< prev index next >

src/hotspot/share/opto/library_call.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"



  26 #include "ci/ciSymbols.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"

  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "oops/klass.inline.hpp"

  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"

  43 #include "opto/idealKit.hpp"

  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"

  49 #include "opto/parse.hpp"
  50 #include "opto/rootnode.hpp"
  51 #include "opto/runtime.hpp"
  52 #include "opto/subnode.hpp"

  53 #include "opto/vectornode.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/unsafe.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/stubRoutines.hpp"

  61 #include "utilities/macros.hpp"
  62 #include "utilities/powerOfTwo.hpp"
  63 
  64 //---------------------------make_vm_intrinsic----------------------------
  65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  66   vmIntrinsicID id = m->intrinsic_id();
  67   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  68 
  69   if (!m->is_loaded()) {
  70     // Do not attempt to inline unloaded methods.
  71     return nullptr;
  72   }
  73 
  74   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  75   bool is_available = false;
  76 
  77   {
  78     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  79     // the compiler must transition to '_thread_in_vm' state because both
  80     // methods access VM-internal data.

 299   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 300   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 301   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 302   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 303   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 304 
 305   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 306 
 307   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 308 
 309   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 310   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 311   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 312   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 313 
 314   case vmIntrinsics::_compressStringC:
 315   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 316   case vmIntrinsics::_inflateStringC:
 317   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 318 


 319   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 320   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 321   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 322   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 323   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 324   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 325   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 326   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 327   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);

 328 
 329   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 330   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 331   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 332   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 333   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 334   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 335   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 336   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 337   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);

 338 
 339   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 340   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 341   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 342   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 343   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 344   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 345   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 346   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 347   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 348 
 349   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 350   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 351   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 352   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 353   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 354   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 355   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 356   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 357   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 389   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 390   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 391   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 392   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 393   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 394   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 395   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 396   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 397   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 398 
 399   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 400   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 401   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 402   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 403   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 404   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 405   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 406   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 407   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 408 



 409   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 410   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 411   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 412   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 413   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 414 
 415   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 416   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 417   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 418   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 419   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 420   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 421   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 422   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 423   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 424   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 425   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 426   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 427   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 428   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);

 496 #endif
 497   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 498   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 499   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 500   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 501   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 502   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 503   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 504   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 505   case vmIntrinsics::_getLength:                return inline_native_getLength();
 506   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 507   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 508   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 509   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 510   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 511   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 512   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 513 
 514   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 515   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);



 516 
 517   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 518 
 519   case vmIntrinsics::_isInstance:
 520   case vmIntrinsics::_isHidden:
 521   case vmIntrinsics::_getSuperclass:
 522   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 523 
 524   case vmIntrinsics::_floatToRawIntBits:
 525   case vmIntrinsics::_floatToIntBits:
 526   case vmIntrinsics::_intBitsToFloat:
 527   case vmIntrinsics::_doubleToRawLongBits:
 528   case vmIntrinsics::_doubleToLongBits:
 529   case vmIntrinsics::_longBitsToDouble:
 530   case vmIntrinsics::_floatToFloat16:
 531   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 532   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 533   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 534   case vmIntrinsics::_floatIsFinite:
 535   case vmIntrinsics::_floatIsInfinite:

2301     case vmIntrinsics::_remainderUnsigned_l: {
2302       zero_check_long(argument(2));
2303       // Compile-time detect of null-exception
2304       if (stopped()) {
2305         return true; // keep the graph constructed so far
2306       }
2307       n = new UModLNode(control(), argument(0), argument(2));
2308       break;
2309     }
2310     default:  fatal_unexpected_iid(id);  break;
2311   }
2312   set_result(_gvn.transform(n));
2313   return true;
2314 }
2315 
2316 //----------------------------inline_unsafe_access----------------------------
2317 
2318 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2319   // Attempt to infer a sharper value type from the offset and base type.
2320   ciKlass* sharpened_klass = nullptr;

2321 
2322   // See if it is an instance field, with an object type.
2323   if (alias_type->field() != nullptr) {
2324     if (alias_type->field()->type()->is_klass()) {
2325       sharpened_klass = alias_type->field()->type()->as_klass();

2326     }
2327   }
2328 
2329   const TypeOopPtr* result = nullptr;
2330   // See if it is a narrow oop array.
2331   if (adr_type->isa_aryptr()) {
2332     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2333       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();

2334       if (elem_type != nullptr && elem_type->is_loaded()) {
2335         // Sharpen the value type.
2336         result = elem_type;
2337       }
2338     }
2339   }
2340 
2341   // The sharpened class might be unloaded if there is no class loader
2342   // contraint in place.
2343   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2344     // Sharpen the value type.
2345     result = TypeOopPtr::make_from_klass(sharpened_klass);



2346   }
2347   if (result != nullptr) {
2348 #ifndef PRODUCT
2349     if (C->print_intrinsics() || C->print_inlining()) {
2350       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2351       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2352     }
2353 #endif
2354   }
2355   return result;
2356 }
2357 
2358 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2359   switch (kind) {
2360       case Relaxed:
2361         return MO_UNORDERED;
2362       case Opaque:
2363         return MO_RELAXED;
2364       case Acquire:
2365         return MO_ACQUIRE;
2366       case Release:
2367         return MO_RELEASE;
2368       case Volatile:
2369         return MO_SEQ_CST;
2370       default:
2371         ShouldNotReachHere();
2372         return 0;
2373   }
2374 }
2375 
2376 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2377   if (callee()->is_static())  return false;  // caller must have the capability!
2378   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2379   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2380   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2381   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2382 
2383   if (is_reference_type(type)) {
2384     decorators |= ON_UNKNOWN_OOP_REF;
2385   }
2386 
2387   if (unaligned) {
2388     decorators |= C2_UNALIGNED;
2389   }
2390 
2391 #ifndef PRODUCT
2392   {
2393     ResourceMark rm;
2394     // Check the signatures.
2395     ciSignature* sig = callee()->signature();
2396 #ifdef ASSERT
2397     if (!is_store) {
2398       // Object getReference(Object base, int/long offset), etc.
2399       BasicType rtype = sig->return_type()->basic_type();
2400       assert(rtype == type, "getter must return the expected value");
2401       assert(sig->count() == 2, "oop getter has 2 arguments");
2402       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2403       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2404     } else {
2405       // void putReference(Object base, int/long offset, Object x), etc.
2406       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2407       assert(sig->count() == 3, "oop putter has 3 arguments");
2408       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2409       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2410       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2411       assert(vtype == type, "putter must accept the expected value");
2412     }
2413 #endif // ASSERT
2414  }
2415 #endif //PRODUCT
2416 
2417   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2418 
2419   Node* receiver = argument(0);  // type: oop
2420 
2421   // Build address expression.
2422   Node* heap_base_oop = top();
2423 
2424   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2425   Node* base = argument(1);  // type: oop
2426   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2427   Node* offset = argument(2);  // type: long
2428   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2429   // to be plain byte offsets, which are also the same as those accepted
2430   // by oopDesc::field_addr.
2431   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2432          "fieldOffset must be byte-scaled");

















































2433   // 32-bit machines ignore the high half!
2434   offset = ConvL2X(offset);
2435 
2436   // Save state and restore on bailout
2437   uint old_sp = sp();
2438   SafePointNode* old_map = clone_map();
2439 
2440   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2441   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2442 
2443   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2444     if (type != T_OBJECT) {
2445       decorators |= IN_NATIVE; // off-heap primitive access
2446     } else {
2447       set_map(old_map);
2448       set_sp(old_sp);
2449       return false; // off-heap oop accesses are not supported
2450     }
2451   } else {
2452     heap_base_oop = base; // on-heap or mixed access
2453   }
2454 
2455   // Can base be null? Otherwise, always on-heap access.
2456   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2457 
2458   if (!can_access_non_heap) {
2459     decorators |= IN_HEAP;
2460   }
2461 
2462   Node* val = is_store ? argument(4) : nullptr;
2463 
2464   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2465   if (adr_type == TypePtr::NULL_PTR) {
2466     set_map(old_map);
2467     set_sp(old_sp);
2468     return false; // off-heap access with zero address
2469   }
2470 
2471   // Try to categorize the address.
2472   Compile::AliasType* alias_type = C->alias_type(adr_type);
2473   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2474 
2475   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2476       alias_type->adr_type() == TypeAryPtr::RANGE) {
2477     set_map(old_map);
2478     set_sp(old_sp);
2479     return false; // not supported
2480   }
2481 
2482   bool mismatched = false;
2483   BasicType bt = alias_type->basic_type();




























2484   if (bt != T_ILLEGAL) {
2485     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2486     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2487       // Alias type doesn't differentiate between byte[] and boolean[]).
2488       // Use address type to get the element type.
2489       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2490     }
2491     if (is_reference_type(bt, true)) {
2492       // accessing an array field with getReference is not a mismatch
2493       bt = T_OBJECT;
2494     }
2495     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2496       // Don't intrinsify mismatched object accesses
2497       set_map(old_map);
2498       set_sp(old_sp);
2499       return false;
2500     }
2501     mismatched = (bt != type);
2502   } else if (alias_type->adr_type()->isa_oopptr()) {
2503     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2504   }
2505 























2506   destruct_map_clone(old_map);
2507   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2508 
2509   if (mismatched) {
2510     decorators |= C2_MISMATCHED;
2511   }
2512 
2513   // First guess at the value type.
2514   const Type *value_type = Type::get_const_basic_type(type);
2515 
2516   // Figure out the memory ordering.
2517   decorators |= mo_decorator_for_access_kind(kind);
2518 
2519   if (!is_store && type == T_OBJECT) {
2520     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2521     if (tjp != nullptr) {
2522       value_type = tjp;


2523     }
2524   }
2525 
2526   receiver = null_check(receiver);
2527   if (stopped()) {
2528     return true;
2529   }
2530   // Heap pointers get a null-check from the interpreter,
2531   // as a courtesy.  However, this is not guaranteed by Unsafe,
2532   // and it is not possible to fully distinguish unintended nulls
2533   // from intended ones in this API.
2534 
2535   if (!is_store) {
2536     Node* p = nullptr;
2537     // Try to constant fold a load from a constant field
2538     ciField* field = alias_type->field();
2539     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2540       // final or stable field
2541       p = make_constant_from_field(field, heap_base_oop);
2542     }
2543 
2544     if (p == nullptr) { // Could not constant fold the load
2545       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);









2546       // Normalize the value returned by getBoolean in the following cases
2547       if (type == T_BOOLEAN &&
2548           (mismatched ||
2549            heap_base_oop == top() ||                  // - heap_base_oop is null or
2550            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2551                                                       //   and the unsafe access is made to large offset
2552                                                       //   (i.e., larger than the maximum offset necessary for any
2553                                                       //   field access)
2554             ) {
2555           IdealKit ideal = IdealKit(this);
2556 #define __ ideal.
2557           IdealVariable normalized_result(ideal);
2558           __ declarations_done();
2559           __ set(normalized_result, p);
2560           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2561           __ set(normalized_result, ideal.ConI(1));
2562           ideal.end_if();
2563           final_sync(ideal);
2564           p = __ value(normalized_result);
2565 #undef __
2566       }
2567     }
2568     if (type == T_ADDRESS) {
2569       p = gvn().transform(new CastP2XNode(nullptr, p));
2570       p = ConvX2UL(p);
2571     }
2572     // The load node has the control of the preceding MemBarCPUOrder.  All
2573     // following nodes will have the control of the MemBarCPUOrder inserted at
2574     // the end of this method.  So, pushing the load onto the stack at a later
2575     // point is fine.
2576     set_result(p);
2577   } else {
2578     if (bt == T_ADDRESS) {
2579       // Repackage the long as a pointer.
2580       val = ConvL2X(val);
2581       val = gvn().transform(new CastX2PNode(val));
2582     }
2583     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);




2584   }
2585 
2586   return true;
2587 }
2588 











































































































































































































































2589 //----------------------------inline_unsafe_load_store----------------------------
2590 // This method serves a couple of different customers (depending on LoadStoreKind):
2591 //
2592 // LS_cmp_swap:
2593 //
2594 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2595 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2596 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2597 //
2598 // LS_cmp_swap_weak:
2599 //
2600 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2601 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2602 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2603 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2604 //
2605 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2606 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2607 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2608 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

2774     }
2775     case LS_cmp_swap:
2776     case LS_cmp_swap_weak:
2777     case LS_get_add:
2778       break;
2779     default:
2780       ShouldNotReachHere();
2781   }
2782 
2783   // Null check receiver.
2784   receiver = null_check(receiver);
2785   if (stopped()) {
2786     return true;
2787   }
2788 
2789   int alias_idx = C->get_alias_index(adr_type);
2790 
2791   if (is_reference_type(type)) {
2792     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2793 













2794     // Transformation of a value which could be null pointer (CastPP #null)
2795     // could be delayed during Parse (for example, in adjust_map_after_if()).
2796     // Execute transformation here to avoid barrier generation in such case.
2797     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2798       newval = _gvn.makecon(TypePtr::NULL_PTR);
2799 
2800     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2801       // Refine the value to a null constant, when it is known to be null
2802       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2803     }
2804   }
2805 
2806   Node* result = nullptr;
2807   switch (kind) {
2808     case LS_cmp_exchange: {
2809       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2810                                             oldval, newval, value_type, type, decorators);
2811       break;
2812     }
2813     case LS_cmp_swap_weak:

2960                     Deoptimization::Action_make_not_entrant);
2961     }
2962     if (stopped()) {
2963       return true;
2964     }
2965 #endif //INCLUDE_JVMTI
2966 
2967   Node* test = nullptr;
2968   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2969     // Note:  The argument might still be an illegal value like
2970     // Serializable.class or Object[].class.   The runtime will handle it.
2971     // But we must make an explicit check for initialization.
2972     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2973     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2974     // can generate code to load it as unsigned byte.
2975     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2976     Node* bits = intcon(InstanceKlass::fully_initialized);
2977     test = _gvn.transform(new SubINode(inst, bits));
2978     // The 'test' is non-zero if we need to take a slow path.
2979   }
2980 
2981   Node* obj = new_instance(kls, test);





2982   set_result(obj);
2983   return true;
2984 }
2985 
2986 //------------------------inline_native_time_funcs--------------
2987 // inline code for System.currentTimeMillis() and System.nanoTime()
2988 // these have the same type and signature
2989 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2990   const TypeFunc* tf = OptoRuntime::void_long_Type();
2991   const TypePtr* no_memory_effects = nullptr;
2992   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2993   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2994 #ifdef ASSERT
2995   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2996   assert(value_top == top(), "second value must be top");
2997 #endif
2998   set_result(value);
2999   return true;
3000 }
3001 

3742   Node* thread = _gvn.transform(new ThreadLocalNode());
3743   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3744   Node* thread_obj_handle
3745     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3746   thread_obj_handle = _gvn.transform(thread_obj_handle);
3747   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3748   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3749 
3750   // Change the _monitor_owner_id of the JavaThread
3751   Node* tid = load_field_from_object(arr, "tid", "J");
3752   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3753   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3754 
3755   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3756   return true;
3757 }
3758 
3759 const Type* LibraryCallKit::scopedValueCache_type() {
3760   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3761   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3762   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3763 
3764   // Because we create the scopedValue cache lazily we have to make the
3765   // type of the result BotPTR.
3766   bool xk = etype->klass_is_exact();
3767   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3768   return objects_type;
3769 }
3770 
3771 Node* LibraryCallKit::scopedValueCache_helper() {
3772   Node* thread = _gvn.transform(new ThreadLocalNode());
3773   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3774   // We cannot use immutable_memory() because we might flip onto a
3775   // different carrier thread, at which point we'll need to use that
3776   // carrier thread's cache.
3777   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3778   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3779   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3780 }
3781 
3782 //------------------------inline_native_scopedValueCache------------------
3783 bool LibraryCallKit::inline_native_scopedValueCache() {
3784   Node* cache_obj_handle = scopedValueCache_helper();
3785   const Type* objects_type = scopedValueCache_type();
3786   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3787 

