< prev index next >

src/hotspot/share/opto/library_call.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"

  26 #include "ci/ciUtilities.inline.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"

 298   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 299   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 300   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 301   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 302   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 303 
 304   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 305 
 306   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 307 
 308   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 309   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 310   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 311   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 312 
 313   case vmIntrinsics::_compressStringC:
 314   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 315   case vmIntrinsics::_inflateStringC:
 316   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 317 


 318   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 319   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 320   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 321   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 322   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 323   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 324   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 325   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 326   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);

 327 
 328   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);

 337 
 338   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 339   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 340   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 341   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 342   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 343   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 344   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 345   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 346   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 347 
 348   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 483                                                                                          "notifyJvmtiEnd", false, true);
 484   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 485                                                                                          "notifyJvmtiMount", false, false);
 486   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 487                                                                                          "notifyJvmtiUnmount", false, false);
 488   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 489 #endif
 490 
 491 #ifdef JFR_HAVE_INTRINSICS
 492   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 493   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 494   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 495 #endif
 496   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 497   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 498   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 499   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 500   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 501   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 502   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();

 503   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 504   case vmIntrinsics::_getLength:                return inline_native_getLength();
 505   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 506   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 507   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 508   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 509   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 510   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 511   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 512 
 513   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 514   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);



 515 
 516   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 517 
 518   case vmIntrinsics::_isInstance:
 519   case vmIntrinsics::_isHidden:
 520   case vmIntrinsics::_getSuperclass:
 521   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 522 
 523   case vmIntrinsics::_floatToRawIntBits:
 524   case vmIntrinsics::_floatToIntBits:
 525   case vmIntrinsics::_intBitsToFloat:
 526   case vmIntrinsics::_doubleToRawLongBits:
 527   case vmIntrinsics::_doubleToLongBits:
 528   case vmIntrinsics::_longBitsToDouble:
 529   case vmIntrinsics::_floatToFloat16:
 530   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 531   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 532   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 533   case vmIntrinsics::_floatIsFinite:
 534   case vmIntrinsics::_floatIsInfinite:

2266     case vmIntrinsics::_remainderUnsigned_l: {
2267       zero_check_long(argument(2));
2268       // Compile-time detect of null-exception
2269       if (stopped()) {
2270         return true; // keep the graph constructed so far
2271       }
2272       n = new UModLNode(control(), argument(0), argument(2));
2273       break;
2274     }
2275     default:  fatal_unexpected_iid(id);  break;
2276   }
2277   set_result(_gvn.transform(n));
2278   return true;
2279 }
2280 
2281 //----------------------------inline_unsafe_access----------------------------
2282 
2283 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2284   // Attempt to infer a sharper value type from the offset and base type.
2285   ciKlass* sharpened_klass = nullptr;

2286 
2287   // See if it is an instance field, with an object type.
2288   if (alias_type->field() != nullptr) {
2289     if (alias_type->field()->type()->is_klass()) {
2290       sharpened_klass = alias_type->field()->type()->as_klass();

2291     }
2292   }
2293 
2294   const TypeOopPtr* result = nullptr;
2295   // See if it is a narrow oop array.
2296   if (adr_type->isa_aryptr()) {
2297     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2298       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();

2299       if (elem_type != nullptr && elem_type->is_loaded()) {
2300         // Sharpen the value type.
2301         result = elem_type;
2302       }
2303     }
2304   }
2305 
2306   // The sharpened class might be unloaded if there is no class loader
2307   // contraint in place.
2308   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2309     // Sharpen the value type.
2310     result = TypeOopPtr::make_from_klass(sharpened_klass);



2311   }
2312   if (result != nullptr) {
2313 #ifndef PRODUCT
2314     if (C->print_intrinsics() || C->print_inlining()) {
2315       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2316       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2317     }
2318 #endif
2319   }
2320   return result;
2321 }
2322 
2323 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2324   switch (kind) {
2325       case Relaxed:
2326         return MO_UNORDERED;
2327       case Opaque:
2328         return MO_RELAXED;
2329       case Acquire:
2330         return MO_ACQUIRE;
2331       case Release:
2332         return MO_RELEASE;
2333       case Volatile:
2334         return MO_SEQ_CST;
2335       default:
2336         ShouldNotReachHere();
2337         return 0;
2338   }
2339 }
2340 
2341 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2342   if (callee()->is_static())  return false;  // caller must have the capability!
2343   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2344   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2345   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2346   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2347 
2348   if (is_reference_type(type)) {
2349     decorators |= ON_UNKNOWN_OOP_REF;
2350   }
2351 
2352   if (unaligned) {
2353     decorators |= C2_UNALIGNED;
2354   }
2355 
2356 #ifndef PRODUCT
2357   {
2358     ResourceMark rm;
2359     // Check the signatures.
2360     ciSignature* sig = callee()->signature();
2361 #ifdef ASSERT
2362     if (!is_store) {
2363       // Object getReference(Object base, int/long offset), etc.
2364       BasicType rtype = sig->return_type()->basic_type();
2365       assert(rtype == type, "getter must return the expected value");
2366       assert(sig->count() == 2, "oop getter has 2 arguments");
2367       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2368       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2369     } else {
2370       // void putReference(Object base, int/long offset, Object x), etc.
2371       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2372       assert(sig->count() == 3, "oop putter has 3 arguments");
2373       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2374       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2375       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2376       assert(vtype == type, "putter must accept the expected value");
2377     }
2378 #endif // ASSERT
2379  }
2380 #endif //PRODUCT
2381 
2382   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2383 
2384   Node* receiver = argument(0);  // type: oop
2385 
2386   // Build address expression.
2387   Node* heap_base_oop = top();
2388 
2389   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2390   Node* base = argument(1);  // type: oop
2391   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2392   Node* offset = argument(2);  // type: long
2393   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2394   // to be plain byte offsets, which are also the same as those accepted
2395   // by oopDesc::field_addr.
2396   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2397          "fieldOffset must be byte-scaled");























































2398   // 32-bit machines ignore the high half!
2399   offset = ConvL2X(offset);
2400 
2401   // Save state and restore on bailout
2402   uint old_sp = sp();
2403   SafePointNode* old_map = clone_map();
2404 
2405   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2406   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2407 
2408   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2409     if (type != T_OBJECT) {
2410       decorators |= IN_NATIVE; // off-heap primitive access
2411     } else {
2412       set_map(old_map);
2413       set_sp(old_sp);
2414       return false; // off-heap oop accesses are not supported
2415     }
2416   } else {
2417     heap_base_oop = base; // on-heap or mixed access
2418   }
2419 
2420   // Can base be null? Otherwise, always on-heap access.
2421   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2422 
2423   if (!can_access_non_heap) {
2424     decorators |= IN_HEAP;
2425   }
2426 
2427   Node* val = is_store ? argument(4) : nullptr;
2428 
2429   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2430   if (adr_type == TypePtr::NULL_PTR) {
2431     set_map(old_map);
2432     set_sp(old_sp);
2433     return false; // off-heap access with zero address
2434   }
2435 
2436   // Try to categorize the address.
2437   Compile::AliasType* alias_type = C->alias_type(adr_type);
2438   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2439 
2440   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2441       alias_type->adr_type() == TypeAryPtr::RANGE) {
2442     set_map(old_map);
2443     set_sp(old_sp);
2444     return false; // not supported
2445   }
2446 
2447   bool mismatched = false;
2448   BasicType bt = alias_type->basic_type();




























2449   if (bt != T_ILLEGAL) {
2450     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2451     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2452       // Alias type doesn't differentiate between byte[] and boolean[]).
2453       // Use address type to get the element type.
2454       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2455     }
2456     if (is_reference_type(bt, true)) {
2457       // accessing an array field with getReference is not a mismatch
2458       bt = T_OBJECT;
2459     }
2460     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2461       // Don't intrinsify mismatched object accesses
2462       set_map(old_map);
2463       set_sp(old_sp);
2464       return false;
2465     }
2466     mismatched = (bt != type);
2467   } else if (alias_type->adr_type()->isa_oopptr()) {
2468     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2469   }
2470 























2471   destruct_map_clone(old_map);
2472   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2473 
2474   if (mismatched) {
2475     decorators |= C2_MISMATCHED;
2476   }
2477 
2478   // First guess at the value type.
2479   const Type *value_type = Type::get_const_basic_type(type);
2480 
2481   // Figure out the memory ordering.
2482   decorators |= mo_decorator_for_access_kind(kind);
2483 
2484   if (!is_store && type == T_OBJECT) {
2485     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2486     if (tjp != nullptr) {
2487       value_type = tjp;


2488     }
2489   }
2490 
2491   receiver = null_check(receiver);
2492   if (stopped()) {
2493     return true;
2494   }
2495   // Heap pointers get a null-check from the interpreter,
2496   // as a courtesy.  However, this is not guaranteed by Unsafe,
2497   // and it is not possible to fully distinguish unintended nulls
2498   // from intended ones in this API.
2499 
2500   if (!is_store) {
2501     Node* p = nullptr;
2502     // Try to constant fold a load from a constant field
2503     ciField* field = alias_type->field();
2504     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2505       // final or stable field
2506       p = make_constant_from_field(field, heap_base_oop);
2507     }
2508 
2509     if (p == nullptr) { // Could not constant fold the load
2510       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);















2511       // Normalize the value returned by getBoolean in the following cases
2512       if (type == T_BOOLEAN &&
2513           (mismatched ||
2514            heap_base_oop == top() ||                  // - heap_base_oop is null or
2515            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2516                                                       //   and the unsafe access is made to large offset
2517                                                       //   (i.e., larger than the maximum offset necessary for any
2518                                                       //   field access)
2519             ) {
2520           IdealKit ideal = IdealKit(this);
2521 #define __ ideal.
2522           IdealVariable normalized_result(ideal);
2523           __ declarations_done();
2524           __ set(normalized_result, p);
2525           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2526           __ set(normalized_result, ideal.ConI(1));
2527           ideal.end_if();
2528           final_sync(ideal);
2529           p = __ value(normalized_result);
2530 #undef __
2531       }
2532     }
2533     if (type == T_ADDRESS) {
2534       p = gvn().transform(new CastP2XNode(nullptr, p));
2535       p = ConvX2UL(p);
2536     }
2537     // The load node has the control of the preceding MemBarCPUOrder.  All
2538     // following nodes will have the control of the MemBarCPUOrder inserted at
2539     // the end of this method.  So, pushing the load onto the stack at a later
2540     // point is fine.
2541     set_result(p);
2542   } else {
2543     if (bt == T_ADDRESS) {
2544       // Repackage the long as a pointer.
2545       val = ConvL2X(val);
2546       val = gvn().transform(new CastX2PNode(val));
2547     }
2548     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);



































































2549   }
2550 














2551   return true;
2552 }
2553 
2554 //----------------------------inline_unsafe_load_store----------------------------
2555 // This method serves a couple of different customers (depending on LoadStoreKind):
2556 //
2557 // LS_cmp_swap:
2558 //
2559 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2560 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2561 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2562 //
2563 // LS_cmp_swap_weak:
2564 //
2565 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2566 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2567 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2568 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2569 //
2570 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);

2739     }
2740     case LS_cmp_swap:
2741     case LS_cmp_swap_weak:
2742     case LS_get_add:
2743       break;
2744     default:
2745       ShouldNotReachHere();
2746   }
2747 
2748   // Null check receiver.
2749   receiver = null_check(receiver);
2750   if (stopped()) {
2751     return true;
2752   }
2753 
2754   int alias_idx = C->get_alias_index(adr_type);
2755 
2756   if (is_reference_type(type)) {
2757     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2758 













2759     // Transformation of a value which could be null pointer (CastPP #null)
2760     // could be delayed during Parse (for example, in adjust_map_after_if()).
2761     // Execute transformation here to avoid barrier generation in such case.
2762     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2763       newval = _gvn.makecon(TypePtr::NULL_PTR);
2764 
2765     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2766       // Refine the value to a null constant, when it is known to be null
2767       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2768     }
2769   }
2770 
2771   Node* result = nullptr;
2772   switch (kind) {
2773     case LS_cmp_exchange: {
2774       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2775                                             oldval, newval, value_type, type, decorators);
2776       break;
2777     }
2778     case LS_cmp_swap_weak:

2925                     Deoptimization::Action_make_not_entrant);
2926     }
2927     if (stopped()) {
2928       return true;
2929     }
2930 #endif //INCLUDE_JVMTI
2931 
2932   Node* test = nullptr;
2933   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2934     // Note:  The argument might still be an illegal value like
2935     // Serializable.class or Object[].class.   The runtime will handle it.
2936     // But we must make an explicit check for initialization.
2937     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2938     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2939     // can generate code to load it as unsigned byte.
2940     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2941     Node* bits = intcon(InstanceKlass::fully_initialized);
2942     test = _gvn.transform(new SubINode(inst, bits));
2943     // The 'test' is non-zero if we need to take a slow path.
2944   }
2945 
2946   Node* obj = new_instance(kls, test);





2947   set_result(obj);
2948   return true;
2949 }
2950 
2951 //------------------------inline_native_time_funcs--------------
2952 // inline code for System.currentTimeMillis() and System.nanoTime()
2953 // these have the same type and signature
2954 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2955   const TypeFunc* tf = OptoRuntime::void_long_Type();
2956   const TypePtr* no_memory_effects = nullptr;
2957   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2958   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2959 #ifdef ASSERT
2960   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2961   assert(value_top == top(), "second value must be top");
2962 #endif
2963   set_result(value);
2964   return true;
2965 }
2966 

3707   Node* thread = _gvn.transform(new ThreadLocalNode());
3708   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3709   Node* thread_obj_handle
3710     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3711   thread_obj_handle = _gvn.transform(thread_obj_handle);
3712   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3713   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3714 
3715   // Change the _monitor_owner_id of the JavaThread
3716   Node* tid = load_field_from_object(arr, "tid", "J");
3717   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3718   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3719 
3720   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3721   return true;
3722 }
3723 
3724 const Type* LibraryCallKit::scopedValueCache_type() {
3725   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3726   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3727   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3728 
3729   // Because we create the scopedValue cache lazily we have to make the
3730   // type of the result BotPTR.
3731   bool xk = etype->klass_is_exact();
3732   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3733   return objects_type;
3734 }
3735 
3736 Node* LibraryCallKit::scopedValueCache_helper() {
3737   Node* thread = _gvn.transform(new ThreadLocalNode());
3738   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3739   // We cannot use immutable_memory() because we might flip onto a
3740   // different carrier thread, at which point we'll need to use that
3741   // carrier thread's cache.
3742   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3743   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3744   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3745 }
3746 
3747 //------------------------inline_native_scopedValueCache------------------
3748 bool LibraryCallKit::inline_native_scopedValueCache() {
3749   Node* cache_obj_handle = scopedValueCache_helper();
3750   const Type* objects_type = scopedValueCache_type();
3751   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3752 

