< prev index next >

src/hotspot/share/opto/library_call.cpp

Print this page

   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"

  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"

 308   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 309   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 310   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 311   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 312   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 313 
 314   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 315 
 316   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 317 
 318   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 319   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 320   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 321   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 322 
 323   case vmIntrinsics::_compressStringC:
 324   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 325   case vmIntrinsics::_inflateStringC:
 326   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 327 


 328   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);

 337 
 338   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 339   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 340   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 341   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 342   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 343   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 344   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 345   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 346   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);

 347 
 348   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 357 
 358   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 359   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 360   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 361   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 362   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 363   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 364   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 365   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 366   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 494   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 495                                                                                          "notifyJvmtiMount", false, false);
 496   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 497                                                                                          "notifyJvmtiUnmount", false, false);
 498   case vmIntrinsics::_notifyJvmtiVThreadHideFrames:     return inline_native_notify_jvmti_hide();
 499   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 500 #endif
 501 
 502 #ifdef JFR_HAVE_INTRINSICS
 503   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 504   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 505   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 506 #endif
 507   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 508   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 509   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 510   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 511   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 512   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 513   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();

 514   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 515   case vmIntrinsics::_getLength:                return inline_native_getLength();
 516   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 517   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 518   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 519   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 520   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 521   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 522   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 523 
 524   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 525   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);

 526 
 527   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 528 
 529   case vmIntrinsics::_isInstance:
 530   case vmIntrinsics::_getModifiers:
 531   case vmIntrinsics::_isInterface:
 532   case vmIntrinsics::_isArray:
 533   case vmIntrinsics::_isPrimitive:
 534   case vmIntrinsics::_isHidden:
 535   case vmIntrinsics::_getSuperclass:
 536   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 537 
 538   case vmIntrinsics::_floatToRawIntBits:
 539   case vmIntrinsics::_floatToIntBits:
 540   case vmIntrinsics::_intBitsToFloat:
 541   case vmIntrinsics::_doubleToRawLongBits:
 542   case vmIntrinsics::_doubleToLongBits:
 543   case vmIntrinsics::_longBitsToDouble:
 544   case vmIntrinsics::_floatToFloat16:
 545   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());

2237     case vmIntrinsics::_remainderUnsigned_l: {
2238       zero_check_long(argument(2));
2239       // Compile-time detect of null-exception
2240       if (stopped()) {
2241         return true; // keep the graph constructed so far
2242       }
2243       n = new UModLNode(control(), argument(0), argument(2));
2244       break;
2245     }
2246     default:  fatal_unexpected_iid(id);  break;
2247   }
2248   set_result(_gvn.transform(n));
2249   return true;
2250 }
2251 
2252 //----------------------------inline_unsafe_access----------------------------
2253 
2254 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2255   // Attempt to infer a sharper value type from the offset and base type.
2256   ciKlass* sharpened_klass = nullptr;

2257 
2258   // See if it is an instance field, with an object type.
2259   if (alias_type->field() != nullptr) {
2260     if (alias_type->field()->type()->is_klass()) {
2261       sharpened_klass = alias_type->field()->type()->as_klass();

2262     }
2263   }
2264 
2265   const TypeOopPtr* result = nullptr;
2266   // See if it is a narrow oop array.
2267   if (adr_type->isa_aryptr()) {
2268     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2269       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();

2270       if (elem_type != nullptr && elem_type->is_loaded()) {
2271         // Sharpen the value type.
2272         result = elem_type;
2273       }
2274     }
2275   }
2276 
2277   // The sharpened class might be unloaded if there is no class loader
2278   // contraint in place.
2279   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2280     // Sharpen the value type.
2281     result = TypeOopPtr::make_from_klass(sharpened_klass);



2282   }
2283   if (result != nullptr) {
2284 #ifndef PRODUCT
2285     if (C->print_intrinsics() || C->print_inlining()) {
2286       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2287       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2288     }
2289 #endif
2290   }
2291   return result;
2292 }
2293 
2294 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2295   switch (kind) {
2296       case Relaxed:
2297         return MO_UNORDERED;
2298       case Opaque:
2299         return MO_RELAXED;
2300       case Acquire:
2301         return MO_ACQUIRE;
2302       case Release:
2303         return MO_RELEASE;
2304       case Volatile:
2305         return MO_SEQ_CST;
2306       default:
2307         ShouldNotReachHere();
2308         return 0;
2309   }
2310 }
2311 
2312 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2313   if (callee()->is_static())  return false;  // caller must have the capability!
2314   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2315   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2316   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2317   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2318 
2319   if (is_reference_type(type)) {
2320     decorators |= ON_UNKNOWN_OOP_REF;
2321   }
2322 
2323   if (unaligned) {
2324     decorators |= C2_UNALIGNED;
2325   }
2326 
2327 #ifndef PRODUCT
2328   {
2329     ResourceMark rm;
2330     // Check the signatures.
2331     ciSignature* sig = callee()->signature();
2332 #ifdef ASSERT
2333     if (!is_store) {
2334       // Object getReference(Object base, int/long offset), etc.
2335       BasicType rtype = sig->return_type()->basic_type();
2336       assert(rtype == type, "getter must return the expected value");
2337       assert(sig->count() == 2, "oop getter has 2 arguments");
2338       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2339       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2340     } else {
2341       // void putReference(Object base, int/long offset, Object x), etc.
2342       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2343       assert(sig->count() == 3, "oop putter has 3 arguments");
2344       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2345       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2346       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2347       assert(vtype == type, "putter must accept the expected value");
2348     }
2349 #endif // ASSERT
2350  }
2351 #endif //PRODUCT
2352 
2353   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2354 
2355   Node* receiver = argument(0);  // type: oop
2356 
2357   // Build address expression.
2358   Node* heap_base_oop = top();
2359 
2360   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2361   Node* base = argument(1);  // type: oop
2362   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2363   Node* offset = argument(2);  // type: long
2364   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2365   // to be plain byte offsets, which are also the same as those accepted
2366   // by oopDesc::field_addr.
2367   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2368          "fieldOffset must be byte-scaled");























































2369   // 32-bit machines ignore the high half!
2370   offset = ConvL2X(offset);
2371 
2372   // Save state and restore on bailout
2373   uint old_sp = sp();
2374   SafePointNode* old_map = clone_map();
2375 
2376   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2377   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2378 
2379   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2380     if (type != T_OBJECT) {
2381       decorators |= IN_NATIVE; // off-heap primitive access
2382     } else {
2383       set_map(old_map);
2384       set_sp(old_sp);
2385       return false; // off-heap oop accesses are not supported
2386     }
2387   } else {
2388     heap_base_oop = base; // on-heap or mixed access
2389   }
2390 
2391   // Can base be null? Otherwise, always on-heap access.
2392   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2393 
2394   if (!can_access_non_heap) {
2395     decorators |= IN_HEAP;
2396   }
2397 
2398   Node* val = is_store ? argument(4) : nullptr;
2399 
2400   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2401   if (adr_type == TypePtr::NULL_PTR) {
2402     set_map(old_map);
2403     set_sp(old_sp);
2404     return false; // off-heap access with zero address
2405   }
2406 
2407   // Try to categorize the address.
2408   Compile::AliasType* alias_type = C->alias_type(adr_type);
2409   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2410 
2411   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2412       alias_type->adr_type() == TypeAryPtr::RANGE) {
2413     set_map(old_map);
2414     set_sp(old_sp);
2415     return false; // not supported
2416   }
2417 
2418   bool mismatched = false;
2419   BasicType bt = alias_type->basic_type();





















2420   if (bt != T_ILLEGAL) {
2421     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2422     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2423       // Alias type doesn't differentiate between byte[] and boolean[]).
2424       // Use address type to get the element type.
2425       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2426     }
2427     if (is_reference_type(bt, true)) {
2428       // accessing an array field with getReference is not a mismatch
2429       bt = T_OBJECT;
2430     }
2431     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2432       // Don't intrinsify mismatched object accesses
2433       set_map(old_map);
2434       set_sp(old_sp);
2435       return false;
2436     }
2437     mismatched = (bt != type);
2438   } else if (alias_type->adr_type()->isa_oopptr()) {
2439     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2440   }
2441 























2442   destruct_map_clone(old_map);
2443   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2444 
2445   if (mismatched) {
2446     decorators |= C2_MISMATCHED;
2447   }
2448 
2449   // First guess at the value type.
2450   const Type *value_type = Type::get_const_basic_type(type);
2451 
2452   // Figure out the memory ordering.
2453   decorators |= mo_decorator_for_access_kind(kind);
2454 
2455   if (!is_store && type == T_OBJECT) {
2456     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2457     if (tjp != nullptr) {
2458       value_type = tjp;


2459     }
2460   }
2461 
2462   receiver = null_check(receiver);
2463   if (stopped()) {
2464     return true;
2465   }
2466   // Heap pointers get a null-check from the interpreter,
2467   // as a courtesy.  However, this is not guaranteed by Unsafe,
2468   // and it is not possible to fully distinguish unintended nulls
2469   // from intended ones in this API.
2470 
2471   if (!is_store) {
2472     Node* p = nullptr;
2473     // Try to constant fold a load from a constant field
2474     ciField* field = alias_type->field();
2475     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2476       // final or stable field
2477       p = make_constant_from_field(field, heap_base_oop);
2478     }
2479 
2480     if (p == nullptr) { // Could not constant fold the load
2481       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);















2482       // Normalize the value returned by getBoolean in the following cases
2483       if (type == T_BOOLEAN &&
2484           (mismatched ||
2485            heap_base_oop == top() ||                  // - heap_base_oop is null or
2486            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2487                                                       //   and the unsafe access is made to large offset
2488                                                       //   (i.e., larger than the maximum offset necessary for any
2489                                                       //   field access)
2490             ) {
2491           IdealKit ideal = IdealKit(this);
2492 #define __ ideal.
2493           IdealVariable normalized_result(ideal);
2494           __ declarations_done();
2495           __ set(normalized_result, p);
2496           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2497           __ set(normalized_result, ideal.ConI(1));
2498           ideal.end_if();
2499           final_sync(ideal);
2500           p = __ value(normalized_result);
2501 #undef __
2502       }
2503     }
2504     if (type == T_ADDRESS) {
2505       p = gvn().transform(new CastP2XNode(nullptr, p));
2506       p = ConvX2UL(p);
2507     }
2508     // The load node has the control of the preceding MemBarCPUOrder.  All
2509     // following nodes will have the control of the MemBarCPUOrder inserted at
2510     // the end of this method.  So, pushing the load onto the stack at a later
2511     // point is fine.
2512     set_result(p);
2513   } else {
2514     if (bt == T_ADDRESS) {
2515       // Repackage the long as a pointer.
2516       val = ConvL2X(val);
2517       val = gvn().transform(new CastX2PNode(val));
2518     }
2519     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
















2520   }
2521 
2522   return true;
2523 }
2524 








































2525 //----------------------------inline_unsafe_load_store----------------------------
2526 // This method serves a couple of different customers (depending on LoadStoreKind):
2527 //
2528 // LS_cmp_swap:
2529 //
2530 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2531 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2532 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2533 //
2534 // LS_cmp_swap_weak:
2535 //
2536 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2537 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2538 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2539 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2540 //
2541 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2542 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2543 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2544 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

2710     }
2711     case LS_cmp_swap:
2712     case LS_cmp_swap_weak:
2713     case LS_get_add:
2714       break;
2715     default:
2716       ShouldNotReachHere();
2717   }
2718 
2719   // Null check receiver.
2720   receiver = null_check(receiver);
2721   if (stopped()) {
2722     return true;
2723   }
2724 
2725   int alias_idx = C->get_alias_index(adr_type);
2726 
2727   if (is_reference_type(type)) {
2728     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2729 













2730     // Transformation of a value which could be null pointer (CastPP #null)
2731     // could be delayed during Parse (for example, in adjust_map_after_if()).
2732     // Execute transformation here to avoid barrier generation in such case.
2733     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2734       newval = _gvn.makecon(TypePtr::NULL_PTR);
2735 
2736     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2737       // Refine the value to a null constant, when it is known to be null
2738       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2739     }
2740   }
2741 
2742   Node* result = nullptr;
2743   switch (kind) {
2744     case LS_cmp_exchange: {
2745       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2746                                             oldval, newval, value_type, type, decorators);
2747       break;
2748     }
2749     case LS_cmp_swap_weak:

2896                     Deoptimization::Action_make_not_entrant);
2897     }
2898     if (stopped()) {
2899       return true;
2900     }
2901 #endif //INCLUDE_JVMTI
2902 
2903   Node* test = nullptr;
2904   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2905     // Note:  The argument might still be an illegal value like
2906     // Serializable.class or Object[].class.   The runtime will handle it.
2907     // But we must make an explicit check for initialization.
2908     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2909     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2910     // can generate code to load it as unsigned byte.
2911     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2912     Node* bits = intcon(InstanceKlass::fully_initialized);
2913     test = _gvn.transform(new SubINode(inst, bits));
2914     // The 'test' is non-zero if we need to take a slow path.
2915   }
2916 
2917   Node* obj = new_instance(kls, test);





2918   set_result(obj);
2919   return true;
2920 }
2921 
2922 //------------------------inline_native_time_funcs--------------
2923 // inline code for System.currentTimeMillis() and System.nanoTime()
2924 // these have the same type and signature
2925 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2926   const TypeFunc* tf = OptoRuntime::void_long_Type();
2927   const TypePtr* no_memory_effects = nullptr;
2928   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2929   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2930 #ifdef ASSERT
2931   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2932   assert(value_top == top(), "second value must be top");
2933 #endif
2934   set_result(value);
2935   return true;
2936 }
2937 

3693 
3694 //------------------------inline_native_setVthread------------------
3695 bool LibraryCallKit::inline_native_setCurrentThread() {
3696   assert(C->method()->changes_current_thread(),
3697          "method changes current Thread but is not annotated ChangesCurrentThread");
3698   Node* arr = argument(1);
3699   Node* thread = _gvn.transform(new ThreadLocalNode());
3700   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3701   Node* thread_obj_handle
3702     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3703   thread_obj_handle = _gvn.transform(thread_obj_handle);
3704   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3705   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3706   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3707   return true;
3708 }
3709 
3710 const Type* LibraryCallKit::scopedValueCache_type() {
3711   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3712   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3713   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3714 
3715   // Because we create the scopedValue cache lazily we have to make the
3716   // type of the result BotPTR.
3717   bool xk = etype->klass_is_exact();
3718   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3719   return objects_type;
3720 }
3721 
3722 Node* LibraryCallKit::scopedValueCache_helper() {
3723   Node* thread = _gvn.transform(new ThreadLocalNode());
3724   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3725   // We cannot use immutable_memory() because we might flip onto a
3726   // different carrier thread, at which point we'll need to use that
3727   // carrier thread's cache.
3728   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3729   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3730   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3731 }
3732 
3733 //------------------------inline_native_scopedValueCache------------------
3734 bool LibraryCallKit::inline_native_scopedValueCache() {
3735   Node* cache_obj_handle = scopedValueCache_helper();
3736   const Type* objects_type = scopedValueCache_type();
3737   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3738 

