< prev index next >

src/hotspot/share/opto/library_call.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"



  26 #include "ci/ciUtilities.inline.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"

  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "oops/klass.inline.hpp"

  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"

  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"

  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"

  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"

  53 #include "opto/vectornode.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/unsafe.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/stubRoutines.hpp"

  61 #include "utilities/macros.hpp"
  62 #include "utilities/powerOfTwo.hpp"
  63 
  64 //---------------------------make_vm_intrinsic----------------------------
  65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  66   vmIntrinsicID id = m->intrinsic_id();
  67   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  68 
  69   if (!m->is_loaded()) {
  70     // Do not attempt to inline unloaded methods.
  71     return nullptr;
  72   }
  73 
  74   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  75   bool is_available = false;
  76 
  77   {
  78     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  79     // the compiler must transition to '_thread_in_vm' state because both
  80     // methods access VM-internal data.

 298   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 299   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 300   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 301   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 302   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 303 
 304   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 305 
 306   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 307 
 308   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 309   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 310   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 311   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 312 
 313   case vmIntrinsics::_compressStringC:
 314   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 315   case vmIntrinsics::_inflateStringC:
 316   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 317 


 318   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 319   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 320   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 321   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 322   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 323   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 324   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 325   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 326   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);

 327 
 328   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);

 337 
 338   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 339   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 340   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 341   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 342   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 343   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 344   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 345   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 346   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 347 
 348   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 388   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 389   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 390   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 391   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 392   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 393   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 394   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 395   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 396   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 397 
 398   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 399   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 400   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 401   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 402   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 403   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 404   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 405   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 406   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 407 



 408   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 409   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 410   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 411   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 412   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 413 
 414   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 415   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 416   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 417   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 418   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 419   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 420   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 421   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 422   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 423   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 424   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 425   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 426   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 427   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);

 483                                                                                          "notifyJvmtiEnd", false, true);
 484   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 485                                                                                          "notifyJvmtiMount", false, false);
 486   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 487                                                                                          "notifyJvmtiUnmount", false, false);
 488   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 489 #endif
 490 
 491 #ifdef JFR_HAVE_INTRINSICS
 492   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 493   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 494   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 495 #endif
 496   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 497   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 498   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 499   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 500   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 501   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 502   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();

 503   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 504   case vmIntrinsics::_getLength:                return inline_native_getLength();
 505   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 506   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 507   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 508   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 509   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 510   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 511   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 512 
 513   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 514   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);



 515 
 516   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 517 
 518   case vmIntrinsics::_isInstance:
 519   case vmIntrinsics::_isHidden:
 520   case vmIntrinsics::_getSuperclass:
 521   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 522 
 523   case vmIntrinsics::_floatToRawIntBits:
 524   case vmIntrinsics::_floatToIntBits:
 525   case vmIntrinsics::_intBitsToFloat:
 526   case vmIntrinsics::_doubleToRawLongBits:
 527   case vmIntrinsics::_doubleToLongBits:
 528   case vmIntrinsics::_longBitsToDouble:
 529   case vmIntrinsics::_floatToFloat16:
 530   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 531   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 532   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 533   case vmIntrinsics::_floatIsFinite:
 534   case vmIntrinsics::_floatIsInfinite:

2292     case vmIntrinsics::_remainderUnsigned_l: {
2293       zero_check_long(argument(2));
2294       // Compile-time detect of null-exception
2295       if (stopped()) {
2296         return true; // keep the graph constructed so far
2297       }
2298       n = new UModLNode(control(), argument(0), argument(2));
2299       break;
2300     }
2301     default:  fatal_unexpected_iid(id);  break;
2302   }
2303   set_result(_gvn.transform(n));
2304   return true;
2305 }
2306 
2307 //----------------------------inline_unsafe_access----------------------------
2308 
2309 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2310   // Attempt to infer a sharper value type from the offset and base type.
2311   ciKlass* sharpened_klass = nullptr;

2312 
2313   // See if it is an instance field, with an object type.
2314   if (alias_type->field() != nullptr) {
2315     if (alias_type->field()->type()->is_klass()) {
2316       sharpened_klass = alias_type->field()->type()->as_klass();

2317     }
2318   }
2319 
2320   const TypeOopPtr* result = nullptr;
2321   // See if it is a narrow oop array.
2322   if (adr_type->isa_aryptr()) {
2323     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2324       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();

2325       if (elem_type != nullptr && elem_type->is_loaded()) {
2326         // Sharpen the value type.
2327         result = elem_type;
2328       }
2329     }
2330   }
2331 
2332   // The sharpened class might be unloaded if there is no class loader
2333   // contraint in place.
2334   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2335     // Sharpen the value type.
2336     result = TypeOopPtr::make_from_klass(sharpened_klass);



2337   }
2338   if (result != nullptr) {
2339 #ifndef PRODUCT
2340     if (C->print_intrinsics() || C->print_inlining()) {
2341       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2342       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2343     }
2344 #endif
2345   }
2346   return result;
2347 }
2348 
2349 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2350   switch (kind) {
2351       case Relaxed:
2352         return MO_UNORDERED;
2353       case Opaque:
2354         return MO_RELAXED;
2355       case Acquire:
2356         return MO_ACQUIRE;
2357       case Release:
2358         return MO_RELEASE;
2359       case Volatile:
2360         return MO_SEQ_CST;
2361       default:
2362         ShouldNotReachHere();
2363         return 0;
2364   }
2365 }
2366 
2367 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2368   if (callee()->is_static())  return false;  // caller must have the capability!
2369   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2370   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2371   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2372   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2373 
2374   if (is_reference_type(type)) {
2375     decorators |= ON_UNKNOWN_OOP_REF;
2376   }
2377 
2378   if (unaligned) {
2379     decorators |= C2_UNALIGNED;
2380   }
2381 
2382 #ifndef PRODUCT
2383   {
2384     ResourceMark rm;
2385     // Check the signatures.
2386     ciSignature* sig = callee()->signature();
2387 #ifdef ASSERT
2388     if (!is_store) {
2389       // Object getReference(Object base, int/long offset), etc.
2390       BasicType rtype = sig->return_type()->basic_type();
2391       assert(rtype == type, "getter must return the expected value");
2392       assert(sig->count() == 2, "oop getter has 2 arguments");
2393       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2394       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2395     } else {
2396       // void putReference(Object base, int/long offset, Object x), etc.
2397       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2398       assert(sig->count() == 3, "oop putter has 3 arguments");
2399       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2400       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2401       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2402       assert(vtype == type, "putter must accept the expected value");
2403     }
2404 #endif // ASSERT
2405  }
2406 #endif //PRODUCT
2407 
2408   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2409 
2410   Node* receiver = argument(0);  // type: oop
2411 
2412   // Build address expression.
2413   Node* heap_base_oop = top();
2414 
2415   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2416   Node* base = argument(1);  // type: oop
2417   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2418   Node* offset = argument(2);  // type: long
2419   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2420   // to be plain byte offsets, which are also the same as those accepted
2421   // by oopDesc::field_addr.
2422   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2423          "fieldOffset must be byte-scaled");

















































2424   // 32-bit machines ignore the high half!
2425   offset = ConvL2X(offset);
2426 
2427   // Save state and restore on bailout
2428   uint old_sp = sp();
2429   SafePointNode* old_map = clone_map();
2430 
2431   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2432   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2433 
2434   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2435     if (type != T_OBJECT) {
2436       decorators |= IN_NATIVE; // off-heap primitive access
2437     } else {
2438       set_map(old_map);
2439       set_sp(old_sp);
2440       return false; // off-heap oop accesses are not supported
2441     }
2442   } else {
2443     heap_base_oop = base; // on-heap or mixed access
2444   }
2445 
2446   // Can base be null? Otherwise, always on-heap access.
2447   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2448 
2449   if (!can_access_non_heap) {
2450     decorators |= IN_HEAP;
2451   }
2452 
2453   Node* val = is_store ? argument(4) : nullptr;
2454 
2455   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2456   if (adr_type == TypePtr::NULL_PTR) {
2457     set_map(old_map);
2458     set_sp(old_sp);
2459     return false; // off-heap access with zero address
2460   }
2461 
2462   // Try to categorize the address.
2463   Compile::AliasType* alias_type = C->alias_type(adr_type);
2464   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2465 
2466   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2467       alias_type->adr_type() == TypeAryPtr::RANGE) {
2468     set_map(old_map);
2469     set_sp(old_sp);
2470     return false; // not supported
2471   }
2472 
2473   bool mismatched = false;
2474   BasicType bt = alias_type->basic_type();




























2475   if (bt != T_ILLEGAL) {
2476     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2477     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2478       // Alias type doesn't differentiate between byte[] and boolean[]).
2479       // Use address type to get the element type.
2480       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2481     }
2482     if (is_reference_type(bt, true)) {
2483       // accessing an array field with getReference is not a mismatch
2484       bt = T_OBJECT;
2485     }
2486     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2487       // Don't intrinsify mismatched object accesses
2488       set_map(old_map);
2489       set_sp(old_sp);
2490       return false;
2491     }
2492     mismatched = (bt != type);
2493   } else if (alias_type->adr_type()->isa_oopptr()) {
2494     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2495   }
2496 























2497   destruct_map_clone(old_map);
2498   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2499 
2500   if (mismatched) {
2501     decorators |= C2_MISMATCHED;
2502   }
2503 
2504   // First guess at the value type.
2505   const Type *value_type = Type::get_const_basic_type(type);
2506 
2507   // Figure out the memory ordering.
2508   decorators |= mo_decorator_for_access_kind(kind);
2509 
2510   if (!is_store && type == T_OBJECT) {
2511     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2512     if (tjp != nullptr) {
2513       value_type = tjp;


2514     }
2515   }
2516 
2517   receiver = null_check(receiver);
2518   if (stopped()) {
2519     return true;
2520   }
2521   // Heap pointers get a null-check from the interpreter,
2522   // as a courtesy.  However, this is not guaranteed by Unsafe,
2523   // and it is not possible to fully distinguish unintended nulls
2524   // from intended ones in this API.
2525 
2526   if (!is_store) {
2527     Node* p = nullptr;
2528     // Try to constant fold a load from a constant field
2529     ciField* field = alias_type->field();
2530     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2531       // final or stable field
2532       p = make_constant_from_field(field, heap_base_oop);
2533     }
2534 
2535     if (p == nullptr) { // Could not constant fold the load
2536       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);









2537       // Normalize the value returned by getBoolean in the following cases
2538       if (type == T_BOOLEAN &&
2539           (mismatched ||
2540            heap_base_oop == top() ||                  // - heap_base_oop is null or
2541            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2542                                                       //   and the unsafe access is made to large offset
2543                                                       //   (i.e., larger than the maximum offset necessary for any
2544                                                       //   field access)
2545             ) {
2546           IdealKit ideal = IdealKit(this);
2547 #define __ ideal.
2548           IdealVariable normalized_result(ideal);
2549           __ declarations_done();
2550           __ set(normalized_result, p);
2551           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2552           __ set(normalized_result, ideal.ConI(1));
2553           ideal.end_if();
2554           final_sync(ideal);
2555           p = __ value(normalized_result);
2556 #undef __
2557       }
2558     }
2559     if (type == T_ADDRESS) {
2560       p = gvn().transform(new CastP2XNode(nullptr, p));
2561       p = ConvX2UL(p);
2562     }
2563     // The load node has the control of the preceding MemBarCPUOrder.  All
2564     // following nodes will have the control of the MemBarCPUOrder inserted at
2565     // the end of this method.  So, pushing the load onto the stack at a later
2566     // point is fine.
2567     set_result(p);
2568   } else {
2569     if (bt == T_ADDRESS) {
2570       // Repackage the long as a pointer.
2571       val = ConvL2X(val);
2572       val = gvn().transform(new CastX2PNode(val));
2573     }
2574     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);



























































































































































































































2575   }
2576 









2577   return true;
2578 }
2579 
2580 //----------------------------inline_unsafe_load_store----------------------------
2581 // This method serves a couple of different customers (depending on LoadStoreKind):
2582 //
2583 // LS_cmp_swap:
2584 //
2585 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2586 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2587 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2588 //
2589 // LS_cmp_swap_weak:
2590 //
2591 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2592 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2593 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2594 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2595 //
2596 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);

2765     }
2766     case LS_cmp_swap:
2767     case LS_cmp_swap_weak:
2768     case LS_get_add:
2769       break;
2770     default:
2771       ShouldNotReachHere();
2772   }
2773 
2774   // Null check receiver.
2775   receiver = null_check(receiver);
2776   if (stopped()) {
2777     return true;
2778   }
2779 
2780   int alias_idx = C->get_alias_index(adr_type);
2781 
2782   if (is_reference_type(type)) {
2783     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2784 













2785     // Transformation of a value which could be null pointer (CastPP #null)
2786     // could be delayed during Parse (for example, in adjust_map_after_if()).
2787     // Execute transformation here to avoid barrier generation in such case.
2788     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2789       newval = _gvn.makecon(TypePtr::NULL_PTR);
2790 
2791     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2792       // Refine the value to a null constant, when it is known to be null
2793       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2794     }
2795   }
2796 
2797   Node* result = nullptr;
2798   switch (kind) {
2799     case LS_cmp_exchange: {
2800       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2801                                             oldval, newval, value_type, type, decorators);
2802       break;
2803     }
2804     case LS_cmp_swap_weak:

2951                     Deoptimization::Action_make_not_entrant);
2952     }
2953     if (stopped()) {
2954       return true;
2955     }
2956 #endif //INCLUDE_JVMTI
2957 
2958   Node* test = nullptr;
2959   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2960     // Note:  The argument might still be an illegal value like
2961     // Serializable.class or Object[].class.   The runtime will handle it.
2962     // But we must make an explicit check for initialization.
2963     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2964     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2965     // can generate code to load it as unsigned byte.
2966     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2967     Node* bits = intcon(InstanceKlass::fully_initialized);
2968     test = _gvn.transform(new SubINode(inst, bits));
2969     // The 'test' is non-zero if we need to take a slow path.
2970   }
2971 
2972   Node* obj = new_instance(kls, test);





2973   set_result(obj);
2974   return true;
2975 }
2976 
2977 //------------------------inline_native_time_funcs--------------
2978 // inline code for System.currentTimeMillis() and System.nanoTime()
2979 // these have the same type and signature
2980 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2981   const TypeFunc* tf = OptoRuntime::void_long_Type();
2982   const TypePtr* no_memory_effects = nullptr;
2983   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2984   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2985 #ifdef ASSERT
2986   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2987   assert(value_top == top(), "second value must be top");
2988 #endif
2989   set_result(value);
2990   return true;
2991 }
2992 

3733   Node* thread = _gvn.transform(new ThreadLocalNode());
3734   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3735   Node* thread_obj_handle
3736     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3737   thread_obj_handle = _gvn.transform(thread_obj_handle);
3738   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3739   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3740 
3741   // Change the _monitor_owner_id of the JavaThread
3742   Node* tid = load_field_from_object(arr, "tid", "J");
3743   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3744   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3745 
3746   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3747   return true;
3748 }
3749 
3750 const Type* LibraryCallKit::scopedValueCache_type() {
3751   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3752   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3753   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3754 
3755   // Because we create the scopedValue cache lazily we have to make the
3756   // type of the result BotPTR.
3757   bool xk = etype->klass_is_exact();
3758   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3759   return objects_type;
3760 }
3761 
3762 Node* LibraryCallKit::scopedValueCache_helper() {
3763   Node* thread = _gvn.transform(new ThreadLocalNode());
3764   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3765   // We cannot use immutable_memory() because we might flip onto a
3766   // different carrier thread, at which point we'll need to use that
3767   // carrier thread's cache.
3768   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3769   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3770   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3771 }
3772 
3773 //------------------------inline_native_scopedValueCache------------------
3774 bool LibraryCallKit::inline_native_scopedValueCache() {
3775   Node* cache_obj_handle = scopedValueCache_helper();
3776   const Type* objects_type = scopedValueCache_type();
3777   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3778 