3836   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3837 
3838   // Result of top level CFG and Memory.
3839   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3840   record_for_igvn(result_rgn);
3841   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3842   record_for_igvn(result_mem);
3843 
3844   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3845   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3846   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3847   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3848 
3849   // Set output state.
3850   set_control(_gvn.transform(result_rgn));
3851   set_all_memory(_gvn.transform(result_mem));
3852 
3853   return true;
3854 }
3855 
3856 //---------------------------load_mirror_from_klass----------------------------
3857 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3858 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3859   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3860   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3861   // mirror = ((OopHandle)mirror)->resolve();
3862   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3863 }
3864 
3865 //-----------------------load_klass_from_mirror_common-------------------------
3866 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3867 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3868 // and branch to the given path on the region.
3869 // If never_see_null, take an uncommon trap on null, so we can optimistically
3870 // compile for the non-null case.
3871 // If the region is null, force never_see_null = true.
3872 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3873                                                     bool never_see_null,
3874                                                     RegionNode* region,
3875                                                     int null_path,
3876                                                     int offset) {
3877   if (region == nullptr)  never_see_null = true;
3878   Node* p = basic_plus_adr(mirror, offset);
3879   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3880   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3881   Node* null_ctl = top();
3882   kls = null_check_oop(kls, &null_ctl, never_see_null);
3883   if (region != nullptr) {
3884     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

3888   }
3889   return kls;
3890 }
3891 
3892 //--------------------(inline_native_Class_query helpers)---------------------
3893 // Use this for JVM_ACC_INTERFACE.
3894 // Fall through if (mods & mask) == bits, take the guard otherwise.
3895 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3896                                                  ByteSize offset, const Type* type, BasicType bt) {
3897   // Branch around if the given klass has the given modifier bit set.
3898   // Like generate_guard, adds a new path onto the region.
3899   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3900   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3901   Node* mask = intcon(modifier_mask);
3902   Node* bits = intcon(modifier_bits);
3903   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3904   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3905   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3906   return generate_fair_guard(bol, region);
3907 }

3908 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3909   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3910                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
3911 }
3912 
3913 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3914 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3915   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3916                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3917 }
3918 
3919 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3920   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3921 }
3922 
3923 //-------------------------inline_native_Class_query-------------------
3924 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3925   const Type* return_type = TypeInt::BOOL;
3926   Node* prim_return_value = top();  // what happens if it's a primitive class?
3927   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4046 
4047   case vmIntrinsics::_getClassAccessFlags:
4048     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4049     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4050     break;
4051 
4052   default:
4053     fatal_unexpected_iid(id);
4054     break;
4055   }
4056 
4057   // Fall-through is the normal case of a query to a real class.
4058   phi->init_req(1, query_value);
4059   region->init_req(1, control());
4060 
4061   C->set_has_split_ifs(true); // Has chance for split-if optimization
4062   set_result(region, phi);
4063   return true;
4064 }
4065 

4066 //-------------------------inline_Class_cast-------------------
4067 bool LibraryCallKit::inline_Class_cast() {
4068   Node* mirror = argument(0); // Class
4069   Node* obj    = argument(1);
4070   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4071   if (mirror_con == nullptr) {
4072     return false;  // dead path (mirror->is_top()).
4073   }
4074   if (obj == nullptr || obj->is_top()) {
4075     return false;  // dead path
4076   }
4077   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4078 
4079   // First, see if Class.cast() can be folded statically.
4080   // java_mirror_type() returns non-null for compile-time Class constants.
4081   ciType* tm = mirror_con->java_mirror_type();

4082   if (tm != nullptr && tm->is_klass() &&
4083       tp != nullptr) {
4084     if (!tp->is_loaded()) {
4085       // Don't use intrinsic when class is not loaded.
4086       return false;
4087     } else {
4088       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());




4089       if (static_res == Compile::SSC_always_true) {
4090         // isInstance() is true - fold the code.
4091         set_result(obj);
4092         return true;
4093       } else if (static_res == Compile::SSC_always_false) {
4094         // Don't use intrinsic, have to throw ClassCastException.
4095         // If the reference is null, the non-intrinsic bytecode will
4096         // be optimized appropriately.
4097         return false;
4098       }
4099     }
4100   }
4101 
4102   // Bailout intrinsic and do normal inlining if exception path is frequent.
4103   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4104     return false;
4105   }
4106 
4107   // Generate dynamic checks.
4108   // Class.cast() is java implementation of _checkcast bytecode.
4109   // Do checkcast (Parse::do_checkcast()) optimizations here.
4110 
4111   mirror = null_check(mirror);
4112   // If mirror is dead, only null-path is taken.
4113   if (stopped()) {
4114     return true;
4115   }
4116 
4117   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4118   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4119   RegionNode* region = new RegionNode(PATH_LIMIT);
4120   record_for_igvn(region);
4121 
4122   // Now load the mirror's klass metaobject, and null-check it.
4123   // If kls is null, we have a primitive mirror and
4124   // nothing is an instance of a primitive type.
4125   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4126 
4127   Node* res = top();


4128   if (!stopped()) {

4129     Node* bad_type_ctrl = top();
4130     // Do checkcast optimizations.
4131     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4132     region->init_req(_bad_type_path, bad_type_ctrl);
4133   }
4134   if (region->in(_prim_path) != top() ||
4135       region->in(_bad_type_path) != top()) {

4136     // Let Interpreter throw ClassCastException.
4137     PreserveJVMState pjvms(this);
4138     set_control(_gvn.transform(region));



4139     uncommon_trap(Deoptimization::Reason_intrinsic,
4140                   Deoptimization::Action_maybe_recompile);
4141   }
4142   if (!stopped()) {
4143     set_result(res);
4144   }
4145   return true;
4146 }
4147 
4148 
4149 //--------------------------inline_native_subtype_check------------------------
4150 // This intrinsic takes the JNI calls out of the heart of
4151 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4152 bool LibraryCallKit::inline_native_subtype_check() {
4153   // Pull both arguments off the stack.
4154   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4155   args[0] = argument(0);
4156   args[1] = argument(1);
4157   Node* klasses[2];             // corresponding Klasses: superk, subk
4158   klasses[0] = klasses[1] = top();
4159 
4160   enum {
4161     // A full decision tree on {superc is prim, subc is prim}:
4162     _prim_0_path = 1,           // {P,N} => false
4163                                 // {P,P} & superc!=subc => false
4164     _prim_same_path,            // {P,P} & superc==subc => true
4165     _prim_1_path,               // {N,P} => false
4166     _ref_subtype_path,          // {N,N} & subtype check wins => true
4167     _both_ref_path,             // {N,N} & subtype check loses => false
4168     PATH_LIMIT
4169   };
4170 
4171   RegionNode* region = new RegionNode(PATH_LIMIT);

4172   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4173   record_for_igvn(region);

4174 
4175   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4176   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4177   int class_klass_offset = java_lang_Class::klass_offset();
4178 
4179   // First null-check both mirrors and load each mirror's klass metaobject.
4180   int which_arg;
4181   for (which_arg = 0; which_arg <= 1; which_arg++) {
4182     Node* arg = args[which_arg];
4183     arg = null_check(arg);
4184     if (stopped())  break;
4185     args[which_arg] = arg;
4186 
4187     Node* p = basic_plus_adr(arg, class_klass_offset);
4188     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4189     klasses[which_arg] = _gvn.transform(kls);
4190   }
4191 
4192   // Having loaded both klasses, test each for null.
4193   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4194   for (which_arg = 0; which_arg <= 1; which_arg++) {
4195     Node* kls = klasses[which_arg];
4196     Node* null_ctl = top();
4197     kls = null_check_oop(kls, &null_ctl, never_see_null);
4198     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4199     region->init_req(prim_path, null_ctl);



4200     if (stopped())  break;
4201     klasses[which_arg] = kls;
4202   }
4203 
4204   if (!stopped()) {
4205     // now we have two reference types, in klasses[0..1]
4206     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4207     Node* superk = klasses[0];  // the receiver
4208     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4209     // now we have a successful reference subtype check
4210     region->set_req(_ref_subtype_path, control());
4211   }
4212 
4213   // If both operands are primitive (both klasses null), then
4214   // we must return true when they are identical primitives.
4215   // It is convenient to test this after the first null klass check.
4216   set_control(region->in(_prim_0_path)); // go back to first null check

4217   if (!stopped()) {
4218     // Since superc is primitive, make a guard for the superc==subc case.
4219     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4220     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4221     generate_guard(bol_eq, region, PROB_FAIR);
4222     if (region->req() == PATH_LIMIT+1) {
4223       // A guard was added.  If the added guard is taken, superc==subc.
4224       region->swap_edges(PATH_LIMIT, _prim_same_path);
4225       region->del_req(PATH_LIMIT);
4226     }
4227     region->set_req(_prim_0_path, control()); // Not equal after all.
4228   }
4229 
4230   // these are the only paths that produce 'true':
4231   phi->set_req(_prim_same_path,   intcon(1));
4232   phi->set_req(_ref_subtype_path, intcon(1));
4233 
4234   // pull together the cases:
4235   assert(region->req() == PATH_LIMIT, "sane region");
4236   for (uint i = 1; i < region->req(); i++) {
4237     Node* ctl = region->in(i);
4238     if (ctl == nullptr || ctl == top()) {
4239       region->set_req(i, top());
4240       phi   ->set_req(i, top());
4241     } else if (phi->in(i) == nullptr) {
4242       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4243     }
4244   }
4245 
4246   set_control(_gvn.transform(region));
4247   set_result(_gvn.transform(phi));
4248   return true;
4249 }
4250 
4251 //---------------------generate_array_guard_common------------------------
4252 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4253                                                   bool obj_array, bool not_array, Node** obj) {
4254 
4255   if (stopped()) {
4256     return nullptr;
4257   }
4258 
4259   // If obj_array/non_array==false/false:
4260   // Branch around if the given klass is in fact an array (either obj or prim).
4261   // If obj_array/non_array==false/true:
4262   // Branch around if the given klass is not an array klass of any kind.
4263   // If obj_array/non_array==true/true:
4264   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4265   // If obj_array/non_array==true/false:
4266   // Branch around if the kls is an oop array (Object[] or subtype)
4267   //
4268   // Like generate_guard, adds a new path onto the region.
4269   jint  layout_con = 0;
4270   Node* layout_val = get_layout_helper(kls, layout_con);
4271   if (layout_val == nullptr) {
4272     bool query = (obj_array
4273                   ? Klass::layout_helper_is_objArray(layout_con)
4274                   : Klass::layout_helper_is_array(layout_con));
4275     if (query == not_array) {







4276       return nullptr;                       // never a branch
4277     } else {                             // always a branch
4278       Node* always_branch = control();
4279       if (region != nullptr)
4280         region->add_req(always_branch);
4281       set_control(top());
4282       return always_branch;
4283     }
4284   }





















4285   // Now test the correct condition.
4286   jint  nval = (obj_array
4287                 ? (jint)(Klass::_lh_array_tag_type_value
4288                    <<    Klass::_lh_array_tag_shift)
4289                 : Klass::_lh_neutral_value);
4290   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4291   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4292   // invert the test if we are looking for a non-array
4293   if (not_array)  btest = BoolTest(btest).negate();
4294   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4295   Node* ctrl = generate_fair_guard(bol, region);
4296   Node* is_array_ctrl = not_array ? control() : ctrl;
4297   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4298     // Keep track of the fact that 'obj' is an array to prevent
4299     // array specific accesses from floating above the guard.
4300     Node* cast = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4301     // Check for top because in rare cases, the type system can determine that
4302     // the object can't be an array but the layout helper check is not folded.
4303     if (!cast->is_top()) {
4304       *obj = cast;
4305     }
4306   }
4307   return ctrl;
4308 }
4309 



























































4310 
4311 //-----------------------inline_native_newArray--------------------------
4312 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4313 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4314 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4315   Node* mirror;
4316   Node* count_val;
4317   if (uninitialized) {
4318     null_check_receiver();
4319     mirror    = argument(1);
4320     count_val = argument(2);
4321   } else {
4322     mirror    = argument(0);
4323     count_val = argument(1);
4324   }
4325 
4326   mirror = null_check(mirror);
4327   // If mirror or obj is dead, only null-path is taken.
4328   if (stopped())  return true;
4329 
4330   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4331   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4332   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4438   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4439   { PreserveReexecuteState preexecs(this);
4440     jvms()->set_should_reexecute(true);
4441 
4442     array_type_mirror = null_check(array_type_mirror);
4443     original          = null_check(original);
4444 
4445     // Check if a null path was taken unconditionally.
4446     if (stopped())  return true;
4447 
4448     Node* orig_length = load_array_length(original);
4449 
4450     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4451     klass_node = null_check(klass_node);
4452 
4453     RegionNode* bailout = new RegionNode(1);
4454     record_for_igvn(bailout);
4455 
4456     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4457     // Bail out if that is so.
4458     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);












4459     if (not_objArray != nullptr) {
4460       // Improve the klass node's type from the new optimistic assumption:
4461       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4462       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4463       Node* cast = new CastPPNode(control(), klass_node, akls);
4464       klass_node = _gvn.transform(cast);
4465     }
4466 
4467     // Bail out if either start or end is negative.
4468     generate_negative_guard(start, bailout, &start);
4469     generate_negative_guard(end,   bailout, &end);
4470 
4471     Node* length = end;
4472     if (_gvn.type(start) != TypeInt::ZERO) {
4473       length = _gvn.transform(new SubINode(end, start));
4474     }
4475 
4476     // Bail out if length is negative (i.e., if start > end).
4477     // Without this the new_array would throw
4478     // NegativeArraySizeException but IllegalArgumentException is what
4479     // should be thrown
4480     generate_negative_guard(length, bailout, &length);
4481 







































4482     // Bail out if start is larger than the original length
4483     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4484     generate_negative_guard(orig_tail, bailout, &orig_tail);
4485 
4486     if (bailout->req() > 1) {
4487       PreserveJVMState pjvms(this);
4488       set_control(_gvn.transform(bailout));
4489       uncommon_trap(Deoptimization::Reason_intrinsic,
4490                     Deoptimization::Action_maybe_recompile);
4491     }
4492 
4493     if (!stopped()) {
4494       // How many elements will we copy from the original?
4495       // The answer is MinI(orig_tail, length).
4496       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4497 
4498       // Generate a direct call to the right arraycopy function(s).
4499       // We know the copy is disjoint but we might not know if the
4500       // oop stores need checking.
4501       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4507       // to the copyOf to be validated, including that the copy to the
4508       // new array won't trigger an ArrayStoreException. That subtype
4509       // check can be optimized if we know something on the type of
4510       // the input array from type speculation.
4511       if (_gvn.type(klass_node)->singleton()) {
4512         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4513         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4514 
4515         int test = C->static_subtype_check(superk, subk);
4516         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4517           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4518           if (t_original->speculative_type() != nullptr) {
4519             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4520           }
4521         }
4522       }
4523 
4524       bool validated = false;
4525       // Reason_class_check rather than Reason_intrinsic because we
4526       // want to intrinsify even if this traps.
4527       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4528         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4529 
4530         if (not_subtype_ctrl != top()) {
4531           PreserveJVMState pjvms(this);
4532           set_control(not_subtype_ctrl);
4533           uncommon_trap(Deoptimization::Reason_class_check,
4534                         Deoptimization::Action_make_not_entrant);
4535           assert(stopped(), "Should be stopped");
4536         }
4537         validated = true;
4538       }
4539 
4540       if (!stopped()) {
4541         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4542 
4543         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4544                                                 load_object_klass(original), klass_node);
4545         if (!is_copyOfRange) {
4546           ac->set_copyof(validated);
4547         } else {