3821   }
3822 
3823   // Result of top level CFG and Memory.
3824   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3825   record_for_igvn(result_rgn);
3826   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3827   record_for_igvn(result_mem);
3828 
3829   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3830   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3831   result_mem->init_req(_true_path, _gvn.transform(updated_pin_count_memory));
3832   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3833 
3834   // Set output state.
3835   set_control(_gvn.transform(result_rgn));
3836   set_all_memory(_gvn.transform(result_mem));
3837 
3838   return true;
3839 }
3840 
3841 //---------------------------load_mirror_from_klass----------------------------
3842 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3843 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3844   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3845   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3846   // mirror = ((OopHandle)mirror)->resolve();
3847   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3848 }
3849 
3850 //-----------------------load_klass_from_mirror_common-------------------------
3851 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3852 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3853 // and branch to the given path on the region.
3854 // If never_see_null, take an uncommon trap on null, so we can optimistically
3855 // compile for the non-null case.
3856 // If the region is null, force never_see_null = true.
3857 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3858                                                     bool never_see_null,
3859                                                     RegionNode* region,
3860                                                     int null_path,
3861                                                     int offset) {
3862   if (region == nullptr)  never_see_null = true;
3863   Node* p = basic_plus_adr(mirror, offset);
3864   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3865   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3866   Node* null_ctl = top();
3867   kls = null_check_oop(kls, &null_ctl, never_see_null);
3868   if (region != nullptr) {
3869     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

3873   }
3874   return kls;
3875 }
3876 
3877 //--------------------(inline_native_Class_query helpers)---------------------
3878 // Use this for JVM_ACC_INTERFACE.
3879 // Fall through if (mods & mask) == bits, take the guard otherwise.
3880 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3881                                                  ByteSize offset, const Type* type, BasicType bt) {
3882   // Branch around if the given klass has the given modifier bit set.
3883   // Like generate_guard, adds a new path onto the region.
3884   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3885   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3886   Node* mask = intcon(modifier_mask);
3887   Node* bits = intcon(modifier_bits);
3888   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3889   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3890   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3891   return generate_fair_guard(bol, region);
3892 }

3893 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3894   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3895                                     Klass::access_flags_offset(), TypeInt::INT, T_INT);
3896 }
3897 
3898 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3899 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3900   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3901                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3902 }
3903 
3904 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3905   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3906 }
3907 
3908 //-------------------------inline_native_Class_query-------------------
3909 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3910   const Type* return_type = TypeInt::BOOL;
3911   Node* prim_return_value = top();  // what happens if it's a primitive class?
3912   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4074 
4075   case vmIntrinsics::_getClassAccessFlags:
4076     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4077     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4078     break;
4079 
4080   default:
4081     fatal_unexpected_iid(id);
4082     break;
4083   }
4084 
4085   // Fall-through is the normal case of a query to a real class.
4086   phi->init_req(1, query_value);
4087   region->init_req(1, control());
4088 
4089   C->set_has_split_ifs(true); // Has chance for split-if optimization
4090   set_result(region, phi);
4091   return true;
4092 }
4093 

4094 //-------------------------inline_Class_cast-------------------
4095 bool LibraryCallKit::inline_Class_cast() {
4096   Node* mirror = argument(0); // Class
4097   Node* obj    = argument(1);
4098   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4099   if (mirror_con == nullptr) {
4100     return false;  // dead path (mirror->is_top()).
4101   }
4102   if (obj == nullptr || obj->is_top()) {
4103     return false;  // dead path
4104   }
4105   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4106 
4107   // First, see if Class.cast() can be folded statically.
4108   // java_mirror_type() returns non-null for compile-time Class constants.
4109   ciType* tm = mirror_con->java_mirror_type();

4110   if (tm != nullptr && tm->is_klass() &&
4111       tp != nullptr) {
4112     if (!tp->is_loaded()) {
4113       // Don't use intrinsic when class is not loaded.
4114       return false;
4115     } else {
4116       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());




4117       if (static_res == Compile::SSC_always_true) {
4118         // isInstance() is true - fold the code.
4119         set_result(obj);
4120         return true;
4121       } else if (static_res == Compile::SSC_always_false) {
4122         // Don't use intrinsic, have to throw ClassCastException.
4123         // If the reference is null, the non-intrinsic bytecode will
4124         // be optimized appropriately.
4125         return false;
4126       }
4127     }
4128   }
4129 
4130   // Bailout intrinsic and do normal inlining if exception path is frequent.
4131   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4132     return false;
4133   }
4134 
4135   // Generate dynamic checks.
4136   // Class.cast() is java implementation of _checkcast bytecode.
4137   // Do checkcast (Parse::do_checkcast()) optimizations here.
4138 
4139   mirror = null_check(mirror);
4140   // If mirror is dead, only null-path is taken.
4141   if (stopped()) {
4142     return true;
4143   }
4144 
4145   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4146   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4147   RegionNode* region = new RegionNode(PATH_LIMIT);
4148   record_for_igvn(region);
4149 
4150   // Now load the mirror's klass metaobject, and null-check it.
4151   // If kls is null, we have a primitive mirror and
4152   // nothing is an instance of a primitive type.
4153   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4154 
4155   Node* res = top();


4156   if (!stopped()) {

4157     Node* bad_type_ctrl = top();
4158     // Do checkcast optimizations.
4159     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4160     region->init_req(_bad_type_path, bad_type_ctrl);
4161   }
4162   if (region->in(_prim_path) != top() ||
4163       region->in(_bad_type_path) != top()) {

4164     // Let Interpreter throw ClassCastException.
4165     PreserveJVMState pjvms(this);
4166     set_control(_gvn.transform(region));



4167     uncommon_trap(Deoptimization::Reason_intrinsic,
4168                   Deoptimization::Action_maybe_recompile);
4169   }
4170   if (!stopped()) {
4171     set_result(res);
4172   }
4173   return true;
4174 }
4175 
4176 
4177 //--------------------------inline_native_subtype_check------------------------
4178 // This intrinsic takes the JNI calls out of the heart of
4179 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4180 bool LibraryCallKit::inline_native_subtype_check() {
4181   // Pull both arguments off the stack.
4182   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4183   args[0] = argument(0);
4184   args[1] = argument(1);
4185   Node* klasses[2];             // corresponding Klasses: superk, subk
4186   klasses[0] = klasses[1] = top();
4187 
4188   enum {
4189     // A full decision tree on {superc is prim, subc is prim}:
4190     _prim_0_path = 1,           // {P,N} => false
4191                                 // {P,P} & superc!=subc => false
4192     _prim_same_path,            // {P,P} & superc==subc => true
4193     _prim_1_path,               // {N,P} => false
4194     _ref_subtype_path,          // {N,N} & subtype check wins => true
4195     _both_ref_path,             // {N,N} & subtype check loses => false
4196     PATH_LIMIT
4197   };
4198 
4199   RegionNode* region = new RegionNode(PATH_LIMIT);

4200   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4201   record_for_igvn(region);

4202 
4203   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4204   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4205   int class_klass_offset = java_lang_Class::klass_offset();
4206 
4207   // First null-check both mirrors and load each mirror's klass metaobject.
4208   int which_arg;
4209   for (which_arg = 0; which_arg <= 1; which_arg++) {
4210     Node* arg = args[which_arg];
4211     arg = null_check(arg);
4212     if (stopped())  break;
4213     args[which_arg] = arg;
4214 
4215     Node* p = basic_plus_adr(arg, class_klass_offset);
4216     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4217     klasses[which_arg] = _gvn.transform(kls);
4218   }
4219 
4220   // Having loaded both klasses, test each for null.
4221   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4222   for (which_arg = 0; which_arg <= 1; which_arg++) {
4223     Node* kls = klasses[which_arg];
4224     Node* null_ctl = top();
4225     kls = null_check_oop(kls, &null_ctl, never_see_null);
4226     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4227     region->init_req(prim_path, null_ctl);



4228     if (stopped())  break;
4229     klasses[which_arg] = kls;
4230   }
4231 
4232   if (!stopped()) {
4233     // now we have two reference types, in klasses[0..1]
4234     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4235     Node* superk = klasses[0];  // the receiver
4236     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4237     // now we have a successful reference subtype check
4238     region->set_req(_ref_subtype_path, control());
4239   }
4240 
4241   // If both operands are primitive (both klasses null), then
4242   // we must return true when they are identical primitives.
4243   // It is convenient to test this after the first null klass check.
4244   set_control(region->in(_prim_0_path)); // go back to first null check

4245   if (!stopped()) {
4246     // Since superc is primitive, make a guard for the superc==subc case.
4247     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4248     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4249     generate_guard(bol_eq, region, PROB_FAIR);
4250     if (region->req() == PATH_LIMIT+1) {
4251       // A guard was added.  If the added guard is taken, superc==subc.
4252       region->swap_edges(PATH_LIMIT, _prim_same_path);
4253       region->del_req(PATH_LIMIT);
4254     }
4255     region->set_req(_prim_0_path, control()); // Not equal after all.
4256   }
4257 
4258   // these are the only paths that produce 'true':
4259   phi->set_req(_prim_same_path,   intcon(1));
4260   phi->set_req(_ref_subtype_path, intcon(1));
4261 
4262   // pull together the cases:
4263   assert(region->req() == PATH_LIMIT, "sane region");
4264   for (uint i = 1; i < region->req(); i++) {
4265     Node* ctl = region->in(i);
4266     if (ctl == nullptr || ctl == top()) {
4267       region->set_req(i, top());
4268       phi   ->set_req(i, top());
4269     } else if (phi->in(i) == nullptr) {
4270       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4271     }
4272   }
4273 
4274   set_control(_gvn.transform(region));
4275   set_result(_gvn.transform(phi));
4276   return true;
4277 }
4278 
4279 //---------------------generate_array_guard_common------------------------
4280 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4281                                                   bool obj_array, bool not_array) {
4282 
4283   if (stopped()) {
4284     return nullptr;
4285   }
4286 
4287   // If obj_array/non_array==false/false:
4288   // Branch around if the given klass is in fact an array (either obj or prim).
4289   // If obj_array/non_array==false/true:
4290   // Branch around if the given klass is not an array klass of any kind.
4291   // If obj_array/non_array==true/true:
4292   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4293   // If obj_array/non_array==true/false:
4294   // Branch around if the kls is an oop array (Object[] or subtype)
4295   //
4296   // Like generate_guard, adds a new path onto the region.
4297   jint  layout_con = 0;
4298   Node* layout_val = get_layout_helper(kls, layout_con);
4299   if (layout_val == nullptr) {
4300     bool query = (obj_array
4301                   ? Klass::layout_helper_is_objArray(layout_con)
4302                   : Klass::layout_helper_is_array(layout_con));
4303     if (query == not_array) {







4304       return nullptr;                       // never a branch
4305     } else {                             // always a branch
4306       Node* always_branch = control();
4307       if (region != nullptr)
4308         region->add_req(always_branch);
4309       set_control(top());
4310       return always_branch;
4311     }
4312   }





















4313   // Now test the correct condition.
4314   jint  nval = (obj_array
4315                 ? (jint)(Klass::_lh_array_tag_type_value
4316                    <<    Klass::_lh_array_tag_shift)
4317                 : Klass::_lh_neutral_value);
4318   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4319   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4320   // invert the test if we are looking for a non-array
4321   if (not_array)  btest = BoolTest(btest).negate();
4322   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4323   return generate_fair_guard(bol, region);
4324 }
4325 


























4326 
4327 //-----------------------inline_native_newArray--------------------------
4328 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4329 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4330 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4331   Node* mirror;
4332   Node* count_val;
4333   if (uninitialized) {
4334     null_check_receiver();
4335     mirror    = argument(1);
4336     count_val = argument(2);
4337   } else {
4338     mirror    = argument(0);
4339     count_val = argument(1);
4340   }
4341 
4342   mirror = null_check(mirror);
4343   // If mirror or obj is dead, only null-path is taken.
4344   if (stopped())  return true;
4345 
4346   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4347   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4348   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4454   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4455   { PreserveReexecuteState preexecs(this);
4456     jvms()->set_should_reexecute(true);
4457 
4458     array_type_mirror = null_check(array_type_mirror);
4459     original          = null_check(original);
4460 
4461     // Check if a null path was taken unconditionally.
4462     if (stopped())  return true;
4463 
4464     Node* orig_length = load_array_length(original);
4465 
4466     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4467     klass_node = null_check(klass_node);
4468 
4469     RegionNode* bailout = new RegionNode(1);
4470     record_for_igvn(bailout);
4471 
4472     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4473     // Bail out if that is so.
4474     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);












4475     if (not_objArray != nullptr) {
4476       // Improve the klass node's type from the new optimistic assumption:
4477       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4478       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4479       Node* cast = new CastPPNode(control(), klass_node, akls);
4480       klass_node = _gvn.transform(cast);
4481     }
4482 
4483     // Bail out if either start or end is negative.
4484     generate_negative_guard(start, bailout, &start);
4485     generate_negative_guard(end,   bailout, &end);
4486 
4487     Node* length = end;
4488     if (_gvn.type(start) != TypeInt::ZERO) {
4489       length = _gvn.transform(new SubINode(end, start));
4490     }
4491 
4492     // Bail out if length is negative (i.e., if start > end).
4493     // Without this the new_array would throw
4494     // NegativeArraySizeException but IllegalArgumentException is what
4495     // should be thrown
4496     generate_negative_guard(length, bailout, &length);
4497 






