3862   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3863 
3864   // Result of top level CFG and Memory.
3865   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3866   record_for_igvn(result_rgn);
3867   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3868   record_for_igvn(result_mem);
3869 
3870   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3871   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3872   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3873   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3874 
3875   // Set output state.
3876   set_control(_gvn.transform(result_rgn));
3877   set_all_memory(_gvn.transform(result_mem));
3878 
3879   return true;
3880 }
3881 
3882 //---------------------------load_mirror_from_klass----------------------------
3883 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3884 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3885   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3886   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3887   // mirror = ((OopHandle)mirror)->resolve();
3888   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3889 }
3890 
3891 //-----------------------load_klass_from_mirror_common-------------------------
3892 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3893 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3894 // and branch to the given path on the region.
3895 // If never_see_null, take an uncommon trap on null, so we can optimistically
3896 // compile for the non-null case.
3897 // If the region is null, force never_see_null = true.
3898 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3899                                                     bool never_see_null,
3900                                                     RegionNode* region,
3901                                                     int null_path,
3902                                                     int offset) {
3903   if (region == nullptr)  never_see_null = true;
3904   Node* p = basic_plus_adr(mirror, offset);
3905   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3906   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3907   Node* null_ctl = top();
3908   kls = null_check_oop(kls, &null_ctl, never_see_null);
3909   if (region != nullptr) {
3910     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

3914   }
3915   return kls;
3916 }
3917 
3918 //--------------------(inline_native_Class_query helpers)---------------------
3919 // Use this for JVM_ACC_INTERFACE.
3920 // Fall through if (mods & mask) == bits, take the guard otherwise.
3921 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3922                                                  ByteSize offset, const Type* type, BasicType bt) {
3923   // Branch around if the given klass has the given modifier bit set.
3924   // Like generate_guard, adds a new path onto the region.
3925   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3926   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3927   Node* mask = intcon(modifier_mask);
3928   Node* bits = intcon(modifier_bits);
3929   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3930   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3931   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3932   return generate_fair_guard(bol, region);
3933 }

3934 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3935   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3936                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
3937 }
3938 
3939 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3940 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3941   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3942                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3943 }
3944 
3945 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3946   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3947 }
3948 
3949 //-------------------------inline_native_Class_query-------------------
3950 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3951   const Type* return_type = TypeInt::BOOL;
3952   Node* prim_return_value = top();  // what happens if it's a primitive class?
3953   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4072 
4073   case vmIntrinsics::_getClassAccessFlags:
4074     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4075     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4076     break;
4077 
4078   default:
4079     fatal_unexpected_iid(id);
4080     break;
4081   }
4082 
4083   // Fall-through is the normal case of a query to a real class.
4084   phi->init_req(1, query_value);
4085   region->init_req(1, control());
4086 
4087   C->set_has_split_ifs(true); // Has chance for split-if optimization
4088   set_result(region, phi);
4089   return true;
4090 }
4091 

4092 //-------------------------inline_Class_cast-------------------
4093 bool LibraryCallKit::inline_Class_cast() {
4094   Node* mirror = argument(0); // Class
4095   Node* obj    = argument(1);
4096   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4097   if (mirror_con == nullptr) {
4098     return false;  // dead path (mirror->is_top()).
4099   }
4100   if (obj == nullptr || obj->is_top()) {
4101     return false;  // dead path
4102   }
4103   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4104 
4105   // First, see if Class.cast() can be folded statically.
4106   // java_mirror_type() returns non-null for compile-time Class constants.
4107   ciType* tm = mirror_con->java_mirror_type();

4108   if (tm != nullptr && tm->is_klass() &&
4109       tp != nullptr) {
4110     if (!tp->is_loaded()) {
4111       // Don't use intrinsic when class is not loaded.
4112       return false;
4113     } else {
4114       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());




4115       if (static_res == Compile::SSC_always_true) {
4116         // isInstance() is true - fold the code.
4117         set_result(obj);
4118         return true;
4119       } else if (static_res == Compile::SSC_always_false) {
4120         // Don't use intrinsic, have to throw ClassCastException.
4121         // If the reference is null, the non-intrinsic bytecode will
4122         // be optimized appropriately.
4123         return false;
4124       }
4125     }
4126   }
4127 
4128   // Bailout intrinsic and do normal inlining if exception path is frequent.
4129   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4130     return false;
4131   }
4132 
4133   // Generate dynamic checks.
4134   // Class.cast() is java implementation of _checkcast bytecode.
4135   // Do checkcast (Parse::do_checkcast()) optimizations here.
4136 
4137   mirror = null_check(mirror);
4138   // If mirror is dead, only null-path is taken.
4139   if (stopped()) {
4140     return true;
4141   }
4142 
4143   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4144   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4145   RegionNode* region = new RegionNode(PATH_LIMIT);
4146   record_for_igvn(region);
4147 
4148   // Now load the mirror's klass metaobject, and null-check it.
4149   // If kls is null, we have a primitive mirror and
4150   // nothing is an instance of a primitive type.
4151   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4152 
4153   Node* res = top();


4154   if (!stopped()) {

4155     Node* bad_type_ctrl = top();
4156     // Do checkcast optimizations.
4157     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4158     region->init_req(_bad_type_path, bad_type_ctrl);
4159   }
4160   if (region->in(_prim_path) != top() ||
4161       region->in(_bad_type_path) != top()) {

4162     // Let Interpreter throw ClassCastException.
4163     PreserveJVMState pjvms(this);
4164     set_control(_gvn.transform(region));



4165     uncommon_trap(Deoptimization::Reason_intrinsic,
4166                   Deoptimization::Action_maybe_recompile);
4167   }
4168   if (!stopped()) {
4169     set_result(res);
4170   }
4171   return true;
4172 }
4173 
4174 
4175 //--------------------------inline_native_subtype_check------------------------
4176 // This intrinsic takes the JNI calls out of the heart of
4177 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4178 bool LibraryCallKit::inline_native_subtype_check() {
4179   // Pull both arguments off the stack.
4180   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4181   args[0] = argument(0);
4182   args[1] = argument(1);
4183   Node* klasses[2];             // corresponding Klasses: superk, subk
4184   klasses[0] = klasses[1] = top();
4185 
4186   enum {
4187     // A full decision tree on {superc is prim, subc is prim}:
4188     _prim_0_path = 1,           // {P,N} => false
4189                                 // {P,P} & superc!=subc => false
4190     _prim_same_path,            // {P,P} & superc==subc => true
4191     _prim_1_path,               // {N,P} => false
4192     _ref_subtype_path,          // {N,N} & subtype check wins => true
4193     _both_ref_path,             // {N,N} & subtype check loses => false
4194     PATH_LIMIT
4195   };
4196 
4197   RegionNode* region = new RegionNode(PATH_LIMIT);

4198   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4199   record_for_igvn(region);

4200 
4201   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4202   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4203   int class_klass_offset = java_lang_Class::klass_offset();
4204 
4205   // First null-check both mirrors and load each mirror's klass metaobject.
4206   int which_arg;
4207   for (which_arg = 0; which_arg <= 1; which_arg++) {
4208     Node* arg = args[which_arg];
4209     arg = null_check(arg);
4210     if (stopped())  break;
4211     args[which_arg] = arg;
4212 
4213     Node* p = basic_plus_adr(arg, class_klass_offset);
4214     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4215     klasses[which_arg] = _gvn.transform(kls);
4216   }
4217 
4218   // Having loaded both klasses, test each for null.
4219   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4220   for (which_arg = 0; which_arg <= 1; which_arg++) {
4221     Node* kls = klasses[which_arg];
4222     Node* null_ctl = top();
4223     kls = null_check_oop(kls, &null_ctl, never_see_null);
4224     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4225     region->init_req(prim_path, null_ctl);



4226     if (stopped())  break;
4227     klasses[which_arg] = kls;
4228   }
4229 
4230   if (!stopped()) {
4231     // now we have two reference types, in klasses[0..1]
4232     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4233     Node* superk = klasses[0];  // the receiver
4234     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4235     // now we have a successful reference subtype check
4236     region->set_req(_ref_subtype_path, control());
4237   }
4238 
4239   // If both operands are primitive (both klasses null), then
4240   // we must return true when they are identical primitives.
4241   // It is convenient to test this after the first null klass check.
4242   set_control(region->in(_prim_0_path)); // go back to first null check

4243   if (!stopped()) {
4244     // Since superc is primitive, make a guard for the superc==subc case.
4245     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4246     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4247     generate_guard(bol_eq, region, PROB_FAIR);
4248     if (region->req() == PATH_LIMIT+1) {
4249       // A guard was added.  If the added guard is taken, superc==subc.
4250       region->swap_edges(PATH_LIMIT, _prim_same_path);
4251       region->del_req(PATH_LIMIT);
4252     }
4253     region->set_req(_prim_0_path, control()); // Not equal after all.
4254   }
4255 
4256   // these are the only paths that produce 'true':
4257   phi->set_req(_prim_same_path,   intcon(1));
4258   phi->set_req(_ref_subtype_path, intcon(1));
4259 
4260   // pull together the cases:
4261   assert(region->req() == PATH_LIMIT, "sane region");
4262   for (uint i = 1; i < region->req(); i++) {
4263     Node* ctl = region->in(i);
4264     if (ctl == nullptr || ctl == top()) {
4265       region->set_req(i, top());
4266       phi   ->set_req(i, top());
4267     } else if (phi->in(i) == nullptr) {
4268       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4269     }
4270   }
4271 
4272   set_control(_gvn.transform(region));
4273   set_result(_gvn.transform(phi));
4274   return true;
4275 }
4276 
4277 //---------------------generate_array_guard_common------------------------
4278 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4279                                                   bool obj_array, bool not_array, Node** obj) {
4280 
4281   if (stopped()) {
4282     return nullptr;
4283   }
4284 
4285   // If obj_array/non_array==false/false:
4286   // Branch around if the given klass is in fact an array (either obj or prim).
4287   // If obj_array/non_array==false/true:
4288   // Branch around if the given klass is not an array klass of any kind.
4289   // If obj_array/non_array==true/true:
4290   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4291   // If obj_array/non_array==true/false:
4292   // Branch around if the kls is an oop array (Object[] or subtype)
4293   //
4294   // Like generate_guard, adds a new path onto the region.
4295   jint  layout_con = 0;
4296   Node* layout_val = get_layout_helper(kls, layout_con);
4297   if (layout_val == nullptr) {
4298     bool query = (obj_array
4299                   ? Klass::layout_helper_is_objArray(layout_con)
4300                   : Klass::layout_helper_is_array(layout_con));
4301     if (query == not_array) {







4302       return nullptr;                       // never a branch
4303     } else {                             // always a branch
4304       Node* always_branch = control();
4305       if (region != nullptr)
4306         region->add_req(always_branch);
4307       set_control(top());
4308       return always_branch;
4309     }
4310   }





















4311   // Now test the correct condition.
4312   jint  nval = (obj_array
4313                 ? (jint)(Klass::_lh_array_tag_type_value
4314                    <<    Klass::_lh_array_tag_shift)
4315                 : Klass::_lh_neutral_value);
4316   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4317   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4318   // invert the test if we are looking for a non-array
4319   if (not_array)  btest = BoolTest(btest).negate();
4320   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4321   Node* ctrl = generate_fair_guard(bol, region);
4322   Node* is_array_ctrl = not_array ? control() : ctrl;
4323   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4324     // Keep track of the fact that 'obj' is an array to prevent
4325     // array specific accesses from floating above the guard.
4326     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4327   }
4328   return ctrl;
4329 }
4330 



























































4331 
4332 //-----------------------inline_native_newArray--------------------------
4333 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4334 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4335 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4336   Node* mirror;
4337   Node* count_val;
4338   if (uninitialized) {
4339     null_check_receiver();
4340     mirror    = argument(1);
4341     count_val = argument(2);
4342   } else {
4343     mirror    = argument(0);
4344     count_val = argument(1);
4345   }
4346 
4347   mirror = null_check(mirror);
4348   // If mirror or obj is dead, only null-path is taken.
4349   if (stopped())  return true;
4350 
4351   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4352   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4353   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4459   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4460   { PreserveReexecuteState preexecs(this);
4461     jvms()->set_should_reexecute(true);
4462 
4463     array_type_mirror = null_check(array_type_mirror);
4464     original          = null_check(original);
4465 
4466     // Check if a null path was taken unconditionally.
4467     if (stopped())  return true;
4468 
4469     Node* orig_length = load_array_length(original);
4470 
4471     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4472     klass_node = null_check(klass_node);
4473 
4474     RegionNode* bailout = new RegionNode(1);
4475     record_for_igvn(bailout);
4476 
4477     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4478     // Bail out if that is so.
4479     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);












4480     if (not_objArray != nullptr) {
4481       // Improve the klass node's type from the new optimistic assumption:
4482       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4483       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4484       Node* cast = new CastPPNode(control(), klass_node, akls);
4485       klass_node = _gvn.transform(cast);
4486     }
4487 
4488     // Bail out if either start or end is negative.
4489     generate_negative_guard(start, bailout, &start);
4490     generate_negative_guard(end,   bailout, &end);
4491 
4492     Node* length = end;
4493     if (_gvn.type(start) != TypeInt::ZERO) {
4494       length = _gvn.transform(new SubINode(end, start));
4495     }
4496 
4497     // Bail out if length is negative (i.e., if start > end).
4498     // Without this the new_array would throw
4499     // NegativeArraySizeException but IllegalArgumentException is what
4500     // should be thrown
4501     generate_negative_guard(length, bailout, &length);
4502 







































4503     // Bail out if start is larger than the original length
4504     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4505     generate_negative_guard(orig_tail, bailout, &orig_tail);
4506 
4507     if (bailout->req() > 1) {
4508       PreserveJVMState pjvms(this);
4509       set_control(_gvn.transform(bailout));
4510       uncommon_trap(Deoptimization::Reason_intrinsic,
4511                     Deoptimization::Action_maybe_recompile);
4512     }
4513 
4514     if (!stopped()) {
4515       // How many elements will we copy from the original?
4516       // The answer is MinI(orig_tail, length).
4517       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4518 
4519       // Generate a direct call to the right arraycopy function(s).
4520       // We know the copy is disjoint but we might not know if the
4521       // oop stores need checking.
4522       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4528       // to the copyOf to be validated, including that the copy to the
4529       // new array won't trigger an ArrayStoreException. That subtype
4530       // check can be optimized if we know something on the type of
4531       // the input array from type speculation.
4532       if (_gvn.type(klass_node)->singleton()) {
4533         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4534         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4535 
4536         int test = C->static_subtype_check(superk, subk);
4537         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4538           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4539           if (t_original->speculative_type() != nullptr) {
4540             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4541           }
4542         }
4543       }
4544 
4545       bool validated = false;
4546       // Reason_class_check rather than Reason_intrinsic because we
4547       // want to intrinsify even if this traps.
4548       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4549         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4550 
4551         if (not_subtype_ctrl != top()) {
4552           PreserveJVMState pjvms(this);
4553           set_control(not_subtype_ctrl);
4554           uncommon_trap(Deoptimization::Reason_class_check,
4555                         Deoptimization::Action_make_not_entrant);
4556           assert(stopped(), "Should be stopped");
4557         }
4558         validated = true;
4559       }
4560 
4561       if (!stopped()) {
4562         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4563 
4564         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4565                                                 load_object_klass(original), klass_node);
4566         if (!is_copyOfRange) {
4567           ac->set_copyof(validated);
4568         } else {