4593 
4594 //-----------------------generate_method_call----------------------------
4595 // Use generate_method_call to make a slow-call to the real
4596 // method if the fast path fails.  An alternative would be to
4597 // use a stub like OptoRuntime::slow_arraycopy_Java.
4598 // This only works for expanding the current library call,
4599 // not another intrinsic.  (E.g., don't use this for making an
4600 // arraycopy call inside of the copyOf intrinsic.)
4601 CallJavaNode*
4602 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4603   // When compiling the intrinsic method itself, do not use this technique.
4604   guarantee(callee() != C->method(), "cannot make slow-call to self");
4605 
4606   ciMethod* method = callee();
4607   // ensure the JVMS we have will be correct for this call
4608   guarantee(method_id == method->intrinsic_id(), "must match");
4609 
4610   const TypeFunc* tf = TypeFunc::make(method);
4611   if (res_not_null) {
4612     assert(tf->return_type() == T_OBJECT, "");
4613     const TypeTuple* range = tf->range();
4614     const Type** fields = TypeTuple::fields(range->cnt());
4615     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4616     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4617     tf = TypeFunc::make(tf->domain(), new_range);
4618   }
4619   CallJavaNode* slow_call;
4620   if (is_static) {
4621     assert(!is_virtual, "");
4622     slow_call = new CallStaticJavaNode(C, tf,
4623                            SharedRuntime::get_resolve_static_call_stub(), method);
4624   } else if (is_virtual) {
4625     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4626     int vtable_index = Method::invalid_vtable_index;
4627     if (UseInlineCaches) {
4628       // Suppress the vtable call
4629     } else {
4630       // hashCode and clone are not a miranda methods,
4631       // so the vtable index is fixed.
4632       // No need to use the linkResolver to get it.
4633        vtable_index = method->vtable_index();
4634        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4635               "bad index %d", vtable_index);
4636     }
4637     slow_call = new CallDynamicJavaNode(tf,

4654   set_edges_for_java_call(slow_call);
4655   return slow_call;
4656 }
4657 
4658 
4659 /**
4660  * Build special case code for calls to hashCode on an object. This call may
4661  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4662  * slightly different code.
4663  */
4664 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4665   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4666   assert(!(is_virtual && is_static), "either virtual, special, or static");
4667 
4668   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4669 
4670   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4671   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4672   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4673   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4674   Node* obj = nullptr;







4675   if (!is_static) {
4676     // Check for hashing null object
4677     obj = null_check_receiver();
4678     if (stopped())  return true;        // unconditionally null
4679     result_reg->init_req(_null_path, top());
4680     result_val->init_req(_null_path, top());
4681   } else {
4682     // Do a null check, and return zero if null.
4683     // System.identityHashCode(null) == 0
4684     obj = argument(0);
4685     Node* null_ctl = top();
4686     obj = null_check_oop(obj, &null_ctl);
4687     result_reg->init_req(_null_path, null_ctl);
4688     result_val->init_req(_null_path, _gvn.intcon(0));
4689   }
4690 
4691   // Unconditionally null?  Then return right away.
4692   if (stopped()) {
4693     set_control( result_reg->in(_null_path));
4694     if (!stopped())
4695       set_result(result_val->in(_null_path));
4696     return true;
4697   }
4698 
4699   // We only go to the fast case code if we pass a number of guards.  The
4700   // paths which do not pass are accumulated in the slow_region.
4701   RegionNode* slow_region = new RegionNode(1);
4702   record_for_igvn(slow_region);
4703 
4704   // If this is a virtual call, we generate a funny guard.  We pull out
4705   // the vtable entry corresponding to hashCode() from the target object.
4706   // If the target method which we are calling happens to be the native
4707   // Object hashCode() method, we pass the guard.  We do not need this
4708   // guard for non-virtual calls -- the caller is known to be the native
4709   // Object hashCode().
4710   if (is_virtual) {
4711     // After null check, get the object's klass.
4712     Node* obj_klass = load_object_klass(obj);
4713     generate_virtual_guard(obj_klass, slow_region);
4714   }
4715 
4716   // Get the header out of the object, use LoadMarkNode when available
4717   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4718   // The control of the load must be null. Otherwise, the load can move before
4719   // the null check after castPP removal.
4720   Node* no_ctrl = nullptr;
4721   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4722 
4723   if (!UseObjectMonitorTable) {
4724     // Test the header to see if it is safe to read w.r.t. locking.
4725     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);

4726     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4727     if (LockingMode == LM_LIGHTWEIGHT) {
4728       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4729       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4730       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4731 
4732       generate_slow_guard(test_monitor, slow_region);
4733     } else {
4734       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4735       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4736       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4737 
4738       generate_slow_guard(test_not_unlocked, slow_region);
4739     }
4740   }
4741 
4742   // Get the hash value and check to see that it has been properly assigned.
4743   // We depend on hash_mask being at most 32 bits and avoid the use of
4744   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4745   // vm: see markWord.hpp.

4780     // this->control() comes from set_results_for_java_call
4781     result_reg->init_req(_slow_path, control());
4782     result_val->init_req(_slow_path, slow_result);
4783     result_io  ->set_req(_slow_path, i_o());
4784     result_mem ->set_req(_slow_path, reset_memory());
4785   }
4786 
4787   // Return the combined state.
4788   set_i_o(        _gvn.transform(result_io)  );
4789   set_all_memory( _gvn.transform(result_mem));
4790 
4791   set_result(result_reg, result_val);
4792   return true;
4793 }
4794 
4795 //---------------------------inline_native_getClass----------------------------
4796 // public final native Class<?> java.lang.Object.getClass();
4797 //
4798 // Build special case code for calls to getClass on an object.
4799 bool LibraryCallKit::inline_native_getClass() {
4800   Node* obj = null_check_receiver();









4801   if (stopped())  return true;
4802   set_result(load_mirror_from_klass(load_object_klass(obj)));
4803   return true;
4804 }
4805 
4806 //-----------------inline_native_Reflection_getCallerClass---------------------
4807 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4808 //
4809 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4810 //
4811 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4812 // in that it must skip particular security frames and checks for
4813 // caller sensitive methods.
4814 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4815 #ifndef PRODUCT
4816   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4817     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4818   }
4819 #endif
4820 

5132     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5133 
5134     flags |= RC_NARROW_MEM; // narrow in memory
5135   }
5136 
5137   // Call it.  Note that the length argument is not scaled.
5138   make_runtime_call(flags,
5139                     OptoRuntime::unsafe_setmemory_Type(),
5140                     StubRoutines::unsafe_setmemory(),
5141                     "unsafe_setmemory",
5142                     dst_type,
5143                     dst_addr, size XTOP, byte);
5144 
5145   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5146 
5147   return true;
5148 }
5149 
5150 #undef XTOP
5151 














5152 //------------------------clone_coping-----------------------------------
5153 // Helper function for inline_native_clone.
5154 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5155   assert(obj_size != nullptr, "");
5156   Node* raw_obj = alloc_obj->in(1);
5157   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5158 
5159   AllocateNode* alloc = nullptr;
5160   if (ReduceBulkZeroing &&
5161       // If we are implementing an array clone without knowing its source type
5162       // (can happen when compiling the array-guarded branch of a reflective
5163       // Object.clone() invocation), initialize the array within the allocation.
5164       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5165       // to a runtime clone call that assumes fully initialized source arrays.
5166       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5167     // We will be completely responsible for initializing this object -
5168     // mark Initialize node as complete.
5169     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5170     // The object was just allocated - there should be no any stores!
5171     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");

5202 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5203 //
5204 // The general case has two steps, allocation and copying.
5205 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5206 //
5207 // Copying also has two cases, oop arrays and everything else.
5208 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5209 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5210 //
5211 // These steps fold up nicely if and when the cloned object's klass
5212 // can be sharply typed as an object array, a type array, or an instance.
5213 //
5214 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5215   PhiNode* result_val;
5216 
5217   // Set the reexecute bit for the interpreter to reexecute
5218   // the bytecode that invokes Object.clone if deoptimization happens.
5219   { PreserveReexecuteState preexecs(this);
5220     jvms()->set_should_reexecute(true);
5221 
5222     Node* obj = null_check_receiver();

5223     if (stopped())  return true;
5224 
5225     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();






5226 
5227     // If we are going to clone an instance, we need its exact type to
5228     // know the number and types of fields to convert the clone to
5229     // loads/stores. Maybe a speculative type can help us.
5230     if (!obj_type->klass_is_exact() &&
5231         obj_type->speculative_type() != nullptr &&
5232         obj_type->speculative_type()->is_instance_klass()) {

5233       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5234       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5235           !spec_ik->has_injected_fields()) {
5236         if (!obj_type->isa_instptr() ||
5237             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5238           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5239         }
5240       }
5241     }
5242 
5243     // Conservatively insert a memory barrier on all memory slices.
5244     // Do not let writes into the original float below the clone.
5245     insert_mem_bar(Op_MemBarCPUOrder);
5246 
5247     // paths into result_reg:
5248     enum {
5249       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5250       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5251       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5252       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5253       PATH_LIMIT
5254     };
5255     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5256     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5257     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5258     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5259     record_for_igvn(result_reg);
5260 
5261     Node* obj_klass = load_object_klass(obj);





5262     Node* array_obj = obj;
5263     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5264     if (array_ctl != nullptr) {
5265       // It's an array.
5266       PreserveJVMState pjvms(this);
5267       set_control(array_ctl);
5268       Node* obj_length = load_array_length(array_obj);
5269       Node* array_size = nullptr; // Size of the array without object alignment padding.
5270       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5271 
5272       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5273       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5274         // If it is an oop array, it requires very special treatment,
5275         // because gc barriers are required when accessing the array.
5276         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5277         if (is_obja != nullptr) {
5278           PreserveJVMState pjvms2(this);
5279           set_control(is_obja);
5280           // Generate a direct call to the right arraycopy function(s).
5281           // Clones are always tightly coupled.
5282           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5283           ac->set_clone_oop_array();
5284           Node* n = _gvn.transform(ac);
5285           assert(n == ac, "cannot disappear");
5286           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5287 
5288           result_reg->init_req(_objArray_path, control());
5289           result_val->init_req(_objArray_path, alloc_obj);
5290           result_i_o ->set_req(_objArray_path, i_o());
5291           result_mem ->set_req(_objArray_path, reset_memory());
5292         }
5293       }
5294       // Otherwise, there are no barriers to worry about.
5295       // (We can dispense with card marks if we know the allocation
5296       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5297       //  causes the non-eden paths to take compensating steps to
5298       //  simulate a fresh allocation, so that no further
5299       //  card marks are required in compiled code to initialize
5300       //  the object.)
5301 
5302       if (!stopped()) {
5303         copy_to_clone(array_obj, alloc_obj, array_size, true);
5304 
5305         // Present the results of the copy.
5306         result_reg->init_req(_array_path, control());
5307         result_val->init_req(_array_path, alloc_obj);
5308         result_i_o ->set_req(_array_path, i_o());
5309         result_mem ->set_req(_array_path, reset_memory());




































5310       }
5311     }
5312 
5313     // We only go to the instance fast case code if we pass a number of guards.
5314     // The paths which do not pass are accumulated in the slow_region.
5315     RegionNode* slow_region = new RegionNode(1);
5316     record_for_igvn(slow_region);
5317     if (!stopped()) {
5318       // It's an instance (we did array above).  Make the slow-path tests.
5319       // If this is a virtual call, we generate a funny guard.  We grab
5320       // the vtable entry corresponding to clone() from the target object.
5321       // If the target method which we are calling happens to be the
5322       // Object clone() method, we pass the guard.  We do not need this
5323       // guard for non-virtual calls; the caller is known to be the native
5324       // Object clone().
5325       if (is_virtual) {
5326         generate_virtual_guard(obj_klass, slow_region);
5327       }
5328 
5329       // The object must be easily cloneable and must not have a finalizer.
5330       // Both of these conditions may be checked in a single test.
5331       // We could optimize the test further, but we don't care.
5332       generate_misc_flags_guard(obj_klass,
5333                                 // Test both conditions:
5334                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5335                                 // Must be cloneable but not finalizer:
5336                                 KlassFlags::_misc_is_cloneable_fast,

5428         set_jvms(sfpt->jvms());
5429         _reexecute_sp = jvms()->sp();
5430 
5431         return saved_jvms;
5432       }
5433     }
5434   }
5435   return nullptr;
5436 }
5437 
5438 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5439 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5440 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5441   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5442   uint size = alloc->req();
5443   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5444   old_jvms->set_map(sfpt);
5445   for (uint i = 0; i < size; i++) {
5446     sfpt->init_req(i, alloc->in(i));
5447   }












5448   // re-push array length for deoptimization
5449   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5450   old_jvms->set_sp(old_jvms->sp()+1);
5451   old_jvms->set_monoff(old_jvms->monoff()+1);
5452   old_jvms->set_scloff(old_jvms->scloff()+1);
5453   old_jvms->set_endoff(old_jvms->endoff()+1);











5454   old_jvms->set_should_reexecute(true);
5455 
5456   sfpt->set_i_o(map()->i_o());
5457   sfpt->set_memory(map()->memory());
5458   sfpt->set_control(map()->control());
5459   return sfpt;
5460 }
5461 
5462 // In case of a deoptimization, we restart execution at the
5463 // allocation, allocating a new array. We would leave an uninitialized
5464 // array in the heap that GCs wouldn't expect. Move the allocation
5465 // after the traps so we don't allocate the array if we
5466 // deoptimize. This is possible because tightly_coupled_allocation()
5467 // guarantees there's no observer of the allocated array at this point
5468 // and the control flow is simple enough.
5469 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5470                                                     int saved_reexecute_sp, uint new_idx) {
5471   if (saved_jvms_before_guards != nullptr && !stopped()) {
5472     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5473 
5474     assert(alloc != nullptr, "only with a tightly coupled allocation");
5475     // restore JVM state to the state at the arraycopy
5476     saved_jvms_before_guards->map()->set_control(map()->control());
5477     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5478     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5479     // If we've improved the types of some nodes (null check) while
5480     // emitting the guards, propagate them to the current state
5481     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5482     set_jvms(saved_jvms_before_guards);
5483     _reexecute_sp = saved_reexecute_sp;
5484 
5485     // Remove the allocation from above the guards
5486     CallProjections callprojs;
5487     alloc->extract_projections(&callprojs, true);
5488     InitializeNode* init = alloc->initialization();
5489     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5490     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5491     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5492 
5493     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5494     // the allocation (i.e. is only valid if the allocation succeeds):
5495     // 1) replace CastIINode with AllocateArrayNode's length here
5496     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5497     //
5498     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5499     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5500     Node* init_control = init->proj_out(TypeFunc::Control);
5501     Node* alloc_length = alloc->Ideal_length();
5502 #ifdef ASSERT
5503     Node* prev_cast = nullptr;
5504 #endif
5505     for (uint i = 0; i < init_control->outcnt(); i++) {
5506       Node* init_out = init_control->raw_out(i);
5507       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5508 #ifdef ASSERT
5509         if (prev_cast == nullptr) {
5510           prev_cast = init_out;