4498     // Bail out if start is larger than the original length
4499     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4500     generate_negative_guard(orig_tail, bailout, &orig_tail);
4501 
4502     if (bailout->req() > 1) {
4503       PreserveJVMState pjvms(this);
4504       set_control(_gvn.transform(bailout));
4505       uncommon_trap(Deoptimization::Reason_intrinsic,
4506                     Deoptimization::Action_maybe_recompile);
4507     }
4508 
4509     if (!stopped()) {
4510       // How many elements will we copy from the original?
4511       // The answer is MinI(orig_tail, length).
4512       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4513 
4514       // Generate a direct call to the right arraycopy function(s).
4515       // We know the copy is disjoint but we might not know if the
4516       // oop stores need checking.
4517       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4523       // to the copyOf to be validated, including that the copy to the
4524       // new array won't trigger an ArrayStoreException. That subtype
4525       // check can be optimized if we know something on the type of
4526       // the input array from type speculation.
4527       if (_gvn.type(klass_node)->singleton()) {
4528         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4529         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4530 
4531         int test = C->static_subtype_check(superk, subk);
4532         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4533           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4534           if (t_original->speculative_type() != nullptr) {
4535             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4536           }
4537         }
4538       }
4539 
4540       bool validated = false;
4541       // Reason_class_check rather than Reason_intrinsic because we
4542       // want to intrinsify even if this traps.
4543       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4544         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4545 
4546         if (not_subtype_ctrl != top()) {
4547           PreserveJVMState pjvms(this);
4548           set_control(not_subtype_ctrl);
4549           uncommon_trap(Deoptimization::Reason_class_check,
4550                         Deoptimization::Action_make_not_entrant);
4551           assert(stopped(), "Should be stopped");
4552         }
4553         validated = true;
4554       }
4555 
4556       if (!stopped()) {
4557         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4558 
4559         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4560                                                 load_object_klass(original), klass_node);
4561         if (!is_copyOfRange) {
4562           ac->set_copyof(validated);
4563         } else {

4609 
4610 //-----------------------generate_method_call----------------------------
4611 // Use generate_method_call to make a slow-call to the real
4612 // method if the fast path fails.  An alternative would be to
4613 // use a stub like OptoRuntime::slow_arraycopy_Java.
4614 // This only works for expanding the current library call,
4615 // not another intrinsic.  (E.g., don't use this for making an
4616 // arraycopy call inside of the copyOf intrinsic.)
4617 CallJavaNode*
4618 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4619   // When compiling the intrinsic method itself, do not use this technique.
4620   guarantee(callee() != C->method(), "cannot make slow-call to self");
4621 
4622   ciMethod* method = callee();
4623   // ensure the JVMS we have will be correct for this call
4624   guarantee(method_id == method->intrinsic_id(), "must match");
4625 
4626   const TypeFunc* tf = TypeFunc::make(method);
4627   if (res_not_null) {
4628     assert(tf->return_type() == T_OBJECT, "");
4629     const TypeTuple* range = tf->range();
4630     const Type** fields = TypeTuple::fields(range->cnt());
4631     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4632     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4633     tf = TypeFunc::make(tf->domain(), new_range);
4634   }
4635   CallJavaNode* slow_call;
4636   if (is_static) {
4637     assert(!is_virtual, "");
4638     slow_call = new CallStaticJavaNode(C, tf,
4639                            SharedRuntime::get_resolve_static_call_stub(), method);
4640   } else if (is_virtual) {
4641     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4642     int vtable_index = Method::invalid_vtable_index;
4643     if (UseInlineCaches) {
4644       // Suppress the vtable call
4645     } else {
4646       // hashCode and clone are not a miranda methods,
4647       // so the vtable index is fixed.
4648       // No need to use the linkResolver to get it.
4649        vtable_index = method->vtable_index();
4650        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4651               "bad index %d", vtable_index);
4652     }
4653     slow_call = new CallDynamicJavaNode(tf,

4670   set_edges_for_java_call(slow_call);
4671   return slow_call;
4672 }
4673 
4674 
4675 /**
4676  * Build special case code for calls to hashCode on an object. This call may
4677  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4678  * slightly different code.
4679  */
4680 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4681   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4682   assert(!(is_virtual && is_static), "either virtual, special, or static");
4683 
4684   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4685 
4686   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4687   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4688   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4689   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4690   Node* obj = nullptr;







4691   if (!is_static) {
4692     // Check for hashing null object
4693     obj = null_check_receiver();
4694     if (stopped())  return true;        // unconditionally null
4695     result_reg->init_req(_null_path, top());
4696     result_val->init_req(_null_path, top());
4697   } else {
4698     // Do a null check, and return zero if null.
4699     // System.identityHashCode(null) == 0
4700     obj = argument(0);
4701     Node* null_ctl = top();
4702     obj = null_check_oop(obj, &null_ctl);
4703     result_reg->init_req(_null_path, null_ctl);
4704     result_val->init_req(_null_path, _gvn.intcon(0));
4705   }
4706 
4707   // Unconditionally null?  Then return right away.
4708   if (stopped()) {
4709     set_control( result_reg->in(_null_path));
4710     if (!stopped())
4711       set_result(result_val->in(_null_path));
4712     return true;
4713   }
4714 
4715   // We only go to the fast case code if we pass a number of guards.  The
4716   // paths which do not pass are accumulated in the slow_region.
4717   RegionNode* slow_region = new RegionNode(1);
4718   record_for_igvn(slow_region);
4719 
4720   // If this is a virtual call, we generate a funny guard.  We pull out
4721   // the vtable entry corresponding to hashCode() from the target object.
4722   // If the target method which we are calling happens to be the native
4723   // Object hashCode() method, we pass the guard.  We do not need this
4724   // guard for non-virtual calls -- the caller is known to be the native
4725   // Object hashCode().
4726   if (is_virtual) {
4727     // After null check, get the object's klass.
4728     Node* obj_klass = load_object_klass(obj);
4729     generate_virtual_guard(obj_klass, slow_region);
4730   }
4731 
4732   // Get the header out of the object, use LoadMarkNode when available
4733   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4734   // The control of the load must be null. Otherwise, the load can move before
4735   // the null check after castPP removal.
4736   Node* no_ctrl = nullptr;
4737   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4738 
4739   if (!UseObjectMonitorTable) {
4740     // Test the header to see if it is safe to read w.r.t. locking.
4741     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);

4742     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4743     if (LockingMode == LM_LIGHTWEIGHT) {
4744       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4745       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4746       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4747 
4748       generate_slow_guard(test_monitor, slow_region);
4749     } else {
4750       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4751       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4752       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4753 
4754       generate_slow_guard(test_not_unlocked, slow_region);
4755     }
4756   }
4757 
4758   // Get the hash value and check to see that it has been properly assigned.
4759   // We depend on hash_mask being at most 32 bits and avoid the use of
4760   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4761   // vm: see markWord.hpp.

4796     // this->control() comes from set_results_for_java_call
4797     result_reg->init_req(_slow_path, control());
4798     result_val->init_req(_slow_path, slow_result);
4799     result_io  ->set_req(_slow_path, i_o());
4800     result_mem ->set_req(_slow_path, reset_memory());
4801   }
4802 
4803   // Return the combined state.
4804   set_i_o(        _gvn.transform(result_io)  );
4805   set_all_memory( _gvn.transform(result_mem));
4806 
4807   set_result(result_reg, result_val);
4808   return true;
4809 }
4810 
4811 //---------------------------inline_native_getClass----------------------------
4812 // public final native Class<?> java.lang.Object.getClass();
4813 //
4814 // Build special case code for calls to getClass on an object.
4815 bool LibraryCallKit::inline_native_getClass() {
4816   Node* obj = null_check_receiver();









4817   if (stopped())  return true;
4818   set_result(load_mirror_from_klass(load_object_klass(obj)));
4819   return true;
4820 }
4821 
4822 //-----------------inline_native_Reflection_getCallerClass---------------------
4823 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4824 //
4825 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4826 //
4827 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4828 // in that it must skip particular security frames and checks for
4829 // caller sensitive methods.
4830 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4831 #ifndef PRODUCT
4832   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4833     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4834   }
4835 #endif
4836 

5148     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5149 
5150     flags |= RC_NARROW_MEM; // narrow in memory
5151   }
5152 
5153   // Call it.  Note that the length argument is not scaled.
5154   make_runtime_call(flags,
5155                     OptoRuntime::make_setmemory_Type(),
5156                     StubRoutines::unsafe_setmemory(),
5157                     "unsafe_setmemory",
5158                     dst_type,
5159                     dst_addr, size XTOP, byte);
5160 
5161   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5162 
5163   return true;
5164 }
5165 
5166 #undef XTOP
5167 














5168 //------------------------clone_coping-----------------------------------
5169 // Helper function for inline_native_clone.
5170 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5171   assert(obj_size != nullptr, "");
5172   Node* raw_obj = alloc_obj->in(1);
5173   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5174 
5175   AllocateNode* alloc = nullptr;
5176   if (ReduceBulkZeroing &&
5177       // If we are implementing an array clone without knowing its source type
5178       // (can happen when compiling the array-guarded branch of a reflective
5179       // Object.clone() invocation), initialize the array within the allocation.
5180       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5181       // to a runtime clone call that assumes fully initialized source arrays.
5182       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5183     // We will be completely responsible for initializing this object -
5184     // mark Initialize node as complete.
5185     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5186     // The object was just allocated - there should be no any stores!
5187     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");

5218 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5219 //
5220 // The general case has two steps, allocation and copying.
5221 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5222 //
5223 // Copying also has two cases, oop arrays and everything else.
5224 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5225 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5226 //
5227 // These steps fold up nicely if and when the cloned object's klass
5228 // can be sharply typed as an object array, a type array, or an instance.
5229 //
5230 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5231   PhiNode* result_val;
5232 
5233   // Set the reexecute bit for the interpreter to reexecute
5234   // the bytecode that invokes Object.clone if deoptimization happens.
5235   { PreserveReexecuteState preexecs(this);
5236     jvms()->set_should_reexecute(true);
5237 
5238     Node* obj = null_check_receiver();

5239     if (stopped())  return true;
5240 
5241     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();






5242 
5243     // If we are going to clone an instance, we need its exact type to
5244     // know the number and types of fields to convert the clone to
5245     // loads/stores. Maybe a speculative type can help us.
5246     if (!obj_type->klass_is_exact() &&
5247         obj_type->speculative_type() != nullptr &&
5248         obj_type->speculative_type()->is_instance_klass()) {

5249       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5250       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5251           !spec_ik->has_injected_fields()) {
5252         if (!obj_type->isa_instptr() ||
5253             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5254           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5255         }
5256       }
5257     }
5258 
5259     // Conservatively insert a memory barrier on all memory slices.
5260     // Do not let writes into the original float below the clone.
5261     insert_mem_bar(Op_MemBarCPUOrder);
5262 
5263     // paths into result_reg:
5264     enum {
5265       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5266       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5267       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5268       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5269       PATH_LIMIT
5270     };
5271     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5272     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5273     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5274     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5275     record_for_igvn(result_reg);
5276 
5277     Node* obj_klass = load_object_klass(obj);





5278     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5279     if (array_ctl != nullptr) {
5280       // It's an array.
5281       PreserveJVMState pjvms(this);
5282       set_control(array_ctl);
5283       Node* obj_length = load_array_length(obj);
5284       Node* array_size = nullptr; // Size of the array without object alignment padding.
5285       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5286 
5287       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5288       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5289         // If it is an oop array, it requires very special treatment,
5290         // because gc barriers are required when accessing the array.
5291         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5292         if (is_obja != nullptr) {
5293           PreserveJVMState pjvms2(this);
5294           set_control(is_obja);
5295           // Generate a direct call to the right arraycopy function(s).
5296           // Clones are always tightly coupled.
5297           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5298           ac->set_clone_oop_array();
5299           Node* n = _gvn.transform(ac);
5300           assert(n == ac, "cannot disappear");
5301           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5302 
5303           result_reg->init_req(_objArray_path, control());
5304           result_val->init_req(_objArray_path, alloc_obj);
5305           result_i_o ->set_req(_objArray_path, i_o());
5306           result_mem ->set_req(_objArray_path, reset_memory());
5307         }
5308       }
5309       // Otherwise, there are no barriers to worry about.
5310       // (We can dispense with card marks if we know the allocation
5311       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5312       //  causes the non-eden paths to take compensating steps to
5313       //  simulate a fresh allocation, so that no further
5314       //  card marks are required in compiled code to initialize
5315       //  the object.)
5316 
5317       if (!stopped()) {
5318         copy_to_clone(obj, alloc_obj, array_size, true);
5319 
5320         // Present the results of the copy.
5321         result_reg->init_req(_array_path, control());
5322         result_val->init_req(_array_path, alloc_obj);
5323         result_i_o ->set_req(_array_path, i_o());
5324         result_mem ->set_req(_array_path, reset_memory());




































5325       }
5326     }
5327 
5328     // We only go to the instance fast case code if we pass a number of guards.
5329     // The paths which do not pass are accumulated in the slow_region.
5330     RegionNode* slow_region = new RegionNode(1);
5331     record_for_igvn(slow_region);
5332     if (!stopped()) {
5333       // It's an instance (we did array above).  Make the slow-path tests.
5334       // If this is a virtual call, we generate a funny guard.  We grab
5335       // the vtable entry corresponding to clone() from the target object.
5336       // If the target method which we are calling happens to be the
5337       // Object clone() method, we pass the guard.  We do not need this
5338       // guard for non-virtual calls; the caller is known to be the native
5339       // Object clone().
5340       if (is_virtual) {
5341         generate_virtual_guard(obj_klass, slow_region);
5342       }
5343 
5344       // The object must be easily cloneable and must not have a finalizer.
5345       // Both of these conditions may be checked in a single test.
5346       // We could optimize the test further, but we don't care.
5347       generate_misc_flags_guard(obj_klass,
5348                                 // Test both conditions:
5349                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5350                                 // Must be cloneable but not finalizer:
5351                                 KlassFlags::_misc_is_cloneable_fast,

5443         set_jvms(sfpt->jvms());
5444         _reexecute_sp = jvms()->sp();
5445 
5446         return saved_jvms;
5447       }
5448     }
5449   }
5450   return nullptr;
5451 }
5452 
5453 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5454 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5455 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5456   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5457   uint size = alloc->req();
5458   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5459   old_jvms->set_map(sfpt);
5460   for (uint i = 0; i < size; i++) {
5461     sfpt->init_req(i, alloc->in(i));
5462   }