4614 
4615 //-----------------------generate_method_call----------------------------
4616 // Use generate_method_call to make a slow-call to the real
4617 // method if the fast path fails.  An alternative would be to
4618 // use a stub like OptoRuntime::slow_arraycopy_Java.
4619 // This only works for expanding the current library call,
4620 // not another intrinsic.  (E.g., don't use this for making an
4621 // arraycopy call inside of the copyOf intrinsic.)
4622 CallJavaNode*
4623 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4624   // When compiling the intrinsic method itself, do not use this technique.
4625   guarantee(callee() != C->method(), "cannot make slow-call to self");
4626 
4627   ciMethod* method = callee();
4628   // ensure the JVMS we have will be correct for this call
4629   guarantee(method_id == method->intrinsic_id(), "must match");
4630 
4631   const TypeFunc* tf = TypeFunc::make(method);
4632   if (res_not_null) {
4633     assert(tf->return_type() == T_OBJECT, "");
4634     const TypeTuple* range = tf->range();
4635     const Type** fields = TypeTuple::fields(range->cnt());
4636     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4637     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4638     tf = TypeFunc::make(tf->domain(), new_range);
4639   }
4640   CallJavaNode* slow_call;
4641   if (is_static) {
4642     assert(!is_virtual, "");
4643     slow_call = new CallStaticJavaNode(C, tf,
4644                            SharedRuntime::get_resolve_static_call_stub(), method);
4645   } else if (is_virtual) {
4646     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4647     int vtable_index = Method::invalid_vtable_index;
4648     if (UseInlineCaches) {
4649       // Suppress the vtable call
4650     } else {
4651       // hashCode and clone are not a miranda methods,
4652       // so the vtable index is fixed.
4653       // No need to use the linkResolver to get it.
4654        vtable_index = method->vtable_index();
4655        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4656               "bad index %d", vtable_index);
4657     }
4658     slow_call = new CallDynamicJavaNode(tf,

4675   set_edges_for_java_call(slow_call);
4676   return slow_call;
4677 }
4678 
4679 
4680 /**
4681  * Build special case code for calls to hashCode on an object. This call may
4682  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4683  * slightly different code.
4684  */
4685 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4686   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4687   assert(!(is_virtual && is_static), "either virtual, special, or static");
4688 
4689   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4690 
4691   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4692   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4693   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4694   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4695   Node* obj = nullptr;







4696   if (!is_static) {
4697     // Check for hashing null object
4698     obj = null_check_receiver();
4699     if (stopped())  return true;        // unconditionally null
4700     result_reg->init_req(_null_path, top());
4701     result_val->init_req(_null_path, top());
4702   } else {
4703     // Do a null check, and return zero if null.
4704     // System.identityHashCode(null) == 0
4705     obj = argument(0);
4706     Node* null_ctl = top();
4707     obj = null_check_oop(obj, &null_ctl);
4708     result_reg->init_req(_null_path, null_ctl);
4709     result_val->init_req(_null_path, _gvn.intcon(0));
4710   }
4711 
4712   // Unconditionally null?  Then return right away.
4713   if (stopped()) {
4714     set_control( result_reg->in(_null_path));
4715     if (!stopped())
4716       set_result(result_val->in(_null_path));
4717     return true;
4718   }
4719 
4720   // We only go to the fast case code if we pass a number of guards.  The
4721   // paths which do not pass are accumulated in the slow_region.
4722   RegionNode* slow_region = new RegionNode(1);
4723   record_for_igvn(slow_region);
4724 
4725   // If this is a virtual call, we generate a funny guard.  We pull out
4726   // the vtable entry corresponding to hashCode() from the target object.
4727   // If the target method which we are calling happens to be the native
4728   // Object hashCode() method, we pass the guard.  We do not need this
4729   // guard for non-virtual calls -- the caller is known to be the native
4730   // Object hashCode().
4731   if (is_virtual) {
4732     // After null check, get the object's klass.
4733     Node* obj_klass = load_object_klass(obj);
4734     generate_virtual_guard(obj_klass, slow_region);
4735   }
4736 
4737   // Get the header out of the object, use LoadMarkNode when available
4738   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4739   // The control of the load must be null. Otherwise, the load can move before
4740   // the null check after castPP removal.
4741   Node* no_ctrl = nullptr;
4742   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4743 
4744   if (!UseObjectMonitorTable) {
4745     // Test the header to see if it is safe to read w.r.t. locking.
4746     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);

4747     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4748     if (LockingMode == LM_LIGHTWEIGHT) {
4749       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4750       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4751       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4752 
4753       generate_slow_guard(test_monitor, slow_region);
4754     } else {
4755       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4756       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4757       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4758 
4759       generate_slow_guard(test_not_unlocked, slow_region);
4760     }
4761   }
4762 
4763   // Get the hash value and check to see that it has been properly assigned.
4764   // We depend on hash_mask being at most 32 bits and avoid the use of
4765   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4766   // vm: see markWord.hpp.

4801     // this->control() comes from set_results_for_java_call
4802     result_reg->init_req(_slow_path, control());
4803     result_val->init_req(_slow_path, slow_result);
4804     result_io  ->set_req(_slow_path, i_o());
4805     result_mem ->set_req(_slow_path, reset_memory());
4806   }
4807 
4808   // Return the combined state.
4809   set_i_o(        _gvn.transform(result_io)  );
4810   set_all_memory( _gvn.transform(result_mem));
4811 
4812   set_result(result_reg, result_val);
4813   return true;
4814 }
4815 
4816 //---------------------------inline_native_getClass----------------------------
4817 // public final native Class<?> java.lang.Object.getClass();
4818 //
4819 // Build special case code for calls to getClass on an object.
4820 bool LibraryCallKit::inline_native_getClass() {
4821   Node* obj = null_check_receiver();









4822   if (stopped())  return true;
4823   set_result(load_mirror_from_klass(load_object_klass(obj)));
4824   return true;
4825 }
4826 
4827 //-----------------inline_native_Reflection_getCallerClass---------------------
4828 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4829 //
4830 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4831 //
4832 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4833 // in that it must skip particular security frames and checks for
4834 // caller sensitive methods.
4835 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4836 #ifndef PRODUCT
4837   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4838     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4839   }
4840 #endif
4841 

5153     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5154 
5155     flags |= RC_NARROW_MEM; // narrow in memory
5156   }
5157 
5158   // Call it.  Note that the length argument is not scaled.
5159   make_runtime_call(flags,
5160                     OptoRuntime::unsafe_setmemory_Type(),
5161                     StubRoutines::unsafe_setmemory(),
5162                     "unsafe_setmemory",
5163                     dst_type,
5164                     dst_addr, size XTOP, byte);
5165 
5166   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5167 
5168   return true;
5169 }
5170 
5171 #undef XTOP
5172 














5173 //------------------------clone_coping-----------------------------------
5174 // Helper function for inline_native_clone.
5175 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5176   assert(obj_size != nullptr, "");
5177   Node* raw_obj = alloc_obj->in(1);
5178   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5179 
5180   AllocateNode* alloc = nullptr;
5181   if (ReduceBulkZeroing &&
5182       // If we are implementing an array clone without knowing its source type
5183       // (can happen when compiling the array-guarded branch of a reflective
5184       // Object.clone() invocation), initialize the array within the allocation.
5185       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5186       // to a runtime clone call that assumes fully initialized source arrays.
5187       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5188     // We will be completely responsible for initializing this object -
5189     // mark Initialize node as complete.
5190     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5191     // The object was just allocated - there should be no any stores!
5192     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");

5223 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5224 //
5225 // The general case has two steps, allocation and copying.
5226 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5227 //
5228 // Copying also has two cases, oop arrays and everything else.
5229 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5230 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5231 //
5232 // These steps fold up nicely if and when the cloned object's klass
5233 // can be sharply typed as an object array, a type array, or an instance.
5234 //
5235 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5236   PhiNode* result_val;
5237 
5238   // Set the reexecute bit for the interpreter to reexecute
5239   // the bytecode that invokes Object.clone if deoptimization happens.
5240   { PreserveReexecuteState preexecs(this);
5241     jvms()->set_should_reexecute(true);
5242 
5243     Node* obj = null_check_receiver();

5244     if (stopped())  return true;
5245 
5246     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();






5247 
5248     // If we are going to clone an instance, we need its exact type to
5249     // know the number and types of fields to convert the clone to
5250     // loads/stores. Maybe a speculative type can help us.
5251     if (!obj_type->klass_is_exact() &&
5252         obj_type->speculative_type() != nullptr &&
5253         obj_type->speculative_type()->is_instance_klass()) {

5254       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5255       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5256           !spec_ik->has_injected_fields()) {
5257         if (!obj_type->isa_instptr() ||
5258             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5259           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5260         }
5261       }
5262     }
5263 
5264     // Conservatively insert a memory barrier on all memory slices.
5265     // Do not let writes into the original float below the clone.
5266     insert_mem_bar(Op_MemBarCPUOrder);
5267 
5268     // paths into result_reg:
5269     enum {
5270       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5271       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5272       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5273       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5274       PATH_LIMIT
5275     };
5276     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5277     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5278     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5279     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5280     record_for_igvn(result_reg);
5281 

5282     Node* obj_klass = load_object_klass(obj);





5283     Node* array_obj = obj;
5284     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5285     if (array_ctl != nullptr) {
5286       // It's an array.
5287       PreserveJVMState pjvms(this);
5288       set_control(array_ctl);
5289       Node* obj_length = load_array_length(array_obj);
5290       Node* array_size = nullptr; // Size of the array without object alignment padding.
5291       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5292 
5293       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5294       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5295         // If it is an oop array, it requires very special treatment,
5296         // because gc barriers are required when accessing the array.
5297         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5298         if (is_obja != nullptr) {
5299           PreserveJVMState pjvms2(this);
5300           set_control(is_obja);
5301           // Generate a direct call to the right arraycopy function(s).
5302           // Clones are always tightly coupled.
5303           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5304           ac->set_clone_oop_array();
5305           Node* n = _gvn.transform(ac);
5306           assert(n == ac, "cannot disappear");
5307           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5308 
5309           result_reg->init_req(_objArray_path, control());
5310           result_val->init_req(_objArray_path, alloc_obj);
5311           result_i_o ->set_req(_objArray_path, i_o());
5312           result_mem ->set_req(_objArray_path, reset_memory());
5313         }
5314       }
5315       // Otherwise, there are no barriers to worry about.
5316       // (We can dispense with card marks if we know the allocation
5317       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5318       //  causes the non-eden paths to take compensating steps to
5319       //  simulate a fresh allocation, so that no further
5320       //  card marks are required in compiled code to initialize
5321       //  the object.)
5322 
5323       if (!stopped()) {
5324         copy_to_clone(array_obj, alloc_obj, array_size, true);
5325 
5326         // Present the results of the copy.
5327         result_reg->init_req(_array_path, control());
5328         result_val->init_req(_array_path, alloc_obj);
5329         result_i_o ->set_req(_array_path, i_o());
5330         result_mem ->set_req(_array_path, reset_memory());




































5331       }
5332     }
5333 
5334     // We only go to the instance fast case code if we pass a number of guards.
5335     // The paths which do not pass are accumulated in the slow_region.
5336     RegionNode* slow_region = new RegionNode(1);
5337     record_for_igvn(slow_region);
5338     if (!stopped()) {
5339       // It's an instance (we did array above).  Make the slow-path tests.
5340       // If this is a virtual call, we generate a funny guard.  We grab
5341       // the vtable entry corresponding to clone() from the target object.
5342       // If the target method which we are calling happens to be the
5343       // Object clone() method, we pass the guard.  We do not need this
5344       // guard for non-virtual calls; the caller is known to be the native
5345       // Object clone().
5346       if (is_virtual) {
5347         generate_virtual_guard(obj_klass, slow_region);
5348       }
5349 
5350       // The object must be easily cloneable and must not have a finalizer.
5351       // Both of these conditions may be checked in a single test.
5352       // We could optimize the test further, but we don't care.
5353       generate_misc_flags_guard(obj_klass,
5354                                 // Test both conditions:
5355                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5356                                 // Must be cloneable but not finalizer:
5357                                 KlassFlags::_misc_is_cloneable_fast,

5449         set_jvms(sfpt->jvms());
5450         _reexecute_sp = jvms()->sp();
5451 
5452         return saved_jvms;
5453       }
5454     }
5455   }
5456   return nullptr;
5457 }
5458 
5459 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5460 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5461 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5462   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5463   uint size = alloc->req();
5464   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5465   old_jvms->set_map(sfpt);
5466   for (uint i = 0; i < size; i++) {
5467     sfpt->init_req(i, alloc->in(i));
5468   }












5469   // re-push array length for deoptimization
5470   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5471   old_jvms->set_sp(old_jvms->sp()+1);
5472   old_jvms->set_monoff(old_jvms->monoff()+1);
5473   old_jvms->set_scloff(old_jvms->scloff()+1);
5474   old_jvms->set_endoff(old_jvms->endoff()+1);











5475   old_jvms->set_should_reexecute(true);
5476 
5477   sfpt->set_i_o(map()->i_o());
5478   sfpt->set_memory(map()->memory());
5479   sfpt->set_control(map()->control());
5480   return sfpt;
5481 }
5482 
5483 // In case of a deoptimization, we restart execution at the
5484 // allocation, allocating a new array. We would leave an uninitialized
5485 // array in the heap that GCs wouldn't expect. Move the allocation
5486 // after the traps so we don't allocate the array if we
5487 // deoptimize. This is possible because tightly_coupled_allocation()
5488 // guarantees there's no observer of the allocated array at this point
5489 // and the control flow is simple enough.
5490 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5491                                                     int saved_reexecute_sp, uint new_idx) {
5492   if (saved_jvms_before_guards != nullptr && !stopped()) {
5493     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5494 
5495     assert(alloc != nullptr, "only with a tightly coupled allocation");
5496     // restore JVM state to the state at the arraycopy
5497     saved_jvms_before_guards->map()->set_control(map()->control());
5498     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5499     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5500     // If we've improved the types of some nodes (null check) while
5501     // emitting the guards, propagate them to the current state
5502     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5503     set_jvms(saved_jvms_before_guards);
5504     _reexecute_sp = saved_reexecute_sp;
5505 
5506     // Remove the allocation from above the guards
5507     CallProjections callprojs;
5508     alloc->extract_projections(&callprojs, true);
5509     InitializeNode* init = alloc->initialization();
5510     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5511     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5512     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5513 
5514     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5515     // the allocation (i.e. is only valid if the allocation succeeds):
5516     // 1) replace CastIINode with AllocateArrayNode's length here
5517     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5518     //
5519     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5520     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5521     Node* init_control = init->proj_out(TypeFunc::Control);
5522     Node* alloc_length = alloc->Ideal_length();
5523 #ifdef ASSERT
5524     Node* prev_cast = nullptr;
5525 #endif
5526     for (uint i = 0; i < init_control->outcnt(); i++) {
5527       Node* init_out = init_control->raw_out(i);
5528       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5529 #ifdef ASSERT
5530         if (prev_cast == nullptr) {
5531           prev_cast = init_out;

5533           if (prev_cast->cmp(*init_out) == false) {
5534             prev_cast->dump();
5535             init_out->dump();
5536             assert(false, "not equal CastIINode");
5537           }
5538         }
5539 #endif
5540         C->gvn_replace_by(init_out, alloc_length);
5541       }
5542     }
5543     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5544 
5545     // move the allocation here (after the guards)
5546     _gvn.hash_delete(alloc);
5547     alloc->set_req(TypeFunc::Control, control());
5548     alloc->set_req(TypeFunc::I_O, i_o());
5549     Node *mem = reset_memory();
5550     set_all_memory(mem);
5551     alloc->set_req(TypeFunc::Memory, mem);
5552     set_control(init->proj_out_or_null(TypeFunc::Control));
5553     set_i_o(callprojs.fallthrough_ioproj);
5554 
5555     // Update memory as done in GraphKit::set_output_for_allocation()
5556     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5557     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5558     if (ary_type->isa_aryptr() && length_type != nullptr) {
5559       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5560     }
5561     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5562     int            elemidx  = C->get_alias_index(telemref);
5563     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5564     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5565 
5566     Node* allocx = _gvn.transform(alloc);
5567     assert(allocx == alloc, "where has the allocation gone?");
5568     assert(dest->is_CheckCastPP(), "not an allocation result?");
5569 
5570     _gvn.hash_delete(dest);
5571     dest->set_req(0, control());
5572     Node* destx = _gvn.transform(dest);
5573     assert(destx == dest, "where has the allocation result gone?");

