< prev index next >

src/hotspot/share/opto/library_call.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"

  26 #include "ci/ciUtilities.inline.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"

 298   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 299   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 300   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 301   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 302   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 303 
 304   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 305 
 306   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 307 
 308   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 309   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 310   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 311   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 312 
 313   case vmIntrinsics::_compressStringC:
 314   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 315   case vmIntrinsics::_inflateStringC:
 316   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 317 


 318   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 319   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 320   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 321   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 322   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 323   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 324   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 325   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 326   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);

 327 
 328   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);

 337 
 338   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 339   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 340   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 341   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 342   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 343   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 344   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 345   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 346   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 347 
 348   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 483                                                                                          "notifyJvmtiEnd", false, true);
 484   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 485                                                                                          "notifyJvmtiMount", false, false);
 486   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 487                                                                                          "notifyJvmtiUnmount", false, false);
 488   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 489 #endif
 490 
 491 #ifdef JFR_HAVE_INTRINSICS
 492   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 493   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 494   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 495 #endif
 496   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 497   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 498   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 499   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 500   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 501   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 502   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();

 503   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 504   case vmIntrinsics::_getLength:                return inline_native_getLength();
 505   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 506   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 507   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 508   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 509   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 510   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 511   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 512 
 513   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 514   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);



 515 
 516   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 517 
 518   case vmIntrinsics::_isInstance:
 519   case vmIntrinsics::_isHidden:
 520   case vmIntrinsics::_getSuperclass:
 521   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 522 
 523   case vmIntrinsics::_floatToRawIntBits:
 524   case vmIntrinsics::_floatToIntBits:
 525   case vmIntrinsics::_intBitsToFloat:
 526   case vmIntrinsics::_doubleToRawLongBits:
 527   case vmIntrinsics::_doubleToLongBits:
 528   case vmIntrinsics::_longBitsToDouble:
 529   case vmIntrinsics::_floatToFloat16:
 530   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 531   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 532   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 533   case vmIntrinsics::_floatIsFinite:
 534   case vmIntrinsics::_floatIsInfinite:

2288     case vmIntrinsics::_remainderUnsigned_l: {
2289       zero_check_long(argument(2));
2290       // Compile-time detect of null-exception
2291       if (stopped()) {
2292         return true; // keep the graph constructed so far
2293       }
2294       n = new UModLNode(control(), argument(0), argument(2));
2295       break;
2296     }
2297     default:  fatal_unexpected_iid(id);  break;
2298   }
2299   set_result(_gvn.transform(n));
2300   return true;
2301 }
2302 
2303 //----------------------------inline_unsafe_access----------------------------
2304 
2305 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2306   // Attempt to infer a sharper value type from the offset and base type.
2307   ciKlass* sharpened_klass = nullptr;

2308 
2309   // See if it is an instance field, with an object type.
2310   if (alias_type->field() != nullptr) {
2311     if (alias_type->field()->type()->is_klass()) {
2312       sharpened_klass = alias_type->field()->type()->as_klass();

2313     }
2314   }
2315 
2316   const TypeOopPtr* result = nullptr;
2317   // See if it is a narrow oop array.
2318   if (adr_type->isa_aryptr()) {
2319     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2320       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();

2321       if (elem_type != nullptr && elem_type->is_loaded()) {
2322         // Sharpen the value type.
2323         result = elem_type;
2324       }
2325     }
2326   }
2327 
2328   // The sharpened class might be unloaded if there is no class loader
2329   // contraint in place.
2330   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2331     // Sharpen the value type.
2332     result = TypeOopPtr::make_from_klass(sharpened_klass);