3871   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3872 
3873   // Result of top level CFG and Memory.
3874   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3875   record_for_igvn(result_rgn);
3876   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3877   record_for_igvn(result_mem);
3878 
3879   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3880   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3881   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3882   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3883 
3884   // Set output state.
3885   set_control(_gvn.transform(result_rgn));
3886   set_all_memory(_gvn.transform(result_mem));
3887 
3888   return true;
3889 }
3890 
3891 //---------------------------load_mirror_from_klass----------------------------
3892 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3893 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3894   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3895   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3896   // mirror = ((OopHandle)mirror)->resolve();
3897   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3898 }
3899 
3900 //-----------------------load_klass_from_mirror_common-------------------------
3901 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3902 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3903 // and branch to the given path on the region.
3904 // If never_see_null, take an uncommon trap on null, so we can optimistically
3905 // compile for the non-null case.
3906 // If the region is null, force never_see_null = true.
3907 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3908                                                     bool never_see_null,
3909                                                     RegionNode* region,
3910                                                     int null_path,
3911                                                     int offset) {
3912   if (region == nullptr)  never_see_null = true;
3913   Node* p = basic_plus_adr(mirror, offset);
3914   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3915   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3916   Node* null_ctl = top();
3917   kls = null_check_oop(kls, &null_ctl, never_see_null);
3918   if (region != nullptr) {
3919     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

3923   }
3924   return kls;
3925 }
3926 
3927 //--------------------(inline_native_Class_query helpers)---------------------
3928 // Use this for JVM_ACC_INTERFACE.
3929 // Fall through if (mods & mask) == bits, take the guard otherwise.
3930 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3931                                                  ByteSize offset, const Type* type, BasicType bt) {
3932   // Branch around if the given klass has the given modifier bit set.
3933   // Like generate_guard, adds a new path onto the region.
3934   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3935   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3936   Node* mask = intcon(modifier_mask);
3937   Node* bits = intcon(modifier_bits);
3938   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3939   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3940   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3941   return generate_fair_guard(bol, region);
3942 }

3943 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3944   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3945                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
3946 }
3947 
3948 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3949 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3950   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3951                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3952 }
3953 
3954 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3955   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3956 }
3957 
3958 //-------------------------inline_native_Class_query-------------------
3959 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3960   const Type* return_type = TypeInt::BOOL;
3961   Node* prim_return_value = top();  // what happens if it's a primitive class?
3962   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4081 
4082   case vmIntrinsics::_getClassAccessFlags:
4083     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4084     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4085     break;
4086 
4087   default:
4088     fatal_unexpected_iid(id);
4089     break;
4090   }
4091 
4092   // Fall-through is the normal case of a query to a real class.
4093   phi->init_req(1, query_value);
4094   region->init_req(1, control());
4095 
4096   C->set_has_split_ifs(true); // Has chance for split-if optimization
4097   set_result(region, phi);
4098   return true;
4099 }
4100 

4101 //-------------------------inline_Class_cast-------------------
4102 bool LibraryCallKit::inline_Class_cast() {
4103   Node* mirror = argument(0); // Class
4104   Node* obj    = argument(1);
4105   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4106   if (mirror_con == nullptr) {
4107     return false;  // dead path (mirror->is_top()).
4108   }
4109   if (obj == nullptr || obj->is_top()) {
4110     return false;  // dead path
4111   }
4112   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4113 
4114   // First, see if Class.cast() can be folded statically.
4115   // java_mirror_type() returns non-null for compile-time Class constants.
4116   ciType* tm = mirror_con->java_mirror_type();
4117   if (tm != nullptr && tm->is_klass() &&
4118       tp != nullptr) {
4119     if (!tp->is_loaded()) {
4120       // Don't use intrinsic when class is not loaded.
4121       return false;
4122     } else {
4123       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());

4124       if (static_res == Compile::SSC_always_true) {
4125         // isInstance() is true - fold the code.
4126         set_result(obj);
4127         return true;
4128       } else if (static_res == Compile::SSC_always_false) {
4129         // Don't use intrinsic, have to throw ClassCastException.
4130         // If the reference is null, the non-intrinsic bytecode will
4131         // be optimized appropriately.
4132         return false;
4133       }
4134     }
4135   }
4136 
4137   // Bailout intrinsic and do normal inlining if exception path is frequent.
4138   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4139     return false;
4140   }
4141 
4142   // Generate dynamic checks.
4143   // Class.cast() is java implementation of _checkcast bytecode.
4144   // Do checkcast (Parse::do_checkcast()) optimizations here.
4145 
4146   mirror = null_check(mirror);
4147   // If mirror is dead, only null-path is taken.
4148   if (stopped()) {
4149     return true;
4150   }
4151 
4152   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4153   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4154   RegionNode* region = new RegionNode(PATH_LIMIT);
4155   record_for_igvn(region);
4156 
4157   // Now load the mirror's klass metaobject, and null-check it.
4158   // If kls is null, we have a primitive mirror and
4159   // nothing is an instance of a primitive type.
4160   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4161 
4162   Node* res = top();


4163   if (!stopped()) {

4164     Node* bad_type_ctrl = top();
4165     // Do checkcast optimizations.
4166     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4167     region->init_req(_bad_type_path, bad_type_ctrl);
4168   }
4169   if (region->in(_prim_path) != top() ||
4170       region->in(_bad_type_path) != top()) {

4171     // Let Interpreter throw ClassCastException.
4172     PreserveJVMState pjvms(this);
4173     set_control(_gvn.transform(region));



4174     uncommon_trap(Deoptimization::Reason_intrinsic,
4175                   Deoptimization::Action_maybe_recompile);
4176   }
4177   if (!stopped()) {
4178     set_result(res);
4179   }
4180   return true;
4181 }
4182 
4183 
4184 //--------------------------inline_native_subtype_check------------------------
4185 // This intrinsic takes the JNI calls out of the heart of
4186 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4187 bool LibraryCallKit::inline_native_subtype_check() {
4188   // Pull both arguments off the stack.
4189   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4190   args[0] = argument(0);
4191   args[1] = argument(1);
4192   Node* klasses[2];             // corresponding Klasses: superk, subk
4193   klasses[0] = klasses[1] = top();
4194 
4195   enum {
4196     // A full decision tree on {superc is prim, subc is prim}:
4197     _prim_0_path = 1,           // {P,N} => false
4198                                 // {P,P} & superc!=subc => false
4199     _prim_same_path,            // {P,P} & superc==subc => true
4200     _prim_1_path,               // {N,P} => false
4201     _ref_subtype_path,          // {N,N} & subtype check wins => true
4202     _both_ref_path,             // {N,N} & subtype check loses => false
4203     PATH_LIMIT
4204   };
4205 
4206   RegionNode* region = new RegionNode(PATH_LIMIT);

4207   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4208   record_for_igvn(region);

4209 
4210   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4211   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4212   int class_klass_offset = java_lang_Class::klass_offset();
4213 
4214   // First null-check both mirrors and load each mirror's klass metaobject.
4215   int which_arg;
4216   for (which_arg = 0; which_arg <= 1; which_arg++) {
4217     Node* arg = args[which_arg];
4218     arg = null_check(arg);
4219     if (stopped())  break;
4220     args[which_arg] = arg;
4221 
4222     Node* p = basic_plus_adr(arg, class_klass_offset);
4223     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4224     klasses[which_arg] = _gvn.transform(kls);
4225   }
4226 
4227   // Having loaded both klasses, test each for null.
4228   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4229   for (which_arg = 0; which_arg <= 1; which_arg++) {
4230     Node* kls = klasses[which_arg];
4231     Node* null_ctl = top();
4232     kls = null_check_oop(kls, &null_ctl, never_see_null);
4233     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4234     region->init_req(prim_path, null_ctl);



4235     if (stopped())  break;
4236     klasses[which_arg] = kls;
4237   }
4238 
4239   if (!stopped()) {
4240     // now we have two reference types, in klasses[0..1]
4241     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4242     Node* superk = klasses[0];  // the receiver
4243     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4244     // now we have a successful reference subtype check
4245     region->set_req(_ref_subtype_path, control());
4246   }
4247 
4248   // If both operands are primitive (both klasses null), then
4249   // we must return true when they are identical primitives.
4250   // It is convenient to test this after the first null klass check.
4251   set_control(region->in(_prim_0_path)); // go back to first null check

4252   if (!stopped()) {
4253     // Since superc is primitive, make a guard for the superc==subc case.
4254     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4255     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4256     generate_guard(bol_eq, region, PROB_FAIR);
4257     if (region->req() == PATH_LIMIT+1) {
4258       // A guard was added.  If the added guard is taken, superc==subc.
4259       region->swap_edges(PATH_LIMIT, _prim_same_path);
4260       region->del_req(PATH_LIMIT);
4261     }
4262     region->set_req(_prim_0_path, control()); // Not equal after all.
4263   }
4264 
4265   // these are the only paths that produce 'true':
4266   phi->set_req(_prim_same_path,   intcon(1));
4267   phi->set_req(_ref_subtype_path, intcon(1));
4268 
4269   // pull together the cases:
4270   assert(region->req() == PATH_LIMIT, "sane region");
4271   for (uint i = 1; i < region->req(); i++) {
4272     Node* ctl = region->in(i);
4273     if (ctl == nullptr || ctl == top()) {
4274       region->set_req(i, top());
4275       phi   ->set_req(i, top());
4276     } else if (phi->in(i) == nullptr) {
4277       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4278     }
4279   }
4280 
4281   set_control(_gvn.transform(region));
4282   set_result(_gvn.transform(phi));
4283   return true;
4284 }
4285 
4286 //---------------------generate_array_guard_common------------------------
4287 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4288                                                   bool obj_array, bool not_array, Node** obj) {
4289 
4290   if (stopped()) {
4291     return nullptr;
4292   }
4293 
4294   // If obj_array/non_array==false/false:
4295   // Branch around if the given klass is in fact an array (either obj or prim).
4296   // If obj_array/non_array==false/true:
4297   // Branch around if the given klass is not an array klass of any kind.
4298   // If obj_array/non_array==true/true:
4299   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4300   // If obj_array/non_array==true/false:
4301   // Branch around if the kls is an oop array (Object[] or subtype)
4302   //
4303   // Like generate_guard, adds a new path onto the region.
4304   jint  layout_con = 0;
4305   Node* layout_val = get_layout_helper(kls, layout_con);
4306   if (layout_val == nullptr) {
4307     bool query = (obj_array
4308                   ? Klass::layout_helper_is_objArray(layout_con)
4309                   : Klass::layout_helper_is_array(layout_con));
4310     if (query == not_array) {







4311       return nullptr;                       // never a branch
4312     } else {                             // always a branch
4313       Node* always_branch = control();
4314       if (region != nullptr)
4315         region->add_req(always_branch);
4316       set_control(top());
4317       return always_branch;
4318     }
4319   }





















4320   // Now test the correct condition.
4321   jint  nval = (obj_array
4322                 ? (jint)(Klass::_lh_array_tag_type_value
4323                    <<    Klass::_lh_array_tag_shift)
4324                 : Klass::_lh_neutral_value);
4325   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4326   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4327   // invert the test if we are looking for a non-array
4328   if (not_array)  btest = BoolTest(btest).negate();
4329   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4330   Node* ctrl = generate_fair_guard(bol, region);
4331   Node* is_array_ctrl = not_array ? control() : ctrl;
4332   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4333     // Keep track of the fact that 'obj' is an array to prevent
4334     // array specific accesses from floating above the guard.
4335     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4336   }
4337   return ctrl;
4338 }
4339 




















































































































4340 
4341 //-----------------------inline_native_newArray--------------------------
4342 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4343 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4344 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4345   Node* mirror;
4346   Node* count_val;
4347   if (uninitialized) {
4348     null_check_receiver();
4349     mirror    = argument(1);
4350     count_val = argument(2);
4351   } else {
4352     mirror    = argument(0);
4353     count_val = argument(1);
4354   }
4355 
4356   mirror = null_check(mirror);
4357   // If mirror or obj is dead, only null-path is taken.
4358   if (stopped())  return true;
4359 
4360   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4361   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4362   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4380     CallJavaNode* slow_call = nullptr;
4381     if (uninitialized) {
4382       // Generate optimized virtual call (holder class 'Unsafe' is final)
4383       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4384     } else {
4385       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4386     }
4387     Node* slow_result = set_results_for_java_call(slow_call);
4388     // this->control() comes from set_results_for_java_call
4389     result_reg->set_req(_slow_path, control());
4390     result_val->set_req(_slow_path, slow_result);
4391     result_io ->set_req(_slow_path, i_o());
4392     result_mem->set_req(_slow_path, reset_memory());
4393   }
4394 
4395   set_control(normal_ctl);
4396   if (!stopped()) {
4397     // Normal case:  The array type has been cached in the java.lang.Class.
4398     // The following call works fine even if the array type is polymorphic.
4399     // It could be a dynamic mix of int[], boolean[], Object[], etc.



4400     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4401     result_reg->init_req(_normal_path, control());
4402     result_val->init_req(_normal_path, obj);
4403     result_io ->init_req(_normal_path, i_o());
4404     result_mem->init_req(_normal_path, reset_memory());
4405 
4406     if (uninitialized) {
4407       // Mark the allocation so that zeroing is skipped
4408       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4409       alloc->maybe_set_complete(&_gvn);
4410     }
4411   }
4412 
4413   // Return the combined state.
4414   set_i_o(        _gvn.transform(result_io)  );
4415   set_all_memory( _gvn.transform(result_mem));
4416 
4417   C->set_has_split_ifs(true); // Has chance for split-if optimization
4418   set_result(result_reg, result_val);
4419   return true;

4468   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4469   { PreserveReexecuteState preexecs(this);
4470     jvms()->set_should_reexecute(true);
4471 
4472     array_type_mirror = null_check(array_type_mirror);
4473     original          = null_check(original);
4474 
4475     // Check if a null path was taken unconditionally.
4476     if (stopped())  return true;
4477 
4478     Node* orig_length = load_array_length(original);
4479 
4480     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4481     klass_node = null_check(klass_node);
4482 
4483     RegionNode* bailout = new RegionNode(1);
4484     record_for_igvn(bailout);
4485 
4486     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4487     // Bail out if that is so.
4488     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
















4489     if (not_objArray != nullptr) {
4490       // Improve the klass node's type from the new optimistic assumption:
4491       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4492       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4493       Node* cast = new CastPPNode(control(), klass_node, akls);
4494       klass_node = _gvn.transform(cast);
4495     }
4496 
4497     // Bail out if either start or end is negative.
4498     generate_negative_guard(start, bailout, &start);
4499     generate_negative_guard(end,   bailout, &end);
4500 
4501     Node* length = end;
4502     if (_gvn.type(start) != TypeInt::ZERO) {
4503       length = _gvn.transform(new SubINode(end, start));
4504     }
4505 
4506     // Bail out if length is negative (i.e., if start > end).
4507     // Without this the new_array would throw
4508     // NegativeArraySizeException but IllegalArgumentException is what
4509     // should be thrown
4510     generate_negative_guard(length, bailout, &length);
4511 







































4512     // Bail out if start is larger than the original length
4513     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4514     generate_negative_guard(orig_tail, bailout, &orig_tail);
4515 
4516     if (bailout->req() > 1) {
4517       PreserveJVMState pjvms(this);
4518       set_control(_gvn.transform(bailout));
4519       uncommon_trap(Deoptimization::Reason_intrinsic,
4520                     Deoptimization::Action_maybe_recompile);
4521     }
4522 
4523     if (!stopped()) {
4524       // How many elements will we copy from the original?
4525       // The answer is MinI(orig_tail, length).
4526       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4527 
4528       // Generate a direct call to the right arraycopy function(s).
4529       // We know the copy is disjoint but we might not know if the
4530       // oop stores need checking.
4531       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4537       // to the copyOf to be validated, including that the copy to the
4538       // new array won't trigger an ArrayStoreException. That subtype
4539       // check can be optimized if we know something on the type of
4540       // the input array from type speculation.
4541       if (_gvn.type(klass_node)->singleton()) {
4542         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4543         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4544 
4545         int test = C->static_subtype_check(superk, subk);
4546         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4547           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4548           if (t_original->speculative_type() != nullptr) {
4549             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4550           }
4551         }
4552       }
4553 
4554       bool validated = false;
4555       // Reason_class_check rather than Reason_intrinsic because we
4556       // want to intrinsify even if this traps.
4557       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4558         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4559 
4560         if (not_subtype_ctrl != top()) {
4561           PreserveJVMState pjvms(this);
4562           set_control(not_subtype_ctrl);
4563           uncommon_trap(Deoptimization::Reason_class_check,
4564                         Deoptimization::Action_make_not_entrant);
4565           assert(stopped(), "Should be stopped");
4566         }
4567         validated = true;
4568       }
4569 
4570       if (!stopped()) {
4571         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4572 
4573         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4574                                                 load_object_klass(original), klass_node);
4575         if (!is_copyOfRange) {
4576           ac->set_copyof(validated);
4577         } else {

