< prev index next >

src/hotspot/share/opto/library_call.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"



  26 #include "ci/ciSymbols.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"

  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "oops/klass.inline.hpp"

  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"

  43 #include "opto/idealKit.hpp"

  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"

  49 #include "opto/parse.hpp"
  50 #include "opto/rootnode.hpp"
  51 #include "opto/runtime.hpp"
  52 #include "opto/subnode.hpp"

  53 #include "opto/vectornode.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/unsafe.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/stubRoutines.hpp"

  61 #include "utilities/macros.hpp"
  62 #include "utilities/powerOfTwo.hpp"
  63 
  64 //---------------------------make_vm_intrinsic----------------------------
  65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  66   vmIntrinsicID id = m->intrinsic_id();
  67   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  68 
  69   if (!m->is_loaded()) {
  70     // Do not attempt to inline unloaded methods.
  71     return nullptr;
  72   }
  73 
  74   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  75   bool is_available = false;
  76 
  77   {
  78     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  79     // the compiler must transition to '_thread_in_vm' state because both
  80     // methods access VM-internal data.

 301   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 302   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 303   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 304   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 305   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 306 
 307   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 308 
 309   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 310 
 311   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 312   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 313   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 314   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 315 
 316   case vmIntrinsics::_compressStringC:
 317   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 318   case vmIntrinsics::_inflateStringC:
 319   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 320 


 321   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 322   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 323   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 324   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 325   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 326   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 327   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 328   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 329   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);

 330 
 331   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 332   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 333   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 334   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 335   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 336   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 337   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 338   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 339   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);

 340 
 341   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 342   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 343   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 344   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 345   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 346   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 347   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 348   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 349   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 350 
 351   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 352   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 353   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 354   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 355   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 356   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 357   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 358   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 359   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 391   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 392   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 393   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 394   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 395   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 396   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 397   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 398   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 399   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 400 
 401   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 402   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 403   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 404   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 405   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 406   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 407   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 408   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 409   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 410 



 411   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 412   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 413   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 414   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 415   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 416 
 417   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 418   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 419   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 420   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 421   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 422   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 423   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 424   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 425   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 426   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 427   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 428   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 429   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 430   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);

 498 #endif
 499   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 500   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 501   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 502   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 503   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 504   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 505   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 506   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 507   case vmIntrinsics::_getLength:                return inline_native_getLength();
 508   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 509   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 510   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 511   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 512   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 513   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 514   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 515 
 516   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 517   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);



 518 
 519   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 520 
 521   case vmIntrinsics::_isInstance:
 522   case vmIntrinsics::_isHidden:
 523   case vmIntrinsics::_getSuperclass:            return inline_native_Class_query(intrinsic_id());
 524 
 525   case vmIntrinsics::_floatToRawIntBits:
 526   case vmIntrinsics::_floatToIntBits:
 527   case vmIntrinsics::_intBitsToFloat:
 528   case vmIntrinsics::_doubleToRawLongBits:
 529   case vmIntrinsics::_doubleToLongBits:
 530   case vmIntrinsics::_longBitsToDouble:
 531   case vmIntrinsics::_floatToFloat16:
 532   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 533   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 534   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 535   case vmIntrinsics::_floatIsFinite:
 536   case vmIntrinsics::_floatIsInfinite:
 537   case vmIntrinsics::_doubleIsFinite:

2315     case vmIntrinsics::_remainderUnsigned_l: {
2316       zero_check_long(argument(2));
2317       // Compile-time detect of null-exception
2318       if (stopped()) {
2319         return true; // keep the graph constructed so far
2320       }
2321       n = new UModLNode(control(), argument(0), argument(2));
2322       break;
2323     }
2324     default:  fatal_unexpected_iid(id);  break;
2325   }
2326   set_result(_gvn.transform(n));
2327   return true;
2328 }
2329 
2330 //----------------------------inline_unsafe_access----------------------------
2331 
2332 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2333   // Attempt to infer a sharper value type from the offset and base type.
2334   ciKlass* sharpened_klass = nullptr;

2335 
2336   // See if it is an instance field, with an object type.
2337   if (alias_type->field() != nullptr) {
2338     if (alias_type->field()->type()->is_klass()) {
2339       sharpened_klass = alias_type->field()->type()->as_klass();

2340     }
2341   }
2342 
2343   const TypeOopPtr* result = nullptr;
2344   // See if it is a narrow oop array.
2345   if (adr_type->isa_aryptr()) {
2346     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2347       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();

2348       if (elem_type != nullptr && elem_type->is_loaded()) {
2349         // Sharpen the value type.
2350         result = elem_type;
2351       }
2352     }
2353   }
2354 
2355   // The sharpened class might be unloaded if there is no class loader
2356   // contraint in place.
2357   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2358     // Sharpen the value type.
2359     result = TypeOopPtr::make_from_klass(sharpened_klass);



2360   }
2361   if (result != nullptr) {
2362 #ifndef PRODUCT
2363     if (C->print_intrinsics() || C->print_inlining()) {
2364       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2365       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2366     }
2367 #endif
2368   }
2369   return result;
2370 }
2371 
2372 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2373   switch (kind) {
2374       case Relaxed:
2375         return MO_UNORDERED;
2376       case Opaque:
2377         return MO_RELAXED;
2378       case Acquire:
2379         return MO_ACQUIRE;

2411   _kit->jvms()->set_sp(_sp);
2412   _map->set_jvms(_kit->jvms());
2413   _kit->set_map(_map);
2414   _kit->set_sp(_sp);
2415   for (DUIterator_Fast imax, i = _kit->control()->fast_outs(imax); i < imax; i++) {
2416     Node* out = _kit->control()->fast_out(i);
2417     if (out->is_CFG() && out->in(0) == _kit->control() && out != _kit->map() && !_ctrl_succ.member(out)) {
2418       _kit->_gvn.hash_delete(out);
2419       out->set_req(0, _kit->C->top());
2420       _kit->C->record_for_igvn(out);
2421       --i; --imax;
2422       _kit->_gvn.hash_find_insert(out);
2423     }
2424   }
2425 }
2426 
2427 void LibraryCallKit::SavedState::discard() {
2428   _discarded = true;
2429 }
2430 
2431 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2432   if (callee()->is_static())  return false;  // caller must have the capability!
2433   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2434   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2435   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2436   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2437 
2438   if (is_reference_type(type)) {
2439     decorators |= ON_UNKNOWN_OOP_REF;
2440   }
2441 
2442   if (unaligned) {
2443     decorators |= C2_UNALIGNED;
2444   }
2445 
2446 #ifndef PRODUCT
2447   {
2448     ResourceMark rm;
2449     // Check the signatures.
2450     ciSignature* sig = callee()->signature();
2451 #ifdef ASSERT
2452     if (!is_store) {
2453       // Object getReference(Object base, int/long offset), etc.
2454       BasicType rtype = sig->return_type()->basic_type();
2455       assert(rtype == type, "getter must return the expected value");
2456       assert(sig->count() == 2, "oop getter has 2 arguments");
2457       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2458       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2459     } else {
2460       // void putReference(Object base, int/long offset, Object x), etc.
2461       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2462       assert(sig->count() == 3, "oop putter has 3 arguments");
2463       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2464       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2465       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2466       assert(vtype == type, "putter must accept the expected value");
2467     }
2468 #endif // ASSERT
2469  }
2470 #endif //PRODUCT
2471 
2472   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2473 
2474   Node* receiver = argument(0);  // type: oop
2475 
2476   // Build address expression.
2477   Node* heap_base_oop = top();
2478 
2479   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2480   Node* base = argument(1);  // type: oop
2481   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2482   Node* offset = argument(2);  // type: long
2483   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2484   // to be plain byte offsets, which are also the same as those accepted
2485   // by oopDesc::field_addr.
2486   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2487          "fieldOffset must be byte-scaled");

















































2488   // 32-bit machines ignore the high half!
2489   offset = ConvL2X(offset);
2490 
2491   // Save state and restore on bailout
2492   SavedState old_state(this);
2493 
2494   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2495   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2496 
2497   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2498     if (type != T_OBJECT) {
2499       decorators |= IN_NATIVE; // off-heap primitive access
2500     } else {
2501       return false; // off-heap oop accesses are not supported
2502     }
2503   } else {
2504     heap_base_oop = base; // on-heap or mixed access
2505   }
2506 
2507   // Can base be null? Otherwise, always on-heap access.
2508   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2509 
2510   if (!can_access_non_heap) {
2511     decorators |= IN_HEAP;
2512   }
2513 
2514   Node* val = is_store ? argument(4) : nullptr;
2515 
2516   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2517   if (adr_type == TypePtr::NULL_PTR) {
2518     return false; // off-heap access with zero address
2519   }
2520 
2521   // Try to categorize the address.
2522   Compile::AliasType* alias_type = C->alias_type(adr_type);
2523   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2524 
2525   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2526       alias_type->adr_type() == TypeAryPtr::RANGE) {
2527     return false; // not supported
2528   }
2529 
2530   bool mismatched = false;
2531   BasicType bt = alias_type->basic_type();




























2532   if (bt != T_ILLEGAL) {
2533     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2534     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2535       // Alias type doesn't differentiate between byte[] and boolean[]).
2536       // Use address type to get the element type.
2537       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2538     }
2539     if (is_reference_type(bt, true)) {
2540       // accessing an array field with getReference is not a mismatch
2541       bt = T_OBJECT;
2542     }
2543     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2544       // Don't intrinsify mismatched object accesses
2545       return false;
2546     }
2547     mismatched = (bt != type);
2548   } else if (alias_type->adr_type()->isa_oopptr()) {
2549     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2550   }
2551 





















2552   old_state.discard();
2553   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2554 
2555   if (mismatched) {
2556     decorators |= C2_MISMATCHED;
2557   }
2558 
2559   // First guess at the value type.
2560   const Type *value_type = Type::get_const_basic_type(type);
2561 
2562   // Figure out the memory ordering.
2563   decorators |= mo_decorator_for_access_kind(kind);
2564 
2565   if (!is_store && type == T_OBJECT) {
2566     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2567     if (tjp != nullptr) {
2568       value_type = tjp;


2569     }
2570   }
2571 
2572   receiver = null_check(receiver);
2573   if (stopped()) {
2574     return true;
2575   }
2576   // Heap pointers get a null-check from the interpreter,
2577   // as a courtesy.  However, this is not guaranteed by Unsafe,
2578   // and it is not possible to fully distinguish unintended nulls
2579   // from intended ones in this API.
2580 
2581   if (!is_store) {
2582     Node* p = nullptr;
2583     // Try to constant fold a load from a constant field
2584     ciField* field = alias_type->field();
2585     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2586       // final or stable field
2587       p = make_constant_from_field(field, heap_base_oop);
2588     }
2589 
2590     if (p == nullptr) { // Could not constant fold the load
2591       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);









2592       // Normalize the value returned by getBoolean in the following cases
2593       if (type == T_BOOLEAN &&
2594           (mismatched ||
2595            heap_base_oop == top() ||                  // - heap_base_oop is null or
2596            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2597                                                       //   and the unsafe access is made to large offset
2598                                                       //   (i.e., larger than the maximum offset necessary for any
2599                                                       //   field access)
2600             ) {
2601           IdealKit ideal = IdealKit(this);
2602 #define __ ideal.
2603           IdealVariable normalized_result(ideal);
2604           __ declarations_done();
2605           __ set(normalized_result, p);
2606           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2607           __ set(normalized_result, ideal.ConI(1));
2608           ideal.end_if();
2609           final_sync(ideal);
2610           p = __ value(normalized_result);
2611 #undef __
2612       }
2613     }
2614     if (type == T_ADDRESS) {
2615       p = gvn().transform(new CastP2XNode(nullptr, p));
2616       p = ConvX2UL(p);
2617     }
2618     // The load node has the control of the preceding MemBarCPUOrder.  All
2619     // following nodes will have the control of the MemBarCPUOrder inserted at
2620     // the end of this method.  So, pushing the load onto the stack at a later
2621     // point is fine.
2622     set_result(p);
2623   } else {
2624     if (bt == T_ADDRESS) {
2625       // Repackage the long as a pointer.
2626       val = ConvL2X(val);
2627       val = gvn().transform(new CastX2PNode(val));
2628     }
2629     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);




2630   }
2631 
2632   return true;
2633 }
2634 











































































































































































































































2635 //----------------------------inline_unsafe_load_store----------------------------
2636 // This method serves a couple of different customers (depending on LoadStoreKind):
2637 //
2638 // LS_cmp_swap:
2639 //
2640 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2641 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2642 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2643 //
2644 // LS_cmp_swap_weak:
2645 //
2646 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2647 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2648 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2649 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2650 //
2651 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2652 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2653 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2654 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

2817     }
2818     case LS_cmp_swap:
2819     case LS_cmp_swap_weak:
2820     case LS_get_add:
2821       break;
2822     default:
2823       ShouldNotReachHere();
2824   }
2825 
2826   // Null check receiver.
2827   receiver = null_check(receiver);
2828   if (stopped()) {
2829     return true;
2830   }
2831 
2832   int alias_idx = C->get_alias_index(adr_type);
2833 
2834   if (is_reference_type(type)) {
2835     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2836 













2837     // Transformation of a value which could be null pointer (CastPP #null)
2838     // could be delayed during Parse (for example, in adjust_map_after_if()).
2839     // Execute transformation here to avoid barrier generation in such case.
2840     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2841       newval = _gvn.makecon(TypePtr::NULL_PTR);
2842 
2843     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2844       // Refine the value to a null constant, when it is known to be null
2845       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2846     }
2847   }
2848 
2849   Node* result = nullptr;
2850   switch (kind) {
2851     case LS_cmp_exchange: {
2852       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2853                                             oldval, newval, value_type, type, decorators);
2854       break;
2855     }
2856     case LS_cmp_swap_weak:

3003                     Deoptimization::Action_make_not_entrant);
3004     }
3005     if (stopped()) {
3006       return true;
3007     }
3008 #endif //INCLUDE_JVMTI
3009 
3010   Node* test = nullptr;
3011   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3012     // Note:  The argument might still be an illegal value like
3013     // Serializable.class or Object[].class.   The runtime will handle it.
3014     // But we must make an explicit check for initialization.
3015     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3016     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3017     // can generate code to load it as unsigned byte.
3018     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3019     Node* bits = intcon(InstanceKlass::fully_initialized);
3020     test = _gvn.transform(new SubINode(inst, bits));
3021     // The 'test' is non-zero if we need to take a slow path.
3022   }
3023 
3024   Node* obj = new_instance(kls, test);





3025   set_result(obj);
3026   return true;
3027 }
3028 
3029 //------------------------inline_native_time_funcs--------------
3030 // inline code for System.currentTimeMillis() and System.nanoTime()
3031 // these have the same type and signature
3032 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3033   const TypeFunc* tf = OptoRuntime::void_long_Type();
3034   const TypePtr* no_memory_effects = nullptr;
3035   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3036   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3037 #ifdef ASSERT
3038   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3039   assert(value_top == top(), "second value must be top");
3040 #endif
3041   set_result(value);
3042   return true;
3043 }
3044 

3785   Node* thread = _gvn.transform(new ThreadLocalNode());
3786   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3787   Node* thread_obj_handle
3788     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3789   thread_obj_handle = _gvn.transform(thread_obj_handle);
3790   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3791   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3792 
3793   // Change the _monitor_owner_id of the JavaThread
3794   Node* tid = load_field_from_object(arr, "tid", "J");
3795   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3796   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3797 
3798   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3799   return true;
3800 }
3801 
3802 const Type* LibraryCallKit::scopedValueCache_type() {
3803   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3804   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3805   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3806 
3807   // Because we create the scopedValue cache lazily we have to make the
3808   // type of the result BotPTR.
3809   bool xk = etype->klass_is_exact();
3810   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3811   return objects_type;
3812 }
3813 
3814 Node* LibraryCallKit::scopedValueCache_helper() {
3815   Node* thread = _gvn.transform(new ThreadLocalNode());
3816   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3817   // We cannot use immutable_memory() because we might flip onto a
3818   // different carrier thread, at which point we'll need to use that
3819   // carrier thread's cache.
3820   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3821   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3822   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3823 }
3824 
3825 //------------------------inline_native_scopedValueCache------------------
3826 bool LibraryCallKit::inline_native_scopedValueCache() {
3827   Node* cache_obj_handle = scopedValueCache_helper();
3828   const Type* objects_type = scopedValueCache_type();
3829   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3830 