5512           if (prev_cast->cmp(*init_out) == false) {
5513             prev_cast->dump();
5514             init_out->dump();
5515             assert(false, "not equal CastIINode");
5516           }
5517         }
5518 #endif
5519         C->gvn_replace_by(init_out, alloc_length);
5520       }
5521     }
5522     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5523 
5524     // move the allocation here (after the guards)
5525     _gvn.hash_delete(alloc);
5526     alloc->set_req(TypeFunc::Control, control());
5527     alloc->set_req(TypeFunc::I_O, i_o());
5528     Node *mem = reset_memory();
5529     set_all_memory(mem);
5530     alloc->set_req(TypeFunc::Memory, mem);
5531     set_control(init->proj_out_or_null(TypeFunc::Control));
5532     set_i_o(callprojs.fallthrough_ioproj);
5533 
5534     // Update memory as done in GraphKit::set_output_for_allocation()
5535     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5536     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5537     if (ary_type->isa_aryptr() && length_type != nullptr) {
5538       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5539     }
5540     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5541     int            elemidx  = C->get_alias_index(telemref);
5542     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5543     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5544 
5545     Node* allocx = _gvn.transform(alloc);
5546     assert(allocx == alloc, "where has the allocation gone?");
5547     assert(dest->is_CheckCastPP(), "not an allocation result?");
5548 
5549     _gvn.hash_delete(dest);
5550     dest->set_req(0, control());
5551     Node* destx = _gvn.transform(dest);
5552     assert(destx == dest, "where has the allocation result gone?");

5850         top_src  = src_type->isa_aryptr();
5851         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5852         src_spec = true;
5853       }
5854       if (!has_dest) {
5855         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5856         dest_type  = _gvn.type(dest);
5857         top_dest  = dest_type->isa_aryptr();
5858         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5859         dest_spec = true;
5860       }
5861     }
5862   }
5863 
5864   if (has_src && has_dest && can_emit_guards) {
5865     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5866     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5867     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5868     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5869 
5870     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5871       // If both arrays are object arrays then having the exact types
5872       // for both will remove the need for a subtype check at runtime
5873       // before the call and may make it possible to pick a faster copy
5874       // routine (without a subtype check on every element)
5875       // Do we have the exact type of src?
5876       bool could_have_src = src_spec;
5877       // Do we have the exact type of dest?
5878       bool could_have_dest = dest_spec;
5879       ciKlass* src_k = nullptr;
5880       ciKlass* dest_k = nullptr;
5881       if (!src_spec) {
5882         src_k = src_type->speculative_type_not_null();
5883         if (src_k != nullptr && src_k->is_array_klass()) {
5884           could_have_src = true;
5885         }
5886       }
5887       if (!dest_spec) {
5888         dest_k = dest_type->speculative_type_not_null();
5889         if (dest_k != nullptr && dest_k->is_array_klass()) {
5890           could_have_dest = true;
5891         }
5892       }
5893       if (could_have_src && could_have_dest) {
5894         // If we can have both exact types, emit the missing guards
5895         if (could_have_src && !src_spec) {
5896           src = maybe_cast_profiled_obj(src, src_k, true);


5897         }
5898         if (could_have_dest && !dest_spec) {
5899           dest = maybe_cast_profiled_obj(dest, dest_k, true);


5900         }
5901       }
5902     }
5903   }
5904 
5905   ciMethod* trap_method = method();
5906   int trap_bci = bci();
5907   if (saved_jvms_before_guards != nullptr) {
5908     trap_method = alloc->jvms()->method();
5909     trap_bci = alloc->jvms()->bci();
5910   }
5911 
5912   bool negative_length_guard_generated = false;
5913 
5914   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5915       can_emit_guards &&
5916       !src->is_top() && !dest->is_top()) {
5917     // validate arguments: enables transformation the ArrayCopyNode
5918     validated = true;
5919 
5920     RegionNode* slow_region = new RegionNode(1);
5921     record_for_igvn(slow_region);
5922 
5923     // (1) src and dest are arrays.
5924     generate_non_array_guard(load_object_klass(src), slow_region, &src);
5925     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
5926 
5927     // (2) src and dest arrays must have elements of the same BasicType
5928     // done at macro expansion or at Ideal transformation time
5929 
5930     // (4) src_offset must not be negative.
5931     generate_negative_guard(src_offset, slow_region);
5932 
5933     // (5) dest_offset must not be negative.
5934     generate_negative_guard(dest_offset, slow_region);
5935 
5936     // (7) src_offset + length must not exceed length of src.

5939                          slow_region);
5940 
5941     // (8) dest_offset + length must not exceed length of dest.
5942     generate_limit_guard(dest_offset, length,
5943                          load_array_length(dest),
5944                          slow_region);
5945 
5946     // (6) length must not be negative.
5947     // This is also checked in generate_arraycopy() during macro expansion, but
5948     // we also have to check it here for the case where the ArrayCopyNode will
5949     // be eliminated by Escape Analysis.
5950     if (EliminateAllocations) {
5951       generate_negative_guard(length, slow_region);
5952       negative_length_guard_generated = true;
5953     }
5954 
5955     // (9) each element of an oop array must be assignable
5956     Node* dest_klass = load_object_klass(dest);
5957     if (src != dest) {
5958       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);






5959 
5960       if (not_subtype_ctrl != top()) {
5961         PreserveJVMState pjvms(this);
5962         set_control(not_subtype_ctrl);
5963         uncommon_trap(Deoptimization::Reason_intrinsic,
5964                       Deoptimization::Action_make_not_entrant);
5965         assert(stopped(), "Should be stopped");






















5966       }
5967     }

5968     {
5969       PreserveJVMState pjvms(this);
5970       set_control(_gvn.transform(slow_region));
5971       uncommon_trap(Deoptimization::Reason_intrinsic,
5972                     Deoptimization::Action_make_not_entrant);
5973       assert(stopped(), "Should be stopped");
5974     }
5975 
5976     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5977     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5978     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5979     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5980   }
5981 
5982   if (stopped()) {
5983     return true;
5984   }
5985 
5986   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
5987                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5988                                           // so the compiler has a chance to eliminate them: during macro expansion,
5989                                           // we have to set their control (CastPP nodes are eliminated).
5990                                           load_object_klass(src), load_object_klass(dest),
5991                                           load_array_length(src), load_array_length(dest));
5992 
5993   ac->set_arraycopy(validated);
5994 
5995   Node* n = _gvn.transform(ac);
5996   if (n == ac) {
5997     ac->connect_outputs(this);
5998   } else {

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "ci/ciSymbols.hpp"
  29 #include "classfile/vmIntrinsics.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/castnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/convertnode.hpp"
  43 #include "opto/countbitsnode.hpp"
  44 #include "opto/idealKit.hpp"
  45 #include "opto/library_call.hpp"
  46 #include "opto/mathexactnode.hpp"

 299   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 300   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 301   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 302   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 303   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 304 
 305   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 306 
 307   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 308 
 309   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 310   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 311   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 312   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 313 
 314   case vmIntrinsics::_compressStringC:
 315   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 316   case vmIntrinsics::_inflateStringC:
 317   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 318 
 319   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 320   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 321   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 322   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 323   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 324   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 325   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 326   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 327   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 328   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 329   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 330   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 331 
 332   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 333   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 334   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 335   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 336   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 337   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 338   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 339   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 340   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 341   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 342 
 343   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 344   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 345   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 346   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 347   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 348   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 349   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 350   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 351   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 352 
 353   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 354   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 355   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 356   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 357   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 358   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 359   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 360   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 361   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 488                                                                                          "notifyJvmtiEnd", false, true);
 489   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 490                                                                                          "notifyJvmtiMount", false, false);
 491   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 492                                                                                          "notifyJvmtiUnmount", false, false);
 493   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 494 #endif
 495 
 496 #ifdef JFR_HAVE_INTRINSICS
 497   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 498   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 499   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 500 #endif
 501   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 502   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 503   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 504   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 505   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 506   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 507   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 508   case vmIntrinsics::_isFlatArray:              return inline_unsafe_isFlatArray();
 509   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 510   case vmIntrinsics::_getLength:                return inline_native_getLength();
 511   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 512   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 513   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 514   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 515   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 516   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 517   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 518 
 519   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 520   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 521   case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false);
 522   case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true);
 523   case vmIntrinsics::_newNullableAtomicArray:     return inline_newArray(/* null_free */ false, /* atomic */ true);
 524 
 525   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 526 
 527   case vmIntrinsics::_isInstance:
 528   case vmIntrinsics::_isHidden:
 529   case vmIntrinsics::_getSuperclass:
 530   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 531 
 532   case vmIntrinsics::_floatToRawIntBits:
 533   case vmIntrinsics::_floatToIntBits:
 534   case vmIntrinsics::_intBitsToFloat:
 535   case vmIntrinsics::_doubleToRawLongBits:
 536   case vmIntrinsics::_doubleToLongBits:
 537   case vmIntrinsics::_longBitsToDouble:
 538   case vmIntrinsics::_floatToFloat16:
 539   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 540   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 541   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 542   case vmIntrinsics::_floatIsFinite:
 543   case vmIntrinsics::_floatIsInfinite:

2275     case vmIntrinsics::_remainderUnsigned_l: {
2276       zero_check_long(argument(2));
2277       // Compile-time detect of null-exception
2278       if (stopped()) {
2279         return true; // keep the graph constructed so far
2280       }
2281       n = new UModLNode(control(), argument(0), argument(2));
2282       break;
2283     }
2284     default:  fatal_unexpected_iid(id);  break;
2285   }
2286   set_result(_gvn.transform(n));
2287   return true;
2288 }
2289 
2290 //----------------------------inline_unsafe_access----------------------------
2291 
2292 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2293   // Attempt to infer a sharper value type from the offset and base type.
2294   ciKlass* sharpened_klass = nullptr;
2295   bool null_free = false;
2296 
2297   // See if it is an instance field, with an object type.
2298   if (alias_type->field() != nullptr) {
2299     if (alias_type->field()->type()->is_klass()) {
2300       sharpened_klass = alias_type->field()->type()->as_klass();
2301       null_free = alias_type->field()->is_null_free();
2302     }
2303   }
2304 
2305   const TypeOopPtr* result = nullptr;
2306   // See if it is a narrow oop array.
2307   if (adr_type->isa_aryptr()) {
2308     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2309       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2310       null_free = adr_type->is_aryptr()->is_null_free();
2311       if (elem_type != nullptr && elem_type->is_loaded()) {
2312         // Sharpen the value type.
2313         result = elem_type;
2314       }
2315     }
2316   }
2317 
2318   // The sharpened class might be unloaded if there is no class loader
2319   // contraint in place.
2320   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2321     // Sharpen the value type.
2322     result = TypeOopPtr::make_from_klass(sharpened_klass);
2323     if (null_free) {
2324       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2325     }
2326   }
2327   if (result != nullptr) {
2328 #ifndef PRODUCT
2329     if (C->print_intrinsics() || C->print_inlining()) {
2330       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2331       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2332     }
2333 #endif
2334   }
2335   return result;
2336 }
2337 
2338 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2339   switch (kind) {
2340       case Relaxed:
2341         return MO_UNORDERED;
2342       case Opaque:
2343         return MO_RELAXED;
2344       case Acquire:
2345         return MO_ACQUIRE;
2346       case Release:
2347         return MO_RELEASE;
2348       case Volatile:
2349         return MO_SEQ_CST;
2350       default:
2351         ShouldNotReachHere();
2352         return 0;
2353   }
2354 }
2355 
2356 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2357   if (callee()->is_static())  return false;  // caller must have the capability!
2358   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2359   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2360   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2361   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2362 
2363   if (is_reference_type(type)) {
2364     decorators |= ON_UNKNOWN_OOP_REF;
2365   }
2366 
2367   if (unaligned) {
2368     decorators |= C2_UNALIGNED;
2369   }
2370 
2371 #ifndef PRODUCT
2372   {
2373     ResourceMark rm;
2374     // Check the signatures.
2375     ciSignature* sig = callee()->signature();
2376 #ifdef ASSERT
2377     if (!is_store) {
2378       // Object getReference(Object base, int/long offset), etc.
2379       BasicType rtype = sig->return_type()->basic_type();
2380       assert(rtype == type, "getter must return the expected value");
2381       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2382       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2383       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2384     } else {
2385       // void putReference(Object base, int/long offset, Object x), etc.
2386       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2387       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2388       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2389       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2390       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2391       assert(vtype == type, "putter must accept the expected value");
2392     }
2393 #endif // ASSERT
2394  }
2395 #endif //PRODUCT
2396 
2397   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2398 
2399   Node* receiver = argument(0);  // type: oop
2400 
2401   // Build address expression.
2402   Node* heap_base_oop = top();
2403 
2404   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2405   Node* base = argument(1);  // type: oop
2406   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2407   Node* offset = argument(2);  // type: long
2408   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2409   // to be plain byte offsets, which are also the same as those accepted
2410   // by oopDesc::field_addr.
2411   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2412          "fieldOffset must be byte-scaled");
2413 
2414   ciInlineKlass* inline_klass = nullptr;
2415   if (is_flat) {
2416     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2417     if (cls == nullptr || cls->const_oop() == nullptr) {
2418       return false;
2419     }
2420     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2421     if (!mirror_type->is_inlinetype()) {
2422       return false;
2423     }
2424     inline_klass = mirror_type->as_inline_klass();
2425   }
2426 
2427   if (base->is_InlineType()) {
2428     InlineTypeNode* vt = base->as_InlineType();
2429     if (is_store) {
2430       if (!vt->is_allocated(&_gvn)) {
2431         return false;
2432       }
2433       base = vt->get_oop();
2434     } else {
2435       if (offset->is_Con()) {
2436         long off = find_long_con(offset, 0);
2437         ciInlineKlass* vk = vt->type()->inline_klass();
2438         if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2439           return false;
2440         }
2441 
2442         ciField* field = vk->get_non_flat_field_by_offset(off);
2443         if (field != nullptr) {
2444           BasicType bt = type2field[field->type()->basic_type()];
2445           if (bt == T_ARRAY || bt == T_NARROWOOP) {
2446             bt = T_OBJECT;
2447           }
2448           if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2449             Node* value = vt->field_value_by_offset(off, false);
2450             if (value->is_InlineType()) {
2451               value = value->as_InlineType()->adjust_scalarization_depth(this);
2452             }
2453             set_result(value);
2454             return true;
2455           }
2456         }
2457       }
2458       {
2459         // Re-execute the unsafe access if allocation triggers deoptimization.
2460         PreserveReexecuteState preexecs(this);
2461         jvms()->set_should_reexecute(true);
2462         vt = vt->buffer(this);
2463       }
2464       base = vt->get_oop();
2465     }
2466   }
2467 
2468   // 32-bit machines ignore the high half!
2469   offset = ConvL2X(offset);
2470 
2471   // Save state and restore on bailout
2472   uint old_sp = sp();
2473   SafePointNode* old_map = clone_map();
2474 
2475   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2476   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2477 
2478   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2479     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2480       decorators |= IN_NATIVE; // off-heap primitive access
2481     } else {
2482       set_map(old_map);
2483       set_sp(old_sp);
2484       return false; // off-heap oop accesses are not supported
2485     }
2486   } else {
2487     heap_base_oop = base; // on-heap or mixed access
2488   }
2489 
2490   // Can base be null? Otherwise, always on-heap access.
2491   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2492 
2493   if (!can_access_non_heap) {
2494     decorators |= IN_HEAP;
2495   }
2496 
2497   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2498 
2499   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2500   if (adr_type == TypePtr::NULL_PTR) {
2501     set_map(old_map);
2502     set_sp(old_sp);
2503     return false; // off-heap access with zero address
2504   }
2505 
2506   // Try to categorize the address.
2507   Compile::AliasType* alias_type = C->alias_type(adr_type);
2508   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2509 
2510   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2511       alias_type->adr_type() == TypeAryPtr::RANGE) {
2512     set_map(old_map);
2513     set_sp(old_sp);
2514     return false; // not supported
2515   }
2516 
2517   bool mismatched = false;
2518   BasicType bt = T_ILLEGAL;
2519   ciField* field = nullptr;
2520   if (adr_type->isa_instptr()) {
2521     const TypeInstPtr* instptr = adr_type->is_instptr();
2522     ciInstanceKlass* k = instptr->instance_klass();
2523     int off = instptr->offset();
2524     if (instptr->const_oop() != nullptr &&
2525         k == ciEnv::current()->Class_klass() &&
2526         instptr->offset() >= (k->size_helper() * wordSize)) {
2527       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2528       field = k->get_field_by_offset(off, true);
2529     } else {
2530       field = k->get_non_flat_field_by_offset(off);
2531     }
2532     if (field != nullptr) {
2533       bt = type2field[field->type()->basic_type()];
2534     }
2535     if (bt != alias_type->basic_type()) {
2536       // Type mismatch. Is it an access to a nested flat field?
2537       field = k->get_field_by_offset(off, false);
2538       if (field != nullptr) {
2539         bt = type2field[field->type()->basic_type()];
2540       }
2541     }
2542     assert(bt == alias_type->basic_type() || is_flat, "should match");
2543   } else {
2544     bt = alias_type->basic_type();
2545   }
2546 
2547   if (bt != T_ILLEGAL) {
2548     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2549     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2550       // Alias type doesn't differentiate between byte[] and boolean[]).
2551       // Use address type to get the element type.
2552       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2553     }
2554     if (is_reference_type(bt, true)) {
2555       // accessing an array field with getReference is not a mismatch
2556       bt = T_OBJECT;
2557     }
2558     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2559       // Don't intrinsify mismatched object accesses
2560       set_map(old_map);
2561       set_sp(old_sp);
2562       return false;
2563     }
2564     mismatched = (bt != type);
2565   } else if (alias_type->adr_type()->isa_oopptr()) {
2566     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2567   }
2568 
2569   if (is_flat) {
2570     if (adr_type->isa_instptr()) {
2571       if (field == nullptr || field->type() != inline_klass) {
2572         mismatched = true;
2573       }
2574     } else if (adr_type->isa_aryptr()) {
2575       const Type* elem = adr_type->is_aryptr()->elem();
2576       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2577         mismatched = true;
2578       }
2579     } else {
2580       mismatched = true;
2581     }
2582     if (is_store) {
2583       const Type* val_t = _gvn.type(val);
2584       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2585         set_map(old_map);
2586         set_sp(old_sp);
2587         return false;
2588       }
2589     }
2590   }
2591 
2592   destruct_map_clone(old_map);
2593   assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2594 
2595   if (mismatched) {
2596     decorators |= C2_MISMATCHED;
2597   }
2598 
2599   // First guess at the value type.
2600   const Type *value_type = Type::get_const_basic_type(type);
2601 
2602   // Figure out the memory ordering.
2603   decorators |= mo_decorator_for_access_kind(kind);
2604 
2605   if (!is_store) {
2606     if (type == T_OBJECT && !is_flat) {
2607       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2608       if (tjp != nullptr) {
2609         value_type = tjp;
2610       }
2611     }
2612   }
2613 
2614   receiver = null_check(receiver);
2615   if (stopped()) {
2616     return true;
2617   }
2618   // Heap pointers get a null-check from the interpreter,
2619   // as a courtesy.  However, this is not guaranteed by Unsafe,
2620   // and it is not possible to fully distinguish unintended nulls
2621   // from intended ones in this API.
2622 
2623   if (!is_store) {
2624     Node* p = nullptr;
2625     // Try to constant fold a load from a constant field
2626 
2627     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2628       // final or stable field
2629       p = make_constant_from_field(field, heap_base_oop);
2630     }
2631 
2632     if (p == nullptr) { // Could not constant fold the load
2633       if (is_flat) {
2634         if (adr_type->isa_instptr() && !mismatched) {
2635           ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2636           int offset = adr_type->is_instptr()->offset();
2637           p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, nullptr, holder, offset, false, -1, decorators);
2638         } else {
2639           p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, nullptr, 0, false, -1, decorators);
2640         }
2641       } else {
2642         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2643         const TypeOopPtr* ptr = value_type->make_oopptr();
2644         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2645           // Load a non-flattened inline type from memory
2646           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass());
2647         }
2648       }
2649       // Normalize the value returned by getBoolean in the following cases
2650       if (type == T_BOOLEAN &&
2651           (mismatched ||
2652            heap_base_oop == top() ||                  // - heap_base_oop is null or
2653            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2654                                                       //   and the unsafe access is made to large offset
2655                                                       //   (i.e., larger than the maximum offset necessary for any
2656                                                       //   field access)
2657             ) {
2658           IdealKit ideal = IdealKit(this);
2659 #define __ ideal.
2660           IdealVariable normalized_result(ideal);
2661           __ declarations_done();
2662           __ set(normalized_result, p);
2663           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2664           __ set(normalized_result, ideal.ConI(1));
2665           ideal.end_if();
2666           final_sync(ideal);
2667           p = __ value(normalized_result);
2668 #undef __
2669       }
2670     }
2671     if (type == T_ADDRESS) {
2672       p = gvn().transform(new CastP2XNode(nullptr, p));
2673       p = ConvX2UL(p);
2674     }
2675     // The load node has the control of the preceding MemBarCPUOrder.  All
2676     // following nodes will have the control of the MemBarCPUOrder inserted at
2677     // the end of this method.  So, pushing the load onto the stack at a later
2678     // point is fine.
2679     set_result(p);
2680   } else {
2681     if (bt == T_ADDRESS) {
2682       // Repackage the long as a pointer.
2683       val = ConvL2X(val);
2684       val = gvn().transform(new CastX2PNode(val));
2685     }
2686     if (is_flat) {
2687       if (adr_type->isa_instptr() && !mismatched) {
2688         ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2689         int offset = adr_type->is_instptr()->offset();
2690         val->as_InlineType()->store_flat(this, base, base, nullptr, holder, offset, false, -1, decorators);
2691       } else {
2692         val->as_InlineType()->store_flat(this, base, adr, nullptr, nullptr, 0, false, -1, decorators);
2693       }
2694     } else {
2695       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2696     }
2697   }
2698 
2699   if (argument(1)->is_InlineType() && is_store) {
2700     InlineTypeNode* value = InlineTypeNode::make_from_oop(this, base, _gvn.type(argument(1))->inline_klass());
2701     value = value->make_larval(this, false);
2702     replace_in_map(argument(1), value);
2703   }
2704 
2705   return true;
2706 }
2707 
2708 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2709   Node* receiver = argument(0);
2710   Node* value = argument(1);
2711 
2712   const Type* type = gvn().type(value);
2713   if (!type->is_inlinetypeptr()) {
2714     C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type");
2715     return false;
2716   }
2717 
2718   null_check(receiver);
2719   if (stopped()) {
2720     return true;
2721   }
2722 
2723   value = null_check(value);
2724   if (stopped()) {
2725     return true;
2726   }
2727 
2728   ciInlineKlass* vk = type->inline_klass();
2729   Node* klass = makecon(TypeKlassPtr::make(vk));
2730   Node* obj = new_instance(klass);
2731   AllocateNode::Ideal_allocation(obj)->_larval = true;
2732 
2733   assert(value->is_InlineType(), "must be an InlineTypeNode");
2734   value->as_InlineType()->store(this, obj, obj, vk);
2735 
2736   set_result(obj);
2737   return true;
2738 }
2739 
2740 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2741   Node* receiver = argument(0);
2742   Node* buffer = argument(1);
2743 
2744   const Type* type = gvn().type(buffer);
2745   if (!type->is_inlinetypeptr()) {
2746     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type");
2747     return false;
2748   }
2749 
2750   AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer);
2751   if (alloc == nullptr) {
2752     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer");
2753     return false;
2754   }
2755 
2756   null_check(receiver);
2757   if (stopped()) {
2758     return true;
2759   }
2760 
2761   // Unset the larval bit in the object header
2762   Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned);
2763   Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place)));
2764   access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP);
2765 
2766   // We must ensure that the buffer is properly published
2767   insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
2768   assert(!type->maybe_null(), "result of an allocation should not be null");
2769   set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass(), false));
2770   return true;
2771 }
2772 
2773 //----------------------------inline_unsafe_load_store----------------------------
2774 // This method serves a couple of different customers (depending on LoadStoreKind):
2775 //
2776 // LS_cmp_swap:
2777 //
2778 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2779 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2780 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2781 //
2782 // LS_cmp_swap_weak:
2783 //
2784 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2785 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2786 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2787 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2788 //
2789 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);

2958     }
2959     case LS_cmp_swap:
2960     case LS_cmp_swap_weak:
2961     case LS_get_add:
2962       break;
2963     default:
2964       ShouldNotReachHere();
2965   }
2966 
2967   // Null check receiver.
2968   receiver = null_check(receiver);
2969   if (stopped()) {
2970     return true;
2971   }
2972 
2973   int alias_idx = C->get_alias_index(adr_type);
2974 
2975   if (is_reference_type(type)) {
2976     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2977 
2978     if (oldval != nullptr && oldval->is_InlineType()) {
2979       // Re-execute the unsafe access if allocation triggers deoptimization.
2980       PreserveReexecuteState preexecs(this);
2981       jvms()->set_should_reexecute(true);
2982       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
2983     }
2984     if (newval != nullptr && newval->is_InlineType()) {
2985       // Re-execute the unsafe access if allocation triggers deoptimization.
2986       PreserveReexecuteState preexecs(this);
2987       jvms()->set_should_reexecute(true);
2988       newval = newval->as_InlineType()->buffer(this)->get_oop();
2989     }
2990 
2991     // Transformation of a value which could be null pointer (CastPP #null)
2992     // could be delayed during Parse (for example, in adjust_map_after_if()).
2993     // Execute transformation here to avoid barrier generation in such case.
2994     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2995       newval = _gvn.makecon(TypePtr::NULL_PTR);
2996 
2997     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2998       // Refine the value to a null constant, when it is known to be null
2999       oldval = _gvn.makecon(TypePtr::NULL_PTR);
3000     }
3001   }
3002 
3003   Node* result = nullptr;
3004   switch (kind) {
3005     case LS_cmp_exchange: {
3006       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
3007                                             oldval, newval, value_type, type, decorators);
3008       break;
3009     }
3010     case LS_cmp_swap_weak:

3157                     Deoptimization::Action_make_not_entrant);
3158     }
3159     if (stopped()) {
3160       return true;
3161     }
3162 #endif //INCLUDE_JVMTI
3163 
3164   Node* test = nullptr;
3165   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3166     // Note:  The argument might still be an illegal value like
3167     // Serializable.class or Object[].class.   The runtime will handle it.
3168     // But we must make an explicit check for initialization.
3169     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3170     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3171     // can generate code to load it as unsigned byte.
3172     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3173     Node* bits = intcon(InstanceKlass::fully_initialized);
3174     test = _gvn.transform(new SubINode(inst, bits));
3175     // The 'test' is non-zero if we need to take a slow path.
3176   }
3177   Node* obj = nullptr;
3178   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3179   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3180     obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3181   } else {
3182     obj = new_instance(kls, test);
3183   }
3184   set_result(obj);
3185   return true;
3186 }
3187 
3188 //------------------------inline_native_time_funcs--------------
3189 // inline code for System.currentTimeMillis() and System.nanoTime()
3190 // these have the same type and signature
3191 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3192   const TypeFunc* tf = OptoRuntime::void_long_Type();
3193   const TypePtr* no_memory_effects = nullptr;
3194   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3195   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3196 #ifdef ASSERT
3197   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3198   assert(value_top == top(), "second value must be top");
3199 #endif
3200   set_result(value);
3201   return true;
3202 }
3203 

3944   Node* thread = _gvn.transform(new ThreadLocalNode());
3945   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3946   Node* thread_obj_handle
3947     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3948   thread_obj_handle = _gvn.transform(thread_obj_handle);
3949   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3950   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3951 
3952   // Change the _monitor_owner_id of the JavaThread
3953   Node* tid = load_field_from_object(arr, "tid", "J");
3954   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3955   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3956 
3957   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3958   return true;
3959 }
3960 
3961 const Type* LibraryCallKit::scopedValueCache_type() {
3962   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3963   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3964   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3965 
3966   // Because we create the scopedValue cache lazily we have to make the
3967   // type of the result BotPTR.
3968   bool xk = etype->klass_is_exact();
3969   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
3970   return objects_type;
3971 }
3972 
3973 Node* LibraryCallKit::scopedValueCache_helper() {
3974   Node* thread = _gvn.transform(new ThreadLocalNode());
3975   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3976   // We cannot use immutable_memory() because we might flip onto a
3977   // different carrier thread, at which point we'll need to use that
3978   // carrier thread's cache.
3979   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3980   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3981   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3982 }
3983 
3984 //------------------------inline_native_scopedValueCache------------------
3985 bool LibraryCallKit::inline_native_scopedValueCache() {
3986   Node* cache_obj_handle = scopedValueCache_helper();
3987   const Type* objects_type = scopedValueCache_type();
3988   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3989 