4623 
4624 //-----------------------generate_method_call----------------------------
4625 // Use generate_method_call to make a slow-call to the real
4626 // method if the fast path fails.  An alternative would be to
4627 // use a stub like OptoRuntime::slow_arraycopy_Java.
4628 // This only works for expanding the current library call,
4629 // not another intrinsic.  (E.g., don't use this for making an
4630 // arraycopy call inside of the copyOf intrinsic.)
4631 CallJavaNode*
4632 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4633   // When compiling the intrinsic method itself, do not use this technique.
4634   guarantee(callee() != C->method(), "cannot make slow-call to self");
4635 
4636   ciMethod* method = callee();
4637   // ensure the JVMS we have will be correct for this call
4638   guarantee(method_id == method->intrinsic_id(), "must match");
4639 
4640   const TypeFunc* tf = TypeFunc::make(method);
4641   if (res_not_null) {
4642     assert(tf->return_type() == T_OBJECT, "");
4643     const TypeTuple* range = tf->range();
4644     const Type** fields = TypeTuple::fields(range->cnt());
4645     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4646     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4647     tf = TypeFunc::make(tf->domain(), new_range);
4648   }
4649   CallJavaNode* slow_call;
4650   if (is_static) {
4651     assert(!is_virtual, "");
4652     slow_call = new CallStaticJavaNode(C, tf,
4653                            SharedRuntime::get_resolve_static_call_stub(), method);
4654   } else if (is_virtual) {
4655     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4656     int vtable_index = Method::invalid_vtable_index;
4657     if (UseInlineCaches) {
4658       // Suppress the vtable call
4659     } else {
4660       // hashCode and clone are not a miranda methods,
4661       // so the vtable index is fixed.
4662       // No need to use the linkResolver to get it.
4663        vtable_index = method->vtable_index();
4664        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4665               "bad index %d", vtable_index);
4666     }
4667     slow_call = new CallDynamicJavaNode(tf,

4684   set_edges_for_java_call(slow_call);
4685   return slow_call;
4686 }
4687 
4688 
4689 /**
4690  * Build special case code for calls to hashCode on an object. This call may
4691  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4692  * slightly different code.
4693  */
4694 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4695   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4696   assert(!(is_virtual && is_static), "either virtual, special, or static");
4697 
4698   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4699 
4700   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4701   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4702   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4703   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4704   Node* obj = nullptr;







4705   if (!is_static) {
4706     // Check for hashing null object
4707     obj = null_check_receiver();
4708     if (stopped())  return true;        // unconditionally null
4709     result_reg->init_req(_null_path, top());
4710     result_val->init_req(_null_path, top());
4711   } else {
4712     // Do a null check, and return zero if null.
4713     // System.identityHashCode(null) == 0
4714     obj = argument(0);
4715     Node* null_ctl = top();
4716     obj = null_check_oop(obj, &null_ctl);
4717     result_reg->init_req(_null_path, null_ctl);
4718     result_val->init_req(_null_path, _gvn.intcon(0));
4719   }
4720 
4721   // Unconditionally null?  Then return right away.
4722   if (stopped()) {
4723     set_control( result_reg->in(_null_path));
4724     if (!stopped())
4725       set_result(result_val->in(_null_path));
4726     return true;
4727   }
4728 
4729   // We only go to the fast case code if we pass a number of guards.  The
4730   // paths which do not pass are accumulated in the slow_region.
4731   RegionNode* slow_region = new RegionNode(1);
4732   record_for_igvn(slow_region);
4733 
4734   // If this is a virtual call, we generate a funny guard.  We pull out
4735   // the vtable entry corresponding to hashCode() from the target object.
4736   // If the target method which we are calling happens to be the native
4737   // Object hashCode() method, we pass the guard.  We do not need this
4738   // guard for non-virtual calls -- the caller is known to be the native
4739   // Object hashCode().
4740   if (is_virtual) {
4741     // After null check, get the object's klass.
4742     Node* obj_klass = load_object_klass(obj);
4743     generate_virtual_guard(obj_klass, slow_region);
4744   }
4745 
4746   // Get the header out of the object, use LoadMarkNode when available
4747   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4748   // The control of the load must be null. Otherwise, the load can move before
4749   // the null check after castPP removal.
4750   Node* no_ctrl = nullptr;
4751   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4752 
4753   if (!UseObjectMonitorTable) {
4754     // Test the header to see if it is safe to read w.r.t. locking.
4755     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);

4756     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4757     if (LockingMode == LM_LIGHTWEIGHT) {
4758       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4759       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4760       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4761 
4762       generate_slow_guard(test_monitor, slow_region);
4763     } else {
4764       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4765       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4766       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4767 
4768       generate_slow_guard(test_not_unlocked, slow_region);
4769     }
4770   }
4771 
4772   // Get the hash value and check to see that it has been properly assigned.
4773   // We depend on hash_mask being at most 32 bits and avoid the use of
4774   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4775   // vm: see markWord.hpp.

4810     // this->control() comes from set_results_for_java_call
4811     result_reg->init_req(_slow_path, control());
4812     result_val->init_req(_slow_path, slow_result);
4813     result_io  ->set_req(_slow_path, i_o());
4814     result_mem ->set_req(_slow_path, reset_memory());
4815   }
4816 
4817   // Return the combined state.
4818   set_i_o(        _gvn.transform(result_io)  );
4819   set_all_memory( _gvn.transform(result_mem));
4820 
4821   set_result(result_reg, result_val);
4822   return true;
4823 }
4824 
4825 //---------------------------inline_native_getClass----------------------------
4826 // public final native Class<?> java.lang.Object.getClass();
4827 //
4828 // Build special case code for calls to getClass on an object.
4829 bool LibraryCallKit::inline_native_getClass() {
4830   Node* obj = null_check_receiver();









4831   if (stopped())  return true;
4832   set_result(load_mirror_from_klass(load_object_klass(obj)));
4833   return true;
4834 }
4835 
4836 //-----------------inline_native_Reflection_getCallerClass---------------------
4837 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4838 //
4839 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4840 //
4841 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4842 // in that it must skip particular security frames and checks for
4843 // caller sensitive methods.
4844 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4845 #ifndef PRODUCT
4846   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4847     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4848   }
4849 #endif
4850 

5232 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5233 //
5234 // The general case has two steps, allocation and copying.
5235 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5236 //
5237 // Copying also has two cases, oop arrays and everything else.
5238 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5239 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5240 //
5241 // These steps fold up nicely if and when the cloned object's klass
5242 // can be sharply typed as an object array, a type array, or an instance.
5243 //
5244 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5245   PhiNode* result_val;
5246 
5247   // Set the reexecute bit for the interpreter to reexecute
5248   // the bytecode that invokes Object.clone if deoptimization happens.
5249   { PreserveReexecuteState preexecs(this);
5250     jvms()->set_should_reexecute(true);
5251 
5252     Node* obj = null_check_receiver();

5253     if (stopped())  return true;
5254 
5255     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();






5256 
5257     // If we are going to clone an instance, we need its exact type to
5258     // know the number and types of fields to convert the clone to
5259     // loads/stores. Maybe a speculative type can help us.
5260     if (!obj_type->klass_is_exact() &&
5261         obj_type->speculative_type() != nullptr &&
5262         obj_type->speculative_type()->is_instance_klass()) {

5263       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5264       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5265           !spec_ik->has_injected_fields()) {
5266         if (!obj_type->isa_instptr() ||
5267             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5268           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5269         }
5270       }
5271     }
5272 
5273     // Conservatively insert a memory barrier on all memory slices.
5274     // Do not let writes into the original float below the clone.
5275     insert_mem_bar(Op_MemBarCPUOrder);
5276 
5277     // paths into result_reg:
5278     enum {
5279       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5280       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5281       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5282       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5283       PATH_LIMIT
5284     };
5285     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5286     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5287     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5288     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5289     record_for_igvn(result_reg);
5290 
5291     Node* obj_klass = load_object_klass(obj);





5292     Node* array_obj = obj;
5293     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5294     if (array_ctl != nullptr) {
5295       // It's an array.
5296       PreserveJVMState pjvms(this);
5297       set_control(array_ctl);
5298       Node* obj_length = load_array_length(array_obj);
5299       Node* array_size = nullptr; // Size of the array without object alignment padding.
5300       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5301 
5302       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5303       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5304         // If it is an oop array, it requires very special treatment,
5305         // because gc barriers are required when accessing the array.
5306         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5307         if (is_obja != nullptr) {
5308           PreserveJVMState pjvms2(this);
5309           set_control(is_obja);
5310           // Generate a direct call to the right arraycopy function(s).
5311           // Clones are always tightly coupled.
5312           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5313           ac->set_clone_oop_array();
5314           Node* n = _gvn.transform(ac);
5315           assert(n == ac, "cannot disappear");
5316           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5317 
5318           result_reg->init_req(_objArray_path, control());
5319           result_val->init_req(_objArray_path, alloc_obj);
5320           result_i_o ->set_req(_objArray_path, i_o());
5321           result_mem ->set_req(_objArray_path, reset_memory());
5322         }
5323       }
5324       // Otherwise, there are no barriers to worry about.
5325       // (We can dispense with card marks if we know the allocation
5326       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5327       //  causes the non-eden paths to take compensating steps to
5328       //  simulate a fresh allocation, so that no further
5329       //  card marks are required in compiled code to initialize
5330       //  the object.)
5331 
5332       if (!stopped()) {
5333         copy_to_clone(array_obj, alloc_obj, array_size, true);
5334 
5335         // Present the results of the copy.
5336         result_reg->init_req(_array_path, control());
5337         result_val->init_req(_array_path, alloc_obj);
5338         result_i_o ->set_req(_array_path, i_o());
5339         result_mem ->set_req(_array_path, reset_memory());




































5340       }
5341     }
5342 
5343     // We only go to the instance fast case code if we pass a number of guards.
5344     // The paths which do not pass are accumulated in the slow_region.
5345     RegionNode* slow_region = new RegionNode(1);
5346     record_for_igvn(slow_region);
5347     if (!stopped()) {
5348       // It's an instance (we did array above).  Make the slow-path tests.
5349       // If this is a virtual call, we generate a funny guard.  We grab
5350       // the vtable entry corresponding to clone() from the target object.
5351       // If the target method which we are calling happens to be the
5352       // Object clone() method, we pass the guard.  We do not need this
5353       // guard for non-virtual calls; the caller is known to be the native
5354       // Object clone().
5355       if (is_virtual) {
5356         generate_virtual_guard(obj_klass, slow_region);
5357       }
5358 
5359       // The object must be easily cloneable and must not have a finalizer.
5360       // Both of these conditions may be checked in a single test.
5361       // We could optimize the test further, but we don't care.
5362       generate_misc_flags_guard(obj_klass,
5363                                 // Test both conditions:
5364                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5365                                 // Must be cloneable but not finalizer:
5366                                 KlassFlags::_misc_is_cloneable_fast,

5458         set_jvms(sfpt->jvms());
5459         _reexecute_sp = jvms()->sp();
5460 
5461         return saved_jvms;
5462       }
5463     }
5464   }
5465   return nullptr;
5466 }
5467 
5468 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5469 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5470 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5471   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5472   uint size = alloc->req();
5473   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5474   old_jvms->set_map(sfpt);
5475   for (uint i = 0; i < size; i++) {
5476     sfpt->init_req(i, alloc->in(i));
5477   }












5478   // re-push array length for deoptimization
5479   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5480   old_jvms->set_sp(old_jvms->sp()+1);
5481   old_jvms->set_monoff(old_jvms->monoff()+1);
5482   old_jvms->set_scloff(old_jvms->scloff()+1);
5483   old_jvms->set_endoff(old_jvms->endoff()+1);











5484   old_jvms->set_should_reexecute(true);
5485 
5486   sfpt->set_i_o(map()->i_o());
5487   sfpt->set_memory(map()->memory());
5488   sfpt->set_control(map()->control());
5489   return sfpt;
5490 }
5491 
5492 // In case of a deoptimization, we restart execution at the
5493 // allocation, allocating a new array. We would leave an uninitialized
5494 // array in the heap that GCs wouldn't expect. Move the allocation
5495 // after the traps so we don't allocate the array if we
5496 // deoptimize. This is possible because tightly_coupled_allocation()
5497 // guarantees there's no observer of the allocated array at this point
5498 // and the control flow is simple enough.
5499 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5500                                                     int saved_reexecute_sp, uint new_idx) {
5501   if (saved_jvms_before_guards != nullptr && !stopped()) {
5502     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5503 
5504     assert(alloc != nullptr, "only with a tightly coupled allocation");
5505     // restore JVM state to the state at the arraycopy
5506     saved_jvms_before_guards->map()->set_control(map()->control());
5507     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5508     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5509     // If we've improved the types of some nodes (null check) while
5510     // emitting the guards, propagate them to the current state
5511     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5512     set_jvms(saved_jvms_before_guards);
5513     _reexecute_sp = saved_reexecute_sp;
5514 
5515     // Remove the allocation from above the guards
5516     CallProjections callprojs;
5517     alloc->extract_projections(&callprojs, true);
5518     InitializeNode* init = alloc->initialization();
5519     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5520     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5521     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5522 
5523     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5524     // the allocation (i.e. is only valid if the allocation succeeds):
5525     // 1) replace CastIINode with AllocateArrayNode's length here
5526     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5527     //
5528     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5529     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5530     Node* init_control = init->proj_out(TypeFunc::Control);
5531     Node* alloc_length = alloc->Ideal_length();
5532 #ifdef ASSERT
5533     Node* prev_cast = nullptr;
5534 #endif
5535     for (uint i = 0; i < init_control->outcnt(); i++) {
5536       Node* init_out = init_control->raw_out(i);
5537       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5538 #ifdef ASSERT
5539         if (prev_cast == nullptr) {
5540           prev_cast = init_out;

5542           if (prev_cast->cmp(*init_out) == false) {
5543             prev_cast->dump();
5544             init_out->dump();
5545             assert(false, "not equal CastIINode");
5546           }
5547         }
5548 #endif
5549         C->gvn_replace_by(init_out, alloc_length);
5550       }
5551     }
5552     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5553 
5554     // move the allocation here (after the guards)
5555     _gvn.hash_delete(alloc);
5556     alloc->set_req(TypeFunc::Control, control());
5557     alloc->set_req(TypeFunc::I_O, i_o());
5558     Node *mem = reset_memory();
5559     set_all_memory(mem);
5560     alloc->set_req(TypeFunc::Memory, mem);
5561     set_control(init->proj_out_or_null(TypeFunc::Control));
5562     set_i_o(callprojs.fallthrough_ioproj);
5563 
5564     // Update memory as done in GraphKit::set_output_for_allocation()
5565     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5566     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5567     if (ary_type->isa_aryptr() && length_type != nullptr) {
5568       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5569     }
5570     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5571     int            elemidx  = C->get_alias_index(telemref);
5572     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5573     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5574 
5575     Node* allocx = _gvn.transform(alloc);
5576     assert(allocx == alloc, "where has the allocation gone?");
5577     assert(dest->is_CheckCastPP(), "not an allocation result?");
5578 
5579     _gvn.hash_delete(dest);
5580     dest->set_req(0, control());
5581     Node* destx = _gvn.transform(dest);
5582     assert(destx == dest, "where has the allocation result gone?");

5880         top_src  = src_type->isa_aryptr();
5881         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5882         src_spec = true;
5883       }
5884       if (!has_dest) {
5885         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5886         dest_type  = _gvn.type(dest);
5887         top_dest  = dest_type->isa_aryptr();
5888         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5889         dest_spec = true;
5890       }
5891     }
5892   }
5893 
5894   if (has_src && has_dest && can_emit_guards) {
5895     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5896     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5897     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5898     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5899 
5900     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5901       // If both arrays are object arrays then having the exact types
5902       // for both will remove the need for a subtype check at runtime
5903       // before the call and may make it possible to pick a faster copy
5904       // routine (without a subtype check on every element)
5905       // Do we have the exact type of src?
5906       bool could_have_src = src_spec;
5907       // Do we have the exact type of dest?
5908       bool could_have_dest = dest_spec;
5909       ciKlass* src_k = nullptr;
5910       ciKlass* dest_k = nullptr;
5911       if (!src_spec) {
5912         src_k = src_type->speculative_type_not_null();
5913         if (src_k != nullptr && src_k->is_array_klass()) {
5914           could_have_src = true;
5915         }
5916       }
5917       if (!dest_spec) {
5918         dest_k = dest_type->speculative_type_not_null();
5919         if (dest_k != nullptr && dest_k->is_array_klass()) {
5920           could_have_dest = true;
5921         }
5922       }
5923       if (could_have_src && could_have_dest) {
5924         // If we can have both exact types, emit the missing guards
5925         if (could_have_src && !src_spec) {
5926           src = maybe_cast_profiled_obj(src, src_k, true);


5927         }
5928         if (could_have_dest && !dest_spec) {
5929           dest = maybe_cast_profiled_obj(dest, dest_k, true);


5930         }
5931       }
5932     }
5933   }
5934 
5935   ciMethod* trap_method = method();
5936   int trap_bci = bci();
5937   if (saved_jvms_before_guards != nullptr) {
5938     trap_method = alloc->jvms()->method();
5939     trap_bci = alloc->jvms()->bci();
5940   }
5941 
5942   bool negative_length_guard_generated = false;
5943 
5944   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5945       can_emit_guards &&
5946       !src->is_top() && !dest->is_top()) {
5947     // validate arguments: enables transformation the ArrayCopyNode
5948     validated = true;
5949 
5950     RegionNode* slow_region = new RegionNode(1);
5951     record_for_igvn(slow_region);
5952 
5953     // (1) src and dest are arrays.
5954     generate_non_array_guard(load_object_klass(src), slow_region, &src);
5955     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
5956 
5957     // (2) src and dest arrays must have elements of the same BasicType
5958     // done at macro expansion or at Ideal transformation time
5959 
5960     // (4) src_offset must not be negative.
5961     generate_negative_guard(src_offset, slow_region);
5962 
5963     // (5) dest_offset must not be negative.
5964     generate_negative_guard(dest_offset, slow_region);
5965 
5966     // (7) src_offset + length must not exceed length of src.

