->set_monoff(old_jvms->monoff()+1);
5547   old_jvms->set_scloff(old_jvms->scloff()+1);
5548   old_jvms->set_endoff(old_jvms->endoff()+1);











5549   old_jvms->set_should_reexecute(true);
5550 
5551   sfpt->set_i_o(map()->i_o());
5552   sfpt->set_memory(map()->memory());
5553   sfpt->set_control(map()->control());
5554   return sfpt;
5555 }
5556 
5557 // In case of a deoptimization, we restart execution at the
5558 // allocation, allocating a new array. We would leave an uninitialized
5559 // array in the heap that GCs wouldn't expect. Move the allocation
5560 // after the traps so we don't allocate the array if we
5561 // deoptimize. This is possible because tightly_coupled_allocation()
5562 // guarantees there's no observer of the allocated array at this point
5563 // and the control flow is simple enough.
5564 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5565                                                     int saved_reexecute_sp, uint new_idx) {
5566   if (saved_jvms_before_guards != nullptr && !stopped()) {
5567     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5568 
5569     assert(alloc != nullptr, "only with a tightly coupled allocation");
5570     // restore JVM state to the state at the arraycopy
5571     saved_jvms_before_guards->map()->set_control(map()->control());
5572     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5573     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5574     // If we've improved the types of some nodes (null check) while
5575     // emitting the guards, propagate them to the current state
5576     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5577     set_jvms(saved_jvms_before_guards);
5578     _reexecute_sp = saved_reexecute_sp;
5579 
5580     // Remove the allocation from above the guards
5581     CallProjections callprojs;
5582     alloc->extract_projections(&callprojs, true);
5583     InitializeNode* init = alloc->initialization();
5584     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5585     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5586     init->replace_mem_projs_by(alloc_mem, C);
5587 
5588     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5589     // the allocation (i.e. is only valid if the allocation succeeds):
5590     // 1) replace CastIINode with AllocateArrayNode's length here
5591     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5592     //
5593     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5594     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5595     Node* init_control = init->proj_out(TypeFunc::Control);
5596     Node* alloc_length = alloc->Ideal_length();
5597 #ifdef ASSERT
5598     Node* prev_cast = nullptr;
5599 #endif
5600     for (uint i = 0; i < init_control->outcnt(); i++) {
5601       Node* init_out = init_control->raw_out(i);
5602       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5603 #ifdef ASSERT
5604         if (prev_cast == nullptr) {
5605           prev_cast = init_out;

5607           if (prev_cast->cmp(*init_out) == false) {
5608             prev_cast->dump();
5609             init_out->dump();
5610             assert(false, "not equal CastIINode");
5611           }
5612         }
5613 #endif
5614         C->gvn_replace_by(init_out, alloc_length);
5615       }
5616     }
5617     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5618 
5619     // move the allocation here (after the guards)
5620     _gvn.hash_delete(alloc);
5621     alloc->set_req(TypeFunc::Control, control());
5622     alloc->set_req(TypeFunc::I_O, i_o());
5623     Node *mem = reset_memory();
5624     set_all_memory(mem);
5625     alloc->set_req(TypeFunc::Memory, mem);
5626     set_control(init->proj_out_or_null(TypeFunc::Control));
5627     set_i_o(callprojs.fallthrough_ioproj);
5628 
5629     // Update memory as done in GraphKit::set_output_for_allocation()
5630     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5631     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5632     if (ary_type->isa_aryptr() && length_type != nullptr) {
5633       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5634     }
5635     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5636     int            elemidx  = C->get_alias_index(telemref);
5637     // Need to properly move every memory projection for the Initialize
5638 #ifdef ASSERT
5639     int mark_idx = C->get_alias_index(ary_type->add_offset(oopDesc::mark_offset_in_bytes()));
5640     int klass_idx = C->get_alias_index(ary_type->add_offset(oopDesc::klass_offset_in_bytes()));
5641 #endif
5642     auto move_proj = [&](ProjNode* proj) {
5643       int alias_idx = C->get_alias_index(proj->adr_type());
5644       assert(alias_idx == Compile::AliasIdxRaw ||
5645              alias_idx == elemidx ||
5646              alias_idx == mark_idx ||
5647              alias_idx == klass_idx, "should be raw memory or array element type");

5957         top_src  = src_type->isa_aryptr();
5958         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5959         src_spec = true;
5960       }
5961       if (!has_dest) {
5962         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5963         dest_type  = _gvn.type(dest);
5964         top_dest  = dest_type->isa_aryptr();
5965         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5966         dest_spec = true;
5967       }
5968     }
5969   }
5970 
5971   if (has_src && has_dest && can_emit_guards) {
5972     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5973     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5974     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5975     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5976 
5977     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5978       // If both arrays are object arrays then having the exact types
5979       // for both will remove the need for a subtype check at runtime
5980       // before the call and may make it possible to pick a faster copy
5981       // routine (without a subtype check on every element)
5982       // Do we have the exact type of src?
5983       bool could_have_src = src_spec;
5984       // Do we have the exact type of dest?
5985       bool could_have_dest = dest_spec;
5986       ciKlass* src_k = nullptr;
5987       ciKlass* dest_k = nullptr;
5988       if (!src_spec) {
5989         src_k = src_type->speculative_type_not_null();
5990         if (src_k != nullptr && src_k->is_array_klass()) {
5991           could_have_src = true;
5992         }
5993       }
5994       if (!dest_spec) {
5995         dest_k = dest_type->speculative_type_not_null();
5996         if (dest_k != nullptr && dest_k->is_array_klass()) {
5997           could_have_dest = true;
5998         }
5999       }
6000       if (could_have_src && could_have_dest) {
6001         // If we can have both exact types, emit the missing guards
6002         if (could_have_src && !src_spec) {
6003           src = maybe_cast_profiled_obj(src, src_k, true);


6004         }
6005         if (could_have_dest && !dest_spec) {
6006           dest = maybe_cast_profiled_obj(dest, dest_k, true);


6007         }
6008       }
6009     }
6010   }
6011 
6012   ciMethod* trap_method = method();
6013   int trap_bci = bci();
6014   if (saved_jvms_before_guards != nullptr) {
6015     trap_method = alloc->jvms()->method();
6016     trap_bci = alloc->jvms()->bci();
6017   }
6018 
6019   bool negative_length_guard_generated = false;
6020 
6021   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6022       can_emit_guards &&
6023       !src->is_top() && !dest->is_top()) {
6024     // validate arguments: enables transformation the ArrayCopyNode
6025     validated = true;
6026 
6027     RegionNode* slow_region = new RegionNode(1);
6028     record_for_igvn(slow_region);
6029 
6030     // (1) src and dest are arrays.
6031     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6032     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6033 
6034     // (2) src and dest arrays must have elements of the same BasicType
6035     // done at macro expansion or at Ideal transformation time
6036 
6037     // (4) src_offset must not be negative.
6038     generate_negative_guard(src_offset, slow_region);
6039 
6040     // (5) dest_offset must not be negative.
6041     generate_negative_guard(dest_offset, slow_region);
6042 
6043     // (7) src_offset + length must not exceed length of src.
6044     generate_limit_guard(src_offset, length,
6045                          load_array_length(src),
6046                          slow_region);
6047 
6048     // (8) dest_offset + length must not exceed length of dest.
6049     generate_limit_guard(dest_offset, length,
6050                          load_array_length(dest),
6051                          slow_region);
6052 
6053     // (6) length must not be negative.
6054     // This is also checked in generate_arraycopy() during macro expansion, but
6055     // we also have to check it here for the case where the ArrayCopyNode will
6056     // be eliminated by Escape Analysis.
6057     if (EliminateAllocations) {
6058       generate_negative_guard(length, slow_region);
6059       negative_length_guard_generated = true;
6060     }
6061 
6062     // (9) each element of an oop array must be assignable
6063     Node* dest_klass = load_object_klass(dest);

6064     if (src != dest) {

6065       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6066 
6067       if (not_subtype_ctrl != top()) {
6068         PreserveJVMState pjvms(this);
6069         set_control(not_subtype_ctrl);
6070         uncommon_trap(Deoptimization::Reason_intrinsic,
6071                       Deoptimization::Action_make_not_entrant);
6072         assert(stopped(), "Should be stopped");
6073       }
6074     }





















6075     {
6076       PreserveJVMState pjvms(this);
6077       set_control(_gvn.transform(slow_region));
6078       uncommon_trap(Deoptimization::Reason_intrinsic,
6079                     Deoptimization::Action_make_not_entrant);
6080       assert(stopped(), "Should be stopped");
6081     }
6082 
6083     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6084     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();








6085     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6086     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6087   }
6088 
6089   if (stopped()) {
6090     return true;
6091   }
6092 



6093   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6094                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6095                                           // so the compiler has a chance to eliminate them: during macro expansion,
6096                                           // we have to set their control (CastPP nodes are eliminated).
6097                                           load_object_klass(src), load_object_klass(dest),
6098                                           load_array_length(src), load_array_length(dest));
6099 
6100   ac->set_arraycopy(validated);
6101 
6102   Node* n = _gvn.transform(ac);
6103   if (n == ac) {
6104     ac->connect_outputs(this);
6105   } else {
6106     assert(validated, "shouldn't transform if all arguments not validated");
6107     set_all_memory(n);
6108   }
6109   clear_upper_avx();
6110 
6111 
6112   return true;
6113 }
6114 
6115 
6116 // Helper function which determines if an arraycopy immediately follows
6117 // an allocation, with no intervening tests or other escapes for the object.

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciInstanceKlass.hpp"
  29 #include "ci/ciSymbols.hpp"
  30 #include "ci/ciUtilities.inline.hpp"
  31 #include "classfile/vmIntrinsics.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/c2/barrierSetC2.hpp"
  36 #include "jfr/support/jfrIntrinsics.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/accessDecorators.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "oops/layoutKind.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "opto/addnode.hpp"
  43 #include "opto/arraycopynode.hpp"
  44 #include "opto/c2compiler.hpp"
  45 #include "opto/castnode.hpp"
  46 #include "opto/cfgnode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/countbitsnode.hpp"
  49 #include "opto/graphKit.hpp"
  50 #include "opto/idealKit.hpp"
  51 #include "opto/inlinetypenode.hpp"
  52 #include "opto/library_call.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/opaquenode.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "prims/jvmtiThreadState.hpp"
  66 #include "prims/unsafe.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/jniHandles.inline.hpp"
  69 #include "runtime/mountUnmountDisabler.hpp"
  70 #include "runtime/objectMonitor.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/powerOfTwo.hpp"
  76 
  77 //---------------------------make_vm_intrinsic----------------------------
  78 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  79   vmIntrinsicID id = m->intrinsic_id();
  80   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  81 
  82   if (!m->is_loaded()) {
  83     // Do not attempt to inline unloaded methods.
  84     return nullptr;
  85   }
  86 
  87   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  88   bool is_available = false;
  89 
  90   {
  91     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  92     // the compiler must transition to '_thread_in_vm' state because both
  93     // methods access VM-internal data.

