< prev index next >

src/hotspot/share/opto/library_call.cpp

Print this page

   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"

  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"

 307   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 308   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 309   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 310   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 311   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 312 
 313   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 314 
 315   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 316 
 317   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 318   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 319   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 320   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 321 
 322   case vmIntrinsics::_compressStringC:
 323   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 324   case vmIntrinsics::_inflateStringC:
 325   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 326 


 327   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 328   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 329   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 330   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 331   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 332   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 333   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 334   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 335   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);

 336 
 337   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 338   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 339   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 340   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 341   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 342   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 343   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 344   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 345   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);

 346 
 347   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 348   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 349   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 350   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 351   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 352   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 353   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 354   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 355   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 356 
 357   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 358   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 359   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 360   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 361   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 362   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 363   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 364   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 365   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 490   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 491                                                                                          "notifyJvmtiMount", false, false);
 492   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 493                                                                                          "notifyJvmtiUnmount", false, false);
 494   case vmIntrinsics::_notifyJvmtiVThreadHideFrames:     return inline_native_notify_jvmti_hide();
 495   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 496 #endif
 497 
 498 #ifdef JFR_HAVE_INTRINSICS
 499   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 500   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 501   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 502 #endif
 503   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 504   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 505   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 506   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 507   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 508   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 509   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();

 510   case vmIntrinsics::_getLength:                return inline_native_getLength();
 511   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 512   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 513   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 514   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 515   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 516   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 517   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 518 
 519   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 520   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);

 521 
 522   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 523 
 524   case vmIntrinsics::_isInstance:
 525   case vmIntrinsics::_getModifiers:
 526   case vmIntrinsics::_isInterface:
 527   case vmIntrinsics::_isArray:
 528   case vmIntrinsics::_isPrimitive:
 529   case vmIntrinsics::_isHidden:
 530   case vmIntrinsics::_getSuperclass:
 531   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 532 
 533   case vmIntrinsics::_floatToRawIntBits:
 534   case vmIntrinsics::_floatToIntBits:
 535   case vmIntrinsics::_intBitsToFloat:
 536   case vmIntrinsics::_doubleToRawLongBits:
 537   case vmIntrinsics::_doubleToLongBits:
 538   case vmIntrinsics::_longBitsToDouble:
 539   case vmIntrinsics::_floatToFloat16:
 540   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());

2192     case vmIntrinsics::_remainderUnsigned_l: {
2193       zero_check_long(argument(2));
2194       // Compile-time detect of null-exception
2195       if (stopped()) {
2196         return true; // keep the graph constructed so far
2197       }
2198       n = new UModLNode(control(), argument(0), argument(2));
2199       break;
2200     }
2201     default:  fatal_unexpected_iid(id);  break;
2202   }
2203   set_result(_gvn.transform(n));
2204   return true;
2205 }
2206 
2207 //----------------------------inline_unsafe_access----------------------------
2208 
2209 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2210   // Attempt to infer a sharper value type from the offset and base type.
2211   ciKlass* sharpened_klass = nullptr;

2212 
2213   // See if it is an instance field, with an object type.
2214   if (alias_type->field() != nullptr) {
2215     if (alias_type->field()->type()->is_klass()) {
2216       sharpened_klass = alias_type->field()->type()->as_klass();

2217     }
2218   }
2219 
2220   const TypeOopPtr* result = nullptr;
2221   // See if it is a narrow oop array.
2222   if (adr_type->isa_aryptr()) {
2223     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2224       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();

2225       if (elem_type != nullptr && elem_type->is_loaded()) {
2226         // Sharpen the value type.
2227         result = elem_type;
2228       }
2229     }
2230   }
2231 
2232   // The sharpened class might be unloaded if there is no class loader
2233   // contraint in place.
2234   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2235     // Sharpen the value type.
2236     result = TypeOopPtr::make_from_klass(sharpened_klass);



2237   }
2238   if (result != nullptr) {
2239 #ifndef PRODUCT
2240     if (C->print_intrinsics() || C->print_inlining()) {
2241       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2242       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2243     }
2244 #endif
2245   }
2246   return result;
2247 }
2248 
2249 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2250   switch (kind) {
2251       case Relaxed:
2252         return MO_UNORDERED;
2253       case Opaque:
2254         return MO_RELAXED;
2255       case Acquire:
2256         return MO_ACQUIRE;
2257       case Release:
2258         return MO_RELEASE;
2259       case Volatile:
2260         return MO_SEQ_CST;
2261       default:
2262         ShouldNotReachHere();
2263         return 0;
2264   }
2265 }
2266 
2267 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2268   if (callee()->is_static())  return false;  // caller must have the capability!
2269   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2270   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2271   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2272   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2273 
2274   if (is_reference_type(type)) {
2275     decorators |= ON_UNKNOWN_OOP_REF;
2276   }
2277 
2278   if (unaligned) {
2279     decorators |= C2_UNALIGNED;
2280   }
2281 
2282 #ifndef PRODUCT
2283   {
2284     ResourceMark rm;
2285     // Check the signatures.
2286     ciSignature* sig = callee()->signature();
2287 #ifdef ASSERT
2288     if (!is_store) {
2289       // Object getReference(Object base, int/long offset), etc.
2290       BasicType rtype = sig->return_type()->basic_type();
2291       assert(rtype == type, "getter must return the expected value");
2292       assert(sig->count() == 2, "oop getter has 2 arguments");
2293       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2294       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2295     } else {
2296       // void putReference(Object base, int/long offset, Object x), etc.
2297       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2298       assert(sig->count() == 3, "oop putter has 3 arguments");
2299       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2300       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2301       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2302       assert(vtype == type, "putter must accept the expected value");
2303     }
2304 #endif // ASSERT
2305  }
2306 #endif //PRODUCT
2307 
2308   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2309 
2310   Node* receiver = argument(0);  // type: oop
2311 
2312   // Build address expression.
2313   Node* heap_base_oop = top();
2314 
2315   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2316   Node* base = argument(1);  // type: oop
2317   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2318   Node* offset = argument(2);  // type: long
2319   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2320   // to be plain byte offsets, which are also the same as those accepted
2321   // by oopDesc::field_addr.
2322   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2323          "fieldOffset must be byte-scaled");























































2324   // 32-bit machines ignore the high half!
2325   offset = ConvL2X(offset);
2326 
2327   // Save state and restore on bailout
2328   uint old_sp = sp();
2329   SafePointNode* old_map = clone_map();
2330 
2331   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2332 
2333   if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) {
2334     if (type != T_OBJECT) {
2335       decorators |= IN_NATIVE; // off-heap primitive access
2336     } else {
2337       set_map(old_map);
2338       set_sp(old_sp);
2339       return false; // off-heap oop accesses are not supported
2340     }
2341   } else {
2342     heap_base_oop = base; // on-heap or mixed access
2343   }
2344 
2345   // Can base be null? Otherwise, always on-heap access.
2346   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2347 
2348   if (!can_access_non_heap) {
2349     decorators |= IN_HEAP;
2350   }
2351 
2352   Node* val = is_store ? argument(4) : nullptr;
2353 
2354   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2355   if (adr_type == TypePtr::NULL_PTR) {
2356     set_map(old_map);
2357     set_sp(old_sp);
2358     return false; // off-heap access with zero address
2359   }
2360 
2361   // Try to categorize the address.
2362   Compile::AliasType* alias_type = C->alias_type(adr_type);
2363   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2364 
2365   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2366       alias_type->adr_type() == TypeAryPtr::RANGE) {
2367     set_map(old_map);
2368     set_sp(old_sp);
2369     return false; // not supported
2370   }
2371 
2372   bool mismatched = false;
2373   BasicType bt = alias_type->basic_type();





















2374   if (bt != T_ILLEGAL) {
2375     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2376     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2377       // Alias type doesn't differentiate between byte[] and boolean[]).
2378       // Use address type to get the element type.
2379       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2380     }
2381     if (is_reference_type(bt, true)) {
2382       // accessing an array field with getReference is not a mismatch
2383       bt = T_OBJECT;
2384     }
2385     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2386       // Don't intrinsify mismatched object accesses
2387       set_map(old_map);
2388       set_sp(old_sp);
2389       return false;
2390     }
2391     mismatched = (bt != type);
2392   } else if (alias_type->adr_type()->isa_oopptr()) {
2393     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2394   }
2395 























2396   destruct_map_clone(old_map);
2397   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2398 
2399   if (mismatched) {
2400     decorators |= C2_MISMATCHED;
2401   }
2402 
2403   // First guess at the value type.
2404   const Type *value_type = Type::get_const_basic_type(type);
2405 
2406   // Figure out the memory ordering.
2407   decorators |= mo_decorator_for_access_kind(kind);
2408 
2409   if (!is_store && type == T_OBJECT) {
2410     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2411     if (tjp != nullptr) {
2412       value_type = tjp;


2413     }
2414   }
2415 
2416   receiver = null_check(receiver);
2417   if (stopped()) {
2418     return true;
2419   }
2420   // Heap pointers get a null-check from the interpreter,
2421   // as a courtesy.  However, this is not guaranteed by Unsafe,
2422   // and it is not possible to fully distinguish unintended nulls
2423   // from intended ones in this API.
2424 
2425   if (!is_store) {
2426     Node* p = nullptr;
2427     // Try to constant fold a load from a constant field
2428     ciField* field = alias_type->field();
2429     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2430       // final or stable field
2431       p = make_constant_from_field(field, heap_base_oop);
2432     }
2433 
2434     if (p == nullptr) { // Could not constant fold the load
2435       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);















2436       // Normalize the value returned by getBoolean in the following cases
2437       if (type == T_BOOLEAN &&
2438           (mismatched ||
2439            heap_base_oop == top() ||                  // - heap_base_oop is null or
2440            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2441                                                       //   and the unsafe access is made to large offset
2442                                                       //   (i.e., larger than the maximum offset necessary for any
2443                                                       //   field access)
2444             ) {
2445           IdealKit ideal = IdealKit(this);
2446 #define __ ideal.
2447           IdealVariable normalized_result(ideal);
2448           __ declarations_done();
2449           __ set(normalized_result, p);
2450           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2451           __ set(normalized_result, ideal.ConI(1));
2452           ideal.end_if();
2453           final_sync(ideal);
2454           p = __ value(normalized_result);
2455 #undef __
2456       }
2457     }
2458     if (type == T_ADDRESS) {
2459       p = gvn().transform(new CastP2XNode(nullptr, p));
2460       p = ConvX2UL(p);
2461     }
2462     // The load node has the control of the preceding MemBarCPUOrder.  All
2463     // following nodes will have the control of the MemBarCPUOrder inserted at
2464     // the end of this method.  So, pushing the load onto the stack at a later
2465     // point is fine.
2466     set_result(p);
2467   } else {
2468     if (bt == T_ADDRESS) {
2469       // Repackage the long as a pointer.
2470       val = ConvL2X(val);
2471       val = gvn().transform(new CastX2PNode(val));
2472     }
2473     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
















2474   }
2475 
2476   return true;
2477 }
2478 








































2479 //----------------------------inline_unsafe_load_store----------------------------
2480 // This method serves a couple of different customers (depending on LoadStoreKind):
2481 //
2482 // LS_cmp_swap:
2483 //
2484 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2485 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2486 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2487 //
2488 // LS_cmp_swap_weak:
2489 //
2490 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2491 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2492 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2493 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2494 //
2495 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2496 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2497 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2498 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

2664     }
2665     case LS_cmp_swap:
2666     case LS_cmp_swap_weak:
2667     case LS_get_add:
2668       break;
2669     default:
2670       ShouldNotReachHere();
2671   }
2672 
2673   // Null check receiver.
2674   receiver = null_check(receiver);
2675   if (stopped()) {
2676     return true;
2677   }
2678 
2679   int alias_idx = C->get_alias_index(adr_type);
2680 
2681   if (is_reference_type(type)) {
2682     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2683 













2684     // Transformation of a value which could be null pointer (CastPP #null)
2685     // could be delayed during Parse (for example, in adjust_map_after_if()).
2686     // Execute transformation here to avoid barrier generation in such case.
2687     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2688       newval = _gvn.makecon(TypePtr::NULL_PTR);
2689 
2690     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2691       // Refine the value to a null constant, when it is known to be null
2692       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2693     }
2694   }
2695 
2696   Node* result = nullptr;
2697   switch (kind) {
2698     case LS_cmp_exchange: {
2699       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2700                                             oldval, newval, value_type, type, decorators);
2701       break;
2702     }
2703     case LS_cmp_swap_weak:

2850                     Deoptimization::Action_make_not_entrant);
2851     }
2852     if (stopped()) {
2853       return true;
2854     }
2855 #endif //INCLUDE_JVMTI
2856 
2857   Node* test = nullptr;
2858   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2859     // Note:  The argument might still be an illegal value like
2860     // Serializable.class or Object[].class.   The runtime will handle it.
2861     // But we must make an explicit check for initialization.
2862     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2863     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2864     // can generate code to load it as unsigned byte.
2865     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2866     Node* bits = intcon(InstanceKlass::fully_initialized);
2867     test = _gvn.transform(new SubINode(inst, bits));
2868     // The 'test' is non-zero if we need to take a slow path.
2869   }
2870 
2871   Node* obj = new_instance(kls, test);





2872   set_result(obj);
2873   return true;
2874 }
2875 
2876 //------------------------inline_native_time_funcs--------------
2877 // inline code for System.currentTimeMillis() and System.nanoTime()
2878 // these have the same type and signature
2879 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2880   const TypeFunc* tf = OptoRuntime::void_long_Type();
2881   const TypePtr* no_memory_effects = nullptr;
2882   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2883   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2884 #ifdef ASSERT
2885   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2886   assert(value_top == top(), "second value must be top");
2887 #endif
2888   set_result(value);
2889   return true;
2890 }
2891 