3914   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3915 
3916   // Result of top level CFG and Memory.
3917   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3918   record_for_igvn(result_rgn);
3919   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3920   record_for_igvn(result_mem);
3921 
3922   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3923   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3924   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3925   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3926 
3927   // Set output state.
3928   set_control(_gvn.transform(result_rgn));
3929   set_all_memory(_gvn.transform(result_mem));
3930 
3931   return true;
3932 }
3933 
3934 //---------------------------load_mirror_from_klass----------------------------
3935 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3936 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3937   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3938   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3939   // mirror = ((OopHandle)mirror)->resolve();
3940   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3941 }
3942 
3943 //-----------------------load_klass_from_mirror_common-------------------------
3944 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3945 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3946 // and branch to the given path on the region.
3947 // If never_see_null, take an uncommon trap on null, so we can optimistically
3948 // compile for the non-null case.
3949 // If the region is null, force never_see_null = true.
3950 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3951                                                     bool never_see_null,
3952                                                     RegionNode* region,
3953                                                     int null_path,
3954                                                     int offset) {
3955   if (region == nullptr)  never_see_null = true;
3956   Node* p = basic_plus_adr(mirror, offset);
3957   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3958   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3959   Node* null_ctl = top();
3960   kls = null_check_oop(kls, &null_ctl, never_see_null);
3961   if (region != nullptr) {
3962     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

3966   }
3967   return kls;
3968 }
3969 
3970 //--------------------(inline_native_Class_query helpers)---------------------
3971 // Use this for JVM_ACC_INTERFACE.
3972 // Fall through if (mods & mask) == bits, take the guard otherwise.
3973 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3974                                                  ByteSize offset, const Type* type, BasicType bt) {
3975   // Branch around if the given klass has the given modifier bit set.
3976   // Like generate_guard, adds a new path onto the region.
3977   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3978   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3979   Node* mask = intcon(modifier_mask);
3980   Node* bits = intcon(modifier_bits);
3981   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3982   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3983   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3984   return generate_fair_guard(bol, region);
3985 }

3986 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3987   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3988                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
3989 }
3990 
3991 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3992 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3993   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3994                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3995 }
3996 
3997 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3998   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3999 }
4000 
4001 //-------------------------inline_native_Class_query-------------------
4002 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4003   const Type* return_type = TypeInt::BOOL;
4004   Node* prim_return_value = top();  // what happens if it's a primitive class?
4005   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4115     }
4116     if (!stopped()) {
4117       query_value = load_mirror_from_klass(kls);
4118     }
4119     break;
4120 
4121   default:
4122     fatal_unexpected_iid(id);
4123     break;
4124   }
4125 
4126   // Fall-through is the normal case of a query to a real class.
4127   phi->init_req(1, query_value);
4128   region->init_req(1, control());
4129 
4130   C->set_has_split_ifs(true); // Has chance for split-if optimization
4131   set_result(region, phi);
4132   return true;
4133 }
4134 

4135 //-------------------------inline_Class_cast-------------------
4136 bool LibraryCallKit::inline_Class_cast() {
4137   Node* mirror = argument(0); // Class
4138   Node* obj    = argument(1);
4139   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4140   if (mirror_con == nullptr) {
4141     return false;  // dead path (mirror->is_top()).
4142   }
4143   if (obj == nullptr || obj->is_top()) {
4144     return false;  // dead path
4145   }
4146   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4147 
4148   // First, see if Class.cast() can be folded statically.
4149   // java_mirror_type() returns non-null for compile-time Class constants.
4150   ciType* tm = mirror_con->java_mirror_type();
4151   if (tm != nullptr && tm->is_klass() &&
4152       tp != nullptr) {
4153     if (!tp->is_loaded()) {
4154       // Don't use intrinsic when class is not loaded.
4155       return false;
4156     } else {
4157       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());

4158       if (static_res == Compile::SSC_always_true) {
4159         // isInstance() is true - fold the code.
4160         set_result(obj);
4161         return true;
4162       } else if (static_res == Compile::SSC_always_false) {
4163         // Don't use intrinsic, have to throw ClassCastException.
4164         // If the reference is null, the non-intrinsic bytecode will
4165         // be optimized appropriately.
4166         return false;
4167       }
4168     }
4169   }
4170 
4171   // Bailout intrinsic and do normal inlining if exception path is frequent.
4172   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4173     return false;
4174   }
4175 
4176   // Generate dynamic checks.
4177   // Class.cast() is java implementation of _checkcast bytecode.
4178   // Do checkcast (Parse::do_checkcast()) optimizations here.
4179 
4180   mirror = null_check(mirror);
4181   // If mirror is dead, only null-path is taken.
4182   if (stopped()) {
4183     return true;
4184   }
4185 
4186   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4187   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4188   RegionNode* region = new RegionNode(PATH_LIMIT);
4189   record_for_igvn(region);
4190 
4191   // Now load the mirror's klass metaobject, and null-check it.
4192   // If kls is null, we have a primitive mirror and
4193   // nothing is an instance of a primitive type.
4194   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4195 
4196   Node* res = top();


4197   if (!stopped()) {

4198     Node* bad_type_ctrl = top();
4199     // Do checkcast optimizations.
4200     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4201     region->init_req(_bad_type_path, bad_type_ctrl);
4202   }
4203   if (region->in(_prim_path) != top() ||
4204       region->in(_bad_type_path) != top()) {

4205     // Let Interpreter throw ClassCastException.
4206     PreserveJVMState pjvms(this);
4207     set_control(_gvn.transform(region));



4208     uncommon_trap(Deoptimization::Reason_intrinsic,
4209                   Deoptimization::Action_maybe_recompile);
4210   }
4211   if (!stopped()) {
4212     set_result(res);
4213   }
4214   return true;
4215 }
4216 
4217 
4218 //--------------------------inline_native_subtype_check------------------------
4219 // This intrinsic takes the JNI calls out of the heart of
4220 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4221 bool LibraryCallKit::inline_native_subtype_check() {
4222   // Pull both arguments off the stack.
4223   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4224   args[0] = argument(0);
4225   args[1] = argument(1);
4226   Node* klasses[2];             // corresponding Klasses: superk, subk
4227   klasses[0] = klasses[1] = top();
4228 
4229   enum {
4230     // A full decision tree on {superc is prim, subc is prim}:
4231     _prim_0_path = 1,           // {P,N} => false
4232                                 // {P,P} & superc!=subc => false
4233     _prim_same_path,            // {P,P} & superc==subc => true
4234     _prim_1_path,               // {N,P} => false
4235     _ref_subtype_path,          // {N,N} & subtype check wins => true
4236     _both_ref_path,             // {N,N} & subtype check loses => false
4237     PATH_LIMIT
4238   };
4239 
4240   RegionNode* region = new RegionNode(PATH_LIMIT);

4241   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4242   record_for_igvn(region);

4243 
4244   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4245   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4246   int class_klass_offset = java_lang_Class::klass_offset();
4247 
4248   // First null-check both mirrors and load each mirror's klass metaobject.
4249   int which_arg;
4250   for (which_arg = 0; which_arg <= 1; which_arg++) {
4251     Node* arg = args[which_arg];
4252     arg = null_check(arg);
4253     if (stopped())  break;
4254     args[which_arg] = arg;
4255 
4256     Node* p = basic_plus_adr(arg, class_klass_offset);
4257     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4258     klasses[which_arg] = _gvn.transform(kls);
4259   }
4260 
4261   // Having loaded both klasses, test each for null.
4262   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4263   for (which_arg = 0; which_arg <= 1; which_arg++) {
4264     Node* kls = klasses[which_arg];
4265     Node* null_ctl = top();
4266     kls = null_check_oop(kls, &null_ctl, never_see_null);
4267     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4268     region->init_req(prim_path, null_ctl);



4269     if (stopped())  break;
4270     klasses[which_arg] = kls;
4271   }
4272 
4273   if (!stopped()) {
4274     // now we have two reference types, in klasses[0..1]
4275     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4276     Node* superk = klasses[0];  // the receiver
4277     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4278     // now we have a successful reference subtype check
4279     region->set_req(_ref_subtype_path, control());
4280   }
4281 
4282   // If both operands are primitive (both klasses null), then
4283   // we must return true when they are identical primitives.
4284   // It is convenient to test this after the first null klass check.
4285   set_control(region->in(_prim_0_path)); // go back to first null check

4286   if (!stopped()) {
4287     // Since superc is primitive, make a guard for the superc==subc case.
4288     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4289     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4290     generate_guard(bol_eq, region, PROB_FAIR);
4291     if (region->req() == PATH_LIMIT+1) {
4292       // A guard was added.  If the added guard is taken, superc==subc.
4293       region->swap_edges(PATH_LIMIT, _prim_same_path);
4294       region->del_req(PATH_LIMIT);
4295     }
4296     region->set_req(_prim_0_path, control()); // Not equal after all.
4297   }
4298 
4299   // these are the only paths that produce 'true':
4300   phi->set_req(_prim_same_path,   intcon(1));
4301   phi->set_req(_ref_subtype_path, intcon(1));
4302 
4303   // pull together the cases:
4304   assert(region->req() == PATH_LIMIT, "sane region");
4305   for (uint i = 1; i < region->req(); i++) {
4306     Node* ctl = region->in(i);
4307     if (ctl == nullptr || ctl == top()) {
4308       region->set_req(i, top());
4309       phi   ->set_req(i, top());
4310     } else if (phi->in(i) == nullptr) {
4311       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4312     }
4313   }
4314 
4315   set_control(_gvn.transform(region));
4316   set_result(_gvn.transform(phi));
4317   return true;
4318 }
4319 
4320 //---------------------generate_array_guard_common------------------------
4321 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4322                                                   bool obj_array, bool not_array, Node** obj) {
4323 
4324   if (stopped()) {
4325     return nullptr;
4326   }
4327 
4328   // If obj_array/non_array==false/false:
4329   // Branch around if the given klass is in fact an array (either obj or prim).
4330   // If obj_array/non_array==false/true:
4331   // Branch around if the given klass is not an array klass of any kind.
4332   // If obj_array/non_array==true/true:
4333   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4334   // If obj_array/non_array==true/false:
4335   // Branch around if the kls is an oop array (Object[] or subtype)
4336   //
4337   // Like generate_guard, adds a new path onto the region.
4338   jint  layout_con = 0;
4339   Node* layout_val = get_layout_helper(kls, layout_con);
4340   if (layout_val == nullptr) {
4341     bool query = (obj_array
4342                   ? Klass::layout_helper_is_objArray(layout_con)
4343                   : Klass::layout_helper_is_array(layout_con));
4344     if (query == not_array) {







4345       return nullptr;                       // never a branch
4346     } else {                             // always a branch
4347       Node* always_branch = control();
4348       if (region != nullptr)
4349         region->add_req(always_branch);
4350       set_control(top());
4351       return always_branch;
4352     }
4353   }





















4354   // Now test the correct condition.
4355   jint  nval = (obj_array
4356                 ? (jint)(Klass::_lh_array_tag_type_value
4357                    <<    Klass::_lh_array_tag_shift)
4358                 : Klass::_lh_neutral_value);
4359   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4360   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4361   // invert the test if we are looking for a non-array
4362   if (not_array)  btest = BoolTest(btest).negate();
4363   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4364   Node* ctrl = generate_fair_guard(bol, region);
4365   Node* is_array_ctrl = not_array ? control() : ctrl;
4366   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4367     // Keep track of the fact that 'obj' is an array to prevent
4368     // array specific accesses from floating above the guard.
4369     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4370   }
4371   return ctrl;
4372 }
4373 




















































































































4374 
4375 //-----------------------inline_native_newArray--------------------------
4376 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4377 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4378 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4379   Node* mirror;
4380   Node* count_val;
4381   if (uninitialized) {
4382     null_check_receiver();
4383     mirror    = argument(1);
4384     count_val = argument(2);
4385   } else {
4386     mirror    = argument(0);
4387     count_val = argument(1);
4388   }
4389 
4390   mirror = null_check(mirror);
4391   // If mirror or obj is dead, only null-path is taken.
4392   if (stopped())  return true;
4393 
4394   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4395   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4396   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4414     CallJavaNode* slow_call = nullptr;
4415     if (uninitialized) {
4416       // Generate optimized virtual call (holder class 'Unsafe' is final)
4417       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4418     } else {
4419       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4420     }
4421     Node* slow_result = set_results_for_java_call(slow_call);
4422     // this->control() comes from set_results_for_java_call
4423     result_reg->set_req(_slow_path, control());
4424     result_val->set_req(_slow_path, slow_result);
4425     result_io ->set_req(_slow_path, i_o());
4426     result_mem->set_req(_slow_path, reset_memory());
4427   }
4428 
4429   set_control(normal_ctl);
4430   if (!stopped()) {
4431     // Normal case:  The array type has been cached in the java.lang.Class.
4432     // The following call works fine even if the array type is polymorphic.
4433     // It could be a dynamic mix of int[], boolean[], Object[], etc.



4434     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4435     result_reg->init_req(_normal_path, control());
4436     result_val->init_req(_normal_path, obj);
4437     result_io ->init_req(_normal_path, i_o());
4438     result_mem->init_req(_normal_path, reset_memory());
4439 
4440     if (uninitialized) {
4441       // Mark the allocation so that zeroing is skipped
4442       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4443       alloc->maybe_set_complete(&_gvn);
4444     }
4445   }
4446 
4447   // Return the combined state.
4448   set_i_o(        _gvn.transform(result_io)  );
4449   set_all_memory( _gvn.transform(result_mem));
4450 
4451   C->set_has_split_ifs(true); // Has chance for split-if optimization
4452   set_result(result_reg, result_val);
4453   return true;

4502   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4503   { PreserveReexecuteState preexecs(this);
4504     jvms()->set_should_reexecute(true);
4505 
4506     array_type_mirror = null_check(array_type_mirror);
4507     original          = null_check(original);
4508 
4509     // Check if a null path was taken unconditionally.
4510     if (stopped())  return true;
4511 
4512     Node* orig_length = load_array_length(original);
4513 
4514     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4515     klass_node = null_check(klass_node);
4516 
4517     RegionNode* bailout = new RegionNode(1);
4518     record_for_igvn(bailout);
4519 
4520     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4521     // Bail out if that is so.
4522     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
















4523     if (not_objArray != nullptr) {
4524       // Improve the klass node's type from the new optimistic assumption:
4525       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4526       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4527       Node* cast = new CastPPNode(control(), klass_node, akls);
4528       klass_node = _gvn.transform(cast);
4529     }
4530 
4531     // Bail out if either start or end is negative.
4532     generate_negative_guard(start, bailout, &start);
4533     generate_negative_guard(end,   bailout, &end);
4534 
4535     Node* length = end;
4536     if (_gvn.type(start) != TypeInt::ZERO) {
4537       length = _gvn.transform(new SubINode(end, start));
4538     }
4539 
4540     // Bail out if length is negative (i.e., if start > end).
4541     // Without this the new_array would throw
4542     // NegativeArraySizeException but IllegalArgumentException is what
4543     // should be thrown
4544     generate_negative_guard(length, bailout, &length);
4545 







































4546     // Bail out if start is larger than the original length
4547     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4548     generate_negative_guard(orig_tail, bailout, &orig_tail);
4549 
4550     if (bailout->req() > 1) {
4551       PreserveJVMState pjvms(this);
4552       set_control(_gvn.transform(bailout));
4553       uncommon_trap(Deoptimization::Reason_intrinsic,
4554                     Deoptimization::Action_maybe_recompile);
4555     }
4556 
4557     if (!stopped()) {
4558       // How many elements will we copy from the original?
4559       // The answer is MinI(orig_tail, length).
4560       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4561 
4562       // Generate a direct call to the right arraycopy function(s).
4563       // We know the copy is disjoint but we might not know if the
4564       // oop stores need checking.
4565       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4571       // to the copyOf to be validated, including that the copy to the
4572       // new array won't trigger an ArrayStoreException. That subtype
4573       // check can be optimized if we know something on the type of
4574       // the input array from type speculation.
4575       if (_gvn.type(klass_node)->singleton()) {
4576         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4577         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4578 
4579         int test = C->static_subtype_check(superk, subk);
4580         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4581           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4582           if (t_original->speculative_type() != nullptr) {
4583             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4584           }
4585         }
4586       }
4587 
4588       bool validated = false;
4589       // Reason_class_check rather than Reason_intrinsic because we
4590       // want to intrinsify even if this traps.
4591       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4592         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4593 
4594         if (not_subtype_ctrl != top()) {
4595           PreserveJVMState pjvms(this);
4596           set_control(not_subtype_ctrl);
4597           uncommon_trap(Deoptimization::Reason_class_check,
4598                         Deoptimization::Action_make_not_entrant);
4599           assert(stopped(), "Should be stopped");
4600         }
4601         validated = true;
4602       }
4603 
4604       if (!stopped()) {
4605         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4606 
4607         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4608                                                 load_object_klass(original), klass_node);
4609         if (!is_copyOfRange) {
4610           ac->set_copyof(validated);
4611         } else {