 314   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 315   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 316   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 317   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 318   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 319 
 320   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 321 
 322   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 323 
 324   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 325   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 326   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 327   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 328 
 329   case vmIntrinsics::_compressStringC:
 330   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 331   case vmIntrinsics::_inflateStringC:
 332   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 333 
 334   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 335   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 336   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 337   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 338   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 339   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 340   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 341   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 342   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 343   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 344   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 345 
 346   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 347   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 348   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 349   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 350   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 351   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 352   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 353   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 354   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 355 

 406   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 407   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 408   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 409   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 410   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 411   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 412   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 413   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 414   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 415 
 416   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 417   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 418   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 419   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 420   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 421   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 422   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 423   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 424   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 425 
 426   case vmIntrinsics::_getFlatValue:             return inline_unsafe_flat_access(!is_store, Relaxed);
 427   case vmIntrinsics::_putFlatValue:             return inline_unsafe_flat_access( is_store, Relaxed);
 428 
 429   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 430   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 431   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 432   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 433   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 434 
 435   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 436   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 437   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 438   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 439   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 440   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 441   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 442   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 443   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 444   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 445   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 446   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 447   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 448   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);

 468   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 469   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 470   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 471 
 472   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 473   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 474   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 475   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 476 
 477   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 478   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 479   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 480   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 481   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 482 
 483   case vmIntrinsics::_loadFence:
 484   case vmIntrinsics::_storeFence:
 485   case vmIntrinsics::_storeStoreFence:
 486   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 487 
 488   case vmIntrinsics::_arrayInstanceBaseOffset:  return inline_arrayInstanceBaseOffset();
 489   case vmIntrinsics::_arrayInstanceIndexScale:  return inline_arrayInstanceIndexScale();
 490   case vmIntrinsics::_arrayLayout:              return inline_arrayLayout();
 491   case vmIntrinsics::_getFieldMap:              return inline_getFieldMap();
 492 
 493   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 494 
 495   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 496   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 497   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 498 
 499   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 500   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 501 
 502   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 503   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 504 
 505   case vmIntrinsics::_vthreadEndFirstTransition:    return inline_native_vthread_end_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_end_first_transition_Java()),
 506                                                                                                 "endFirstTransition", true);
 507   case vmIntrinsics::_vthreadStartFinalTransition:  return inline_native_vthread_start_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_start_final_transition_Java()),
 508                                                                                                   "startFinalTransition", true);
 509   case vmIntrinsics::_vthreadStartTransition:       return inline_native_vthread_start_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_start_transition_Java()),
 510                                                                                                   "startTransition", false);
 511   case vmIntrinsics::_vthreadEndTransition:         return inline_native_vthread_end_transition(CAST_FROM_FN_PTR(address, OptoRuntime::vthread_end_transition_Java()),
 512                                                                                                 "endTransition", false);

 521 #endif
 522   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 523   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 524   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 525   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 526   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 527   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 528   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 529   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 530   case vmIntrinsics::_getLength:                return inline_native_getLength();
 531   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 532   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 533   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 534   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 535   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 536   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 537   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 538 
 539   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 540   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 541   case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false);
 542   case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true);
 543   case vmIntrinsics::_newNullableAtomicArray:     return inline_newArray(/* null_free */ false, /* atomic */ true);
 544   case vmIntrinsics::_isFlatArray:              return inline_getArrayProperties(IsFlat);
 545   case vmIntrinsics::_isNullRestrictedArray:    return inline_getArrayProperties(IsNullRestricted);
 546   case vmIntrinsics::_isAtomicArray:            return inline_getArrayProperties(IsAtomic);
 547 
 548   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 549 
 550   case vmIntrinsics::_isInstance:
 551   case vmIntrinsics::_isHidden:
 552   case vmIntrinsics::_getSuperclass:            return inline_native_Class_query(intrinsic_id());
 553 
 554   case vmIntrinsics::_floatToRawIntBits:
 555   case vmIntrinsics::_floatToIntBits:
 556   case vmIntrinsics::_intBitsToFloat:
 557   case vmIntrinsics::_doubleToRawLongBits:
 558   case vmIntrinsics::_doubleToLongBits:
 559   case vmIntrinsics::_longBitsToDouble:
 560   case vmIntrinsics::_floatToFloat16:
 561   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 562   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 563   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 564   case vmIntrinsics::_floatIsFinite:
 565   case vmIntrinsics::_floatIsInfinite:
 566   case vmIntrinsics::_doubleIsFinite:

2344     case vmIntrinsics::_remainderUnsigned_l: {
2345       zero_check_long(argument(2));
2346       // Compile-time detect of null-exception
2347       if (stopped()) {
2348         return true; // keep the graph constructed so far
2349       }
2350       n = new UModLNode(control(), argument(0), argument(2));
2351       break;
2352     }
2353     default:  fatal_unexpected_iid(id);  break;
2354   }
2355   set_result(_gvn.transform(n));
2356   return true;
2357 }
2358 
2359 //----------------------------inline_unsafe_access----------------------------
2360 
2361 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2362   // Attempt to infer a sharper value type from the offset and base type.
2363   ciKlass* sharpened_klass = nullptr;
2364   bool null_free = false;
2365 
2366   // See if it is an instance field, with an object type.
2367   if (alias_type->field() != nullptr) {
2368     if (alias_type->field()->type()->is_klass()) {
2369       sharpened_klass = alias_type->field()->type()->as_klass();
2370       null_free = alias_type->field()->is_null_free();
2371     }
2372   }
2373 
2374   const TypeOopPtr* result = nullptr;
2375   // See if it is a narrow oop array.
2376   if (adr_type->isa_aryptr()) {
2377     if (adr_type->offset() >= refArrayOopDesc::base_offset_in_bytes()) {
2378       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2379       null_free = adr_type->is_aryptr()->is_null_free();
2380       if (elem_type != nullptr && elem_type->is_loaded()) {
2381         // Sharpen the value type.
2382         result = elem_type;
2383       }
2384     }
2385   }
2386 
2387   // The sharpened class might be unloaded if there is no class loader
2388   // contraint in place.
2389   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2390     // Sharpen the value type.
2391     result = TypeOopPtr::make_from_klass(sharpened_klass);
2392     if (null_free) {
2393       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2394     }
2395   }
2396   if (result != nullptr) {
2397 #ifndef PRODUCT
2398     if (C->print_intrinsics() || C->print_inlining()) {
2399       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2400       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2401     }
2402 #endif
2403   }
2404   return result;
2405 }
2406 
2407 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2408   switch (kind) {
2409       case Relaxed:
2410         return MO_UNORDERED;
2411       case Opaque:
2412         return MO_RELAXED;
2413       case Acquire:
2414         return MO_ACQUIRE;

2503 #endif // ASSERT
2504  }
2505 #endif //PRODUCT
2506 
2507   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2508 
2509   Node* receiver = argument(0);  // type: oop
2510 
2511   // Build address expression.
2512   Node* heap_base_oop = top();
2513 
2514   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2515   Node* base = argument(1);  // type: oop
2516   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2517   Node* offset = argument(2);  // type: long
2518   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2519   // to be plain byte offsets, which are also the same as those accepted
2520   // by oopDesc::field_addr.
2521   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2522          "fieldOffset must be byte-scaled");
2523 
2524   if (base->is_InlineType()) {
2525     assert(!is_store, "InlineTypeNodes are non-larval value objects");
2526     InlineTypeNode* vt = base->as_InlineType();
2527     if (offset->is_Con()) {
2528       long off = find_long_con(offset, 0);
2529       ciInlineKlass* vk = vt->type()->inline_klass();
2530       if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2531         return false;
2532       }
2533 
2534       ciField* field = vk->get_non_flat_field_by_offset(off);
2535       if (field != nullptr) {
2536         BasicType bt = type2field[field->type()->basic_type()];
2537         if (bt == T_ARRAY || bt == T_NARROWOOP) {
2538           bt = T_OBJECT;
2539         }
2540         if (bt == type && !field->is_flat()) {
2541           Node* value = vt->field_value_by_offset(off, false);
2542           if (value->is_InlineType()) {
2543             value = value->as_InlineType()->adjust_scalarization_depth(this);
2544           }
2545           set_result(value);
2546           return true;
2547         }
2548       }
2549     }
2550     {
2551       // Re-execute the unsafe access if allocation triggers deoptimization.
2552       PreserveReexecuteState preexecs(this);
2553       jvms()->set_should_reexecute(true);
2554       vt = vt->buffer(this);
2555     }
2556     base = vt->get_oop();
2557   }
2558 
2559   // 32-bit machines ignore the high half!
2560   offset = ConvL2X(offset);
2561 
2562   // Save state and restore on bailout
2563   SavedState old_state(this);
2564 
2565   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2566   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2567 
2568   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2569     if (type != T_OBJECT) {
2570       decorators |= IN_NATIVE; // off-heap primitive access
2571     } else {
2572       return false; // off-heap oop accesses are not supported
2573     }
2574   } else {
2575     heap_base_oop = base; // on-heap or mixed access
2576   }
2577 
2578   // Can base be null? Otherwise, always on-heap access.

2582     decorators |= IN_HEAP;
2583   }
2584 
2585   Node* val = is_store ? argument(4) : nullptr;
2586 
2587   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2588   if (adr_type == TypePtr::NULL_PTR) {
2589     return false; // off-heap access with zero address
2590   }
2591 
2592   // Try to categorize the address.
2593   Compile::AliasType* alias_type = C->alias_type(adr_type);
2594   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2595 
2596   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2597       alias_type->adr_type() == TypeAryPtr::RANGE) {
2598     return false; // not supported
2599   }
2600 
2601   bool mismatched = false;
2602   BasicType bt = T_ILLEGAL;
2603   ciField* field = nullptr;
2604   if (adr_type->isa_instptr()) {
2605     const TypeInstPtr* instptr = adr_type->is_instptr();
2606     ciInstanceKlass* k = instptr->instance_klass();
2607     int off = instptr->offset();
2608     if (instptr->const_oop() != nullptr &&
2609         k == ciEnv::current()->Class_klass() &&
2610         instptr->offset() >= (k->size_helper() * wordSize)) {
2611       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2612       field = k->get_field_by_offset(off, true);
2613     } else {
2614       field = k->get_non_flat_field_by_offset(off);
2615     }
2616     if (field != nullptr) {
2617       bt = type2field[field->type()->basic_type()];
2618     }
2619     if (bt != alias_type->basic_type()) {
2620       // Type mismatch. Is it an access to a nested flat field?
2621       field = k->get_field_by_offset(off, false);
2622       if (field != nullptr) {
2623         bt = type2field[field->type()->basic_type()];
2624       }
2625     }
2626     assert(bt == alias_type->basic_type(), "should match");
2627   } else {
2628     bt = alias_type->basic_type();
2629   }
2630 
2631   if (bt != T_ILLEGAL) {
2632     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2633     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2634       // Alias type doesn't differentiate between byte[] and boolean[]).
2635       // Use address type to get the element type.
2636       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2637     }
2638     if (is_reference_type(bt, true)) {
2639       // accessing an array field with getReference is not a mismatch
2640       bt = T_OBJECT;
2641     }
2642     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2643       // Don't intrinsify mismatched object accesses
2644       return false;
2645     }
2646     mismatched = (bt != type);
2647   } else if (alias_type->adr_type()->isa_oopptr()) {
2648     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2649   }
2650 
2651   old_state.discard();
2652   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2653 
2654   if (mismatched) {
2655     decorators |= C2_MISMATCHED;
2656   }
2657 
2658   // First guess at the value type.
2659   const Type *value_type = Type::get_const_basic_type(type);
2660 
2661   // Figure out the memory ordering.
2662   decorators |= mo_decorator_for_access_kind(kind);
2663 
2664   if (!is_store) {
2665     if (type == T_OBJECT) {
2666       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2667       if (tjp != nullptr) {
2668         value_type = tjp;
2669       }
2670     }
2671   }
2672 
2673   receiver = null_check(receiver);
2674   if (stopped()) {
2675     return true;
2676   }
2677   // Heap pointers get a null-check from the interpreter,
2678   // as a courtesy.  However, this is not guaranteed by Unsafe,
2679   // and it is not possible to fully distinguish unintended nulls
2680   // from intended ones in this API.
2681 
2682   if (!is_store) {
2683     Node* p = nullptr;
2684     // Try to constant fold a load from a constant field
2685 
2686     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2687       // final or stable field
2688       p = make_constant_from_field(field, heap_base_oop);
2689     }
2690 
2691     if (p == nullptr) { // Could not constant fold the load
2692       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2693       const TypeOopPtr* ptr = value_type->make_oopptr();
2694       if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2695         // Load a non-flattened inline type from memory
2696         p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass());
2697       }
2698       // Normalize the value returned by getBoolean in the following cases
2699       if (type == T_BOOLEAN &&
2700           (mismatched ||
2701            heap_base_oop == top() ||                  // - heap_base_oop is null or
2702            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2703                                                       //   and the unsafe access is made to large offset
2704                                                       //   (i.e., larger than the maximum offset necessary for any
2705                                                       //   field access)
2706             ) {
2707           IdealKit ideal = IdealKit(this);
2708 #define __ ideal.
2709           IdealVariable normalized_result(ideal);
2710           __ declarations_done();
2711           __ set(normalized_result, p);
2712           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2713           __ set(normalized_result, ideal.ConI(1));
2714           ideal.end_if();
2715           final_sync(ideal);
2716           p = __ value(normalized_result);
2717 #undef __