5871         top_src  = src_type->isa_aryptr();
5872         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5873         src_spec = true;
5874       }
5875       if (!has_dest) {
5876         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5877         dest_type  = _gvn.type(dest);
5878         top_dest  = dest_type->isa_aryptr();
5879         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5880         dest_spec = true;
5881       }
5882     }
5883   }
5884 
5885   if (has_src && has_dest && can_emit_guards) {
5886     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5887     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5888     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5889     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5890 
5891     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5892       // If both arrays are object arrays then having the exact types
5893       // for both will remove the need for a subtype check at runtime
5894       // before the call and may make it possible to pick a faster copy
5895       // routine (without a subtype check on every element)
5896       // Do we have the exact type of src?
5897       bool could_have_src = src_spec;
5898       // Do we have the exact type of dest?
5899       bool could_have_dest = dest_spec;
5900       ciKlass* src_k = nullptr;
5901       ciKlass* dest_k = nullptr;
5902       if (!src_spec) {
5903         src_k = src_type->speculative_type_not_null();
5904         if (src_k != nullptr && src_k->is_array_klass()) {
5905           could_have_src = true;
5906         }
5907       }
5908       if (!dest_spec) {
5909         dest_k = dest_type->speculative_type_not_null();
5910         if (dest_k != nullptr && dest_k->is_array_klass()) {
5911           could_have_dest = true;
5912         }
5913       }
5914       if (could_have_src && could_have_dest) {
5915         // If we can have both exact types, emit the missing guards
5916         if (could_have_src && !src_spec) {
5917           src = maybe_cast_profiled_obj(src, src_k, true);


5918         }
5919         if (could_have_dest && !dest_spec) {
5920           dest = maybe_cast_profiled_obj(dest, dest_k, true);


5921         }
5922       }
5923     }
5924   }
5925 
5926   ciMethod* trap_method = method();
5927   int trap_bci = bci();
5928   if (saved_jvms_before_guards != nullptr) {
5929     trap_method = alloc->jvms()->method();
5930     trap_bci = alloc->jvms()->bci();
5931   }
5932 
5933   bool negative_length_guard_generated = false;
5934 
5935   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5936       can_emit_guards &&
5937       !src->is_top() && !dest->is_top()) {
5938     // validate arguments: enables transformation the ArrayCopyNode
5939     validated = true;
5940 
5941     RegionNode* slow_region = new RegionNode(1);
5942     record_for_igvn(slow_region);
5943 
5944     // (1) src and dest are arrays.
5945     generate_non_array_guard(load_object_klass(src), slow_region, &src);
5946     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
5947 
5948     // (2) src and dest arrays must have elements of the same BasicType
5949     // done at macro expansion or at Ideal transformation time
5950 
5951     // (4) src_offset must not be negative.
5952     generate_negative_guard(src_offset, slow_region);
5953 
5954     // (5) dest_offset must not be negative.
5955     generate_negative_guard(dest_offset, slow_region);
5956 
5957     // (7) src_offset + length must not exceed length of src.

5960                          slow_region);
5961 
5962     // (8) dest_offset + length must not exceed length of dest.
5963     generate_limit_guard(dest_offset, length,
5964                          load_array_length(dest),
5965                          slow_region);
5966 
5967     // (6) length must not be negative.
5968     // This is also checked in generate_arraycopy() during macro expansion, but
5969     // we also have to check it here for the case where the ArrayCopyNode will
5970     // be eliminated by Escape Analysis.
5971     if (EliminateAllocations) {
5972       generate_negative_guard(length, slow_region);
5973       negative_length_guard_generated = true;
5974     }
5975 
5976     // (9) each element of an oop array must be assignable
5977     Node* dest_klass = load_object_klass(dest);
5978     if (src != dest) {
5979       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);






5980 
5981       if (not_subtype_ctrl != top()) {
5982         PreserveJVMState pjvms(this);
5983         set_control(not_subtype_ctrl);
5984         uncommon_trap(Deoptimization::Reason_intrinsic,
5985                       Deoptimization::Action_make_not_entrant);
5986         assert(stopped(), "Should be stopped");






















5987       }
5988     }

5989     {
5990       PreserveJVMState pjvms(this);
5991       set_control(_gvn.transform(slow_region));
5992       uncommon_trap(Deoptimization::Reason_intrinsic,
5993                     Deoptimization::Action_make_not_entrant);
5994       assert(stopped(), "Should be stopped");
5995     }
5996 
5997     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5998     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5999     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6000     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6001   }
6002 
6003   if (stopped()) {
6004     return true;
6005   }
6006 
6007   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6008                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6009                                           // so the compiler has a chance to eliminate them: during macro expansion,
6010                                           // we have to set their control (CastPP nodes are eliminated).
6011                                           load_object_klass(src), load_object_klass(dest),
6012                                           load_array_length(src), load_array_length(dest));
6013 
6014   ac->set_arraycopy(validated);
6015 
6016   Node* n = _gvn.transform(ac);
6017   if (n == ac) {
6018     ac->connect_outputs(this);
6019   } else {

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciInstanceKlass.hpp"
  29 #include "ci/ciUtilities.inline.hpp"
  30 #include "ci/ciSymbols.hpp"
  31 #include "classfile/vmIntrinsics.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/c2/barrierSetC2.hpp"
  36 #include "jfr/support/jfrIntrinsics.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/accessDecorators.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "oops/layoutKind.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "opto/addnode.hpp"
  43 #include "opto/arraycopynode.hpp"
  44 #include "opto/c2compiler.hpp"
  45 #include "opto/castnode.hpp"
  46 #include "opto/cfgnode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/countbitsnode.hpp"
  49 #include "opto/graphKit.hpp"
  50 #include "opto/idealKit.hpp"
  51 #include "opto/library_call.hpp"
  52 #include "opto/inlinetypenode.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/opaquenode.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/runtime.hpp"
  60 #include "opto/rootnode.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "prims/jvmtiThreadState.hpp"
  66 #include "prims/unsafe.hpp"
  67 #include "runtime/jniHandles.inline.hpp"
  68 #include "runtime/objectMonitor.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "utilities/globalDefinitions.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/powerOfTwo.hpp"
  74 
  75 //---------------------------make_vm_intrinsic----------------------------
  76 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  77   vmIntrinsicID id = m->intrinsic_id();
  78   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  79 
  80   if (!m->is_loaded()) {
  81     // Do not attempt to inline unloaded methods.
  82     return nullptr;
  83   }
  84 
  85   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  86   bool is_available = false;
  87 
  88   {
  89     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  90     // the compiler must transition to '_thread_in_vm' state because both
  91     // methods access VM-internal data.

 309   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 310   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 311   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 312   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 313   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 314 
 315   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 316 
 317   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 318 
 319   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 320   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 321   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 322   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 323 
 324   case vmIntrinsics::_compressStringC:
 325   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 326   case vmIntrinsics::_inflateStringC:
 327   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 328 
 329   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 330   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 331   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 332   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 333   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 334   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 335   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 336   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 337   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 338   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 339   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 340   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 341 
 342   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 343   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 344   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 345   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 346   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 347   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 348   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 349   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 350   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 351   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 352 
 353   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 354   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 355   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 356   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 357   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 358   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 359   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 360   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 361   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 362 
 363   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 364   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 365   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 366   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 367   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 368   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 369   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 370   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 371   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 403   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 404   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 405   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 406   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 407   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 408   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 409   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 410   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 411   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 412 
 413   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 414   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 415   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 416   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 417   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 418   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 419   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 420   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 421   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 422 
 423   case vmIntrinsics::_getFlatValue:             return inline_unsafe_flat_access(!is_store, Relaxed);
 424   case vmIntrinsics::_putFlatValue:             return inline_unsafe_flat_access( is_store, Relaxed);
 425 
 426   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 427   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 428   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 429   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 430   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 431 
 432   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 433   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 434   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 435   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 436   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 437   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 438   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 439   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 440   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 441   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 442   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 443   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 444   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 445   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);

 501                                                                                          "notifyJvmtiEnd", false, true);
 502   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 503                                                                                          "notifyJvmtiMount", false, false);
 504   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 505                                                                                          "notifyJvmtiUnmount", false, false);
 506   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 507 #endif
 508 
 509 #ifdef JFR_HAVE_INTRINSICS
 510   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 511   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 512   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 513 #endif
 514   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 515   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 516   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 517   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 518   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 519   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 520   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 521   case vmIntrinsics::_isFlatArray:              return inline_unsafe_isFlatArray();
 522   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 523   case vmIntrinsics::_getLength:                return inline_native_getLength();
 524   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 525   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 526   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 527   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 528   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 529   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 530   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 531 
 532   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 533   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 534   case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false);
 535   case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true);
 536   case vmIntrinsics::_newNullableAtomicArray:     return inline_newArray(/* null_free */ false, /* atomic */ true);
 537 
 538   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 539 
 540   case vmIntrinsics::_isInstance:
 541   case vmIntrinsics::_isHidden:
 542   case vmIntrinsics::_getSuperclass:
 543   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 544 
 545   case vmIntrinsics::_floatToRawIntBits:
 546   case vmIntrinsics::_floatToIntBits:
 547   case vmIntrinsics::_intBitsToFloat:
 548   case vmIntrinsics::_doubleToRawLongBits:
 549   case vmIntrinsics::_doubleToLongBits:
 550   case vmIntrinsics::_longBitsToDouble:
 551   case vmIntrinsics::_floatToFloat16:
 552   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 553   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 554   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 555   case vmIntrinsics::_floatIsFinite:
 556   case vmIntrinsics::_floatIsInfinite:

2314     case vmIntrinsics::_remainderUnsigned_l: {
2315       zero_check_long(argument(2));
2316       // Compile-time detect of null-exception
2317       if (stopped()) {
2318         return true; // keep the graph constructed so far
2319       }
2320       n = new UModLNode(control(), argument(0), argument(2));
2321       break;
2322     }
2323     default:  fatal_unexpected_iid(id);  break;
2324   }
2325   set_result(_gvn.transform(n));
2326   return true;
2327 }
2328 
2329 //----------------------------inline_unsafe_access----------------------------
2330 
2331 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2332   // Attempt to infer a sharper value type from the offset and base type.
2333   ciKlass* sharpened_klass = nullptr;
2334   bool null_free = false;
2335 
2336   // See if it is an instance field, with an object type.
2337   if (alias_type->field() != nullptr) {
2338     if (alias_type->field()->type()->is_klass()) {
2339       sharpened_klass = alias_type->field()->type()->as_klass();
2340       null_free = alias_type->field()->is_null_free();
2341     }
2342   }
2343 
2344   const TypeOopPtr* result = nullptr;
2345   // See if it is a narrow oop array.
2346   if (adr_type->isa_aryptr()) {
2347     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2348       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2349       null_free = adr_type->is_aryptr()->is_null_free();
2350       if (elem_type != nullptr && elem_type->is_loaded()) {
2351         // Sharpen the value type.
2352         result = elem_type;
2353       }
2354     }
2355   }
2356 
2357   // The sharpened class might be unloaded if there is no class loader
2358   // contraint in place.
2359   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2360     // Sharpen the value type.
2361     result = TypeOopPtr::make_from_klass(sharpened_klass);
2362     if (null_free) {
2363       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2364     }
2365   }
2366   if (result != nullptr) {
2367 #ifndef PRODUCT
2368     if (C->print_intrinsics() || C->print_inlining()) {
2369       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2370       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2371     }
2372 #endif
2373   }
2374   return result;
2375 }
2376 
2377 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2378   switch (kind) {
2379       case Relaxed:
2380         return MO_UNORDERED;
2381       case Opaque:
2382         return MO_RELAXED;
2383       case Acquire:
2384         return MO_ACQUIRE;
2385       case Release:
2386         return MO_RELEASE;
2387       case Volatile:
2388         return MO_SEQ_CST;
2389       default:
2390         ShouldNotReachHere();
2391         return 0;
2392   }
2393 }
2394 
2395 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2396   if (callee()->is_static())  return false;  // caller must have the capability!
2397   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2398   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2399   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2400   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2401 
2402   if (is_reference_type(type)) {
2403     decorators |= ON_UNKNOWN_OOP_REF;
2404   }
2405 
2406   if (unaligned) {
2407     decorators |= C2_UNALIGNED;
2408   }
2409 
2410 #ifndef PRODUCT
2411   {
2412     ResourceMark rm;
2413     // Check the signatures.
2414     ciSignature* sig = callee()->signature();
2415 #ifdef ASSERT
2416     if (!is_store) {
2417       // Object getReference(Object base, int/long offset), etc.
2418       BasicType rtype = sig->return_type()->basic_type();
2419       assert(rtype == type, "getter must return the expected value");
2420       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2421       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2422       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2423     } else {
2424       // void putReference(Object base, int/long offset, Object x), etc.
2425       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2426       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2427       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2428       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2429       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2430       assert(vtype == type, "putter must accept the expected value");
2431     }
2432 #endif // ASSERT
2433  }
2434 #endif //PRODUCT
2435 
2436   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2437 
2438   Node* receiver = argument(0);  // type: oop
2439 
2440   // Build address expression.
2441   Node* heap_base_oop = top();
2442 
2443   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2444   Node* base = argument(1);  // type: oop
2445   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2446   Node* offset = argument(2);  // type: long
2447   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2448   // to be plain byte offsets, which are also the same as those accepted
2449   // by oopDesc::field_addr.
2450   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2451          "fieldOffset must be byte-scaled");
2452 
2453   ciInlineKlass* inline_klass = nullptr;
2454   if (is_flat) {
2455     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2456     if (cls == nullptr || cls->const_oop() == nullptr) {
2457       return false;
2458     }
2459     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2460     if (!mirror_type->is_inlinetype()) {
2461       return false;
2462     }
2463     inline_klass = mirror_type->as_inline_klass();
2464   }
2465 
2466   if (base->is_InlineType()) {
2467     assert(!is_store, "InlineTypeNodes are non-larval value objects");
2468     InlineTypeNode* vt = base->as_InlineType();
2469     if (offset->is_Con()) {
2470       long off = find_long_con(offset, 0);
2471       ciInlineKlass* vk = vt->type()->inline_klass();
2472       if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2473         return false;
2474       }
2475 
2476       ciField* field = vk->get_non_flat_field_by_offset(off);
2477       if (field != nullptr) {
2478         BasicType bt = type2field[field->type()->basic_type()];
2479         if (bt == T_ARRAY || bt == T_NARROWOOP) {
2480           bt = T_OBJECT;
2481         }
2482         if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2483           Node* value = vt->field_value_by_offset(off, false);
2484           if (value->is_InlineType()) {
2485             value = value->as_InlineType()->adjust_scalarization_depth(this);
2486           }
2487           set_result(value);
2488           return true;
2489         }
2490       }
2491     }
2492     {
2493       // Re-execute the unsafe access if allocation triggers deoptimization.
2494       PreserveReexecuteState preexecs(this);
2495       jvms()->set_should_reexecute(true);
2496       vt = vt->buffer(this);
2497     }
2498     base = vt->get_oop();
2499   }
2500 
2501   // 32-bit machines ignore the high half!
2502   offset = ConvL2X(offset);
2503 
2504   // Save state and restore on bailout
2505   uint old_sp = sp();
2506   SafePointNode* old_map = clone_map();
2507 
2508   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2509   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2510 
2511   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2512     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2513       decorators |= IN_NATIVE; // off-heap primitive access
2514     } else {
2515       set_map(old_map);
2516       set_sp(old_sp);
2517       return false; // off-heap oop accesses are not supported
2518     }
2519   } else {
2520     heap_base_oop = base; // on-heap or mixed access
2521   }
2522 
2523   // Can base be null? Otherwise, always on-heap access.
2524   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2525 
2526   if (!can_access_non_heap) {
2527     decorators |= IN_HEAP;
2528   }
2529 
2530   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2531 
2532   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2533   if (adr_type == TypePtr::NULL_PTR) {
2534     set_map(old_map);
2535     set_sp(old_sp);
2536     return false; // off-heap access with zero address
2537   }
2538 
2539   // Try to categorize the address.
2540   Compile::AliasType* alias_type = C->alias_type(adr_type);
2541   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2542 
2543   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2544       alias_type->adr_type() == TypeAryPtr::RANGE) {
2545     set_map(old_map);
2546     set_sp(old_sp);
2547     return false; // not supported
2548   }
2549 
2550   bool mismatched = false;
2551   BasicType bt = T_ILLEGAL;
2552   ciField* field = nullptr;
2553   if (adr_type->isa_instptr()) {
2554     const TypeInstPtr* instptr = adr_type->is_instptr();
2555     ciInstanceKlass* k = instptr->instance_klass();
2556     int off = instptr->offset();
2557     if (instptr->const_oop() != nullptr &&
2558         k == ciEnv::current()->Class_klass() &&
2559         instptr->offset() >= (k->size_helper() * wordSize)) {
2560       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2561       field = k->get_field_by_offset(off, true);
2562     } else {
2563       field = k->get_non_flat_field_by_offset(off);
2564     }
2565     if (field != nullptr) {
2566       bt = type2field[field->type()->basic_type()];
2567     }
2568     if (bt != alias_type->basic_type()) {
2569       // Type mismatch. Is it an access to a nested flat field?
2570       field = k->get_field_by_offset(off, false);
2571       if (field != nullptr) {
2572         bt = type2field[field->type()->basic_type()];
2573       }
2574     }
2575     assert(bt == alias_type->basic_type() || is_flat, "should match");
2576   } else {
2577     bt = alias_type->basic_type();
2578   }
2579 
2580   if (bt != T_ILLEGAL) {
2581     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2582     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2583       // Alias type doesn't differentiate between byte[] and boolean[]).
2584       // Use address type to get the element type.
2585       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2586     }
2587     if (is_reference_type(bt, true)) {
2588       // accessing an array field with getReference is not a mismatch
2589       bt = T_OBJECT;
2590     }
2591     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2592       // Don't intrinsify mismatched object accesses
2593       set_map(old_map);
2594       set_sp(old_sp);
2595       return false;
2596     }
2597     mismatched = (bt != type);
2598   } else if (alias_type->adr_type()->isa_oopptr()) {
2599     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2600   }
2601 
2602   if (is_flat) {
2603     if (adr_type->isa_instptr()) {
2604       if (field == nullptr || field->type() != inline_klass) {
2605         mismatched = true;
2606       }
2607     } else if (adr_type->isa_aryptr()) {
2608       const Type* elem = adr_type->is_aryptr()->elem();
2609       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2610         mismatched = true;
2611       }
2612     } else {
2613       mismatched = true;
2614     }
2615     if (is_store) {
2616       const Type* val_t = _gvn.type(val);
2617       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2618         set_map(old_map);
2619         set_sp(old_sp);
2620         return false;
2621       }
2622     }
2623   }
2624 
2625   destruct_map_clone(old_map);
2626   assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2627 
2628   if (mismatched) {
2629     decorators |= C2_MISMATCHED;
2630   }
2631 
2632   // First guess at the value type.
2633   const Type *value_type = Type::get_const_basic_type(type);
2634 
2635   // Figure out the memory ordering.
2636   decorators |= mo_decorator_for_access_kind(kind);
2637 
2638   if (!is_store) {
2639     if (type == T_OBJECT && !is_flat) {
2640       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2641       if (tjp != nullptr) {
2642         value_type = tjp;
2643       }
2644     }
2645   }
2646 
2647   receiver = null_check(receiver);
2648   if (stopped()) {
2649     return true;
2650   }
2651   // Heap pointers get a null-check from the interpreter,
2652   // as a courtesy.  However, this is not guaranteed by Unsafe,
2653   // and it is not possible to fully distinguish unintended nulls
2654   // from intended ones in this API.
2655 
2656   if (!is_store) {
2657     Node* p = nullptr;
2658     // Try to constant fold a load from a constant field
2659 
2660     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2661       // final or stable field
2662       p = make_constant_from_field(field, heap_base_oop);
2663     }
2664 
2665     if (p == nullptr) { // Could not constant fold the load
2666       if (is_flat) {
2667         p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, adr_type, false, false, true);
2668       } else {
2669         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2670         const TypeOopPtr* ptr = value_type->make_oopptr();
2671         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2672           // Load a non-flattened inline type from memory
2673           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass());
2674         }
2675       }
2676       // Normalize the value returned by getBoolean in the following cases
2677       if (type == T_BOOLEAN &&
2678           (mismatched ||
2679            heap_base_oop == top() ||                  // - heap_base_oop is null or
2680            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2681                                                       //   and the unsafe access is made to large offset
2682                                                       //   (i.e., larger than the maximum offset necessary for any
2683                                                       //   field access)
2684             ) {
2685           IdealKit ideal = IdealKit(this);
2686 #define __ ideal.
2687           IdealVariable normalized_result(ideal);
2688           __ declarations_done();
2689           __ set(normalized_result, p);
2690           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2691           __ set(normalized_result, ideal.ConI(1));
2692           ideal.end_if();
2693           final_sync(ideal);
2694           p = __ value(normalized_result);
2695 #undef __
2696       }
2697     }
2698     if (type == T_ADDRESS) {
2699       p = gvn().transform(new CastP2XNode(nullptr, p));
2700       p = ConvX2UL(p);
2701     }
2702     // The load node has the control of the preceding MemBarCPUOrder.  All
2703     // following nodes will have the control of the MemBarCPUOrder inserted at
2704     // the end of this method.  So, pushing the load onto the stack at a later
2705     // point is fine.
2706     set_result(p);
2707   } else {
2708     if (bt == T_ADDRESS) {
2709       // Repackage the long as a pointer.
2710       val = ConvL2X(val);
2711       val = gvn().transform(new CastX2PNode(val));
2712     }
2713     if (is_flat) {
2714       val->as_InlineType()->store_flat(this, base, adr, false, false, true, decorators);
2715     } else {
2716       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2717     }
2718   }
2719 
2720   return true;
2721 }
2722 
2723 bool LibraryCallKit::inline_unsafe_flat_access(bool is_store, AccessKind kind) {
2724 #ifdef ASSERT
2725   {
2726     ResourceMark rm;
2727     // Check the signatures.
2728     ciSignature* sig = callee()->signature();
2729     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base should be object, but is %s", type2name(sig->type_at(0)->basic_type()));
2730     assert(sig->type_at(1)->basic_type() == T_LONG, "offset should be long, but is %s", type2name(sig->type_at(1)->basic_type()));
2731     assert(sig->type_at(2)->basic_type() == T_INT, "layout kind should be int, but is %s", type2name(sig->type_at(3)->basic_type()));
2732     assert(sig->type_at(3)->basic_type() == T_OBJECT, "value klass should be object, but is %s", type2name(sig->type_at(4)->basic_type()));
2733     if (is_store) {
2734       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value, but returns %s", type2name(sig->return_type()->basic_type()));
2735       assert(sig->count() == 5, "flat putter should have 5 arguments, but has %d", sig->count());
2736       assert(sig->type_at(4)->basic_type() == T_OBJECT, "put value should be object, but is %s", type2name(sig->type_at(5)->basic_type()));
2737     } else {
2738       assert(sig->return_type()->basic_type() == T_OBJECT, "getter must return an object, but returns %s", type2name(sig->return_type()->basic_type()));
2739       assert(sig->count() == 4, "flat getter should have 4 arguments, but has %d", sig->count());
2740     }
2741  }
2742 #endif // ASSERT
2743 
2744   assert(kind == Relaxed, "Only plain accesses for now");
2745   if (callee()->is_static()) {
2746     // caller must have the capability!
2747     return false;
2748   }
2749   C->set_has_unsafe_access(true);
2750 
2751   const TypeInstPtr* value_klass_node = _gvn.type(argument(5))->isa_instptr();
2752   if (value_klass_node == nullptr || value_klass_node->const_oop() == nullptr) {
2753     // parameter valueType is not a constant
2754     return false;
2755   }
2756   ciInlineKlass* value_klass = value_klass_node->const_oop()->as_instance()->java_mirror_type()->as_inline_klass();
2757 
2758   const TypeInt* layout_type = _gvn.type(argument(4))->isa_int();
2759   if (layout_type == nullptr || !layout_type->is_con()) {
2760     // parameter layoutKind is not a constant
2761     return false;
2762   }
2763   assert(layout_type->get_con() >= static_cast<int>(LayoutKind::REFERENCE) &&
2764          layout_type->get_con() <= static_cast<int>(LayoutKind::UNKNOWN),
2765          "invalid layoutKind %d", layout_type->get_con());
2766   LayoutKind layout = static_cast<LayoutKind>(layout_type->get_con());
2767   assert(layout == LayoutKind::REFERENCE || layout == LayoutKind::NON_ATOMIC_FLAT ||
2768          layout == LayoutKind::ATOMIC_FLAT || layout == LayoutKind::NULLABLE_ATOMIC_FLAT,
2769          "unexpected layoutKind %d", layout_type->get_con());
2770 
2771   null_check(argument(0));
2772   if (stopped()) {
2773     return true;
2774   }
2775 
2776   Node* base = must_be_not_null(argument(1), true);
2777   Node* offset = argument(2);
2778   const Type* base_type = _gvn.type(base);
2779 
2780   Node* ptr;
2781   bool immutable_memory = false;
2782   DecoratorSet decorators = C2_UNSAFE_ACCESS | IN_HEAP | MO_UNORDERED;
2783   if (base_type->isa_instptr()) {
2784     const TypeLong* offset_type = _gvn.type(offset)->isa_long();
2785     if (offset_type == nullptr || !offset_type->is_con()) {
2786       // Offset into a non-array should be a constant
2787       decorators |= C2_MISMATCHED;
2788     } else {
2789       int offset_con = checked_cast<int>(offset_type->get_con());
2790       ciInstanceKlass* base_klass = base_type->is_instptr()->instance_klass();
2791       ciField* field = base_klass->get_non_flat_field_by_offset(offset_con);
2792       if (field == nullptr) {
2793         assert(!base_klass->is_final(), "non-existence field at offset %d of class %s", offset_con, base_klass->name()->as_utf8());
2794         decorators |= C2_MISMATCHED;
2795       } else {
2796         assert(field->type() == value_klass, "field at offset %d of %s is of type %s, but valueType is %s",
2797                offset_con, base_klass->name()->as_utf8(), field->type()->name(), value_klass->name()->as_utf8());
2798         immutable_memory = field->is_strict() && field->is_final();
2799 
2800         if (base->is_InlineType()) {
2801           assert(!is_store, "Cannot store into a non-larval value object");
2802           set_result(base->as_InlineType()->field_value_by_offset(offset_con, false));
2803           return true;
2804         }
2805       }
2806     }
2807 
2808     if (base->is_InlineType()) {
2809       assert(!is_store, "Cannot store into a non-larval value object");
2810       base = base->as_InlineType()->buffer(this, true);
2811     }
2812     ptr = basic_plus_adr(base, ConvL2X(offset));
2813   } else if (base_type->isa_aryptr()) {
2814     decorators |= IS_ARRAY;
2815     if (layout == LayoutKind::REFERENCE) {
2816       if (!base_type->is_aryptr()->is_not_flat()) {
2817         const TypeAryPtr* array_type = base_type->is_aryptr()->cast_to_not_flat();
2818         Node* new_base = _gvn.transform(new CastPPNode(control(), base, array_type, ConstraintCastNode::StrongDependency));
2819         replace_in_map(base, new_base);
2820         base = new_base;
2821       }
2822       ptr = basic_plus_adr(base, ConvL2X(offset));
2823     } else {
2824       // Flat array must have an exact type
2825       bool is_null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2826       bool is_atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2827       Node* new_base = cast_to_flat_array(base, value_klass, is_null_free, !is_null_free, is_atomic);
2828       replace_in_map(base, new_base);
2829       base = new_base;
2830       ptr = basic_plus_adr(base, ConvL2X(offset));
2831       const TypeAryPtr* ptr_type = _gvn.type(ptr)->is_aryptr();
2832       if (ptr_type->field_offset().get() != 0) {
2833         ptr = _gvn.transform(new CastPPNode(control(), ptr, ptr_type->with_field_offset(0), ConstraintCastNode::StrongDependency));
2834       }
2835     }
2836   } else {
2837     decorators |= C2_MISMATCHED;
2838     ptr = basic_plus_adr(base, ConvL2X(offset));
2839   }
2840 
2841   if (is_store) {
2842     Node* value = argument(6);
2843     const Type* value_type = _gvn.type(value);
2844     if (!value_type->is_inlinetypeptr()) {
2845       value_type = Type::get_const_type(value_klass)->filter_speculative(value_type);
2846       Node* new_value = _gvn.transform(new CastPPNode(control(), value, value_type, ConstraintCastNode::StrongDependency));
2847       new_value = InlineTypeNode::make_from_oop(this, new_value, value_klass);
2848       replace_in_map(value, new_value);
2849       value = new_value;
2850     }
2851 
2852     assert(value_type->inline_klass() == value_klass, "value is of type %s while valueType is %s", value_type->inline_klass()->name()->as_utf8(), value_klass->name()->as_utf8());
2853     if (layout == LayoutKind::REFERENCE) {
2854       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2855       access_store_at(base, ptr, ptr_type, value, value_type, T_OBJECT, decorators);
2856     } else {
2857       bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2858       bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2859       value->as_InlineType()->store_flat(this, base, ptr, atomic, immutable_memory, null_free, decorators);
2860     }
2861 
2862     return true;
2863   } else {
2864     decorators |= (C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
2865     InlineTypeNode* result;
2866     if (layout == LayoutKind::REFERENCE) {
2867       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2868       Node* oop = access_load_at(base, ptr, ptr_type, Type::get_const_type(value_klass), T_OBJECT, decorators);
2869       result = InlineTypeNode::make_from_oop(this, oop, value_klass);
2870     } else {
2871       bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2872       bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2873       result = InlineTypeNode::make_from_flat(this, value_klass, base, ptr, atomic, immutable_memory, null_free, decorators);
2874     }
2875 
2876     set_result(result);
2877     return true;
2878   }
2879 }
2880 
2881 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2882   Node* receiver = argument(0);
2883   Node* value = argument(1);
2884 
2885   const Type* type = gvn().type(value);
2886   if (!type->is_inlinetypeptr()) {
2887     C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type");
2888     return false;
2889   }
2890 
2891   null_check(receiver);
2892   if (stopped()) {
2893     return true;
2894   }
2895 
2896   value = null_check(value);
2897   if (stopped()) {
2898     return true;
2899   }
2900 
2901   ciInlineKlass* vk = type->inline_klass();
2902   Node* klass = makecon(TypeKlassPtr::make(vk));
2903   Node* obj = new_instance(klass);
2904   AllocateNode::Ideal_allocation(obj)->_larval = true;
2905 
2906   assert(value->is_InlineType(), "must be an InlineTypeNode");
2907   Node* payload_ptr = basic_plus_adr(obj, vk->payload_offset());
2908   value->as_InlineType()->store_flat(this, obj, payload_ptr, false, true, true, IN_HEAP | MO_UNORDERED);
2909 
2910   set_result(obj);
2911   return true;
2912 }
2913 
2914 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2915   Node* receiver = argument(0);
2916   Node* buffer = argument(1);
2917 
2918   const Type* type = gvn().type(buffer);
2919   if (!type->is_inlinetypeptr()) {
2920     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type");
2921     return false;
2922   }
2923 
2924   AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer);
2925   if (alloc == nullptr) {
2926     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer");
2927     return false;
2928   }
2929 
2930   null_check(receiver);
2931   if (stopped()) {
2932     return true;
2933   }
2934 
2935   // Unset the larval bit in the object header
2936   Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned);
2937   Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place)));
2938   access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP);
2939 
2940   // We must ensure that the buffer is properly published
2941   insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
2942   assert(!type->maybe_null(), "result of an allocation should not be null");
2943   set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass()));
2944   return true;
2945 }
2946 
2947 //----------------------------inline_unsafe_load_store----------------------------
2948 // This method serves a couple of different customers (depending on LoadStoreKind):
2949 //
2950 // LS_cmp_swap:
2951 //
2952 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2953 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2954 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2955 //
2956 // LS_cmp_swap_weak:
2957 //
2958 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2959 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2960 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2961 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2962 //
2963 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);