4657 
4658 //-----------------------generate_method_call----------------------------
4659 // Use generate_method_call to make a slow-call to the real
4660 // method if the fast path fails.  An alternative would be to
4661 // use a stub like OptoRuntime::slow_arraycopy_Java.
4662 // This only works for expanding the current library call,
4663 // not another intrinsic.  (E.g., don't use this for making an
4664 // arraycopy call inside of the copyOf intrinsic.)
4665 CallJavaNode*
4666 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4667   // When compiling the intrinsic method itself, do not use this technique.
4668   guarantee(callee() != C->method(), "cannot make slow-call to self");
4669 
4670   ciMethod* method = callee();
4671   // ensure the JVMS we have will be correct for this call
4672   guarantee(method_id == method->intrinsic_id(), "must match");
4673 
4674   const TypeFunc* tf = TypeFunc::make(method);
4675   if (res_not_null) {
4676     assert(tf->return_type() == T_OBJECT, "");
4677     const TypeTuple* range = tf->range();
4678     const Type** fields = TypeTuple::fields(range->cnt());
4679     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4680     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4681     tf = TypeFunc::make(tf->domain(), new_range);
4682   }
4683   CallJavaNode* slow_call;
4684   if (is_static) {
4685     assert(!is_virtual, "");
4686     slow_call = new CallStaticJavaNode(C, tf,
4687                            SharedRuntime::get_resolve_static_call_stub(), method);
4688   } else if (is_virtual) {
4689     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4690     int vtable_index = Method::invalid_vtable_index;
4691     if (UseInlineCaches) {
4692       // Suppress the vtable call
4693     } else {
4694       // hashCode and clone are not a miranda methods,
4695       // so the vtable index is fixed.
4696       // No need to use the linkResolver to get it.
4697        vtable_index = method->vtable_index();
4698        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4699               "bad index %d", vtable_index);
4700     }
4701     slow_call = new CallDynamicJavaNode(tf,

4718   set_edges_for_java_call(slow_call);
4719   return slow_call;
4720 }
4721 
4722 
4723 /**
4724  * Build special case code for calls to hashCode on an object. This call may
4725  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4726  * slightly different code.
4727  */
4728 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4729   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4730   assert(!(is_virtual && is_static), "either virtual, special, or static");
4731 
4732   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4733 
4734   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4735   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4736   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4737   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4738   Node* obj = nullptr;







4739   if (!is_static) {
4740     // Check for hashing null object
4741     obj = null_check_receiver();
4742     if (stopped())  return true;        // unconditionally null
4743     result_reg->init_req(_null_path, top());
4744     result_val->init_req(_null_path, top());
4745   } else {
4746     // Do a null check, and return zero if null.
4747     // System.identityHashCode(null) == 0
4748     obj = argument(0);
4749     Node* null_ctl = top();
4750     obj = null_check_oop(obj, &null_ctl);
4751     result_reg->init_req(_null_path, null_ctl);
4752     result_val->init_req(_null_path, _gvn.intcon(0));
4753   }
4754 
4755   // Unconditionally null?  Then return right away.
4756   if (stopped()) {
4757     set_control( result_reg->in(_null_path));
4758     if (!stopped())
4759       set_result(result_val->in(_null_path));
4760     return true;
4761   }
4762 
4763   // We only go to the fast case code if we pass a number of guards.  The
4764   // paths which do not pass are accumulated in the slow_region.
4765   RegionNode* slow_region = new RegionNode(1);
4766   record_for_igvn(slow_region);
4767 
4768   // If this is a virtual call, we generate a funny guard.  We pull out
4769   // the vtable entry corresponding to hashCode() from the target object.
4770   // If the target method which we are calling happens to be the native
4771   // Object hashCode() method, we pass the guard.  We do not need this
4772   // guard for non-virtual calls -- the caller is known to be the native
4773   // Object hashCode().
4774   if (is_virtual) {
4775     // After null check, get the object's klass.
4776     Node* obj_klass = load_object_klass(obj);
4777     generate_virtual_guard(obj_klass, slow_region);
4778   }
4779 
4780   // Get the header out of the object, use LoadMarkNode when available
4781   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4782   // The control of the load must be null. Otherwise, the load can move before
4783   // the null check after castPP removal.
4784   Node* no_ctrl = nullptr;
4785   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4786 
4787   if (!UseObjectMonitorTable) {
4788     // Test the header to see if it is safe to read w.r.t. locking.
4789     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);

4790     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4791     if (LockingMode == LM_LIGHTWEIGHT) {
4792       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4793       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4794       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4795 
4796       generate_slow_guard(test_monitor, slow_region);
4797     } else {
4798       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4799       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4800       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4801 
4802       generate_slow_guard(test_not_unlocked, slow_region);
4803     }
4804   }
4805 
4806   // Get the hash value and check to see that it has been properly assigned.
4807   // We depend on hash_mask being at most 32 bits and avoid the use of
4808   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4809   // vm: see markWord.hpp.

4844     // this->control() comes from set_results_for_java_call
4845     result_reg->init_req(_slow_path, control());
4846     result_val->init_req(_slow_path, slow_result);
4847     result_io  ->set_req(_slow_path, i_o());
4848     result_mem ->set_req(_slow_path, reset_memory());
4849   }
4850 
4851   // Return the combined state.
4852   set_i_o(        _gvn.transform(result_io)  );
4853   set_all_memory( _gvn.transform(result_mem));
4854 
4855   set_result(result_reg, result_val);
4856   return true;
4857 }
4858 
4859 //---------------------------inline_native_getClass----------------------------
4860 // public final native Class<?> java.lang.Object.getClass();
4861 //
4862 // Build special case code for calls to getClass on an object.
4863 bool LibraryCallKit::inline_native_getClass() {
4864   Node* obj = null_check_receiver();









4865   if (stopped())  return true;
4866   set_result(load_mirror_from_klass(load_object_klass(obj)));
4867   return true;
4868 }
4869 
4870 //-----------------inline_native_Reflection_getCallerClass---------------------
4871 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4872 //
4873 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4874 //
4875 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4876 // in that it must skip particular security frames and checks for
4877 // caller sensitive methods.
4878 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4879 #ifndef PRODUCT
4880   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4881     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4882   }
4883 #endif
4884 

5266 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5267 //
5268 // The general case has two steps, allocation and copying.
5269 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5270 //
5271 // Copying also has two cases, oop arrays and everything else.
5272 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5273 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5274 //
5275 // These steps fold up nicely if and when the cloned object's klass
5276 // can be sharply typed as an object array, a type array, or an instance.
5277 //
5278 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5279   PhiNode* result_val;
5280 
5281   // Set the reexecute bit for the interpreter to reexecute
5282   // the bytecode that invokes Object.clone if deoptimization happens.
5283   { PreserveReexecuteState preexecs(this);
5284     jvms()->set_should_reexecute(true);
5285 
5286     Node* obj = null_check_receiver();

5287     if (stopped())  return true;
5288 
5289     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();






5290 
5291     // If we are going to clone an instance, we need its exact type to
5292     // know the number and types of fields to convert the clone to
5293     // loads/stores. Maybe a speculative type can help us.
5294     if (!obj_type->klass_is_exact() &&
5295         obj_type->speculative_type() != nullptr &&
5296         obj_type->speculative_type()->is_instance_klass()) {

5297       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5298       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5299           !spec_ik->has_injected_fields()) {
5300         if (!obj_type->isa_instptr() ||
5301             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5302           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5303         }
5304       }
5305     }
5306 
5307     // Conservatively insert a memory barrier on all memory slices.
5308     // Do not let writes into the original float below the clone.
5309     insert_mem_bar(Op_MemBarCPUOrder);
5310 
5311     // paths into result_reg:
5312     enum {
5313       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5314       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5315       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5316       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5317       PATH_LIMIT
5318     };
5319     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5320     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5321     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5322     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5323     record_for_igvn(result_reg);
5324 
5325     Node* obj_klass = load_object_klass(obj);





5326     Node* array_obj = obj;
5327     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5328     if (array_ctl != nullptr) {
5329       // It's an array.
5330       PreserveJVMState pjvms(this);
5331       set_control(array_ctl);
5332       Node* obj_length = load_array_length(array_obj);
5333       Node* array_size = nullptr; // Size of the array without object alignment padding.
5334       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5335 
5336       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5337       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5338         // If it is an oop array, it requires very special treatment,
5339         // because gc barriers are required when accessing the array.
5340         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5341         if (is_obja != nullptr) {
5342           PreserveJVMState pjvms2(this);
5343           set_control(is_obja);
5344           // Generate a direct call to the right arraycopy function(s).
5345           // Clones are always tightly coupled.
5346           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5347           ac->set_clone_oop_array();
5348           Node* n = _gvn.transform(ac);
5349           assert(n == ac, "cannot disappear");
5350           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5351 
5352           result_reg->init_req(_objArray_path, control());
5353           result_val->init_req(_objArray_path, alloc_obj);
5354           result_i_o ->set_req(_objArray_path, i_o());
5355           result_mem ->set_req(_objArray_path, reset_memory());
5356         }
5357       }
5358       // Otherwise, there are no barriers to worry about.
5359       // (We can dispense with card marks if we know the allocation
5360       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5361       //  causes the non-eden paths to take compensating steps to
5362       //  simulate a fresh allocation, so that no further
5363       //  card marks are required in compiled code to initialize
5364       //  the object.)
5365 
5366       if (!stopped()) {
5367         copy_to_clone(array_obj, alloc_obj, array_size, true);
5368 
5369         // Present the results of the copy.
5370         result_reg->init_req(_array_path, control());
5371         result_val->init_req(_array_path, alloc_obj);
5372         result_i_o ->set_req(_array_path, i_o());
5373         result_mem ->set_req(_array_path, reset_memory());




































5374       }
5375     }
5376 
5377     // We only go to the instance fast case code if we pass a number of guards.
5378     // The paths which do not pass are accumulated in the slow_region.
5379     RegionNode* slow_region = new RegionNode(1);
5380     record_for_igvn(slow_region);
5381     if (!stopped()) {
5382       // It's an instance (we did array above).  Make the slow-path tests.
5383       // If this is a virtual call, we generate a funny guard.  We grab
5384       // the vtable entry corresponding to clone() from the target object.
5385       // If the target method which we are calling happens to be the
5386       // Object clone() method, we pass the guard.  We do not need this
5387       // guard for non-virtual calls; the caller is known to be the native
5388       // Object clone().
5389       if (is_virtual) {
5390         generate_virtual_guard(obj_klass, slow_region);
5391       }
5392 
5393       // The object must be easily cloneable and must not have a finalizer.
5394       // Both of these conditions may be checked in a single test.
5395       // We could optimize the test further, but we don't care.
5396       generate_misc_flags_guard(obj_klass,
5397                                 // Test both conditions:
5398                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5399                                 // Must be cloneable but not finalizer:
5400                                 KlassFlags::_misc_is_cloneable_fast,

5492         set_jvms(sfpt->jvms());
5493         _reexecute_sp = jvms()->sp();
5494 
5495         return saved_jvms;
5496       }
5497     }
5498   }
5499   return nullptr;
5500 }
5501 
5502 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5503 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5504 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5505   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5506   uint size = alloc->req();
5507   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5508   old_jvms->set_map(sfpt);
5509   for (uint i = 0; i < size; i++) {
5510     sfpt->init_req(i, alloc->in(i));
5511   }












5512   // re-push array length for deoptimization
5513   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5514   old_jvms->set_sp(old_jvms->sp()+1);
5515   old_jvms->set_monoff(old_jvms->monoff()+1);
5516   old_jvms->set_scloff(old_jvms->scloff()+1);
5517   old_jvms->set_endoff(old_jvms->endoff()+1);











5518   old_jvms->set_should_reexecute(true);
5519 
5520   sfpt->set_i_o(map()->i_o());
5521   sfpt->set_memory(map()->memory());
5522   sfpt->set_control(map()->control());
5523   return sfpt;
5524 }
5525 
5526 // In case of a deoptimization, we restart execution at the
5527 // allocation, allocating a new array. We would leave an uninitialized
5528 // array in the heap that GCs wouldn't expect. Move the allocation
5529 // after the traps so we don't allocate the array if we
5530 // deoptimize. This is possible because tightly_coupled_allocation()
5531 // guarantees there's no observer of the allocated array at this point
5532 // and the control flow is simple enough.
5533 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5534                                                     int saved_reexecute_sp, uint new_idx) {
5535   if (saved_jvms_before_guards != nullptr && !stopped()) {
5536     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5537 
5538     assert(alloc != nullptr, "only with a tightly coupled allocation");
5539     // restore JVM state to the state at the arraycopy
5540     saved_jvms_before_guards->map()->set_control(map()->control());
5541     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5542     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5543     // If we've improved the types of some nodes (null check) while
5544     // emitting the guards, propagate them to the current state
5545     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5546     set_jvms(saved_jvms_before_guards);
5547     _reexecute_sp = saved_reexecute_sp;
5548 
5549     // Remove the allocation from above the guards
5550     CallProjections callprojs;
5551     alloc->extract_projections(&callprojs, true);
5552     InitializeNode* init = alloc->initialization();
5553     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5554     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5555     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5556 
5557     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5558     // the allocation (i.e. is only valid if the allocation succeeds):
5559     // 1) replace CastIINode with AllocateArrayNode's length here
5560     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5561     //
5562     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5563     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5564     Node* init_control = init->proj_out(TypeFunc::Control);
5565     Node* alloc_length = alloc->Ideal_length();
5566 #ifdef ASSERT
5567     Node* prev_cast = nullptr;
5568 #endif
5569     for (uint i = 0; i < init_control->outcnt(); i++) {
5570       Node* init_out = init_control->raw_out(i);
5571       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5572 #ifdef ASSERT
5573         if (prev_cast == nullptr) {
5574           prev_cast = init_out;

5576           if (prev_cast->cmp(*init_out) == false) {
5577             prev_cast->dump();
5578             init_out->dump();
5579             assert(false, "not equal CastIINode");
5580           }
5581         }
5582 #endif
5583         C->gvn_replace_by(init_out, alloc_length);
5584       }
5585     }
5586     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5587 
5588     // move the allocation here (after the guards)
5589     _gvn.hash_delete(alloc);
5590     alloc->set_req(TypeFunc::Control, control());
5591     alloc->set_req(TypeFunc::I_O, i_o());
5592     Node *mem = reset_memory();
5593     set_all_memory(mem);
5594     alloc->set_req(TypeFunc::Memory, mem);
5595     set_control(init->proj_out_or_null(TypeFunc::Control));
5596     set_i_o(callprojs.fallthrough_ioproj);
5597 
5598     // Update memory as done in GraphKit::set_output_for_allocation()
5599     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5600     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5601     if (ary_type->isa_aryptr() && length_type != nullptr) {
5602       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5603     }
5604     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5605     int            elemidx  = C->get_alias_index(telemref);
5606     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5607     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5608 
5609     Node* allocx = _gvn.transform(alloc);
5610     assert(allocx == alloc, "where has the allocation gone?");
5611     assert(dest->is_CheckCastPP(), "not an allocation result?");
5612 
5613     _gvn.hash_delete(dest);
5614     dest->set_req(0, control());
5615     Node* destx = _gvn.transform(dest);
5616     assert(destx == dest, "where has the allocation result gone?");

5914         top_src  = src_type->isa_aryptr();
5915         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5916         src_spec = true;
5917       }
5918       if (!has_dest) {
5919         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5920         dest_type  = _gvn.type(dest);
5921         top_dest  = dest_type->isa_aryptr();
5922         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5923         dest_spec = true;
5924       }
5925     }
5926   }
5927 
5928   if (has_src && has_dest && can_emit_guards) {
5929     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5930     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5931     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5932     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5933 
5934     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5935       // If both arrays are object arrays then having the exact types
5936       // for both will remove the need for a subtype check at runtime
5937       // before the call and may make it possible to pick a faster copy
5938       // routine (without a subtype check on every element)
5939       // Do we have the exact type of src?
5940       bool could_have_src = src_spec;
5941       // Do we have the exact type of dest?
5942       bool could_have_dest = dest_spec;
5943       ciKlass* src_k = nullptr;
5944       ciKlass* dest_k = nullptr;
5945       if (!src_spec) {
5946         src_k = src_type->speculative_type_not_null();
5947         if (src_k != nullptr && src_k->is_array_klass()) {
5948           could_have_src = true;
5949         }
5950       }
5951       if (!dest_spec) {
5952         dest_k = dest_type->speculative_type_not_null();
5953         if (dest_k != nullptr && dest_k->is_array_klass()) {
5954           could_have_dest = true;
5955         }
5956       }
5957       if (could_have_src && could_have_dest) {
5958         // If we can have both exact types, emit the missing guards
5959         if (could_have_src && !src_spec) {
5960           src = maybe_cast_profiled_obj(src, src_k, true);


5961         }
5962         if (could_have_dest && !dest_spec) {
5963           dest = maybe_cast_profiled_obj(dest, dest_k, true);


5964         }
5965       }
5966     }
5967   }
5968 
5969   ciMethod* trap_method = method();
5970   int trap_bci = bci();
5971   if (saved_jvms_before_guards != nullptr) {
5972     trap_method = alloc->jvms()->method();
5973     trap_bci = alloc->jvms()->bci();
5974   }
5975 
5976   bool negative_length_guard_generated = false;
5977 
5978   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5979       can_emit_guards &&
5980       !src->is_top() && !dest->is_top()) {
5981     // validate arguments: enables transformation the ArrayCopyNode
5982     validated = true;
5983 
5984     RegionNode* slow_region = new RegionNode(1);
5985     record_for_igvn(slow_region);
5986 
5987     // (1) src and dest are arrays.
5988     generate_non_array_guard(load_object_klass(src), slow_region, &src);
5989     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
5990 
5991     // (2) src and dest arrays must have elements of the same BasicType
5992     // done at macro expansion or at Ideal transformation time
5993 
5994     // (4) src_offset must not be negative.
5995     generate_negative_guard(src_offset, slow_region);
5996 
5997     // (5) dest_offset must not be negative.
5998     generate_negative_guard(dest_offset, slow_region);
5999 
6000     // (7) src_offset + length must not exceed length of src.