2721       p = gvn().transform(new CastP2XNode(nullptr, p));
2722       p = ConvX2UL(p);
2723     }
2724     // The load node has the control of the preceding MemBarCPUOrder.  All
2725     // following nodes will have the control of the MemBarCPUOrder inserted at
2726     // the end of this method.  So, pushing the load onto the stack at a later
2727     // point is fine.
2728     set_result(p);
2729   } else {
2730     if (bt == T_ADDRESS) {
2731       // Repackage the long as a pointer.
2732       val = ConvL2X(val);
2733       val = gvn().transform(new CastX2PNode(val));
2734     }
2735     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2736   }
2737 
2738   return true;
2739 }
2740 
2741 bool LibraryCallKit::inline_unsafe_flat_access(bool is_store, AccessKind kind) {
2742 #ifdef ASSERT
2743   {
2744     ResourceMark rm;
2745     // Check the signatures.
2746     ciSignature* sig = callee()->signature();
2747     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base should be object, but is %s", type2name(sig->type_at(0)->basic_type()));
2748     assert(sig->type_at(1)->basic_type() == T_LONG, "offset should be long, but is %s", type2name(sig->type_at(1)->basic_type()));
2749     assert(sig->type_at(2)->basic_type() == T_INT, "layout kind should be int, but is %s", type2name(sig->type_at(3)->basic_type()));
2750     assert(sig->type_at(3)->basic_type() == T_OBJECT, "value klass should be object, but is %s", type2name(sig->type_at(4)->basic_type()));
2751     if (is_store) {
2752       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value, but returns %s", type2name(sig->return_type()->basic_type()));
2753       assert(sig->count() == 5, "flat putter should have 5 arguments, but has %d", sig->count());
2754       assert(sig->type_at(4)->basic_type() == T_OBJECT, "put value should be object, but is %s", type2name(sig->type_at(5)->basic_type()));
2755     } else {
2756       assert(sig->return_type()->basic_type() == T_OBJECT, "getter must return an object, but returns %s", type2name(sig->return_type()->basic_type()));
2757       assert(sig->count() == 4, "flat getter should have 4 arguments, but has %d", sig->count());
2758     }
2759  }
2760 #endif // ASSERT
2761 
2762   assert(kind == Relaxed, "Only plain accesses for now");
2763   if (callee()->is_static()) {
2764     // caller must have the capability!
2765     return false;
2766   }
2767   C->set_has_unsafe_access(true);
2768 
2769   const TypeInstPtr* value_klass_node = _gvn.type(argument(5))->isa_instptr();
2770   if (value_klass_node == nullptr || value_klass_node->const_oop() == nullptr) {
2771     // parameter valueType is not a constant
2772     return false;
2773   }
2774   ciType* mirror_type = value_klass_node->const_oop()->as_instance()->java_mirror_type();
2775   if (!mirror_type->is_inlinetype()) {
2776     // Dead code
2777     return false;
2778   }
2779   ciInlineKlass* value_klass = mirror_type->as_inline_klass();
2780 
2781   const TypeInt* layout_type = _gvn.type(argument(4))->isa_int();
2782   if (layout_type == nullptr || !layout_type->is_con()) {
2783     // parameter layoutKind is not a constant
2784     return false;
2785   }
2786   assert(layout_type->get_con() >= static_cast<int>(LayoutKind::REFERENCE) &&
2787          layout_type->get_con() <= static_cast<int>(LayoutKind::UNKNOWN),
2788          "invalid layoutKind %d", layout_type->get_con());
2789   LayoutKind layout = static_cast<LayoutKind>(layout_type->get_con());
2790   assert(layout == LayoutKind::REFERENCE || layout == LayoutKind::NULL_FREE_NON_ATOMIC_FLAT ||
2791          layout == LayoutKind::NULL_FREE_ATOMIC_FLAT || layout == LayoutKind::NULLABLE_ATOMIC_FLAT,
2792          "unexpected layoutKind %d", layout_type->get_con());
2793 
2794   null_check(argument(0));
2795   if (stopped()) {
2796     return true;
2797   }
2798 
2799   Node* base = must_be_not_null(argument(1), true);
2800   Node* offset = argument(2);
2801   const Type* base_type = _gvn.type(base);
2802 
2803   Node* ptr;
2804   bool immutable_memory = false;
2805   DecoratorSet decorators = C2_UNSAFE_ACCESS | IN_HEAP | MO_UNORDERED;
2806   if (base_type->isa_instptr()) {
2807     const TypeLong* offset_type = _gvn.type(offset)->isa_long();
2808     if (offset_type == nullptr || !offset_type->is_con()) {
2809       // Offset into a non-array should be a constant
2810       decorators |= C2_MISMATCHED;
2811     } else {
2812       int offset_con = checked_cast<int>(offset_type->get_con());
2813       ciInstanceKlass* base_klass = base_type->is_instptr()->instance_klass();
2814       ciField* field = base_klass->get_non_flat_field_by_offset(offset_con);
2815       if (field == nullptr) {
2816         assert(!base_klass->is_final(), "non-existence field at offset %d of class %s", offset_con, base_klass->name()->as_utf8());
2817         decorators |= C2_MISMATCHED;
2818       } else {
2819         assert(field->type() == value_klass, "field at offset %d of %s is of type %s, but valueType is %s",
2820                offset_con, base_klass->name()->as_utf8(), field->type()->name(), value_klass->name()->as_utf8());
2821         immutable_memory = field->is_strict() && field->is_final();
2822 
2823         if (base->is_InlineType()) {
2824           assert(!is_store, "Cannot store into a non-larval value object");
2825           set_result(base->as_InlineType()->field_value_by_offset(offset_con, false));
2826           return true;
2827         }
2828       }
2829     }
2830 
2831     if (base->is_InlineType()) {
2832       assert(!is_store, "Cannot store into a non-larval value object");
2833       base = base->as_InlineType()->buffer(this, true);
2834     }
2835     ptr = basic_plus_adr(base, ConvL2X(offset));
2836   } else if (base_type->isa_aryptr()) {
2837     decorators |= IS_ARRAY;
2838     if (layout == LayoutKind::REFERENCE) {
2839       if (!base_type->is_aryptr()->is_not_flat()) {
2840         const TypeAryPtr* array_type = base_type->is_aryptr()->cast_to_not_flat();
2841         Node* new_base = _gvn.transform(new CastPPNode(control(), base, array_type, ConstraintCastNode::DependencyType::NonFloatingNarrowing));
2842         replace_in_map(base, new_base);
2843         base = new_base;
2844       }
2845       ptr = basic_plus_adr(base, ConvL2X(offset));
2846     } else {
2847       if (UseArrayFlattening) {
2848         // Flat array must have an exact type
2849         bool is_null_free = !LayoutKindHelper::is_nullable_flat(layout);
2850         bool is_atomic = LayoutKindHelper::is_atomic_flat(layout);
2851         Node* new_base = cast_to_flat_array_exact(base, value_klass, is_null_free, is_atomic);
2852         replace_in_map(base, new_base);
2853         base = new_base;
2854         ptr = basic_plus_adr(base, ConvL2X(offset));
2855         const TypeAryPtr* ptr_type = _gvn.type(ptr)->is_aryptr();
2856         if (ptr_type->field_offset().get() != 0) {
2857           ptr = _gvn.transform(new CastPPNode(control(), ptr, ptr_type->with_field_offset(0), ConstraintCastNode::DependencyType::NonFloatingNarrowing));
2858         }
2859       } else {
2860         uncommon_trap(Deoptimization::Reason_intrinsic,
2861                       Deoptimization::Action_none);
2862         return true;
2863       }
2864     }
2865   } else {
2866     decorators |= C2_MISMATCHED;
2867     ptr = basic_plus_adr(base, ConvL2X(offset));
2868   }
2869 
2870   if (is_store) {
2871     Node* value = argument(6);
2872     const Type* value_type = _gvn.type(value);
2873     if (!value_type->is_inlinetypeptr()) {
2874       value_type = Type::get_const_type(value_klass)->filter_speculative(value_type);
2875       Node* new_value = _gvn.transform(new CastPPNode(control(), value, value_type, ConstraintCastNode::DependencyType::NonFloatingNarrowing));
2876       new_value = InlineTypeNode::make_from_oop(this, new_value, value_klass);
2877       replace_in_map(value, new_value);
2878       value = new_value;
2879     }
2880 
2881     assert(value_type->inline_klass() == value_klass, "value is of type %s while valueType is %s", value_type->inline_klass()->name()->as_utf8(), value_klass->name()->as_utf8());
2882     if (layout == LayoutKind::REFERENCE) {
2883       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2884       access_store_at(base, ptr, ptr_type, value, value_type, T_OBJECT, decorators);
2885     } else {
2886       bool atomic = LayoutKindHelper::is_atomic_flat(layout);
2887       bool null_free = !LayoutKindHelper::is_nullable_flat(layout);
2888       value->as_InlineType()->store_flat(this, base, ptr, atomic, immutable_memory, null_free, decorators);
2889     }
2890 
2891     return true;
2892   } else {
2893     decorators |= (C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
2894     InlineTypeNode* result;
2895     if (layout == LayoutKind::REFERENCE) {
2896       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2897       Node* oop = access_load_at(base, ptr, ptr_type, Type::get_const_type(value_klass), T_OBJECT, decorators);
2898       result = InlineTypeNode::make_from_oop(this, oop, value_klass);
2899     } else {
2900       bool atomic = LayoutKindHelper::is_atomic_flat(layout);
2901       bool null_free = !LayoutKindHelper::is_nullable_flat(layout);
2902       result = InlineTypeNode::make_from_flat(this, value_klass, base, ptr, atomic, immutable_memory, null_free, decorators);
2903     }
2904 
2905     set_result(result);
2906     return true;
2907   }
2908 }
2909 
2910 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2911   Node* receiver = argument(0);
2912   Node* value = argument(1);
2913 
2914   const Type* type = gvn().type(value);
2915   if (!type->is_inlinetypeptr()) {
2916     C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type");
2917     return false;
2918   }
2919 
2920   null_check(receiver);
2921   if (stopped()) {
2922     return true;
2923   }
2924 
2925   value = null_check(value);
2926   if (stopped()) {
2927     return true;
2928   }
2929 
2930   ciInlineKlass* vk = type->inline_klass();
2931   Node* klass = makecon(TypeKlassPtr::make(vk));
2932   Node* obj = new_instance(klass);
2933   AllocateNode::Ideal_allocation(obj)->_larval = true;
2934 
2935   assert(value->is_InlineType(), "must be an InlineTypeNode");
2936   Node* payload_ptr = basic_plus_adr(obj, vk->payload_offset());
2937   value->as_InlineType()->store_flat(this, obj, payload_ptr, false, true, true, IN_HEAP | MO_UNORDERED);
2938 
2939   set_result(obj);
2940   return true;
2941 }
2942 
2943 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2944   Node* receiver = argument(0);
2945   Node* buffer = argument(1);
2946 
2947   const Type* type = gvn().type(buffer);
2948   if (!type->is_inlinetypeptr()) {
2949     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type");
2950     return false;
2951   }
2952 
2953   AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer);
2954   if (alloc == nullptr) {
2955     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer");
2956     return false;
2957   }
2958 
2959   null_check(receiver);
2960   if (stopped()) {
2961     return true;
2962   }
2963 
2964   // Unset the larval bit in the object header
2965   Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned);
2966   Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place)));
2967   access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP);
2968 
2969   // We must ensure that the buffer is properly published
2970   insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
2971   assert(!type->maybe_null(), "result of an allocation should not be null");
2972   set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass()));
2973   return true;
2974 }
2975 
2976 //----------------------------inline_unsafe_load_store----------------------------
2977 // This method serves a couple of different customers (depending on LoadStoreKind):
2978 //
2979 // LS_cmp_swap:
2980 //
2981 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2982 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2983 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2984 //
2985 // LS_cmp_swap_weak:
2986 //
2987 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2988 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2989 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2990 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2991 //
2992 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2993 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2994 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2995 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