3132     }
3133     case LS_cmp_swap:
3134     case LS_cmp_swap_weak:
3135     case LS_get_add:
3136       break;
3137     default:
3138       ShouldNotReachHere();
3139   }
3140 
3141   // Null check receiver.
3142   receiver = null_check(receiver);
3143   if (stopped()) {
3144     return true;
3145   }
3146 
3147   int alias_idx = C->get_alias_index(adr_type);
3148 
3149   if (is_reference_type(type)) {
3150     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
3151 
3152     if (oldval != nullptr && oldval->is_InlineType()) {
3153       // Re-execute the unsafe access if allocation triggers deoptimization.
3154       PreserveReexecuteState preexecs(this);
3155       jvms()->set_should_reexecute(true);
3156       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
3157     }
3158     if (newval != nullptr && newval->is_InlineType()) {
3159       // Re-execute the unsafe access if allocation triggers deoptimization.
3160       PreserveReexecuteState preexecs(this);
3161       jvms()->set_should_reexecute(true);
3162       newval = newval->as_InlineType()->buffer(this)->get_oop();
3163     }
3164 
3165     // Transformation of a value which could be null pointer (CastPP #null)
3166     // could be delayed during Parse (for example, in adjust_map_after_if()).
3167     // Execute transformation here to avoid barrier generation in such case.
3168     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3169       newval = _gvn.makecon(TypePtr::NULL_PTR);
3170 
3171     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
3172       // Refine the value to a null constant, when it is known to be null
3173       oldval = _gvn.makecon(TypePtr::NULL_PTR);
3174     }
3175   }
3176 
3177   Node* result = nullptr;
3178   switch (kind) {
3179     case LS_cmp_exchange: {
3180       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
3181                                             oldval, newval, value_type, type, decorators);
3182       break;
3183     }
3184     case LS_cmp_swap_weak:

3331                     Deoptimization::Action_make_not_entrant);
3332     }
3333     if (stopped()) {
3334       return true;
3335     }
3336 #endif //INCLUDE_JVMTI
3337 
3338   Node* test = nullptr;
3339   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3340     // Note:  The argument might still be an illegal value like
3341     // Serializable.class or Object[].class.   The runtime will handle it.
3342     // But we must make an explicit check for initialization.
3343     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3344     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3345     // can generate code to load it as unsigned byte.
3346     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3347     Node* bits = intcon(InstanceKlass::fully_initialized);
3348     test = _gvn.transform(new SubINode(inst, bits));
3349     // The 'test' is non-zero if we need to take a slow path.
3350   }
3351   Node* obj = nullptr;
3352   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3353   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3354     obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3355   } else {
3356     obj = new_instance(kls, test);
3357   }
3358   set_result(obj);
3359   return true;
3360 }
3361 
3362 //------------------------inline_native_time_funcs--------------
3363 // inline code for System.currentTimeMillis() and System.nanoTime()
3364 // these have the same type and signature
3365 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3366   const TypeFunc* tf = OptoRuntime::void_long_Type();
3367   const TypePtr* no_memory_effects = nullptr;
3368   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3369   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3370 #ifdef ASSERT
3371   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3372   assert(value_top == top(), "second value must be top");
3373 #endif
3374   set_result(value);
3375   return true;
3376 }
3377 

4118   Node* thread = _gvn.transform(new ThreadLocalNode());
4119   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
4120   Node* thread_obj_handle
4121     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
4122   thread_obj_handle = _gvn.transform(thread_obj_handle);
4123   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
4124   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
4125 
4126   // Change the _monitor_owner_id of the JavaThread
4127   Node* tid = load_field_from_object(arr, "tid", "J");
4128   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
4129   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
4130 
4131   JFR_ONLY(extend_setCurrentThread(thread, arr);)
4132   return true;
4133 }
4134 
4135 const Type* LibraryCallKit::scopedValueCache_type() {
4136   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
4137   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
4138   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
4139 
4140   // Because we create the scopedValue cache lazily we have to make the
4141   // type of the result BotPTR.
4142   bool xk = etype->klass_is_exact();
4143   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
4144   return objects_type;
4145 }
4146 
4147 Node* LibraryCallKit::scopedValueCache_helper() {
4148   Node* thread = _gvn.transform(new ThreadLocalNode());
4149   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
4150   // We cannot use immutable_memory() because we might flip onto a
4151   // different carrier thread, at which point we'll need to use that
4152   // carrier thread's cache.
4153   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
4154   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
4155   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
4156 }
4157 
4158 //------------------------inline_native_scopedValueCache------------------
4159 bool LibraryCallKit::inline_native_scopedValueCache() {
4160   Node* cache_obj_handle = scopedValueCache_helper();
4161   const Type* objects_type = scopedValueCache_type();
4162   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
4163 

4247   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
4248 
4249   // Result of top level CFG and Memory.
4250   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4251   record_for_igvn(result_rgn);
4252   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4253   record_for_igvn(result_mem);
4254 
4255   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
4256   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
4257   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
4258   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4259 
4260   // Set output state.
4261   set_control(_gvn.transform(result_rgn));
4262   set_all_memory(_gvn.transform(result_mem));
4263 
4264   return true;
4265 }
4266 









4267 //-----------------------load_klass_from_mirror_common-------------------------
4268 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
4269 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
4270 // and branch to the given path on the region.
4271 // If never_see_null, take an uncommon trap on null, so we can optimistically
4272 // compile for the non-null case.
4273 // If the region is null, force never_see_null = true.
4274 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
4275                                                     bool never_see_null,
4276                                                     RegionNode* region,
4277                                                     int null_path,
4278                                                     int offset) {
4279   if (region == nullptr)  never_see_null = true;
4280   Node* p = basic_plus_adr(mirror, offset);
4281   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4282   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
4283   Node* null_ctl = top();
4284   kls = null_check_oop(kls, &null_ctl, never_see_null);
4285   if (region != nullptr) {
4286     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

4290   }
4291   return kls;
4292 }
4293 
4294 //--------------------(inline_native_Class_query helpers)---------------------
4295 // Use this for JVM_ACC_INTERFACE.
4296 // Fall through if (mods & mask) == bits, take the guard otherwise.
4297 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4298                                                  ByteSize offset, const Type* type, BasicType bt) {
4299   // Branch around if the given klass has the given modifier bit set.
4300   // Like generate_guard, adds a new path onto the region.
4301   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4302   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4303   Node* mask = intcon(modifier_mask);
4304   Node* bits = intcon(modifier_bits);
4305   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4306   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4307   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4308   return generate_fair_guard(bol, region);
4309 }
4310 
4311 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4312   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4313                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4314 }
4315 
4316 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4317 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4318   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4319                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4320 }
4321 
4322 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4323   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4324 }
4325 
4326 //-------------------------inline_native_Class_query-------------------
4327 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4328   const Type* return_type = TypeInt::BOOL;
4329   Node* prim_return_value = top();  // what happens if it's a primitive class?
4330   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4449 
4450   case vmIntrinsics::_getClassAccessFlags:
4451     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4452     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4453     break;
4454 
4455   default:
4456     fatal_unexpected_iid(id);
4457     break;
4458   }
4459 
4460   // Fall-through is the normal case of a query to a real class.
4461   phi->init_req(1, query_value);
4462   region->init_req(1, control());
4463 
4464   C->set_has_split_ifs(true); // Has chance for split-if optimization
4465   set_result(region, phi);
4466   return true;
4467 }
4468 
4469 
4470 //-------------------------inline_Class_cast-------------------
4471 bool LibraryCallKit::inline_Class_cast() {
4472   Node* mirror = argument(0); // Class
4473   Node* obj    = argument(1);
4474   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4475   if (mirror_con == nullptr) {
4476     return false;  // dead path (mirror->is_top()).
4477   }
4478   if (obj == nullptr || obj->is_top()) {
4479     return false;  // dead path
4480   }
4481   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4482 
4483   // First, see if Class.cast() can be folded statically.
4484   // java_mirror_type() returns non-null for compile-time Class constants.
4485   bool is_null_free_array = false;
4486   ciType* tm = mirror_con->java_mirror_type(&is_null_free_array);
4487   if (tm != nullptr && tm->is_klass() &&
4488       tp != nullptr) {
4489     if (!tp->is_loaded()) {
4490       // Don't use intrinsic when class is not loaded.
4491       return false;
4492     } else {
4493       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4494       if (is_null_free_array) {
4495         tklass = tklass->is_aryklassptr()->cast_to_null_free();
4496       }
4497       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4498       if (static_res == Compile::SSC_always_true) {
4499         // isInstance() is true - fold the code.
4500         set_result(obj);
4501         return true;
4502       } else if (static_res == Compile::SSC_always_false) {
4503         // Don't use intrinsic, have to throw ClassCastException.
4504         // If the reference is null, the non-intrinsic bytecode will
4505         // be optimized appropriately.
4506         return false;
4507       }
4508     }
4509   }
4510 
4511   // Bailout intrinsic and do normal inlining if exception path is frequent.
4512   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4513     return false;
4514   }
4515 
4516   // Generate dynamic checks.
4517   // Class.cast() is java implementation of _checkcast bytecode.
4518   // Do checkcast (Parse::do_checkcast()) optimizations here.
4519 
4520   mirror = null_check(mirror);
4521   // If mirror is dead, only null-path is taken.
4522   if (stopped()) {
4523     return true;
4524   }
4525 
4526   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4527   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4528   RegionNode* region = new RegionNode(PATH_LIMIT);
4529   record_for_igvn(region);
4530 
4531   // Now load the mirror's klass metaobject, and null-check it.
4532   // If kls is null, we have a primitive mirror and
4533   // nothing is an instance of a primitive type.
4534   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4535 
4536   Node* res = top();
4537   Node* io = i_o();
4538   Node* mem = merged_memory();
4539   if (!stopped()) {
4540 
4541     Node* bad_type_ctrl = top();
4542     // Do checkcast optimizations.
4543     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4544     region->init_req(_bad_type_path, bad_type_ctrl);
4545   }
4546   if (region->in(_prim_path) != top() ||
4547       region->in(_bad_type_path) != top() ||
4548       region->in(_npe_path) != top()) {
4549     // Let Interpreter throw ClassCastException.
4550     PreserveJVMState pjvms(this);
4551     set_control(_gvn.transform(region));
4552     // Set IO and memory because gen_checkcast may override them when buffering inline types
4553     set_i_o(io);
4554     set_all_memory(mem);
4555     uncommon_trap(Deoptimization::Reason_intrinsic,
4556                   Deoptimization::Action_maybe_recompile);
4557   }
4558   if (!stopped()) {
4559     set_result(res);
4560   }
4561   return true;
4562 }
4563 
4564 
4565 //--------------------------inline_native_subtype_check------------------------
4566 // This intrinsic takes the JNI calls out of the heart of
4567 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4568 bool LibraryCallKit::inline_native_subtype_check() {
4569   // Pull both arguments off the stack.
4570   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4571   args[0] = argument(0);
4572   args[1] = argument(1);
4573   Node* klasses[2];             // corresponding Klasses: superk, subk
4574   klasses[0] = klasses[1] = top();
4575 
4576   enum {
4577     // A full decision tree on {superc is prim, subc is prim}:
4578     _prim_0_path = 1,           // {P,N} => false
4579                                 // {P,P} & superc!=subc => false
4580     _prim_same_path,            // {P,P} & superc==subc => true
4581     _prim_1_path,               // {N,P} => false
4582     _ref_subtype_path,          // {N,N} & subtype check wins => true
4583     _both_ref_path,             // {N,N} & subtype check loses => false
4584     PATH_LIMIT
4585   };
4586 
4587   RegionNode* region = new RegionNode(PATH_LIMIT);
4588   RegionNode* prim_region = new RegionNode(2);
4589   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4590   record_for_igvn(region);
4591   record_for_igvn(prim_region);
4592 
4593   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4594   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4595   int class_klass_offset = java_lang_Class::klass_offset();
4596 
4597   // First null-check both mirrors and load each mirror's klass metaobject.
4598   int which_arg;
4599   for (which_arg = 0; which_arg <= 1; which_arg++) {
4600     Node* arg = args[which_arg];
4601     arg = null_check(arg);
4602     if (stopped())  break;
4603     args[which_arg] = arg;
4604 
4605     Node* p = basic_plus_adr(arg, class_klass_offset);
4606     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4607     klasses[which_arg] = _gvn.transform(kls);
4608   }
4609 
4610   // Having loaded both klasses, test each for null.
4611   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4612   for (which_arg = 0; which_arg <= 1; which_arg++) {
4613     Node* kls = klasses[which_arg];
4614     Node* null_ctl = top();
4615     kls = null_check_oop(kls, &null_ctl, never_see_null);
4616     if (which_arg == 0) {
4617       prim_region->init_req(1, null_ctl);
4618     } else {
4619       region->init_req(_prim_1_path, null_ctl);
4620     }
4621     if (stopped())  break;
4622     klasses[which_arg] = kls;
4623   }
4624 
4625   if (!stopped()) {
4626     // now we have two reference types, in klasses[0..1]
4627     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4628     Node* superk = klasses[0];  // the receiver
4629     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));

4630     region->set_req(_ref_subtype_path, control());
4631   }
4632 
4633   // If both operands are primitive (both klasses null), then
4634   // we must return true when they are identical primitives.
4635   // It is convenient to test this after the first null klass check.
4636   // This path is also used if superc is a value mirror.
4637   set_control(_gvn.transform(prim_region));
4638   if (!stopped()) {
4639     // Since superc is primitive, make a guard for the superc==subc case.
4640     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4641     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4642     generate_fair_guard(bol_eq, region);
4643     if (region->req() == PATH_LIMIT+1) {
4644       // A guard was added.  If the added guard is taken, superc==subc.
4645       region->swap_edges(PATH_LIMIT, _prim_same_path);
4646       region->del_req(PATH_LIMIT);
4647     }
4648     region->set_req(_prim_0_path, control()); // Not equal after all.
4649   }
4650 
4651   // these are the only paths that produce 'true':
4652   phi->set_req(_prim_same_path,   intcon(1));
4653   phi->set_req(_ref_subtype_path, intcon(1));
4654 
4655   // pull together the cases:
4656   assert(region->req() == PATH_LIMIT, "sane region");
4657   for (uint i = 1; i < region->req(); i++) {
4658     Node* ctl = region->in(i);
4659     if (ctl == nullptr || ctl == top()) {
4660       region->set_req(i, top());
4661       phi   ->set_req(i, top());
4662     } else if (phi->in(i) == nullptr) {
4663       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4664     }
4665   }
4666 
4667   set_control(_gvn.transform(region));
4668   set_result(_gvn.transform(phi));
4669   return true;
4670 }
4671 
4672 //---------------------generate_array_guard_common------------------------
4673 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) {

4674 
4675   if (stopped()) {
4676     return nullptr;
4677   }
4678 









4679   // Like generate_guard, adds a new path onto the region.
4680   jint  layout_con = 0;
4681   Node* layout_val = get_layout_helper(kls, layout_con);
4682   if (layout_val == nullptr) {
4683     bool query = 0;
4684     switch(kind) {
4685       case ObjectArray:    query = Klass::layout_helper_is_objArray(layout_con); break;
4686       case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break;
4687       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4688       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4689       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4690       default:
4691         ShouldNotReachHere();
4692     }
4693     if (!query) {
4694       return nullptr;                       // never a branch
4695     } else {                             // always a branch
4696       Node* always_branch = control();
4697       if (region != nullptr)
4698         region->add_req(always_branch);
4699       set_control(top());
4700       return always_branch;
4701     }
4702   }
4703   unsigned int value = 0;
4704   BoolTest::mask btest = BoolTest::illegal;
4705   switch(kind) {
4706     case ObjectArray:
4707     case NonObjectArray: {
4708       value = Klass::_lh_array_tag_obj_value;
4709       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4710       btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne;
4711       break;
4712     }
4713     case TypeArray: {
4714       value = Klass::_lh_array_tag_type_value;
4715       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4716       btest = BoolTest::eq;
4717       break;
4718     }
4719     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4720     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4721     default:
4722       ShouldNotReachHere();
4723   }
4724   // Now test the correct condition.
4725   jint nval = (jint)value;



4726   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));