4073   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
4074 
4075   // Result of top level CFG and Memory.
4076   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4077   record_for_igvn(result_rgn);
4078   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4079   record_for_igvn(result_mem);
4080 
4081   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
4082   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
4083   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
4084   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4085 
4086   // Set output state.
4087   set_control(_gvn.transform(result_rgn));
4088   set_all_memory(_gvn.transform(result_mem));
4089 
4090   return true;
4091 }
4092 









4093 //-----------------------load_klass_from_mirror_common-------------------------
4094 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
4095 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
4096 // and branch to the given path on the region.
4097 // If never_see_null, take an uncommon trap on null, so we can optimistically
4098 // compile for the non-null case.
4099 // If the region is null, force never_see_null = true.
4100 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
4101                                                     bool never_see_null,
4102                                                     RegionNode* region,
4103                                                     int null_path,
4104                                                     int offset) {
4105   if (region == nullptr)  never_see_null = true;
4106   Node* p = basic_plus_adr(mirror, offset);
4107   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4108   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
4109   Node* null_ctl = top();
4110   kls = null_check_oop(kls, &null_ctl, never_see_null);
4111   if (region != nullptr) {
4112     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

4116   }
4117   return kls;
4118 }
4119 
4120 //--------------------(inline_native_Class_query helpers)---------------------
4121 // Use this for JVM_ACC_INTERFACE.
4122 // Fall through if (mods & mask) == bits, take the guard otherwise.
4123 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4124                                                  ByteSize offset, const Type* type, BasicType bt) {
4125   // Branch around if the given klass has the given modifier bit set.
4126   // Like generate_guard, adds a new path onto the region.
4127   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4128   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4129   Node* mask = intcon(modifier_mask);
4130   Node* bits = intcon(modifier_bits);
4131   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4132   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4133   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4134   return generate_fair_guard(bol, region);
4135 }
4136 
4137 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4138   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4139                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4140 }
4141 
4142 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4143 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4144   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4145                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4146 }
4147 
4148 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4149   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4150 }
4151 
4152 //-------------------------inline_native_Class_query-------------------
4153 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4154   const Type* return_type = TypeInt::BOOL;
4155   Node* prim_return_value = top();  // what happens if it's a primitive class?
4156   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4275 
4276   case vmIntrinsics::_getClassAccessFlags:
4277     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4278     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4279     break;
4280 
4281   default:
4282     fatal_unexpected_iid(id);
4283     break;
4284   }
4285 
4286   // Fall-through is the normal case of a query to a real class.
4287   phi->init_req(1, query_value);
4288   region->init_req(1, control());
4289 
4290   C->set_has_split_ifs(true); // Has chance for split-if optimization
4291   set_result(region, phi);
4292   return true;
4293 }
4294 
4295 
4296 //-------------------------inline_Class_cast-------------------
4297 bool LibraryCallKit::inline_Class_cast() {
4298   Node* mirror = argument(0); // Class
4299   Node* obj    = argument(1);
4300   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4301   if (mirror_con == nullptr) {
4302     return false;  // dead path (mirror->is_top()).
4303   }
4304   if (obj == nullptr || obj->is_top()) {
4305     return false;  // dead path
4306   }
4307   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4308 
4309   // First, see if Class.cast() can be folded statically.
4310   // java_mirror_type() returns non-null for compile-time Class constants.
4311   bool is_null_free_array = false;
4312   ciType* tm = mirror_con->java_mirror_type(&is_null_free_array);
4313   if (tm != nullptr && tm->is_klass() &&
4314       tp != nullptr) {
4315     if (!tp->is_loaded()) {
4316       // Don't use intrinsic when class is not loaded.
4317       return false;
4318     } else {
4319       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4320       if (is_null_free_array) {
4321         tklass = tklass->is_aryklassptr()->cast_to_null_free();
4322       }
4323       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4324       if (static_res == Compile::SSC_always_true) {
4325         // isInstance() is true - fold the code.
4326         set_result(obj);
4327         return true;
4328       } else if (static_res == Compile::SSC_always_false) {
4329         // Don't use intrinsic, have to throw ClassCastException.
4330         // If the reference is null, the non-intrinsic bytecode will
4331         // be optimized appropriately.
4332         return false;
4333       }
4334     }
4335   }
4336 
4337   // Bailout intrinsic and do normal inlining if exception path is frequent.
4338   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4339     return false;
4340   }
4341 
4342   // Generate dynamic checks.
4343   // Class.cast() is java implementation of _checkcast bytecode.
4344   // Do checkcast (Parse::do_checkcast()) optimizations here.
4345 
4346   mirror = null_check(mirror);
4347   // If mirror is dead, only null-path is taken.
4348   if (stopped()) {
4349     return true;
4350   }
4351 
4352   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4353   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4354   RegionNode* region = new RegionNode(PATH_LIMIT);
4355   record_for_igvn(region);
4356 
4357   // Now load the mirror's klass metaobject, and null-check it.
4358   // If kls is null, we have a primitive mirror and
4359   // nothing is an instance of a primitive type.
4360   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4361 
4362   Node* res = top();
4363   Node* io = i_o();
4364   Node* mem = merged_memory();
4365   if (!stopped()) {
4366 
4367     Node* bad_type_ctrl = top();
4368     // Do checkcast optimizations.
4369     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4370     region->init_req(_bad_type_path, bad_type_ctrl);
4371   }
4372   if (region->in(_prim_path) != top() ||
4373       region->in(_bad_type_path) != top() ||
4374       region->in(_npe_path) != top()) {
4375     // Let Interpreter throw ClassCastException.
4376     PreserveJVMState pjvms(this);
4377     set_control(_gvn.transform(region));
4378     // Set IO and memory because gen_checkcast may override them when buffering inline types
4379     set_i_o(io);
4380     set_all_memory(mem);
4381     uncommon_trap(Deoptimization::Reason_intrinsic,
4382                   Deoptimization::Action_maybe_recompile);
4383   }
4384   if (!stopped()) {
4385     set_result(res);
4386   }
4387   return true;
4388 }
4389 
4390 
4391 //--------------------------inline_native_subtype_check------------------------
4392 // This intrinsic takes the JNI calls out of the heart of
4393 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4394 bool LibraryCallKit::inline_native_subtype_check() {
4395   // Pull both arguments off the stack.
4396   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4397   args[0] = argument(0);
4398   args[1] = argument(1);
4399   Node* klasses[2];             // corresponding Klasses: superk, subk
4400   klasses[0] = klasses[1] = top();
4401 
4402   enum {
4403     // A full decision tree on {superc is prim, subc is prim}:
4404     _prim_0_path = 1,           // {P,N} => false
4405                                 // {P,P} & superc!=subc => false
4406     _prim_same_path,            // {P,P} & superc==subc => true
4407     _prim_1_path,               // {N,P} => false
4408     _ref_subtype_path,          // {N,N} & subtype check wins => true
4409     _both_ref_path,             // {N,N} & subtype check loses => false
4410     PATH_LIMIT
4411   };
4412 
4413   RegionNode* region = new RegionNode(PATH_LIMIT);
4414   RegionNode* prim_region = new RegionNode(2);
4415   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4416   record_for_igvn(region);
4417   record_for_igvn(prim_region);
4418 
4419   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4420   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4421   int class_klass_offset = java_lang_Class::klass_offset();
4422 
4423   // First null-check both mirrors and load each mirror's klass metaobject.
4424   int which_arg;
4425   for (which_arg = 0; which_arg <= 1; which_arg++) {
4426     Node* arg = args[which_arg];
4427     arg = null_check(arg);
4428     if (stopped())  break;
4429     args[which_arg] = arg;
4430 
4431     Node* p = basic_plus_adr(arg, class_klass_offset);
4432     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4433     klasses[which_arg] = _gvn.transform(kls);
4434   }
4435 
4436   // Having loaded both klasses, test each for null.
4437   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4438   for (which_arg = 0; which_arg <= 1; which_arg++) {
4439     Node* kls = klasses[which_arg];
4440     Node* null_ctl = top();
4441     kls = null_check_oop(kls, &null_ctl, never_see_null);
4442     if (which_arg == 0) {
4443       prim_region->init_req(1, null_ctl);
4444     } else {
4445       region->init_req(_prim_1_path, null_ctl);
4446     }
4447     if (stopped())  break;
4448     klasses[which_arg] = kls;
4449   }
4450 
4451   if (!stopped()) {
4452     // now we have two reference types, in klasses[0..1]
4453     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4454     Node* superk = klasses[0];  // the receiver
4455     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));

4456     region->set_req(_ref_subtype_path, control());
4457   }
4458 
4459   // If both operands are primitive (both klasses null), then
4460   // we must return true when they are identical primitives.
4461   // It is convenient to test this after the first null klass check.
4462   // This path is also used if superc is a value mirror.
4463   set_control(_gvn.transform(prim_region));
4464   if (!stopped()) {
4465     // Since superc is primitive, make a guard for the superc==subc case.
4466     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4467     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4468     generate_fair_guard(bol_eq, region);
4469     if (region->req() == PATH_LIMIT+1) {
4470       // A guard was added.  If the added guard is taken, superc==subc.
4471       region->swap_edges(PATH_LIMIT, _prim_same_path);
4472       region->del_req(PATH_LIMIT);
4473     }
4474     region->set_req(_prim_0_path, control()); // Not equal after all.
4475   }
4476 
4477   // these are the only paths that produce 'true':
4478   phi->set_req(_prim_same_path,   intcon(1));
4479   phi->set_req(_ref_subtype_path, intcon(1));
4480 
4481   // pull together the cases:
4482   assert(region->req() == PATH_LIMIT, "sane region");
4483   for (uint i = 1; i < region->req(); i++) {
4484     Node* ctl = region->in(i);
4485     if (ctl == nullptr || ctl == top()) {
4486       region->set_req(i, top());
4487       phi   ->set_req(i, top());
4488     } else if (phi->in(i) == nullptr) {
4489       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4490     }
4491   }
4492 
4493   set_control(_gvn.transform(region));
4494   set_result(_gvn.transform(phi));
4495   return true;
4496 }
4497 
4498 //---------------------generate_array_guard_common------------------------
4499 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) {

4500 
4501   if (stopped()) {
4502     return nullptr;
4503   }
4504 









4505   // Like generate_guard, adds a new path onto the region.
4506   jint  layout_con = 0;
4507   Node* layout_val = get_layout_helper(kls, layout_con);
4508   if (layout_val == nullptr) {
4509     bool query = 0;
4510     switch(kind) {
4511       case ObjectArray:    query = Klass::layout_helper_is_objArray(layout_con); break;
4512       case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break;
4513       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4514       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4515       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4516       default:
4517         ShouldNotReachHere();
4518     }
4519     if (!query) {
4520       return nullptr;                       // never a branch
4521     } else {                             // always a branch
4522       Node* always_branch = control();
4523       if (region != nullptr)
4524         region->add_req(always_branch);
4525       set_control(top());
4526       return always_branch;
4527     }
4528   }
4529   unsigned int value = 0;
4530   BoolTest::mask btest = BoolTest::illegal;
4531   switch(kind) {
4532     case ObjectArray:
4533     case NonObjectArray: {
4534       value = Klass::_lh_array_tag_obj_value;
4535       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4536       btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne;
4537       break;
4538     }
4539     case TypeArray: {
4540       value = Klass::_lh_array_tag_type_value;
4541       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4542       btest = BoolTest::eq;
4543       break;
4544     }
4545     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4546     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4547     default:
4548       ShouldNotReachHere();
4549   }
4550   // Now test the correct condition.
4551   jint nval = (jint)value;



4552   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));