3158     }
3159     case LS_cmp_swap:
3160     case LS_cmp_swap_weak:
3161     case LS_get_add:
3162       break;
3163     default:
3164       ShouldNotReachHere();
3165   }
3166 
3167   // Null check receiver.
3168   receiver = null_check(receiver);
3169   if (stopped()) {
3170     return true;
3171   }
3172 
3173   int alias_idx = C->get_alias_index(adr_type);
3174 
3175   if (is_reference_type(type)) {
3176     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
3177 
3178     if (oldval != nullptr && oldval->is_InlineType()) {
3179       // Re-execute the unsafe access if allocation triggers deoptimization.
3180       PreserveReexecuteState preexecs(this);
3181       jvms()->set_should_reexecute(true);
3182       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
3183     }
3184     if (newval != nullptr && newval->is_InlineType()) {
3185       // Re-execute the unsafe access if allocation triggers deoptimization.
3186       PreserveReexecuteState preexecs(this);
3187       jvms()->set_should_reexecute(true);
3188       newval = newval->as_InlineType()->buffer(this)->get_oop();
3189     }
3190 
3191     // Transformation of a value which could be null pointer (CastPP #null)
3192     // could be delayed during Parse (for example, in adjust_map_after_if()).
3193     // Execute transformation here to avoid barrier generation in such case.
3194     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3195       newval = _gvn.makecon(TypePtr::NULL_PTR);
3196 
3197     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
3198       // Refine the value to a null constant, when it is known to be null
3199       oldval = _gvn.makecon(TypePtr::NULL_PTR);
3200     }
3201   }
3202 
3203   Node* result = nullptr;
3204   switch (kind) {
3205     case LS_cmp_exchange: {
3206       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
3207                                             oldval, newval, value_type, type, decorators);
3208       break;
3209     }
3210     case LS_cmp_swap_weak:

3239   insert_mem_bar(Op_MemBarCPUOrder);
3240   switch(id) {
3241     case vmIntrinsics::_loadFence:
3242       insert_mem_bar(Op_LoadFence);
3243       return true;
3244     case vmIntrinsics::_storeFence:
3245       insert_mem_bar(Op_StoreFence);
3246       return true;
3247     case vmIntrinsics::_storeStoreFence:
3248       insert_mem_bar(Op_StoreStoreFence);
3249       return true;
3250     case vmIntrinsics::_fullFence:
3251       insert_mem_bar(Op_MemBarVolatile);
3252       return true;
3253     default:
3254       fatal_unexpected_iid(id);
3255       return false;
3256   }
3257 }
3258 
3259 // private native int arrayInstanceBaseOffset0(Object[] array);
3260 bool LibraryCallKit::inline_arrayInstanceBaseOffset() {
3261   Node* array = argument(1);
3262   Node* klass_node = load_object_klass(array);
3263 
3264   jint  layout_con = Klass::_lh_neutral_value;
3265   Node* layout_val = get_layout_helper(klass_node, layout_con);
3266   int   layout_is_con = (layout_val == nullptr);
3267 
3268   Node* header_size = nullptr;
3269   if (layout_is_con) {
3270     int hsize = Klass::layout_helper_header_size(layout_con);
3271     header_size = intcon(hsize);
3272   } else {
3273     Node* hss = intcon(Klass::_lh_header_size_shift);
3274     Node* hsm = intcon(Klass::_lh_header_size_mask);
3275     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3276     header_size = _gvn.transform(new AndINode(header_size, hsm));
3277   }
3278   set_result(header_size);
3279   return true;
3280 }
3281 
3282 // private native int arrayInstanceIndexScale0(Object[] array);
3283 bool LibraryCallKit::inline_arrayInstanceIndexScale() {
3284   Node* array = argument(1);
3285   Node* klass_node = load_object_klass(array);
3286 
3287   jint  layout_con = Klass::_lh_neutral_value;
3288   Node* layout_val = get_layout_helper(klass_node, layout_con);
3289   int   layout_is_con = (layout_val == nullptr);
3290 
3291   Node* element_size = nullptr;
3292   if (layout_is_con) {
3293     int log_element_size  = Klass::layout_helper_log2_element_size(layout_con);
3294     int elem_size = 1 << log_element_size;
3295     element_size = intcon(elem_size);
3296   } else {
3297     Node* ess = intcon(Klass::_lh_log2_element_size_shift);
3298     Node* esm = intcon(Klass::_lh_log2_element_size_mask);
3299     Node* log_element_size = _gvn.transform(new URShiftINode(layout_val, ess));
3300     log_element_size = _gvn.transform(new AndINode(log_element_size, esm));
3301     element_size = _gvn.transform(new LShiftINode(intcon(1), log_element_size));
3302   }
3303   set_result(element_size);
3304   return true;
3305 }
3306 
3307 // private native int arrayLayout0(Object[] array);
3308 bool LibraryCallKit::inline_arrayLayout() {
3309   RegionNode* region = new RegionNode(2);
3310   Node* phi = new PhiNode(region, TypeInt::POS);
3311 
3312   Node* array = argument(1);
3313   Node* klass_node = load_object_klass(array);
3314   generate_refArray_guard(klass_node, region);
3315   if (region->req() == 3) {
3316     phi->add_req(intcon((jint)LayoutKind::REFERENCE));
3317   }
3318 
3319   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3320   Node* layout_kind_addr = basic_plus_adr(klass_node, layout_kind_offset);
3321   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::POS, T_INT, MemNode::unordered);
3322 
3323   region->init_req(1, control());
3324   phi->init_req(1, layout_kind);
3325 
3326   set_control(_gvn.transform(region));
3327   set_result(_gvn.transform(phi));
3328   return true;
3329 }
3330 
3331 // private native int[] getFieldMap0(Class <?> c);
3332 //   int offset = c._klass._acmp_maps_offset;
3333 //   return (int[])c.obj_field(offset);
3334 bool LibraryCallKit::inline_getFieldMap() {
3335   if (!UseAltSubstitutabilityMethod) {
3336     return false;
3337   }
3338 
3339   Node* mirror = argument(1);
3340   Node* klass = load_klass_from_mirror(mirror, false, nullptr, 0);
3341 
3342   int field_map_offset_offset = in_bytes(InstanceKlass::acmp_maps_offset_offset());
3343   Node* field_map_offset_addr = basic_plus_adr(klass, field_map_offset_offset);
3344   Node* field_map_offset = make_load(nullptr, field_map_offset_addr, TypeInt::INT, T_INT, MemNode::unordered);
3345   field_map_offset = _gvn.transform(ConvI2L(field_map_offset));
3346 
3347   Node* map_addr = basic_plus_adr(mirror, field_map_offset);
3348   const TypeAryPtr* val_type = TypeAryPtr::INTS->cast_to_ptr_type(TypePtr::NotNull)->with_offset(0);
3349   // TODO 8350865 Remove this
3350   val_type = val_type->cast_to_not_flat(true)->cast_to_not_null_free(true);
3351   Node* map = access_load_at(mirror, map_addr, TypeAryPtr::INTS, val_type, T_ARRAY, IN_HEAP | MO_UNORDERED);
3352 
3353   set_result(map);
3354   return true;
3355 }
3356 
3357 bool LibraryCallKit::inline_onspinwait() {
3358   insert_mem_bar(Op_OnSpinWait);
3359   return true;
3360 }
3361 
3362 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3363   if (!kls->is_Con()) {
3364     return true;
3365   }
3366   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
3367   if (klsptr == nullptr) {
3368     return true;
3369   }
3370   ciInstanceKlass* ik = klsptr->instance_klass();
3371   // don't need a guard for a klass that is already initialized
3372   return !ik->is_initialized();
3373 }
3374 
3375 //----------------------------inline_unsafe_writeback0-------------------------
3376 // public native void Unsafe.writeback0(long address)

3455                     Deoptimization::Action_make_not_entrant);
3456     }
3457     if (stopped()) {
3458       return true;
3459     }
3460 #endif //INCLUDE_JVMTI
3461 
3462   Node* test = nullptr;
3463   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3464     // Note:  The argument might still be an illegal value like
3465     // Serializable.class or Object[].class.   The runtime will handle it.
3466     // But we must make an explicit check for initialization.
3467     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3468     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3469     // can generate code to load it as unsigned byte.
3470     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3471     Node* bits = intcon(InstanceKlass::fully_initialized);
3472     test = _gvn.transform(new SubINode(inst, bits));
3473     // The 'test' is non-zero if we need to take a slow path.
3474   }
3475   Node* obj = nullptr;
3476   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3477   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3478     obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3479   } else {
3480     obj = new_instance(kls, test);
3481   }
3482   set_result(obj);
3483   return true;
3484 }
3485 
3486 //------------------------inline_native_time_funcs--------------
3487 // inline code for System.currentTimeMillis() and System.nanoTime()
3488 // these have the same type and signature
3489 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3490   const TypeFunc* tf = OptoRuntime::void_long_Type();
3491   const TypePtr* no_memory_effects = nullptr;
3492   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3493   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3494 #ifdef ASSERT
3495   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3496   assert(value_top == top(), "second value must be top");
3497 #endif
3498   set_result(value);
3499   return true;
3500 }
3501 

4276   Node* thread = _gvn.transform(new ThreadLocalNode());
4277   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
4278   Node* thread_obj_handle
4279     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
4280   thread_obj_handle = _gvn.transform(thread_obj_handle);
4281   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
4282   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
4283 
4284   // Change the _monitor_owner_id of the JavaThread
4285   Node* tid = load_field_from_object(arr, "tid", "J");
4286   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
4287   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
4288 
4289   JFR_ONLY(extend_setCurrentThread(thread, arr);)
4290   return true;
4291 }
4292 
4293 const Type* LibraryCallKit::scopedValueCache_type() {
4294   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
4295   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
4296   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true, true);
4297 
4298   // Because we create the scopedValue cache lazily we have to make the
4299   // type of the result BotPTR.
4300   bool xk = etype->klass_is_exact();
4301   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
4302   return objects_type;
4303 }
4304 
4305 Node* LibraryCallKit::scopedValueCache_helper() {
4306   Node* thread = _gvn.transform(new ThreadLocalNode());
4307   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
4308   // We cannot use immutable_memory() because we might flip onto a
4309   // different carrier thread, at which point we'll need to use that
4310   // carrier thread's cache.
4311   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
4312   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
4313   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
4314 }
4315 
4316 //------------------------inline_native_scopedValueCache------------------
4317 bool LibraryCallKit::inline_native_scopedValueCache() {
4318   Node* cache_obj_handle = scopedValueCache_helper();
4319   const Type* objects_type = scopedValueCache_type();
4320   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
4321 

4457   }
4458   return kls;
4459 }
4460 
4461 //--------------------(inline_native_Class_query helpers)---------------------
4462 // Use this for JVM_ACC_INTERFACE.
4463 // Fall through if (mods & mask) == bits, take the guard otherwise.
4464 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4465                                                  ByteSize offset, const Type* type, BasicType bt) {
4466   // Branch around if the given klass has the given modifier bit set.
4467   // Like generate_guard, adds a new path onto the region.
4468   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4469   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4470   Node* mask = intcon(modifier_mask);
4471   Node* bits = intcon(modifier_bits);
4472   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4473   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4474   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4475   return generate_fair_guard(bol, region);
4476 }
4477 
4478 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4479   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4480                                     InstanceKlass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4481 }
4482 
4483 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4484 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4485   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4486                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4487 }
4488 
4489 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4490   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4491 }
4492 
4493 //-------------------------inline_native_Class_query-------------------
4494 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4495   const Type* return_type = TypeInt::BOOL;
4496   Node* prim_return_value = top();  // what happens if it's a primitive class?
4497   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4583 
4584 
4585   case vmIntrinsics::_getSuperclass:
4586     // The rules here are somewhat unfortunate, but we can still do better
4587     // with random logic than with a JNI call.
4588     // Interfaces store null or Object as _super, but must report null.
4589     // Arrays store an intermediate super as _super, but must report Object.
4590     // Other types can report the actual _super.
4591     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4592     if (generate_array_guard(kls, region) != nullptr) {
4593       // A guard was added.  If the guard is taken, it was an array.
4594       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4595     }
4596     // Check for interface after array since this checks AccessFlags offset into InstanceKlass.
4597     // In other words, we are accessing subtype-specific information, so we need to determine the subtype first.
4598     if (generate_interface_guard(kls, region) != nullptr) {
4599       // A guard was added.  If the guard is taken, it was an interface.
4600       phi->add_req(null());
4601     }
4602     // If we fall through, it's a plain class.  Get its _super.