3627 
3628 //------------------------inline_native_setVthread------------------
3629 bool LibraryCallKit::inline_native_setCurrentThread() {
3630   assert(C->method()->changes_current_thread(),
3631          "method changes current Thread but is not annotated ChangesCurrentThread");
3632   Node* arr = argument(1);
3633   Node* thread = _gvn.transform(new ThreadLocalNode());
3634   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3635   Node* thread_obj_handle
3636     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3637   thread_obj_handle = _gvn.transform(thread_obj_handle);
3638   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3639   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3640   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3641   return true;
3642 }
3643 
3644 const Type* LibraryCallKit::scopedValueCache_type() {
3645   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3646   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3647   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3648 
3649   // Because we create the scopedValue cache lazily we have to make the
3650   // type of the result BotPTR.
3651   bool xk = etype->klass_is_exact();
3652   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3653   return objects_type;
3654 }
3655 
3656 Node* LibraryCallKit::scopedValueCache_helper() {
3657   Node* thread = _gvn.transform(new ThreadLocalNode());
3658   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3659   // We cannot use immutable_memory() because we might flip onto a
3660   // different carrier thread, at which point we'll need to use that
3661   // carrier thread's cache.
3662   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3663   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3664   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3665 }
3666 
3667 //------------------------inline_native_scopedValueCache------------------
3668 bool LibraryCallKit::inline_native_scopedValueCache() {
3669   Node* cache_obj_handle = scopedValueCache_helper();
3670   const Type* objects_type = scopedValueCache_type();
3671   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3672 
3673   return true;
3674 }
3675 
3676 //------------------------inline_native_setScopedValueCache------------------
3677 bool LibraryCallKit::inline_native_setScopedValueCache() {
3678   Node* arr = argument(0);
3679   Node* cache_obj_handle = scopedValueCache_helper();
3680   const Type* objects_type = scopedValueCache_type();
3681 
3682   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3683   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3684 
3685   return true;
3686 }
3687 
3688 //---------------------------load_mirror_from_klass----------------------------
3689 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3690 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3691   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3692   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3693   // mirror = ((OopHandle)mirror)->resolve();
3694   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3695 }
3696 
3697 //-----------------------load_klass_from_mirror_common-------------------------
3698 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3699 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3700 // and branch to the given path on the region.
3701 // If never_see_null, take an uncommon trap on null, so we can optimistically
3702 // compile for the non-null case.
3703 // If the region is null, force never_see_null = true.
3704 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3705                                                     bool never_see_null,
3706                                                     RegionNode* region,
3707                                                     int null_path,
3708                                                     int offset) {
3709   if (region == nullptr)  never_see_null = true;
3710   Node* p = basic_plus_adr(mirror, offset);
3711   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3712   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3713   Node* null_ctl = top();
3714   kls = null_check_oop(kls, &null_ctl, never_see_null);
3715   if (region != nullptr) {
3716     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

3719     assert(null_ctl == top(), "no loose ends");
3720   }
3721   return kls;
3722 }
3723 
3724 //--------------------(inline_native_Class_query helpers)---------------------
3725 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3726 // Fall through if (mods & mask) == bits, take the guard otherwise.
3727 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3728   // Branch around if the given klass has the given modifier bit set.
3729   // Like generate_guard, adds a new path onto the region.
3730   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3731   Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered);
3732   Node* mask = intcon(modifier_mask);
3733   Node* bits = intcon(modifier_bits);
3734   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3735   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3736   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3737   return generate_fair_guard(bol, region);
3738 }

3739 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3740   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3741 }
3742 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3743   return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region);
3744 }
3745 
3746 //-------------------------inline_native_Class_query-------------------
3747 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3748   const Type* return_type = TypeInt::BOOL;
3749   Node* prim_return_value = top();  // what happens if it's a primitive class?
3750   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3751   bool expect_prim = false;     // most of these guys expect to work on refs
3752 
3753   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3754 
3755   Node* mirror = argument(0);
3756   Node* obj    = top();
3757 
3758   switch (id) {

3912 
3913   case vmIntrinsics::_getClassAccessFlags:
3914     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3915     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
3916     break;
3917 
3918   default:
3919     fatal_unexpected_iid(id);
3920     break;
3921   }
3922 
3923   // Fall-through is the normal case of a query to a real class.
3924   phi->init_req(1, query_value);
3925   region->init_req(1, control());
3926 
3927   C->set_has_split_ifs(true); // Has chance for split-if optimization
3928   set_result(region, phi);
3929   return true;
3930 }
3931 

3932 //-------------------------inline_Class_cast-------------------
3933 bool LibraryCallKit::inline_Class_cast() {
3934   Node* mirror = argument(0); // Class
3935   Node* obj    = argument(1);
3936   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3937   if (mirror_con == nullptr) {
3938     return false;  // dead path (mirror->is_top()).
3939   }
3940   if (obj == nullptr || obj->is_top()) {
3941     return false;  // dead path
3942   }
3943   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3944 
3945   // First, see if Class.cast() can be folded statically.
3946   // java_mirror_type() returns non-null for compile-time Class constants.
3947   ciType* tm = mirror_con->java_mirror_type();

3948   if (tm != nullptr && tm->is_klass() &&
3949       tp != nullptr) {
3950     if (!tp->is_loaded()) {
3951       // Don't use intrinsic when class is not loaded.
3952       return false;
3953     } else {
3954       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());




3955       if (static_res == Compile::SSC_always_true) {
3956         // isInstance() is true - fold the code.
3957         set_result(obj);
3958         return true;
3959       } else if (static_res == Compile::SSC_always_false) {
3960         // Don't use intrinsic, have to throw ClassCastException.
3961         // If the reference is null, the non-intrinsic bytecode will
3962         // be optimized appropriately.
3963         return false;
3964       }
3965     }
3966   }
3967 
3968   // Bailout intrinsic and do normal inlining if exception path is frequent.
3969   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3970     return false;
3971   }
3972 
3973   // Generate dynamic checks.
3974   // Class.cast() is java implementation of _checkcast bytecode.
3975   // Do checkcast (Parse::do_checkcast()) optimizations here.
3976 
3977   mirror = null_check(mirror);
3978   // If mirror is dead, only null-path is taken.
3979   if (stopped()) {
3980     return true;
3981   }
3982 
3983   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
3984   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3985   RegionNode* region = new RegionNode(PATH_LIMIT);
3986   record_for_igvn(region);
3987 
3988   // Now load the mirror's klass metaobject, and null-check it.
3989   // If kls is null, we have a primitive mirror and
3990   // nothing is an instance of a primitive type.
3991   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3992 
3993   Node* res = top();


3994   if (!stopped()) {

3995     Node* bad_type_ctrl = top();
3996     // Do checkcast optimizations.
3997     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3998     region->init_req(_bad_type_path, bad_type_ctrl);
3999   }
4000   if (region->in(_prim_path) != top() ||
4001       region->in(_bad_type_path) != top()) {

4002     // Let Interpreter throw ClassCastException.
4003     PreserveJVMState pjvms(this);
4004     set_control(_gvn.transform(region));



4005     uncommon_trap(Deoptimization::Reason_intrinsic,
4006                   Deoptimization::Action_maybe_recompile);
4007   }
4008   if (!stopped()) {
4009     set_result(res);
4010   }
4011   return true;
4012 }
4013 
4014 
4015 //--------------------------inline_native_subtype_check------------------------
4016 // This intrinsic takes the JNI calls out of the heart of
4017 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4018 bool LibraryCallKit::inline_native_subtype_check() {
4019   // Pull both arguments off the stack.
4020   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4021   args[0] = argument(0);
4022   args[1] = argument(1);
4023   Node* klasses[2];             // corresponding Klasses: superk, subk
4024   klasses[0] = klasses[1] = top();
4025 
4026   enum {
4027     // A full decision tree on {superc is prim, subc is prim}:
4028     _prim_0_path = 1,           // {P,N} => false
4029                                 // {P,P} & superc!=subc => false
4030     _prim_same_path,            // {P,P} & superc==subc => true
4031     _prim_1_path,               // {N,P} => false
4032     _ref_subtype_path,          // {N,N} & subtype check wins => true
4033     _both_ref_path,             // {N,N} & subtype check loses => false
4034     PATH_LIMIT
4035   };
4036 
4037   RegionNode* region = new RegionNode(PATH_LIMIT);

4038   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4039   record_for_igvn(region);

4040 
4041   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4042   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4043   int class_klass_offset = java_lang_Class::klass_offset();
4044 
4045   // First null-check both mirrors and load each mirror's klass metaobject.
4046   int which_arg;
4047   for (which_arg = 0; which_arg <= 1; which_arg++) {
4048     Node* arg = args[which_arg];
4049     arg = null_check(arg);
4050     if (stopped())  break;
4051     args[which_arg] = arg;
4052 
4053     Node* p = basic_plus_adr(arg, class_klass_offset);
4054     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4055     klasses[which_arg] = _gvn.transform(kls);
4056   }
4057 
4058   // Having loaded both klasses, test each for null.
4059   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4060   for (which_arg = 0; which_arg <= 1; which_arg++) {
4061     Node* kls = klasses[which_arg];
4062     Node* null_ctl = top();
4063     kls = null_check_oop(kls, &null_ctl, never_see_null);
4064     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4065     region->init_req(prim_path, null_ctl);



4066     if (stopped())  break;
4067     klasses[which_arg] = kls;
4068   }
4069 
4070   if (!stopped()) {
4071     // now we have two reference types, in klasses[0..1]
4072     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4073     Node* superk = klasses[0];  // the receiver
4074     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4075     // now we have a successful reference subtype check
4076     region->set_req(_ref_subtype_path, control());
4077   }
4078 
4079   // If both operands are primitive (both klasses null), then
4080   // we must return true when they are identical primitives.
4081   // It is convenient to test this after the first null klass check.
4082   set_control(region->in(_prim_0_path)); // go back to first null check

4083   if (!stopped()) {
4084     // Since superc is primitive, make a guard for the superc==subc case.
4085     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4086     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4087     generate_guard(bol_eq, region, PROB_FAIR);
4088     if (region->req() == PATH_LIMIT+1) {
4089       // A guard was added.  If the added guard is taken, superc==subc.
4090       region->swap_edges(PATH_LIMIT, _prim_same_path);
4091       region->del_req(PATH_LIMIT);
4092     }
4093     region->set_req(_prim_0_path, control()); // Not equal after all.
4094   }
4095 
4096   // these are the only paths that produce 'true':
4097   phi->set_req(_prim_same_path,   intcon(1));
4098   phi->set_req(_ref_subtype_path, intcon(1));
4099 
4100   // pull together the cases:
4101   assert(region->req() == PATH_LIMIT, "sane region");
4102   for (uint i = 1; i < region->req(); i++) {
4103     Node* ctl = region->in(i);
4104     if (ctl == nullptr || ctl == top()) {
4105       region->set_req(i, top());
4106       phi   ->set_req(i, top());
4107     } else if (phi->in(i) == nullptr) {
4108       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4109     }
4110   }
4111 
4112   set_control(_gvn.transform(region));
4113   set_result(_gvn.transform(phi));
4114   return true;
4115 }
4116 
4117 //---------------------generate_array_guard_common------------------------
4118 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4119                                                   bool obj_array, bool not_array) {
4120 
4121   if (stopped()) {
4122     return nullptr;
4123   }
4124 
4125   // If obj_array/non_array==false/false:
4126   // Branch around if the given klass is in fact an array (either obj or prim).
4127   // If obj_array/non_array==false/true:
4128   // Branch around if the given klass is not an array klass of any kind.
4129   // If obj_array/non_array==true/true:
4130   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4131   // If obj_array/non_array==true/false:
4132   // Branch around if the kls is an oop array (Object[] or subtype)
4133   //
4134   // Like generate_guard, adds a new path onto the region.
4135   jint  layout_con = 0;
4136   Node* layout_val = get_layout_helper(kls, layout_con);
4137   if (layout_val == nullptr) {
4138     bool query = (obj_array
4139                   ? Klass::layout_helper_is_objArray(layout_con)
4140                   : Klass::layout_helper_is_array(layout_con));
4141     if (query == not_array) {







4142       return nullptr;                       // never a branch
4143     } else {                             // always a branch
4144       Node* always_branch = control();
4145       if (region != nullptr)
4146         region->add_req(always_branch);
4147       set_control(top());
4148       return always_branch;
4149     }
4150   }





















4151   // Now test the correct condition.
4152   jint  nval = (obj_array
4153                 ? (jint)(Klass::_lh_array_tag_type_value
4154                    <<    Klass::_lh_array_tag_shift)
4155                 : Klass::_lh_neutral_value);
4156   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4157   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4158   // invert the test if we are looking for a non-array
4159   if (not_array)  btest = BoolTest(btest).negate();
4160   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4161   return generate_fair_guard(bol, region);
4162 }
4163 




























4164 
4165 //-----------------------inline_native_newArray--------------------------
4166 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4167 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4168 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4169   Node* mirror;
4170   Node* count_val;
4171   if (uninitialized) {
4172     null_check_receiver();
4173     mirror    = argument(1);
4174     count_val = argument(2);
4175   } else {
4176     mirror    = argument(0);
4177     count_val = argument(1);
4178   }
4179 
4180   mirror = null_check(mirror);
4181   // If mirror or obj is dead, only null-path is taken.
4182   if (stopped())  return true;
4183 
4184   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4185   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4186   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4292   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4293   { PreserveReexecuteState preexecs(this);
4294     jvms()->set_should_reexecute(true);
4295 
4296     array_type_mirror = null_check(array_type_mirror);
4297     original          = null_check(original);
4298 
4299     // Check if a null path was taken unconditionally.
4300     if (stopped())  return true;
4301 
4302     Node* orig_length = load_array_length(original);
4303 
4304     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4305     klass_node = null_check(klass_node);
4306 
4307     RegionNode* bailout = new RegionNode(1);
4308     record_for_igvn(bailout);
4309 
4310     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4311     // Bail out if that is so.
4312     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);












4313     if (not_objArray != nullptr) {
4314       // Improve the klass node's type from the new optimistic assumption:
4315       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4316       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4317       Node* cast = new CastPPNode(control(), klass_node, akls);
4318       klass_node = _gvn.transform(cast);
4319     }
4320 
4321     // Bail out if either start or end is negative.
4322     generate_negative_guard(start, bailout, &start);
4323     generate_negative_guard(end,   bailout, &end);
4324 
4325     Node* length = end;
4326     if (_gvn.type(start) != TypeInt::ZERO) {
4327       length = _gvn.transform(new SubINode(end, start));
4328     }
4329 
4330     // Bail out if length is negative.
4331     // Without this the new_array would throw
4332     // NegativeArraySizeException but IllegalArgumentException is what
4333     // should be thrown
4334     generate_negative_guard(length, bailout, &length);
4335 






































4336     if (bailout->req() > 1) {
4337       PreserveJVMState pjvms(this);
4338       set_control(_gvn.transform(bailout));
4339       uncommon_trap(Deoptimization::Reason_intrinsic,
4340                     Deoptimization::Action_maybe_recompile);
4341     }
4342 
4343     if (!stopped()) {
4344       // How many elements will we copy from the original?
4345       // The answer is MinI(orig_length - start, length).
4346       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4347       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4348 
4349       // Generate a direct call to the right arraycopy function(s).
4350       // We know the copy is disjoint but we might not know if the
4351       // oop stores need checking.
4352       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4353       // This will fail a store-check if x contains any non-nulls.
4354 
4355       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to