2333   }
2334   if (result != nullptr) {
2335 #ifndef PRODUCT
2336     if (C->print_intrinsics() || C->print_inlining()) {
2337       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2338       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2339     }
2340 #endif
2341   }
2342   return result;
2343 }
2344 
2345 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2346   switch (kind) {
2347       case Relaxed:
2348         return MO_UNORDERED;
2349       case Opaque:
2350         return MO_RELAXED;
2351       case Acquire:
2352         return MO_ACQUIRE;
2353       case Release:
2354         return MO_RELEASE;
2355       case Volatile:
2356         return MO_SEQ_CST;
2357       default:
2358         ShouldNotReachHere();
2359         return 0;
2360   }
2361 }
2362 
2363 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2364   if (callee()->is_static())  return false;  // caller must have the capability!
2365   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2366   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2367   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2368   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2369 
2370   if (is_reference_type(type)) {
2371     decorators |= ON_UNKNOWN_OOP_REF;
2372   }
2373 
2374   if (unaligned) {
2375     decorators |= C2_UNALIGNED;
2376   }
2377 
2378 #ifndef PRODUCT
2379   {
2380     ResourceMark rm;
2381     // Check the signatures.
2382     ciSignature* sig = callee()->signature();
2383 #ifdef ASSERT
2384     if (!is_store) {
2385       // Object getReference(Object base, int/long offset), etc.
2386       BasicType rtype = sig->return_type()->basic_type();
2387       assert(rtype == type, "getter must return the expected value");
2388       assert(sig->count() == 2, "oop getter has 2 arguments");
2389       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2390       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2391     } else {
2392       // void putReference(Object base, int/long offset, Object x), etc.
2393       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2394       assert(sig->count() == 3, "oop putter has 3 arguments");
2395       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2396       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2397       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2398       assert(vtype == type, "putter must accept the expected value");
2399     }
2400 #endif // ASSERT
2401  }
2402 #endif //PRODUCT
2403 
2404   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2405 
2406   Node* receiver = argument(0);  // type: oop
2407 
2408   // Build address expression.
2409   Node* heap_base_oop = top();
2410 
2411   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2412   Node* base = argument(1);  // type: oop
2413   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2414   Node* offset = argument(2);  // type: long
2415   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2416   // to be plain byte offsets, which are also the same as those accepted
2417   // by oopDesc::field_addr.
2418   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2419          "fieldOffset must be byte-scaled");

















































2420   // 32-bit machines ignore the high half!
2421   offset = ConvL2X(offset);
2422 
2423   // Save state and restore on bailout
2424   uint old_sp = sp();
2425   SafePointNode* old_map = clone_map();
2426 
2427   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2428   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2429 
2430   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2431     if (type != T_OBJECT) {
2432       decorators |= IN_NATIVE; // off-heap primitive access
2433     } else {
2434       set_map(old_map);
2435       set_sp(old_sp);
2436       return false; // off-heap oop accesses are not supported
2437     }
2438   } else {
2439     heap_base_oop = base; // on-heap or mixed access
2440   }
2441 
2442   // Can base be null? Otherwise, always on-heap access.
2443   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2444 
2445   if (!can_access_non_heap) {
2446     decorators |= IN_HEAP;
2447   }
2448 
2449   Node* val = is_store ? argument(4) : nullptr;
2450 
2451   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2452   if (adr_type == TypePtr::NULL_PTR) {
2453     set_map(old_map);
2454     set_sp(old_sp);
2455     return false; // off-heap access with zero address
2456   }
2457 
2458   // Try to categorize the address.
2459   Compile::AliasType* alias_type = C->alias_type(adr_type);
2460   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2461 
2462   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2463       alias_type->adr_type() == TypeAryPtr::RANGE) {
2464     set_map(old_map);
2465     set_sp(old_sp);
2466     return false; // not supported
2467   }
2468 
2469   bool mismatched = false;
2470   BasicType bt = alias_type->basic_type();




