4603     if (!stopped()) {
4604       p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4605       kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4606       null_ctl = top();
4607       kls = null_check_oop(kls, &null_ctl);
4608       if (null_ctl != top()) {
4609         // If the guard is taken, Object.superClass is null (both klass and mirror).
4610         region->add_req(null_ctl);
4611         phi   ->add_req(null());
4612       }
4613       if (!stopped()) {
4614         query_value = load_mirror_from_klass(kls);
4615       }
4616     }
4617     break;
4618 
4619   default:
4620     fatal_unexpected_iid(id);
4621     break;
4622   }
4623 
4624   // Fall-through is the normal case of a query to a real class.
4625   phi->init_req(1, query_value);
4626   region->init_req(1, control());
4627 
4628   C->set_has_split_ifs(true); // Has chance for split-if optimization
4629   set_result(region, phi);
4630   return true;
4631 }
4632 
4633 
4634 //-------------------------inline_Class_cast-------------------
4635 bool LibraryCallKit::inline_Class_cast() {
4636   Node* mirror = argument(0); // Class
4637   Node* obj    = argument(1);
4638   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4639   if (mirror_con == nullptr) {
4640     return false;  // dead path (mirror->is_top()).
4641   }
4642   if (obj == nullptr || obj->is_top()) {
4643     return false;  // dead path
4644   }
4645   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4646 
4647   // First, see if Class.cast() can be folded statically.
4648   // java_mirror_type() returns non-null for compile-time Class constants.
4649   ciType* tm = mirror_con->java_mirror_type();
4650   if (tm != nullptr && tm->is_klass() &&
4651       tp != nullptr) {
4652     if (!tp->is_loaded()) {
4653       // Don't use intrinsic when class is not loaded.
4654       return false;
4655     } else {
4656       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4657       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4658       if (static_res == Compile::SSC_always_true) {
4659         // isInstance() is true - fold the code.
4660         set_result(obj);
4661         return true;
4662       } else if (static_res == Compile::SSC_always_false) {
4663         // Don't use intrinsic, have to throw ClassCastException.
4664         // If the reference is null, the non-intrinsic bytecode will
4665         // be optimized appropriately.
4666         return false;
4667       }
4668     }
4669   }
4670 
4671   // Bailout intrinsic and do normal inlining if exception path is frequent.
4672   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4673     return false;
4674   }
4675 
4676   // Generate dynamic checks.
4677   // Class.cast() is java implementation of _checkcast bytecode.
4678   // Do checkcast (Parse::do_checkcast()) optimizations here.
4679 
4680   mirror = null_check(mirror);
4681   // If mirror is dead, only null-path is taken.
4682   if (stopped()) {
4683     return true;
4684   }
4685 
4686   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4687   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4688   RegionNode* region = new RegionNode(PATH_LIMIT);
4689   record_for_igvn(region);
4690 
4691   // Now load the mirror's klass metaobject, and null-check it.
4692   // If kls is null, we have a primitive mirror and
4693   // nothing is an instance of a primitive type.
4694   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4695 
4696   Node* res = top();
4697   Node* io = i_o();
4698   Node* mem = merged_memory();
4699   if (!stopped()) {
4700 
4701     Node* bad_type_ctrl = top();
4702     // Do checkcast optimizations.
4703     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4704     region->init_req(_bad_type_path, bad_type_ctrl);
4705   }
4706   if (region->in(_prim_path) != top() ||
4707       region->in(_bad_type_path) != top() ||
4708       region->in(_npe_path) != top()) {
4709     // Let Interpreter throw ClassCastException.
4710     PreserveJVMState pjvms(this);
4711     set_control(_gvn.transform(region));
4712     // Set IO and memory because gen_checkcast may override them when buffering inline types
4713     set_i_o(io);
4714     set_all_memory(mem);
4715     uncommon_trap(Deoptimization::Reason_intrinsic,
4716                   Deoptimization::Action_maybe_recompile);
4717   }
4718   if (!stopped()) {
4719     set_result(res);
4720   }
4721   return true;
4722 }
4723 
4724 
4725 //--------------------------inline_native_subtype_check------------------------
4726 // This intrinsic takes the JNI calls out of the heart of
4727 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4728 bool LibraryCallKit::inline_native_subtype_check() {
4729   // Pull both arguments off the stack.
4730   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4731   args[0] = argument(0);
4732   args[1] = argument(1);
4733   Node* klasses[2];             // corresponding Klasses: superk, subk
4734   klasses[0] = klasses[1] = top();
4735 
4736   enum {
4737     // A full decision tree on {superc is prim, subc is prim}:
4738     _prim_0_path = 1,           // {P,N} => false
4739                                 // {P,P} & superc!=subc => false
4740     _prim_same_path,            // {P,P} & superc==subc => true
4741     _prim_1_path,               // {N,P} => false
4742     _ref_subtype_path,          // {N,N} & subtype check wins => true
4743     _both_ref_path,             // {N,N} & subtype check loses => false
4744     PATH_LIMIT
4745   };
4746 
4747   RegionNode* region = new RegionNode(PATH_LIMIT);
4748   RegionNode* prim_region = new RegionNode(2);
4749   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4750   record_for_igvn(region);
4751   record_for_igvn(prim_region);
4752 
4753   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4754   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4755   int class_klass_offset = java_lang_Class::klass_offset();
4756 
4757   // First null-check both mirrors and load each mirror's klass metaobject.
4758   int which_arg;
4759   for (which_arg = 0; which_arg <= 1; which_arg++) {
4760     Node* arg = args[which_arg];
4761     arg = null_check(arg);
4762     if (stopped())  break;
4763     args[which_arg] = arg;
4764 
4765     Node* p = basic_plus_adr(arg, class_klass_offset);
4766     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4767     klasses[which_arg] = _gvn.transform(kls);
4768   }
4769 
4770   // Having loaded both klasses, test each for null.
4771   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4772   for (which_arg = 0; which_arg <= 1; which_arg++) {
4773     Node* kls = klasses[which_arg];
4774     Node* null_ctl = top();
4775     kls = null_check_oop(kls, &null_ctl, never_see_null);
4776     if (which_arg == 0) {
4777       prim_region->init_req(1, null_ctl);
4778     } else {
4779       region->init_req(_prim_1_path, null_ctl);
4780     }
4781     if (stopped())  break;
4782     klasses[which_arg] = kls;
4783   }
4784 
4785   if (!stopped()) {
4786     // now we have two reference types, in klasses[0..1]
4787     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4788     Node* superk = klasses[0];  // the receiver
4789     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));

4790     region->set_req(_ref_subtype_path, control());
4791   }
4792 
4793   // If both operands are primitive (both klasses null), then
4794   // we must return true when they are identical primitives.
4795   // It is convenient to test this after the first null klass check.
4796   // This path is also used if superc is a value mirror.
4797   set_control(_gvn.transform(prim_region));
4798   if (!stopped()) {
4799     // Since superc is primitive, make a guard for the superc==subc case.
4800     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4801     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4802     generate_fair_guard(bol_eq, region);
4803     if (region->req() == PATH_LIMIT+1) {
4804       // A guard was added.  If the added guard is taken, superc==subc.
4805       region->swap_edges(PATH_LIMIT, _prim_same_path);
4806       region->del_req(PATH_LIMIT);
4807     }
4808     region->set_req(_prim_0_path, control()); // Not equal after all.
4809   }
4810 
4811   // these are the only paths that produce 'true':
4812   phi->set_req(_prim_same_path,   intcon(1));
4813   phi->set_req(_ref_subtype_path, intcon(1));
4814 
4815   // pull together the cases:
4816   assert(region->req() == PATH_LIMIT, "sane region");
4817   for (uint i = 1; i < region->req(); i++) {
4818     Node* ctl = region->in(i);
4819     if (ctl == nullptr || ctl == top()) {
4820       region->set_req(i, top());
4821       phi   ->set_req(i, top());
4822     } else if (phi->in(i) == nullptr) {
4823       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4824     }
4825   }
4826 
4827   set_control(_gvn.transform(region));
4828   set_result(_gvn.transform(phi));
4829   return true;
4830 }
4831 
4832 //---------------------generate_array_guard_common------------------------
4833 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) {

4834 
4835   if (stopped()) {
4836     return nullptr;
4837   }
4838 









4839   // Like generate_guard, adds a new path onto the region.
4840   jint  layout_con = 0;
4841   Node* layout_val = get_layout_helper(kls, layout_con);
4842   if (layout_val == nullptr) {
4843     bool query = 0;
4844     switch(kind) {
4845       case RefArray:       query = Klass::layout_helper_is_refArray(layout_con); break;
4846       case NonRefArray:    query = !Klass::layout_helper_is_refArray(layout_con); break;
4847       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4848       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4849       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4850       default:
4851         ShouldNotReachHere();
4852     }
4853     if (!query) {
4854       return nullptr;                       // never a branch
4855     } else {                             // always a branch
4856       Node* always_branch = control();
4857       if (region != nullptr)
4858         region->add_req(always_branch);
4859       set_control(top());
4860       return always_branch;
4861     }
4862   }
4863   unsigned int value = 0;
4864   BoolTest::mask btest = BoolTest::illegal;
4865   switch(kind) {
4866     case RefArray:
4867     case NonRefArray: {
4868       value = Klass::_lh_array_tag_ref_value;
4869       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4870       btest = (kind == RefArray) ? BoolTest::eq : BoolTest::ne;
4871       break;
4872     }
4873     case TypeArray: {
4874       value = Klass::_lh_array_tag_type_value;
4875       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4876       btest = BoolTest::eq;
4877       break;
4878     }
4879     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4880     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4881     default:
4882       ShouldNotReachHere();
4883   }
4884   // Now test the correct condition.
4885   jint nval = (jint)value;



4886   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));