6003                          slow_region);
6004 
6005     // (8) dest_offset + length must not exceed length of dest.
6006     generate_limit_guard(dest_offset, length,
6007                          load_array_length(dest),
6008                          slow_region);
6009 
6010     // (6) length must not be negative.
6011     // This is also checked in generate_arraycopy() during macro expansion, but
6012     // we also have to check it here for the case where the ArrayCopyNode will
6013     // be eliminated by Escape Analysis.
6014     if (EliminateAllocations) {
6015       generate_negative_guard(length, slow_region);
6016       negative_length_guard_generated = true;
6017     }
6018 
6019     // (9) each element of an oop array must be assignable
6020     Node* dest_klass = load_object_klass(dest);
6021     if (src != dest) {
6022       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);


6023 
6024       if (not_subtype_ctrl != top()) {
6025         PreserveJVMState pjvms(this);
6026         set_control(not_subtype_ctrl);
6027         uncommon_trap(Deoptimization::Reason_intrinsic,
6028                       Deoptimization::Action_make_not_entrant);
6029         assert(stopped(), "Should be stopped");


























6030       }
6031     }

6032     {
6033       PreserveJVMState pjvms(this);
6034       set_control(_gvn.transform(slow_region));
6035       uncommon_trap(Deoptimization::Reason_intrinsic,
6036                     Deoptimization::Action_make_not_entrant);
6037       assert(stopped(), "Should be stopped");
6038     }
6039 
6040     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6041     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6042     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6043     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6044   }
6045 
6046   if (stopped()) {
6047     return true;
6048   }
6049 
6050   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6051                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6052                                           // so the compiler has a chance to eliminate them: during macro expansion,
6053                                           // we have to set their control (CastPP nodes are eliminated).
6054                                           load_object_klass(src), load_object_klass(dest),
6055                                           load_array_length(src), load_array_length(dest));
6056 
6057   ac->set_arraycopy(validated);
6058 
6059   Node* n = _gvn.transform(ac);
6060   if (n == ac) {
6061     ac->connect_outputs(this);
6062   } else {

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciInstanceKlass.hpp"
  29 #include "ci/ciSymbols.hpp"
  30 #include "ci/ciUtilities.inline.hpp"
  31 #include "classfile/vmIntrinsics.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/c2/barrierSetC2.hpp"
  36 #include "jfr/support/jfrIntrinsics.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/accessDecorators.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "oops/layoutKind.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "opto/addnode.hpp"
  43 #include "opto/arraycopynode.hpp"
  44 #include "opto/c2compiler.hpp"
  45 #include "opto/castnode.hpp"
  46 #include "opto/cfgnode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/countbitsnode.hpp"
  49 #include "opto/graphKit.hpp"
  50 #include "opto/idealKit.hpp"
  51 #include "opto/inlinetypenode.hpp"
  52 #include "opto/library_call.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/opaquenode.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "prims/jvmtiThreadState.hpp"
  66 #include "prims/unsafe.hpp"
  67 #include "runtime/jniHandles.inline.hpp"
  68 #include "runtime/objectMonitor.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "utilities/globalDefinitions.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/powerOfTwo.hpp"
  74 
  75 //---------------------------make_vm_intrinsic----------------------------
  76 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  77   vmIntrinsicID id = m->intrinsic_id();
  78   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  79 
  80   if (!m->is_loaded()) {
  81     // Do not attempt to inline unloaded methods.
  82     return nullptr;
  83   }
  84 
  85   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  86   bool is_available = false;
  87 
  88   {
  89     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  90     // the compiler must transition to '_thread_in_vm' state because both
  91     // methods access VM-internal data.

 312   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 313   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 314   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 315   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 316   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 317 
 318   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 319 
 320   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 321 
 322   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 323   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 324   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 325   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 326 
 327   case vmIntrinsics::_compressStringC:
 328   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 329   case vmIntrinsics::_inflateStringC:
 330   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 331 
 332   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 333   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 334   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 335   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 336   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 337   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 338   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 339   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 340   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 341   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 342   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 343   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 344 
 345   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 346   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 347   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 348   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 349   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 350   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 351   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 352   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 353   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 354   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 355 
 356   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 357   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 358   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 359   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 360   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 361   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 362   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 363   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 364   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 365 
 366   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 367   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 368   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 369   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 370   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 371   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 372   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 373   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 374   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 406   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 407   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 408   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 409   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 410   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 411   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 412   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 413   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 414   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 415 
 416   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 417   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 418   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 419   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 420   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 421   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 422   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 423   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 424   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 425 
 426   case vmIntrinsics::_getFlatValue:             return inline_unsafe_flat_access(!is_store, Relaxed);
 427   case vmIntrinsics::_putFlatValue:             return inline_unsafe_flat_access( is_store, Relaxed);
 428 
 429   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 430   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 431   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 432   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 433   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 434 
 435   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 436   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 437   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 438   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 439   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 440   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 441   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 442   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 443   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 444   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 445   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 446   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 447   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 448   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);

 516 #endif
 517   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 518   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 519   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 520   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 521   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 522   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 523   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 524   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 525   case vmIntrinsics::_getLength:                return inline_native_getLength();
 526   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 527   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 528   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 529   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 530   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 531   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 532   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 533 
 534   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 535   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 536   case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false);
 537   case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true);
 538   case vmIntrinsics::_newNullableAtomicArray:     return inline_newArray(/* null_free */ false, /* atomic */ true);
 539 
 540   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 541 
 542   case vmIntrinsics::_isInstance:
 543   case vmIntrinsics::_isHidden:
 544   case vmIntrinsics::_getSuperclass:            return inline_native_Class_query(intrinsic_id());
 545 
 546   case vmIntrinsics::_floatToRawIntBits:
 547   case vmIntrinsics::_floatToIntBits:
 548   case vmIntrinsics::_intBitsToFloat:
 549   case vmIntrinsics::_doubleToRawLongBits:
 550   case vmIntrinsics::_doubleToLongBits:
 551   case vmIntrinsics::_longBitsToDouble:
 552   case vmIntrinsics::_floatToFloat16:
 553   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 554   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 555   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 556   case vmIntrinsics::_floatIsFinite:
 557   case vmIntrinsics::_floatIsInfinite:
 558   case vmIntrinsics::_doubleIsFinite:

2336     case vmIntrinsics::_remainderUnsigned_l: {
2337       zero_check_long(argument(2));
2338       // Compile-time detect of null-exception
2339       if (stopped()) {
2340         return true; // keep the graph constructed so far
2341       }
2342       n = new UModLNode(control(), argument(0), argument(2));
2343       break;
2344     }
2345     default:  fatal_unexpected_iid(id);  break;
2346   }
2347   set_result(_gvn.transform(n));
2348   return true;
2349 }
2350 
2351 //----------------------------inline_unsafe_access----------------------------
2352 
2353 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2354   // Attempt to infer a sharper value type from the offset and base type.
2355   ciKlass* sharpened_klass = nullptr;
2356   bool null_free = false;
2357 
2358   // See if it is an instance field, with an object type.
2359   if (alias_type->field() != nullptr) {
2360     if (alias_type->field()->type()->is_klass()) {
2361       sharpened_klass = alias_type->field()->type()->as_klass();
2362       null_free = alias_type->field()->is_null_free();
2363     }
2364   }
2365 
2366   const TypeOopPtr* result = nullptr;
2367   // See if it is a narrow oop array.
2368   if (adr_type->isa_aryptr()) {
2369     if (adr_type->offset() >= refArrayOopDesc::base_offset_in_bytes()) {
2370       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2371       null_free = adr_type->is_aryptr()->is_null_free();
2372       if (elem_type != nullptr && elem_type->is_loaded()) {
2373         // Sharpen the value type.
2374         result = elem_type;
2375       }
2376     }
2377   }
2378 
2379   // The sharpened class might be unloaded if there is no class loader
2380   // contraint in place.
2381   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2382     // Sharpen the value type.
2383     result = TypeOopPtr::make_from_klass(sharpened_klass);
2384     if (null_free) {
2385       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2386     }
2387   }
2388   if (result != nullptr) {
2389 #ifndef PRODUCT
2390     if (C->print_intrinsics() || C->print_inlining()) {
2391       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2392       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2393     }
2394 #endif
2395   }
2396   return result;
2397 }
2398 
2399 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2400   switch (kind) {
2401       case Relaxed:
2402         return MO_UNORDERED;
2403       case Opaque:
2404         return MO_RELAXED;
2405       case Acquire:
2406         return MO_ACQUIRE;