2471   if (bt != T_ILLEGAL) {
2472     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2473     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2474       // Alias type doesn't differentiate between byte[] and boolean[]).
2475       // Use address type to get the element type.
2476       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2477     }
2478     if (is_reference_type(bt, true)) {
2479       // accessing an array field with getReference is not a mismatch
2480       bt = T_OBJECT;
2481     }
2482     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2483       // Don't intrinsify mismatched object accesses
2484       set_map(old_map);
2485       set_sp(old_sp);
2486       return false;
2487     }
2488     mismatched = (bt != type);
2489   } else if (alias_type->adr_type()->isa_oopptr()) {
2490     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2491   }
2492 























2493   destruct_map_clone(old_map);
2494   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2495 
2496   if (mismatched) {
2497     decorators |= C2_MISMATCHED;
2498   }
2499 
2500   // First guess at the value type.
2501   const Type *value_type = Type::get_const_basic_type(type);
2502 
2503   // Figure out the memory ordering.
2504   decorators |= mo_decorator_for_access_kind(kind);
2505 
2506   if (!is_store && type == T_OBJECT) {
2507     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2508     if (tjp != nullptr) {
2509       value_type = tjp;


2510     }
2511   }
2512 
2513   receiver = null_check(receiver);
2514   if (stopped()) {
2515     return true;
2516   }
2517   // Heap pointers get a null-check from the interpreter,
2518   // as a courtesy.  However, this is not guaranteed by Unsafe,
2519   // and it is not possible to fully distinguish unintended nulls
2520   // from intended ones in this API.
2521 
2522   if (!is_store) {
2523     Node* p = nullptr;
2524     // Try to constant fold a load from a constant field
2525     ciField* field = alias_type->field();
2526     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2527       // final or stable field
2528       p = make_constant_from_field(field, heap_base_oop);
2529     }
2530 
2531     if (p == nullptr) { // Could not constant fold the load
2532       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);















2533       // Normalize the value returned by getBoolean in the following cases
2534       if (type == T_BOOLEAN &&
2535           (mismatched ||
2536            heap_base_oop == top() ||                  // - heap_base_oop is null or
2537            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2538                                                       //   and the unsafe access is made to large offset
2539                                                       //   (i.e., larger than the maximum offset necessary for any
2540                                                       //   field access)
2541             ) {
2542           IdealKit ideal = IdealKit(this);
2543 #define __ ideal.
2544           IdealVariable normalized_result(ideal);
2545           __ declarations_done();
2546           __ set(normalized_result, p);
2547           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2548           __ set(normalized_result, ideal.ConI(1));
2549           ideal.end_if();
2550           final_sync(ideal);
2551           p = __ value(normalized_result);
2552 #undef __
2553       }
2554     }
2555     if (type == T_ADDRESS) {
2556       p = gvn().transform(new CastP2XNode(nullptr, p));
2557       p = ConvX2UL(p);
2558     }
2559     // The load node has the control of the preceding MemBarCPUOrder.  All
2560     // following nodes will have the control of the MemBarCPUOrder inserted at
2561     // the end of this method.  So, pushing the load onto the stack at a later
2562     // point is fine.
2563     set_result(p);
2564   } else {
2565     if (bt == T_ADDRESS) {
2566       // Repackage the long as a pointer.
2567       val = ConvL2X(val);
2568       val = gvn().transform(new CastX2PNode(val));
2569     }
2570     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);










2571   }
2572 
2573   return true;
2574 }
2575 

































































2576 //----------------------------inline_unsafe_load_store----------------------------
2577 // This method serves a couple of different customers (depending on LoadStoreKind):
2578 //
2579 // LS_cmp_swap:
2580 //
2581 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2582 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2583 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2584 //
2585 // LS_cmp_swap_weak:
2586 //
2587 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2588 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2589 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2590 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2591 //
2592 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2593 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2594 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2595 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

2761     }
2762     case LS_cmp_swap:
2763     case LS_cmp_swap_weak:
2764     case LS_get_add:
2765       break;
2766     default:
2767       ShouldNotReachHere();
2768   }
2769 
2770   // Null check receiver.
2771   receiver = null_check(receiver);
2772   if (stopped()) {
2773     return true;
2774   }
2775 
2776   int alias_idx = C->get_alias_index(adr_type);
2777 
2778   if (is_reference_type(type)) {
2779     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2780 