4358       // to the copyOf to be validated, including that the copy to the
4359       // new array won't trigger an ArrayStoreException. That subtype
4360       // check can be optimized if we know something on the type of
4361       // the input array from type speculation.
4362       if (_gvn.type(klass_node)->singleton()) {
4363         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4364         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4365 
4366         int test = C->static_subtype_check(superk, subk);
4367         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4368           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4369           if (t_original->speculative_type() != nullptr) {
4370             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4371           }
4372         }
4373       }
4374 
4375       bool validated = false;
4376       // Reason_class_check rather than Reason_intrinsic because we
4377       // want to intrinsify even if this traps.
4378       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4379         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4380 
4381         if (not_subtype_ctrl != top()) {
4382           PreserveJVMState pjvms(this);
4383           set_control(not_subtype_ctrl);
4384           uncommon_trap(Deoptimization::Reason_class_check,
4385                         Deoptimization::Action_make_not_entrant);
4386           assert(stopped(), "Should be stopped");
4387         }
4388         validated = true;
4389       }
4390 
4391       if (!stopped()) {
4392         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4393 
4394         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4395                                                 load_object_klass(original), klass_node);
4396         if (!is_copyOfRange) {
4397           ac->set_copyof(validated);
4398         } else {

4444 
4445 //-----------------------generate_method_call----------------------------
4446 // Use generate_method_call to make a slow-call to the real
4447 // method if the fast path fails.  An alternative would be to
4448 // use a stub like OptoRuntime::slow_arraycopy_Java.
4449 // This only works for expanding the current library call,
4450 // not another intrinsic.  (E.g., don't use this for making an
4451 // arraycopy call inside of the copyOf intrinsic.)
4452 CallJavaNode*
4453 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4454   // When compiling the intrinsic method itself, do not use this technique.
4455   guarantee(callee() != C->method(), "cannot make slow-call to self");
4456 
4457   ciMethod* method = callee();
4458   // ensure the JVMS we have will be correct for this call
4459   guarantee(method_id == method->intrinsic_id(), "must match");
4460 
4461   const TypeFunc* tf = TypeFunc::make(method);
4462   if (res_not_null) {
4463     assert(tf->return_type() == T_OBJECT, "");
4464     const TypeTuple* range = tf->range();
4465     const Type** fields = TypeTuple::fields(range->cnt());
4466     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4467     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4468     tf = TypeFunc::make(tf->domain(), new_range);
4469   }
4470   CallJavaNode* slow_call;
4471   if (is_static) {
4472     assert(!is_virtual, "");
4473     slow_call = new CallStaticJavaNode(C, tf,
4474                            SharedRuntime::get_resolve_static_call_stub(), method);
4475   } else if (is_virtual) {
4476     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4477     int vtable_index = Method::invalid_vtable_index;
4478     if (UseInlineCaches) {
4479       // Suppress the vtable call
4480     } else {
4481       // hashCode and clone are not a miranda methods,
4482       // so the vtable index is fixed.
4483       // No need to use the linkResolver to get it.
4484        vtable_index = method->vtable_index();
4485        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4486               "bad index %d", vtable_index);
4487     }
4488     slow_call = new CallDynamicJavaNode(tf,

4505   set_edges_for_java_call(slow_call);
4506   return slow_call;
4507 }
4508 
4509 
4510 /**
4511  * Build special case code for calls to hashCode on an object. This call may
4512  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4513  * slightly different code.
4514  */
4515 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4516   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4517   assert(!(is_virtual && is_static), "either virtual, special, or static");
4518 
4519   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4520 
4521   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4522   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4523   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4524   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4525   Node* obj = nullptr;





4526   if (!is_static) {
4527     // Check for hashing null object
4528     obj = null_check_receiver();
4529     if (stopped())  return true;        // unconditionally null
4530     result_reg->init_req(_null_path, top());
4531     result_val->init_req(_null_path, top());
4532   } else {
4533     // Do a null check, and return zero if null.
4534     // System.identityHashCode(null) == 0
4535     obj = argument(0);
4536     Node* null_ctl = top();
4537     obj = null_check_oop(obj, &null_ctl);
4538     result_reg->init_req(_null_path, null_ctl);
4539     result_val->init_req(_null_path, _gvn.intcon(0));
4540   }
4541 
4542   // Unconditionally null?  Then return right away.
4543   if (stopped()) {
4544     set_control( result_reg->in(_null_path));
4545     if (!stopped())
4546       set_result(result_val->in(_null_path));
4547     return true;
4548   }
4549 
4550   // We only go to the fast case code if we pass a number of guards.  The
4551   // paths which do not pass are accumulated in the slow_region.
4552   RegionNode* slow_region = new RegionNode(1);
4553   record_for_igvn(slow_region);
4554 
4555   // If this is a virtual call, we generate a funny guard.  We pull out
4556   // the vtable entry corresponding to hashCode() from the target object.
4557   // If the target method which we are calling happens to be the native
4558   // Object hashCode() method, we pass the guard.  We do not need this
4559   // guard for non-virtual calls -- the caller is known to be the native
4560   // Object hashCode().
4561   if (is_virtual) {
4562     // After null check, get the object's klass.
4563     Node* obj_klass = load_object_klass(obj);
4564     generate_virtual_guard(obj_klass, slow_region);
4565   }
4566 
4567   // Get the header out of the object, use LoadMarkNode when available
4568   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4569   // The control of the load must be null. Otherwise, the load can move before
4570   // the null check after castPP removal.
4571   Node* no_ctrl = nullptr;
4572   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4573 
4574   // Test the header to see if it is safe to read w.r.t. locking.
4575   Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);

4576   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4577   if (LockingMode == LM_LIGHTWEIGHT) {
4578     Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4579     Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4580     Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4581 
4582     generate_slow_guard(test_monitor, slow_region);
4583   } else {
4584     Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4585     Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4586     Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4587 
4588     generate_slow_guard(test_not_unlocked, slow_region);
4589   }
4590 
4591   // Get the hash value and check to see that it has been properly assigned.
4592   // We depend on hash_mask being at most 32 bits and avoid the use of
4593   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4594   // vm: see markWord.hpp.
4595   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);

4629     // this->control() comes from set_results_for_java_call
4630     result_reg->init_req(_slow_path, control());
4631     result_val->init_req(_slow_path, slow_result);
4632     result_io  ->set_req(_slow_path, i_o());
4633     result_mem ->set_req(_slow_path, reset_memory());
4634   }
4635 
4636   // Return the combined state.
4637   set_i_o(        _gvn.transform(result_io)  );
4638   set_all_memory( _gvn.transform(result_mem));
4639 
4640   set_result(result_reg, result_val);
4641   return true;
4642 }
4643 
4644 //---------------------------inline_native_getClass----------------------------
4645 // public final native Class<?> java.lang.Object.getClass();
4646 //
4647 // Build special case code for calls to getClass on an object.
4648 bool LibraryCallKit::inline_native_getClass() {
4649   Node* obj = null_check_receiver();









4650   if (stopped())  return true;
4651   set_result(load_mirror_from_klass(load_object_klass(obj)));
4652   return true;
4653 }
4654 
4655 //-----------------inline_native_Reflection_getCallerClass---------------------
4656 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4657 //
4658 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4659 //
4660 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4661 // in that it must skip particular security frames and checks for
4662 // caller sensitive methods.
4663 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4664 #ifndef PRODUCT
4665   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4666     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4667   }
4668 #endif
4669 

4930     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
4931       flags |= RC_NARROW_MEM; // narrow in memory
4932     }
4933   }
4934 
4935   // Call it.  Note that the length argument is not scaled.
4936   make_runtime_call(flags,
4937                     OptoRuntime::fast_arraycopy_Type(),
4938                     StubRoutines::unsafe_arraycopy(),
4939                     "unsafe_arraycopy",
4940                     dst_type,
4941                     src_addr, dst_addr, size XTOP);
4942 
4943   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4944 
4945   return true;
4946 }
4947 
4948 #undef XTOP
4949 















4950 //------------------------clone_coping-----------------------------------
4951 // Helper function for inline_native_clone.
4952 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
4953   assert(obj_size != nullptr, "");
4954   Node* raw_obj = alloc_obj->in(1);
4955   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4956 
4957   AllocateNode* alloc = nullptr;
4958   if (ReduceBulkZeroing) {
4959     // We will be completely responsible for initializing this object -
4960     // mark Initialize node as complete.
4961     alloc = AllocateNode::Ideal_allocation(alloc_obj);
4962     // The object was just allocated - there should be no any stores!
4963     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
4964     // Mark as complete_with_arraycopy so that on AllocateNode
4965     // expansion, we know this AllocateNode is initialized by an array
4966     // copy and a StoreStore barrier exists after the array copy.
4967     alloc->initialization()->set_complete_with_arraycopy();
4968   }
4969 

4994 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4995 //
4996 // The general case has two steps, allocation and copying.
4997 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4998 //
4999 // Copying also has two cases, oop arrays and everything else.
5000 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5001 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5002 //
5003 // These steps fold up nicely if and when the cloned object's klass
5004 // can be sharply typed as an object array, a type array, or an instance.
5005 //
5006 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5007   PhiNode* result_val;
5008 
5009   // Set the reexecute bit for the interpreter to reexecute
5010   // the bytecode that invokes Object.clone if deoptimization happens.
5011   { PreserveReexecuteState preexecs(this);
5012     jvms()->set_should_reexecute(true);
5013 
5014     Node* obj = null_check_receiver();

5015     if (stopped())  return true;
5016 
5017     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5018 
5019     // If we are going to clone an instance, we need its exact type to
5020     // know the number and types of fields to convert the clone to
5021     // loads/stores. Maybe a speculative type can help us.
5022     if (!obj_type->klass_is_exact() &&
5023         obj_type->speculative_type() != nullptr &&
5024         obj_type->speculative_type()->is_instance_klass()) {

5025       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5026       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5027           !spec_ik->has_injected_fields()) {
5028         if (!obj_type->isa_instptr() ||
5029             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5030           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5031         }
5032       }
5033     }
5034 
5035     // Conservatively insert a memory barrier on all memory slices.
5036     // Do not let writes into the original float below the clone.
5037     insert_mem_bar(Op_MemBarCPUOrder);
5038 
5039     // paths into result_reg:
5040     enum {
5041       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5042       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5043       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5044       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5045       PATH_LIMIT
5046     };
5047     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5048     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5049     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5050     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5051     record_for_igvn(result_reg);
5052 
5053     Node* obj_klass = load_object_klass(obj);





5054     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5055     if (array_ctl != nullptr) {
5056       // It's an array.
5057       PreserveJVMState pjvms(this);
5058       set_control(array_ctl);
5059       Node* obj_length = load_array_length(obj);
5060       Node* array_size = nullptr; // Size of the array without object alignment padding.
5061       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5062 
5063       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5064       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5065         // If it is an oop array, it requires very special treatment,
5066         // because gc barriers are required when accessing the array.
5067         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5068         if (is_obja != nullptr) {
5069           PreserveJVMState pjvms2(this);
5070           set_control(is_obja);
5071           // Generate a direct call to the right arraycopy function(s).
5072           // Clones are always tightly coupled.
5073           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5074           ac->set_clone_oop_array();
5075           Node* n = _gvn.transform(ac);
5076           assert(n == ac, "cannot disappear");
5077           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5078 
5079           result_reg->init_req(_objArray_path, control());
5080           result_val->init_req(_objArray_path, alloc_obj);
5081           result_i_o ->set_req(_objArray_path, i_o());
5082           result_mem ->set_req(_objArray_path, reset_memory());
5083         }
5084       }
5085       // Otherwise, there are no barriers to worry about.
5086       // (We can dispense with card marks if we know the allocation
5087       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5088       //  causes the non-eden paths to take compensating steps to
5089       //  simulate a fresh allocation, so that no further
5090       //  card marks are required in compiled code to initialize
5091       //  the object.)
5092 
5093       if (!stopped()) {
5094         copy_to_clone(obj, alloc_obj, array_size, true);
5095 
5096         // Present the results of the copy.
5097         result_reg->init_req(_array_path, control());
5098         result_val->init_req(_array_path, alloc_obj);
5099         result_i_o ->set_req(_array_path, i_o());
5100         result_mem ->set_req(_array_path, reset_memory());




































5101       }
5102     }
5103 
5104     // We only go to the instance fast case code if we pass a number of guards.
5105     // The paths which do not pass are accumulated in the slow_region.
5106     RegionNode* slow_region = new RegionNode(1);
5107     record_for_igvn(slow_region);
5108     if (!stopped()) {
5109       // It's an instance (we did array above).  Make the slow-path tests.
5110       // If this is a virtual call, we generate a funny guard.  We grab
5111       // the vtable entry corresponding to clone() from the target object.
5112       // If the target method which we are calling happens to be the
5113       // Object clone() method, we pass the guard.  We do not need this
5114       // guard for non-virtual calls; the caller is known to be the native
5115       // Object clone().
5116       if (is_virtual) {
5117         generate_virtual_guard(obj_klass, slow_region);
5118       }
5119 
5120       // The object must be easily cloneable and must not have a finalizer.
5121       // Both of these conditions may be checked in a single test.
5122       // We could optimize the test further, but we don't care.
5123       generate_access_flags_guard(obj_klass,
5124                                   // Test both conditions:
5125                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
5126                                   // Must be cloneable but not finalizer:
5127                                   JVM_ACC_IS_CLONEABLE_FAST,

5219         set_jvms(sfpt->jvms());
5220         _reexecute_sp = jvms()->sp();
5221 
5222         return saved_jvms;
5223       }
5224     }
5225   }
5226   return nullptr;
5227 }
5228 
5229 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5230 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5231 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5232   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5233   uint size = alloc->req();
5234   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5235   old_jvms->set_map(sfpt);
5236   for (uint i = 0; i < size; i++) {
5237     sfpt->init_req(i, alloc->in(i));
5238   }