2438   _kit->jvms()->set_sp(_sp);
2439   _map->set_jvms(_kit->jvms());
2440   _kit->set_map(_map);
2441   _kit->set_sp(_sp);
2442   for (DUIterator_Fast imax, i = _kit->control()->fast_outs(imax); i < imax; i++) {
2443     Node* out = _kit->control()->fast_out(i);
2444     if (out->is_CFG() && out->in(0) == _kit->control() && out != _kit->map() && !_ctrl_succ.member(out)) {
2445       _kit->_gvn.hash_delete(out);
2446       out->set_req(0, _kit->C->top());
2447       _kit->C->record_for_igvn(out);
2448       --i; --imax;
2449       _kit->_gvn.hash_find_insert(out);
2450     }
2451   }
2452 }
2453 
2454 void LibraryCallKit::SavedState::discard() {
2455   _discarded = true;
2456 }
2457 
2458 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2459   if (callee()->is_static())  return false;  // caller must have the capability!
2460   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2461   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2462   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2463   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2464 
2465   if (is_reference_type(type)) {
2466     decorators |= ON_UNKNOWN_OOP_REF;
2467   }
2468 
2469   if (unaligned) {
2470     decorators |= C2_UNALIGNED;
2471   }
2472 
2473 #ifndef PRODUCT
2474   {
2475     ResourceMark rm;
2476     // Check the signatures.
2477     ciSignature* sig = callee()->signature();
2478 #ifdef ASSERT
2479     if (!is_store) {
2480       // Object getReference(Object base, int/long offset), etc.
2481       BasicType rtype = sig->return_type()->basic_type();
2482       assert(rtype == type, "getter must return the expected value");
2483       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2484       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2485       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2486     } else {
2487       // void putReference(Object base, int/long offset, Object x), etc.
2488       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2489       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2490       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2491       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2492       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2493       assert(vtype == type, "putter must accept the expected value");
2494     }
2495 #endif // ASSERT
2496  }
2497 #endif //PRODUCT
2498 
2499   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2500 
2501   Node* receiver = argument(0);  // type: oop
2502 
2503   // Build address expression.
2504   Node* heap_base_oop = top();
2505 
2506   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2507   Node* base = argument(1);  // type: oop
2508   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2509   Node* offset = argument(2);  // type: long
2510   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2511   // to be plain byte offsets, which are also the same as those accepted
2512   // by oopDesc::field_addr.
2513   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2514          "fieldOffset must be byte-scaled");
2515 
2516   ciInlineKlass* inline_klass = nullptr;
2517   if (is_flat) {
2518     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2519     if (cls == nullptr || cls->const_oop() == nullptr) {
2520       return false;
2521     }
2522     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2523     if (!mirror_type->is_inlinetype()) {
2524       return false;
2525     }
2526     inline_klass = mirror_type->as_inline_klass();
2527   }
2528 
2529   if (base->is_InlineType()) {
2530     assert(!is_store, "InlineTypeNodes are non-larval value objects");
2531     InlineTypeNode* vt = base->as_InlineType();
2532     if (offset->is_Con()) {
2533       long off = find_long_con(offset, 0);
2534       ciInlineKlass* vk = vt->type()->inline_klass();
2535       if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2536         return false;
2537       }
2538 
2539       ciField* field = vk->get_non_flat_field_by_offset(off);
2540       if (field != nullptr) {
2541         BasicType bt = type2field[field->type()->basic_type()];
2542         if (bt == T_ARRAY || bt == T_NARROWOOP) {
2543           bt = T_OBJECT;
2544         }
2545         if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2546           Node* value = vt->field_value_by_offset(off, false);
2547           if (value->is_InlineType()) {
2548             value = value->as_InlineType()->adjust_scalarization_depth(this);
2549           }
2550           set_result(value);
2551           return true;
2552         }
2553       }
2554     }
2555     {
2556       // Re-execute the unsafe access if allocation triggers deoptimization.
2557       PreserveReexecuteState preexecs(this);
2558       jvms()->set_should_reexecute(true);
2559       vt = vt->buffer(this);
2560     }
2561     base = vt->get_oop();
2562   }
2563 
2564   // 32-bit machines ignore the high half!
2565   offset = ConvL2X(offset);
2566 
2567   // Save state and restore on bailout
2568   SavedState old_state(this);
2569 
2570   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2571   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2572 
2573   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2574     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2575       decorators |= IN_NATIVE; // off-heap primitive access
2576     } else {
2577       return false; // off-heap oop accesses are not supported
2578     }
2579   } else {
2580     heap_base_oop = base; // on-heap or mixed access
2581   }
2582 
2583   // Can base be null? Otherwise, always on-heap access.
2584   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2585 
2586   if (!can_access_non_heap) {
2587     decorators |= IN_HEAP;
2588   }
2589 
2590   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2591 
2592   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2593   if (adr_type == TypePtr::NULL_PTR) {
2594     return false; // off-heap access with zero address
2595   }
2596 
2597   // Try to categorize the address.
2598   Compile::AliasType* alias_type = C->alias_type(adr_type);
2599   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2600 
2601   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2602       alias_type->adr_type() == TypeAryPtr::RANGE) {
2603     return false; // not supported
2604   }
2605 
2606   bool mismatched = false;
2607   BasicType bt = T_ILLEGAL;
2608   ciField* field = nullptr;
2609   if (adr_type->isa_instptr()) {
2610     const TypeInstPtr* instptr = adr_type->is_instptr();
2611     ciInstanceKlass* k = instptr->instance_klass();
2612     int off = instptr->offset();
2613     if (instptr->const_oop() != nullptr &&
2614         k == ciEnv::current()->Class_klass() &&
2615         instptr->offset() >= (k->size_helper() * wordSize)) {
2616       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2617       field = k->get_field_by_offset(off, true);
2618     } else {
2619       field = k->get_non_flat_field_by_offset(off);
2620     }
2621     if (field != nullptr) {
2622       bt = type2field[field->type()->basic_type()];
2623     }
2624     if (bt != alias_type->basic_type()) {
2625       // Type mismatch. Is it an access to a nested flat field?
2626       field = k->get_field_by_offset(off, false);
2627       if (field != nullptr) {
2628         bt = type2field[field->type()->basic_type()];
2629       }
2630     }
2631     assert(bt == alias_type->basic_type() || is_flat, "should match");
2632   } else {
2633     bt = alias_type->basic_type();
2634   }
2635 
2636   if (bt != T_ILLEGAL) {
2637     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2638     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2639       // Alias type doesn't differentiate between byte[] and boolean[]).
2640       // Use address type to get the element type.
2641       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2642     }
2643     if (is_reference_type(bt, true)) {
2644       // accessing an array field with getReference is not a mismatch
2645       bt = T_OBJECT;
2646     }
2647     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2648       // Don't intrinsify mismatched object accesses
2649       return false;
2650     }
2651     mismatched = (bt != type);
2652   } else if (alias_type->adr_type()->isa_oopptr()) {
2653     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2654   }
2655 
2656   if (is_flat) {
2657     if (adr_type->isa_instptr()) {
2658       if (field == nullptr || field->type() != inline_klass) {
2659         mismatched = true;
2660       }
2661     } else if (adr_type->isa_aryptr()) {
2662       const Type* elem = adr_type->is_aryptr()->elem();
2663       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2664         mismatched = true;
2665       }
2666     } else {
2667       mismatched = true;
2668     }
2669     if (is_store) {
2670       const Type* val_t = _gvn.type(val);
2671       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2672         return false;
2673       }
2674     }
2675   }
2676 
2677   old_state.discard();
2678   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2679 
2680   if (mismatched) {
2681     decorators |= C2_MISMATCHED;
2682   }
2683 
2684   // First guess at the value type.
2685   const Type *value_type = Type::get_const_basic_type(type);
2686 
2687   // Figure out the memory ordering.
2688   decorators |= mo_decorator_for_access_kind(kind);
2689 
2690   if (!is_store) {
2691     if (type == T_OBJECT && !is_flat) {
2692       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2693       if (tjp != nullptr) {
2694         value_type = tjp;
2695       }
2696     }
2697   }
2698 
2699   receiver = null_check(receiver);
2700   if (stopped()) {
2701     return true;
2702   }
2703   // Heap pointers get a null-check from the interpreter,
2704   // as a courtesy.  However, this is not guaranteed by Unsafe,
2705   // and it is not possible to fully distinguish unintended nulls
2706   // from intended ones in this API.
2707 
2708   if (!is_store) {
2709     Node* p = nullptr;
2710     // Try to constant fold a load from a constant field
2711 
2712     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2713       // final or stable field
2714       p = make_constant_from_field(field, heap_base_oop);
2715     }
2716 
2717     if (p == nullptr) { // Could not constant fold the load
2718       if (is_flat) {
2719         p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, adr_type, false, false, true);
2720       } else {
2721         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2722         const TypeOopPtr* ptr = value_type->make_oopptr();
2723         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2724           // Load a non-flattened inline type from memory
2725           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass());
2726         }
2727       }
2728       // Normalize the value returned by getBoolean in the following cases
2729       if (type == T_BOOLEAN &&
2730           (mismatched ||
2731            heap_base_oop == top() ||                  // - heap_base_oop is null or
2732            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2733                                                       //   and the unsafe access is made to large offset
2734                                                       //   (i.e., larger than the maximum offset necessary for any
2735                                                       //   field access)
2736             ) {
2737           IdealKit ideal = IdealKit(this);
2738 #define __ ideal.
2739           IdealVariable normalized_result(ideal);
2740           __ declarations_done();
2741           __ set(normalized_result, p);
2742           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2743           __ set(normalized_result, ideal.ConI(1));
2744           ideal.end_if();
2745           final_sync(ideal);
2746           p = __ value(normalized_result);
2747 #undef __
2748       }
2749     }
2750     if (type == T_ADDRESS) {
2751       p = gvn().transform(new CastP2XNode(nullptr, p));
2752       p = ConvX2UL(p);
2753     }
2754     // The load node has the control of the preceding MemBarCPUOrder.  All
2755     // following nodes will have the control of the MemBarCPUOrder inserted at
2756     // the end of this method.  So, pushing the load onto the stack at a later
2757     // point is fine.
2758     set_result(p);
2759   } else {
2760     if (bt == T_ADDRESS) {
2761       // Repackage the long as a pointer.
2762       val = ConvL2X(val);
2763       val = gvn().transform(new CastX2PNode(val));
2764     }
2765     if (is_flat) {
2766       val->as_InlineType()->store_flat(this, base, adr, false, false, true, decorators);
2767     } else {
2768       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2769     }
2770   }
2771 
2772   return true;
2773 }
2774 
2775 bool LibraryCallKit::inline_unsafe_flat_access(bool is_store, AccessKind kind) {
2776 #ifdef ASSERT
2777   {
2778     ResourceMark rm;
2779     // Check the signatures.
2780     ciSignature* sig = callee()->signature();
2781     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base should be object, but is %s", type2name(sig->type_at(0)->basic_type()));
2782     assert(sig->type_at(1)->basic_type() == T_LONG, "offset should be long, but is %s", type2name(sig->type_at(1)->basic_type()));
2783     assert(sig->type_at(2)->basic_type() == T_INT, "layout kind should be int, but is %s", type2name(sig->type_at(3)->basic_type()));
2784     assert(sig->type_at(3)->basic_type() == T_OBJECT, "value klass should be object, but is %s", type2name(sig->type_at(4)->basic_type()));
2785     if (is_store) {
2786       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value, but returns %s", type2name(sig->return_type()->basic_type()));
2787       assert(sig->count() == 5, "flat putter should have 5 arguments, but has %d", sig->count());
2788       assert(sig->type_at(4)->basic_type() == T_OBJECT, "put value should be object, but is %s", type2name(sig->type_at(5)->basic_type()));
2789     } else {
2790       assert(sig->return_type()->basic_type() == T_OBJECT, "getter must return an object, but returns %s", type2name(sig->return_type()->basic_type()));
2791       assert(sig->count() == 4, "flat getter should have 4 arguments, but has %d", sig->count());
2792     }
2793  }
2794 #endif // ASSERT
2795 
2796   assert(kind == Relaxed, "Only plain accesses for now");
2797   if (callee()->is_static()) {
2798     // caller must have the capability!
2799     return false;
2800   }
2801   C->set_has_unsafe_access(true);
2802 
2803   const TypeInstPtr* value_klass_node = _gvn.type(argument(5))->isa_instptr();
2804   if (value_klass_node == nullptr || value_klass_node->const_oop() == nullptr) {
2805     // parameter valueType is not a constant
2806     return false;
2807   }
2808   ciType* mirror_type = value_klass_node->const_oop()->as_instance()->java_mirror_type();
2809   if (!mirror_type->is_inlinetype()) {
2810     // Dead code
2811     return false;
2812   }
2813   ciInlineKlass* value_klass = mirror_type->as_inline_klass();
2814 
2815   const TypeInt* layout_type = _gvn.type(argument(4))->isa_int();
2816   if (layout_type == nullptr || !layout_type->is_con()) {
2817     // parameter layoutKind is not a constant
2818     return false;
2819   }
2820   assert(layout_type->get_con() >= static_cast<int>(LayoutKind::REFERENCE) &&
2821          layout_type->get_con() <= static_cast<int>(LayoutKind::UNKNOWN),
2822          "invalid layoutKind %d", layout_type->get_con());
2823   LayoutKind layout = static_cast<LayoutKind>(layout_type->get_con());
2824   assert(layout == LayoutKind::REFERENCE || layout == LayoutKind::NON_ATOMIC_FLAT ||
2825          layout == LayoutKind::ATOMIC_FLAT || layout == LayoutKind::NULLABLE_ATOMIC_FLAT,
2826          "unexpected layoutKind %d", layout_type->get_con());
2827 
2828   null_check(argument(0));
2829   if (stopped()) {
2830     return true;
2831   }
2832 
2833   Node* base = must_be_not_null(argument(1), true);
2834   Node* offset = argument(2);
2835   const Type* base_type = _gvn.type(base);
2836 
2837   Node* ptr;
2838   bool immutable_memory = false;
2839   DecoratorSet decorators = C2_UNSAFE_ACCESS | IN_HEAP | MO_UNORDERED;
2840   if (base_type->isa_instptr()) {
2841     const TypeLong* offset_type = _gvn.type(offset)->isa_long();
2842     if (offset_type == nullptr || !offset_type->is_con()) {
2843       // Offset into a non-array should be a constant
2844       decorators |= C2_MISMATCHED;
2845     } else {
2846       int offset_con = checked_cast<int>(offset_type->get_con());
2847       ciInstanceKlass* base_klass = base_type->is_instptr()->instance_klass();
2848       ciField* field = base_klass->get_non_flat_field_by_offset(offset_con);
2849       if (field == nullptr) {
2850         assert(!base_klass->is_final(), "non-existence field at offset %d of class %s", offset_con, base_klass->name()->as_utf8());
2851         decorators |= C2_MISMATCHED;
2852       } else {
2853         assert(field->type() == value_klass, "field at offset %d of %s is of type %s, but valueType is %s",
2854                offset_con, base_klass->name()->as_utf8(), field->type()->name(), value_klass->name()->as_utf8());
2855         immutable_memory = field->is_strict() && field->is_final();
2856 
2857         if (base->is_InlineType()) {
2858           assert(!is_store, "Cannot store into a non-larval value object");
2859           set_result(base->as_InlineType()->field_value_by_offset(offset_con, false));
2860           return true;
2861         }
2862       }
2863     }
2864 
2865     if (base->is_InlineType()) {
2866       assert(!is_store, "Cannot store into a non-larval value object");
2867       base = base->as_InlineType()->buffer(this, true);
2868     }
2869     ptr = basic_plus_adr(base, ConvL2X(offset));
2870   } else if (base_type->isa_aryptr()) {
2871     decorators |= IS_ARRAY;
2872     if (layout == LayoutKind::REFERENCE) {
2873       if (!base_type->is_aryptr()->is_not_flat()) {
2874         const TypeAryPtr* array_type = base_type->is_aryptr()->cast_to_not_flat();
2875         Node* new_base = _gvn.transform(new CastPPNode(control(), base, array_type, ConstraintCastNode::StrongDependency));
2876         replace_in_map(base, new_base);
2877         base = new_base;
2878       }
2879       ptr = basic_plus_adr(base, ConvL2X(offset));
2880     } else {
2881       if (UseArrayFlattening) {
2882         // Flat array must have an exact type
2883         bool is_null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2884         bool is_atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2885         Node* new_base = cast_to_flat_array(base, value_klass, is_null_free, !is_null_free, is_atomic);
2886         replace_in_map(base, new_base);
2887         base = new_base;
2888         ptr = basic_plus_adr(base, ConvL2X(offset));
2889         const TypeAryPtr* ptr_type = _gvn.type(ptr)->is_aryptr();
2890         if (ptr_type->field_offset().get() != 0) {
2891           ptr = _gvn.transform(new CastPPNode(control(), ptr, ptr_type->with_field_offset(0), ConstraintCastNode::StrongDependency));
2892         }
2893       } else {
2894         uncommon_trap(Deoptimization::Reason_intrinsic,
2895                       Deoptimization::Action_none);
2896         return true;
2897       }
2898     }
2899   } else {
2900     decorators |= C2_MISMATCHED;
2901     ptr = basic_plus_adr(base, ConvL2X(offset));
2902   }
2903 
2904   if (is_store) {
2905     Node* value = argument(6);
2906     const Type* value_type = _gvn.type(value);
2907     if (!value_type->is_inlinetypeptr()) {
2908       value_type = Type::get_const_type(value_klass)->filter_speculative(value_type);
2909       Node* new_value = _gvn.transform(new CastPPNode(control(), value, value_type, ConstraintCastNode::StrongDependency));
2910       new_value = InlineTypeNode::make_from_oop(this, new_value, value_klass);
2911       replace_in_map(value, new_value);
2912       value = new_value;
2913     }
2914 
2915     assert(value_type->inline_klass() == value_klass, "value is of type %s while valueType is %s", value_type->inline_klass()->name()->as_utf8(), value_klass->name()->as_utf8());
2916     if (layout == LayoutKind::REFERENCE) {
2917       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2918       access_store_at(base, ptr, ptr_type, value, value_type, T_OBJECT, decorators);
2919     } else {
2920       bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2921       bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2922       value->as_InlineType()->store_flat(this, base, ptr, atomic, immutable_memory, null_free, decorators);
2923     }
2924 
2925     return true;
2926   } else {
2927     decorators |= (C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
2928     InlineTypeNode* result;
2929     if (layout == LayoutKind::REFERENCE) {
2930       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2931       Node* oop = access_load_at(base, ptr, ptr_type, Type::get_const_type(value_klass), T_OBJECT, decorators);
2932       result = InlineTypeNode::make_from_oop(this, oop, value_klass);
2933     } else {
2934       bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2935       bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2936       result = InlineTypeNode::make_from_flat(this, value_klass, base, ptr, atomic, immutable_memory, null_free, decorators);
2937     }
2938 
2939     set_result(result);
2940     return true;
2941   }
2942 }
2943 
2944 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2945   Node* receiver = argument(0);
2946   Node* value = argument(1);
2947 
2948   const Type* type = gvn().type(value);
2949   if (!type->is_inlinetypeptr()) {
2950     C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type");
2951     return false;
2952   }
2953 
2954   null_check(receiver);
2955   if (stopped()) {
2956     return true;
2957   }
2958 
2959   value = null_check(value);
2960   if (stopped()) {
2961     return true;
2962   }
2963 
2964   ciInlineKlass* vk = type->inline_klass();
2965   Node* klass = makecon(TypeKlassPtr::make(vk));
2966   Node* obj = new_instance(klass);
2967   AllocateNode::Ideal_allocation(obj)->_larval = true;
2968 
2969   assert(value->is_InlineType(), "must be an InlineTypeNode");
2970   Node* payload_ptr = basic_plus_adr(obj, vk->payload_offset());
2971   value->as_InlineType()->store_flat(this, obj, payload_ptr, false, true, true, IN_HEAP | MO_UNORDERED);
2972 
2973   set_result(obj);
2974   return true;
2975 }
2976 
2977 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2978   Node* receiver = argument(0);
2979   Node* buffer = argument(1);
2980 
2981   const Type* type = gvn().type(buffer);
2982   if (!type->is_inlinetypeptr()) {
2983     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type");
2984     return false;
2985   }
2986 
2987   AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer);
2988   if (alloc == nullptr) {
2989     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer");
2990     return false;
2991   }
2992 
2993   null_check(receiver);
2994   if (stopped()) {
2995     return true;
2996   }
2997 
2998   // Unset the larval bit in the object header
2999   Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned);
3000   Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place)));
3001   access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP);
3002 
3003   // We must ensure that the buffer is properly published
3004   insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
3005   assert(!type->maybe_null(), "result of an allocation should not be null");
3006   set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass()));
3007   return true;
3008 }
3009 
3010 //----------------------------inline_unsafe_load_store----------------------------
3011 // This method serves a couple of different customers (depending on LoadStoreKind):
3012 //
3013 // LS_cmp_swap:
3014 //
3015 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
3016 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
3017 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
3018 //
3019 // LS_cmp_swap_weak:
3020 //
3021 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
3022 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
3023 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
3024 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
3025 //
3026 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
3027 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
3028 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
3029 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

3192     }
3193     case LS_cmp_swap:
3194     case LS_cmp_swap_weak:
3195     case LS_get_add:
3196       break;
3197     default:
3198       ShouldNotReachHere();
3199   }
3200 
3201   // Null check receiver.
3202   receiver = null_check(receiver);
3203   if (stopped()) {
3204     return true;
3205   }
3206 
3207   int alias_idx = C->get_alias_index(adr_type);
3208 
3209   if (is_reference_type(type)) {
3210     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
3211 
3212     if (oldval != nullptr && oldval->is_InlineType()) {
3213       // Re-execute the unsafe access if allocation triggers deoptimization.
3214       PreserveReexecuteState preexecs(this);
3215       jvms()->set_should_reexecute(true);
3216       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
3217     }
3218     if (newval != nullptr && newval->is_InlineType()) {
3219       // Re-execute the unsafe access if allocation triggers deoptimization.
3220       PreserveReexecuteState preexecs(this);
3221       jvms()->set_should_reexecute(true);
3222       newval = newval->as_InlineType()->buffer(this)->get_oop();
3223     }
3224 
3225     // Transformation of a value which could be null pointer (CastPP #null)
3226     // could be delayed during Parse (for example, in adjust_map_after_if()).
3227     // Execute transformation here to avoid barrier generation in such case.
3228     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3229       newval = _gvn.makecon(TypePtr::NULL_PTR);
3230 
3231     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
3232       // Refine the value to a null constant, when it is known to be null
3233       oldval = _gvn.makecon(TypePtr::NULL_PTR);
3234     }
3235   }
3236 
3237   Node* result = nullptr;
3238   switch (kind) {
3239     case LS_cmp_exchange: {
3240       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
3241                                             oldval, newval, value_type, type, decorators);
3242       break;
3243     }
3244     case LS_cmp_swap_weak:

3391                     Deoptimization::Action_make_not_entrant);
3392     }
3393     if (stopped()) {
3394       return true;
3395     }
3396 #endif //INCLUDE_JVMTI
3397 
3398   Node* test = nullptr;
3399   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3400     // Note:  The argument might still be an illegal value like
3401     // Serializable.class or Object[].class.   The runtime will handle it.
3402     // But we must make an explicit check for initialization.
3403     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3404     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3405     // can generate code to load it as unsigned byte.
3406     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3407     Node* bits = intcon(InstanceKlass::fully_initialized);
3408     test = _gvn.transform(new SubINode(inst, bits));
3409     // The 'test' is non-zero if we need to take a slow path.
3410   }
3411   Node* obj = nullptr;
3412   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3413   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3414     obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3415   } else {
3416     obj = new_instance(kls, test);
3417   }
3418   set_result(obj);
3419   return true;
3420 }
3421 
3422 //------------------------inline_native_time_funcs--------------
3423 // inline code for System.currentTimeMillis() and System.nanoTime()
3424 // these have the same type and signature
3425 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3426   const TypeFunc* tf = OptoRuntime::void_long_Type();
3427   const TypePtr* no_memory_effects = nullptr;
3428   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3429   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3430 #ifdef ASSERT
3431   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3432   assert(value_top == top(), "second value must be top");
3433 #endif
3434   set_result(value);
3435   return true;
3436 }
3437 

4178   Node* thread = _gvn.transform(new ThreadLocalNode());
4179   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
4180   Node* thread_obj_handle
4181     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
4182   thread_obj_handle = _gvn.transform(thread_obj_handle);
4183   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
4184   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
4185 
4186   // Change the _monitor_owner_id of the JavaThread
4187   Node* tid = load_field_from_object(arr, "tid", "J");
4188   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
4189   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
4190 
4191   JFR_ONLY(extend_setCurrentThread(thread, arr);)
4192   return true;
4193 }
4194 
4195 const Type* LibraryCallKit::scopedValueCache_type() {
4196   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
4197   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
4198   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
4199 
4200   // Because we create the scopedValue cache lazily we have to make the
4201   // type of the result BotPTR.
4202   bool xk = etype->klass_is_exact();
4203   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
4204   return objects_type;
4205 }
4206 
4207 Node* LibraryCallKit::scopedValueCache_helper() {
4208   Node* thread = _gvn.transform(new ThreadLocalNode());
4209   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
4210   // We cannot use immutable_memory() because we might flip onto a
4211   // different carrier thread, at which point we'll need to use that
4212   // carrier thread's cache.
4213   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
4214   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
4215   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
4216 }
4217 
4218 //------------------------inline_native_scopedValueCache------------------
4219 bool LibraryCallKit::inline_native_scopedValueCache() {
4220   Node* cache_obj_handle = scopedValueCache_helper();
4221   const Type* objects_type = scopedValueCache_type();
4222   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
4223 

4307   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
4308 
4309   // Result of top level CFG and Memory.
4310   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4311   record_for_igvn(result_rgn);
4312   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4313   record_for_igvn(result_mem);
4314 
4315   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
4316   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
4317   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
4318   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4319 
4320   // Set output state.
4321   set_control(_gvn.transform(result_rgn));
4322   set_all_memory(_gvn.transform(result_mem));
4323 
4324   return true;
4325 }
4326 









4327 //-----------------------load_klass_from_mirror_common-------------------------
4328 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
4329 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
4330 // and branch to the given path on the region.
4331 // If never_see_null, take an uncommon trap on null, so we can optimistically
4332 // compile for the non-null case.
4333 // If the region is null, force never_see_null = true.
4334 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
4335                                                     bool never_see_null,
4336                                                     RegionNode* region,
4337                                                     int null_path,
4338                                                     int offset) {
4339   if (region == nullptr)  never_see_null = true;
4340   Node* p = basic_plus_adr(mirror, offset);
4341   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4342   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
4343   Node* null_ctl = top();
4344   kls = null_check_oop(kls, &null_ctl, never_see_null);
4345   if (region != nullptr) {
4346     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

4350   }
4351   return kls;
4352 }
4353 
4354 //--------------------(inline_native_Class_query helpers)---------------------
4355 // Use this for JVM_ACC_INTERFACE.
4356 // Fall through if (mods & mask) == bits, take the guard otherwise.
4357 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4358                                                  ByteSize offset, const Type* type, BasicType bt) {
4359   // Branch around if the given klass has the given modifier bit set.
4360   // Like generate_guard, adds a new path onto the region.
4361   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4362   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4363   Node* mask = intcon(modifier_mask);
4364   Node* bits = intcon(modifier_bits);
4365   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4366   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4367   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4368   return generate_fair_guard(bol, region);
4369 }
4370 
4371 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4372   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4373                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4374 }
4375 
4376 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4377 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4378   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4379                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4380 }
4381 
4382 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4383   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4384 }
4385 
4386 //-------------------------inline_native_Class_query-------------------
4387 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4388   const Type* return_type = TypeInt::BOOL;
4389   Node* prim_return_value = top();  // what happens if it's a primitive class?
4390   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4500     }
4501     if (!stopped()) {
4502       query_value = load_mirror_from_klass(kls);
4503     }
4504     break;
4505 
4506   default:
4507     fatal_unexpected_iid(id);
4508     break;
4509   }
4510 
4511   // Fall-through is the normal case of a query to a real class.
4512   phi->init_req(1, query_value);
4513   region->init_req(1, control());
4514 
4515   C->set_has_split_ifs(true); // Has chance for split-if optimization
4516   set_result(region, phi);
4517   return true;
4518 }
4519 
4520 
4521 //-------------------------inline_Class_cast-------------------
4522 bool LibraryCallKit::inline_Class_cast() {
4523   Node* mirror = argument(0); // Class
4524   Node* obj    = argument(1);
4525   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4526   if (mirror_con == nullptr) {
4527     return false;  // dead path (mirror->is_top()).
4528   }
4529   if (obj == nullptr || obj->is_top()) {
4530     return false;  // dead path
4531   }
4532   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4533 
4534   // First, see if Class.cast() can be folded statically.
4535   // java_mirror_type() returns non-null for compile-time Class constants.
4536   ciType* tm = mirror_con->java_mirror_type();
4537   if (tm != nullptr && tm->is_klass() &&
4538       tp != nullptr) {
4539     if (!tp->is_loaded()) {
4540       // Don't use intrinsic when class is not loaded.
4541       return false;
4542     } else {
4543       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4544       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4545       if (static_res == Compile::SSC_always_true) {
4546         // isInstance() is true - fold the code.
4547         set_result(obj);
4548         return true;
4549       } else if (static_res == Compile::SSC_always_false) {
4550         // Don't use intrinsic, have to throw ClassCastException.
4551         // If the reference is null, the non-intrinsic bytecode will
4552         // be optimized appropriately.
4553         return false;
4554       }
4555     }
4556   }
4557 
4558   // Bailout intrinsic and do normal inlining if exception path is frequent.
4559   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4560     return false;
4561   }
4562 
4563   // Generate dynamic checks.
4564   // Class.cast() is java implementation of _checkcast bytecode.
4565   // Do checkcast (Parse::do_checkcast()) optimizations here.
4566 
4567   mirror = null_check(mirror);
4568   // If mirror is dead, only null-path is taken.
4569   if (stopped()) {
4570     return true;
4571   }
4572 
4573   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4574   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4575   RegionNode* region = new RegionNode(PATH_LIMIT);
4576   record_for_igvn(region);
4577 
4578   // Now load the mirror's klass metaobject, and null-check it.
4579   // If kls is null, we have a primitive mirror and
4580   // nothing is an instance of a primitive type.
4581   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4582 
4583   Node* res = top();
4584   Node* io = i_o();
4585   Node* mem = merged_memory();
4586   if (!stopped()) {
4587 
4588     Node* bad_type_ctrl = top();
4589     // Do checkcast optimizations.
4590     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4591     region->init_req(_bad_type_path, bad_type_ctrl);
4592   }
4593   if (region->in(_prim_path) != top() ||
4594       region->in(_bad_type_path) != top() ||
4595       region->in(_npe_path) != top()) {
4596     // Let Interpreter throw ClassCastException.
4597     PreserveJVMState pjvms(this);
4598     set_control(_gvn.transform(region));
4599     // Set IO and memory because gen_checkcast may override them when buffering inline types
4600     set_i_o(io);
4601     set_all_memory(mem);
4602     uncommon_trap(Deoptimization::Reason_intrinsic,
4603                   Deoptimization::Action_maybe_recompile);
4604   }
4605   if (!stopped()) {
4606     set_result(res);
4607   }
4608   return true;
4609 }
4610 
4611 
4612 //--------------------------inline_native_subtype_check------------------------
4613 // This intrinsic takes the JNI calls out of the heart of
4614 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4615 bool LibraryCallKit::inline_native_subtype_check() {
4616   // Pull both arguments off the stack.
4617   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4618   args[0] = argument(0);
4619   args[1] = argument(1);
4620   Node* klasses[2];             // corresponding Klasses: superk, subk
4621   klasses[0] = klasses[1] = top();
4622 
4623   enum {
4624     // A full decision tree on {superc is prim, subc is prim}:
4625     _prim_0_path = 1,           // {P,N} => false
4626                                 // {P,P} & superc!=subc => false
4627     _prim_same_path,            // {P,P} & superc==subc => true
4628     _prim_1_path,               // {N,P} => false
4629     _ref_subtype_path,          // {N,N} & subtype check wins => true
4630     _both_ref_path,             // {N,N} & subtype check loses => false
4631     PATH_LIMIT
4632   };
4633 
4634   RegionNode* region = new RegionNode(PATH_LIMIT);
4635   RegionNode* prim_region = new RegionNode(2);
4636   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4637   record_for_igvn(region);
4638   record_for_igvn(prim_region);
4639 
4640   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4641   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4642   int class_klass_offset = java_lang_Class::klass_offset();
4643 
4644   // First null-check both mirrors and load each mirror's klass metaobject.
4645   int which_arg;
4646   for (which_arg = 0; which_arg <= 1; which_arg++) {
4647     Node* arg = args[which_arg];
4648     arg = null_check(arg);
4649     if (stopped())  break;
4650     args[which_arg] = arg;
4651 
4652     Node* p = basic_plus_adr(arg, class_klass_offset);
4653     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4654     klasses[which_arg] = _gvn.transform(kls);
4655   }
4656 
4657   // Having loaded both klasses, test each for null.
4658   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4659   for (which_arg = 0; which_arg <= 1; which_arg++) {
4660     Node* kls = klasses[which_arg];
4661     Node* null_ctl = top();
4662     kls = null_check_oop(kls, &null_ctl, never_see_null);
4663     if (which_arg == 0) {
4664       prim_region->init_req(1, null_ctl);
4665     } else {
4666       region->init_req(_prim_1_path, null_ctl);
4667     }
4668     if (stopped())  break;
4669     klasses[which_arg] = kls;
4670   }
4671 
4672   if (!stopped()) {
4673     // now we have two reference types, in klasses[0..1]
4674     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4675     Node* superk = klasses[0];  // the receiver
4676     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));

4677     region->set_req(_ref_subtype_path, control());
4678   }
4679 
4680   // If both operands are primitive (both klasses null), then
4681   // we must return true when they are identical primitives.
4682   // It is convenient to test this after the first null klass check.
4683   // This path is also used if superc is a value mirror.
4684   set_control(_gvn.transform(prim_region));
4685   if (!stopped()) {
4686     // Since superc is primitive, make a guard for the superc==subc case.
4687     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4688     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4689     generate_fair_guard(bol_eq, region);
4690     if (region->req() == PATH_LIMIT+1) {
4691       // A guard was added.  If the added guard is taken, superc==subc.
4692       region->swap_edges(PATH_LIMIT, _prim_same_path);
4693       region->del_req(PATH_LIMIT);
4694     }
4695     region->set_req(_prim_0_path, control()); // Not equal after all.
4696   }
4697 
4698   // these are the only paths that produce 'true':
4699   phi->set_req(_prim_same_path,   intcon(1));
4700   phi->set_req(_ref_subtype_path, intcon(1));
4701 
4702   // pull together the cases:
4703   assert(region->req() == PATH_LIMIT, "sane region");
4704   for (uint i = 1; i < region->req(); i++) {
4705     Node* ctl = region->in(i);
4706     if (ctl == nullptr || ctl == top()) {
4707       region->set_req(i, top());
4708       phi   ->set_req(i, top());
4709     } else if (phi->in(i) == nullptr) {
4710       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4711     }
4712   }
4713 
4714   set_control(_gvn.transform(region));
4715   set_result(_gvn.transform(phi));
4716   return true;
4717 }
4718 
4719 //---------------------generate_array_guard_common------------------------
4720 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) {

4721 
4722   if (stopped()) {
4723     return nullptr;
4724   }
4725 









4726   // Like generate_guard, adds a new path onto the region.
4727   jint  layout_con = 0;
4728   Node* layout_val = get_layout_helper(kls, layout_con);
4729   if (layout_val == nullptr) {
4730     bool query = 0;
4731     switch(kind) {
4732       case RefArray:       query = Klass::layout_helper_is_refArray(layout_con); break;
4733       case NonRefArray:    query = !Klass::layout_helper_is_refArray(layout_con); break;
4734       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4735       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4736       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4737       default:
4738         ShouldNotReachHere();
4739     }
4740     if (!query) {
4741       return nullptr;                       // never a branch
4742     } else {                             // always a branch
4743       Node* always_branch = control();
4744       if (region != nullptr)
4745         region->add_req(always_branch);
4746       set_control(top());
4747       return always_branch;
4748     }
4749   }
4750   unsigned int value = 0;
4751   BoolTest::mask btest = BoolTest::illegal;
4752   switch(kind) {
4753     case RefArray:
4754     case NonRefArray: {
4755       value = Klass::_lh_array_tag_ref_value;
4756       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4757       btest = (kind == RefArray) ? BoolTest::eq : BoolTest::ne;
4758       break;
4759     }
4760     case TypeArray: {
4761       value = Klass::_lh_array_tag_type_value;
4762       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4763       btest = BoolTest::eq;
4764       break;
4765     }
4766     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4767     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4768     default:
4769       ShouldNotReachHere();
4770   }
4771   // Now test the correct condition.
4772   jint nval = (jint)value;



4773   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));