4727   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4728   Node* ctrl = generate_fair_guard(bol, region);
4729   Node* is_array_ctrl = kind == NonArray ? control() : ctrl;
4730   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4731     // Keep track of the fact that 'obj' is an array to prevent
4732     // array specific accesses from floating above the guard.
4733     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4734   }
4735   return ctrl;
4736 }
4737 
4738 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal);
4739 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal);
4740 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length);
4741 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) {
4742   assert(null_free || atomic, "nullable implies atomic");
4743   Node* componentType = argument(0);
4744   Node* length = argument(1);
4745   Node* init_val = null_free ? argument(2) : nullptr;
4746 
4747   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4748   if (tp != nullptr) {
4749     ciInstanceKlass* ik = tp->instance_klass();
4750     if (ik == C->env()->Class_klass()) {
4751       ciType* t = tp->java_mirror_type();
4752       if (t != nullptr && t->is_inlinetype()) {
4753         ciInlineKlass* vk = t->as_inline_klass();
4754         bool flat = vk->maybe_flat_in_array();
4755         if (flat && atomic) {
4756           // Only flat if we have a corresponding atomic layout
4757           flat = null_free ? vk->has_atomic_layout() : vk->has_nullable_atomic_layout();
4758         }
4759         // TODO 8350865 refactor
4760         if (flat && !atomic) {
4761           flat = vk->has_non_atomic_layout();
4762         }
4763 
4764         // TOOD 8350865 ZGC needs card marks on initializing oop stores
4765         if (UseZGC && null_free && !flat) {
4766           return false;
4767         }
4768 
4769         ciArrayKlass* array_klass = ciArrayKlass::make(t, flat, null_free, atomic);
4770         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4771           const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
4772           if (null_free) {
4773             if (init_val->is_InlineType()) {
4774               if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) {
4775                 // Zeroing is enough because the init value is the all-zero value
4776                 init_val = nullptr;
4777               } else {
4778                 init_val = init_val->as_InlineType()->buffer(this);
4779               }
4780             }
4781             // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)?
4782           }
4783           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val);
4784           const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr();
4785           assert(arytype->is_null_free() == null_free, "inconsistency");
4786           assert(arytype->is_not_null_free() == !null_free, "inconsistency");
4787           assert(arytype->is_flat() == flat, "inconsistency");
4788           assert(arytype->is_aryptr()->is_not_flat() == !flat, "inconsistency");
4789           set_result(obj);
4790           return true;
4791         }
4792       }
4793     }
4794   }
4795   return false;
4796 }
4797 
4798 //-----------------------inline_native_newArray--------------------------
4799 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4800 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4801 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4802   Node* mirror;
4803   Node* count_val;
4804   if (uninitialized) {
4805     null_check_receiver();
4806     mirror    = argument(1);
4807     count_val = argument(2);
4808   } else {
4809     mirror    = argument(0);
4810     count_val = argument(1);
4811   }
4812 
4813   mirror = null_check(mirror);
4814   // If mirror or obj is dead, only null-path is taken.
4815   if (stopped())  return true;
4816 
4817   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4818   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4819   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4925   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4926   { PreserveReexecuteState preexecs(this);
4927     jvms()->set_should_reexecute(true);
4928 
4929     array_type_mirror = null_check(array_type_mirror);
4930     original          = null_check(original);
4931 
4932     // Check if a null path was taken unconditionally.
4933     if (stopped())  return true;
4934 
4935     Node* orig_length = load_array_length(original);
4936 
4937     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4938     klass_node = null_check(klass_node);
4939 
4940     RegionNode* bailout = new RegionNode(1);
4941     record_for_igvn(bailout);
4942 
4943     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4944     // Bail out if that is so.
4945     // Inline type array may have object field that would require a
4946     // write barrier. Conservatively, go to slow path.
4947     // TODO 8251971: Optimize for the case when flat src/dst are later found
4948     // to not contain oops (i.e., move this check to the macro expansion phase).
4949     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4950     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
4951     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
4952     bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
4953                         // Can src array be flat and contain oops?
4954                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
4955                         // Can dest array be flat and contain oops?
4956                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
4957     Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
4958     if (not_objArray != nullptr) {
4959       // Improve the klass node's type from the new optimistic assumption:
4960       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4961       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
4962       Node* cast = new CastPPNode(control(), klass_node, akls);
4963       klass_node = _gvn.transform(cast);
4964     }
4965 
4966     // Bail out if either start or end is negative.
4967     generate_negative_guard(start, bailout, &start);
4968     generate_negative_guard(end,   bailout, &end);
4969 
4970     Node* length = end;
4971     if (_gvn.type(start) != TypeInt::ZERO) {
4972       length = _gvn.transform(new SubINode(end, start));
4973     }
4974 
4975     // Bail out if length is negative (i.e., if start > end).
4976     // Without this the new_array would throw
4977     // NegativeArraySizeException but IllegalArgumentException is what
4978     // should be thrown
4979     generate_negative_guard(length, bailout, &length);
4980 
4981     // Handle inline type arrays
4982     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
4983     if (!stopped()) {
4984       // TODO JDK-8329224
4985       if (!orig_t->is_null_free()) {
4986         // Not statically known to be null free, add a check
4987         generate_fair_guard(null_free_array_test(original), bailout);
4988       }
4989       orig_t = _gvn.type(original)->isa_aryptr();
4990       if (orig_t != nullptr && orig_t->is_flat()) {
4991         // Src is flat, check that dest is flat as well
4992         if (exclude_flat) {
4993           // Dest can't be flat, bail out
4994           bailout->add_req(control());
4995           set_control(top());
4996         } else {
4997           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
4998         }
4999         // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy.
5000       } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) &&
5001                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
5002                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
5003         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
5004         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
5005         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
5006         if (orig_t != nullptr) {
5007           orig_t = orig_t->cast_to_not_flat();
5008           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
5009         }
5010       }
5011       if (!can_validate) {
5012         // No validation. The subtype check emitted at macro expansion time will not go to the slow
5013         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
5014         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
5015         generate_fair_guard(flat_array_test(klass_node), bailout);
5016         generate_fair_guard(null_free_array_test(original), bailout);
5017       }
5018     }
5019 
5020     // Bail out if start is larger than the original length
5021     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
5022     generate_negative_guard(orig_tail, bailout, &orig_tail);
5023 
5024     if (bailout->req() > 1) {
5025       PreserveJVMState pjvms(this);
5026       set_control(_gvn.transform(bailout));
5027       uncommon_trap(Deoptimization::Reason_intrinsic,
5028                     Deoptimization::Action_maybe_recompile);
5029     }
5030 
5031     if (!stopped()) {
5032       // How many elements will we copy from the original?
5033       // The answer is MinI(orig_tail, length).
5034       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
5035 
5036       // Generate a direct call to the right arraycopy function(s).
5037       // We know the copy is disjoint but we might not know if the
5038       // oop stores need checking.
5039       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

5045       // to the copyOf to be validated, including that the copy to the
5046       // new array won't trigger an ArrayStoreException. That subtype
5047       // check can be optimized if we know something on the type of
5048       // the input array from type speculation.
5049       if (_gvn.type(klass_node)->singleton()) {
5050         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
5051         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
5052 
5053         int test = C->static_subtype_check(superk, subk);
5054         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
5055           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
5056           if (t_original->speculative_type() != nullptr) {
5057             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
5058           }
5059         }
5060       }
5061 
5062       bool validated = false;
5063       // Reason_class_check rather than Reason_intrinsic because we
5064       // want to intrinsify even if this traps.
5065       if (can_validate) {
5066         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
5067 
5068         if (not_subtype_ctrl != top()) {
5069           PreserveJVMState pjvms(this);
5070           set_control(not_subtype_ctrl);
5071           uncommon_trap(Deoptimization::Reason_class_check,
5072                         Deoptimization::Action_make_not_entrant);
5073           assert(stopped(), "Should be stopped");
5074         }
5075         validated = true;
5076       }
5077 
5078       if (!stopped()) {
5079         newcopy = new_array(klass_node, length, 0);  // no arguments to push
5080 
5081         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
5082                                                 load_object_klass(original), klass_node);
5083         if (!is_copyOfRange) {
5084           ac->set_copyof(validated);
5085         } else {

5131 
5132 //-----------------------generate_method_call----------------------------
5133 // Use generate_method_call to make a slow-call to the real
5134 // method if the fast path fails.  An alternative would be to
5135 // use a stub like OptoRuntime::slow_arraycopy_Java.
5136 // This only works for expanding the current library call,
5137 // not another intrinsic.  (E.g., don't use this for making an
5138 // arraycopy call inside of the copyOf intrinsic.)
5139 CallJavaNode*
5140 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
5141   // When compiling the intrinsic method itself, do not use this technique.
5142   guarantee(callee() != C->method(), "cannot make slow-call to self");
5143 
5144   ciMethod* method = callee();
5145   // ensure the JVMS we have will be correct for this call
5146   guarantee(method_id == method->intrinsic_id(), "must match");
5147 
5148   const TypeFunc* tf = TypeFunc::make(method);
5149   if (res_not_null) {
5150     assert(tf->return_type() == T_OBJECT, "");
5151     const TypeTuple* range = tf->range_cc();
5152     const Type** fields = TypeTuple::fields(range->cnt());
5153     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
5154     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
5155     tf = TypeFunc::make(tf->domain_cc(), new_range);
5156   }
5157   CallJavaNode* slow_call;
5158   if (is_static) {
5159     assert(!is_virtual, "");
5160     slow_call = new CallStaticJavaNode(C, tf,
5161                            SharedRuntime::get_resolve_static_call_stub(), method);
5162   } else if (is_virtual) {
5163     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
5164     int vtable_index = Method::invalid_vtable_index;
5165     if (UseInlineCaches) {
5166       // Suppress the vtable call
5167     } else {
5168       // hashCode and clone are not a miranda methods,
5169       // so the vtable index is fixed.
5170       // No need to use the linkResolver to get it.
5171        vtable_index = method->vtable_index();
5172        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5173               "bad index %d", vtable_index);
5174     }
5175     slow_call = new CallDynamicJavaNode(tf,

5192   set_edges_for_java_call(slow_call);
5193   return slow_call;
5194 }
5195 
5196 
5197 /**
5198  * Build special case code for calls to hashCode on an object. This call may
5199  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
5200  * slightly different code.
5201  */
5202 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
5203   assert(is_static == callee()->is_static(), "correct intrinsic selection");
5204   assert(!(is_virtual && is_static), "either virtual, special, or static");
5205 
5206   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
5207 
5208   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5209   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
5210   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
5211   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5212   Node* obj = argument(0);
5213 
5214   // Don't intrinsify hashcode on inline types for now.
5215   // The "is locked" runtime check below also serves as inline type check and goes to the slow path.
5216   if (gvn().type(obj)->is_inlinetypeptr()) {
5217     return false;
5218   }
5219 
5220   if (!is_static) {
5221     // Check for hashing null object
5222     obj = null_check_receiver();
5223     if (stopped())  return true;        // unconditionally null
5224     result_reg->init_req(_null_path, top());
5225     result_val->init_req(_null_path, top());
5226   } else {
5227     // Do a null check, and return zero if null.
5228     // System.identityHashCode(null) == 0

5229     Node* null_ctl = top();
5230     obj = null_check_oop(obj, &null_ctl);
5231     result_reg->init_req(_null_path, null_ctl);
5232     result_val->init_req(_null_path, _gvn.intcon(0));
5233   }
5234 
5235   // Unconditionally null?  Then return right away.
5236   if (stopped()) {
5237     set_control( result_reg->in(_null_path));
5238     if (!stopped())
5239       set_result(result_val->in(_null_path));
5240     return true;
5241   }
5242 
5243   // We only go to the fast case code if we pass a number of guards.  The
5244   // paths which do not pass are accumulated in the slow_region.
5245   RegionNode* slow_region = new RegionNode(1);
5246   record_for_igvn(slow_region);
5247 
5248   // If this is a virtual call, we generate a funny guard.  We pull out
5249   // the vtable entry corresponding to hashCode() from the target object.
5250   // If the target method which we are calling happens to be the native
5251   // Object hashCode() method, we pass the guard.  We do not need this
5252   // guard for non-virtual calls -- the caller is known to be the native
5253   // Object hashCode().
5254   if (is_virtual) {
5255     // After null check, get the object's klass.
5256     Node* obj_klass = load_object_klass(obj);
5257     generate_virtual_guard(obj_klass, slow_region);
5258   }
5259 
5260   // Get the header out of the object, use LoadMarkNode when available
5261   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5262   // The control of the load must be null. Otherwise, the load can move before
5263   // the null check after castPP removal.
5264   Node* no_ctrl = nullptr;
5265   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5266 
5267   if (!UseObjectMonitorTable) {
5268     // Test the header to see if it is safe to read w.r.t. locking.
5269   // This also serves as guard against inline types
5270     Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
5271     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5272     if (LockingMode == LM_LIGHTWEIGHT) {
5273       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5274       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5275       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5276 
5277       generate_slow_guard(test_monitor, slow_region);
5278     } else {
5279       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
5280       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
5281       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
5282 
5283       generate_slow_guard(test_not_unlocked, slow_region);
5284     }
5285   }
5286 
5287   // Get the hash value and check to see that it has been properly assigned.
5288   // We depend on hash_mask being at most 32 bits and avoid the use of
5289   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5290   // vm: see markWord.hpp.

5325     // this->control() comes from set_results_for_java_call
5326     result_reg->init_req(_slow_path, control());
5327     result_val->init_req(_slow_path, slow_result);
5328     result_io  ->set_req(_slow_path, i_o());
5329     result_mem ->set_req(_slow_path, reset_memory());
5330   }
5331 
5332   // Return the combined state.
5333   set_i_o(        _gvn.transform(result_io)  );
5334   set_all_memory( _gvn.transform(result_mem));
5335 
5336   set_result(result_reg, result_val);
5337   return true;
5338 }
5339 
5340 //---------------------------inline_native_getClass----------------------------
5341 // public final native Class<?> java.lang.Object.getClass();
5342 //
5343 // Build special case code for calls to getClass on an object.
5344 bool LibraryCallKit::inline_native_getClass() {
5345   Node* obj = argument(0);
5346   if (obj->is_InlineType()) {
5347     const Type* t = _gvn.type(obj);
5348     if (t->maybe_null()) {
5349       null_check(obj);
5350     }
5351     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5352     return true;
5353   }
5354   obj = null_check_receiver();
5355   if (stopped())  return true;
5356   set_result(load_mirror_from_klass(load_object_klass(obj)));
5357   return true;
5358 }
5359 
5360 //-----------------inline_native_Reflection_getCallerClass---------------------
5361 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5362 //
5363 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5364 //
5365 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5366 // in that it must skip particular security frames and checks for
5367 // caller sensitive methods.
5368 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5369 #ifndef PRODUCT
5370   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5371     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5372   }
5373 #endif
5374 

5686     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5687 
5688     flags |= RC_NARROW_MEM; // narrow in memory
5689   }
5690 
5691   // Call it.  Note that the length argument is not scaled.
5692   make_runtime_call(flags,
5693                     OptoRuntime::unsafe_setmemory_Type(),
5694                     StubRoutines::unsafe_setmemory(),
5695                     "unsafe_setmemory",
5696                     dst_type,
5697                     dst_addr, size XTOP, byte);
5698 
5699   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5700 
5701   return true;
5702 }
5703 
5704 #undef XTOP
5705 
5706 //----------------------inline_unsafe_isFlatArray------------------------
5707 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass);
5708 // This intrinsic exploits assumptions made by the native implementation
5709 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks.
5710 bool LibraryCallKit::inline_unsafe_isFlatArray() {
5711   Node* cls = argument(1);
5712   Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset());
5713   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p,
5714                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
5715   Node* result = flat_array_test(kls);
5716   set_result(result);
5717   return true;
5718 }
5719 
5720 //------------------------clone_coping-----------------------------------
5721 // Helper function for inline_native_clone.
5722 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5723   assert(obj_size != nullptr, "");
5724   Node* raw_obj = alloc_obj->in(1);
5725   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5726 
5727   AllocateNode* alloc = nullptr;
5728   if (ReduceBulkZeroing &&
5729       // If we are implementing an array clone without knowing its source type
5730       // (can happen when compiling the array-guarded branch of a reflective
5731       // Object.clone() invocation), initialize the array within the allocation.
5732       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5733       // to a runtime clone call that assumes fully initialized source arrays.
5734       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5735     // We will be completely responsible for initializing this object -
5736     // mark Initialize node as complete.
5737     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5738     // The object was just allocated - there should be no any stores!
5739     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");