5969                          slow_region);
5970 
5971     // (8) dest_offset + length must not exceed length of dest.
5972     generate_limit_guard(dest_offset, length,
5973                          load_array_length(dest),
5974                          slow_region);
5975 
5976     // (6) length must not be negative.
5977     // This is also checked in generate_arraycopy() during macro expansion, but
5978     // we also have to check it here for the case where the ArrayCopyNode will
5979     // be eliminated by Escape Analysis.
5980     if (EliminateAllocations) {
5981       generate_negative_guard(length, slow_region);
5982       negative_length_guard_generated = true;
5983     }
5984 
5985     // (9) each element of an oop array must be assignable
5986     Node* dest_klass = load_object_klass(dest);
5987     if (src != dest) {
5988       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);


5989 
5990       if (not_subtype_ctrl != top()) {
5991         PreserveJVMState pjvms(this);
5992         set_control(not_subtype_ctrl);
5993         uncommon_trap(Deoptimization::Reason_intrinsic,
5994                       Deoptimization::Action_make_not_entrant);
5995         assert(stopped(), "Should be stopped");


























5996       }
5997     }

5998     {
5999       PreserveJVMState pjvms(this);
6000       set_control(_gvn.transform(slow_region));
6001       uncommon_trap(Deoptimization::Reason_intrinsic,
6002                     Deoptimization::Action_make_not_entrant);
6003       assert(stopped(), "Should be stopped");
6004     }
6005 
6006     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6007     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6008     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6009     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6010   }
6011 
6012   if (stopped()) {
6013     return true;
6014   }
6015 
6016   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6017                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6018                                           // so the compiler has a chance to eliminate them: during macro expansion,
6019                                           // we have to set their control (CastPP nodes are eliminated).
6020                                           load_object_klass(src), load_object_klass(dest),
6021                                           load_array_length(src), load_array_length(dest));
6022 
6023   ac->set_arraycopy(validated);
6024 
6025   Node* n = _gvn.transform(ac);
6026   if (n == ac) {
6027     ac->connect_outputs(this);
6028   } else {

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciInstanceKlass.hpp"
  29 #include "ci/ciSymbols.hpp"
  30 #include "ci/ciUtilities.inline.hpp"
  31 #include "classfile/vmIntrinsics.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/c2/barrierSetC2.hpp"
  36 #include "jfr/support/jfrIntrinsics.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/accessDecorators.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "oops/layoutKind.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "opto/addnode.hpp"
  43 #include "opto/arraycopynode.hpp"
  44 #include "opto/c2compiler.hpp"
  45 #include "opto/castnode.hpp"
  46 #include "opto/cfgnode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/countbitsnode.hpp"
  49 #include "opto/graphKit.hpp"
  50 #include "opto/idealKit.hpp"
  51 #include "opto/inlinetypenode.hpp"
  52 #include "opto/library_call.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/opaquenode.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "prims/jvmtiThreadState.hpp"
  66 #include "prims/unsafe.hpp"
  67 #include "runtime/jniHandles.inline.hpp"
  68 #include "runtime/objectMonitor.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "utilities/globalDefinitions.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/powerOfTwo.hpp"
  74 
  75 //---------------------------make_vm_intrinsic----------------------------
  76 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  77   vmIntrinsicID id = m->intrinsic_id();
  78   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  79 
  80   if (!m->is_loaded()) {
  81     // Do not attempt to inline unloaded methods.
  82     return nullptr;
  83   }
  84 
  85   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  86   bool is_available = false;
  87 
  88   {
  89     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  90     // the compiler must transition to '_thread_in_vm' state because both
  91     // methods access VM-internal data.

 310   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 311   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 312   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 313   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 314   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 315 
 316   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 317 
 318   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 319 
 320   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 321   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 322   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 323   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 324 
 325   case vmIntrinsics::_compressStringC:
 326   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 327   case vmIntrinsics::_inflateStringC:
 328   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 329 
 330   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 331   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 332   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 333   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 334   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 335   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 336   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 337   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 338   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 339   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 340   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 341   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 342 
 343   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 344   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 345   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 346   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 347   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 348   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 349   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 350   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 351   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 352   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 353 
 354   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 355   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 356   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 357   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 358   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 359   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 360   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 361   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 362   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 363 
 364   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 365   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 366   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 367   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 368   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 369   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 370   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 371   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 372   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 404   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 405   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 406   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 407   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 408   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 409   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 410   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 411   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 412   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 413 
 414   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 415   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 416   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 417   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 418   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 419   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 420   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 421   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 422   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 423 
 424   case vmIntrinsics::_getFlatValue:             return inline_unsafe_flat_access(!is_store, Relaxed);
 425   case vmIntrinsics::_putFlatValue:             return inline_unsafe_flat_access( is_store, Relaxed);
 426 
 427   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 428   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 429   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 430   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 431   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 432 
 433   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 434   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 435   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 436   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 437   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 438   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 439   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 440   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 441   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 442   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 443   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 444   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 445   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 446   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);

 514 #endif
 515   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 516   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 517   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 518   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 519   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 520   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 521   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 522   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 523   case vmIntrinsics::_getLength:                return inline_native_getLength();
 524   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 525   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 526   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 527   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 528   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 529   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 530   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 531 
 532   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 533   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 534   case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false);
 535   case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true);
 536   case vmIntrinsics::_newNullableAtomicArray:     return inline_newArray(/* null_free */ false, /* atomic */ true);
 537 
 538   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 539 
 540   case vmIntrinsics::_isInstance:
 541   case vmIntrinsics::_isHidden:
 542   case vmIntrinsics::_getSuperclass:
 543   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 544 
 545   case vmIntrinsics::_floatToRawIntBits:
 546   case vmIntrinsics::_floatToIntBits:
 547   case vmIntrinsics::_intBitsToFloat:
 548   case vmIntrinsics::_doubleToRawLongBits:
 549   case vmIntrinsics::_doubleToLongBits:
 550   case vmIntrinsics::_longBitsToDouble:
 551   case vmIntrinsics::_floatToFloat16:
 552   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 553   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 554   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 555   case vmIntrinsics::_floatIsFinite:
 556   case vmIntrinsics::_floatIsInfinite:

2322     case vmIntrinsics::_remainderUnsigned_l: {
2323       zero_check_long(argument(2));
2324       // Compile-time detect of null-exception
2325       if (stopped()) {
2326         return true; // keep the graph constructed so far
2327       }
2328       n = new UModLNode(control(), argument(0), argument(2));
2329       break;
2330     }
2331     default:  fatal_unexpected_iid(id);  break;
2332   }
2333   set_result(_gvn.transform(n));
2334   return true;
2335 }
2336 
2337 //----------------------------inline_unsafe_access----------------------------
2338 
2339 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2340   // Attempt to infer a sharper value type from the offset and base type.
2341   ciKlass* sharpened_klass = nullptr;
2342   bool null_free = false;
2343 
2344   // See if it is an instance field, with an object type.
2345   if (alias_type->field() != nullptr) {
2346     if (alias_type->field()->type()->is_klass()) {
2347       sharpened_klass = alias_type->field()->type()->as_klass();
2348       null_free = alias_type->field()->is_null_free();
2349     }
2350   }
2351 
2352   const TypeOopPtr* result = nullptr;
2353   // See if it is a narrow oop array.
2354   if (adr_type->isa_aryptr()) {
2355     if (adr_type->offset() >= refArrayOopDesc::base_offset_in_bytes()) {
2356       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2357       null_free = adr_type->is_aryptr()->is_null_free();
2358       if (elem_type != nullptr && elem_type->is_loaded()) {
2359         // Sharpen the value type.
2360         result = elem_type;
2361       }
2362     }
2363   }
2364 
2365   // The sharpened class might be unloaded if there is no class loader
2366   // contraint in place.
2367   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2368     // Sharpen the value type.
2369     result = TypeOopPtr::make_from_klass(sharpened_klass);
2370     if (null_free) {
2371       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2372     }
2373   }
2374   if (result != nullptr) {
2375 #ifndef PRODUCT
2376     if (C->print_intrinsics() || C->print_inlining()) {
2377       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2378       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2379     }
2380 #endif
2381   }
2382   return result;
2383 }
2384 
2385 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2386   switch (kind) {
2387       case Relaxed:
2388         return MO_UNORDERED;
2389       case Opaque:
2390         return MO_RELAXED;
2391       case Acquire:
2392         return MO_ACQUIRE;
2393       case Release:
2394         return MO_RELEASE;
2395       case Volatile:
2396         return MO_SEQ_CST;
2397       default:
2398         ShouldNotReachHere();
2399         return 0;
2400   }
2401 }
2402 
2403 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2404   if (callee()->is_static())  return false;  // caller must have the capability!
2405   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2406   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2407   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2408   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2409 
2410   if (is_reference_type(type)) {
2411     decorators |= ON_UNKNOWN_OOP_REF;
2412   }
2413 
2414   if (unaligned) {
2415     decorators |= C2_UNALIGNED;
2416   }
2417 
2418 #ifndef PRODUCT
2419   {
2420     ResourceMark rm;
2421     // Check the signatures.
2422     ciSignature* sig = callee()->signature();
2423 #ifdef ASSERT
2424     if (!is_store) {
2425       // Object getReference(Object base, int/long offset), etc.
2426       BasicType rtype = sig->return_type()->basic_type();
2427       assert(rtype == type, "getter must return the expected value");
2428       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2429       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2430       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2431     } else {
2432       // void putReference(Object base, int/long offset, Object x), etc.
2433       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2434       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2435       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2436       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2437       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2438       assert(vtype == type, "putter must accept the expected value");
2439     }
2440 #endif // ASSERT
2441  }
2442 #endif //PRODUCT
2443 
2444   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2445 
2446   Node* receiver = argument(0);  // type: oop
2447 
2448   // Build address expression.
2449   Node* heap_base_oop = top();
2450 
2451   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2452   Node* base = argument(1);  // type: oop
2453   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2454   Node* offset = argument(2);  // type: long
2455   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2456   // to be plain byte offsets, which are also the same as those accepted
2457   // by oopDesc::field_addr.
2458   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2459          "fieldOffset must be byte-scaled");
2460 
2461   ciInlineKlass* inline_klass = nullptr;
2462   if (is_flat) {
2463     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2464     if (cls == nullptr || cls->const_oop() == nullptr) {
2465       return false;
2466     }
2467     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2468     if (!mirror_type->is_inlinetype()) {
2469       return false;
2470     }
2471     inline_klass = mirror_type->as_inline_klass();
2472   }
2473 
2474   if (base->is_InlineType()) {
2475     assert(!is_store, "InlineTypeNodes are non-larval value objects");
2476     InlineTypeNode* vt = base->as_InlineType();
2477     if (offset->is_Con()) {
2478       long off = find_long_con(offset, 0);
2479       ciInlineKlass* vk = vt->type()->inline_klass();
2480       if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2481         return false;
2482       }
2483 
2484       ciField* field = vk->get_non_flat_field_by_offset(off);
2485       if (field != nullptr) {
2486         BasicType bt = type2field[field->type()->basic_type()];
2487         if (bt == T_ARRAY || bt == T_NARROWOOP) {
2488           bt = T_OBJECT;
2489         }
2490         if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2491           Node* value = vt->field_value_by_offset(off, false);
2492           if (value->is_InlineType()) {
2493             value = value->as_InlineType()->adjust_scalarization_depth(this);
2494           }
2495           set_result(value);
2496           return true;
2497         }
2498       }
2499     }
2500     {
2501       // Re-execute the unsafe access if allocation triggers deoptimization.
2502       PreserveReexecuteState preexecs(this);
2503       jvms()->set_should_reexecute(true);
2504       vt = vt->buffer(this);
2505     }
2506     base = vt->get_oop();
2507   }
2508 
2509   // 32-bit machines ignore the high half!
2510   offset = ConvL2X(offset);
2511 
2512   // Save state and restore on bailout
2513   uint old_sp = sp();
2514   SafePointNode* old_map = clone_map();
2515 
2516   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2517   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2518 
2519   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2520     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2521       decorators |= IN_NATIVE; // off-heap primitive access
2522     } else {
2523       set_map(old_map);
2524       set_sp(old_sp);
2525       return false; // off-heap oop accesses are not supported
2526     }
2527   } else {
2528     heap_base_oop = base; // on-heap or mixed access
2529   }
2530 
2531   // Can base be null? Otherwise, always on-heap access.
2532   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2533 
2534   if (!can_access_non_heap) {
2535     decorators |= IN_HEAP;
2536   }
2537 
2538   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2539 
2540   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2541   if (adr_type == TypePtr::NULL_PTR) {
2542     set_map(old_map);
2543     set_sp(old_sp);
2544     return false; // off-heap access with zero address
2545   }
2546 
2547   // Try to categorize the address.
2548   Compile::AliasType* alias_type = C->alias_type(adr_type);
2549   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2550 
2551   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2552       alias_type->adr_type() == TypeAryPtr::RANGE) {
2553     set_map(old_map);
2554     set_sp(old_sp);
2555     return false; // not supported
2556   }
2557 
2558   bool mismatched = false;
2559   BasicType bt = T_ILLEGAL;
2560   ciField* field = nullptr;
2561   if (adr_type->isa_instptr()) {
2562     const TypeInstPtr* instptr = adr_type->is_instptr();
2563     ciInstanceKlass* k = instptr->instance_klass();
2564     int off = instptr->offset();
2565     if (instptr->const_oop() != nullptr &&
2566         k == ciEnv::current()->Class_klass() &&
2567         instptr->offset() >= (k->size_helper() * wordSize)) {
2568       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2569       field = k->get_field_by_offset(off, true);
2570     } else {
2571       field = k->get_non_flat_field_by_offset(off);
2572     }
2573     if (field != nullptr) {
2574       bt = type2field[field->type()->basic_type()];
2575     }
2576     if (bt != alias_type->basic_type()) {
2577       // Type mismatch. Is it an access to a nested flat field?
2578       field = k->get_field_by_offset(off, false);
2579       if (field != nullptr) {
2580         bt = type2field[field->type()->basic_type()];
2581       }
2582     }
2583     assert(bt == alias_type->basic_type() || is_flat, "should match");
2584   } else {
2585     bt = alias_type->basic_type();
2586   }
2587 
2588   if (bt != T_ILLEGAL) {
2589     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2590     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2591       // Alias type doesn't differentiate between byte[] and boolean[]).
2592       // Use address type to get the element type.
2593       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2594     }
2595     if (is_reference_type(bt, true)) {
2596       // accessing an array field with getReference is not a mismatch
2597       bt = T_OBJECT;
2598     }
2599     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2600       // Don't intrinsify mismatched object accesses
2601       set_map(old_map);
2602       set_sp(old_sp);
2603       return false;
2604     }
2605     mismatched = (bt != type);
2606   } else if (alias_type->adr_type()->isa_oopptr()) {
2607     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2608   }
2609 
2610   if (is_flat) {
2611     if (adr_type->isa_instptr()) {
2612       if (field == nullptr || field->type() != inline_klass) {
2613         mismatched = true;
2614       }
2615     } else if (adr_type->isa_aryptr()) {
2616       const Type* elem = adr_type->is_aryptr()->elem();
2617       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2618         mismatched = true;
2619       }
2620     } else {
2621       mismatched = true;
2622     }
2623     if (is_store) {
2624       const Type* val_t = _gvn.type(val);
2625       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2626         set_map(old_map);
2627         set_sp(old_sp);
2628         return false;
2629       }
2630     }
2631   }
2632 
2633   destruct_map_clone(old_map);
2634   assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2635 
2636   if (mismatched) {
2637     decorators |= C2_MISMATCHED;
2638   }
2639 
2640   // First guess at the value type.
2641   const Type *value_type = Type::get_const_basic_type(type);
2642 
2643   // Figure out the memory ordering.
2644   decorators |= mo_decorator_for_access_kind(kind);
2645 
2646   if (!is_store) {
2647     if (type == T_OBJECT && !is_flat) {
2648       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2649       if (tjp != nullptr) {
2650         value_type = tjp;
2651       }
2652     }
2653   }
2654 
2655   receiver = null_check(receiver);
2656   if (stopped()) {
2657     return true;
2658   }
2659   // Heap pointers get a null-check from the interpreter,
2660   // as a courtesy.  However, this is not guaranteed by Unsafe,
2661   // and it is not possible to fully distinguish unintended nulls
2662   // from intended ones in this API.
2663 
2664   if (!is_store) {
2665     Node* p = nullptr;
2666     // Try to constant fold a load from a constant field
2667 
2668     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2669       // final or stable field
2670       p = make_constant_from_field(field, heap_base_oop);
2671     }
2672 
2673     if (p == nullptr) { // Could not constant fold the load
2674       if (is_flat) {
2675         p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, adr_type, false, false, true);
2676       } else {
2677         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2678         const TypeOopPtr* ptr = value_type->make_oopptr();
2679         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2680           // Load a non-flattened inline type from memory
2681           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass());
2682         }
2683       }
2684       // Normalize the value returned by getBoolean in the following cases
2685       if (type == T_BOOLEAN &&
2686           (mismatched ||
2687            heap_base_oop == top() ||                  // - heap_base_oop is null or
2688            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2689                                                       //   and the unsafe access is made to large offset
2690                                                       //   (i.e., larger than the maximum offset necessary for any
2691                                                       //   field access)
2692             ) {
2693           IdealKit ideal = IdealKit(this);
2694 #define __ ideal.
2695           IdealVariable normalized_result(ideal);
2696           __ declarations_done();
2697           __ set(normalized_result, p);
2698           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2699           __ set(normalized_result, ideal.ConI(1));
2700           ideal.end_if();
2701           final_sync(ideal);
2702           p = __ value(normalized_result);
2703 #undef __
2704       }
2705     }
2706     if (type == T_ADDRESS) {
2707       p = gvn().transform(new CastP2XNode(nullptr, p));
2708       p = ConvX2UL(p);
2709     }
2710     // The load node has the control of the preceding MemBarCPUOrder.  All
2711     // following nodes will have the control of the MemBarCPUOrder inserted at
2712     // the end of this method.  So, pushing the load onto the stack at a later
2713     // point is fine.
2714     set_result(p);
2715   } else {
2716     if (bt == T_ADDRESS) {
2717       // Repackage the long as a pointer.
2718       val = ConvL2X(val);
2719       val = gvn().transform(new CastX2PNode(val));
2720     }
2721     if (is_flat) {
2722       val->as_InlineType()->store_flat(this, base, adr, false, false, true, decorators);
2723     } else {
2724       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2725     }
2726   }
2727 
2728   return true;
2729 }
2730 
2731 bool LibraryCallKit::inline_unsafe_flat_access(bool is_store, AccessKind kind) {
2732 #ifdef ASSERT
2733   {
2734     ResourceMark rm;
2735     // Check the signatures.
2736     ciSignature* sig = callee()->signature();
2737     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base should be object, but is %s", type2name(sig->type_at(0)->basic_type()));
2738     assert(sig->type_at(1)->basic_type() == T_LONG, "offset should be long, but is %s", type2name(sig->type_at(1)->basic_type()));
2739     assert(sig->type_at(2)->basic_type() == T_INT, "layout kind should be int, but is %s", type2name(sig->type_at(3)->basic_type()));
2740     assert(sig->type_at(3)->basic_type() == T_OBJECT, "value klass should be object, but is %s", type2name(sig->type_at(4)->basic_type()));
2741     if (is_store) {
2742       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value, but returns %s", type2name(sig->return_type()->basic_type()));
2743       assert(sig->count() == 5, "flat putter should have 5 arguments, but has %d", sig->count());
2744       assert(sig->type_at(4)->basic_type() == T_OBJECT, "put value should be object, but is %s", type2name(sig->type_at(5)->basic_type()));
2745     } else {
2746       assert(sig->return_type()->basic_type() == T_OBJECT, "getter must return an object, but returns %s", type2name(sig->return_type()->basic_type()));
2747       assert(sig->count() == 4, "flat getter should have 4 arguments, but has %d", sig->count());
2748     }
2749  }
2750 #endif // ASSERT
2751 
2752   assert(kind == Relaxed, "Only plain accesses for now");
2753   if (callee()->is_static()) {
2754     // caller must have the capability!
2755     return false;
2756   }
2757   C->set_has_unsafe_access(true);
2758 
2759   const TypeInstPtr* value_klass_node = _gvn.type(argument(5))->isa_instptr();
2760   if (value_klass_node == nullptr || value_klass_node->const_oop() == nullptr) {
2761     // parameter valueType is not a constant
2762     return false;
2763   }
2764   ciType* mirror_type = value_klass_node->const_oop()->as_instance()->java_mirror_type();
2765   if (!mirror_type->is_inlinetype()) {
2766     // Dead code
2767     return false;
2768   }
2769   ciInlineKlass* value_klass = mirror_type->as_inline_klass();
2770 
2771   const TypeInt* layout_type = _gvn.type(argument(4))->isa_int();
2772   if (layout_type == nullptr || !layout_type->is_con()) {
2773     // parameter layoutKind is not a constant
2774     return false;
2775   }
2776   assert(layout_type->get_con() >= static_cast<int>(LayoutKind::REFERENCE) &&
2777          layout_type->get_con() <= static_cast<int>(LayoutKind::UNKNOWN),
2778          "invalid layoutKind %d", layout_type->get_con());
2779   LayoutKind layout = static_cast<LayoutKind>(layout_type->get_con());
2780   assert(layout == LayoutKind::REFERENCE || layout == LayoutKind::NON_ATOMIC_FLAT ||
2781          layout == LayoutKind::ATOMIC_FLAT || layout == LayoutKind::NULLABLE_ATOMIC_FLAT,
2782          "unexpected layoutKind %d", layout_type->get_con());
2783 
2784   null_check(argument(0));
2785   if (stopped()) {
2786     return true;
2787   }
2788 
2789   Node* base = must_be_not_null(argument(1), true);
2790   Node* offset = argument(2);
2791   const Type* base_type = _gvn.type(base);
2792 
2793   Node* ptr;
2794   bool immutable_memory = false;
2795   DecoratorSet decorators = C2_UNSAFE_ACCESS | IN_HEAP | MO_UNORDERED;
2796   if (base_type->isa_instptr()) {
2797     const TypeLong* offset_type = _gvn.type(offset)->isa_long();
2798     if (offset_type == nullptr || !offset_type->is_con()) {
2799       // Offset into a non-array should be a constant
2800       decorators |= C2_MISMATCHED;
2801     } else {
2802       int offset_con = checked_cast<int>(offset_type->get_con());
2803       ciInstanceKlass* base_klass = base_type->is_instptr()->instance_klass();
2804       ciField* field = base_klass->get_non_flat_field_by_offset(offset_con);
2805       if (field == nullptr) {
2806         assert(!base_klass->is_final(), "non-existence field at offset %d of class %s", offset_con, base_klass->name()->as_utf8());
2807         decorators |= C2_MISMATCHED;
2808       } else {
2809         assert(field->type() == value_klass, "field at offset %d of %s is of type %s, but valueType is %s",
2810                offset_con, base_klass->name()->as_utf8(), field->type()->name(), value_klass->name()->as_utf8());
2811         immutable_memory = field->is_strict() && field->is_final();
2812 
2813         if (base->is_InlineType()) {
2814           assert(!is_store, "Cannot store into a non-larval value object");
2815           set_result(base->as_InlineType()->field_value_by_offset(offset_con, false));
2816           return true;
2817         }
2818       }
2819     }
2820 
2821     if (base->is_InlineType()) {
2822       assert(!is_store, "Cannot store into a non-larval value object");
2823       base = base->as_InlineType()->buffer(this, true);
2824     }
2825     ptr = basic_plus_adr(base, ConvL2X(offset));
2826   } else if (base_type->isa_aryptr()) {
2827     decorators |= IS_ARRAY;
2828     if (layout == LayoutKind::REFERENCE) {
2829       if (!base_type->is_aryptr()->is_not_flat()) {
2830         const TypeAryPtr* array_type = base_type->is_aryptr()->cast_to_not_flat();
2831         Node* new_base = _gvn.transform(new CastPPNode(control(), base, array_type, ConstraintCastNode::StrongDependency));
2832         replace_in_map(base, new_base);
2833         base = new_base;
2834       }
2835       ptr = basic_plus_adr(base, ConvL2X(offset));
2836     } else {
2837       if (UseArrayFlattening) {
2838         // Flat array must have an exact type
2839         bool is_null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2840         bool is_atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2841         Node* new_base = cast_to_flat_array(base, value_klass, is_null_free, !is_null_free, is_atomic);
2842         replace_in_map(base, new_base);
2843         base = new_base;
2844         ptr = basic_plus_adr(base, ConvL2X(offset));
2845         const TypeAryPtr* ptr_type = _gvn.type(ptr)->is_aryptr();
2846         if (ptr_type->field_offset().get() != 0) {
2847           ptr = _gvn.transform(new CastPPNode(control(), ptr, ptr_type->with_field_offset(0), ConstraintCastNode::StrongDependency));
2848         }
2849       } else {
2850         uncommon_trap(Deoptimization::Reason_intrinsic,
2851                       Deoptimization::Action_none);
2852         return true;
2853       }
2854     }
2855   } else {
2856     decorators |= C2_MISMATCHED;
2857     ptr = basic_plus_adr(base, ConvL2X(offset));
2858   }
2859 
2860   if (is_store) {
2861     Node* value = argument(6);
2862     const Type* value_type = _gvn.type(value);
2863     if (!value_type->is_inlinetypeptr()) {
2864       value_type = Type::get_const_type(value_klass)->filter_speculative(value_type);
2865       Node* new_value = _gvn.transform(new CastPPNode(control(), value, value_type, ConstraintCastNode::StrongDependency));
2866       new_value = InlineTypeNode::make_from_oop(this, new_value, value_klass);
2867       replace_in_map(value, new_value);
2868       value = new_value;
2869     }
2870 
2871     assert(value_type->inline_klass() == value_klass, "value is of type %s while valueType is %s", value_type->inline_klass()->name()->as_utf8(), value_klass->name()->as_utf8());
2872     if (layout == LayoutKind::REFERENCE) {
2873       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2874       access_store_at(base, ptr, ptr_type, value, value_type, T_OBJECT, decorators);
2875     } else {
2876       bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2877       bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2878       value->as_InlineType()->store_flat(this, base, ptr, atomic, immutable_memory, null_free, decorators);
2879     }
2880 
2881     return true;
2882   } else {
2883     decorators |= (C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
2884     InlineTypeNode* result;
2885     if (layout == LayoutKind::REFERENCE) {
2886       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2887       Node* oop = access_load_at(base, ptr, ptr_type, Type::get_const_type(value_klass), T_OBJECT, decorators);
2888       result = InlineTypeNode::make_from_oop(this, oop, value_klass);
2889     } else {
2890       bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2891       bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2892       result = InlineTypeNode::make_from_flat(this, value_klass, base, ptr, atomic, immutable_memory, null_free, decorators);
2893     }
2894 
2895     set_result(result);
2896     return true;
2897   }
2898 }
2899 
2900 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2901   Node* receiver = argument(0);
2902   Node* value = argument(1);
2903 
2904   const Type* type = gvn().type(value);
2905   if (!type->is_inlinetypeptr()) {
2906     C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type");
2907     return false;
2908   }
2909 
2910   null_check(receiver);
2911   if (stopped()) {
2912     return true;
2913   }
2914 
2915   value = null_check(value);
2916   if (stopped()) {
2917     return true;
2918   }
2919 
2920   ciInlineKlass* vk = type->inline_klass();
2921   Node* klass = makecon(TypeKlassPtr::make(vk));
2922   Node* obj = new_instance(klass);
2923   AllocateNode::Ideal_allocation(obj)->_larval = true;
2924 
2925   assert(value->is_InlineType(), "must be an InlineTypeNode");
2926   Node* payload_ptr = basic_plus_adr(obj, vk->payload_offset());
2927   value->as_InlineType()->store_flat(this, obj, payload_ptr, false, true, true, IN_HEAP | MO_UNORDERED);
2928 
2929   set_result(obj);
2930   return true;
2931 }
2932 
2933 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2934   Node* receiver = argument(0);
2935   Node* buffer = argument(1);
2936 
2937   const Type* type = gvn().type(buffer);
2938   if (!type->is_inlinetypeptr()) {
2939     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type");
2940     return false;
2941   }
2942 
2943   AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer);
2944   if (alloc == nullptr) {
2945     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer");
2946     return false;
2947   }
2948 
2949   null_check(receiver);
2950   if (stopped()) {
2951     return true;
2952   }
2953 
2954   // Unset the larval bit in the object header
2955   Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned);
2956   Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place)));
2957   access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP);
2958 
2959   // We must ensure that the buffer is properly published
2960   insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
2961   assert(!type->maybe_null(), "result of an allocation should not be null");
2962   set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass()));
2963   return true;
2964 }
2965 
2966 //----------------------------inline_unsafe_load_store----------------------------
2967 // This method serves a couple of different customers (depending on LoadStoreKind):
2968 //
2969 // LS_cmp_swap:
2970 //
2971 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2972 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2973 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2974 //
2975 // LS_cmp_swap_weak:
2976 //
2977 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2978 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2979 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2980 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2981 //
2982 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2983 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2984 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2985 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

3151     }
3152     case LS_cmp_swap:
3153     case LS_cmp_swap_weak:
3154     case LS_get_add:
3155       break;
3156     default:
3157       ShouldNotReachHere();
3158   }
3159 
3160   // Null check receiver.
3161   receiver = null_check(receiver);
3162   if (stopped()) {
3163     return true;
3164   }
3165 
3166   int alias_idx = C->get_alias_index(adr_type);
3167 
3168   if (is_reference_type(type)) {
3169     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
3170 
3171     if (oldval != nullptr && oldval->is_InlineType()) {
3172       // Re-execute the unsafe access if allocation triggers deoptimization.
3173       PreserveReexecuteState preexecs(this);
3174       jvms()->set_should_reexecute(true);
3175       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
3176     }
3177     if (newval != nullptr && newval->is_InlineType()) {
3178       // Re-execute the unsafe access if allocation triggers deoptimization.
3179       PreserveReexecuteState preexecs(this);
3180       jvms()->set_should_reexecute(true);
3181       newval = newval->as_InlineType()->buffer(this)->get_oop();
3182     }
3183 
3184     // Transformation of a value which could be null pointer (CastPP #null)
3185     // could be delayed during Parse (for example, in adjust_map_after_if()).
3186     // Execute transformation here to avoid barrier generation in such case.
3187     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3188       newval = _gvn.makecon(TypePtr::NULL_PTR);
3189 
3190     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
3191       // Refine the value to a null constant, when it is known to be null
3192       oldval = _gvn.makecon(TypePtr::NULL_PTR);
3193     }
3194   }
3195 
3196   Node* result = nullptr;
3197   switch (kind) {
3198     case LS_cmp_exchange: {
3199       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
3200                                             oldval, newval, value_type, type, decorators);
3201       break;
3202     }
3203     case LS_cmp_swap_weak:

3350                     Deoptimization::Action_make_not_entrant);
3351     }
3352     if (stopped()) {
3353       return true;
3354     }
3355 #endif //INCLUDE_JVMTI
3356 
3357   Node* test = nullptr;
3358   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3359     // Note:  The argument might still be an illegal value like
3360     // Serializable.class or Object[].class.   The runtime will handle it.
3361     // But we must make an explicit check for initialization.
3362     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3363     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3364     // can generate code to load it as unsigned byte.
3365     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3366     Node* bits = intcon(InstanceKlass::fully_initialized);
3367     test = _gvn.transform(new SubINode(inst, bits));
3368     // The 'test' is non-zero if we need to take a slow path.
3369   }
3370   Node* obj = nullptr;
3371   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3372   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3373     obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3374   } else {
3375     obj = new_instance(kls, test);
3376   }
3377   set_result(obj);
3378   return true;
3379 }
3380 
3381 //------------------------inline_native_time_funcs--------------
3382 // inline code for System.currentTimeMillis() and System.nanoTime()
3383 // these have the same type and signature
3384 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3385   const TypeFunc* tf = OptoRuntime::void_long_Type();
3386   const TypePtr* no_memory_effects = nullptr;
3387   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3388   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3389 #ifdef ASSERT
3390   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3391   assert(value_top == top(), "second value must be top");
3392 #endif
3393   set_result(value);
3394   return true;
3395 }
3396 

4137   Node* thread = _gvn.transform(new ThreadLocalNode());
4138   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
4139   Node* thread_obj_handle
4140     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
4141   thread_obj_handle = _gvn.transform(thread_obj_handle);
4142   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
4143   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
4144 
4145   // Change the _monitor_owner_id of the JavaThread
4146   Node* tid = load_field_from_object(arr, "tid", "J");
4147   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
4148   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
4149 
4150   JFR_ONLY(extend_setCurrentThread(thread, arr);)
4151   return true;
4152 }
4153 
4154 const Type* LibraryCallKit::scopedValueCache_type() {
4155   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
4156   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
4157   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
4158 
4159   // Because we create the scopedValue cache lazily we have to make the
4160   // type of the result BotPTR.
4161   bool xk = etype->klass_is_exact();
4162   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
4163   return objects_type;
4164 }
4165 
4166 Node* LibraryCallKit::scopedValueCache_helper() {
4167   Node* thread = _gvn.transform(new ThreadLocalNode());
4168   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
4169   // We cannot use immutable_memory() because we might flip onto a
4170   // different carrier thread, at which point we'll need to use that
4171   // carrier thread's cache.
4172   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
4173   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
4174   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
4175 }
4176 
4177 //------------------------inline_native_scopedValueCache------------------
4178 bool LibraryCallKit::inline_native_scopedValueCache() {
4179   Node* cache_obj_handle = scopedValueCache_helper();
4180   const Type* objects_type = scopedValueCache_type();
4181   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
4182 

4266   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
4267 
4268   // Result of top level CFG and Memory.
4269   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4270   record_for_igvn(result_rgn);
4271   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4272   record_for_igvn(result_mem);
4273 
4274   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
4275   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
4276   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
4277   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4278 
4279   // Set output state.
4280   set_control(_gvn.transform(result_rgn));
4281   set_all_memory(_gvn.transform(result_mem));
4282 
4283   return true;
4284 }
4285 









4286 //-----------------------load_klass_from_mirror_common-------------------------
4287 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
4288 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
4289 // and branch to the given path on the region.
4290 // If never_see_null, take an uncommon trap on null, so we can optimistically
4291 // compile for the non-null case.
4292 // If the region is null, force never_see_null = true.
4293 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
4294                                                     bool never_see_null,
4295                                                     RegionNode* region,
4296                                                     int null_path,
4297                                                     int offset) {
4298   if (region == nullptr)  never_see_null = true;
4299   Node* p = basic_plus_adr(mirror, offset);
4300   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4301   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
4302   Node* null_ctl = top();
4303   kls = null_check_oop(kls, &null_ctl, never_see_null);
4304   if (region != nullptr) {
4305     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

4309   }
4310   return kls;
4311 }
4312 
4313 //--------------------(inline_native_Class_query helpers)---------------------
4314 // Use this for JVM_ACC_INTERFACE.
4315 // Fall through if (mods & mask) == bits, take the guard otherwise.
4316 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4317                                                  ByteSize offset, const Type* type, BasicType bt) {
4318   // Branch around if the given klass has the given modifier bit set.
4319   // Like generate_guard, adds a new path onto the region.
4320   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4321   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4322   Node* mask = intcon(modifier_mask);
4323   Node* bits = intcon(modifier_bits);
4324   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4325   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4326   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4327   return generate_fair_guard(bol, region);
4328 }
4329 
4330 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4331   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4332                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4333 }
4334 
4335 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4336 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4337   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4338                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4339 }
4340 
4341 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4342   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4343 }
4344 
4345 //-------------------------inline_native_Class_query-------------------
4346 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4347   const Type* return_type = TypeInt::BOOL;
4348   Node* prim_return_value = top();  // what happens if it's a primitive class?
4349   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4468 
4469   case vmIntrinsics::_getClassAccessFlags:
4470     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4471     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4472     break;
4473 
4474   default:
4475     fatal_unexpected_iid(id);
4476     break;
4477   }
4478 
4479   // Fall-through is the normal case of a query to a real class.
4480   phi->init_req(1, query_value);
4481   region->init_req(1, control());
4482 
4483   C->set_has_split_ifs(true); // Has chance for split-if optimization
4484   set_result(region, phi);
4485   return true;
4486 }
4487 
4488 
4489 //-------------------------inline_Class_cast-------------------
4490 bool LibraryCallKit::inline_Class_cast() {
4491   Node* mirror = argument(0); // Class
4492   Node* obj    = argument(1);
4493   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4494   if (mirror_con == nullptr) {
4495     return false;  // dead path (mirror->is_top()).
4496   }
4497   if (obj == nullptr || obj->is_top()) {
4498     return false;  // dead path
4499   }
4500   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4501 
4502   // First, see if Class.cast() can be folded statically.
4503   // java_mirror_type() returns non-null for compile-time Class constants.
4504   ciType* tm = mirror_con->java_mirror_type();
4505   if (tm != nullptr && tm->is_klass() &&
4506       tp != nullptr) {
4507     if (!tp->is_loaded()) {
4508       // Don't use intrinsic when class is not loaded.
4509       return false;
4510     } else {
4511       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4512       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4513       if (static_res == Compile::SSC_always_true) {
4514         // isInstance() is true - fold the code.
4515         set_result(obj);
4516         return true;
4517       } else if (static_res == Compile::SSC_always_false) {
4518         // Don't use intrinsic, have to throw ClassCastException.
4519         // If the reference is null, the non-intrinsic bytecode will
4520         // be optimized appropriately.
4521         return false;
4522       }
4523     }
4524   }
4525 
4526   // Bailout intrinsic and do normal inlining if exception path is frequent.
4527   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4528     return false;
4529   }
4530 
4531   // Generate dynamic checks.
4532   // Class.cast() is java implementation of _checkcast bytecode.
4533   // Do checkcast (Parse::do_checkcast()) optimizations here.
4534 
4535   mirror = null_check(mirror);
4536   // If mirror is dead, only null-path is taken.
4537   if (stopped()) {
4538     return true;
4539   }
4540 
4541   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4542   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4543   RegionNode* region = new RegionNode(PATH_LIMIT);
4544   record_for_igvn(region);
4545 
4546   // Now load the mirror's klass metaobject, and null-check it.
4547   // If kls is null, we have a primitive mirror and
4548   // nothing is an instance of a primitive type.
4549   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4550 
4551   Node* res = top();
4552   Node* io = i_o();
4553   Node* mem = merged_memory();
4554   if (!stopped()) {
4555 
4556     Node* bad_type_ctrl = top();
4557     // Do checkcast optimizations.
4558     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4559     region->init_req(_bad_type_path, bad_type_ctrl);
4560   }
4561   if (region->in(_prim_path) != top() ||
4562       region->in(_bad_type_path) != top() ||
4563       region->in(_npe_path) != top()) {
4564     // Let Interpreter throw ClassCastException.
4565     PreserveJVMState pjvms(this);
4566     set_control(_gvn.transform(region));
4567     // Set IO and memory because gen_checkcast may override them when buffering inline types
4568     set_i_o(io);
4569     set_all_memory(mem);
4570     uncommon_trap(Deoptimization::Reason_intrinsic,
4571                   Deoptimization::Action_maybe_recompile);
4572   }
4573   if (!stopped()) {
4574     set_result(res);
4575   }
4576   return true;
4577 }
4578 
4579 
4580 //--------------------------inline_native_subtype_check------------------------
4581 // This intrinsic takes the JNI calls out of the heart of
4582 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4583 bool LibraryCallKit::inline_native_subtype_check() {
4584   // Pull both arguments off the stack.
4585   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4586   args[0] = argument(0);
4587   args[1] = argument(1);
4588   Node* klasses[2];             // corresponding Klasses: superk, subk
4589   klasses[0] = klasses[1] = top();
4590 
4591   enum {
4592     // A full decision tree on {superc is prim, subc is prim}:
4593     _prim_0_path = 1,           // {P,N} => false
4594                                 // {P,P} & superc!=subc => false
4595     _prim_same_path,            // {P,P} & superc==subc => true
4596     _prim_1_path,               // {N,P} => false
4597     _ref_subtype_path,          // {N,N} & subtype check wins => true
4598     _both_ref_path,             // {N,N} & subtype check loses => false
4599     PATH_LIMIT
4600   };
4601 
4602   RegionNode* region = new RegionNode(PATH_LIMIT);
4603   RegionNode* prim_region = new RegionNode(2);
4604   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4605   record_for_igvn(region);
4606   record_for_igvn(prim_region);
4607 
4608   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4609   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4610   int class_klass_offset = java_lang_Class::klass_offset();
4611 
4612   // First null-check both mirrors and load each mirror's klass metaobject.
4613   int which_arg;
4614   for (which_arg = 0; which_arg <= 1; which_arg++) {
4615     Node* arg = args[which_arg];
4616     arg = null_check(arg);
4617     if (stopped())  break;
4618     args[which_arg] = arg;
4619 
4620     Node* p = basic_plus_adr(arg, class_klass_offset);
4621     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4622     klasses[which_arg] = _gvn.transform(kls);
4623   }
4624 
4625   // Having loaded both klasses, test each for null.
4626   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4627   for (which_arg = 0; which_arg <= 1; which_arg++) {
4628     Node* kls = klasses[which_arg];
4629     Node* null_ctl = top();
4630     kls = null_check_oop(kls, &null_ctl, never_see_null);
4631     if (which_arg == 0) {
4632       prim_region->init_req(1, null_ctl);
4633     } else {
4634       region->init_req(_prim_1_path, null_ctl);
4635     }
4636     if (stopped())  break;
4637     klasses[which_arg] = kls;
4638   }
4639 
4640   if (!stopped()) {
4641     // now we have two reference types, in klasses[0..1]
4642     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4643     Node* superk = klasses[0];  // the receiver
4644     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));

4645     region->set_req(_ref_subtype_path, control());
4646   }
4647 
4648   // If both operands are primitive (both klasses null), then
4649   // we must return true when they are identical primitives.
4650   // It is convenient to test this after the first null klass check.
4651   // This path is also used if superc is a value mirror.
4652   set_control(_gvn.transform(prim_region));
4653   if (!stopped()) {
4654     // Since superc is primitive, make a guard for the superc==subc case.
4655     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4656     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4657     generate_fair_guard(bol_eq, region);
4658     if (region->req() == PATH_LIMIT+1) {
4659       // A guard was added.  If the added guard is taken, superc==subc.
4660       region->swap_edges(PATH_LIMIT, _prim_same_path);
4661       region->del_req(PATH_LIMIT);
4662     }
4663     region->set_req(_prim_0_path, control()); // Not equal after all.
4664   }
4665 
4666   // these are the only paths that produce 'true':
4667   phi->set_req(_prim_same_path,   intcon(1));
4668   phi->set_req(_ref_subtype_path, intcon(1));
4669 
4670   // pull together the cases:
4671   assert(region->req() == PATH_LIMIT, "sane region");
4672   for (uint i = 1; i < region->req(); i++) {
4673     Node* ctl = region->in(i);
4674     if (ctl == nullptr || ctl == top()) {
4675       region->set_req(i, top());
4676       phi   ->set_req(i, top());
4677     } else if (phi->in(i) == nullptr) {
4678       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4679     }
4680   }
4681 
4682   set_control(_gvn.transform(region));
4683   set_result(_gvn.transform(phi));
4684   return true;
4685 }
4686 
4687 //---------------------generate_array_guard_common------------------------
4688 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) {

4689 
4690   if (stopped()) {
4691     return nullptr;
4692   }
4693 









4694   // Like generate_guard, adds a new path onto the region.
4695   jint  layout_con = 0;
4696   Node* layout_val = get_layout_helper(kls, layout_con);
4697   if (layout_val == nullptr) {
4698     bool query = 0;
4699     switch(kind) {
4700       case RefArray:       query = Klass::layout_helper_is_refArray(layout_con); break;
4701       case NonRefArray:    query = !Klass::layout_helper_is_refArray(layout_con); break;
4702       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4703       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4704       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4705       default:
4706         ShouldNotReachHere();
4707     }
4708     if (!query) {
4709       return nullptr;                       // never a branch
4710     } else {                             // always a branch
4711       Node* always_branch = control();
4712       if (region != nullptr)
4713         region->add_req(always_branch);
4714       set_control(top());
4715       return always_branch;
4716     }
4717   }
4718   unsigned int value = 0;
4719   BoolTest::mask btest = BoolTest::illegal;
4720   switch(kind) {
4721     case RefArray:
4722     case NonRefArray: {
4723       value = Klass::_lh_array_tag_ref_value;
4724       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4725       btest = (kind == RefArray) ? BoolTest::eq : BoolTest::ne;
4726       break;
4727     }
4728     case TypeArray: {
4729       value = Klass::_lh_array_tag_type_value;
4730       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4731       btest = BoolTest::eq;
4732       break;
4733     }
4734     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4735     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4736     default:
4737       ShouldNotReachHere();
4738   }
4739   // Now test the correct condition.
4740   jint nval = (jint)value;



4741   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));