4774   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4775   Node* ctrl = generate_fair_guard(bol, region);
4776   Node* is_array_ctrl = kind == NonArray ? control() : ctrl;
4777   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4778     // Keep track of the fact that 'obj' is an array to prevent
4779     // array specific accesses from floating above the guard.
4780     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4781   }
4782   return ctrl;
4783 }
4784 
4785 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal);
4786 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal);
4787 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length);
4788 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) {
4789   assert(null_free || atomic, "nullable implies atomic");
4790   Node* componentType = argument(0);
4791   Node* length = argument(1);
4792   Node* init_val = null_free ? argument(2) : nullptr;
4793 
4794   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4795   if (tp != nullptr) {
4796     ciInstanceKlass* ik = tp->instance_klass();
4797     if (ik == C->env()->Class_klass()) {
4798       ciType* t = tp->java_mirror_type();
4799       if (t != nullptr && t->is_inlinetype()) {
4800 
4801         ciArrayKlass* array_klass = ciArrayKlass::make(t, null_free, atomic, true);
4802         assert(array_klass->is_elem_null_free() == null_free, "inconsistency");
4803         assert(array_klass->is_elem_atomic() == atomic, "inconsistency");
4804 
4805         // TOOD 8350865 ZGC needs card marks on initializing oop stores
4806         if (UseZGC && null_free && !array_klass->is_flat_array_klass()) {
4807           return false;
4808         }
4809 
4810         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4811           const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces, true);
4812           if (null_free) {
4813             if (init_val->is_InlineType()) {
4814               if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) {
4815                 // Zeroing is enough because the init value is the all-zero value
4816                 init_val = nullptr;
4817               } else {
4818                 init_val = init_val->as_InlineType()->buffer(this);
4819               }
4820             }
4821             // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)?
4822           }
4823           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val);
4824           const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr();
4825           assert(arytype->is_null_free() == null_free, "inconsistency");
4826           assert(arytype->is_not_null_free() == !null_free, "inconsistency");
4827           assert(arytype->is_atomic() == atomic, "inconsistency");
4828           set_result(obj);
4829           return true;
4830         }
4831       }
4832     }
4833   }
4834   return false;
4835 }
4836 
4837 Node* LibraryCallKit::load_default_array_klass(Node* klass_node) {
4838   // TODO 8366668
4839   // - Fred suggested that we could just have the first entry in the refined list point to the array with ArrayKlass::ArrayProperties::DEFAULT property
4840   //   For now, we just load from ObjArrayKlass::_next_refined_array_klass, which would always be the refKlass for non-values, and deopt if it's not
4841   // - Convert this to an IGVN optimization, so it's also folded after parsing
4842   // - The generate_typeArray_guard is not needed by all callers, double-check that it's folded
4843 
4844   const Type* klass_t = _gvn.type(klass_node);
4845   const TypeAryKlassPtr* ary_klass_t = klass_t->isa_aryklassptr();
4846   if (ary_klass_t && ary_klass_t->klass_is_exact()) {
4847     if (ary_klass_t->exact_klass()->is_obj_array_klass()) {
4848       ary_klass_t = ary_klass_t->get_vm_type(false);
4849       return makecon(ary_klass_t);
4850     } else {
4851       return klass_node;
4852     }
4853   }
4854 
4855   // Load next refined array klass if klass is an ObjArrayKlass
4856   RegionNode* refined_region = new RegionNode(2);
4857   Node* refined_phi = new PhiNode(refined_region, klass_t);
4858 
4859   generate_typeArray_guard(klass_node, refined_region);
4860   if (refined_region->req() == 3) {
4861     refined_phi->add_req(klass_node);
4862   }
4863 
4864   Node* adr_refined_klass = basic_plus_adr(klass_node, in_bytes(ObjArrayKlass::next_refined_array_klass_offset()));
4865   Node* refined_klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), adr_refined_klass, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4866 
4867   RegionNode* refined_region2 = new RegionNode(3);
4868   Node* refined_phi2 = new PhiNode(refined_region2, klass_t);
4869 
4870   Node* null_ctl = top();
4871   Node* null_free_klass = null_check_common(refined_klass, T_OBJECT, false, &null_ctl);
4872   refined_region2->init_req(1, null_ctl);
4873   refined_phi2->init_req(1, klass_node);
4874 
4875   refined_region2->init_req(2, control());
4876   refined_phi2->init_req(2, null_free_klass);
4877 
4878   set_control(_gvn.transform(refined_region2));
4879   refined_klass = _gvn.transform(refined_phi2);
4880 
4881   Node* adr_properties = basic_plus_adr(refined_klass, in_bytes(ObjArrayKlass::properties_offset()));
4882 
4883   Node* properties = _gvn.transform(LoadNode::make(_gvn, control(), immutable_memory(), adr_properties, TypeRawPtr::BOTTOM, TypeInt::INT, T_INT, MemNode::unordered));
4884   Node* default_val = makecon(TypeInt::make(ArrayKlass::ArrayProperties::DEFAULT));
4885   Node* chk = _gvn.transform(new CmpINode(properties, default_val));
4886   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
4887 
4888   { // Deoptimize if not the default property
4889     BuildCutout unless(this, tst, PROB_MAX);
4890     uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_none);
4891   }
4892 
4893   refined_region->init_req(1, control());
4894   refined_phi->init_req(1, refined_klass);
4895 
4896   set_control(_gvn.transform(refined_region));
4897   klass_node = _gvn.transform(refined_phi);
4898 
4899   return klass_node;
4900 }
4901 
4902 //-----------------------inline_native_newArray--------------------------
4903 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4904 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4905 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4906   Node* mirror;
4907   Node* count_val;
4908   if (uninitialized) {
4909     null_check_receiver();
4910     mirror    = argument(1);
4911     count_val = argument(2);
4912   } else {
4913     mirror    = argument(0);
4914     count_val = argument(1);
4915   }
4916 
4917   mirror = null_check(mirror);
4918   // If mirror or obj is dead, only null-path is taken.
4919   if (stopped())  return true;
4920 
4921   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4922   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4923   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4941     CallJavaNode* slow_call = nullptr;
4942     if (uninitialized) {
4943       // Generate optimized virtual call (holder class 'Unsafe' is final)
4944       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4945     } else {
4946       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4947     }
4948     Node* slow_result = set_results_for_java_call(slow_call);
4949     // this->control() comes from set_results_for_java_call
4950     result_reg->set_req(_slow_path, control());
4951     result_val->set_req(_slow_path, slow_result);
4952     result_io ->set_req(_slow_path, i_o());
4953     result_mem->set_req(_slow_path, reset_memory());
4954   }
4955 
4956   set_control(normal_ctl);
4957   if (!stopped()) {
4958     // Normal case:  The array type has been cached in the java.lang.Class.
4959     // The following call works fine even if the array type is polymorphic.
4960     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4961 
4962     klass_node = load_default_array_klass(klass_node);
4963 
4964     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4965     result_reg->init_req(_normal_path, control());
4966     result_val->init_req(_normal_path, obj);
4967     result_io ->init_req(_normal_path, i_o());
4968     result_mem->init_req(_normal_path, reset_memory());
4969 
4970     if (uninitialized) {
4971       // Mark the allocation so that zeroing is skipped
4972       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4973       alloc->maybe_set_complete(&_gvn);
4974     }
4975   }
4976 
4977   // Return the combined state.
4978   set_i_o(        _gvn.transform(result_io)  );
4979   set_all_memory( _gvn.transform(result_mem));
4980 
4981   C->set_has_split_ifs(true); // Has chance for split-if optimization
4982   set_result(result_reg, result_val);
4983   return true;

5032   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
5033   { PreserveReexecuteState preexecs(this);
5034     jvms()->set_should_reexecute(true);
5035 
5036     array_type_mirror = null_check(array_type_mirror);
5037     original          = null_check(original);
5038 
5039     // Check if a null path was taken unconditionally.
5040     if (stopped())  return true;
5041 
5042     Node* orig_length = load_array_length(original);
5043 
5044     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
5045     klass_node = null_check(klass_node);
5046 
5047     RegionNode* bailout = new RegionNode(1);
5048     record_for_igvn(bailout);
5049 
5050     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
5051     // Bail out if that is so.
5052     // Inline type array may have object field that would require a
5053     // write barrier. Conservatively, go to slow path.
5054     // TODO 8251971: Optimize for the case when flat src/dst are later found
5055     // to not contain oops (i.e., move this check to the macro expansion phase).
5056     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5057     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
5058     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
5059     bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
5060                         // Can src array be flat and contain oops?
5061                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
5062                         // Can dest array be flat and contain oops?
5063                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
5064     // TODO 8366668 generate_non_refArray_guard also passed for ref arrays??
5065     Node* not_objArray = exclude_flat ? generate_non_refArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
5066 
5067     klass_node = load_default_array_klass(klass_node);
5068 
5069     if (not_objArray != nullptr) {
5070       // Improve the klass node's type from the new optimistic assumption:
5071       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
5072       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
5073       Node* cast = new CastPPNode(control(), klass_node, akls);
5074       klass_node = _gvn.transform(cast);
5075     }
5076 
5077     // Bail out if either start or end is negative.
5078     generate_negative_guard(start, bailout, &start);
5079     generate_negative_guard(end,   bailout, &end);
5080 
5081     Node* length = end;
5082     if (_gvn.type(start) != TypeInt::ZERO) {
5083       length = _gvn.transform(new SubINode(end, start));
5084     }
5085 
5086     // Bail out if length is negative (i.e., if start > end).
5087     // Without this the new_array would throw
5088     // NegativeArraySizeException but IllegalArgumentException is what
5089     // should be thrown
5090     generate_negative_guard(length, bailout, &length);
5091 
5092     // Handle inline type arrays
5093     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
5094     if (!stopped()) {
5095       // TODO JDK-8329224
5096       if (!orig_t->is_null_free()) {
5097         // Not statically known to be null free, add a check
5098         generate_fair_guard(null_free_array_test(original), bailout);
5099       }
5100       orig_t = _gvn.type(original)->isa_aryptr();
5101       if (orig_t != nullptr && orig_t->is_flat()) {
5102         // Src is flat, check that dest is flat as well
5103         if (exclude_flat) {
5104           // Dest can't be flat, bail out
5105           bailout->add_req(control());
5106           set_control(top());
5107         } else {
5108           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
5109         }
5110         // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy.
5111       } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) &&
5112                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
5113                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
5114         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
5115         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
5116         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
5117         if (orig_t != nullptr) {
5118           orig_t = orig_t->cast_to_not_flat();
5119           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
5120         }
5121       }
5122       if (!can_validate) {
5123         // No validation. The subtype check emitted at macro expansion time will not go to the slow
5124         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
5125         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
5126         generate_fair_guard(flat_array_test(klass_node), bailout);
5127         generate_fair_guard(null_free_array_test(original), bailout);
5128       }
5129     }
5130 
5131     // Bail out if start is larger than the original length
5132     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
5133     generate_negative_guard(orig_tail, bailout, &orig_tail);
5134 
5135     if (bailout->req() > 1) {
5136       PreserveJVMState pjvms(this);
5137       set_control(_gvn.transform(bailout));
5138       uncommon_trap(Deoptimization::Reason_intrinsic,
5139                     Deoptimization::Action_maybe_recompile);
5140     }
5141 
5142     if (!stopped()) {
5143       // How many elements will we copy from the original?
5144       // The answer is MinI(orig_tail, length).
5145       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
5146 
5147       // Generate a direct call to the right arraycopy function(s).
5148       // We know the copy is disjoint but we might not know if the
5149       // oop stores need checking.
5150       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

5156       // to the copyOf to be validated, including that the copy to the
5157       // new array won't trigger an ArrayStoreException. That subtype
5158       // check can be optimized if we know something on the type of
5159       // the input array from type speculation.
5160       if (_gvn.type(klass_node)->singleton()) {
5161         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
5162         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
5163 
5164         int test = C->static_subtype_check(superk, subk);
5165         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
5166           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
5167           if (t_original->speculative_type() != nullptr) {
5168             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
5169           }
5170         }
5171       }
5172 
5173       bool validated = false;
5174       // Reason_class_check rather than Reason_intrinsic because we
5175       // want to intrinsify even if this traps.
5176       if (can_validate) {
5177         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
5178 
5179         if (not_subtype_ctrl != top()) {
5180           PreserveJVMState pjvms(this);
5181           set_control(not_subtype_ctrl);
5182           uncommon_trap(Deoptimization::Reason_class_check,
5183                         Deoptimization::Action_make_not_entrant);
5184           assert(stopped(), "Should be stopped");
5185         }
5186         validated = true;
5187       }
5188 
5189       if (!stopped()) {
5190         newcopy = new_array(klass_node, length, 0);  // no arguments to push
5191 
5192         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
5193                                                 load_object_klass(original), klass_node);
5194         if (!is_copyOfRange) {
5195           ac->set_copyof(validated);
5196         } else {

5242 
5243 //-----------------------generate_method_call----------------------------
5244 // Use generate_method_call to make a slow-call to the real
5245 // method if the fast path fails.  An alternative would be to
5246 // use a stub like OptoRuntime::slow_arraycopy_Java.
5247 // This only works for expanding the current library call,
5248 // not another intrinsic.  (E.g., don't use this for making an
5249 // arraycopy call inside of the copyOf intrinsic.)
5250 CallJavaNode*
5251 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
5252   // When compiling the intrinsic method itself, do not use this technique.
5253   guarantee(callee() != C->method(), "cannot make slow-call to self");
5254 
5255   ciMethod* method = callee();
5256   // ensure the JVMS we have will be correct for this call
5257   guarantee(method_id == method->intrinsic_id(), "must match");
5258 
5259   const TypeFunc* tf = TypeFunc::make(method);
5260   if (res_not_null) {
5261     assert(tf->return_type() == T_OBJECT, "");
5262     const TypeTuple* range = tf->range_cc();
5263     const Type** fields = TypeTuple::fields(range->cnt());
5264     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
5265     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
5266     tf = TypeFunc::make(tf->domain_cc(), new_range);
5267   }
5268   CallJavaNode* slow_call;
5269   if (is_static) {
5270     assert(!is_virtual, "");
5271     slow_call = new CallStaticJavaNode(C, tf,
5272                            SharedRuntime::get_resolve_static_call_stub(), method);
5273   } else if (is_virtual) {
5274     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
5275     int vtable_index = Method::invalid_vtable_index;
5276     if (UseInlineCaches) {
5277       // Suppress the vtable call
5278     } else {
5279       // hashCode and clone are not a miranda methods,
5280       // so the vtable index is fixed.
5281       // No need to use the linkResolver to get it.
5282        vtable_index = method->vtable_index();
5283        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5284               "bad index %d", vtable_index);
5285     }
5286     slow_call = new CallDynamicJavaNode(tf,

5303   set_edges_for_java_call(slow_call);
5304   return slow_call;
5305 }
5306 
5307 
5308 /**
5309  * Build special case code for calls to hashCode on an object. This call may
5310  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
5311  * slightly different code.
5312  */
5313 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
5314   assert(is_static == callee()->is_static(), "correct intrinsic selection");
5315   assert(!(is_virtual && is_static), "either virtual, special, or static");
5316 
5317   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
5318 
5319   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5320   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
5321   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
5322   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5323   Node* obj = argument(0);
5324 
5325   // Don't intrinsify hashcode on inline types for now.
5326   // The "is locked" runtime check below also serves as inline type check and goes to the slow path.
5327   if (gvn().type(obj)->is_inlinetypeptr()) {
5328     return false;
5329   }
5330 
5331   if (!is_static) {
5332     // Check for hashing null object
5333     obj = null_check_receiver();
5334     if (stopped())  return true;        // unconditionally null
5335     result_reg->init_req(_null_path, top());
5336     result_val->init_req(_null_path, top());
5337   } else {
5338     // Do a null check, and return zero if null.
5339     // System.identityHashCode(null) == 0

5340     Node* null_ctl = top();
5341     obj = null_check_oop(obj, &null_ctl);
5342     result_reg->init_req(_null_path, null_ctl);
5343     result_val->init_req(_null_path, _gvn.intcon(0));
5344   }
5345 
5346   // Unconditionally null?  Then return right away.
5347   if (stopped()) {
5348     set_control( result_reg->in(_null_path));
5349     if (!stopped())
5350       set_result(result_val->in(_null_path));
5351     return true;
5352   }
5353 
5354   // We only go to the fast case code if we pass a number of guards.  The
5355   // paths which do not pass are accumulated in the slow_region.
5356   RegionNode* slow_region = new RegionNode(1);
5357   record_for_igvn(slow_region);
5358 
5359   // If this is a virtual call, we generate a funny guard.  We pull out
5360   // the vtable entry corresponding to hashCode() from the target object.
5361   // If the target method which we are calling happens to be the native
5362   // Object hashCode() method, we pass the guard.  We do not need this
5363   // guard for non-virtual calls -- the caller is known to be the native
5364   // Object hashCode().
5365   if (is_virtual) {
5366     // After null check, get the object's klass.
5367     Node* obj_klass = load_object_klass(obj);
5368     generate_virtual_guard(obj_klass, slow_region);
5369   }
5370 
5371   // Get the header out of the object, use LoadMarkNode when available
5372   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5373   // The control of the load must be null. Otherwise, the load can move before
5374   // the null check after castPP removal.
5375   Node* no_ctrl = nullptr;
5376   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5377 
5378   if (!UseObjectMonitorTable) {
5379     // Test the header to see if it is safe to read w.r.t. locking.
5380   // This also serves as guard against inline types
5381     Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
5382     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5383     if (LockingMode == LM_LIGHTWEIGHT) {
5384       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5385       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5386       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5387 
5388       generate_slow_guard(test_monitor, slow_region);
5389     } else {
5390       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
5391       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
5392       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
5393 
5394       generate_slow_guard(test_not_unlocked, slow_region);
5395     }
5396   }
5397 
5398   // Get the hash value and check to see that it has been properly assigned.
5399   // We depend on hash_mask being at most 32 bits and avoid the use of
5400   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5401   // vm: see markWord.hpp.