5239   // re-push array length for deoptimization
5240   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5241   old_jvms->set_sp(old_jvms->sp()+1);
5242   old_jvms->set_monoff(old_jvms->monoff()+1);
5243   old_jvms->set_scloff(old_jvms->scloff()+1);
5244   old_jvms->set_endoff(old_jvms->endoff()+1);
5245   old_jvms->set_should_reexecute(true);
5246 
5247   sfpt->set_i_o(map()->i_o());
5248   sfpt->set_memory(map()->memory());
5249   sfpt->set_control(map()->control());
5250   return sfpt;
5251 }
5252 
5253 // In case of a deoptimization, we restart execution at the
5254 // allocation, allocating a new array. We would leave an uninitialized
5255 // array in the heap that GCs wouldn't expect. Move the allocation
5256 // after the traps so we don't allocate the array if we
5257 // deoptimize. This is possible because tightly_coupled_allocation()
5258 // guarantees there's no observer of the allocated array at this point
5259 // and the control flow is simple enough.
5260 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5261                                                     int saved_reexecute_sp, uint new_idx) {
5262   if (saved_jvms_before_guards != nullptr && !stopped()) {
5263     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5264 
5265     assert(alloc != nullptr, "only with a tightly coupled allocation");
5266     // restore JVM state to the state at the arraycopy
5267     saved_jvms_before_guards->map()->set_control(map()->control());
5268     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5269     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5270     // If we've improved the types of some nodes (null check) while
5271     // emitting the guards, propagate them to the current state
5272     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5273     set_jvms(saved_jvms_before_guards);
5274     _reexecute_sp = saved_reexecute_sp;
5275 
5276     // Remove the allocation from above the guards
5277     CallProjections callprojs;
5278     alloc->extract_projections(&callprojs, true);
5279     InitializeNode* init = alloc->initialization();
5280     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5281     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5282     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5283 
5284     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5285     // the allocation (i.e. is only valid if the allocation succeeds):
5286     // 1) replace CastIINode with AllocateArrayNode's length here
5287     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5288     //
5289     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5290     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5291     Node* init_control = init->proj_out(TypeFunc::Control);
5292     Node* alloc_length = alloc->Ideal_length();
5293 #ifdef ASSERT
5294     Node* prev_cast = nullptr;
5295 #endif
5296     for (uint i = 0; i < init_control->outcnt(); i++) {
5297       Node* init_out = init_control->raw_out(i);
5298       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5299 #ifdef ASSERT
5300         if (prev_cast == nullptr) {
5301           prev_cast = init_out;

5303           if (prev_cast->cmp(*init_out) == false) {
5304             prev_cast->dump();
5305             init_out->dump();
5306             assert(false, "not equal CastIINode");
5307           }
5308         }
5309 #endif
5310         C->gvn_replace_by(init_out, alloc_length);
5311       }
5312     }
5313     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5314 
5315     // move the allocation here (after the guards)
5316     _gvn.hash_delete(alloc);
5317     alloc->set_req(TypeFunc::Control, control());
5318     alloc->set_req(TypeFunc::I_O, i_o());
5319     Node *mem = reset_memory();
5320     set_all_memory(mem);
5321     alloc->set_req(TypeFunc::Memory, mem);
5322     set_control(init->proj_out_or_null(TypeFunc::Control));
5323     set_i_o(callprojs.fallthrough_ioproj);
5324 
5325     // Update memory as done in GraphKit::set_output_for_allocation()
5326     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5327     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5328     if (ary_type->isa_aryptr() && length_type != nullptr) {
5329       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5330     }
5331     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5332     int            elemidx  = C->get_alias_index(telemref);
5333     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5334     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5335 
5336     Node* allocx = _gvn.transform(alloc);
5337     assert(allocx == alloc, "where has the allocation gone?");
5338     assert(dest->is_CheckCastPP(), "not an allocation result?");
5339 
5340     _gvn.hash_delete(dest);
5341     dest->set_req(0, control());
5342     Node* destx = _gvn.transform(dest);
5343     assert(destx == dest, "where has the allocation result gone?");

5613         top_src  = src_type->isa_aryptr();
5614         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5615         src_spec = true;
5616       }
5617       if (!has_dest) {
5618         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5619         dest_type  = _gvn.type(dest);
5620         top_dest  = dest_type->isa_aryptr();
5621         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5622         dest_spec = true;
5623       }
5624     }
5625   }
5626 
5627   if (has_src && has_dest && can_emit_guards) {
5628     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5629     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5630     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5631     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5632 
5633     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5634       // If both arrays are object arrays then having the exact types
5635       // for both will remove the need for a subtype check at runtime
5636       // before the call and may make it possible to pick a faster copy
5637       // routine (without a subtype check on every element)
5638       // Do we have the exact type of src?
5639       bool could_have_src = src_spec;
5640       // Do we have the exact type of dest?
5641       bool could_have_dest = dest_spec;
5642       ciKlass* src_k = nullptr;
5643       ciKlass* dest_k = nullptr;
5644       if (!src_spec) {
5645         src_k = src_type->speculative_type_not_null();
5646         if (src_k != nullptr && src_k->is_array_klass()) {
5647           could_have_src = true;
5648         }
5649       }
5650       if (!dest_spec) {
5651         dest_k = dest_type->speculative_type_not_null();
5652         if (dest_k != nullptr && dest_k->is_array_klass()) {
5653           could_have_dest = true;
5654         }
5655       }
5656       if (could_have_src && could_have_dest) {
5657         // If we can have both exact types, emit the missing guards
5658         if (could_have_src && !src_spec) {
5659           src = maybe_cast_profiled_obj(src, src_k, true);


5660         }
5661         if (could_have_dest && !dest_spec) {
5662           dest = maybe_cast_profiled_obj(dest, dest_k, true);


5663         }
5664       }
5665     }
5666   }
5667 
5668   ciMethod* trap_method = method();
5669   int trap_bci = bci();
5670   if (saved_jvms_before_guards != nullptr) {
5671     trap_method = alloc->jvms()->method();
5672     trap_bci = alloc->jvms()->bci();
5673   }
5674 
5675   bool negative_length_guard_generated = false;
5676 
5677   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5678       can_emit_guards &&
5679       !src->is_top() && !dest->is_top()) {
5680     // validate arguments: enables transformation the ArrayCopyNode
5681     validated = true;
5682 
5683     RegionNode* slow_region = new RegionNode(1);
5684     record_for_igvn(slow_region);
5685 
5686     // (1) src and dest are arrays.
5687     generate_non_array_guard(load_object_klass(src), slow_region);
5688     generate_non_array_guard(load_object_klass(dest), slow_region);
5689 
5690     // (2) src and dest arrays must have elements of the same BasicType
5691     // done at macro expansion or at Ideal transformation time
5692 
5693     // (4) src_offset must not be negative.
5694     generate_negative_guard(src_offset, slow_region);
5695 
5696     // (5) dest_offset must not be negative.
5697     generate_negative_guard(dest_offset, slow_region);
5698 
5699     // (7) src_offset + length must not exceed length of src.

5702                          slow_region);
5703 
5704     // (8) dest_offset + length must not exceed length of dest.
5705     generate_limit_guard(dest_offset, length,
5706                          load_array_length(dest),
5707                          slow_region);
5708 
5709     // (6) length must not be negative.
5710     // This is also checked in generate_arraycopy() during macro expansion, but
5711     // we also have to check it here for the case where the ArrayCopyNode will
5712     // be eliminated by Escape Analysis.
5713     if (EliminateAllocations) {
5714       generate_negative_guard(length, slow_region);
5715       negative_length_guard_generated = true;
5716     }
5717 
5718     // (9) each element of an oop array must be assignable
5719     Node* dest_klass = load_object_klass(dest);
5720     if (src != dest) {
5721       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);


5722 
5723       if (not_subtype_ctrl != top()) {
5724         PreserveJVMState pjvms(this);
5725         set_control(not_subtype_ctrl);
5726         uncommon_trap(Deoptimization::Reason_intrinsic,
5727                       Deoptimization::Action_make_not_entrant);
5728         assert(stopped(), "Should be stopped");






















5729       }
5730     }

5731     {
5732       PreserveJVMState pjvms(this);
5733       set_control(_gvn.transform(slow_region));
5734       uncommon_trap(Deoptimization::Reason_intrinsic,
5735                     Deoptimization::Action_make_not_entrant);
5736       assert(stopped(), "Should be stopped");
5737     }
5738 
5739     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5740     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5741     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5742     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5743   }
5744 
5745   if (stopped()) {
5746     return true;
5747   }
5748 
5749   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
5750                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5751                                           // so the compiler has a chance to eliminate them: during macro expansion,
5752                                           // we have to set their control (CastPP nodes are eliminated).
5753                                           load_object_klass(src), load_object_klass(dest),
5754                                           load_array_length(src), load_array_length(dest));
5755 
5756   ac->set_arraycopy(validated);
5757 
5758   Node* n = _gvn.transform(ac);
5759   if (n == ac) {
5760     ac->connect_outputs(this);
5761   } else {

   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciUtilities.inline.hpp"
  29 #include "classfile/vmIntrinsics.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/castnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/convertnode.hpp"
  43 #include "opto/countbitsnode.hpp"
  44 #include "opto/idealKit.hpp"
  45 #include "opto/library_call.hpp"
  46 #include "opto/mathexactnode.hpp"
  47 #include "opto/mulnode.hpp"

 308   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 309   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 310   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 311   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 312   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 313 
 314   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 315 
 316   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 317 
 318   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 319   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 320   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 321   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 322 
 323   case vmIntrinsics::_compressStringC:
 324   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 325   case vmIntrinsics::_inflateStringC:
 326   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 327 
 328   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 329   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 330   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 331   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 332   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 333   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 334   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 335   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 336   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 337   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 338   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 339   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 340 
 341   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 342   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 343   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 344   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 345   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 346   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 347   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 348   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 349   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 350   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 351 
 352   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 353   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 354   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 355   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 356   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 357   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 358   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 359   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 360   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 361 
 362   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 363   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 364   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 365   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 366   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 367   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 368   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 369   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 370   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 495   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 496                                                                                          "notifyJvmtiMount", false, false);
 497   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 498                                                                                          "notifyJvmtiUnmount", false, false);
 499   case vmIntrinsics::_notifyJvmtiVThreadHideFrames:     return inline_native_notify_jvmti_hide();
 500   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 501 #endif
 502 
 503 #ifdef JFR_HAVE_INTRINSICS
 504   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 505   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 506   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 507 #endif
 508   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 509   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 510   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 511   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 512   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 513   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 514   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 515   case vmIntrinsics::_isFlatArray:              return inline_unsafe_isFlatArray();
 516   case vmIntrinsics::_getLength:                return inline_native_getLength();
 517   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 518   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 519   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 520   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 521   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 522   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 523   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 524 
 525   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 526   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 527   case vmIntrinsics::_newNullRestrictedArray:   return inline_newNullRestrictedArray();
 528 
 529   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 530 
 531   case vmIntrinsics::_isInstance:
 532   case vmIntrinsics::_getModifiers:
 533   case vmIntrinsics::_isInterface:
 534   case vmIntrinsics::_isArray:
 535   case vmIntrinsics::_isPrimitive:
 536   case vmIntrinsics::_isHidden:
 537   case vmIntrinsics::_getSuperclass:
 538   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 539 
 540   case vmIntrinsics::_floatToRawIntBits:
 541   case vmIntrinsics::_floatToIntBits:
 542   case vmIntrinsics::_intBitsToFloat:
 543   case vmIntrinsics::_doubleToRawLongBits:
 544   case vmIntrinsics::_doubleToLongBits:
 545   case vmIntrinsics::_longBitsToDouble:
 546   case vmIntrinsics::_floatToFloat16:
 547   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());