5463   // re-push array length for deoptimization
5464   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5465   old_jvms->set_sp(old_jvms->sp()+1);
5466   old_jvms->set_monoff(old_jvms->monoff()+1);
5467   old_jvms->set_scloff(old_jvms->scloff()+1);
5468   old_jvms->set_endoff(old_jvms->endoff()+1);
5469   old_jvms->set_should_reexecute(true);
5470 
5471   sfpt->set_i_o(map()->i_o());
5472   sfpt->set_memory(map()->memory());
5473   sfpt->set_control(map()->control());
5474   return sfpt;
5475 }
5476 
5477 // In case of a deoptimization, we restart execution at the
5478 // allocation, allocating a new array. We would leave an uninitialized
5479 // array in the heap that GCs wouldn't expect. Move the allocation
5480 // after the traps so we don't allocate the array if we
5481 // deoptimize. This is possible because tightly_coupled_allocation()
5482 // guarantees there's no observer of the allocated array at this point
5483 // and the control flow is simple enough.
5484 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5485                                                     int saved_reexecute_sp, uint new_idx) {
5486   if (saved_jvms_before_guards != nullptr && !stopped()) {
5487     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5488 
5489     assert(alloc != nullptr, "only with a tightly coupled allocation");
5490     // restore JVM state to the state at the arraycopy
5491     saved_jvms_before_guards->map()->set_control(map()->control());
5492     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5493     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5494     // If we've improved the types of some nodes (null check) while
5495     // emitting the guards, propagate them to the current state
5496     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5497     set_jvms(saved_jvms_before_guards);
5498     _reexecute_sp = saved_reexecute_sp;
5499 
5500     // Remove the allocation from above the guards
5501     CallProjections callprojs;
5502     alloc->extract_projections(&callprojs, true);
5503     InitializeNode* init = alloc->initialization();
5504     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5505     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5506     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5507 
5508     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5509     // the allocation (i.e. is only valid if the allocation succeeds):
5510     // 1) replace CastIINode with AllocateArrayNode's length here
5511     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5512     //
5513     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5514     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5515     Node* init_control = init->proj_out(TypeFunc::Control);
5516     Node* alloc_length = alloc->Ideal_length();
5517 #ifdef ASSERT
5518     Node* prev_cast = nullptr;
5519 #endif
5520     for (uint i = 0; i < init_control->outcnt(); i++) {
5521       Node* init_out = init_control->raw_out(i);
5522       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5523 #ifdef ASSERT
5524         if (prev_cast == nullptr) {
5525           prev_cast = init_out;

5527           if (prev_cast->cmp(*init_out) == false) {
5528             prev_cast->dump();
5529             init_out->dump();
5530             assert(false, "not equal CastIINode");
5531           }
5532         }
5533 #endif
5534         C->gvn_replace_by(init_out, alloc_length);
5535       }
5536     }
5537     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5538 
5539     // move the allocation here (after the guards)
5540     _gvn.hash_delete(alloc);
5541     alloc->set_req(TypeFunc::Control, control());
5542     alloc->set_req(TypeFunc::I_O, i_o());
5543     Node *mem = reset_memory();
5544     set_all_memory(mem);
5545     alloc->set_req(TypeFunc::Memory, mem);
5546     set_control(init->proj_out_or_null(TypeFunc::Control));
5547     set_i_o(callprojs.fallthrough_ioproj);
5548 
5549     // Update memory as done in GraphKit::set_output_for_allocation()
5550     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5551     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5552     if (ary_type->isa_aryptr() && length_type != nullptr) {
5553       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5554     }
5555     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5556     int            elemidx  = C->get_alias_index(telemref);
5557     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5558     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5559 
5560     Node* allocx = _gvn.transform(alloc);
5561     assert(allocx == alloc, "where has the allocation gone?");
5562     assert(dest->is_CheckCastPP(), "not an allocation result?");
5563 
5564     _gvn.hash_delete(dest);
5565     dest->set_req(0, control());
5566     Node* destx = _gvn.transform(dest);
5567     assert(destx == dest, "where has the allocation result gone?");

5865         top_src  = src_type->isa_aryptr();
5866         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5867         src_spec = true;
5868       }
5869       if (!has_dest) {
5870         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5871         dest_type  = _gvn.type(dest);
5872         top_dest  = dest_type->isa_aryptr();
5873         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5874         dest_spec = true;
5875       }
5876     }
5877   }
5878 
5879   if (has_src && has_dest && can_emit_guards) {
5880     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5881     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5882     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5883     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5884 
5885     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5886       // If both arrays are object arrays then having the exact types
5887       // for both will remove the need for a subtype check at runtime
5888       // before the call and may make it possible to pick a faster copy
5889       // routine (without a subtype check on every element)
5890       // Do we have the exact type of src?
5891       bool could_have_src = src_spec;
5892       // Do we have the exact type of dest?
5893       bool could_have_dest = dest_spec;
5894       ciKlass* src_k = nullptr;
5895       ciKlass* dest_k = nullptr;
5896       if (!src_spec) {
5897         src_k = src_type->speculative_type_not_null();
5898         if (src_k != nullptr && src_k->is_array_klass()) {
5899           could_have_src = true;
5900         }
5901       }
5902       if (!dest_spec) {
5903         dest_k = dest_type->speculative_type_not_null();
5904         if (dest_k != nullptr && dest_k->is_array_klass()) {
5905           could_have_dest = true;
5906         }
5907       }
5908       if (could_have_src && could_have_dest) {
5909         // If we can have both exact types, emit the missing guards
5910         if (could_have_src && !src_spec) {
5911           src = maybe_cast_profiled_obj(src, src_k, true);


5912         }
5913         if (could_have_dest && !dest_spec) {
5914           dest = maybe_cast_profiled_obj(dest, dest_k, true);


5915         }
5916       }
5917     }
5918   }
5919 
5920   ciMethod* trap_method = method();
5921   int trap_bci = bci();
5922   if (saved_jvms_before_guards != nullptr) {
5923     trap_method = alloc->jvms()->method();
5924     trap_bci = alloc->jvms()->bci();
5925   }
5926 
5927   bool negative_length_guard_generated = false;
5928 
5929   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5930       can_emit_guards &&
5931       !src->is_top() && !dest->is_top()) {
5932     // validate arguments: enables transformation the ArrayCopyNode
5933     validated = true;
5934 
5935     RegionNode* slow_region = new RegionNode(1);
5936     record_for_igvn(slow_region);
5937 
5938     // (1) src and dest are arrays.
5939     generate_non_array_guard(load_object_klass(src), slow_region);
5940     generate_non_array_guard(load_object_klass(dest), slow_region);
5941 
5942     // (2) src and dest arrays must have elements of the same BasicType
5943     // done at macro expansion or at Ideal transformation time
5944 
5945     // (4) src_offset must not be negative.
5946     generate_negative_guard(src_offset, slow_region);
5947 
5948     // (5) dest_offset must not be negative.
5949     generate_negative_guard(dest_offset, slow_region);
5950 
5951     // (7) src_offset + length must not exceed length of src.

5954                          slow_region);
5955 
5956     // (8) dest_offset + length must not exceed length of dest.
5957     generate_limit_guard(dest_offset, length,
5958                          load_array_length(dest),
5959                          slow_region);
5960 
5961     // (6) length must not be negative.
5962     // This is also checked in generate_arraycopy() during macro expansion, but
5963     // we also have to check it here for the case where the ArrayCopyNode will
5964     // be eliminated by Escape Analysis.
5965     if (EliminateAllocations) {
5966       generate_negative_guard(length, slow_region);
5967       negative_length_guard_generated = true;
5968     }
5969 
5970     // (9) each element of an oop array must be assignable
5971     Node* dest_klass = load_object_klass(dest);
5972     if (src != dest) {
5973       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);


5974 
5975       if (not_subtype_ctrl != top()) {
5976         PreserveJVMState pjvms(this);
5977         set_control(not_subtype_ctrl);
5978         uncommon_trap(Deoptimization::Reason_intrinsic,
5979                       Deoptimization::Action_make_not_entrant);
5980         assert(stopped(), "Should be stopped");






















5981       }
5982     }

5983     {
5984       PreserveJVMState pjvms(this);
5985       set_control(_gvn.transform(slow_region));
5986       uncommon_trap(Deoptimization::Reason_intrinsic,
5987                     Deoptimization::Action_make_not_entrant);
5988       assert(stopped(), "Should be stopped");
5989     }
5990 
5991     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5992     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5993     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5994     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5995   }
5996 
5997   if (stopped()) {
5998     return true;
5999   }
6000 
6001   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6002                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6003                                           // so the compiler has a chance to eliminate them: during macro expansion,
6004                                           // we have to set their control (CastPP nodes are eliminated).
6005                                           load_object_klass(src), load_object_klass(dest),
6006                                           load_array_length(src), load_array_length(dest));
6007 
6008   ac->set_arraycopy(validated);
6009 
6010   Node* n = _gvn.transform(ac);
6011   if (n == ac) {
6012     ac->connect_outputs(this);
6013   } else {

   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciUtilities.inline.hpp"
  29 #include "classfile/vmIntrinsics.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/castnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/convertnode.hpp"
  43 #include "opto/countbitsnode.hpp"
  44 #include "opto/idealKit.hpp"
  45 #include "opto/library_call.hpp"
  46 #include "opto/mathexactnode.hpp"
  47 #include "opto/mulnode.hpp"

 309   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 310   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 311   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 312   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 313   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 314 
 315   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 316 
 317   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 318 
 319   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 320   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 321   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 322   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 323 
 324   case vmIntrinsics::_compressStringC:
 325   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 326   case vmIntrinsics::_inflateStringC:
 327   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 328 
 329   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 330   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 331   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 332   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 333   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 334   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 335   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 336   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 337   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 338   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 339   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 340   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 341 
 342   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 343   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 344   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 345   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 346   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 347   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 348   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 349   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 350   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 351   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 352 
 353   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 354   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 355   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 356   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 357   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 358   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 359   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 360   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 361   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 362 
 363   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 364   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 365   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 366   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 367   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 368   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 369   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 370   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 371   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 499   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 500                                                                                          "notifyJvmtiMount", false, false);
 501   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 502                                                                                          "notifyJvmtiUnmount", false, false);
 503   case vmIntrinsics::_notifyJvmtiVThreadHideFrames:     return inline_native_notify_jvmti_hide();
 504   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 505 #endif
 506 
 507 #ifdef JFR_HAVE_INTRINSICS
 508   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 509   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 510   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 511 #endif
 512   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 513   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 514   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 515   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 516   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 517   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 518   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 519   case vmIntrinsics::_isFlatArray:              return inline_unsafe_isFlatArray();
 520   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 521   case vmIntrinsics::_getLength:                return inline_native_getLength();
 522   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 523   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 524   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 525   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 526   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 527   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 528   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 529 
 530   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 531   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 532   case vmIntrinsics::_newNullRestrictedArray:   return inline_newNullRestrictedArray();
 533 
 534   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 535 
 536   case vmIntrinsics::_isInstance:
 537   case vmIntrinsics::_getModifiers:
 538   case vmIntrinsics::_isInterface:
 539   case vmIntrinsics::_isArray:
 540   case vmIntrinsics::_isPrimitive:
 541   case vmIntrinsics::_isHidden:
 542   case vmIntrinsics::_getSuperclass:
 543   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 544 
 545   case vmIntrinsics::_floatToRawIntBits:
 546   case vmIntrinsics::_floatToIntBits:
 547   case vmIntrinsics::_intBitsToFloat:
 548   case vmIntrinsics::_doubleToRawLongBits:
 549   case vmIntrinsics::_doubleToLongBits:
 550   case vmIntrinsics::_longBitsToDouble:
 551   case vmIntrinsics::_floatToFloat16:
 552   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());