5436     // this->control() comes from set_results_for_java_call
5437     result_reg->init_req(_slow_path, control());
5438     result_val->init_req(_slow_path, slow_result);
5439     result_io  ->set_req(_slow_path, i_o());
5440     result_mem ->set_req(_slow_path, reset_memory());
5441   }
5442 
5443   // Return the combined state.
5444   set_i_o(        _gvn.transform(result_io)  );
5445   set_all_memory( _gvn.transform(result_mem));
5446 
5447   set_result(result_reg, result_val);
5448   return true;
5449 }
5450 
5451 //---------------------------inline_native_getClass----------------------------
5452 // public final native Class<?> java.lang.Object.getClass();
5453 //
5454 // Build special case code for calls to getClass on an object.
5455 bool LibraryCallKit::inline_native_getClass() {
5456   Node* obj = argument(0);
5457   if (obj->is_InlineType()) {
5458     const Type* t = _gvn.type(obj);
5459     if (t->maybe_null()) {
5460       null_check(obj);
5461     }
5462     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5463     return true;
5464   }
5465   obj = null_check_receiver();
5466   if (stopped())  return true;
5467   set_result(load_mirror_from_klass(load_object_klass(obj)));
5468   return true;
5469 }
5470 
5471 //-----------------inline_native_Reflection_getCallerClass---------------------
5472 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5473 //
5474 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5475 //
5476 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5477 // in that it must skip particular security frames and checks for
5478 // caller sensitive methods.
5479 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5480 #ifndef PRODUCT
5481   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5482     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5483   }
5484 #endif
5485 

5867 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5868 //
5869 // The general case has two steps, allocation and copying.
5870 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5871 //
5872 // Copying also has two cases, oop arrays and everything else.
5873 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5874 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5875 //
5876 // These steps fold up nicely if and when the cloned object's klass
5877 // can be sharply typed as an object array, a type array, or an instance.
5878 //
5879 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5880   PhiNode* result_val;
5881 
5882   // Set the reexecute bit for the interpreter to reexecute
5883   // the bytecode that invokes Object.clone if deoptimization happens.
5884   { PreserveReexecuteState preexecs(this);
5885     jvms()->set_should_reexecute(true);
5886 
5887     Node* obj = argument(0);
5888     obj = null_check_receiver();
5889     if (stopped())  return true;
5890 
5891     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5892     if (obj_type->is_inlinetypeptr()) {
5893       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5894       // no identity.
5895       set_result(obj);
5896       return true;
5897     }
5898 
5899     // If we are going to clone an instance, we need its exact type to
5900     // know the number and types of fields to convert the clone to
5901     // loads/stores. Maybe a speculative type can help us.
5902     if (!obj_type->klass_is_exact() &&
5903         obj_type->speculative_type() != nullptr &&
5904         obj_type->speculative_type()->is_instance_klass() &&
5905         !obj_type->speculative_type()->is_inlinetype()) {
5906       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5907       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5908           !spec_ik->has_injected_fields()) {
5909         if (!obj_type->isa_instptr() ||
5910             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5911           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5912         }
5913       }
5914     }
5915 
5916     // Conservatively insert a memory barrier on all memory slices.
5917     // Do not let writes into the original float below the clone.
5918     insert_mem_bar(Op_MemBarCPUOrder);
5919 
5920     // paths into result_reg:
5921     enum {
5922       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5923       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5924       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5925       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5926       PATH_LIMIT
5927     };
5928     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5929     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5930     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5931     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5932     record_for_igvn(result_reg);
5933 
5934     Node* obj_klass = load_object_klass(obj);
5935     // We only go to the fast case code if we pass a number of guards.
5936     // The paths which do not pass are accumulated in the slow_region.
5937     RegionNode* slow_region = new RegionNode(1);
5938     record_for_igvn(slow_region);
5939 
5940     Node* array_obj = obj;
5941     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5942     if (array_ctl != nullptr) {
5943       // It's an array.
5944       PreserveJVMState pjvms(this);
5945       set_control(array_ctl);



5946 
5947       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5948       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5949       if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5950           obj_type->can_be_inline_array() &&
5951           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5952         // Flat inline type array may have object field that would require a
5953         // write barrier. Conservatively, go to slow path.
5954         generate_fair_guard(flat_array_test(obj_klass), slow_region);













5955       }







5956 
5957       if (!stopped()) {
5958         Node* obj_length = load_array_length(array_obj);
5959         Node* array_size = nullptr; // Size of the array without object alignment padding.
5960         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5961 
5962         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5963         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5964           // If it is an oop array, it requires very special treatment,
5965           // because gc barriers are required when accessing the array.
5966           Node* is_obja = generate_refArray_guard(obj_klass, (RegionNode*)nullptr);
5967           if (is_obja != nullptr) {
5968             PreserveJVMState pjvms2(this);
5969             set_control(is_obja);
5970             // Generate a direct call to the right arraycopy function(s).
5971             // Clones are always tightly coupled.
5972             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5973             ac->set_clone_oop_array();
5974             Node* n = _gvn.transform(ac);
5975             assert(n == ac, "cannot disappear");
5976             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5977 
5978             result_reg->init_req(_objArray_path, control());
5979             result_val->init_req(_objArray_path, alloc_obj);
5980             result_i_o ->set_req(_objArray_path, i_o());
5981             result_mem ->set_req(_objArray_path, reset_memory());
5982           }
5983         }
5984         // Otherwise, there are no barriers to worry about.
5985         // (We can dispense with card marks if we know the allocation
5986         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5987         //  causes the non-eden paths to take compensating steps to
5988         //  simulate a fresh allocation, so that no further
5989         //  card marks are required in compiled code to initialize
5990         //  the object.)
5991 
5992         if (!stopped()) {
5993           copy_to_clone(obj, alloc_obj, array_size, true);
5994 
5995           // Present the results of the copy.
5996           result_reg->init_req(_array_path, control());
5997           result_val->init_req(_array_path, alloc_obj);
5998           result_i_o ->set_req(_array_path, i_o());
5999           result_mem ->set_req(_array_path, reset_memory());
6000         }
6001       }
6002     }
6003 




6004     if (!stopped()) {
6005       // It's an instance (we did array above).  Make the slow-path tests.
6006       // If this is a virtual call, we generate a funny guard.  We grab
6007       // the vtable entry corresponding to clone() from the target object.
6008       // If the target method which we are calling happens to be the
6009       // Object clone() method, we pass the guard.  We do not need this
6010       // guard for non-virtual calls; the caller is known to be the native
6011       // Object clone().
6012       if (is_virtual) {
6013         generate_virtual_guard(obj_klass, slow_region);
6014       }
6015 
6016       // The object must be easily cloneable and must not have a finalizer.
6017       // Both of these conditions may be checked in a single test.
6018       // We could optimize the test further, but we don't care.
6019       generate_misc_flags_guard(obj_klass,
6020                                 // Test both conditions:
6021                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
6022                                 // Must be cloneable but not finalizer:
6023                                 KlassFlags::_misc_is_cloneable_fast,

6115         set_jvms(sfpt->jvms());
6116         _reexecute_sp = jvms()->sp();
6117 
6118         return saved_jvms;
6119       }
6120     }
6121   }
6122   return nullptr;
6123 }
6124 
6125 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
6126 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
6127 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
6128   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
6129   uint size = alloc->req();
6130   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
6131   old_jvms->set_map(sfpt);
6132   for (uint i = 0; i < size; i++) {
6133     sfpt->init_req(i, alloc->in(i));
6134   }
6135   int adjustment = 1;
6136   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
6137   if (ary_klass_ptr->is_null_free()) {
6138     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which
6139     // also requires the componentType and initVal on stack for re-execution.
6140     // Re-create and push the componentType.
6141     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
6142     ciInstance* instance = klass->component_mirror_instance();
6143     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
6144     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
6145     adjustment++;
6146   }
6147   // re-push array length for deoptimization
6148   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
6149   if (ary_klass_ptr->is_null_free()) {
6150     // Re-create and push the initVal.
6151     Node* init_val = alloc->in(AllocateNode::InitValue);
6152     if (init_val == nullptr) {
6153       init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass());
6154     } else if (UseCompressedOops) {
6155       init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr()));
6156     }
6157     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val);
6158     adjustment++;
6159   }
6160   old_jvms->set_sp(old_jvms->sp() + adjustment);
6161   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
6162   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
6163   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
6164   old_jvms->set_should_reexecute(true);
6165 
6166   sfpt->set_i_o(map()->i_o());
6167   sfpt->set_memory(map()->memory());
6168   sfpt->set_control(map()->control());
6169   return sfpt;
6170 }
6171 
6172 // In case of a deoptimization, we restart execution at the
6173 // allocation, allocating a new array. We would leave an uninitialized
6174 // array in the heap that GCs wouldn't expect. Move the allocation
6175 // after the traps so we don't allocate the array if we
6176 // deoptimize. This is possible because tightly_coupled_allocation()
6177 // guarantees there's no observer of the allocated array at this point
6178 // and the control flow is simple enough.
6179 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
6180                                                     int saved_reexecute_sp, uint new_idx) {
6181   if (saved_jvms_before_guards != nullptr && !stopped()) {
6182     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
6183 
6184     assert(alloc != nullptr, "only with a tightly coupled allocation");
6185     // restore JVM state to the state at the arraycopy
6186     saved_jvms_before_guards->map()->set_control(map()->control());
6187     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
6188     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
6189     // If we've improved the types of some nodes (null check) while
6190     // emitting the guards, propagate them to the current state
6191     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
6192     set_jvms(saved_jvms_before_guards);
6193     _reexecute_sp = saved_reexecute_sp;
6194 
6195     // Remove the allocation from above the guards
6196     CallProjections* callprojs = alloc->extract_projections(true);

6197     InitializeNode* init = alloc->initialization();
6198     Node* alloc_mem = alloc->in(TypeFunc::Memory);
6199     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
6200     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
6201 
6202     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
6203     // the allocation (i.e. is only valid if the allocation succeeds):
6204     // 1) replace CastIINode with AllocateArrayNode's length here
6205     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
6206     //
6207     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
6208     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
6209     Node* init_control = init->proj_out(TypeFunc::Control);
6210     Node* alloc_length = alloc->Ideal_length();
6211 #ifdef ASSERT
6212     Node* prev_cast = nullptr;
6213 #endif
6214     for (uint i = 0; i < init_control->outcnt(); i++) {
6215       Node* init_out = init_control->raw_out(i);
6216       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
6217 #ifdef ASSERT
6218         if (prev_cast == nullptr) {
6219           prev_cast = init_out;

6221           if (prev_cast->cmp(*init_out) == false) {
6222             prev_cast->dump();
6223             init_out->dump();
6224             assert(false, "not equal CastIINode");
6225           }
6226         }
6227 #endif
6228         C->gvn_replace_by(init_out, alloc_length);
6229       }
6230     }
6231     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
6232 
6233     // move the allocation here (after the guards)
6234     _gvn.hash_delete(alloc);
6235     alloc->set_req(TypeFunc::Control, control());
6236     alloc->set_req(TypeFunc::I_O, i_o());
6237     Node *mem = reset_memory();
6238     set_all_memory(mem);
6239     alloc->set_req(TypeFunc::Memory, mem);
6240     set_control(init->proj_out_or_null(TypeFunc::Control));
6241     set_i_o(callprojs->fallthrough_ioproj);
6242 
6243     // Update memory as done in GraphKit::set_output_for_allocation()
6244     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
6245     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
6246     if (ary_type->isa_aryptr() && length_type != nullptr) {
6247       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
6248     }
6249     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
6250     int            elemidx  = C->get_alias_index(telemref);
6251     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
6252     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
6253 
6254     Node* allocx = _gvn.transform(alloc);
6255     assert(allocx == alloc, "where has the allocation gone?");
6256     assert(dest->is_CheckCastPP(), "not an allocation result?");
6257 
6258     _gvn.hash_delete(dest);
6259     dest->set_req(0, control());
6260     Node* destx = _gvn.transform(dest);
6261     assert(destx == dest, "where has the allocation result gone?");

6559         top_src  = src_type->isa_aryptr();
6560         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6561         src_spec = true;
6562       }
6563       if (!has_dest) {
6564         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6565         dest_type  = _gvn.type(dest);
6566         top_dest  = dest_type->isa_aryptr();
6567         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6568         dest_spec = true;
6569       }
6570     }
6571   }
6572 
6573   if (has_src && has_dest && can_emit_guards) {
6574     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6575     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6576     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6577     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6578 
6579     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6580       // If both arrays are object arrays then having the exact types
6581       // for both will remove the need for a subtype check at runtime
6582       // before the call and may make it possible to pick a faster copy
6583       // routine (without a subtype check on every element)
6584       // Do we have the exact type of src?
6585       bool could_have_src = src_spec;
6586       // Do we have the exact type of dest?
6587       bool could_have_dest = dest_spec;
6588       ciKlass* src_k = nullptr;
6589       ciKlass* dest_k = nullptr;
6590       if (!src_spec) {
6591         src_k = src_type->speculative_type_not_null();
6592         if (src_k != nullptr && src_k->is_array_klass()) {
6593           could_have_src = true;
6594         }
6595       }
6596       if (!dest_spec) {
6597         dest_k = dest_type->speculative_type_not_null();
6598         if (dest_k != nullptr && dest_k->is_array_klass()) {
6599           could_have_dest = true;
6600         }
6601       }
6602       if (could_have_src && could_have_dest) {
6603         // If we can have both exact types, emit the missing guards
6604         if (could_have_src && !src_spec) {
6605           src = maybe_cast_profiled_obj(src, src_k, true);
6606           src_type = _gvn.type(src);
6607           top_src = src_type->isa_aryptr();
6608         }
6609         if (could_have_dest && !dest_spec) {
6610           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6611           dest_type = _gvn.type(dest);
6612           top_dest = dest_type->isa_aryptr();
6613         }
6614       }
6615     }
6616   }
6617 
6618   ciMethod* trap_method = method();
6619   int trap_bci = bci();
6620   if (saved_jvms_before_guards != nullptr) {
6621     trap_method = alloc->jvms()->method();
6622     trap_bci = alloc->jvms()->bci();
6623   }
6624 
6625   bool negative_length_guard_generated = false;
6626 
6627   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6628       can_emit_guards && !src->is_top() && !dest->is_top()) {

6629     // validate arguments: enables transformation the ArrayCopyNode
6630     validated = true;
6631 
6632     RegionNode* slow_region = new RegionNode(1);
6633     record_for_igvn(slow_region);
6634 
6635     // (1) src and dest are arrays.
6636     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6637     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6638 
6639     // (2) src and dest arrays must have elements of the same BasicType
6640     // done at macro expansion or at Ideal transformation time
6641 
6642     // (4) src_offset must not be negative.
6643     generate_negative_guard(src_offset, slow_region);
6644 
6645     // (5) dest_offset must not be negative.
6646     generate_negative_guard(dest_offset, slow_region);
6647 
6648     // (7) src_offset + length must not exceed length of src.

6651                          slow_region);
6652 
6653     // (8) dest_offset + length must not exceed length of dest.
6654     generate_limit_guard(dest_offset, length,
6655                          load_array_length(dest),
6656                          slow_region);
6657 
6658     // (6) length must not be negative.
6659     // This is also checked in generate_arraycopy() during macro expansion, but
6660     // we also have to check it here for the case where the ArrayCopyNode will
6661     // be eliminated by Escape Analysis.
6662     if (EliminateAllocations) {
6663       generate_negative_guard(length, slow_region);
6664       negative_length_guard_generated = true;
6665     }
6666 
6667     // (9) each element of an oop array must be assignable
6668     Node* dest_klass = load_object_klass(dest);
6669     if (src != dest) {
6670       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6671       slow_region->add_req(not_subtype_ctrl);
6672     }
6673 
6674     // TODO 8350865 Fix below logic. Also handle atomicity.
6675     generate_fair_guard(flat_array_test(src), slow_region);
6676     generate_fair_guard(flat_array_test(dest), slow_region);
6677 
6678     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6679     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6680     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6681     src_type = _gvn.type(src);
6682     top_src  = src_type->isa_aryptr();
6683 
6684     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6685     if (!stopped() && UseArrayFlattening) {
6686       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6687       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6688       if (top_src != nullptr && top_src->is_flat()) {
6689         // Src is flat, check that dest is flat as well
6690         if (top_dest != nullptr && !top_dest->is_flat()) {
6691           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6692           // Since dest is flat and src <: dest, dest must have the same type as src.
6693           top_dest = top_src->cast_to_exactness(false);
6694           assert(top_dest->is_flat(), "dest must be flat");
6695           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6696         }
6697       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6698         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6699         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6700         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6701         generate_fair_guard(flat_array_test(src), slow_region);
6702         if (top_src != nullptr) {
6703           top_src = top_src->cast_to_not_flat();
6704           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6705         }
6706       }
6707     }
6708 
6709     {
6710       PreserveJVMState pjvms(this);
6711       set_control(_gvn.transform(slow_region));
6712       uncommon_trap(Deoptimization::Reason_intrinsic,
6713                     Deoptimization::Action_make_not_entrant);
6714       assert(stopped(), "Should be stopped");
6715     }




6716     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6717   }
6718 
6719   if (stopped()) {
6720     return true;
6721   }
6722 
6723   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6724                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6725                                           // so the compiler has a chance to eliminate them: during macro expansion,
6726                                           // we have to set their control (CastPP nodes are eliminated).
6727                                           load_object_klass(src), load_object_klass(dest),
6728                                           load_array_length(src), load_array_length(dest));
6729 
6730   ac->set_arraycopy(validated);
6731 
6732   Node* n = _gvn.transform(ac);
6733   if (n == ac) {
6734     ac->connect_outputs(this);
6735   } else {
< prev index next >