2781     // Transformation of a value which could be null pointer (CastPP #null)
2782     // could be delayed during Parse (for example, in adjust_map_after_if()).
2783     // Execute transformation here to avoid barrier generation in such case.
2784     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2785       newval = _gvn.makecon(TypePtr::NULL_PTR);
2786 
2787     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2788       // Refine the value to a null constant, when it is known to be null
2789       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2790     }
2791   }
2792 
2793   Node* result = nullptr;
2794   switch (kind) {
2795     case LS_cmp_exchange: {
2796       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2797                                             oldval, newval, value_type, type, decorators);
2798       break;
2799     }
2800     case LS_cmp_swap_weak:

2947                     Deoptimization::Action_make_not_entrant);
2948     }
2949     if (stopped()) {
2950       return true;
2951     }
2952 #endif //INCLUDE_JVMTI
2953 
2954   Node* test = nullptr;
2955   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2956     // Note:  The argument might still be an illegal value like
2957     // Serializable.class or Object[].class.   The runtime will handle it.
2958     // But we must make an explicit check for initialization.
2959     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2960     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2961     // can generate code to load it as unsigned byte.
2962     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2963     Node* bits = intcon(InstanceKlass::fully_initialized);
2964     test = _gvn.transform(new SubINode(inst, bits));
2965     // The 'test' is non-zero if we need to take a slow path.
2966   }
2967 
2968   Node* obj = new_instance(kls, test);





2969   set_result(obj);
2970   return true;
2971 }
2972 
2973 //------------------------inline_native_time_funcs--------------
2974 // inline code for System.currentTimeMillis() and System.nanoTime()
2975 // these have the same type and signature
2976 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2977   const TypeFunc* tf = OptoRuntime::void_long_Type();
2978   const TypePtr* no_memory_effects = nullptr;
2979   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2980   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2981 #ifdef ASSERT
2982   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2983   assert(value_top == top(), "second value must be top");
2984 #endif
2985   set_result(value);
2986   return true;
2987 }
2988 

3729   Node* thread = _gvn.transform(new ThreadLocalNode());
3730   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3731   Node* thread_obj_handle
3732     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3733   thread_obj_handle = _gvn.transform(thread_obj_handle);
3734   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3735   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3736 
3737   // Change the _monitor_owner_id of the JavaThread
3738   Node* tid = load_field_from_object(arr, "tid", "J");
3739   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3740   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3741 
3742   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3743   return true;
3744 }
3745 
3746 const Type* LibraryCallKit::scopedValueCache_type() {
3747   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3748   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3749   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3750 
3751   // Because we create the scopedValue cache lazily we have to make the
3752   // type of the result BotPTR.
3753   bool xk = etype->klass_is_exact();
3754   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3755   return objects_type;
3756 }
3757 
3758 Node* LibraryCallKit::scopedValueCache_helper() {
3759   Node* thread = _gvn.transform(new ThreadLocalNode());
3760   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3761   // We cannot use immutable_memory() because we might flip onto a
3762   // different carrier thread, at which point we'll need to use that
3763   // carrier thread's cache.
3764   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3765   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3766   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3767 }
3768 
3769 //------------------------inline_native_scopedValueCache------------------
3770 bool LibraryCallKit::inline_native_scopedValueCache() {
3771   Node* cache_obj_handle = scopedValueCache_helper();
3772   const Type* objects_type = scopedValueCache_type();
3773   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3774 