4887   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4888   Node* ctrl = generate_fair_guard(bol, region);
4889   Node* is_array_ctrl = kind == NonArray ? control() : ctrl;
4890   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4891     // Keep track of the fact that 'obj' is an array to prevent
4892     // array specific accesses from floating above the guard.
4893     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4894   }
4895   return ctrl;
4896 }
4897 
4898 // public static native Object[] ValueClass::newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal);
4899 // public static native Object[] ValueClass::newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal);
4900 // public static native Object[] ValueClass::newNullableAtomicArray(Class<?> componentType, int length);
4901 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) {
4902   assert(null_free || atomic, "nullable implies atomic");
4903   Node* componentType = argument(0);
4904   Node* length = argument(1);
4905   Node* init_val = null_free ? argument(2) : nullptr;
4906 
4907   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4908   if (tp != nullptr) {
4909     ciInstanceKlass* ik = tp->instance_klass();
4910     if (ik == C->env()->Class_klass()) {
4911       ciType* t = tp->java_mirror_type();
4912       if (t != nullptr && t->is_inlinetype()) {
4913 
4914         ciArrayKlass* array_klass = ciArrayKlass::make(t, null_free, atomic, true);
4915         assert(array_klass->is_elem_null_free() == null_free, "inconsistency");
4916 
4917         // TOOD 8350865 ZGC needs card marks on initializing oop stores
4918         if (UseZGC && null_free && !array_klass->is_flat_array_klass()) {
4919           return false;
4920         }
4921 
4922         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4923           const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
4924           if (null_free) {
4925             if (init_val->is_InlineType()) {
4926               if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) {
4927                 // Zeroing is enough because the init value is the all-zero value
4928                 init_val = nullptr;
4929               } else {
4930                 init_val = init_val->as_InlineType()->buffer(this);
4931               }
4932             }
4933             // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)?
4934           }
4935           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val);
4936           const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr();
4937           assert(arytype->is_null_free() == null_free, "inconsistency");
4938           assert(arytype->is_not_null_free() == !null_free, "inconsistency");
4939           set_result(obj);
4940           return true;
4941         }
4942       }
4943     }
4944   }
4945   return false;
4946 }
4947 
4948 // public static native boolean ValueClass::isFlatArray(Object array);
4949 // public static native boolean ValueClass::isNullRestrictedArray(Object array);
4950 // public static native boolean ValueClass::isAtomicArray(Object array);
4951 bool LibraryCallKit::inline_getArrayProperties(ArrayPropertiesCheck check) {
4952   Node* array = argument(0);
4953 
4954   Node* bol;
4955   switch(check) {
4956     case IsFlat:
4957       // TODO 8350865 Use the object version here instead of loading the klass
4958       // The problem is that PhaseMacroExpand::expand_flatarraycheck_node can only handle some IR shapes and will fail, for example, if the bol is directly wired to a ReturnNode
4959       bol = flat_array_test(load_object_klass(array));
4960       break;
4961     case IsNullRestricted:
4962       bol = null_free_array_test(array);
4963       break;
4964     case IsAtomic:
4965       // TODO 8350865 Implement this. It's a bit more complicated, see conditions in JVM_IsAtomicArray
4966       // Enable TestIntrinsics::test87/88 once this is implemented
4967       // bol = null_free_atomic_array_test
4968       return false;
4969     default:
4970       ShouldNotReachHere();
4971   }
4972 
4973   Node* res = gvn().transform(new CMoveINode(bol, intcon(0), intcon(1), TypeInt::BOOL));
4974   set_result(res);
4975   return true;
4976 }
4977 
4978 // Load the default refined array klass from an ObjArrayKlass. This relies on the first entry in the
4979 // '_next_refined_array_klass' linked list being the default (see ObjArrayKlass::klass_with_properties).
4980 Node* LibraryCallKit::load_default_refined_array_klass(Node* klass_node, bool type_array_guard) {
4981   RegionNode* region = new RegionNode(2);
4982   Node* phi = new PhiNode(region, TypeInstKlassPtr::OBJECT_OR_NULL);
4983 
4984   if (type_array_guard) {
4985     generate_typeArray_guard(klass_node, region);
4986     if (region->req() == 3) {
4987       phi->add_req(klass_node);
4988     }
4989   }
4990   Node* adr_refined_klass = basic_plus_adr(klass_node, in_bytes(ObjArrayKlass::next_refined_array_klass_offset()));
4991   Node* refined_klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), adr_refined_klass, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4992 
4993   // Can be null if not initialized yet, just deopt
4994   Node* null_ctl = top();
4995   refined_klass = null_check_oop(refined_klass, &null_ctl, /* never_see_null= */ true);
4996 
4997   region->init_req(1, control());
4998   phi->init_req(1, refined_klass);
4999 
5000   set_control(_gvn.transform(region));
5001   return _gvn.transform(phi);
5002 }
5003 
5004 // Load the non-refined array klass from an ObjArrayKlass.
5005 Node* LibraryCallKit::load_non_refined_array_klass(Node* klass_node) {
5006   const TypeAryKlassPtr* ary_klass_ptr = _gvn.type(klass_node)->isa_aryklassptr();
5007   if (ary_klass_ptr != nullptr && ary_klass_ptr->klass_is_exact()) {
5008     return _gvn.makecon(ary_klass_ptr->cast_to_refined_array_klass_ptr(false));
5009   }
5010 
5011   RegionNode* region = new RegionNode(2);
5012   Node* phi = new PhiNode(region, TypeInstKlassPtr::OBJECT);
5013 
5014   generate_typeArray_guard(klass_node, region);
5015   if (region->req() == 3) {
5016     phi->add_req(klass_node);
5017   }
5018   Node* super_adr = basic_plus_adr(klass_node, in_bytes(Klass::super_offset()));
5019   Node* super_klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), super_adr, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
5020 
5021   region->init_req(1, control());
5022   phi->init_req(1, super_klass);
5023 
5024   set_control(_gvn.transform(region));
5025   return _gvn.transform(phi);
5026 }
5027 
5028 //-----------------------inline_native_newArray--------------------------
5029 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
5030 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
5031 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
5032   Node* mirror;
5033   Node* count_val;
5034   if (uninitialized) {
5035     null_check_receiver();
5036     mirror    = argument(1);
5037     count_val = argument(2);
5038   } else {
5039     mirror    = argument(0);
5040     count_val = argument(1);
5041   }
5042 
5043   mirror = null_check(mirror);
5044   // If mirror or obj is dead, only null-path is taken.
5045   if (stopped())  return true;
5046 
5047   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
5048   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5049   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

5067     CallJavaNode* slow_call = nullptr;
5068     if (uninitialized) {
5069       // Generate optimized virtual call (holder class 'Unsafe' is final)
5070       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
5071     } else {
5072       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
5073     }
5074     Node* slow_result = set_results_for_java_call(slow_call);
5075     // this->control() comes from set_results_for_java_call
5076     result_reg->set_req(_slow_path, control());
5077     result_val->set_req(_slow_path, slow_result);
5078     result_io ->set_req(_slow_path, i_o());
5079     result_mem->set_req(_slow_path, reset_memory());
5080   }
5081 
5082   set_control(normal_ctl);
5083   if (!stopped()) {
5084     // Normal case:  The array type has been cached in the java.lang.Class.
5085     // The following call works fine even if the array type is polymorphic.
5086     // It could be a dynamic mix of int[], boolean[], Object[], etc.
5087 
5088     klass_node = load_default_refined_array_klass(klass_node);
5089 
5090     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
5091     result_reg->init_req(_normal_path, control());
5092     result_val->init_req(_normal_path, obj);
5093     result_io ->init_req(_normal_path, i_o());
5094     result_mem->init_req(_normal_path, reset_memory());
5095 
5096     if (uninitialized) {
5097       // Mark the allocation so that zeroing is skipped
5098       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
5099       alloc->maybe_set_complete(&_gvn);
5100     }
5101   }
5102 
5103   // Return the combined state.
5104   set_i_o(        _gvn.transform(result_io)  );
5105   set_all_memory( _gvn.transform(result_mem));
5106 
5107   C->set_has_split_ifs(true); // Has chance for split-if optimization
5108   set_result(result_reg, result_val);
5109   return true;

5158   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
5159   { PreserveReexecuteState preexecs(this);
5160     jvms()->set_should_reexecute(true);
5161 
5162     array_type_mirror = null_check(array_type_mirror);
5163     original          = null_check(original);
5164 
5165     // Check if a null path was taken unconditionally.
5166     if (stopped())  return true;
5167 
5168     Node* orig_length = load_array_length(original);
5169 
5170     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
5171     klass_node = null_check(klass_node);
5172 
5173     RegionNode* bailout = new RegionNode(1);
5174     record_for_igvn(bailout);
5175 
5176     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
5177     // Bail out if that is so.
5178     // Inline type array may have object field that would require a
5179     // write barrier. Conservatively, go to slow path.
5180     // TODO 8251971: Optimize for the case when flat src/dst are later found
5181     // to not contain oops (i.e., move this check to the macro expansion phase).
5182     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5183     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
5184     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
5185     bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
5186                         // Can src array be flat and contain oops?
5187                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
5188                         // Can dest array be flat and contain oops?
5189                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
5190     Node* not_objArray = exclude_flat ? generate_non_refArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
5191 
5192     Node* refined_klass_node = load_default_refined_array_klass(klass_node, /* type_array_guard= */ false);
5193 
5194     if (not_objArray != nullptr) {
5195       // Improve the klass node's type from the new optimistic assumption:
5196       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
5197       bool not_flat = !UseArrayFlattening;
5198       bool not_null_free = !Arguments::is_valhalla_enabled();
5199       const Type* akls = TypeAryKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0), Type::trust_interfaces, not_flat, not_null_free, false, false, not_flat, true);
5200       Node* cast = new CastPPNode(control(), refined_klass_node, akls);
5201       refined_klass_node = _gvn.transform(cast);
5202     }
5203 
5204     // Bail out if either start or end is negative.
5205     generate_negative_guard(start, bailout, &start);
5206     generate_negative_guard(end,   bailout, &end);
5207 
5208     Node* length = end;
5209     if (_gvn.type(start) != TypeInt::ZERO) {
5210       length = _gvn.transform(new SubINode(end, start));
5211     }
5212 
5213     // Bail out if length is negative (i.e., if start > end).
5214     // Without this the new_array would throw
5215     // NegativeArraySizeException but IllegalArgumentException is what
5216     // should be thrown
5217     generate_negative_guard(length, bailout, &length);
5218 
5219     // Handle inline type arrays
5220     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
5221     if (!stopped()) {
5222       // TODO 8251971
5223       if (!orig_t->is_null_free()) {
5224         // Not statically known to be null free, add a check
5225         generate_fair_guard(null_free_array_test(original), bailout);
5226       }
5227       orig_t = _gvn.type(original)->isa_aryptr();
5228       if (orig_t != nullptr && orig_t->is_flat()) {
5229         // Src is flat, check that dest is flat as well
5230         if (exclude_flat) {
5231           // Dest can't be flat, bail out
5232           bailout->add_req(control());
5233           set_control(top());
5234         } else {
5235           generate_fair_guard(flat_array_test(refined_klass_node, /* flat = */ false), bailout);
5236         }
5237         // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy.
5238       } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) &&
5239                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
5240                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
5241         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
5242         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
5243         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
5244         if (orig_t != nullptr) {
5245           orig_t = orig_t->cast_to_not_flat();
5246           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
5247         }
5248       }
5249       if (!can_validate) {
5250         // No validation. The subtype check emitted at macro expansion time will not go to the slow
5251         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
5252         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
5253         generate_fair_guard(flat_array_test(refined_klass_node), bailout);
5254         generate_fair_guard(null_free_array_test(original), bailout);
5255       }
5256     }
5257 
5258     // Bail out if start is larger than the original length
5259     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
5260     generate_negative_guard(orig_tail, bailout, &orig_tail);
5261 
5262     if (bailout->req() > 1) {
5263       PreserveJVMState pjvms(this);
5264       set_control(_gvn.transform(bailout));
5265       uncommon_trap(Deoptimization::Reason_intrinsic,
5266                     Deoptimization::Action_maybe_recompile);
5267     }
5268 
5269     if (!stopped()) {
5270       // How many elements will we copy from the original?
5271       // The answer is MinI(orig_tail, length).
5272       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
5273 
5274       // Generate a direct call to the right arraycopy function(s).
5275       // We know the copy is disjoint but we might not know if the
5276       // oop stores need checking.
5277       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

5283       // to the copyOf to be validated, including that the copy to the
5284       // new array won't trigger an ArrayStoreException. That subtype
5285       // check can be optimized if we know something on the type of
5286       // the input array from type speculation.
5287       if (_gvn.type(klass_node)->singleton()) {
5288         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
5289         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
5290 
5291         int test = C->static_subtype_check(superk, subk);
5292         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
5293           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
5294           if (t_original->speculative_type() != nullptr) {
5295             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
5296           }
5297         }
5298       }
5299 
5300       bool validated = false;
5301       // Reason_class_check rather than Reason_intrinsic because we
5302       // want to intrinsify even if this traps.
5303       if (can_validate) {
5304         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
5305 
5306         if (not_subtype_ctrl != top()) {
5307           PreserveJVMState pjvms(this);
5308           set_control(not_subtype_ctrl);
5309           uncommon_trap(Deoptimization::Reason_class_check,
5310                         Deoptimization::Action_make_not_entrant);
5311           assert(stopped(), "Should be stopped");
5312         }
5313         validated = true;
5314       }
5315 
5316       if (!stopped()) {
5317         newcopy = new_array(refined_klass_node, length, 0);  // no arguments to push
5318 
5319         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
5320                                                 load_object_klass(original), klass_node);
5321         if (!is_copyOfRange) {
5322           ac->set_copyof(validated);
5323         } else {
5324           ac->set_copyofrange(validated);
5325         }
5326         Node* n = _gvn.transform(ac);
5327         if (n == ac) {
5328           ac->connect_outputs(this);
5329         } else {
5330           assert(validated, "shouldn't transform if all arguments not validated");
5331           set_all_memory(n);
5332         }
5333       }
5334     }
5335   } // original reexecute is set back here
5336 
5337   C->set_has_split_ifs(true); // Has chance for split-if optimization