2244     case vmIntrinsics::_remainderUnsigned_l: {
2245       zero_check_long(argument(2));
2246       // Compile-time detect of null-exception
2247       if (stopped()) {
2248         return true; // keep the graph constructed so far
2249       }
2250       n = new UModLNode(control(), argument(0), argument(2));
2251       break;
2252     }
2253     default:  fatal_unexpected_iid(id);  break;
2254   }
2255   set_result(_gvn.transform(n));
2256   return true;
2257 }
2258 
2259 //----------------------------inline_unsafe_access----------------------------
2260 
2261 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2262   // Attempt to infer a sharper value type from the offset and base type.
2263   ciKlass* sharpened_klass = nullptr;
2264   bool null_free = false;
2265 
2266   // See if it is an instance field, with an object type.
2267   if (alias_type->field() != nullptr) {
2268     if (alias_type->field()->type()->is_klass()) {
2269       sharpened_klass = alias_type->field()->type()->as_klass();
2270       null_free = alias_type->field()->is_null_free();
2271     }
2272   }
2273 
2274   const TypeOopPtr* result = nullptr;
2275   // See if it is a narrow oop array.
2276   if (adr_type->isa_aryptr()) {
2277     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2278       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2279       null_free = adr_type->is_aryptr()->is_null_free();
2280       if (elem_type != nullptr && elem_type->is_loaded()) {
2281         // Sharpen the value type.
2282         result = elem_type;
2283       }
2284     }
2285   }
2286 
2287   // The sharpened class might be unloaded if there is no class loader
2288   // contraint in place.
2289   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2290     // Sharpen the value type.
2291     result = TypeOopPtr::make_from_klass(sharpened_klass);
2292     if (null_free) {
2293       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2294     }
2295   }
2296   if (result != nullptr) {
2297 #ifndef PRODUCT
2298     if (C->print_intrinsics() || C->print_inlining()) {
2299       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2300       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2301     }
2302 #endif
2303   }
2304   return result;
2305 }
2306 
2307 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2308   switch (kind) {
2309       case Relaxed:
2310         return MO_UNORDERED;
2311       case Opaque:
2312         return MO_RELAXED;
2313       case Acquire:
2314         return MO_ACQUIRE;
2315       case Release:
2316         return MO_RELEASE;
2317       case Volatile:
2318         return MO_SEQ_CST;
2319       default:
2320         ShouldNotReachHere();
2321         return 0;
2322   }
2323 }
2324 
2325 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2326   if (callee()->is_static())  return false;  // caller must have the capability!
2327   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2328   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2329   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2330   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2331 
2332   if (is_reference_type(type)) {
2333     decorators |= ON_UNKNOWN_OOP_REF;
2334   }
2335 
2336   if (unaligned) {
2337     decorators |= C2_UNALIGNED;
2338   }
2339 
2340 #ifndef PRODUCT
2341   {
2342     ResourceMark rm;
2343     // Check the signatures.
2344     ciSignature* sig = callee()->signature();
2345 #ifdef ASSERT
2346     if (!is_store) {
2347       // Object getReference(Object base, int/long offset), etc.
2348       BasicType rtype = sig->return_type()->basic_type();
2349       assert(rtype == type, "getter must return the expected value");
2350       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2351       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2352       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2353     } else {
2354       // void putReference(Object base, int/long offset, Object x), etc.
2355       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2356       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2357       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2358       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2359       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2360       assert(vtype == type, "putter must accept the expected value");
2361     }
2362 #endif // ASSERT
2363  }
2364 #endif //PRODUCT
2365 
2366   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2367 
2368   Node* receiver = argument(0);  // type: oop
2369 
2370   // Build address expression.
2371   Node* heap_base_oop = top();
2372 
2373   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2374   Node* base = argument(1);  // type: oop
2375   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2376   Node* offset = argument(2);  // type: long
2377   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2378   // to be plain byte offsets, which are also the same as those accepted
2379   // by oopDesc::field_addr.
2380   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2381          "fieldOffset must be byte-scaled");
2382 
2383   ciInlineKlass* inline_klass = nullptr;
2384   if (is_flat) {
2385     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2386     if (cls == nullptr || cls->const_oop() == nullptr) {
2387       return false;
2388     }
2389     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2390     if (!mirror_type->is_inlinetype()) {
2391       return false;
2392     }
2393     inline_klass = mirror_type->as_inline_klass();
2394   }
2395 
2396   if (base->is_InlineType()) {
2397     InlineTypeNode* vt = base->as_InlineType();
2398     if (is_store) {
2399       if (!vt->is_allocated(&_gvn)) {
2400         return false;
2401       }
2402       base = vt->get_oop();
2403     } else {
2404       if (offset->is_Con()) {
2405         long off = find_long_con(offset, 0);
2406         ciInlineKlass* vk = vt->type()->inline_klass();
2407         if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2408           return false;
2409         }
2410 
2411         ciField* field = vk->get_non_flat_field_by_offset(off);
2412         if (field != nullptr) {
2413           BasicType bt = type2field[field->type()->basic_type()];
2414           if (bt == T_ARRAY || bt == T_NARROWOOP) {
2415             bt = T_OBJECT;
2416           }
2417           if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2418             Node* value = vt->field_value_by_offset(off, false);
2419             if (value->is_InlineType()) {
2420               value = value->as_InlineType()->adjust_scalarization_depth(this);
2421             }
2422             set_result(value);
2423             return true;
2424           }
2425         }
2426       }
2427       {
2428         // Re-execute the unsafe access if allocation triggers deoptimization.
2429         PreserveReexecuteState preexecs(this);
2430         jvms()->set_should_reexecute(true);
2431         vt = vt->buffer(this);
2432       }
2433       base = vt->get_oop();
2434     }
2435   }
2436 
2437   // 32-bit machines ignore the high half!
2438   offset = ConvL2X(offset);
2439 
2440   // Save state and restore on bailout
2441   uint old_sp = sp();
2442   SafePointNode* old_map = clone_map();
2443 
2444   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2445   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2446 
2447   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2448     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2449       decorators |= IN_NATIVE; // off-heap primitive access
2450     } else {
2451       set_map(old_map);
2452       set_sp(old_sp);
2453       return false; // off-heap oop accesses are not supported
2454     }
2455   } else {
2456     heap_base_oop = base; // on-heap or mixed access
2457   }
2458 
2459   // Can base be null? Otherwise, always on-heap access.
2460   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2461 
2462   if (!can_access_non_heap) {
2463     decorators |= IN_HEAP;
2464   }
2465 
2466   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2467 
2468   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2469   if (adr_type == TypePtr::NULL_PTR) {
2470     set_map(old_map);
2471     set_sp(old_sp);
2472     return false; // off-heap access with zero address
2473   }
2474 
2475   // Try to categorize the address.
2476   Compile::AliasType* alias_type = C->alias_type(adr_type);
2477   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2478 
2479   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2480       alias_type->adr_type() == TypeAryPtr::RANGE) {
2481     set_map(old_map);
2482     set_sp(old_sp);
2483     return false; // not supported
2484   }
2485 
2486   bool mismatched = false;
2487   BasicType bt = T_ILLEGAL;
2488   ciField* field = nullptr;
2489   if (adr_type->isa_instptr()) {
2490     const TypeInstPtr* instptr = adr_type->is_instptr();
2491     ciInstanceKlass* k = instptr->instance_klass();
2492     int off = instptr->offset();
2493     if (instptr->const_oop() != nullptr &&
2494         k == ciEnv::current()->Class_klass() &&
2495         instptr->offset() >= (k->size_helper() * wordSize)) {
2496       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2497       field = k->get_field_by_offset(off, true);
2498     } else {
2499       field = k->get_non_flat_field_by_offset(off);
2500     }
2501     if (field != nullptr) {
2502       bt = type2field[field->type()->basic_type()];
2503     }
2504     assert(bt == alias_type->basic_type() || is_flat, "should match");
2505   } else {
2506     bt = alias_type->basic_type();
2507   }
2508 
2509   if (bt != T_ILLEGAL) {
2510     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2511     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2512       // Alias type doesn't differentiate between byte[] and boolean[]).
2513       // Use address type to get the element type.
2514       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2515     }
2516     if (is_reference_type(bt, true)) {
2517       // accessing an array field with getReference is not a mismatch
2518       bt = T_OBJECT;
2519     }
2520     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2521       // Don't intrinsify mismatched object accesses
2522       set_map(old_map);
2523       set_sp(old_sp);
2524       return false;
2525     }
2526     mismatched = (bt != type);
2527   } else if (alias_type->adr_type()->isa_oopptr()) {
2528     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2529   }
2530 
2531   if (is_flat) {
2532     if (adr_type->isa_instptr()) {
2533       if (field == nullptr || field->type() != inline_klass) {
2534         mismatched = true;
2535       }
2536     } else if (adr_type->isa_aryptr()) {
2537       const Type* elem = adr_type->is_aryptr()->elem();
2538       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2539         mismatched = true;
2540       }
2541     } else {
2542       mismatched = true;
2543     }
2544     if (is_store) {
2545       const Type* val_t = _gvn.type(val);
2546       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2547         set_map(old_map);
2548         set_sp(old_sp);
2549         return false;
2550       }
2551     }
2552   }
2553 
2554   destruct_map_clone(old_map);
2555   assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2556 
2557   if (mismatched) {
2558     decorators |= C2_MISMATCHED;
2559   }
2560 
2561   // First guess at the value type.
2562   const Type *value_type = Type::get_const_basic_type(type);
2563 
2564   // Figure out the memory ordering.
2565   decorators |= mo_decorator_for_access_kind(kind);
2566 
2567   if (!is_store) {
2568     if (type == T_OBJECT && !is_flat) {
2569       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2570       if (tjp != nullptr) {
2571         value_type = tjp;
2572       }
2573     }
2574   }
2575 
2576   receiver = null_check(receiver);
2577   if (stopped()) {
2578     return true;
2579   }
2580   // Heap pointers get a null-check from the interpreter,
2581   // as a courtesy.  However, this is not guaranteed by Unsafe,
2582   // and it is not possible to fully distinguish unintended nulls
2583   // from intended ones in this API.
2584 
2585   if (!is_store) {
2586     Node* p = nullptr;
2587     // Try to constant fold a load from a constant field
2588 
2589     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2590       // final or stable field
2591       p = make_constant_from_field(field, heap_base_oop);
2592     }
2593 
2594     if (p == nullptr) { // Could not constant fold the load
2595       if (is_flat) {
2596         if (adr_type->isa_instptr() && !mismatched) {
2597           ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2598           int offset = adr_type->is_instptr()->offset();
2599           p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, holder, offset, decorators);
2600         } else {
2601           p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, 0, decorators);
2602         }
2603       } else {
2604         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2605         const TypeOopPtr* ptr = value_type->make_oopptr();
2606         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2607           // Load a non-flattened inline type from memory
2608           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass(), !ptr->maybe_null());
2609         }
2610       }
2611       // Normalize the value returned by getBoolean in the following cases
2612       if (type == T_BOOLEAN &&
2613           (mismatched ||
2614            heap_base_oop == top() ||                  // - heap_base_oop is null or
2615            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2616                                                       //   and the unsafe access is made to large offset
2617                                                       //   (i.e., larger than the maximum offset necessary for any
2618                                                       //   field access)
2619             ) {
2620           IdealKit ideal = IdealKit(this);
2621 #define __ ideal.
2622           IdealVariable normalized_result(ideal);
2623           __ declarations_done();
2624           __ set(normalized_result, p);
2625           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2626           __ set(normalized_result, ideal.ConI(1));
2627           ideal.end_if();
2628           final_sync(ideal);
2629           p = __ value(normalized_result);
2630 #undef __
2631       }
2632     }
2633     if (type == T_ADDRESS) {
2634       p = gvn().transform(new CastP2XNode(nullptr, p));
2635       p = ConvX2UL(p);
2636     }
2637     // The load node has the control of the preceding MemBarCPUOrder.  All
2638     // following nodes will have the control of the MemBarCPUOrder inserted at
2639     // the end of this method.  So, pushing the load onto the stack at a later
2640     // point is fine.
2641     set_result(p);
2642   } else {
2643     if (bt == T_ADDRESS) {
2644       // Repackage the long as a pointer.
2645       val = ConvL2X(val);
2646       val = gvn().transform(new CastX2PNode(val));
2647     }
2648     if (is_flat) {
2649       if (adr_type->isa_instptr() && !mismatched) {
2650         ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2651         int offset = adr_type->is_instptr()->offset();
2652         val->as_InlineType()->store_flat(this, base, base, holder, offset, decorators);
2653       } else {
2654         val->as_InlineType()->store_flat(this, base, adr, nullptr, 0, decorators);
2655       }
2656     } else {
2657       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2658     }
2659   }
2660 
2661   if (argument(1)->is_InlineType() && is_store) {
2662     InlineTypeNode* value = InlineTypeNode::make_from_oop(this, base, _gvn.type(argument(1))->inline_klass());
2663     value = value->make_larval(this, false);
2664     replace_in_map(argument(1), value);
2665   }
2666 
2667   return true;
2668 }
2669 
2670 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2671   Node* receiver = argument(0);
2672   Node* value = argument(1);
2673   if (!value->is_InlineType()) {
2674     return false;
2675   }
2676 
2677   receiver = null_check(receiver);
2678   if (stopped()) {
2679     return true;
2680   }
2681 
2682   set_result(value->as_InlineType()->make_larval(this, true));
2683   return true;
2684 }
2685 
2686 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2687   Node* receiver = argument(0);
2688   Node* buffer = argument(1);
2689   if (!buffer->is_InlineType()) {
2690     return false;
2691   }
2692   InlineTypeNode* vt = buffer->as_InlineType();
2693   if (!vt->is_allocated(&_gvn)) {
2694     return false;
2695   }
2696   // TODO 8239003 Why is this needed?
2697   if (AllocateNode::Ideal_allocation(vt->get_oop()) == nullptr) {
2698     return false;
2699   }
2700 
2701   receiver = null_check(receiver);
2702   if (stopped()) {
2703     return true;
2704   }
2705 
2706   set_result(vt->finish_larval(this));
2707   return true;
2708 }
2709 
2710 //----------------------------inline_unsafe_load_store----------------------------
2711 // This method serves a couple of different customers (depending on LoadStoreKind):
2712 //
2713 // LS_cmp_swap:
2714 //
2715 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2716 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2717 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2718 //
2719 // LS_cmp_swap_weak:
2720 //
2721 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2722 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2723 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2724 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2725 //
2726 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2727 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2728 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2729 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

2895     }
2896     case LS_cmp_swap:
2897     case LS_cmp_swap_weak:
2898     case LS_get_add:
2899       break;
2900     default:
2901       ShouldNotReachHere();
2902   }
2903 
2904   // Null check receiver.
2905   receiver = null_check(receiver);
2906   if (stopped()) {
2907     return true;
2908   }
2909 
2910   int alias_idx = C->get_alias_index(adr_type);
2911 
2912   if (is_reference_type(type)) {
2913     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2914 
2915     if (oldval != nullptr && oldval->is_InlineType()) {
2916       // Re-execute the unsafe access if allocation triggers deoptimization.
2917       PreserveReexecuteState preexecs(this);
2918       jvms()->set_should_reexecute(true);
2919       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
2920     }
2921     if (newval != nullptr && newval->is_InlineType()) {
2922       // Re-execute the unsafe access if allocation triggers deoptimization.
2923       PreserveReexecuteState preexecs(this);
2924       jvms()->set_should_reexecute(true);
2925       newval = newval->as_InlineType()->buffer(this)->get_oop();
2926     }
2927 
2928     // Transformation of a value which could be null pointer (CastPP #null)
2929     // could be delayed during Parse (for example, in adjust_map_after_if()).
2930     // Execute transformation here to avoid barrier generation in such case.
2931     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2932       newval = _gvn.makecon(TypePtr::NULL_PTR);
2933 
2934     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2935       // Refine the value to a null constant, when it is known to be null
2936       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2937     }
2938   }
2939 
2940   Node* result = nullptr;
2941   switch (kind) {
2942     case LS_cmp_exchange: {
2943       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2944                                             oldval, newval, value_type, type, decorators);
2945       break;
2946     }
2947     case LS_cmp_swap_weak:

3094                     Deoptimization::Action_make_not_entrant);
3095     }
3096     if (stopped()) {
3097       return true;
3098     }
3099 #endif //INCLUDE_JVMTI
3100 
3101   Node* test = nullptr;
3102   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3103     // Note:  The argument might still be an illegal value like
3104     // Serializable.class or Object[].class.   The runtime will handle it.
3105     // But we must make an explicit check for initialization.
3106     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3107     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3108     // can generate code to load it as unsigned byte.
3109     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3110     Node* bits = intcon(InstanceKlass::fully_initialized);
3111     test = _gvn.transform(new SubINode(inst, bits));
3112     // The 'test' is non-zero if we need to take a slow path.
3113   }
3114   Node* obj = nullptr;
3115   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3116   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3117     obj = InlineTypeNode::make_default(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3118   } else {
3119     obj = new_instance(kls, test);
3120   }
3121   set_result(obj);
3122   return true;
3123 }
3124 
3125 //------------------------inline_native_time_funcs--------------
3126 // inline code for System.currentTimeMillis() and System.nanoTime()
3127 // these have the same type and signature
3128 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3129   const TypeFunc* tf = OptoRuntime::void_long_Type();
3130   const TypePtr* no_memory_effects = nullptr;
3131   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3132   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3133 #ifdef ASSERT
3134   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3135   assert(value_top == top(), "second value must be top");
3136 #endif
3137   set_result(value);
3138   return true;
3139 }
3140 