3858   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3859 
3860   // Result of top level CFG and Memory.
3861   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3862   record_for_igvn(result_rgn);
3863   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3864   record_for_igvn(result_mem);
3865 
3866   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3867   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3868   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3869   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3870 
3871   // Set output state.
3872   set_control(_gvn.transform(result_rgn));
3873   set_all_memory(_gvn.transform(result_mem));
3874 
3875   return true;
3876 }
3877 
3878 //---------------------------load_mirror_from_klass----------------------------
3879 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3880 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3881   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3882   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3883   // mirror = ((OopHandle)mirror)->resolve();
3884   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3885 }
3886 
3887 //-----------------------load_klass_from_mirror_common-------------------------
3888 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3889 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3890 // and branch to the given path on the region.
3891 // If never_see_null, take an uncommon trap on null, so we can optimistically
3892 // compile for the non-null case.
3893 // If the region is null, force never_see_null = true.
3894 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3895                                                     bool never_see_null,
3896                                                     RegionNode* region,
3897                                                     int null_path,
3898                                                     int offset) {
3899   if (region == nullptr)  never_see_null = true;
3900   Node* p = basic_plus_adr(mirror, offset);
3901   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3902   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3903   Node* null_ctl = top();
3904   kls = null_check_oop(kls, &null_ctl, never_see_null);
3905   if (region != nullptr) {
3906     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

3910   }
3911   return kls;
3912 }
3913 
3914 //--------------------(inline_native_Class_query helpers)---------------------
3915 // Use this for JVM_ACC_INTERFACE.
3916 // Fall through if (mods & mask) == bits, take the guard otherwise.
3917 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3918                                                  ByteSize offset, const Type* type, BasicType bt) {
3919   // Branch around if the given klass has the given modifier bit set.
3920   // Like generate_guard, adds a new path onto the region.
3921   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3922   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3923   Node* mask = intcon(modifier_mask);
3924   Node* bits = intcon(modifier_bits);
3925   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3926   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3927   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3928   return generate_fair_guard(bol, region);
3929 }

3930 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3931   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3932                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
3933 }
3934 
3935 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3936 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3937   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3938                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3939 }
3940 
3941 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3942   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3943 }
3944 
3945 //-------------------------inline_native_Class_query-------------------
3946 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3947   const Type* return_type = TypeInt::BOOL;
3948   Node* prim_return_value = top();  // what happens if it's a primitive class?
3949   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4068 
4069   case vmIntrinsics::_getClassAccessFlags:
4070     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4071     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4072     break;
4073 
4074   default:
4075     fatal_unexpected_iid(id);
4076     break;
4077   }
4078 
4079   // Fall-through is the normal case of a query to a real class.
4080   phi->init_req(1, query_value);
4081   region->init_req(1, control());
4082 
4083   C->set_has_split_ifs(true); // Has chance for split-if optimization
4084   set_result(region, phi);
4085   return true;
4086 }
4087 

4088 //-------------------------inline_Class_cast-------------------
4089 bool LibraryCallKit::inline_Class_cast() {
4090   Node* mirror = argument(0); // Class
4091   Node* obj    = argument(1);
4092   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4093   if (mirror_con == nullptr) {
4094     return false;  // dead path (mirror->is_top()).
4095   }
4096   if (obj == nullptr || obj->is_top()) {
4097     return false;  // dead path
4098   }
4099   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4100 
4101   // First, see if Class.cast() can be folded statically.
4102   // java_mirror_type() returns non-null for compile-time Class constants.
4103   ciType* tm = mirror_con->java_mirror_type();

4104   if (tm != nullptr && tm->is_klass() &&
4105       tp != nullptr) {
4106     if (!tp->is_loaded()) {
4107       // Don't use intrinsic when class is not loaded.
4108       return false;
4109     } else {
4110       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());