2199     case vmIntrinsics::_remainderUnsigned_l: {
2200       zero_check_long(argument(2));
2201       // Compile-time detect of null-exception
2202       if (stopped()) {
2203         return true; // keep the graph constructed so far
2204       }
2205       n = new UModLNode(control(), argument(0), argument(2));
2206       break;
2207     }
2208     default:  fatal_unexpected_iid(id);  break;
2209   }
2210   set_result(_gvn.transform(n));
2211   return true;
2212 }
2213 
2214 //----------------------------inline_unsafe_access----------------------------
2215 
2216 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2217   // Attempt to infer a sharper value type from the offset and base type.
2218   ciKlass* sharpened_klass = nullptr;
2219   bool null_free = false;
2220 
2221   // See if it is an instance field, with an object type.
2222   if (alias_type->field() != nullptr) {
2223     if (alias_type->field()->type()->is_klass()) {
2224       sharpened_klass = alias_type->field()->type()->as_klass();
2225       null_free = alias_type->field()->is_null_free();
2226     }
2227   }
2228 
2229   const TypeOopPtr* result = nullptr;
2230   // See if it is a narrow oop array.
2231   if (adr_type->isa_aryptr()) {
2232     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2233       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2234       null_free = adr_type->is_aryptr()->is_null_free();
2235       if (elem_type != nullptr && elem_type->is_loaded()) {
2236         // Sharpen the value type.
2237         result = elem_type;
2238       }
2239     }
2240   }
2241 
2242   // The sharpened class might be unloaded if there is no class loader
2243   // contraint in place.
2244   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2245     // Sharpen the value type.
2246     result = TypeOopPtr::make_from_klass(sharpened_klass);
2247     if (null_free) {
2248       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2249     }
2250   }
2251   if (result != nullptr) {
2252 #ifndef PRODUCT
2253     if (C->print_intrinsics() || C->print_inlining()) {
2254       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2255       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2256     }
2257 #endif
2258   }
2259   return result;
2260 }
2261 
2262 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2263   switch (kind) {
2264       case Relaxed:
2265         return MO_UNORDERED;
2266       case Opaque:
2267         return MO_RELAXED;
2268       case Acquire:
2269         return MO_ACQUIRE;
2270       case Release:
2271         return MO_RELEASE;
2272       case Volatile:
2273         return MO_SEQ_CST;
2274       default:
2275         ShouldNotReachHere();
2276         return 0;
2277   }
2278 }
2279 
2280 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2281   if (callee()->is_static())  return false;  // caller must have the capability!
2282   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2283   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2284   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2285   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2286 
2287   if (is_reference_type(type)) {
2288     decorators |= ON_UNKNOWN_OOP_REF;
2289   }
2290 
2291   if (unaligned) {
2292     decorators |= C2_UNALIGNED;
2293   }
2294 
2295 #ifndef PRODUCT
2296   {
2297     ResourceMark rm;
2298     // Check the signatures.
2299     ciSignature* sig = callee()->signature();
2300 #ifdef ASSERT
2301     if (!is_store) {
2302       // Object getReference(Object base, int/long offset), etc.
2303       BasicType rtype = sig->return_type()->basic_type();
2304       assert(rtype == type, "getter must return the expected value");
2305       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2306       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2307       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2308     } else {
2309       // void putReference(Object base, int/long offset, Object x), etc.
2310       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2311       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2312       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2313       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2314       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2315       assert(vtype == type, "putter must accept the expected value");
2316     }
2317 #endif // ASSERT
2318  }
2319 #endif //PRODUCT
2320 
2321   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2322 
2323   Node* receiver = argument(0);  // type: oop
2324 
2325   // Build address expression.
2326   Node* heap_base_oop = top();
2327 
2328   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2329   Node* base = argument(1);  // type: oop
2330   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2331   Node* offset = argument(2);  // type: long
2332   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2333   // to be plain byte offsets, which are also the same as those accepted
2334   // by oopDesc::field_addr.
2335   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2336          "fieldOffset must be byte-scaled");
2337 
2338   ciInlineKlass* inline_klass = nullptr;
2339   if (is_flat) {
2340     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2341     if (cls == nullptr || cls->const_oop() == nullptr) {
2342       return false;
2343     }
2344     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2345     if (!mirror_type->is_inlinetype()) {
2346       return false;
2347     }
2348     inline_klass = mirror_type->as_inline_klass();
2349   }
2350 
2351   if (base->is_InlineType()) {
2352     InlineTypeNode* vt = base->as_InlineType();
2353     if (is_store) {
2354       if (!vt->is_allocated(&_gvn)) {
2355         return false;
2356       }
2357       base = vt->get_oop();
2358     } else {
2359       if (offset->is_Con()) {
2360         long off = find_long_con(offset, 0);
2361         ciInlineKlass* vk = vt->type()->inline_klass();
2362         if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2363           return false;
2364         }
2365 
2366         ciField* field = vk->get_non_flat_field_by_offset(off);
2367         if (field != nullptr) {
2368           BasicType bt = type2field[field->type()->basic_type()];
2369           if (bt == T_ARRAY || bt == T_NARROWOOP) {
2370             bt = T_OBJECT;
2371           }
2372           if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2373             Node* value = vt->field_value_by_offset(off, false);
2374             if (value->is_InlineType()) {
2375               value = value->as_InlineType()->adjust_scalarization_depth(this);
2376             }
2377             set_result(value);
2378             return true;
2379           }
2380         }
2381       }
2382       {
2383         // Re-execute the unsafe access if allocation triggers deoptimization.
2384         PreserveReexecuteState preexecs(this);
2385         jvms()->set_should_reexecute(true);
2386         vt = vt->buffer(this);
2387       }
2388       base = vt->get_oop();
2389     }
2390   }
2391 
2392   // 32-bit machines ignore the high half!
2393   offset = ConvL2X(offset);
2394 
2395   // Save state and restore on bailout
2396   uint old_sp = sp();
2397   SafePointNode* old_map = clone_map();
2398 
2399   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2400 
2401   if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) {
2402     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2403       decorators |= IN_NATIVE; // off-heap primitive access
2404     } else {
2405       set_map(old_map);
2406       set_sp(old_sp);
2407       return false; // off-heap oop accesses are not supported
2408     }
2409   } else {
2410     heap_base_oop = base; // on-heap or mixed access
2411   }
2412 
2413   // Can base be null? Otherwise, always on-heap access.
2414   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2415 
2416   if (!can_access_non_heap) {
2417     decorators |= IN_HEAP;
2418   }
2419 
2420   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2421 
2422   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2423   if (adr_type == TypePtr::NULL_PTR) {
2424     set_map(old_map);
2425     set_sp(old_sp);
2426     return false; // off-heap access with zero address
2427   }
2428 
2429   // Try to categorize the address.
2430   Compile::AliasType* alias_type = C->alias_type(adr_type);
2431   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2432 
2433   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2434       alias_type->adr_type() == TypeAryPtr::RANGE) {
2435     set_map(old_map);
2436     set_sp(old_sp);
2437     return false; // not supported
2438   }
2439 
2440   bool mismatched = false;
2441   BasicType bt = T_ILLEGAL;
2442   ciField* field = nullptr;
2443   if (adr_type->isa_instptr()) {
2444     const TypeInstPtr* instptr = adr_type->is_instptr();
2445     ciInstanceKlass* k = instptr->instance_klass();
2446     int off = instptr->offset();
2447     if (instptr->const_oop() != nullptr &&
2448         k == ciEnv::current()->Class_klass() &&
2449         instptr->offset() >= (k->size_helper() * wordSize)) {
2450       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2451       field = k->get_field_by_offset(off, true);
2452     } else {
2453       field = k->get_non_flat_field_by_offset(off);
2454     }
2455     if (field != nullptr) {
2456       bt = type2field[field->type()->basic_type()];
2457     }
2458     assert(bt == alias_type->basic_type() || is_flat, "should match");
2459   } else {
2460     bt = alias_type->basic_type();
2461   }
2462 
2463   if (bt != T_ILLEGAL) {
2464     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2465     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2466       // Alias type doesn't differentiate between byte[] and boolean[]).
2467       // Use address type to get the element type.
2468       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2469     }
2470     if (is_reference_type(bt, true)) {
2471       // accessing an array field with getReference is not a mismatch
2472       bt = T_OBJECT;
2473     }
2474     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2475       // Don't intrinsify mismatched object accesses
2476       set_map(old_map);
2477       set_sp(old_sp);
2478       return false;
2479     }
2480     mismatched = (bt != type);
2481   } else if (alias_type->adr_type()->isa_oopptr()) {
2482     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2483   }
2484 
2485   if (is_flat) {
2486     if (adr_type->isa_instptr()) {
2487       if (field == nullptr || field->type() != inline_klass) {
2488         mismatched = true;
2489       }
2490     } else if (adr_type->isa_aryptr()) {
2491       const Type* elem = adr_type->is_aryptr()->elem();
2492       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2493         mismatched = true;
2494       }
2495     } else {
2496       mismatched = true;
2497     }
2498     if (is_store) {
2499       const Type* val_t = _gvn.type(val);
2500       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2501         set_map(old_map);
2502         set_sp(old_sp);
2503         return false;
2504       }
2505     }
2506   }
2507 
2508   destruct_map_clone(old_map);
2509   assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2510 
2511   if (mismatched) {
2512     decorators |= C2_MISMATCHED;
2513   }
2514 
2515   // First guess at the value type.
2516   const Type *value_type = Type::get_const_basic_type(type);
2517 
2518   // Figure out the memory ordering.
2519   decorators |= mo_decorator_for_access_kind(kind);
2520 
2521   if (!is_store) {
2522     if (type == T_OBJECT && !is_flat) {
2523       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2524       if (tjp != nullptr) {
2525         value_type = tjp;
2526       }
2527     }
2528   }
2529 
2530   receiver = null_check(receiver);
2531   if (stopped()) {
2532     return true;
2533   }
2534   // Heap pointers get a null-check from the interpreter,
2535   // as a courtesy.  However, this is not guaranteed by Unsafe,
2536   // and it is not possible to fully distinguish unintended nulls
2537   // from intended ones in this API.
2538 
2539   if (!is_store) {
2540     Node* p = nullptr;
2541     // Try to constant fold a load from a constant field
2542 
2543     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2544       // final or stable field
2545       p = make_constant_from_field(field, heap_base_oop);
2546     }
2547 
2548     if (p == nullptr) { // Could not constant fold the load
2549       if (is_flat) {
2550         if (adr_type->isa_instptr() && !mismatched) {
2551           ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2552           int offset = adr_type->is_instptr()->offset();
2553           p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, holder, offset, decorators);
2554         } else {
2555           p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, 0, decorators);
2556         }
2557       } else {
2558         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2559         const TypeOopPtr* ptr = value_type->make_oopptr();
2560         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2561           // Load a non-flattened inline type from memory
2562           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass(), !ptr->maybe_null());
2563         }
2564       }
2565       // Normalize the value returned by getBoolean in the following cases
2566       if (type == T_BOOLEAN &&
2567           (mismatched ||
2568            heap_base_oop == top() ||                  // - heap_base_oop is null or
2569            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2570                                                       //   and the unsafe access is made to large offset
2571                                                       //   (i.e., larger than the maximum offset necessary for any
2572                                                       //   field access)
2573             ) {
2574           IdealKit ideal = IdealKit(this);
2575 #define __ ideal.
2576           IdealVariable normalized_result(ideal);
2577           __ declarations_done();
2578           __ set(normalized_result, p);
2579           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2580           __ set(normalized_result, ideal.ConI(1));
2581           ideal.end_if();
2582           final_sync(ideal);
2583           p = __ value(normalized_result);
2584 #undef __
2585       }
2586     }
2587     if (type == T_ADDRESS) {
2588       p = gvn().transform(new CastP2XNode(nullptr, p));
2589       p = ConvX2UL(p);
2590     }
2591     // The load node has the control of the preceding MemBarCPUOrder.  All
2592     // following nodes will have the control of the MemBarCPUOrder inserted at
2593     // the end of this method.  So, pushing the load onto the stack at a later
2594     // point is fine.
2595     set_result(p);
2596   } else {
2597     if (bt == T_ADDRESS) {
2598       // Repackage the long as a pointer.
2599       val = ConvL2X(val);
2600       val = gvn().transform(new CastX2PNode(val));
2601     }
2602     if (is_flat) {
2603       if (adr_type->isa_instptr() && !mismatched) {
2604         ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2605         int offset = adr_type->is_instptr()->offset();
2606         val->as_InlineType()->store_flat(this, base, base, holder, offset, decorators);
2607       } else {
2608         val->as_InlineType()->store_flat(this, base, adr, nullptr, 0, decorators);
2609       }
2610     } else {
2611       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2612     }
2613   }
2614 
2615   if (argument(1)->is_InlineType() && is_store) {
2616     InlineTypeNode* value = InlineTypeNode::make_from_oop(this, base, _gvn.type(argument(1))->inline_klass());
2617     value = value->make_larval(this, false);
2618     replace_in_map(argument(1), value);
2619   }
2620 
2621   return true;
2622 }
2623 
2624 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2625   Node* receiver = argument(0);
2626   Node* value = argument(1);
2627   if (!value->is_InlineType()) {
2628     return false;
2629   }
2630 
2631   receiver = null_check(receiver);
2632   if (stopped()) {
2633     return true;
2634   }
2635 
2636   set_result(value->as_InlineType()->make_larval(this, true));
2637   return true;
2638 }
2639 
2640 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2641   Node* receiver = argument(0);
2642   Node* buffer = argument(1);
2643   if (!buffer->is_InlineType()) {
2644     return false;
2645   }
2646   InlineTypeNode* vt = buffer->as_InlineType();
2647   if (!vt->is_allocated(&_gvn)) {
2648     return false;
2649   }
2650   // TODO 8239003 Why is this needed?
2651   if (AllocateNode::Ideal_allocation(vt->get_oop()) == nullptr) {
2652     return false;
2653   }
2654 
2655   receiver = null_check(receiver);
2656   if (stopped()) {
2657     return true;
2658   }
2659 
2660   set_result(vt->finish_larval(this));
2661   return true;
2662 }
2663 
2664 //----------------------------inline_unsafe_load_store----------------------------
2665 // This method serves a couple of different customers (depending on LoadStoreKind):
2666 //
2667 // LS_cmp_swap:
2668 //
2669 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2670 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2671 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2672 //
2673 // LS_cmp_swap_weak:
2674 //
2675 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2676 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2677 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2678 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2679 //
2680 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2681 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2682 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2683 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

2849     }
2850     case LS_cmp_swap:
2851     case LS_cmp_swap_weak:
2852     case LS_get_add:
2853       break;
2854     default:
2855       ShouldNotReachHere();
2856   }
2857 
2858   // Null check receiver.
2859   receiver = null_check(receiver);
2860   if (stopped()) {
2861     return true;
2862   }
2863 
2864   int alias_idx = C->get_alias_index(adr_type);
2865 
2866   if (is_reference_type(type)) {
2867     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2868 
2869     if (oldval != nullptr && oldval->is_InlineType()) {
2870       // Re-execute the unsafe access if allocation triggers deoptimization.
2871       PreserveReexecuteState preexecs(this);
2872       jvms()->set_should_reexecute(true);
2873       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
2874     }
2875     if (newval != nullptr && newval->is_InlineType()) {
2876       // Re-execute the unsafe access if allocation triggers deoptimization.
2877       PreserveReexecuteState preexecs(this);
2878       jvms()->set_should_reexecute(true);
2879       newval = newval->as_InlineType()->buffer(this)->get_oop();
2880     }
2881 
2882     // Transformation of a value which could be null pointer (CastPP #null)
2883     // could be delayed during Parse (for example, in adjust_map_after_if()).
2884     // Execute transformation here to avoid barrier generation in such case.
2885     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2886       newval = _gvn.makecon(TypePtr::NULL_PTR);
2887 
2888     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2889       // Refine the value to a null constant, when it is known to be null
2890       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2891     }
2892   }
2893 
2894   Node* result = nullptr;
2895   switch (kind) {
2896     case LS_cmp_exchange: {
2897       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2898                                             oldval, newval, value_type, type, decorators);
2899       break;
2900     }
2901     case LS_cmp_swap_weak:

3048                     Deoptimization::Action_make_not_entrant);
3049     }
3050     if (stopped()) {
3051       return true;
3052     }
3053 #endif //INCLUDE_JVMTI
3054 
3055   Node* test = nullptr;
3056   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3057     // Note:  The argument might still be an illegal value like
3058     // Serializable.class or Object[].class.   The runtime will handle it.
3059     // But we must make an explicit check for initialization.
3060     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3061     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3062     // can generate code to load it as unsigned byte.
3063     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3064     Node* bits = intcon(InstanceKlass::fully_initialized);
3065     test = _gvn.transform(new SubINode(inst, bits));
3066     // The 'test' is non-zero if we need to take a slow path.
3067   }
3068   Node* obj = nullptr;
3069   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3070   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3071     obj = InlineTypeNode::make_default(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3072   } else {
3073     obj = new_instance(kls, test);
3074   }
3075   set_result(obj);
3076   return true;
3077 }
3078 
3079 //------------------------inline_native_time_funcs--------------
3080 // inline code for System.currentTimeMillis() and System.nanoTime()
3081 // these have the same type and signature
3082 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3083   const TypeFunc* tf = OptoRuntime::void_long_Type();
3084   const TypePtr* no_memory_effects = nullptr;
3085   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3086   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3087 #ifdef ASSERT
3088   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3089   assert(value_top == top(), "second value must be top");
3090 #endif
3091   set_result(value);
3092   return true;
3093 }
3094 