5369 
5370 //-----------------------generate_method_call----------------------------
5371 // Use generate_method_call to make a slow-call to the real
5372 // method if the fast path fails.  An alternative would be to
5373 // use a stub like OptoRuntime::slow_arraycopy_Java.
5374 // This only works for expanding the current library call,
5375 // not another intrinsic.  (E.g., don't use this for making an
5376 // arraycopy call inside of the copyOf intrinsic.)
5377 CallJavaNode*
5378 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
5379   // When compiling the intrinsic method itself, do not use this technique.
5380   guarantee(callee() != C->method(), "cannot make slow-call to self");
5381 
5382   ciMethod* method = callee();
5383   // ensure the JVMS we have will be correct for this call
5384   guarantee(method_id == method->intrinsic_id(), "must match");
5385 
5386   const TypeFunc* tf = TypeFunc::make(method);
5387   if (res_not_null) {
5388     assert(tf->return_type() == T_OBJECT, "");
5389     const TypeTuple* range = tf->range_cc();
5390     const Type** fields = TypeTuple::fields(range->cnt());
5391     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
5392     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
5393     tf = TypeFunc::make(tf->domain_cc(), new_range);
5394   }
5395   CallJavaNode* slow_call;
5396   if (is_static) {
5397     assert(!is_virtual, "");
5398     slow_call = new CallStaticJavaNode(C, tf,
5399                            SharedRuntime::get_resolve_static_call_stub(), method);
5400   } else if (is_virtual) {
5401     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
5402     int vtable_index = Method::invalid_vtable_index;
5403     if (UseInlineCaches) {
5404       // Suppress the vtable call
5405     } else {
5406       // hashCode and clone are not a miranda methods,
5407       // so the vtable index is fixed.
5408       // No need to use the linkResolver to get it.
5409        vtable_index = method->vtable_index();
5410        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5411               "bad index %d", vtable_index);
5412     }
5413     slow_call = new CallDynamicJavaNode(tf,

5430   set_edges_for_java_call(slow_call);
5431   return slow_call;
5432 }
5433 
5434 
5435 /**
5436  * Build special case code for calls to hashCode on an object. This call may
5437  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
5438  * slightly different code.
5439  */
5440 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
5441   assert(is_static == callee()->is_static(), "correct intrinsic selection");
5442   assert(!(is_virtual && is_static), "either virtual, special, or static");
5443 
5444   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
5445 
5446   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5447   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
5448   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
5449   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5450   Node* obj = argument(0);
5451 
5452   // Don't intrinsify hashcode on inline types for now.
5453   // The "is locked" runtime check also subsumes the inline type check (as inline types cannot be locked) and goes to the slow path.
5454   if (gvn().type(obj)->is_inlinetypeptr()) {
5455     return false;
5456   }
5457 
5458   if (!is_static) {
5459     // Check for hashing null object
5460     obj = null_check_receiver();
5461     if (stopped())  return true;        // unconditionally null
5462     result_reg->init_req(_null_path, top());
5463     result_val->init_req(_null_path, top());
5464   } else {
5465     // Do a null check, and return zero if null.
5466     // System.identityHashCode(null) == 0

5467     Node* null_ctl = top();
5468     obj = null_check_oop(obj, &null_ctl);
5469     result_reg->init_req(_null_path, null_ctl);
5470     result_val->init_req(_null_path, _gvn.intcon(0));
5471   }
5472 
5473   // Unconditionally null?  Then return right away.
5474   if (stopped()) {
5475     set_control( result_reg->in(_null_path));
5476     if (!stopped())
5477       set_result(result_val->in(_null_path));
5478     return true;
5479   }
5480 
5481   // We only go to the fast case code if we pass a number of guards.  The
5482   // paths which do not pass are accumulated in the slow_region.
5483   RegionNode* slow_region = new RegionNode(1);
5484   record_for_igvn(slow_region);
5485 
5486   // If this is a virtual call, we generate a funny guard.  We pull out
5487   // the vtable entry corresponding to hashCode() from the target object.
5488   // If the target method which we are calling happens to be the native
5489   // Object hashCode() method, we pass the guard.  We do not need this
5490   // guard for non-virtual calls -- the caller is known to be the native
5491   // Object hashCode().
5492   if (is_virtual) {
5493     // After null check, get the object's klass.
5494     Node* obj_klass = load_object_klass(obj);
5495     generate_virtual_guard(obj_klass, slow_region);
5496   }
5497 
5498   // Get the header out of the object, use LoadMarkNode when available
5499   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5500   // The control of the load must be null. Otherwise, the load can move before
5501   // the null check after castPP removal.
5502   Node* no_ctrl = nullptr;
5503   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5504 
5505   if (!UseObjectMonitorTable) {
5506     // Test the header to see if it is safe to read w.r.t. locking.
5507     // We cannot use the inline type mask as this may check bits that are overriden
5508     // by an object monitor's pointer when inflating locking.
5509     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
5510     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5511     Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5512     Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5513     Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5514 
5515     generate_slow_guard(test_monitor, slow_region);
5516   }
5517 
5518   // Get the hash value and check to see that it has been properly assigned.
5519   // We depend on hash_mask being at most 32 bits and avoid the use of
5520   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5521   // vm: see markWord.hpp.
5522   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
5523   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
5524   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
5525   // This hack lets the hash bits live anywhere in the mark object now, as long
5526   // as the shift drops the relevant bits into the low 32 bits.  Note that
5527   // Java spec says that HashCode is an int so there's no point in capturing
5528   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).

5556     // this->control() comes from set_results_for_java_call
5557     result_reg->init_req(_slow_path, control());
5558     result_val->init_req(_slow_path, slow_result);
5559     result_io  ->set_req(_slow_path, i_o());
5560     result_mem ->set_req(_slow_path, reset_memory());
5561   }
5562 
5563   // Return the combined state.
5564   set_i_o(        _gvn.transform(result_io)  );
5565   set_all_memory( _gvn.transform(result_mem));
5566 
5567   set_result(result_reg, result_val);
5568   return true;
5569 }
5570 
5571 //---------------------------inline_native_getClass----------------------------
5572 // public final native Class<?> java.lang.Object.getClass();
5573 //
5574 // Build special case code for calls to getClass on an object.
5575 bool LibraryCallKit::inline_native_getClass() {
5576   Node* obj = argument(0);
5577   if (obj->is_InlineType()) {
5578     const Type* t = _gvn.type(obj);
5579     if (t->maybe_null()) {
5580       null_check(obj);
5581     }
5582     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5583     return true;
5584   }
5585   obj = null_check_receiver();
5586   if (stopped())  return true;
5587   set_result(load_mirror_from_klass(load_object_klass(obj)));
5588   return true;
5589 }
5590 
5591 //-----------------inline_native_Reflection_getCallerClass---------------------
5592 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5593 //
5594 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5595 //
5596 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5597 // in that it must skip particular security frames and checks for
5598 // caller sensitive methods.
5599 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5600 #ifndef PRODUCT
5601   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5602     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5603   }
5604 #endif
5605 

5987 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5988 //
5989 // The general case has two steps, allocation and copying.
5990 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5991 //
5992 // Copying also has two cases, oop arrays and everything else.
5993 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5994 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5995 //
5996 // These steps fold up nicely if and when the cloned object's klass
5997 // can be sharply typed as an object array, a type array, or an instance.
5998 //
5999 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
6000   PhiNode* result_val;
6001 
6002   // Set the reexecute bit for the interpreter to reexecute
6003   // the bytecode that invokes Object.clone if deoptimization happens.
6004   { PreserveReexecuteState preexecs(this);
6005     jvms()->set_should_reexecute(true);
6006 
6007     Node* obj = argument(0);
6008     obj = null_check_receiver();
6009     if (stopped())  return true;
6010 
6011     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
6012     if (obj_type->is_inlinetypeptr()) {
6013       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
6014       // no identity.
6015       set_result(obj);
6016       return true;
6017     }
6018 
6019     // If we are going to clone an instance, we need its exact type to
6020     // know the number and types of fields to convert the clone to
6021     // loads/stores. Maybe a speculative type can help us.
6022     if (!obj_type->klass_is_exact() &&
6023         obj_type->speculative_type() != nullptr &&
6024         obj_type->speculative_type()->is_instance_klass() &&
6025         !obj_type->speculative_type()->is_inlinetype()) {
6026       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
6027       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
6028           !spec_ik->has_injected_fields()) {
6029         if (!obj_type->isa_instptr() ||
6030             obj_type->is_instptr()->instance_klass()->has_subklass()) {
6031           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
6032         }
6033       }
6034     }
6035 
6036     // Conservatively insert a memory barrier on all memory slices.
6037     // Do not let writes into the original float below the clone.
6038     insert_mem_bar(Op_MemBarCPUOrder);
6039 
6040     // paths into result_reg:
6041     enum {
6042       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
6043       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
6044       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
6045       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
6046       PATH_LIMIT
6047     };
6048     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
6049     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
6050     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
6051     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
6052     record_for_igvn(result_reg);
6053 
6054     Node* obj_klass = load_object_klass(obj);
6055     // We only go to the fast case code if we pass a number of guards.
6056     // The paths which do not pass are accumulated in the slow_region.
6057     RegionNode* slow_region = new RegionNode(1);
6058     record_for_igvn(slow_region);
6059 
6060     Node* array_obj = obj;
6061     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
6062     if (array_ctl != nullptr) {
6063       // It's an array.
6064       PreserveJVMState pjvms(this);
6065       set_control(array_ctl);



6066 
6067       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
6068       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
6069       if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
6070           obj_type->can_be_inline_array() &&
6071           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
6072         // Flat inline type array may have object field that would require a
6073         // write barrier. Conservatively, go to slow path.
6074         generate_fair_guard(flat_array_test(obj_klass), slow_region);













6075       }







6076 
6077       if (!stopped()) {
6078         Node* obj_length = load_array_length(array_obj);
6079         Node* array_size = nullptr; // Size of the array without object alignment padding.
6080         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
6081 
6082         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
6083         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
6084           // If it is an oop array, it requires very special treatment,
6085           // because gc barriers are required when accessing the array.
6086           Node* is_obja = generate_refArray_guard(obj_klass, (RegionNode*)nullptr);
6087           if (is_obja != nullptr) {
6088             PreserveJVMState pjvms2(this);
6089             set_control(is_obja);
6090             // Generate a direct call to the right arraycopy function(s).
6091             // Clones are always tightly coupled.
6092             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
6093             ac->set_clone_oop_array();
6094             Node* n = _gvn.transform(ac);
6095             assert(n == ac, "cannot disappear");
6096             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
6097 
6098             result_reg->init_req(_objArray_path, control());
6099             result_val->init_req(_objArray_path, alloc_obj);
6100             result_i_o ->set_req(_objArray_path, i_o());
6101             result_mem ->set_req(_objArray_path, reset_memory());
6102           }
6103         }
6104         // Otherwise, there are no barriers to worry about.
6105         // (We can dispense with card marks if we know the allocation
6106         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
6107         //  causes the non-eden paths to take compensating steps to
6108         //  simulate a fresh allocation, so that no further
6109         //  card marks are required in compiled code to initialize
6110         //  the object.)
6111 
6112         if (!stopped()) {
6113           copy_to_clone(obj, alloc_obj, array_size, true);
6114 
6115           // Present the results of the copy.
6116           result_reg->init_req(_array_path, control());
6117           result_val->init_req(_array_path, alloc_obj);
6118           result_i_o ->set_req(_array_path, i_o());
6119           result_mem ->set_req(_array_path, reset_memory());
6120         }
6121       }
6122     }
6123 




6124     if (!stopped()) {
6125       // It's an instance (we did array above).  Make the slow-path tests.
6126       // If this is a virtual call, we generate a funny guard.  We grab
6127       // the vtable entry corresponding to clone() from the target object.
6128       // If the target method which we are calling happens to be the
6129       // Object clone() method, we pass the guard.  We do not need this
6130       // guard for non-virtual calls; the caller is known to be the native
6131       // Object clone().
6132       if (is_virtual) {
6133         generate_virtual_guard(obj_klass, slow_region);
6134       }
6135 
6136       // The object must be easily cloneable and must not have a finalizer.
6137       // Both of these conditions may be checked in a single test.
6138       // We could optimize the test further, but we don't care.
6139       generate_misc_flags_guard(obj_klass,
6140                                 // Test both conditions:
6141                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
6142                                 // Must be cloneable but not finalizer:
6143                                 KlassFlags::_misc_is_cloneable_fast,