4111       if (static_res == Compile::SSC_always_true) {
4112         // isInstance() is true - fold the code.
4113         set_result(obj);
4114         return true;
4115       } else if (static_res == Compile::SSC_always_false) {
4116         // Don't use intrinsic, have to throw ClassCastException.
4117         // If the reference is null, the non-intrinsic bytecode will
4118         // be optimized appropriately.
4119         return false;
4120       }
4121     }
4122   }
4123 
4124   // Bailout intrinsic and do normal inlining if exception path is frequent.
4125   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4126     return false;
4127   }
4128 
4129   // Generate dynamic checks.
4130   // Class.cast() is java implementation of _checkcast bytecode.
4131   // Do checkcast (Parse::do_checkcast()) optimizations here.
4132 
4133   mirror = null_check(mirror);
4134   // If mirror is dead, only null-path is taken.
4135   if (stopped()) {
4136     return true;
4137   }
4138 
4139   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4140   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4141   RegionNode* region = new RegionNode(PATH_LIMIT);
4142   record_for_igvn(region);
4143 
4144   // Now load the mirror's klass metaobject, and null-check it.
4145   // If kls is null, we have a primitive mirror and
4146   // nothing is an instance of a primitive type.
4147   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4148 
4149   Node* res = top();


4150   if (!stopped()) {

4151     Node* bad_type_ctrl = top();
4152     // Do checkcast optimizations.
4153     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4154     region->init_req(_bad_type_path, bad_type_ctrl);
4155   }
4156   if (region->in(_prim_path) != top() ||
4157       region->in(_bad_type_path) != top()) {

4158     // Let Interpreter throw ClassCastException.
4159     PreserveJVMState pjvms(this);
4160     set_control(_gvn.transform(region));



4161     uncommon_trap(Deoptimization::Reason_intrinsic,
4162                   Deoptimization::Action_maybe_recompile);
4163   }
4164   if (!stopped()) {
4165     set_result(res);
4166   }
4167   return true;
4168 }
4169 
4170 
4171 //--------------------------inline_native_subtype_check------------------------
4172 // This intrinsic takes the JNI calls out of the heart of
4173 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4174 bool LibraryCallKit::inline_native_subtype_check() {
4175   // Pull both arguments off the stack.
4176   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4177   args[0] = argument(0);
4178   args[1] = argument(1);
4179   Node* klasses[2];             // corresponding Klasses: superk, subk
4180   klasses[0] = klasses[1] = top();
4181 
4182   enum {
4183     // A full decision tree on {superc is prim, subc is prim}:
4184     _prim_0_path = 1,           // {P,N} => false
4185                                 // {P,P} & superc!=subc => false
4186     _prim_same_path,            // {P,P} & superc==subc => true
4187     _prim_1_path,               // {N,P} => false
4188     _ref_subtype_path,          // {N,N} & subtype check wins => true
4189     _both_ref_path,             // {N,N} & subtype check loses => false
4190     PATH_LIMIT
4191   };
4192 
4193   RegionNode* region = new RegionNode(PATH_LIMIT);

4194   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4195   record_for_igvn(region);

4196 
4197   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4198   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4199   int class_klass_offset = java_lang_Class::klass_offset();
4200 
4201   // First null-check both mirrors and load each mirror's klass metaobject.
4202   int which_arg;
4203   for (which_arg = 0; which_arg <= 1; which_arg++) {
4204     Node* arg = args[which_arg];
4205     arg = null_check(arg);
4206     if (stopped())  break;
4207     args[which_arg] = arg;
4208 
4209     Node* p = basic_plus_adr(arg, class_klass_offset);
4210     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4211     klasses[which_arg] = _gvn.transform(kls);
4212   }
4213 
4214   // Having loaded both klasses, test each for null.
4215   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4216   for (which_arg = 0; which_arg <= 1; which_arg++) {
4217     Node* kls = klasses[which_arg];
4218     Node* null_ctl = top();
4219     kls = null_check_oop(kls, &null_ctl, never_see_null);
4220     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4221     region->init_req(prim_path, null_ctl);



4222     if (stopped())  break;
4223     klasses[which_arg] = kls;
4224   }
4225 
4226   if (!stopped()) {
4227     // now we have two reference types, in klasses[0..1]
4228     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4229     Node* superk = klasses[0];  // the receiver
4230     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4231     // now we have a successful reference subtype check
4232     region->set_req(_ref_subtype_path, control());
4233   }
4234 
4235   // If both operands are primitive (both klasses null), then
4236   // we must return true when they are identical primitives.
4237   // It is convenient to test this after the first null klass check.
4238   set_control(region->in(_prim_0_path)); // go back to first null check