5770 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5771 //
5772 // The general case has two steps, allocation and copying.
5773 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5774 //
5775 // Copying also has two cases, oop arrays and everything else.
5776 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5777 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5778 //
5779 // These steps fold up nicely if and when the cloned object's klass
5780 // can be sharply typed as an object array, a type array, or an instance.
5781 //
5782 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5783   PhiNode* result_val;
5784 
5785   // Set the reexecute bit for the interpreter to reexecute
5786   // the bytecode that invokes Object.clone if deoptimization happens.
5787   { PreserveReexecuteState preexecs(this);
5788     jvms()->set_should_reexecute(true);
5789 
5790     Node* obj = argument(0);
5791     obj = null_check_receiver();
5792     if (stopped())  return true;
5793 
5794     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5795     if (obj_type->is_inlinetypeptr()) {
5796       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5797       // no identity.
5798       set_result(obj);
5799       return true;
5800     }
5801 
5802     // If we are going to clone an instance, we need its exact type to
5803     // know the number and types of fields to convert the clone to
5804     // loads/stores. Maybe a speculative type can help us.
5805     if (!obj_type->klass_is_exact() &&
5806         obj_type->speculative_type() != nullptr &&
5807         obj_type->speculative_type()->is_instance_klass() &&
5808         !obj_type->speculative_type()->is_inlinetype()) {
5809       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5810       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5811           !spec_ik->has_injected_fields()) {
5812         if (!obj_type->isa_instptr() ||
5813             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5814           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5815         }
5816       }
5817     }
5818 
5819     // Conservatively insert a memory barrier on all memory slices.
5820     // Do not let writes into the original float below the clone.
5821     insert_mem_bar(Op_MemBarCPUOrder);
5822 
5823     // paths into result_reg:
5824     enum {
5825       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5826       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5827       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5828       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5829       PATH_LIMIT
5830     };
5831     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5832     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5833     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5834     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5835     record_for_igvn(result_reg);
5836 
5837     // TODO 8350865 For arrays, this might be folded and then not account for atomic arrays
5838     Node* obj_klass = load_object_klass(obj);
5839     // We only go to the fast case code if we pass a number of guards.
5840     // The paths which do not pass are accumulated in the slow_region.
5841     RegionNode* slow_region = new RegionNode(1);
5842     record_for_igvn(slow_region);
5843 
5844     Node* array_obj = obj;
5845     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5846     if (array_ctl != nullptr) {
5847       // It's an array.
5848       PreserveJVMState pjvms(this);
5849       set_control(array_ctl);



5850 
5851       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5852       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5853       if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5854           obj_type->can_be_inline_array() &&
5855           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5856         // Flat inline type array may have object field that would require a
5857         // write barrier. Conservatively, go to slow path.
5858         generate_fair_guard(flat_array_test(obj_klass), slow_region);













5859       }







5860 
5861       if (!stopped()) {
5862         Node* obj_length = load_array_length(array_obj);
5863         Node* array_size = nullptr; // Size of the array without object alignment padding.
5864         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5865 
5866         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5867         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5868           // If it is an oop array, it requires very special treatment,
5869           // because gc barriers are required when accessing the array.
5870           Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5871           if (is_obja != nullptr) {
5872             PreserveJVMState pjvms2(this);
5873             set_control(is_obja);
5874             // Generate a direct call to the right arraycopy function(s).
5875             // Clones are always tightly coupled.
5876             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5877             ac->set_clone_oop_array();
5878             Node* n = _gvn.transform(ac);
5879             assert(n == ac, "cannot disappear");
5880             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5881 
5882             result_reg->init_req(_objArray_path, control());
5883             result_val->init_req(_objArray_path, alloc_obj);
5884             result_i_o ->set_req(_objArray_path, i_o());
5885             result_mem ->set_req(_objArray_path, reset_memory());
5886           }
5887         }
5888         // Otherwise, there are no barriers to worry about.
5889         // (We can dispense with card marks if we know the allocation
5890         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5891         //  causes the non-eden paths to take compensating steps to
5892         //  simulate a fresh allocation, so that no further
5893         //  card marks are required in compiled code to initialize
5894         //  the object.)
5895 
5896         if (!stopped()) {
5897           copy_to_clone(obj, alloc_obj, array_size, true);
5898 
5899           // Present the results of the copy.
5900           result_reg->init_req(_array_path, control());
5901           result_val->init_req(_array_path, alloc_obj);
5902           result_i_o ->set_req(_array_path, i_o());
5903           result_mem ->set_req(_array_path, reset_memory());
5904         }
5905       }
5906     }
5907 




5908     if (!stopped()) {
5909       // It's an instance (we did array above).  Make the slow-path tests.
5910       // If this is a virtual call, we generate a funny guard.  We grab
5911       // the vtable entry corresponding to clone() from the target object.
5912       // If the target method which we are calling happens to be the
5913       // Object clone() method, we pass the guard.  We do not need this
5914       // guard for non-virtual calls; the caller is known to be the native
5915       // Object clone().
5916       if (is_virtual) {
5917         generate_virtual_guard(obj_klass, slow_region);
5918       }
5919 
5920       // The object must be easily cloneable and must not have a finalizer.
5921       // Both of these conditions may be checked in a single test.
5922       // We could optimize the test further, but we don't care.
5923       generate_misc_flags_guard(obj_klass,
5924                                 // Test both conditions:
5925                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5926                                 // Must be cloneable but not finalizer:
5927                                 KlassFlags::_misc_is_cloneable_fast,

6019         set_jvms(sfpt->jvms());
6020         _reexecute_sp = jvms()->sp();
6021 
6022         return saved_jvms;
6023       }
6024     }
6025   }
6026   return nullptr;
6027 }
6028 
6029 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
6030 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
6031 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
6032   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
6033   uint size = alloc->req();
6034   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
6035   old_jvms->set_map(sfpt);
6036   for (uint i = 0; i < size; i++) {
6037     sfpt->init_req(i, alloc->in(i));
6038   }
6039   int adjustment = 1;
6040   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
6041   if (ary_klass_ptr->is_null_free()) {
6042     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which
6043     // also requires the componentType and initVal on stack for re-execution.
6044     // Re-create and push the componentType.
6045     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
6046     ciInstance* instance = klass->component_mirror_instance();
6047     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
6048     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
6049     adjustment++;
6050   }
6051   // re-push array length for deoptimization
6052   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
6053   if (ary_klass_ptr->is_null_free()) {
6054     // Re-create and push the initVal.
6055     Node* init_val = alloc->in(AllocateNode::InitValue);
6056     if (init_val == nullptr) {
6057       init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass());
6058     } else if (UseCompressedOops) {
6059       init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr()));
6060     }
6061     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val);
6062     adjustment++;
6063   }
6064   old_jvms->set_sp(old_jvms->sp() + adjustment);
6065   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
6066   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
6067   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
6068   old_jvms->set_should_reexecute(true);
6069 
6070   sfpt->set_i_o(map()->i_o());
6071   sfpt->set_memory(map()->memory());
6072   sfpt->set_control(map()->control());
6073   return sfpt;
6074 }
6075 
6076 // In case of a deoptimization, we restart execution at the
6077 // allocation, allocating a new array. We would leave an uninitialized
6078 // array in the heap that GCs wouldn't expect. Move the allocation
6079 // after the traps so we don't allocate the array if we
6080 // deoptimize. This is possible because tightly_coupled_allocation()
6081 // guarantees there's no observer of the allocated array at this point
6082 // and the control flow is simple enough.
6083 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
6084                                                     int saved_reexecute_sp, uint new_idx) {
6085   if (saved_jvms_before_guards != nullptr && !stopped()) {
6086     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
6087 
6088     assert(alloc != nullptr, "only with a tightly coupled allocation");
6089     // restore JVM state to the state at the arraycopy
6090     saved_jvms_before_guards->map()->set_control(map()->control());
6091     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
6092     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
6093     // If we've improved the types of some nodes (null check) while
6094     // emitting the guards, propagate them to the current state
6095     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
6096     set_jvms(saved_jvms_before_guards);
6097     _reexecute_sp = saved_reexecute_sp;
6098 
6099     // Remove the allocation from above the guards
6100     CallProjections* callprojs = alloc->extract_projections(true);

6101     InitializeNode* init = alloc->initialization();
6102     Node* alloc_mem = alloc->in(TypeFunc::Memory);
6103     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
6104     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
6105 
6106     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
6107     // the allocation (i.e. is only valid if the allocation succeeds):
6108     // 1) replace CastIINode with AllocateArrayNode's length here
6109     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
6110     //
6111     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
6112     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
6113     Node* init_control = init->proj_out(TypeFunc::Control);
6114     Node* alloc_length = alloc->Ideal_length();
6115 #ifdef ASSERT
6116     Node* prev_cast = nullptr;
6117 #endif
6118     for (uint i = 0; i < init_control->outcnt(); i++) {
6119       Node* init_out = init_control->raw_out(i);
6120       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
6121 #ifdef ASSERT
6122         if (prev_cast == nullptr) {
6123           prev_cast = init_out;

6125           if (prev_cast->cmp(*init_out) == false) {
6126             prev_cast->dump();
6127             init_out->dump();
6128             assert(false, "not equal CastIINode");
6129           }
6130         }
6131 #endif
6132         C->gvn_replace_by(init_out, alloc_length);
6133       }
6134     }
6135     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
6136 
6137     // move the allocation here (after the guards)
6138     _gvn.hash_delete(alloc);
6139     alloc->set_req(TypeFunc::Control, control());
6140     alloc->set_req(TypeFunc::I_O, i_o());
6141     Node *mem = reset_memory();
6142     set_all_memory(mem);
6143     alloc->set_req(TypeFunc::Memory, mem);
6144     set_control(init->proj_out_or_null(TypeFunc::Control));
6145     set_i_o(callprojs->fallthrough_ioproj);
6146 
6147     // Update memory as done in GraphKit::set_output_for_allocation()
6148     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
6149     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
6150     if (ary_type->isa_aryptr() && length_type != nullptr) {
6151       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
6152     }
6153     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
6154     int            elemidx  = C->get_alias_index(telemref);
6155     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
6156     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
6157 
6158     Node* allocx = _gvn.transform(alloc);
6159     assert(allocx == alloc, "where has the allocation gone?");
6160     assert(dest->is_CheckCastPP(), "not an allocation result?");
6161 
6162     _gvn.hash_delete(dest);
6163     dest->set_req(0, control());
6164     Node* destx = _gvn.transform(dest);
6165     assert(destx == dest, "where has the allocation result gone?");

6463         top_src  = src_type->isa_aryptr();
6464         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6465         src_spec = true;
6466       }
6467       if (!has_dest) {
6468         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6469         dest_type  = _gvn.type(dest);
6470         top_dest  = dest_type->isa_aryptr();
6471         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6472         dest_spec = true;
6473       }
6474     }
6475   }
6476 
6477   if (has_src && has_dest && can_emit_guards) {
6478     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6479     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6480     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6481     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6482 
6483     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6484       // If both arrays are object arrays then having the exact types
6485       // for both will remove the need for a subtype check at runtime
6486       // before the call and may make it possible to pick a faster copy
6487       // routine (without a subtype check on every element)
6488       // Do we have the exact type of src?
6489       bool could_have_src = src_spec;
6490       // Do we have the exact type of dest?
6491       bool could_have_dest = dest_spec;
6492       ciKlass* src_k = nullptr;
6493       ciKlass* dest_k = nullptr;
6494       if (!src_spec) {
6495         src_k = src_type->speculative_type_not_null();
6496         if (src_k != nullptr && src_k->is_array_klass()) {
6497           could_have_src = true;
6498         }
6499       }
6500       if (!dest_spec) {
6501         dest_k = dest_type->speculative_type_not_null();
6502         if (dest_k != nullptr && dest_k->is_array_klass()) {
6503           could_have_dest = true;
6504         }
6505       }
6506       if (could_have_src && could_have_dest) {
6507         // If we can have both exact types, emit the missing guards
6508         if (could_have_src && !src_spec) {
6509           src = maybe_cast_profiled_obj(src, src_k, true);
6510           src_type = _gvn.type(src);
6511           top_src = src_type->isa_aryptr();
6512         }
6513         if (could_have_dest && !dest_spec) {
6514           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6515           dest_type = _gvn.type(dest);
6516           top_dest = dest_type->isa_aryptr();
6517         }
6518       }
6519     }
6520   }
6521 
6522   ciMethod* trap_method = method();
6523   int trap_bci = bci();
6524   if (saved_jvms_before_guards != nullptr) {
6525     trap_method = alloc->jvms()->method();
6526     trap_bci = alloc->jvms()->bci();
6527   }
6528 
6529   bool negative_length_guard_generated = false;
6530 
6531   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6532       can_emit_guards && !src->is_top() && !dest->is_top()) {

6533     // validate arguments: enables transformation the ArrayCopyNode
6534     validated = true;
6535 
6536     RegionNode* slow_region = new RegionNode(1);
6537     record_for_igvn(slow_region);
6538 
6539     // (1) src and dest are arrays.
6540     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6541     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6542 
6543     // (2) src and dest arrays must have elements of the same BasicType
6544     // done at macro expansion or at Ideal transformation time
6545 
6546     // (4) src_offset must not be negative.
6547     generate_negative_guard(src_offset, slow_region);
6548 
6549     // (5) dest_offset must not be negative.
6550     generate_negative_guard(dest_offset, slow_region);
6551 
6552     // (7) src_offset + length must not exceed length of src.

6555                          slow_region);
6556 
6557     // (8) dest_offset + length must not exceed length of dest.
6558     generate_limit_guard(dest_offset, length,
6559                          load_array_length(dest),
6560                          slow_region);
6561 
6562     // (6) length must not be negative.
6563     // This is also checked in generate_arraycopy() during macro expansion, but
6564     // we also have to check it here for the case where the ArrayCopyNode will
6565     // be eliminated by Escape Analysis.
6566     if (EliminateAllocations) {
6567       generate_negative_guard(length, slow_region);
6568       negative_length_guard_generated = true;
6569     }
6570 
6571     // (9) each element of an oop array must be assignable
6572     Node* dest_klass = load_object_klass(dest);
6573     if (src != dest) {
6574       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6575       slow_region->add_req(not_subtype_ctrl);
6576     }
6577 
6578     // TODO 8350865 Fix below logic. Also handle atomicity.
6579     generate_fair_guard(flat_array_test(src), slow_region);
6580     generate_fair_guard(flat_array_test(dest), slow_region);
6581 
6582     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6583     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6584     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6585     src_type = _gvn.type(src);
6586     top_src  = src_type->isa_aryptr();
6587 
6588     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6589     if (!stopped() && UseArrayFlattening) {
6590       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6591       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6592       if (top_src != nullptr && top_src->is_flat()) {
6593         // Src is flat, check that dest is flat as well
6594         if (top_dest != nullptr && !top_dest->is_flat()) {
6595           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6596           // Since dest is flat and src <: dest, dest must have the same type as src.
6597           top_dest = top_src->cast_to_exactness(false);
6598           assert(top_dest->is_flat(), "dest must be flat");
6599           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6600         }
6601       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6602         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6603         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6604         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6605         generate_fair_guard(flat_array_test(src), slow_region);
6606         if (top_src != nullptr) {
6607           top_src = top_src->cast_to_not_flat();
6608           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6609         }
6610       }
6611     }
6612 
6613     {
6614       PreserveJVMState pjvms(this);
6615       set_control(_gvn.transform(slow_region));
6616       uncommon_trap(Deoptimization::Reason_intrinsic,
6617                     Deoptimization::Action_make_not_entrant);
6618       assert(stopped(), "Should be stopped");
6619     }




6620     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6621   }
6622 
6623   if (stopped()) {
6624     return true;
6625   }
6626 
6627   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6628                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6629                                           // so the compiler has a chance to eliminate them: during macro expansion,
6630                                           // we have to set their control (CastPP nodes are eliminated).
6631                                           load_object_klass(src), load_object_klass(dest),
6632                                           load_array_length(src), load_array_length(dest));
6633 
6634   ac->set_arraycopy(validated);
6635 
6636   Node* n = _gvn.transform(ac);
6637   if (n == ac) {
6638     ac->connect_outputs(this);
6639   } else {
< prev index next >