4553   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4554   Node* ctrl = generate_fair_guard(bol, region);
4555   Node* is_array_ctrl = kind == NonArray ? control() : ctrl;
4556   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4557     // Keep track of the fact that 'obj' is an array to prevent
4558     // array specific accesses from floating above the guard.
4559     Node* cast = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4560     // Check for top because in rare cases, the type system can determine that
4561     // the object can't be an array but the layout helper check is not folded.
4562     if (!cast->is_top()) {
4563       *obj = cast;
4564     }
4565   }
4566   return ctrl;
4567 }
4568 
4569 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal);
4570 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal);
4571 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length);
4572 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) {
4573   assert(null_free || atomic, "nullable implies atomic");
4574   Node* componentType = argument(0);
4575   Node* length = argument(1);
4576   Node* init_val = null_free ? argument(2) : nullptr;
4577 
4578   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4579   if (tp != nullptr) {
4580     ciInstanceKlass* ik = tp->instance_klass();
4581     if (ik == C->env()->Class_klass()) {
4582       ciType* t = tp->java_mirror_type();
4583       if (t != nullptr && t->is_inlinetype()) {
4584         ciInlineKlass* vk = t->as_inline_klass();
4585         bool flat = vk->flat_in_array();
4586         if (flat && atomic) {
4587           // Only flat if we have a corresponding atomic layout
4588           flat = null_free ? vk->has_atomic_layout() : vk->has_nullable_atomic_layout();
4589         }
4590         // TODO 8350865 refactor
4591         if (flat && !atomic) {
4592           flat = vk->has_non_atomic_layout();
4593         }
4594 
4595         // TOOD 8350865 ZGC needs card marks on initializing oop stores
4596         if (UseZGC && null_free && !flat) {
4597           return false;
4598         }
4599 
4600         ciArrayKlass* array_klass = ciArrayKlass::make(t, flat, null_free, atomic);
4601         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4602           const TypeAryKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces)->is_aryklassptr();
4603           if (null_free) {
4604             if (init_val->is_InlineType()) {
4605               if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) {
4606                 // Zeroing is enough because the init value is the all-zero value
4607                 init_val = nullptr;
4608               } else {
4609                 init_val = init_val->as_InlineType()->buffer(this);
4610               }
4611             }
4612             // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)?
4613           }
4614           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val);
4615           const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr();
4616           assert(arytype->is_null_free() == null_free, "inconsistency");
4617           assert(arytype->is_not_null_free() == !null_free, "inconsistency");
4618           assert(arytype->is_flat() == flat, "inconsistency");
4619           assert(arytype->is_aryptr()->is_not_flat() == !flat, "inconsistency");
4620           set_result(obj);
4621           return true;
4622         }
4623       }
4624     }
4625   }
4626   return false;
4627 }
4628 
4629 //-----------------------inline_native_newArray--------------------------
4630 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4631 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4632 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4633   Node* mirror;
4634   Node* count_val;
4635   if (uninitialized) {
4636     null_check_receiver();
4637     mirror    = argument(1);
4638     count_val = argument(2);
4639   } else {
4640     mirror    = argument(0);
4641     count_val = argument(1);
4642   }
4643 
4644   mirror = null_check(mirror);
4645   // If mirror or obj is dead, only null-path is taken.
4646   if (stopped())  return true;
4647 
4648   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4649   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4650   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4756   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4757   { PreserveReexecuteState preexecs(this);
4758     jvms()->set_should_reexecute(true);
4759 
4760     array_type_mirror = null_check(array_type_mirror);
4761     original          = null_check(original);
4762 
4763     // Check if a null path was taken unconditionally.
4764     if (stopped())  return true;
4765 
4766     Node* orig_length = load_array_length(original);
4767 
4768     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4769     klass_node = null_check(klass_node);
4770 
4771     RegionNode* bailout = new RegionNode(1);
4772     record_for_igvn(bailout);
4773 
4774     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4775     // Bail out if that is so.
4776     // Inline type array may have object field that would require a
4777     // write barrier. Conservatively, go to slow path.
4778     // TODO 8251971: Optimize for the case when flat src/dst are later found
4779     // to not contain oops (i.e., move this check to the macro expansion phase).
4780     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4781     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
4782     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
4783     bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
4784                         // Can src array be flat and contain oops?
4785                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
4786                         // Can dest array be flat and contain oops?
4787                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
4788     Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
4789     if (not_objArray != nullptr) {
4790       // Improve the klass node's type from the new optimistic assumption:
4791       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4792       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
4793       Node* cast = new CastPPNode(control(), klass_node, akls);
4794       klass_node = _gvn.transform(cast);
4795     }
4796 
4797     // Bail out if either start or end is negative.
4798     generate_negative_guard(start, bailout, &start);
4799     generate_negative_guard(end,   bailout, &end);
4800 
4801     Node* length = end;
4802     if (_gvn.type(start) != TypeInt::ZERO) {
4803       length = _gvn.transform(new SubINode(end, start));
4804     }
4805 
4806     // Bail out if length is negative (i.e., if start > end).
4807     // Without this the new_array would throw
4808     // NegativeArraySizeException but IllegalArgumentException is what
4809     // should be thrown
4810     generate_negative_guard(length, bailout, &length);
4811 
4812     // Handle inline type arrays
4813     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
4814     if (!stopped()) {
4815       // TODO JDK-8329224
4816       if (!orig_t->is_null_free()) {
4817         // Not statically known to be null free, add a check
4818         generate_fair_guard(null_free_array_test(original), bailout);
4819       }
4820       orig_t = _gvn.type(original)->isa_aryptr();
4821       if (orig_t != nullptr && orig_t->is_flat()) {
4822         // Src is flat, check that dest is flat as well
4823         if (exclude_flat) {
4824           // Dest can't be flat, bail out
4825           bailout->add_req(control());
4826           set_control(top());
4827         } else {
4828           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
4829         }
4830         // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy.
4831       } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) &&
4832                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
4833                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
4834         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
4835         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
4836         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
4837         if (orig_t != nullptr) {
4838           orig_t = orig_t->cast_to_not_flat();
4839           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
4840         }
4841       }
4842       if (!can_validate) {
4843         // No validation. The subtype check emitted at macro expansion time will not go to the slow
4844         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
4845         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
4846         generate_fair_guard(flat_array_test(klass_node), bailout);
4847         generate_fair_guard(null_free_array_test(original), bailout);
4848       }
4849     }
4850 
4851     // Bail out if start is larger than the original length
4852     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4853     generate_negative_guard(orig_tail, bailout, &orig_tail);
4854 
4855     if (bailout->req() > 1) {
4856       PreserveJVMState pjvms(this);
4857       set_control(_gvn.transform(bailout));
4858       uncommon_trap(Deoptimization::Reason_intrinsic,
4859                     Deoptimization::Action_maybe_recompile);
4860     }
4861 
4862     if (!stopped()) {
4863       // How many elements will we copy from the original?
4864       // The answer is MinI(orig_tail, length).
4865       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4866 
4867       // Generate a direct call to the right arraycopy function(s).
4868       // We know the copy is disjoint but we might not know if the
4869       // oop stores need checking.
4870       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4876       // to the copyOf to be validated, including that the copy to the
4877       // new array won't trigger an ArrayStoreException. That subtype
4878       // check can be optimized if we know something on the type of
4879       // the input array from type speculation.
4880       if (_gvn.type(klass_node)->singleton()) {
4881         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4882         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4883 
4884         int test = C->static_subtype_check(superk, subk);
4885         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4886           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4887           if (t_original->speculative_type() != nullptr) {
4888             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4889           }
4890         }
4891       }
4892 
4893       bool validated = false;
4894       // Reason_class_check rather than Reason_intrinsic because we
4895       // want to intrinsify even if this traps.
4896       if (can_validate) {
4897         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4898 
4899         if (not_subtype_ctrl != top()) {
4900           PreserveJVMState pjvms(this);
4901           set_control(not_subtype_ctrl);
4902           uncommon_trap(Deoptimization::Reason_class_check,
4903                         Deoptimization::Action_make_not_entrant);
4904           assert(stopped(), "Should be stopped");
4905         }
4906         validated = true;
4907       }
4908 
4909       if (!stopped()) {
4910         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4911 
4912         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4913                                                 load_object_klass(original), klass_node);
4914         if (!is_copyOfRange) {
4915           ac->set_copyof(validated);
4916         } else {

4962 
4963 //-----------------------generate_method_call----------------------------
4964 // Use generate_method_call to make a slow-call to the real
4965 // method if the fast path fails.  An alternative would be to
4966 // use a stub like OptoRuntime::slow_arraycopy_Java.
4967 // This only works for expanding the current library call,
4968 // not another intrinsic.  (E.g., don't use this for making an
4969 // arraycopy call inside of the copyOf intrinsic.)
4970 CallJavaNode*
4971 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4972   // When compiling the intrinsic method itself, do not use this technique.
4973   guarantee(callee() != C->method(), "cannot make slow-call to self");
4974 
4975   ciMethod* method = callee();
4976   // ensure the JVMS we have will be correct for this call
4977   guarantee(method_id == method->intrinsic_id(), "must match");
4978 
4979   const TypeFunc* tf = TypeFunc::make(method);
4980   if (res_not_null) {
4981     assert(tf->return_type() == T_OBJECT, "");
4982     const TypeTuple* range = tf->range_cc();
4983     const Type** fields = TypeTuple::fields(range->cnt());
4984     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4985     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4986     tf = TypeFunc::make(tf->domain_cc(), new_range);
4987   }
4988   CallJavaNode* slow_call;
4989   if (is_static) {
4990     assert(!is_virtual, "");
4991     slow_call = new CallStaticJavaNode(C, tf,
4992                            SharedRuntime::get_resolve_static_call_stub(), method);
4993   } else if (is_virtual) {
4994     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4995     int vtable_index = Method::invalid_vtable_index;
4996     if (UseInlineCaches) {
4997       // Suppress the vtable call
4998     } else {
4999       // hashCode and clone are not a miranda methods,
5000       // so the vtable index is fixed.
5001       // No need to use the linkResolver to get it.
5002        vtable_index = method->vtable_index();
5003        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5004               "bad index %d", vtable_index);
5005     }
5006     slow_call = new CallDynamicJavaNode(tf,

5023   set_edges_for_java_call(slow_call);
5024   return slow_call;
5025 }
5026 
5027 
5028 /**
5029  * Build special case code for calls to hashCode on an object. This call may
5030  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
5031  * slightly different code.
5032  */
5033 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
5034   assert(is_static == callee()->is_static(), "correct intrinsic selection");
5035   assert(!(is_virtual && is_static), "either virtual, special, or static");
5036 
5037   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
5038 
5039   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5040   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
5041   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
5042   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5043   Node* obj = argument(0);
5044 
5045   // Don't intrinsify hashcode on inline types for now.
5046   // The "is locked" runtime check below also serves as inline type check and goes to the slow path.
5047   if (gvn().type(obj)->is_inlinetypeptr()) {
5048     return false;
5049   }
5050 
5051   if (!is_static) {
5052     // Check for hashing null object
5053     obj = null_check_receiver();
5054     if (stopped())  return true;        // unconditionally null
5055     result_reg->init_req(_null_path, top());
5056     result_val->init_req(_null_path, top());
5057   } else {
5058     // Do a null check, and return zero if null.
5059     // System.identityHashCode(null) == 0

5060     Node* null_ctl = top();
5061     obj = null_check_oop(obj, &null_ctl);
5062     result_reg->init_req(_null_path, null_ctl);
5063     result_val->init_req(_null_path, _gvn.intcon(0));
5064   }
5065 
5066   // Unconditionally null?  Then return right away.
5067   if (stopped()) {
5068     set_control( result_reg->in(_null_path));
5069     if (!stopped())
5070       set_result(result_val->in(_null_path));
5071     return true;
5072   }
5073 
5074   // We only go to the fast case code if we pass a number of guards.  The
5075   // paths which do not pass are accumulated in the slow_region.
5076   RegionNode* slow_region = new RegionNode(1);
5077   record_for_igvn(slow_region);
5078 
5079   // If this is a virtual call, we generate a funny guard.  We pull out
5080   // the vtable entry corresponding to hashCode() from the target object.
5081   // If the target method which we are calling happens to be the native
5082   // Object hashCode() method, we pass the guard.  We do not need this
5083   // guard for non-virtual calls -- the caller is known to be the native
5084   // Object hashCode().
5085   if (is_virtual) {
5086     // After null check, get the object's klass.
5087     Node* obj_klass = load_object_klass(obj);
5088     generate_virtual_guard(obj_klass, slow_region);
5089   }
5090 
5091   // Get the header out of the object, use LoadMarkNode when available
5092   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5093   // The control of the load must be null. Otherwise, the load can move before
5094   // the null check after castPP removal.
5095   Node* no_ctrl = nullptr;
5096   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5097 
5098   if (!UseObjectMonitorTable) {
5099     // Test the header to see if it is safe to read w.r.t. locking.
5100   // This also serves as guard against inline types
5101     Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
5102     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5103     if (LockingMode == LM_LIGHTWEIGHT) {
5104       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5105       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5106       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5107 
5108       generate_slow_guard(test_monitor, slow_region);
5109     } else {
5110       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
5111       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
5112       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
5113 
5114       generate_slow_guard(test_not_unlocked, slow_region);
5115     }
5116   }
5117 
5118   // Get the hash value and check to see that it has been properly assigned.
5119   // We depend on hash_mask being at most 32 bits and avoid the use of
5120   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5121   // vm: see markWord.hpp.

5156     // this->control() comes from set_results_for_java_call
5157     result_reg->init_req(_slow_path, control());
5158     result_val->init_req(_slow_path, slow_result);
5159     result_io  ->set_req(_slow_path, i_o());
5160     result_mem ->set_req(_slow_path, reset_memory());
5161   }
5162 
5163   // Return the combined state.
5164   set_i_o(        _gvn.transform(result_io)  );
5165   set_all_memory( _gvn.transform(result_mem));
5166 
5167   set_result(result_reg, result_val);
5168   return true;
5169 }
5170 
5171 //---------------------------inline_native_getClass----------------------------
5172 // public final native Class<?> java.lang.Object.getClass();
5173 //
5174 // Build special case code for calls to getClass on an object.
5175 bool LibraryCallKit::inline_native_getClass() {
5176   Node* obj = argument(0);
5177   if (obj->is_InlineType()) {
5178     const Type* t = _gvn.type(obj);
5179     if (t->maybe_null()) {
5180       null_check(obj);
5181     }
5182     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5183     return true;
5184   }
5185   obj = null_check_receiver();
5186   if (stopped())  return true;
5187   set_result(load_mirror_from_klass(load_object_klass(obj)));
5188   return true;
5189 }
5190 
5191 //-----------------inline_native_Reflection_getCallerClass---------------------
5192 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5193 //
5194 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5195 //
5196 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5197 // in that it must skip particular security frames and checks for
5198 // caller sensitive methods.
5199 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5200 #ifndef PRODUCT
5201   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5202     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5203   }
5204 #endif
5205 

5517     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5518 
5519     flags |= RC_NARROW_MEM; // narrow in memory
5520   }
5521 
5522   // Call it.  Note that the length argument is not scaled.
5523   make_runtime_call(flags,
5524                     OptoRuntime::unsafe_setmemory_Type(),
5525                     StubRoutines::unsafe_setmemory(),
5526                     "unsafe_setmemory",
5527                     dst_type,
5528                     dst_addr, size XTOP, byte);
5529 
5530   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5531 
5532   return true;
5533 }
5534 
5535 #undef XTOP
5536 
5537 //----------------------inline_unsafe_isFlatArray------------------------
5538 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass);
5539 // This intrinsic exploits assumptions made by the native implementation
5540 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks.
5541 bool LibraryCallKit::inline_unsafe_isFlatArray() {
5542   Node* cls = argument(1);
5543   Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset());
5544   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p,
5545                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
5546   Node* result = flat_array_test(kls);
5547   set_result(result);
5548   return true;
5549 }
5550 
5551 //------------------------clone_coping-----------------------------------
5552 // Helper function for inline_native_clone.
5553 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5554   assert(obj_size != nullptr, "");
5555   Node* raw_obj = alloc_obj->in(1);
5556   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5557 
5558   AllocateNode* alloc = nullptr;
5559   if (ReduceBulkZeroing &&
5560       // If we are implementing an array clone without knowing its source type
5561       // (can happen when compiling the array-guarded branch of a reflective
5562       // Object.clone() invocation), initialize the array within the allocation.
5563       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5564       // to a runtime clone call that assumes fully initialized source arrays.
5565       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5566     // We will be completely responsible for initializing this object -
5567     // mark Initialize node as complete.
5568     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5569     // The object was just allocated - there should be no any stores!
5570     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");