4239   if (!stopped()) {
4240     // Since superc is primitive, make a guard for the superc==subc case.
4241     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4242     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4243     generate_guard(bol_eq, region, PROB_FAIR);
4244     if (region->req() == PATH_LIMIT+1) {
4245       // A guard was added.  If the added guard is taken, superc==subc.
4246       region->swap_edges(PATH_LIMIT, _prim_same_path);
4247       region->del_req(PATH_LIMIT);
4248     }
4249     region->set_req(_prim_0_path, control()); // Not equal after all.
4250   }
4251 
4252   // these are the only paths that produce 'true':
4253   phi->set_req(_prim_same_path,   intcon(1));
4254   phi->set_req(_ref_subtype_path, intcon(1));
4255 
4256   // pull together the cases:
4257   assert(region->req() == PATH_LIMIT, "sane region");
4258   for (uint i = 1; i < region->req(); i++) {
4259     Node* ctl = region->in(i);
4260     if (ctl == nullptr || ctl == top()) {
4261       region->set_req(i, top());
4262       phi   ->set_req(i, top());
4263     } else if (phi->in(i) == nullptr) {
4264       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4265     }
4266   }
4267 
4268   set_control(_gvn.transform(region));
4269   set_result(_gvn.transform(phi));
4270   return true;
4271 }
4272 
4273 //---------------------generate_array_guard_common------------------------
4274 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4275                                                   bool obj_array, bool not_array, Node** obj) {
4276 
4277   if (stopped()) {
4278     return nullptr;
4279   }
4280 
4281   // If obj_array/non_array==false/false:
4282   // Branch around if the given klass is in fact an array (either obj or prim).
4283   // If obj_array/non_array==false/true:
4284   // Branch around if the given klass is not an array klass of any kind.
4285   // If obj_array/non_array==true/true:
4286   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4287   // If obj_array/non_array==true/false:
4288   // Branch around if the kls is an oop array (Object[] or subtype)
4289   //
4290   // Like generate_guard, adds a new path onto the region.
4291   jint  layout_con = 0;
4292   Node* layout_val = get_layout_helper(kls, layout_con);
4293   if (layout_val == nullptr) {
4294     bool query = (obj_array
4295                   ? Klass::layout_helper_is_objArray(layout_con)
4296                   : Klass::layout_helper_is_array(layout_con));
4297     if (query == not_array) {







4298       return nullptr;                       // never a branch
4299     } else {                             // always a branch
4300       Node* always_branch = control();
4301       if (region != nullptr)
4302         region->add_req(always_branch);
4303       set_control(top());
4304       return always_branch;
4305     }
4306   }





















4307   // Now test the correct condition.
4308   jint  nval = (obj_array
4309                 ? (jint)(Klass::_lh_array_tag_type_value
4310                    <<    Klass::_lh_array_tag_shift)
4311                 : Klass::_lh_neutral_value);
4312   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4313   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4314   // invert the test if we are looking for a non-array
4315   if (not_array)  btest = BoolTest(btest).negate();
4316   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4317   Node* ctrl = generate_fair_guard(bol, region);
4318   Node* is_array_ctrl = not_array ? control() : ctrl;
4319   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4320     // Keep track of the fact that 'obj' is an array to prevent
4321     // array specific accesses from floating above the guard.
4322     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4323   }
4324   return ctrl;
4325 }
4326 



























