3830 
3831 //------------------------inline_native_setVthread------------------
3832 bool LibraryCallKit::inline_native_setCurrentThread() {
3833   assert(C->method()->changes_current_thread(),
3834          "method changes current Thread but is not annotated ChangesCurrentThread");
3835   Node* arr = argument(1);
3836   Node* thread = _gvn.transform(new ThreadLocalNode());
3837   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3838   Node* thread_obj_handle
3839     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3840   thread_obj_handle = _gvn.transform(thread_obj_handle);
3841   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3842   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3843   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3844   return true;
3845 }
3846 
3847 const Type* LibraryCallKit::scopedValueCache_type() {
3848   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3849   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3850   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3851 
3852   // Because we create the scopedValue cache lazily we have to make the
3853   // type of the result BotPTR.
3854   bool xk = etype->klass_is_exact();
3855   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
3856   return objects_type;
3857 }
3858 
3859 Node* LibraryCallKit::scopedValueCache_helper() {
3860   Node* thread = _gvn.transform(new ThreadLocalNode());
3861   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3862   // We cannot use immutable_memory() because we might flip onto a
3863   // different carrier thread, at which point we'll need to use that
3864   // carrier thread's cache.
3865   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3866   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3867   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3868 }
3869 
3870 //------------------------inline_native_scopedValueCache------------------
3871 bool LibraryCallKit::inline_native_scopedValueCache() {
3872   Node* cache_obj_handle = scopedValueCache_helper();
3873   const Type* objects_type = scopedValueCache_type();
3874   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3875 
3876   return true;
3877 }
3878 
3879 //------------------------inline_native_setScopedValueCache------------------
3880 bool LibraryCallKit::inline_native_setScopedValueCache() {
3881   Node* arr = argument(0);
3882   Node* cache_obj_handle = scopedValueCache_helper();
3883   const Type* objects_type = scopedValueCache_type();
3884 
3885   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3886   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3887 
3888   return true;
3889 }
3890 









3891 //-----------------------load_klass_from_mirror_common-------------------------
3892 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3893 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3894 // and branch to the given path on the region.
3895 // If never_see_null, take an uncommon trap on null, so we can optimistically
3896 // compile for the non-null case.
3897 // If the region is null, force never_see_null = true.
3898 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3899                                                     bool never_see_null,
3900                                                     RegionNode* region,
3901                                                     int null_path,
3902                                                     int offset) {
3903   if (region == nullptr)  never_see_null = true;
3904   Node* p = basic_plus_adr(mirror, offset);
3905   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3906   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3907   Node* null_ctl = top();
3908   kls = null_check_oop(kls, &null_ctl, never_see_null);
3909   if (region != nullptr) {
3910     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

3913     assert(null_ctl == top(), "no loose ends");
3914   }
3915   return kls;
3916 }
3917 
3918 //--------------------(inline_native_Class_query helpers)---------------------
3919 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3920 // Fall through if (mods & mask) == bits, take the guard otherwise.
3921 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3922   // Branch around if the given klass has the given modifier bit set.
3923   // Like generate_guard, adds a new path onto the region.
3924   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3925   Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered);
3926   Node* mask = intcon(modifier_mask);
3927   Node* bits = intcon(modifier_bits);
3928   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3929   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3930   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3931   return generate_fair_guard(bol, region);
3932 }
3933 
3934 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3935   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3936 }
3937 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3938   return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region);
3939 }
3940 
3941 //-------------------------inline_native_Class_query-------------------
3942 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3943   const Type* return_type = TypeInt::BOOL;
3944   Node* prim_return_value = top();  // what happens if it's a primitive class?
3945   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3946   bool expect_prim = false;     // most of these guys expect to work on refs
3947 
3948   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3949 
3950   Node* mirror = argument(0);
3951   Node* obj    = top();
3952 
3953   switch (id) {

4107 
4108   case vmIntrinsics::_getClassAccessFlags:
4109     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4110     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4111     break;
4112 
4113   default:
4114     fatal_unexpected_iid(id);
4115     break;
4116   }
4117 
4118   // Fall-through is the normal case of a query to a real class.
4119   phi->init_req(1, query_value);
4120   region->init_req(1, control());
4121 
4122   C->set_has_split_ifs(true); // Has chance for split-if optimization
4123   set_result(region, phi);
4124   return true;
4125 }
4126 
4127 
4128 //-------------------------inline_Class_cast-------------------
4129 bool LibraryCallKit::inline_Class_cast() {
4130   Node* mirror = argument(0); // Class
4131   Node* obj    = argument(1);
4132   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4133   if (mirror_con == nullptr) {
4134     return false;  // dead path (mirror->is_top()).
4135   }
4136   if (obj == nullptr || obj->is_top()) {
4137     return false;  // dead path
4138   }
4139   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4140 
4141   // First, see if Class.cast() can be folded statically.
4142   // java_mirror_type() returns non-null for compile-time Class constants.
4143   bool is_null_free_array = false;
4144   ciType* tm = mirror_con->java_mirror_type(&is_null_free_array);
4145   if (tm != nullptr && tm->is_klass() &&
4146       tp != nullptr) {
4147     if (!tp->is_loaded()) {
4148       // Don't use intrinsic when class is not loaded.
4149       return false;
4150     } else {
4151       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4152       if (is_null_free_array) {
4153         tklass = tklass->is_aryklassptr()->cast_to_null_free();
4154       }
4155       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4156       if (static_res == Compile::SSC_always_true) {
4157         // isInstance() is true - fold the code.
4158         set_result(obj);
4159         return true;
4160       } else if (static_res == Compile::SSC_always_false) {
4161         // Don't use intrinsic, have to throw ClassCastException.
4162         // If the reference is null, the non-intrinsic bytecode will
4163         // be optimized appropriately.
4164         return false;
4165       }
4166     }
4167   }
4168 
4169   // Bailout intrinsic and do normal inlining if exception path is frequent.
4170   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4171     return false;
4172   }
4173 
4174   // Generate dynamic checks.
4175   // Class.cast() is java implementation of _checkcast bytecode.
4176   // Do checkcast (Parse::do_checkcast()) optimizations here.
4177 
4178   mirror = null_check(mirror);
4179   // If mirror is dead, only null-path is taken.
4180   if (stopped()) {
4181     return true;
4182   }
4183 
4184   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4185   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4186   RegionNode* region = new RegionNode(PATH_LIMIT);
4187   record_for_igvn(region);
4188 
4189   // Now load the mirror's klass metaobject, and null-check it.
4190   // If kls is null, we have a primitive mirror and
4191   // nothing is an instance of a primitive type.
4192   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4193 
4194   Node* res = top();
4195   Node* io = i_o();
4196   Node* mem = merged_memory();
4197   if (!stopped()) {
4198 
4199     Node* bad_type_ctrl = top();
4200     // Do checkcast optimizations.
4201     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4202     region->init_req(_bad_type_path, bad_type_ctrl);
4203   }
4204   if (region->in(_prim_path) != top() ||
4205       region->in(_bad_type_path) != top() ||
4206       region->in(_npe_path) != top()) {
4207     // Let Interpreter throw ClassCastException.
4208     PreserveJVMState pjvms(this);
4209     set_control(_gvn.transform(region));
4210     // Set IO and memory because gen_checkcast may override them when buffering inline types
4211     set_i_o(io);
4212     set_all_memory(mem);
4213     uncommon_trap(Deoptimization::Reason_intrinsic,
4214                   Deoptimization::Action_maybe_recompile);
4215   }
4216   if (!stopped()) {
4217     set_result(res);
4218   }
4219   return true;
4220 }
4221 
4222 
4223 //--------------------------inline_native_subtype_check------------------------
4224 // This intrinsic takes the JNI calls out of the heart of
4225 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4226 bool LibraryCallKit::inline_native_subtype_check() {
4227   // Pull both arguments off the stack.
4228   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4229   args[0] = argument(0);
4230   args[1] = argument(1);
4231   Node* klasses[2];             // corresponding Klasses: superk, subk
4232   klasses[0] = klasses[1] = top();
4233 
4234   enum {
4235     // A full decision tree on {superc is prim, subc is prim}:
4236     _prim_0_path = 1,           // {P,N} => false
4237                                 // {P,P} & superc!=subc => false
4238     _prim_same_path,            // {P,P} & superc==subc => true
4239     _prim_1_path,               // {N,P} => false
4240     _ref_subtype_path,          // {N,N} & subtype check wins => true
4241     _both_ref_path,             // {N,N} & subtype check loses => false
4242     PATH_LIMIT
4243   };
4244 
4245   RegionNode* region = new RegionNode(PATH_LIMIT);
4246   RegionNode* prim_region = new RegionNode(2);
4247   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4248   record_for_igvn(region);
4249   record_for_igvn(prim_region);
4250 
4251   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4252   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4253   int class_klass_offset = java_lang_Class::klass_offset();
4254 
4255   // First null-check both mirrors and load each mirror's klass metaobject.
4256   int which_arg;
4257   for (which_arg = 0; which_arg <= 1; which_arg++) {
4258     Node* arg = args[which_arg];
4259     arg = null_check(arg);
4260     if (stopped())  break;
4261     args[which_arg] = arg;
4262 
4263     Node* p = basic_plus_adr(arg, class_klass_offset);
4264     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4265     klasses[which_arg] = _gvn.transform(kls);
4266   }
4267 
4268   // Having loaded both klasses, test each for null.
4269   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4270   for (which_arg = 0; which_arg <= 1; which_arg++) {
4271     Node* kls = klasses[which_arg];
4272     Node* null_ctl = top();
4273     kls = null_check_oop(kls, &null_ctl, never_see_null);
4274     if (which_arg == 0) {
4275       prim_region->init_req(1, null_ctl);
4276     } else {
4277       region->init_req(_prim_1_path, null_ctl);
4278     }
4279     if (stopped())  break;
4280     klasses[which_arg] = kls;
4281   }
4282 
4283   if (!stopped()) {
4284     // now we have two reference types, in klasses[0..1]
4285     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4286     Node* superk = klasses[0];  // the receiver
4287     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));

4288     region->set_req(_ref_subtype_path, control());
4289   }
4290 
4291   // If both operands are primitive (both klasses null), then
4292   // we must return true when they are identical primitives.
4293   // It is convenient to test this after the first null klass check.
4294   // This path is also used if superc is a value mirror.
4295   set_control(_gvn.transform(prim_region));
4296   if (!stopped()) {
4297     // Since superc is primitive, make a guard for the superc==subc case.
4298     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4299     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4300     generate_fair_guard(bol_eq, region);
4301     if (region->req() == PATH_LIMIT+1) {
4302       // A guard was added.  If the added guard is taken, superc==subc.
4303       region->swap_edges(PATH_LIMIT, _prim_same_path);
4304       region->del_req(PATH_LIMIT);
4305     }
4306     region->set_req(_prim_0_path, control()); // Not equal after all.
4307   }
4308 
4309   // these are the only paths that produce 'true':
4310   phi->set_req(_prim_same_path,   intcon(1));
4311   phi->set_req(_ref_subtype_path, intcon(1));
4312 
4313   // pull together the cases:
4314   assert(region->req() == PATH_LIMIT, "sane region");
4315   for (uint i = 1; i < region->req(); i++) {
4316     Node* ctl = region->in(i);
4317     if (ctl == nullptr || ctl == top()) {
4318       region->set_req(i, top());
4319       phi   ->set_req(i, top());
4320     } else if (phi->in(i) == nullptr) {
4321       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4322     }
4323   }
4324 
4325   set_control(_gvn.transform(region));
4326   set_result(_gvn.transform(phi));
4327   return true;
4328 }
4329 
4330 //---------------------generate_array_guard_common------------------------
4331 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind) {

4332 
4333   if (stopped()) {
4334     return nullptr;
4335   }
4336 









4337   // Like generate_guard, adds a new path onto the region.
4338   jint  layout_con = 0;
4339   Node* layout_val = get_layout_helper(kls, layout_con);
4340   if (layout_val == nullptr) {
4341     bool query = 0;
4342     switch(kind) {
4343       case ObjectArray:    query = Klass::layout_helper_is_objArray(layout_con); break;
4344       case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break;
4345       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4346       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4347       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4348       default:
4349         ShouldNotReachHere();
4350     }
4351     if (!query) {
4352       return nullptr;                       // never a branch
4353     } else {                             // always a branch
4354       Node* always_branch = control();
4355       if (region != nullptr)
4356         region->add_req(always_branch);
4357       set_control(top());
4358       return always_branch;
4359     }
4360   }
4361   unsigned int value = 0;
4362   BoolTest::mask btest = BoolTest::illegal;
4363   switch(kind) {
4364     case ObjectArray:
4365     case NonObjectArray: {
4366       value = Klass::_lh_array_tag_obj_value;
4367       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4368       btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne;
4369       break;
4370     }
4371     case TypeArray: {
4372       value = Klass::_lh_array_tag_type_value;
4373       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4374       btest = BoolTest::eq;
4375       break;
4376     }
4377     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4378     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4379     default:
4380       ShouldNotReachHere();
4381   }
4382   // Now test the correct condition.
4383   jint nval = (jint)value;



4384   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));