4742   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4743   Node* ctrl = generate_fair_guard(bol, region);
4744   Node* is_array_ctrl = kind == NonArray ? control() : ctrl;
4745   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4746     // Keep track of the fact that 'obj' is an array to prevent
4747     // array specific accesses from floating above the guard.
4748     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4749   }
4750   return ctrl;
4751 }
4752 
4753 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal);
4754 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal);
4755 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length);
4756 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) {
4757   assert(null_free || atomic, "nullable implies atomic");
4758   Node* componentType = argument(0);
4759   Node* length = argument(1);
4760   Node* init_val = null_free ? argument(2) : nullptr;
4761 
4762   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4763   if (tp != nullptr) {
4764     ciInstanceKlass* ik = tp->instance_klass();
4765     if (ik == C->env()->Class_klass()) {
4766       ciType* t = tp->java_mirror_type();
4767       if (t != nullptr && t->is_inlinetype()) {
4768 
4769         ciArrayKlass* array_klass = ciArrayKlass::make(t, null_free, atomic, true);
4770         assert(array_klass->is_elem_null_free() == null_free, "inconsistency");
4771         assert(array_klass->is_elem_atomic() == atomic, "inconsistency");
4772 
4773         // TOOD 8350865 ZGC needs card marks on initializing oop stores
4774         if (UseZGC && null_free && !array_klass->is_flat_array_klass()) {
4775           return false;
4776         }
4777 
4778         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4779           const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces, true);
4780           if (null_free) {
4781             if (init_val->is_InlineType()) {
4782               if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) {
4783                 // Zeroing is enough because the init value is the all-zero value
4784                 init_val = nullptr;
4785               } else {
4786                 init_val = init_val->as_InlineType()->buffer(this);
4787               }
4788             }
4789             // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)?
4790           }
4791           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val);
4792           const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr();
4793           assert(arytype->is_null_free() == null_free, "inconsistency");
4794           assert(arytype->is_not_null_free() == !null_free, "inconsistency");
4795           assert(arytype->is_atomic() == atomic, "inconsistency");
4796           set_result(obj);
4797           return true;
4798         }
4799       }
4800     }
4801   }
4802   return false;
4803 }
4804 
4805 Node* LibraryCallKit::load_default_array_klass(Node* klass_node) {
4806   // TODO 8366668
4807   // - Fred suggested that we could just have the first entry in the refined list point to the array with ArrayKlass::ArrayProperties::DEFAULT property
4808   //   For now, we just load from ObjArrayKlass::_next_refined_array_klass, which would always be the refKlass for non-values, and deopt if it's not
4809   // - Convert this to an IGVN optimization, so it's also folded after parsing
4810   // - The generate_typeArray_guard is not needed by all callers, double-check that it's folded
4811 
4812   const Type* klass_t = _gvn.type(klass_node);
4813   const TypeAryKlassPtr* ary_klass_t = klass_t->isa_aryklassptr();
4814   if (ary_klass_t && ary_klass_t->klass_is_exact()) {
4815     if (ary_klass_t->exact_klass()->is_obj_array_klass()) {
4816       ary_klass_t = ary_klass_t->get_vm_type(false);
4817       return makecon(ary_klass_t);
4818     } else {
4819       return klass_node;
4820     }
4821   }
4822 
4823   // Load next refined array klass if klass is an ObjArrayKlass
4824   RegionNode* refined_region = new RegionNode(2);
4825   Node* refined_phi = new PhiNode(refined_region, klass_t);
4826 
4827   generate_typeArray_guard(klass_node, refined_region);
4828   if (refined_region->req() == 3) {
4829     refined_phi->add_req(klass_node);
4830   }
4831 
4832   Node* adr_refined_klass = basic_plus_adr(klass_node, in_bytes(ObjArrayKlass::next_refined_array_klass_offset()));
4833   Node* refined_klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), adr_refined_klass, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4834 
4835   RegionNode* refined_region2 = new RegionNode(3);
4836   Node* refined_phi2 = new PhiNode(refined_region2, klass_t);
4837 
4838   Node* null_ctl = top();
4839   Node* null_free_klass = null_check_common(refined_klass, T_OBJECT, false, &null_ctl);
4840   refined_region2->init_req(1, null_ctl);
4841   refined_phi2->init_req(1, klass_node);
4842 
4843   refined_region2->init_req(2, control());
4844   refined_phi2->init_req(2, null_free_klass);
4845 
4846   set_control(_gvn.transform(refined_region2));
4847   refined_klass = _gvn.transform(refined_phi2);
4848 
4849   Node* adr_properties = basic_plus_adr(refined_klass, in_bytes(ObjArrayKlass::properties_offset()));
4850 
4851   Node* properties = _gvn.transform(LoadNode::make(_gvn, control(), immutable_memory(), adr_properties, TypeRawPtr::BOTTOM, TypeInt::INT, T_INT, MemNode::unordered));
4852   Node* default_val = makecon(TypeInt::make(ArrayKlass::ArrayProperties::DEFAULT));
4853   Node* chk = _gvn.transform(new CmpINode(properties, default_val));
4854   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
4855 
4856   { // Deoptimize if not the default property
4857     BuildCutout unless(this, tst, PROB_MAX);
4858     uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_none);
4859   }
4860 
4861   refined_region->init_req(1, control());
4862   refined_phi->init_req(1, refined_klass);
4863 
4864   set_control(_gvn.transform(refined_region));
4865   klass_node = _gvn.transform(refined_phi);
4866 
4867   return klass_node;
4868 }
4869 
4870 //-----------------------inline_native_newArray--------------------------
4871 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4872 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4873 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4874   Node* mirror;
4875   Node* count_val;
4876   if (uninitialized) {
4877     null_check_receiver();
4878     mirror    = argument(1);
4879     count_val = argument(2);
4880   } else {
4881     mirror    = argument(0);
4882     count_val = argument(1);
4883   }
4884 
4885   mirror = null_check(mirror);
4886   // If mirror or obj is dead, only null-path is taken.
4887   if (stopped())  return true;
4888 
4889   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4890   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4891   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4909     CallJavaNode* slow_call = nullptr;
4910     if (uninitialized) {
4911       // Generate optimized virtual call (holder class 'Unsafe' is final)
4912       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4913     } else {
4914       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4915     }
4916     Node* slow_result = set_results_for_java_call(slow_call);
4917     // this->control() comes from set_results_for_java_call
4918     result_reg->set_req(_slow_path, control());
4919     result_val->set_req(_slow_path, slow_result);
4920     result_io ->set_req(_slow_path, i_o());
4921     result_mem->set_req(_slow_path, reset_memory());
4922   }
4923 
4924   set_control(normal_ctl);
4925   if (!stopped()) {
4926     // Normal case:  The array type has been cached in the java.lang.Class.
4927     // The following call works fine even if the array type is polymorphic.
4928     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4929 
4930     klass_node = load_default_array_klass(klass_node);
4931 
4932     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4933     result_reg->init_req(_normal_path, control());
4934     result_val->init_req(_normal_path, obj);
4935     result_io ->init_req(_normal_path, i_o());
4936     result_mem->init_req(_normal_path, reset_memory());
4937 
4938     if (uninitialized) {
4939       // Mark the allocation so that zeroing is skipped
4940       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4941       alloc->maybe_set_complete(&_gvn);
4942     }
4943   }
4944 
4945   // Return the combined state.
4946   set_i_o(        _gvn.transform(result_io)  );
4947   set_all_memory( _gvn.transform(result_mem));
4948 
4949   C->set_has_split_ifs(true); // Has chance for split-if optimization
4950   set_result(result_reg, result_val);
4951   return true;

5000   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
5001   { PreserveReexecuteState preexecs(this);
5002     jvms()->set_should_reexecute(true);
5003 
5004     array_type_mirror = null_check(array_type_mirror);
5005     original          = null_check(original);
5006 
5007     // Check if a null path was taken unconditionally.
5008     if (stopped())  return true;
5009 
5010     Node* orig_length = load_array_length(original);
5011 
5012     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
5013     klass_node = null_check(klass_node);
5014 
5015     RegionNode* bailout = new RegionNode(1);
5016     record_for_igvn(bailout);
5017 
5018     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
5019     // Bail out if that is so.
5020     // Inline type array may have object field that would require a
5021     // write barrier. Conservatively, go to slow path.
5022     // TODO 8251971: Optimize for the case when flat src/dst are later found
5023     // to not contain oops (i.e., move this check to the macro expansion phase).
5024     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5025     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
5026     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
5027     bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
5028                         // Can src array be flat and contain oops?
5029                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
5030                         // Can dest array be flat and contain oops?
5031                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
5032     // TODO 8366668 generate_non_refArray_guard also passed for ref arrays??
5033     Node* not_objArray = exclude_flat ? generate_non_refArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
5034 
5035     klass_node = load_default_array_klass(klass_node);
5036 
5037     if (not_objArray != nullptr) {
5038       // Improve the klass node's type from the new optimistic assumption:
5039       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
5040       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
5041       Node* cast = new CastPPNode(control(), klass_node, akls);
5042       klass_node = _gvn.transform(cast);
5043     }
5044 
5045     // Bail out if either start or end is negative.
5046     generate_negative_guard(start, bailout, &start);
5047     generate_negative_guard(end,   bailout, &end);
5048 
5049     Node* length = end;
5050     if (_gvn.type(start) != TypeInt::ZERO) {
5051       length = _gvn.transform(new SubINode(end, start));
5052     }
5053 
5054     // Bail out if length is negative (i.e., if start > end).
5055     // Without this the new_array would throw
5056     // NegativeArraySizeException but IllegalArgumentException is what
5057     // should be thrown
5058     generate_negative_guard(length, bailout, &length);
5059 
5060     // Handle inline type arrays
5061     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
5062     if (!stopped()) {
5063       // TODO JDK-8329224
5064       if (!orig_t->is_null_free()) {
5065         // Not statically known to be null free, add a check
5066         generate_fair_guard(null_free_array_test(original), bailout);
5067       }
5068       orig_t = _gvn.type(original)->isa_aryptr();
5069       if (orig_t != nullptr && orig_t->is_flat()) {
5070         // Src is flat, check that dest is flat as well
5071         if (exclude_flat) {
5072           // Dest can't be flat, bail out
5073           bailout->add_req(control());
5074           set_control(top());
5075         } else {
5076           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
5077         }
5078         // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy.
5079       } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) &&
5080                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
5081                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
5082         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
5083         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
5084         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
5085         if (orig_t != nullptr) {
5086           orig_t = orig_t->cast_to_not_flat();
5087           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
5088         }
5089       }
5090       if (!can_validate) {
5091         // No validation. The subtype check emitted at macro expansion time will not go to the slow
5092         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
5093         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
5094         generate_fair_guard(flat_array_test(klass_node), bailout);
5095         generate_fair_guard(null_free_array_test(original), bailout);
5096       }
5097     }
5098 
5099     // Bail out if start is larger than the original length
5100     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
5101     generate_negative_guard(orig_tail, bailout, &orig_tail);
5102 
5103     if (bailout->req() > 1) {
5104       PreserveJVMState pjvms(this);
5105       set_control(_gvn.transform(bailout));
5106       uncommon_trap(Deoptimization::Reason_intrinsic,
5107                     Deoptimization::Action_maybe_recompile);
5108     }
5109 
5110     if (!stopped()) {
5111       // How many elements will we copy from the original?
5112       // The answer is MinI(orig_tail, length).
5113       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
5114 
5115       // Generate a direct call to the right arraycopy function(s).
5116       // We know the copy is disjoint but we might not know if the
5117       // oop stores need checking.
5118       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

5124       // to the copyOf to be validated, including that the copy to the
5125       // new array won't trigger an ArrayStoreException. That subtype
5126       // check can be optimized if we know something on the type of
5127       // the input array from type speculation.
5128       if (_gvn.type(klass_node)->singleton()) {
5129         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
5130         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
5131 
5132         int test = C->static_subtype_check(superk, subk);
5133         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
5134           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
5135           if (t_original->speculative_type() != nullptr) {
5136             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
5137           }
5138         }
5139       }
5140 
5141       bool validated = false;
5142       // Reason_class_check rather than Reason_intrinsic because we
5143       // want to intrinsify even if this traps.
5144       if (can_validate) {
5145         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
5146 
5147         if (not_subtype_ctrl != top()) {
5148           PreserveJVMState pjvms(this);
5149           set_control(not_subtype_ctrl);
5150           uncommon_trap(Deoptimization::Reason_class_check,
5151                         Deoptimization::Action_make_not_entrant);
5152           assert(stopped(), "Should be stopped");
5153         }
5154         validated = true;
5155       }
5156 
5157       if (!stopped()) {
5158         newcopy = new_array(klass_node, length, 0);  // no arguments to push
5159 
5160         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
5161                                                 load_object_klass(original), klass_node);
5162         if (!is_copyOfRange) {
5163           ac->set_copyof(validated);
5164         } else {

5210 
5211 //-----------------------generate_method_call----------------------------
5212 // Use generate_method_call to make a slow-call to the real
5213 // method if the fast path fails.  An alternative would be to
5214 // use a stub like OptoRuntime::slow_arraycopy_Java.
5215 // This only works for expanding the current library call,
5216 // not another intrinsic.  (E.g., don't use this for making an
5217 // arraycopy call inside of the copyOf intrinsic.)
5218 CallJavaNode*
5219 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
5220   // When compiling the intrinsic method itself, do not use this technique.
5221   guarantee(callee() != C->method(), "cannot make slow-call to self");
5222 
5223   ciMethod* method = callee();
5224   // ensure the JVMS we have will be correct for this call
5225   guarantee(method_id == method->intrinsic_id(), "must match");
5226 
5227   const TypeFunc* tf = TypeFunc::make(method);
5228   if (res_not_null) {
5229     assert(tf->return_type() == T_OBJECT, "");
5230     const TypeTuple* range = tf->range_cc();
5231     const Type** fields = TypeTuple::fields(range->cnt());
5232     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
5233     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
5234     tf = TypeFunc::make(tf->domain_cc(), new_range);
5235   }
5236   CallJavaNode* slow_call;
5237   if (is_static) {
5238     assert(!is_virtual, "");
5239     slow_call = new CallStaticJavaNode(C, tf,
5240                            SharedRuntime::get_resolve_static_call_stub(), method);
5241   } else if (is_virtual) {
5242     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
5243     int vtable_index = Method::invalid_vtable_index;
5244     if (UseInlineCaches) {
5245       // Suppress the vtable call
5246     } else {
5247       // hashCode and clone are not a miranda methods,
5248       // so the vtable index is fixed.
5249       // No need to use the linkResolver to get it.
5250        vtable_index = method->vtable_index();
5251        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5252               "bad index %d", vtable_index);
5253     }
5254     slow_call = new CallDynamicJavaNode(tf,

5271   set_edges_for_java_call(slow_call);
5272   return slow_call;
5273 }
5274 
5275 
5276 /**
5277  * Build special case code for calls to hashCode on an object. This call may
5278  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
5279  * slightly different code.
5280  */
5281 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
5282   assert(is_static == callee()->is_static(), "correct intrinsic selection");
5283   assert(!(is_virtual && is_static), "either virtual, special, or static");
5284 
5285   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
5286 
5287   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5288   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
5289   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
5290   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5291   Node* obj = argument(0);
5292 
5293   // Don't intrinsify hashcode on inline types for now.
5294   // The "is locked" runtime check below also serves as inline type check and goes to the slow path.
5295   if (gvn().type(obj)->is_inlinetypeptr()) {
5296     return false;
5297   }
5298 
5299   if (!is_static) {
5300     // Check for hashing null object
5301     obj = null_check_receiver();
5302     if (stopped())  return true;        // unconditionally null
5303     result_reg->init_req(_null_path, top());
5304     result_val->init_req(_null_path, top());
5305   } else {
5306     // Do a null check, and return zero if null.
5307     // System.identityHashCode(null) == 0

5308     Node* null_ctl = top();
5309     obj = null_check_oop(obj, &null_ctl);
5310     result_reg->init_req(_null_path, null_ctl);
5311     result_val->init_req(_null_path, _gvn.intcon(0));
5312   }
5313 
5314   // Unconditionally null?  Then return right away.
5315   if (stopped()) {
5316     set_control( result_reg->in(_null_path));
5317     if (!stopped())
5318       set_result(result_val->in(_null_path));
5319     return true;
5320   }
5321 
5322   // We only go to the fast case code if we pass a number of guards.  The
5323   // paths which do not pass are accumulated in the slow_region.
5324   RegionNode* slow_region = new RegionNode(1);
5325   record_for_igvn(slow_region);
5326 
5327   // If this is a virtual call, we generate a funny guard.  We pull out
5328   // the vtable entry corresponding to hashCode() from the target object.
5329   // If the target method which we are calling happens to be the native
5330   // Object hashCode() method, we pass the guard.  We do not need this
5331   // guard for non-virtual calls -- the caller is known to be the native
5332   // Object hashCode().
5333   if (is_virtual) {
5334     // After null check, get the object's klass.
5335     Node* obj_klass = load_object_klass(obj);
5336     generate_virtual_guard(obj_klass, slow_region);
5337   }
5338 
5339   // Get the header out of the object, use LoadMarkNode when available
5340   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5341   // The control of the load must be null. Otherwise, the load can move before
5342   // the null check after castPP removal.
5343   Node* no_ctrl = nullptr;
5344   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5345 
5346   if (!UseObjectMonitorTable) {
5347     // Test the header to see if it is safe to read w.r.t. locking.
5348   // This also serves as guard against inline types
5349     Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
5350     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5351     if (LockingMode == LM_LIGHTWEIGHT) {
5352       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5353       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5354       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5355 
5356       generate_slow_guard(test_monitor, slow_region);
5357     } else {
5358       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
5359       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
5360       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
5361 
5362       generate_slow_guard(test_not_unlocked, slow_region);
5363     }
5364   }
5365 
5366   // Get the hash value and check to see that it has been properly assigned.
5367   // We depend on hash_mask being at most 32 bits and avoid the use of
5368   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5369   // vm: see markWord.hpp.