5601 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5602 //
5603 // The general case has two steps, allocation and copying.
5604 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5605 //
5606 // Copying also has two cases, oop arrays and everything else.
5607 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5608 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5609 //
5610 // These steps fold up nicely if and when the cloned object's klass
5611 // can be sharply typed as an object array, a type array, or an instance.
5612 //
5613 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5614   PhiNode* result_val;
5615 
5616   // Set the reexecute bit for the interpreter to reexecute
5617   // the bytecode that invokes Object.clone if deoptimization happens.
5618   { PreserveReexecuteState preexecs(this);
5619     jvms()->set_should_reexecute(true);
5620 
5621     Node* obj = argument(0);
5622     obj = null_check_receiver();
5623     if (stopped())  return true;
5624 
5625     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5626     if (obj_type->is_inlinetypeptr()) {
5627       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5628       // no identity.
5629       set_result(obj);
5630       return true;
5631     }
5632 
5633     // If we are going to clone an instance, we need its exact type to
5634     // know the number and types of fields to convert the clone to
5635     // loads/stores. Maybe a speculative type can help us.
5636     if (!obj_type->klass_is_exact() &&
5637         obj_type->speculative_type() != nullptr &&
5638         obj_type->speculative_type()->is_instance_klass() &&
5639         !obj_type->speculative_type()->is_inlinetype()) {
5640       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5641       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5642           !spec_ik->has_injected_fields()) {
5643         if (!obj_type->isa_instptr() ||
5644             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5645           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5646         }
5647       }
5648     }
5649 
5650     // Conservatively insert a memory barrier on all memory slices.
5651     // Do not let writes into the original float below the clone.
5652     insert_mem_bar(Op_MemBarCPUOrder);
5653 
5654     // paths into result_reg:
5655     enum {
5656       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5657       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5658       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5659       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5660       PATH_LIMIT
5661     };
5662     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5663     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5664     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5665     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5666     record_for_igvn(result_reg);
5667 
5668     Node* obj_klass = load_object_klass(obj);
5669     // We only go to the fast case code if we pass a number of guards.
5670     // The paths which do not pass are accumulated in the slow_region.
5671     RegionNode* slow_region = new RegionNode(1);
5672     record_for_igvn(slow_region);
5673 
5674     Node* array_obj = obj;
5675     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5676     if (array_ctl != nullptr) {
5677       // It's an array.
5678       PreserveJVMState pjvms(this);
5679       set_control(array_ctl);



5680 
5681       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5682       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5683       if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5684           obj_type->can_be_inline_array() &&
5685           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5686         // Flat inline type array may have object field that would require a
5687         // write barrier. Conservatively, go to slow path.
5688         generate_fair_guard(flat_array_test(obj_klass), slow_region);













5689       }







5690 
5691       if (!stopped()) {
5692         Node* obj_length = load_array_length(array_obj);
5693         Node* array_size = nullptr; // Size of the array without object alignment padding.
5694         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5695 
5696         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5697         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5698           // If it is an oop array, it requires very special treatment,
5699           // because gc barriers are required when accessing the array.
5700           Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5701           if (is_obja != nullptr) {
5702             PreserveJVMState pjvms2(this);
5703             set_control(is_obja);
5704             // Generate a direct call to the right arraycopy function(s).
5705             // Clones are always tightly coupled.
5706             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5707             ac->set_clone_oop_array();
5708             Node* n = _gvn.transform(ac);
5709             assert(n == ac, "cannot disappear");
5710             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5711 
5712             result_reg->init_req(_objArray_path, control());
5713             result_val->init_req(_objArray_path, alloc_obj);
5714             result_i_o ->set_req(_objArray_path, i_o());
5715             result_mem ->set_req(_objArray_path, reset_memory());
5716           }
5717         }
5718         // Otherwise, there are no barriers to worry about.
5719         // (We can dispense with card marks if we know the allocation
5720         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5721         //  causes the non-eden paths to take compensating steps to
5722         //  simulate a fresh allocation, so that no further
5723         //  card marks are required in compiled code to initialize
5724         //  the object.)
5725 
5726         if (!stopped()) {
5727           copy_to_clone(obj, alloc_obj, array_size, true);
5728 
5729           // Present the results of the copy.
5730           result_reg->init_req(_array_path, control());
5731           result_val->init_req(_array_path, alloc_obj);
5732           result_i_o ->set_req(_array_path, i_o());
5733           result_mem ->set_req(_array_path, reset_memory());
5734         }
5735       }
5736     }
5737 




5738     if (!stopped()) {
5739       // It's an instance (we did array above).  Make the slow-path tests.
5740       // If this is a virtual call, we generate a funny guard.  We grab
5741       // the vtable entry corresponding to clone() from the target object.
5742       // If the target method which we are calling happens to be the
5743       // Object clone() method, we pass the guard.  We do not need this
5744       // guard for non-virtual calls; the caller is known to be the native
5745       // Object clone().
5746       if (is_virtual) {
5747         generate_virtual_guard(obj_klass, slow_region);
5748       }
5749 
5750       // The object must be easily cloneable and must not have a finalizer.
5751       // Both of these conditions may be checked in a single test.
5752       // We could optimize the test further, but we don't care.
5753       generate_misc_flags_guard(obj_klass,
5754                                 // Test both conditions:
5755                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5756                                 // Must be cloneable but not finalizer:
5757                                 KlassFlags::_misc_is_cloneable_fast,

5849         set_jvms(sfpt->jvms());
5850         _reexecute_sp = jvms()->sp();
5851 
5852         return saved_jvms;
5853       }
5854     }
5855   }
5856   return nullptr;
5857 }
5858 
5859 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5860 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5861 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5862   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5863   uint size = alloc->req();
5864   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5865   old_jvms->set_map(sfpt);
5866   for (uint i = 0; i < size; i++) {
5867     sfpt->init_req(i, alloc->in(i));
5868   }
5869   int adjustment = 1;
5870   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
5871   if (ary_klass_ptr->is_null_free()) {
5872     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which
5873     // also requires the componentType and initVal on stack for re-execution.
5874     // Re-create and push the componentType.
5875     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
5876     ciInstance* instance = klass->component_mirror_instance();
5877     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
5878     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
5879     adjustment++;
5880   }
5881   // re-push array length for deoptimization
5882   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
5883   if (ary_klass_ptr->is_null_free()) {
5884     // Re-create and push the initVal.
5885     Node* init_val = alloc->in(AllocateNode::InitValue);
5886     if (init_val == nullptr) {
5887       init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass());
5888     } else if (UseCompressedOops) {
5889       init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr()));
5890     }
5891     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val);
5892     adjustment++;
5893   }
5894   old_jvms->set_sp(old_jvms->sp() + adjustment);
5895   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
5896   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
5897   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
5898   old_jvms->set_should_reexecute(true);
5899 
5900   sfpt->set_i_o(map()->i_o());
5901   sfpt->set_memory(map()->memory());
5902   sfpt->set_control(map()->control());
5903   return sfpt;
5904 }
5905 
5906 // In case of a deoptimization, we restart execution at the
5907 // allocation, allocating a new array. We would leave an uninitialized
5908 // array in the heap that GCs wouldn't expect. Move the allocation
5909 // after the traps so we don't allocate the array if we
5910 // deoptimize. This is possible because tightly_coupled_allocation()
5911 // guarantees there's no observer of the allocated array at this point
5912 // and the control flow is simple enough.
5913 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5914                                                     int saved_reexecute_sp, uint new_idx) {
5915   if (saved_jvms_before_guards != nullptr && !stopped()) {
5916     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5917 
5918     assert(alloc != nullptr, "only with a tightly coupled allocation");
5919     // restore JVM state to the state at the arraycopy
5920     saved_jvms_before_guards->map()->set_control(map()->control());
5921     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5922     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5923     // If we've improved the types of some nodes (null check) while
5924     // emitting the guards, propagate them to the current state
5925     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5926     set_jvms(saved_jvms_before_guards);
5927     _reexecute_sp = saved_reexecute_sp;
5928 
5929     // Remove the allocation from above the guards
5930     CallProjections* callprojs = alloc->extract_projections(true);

5931     InitializeNode* init = alloc->initialization();
5932     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5933     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5934     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5935 
5936     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5937     // the allocation (i.e. is only valid if the allocation succeeds):
5938     // 1) replace CastIINode with AllocateArrayNode's length here
5939     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5940     //
5941     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5942     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5943     Node* init_control = init->proj_out(TypeFunc::Control);
5944     Node* alloc_length = alloc->Ideal_length();
5945 #ifdef ASSERT
5946     Node* prev_cast = nullptr;
5947 #endif
5948     for (uint i = 0; i < init_control->outcnt(); i++) {
5949       Node* init_out = init_control->raw_out(i);
5950       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5951 #ifdef ASSERT
5952         if (prev_cast == nullptr) {
5953           prev_cast = init_out;

5955           if (prev_cast->cmp(*init_out) == false) {
5956             prev_cast->dump();
5957             init_out->dump();
5958             assert(false, "not equal CastIINode");
5959           }
5960         }
5961 #endif
5962         C->gvn_replace_by(init_out, alloc_length);
5963       }
5964     }
5965     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5966 
5967     // move the allocation here (after the guards)
5968     _gvn.hash_delete(alloc);
5969     alloc->set_req(TypeFunc::Control, control());
5970     alloc->set_req(TypeFunc::I_O, i_o());
5971     Node *mem = reset_memory();
5972     set_all_memory(mem);
5973     alloc->set_req(TypeFunc::Memory, mem);
5974     set_control(init->proj_out_or_null(TypeFunc::Control));
5975     set_i_o(callprojs->fallthrough_ioproj);
5976 
5977     // Update memory as done in GraphKit::set_output_for_allocation()
5978     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5979     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5980     if (ary_type->isa_aryptr() && length_type != nullptr) {
5981       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5982     }
5983     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5984     int            elemidx  = C->get_alias_index(telemref);
5985     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5986     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5987 
5988     Node* allocx = _gvn.transform(alloc);
5989     assert(allocx == alloc, "where has the allocation gone?");
5990     assert(dest->is_CheckCastPP(), "not an allocation result?");
5991 
5992     _gvn.hash_delete(dest);
5993     dest->set_req(0, control());
5994     Node* destx = _gvn.transform(dest);
5995     assert(destx == dest, "where has the allocation result gone?");

6293         top_src  = src_type->isa_aryptr();
6294         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6295         src_spec = true;
6296       }
6297       if (!has_dest) {
6298         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6299         dest_type  = _gvn.type(dest);
6300         top_dest  = dest_type->isa_aryptr();
6301         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6302         dest_spec = true;
6303       }
6304     }
6305   }
6306 
6307   if (has_src && has_dest && can_emit_guards) {
6308     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6309     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6310     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6311     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6312 
6313     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6314       // If both arrays are object arrays then having the exact types
6315       // for both will remove the need for a subtype check at runtime
6316       // before the call and may make it possible to pick a faster copy
6317       // routine (without a subtype check on every element)
6318       // Do we have the exact type of src?
6319       bool could_have_src = src_spec;
6320       // Do we have the exact type of dest?
6321       bool could_have_dest = dest_spec;
6322       ciKlass* src_k = nullptr;
6323       ciKlass* dest_k = nullptr;
6324       if (!src_spec) {
6325         src_k = src_type->speculative_type_not_null();
6326         if (src_k != nullptr && src_k->is_array_klass()) {
6327           could_have_src = true;
6328         }
6329       }
6330       if (!dest_spec) {
6331         dest_k = dest_type->speculative_type_not_null();
6332         if (dest_k != nullptr && dest_k->is_array_klass()) {
6333           could_have_dest = true;
6334         }
6335       }
6336       if (could_have_src && could_have_dest) {
6337         // If we can have both exact types, emit the missing guards
6338         if (could_have_src && !src_spec) {
6339           src = maybe_cast_profiled_obj(src, src_k, true);
6340           src_type = _gvn.type(src);
6341           top_src = src_type->isa_aryptr();
6342         }
6343         if (could_have_dest && !dest_spec) {
6344           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6345           dest_type = _gvn.type(dest);
6346           top_dest = dest_type->isa_aryptr();
6347         }
6348       }
6349     }
6350   }
6351 
6352   ciMethod* trap_method = method();
6353   int trap_bci = bci();
6354   if (saved_jvms_before_guards != nullptr) {
6355     trap_method = alloc->jvms()->method();
6356     trap_bci = alloc->jvms()->bci();
6357   }
6358 
6359   bool negative_length_guard_generated = false;
6360 
6361   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6362       can_emit_guards && !src->is_top() && !dest->is_top()) {

6363     // validate arguments: enables transformation the ArrayCopyNode
6364     validated = true;
6365 
6366     RegionNode* slow_region = new RegionNode(1);
6367     record_for_igvn(slow_region);
6368 
6369     // (1) src and dest are arrays.
6370     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6371     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6372 
6373     // (2) src and dest arrays must have elements of the same BasicType
6374     // done at macro expansion or at Ideal transformation time
6375 
6376     // (4) src_offset must not be negative.
6377     generate_negative_guard(src_offset, slow_region);
6378 
6379     // (5) dest_offset must not be negative.
6380     generate_negative_guard(dest_offset, slow_region);
6381 
6382     // (7) src_offset + length must not exceed length of src.

6385                          slow_region);
6386 
6387     // (8) dest_offset + length must not exceed length of dest.
6388     generate_limit_guard(dest_offset, length,
6389                          load_array_length(dest),
6390                          slow_region);
6391 
6392     // (6) length must not be negative.
6393     // This is also checked in generate_arraycopy() during macro expansion, but
6394     // we also have to check it here for the case where the ArrayCopyNode will
6395     // be eliminated by Escape Analysis.
6396     if (EliminateAllocations) {
6397       generate_negative_guard(length, slow_region);
6398       negative_length_guard_generated = true;
6399     }
6400 
6401     // (9) each element of an oop array must be assignable
6402     Node* dest_klass = load_object_klass(dest);
6403     if (src != dest) {
6404       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6405       slow_region->add_req(not_subtype_ctrl);
6406     }
6407 
6408     // TODO 8350865 Fix below logic. Also handle atomicity.
6409     generate_fair_guard(flat_array_test(src), slow_region);
6410     generate_fair_guard(flat_array_test(dest), slow_region);
6411 
6412     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6413     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6414     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6415     src_type = _gvn.type(src);
6416     top_src  = src_type->isa_aryptr();
6417 
6418     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6419     if (!stopped() && UseArrayFlattening) {
6420       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6421       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6422       if (top_src != nullptr && top_src->is_flat()) {
6423         // Src is flat, check that dest is flat as well
6424         if (top_dest != nullptr && !top_dest->is_flat()) {
6425           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6426           // Since dest is flat and src <: dest, dest must have the same type as src.
6427           top_dest = top_src->cast_to_exactness(false);
6428           assert(top_dest->is_flat(), "dest must be flat");
6429           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6430         }
6431       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6432         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6433         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6434         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6435         generate_fair_guard(flat_array_test(src), slow_region);
6436         if (top_src != nullptr) {
6437           top_src = top_src->cast_to_not_flat();
6438           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6439         }
6440       }
6441     }
6442 
6443     {
6444       PreserveJVMState pjvms(this);
6445       set_control(_gvn.transform(slow_region));
6446       uncommon_trap(Deoptimization::Reason_intrinsic,
6447                     Deoptimization::Action_make_not_entrant);
6448       assert(stopped(), "Should be stopped");
6449     }




6450     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6451   }
6452 
6453   if (stopped()) {
6454     return true;
6455   }
6456 
6457   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6458                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6459                                           // so the compiler has a chance to eliminate them: during macro expansion,
6460                                           // we have to set their control (CastPP nodes are eliminated).
6461                                           load_object_klass(src), load_object_klass(dest),
6462                                           load_array_length(src), load_array_length(dest));
6463 
6464   ac->set_arraycopy(validated);
6465 
6466   Node* n = _gvn.transform(ac);
6467   if (n == ac) {
6468     ac->connect_outputs(this);
6469   } else {
< prev index next >