4385   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4386   return generate_fair_guard(bol, region);
4387 }
4388 
4389 //-----------------------inline_newNullRestrictedArray--------------------------
4390 // public static native Object[] newNullRestrictedArray(Class<?> componentType, int length);
4391 bool LibraryCallKit::inline_newNullRestrictedArray() {
4392   Node* componentType = argument(0);
4393   Node* length = argument(1);
4394 
4395   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4396   if (tp != nullptr) {
4397     ciInstanceKlass* ik = tp->instance_klass();
4398     if (ik == C->env()->Class_klass()) {
4399       ciType* t = tp->java_mirror_type();
4400       if (t != nullptr && t->is_inlinetype()) {
4401         ciArrayKlass* array_klass = ciArrayKlass::make(t, true);
4402         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4403           const TypeAryKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces)->is_aryklassptr();
4404           array_klass_type = array_klass_type->cast_to_null_free();
4405           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false);  // no arguments to push
4406           AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4407           alloc->set_null_free();
4408           set_result(obj);
4409           assert(gvn().type(obj)->is_aryptr()->is_null_free(), "must be null-free");
4410           return true;
4411         }
4412       }
4413     }
4414   }
4415   return false;
4416 }
4417 
4418 //-----------------------inline_native_newArray--------------------------
4419 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4420 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4421 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4422   Node* mirror;
4423   Node* count_val;
4424   if (uninitialized) {
4425     null_check_receiver();
4426     mirror    = argument(1);
4427     count_val = argument(2);
4428   } else {
4429     mirror    = argument(0);
4430     count_val = argument(1);
4431   }
4432 
4433   mirror = null_check(mirror);
4434   // If mirror or obj is dead, only null-path is taken.
4435   if (stopped())  return true;
4436 
4437   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4438   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4439   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4545   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4546   { PreserveReexecuteState preexecs(this);
4547     jvms()->set_should_reexecute(true);
4548 
4549     array_type_mirror = null_check(array_type_mirror);
4550     original          = null_check(original);
4551 
4552     // Check if a null path was taken unconditionally.
4553     if (stopped())  return true;
4554 
4555     Node* orig_length = load_array_length(original);
4556 
4557     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4558     klass_node = null_check(klass_node);
4559 
4560     RegionNode* bailout = new RegionNode(1);
4561     record_for_igvn(bailout);
4562 
4563     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4564     // Bail out if that is so.
4565     // Inline type array may have object field that would require a
4566     // write barrier. Conservatively, go to slow path.
4567     // TODO 8251971: Optimize for the case when flat src/dst are later found
4568     // to not contain oops (i.e., move this check to the macro expansion phase).
4569     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4570     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
4571     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
4572     bool exclude_flat = UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
4573                         // Can src array be flat and contain oops?
4574                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
4575                         // Can dest array be flat and contain oops?
4576                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
4577     Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
4578     if (not_objArray != nullptr) {
4579       // Improve the klass node's type from the new optimistic assumption:
4580       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4581       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
4582       Node* cast = new CastPPNode(control(), klass_node, akls);
4583       klass_node = _gvn.transform(cast);
4584     }
4585 
4586     // Bail out if either start or end is negative.
4587     generate_negative_guard(start, bailout, &start);
4588     generate_negative_guard(end,   bailout, &end);
4589 
4590     Node* length = end;
4591     if (_gvn.type(start) != TypeInt::ZERO) {
4592       length = _gvn.transform(new SubINode(end, start));
4593     }
4594 
4595     // Bail out if length is negative.
4596     // Without this the new_array would throw
4597     // NegativeArraySizeException but IllegalArgumentException is what
4598     // should be thrown
4599     generate_negative_guard(length, bailout, &length);
4600 
4601     // Handle inline type arrays
4602     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
4603     if (!stopped()) {
4604       // TODO JDK-8329224
4605       if (!orig_t->is_null_free()) {
4606         // Not statically known to be null free, add a check
4607         generate_fair_guard(null_free_array_test(original), bailout);
4608       }
4609       orig_t = _gvn.type(original)->isa_aryptr();
4610       if (orig_t != nullptr && orig_t->is_flat()) {
4611         // Src is flat, check that dest is flat as well
4612         if (exclude_flat) {
4613           // Dest can't be flat, bail out
4614           bailout->add_req(control());
4615           set_control(top());
4616         } else {
4617           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
4618         }
4619       } else if (UseFlatArray && (orig_t == nullptr || !orig_t->is_not_flat()) &&
4620                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
4621                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
4622         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
4623         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
4624         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
4625         if (orig_t != nullptr) {
4626           orig_t = orig_t->cast_to_not_flat();
4627           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
4628         }
4629       }
4630       if (!can_validate) {
4631         // No validation. The subtype check emitted at macro expansion time will not go to the slow
4632         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
4633         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
4634         generate_fair_guard(flat_array_test(klass_node), bailout);
4635         generate_fair_guard(null_free_array_test(original), bailout);
4636       }
4637     }
4638 
4639     if (bailout->req() > 1) {
4640       PreserveJVMState pjvms(this);
4641       set_control(_gvn.transform(bailout));
4642       uncommon_trap(Deoptimization::Reason_intrinsic,
4643                     Deoptimization::Action_maybe_recompile);
4644     }
4645 
4646     if (!stopped()) {
4647       // How many elements will we copy from the original?
4648       // The answer is MinI(orig_length - start, length).
4649       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4650       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4651 
4652       // Generate a direct call to the right arraycopy function(s).
4653       // We know the copy is disjoint but we might not know if the
4654       // oop stores need checking.
4655       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4656       // This will fail a store-check if x contains any non-nulls.
4657 
4658       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to

4661       // to the copyOf to be validated, including that the copy to the
4662       // new array won't trigger an ArrayStoreException. That subtype
4663       // check can be optimized if we know something on the type of
4664       // the input array from type speculation.
4665       if (_gvn.type(klass_node)->singleton()) {
4666         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4667         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4668 
4669         int test = C->static_subtype_check(superk, subk);
4670         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4671           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4672           if (t_original->speculative_type() != nullptr) {
4673             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4674           }
4675         }
4676       }
4677 
4678       bool validated = false;
4679       // Reason_class_check rather than Reason_intrinsic because we
4680       // want to intrinsify even if this traps.
4681       if (can_validate) {
4682         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4683 
4684         if (not_subtype_ctrl != top()) {
4685           PreserveJVMState pjvms(this);
4686           set_control(not_subtype_ctrl);
4687           uncommon_trap(Deoptimization::Reason_class_check,
4688                         Deoptimization::Action_make_not_entrant);
4689           assert(stopped(), "Should be stopped");
4690         }
4691         validated = true;
4692       }
4693 
4694       if (!stopped()) {
4695         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4696 
4697         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4698                                                 load_object_klass(original), klass_node);
4699         if (!is_copyOfRange) {
4700           ac->set_copyof(validated);
4701         } else {

4747 
4748 //-----------------------generate_method_call----------------------------
4749 // Use generate_method_call to make a slow-call to the real
4750 // method if the fast path fails.  An alternative would be to
4751 // use a stub like OptoRuntime::slow_arraycopy_Java.
4752 // This only works for expanding the current library call,
4753 // not another intrinsic.  (E.g., don't use this for making an
4754 // arraycopy call inside of the copyOf intrinsic.)
4755 CallJavaNode*
4756 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4757   // When compiling the intrinsic method itself, do not use this technique.
4758   guarantee(callee() != C->method(), "cannot make slow-call to self");
4759 
4760   ciMethod* method = callee();
4761   // ensure the JVMS we have will be correct for this call
4762   guarantee(method_id == method->intrinsic_id(), "must match");
4763 
4764   const TypeFunc* tf = TypeFunc::make(method);
4765   if (res_not_null) {
4766     assert(tf->return_type() == T_OBJECT, "");
4767     const TypeTuple* range = tf->range_cc();
4768     const Type** fields = TypeTuple::fields(range->cnt());
4769     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4770     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4771     tf = TypeFunc::make(tf->domain_cc(), new_range);
4772   }
4773   CallJavaNode* slow_call;
4774   if (is_static) {
4775     assert(!is_virtual, "");
4776     slow_call = new CallStaticJavaNode(C, tf,
4777                            SharedRuntime::get_resolve_static_call_stub(), method);
4778   } else if (is_virtual) {
4779     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4780     int vtable_index = Method::invalid_vtable_index;
4781     if (UseInlineCaches) {
4782       // Suppress the vtable call
4783     } else {
4784       // hashCode and clone are not a miranda methods,
4785       // so the vtable index is fixed.
4786       // No need to use the linkResolver to get it.
4787        vtable_index = method->vtable_index();
4788        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4789               "bad index %d", vtable_index);
4790     }
4791     slow_call = new CallDynamicJavaNode(tf,

4808   set_edges_for_java_call(slow_call);
4809   return slow_call;
4810 }
4811 
4812 
4813 /**
4814  * Build special case code for calls to hashCode on an object. This call may
4815  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4816  * slightly different code.
4817  */
4818 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4819   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4820   assert(!(is_virtual && is_static), "either virtual, special, or static");
4821 
4822   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4823 
4824   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4825   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4826   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4827   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4828   Node* obj = argument(0);
4829 
4830   if (gvn().type(obj)->is_inlinetypeptr()) {
4831     return false;
4832   }
4833 
4834   if (!is_static) {
4835     // Check for hashing null object
4836     obj = null_check_receiver();
4837     if (stopped())  return true;        // unconditionally null
4838     result_reg->init_req(_null_path, top());
4839     result_val->init_req(_null_path, top());
4840   } else {
4841     // Do a null check, and return zero if null.
4842     // System.identityHashCode(null) == 0

4843     Node* null_ctl = top();
4844     obj = null_check_oop(obj, &null_ctl);
4845     result_reg->init_req(_null_path, null_ctl);
4846     result_val->init_req(_null_path, _gvn.intcon(0));
4847   }
4848 
4849   // Unconditionally null?  Then return right away.
4850   if (stopped()) {
4851     set_control( result_reg->in(_null_path));
4852     if (!stopped())
4853       set_result(result_val->in(_null_path));
4854     return true;
4855   }
4856 
4857   // We only go to the fast case code if we pass a number of guards.  The
4858   // paths which do not pass are accumulated in the slow_region.
4859   RegionNode* slow_region = new RegionNode(1);
4860   record_for_igvn(slow_region);
4861 
4862   // If this is a virtual call, we generate a funny guard.  We pull out
4863   // the vtable entry corresponding to hashCode() from the target object.
4864   // If the target method which we are calling happens to be the native
4865   // Object hashCode() method, we pass the guard.  We do not need this
4866   // guard for non-virtual calls -- the caller is known to be the native
4867   // Object hashCode().
4868   if (is_virtual) {
4869     // After null check, get the object's klass.
4870     Node* obj_klass = load_object_klass(obj);
4871     generate_virtual_guard(obj_klass, slow_region);
4872   }
4873 
4874   // Get the header out of the object, use LoadMarkNode when available
4875   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4876   // The control of the load must be null. Otherwise, the load can move before
4877   // the null check after castPP removal.
4878   Node* no_ctrl = nullptr;
4879   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4880 
4881   // Test the header to see if it is safe to read w.r.t. locking.
4882   // This also serves as guard against inline types
4883   Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
4884   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4885   if (LockingMode == LM_LIGHTWEIGHT) {
4886     Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4887     Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4888     Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4889 
4890     generate_slow_guard(test_monitor, slow_region);
4891   } else {
4892     Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4893     Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4894     Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4895 
4896     generate_slow_guard(test_not_unlocked, slow_region);
4897   }
4898 
4899   // Get the hash value and check to see that it has been properly assigned.
4900   // We depend on hash_mask being at most 32 bits and avoid the use of
4901   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4902   // vm: see markWord.hpp.
4903   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);

4937     // this->control() comes from set_results_for_java_call
4938     result_reg->init_req(_slow_path, control());
4939     result_val->init_req(_slow_path, slow_result);
4940     result_io  ->set_req(_slow_path, i_o());
4941     result_mem ->set_req(_slow_path, reset_memory());
4942   }
4943 
4944   // Return the combined state.
4945   set_i_o(        _gvn.transform(result_io)  );
4946   set_all_memory( _gvn.transform(result_mem));
4947 
4948   set_result(result_reg, result_val);
4949   return true;
4950 }
4951 
4952 //---------------------------inline_native_getClass----------------------------
4953 // public final native Class<?> java.lang.Object.getClass();
4954 //
4955 // Build special case code for calls to getClass on an object.
4956 bool LibraryCallKit::inline_native_getClass() {
4957   Node* obj = argument(0);
4958   if (obj->is_InlineType()) {
4959     const Type* t = _gvn.type(obj);
4960     if (t->maybe_null()) {
4961       null_check(obj);
4962     }
4963     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
4964     return true;
4965   }
4966   obj = null_check_receiver();
4967   if (stopped())  return true;
4968   set_result(load_mirror_from_klass(load_object_klass(obj)));
4969   return true;
4970 }
4971 
4972 //-----------------inline_native_Reflection_getCallerClass---------------------
4973 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4974 //
4975 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4976 //
4977 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4978 // in that it must skip particular security frames and checks for
4979 // caller sensitive methods.
4980 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4981 #ifndef PRODUCT
4982   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4983     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4984   }
4985 #endif
4986 

5247     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5248       flags |= RC_NARROW_MEM; // narrow in memory
5249     }
5250   }
5251 
5252   // Call it.  Note that the length argument is not scaled.
5253   make_runtime_call(flags,
5254                     OptoRuntime::fast_arraycopy_Type(),
5255                     StubRoutines::unsafe_arraycopy(),
5256                     "unsafe_arraycopy",
5257                     dst_type,
5258                     src_addr, dst_addr, size XTOP);
5259 
5260   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5261 
5262   return true;
5263 }
5264 
5265 #undef XTOP
5266 
5267 // TODO 8325106 Remove this and corresponding tests. Flatness is not a property of the Class anymore with JEP 401.
5268 //----------------------inline_unsafe_isFlatArray------------------------
5269 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass);
5270 // This intrinsic exploits assumptions made by the native implementation
5271 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks.
5272 bool LibraryCallKit::inline_unsafe_isFlatArray() {
5273   Node* cls = argument(1);
5274   Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset());
5275   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p,
5276                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
5277   Node* result = flat_array_test(kls);
5278   set_result(result);
5279   return true;
5280 }
5281 
5282 //------------------------clone_coping-----------------------------------
5283 // Helper function for inline_native_clone.
5284 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5285   assert(obj_size != nullptr, "");
5286   Node* raw_obj = alloc_obj->in(1);
5287   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5288 
5289   AllocateNode* alloc = nullptr;
5290   if (ReduceBulkZeroing) {
5291     // We will be completely responsible for initializing this object -
5292     // mark Initialize node as complete.
5293     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5294     // The object was just allocated - there should be no any stores!
5295     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5296     // Mark as complete_with_arraycopy so that on AllocateNode
5297     // expansion, we know this AllocateNode is initialized by an array
5298     // copy and a StoreStore barrier exists after the array copy.
5299     alloc->initialization()->set_complete_with_arraycopy();
5300   }
5301 