3896 
3897 //------------------------inline_native_setVthread------------------
3898 bool LibraryCallKit::inline_native_setCurrentThread() {
3899   assert(C->method()->changes_current_thread(),
3900          "method changes current Thread but is not annotated ChangesCurrentThread");
3901   Node* arr = argument(1);
3902   Node* thread = _gvn.transform(new ThreadLocalNode());
3903   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3904   Node* thread_obj_handle
3905     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3906   thread_obj_handle = _gvn.transform(thread_obj_handle);
3907   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3908   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3909   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3910   return true;
3911 }
3912 
3913 const Type* LibraryCallKit::scopedValueCache_type() {
3914   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3915   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3916   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3917 
3918   // Because we create the scopedValue cache lazily we have to make the
3919   // type of the result BotPTR.
3920   bool xk = etype->klass_is_exact();
3921   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
3922   return objects_type;
3923 }
3924 
3925 Node* LibraryCallKit::scopedValueCache_helper() {
3926   Node* thread = _gvn.transform(new ThreadLocalNode());
3927   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3928   // We cannot use immutable_memory() because we might flip onto a
3929   // different carrier thread, at which point we'll need to use that
3930   // carrier thread's cache.
3931   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3932   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3933   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3934 }
3935 
3936 //------------------------inline_native_scopedValueCache------------------
3937 bool LibraryCallKit::inline_native_scopedValueCache() {
3938   Node* cache_obj_handle = scopedValueCache_helper();
3939   const Type* objects_type = scopedValueCache_type();
3940   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3941 

4024   }
4025 
4026   // Result of top level CFG and Memory.
4027   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4028   record_for_igvn(result_rgn);
4029   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4030   record_for_igvn(result_mem);
4031 
4032   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
4033   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
4034   result_mem->init_req(_true_path, _gvn.transform(updated_pin_count_memory));
4035   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4036 
4037   // Set output state.
4038   set_control(_gvn.transform(result_rgn));
4039   set_all_memory(_gvn.transform(result_mem));
4040 
4041   return true;
4042 }
4043 









4044 //-----------------------load_klass_from_mirror_common-------------------------
4045 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
4046 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
4047 // and branch to the given path on the region.
4048 // If never_see_null, take an uncommon trap on null, so we can optimistically
4049 // compile for the non-null case.
4050 // If the region is null, force never_see_null = true.
4051 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
4052                                                     bool never_see_null,
4053                                                     RegionNode* region,
4054                                                     int null_path,
4055                                                     int offset) {
4056   if (region == nullptr)  never_see_null = true;
4057   Node* p = basic_plus_adr(mirror, offset);
4058   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4059   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
4060   Node* null_ctl = top();
4061   kls = null_check_oop(kls, &null_ctl, never_see_null);
4062   if (region != nullptr) {
4063     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

4067   }
4068   return kls;
4069 }
4070 
4071 //--------------------(inline_native_Class_query helpers)---------------------
4072 // Use this for JVM_ACC_INTERFACE.
4073 // Fall through if (mods & mask) == bits, take the guard otherwise.
4074 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4075                                                  ByteSize offset, const Type* type, BasicType bt) {
4076   // Branch around if the given klass has the given modifier bit set.
4077   // Like generate_guard, adds a new path onto the region.
4078   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4079   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4080   Node* mask = intcon(modifier_mask);
4081   Node* bits = intcon(modifier_bits);
4082   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4083   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4084   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4085   return generate_fair_guard(bol, region);
4086 }
4087 
4088 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4089   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4090                                     Klass::access_flags_offset(), TypeInt::INT, T_INT);
4091 }
4092 
4093 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4094 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4095   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4096                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4097 }
4098 
4099 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4100   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4101 }
4102 
4103 //-------------------------inline_native_Class_query-------------------
4104 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4105   const Type* return_type = TypeInt::BOOL;
4106   Node* prim_return_value = top();  // what happens if it's a primitive class?
4107   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4269 
4270   case vmIntrinsics::_getClassAccessFlags:
4271     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4272     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4273     break;
4274 
4275   default:
4276     fatal_unexpected_iid(id);
4277     break;
4278   }
4279 
4280   // Fall-through is the normal case of a query to a real class.
4281   phi->init_req(1, query_value);
4282   region->init_req(1, control());
4283 
4284   C->set_has_split_ifs(true); // Has chance for split-if optimization
4285   set_result(region, phi);
4286   return true;
4287 }
4288 
4289 
4290 //-------------------------inline_Class_cast-------------------
4291 bool LibraryCallKit::inline_Class_cast() {
4292   Node* mirror = argument(0); // Class
4293   Node* obj    = argument(1);
4294   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4295   if (mirror_con == nullptr) {
4296     return false;  // dead path (mirror->is_top()).
4297   }
4298   if (obj == nullptr || obj->is_top()) {
4299     return false;  // dead path
4300   }
4301   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4302 
4303   // First, see if Class.cast() can be folded statically.
4304   // java_mirror_type() returns non-null for compile-time Class constants.
4305   bool is_null_free_array = false;
4306   ciType* tm = mirror_con->java_mirror_type(&is_null_free_array);
4307   if (tm != nullptr && tm->is_klass() &&
4308       tp != nullptr) {
4309     if (!tp->is_loaded()) {
4310       // Don't use intrinsic when class is not loaded.
4311       return false;
4312     } else {
4313       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4314       if (is_null_free_array) {
4315         tklass = tklass->is_aryklassptr()->cast_to_null_free();
4316       }
4317       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4318       if (static_res == Compile::SSC_always_true) {
4319         // isInstance() is true - fold the code.
4320         set_result(obj);
4321         return true;
4322       } else if (static_res == Compile::SSC_always_false) {
4323         // Don't use intrinsic, have to throw ClassCastException.
4324         // If the reference is null, the non-intrinsic bytecode will
4325         // be optimized appropriately.
4326         return false;
4327       }
4328     }
4329   }
4330 
4331   // Bailout intrinsic and do normal inlining if exception path is frequent.
4332   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4333     return false;
4334   }
4335 
4336   // Generate dynamic checks.
4337   // Class.cast() is java implementation of _checkcast bytecode.
4338   // Do checkcast (Parse::do_checkcast()) optimizations here.
4339 
4340   mirror = null_check(mirror);
4341   // If mirror is dead, only null-path is taken.
4342   if (stopped()) {
4343     return true;
4344   }
4345 
4346   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4347   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4348   RegionNode* region = new RegionNode(PATH_LIMIT);
4349   record_for_igvn(region);
4350 
4351   // Now load the mirror's klass metaobject, and null-check it.
4352   // If kls is null, we have a primitive mirror and
4353   // nothing is an instance of a primitive type.
4354   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4355 
4356   Node* res = top();
4357   Node* io = i_o();
4358   Node* mem = merged_memory();
4359   if (!stopped()) {
4360 
4361     Node* bad_type_ctrl = top();
4362     // Do checkcast optimizations.
4363     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4364     region->init_req(_bad_type_path, bad_type_ctrl);
4365   }
4366   if (region->in(_prim_path) != top() ||
4367       region->in(_bad_type_path) != top() ||
4368       region->in(_npe_path) != top()) {
4369     // Let Interpreter throw ClassCastException.
4370     PreserveJVMState pjvms(this);
4371     set_control(_gvn.transform(region));
4372     // Set IO and memory because gen_checkcast may override them when buffering inline types
4373     set_i_o(io);
4374     set_all_memory(mem);
4375     uncommon_trap(Deoptimization::Reason_intrinsic,
4376                   Deoptimization::Action_maybe_recompile);
4377   }
4378   if (!stopped()) {
4379     set_result(res);
4380   }
4381   return true;
4382 }
4383 
4384 
4385 //--------------------------inline_native_subtype_check------------------------
4386 // This intrinsic takes the JNI calls out of the heart of
4387 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4388 bool LibraryCallKit::inline_native_subtype_check() {
4389   // Pull both arguments off the stack.
4390   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4391   args[0] = argument(0);
4392   args[1] = argument(1);
4393   Node* klasses[2];             // corresponding Klasses: superk, subk
4394   klasses[0] = klasses[1] = top();
4395 
4396   enum {
4397     // A full decision tree on {superc is prim, subc is prim}:
4398     _prim_0_path = 1,           // {P,N} => false
4399                                 // {P,P} & superc!=subc => false
4400     _prim_same_path,            // {P,P} & superc==subc => true
4401     _prim_1_path,               // {N,P} => false
4402     _ref_subtype_path,          // {N,N} & subtype check wins => true
4403     _both_ref_path,             // {N,N} & subtype check loses => false
4404     PATH_LIMIT
4405   };
4406 
4407   RegionNode* region = new RegionNode(PATH_LIMIT);
4408   RegionNode* prim_region = new RegionNode(2);
4409   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4410   record_for_igvn(region);
4411   record_for_igvn(prim_region);
4412 
4413   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4414   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4415   int class_klass_offset = java_lang_Class::klass_offset();
4416 
4417   // First null-check both mirrors and load each mirror's klass metaobject.
4418   int which_arg;
4419   for (which_arg = 0; which_arg <= 1; which_arg++) {
4420     Node* arg = args[which_arg];
4421     arg = null_check(arg);
4422     if (stopped())  break;
4423     args[which_arg] = arg;
4424 
4425     Node* p = basic_plus_adr(arg, class_klass_offset);
4426     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4427     klasses[which_arg] = _gvn.transform(kls);
4428   }
4429 
4430   // Having loaded both klasses, test each for null.
4431   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4432   for (which_arg = 0; which_arg <= 1; which_arg++) {
4433     Node* kls = klasses[which_arg];
4434     Node* null_ctl = top();
4435     kls = null_check_oop(kls, &null_ctl, never_see_null);
4436     if (which_arg == 0) {
4437       prim_region->init_req(1, null_ctl);
4438     } else {
4439       region->init_req(_prim_1_path, null_ctl);
4440     }
4441     if (stopped())  break;
4442     klasses[which_arg] = kls;
4443   }
4444 
4445   if (!stopped()) {
4446     // now we have two reference types, in klasses[0..1]
4447     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4448     Node* superk = klasses[0];  // the receiver
4449     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));

4450     region->set_req(_ref_subtype_path, control());
4451   }
4452 
4453   // If both operands are primitive (both klasses null), then
4454   // we must return true when they are identical primitives.
4455   // It is convenient to test this after the first null klass check.
4456   // This path is also used if superc is a value mirror.
4457   set_control(_gvn.transform(prim_region));
4458   if (!stopped()) {
4459     // Since superc is primitive, make a guard for the superc==subc case.
4460     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4461     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4462     generate_fair_guard(bol_eq, region);
4463     if (region->req() == PATH_LIMIT+1) {
4464       // A guard was added.  If the added guard is taken, superc==subc.
4465       region->swap_edges(PATH_LIMIT, _prim_same_path);
4466       region->del_req(PATH_LIMIT);
4467     }
4468     region->set_req(_prim_0_path, control()); // Not equal after all.
4469   }
4470 
4471   // these are the only paths that produce 'true':
4472   phi->set_req(_prim_same_path,   intcon(1));
4473   phi->set_req(_ref_subtype_path, intcon(1));
4474 
4475   // pull together the cases:
4476   assert(region->req() == PATH_LIMIT, "sane region");
4477   for (uint i = 1; i < region->req(); i++) {
4478     Node* ctl = region->in(i);
4479     if (ctl == nullptr || ctl == top()) {
4480       region->set_req(i, top());
4481       phi   ->set_req(i, top());
4482     } else if (phi->in(i) == nullptr) {
4483       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4484     }
4485   }
4486 
4487   set_control(_gvn.transform(region));
4488   set_result(_gvn.transform(phi));
4489   return true;
4490 }
4491 
4492 //---------------------generate_array_guard_common------------------------
4493 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind) {

4494 
4495   if (stopped()) {
4496     return nullptr;
4497   }
4498 









4499   // Like generate_guard, adds a new path onto the region.
4500   jint  layout_con = 0;
4501   Node* layout_val = get_layout_helper(kls, layout_con);
4502   if (layout_val == nullptr) {
4503     bool query = 0;
4504     switch(kind) {
4505       case ObjectArray:    query = Klass::layout_helper_is_objArray(layout_con); break;
4506       case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break;
4507       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4508       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4509       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4510       default:
4511         ShouldNotReachHere();
4512     }
4513     if (!query) {
4514       return nullptr;                       // never a branch
4515     } else {                             // always a branch
4516       Node* always_branch = control();
4517       if (region != nullptr)
4518         region->add_req(always_branch);
4519       set_control(top());
4520       return always_branch;
4521     }
4522   }
4523   unsigned int value = 0;
4524   BoolTest::mask btest = BoolTest::illegal;
4525   switch(kind) {
4526     case ObjectArray:
4527     case NonObjectArray: {
4528       value = Klass::_lh_array_tag_obj_value;
4529       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4530       btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne;
4531       break;
4532     }
4533     case TypeArray: {
4534       value = Klass::_lh_array_tag_type_value;
4535       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4536       btest = BoolTest::eq;
4537       break;
4538     }
4539     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4540     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4541     default:
4542       ShouldNotReachHere();
4543   }
4544   // Now test the correct condition.
4545   jint nval = (jint)value;



4546   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));