5404     // this->control() comes from set_results_for_java_call
5405     result_reg->init_req(_slow_path, control());
5406     result_val->init_req(_slow_path, slow_result);
5407     result_io  ->set_req(_slow_path, i_o());
5408     result_mem ->set_req(_slow_path, reset_memory());
5409   }
5410 
5411   // Return the combined state.
5412   set_i_o(        _gvn.transform(result_io)  );
5413   set_all_memory( _gvn.transform(result_mem));
5414 
5415   set_result(result_reg, result_val);
5416   return true;
5417 }
5418 
5419 //---------------------------inline_native_getClass----------------------------
5420 // public final native Class<?> java.lang.Object.getClass();
5421 //
5422 // Build special case code for calls to getClass on an object.
5423 bool LibraryCallKit::inline_native_getClass() {
5424   Node* obj = argument(0);
5425   if (obj->is_InlineType()) {
5426     const Type* t = _gvn.type(obj);
5427     if (t->maybe_null()) {
5428       null_check(obj);
5429     }
5430     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5431     return true;
5432   }
5433   obj = null_check_receiver();
5434   if (stopped())  return true;
5435   set_result(load_mirror_from_klass(load_object_klass(obj)));
5436   return true;
5437 }
5438 
5439 //-----------------inline_native_Reflection_getCallerClass---------------------
5440 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5441 //
5442 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5443 //
5444 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5445 // in that it must skip particular security frames and checks for
5446 // caller sensitive methods.
5447 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5448 #ifndef PRODUCT
5449   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5450     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5451   }
5452 #endif
5453 

5835 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5836 //
5837 // The general case has two steps, allocation and copying.
5838 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5839 //
5840 // Copying also has two cases, oop arrays and everything else.
5841 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5842 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5843 //
5844 // These steps fold up nicely if and when the cloned object's klass
5845 // can be sharply typed as an object array, a type array, or an instance.
5846 //
5847 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5848   PhiNode* result_val;
5849 
5850   // Set the reexecute bit for the interpreter to reexecute
5851   // the bytecode that invokes Object.clone if deoptimization happens.
5852   { PreserveReexecuteState preexecs(this);
5853     jvms()->set_should_reexecute(true);
5854 
5855     Node* obj = argument(0);
5856     obj = null_check_receiver();
5857     if (stopped())  return true;
5858 
5859     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5860     if (obj_type->is_inlinetypeptr()) {
5861       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5862       // no identity.
5863       set_result(obj);
5864       return true;
5865     }
5866 
5867     // If we are going to clone an instance, we need its exact type to
5868     // know the number and types of fields to convert the clone to
5869     // loads/stores. Maybe a speculative type can help us.
5870     if (!obj_type->klass_is_exact() &&
5871         obj_type->speculative_type() != nullptr &&
5872         obj_type->speculative_type()->is_instance_klass() &&
5873         !obj_type->speculative_type()->is_inlinetype()) {
5874       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5875       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5876           !spec_ik->has_injected_fields()) {
5877         if (!obj_type->isa_instptr() ||
5878             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5879           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5880         }
5881       }
5882     }
5883 
5884     // Conservatively insert a memory barrier on all memory slices.
5885     // Do not let writes into the original float below the clone.
5886     insert_mem_bar(Op_MemBarCPUOrder);
5887 
5888     // paths into result_reg:
5889     enum {
5890       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5891       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5892       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5893       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5894       PATH_LIMIT
5895     };
5896     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5897     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5898     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5899     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5900     record_for_igvn(result_reg);
5901 
5902     Node* obj_klass = load_object_klass(obj);
5903     // We only go to the fast case code if we pass a number of guards.
5904     // The paths which do not pass are accumulated in the slow_region.
5905     RegionNode* slow_region = new RegionNode(1);
5906     record_for_igvn(slow_region);
5907 
5908     Node* array_obj = obj;
5909     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5910     if (array_ctl != nullptr) {
5911       // It's an array.
5912       PreserveJVMState pjvms(this);
5913       set_control(array_ctl);



5914 
5915       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5916       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5917       if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5918           obj_type->can_be_inline_array() &&
5919           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5920         // Flat inline type array may have object field that would require a
5921         // write barrier. Conservatively, go to slow path.
5922         generate_fair_guard(flat_array_test(obj_klass), slow_region);













5923       }







5924 
5925       if (!stopped()) {
5926         Node* obj_length = load_array_length(array_obj);
5927         Node* array_size = nullptr; // Size of the array without object alignment padding.
5928         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5929 
5930         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5931         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5932           // If it is an oop array, it requires very special treatment,
5933           // because gc barriers are required when accessing the array.
5934           Node* is_obja = generate_refArray_guard(obj_klass, (RegionNode*)nullptr);
5935           if (is_obja != nullptr) {
5936             PreserveJVMState pjvms2(this);
5937             set_control(is_obja);
5938             // Generate a direct call to the right arraycopy function(s).
5939             // Clones are always tightly coupled.
5940             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5941             ac->set_clone_oop_array();
5942             Node* n = _gvn.transform(ac);
5943             assert(n == ac, "cannot disappear");
5944             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5945 
5946             result_reg->init_req(_objArray_path, control());
5947             result_val->init_req(_objArray_path, alloc_obj);
5948             result_i_o ->set_req(_objArray_path, i_o());
5949             result_mem ->set_req(_objArray_path, reset_memory());
5950           }
5951         }
5952         // Otherwise, there are no barriers to worry about.
5953         // (We can dispense with card marks if we know the allocation
5954         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5955         //  causes the non-eden paths to take compensating steps to
5956         //  simulate a fresh allocation, so that no further
5957         //  card marks are required in compiled code to initialize
5958         //  the object.)
5959 
5960         if (!stopped()) {
5961           copy_to_clone(obj, alloc_obj, array_size, true);
5962 
5963           // Present the results of the copy.
5964           result_reg->init_req(_array_path, control());
5965           result_val->init_req(_array_path, alloc_obj);
5966           result_i_o ->set_req(_array_path, i_o());
5967           result_mem ->set_req(_array_path, reset_memory());
5968         }
5969       }
5970     }
5971 




5972     if (!stopped()) {
5973       // It's an instance (we did array above).  Make the slow-path tests.
5974       // If this is a virtual call, we generate a funny guard.  We grab
5975       // the vtable entry corresponding to clone() from the target object.
5976       // If the target method which we are calling happens to be the
5977       // Object clone() method, we pass the guard.  We do not need this
5978       // guard for non-virtual calls; the caller is known to be the native
5979       // Object clone().
5980       if (is_virtual) {
5981         generate_virtual_guard(obj_klass, slow_region);
5982       }
5983 
5984       // The object must be easily cloneable and must not have a finalizer.
5985       // Both of these conditions may be checked in a single test.
5986       // We could optimize the test further, but we don't care.
5987       generate_misc_flags_guard(obj_klass,
5988                                 // Test both conditions:
5989                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5990                                 // Must be cloneable but not finalizer:
5991                                 KlassFlags::_misc_is_cloneable_fast,

6083         set_jvms(sfpt->jvms());
6084         _reexecute_sp = jvms()->sp();
6085 
6086         return saved_jvms;
6087       }
6088     }
6089   }
6090   return nullptr;
6091 }
6092 
6093 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
6094 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
6095 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
6096   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
6097   uint size = alloc->req();
6098   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
6099   old_jvms->set_map(sfpt);
6100   for (uint i = 0; i < size; i++) {
6101     sfpt->init_req(i, alloc->in(i));
6102   }
6103   int adjustment = 1;
6104   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
6105   if (ary_klass_ptr->is_null_free()) {
6106     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which
6107     // also requires the componentType and initVal on stack for re-execution.
6108     // Re-create and push the componentType.
6109     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
6110     ciInstance* instance = klass->component_mirror_instance();
6111     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
6112     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
6113     adjustment++;
6114   }
6115   // re-push array length for deoptimization
6116   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
6117   if (ary_klass_ptr->is_null_free()) {
6118     // Re-create and push the initVal.
6119     Node* init_val = alloc->in(AllocateNode::InitValue);
6120     if (init_val == nullptr) {
6121       init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass());
6122     } else if (UseCompressedOops) {
6123       init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr()));
6124     }
6125     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val);
6126     adjustment++;
6127   }
6128   old_jvms->set_sp(old_jvms->sp() + adjustment);
6129   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
6130   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
6131   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
6132   old_jvms->set_should_reexecute(true);
6133 
6134   sfpt->set_i_o(map()->i_o());
6135   sfpt->set_memory(map()->memory());
6136   sfpt->set_control(map()->control());
6137   return sfpt;
6138 }
6139 
6140 // In case of a deoptimization, we restart execution at the
6141 // allocation, allocating a new array. We would leave an uninitialized
6142 // array in the heap that GCs wouldn't expect. Move the allocation
6143 // after the traps so we don't allocate the array if we
6144 // deoptimize. This is possible because tightly_coupled_allocation()
6145 // guarantees there's no observer of the allocated array at this point
6146 // and the control flow is simple enough.
6147 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
6148                                                     int saved_reexecute_sp, uint new_idx) {
6149   if (saved_jvms_before_guards != nullptr && !stopped()) {
6150     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
6151 
6152     assert(alloc != nullptr, "only with a tightly coupled allocation");
6153     // restore JVM state to the state at the arraycopy
6154     saved_jvms_before_guards->map()->set_control(map()->control());
6155     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
6156     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
6157     // If we've improved the types of some nodes (null check) while
6158     // emitting the guards, propagate them to the current state
6159     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
6160     set_jvms(saved_jvms_before_guards);
6161     _reexecute_sp = saved_reexecute_sp;
6162 
6163     // Remove the allocation from above the guards
6164     CallProjections* callprojs = alloc->extract_projections(true);

6165     InitializeNode* init = alloc->initialization();
6166     Node* alloc_mem = alloc->in(TypeFunc::Memory);
6167     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
6168     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
6169 
6170     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
6171     // the allocation (i.e. is only valid if the allocation succeeds):
6172     // 1) replace CastIINode with AllocateArrayNode's length here
6173     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
6174     //
6175     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
6176     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
6177     Node* init_control = init->proj_out(TypeFunc::Control);
6178     Node* alloc_length = alloc->Ideal_length();
6179 #ifdef ASSERT
6180     Node* prev_cast = nullptr;
6181 #endif
6182     for (uint i = 0; i < init_control->outcnt(); i++) {
6183       Node* init_out = init_control->raw_out(i);
6184       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
6185 #ifdef ASSERT
6186         if (prev_cast == nullptr) {
6187           prev_cast = init_out;

6189           if (prev_cast->cmp(*init_out) == false) {
6190             prev_cast->dump();
6191             init_out->dump();
6192             assert(false, "not equal CastIINode");
6193           }
6194         }
6195 #endif
6196         C->gvn_replace_by(init_out, alloc_length);
6197       }
6198     }
6199     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
6200 
6201     // move the allocation here (after the guards)
6202     _gvn.hash_delete(alloc);
6203     alloc->set_req(TypeFunc::Control, control());
6204     alloc->set_req(TypeFunc::I_O, i_o());
6205     Node *mem = reset_memory();
6206     set_all_memory(mem);
6207     alloc->set_req(TypeFunc::Memory, mem);
6208     set_control(init->proj_out_or_null(TypeFunc::Control));
6209     set_i_o(callprojs->fallthrough_ioproj);
6210 
6211     // Update memory as done in GraphKit::set_output_for_allocation()
6212     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
6213     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
6214     if (ary_type->isa_aryptr() && length_type != nullptr) {
6215       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
6216     }
6217     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
6218     int            elemidx  = C->get_alias_index(telemref);
6219     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
6220     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
6221 
6222     Node* allocx = _gvn.transform(alloc);
6223     assert(allocx == alloc, "where has the allocation gone?");
6224     assert(dest->is_CheckCastPP(), "not an allocation result?");
6225 
6226     _gvn.hash_delete(dest);
6227     dest->set_req(0, control());
6228     Node* destx = _gvn.transform(dest);
6229     assert(destx == dest, "where has the allocation result gone?");

6527         top_src  = src_type->isa_aryptr();
6528         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6529         src_spec = true;
6530       }
6531       if (!has_dest) {
6532         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6533         dest_type  = _gvn.type(dest);
6534         top_dest  = dest_type->isa_aryptr();
6535         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6536         dest_spec = true;
6537       }
6538     }
6539   }
6540 
6541   if (has_src && has_dest && can_emit_guards) {
6542     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6543     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6544     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6545     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6546 
6547     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6548       // If both arrays are object arrays then having the exact types
6549       // for both will remove the need for a subtype check at runtime
6550       // before the call and may make it possible to pick a faster copy
6551       // routine (without a subtype check on every element)
6552       // Do we have the exact type of src?
6553       bool could_have_src = src_spec;
6554       // Do we have the exact type of dest?
6555       bool could_have_dest = dest_spec;
6556       ciKlass* src_k = nullptr;
6557       ciKlass* dest_k = nullptr;
6558       if (!src_spec) {
6559         src_k = src_type->speculative_type_not_null();
6560         if (src_k != nullptr && src_k->is_array_klass()) {
6561           could_have_src = true;
6562         }
6563       }
6564       if (!dest_spec) {
6565         dest_k = dest_type->speculative_type_not_null();
6566         if (dest_k != nullptr && dest_k->is_array_klass()) {
6567           could_have_dest = true;
6568         }
6569       }
6570       if (could_have_src && could_have_dest) {
6571         // If we can have both exact types, emit the missing guards
6572         if (could_have_src && !src_spec) {
6573           src = maybe_cast_profiled_obj(src, src_k, true);
6574           src_type = _gvn.type(src);
6575           top_src = src_type->isa_aryptr();
6576         }
6577         if (could_have_dest && !dest_spec) {
6578           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6579           dest_type = _gvn.type(dest);
6580           top_dest = dest_type->isa_aryptr();
6581         }
6582       }
6583     }
6584   }
6585 
6586   ciMethod* trap_method = method();
6587   int trap_bci = bci();
6588   if (saved_jvms_before_guards != nullptr) {
6589     trap_method = alloc->jvms()->method();
6590     trap_bci = alloc->jvms()->bci();
6591   }
6592 
6593   bool negative_length_guard_generated = false;
6594 
6595   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6596       can_emit_guards && !src->is_top() && !dest->is_top()) {

6597     // validate arguments: enables transformation the ArrayCopyNode
6598     validated = true;
6599 
6600     RegionNode* slow_region = new RegionNode(1);
6601     record_for_igvn(slow_region);
6602 
6603     // (1) src and dest are arrays.
6604     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6605     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6606 
6607     // (2) src and dest arrays must have elements of the same BasicType
6608     // done at macro expansion or at Ideal transformation time
6609 
6610     // (4) src_offset must not be negative.
6611     generate_negative_guard(src_offset, slow_region);
6612 
6613     // (5) dest_offset must not be negative.
6614     generate_negative_guard(dest_offset, slow_region);
6615 
6616     // (7) src_offset + length must not exceed length of src.

6619                          slow_region);
6620 
6621     // (8) dest_offset + length must not exceed length of dest.
6622     generate_limit_guard(dest_offset, length,
6623                          load_array_length(dest),
6624                          slow_region);
6625 
6626     // (6) length must not be negative.
6627     // This is also checked in generate_arraycopy() during macro expansion, but
6628     // we also have to check it here for the case where the ArrayCopyNode will
6629     // be eliminated by Escape Analysis.
6630     if (EliminateAllocations) {
6631       generate_negative_guard(length, slow_region);
6632       negative_length_guard_generated = true;
6633     }
6634 
6635     // (9) each element of an oop array must be assignable
6636     Node* dest_klass = load_object_klass(dest);
6637     if (src != dest) {
6638       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6639       slow_region->add_req(not_subtype_ctrl);
6640     }
6641 
6642     // TODO 8350865 Fix below logic. Also handle atomicity.
6643     generate_fair_guard(flat_array_test(src), slow_region);
6644     generate_fair_guard(flat_array_test(dest), slow_region);
6645 
6646     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6647     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6648     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6649     src_type = _gvn.type(src);
6650     top_src  = src_type->isa_aryptr();
6651 
6652     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6653     if (!stopped() && UseArrayFlattening) {
6654       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6655       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6656       if (top_src != nullptr && top_src->is_flat()) {
6657         // Src is flat, check that dest is flat as well
6658         if (top_dest != nullptr && !top_dest->is_flat()) {
6659           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6660           // Since dest is flat and src <: dest, dest must have the same type as src.
6661           top_dest = top_src->cast_to_exactness(false);
6662           assert(top_dest->is_flat(), "dest must be flat");
6663           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6664         }
6665       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6666         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6667         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6668         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6669         generate_fair_guard(flat_array_test(src), slow_region);
6670         if (top_src != nullptr) {
6671           top_src = top_src->cast_to_not_flat();
6672           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6673         }
6674       }
6675     }
6676 
6677     {
6678       PreserveJVMState pjvms(this);
6679       set_control(_gvn.transform(slow_region));
6680       uncommon_trap(Deoptimization::Reason_intrinsic,
6681                     Deoptimization::Action_make_not_entrant);
6682       assert(stopped(), "Should be stopped");
6683     }




6684     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6685   }
6686 
6687   if (stopped()) {
6688     return true;
6689   }
6690 
6691   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6692                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6693                                           // so the compiler has a chance to eliminate them: during macro expansion,
6694                                           // we have to set their control (CastPP nodes are eliminated).
6695                                           load_object_klass(src), load_object_klass(dest),
6696                                           load_array_length(src), load_array_length(dest));
6697 
6698   ac->set_arraycopy(validated);
6699 
6700   Node* n = _gvn.transform(ac);
6701   if (n == ac) {
6702     ac->connect_outputs(this);
6703   } else {
< prev index next >