5326 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5327 //
5328 // The general case has two steps, allocation and copying.
5329 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5330 //
5331 // Copying also has two cases, oop arrays and everything else.
5332 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5333 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5334 //
5335 // These steps fold up nicely if and when the cloned object's klass
5336 // can be sharply typed as an object array, a type array, or an instance.
5337 //
5338 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5339   PhiNode* result_val;
5340 
5341   // Set the reexecute bit for the interpreter to reexecute
5342   // the bytecode that invokes Object.clone if deoptimization happens.
5343   { PreserveReexecuteState preexecs(this);
5344     jvms()->set_should_reexecute(true);
5345 
5346     Node* obj = argument(0);
5347     obj = null_check_receiver();
5348     if (stopped())  return true;
5349 
5350     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5351 
5352     // If we are going to clone an instance, we need its exact type to
5353     // know the number and types of fields to convert the clone to
5354     // loads/stores. Maybe a speculative type can help us.
5355     if (!obj_type->klass_is_exact() &&
5356         obj_type->speculative_type() != nullptr &&
5357         obj_type->speculative_type()->is_instance_klass() &&
5358         !obj_type->speculative_type()->is_inlinetype()) {
5359       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5360       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5361           !spec_ik->has_injected_fields()) {
5362         if (!obj_type->isa_instptr() ||
5363             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5364           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5365         }
5366       }
5367     }
5368 
5369     // Conservatively insert a memory barrier on all memory slices.
5370     // Do not let writes into the original float below the clone.
5371     insert_mem_bar(Op_MemBarCPUOrder);
5372 
5373     // paths into result_reg:
5374     enum {
5375       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5376       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5377       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5378       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5379       PATH_LIMIT
5380     };
5381     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5382     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5383     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5384     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5385     record_for_igvn(result_reg);
5386 
5387     Node* obj_klass = load_object_klass(obj);
5388     // We only go to the fast case code if we pass a number of guards.
5389     // The paths which do not pass are accumulated in the slow_region.
5390     RegionNode* slow_region = new RegionNode(1);
5391     record_for_igvn(slow_region);
5392 
5393     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5394     if (array_ctl != nullptr) {
5395       // It's an array.
5396       PreserveJVMState pjvms(this);
5397       set_control(array_ctl);



5398 
5399       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5400       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5401       if (UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5402           obj_type->can_be_inline_array() &&
5403           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5404         // Flat inline type array may have object field that would require a
5405         // write barrier. Conservatively, go to slow path.
5406         generate_fair_guard(flat_array_test(obj_klass), slow_region);













5407       }







5408 
5409       if (!stopped()) {
5410         Node* obj_length = load_array_length(obj);
5411         Node* array_size = nullptr; // Size of the array without object alignment padding.
5412         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5413 
5414         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5415         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5416           // If it is an oop array, it requires very special treatment,
5417           // because gc barriers are required when accessing the array.
5418           Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5419           if (is_obja != nullptr) {
5420             PreserveJVMState pjvms2(this);
5421             set_control(is_obja);
5422             // Generate a direct call to the right arraycopy function(s).
5423             // Clones are always tightly coupled.
5424             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5425             ac->set_clone_oop_array();
5426             Node* n = _gvn.transform(ac);
5427             assert(n == ac, "cannot disappear");
5428             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5429 
5430             result_reg->init_req(_objArray_path, control());
5431             result_val->init_req(_objArray_path, alloc_obj);
5432             result_i_o ->set_req(_objArray_path, i_o());
5433             result_mem ->set_req(_objArray_path, reset_memory());
5434           }
5435         }
5436         // Otherwise, there are no barriers to worry about.
5437         // (We can dispense with card marks if we know the allocation
5438         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5439         //  causes the non-eden paths to take compensating steps to
5440         //  simulate a fresh allocation, so that no further
5441         //  card marks are required in compiled code to initialize
5442         //  the object.)
5443 
5444         if (!stopped()) {
5445           copy_to_clone(obj, alloc_obj, array_size, true);
5446 
5447           // Present the results of the copy.
5448           result_reg->init_req(_array_path, control());
5449           result_val->init_req(_array_path, alloc_obj);
5450           result_i_o ->set_req(_array_path, i_o());
5451           result_mem ->set_req(_array_path, reset_memory());
5452         }
5453       }
5454     }
5455 




5456     if (!stopped()) {
5457       // It's an instance (we did array above).  Make the slow-path tests.
5458       // If this is a virtual call, we generate a funny guard.  We grab
5459       // the vtable entry corresponding to clone() from the target object.
5460       // If the target method which we are calling happens to be the
5461       // Object clone() method, we pass the guard.  We do not need this
5462       // guard for non-virtual calls; the caller is known to be the native
5463       // Object clone().
5464       if (is_virtual) {
5465         generate_virtual_guard(obj_klass, slow_region);
5466       }
5467 
5468       // The object must be easily cloneable and must not have a finalizer.
5469       // Both of these conditions may be checked in a single test.
5470       // We could optimize the test further, but we don't care.
5471       generate_access_flags_guard(obj_klass,
5472                                   // Test both conditions:
5473                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
5474                                   // Must be cloneable but not finalizer:
5475                                   JVM_ACC_IS_CLONEABLE_FAST,

5567         set_jvms(sfpt->jvms());
5568         _reexecute_sp = jvms()->sp();
5569 
5570         return saved_jvms;
5571       }
5572     }
5573   }
5574   return nullptr;
5575 }
5576 
5577 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5578 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5579 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5580   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5581   uint size = alloc->req();
5582   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5583   old_jvms->set_map(sfpt);
5584   for (uint i = 0; i < size; i++) {
5585     sfpt->init_req(i, alloc->in(i));
5586   }
5587   int adjustment = 1;
5588   // TODO 8325106 why can't we check via the type of the const klass node?
5589   if (alloc->is_null_free()) {
5590     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newNullRestrictedArray
5591     // which requires both the component type and the array length on stack for re-execution. Re-create and push
5592     // the component type.
5593     ciArrayKlass* klass = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr()->exact_klass()->as_array_klass();
5594     ciInstance* instance = klass->component_mirror_instance();
5595     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
5596     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
5597     adjustment++;
5598   }
5599   // re-push array length for deoptimization
5600   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
5601   old_jvms->set_sp(old_jvms->sp() + adjustment);
5602   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
5603   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
5604   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
5605   old_jvms->set_should_reexecute(true);
5606 
5607   sfpt->set_i_o(map()->i_o());
5608   sfpt->set_memory(map()->memory());
5609   sfpt->set_control(map()->control());
5610   return sfpt;
5611 }
5612 
5613 // In case of a deoptimization, we restart execution at the
5614 // allocation, allocating a new array. We would leave an uninitialized
5615 // array in the heap that GCs wouldn't expect. Move the allocation
5616 // after the traps so we don't allocate the array if we
5617 // deoptimize. This is possible because tightly_coupled_allocation()
5618 // guarantees there's no observer of the allocated array at this point
5619 // and the control flow is simple enough.
5620 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5621                                                     int saved_reexecute_sp, uint new_idx) {
5622   if (saved_jvms_before_guards != nullptr && !stopped()) {
5623     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5624 
5625     assert(alloc != nullptr, "only with a tightly coupled allocation");
5626     // restore JVM state to the state at the arraycopy
5627     saved_jvms_before_guards->map()->set_control(map()->control());
5628     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5629     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5630     // If we've improved the types of some nodes (null check) while
5631     // emitting the guards, propagate them to the current state
5632     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5633     set_jvms(saved_jvms_before_guards);
5634     _reexecute_sp = saved_reexecute_sp;
5635 
5636     // Remove the allocation from above the guards
5637     CallProjections* callprojs = alloc->extract_projections(true);

5638     InitializeNode* init = alloc->initialization();
5639     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5640     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5641     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5642 
5643     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5644     // the allocation (i.e. is only valid if the allocation succeeds):
5645     // 1) replace CastIINode with AllocateArrayNode's length here
5646     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5647     //
5648     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5649     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5650     Node* init_control = init->proj_out(TypeFunc::Control);
5651     Node* alloc_length = alloc->Ideal_length();
5652 #ifdef ASSERT
5653     Node* prev_cast = nullptr;
5654 #endif
5655     for (uint i = 0; i < init_control->outcnt(); i++) {
5656       Node* init_out = init_control->raw_out(i);
5657       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5658 #ifdef ASSERT
5659         if (prev_cast == nullptr) {
5660           prev_cast = init_out;

5662           if (prev_cast->cmp(*init_out) == false) {
5663             prev_cast->dump();
5664             init_out->dump();
5665             assert(false, "not equal CastIINode");
5666           }
5667         }
5668 #endif
5669         C->gvn_replace_by(init_out, alloc_length);
5670       }
5671     }
5672     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5673 
5674     // move the allocation here (after the guards)
5675     _gvn.hash_delete(alloc);
5676     alloc->set_req(TypeFunc::Control, control());
5677     alloc->set_req(TypeFunc::I_O, i_o());
5678     Node *mem = reset_memory();
5679     set_all_memory(mem);
5680     alloc->set_req(TypeFunc::Memory, mem);
5681     set_control(init->proj_out_or_null(TypeFunc::Control));
5682     set_i_o(callprojs->fallthrough_ioproj);
5683 
5684     // Update memory as done in GraphKit::set_output_for_allocation()
5685     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5686     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5687     if (ary_type->isa_aryptr() && length_type != nullptr) {
5688       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5689     }
5690     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5691     int            elemidx  = C->get_alias_index(telemref);
5692     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5693     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5694 
5695     Node* allocx = _gvn.transform(alloc);
5696     assert(allocx == alloc, "where has the allocation gone?");
5697     assert(dest->is_CheckCastPP(), "not an allocation result?");
5698 
5699     _gvn.hash_delete(dest);
5700     dest->set_req(0, control());
5701     Node* destx = _gvn.transform(dest);
5702     assert(destx == dest, "where has the allocation result gone?");

5972         top_src  = src_type->isa_aryptr();
5973         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5974         src_spec = true;
5975       }
5976       if (!has_dest) {
5977         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5978         dest_type  = _gvn.type(dest);
5979         top_dest  = dest_type->isa_aryptr();
5980         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5981         dest_spec = true;
5982       }
5983     }
5984   }
5985 
5986   if (has_src && has_dest && can_emit_guards) {
5987     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5988     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5989     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5990     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5991 
5992     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
5993       // If both arrays are object arrays then having the exact types
5994       // for both will remove the need for a subtype check at runtime
5995       // before the call and may make it possible to pick a faster copy
5996       // routine (without a subtype check on every element)
5997       // Do we have the exact type of src?
5998       bool could_have_src = src_spec;
5999       // Do we have the exact type of dest?
6000       bool could_have_dest = dest_spec;
6001       ciKlass* src_k = nullptr;
6002       ciKlass* dest_k = nullptr;
6003       if (!src_spec) {
6004         src_k = src_type->speculative_type_not_null();
6005         if (src_k != nullptr && src_k->is_array_klass()) {
6006           could_have_src = true;
6007         }
6008       }
6009       if (!dest_spec) {
6010         dest_k = dest_type->speculative_type_not_null();
6011         if (dest_k != nullptr && dest_k->is_array_klass()) {
6012           could_have_dest = true;
6013         }
6014       }
6015       if (could_have_src && could_have_dest) {
6016         // If we can have both exact types, emit the missing guards
6017         if (could_have_src && !src_spec) {
6018           src = maybe_cast_profiled_obj(src, src_k, true);
6019           src_type = _gvn.type(src);
6020           top_src = src_type->isa_aryptr();
6021         }
6022         if (could_have_dest && !dest_spec) {
6023           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6024           dest_type = _gvn.type(dest);
6025           top_dest = dest_type->isa_aryptr();
6026         }
6027       }
6028     }
6029   }
6030 
6031   ciMethod* trap_method = method();
6032   int trap_bci = bci();
6033   if (saved_jvms_before_guards != nullptr) {
6034     trap_method = alloc->jvms()->method();
6035     trap_bci = alloc->jvms()->bci();
6036   }
6037 
6038   bool negative_length_guard_generated = false;
6039 
6040   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6041       can_emit_guards && !src->is_top() && !dest->is_top()) {

6042     // validate arguments: enables transformation the ArrayCopyNode
6043     validated = true;
6044 
6045     RegionNode* slow_region = new RegionNode(1);
6046     record_for_igvn(slow_region);
6047 
6048     // (1) src and dest are arrays.
6049     generate_non_array_guard(load_object_klass(src), slow_region);
6050     generate_non_array_guard(load_object_klass(dest), slow_region);
6051 
6052     // (2) src and dest arrays must have elements of the same BasicType
6053     // done at macro expansion or at Ideal transformation time
6054 
6055     // (4) src_offset must not be negative.
6056     generate_negative_guard(src_offset, slow_region);
6057 
6058     // (5) dest_offset must not be negative.
6059     generate_negative_guard(dest_offset, slow_region);
6060 
6061     // (7) src_offset + length must not exceed length of src.

6064                          slow_region);
6065 
6066     // (8) dest_offset + length must not exceed length of dest.
6067     generate_limit_guard(dest_offset, length,
6068                          load_array_length(dest),
6069                          slow_region);
6070 
6071     // (6) length must not be negative.
6072     // This is also checked in generate_arraycopy() during macro expansion, but
6073     // we also have to check it here for the case where the ArrayCopyNode will
6074     // be eliminated by Escape Analysis.
6075     if (EliminateAllocations) {
6076       generate_negative_guard(length, slow_region);
6077       negative_length_guard_generated = true;
6078     }
6079 
6080     // (9) each element of an oop array must be assignable
6081     Node* dest_klass = load_object_klass(dest);
6082     if (src != dest) {
6083       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6084       slow_region->add_req(not_subtype_ctrl);
6085     }
6086 
6087     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6088     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6089     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6090     src_type = _gvn.type(src);
6091     top_src  = src_type->isa_aryptr();
6092 
6093     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6094     if (!stopped() && UseFlatArray) {
6095       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6096       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6097       if (top_src != nullptr && top_src->is_flat()) {
6098         // Src is flat, check that dest is flat as well
6099         if (top_dest != nullptr && !top_dest->is_flat()) {
6100           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6101           // Since dest is flat and src <: dest, dest must have the same type as src.
6102           top_dest = top_src->cast_to_exactness(false);
6103           assert(top_dest->is_flat(), "dest must be flat");
6104           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6105         }
6106       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6107         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6108         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6109         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6110         generate_fair_guard(flat_array_test(src), slow_region);
6111         if (top_src != nullptr) {
6112           top_src = top_src->cast_to_not_flat();
6113           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6114         }
6115       }
6116     }
6117 
6118     {
6119       PreserveJVMState pjvms(this);
6120       set_control(_gvn.transform(slow_region));
6121       uncommon_trap(Deoptimization::Reason_intrinsic,
6122                     Deoptimization::Action_make_not_entrant);
6123       assert(stopped(), "Should be stopped");
6124     }




6125     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6126   }
6127 
6128   if (stopped()) {
6129     return true;
6130   }
6131 
6132   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6133                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6134                                           // so the compiler has a chance to eliminate them: during macro expansion,
6135                                           // we have to set their control (CastPP nodes are eliminated).
6136                                           load_object_klass(src), load_object_klass(dest),
6137                                           load_array_length(src), load_array_length(dest));
6138 
6139   ac->set_arraycopy(validated);
6140 
6141   Node* n = _gvn.transform(ac);
6142   if (n == ac) {
6143     ac->connect_outputs(this);
6144   } else {
< prev index next >