4547   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4548   return generate_fair_guard(bol, region);
4549 }
4550 
4551 //-----------------------inline_newNullRestrictedArray--------------------------
4552 // public static native Object[] newNullRestrictedArray(Class<?> componentType, int length);
4553 bool LibraryCallKit::inline_newNullRestrictedArray() {
4554   Node* componentType = argument(0);
4555   Node* length = argument(1);
4556 
4557   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4558   if (tp != nullptr) {
4559     ciInstanceKlass* ik = tp->instance_klass();
4560     if (ik == C->env()->Class_klass()) {
4561       ciType* t = tp->java_mirror_type();
4562       if (t != nullptr && t->is_inlinetype()) {
4563         ciArrayKlass* array_klass = ciArrayKlass::make(t, true);
4564         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4565           const TypeAryKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces)->is_aryklassptr();
4566           array_klass_type = array_klass_type->cast_to_null_free();
4567           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false);  // no arguments to push
4568           set_result(obj);
4569           assert(gvn().type(obj)->is_aryptr()->is_null_free(), "must be null-free");
4570           return true;
4571         }
4572       }
4573     }
4574   }
4575   return false;
4576 }
4577 
4578 //-----------------------inline_native_newArray--------------------------
4579 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4580 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4581 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4582   Node* mirror;
4583   Node* count_val;
4584   if (uninitialized) {
4585     null_check_receiver();
4586     mirror    = argument(1);
4587     count_val = argument(2);
4588   } else {
4589     mirror    = argument(0);
4590     count_val = argument(1);
4591   }
4592 
4593   mirror = null_check(mirror);
4594   // If mirror or obj is dead, only null-path is taken.
4595   if (stopped())  return true;
4596 
4597   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4598   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4599   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4705   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4706   { PreserveReexecuteState preexecs(this);
4707     jvms()->set_should_reexecute(true);
4708 
4709     array_type_mirror = null_check(array_type_mirror);
4710     original          = null_check(original);
4711 
4712     // Check if a null path was taken unconditionally.
4713     if (stopped())  return true;
4714 
4715     Node* orig_length = load_array_length(original);
4716 
4717     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4718     klass_node = null_check(klass_node);
4719 
4720     RegionNode* bailout = new RegionNode(1);
4721     record_for_igvn(bailout);
4722 
4723     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4724     // Bail out if that is so.
4725     // Inline type array may have object field that would require a
4726     // write barrier. Conservatively, go to slow path.
4727     // TODO 8251971: Optimize for the case when flat src/dst are later found
4728     // to not contain oops (i.e., move this check to the macro expansion phase).
4729     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4730     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
4731     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
4732     bool exclude_flat = UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
4733                         // Can src array be flat and contain oops?
4734                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
4735                         // Can dest array be flat and contain oops?
4736                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
4737     Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
4738     if (not_objArray != nullptr) {
4739       // Improve the klass node's type from the new optimistic assumption:
4740       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4741       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
4742       Node* cast = new CastPPNode(control(), klass_node, akls);
4743       klass_node = _gvn.transform(cast);
4744     }
4745 
4746     // Bail out if either start or end is negative.
4747     generate_negative_guard(start, bailout, &start);
4748     generate_negative_guard(end,   bailout, &end);
4749 
4750     Node* length = end;
4751     if (_gvn.type(start) != TypeInt::ZERO) {
4752       length = _gvn.transform(new SubINode(end, start));
4753     }
4754 
4755     // Bail out if length is negative (i.e., if start > end).
4756     // Without this the new_array would throw
4757     // NegativeArraySizeException but IllegalArgumentException is what
4758     // should be thrown
4759     generate_negative_guard(length, bailout, &length);
4760 
4761     // Handle inline type arrays
4762     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
4763     if (!stopped()) {
4764       // TODO JDK-8329224
4765       if (!orig_t->is_null_free()) {
4766         // Not statically known to be null free, add a check
4767         generate_fair_guard(null_free_array_test(original), bailout);
4768       }
4769       orig_t = _gvn.type(original)->isa_aryptr();
4770       if (orig_t != nullptr && orig_t->is_flat()) {
4771         // Src is flat, check that dest is flat as well
4772         if (exclude_flat) {
4773           // Dest can't be flat, bail out
4774           bailout->add_req(control());
4775           set_control(top());
4776         } else {
4777           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
4778         }
4779       } else if (UseFlatArray && (orig_t == nullptr || !orig_t->is_not_flat()) &&
4780                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
4781                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
4782         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
4783         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
4784         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
4785         if (orig_t != nullptr) {
4786           orig_t = orig_t->cast_to_not_flat();
4787           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
4788         }
4789       }
4790       if (!can_validate) {
4791         // No validation. The subtype check emitted at macro expansion time will not go to the slow
4792         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
4793         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
4794         generate_fair_guard(flat_array_test(klass_node), bailout);
4795         generate_fair_guard(null_free_array_test(original), bailout);
4796       }
4797     }
4798 
4799     // Bail out if start is larger than the original length
4800     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4801     generate_negative_guard(orig_tail, bailout, &orig_tail);
4802 
4803     if (bailout->req() > 1) {
4804       PreserveJVMState pjvms(this);
4805       set_control(_gvn.transform(bailout));
4806       uncommon_trap(Deoptimization::Reason_intrinsic,
4807                     Deoptimization::Action_maybe_recompile);
4808     }
4809 
4810     if (!stopped()) {
4811       // How many elements will we copy from the original?
4812       // The answer is MinI(orig_tail, length).
4813       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4814 
4815       // Generate a direct call to the right arraycopy function(s).
4816       // We know the copy is disjoint but we might not know if the
4817       // oop stores need checking.
4818       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4824       // to the copyOf to be validated, including that the copy to the
4825       // new array won't trigger an ArrayStoreException. That subtype
4826       // check can be optimized if we know something on the type of
4827       // the input array from type speculation.
4828       if (_gvn.type(klass_node)->singleton()) {
4829         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4830         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4831 
4832         int test = C->static_subtype_check(superk, subk);
4833         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4834           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4835           if (t_original->speculative_type() != nullptr) {
4836             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4837           }
4838         }
4839       }
4840 
4841       bool validated = false;
4842       // Reason_class_check rather than Reason_intrinsic because we
4843       // want to intrinsify even if this traps.
4844       if (can_validate) {
4845         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4846 
4847         if (not_subtype_ctrl != top()) {
4848           PreserveJVMState pjvms(this);
4849           set_control(not_subtype_ctrl);
4850           uncommon_trap(Deoptimization::Reason_class_check,
4851                         Deoptimization::Action_make_not_entrant);
4852           assert(stopped(), "Should be stopped");
4853         }
4854         validated = true;
4855       }
4856 
4857       if (!stopped()) {
4858         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4859 
4860         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4861                                                 load_object_klass(original), klass_node);
4862         if (!is_copyOfRange) {
4863           ac->set_copyof(validated);
4864         } else {

4910 
4911 //-----------------------generate_method_call----------------------------
4912 // Use generate_method_call to make a slow-call to the real
4913 // method if the fast path fails.  An alternative would be to
4914 // use a stub like OptoRuntime::slow_arraycopy_Java.
4915 // This only works for expanding the current library call,
4916 // not another intrinsic.  (E.g., don't use this for making an
4917 // arraycopy call inside of the copyOf intrinsic.)
4918 CallJavaNode*
4919 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4920   // When compiling the intrinsic method itself, do not use this technique.
4921   guarantee(callee() != C->method(), "cannot make slow-call to self");
4922 
4923   ciMethod* method = callee();
4924   // ensure the JVMS we have will be correct for this call
4925   guarantee(method_id == method->intrinsic_id(), "must match");
4926 
4927   const TypeFunc* tf = TypeFunc::make(method);
4928   if (res_not_null) {
4929     assert(tf->return_type() == T_OBJECT, "");
4930     const TypeTuple* range = tf->range_cc();
4931     const Type** fields = TypeTuple::fields(range->cnt());
4932     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4933     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4934     tf = TypeFunc::make(tf->domain_cc(), new_range);
4935   }
4936   CallJavaNode* slow_call;
4937   if (is_static) {
4938     assert(!is_virtual, "");
4939     slow_call = new CallStaticJavaNode(C, tf,
4940                            SharedRuntime::get_resolve_static_call_stub(), method);
4941   } else if (is_virtual) {
4942     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4943     int vtable_index = Method::invalid_vtable_index;
4944     if (UseInlineCaches) {
4945       // Suppress the vtable call
4946     } else {
4947       // hashCode and clone are not a miranda methods,
4948       // so the vtable index is fixed.
4949       // No need to use the linkResolver to get it.
4950        vtable_index = method->vtable_index();
4951        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4952               "bad index %d", vtable_index);
4953     }
4954     slow_call = new CallDynamicJavaNode(tf,

4971   set_edges_for_java_call(slow_call);
4972   return slow_call;
4973 }
4974 
4975 
4976 /**
4977  * Build special case code for calls to hashCode on an object. This call may
4978  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4979  * slightly different code.
4980  */
4981 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4982   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4983   assert(!(is_virtual && is_static), "either virtual, special, or static");
4984 
4985   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4986 
4987   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4988   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4989   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4990   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4991   Node* obj = argument(0);
4992 
4993   // Don't intrinsify hashcode on inline types for now.
4994   // The "is locked" runtime check below also serves as inline type check and goes to the slow path.
4995   if (gvn().type(obj)->is_inlinetypeptr()) {
4996     return false;
4997   }
4998 
4999   if (!is_static) {
5000     // Check for hashing null object
5001     obj = null_check_receiver();
5002     if (stopped())  return true;        // unconditionally null
5003     result_reg->init_req(_null_path, top());
5004     result_val->init_req(_null_path, top());
5005   } else {
5006     // Do a null check, and return zero if null.
5007     // System.identityHashCode(null) == 0

5008     Node* null_ctl = top();
5009     obj = null_check_oop(obj, &null_ctl);
5010     result_reg->init_req(_null_path, null_ctl);
5011     result_val->init_req(_null_path, _gvn.intcon(0));
5012   }
5013 
5014   // Unconditionally null?  Then return right away.
5015   if (stopped()) {
5016     set_control( result_reg->in(_null_path));
5017     if (!stopped())
5018       set_result(result_val->in(_null_path));
5019     return true;
5020   }
5021 
5022   // We only go to the fast case code if we pass a number of guards.  The
5023   // paths which do not pass are accumulated in the slow_region.
5024   RegionNode* slow_region = new RegionNode(1);
5025   record_for_igvn(slow_region);
5026 
5027   // If this is a virtual call, we generate a funny guard.  We pull out
5028   // the vtable entry corresponding to hashCode() from the target object.
5029   // If the target method which we are calling happens to be the native
5030   // Object hashCode() method, we pass the guard.  We do not need this
5031   // guard for non-virtual calls -- the caller is known to be the native
5032   // Object hashCode().
5033   if (is_virtual) {
5034     // After null check, get the object's klass.
5035     Node* obj_klass = load_object_klass(obj);
5036     generate_virtual_guard(obj_klass, slow_region);
5037   }
5038 
5039   // Get the header out of the object, use LoadMarkNode when available
5040   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5041   // The control of the load must be null. Otherwise, the load can move before
5042   // the null check after castPP removal.
5043   Node* no_ctrl = nullptr;
5044   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5045 
5046   if (!UseObjectMonitorTable) {
5047     // Test the header to see if it is safe to read w.r.t. locking.
5048   // This also serves as guard against inline types
5049     Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
5050     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5051     if (LockingMode == LM_LIGHTWEIGHT) {
5052       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5053       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5054       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5055 
5056       generate_slow_guard(test_monitor, slow_region);
5057     } else {
5058       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
5059       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
5060       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
5061 
5062       generate_slow_guard(test_not_unlocked, slow_region);
5063     }
5064   }
5065 
5066   // Get the hash value and check to see that it has been properly assigned.
5067   // We depend on hash_mask being at most 32 bits and avoid the use of
5068   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5069   // vm: see markWord.hpp.

5104     // this->control() comes from set_results_for_java_call
5105     result_reg->init_req(_slow_path, control());
5106     result_val->init_req(_slow_path, slow_result);
5107     result_io  ->set_req(_slow_path, i_o());
5108     result_mem ->set_req(_slow_path, reset_memory());
5109   }
5110 
5111   // Return the combined state.
5112   set_i_o(        _gvn.transform(result_io)  );
5113   set_all_memory( _gvn.transform(result_mem));
5114 
5115   set_result(result_reg, result_val);
5116   return true;
5117 }
5118 
5119 //---------------------------inline_native_getClass----------------------------
5120 // public final native Class<?> java.lang.Object.getClass();
5121 //
5122 // Build special case code for calls to getClass on an object.
5123 bool LibraryCallKit::inline_native_getClass() {
5124   Node* obj = argument(0);
5125   if (obj->is_InlineType()) {
5126     const Type* t = _gvn.type(obj);
5127     if (t->maybe_null()) {
5128       null_check(obj);
5129     }
5130     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5131     return true;
5132   }
5133   obj = null_check_receiver();
5134   if (stopped())  return true;
5135   set_result(load_mirror_from_klass(load_object_klass(obj)));
5136   return true;
5137 }
5138 
5139 //-----------------inline_native_Reflection_getCallerClass---------------------
5140 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5141 //
5142 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5143 //
5144 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5145 // in that it must skip particular security frames and checks for
5146 // caller sensitive methods.
5147 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5148 #ifndef PRODUCT
5149   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5150     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5151   }
5152 #endif
5153 

5465     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5466 
5467     flags |= RC_NARROW_MEM; // narrow in memory
5468   }
5469 
5470   // Call it.  Note that the length argument is not scaled.
5471   make_runtime_call(flags,
5472                     OptoRuntime::make_setmemory_Type(),
5473                     StubRoutines::unsafe_setmemory(),
5474                     "unsafe_setmemory",
5475                     dst_type,
5476                     dst_addr, size XTOP, byte);
5477 
5478   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5479 
5480   return true;
5481 }
5482 
5483 #undef XTOP
5484 
5485 //----------------------inline_unsafe_isFlatArray------------------------
5486 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass);
5487 // This intrinsic exploits assumptions made by the native implementation
5488 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks.
5489 bool LibraryCallKit::inline_unsafe_isFlatArray() {
5490   Node* cls = argument(1);
5491   Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset());
5492   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p,
5493                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
5494   Node* result = flat_array_test(kls);
5495   set_result(result);
5496   return true;
5497 }
5498 
5499 //------------------------clone_coping-----------------------------------
5500 // Helper function for inline_native_clone.
5501 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5502   assert(obj_size != nullptr, "");
5503   Node* raw_obj = alloc_obj->in(1);
5504   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5505 
5506   AllocateNode* alloc = nullptr;
5507   if (ReduceBulkZeroing &&
5508       // If we are implementing an array clone without knowing its source type
5509       // (can happen when compiling the array-guarded branch of a reflective
5510       // Object.clone() invocation), initialize the array within the allocation.
5511       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5512       // to a runtime clone call that assumes fully initialized source arrays.
5513       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5514     // We will be completely responsible for initializing this object -
5515     // mark Initialize node as complete.
5516     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5517     // The object was just allocated - there should be no any stores!
5518     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");