6235         set_jvms(sfpt->jvms());
6236         _reexecute_sp = jvms()->sp();
6237 
6238         return saved_jvms;
6239       }
6240     }
6241   }
6242   return nullptr;
6243 }
6244 
6245 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
6246 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
6247 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
6248   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
6249   uint size = alloc->req();
6250   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
6251   old_jvms->set_map(sfpt);
6252   for (uint i = 0; i < size; i++) {
6253     sfpt->init_req(i, alloc->in(i));
6254   }
6255   int adjustment = 1;
6256   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
6257   if (ary_klass_ptr->is_null_free()) {
6258     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which
6259     // also requires the componentType and initVal on stack for re-execution.
6260     // Re-create and push the componentType.
6261     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
6262     ciInstance* instance = klass->component_mirror_instance();
6263     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
6264     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
6265     adjustment++;
6266   }
6267   // re-push array length for deoptimization
6268   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
6269   if (ary_klass_ptr->is_null_free()) {
6270     // Re-create and push the initVal.
6271     Node* init_val = alloc->in(AllocateNode::InitValue);
6272     if (init_val == nullptr) {
6273       init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass());
6274     } else if (UseCompressedOops) {
6275       init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr()));
6276     }
6277     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val);
6278     adjustment++;
6279   }
6280   old_jvms->set_sp(old_jvms->sp() + adjustment);
6281   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
6282   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
6283   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
6284   old_jvms->set_should_reexecute(true);
6285 
6286   sfpt->set_i_o(map()->i_o());
6287   sfpt->set_memory(map()->memory());
6288   sfpt->set_control(map()->control());
6289   return sfpt;
6290 }
6291 
6292 // In case of a deoptimization, we restart execution at the
6293 // allocation, allocating a new array. We would leave an uninitialized
6294 // array in the heap that GCs wouldn't expect. Move the allocation
6295 // after the traps so we don't allocate the array if we
6296 // deoptimize. This is possible because tightly_coupled_allocation()
6297 // guarantees there's no observer of the allocated array at this point
6298 // and the control flow is simple enough.
6299 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
6300                                                     int saved_reexecute_sp, uint new_idx) {
6301   if (saved_jvms_before_guards != nullptr && !stopped()) {
6302     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
6303 
6304     assert(alloc != nullptr, "only with a tightly coupled allocation");
6305     // restore JVM state to the state at the arraycopy
6306     saved_jvms_before_guards->map()->set_control(map()->control());
6307     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
6308     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
6309     // If we've improved the types of some nodes (null check) while
6310     // emitting the guards, propagate them to the current state
6311     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
6312     set_jvms(saved_jvms_before_guards);
6313     _reexecute_sp = saved_reexecute_sp;
6314 
6315     // Remove the allocation from above the guards
6316     CallProjections* callprojs = alloc->extract_projections(true);

6317     InitializeNode* init = alloc->initialization();
6318     Node* alloc_mem = alloc->in(TypeFunc::Memory);
6319     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
6320     init->replace_mem_projs_by(alloc_mem, C);
6321 
6322     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
6323     // the allocation (i.e. is only valid if the allocation succeeds):
6324     // 1) replace CastIINode with AllocateArrayNode's length here
6325     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
6326     //
6327     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
6328     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
6329     Node* init_control = init->proj_out(TypeFunc::Control);
6330     Node* alloc_length = alloc->Ideal_length();
6331 #ifdef ASSERT
6332     Node* prev_cast = nullptr;
6333 #endif
6334     for (uint i = 0; i < init_control->outcnt(); i++) {
6335       Node* init_out = init_control->raw_out(i);
6336       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
6337 #ifdef ASSERT
6338         if (prev_cast == nullptr) {
6339           prev_cast = init_out;

6341           if (prev_cast->cmp(*init_out) == false) {
6342             prev_cast->dump();
6343             init_out->dump();
6344             assert(false, "not equal CastIINode");
6345           }
6346         }
6347 #endif
6348         C->gvn_replace_by(init_out, alloc_length);
6349       }
6350     }
6351     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
6352 
6353     // move the allocation here (after the guards)
6354     _gvn.hash_delete(alloc);
6355     alloc->set_req(TypeFunc::Control, control());
6356     alloc->set_req(TypeFunc::I_O, i_o());
6357     Node *mem = reset_memory();
6358     set_all_memory(mem);
6359     alloc->set_req(TypeFunc::Memory, mem);
6360     set_control(init->proj_out_or_null(TypeFunc::Control));
6361     set_i_o(callprojs->fallthrough_ioproj);
6362 
6363     // Update memory as done in GraphKit::set_output_for_allocation()
6364     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
6365     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
6366     if (ary_type->isa_aryptr() && length_type != nullptr) {
6367       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
6368     }
6369     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
6370     int            elemidx  = C->get_alias_index(telemref);
6371     // Need to properly move every memory projection for the Initialize
6372 #ifdef ASSERT
6373     int mark_idx = C->get_alias_index(ary_type->add_offset(oopDesc::mark_offset_in_bytes()));
6374     int klass_idx = C->get_alias_index(ary_type->add_offset(oopDesc::klass_offset_in_bytes()));
6375 #endif
6376     auto move_proj = [&](ProjNode* proj) {
6377       int alias_idx = C->get_alias_index(proj->adr_type());
6378       assert(alias_idx == Compile::AliasIdxRaw ||
6379              alias_idx == elemidx ||
6380              alias_idx == mark_idx ||
6381              alias_idx == klass_idx, "should be raw memory or array element type");

6691         top_src  = src_type->isa_aryptr();
6692         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6693         src_spec = true;
6694       }
6695       if (!has_dest) {
6696         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6697         dest_type  = _gvn.type(dest);
6698         top_dest  = dest_type->isa_aryptr();
6699         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6700         dest_spec = true;
6701       }
6702     }
6703   }
6704 
6705   if (has_src && has_dest && can_emit_guards) {
6706     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6707     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6708     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6709     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6710 
6711     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6712       // If both arrays are object arrays then having the exact types
6713       // for both will remove the need for a subtype check at runtime
6714       // before the call and may make it possible to pick a faster copy
6715       // routine (without a subtype check on every element)
6716       // Do we have the exact type of src?
6717       bool could_have_src = src_spec;
6718       // Do we have the exact type of dest?
6719       bool could_have_dest = dest_spec;
6720       ciKlass* src_k = nullptr;
6721       ciKlass* dest_k = nullptr;
6722       if (!src_spec) {
6723         src_k = src_type->speculative_type_not_null();
6724         if (src_k != nullptr && src_k->is_array_klass()) {
6725           could_have_src = true;
6726         }
6727       }
6728       if (!dest_spec) {
6729         dest_k = dest_type->speculative_type_not_null();
6730         if (dest_k != nullptr && dest_k->is_array_klass()) {
6731           could_have_dest = true;
6732         }
6733       }
6734       if (could_have_src && could_have_dest) {
6735         // If we can have both exact types, emit the missing guards
6736         if (could_have_src && !src_spec) {
6737           src = maybe_cast_profiled_obj(src, src_k, true);
6738           src_type = _gvn.type(src);
6739           top_src = src_type->isa_aryptr();
6740         }
6741         if (could_have_dest && !dest_spec) {
6742           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6743           dest_type = _gvn.type(dest);
6744           top_dest = dest_type->isa_aryptr();
6745         }
6746       }
6747     }
6748   }
6749 
6750   ciMethod* trap_method = method();
6751   int trap_bci = bci();
6752   if (saved_jvms_before_guards != nullptr) {
6753     trap_method = alloc->jvms()->method();
6754     trap_bci = alloc->jvms()->bci();
6755   }
6756 
6757   bool negative_length_guard_generated = false;
6758 
6759   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6760       can_emit_guards && !src->is_top() && !dest->is_top()) {

6761     // validate arguments: enables transformation the ArrayCopyNode
6762     validated = true;
6763 
6764     RegionNode* slow_region = new RegionNode(1);
6765     record_for_igvn(slow_region);
6766 
6767     // (1) src and dest are arrays.
6768     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6769     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6770 
6771     // (2) src and dest arrays must have elements of the same BasicType
6772     // done at macro expansion or at Ideal transformation time
6773 
6774     // (4) src_offset must not be negative.
6775     generate_negative_guard(src_offset, slow_region);
6776 
6777     // (5) dest_offset must not be negative.
6778     generate_negative_guard(dest_offset, slow_region);
6779 
6780     // (7) src_offset + length must not exceed length of src.
6781     generate_limit_guard(src_offset, length,
6782                          load_array_length(src),
6783                          slow_region);
6784 
6785     // (8) dest_offset + length must not exceed length of dest.
6786     generate_limit_guard(dest_offset, length,
6787                          load_array_length(dest),
6788                          slow_region);
6789 
6790     // (6) length must not be negative.
6791     // This is also checked in generate_arraycopy() during macro expansion, but
6792     // we also have to check it here for the case where the ArrayCopyNode will
6793     // be eliminated by Escape Analysis.
6794     if (EliminateAllocations) {
6795       generate_negative_guard(length, slow_region);
6796       negative_length_guard_generated = true;
6797     }
6798 
6799     // (9) each element of an oop array must be assignable
6800     Node* dest_klass = load_object_klass(dest);
6801     Node* refined_dest_klass = dest_klass;
6802     if (src != dest) {
6803       dest_klass = load_non_refined_array_klass(refined_dest_klass);
6804       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6805       slow_region->add_req(not_subtype_ctrl);







6806     }
6807 
6808     // TODO 8350865 Improve this. What about atomicity? Make sure this is always folded for type arrays.
6809     // If destination is null-restricted, source must be null-restricted as well: src_null_restricted || !dst_null_restricted
6810     Node* src_klass = load_object_klass(src);
6811     Node* adr_prop_src = basic_plus_adr(src_klass, in_bytes(ArrayKlass::properties_offset()));
6812     Node* prop_src = _gvn.transform(LoadNode::make(_gvn, control(), immutable_memory(), adr_prop_src, TypeRawPtr::BOTTOM, TypeInt::INT, T_INT, MemNode::unordered));
6813     Node* adr_prop_dest = basic_plus_adr(refined_dest_klass, in_bytes(ArrayKlass::properties_offset()));
6814     Node* prop_dest = _gvn.transform(LoadNode::make(_gvn, control(), immutable_memory(), adr_prop_dest, TypeRawPtr::BOTTOM, TypeInt::INT, T_INT, MemNode::unordered));
6815 
6816     prop_dest = _gvn.transform(new XorINode(prop_dest, intcon(ArrayKlass::ArrayProperties::NULL_RESTRICTED)));
6817     prop_src = _gvn.transform(new OrINode(prop_dest, prop_src));
6818     prop_src = _gvn.transform(new AndINode(prop_src, intcon(ArrayKlass::ArrayProperties::NULL_RESTRICTED)));
6819 
6820     Node* chk = _gvn.transform(new CmpINode(prop_src, intcon(ArrayKlass::ArrayProperties::NULL_RESTRICTED)));
6821     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
6822     generate_fair_guard(tst, slow_region);
6823 
6824     // TODO 8350865 This is too strong
6825     generate_fair_guard(flat_array_test(src), slow_region);
6826     generate_fair_guard(flat_array_test(dest), slow_region);
6827 
6828     {
6829       PreserveJVMState pjvms(this);
6830       set_control(_gvn.transform(slow_region));
6831       uncommon_trap(Deoptimization::Reason_intrinsic,
6832                     Deoptimization::Action_make_not_entrant);
6833       assert(stopped(), "Should be stopped");
6834     }
6835 
6836     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->isa_klassptr();
6837     if (dest_klass_t == nullptr) {
6838       // refined_dest_klass may not be an array, which leads to dest_klass being top. This means we
6839       // are in a dead path.
6840       uncommon_trap(Deoptimization::Reason_intrinsic,
6841                     Deoptimization::Action_make_not_entrant);
6842       return true;
6843     }
6844 
6845     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6846     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6847     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6848   }
6849 
6850   if (stopped()) {
6851     return true;
6852   }
6853 
6854   Node* dest_klass = load_object_klass(dest);
6855   dest_klass = load_non_refined_array_klass(dest_klass);
6856 
6857   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6858                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6859                                           // so the compiler has a chance to eliminate them: during macro expansion,
6860                                           // we have to set their control (CastPP nodes are eliminated).
6861                                           load_object_klass(src), dest_klass,
6862                                           load_array_length(src), load_array_length(dest));
6863 
6864   ac->set_arraycopy(validated);
6865 
6866   Node* n = _gvn.transform(ac);
6867   if (n == ac) {
6868     ac->connect_outputs(this);
6869   } else {
6870     assert(validated, "shouldn't transform if all arguments not validated");
6871     set_all_memory(n);
6872   }
6873   clear_upper_avx();
6874 
6875 
6876   return true;
6877 }
6878 
6879 
6880 // Helper function which determines if an arraycopy immediately follows
6881 // an allocation, with no intervening tests or other escapes for the object.
< prev index next >