5549 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5550 //
5551 // The general case has two steps, allocation and copying.
5552 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5553 //
5554 // Copying also has two cases, oop arrays and everything else.
5555 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5556 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5557 //
5558 // These steps fold up nicely if and when the cloned object's klass
5559 // can be sharply typed as an object array, a type array, or an instance.
5560 //
5561 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5562   PhiNode* result_val;
5563 
5564   // Set the reexecute bit for the interpreter to reexecute
5565   // the bytecode that invokes Object.clone if deoptimization happens.
5566   { PreserveReexecuteState preexecs(this);
5567     jvms()->set_should_reexecute(true);
5568 
5569     Node* obj = argument(0);
5570     obj = null_check_receiver();
5571     if (stopped())  return true;
5572 
5573     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5574     if (obj_type->is_inlinetypeptr()) {
5575       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5576       // no identity.
5577       set_result(obj);
5578       return true;
5579     }
5580 
5581     // If we are going to clone an instance, we need its exact type to
5582     // know the number and types of fields to convert the clone to
5583     // loads/stores. Maybe a speculative type can help us.
5584     if (!obj_type->klass_is_exact() &&
5585         obj_type->speculative_type() != nullptr &&
5586         obj_type->speculative_type()->is_instance_klass() &&
5587         !obj_type->speculative_type()->is_inlinetype()) {
5588       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5589       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5590           !spec_ik->has_injected_fields()) {
5591         if (!obj_type->isa_instptr() ||
5592             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5593           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5594         }
5595       }
5596     }
5597 
5598     // Conservatively insert a memory barrier on all memory slices.
5599     // Do not let writes into the original float below the clone.
5600     insert_mem_bar(Op_MemBarCPUOrder);
5601 
5602     // paths into result_reg:
5603     enum {
5604       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5605       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5606       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5607       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5608       PATH_LIMIT
5609     };
5610     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5611     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5612     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5613     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5614     record_for_igvn(result_reg);
5615 
5616     Node* obj_klass = load_object_klass(obj);
5617     // We only go to the fast case code if we pass a number of guards.
5618     // The paths which do not pass are accumulated in the slow_region.
5619     RegionNode* slow_region = new RegionNode(1);
5620     record_for_igvn(slow_region);
5621 
5622     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5623     if (array_ctl != nullptr) {
5624       // It's an array.
5625       PreserveJVMState pjvms(this);
5626       set_control(array_ctl);



5627 
5628       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5629       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5630       if (UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5631           obj_type->can_be_inline_array() &&
5632           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5633         // Flat inline type array may have object field that would require a
5634         // write barrier. Conservatively, go to slow path.
5635         generate_fair_guard(flat_array_test(obj_klass), slow_region);













5636       }







5637 
5638       if (!stopped()) {
5639         Node* obj_length = load_array_length(obj);
5640         Node* array_size = nullptr; // Size of the array without object alignment padding.
5641         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5642 
5643         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5644         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5645           // If it is an oop array, it requires very special treatment,
5646           // because gc barriers are required when accessing the array.
5647           Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5648           if (is_obja != nullptr) {
5649             PreserveJVMState pjvms2(this);
5650             set_control(is_obja);
5651             // Generate a direct call to the right arraycopy function(s).
5652             // Clones are always tightly coupled.
5653             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5654             ac->set_clone_oop_array();
5655             Node* n = _gvn.transform(ac);
5656             assert(n == ac, "cannot disappear");
5657             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5658 
5659             result_reg->init_req(_objArray_path, control());
5660             result_val->init_req(_objArray_path, alloc_obj);
5661             result_i_o ->set_req(_objArray_path, i_o());
5662             result_mem ->set_req(_objArray_path, reset_memory());
5663           }
5664         }
5665         // Otherwise, there are no barriers to worry about.
5666         // (We can dispense with card marks if we know the allocation
5667         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5668         //  causes the non-eden paths to take compensating steps to
5669         //  simulate a fresh allocation, so that no further
5670         //  card marks are required in compiled code to initialize
5671         //  the object.)
5672 
5673         if (!stopped()) {
5674           copy_to_clone(obj, alloc_obj, array_size, true);
5675 
5676           // Present the results of the copy.
5677           result_reg->init_req(_array_path, control());
5678           result_val->init_req(_array_path, alloc_obj);
5679           result_i_o ->set_req(_array_path, i_o());
5680           result_mem ->set_req(_array_path, reset_memory());
5681         }
5682       }
5683     }
5684 




5685     if (!stopped()) {
5686       // It's an instance (we did array above).  Make the slow-path tests.
5687       // If this is a virtual call, we generate a funny guard.  We grab
5688       // the vtable entry corresponding to clone() from the target object.
5689       // If the target method which we are calling happens to be the
5690       // Object clone() method, we pass the guard.  We do not need this
5691       // guard for non-virtual calls; the caller is known to be the native
5692       // Object clone().
5693       if (is_virtual) {
5694         generate_virtual_guard(obj_klass, slow_region);
5695       }
5696 
5697       // The object must be easily cloneable and must not have a finalizer.
5698       // Both of these conditions may be checked in a single test.
5699       // We could optimize the test further, but we don't care.
5700       generate_misc_flags_guard(obj_klass,
5701                                 // Test both conditions:
5702                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5703                                 // Must be cloneable but not finalizer:
5704                                 KlassFlags::_misc_is_cloneable_fast,

5796         set_jvms(sfpt->jvms());
5797         _reexecute_sp = jvms()->sp();
5798 
5799         return saved_jvms;
5800       }
5801     }
5802   }
5803   return nullptr;
5804 }
5805 
5806 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5807 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5808 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5809   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5810   uint size = alloc->req();
5811   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5812   old_jvms->set_map(sfpt);
5813   for (uint i = 0; i < size; i++) {
5814     sfpt->init_req(i, alloc->in(i));
5815   }
5816   int adjustment = 1;
5817   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
5818   if (ary_klass_ptr->is_null_free()) {
5819     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newNullRestrictedArray
5820     // which requires both the component type and the array length on stack for re-execution. Re-create and push
5821     // the component type.
5822     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
5823     ciInstance* instance = klass->component_mirror_instance();
5824     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
5825     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
5826     adjustment++;
5827   }
5828   // re-push array length for deoptimization
5829   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
5830   old_jvms->set_sp(old_jvms->sp() + adjustment);
5831   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
5832   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
5833   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
5834   old_jvms->set_should_reexecute(true);
5835 
5836   sfpt->set_i_o(map()->i_o());
5837   sfpt->set_memory(map()->memory());
5838   sfpt->set_control(map()->control());
5839   return sfpt;
5840 }
5841 
5842 // In case of a deoptimization, we restart execution at the
5843 // allocation, allocating a new array. We would leave an uninitialized
5844 // array in the heap that GCs wouldn't expect. Move the allocation
5845 // after the traps so we don't allocate the array if we
5846 // deoptimize. This is possible because tightly_coupled_allocation()
5847 // guarantees there's no observer of the allocated array at this point
5848 // and the control flow is simple enough.
5849 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5850                                                     int saved_reexecute_sp, uint new_idx) {
5851   if (saved_jvms_before_guards != nullptr && !stopped()) {
5852     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5853 
5854     assert(alloc != nullptr, "only with a tightly coupled allocation");
5855     // restore JVM state to the state at the arraycopy
5856     saved_jvms_before_guards->map()->set_control(map()->control());
5857     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5858     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5859     // If we've improved the types of some nodes (null check) while
5860     // emitting the guards, propagate them to the current state
5861     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5862     set_jvms(saved_jvms_before_guards);
5863     _reexecute_sp = saved_reexecute_sp;
5864 
5865     // Remove the allocation from above the guards
5866     CallProjections* callprojs = alloc->extract_projections(true);

5867     InitializeNode* init = alloc->initialization();
5868     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5869     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5870     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5871 
5872     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5873     // the allocation (i.e. is only valid if the allocation succeeds):
5874     // 1) replace CastIINode with AllocateArrayNode's length here
5875     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5876     //
5877     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5878     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5879     Node* init_control = init->proj_out(TypeFunc::Control);
5880     Node* alloc_length = alloc->Ideal_length();
5881 #ifdef ASSERT
5882     Node* prev_cast = nullptr;
5883 #endif
5884     for (uint i = 0; i < init_control->outcnt(); i++) {
5885       Node* init_out = init_control->raw_out(i);
5886       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5887 #ifdef ASSERT
5888         if (prev_cast == nullptr) {
5889           prev_cast = init_out;

5891           if (prev_cast->cmp(*init_out) == false) {
5892             prev_cast->dump();
5893             init_out->dump();
5894             assert(false, "not equal CastIINode");
5895           }
5896         }
5897 #endif
5898         C->gvn_replace_by(init_out, alloc_length);
5899       }
5900     }
5901     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5902 
5903     // move the allocation here (after the guards)
5904     _gvn.hash_delete(alloc);
5905     alloc->set_req(TypeFunc::Control, control());
5906     alloc->set_req(TypeFunc::I_O, i_o());
5907     Node *mem = reset_memory();
5908     set_all_memory(mem);
5909     alloc->set_req(TypeFunc::Memory, mem);
5910     set_control(init->proj_out_or_null(TypeFunc::Control));
5911     set_i_o(callprojs->fallthrough_ioproj);
5912 
5913     // Update memory as done in GraphKit::set_output_for_allocation()
5914     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5915     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5916     if (ary_type->isa_aryptr() && length_type != nullptr) {
5917       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5918     }
5919     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5920     int            elemidx  = C->get_alias_index(telemref);
5921     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5922     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5923 
5924     Node* allocx = _gvn.transform(alloc);
5925     assert(allocx == alloc, "where has the allocation gone?");
5926     assert(dest->is_CheckCastPP(), "not an allocation result?");
5927 
5928     _gvn.hash_delete(dest);
5929     dest->set_req(0, control());
5930     Node* destx = _gvn.transform(dest);
5931     assert(destx == dest, "where has the allocation result gone?");

6229         top_src  = src_type->isa_aryptr();
6230         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6231         src_spec = true;
6232       }
6233       if (!has_dest) {
6234         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6235         dest_type  = _gvn.type(dest);
6236         top_dest  = dest_type->isa_aryptr();
6237         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6238         dest_spec = true;
6239       }
6240     }
6241   }
6242 
6243   if (has_src && has_dest && can_emit_guards) {
6244     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6245     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6246     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6247     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6248 
6249     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6250       // If both arrays are object arrays then having the exact types
6251       // for both will remove the need for a subtype check at runtime
6252       // before the call and may make it possible to pick a faster copy
6253       // routine (without a subtype check on every element)
6254       // Do we have the exact type of src?
6255       bool could_have_src = src_spec;
6256       // Do we have the exact type of dest?
6257       bool could_have_dest = dest_spec;
6258       ciKlass* src_k = nullptr;
6259       ciKlass* dest_k = nullptr;
6260       if (!src_spec) {
6261         src_k = src_type->speculative_type_not_null();
6262         if (src_k != nullptr && src_k->is_array_klass()) {
6263           could_have_src = true;
6264         }
6265       }
6266       if (!dest_spec) {
6267         dest_k = dest_type->speculative_type_not_null();
6268         if (dest_k != nullptr && dest_k->is_array_klass()) {
6269           could_have_dest = true;
6270         }
6271       }
6272       if (could_have_src && could_have_dest) {
6273         // If we can have both exact types, emit the missing guards
6274         if (could_have_src && !src_spec) {
6275           src = maybe_cast_profiled_obj(src, src_k, true);
6276           src_type = _gvn.type(src);
6277           top_src = src_type->isa_aryptr();
6278         }
6279         if (could_have_dest && !dest_spec) {
6280           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6281           dest_type = _gvn.type(dest);
6282           top_dest = dest_type->isa_aryptr();
6283         }
6284       }
6285     }
6286   }
6287 
6288   ciMethod* trap_method = method();
6289   int trap_bci = bci();
6290   if (saved_jvms_before_guards != nullptr) {
6291     trap_method = alloc->jvms()->method();
6292     trap_bci = alloc->jvms()->bci();
6293   }
6294 
6295   bool negative_length_guard_generated = false;
6296 
6297   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6298       can_emit_guards && !src->is_top() && !dest->is_top()) {

6299     // validate arguments: enables transformation the ArrayCopyNode
6300     validated = true;
6301 
6302     RegionNode* slow_region = new RegionNode(1);
6303     record_for_igvn(slow_region);
6304 
6305     // (1) src and dest are arrays.
6306     generate_non_array_guard(load_object_klass(src), slow_region);
6307     generate_non_array_guard(load_object_klass(dest), slow_region);
6308 
6309     // (2) src and dest arrays must have elements of the same BasicType
6310     // done at macro expansion or at Ideal transformation time
6311 
6312     // (4) src_offset must not be negative.
6313     generate_negative_guard(src_offset, slow_region);
6314 
6315     // (5) dest_offset must not be negative.
6316     generate_negative_guard(dest_offset, slow_region);
6317 
6318     // (7) src_offset + length must not exceed length of src.

6321                          slow_region);
6322 
6323     // (8) dest_offset + length must not exceed length of dest.
6324     generate_limit_guard(dest_offset, length,
6325                          load_array_length(dest),
6326                          slow_region);
6327 
6328     // (6) length must not be negative.
6329     // This is also checked in generate_arraycopy() during macro expansion, but
6330     // we also have to check it here for the case where the ArrayCopyNode will
6331     // be eliminated by Escape Analysis.
6332     if (EliminateAllocations) {
6333       generate_negative_guard(length, slow_region);
6334       negative_length_guard_generated = true;
6335     }
6336 
6337     // (9) each element of an oop array must be assignable
6338     Node* dest_klass = load_object_klass(dest);
6339     if (src != dest) {
6340       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6341       slow_region->add_req(not_subtype_ctrl);
6342     }
6343 
6344     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6345     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6346     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6347     src_type = _gvn.type(src);
6348     top_src  = src_type->isa_aryptr();
6349 
6350     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6351     if (!stopped() && UseFlatArray) {
6352       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6353       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6354       if (top_src != nullptr && top_src->is_flat()) {
6355         // Src is flat, check that dest is flat as well
6356         if (top_dest != nullptr && !top_dest->is_flat()) {
6357           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6358           // Since dest is flat and src <: dest, dest must have the same type as src.
6359           top_dest = top_src->cast_to_exactness(false);
6360           assert(top_dest->is_flat(), "dest must be flat");
6361           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6362         }
6363       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6364         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6365         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6366         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6367         generate_fair_guard(flat_array_test(src), slow_region);
6368         if (top_src != nullptr) {
6369           top_src = top_src->cast_to_not_flat();
6370           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6371         }
6372       }
6373     }
6374 
6375     {
6376       PreserveJVMState pjvms(this);
6377       set_control(_gvn.transform(slow_region));
6378       uncommon_trap(Deoptimization::Reason_intrinsic,
6379                     Deoptimization::Action_make_not_entrant);
6380       assert(stopped(), "Should be stopped");
6381     }




6382     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6383   }
6384 
6385   if (stopped()) {
6386     return true;
6387   }
6388 
6389   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6390                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6391                                           // so the compiler has a chance to eliminate them: during macro expansion,
6392                                           // we have to set their control (CastPP nodes are eliminated).
6393                                           load_object_klass(src), load_object_klass(dest),
6394                                           load_array_length(src), load_array_length(dest));
6395 
6396   ac->set_arraycopy(validated);
6397 
6398   Node* n = _gvn.transform(ac);
6399   if (n == ac) {
6400     ac->connect_outputs(this);
6401   } else {
< prev index next >