4327 
4328 //-----------------------inline_native_newArray--------------------------
4329 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4330 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4331 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4332   Node* mirror;
4333   Node* count_val;
4334   if (uninitialized) {
4335     null_check_receiver();
4336     mirror    = argument(1);
4337     count_val = argument(2);
4338   } else {
4339     mirror    = argument(0);
4340     count_val = argument(1);
4341   }
4342 
4343   mirror = null_check(mirror);
4344   // If mirror or obj is dead, only null-path is taken.
4345   if (stopped())  return true;
4346 
4347   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4348   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4349   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4455   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4456   { PreserveReexecuteState preexecs(this);
4457     jvms()->set_should_reexecute(true);
4458 
4459     array_type_mirror = null_check(array_type_mirror);
4460     original          = null_check(original);
4461 
4462     // Check if a null path was taken unconditionally.
4463     if (stopped())  return true;
4464 
4465     Node* orig_length = load_array_length(original);
4466 
4467     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4468     klass_node = null_check(klass_node);
4469 
4470     RegionNode* bailout = new RegionNode(1);
4471     record_for_igvn(bailout);
4472 
4473     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4474     // Bail out if that is so.
4475     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);












4476     if (not_objArray != nullptr) {
4477       // Improve the klass node's type from the new optimistic assumption:
4478       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4479       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4480       Node* cast = new CastPPNode(control(), klass_node, akls);
4481       klass_node = _gvn.transform(cast);
4482     }
4483 
4484     // Bail out if either start or end is negative.
4485     generate_negative_guard(start, bailout, &start);
4486     generate_negative_guard(end,   bailout, &end);
4487 
4488     Node* length = end;
4489     if (_gvn.type(start) != TypeInt::ZERO) {
4490       length = _gvn.transform(new SubINode(end, start));
4491     }
4492 
4493     // Bail out if length is negative (i.e., if start > end).
4494     // Without this the new_array would throw
4495     // NegativeArraySizeException but IllegalArgumentException is what
4496     // should be thrown
4497     generate_negative_guard(length, bailout, &length);
4498 







































4499     // Bail out if start is larger than the original length
4500     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4501     generate_negative_guard(orig_tail, bailout, &orig_tail);
4502 
4503     if (bailout->req() > 1) {
4504       PreserveJVMState pjvms(this);
4505       set_control(_gvn.transform(bailout));
4506       uncommon_trap(Deoptimization::Reason_intrinsic,
4507                     Deoptimization::Action_maybe_recompile);
4508     }
4509 
4510     if (!stopped()) {
4511       // How many elements will we copy from the original?
4512       // The answer is MinI(orig_tail, length).
4513       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4514 
4515       // Generate a direct call to the right arraycopy function(s).
4516       // We know the copy is disjoint but we might not know if the
4517       // oop stores need checking.
4518       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4524       // to the copyOf to be validated, including that the copy to the
4525       // new array won't trigger an ArrayStoreException. That subtype
4526       // check can be optimized if we know something on the type of
4527       // the input array from type speculation.
4528       if (_gvn.type(klass_node)->singleton()) {
4529         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4530         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4531 
4532         int test = C->static_subtype_check(superk, subk);
4533         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4534           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4535           if (t_original->speculative_type() != nullptr) {
4536             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4537           }
4538         }
4539       }
4540 
4541       bool validated = false;
4542       // Reason_class_check rather than Reason_intrinsic because we
4543       // want to intrinsify even if this traps.
4544       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4545         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4546 
4547         if (not_subtype_ctrl != top()) {
4548           PreserveJVMState pjvms(this);
4549           set_control(not_subtype_ctrl);
4550           uncommon_trap(Deoptimization::Reason_class_check,
4551                         Deoptimization::Action_make_not_entrant);
4552           assert(stopped(), "Should be stopped");
4553         }
4554         validated = true;
4555       }
4556 
4557       if (!stopped()) {
4558         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4559 
4560         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4561                                                 load_object_klass(original), klass_node);
4562         if (!is_copyOfRange) {
4563           ac->set_copyof(validated);
4564         } else {

4610 
4611 //-----------------------generate_method_call----------------------------
4612 // Use generate_method_call to make a slow-call to the real
4613 // method if the fast path fails.  An alternative would be to
4614 // use a stub like OptoRuntime::slow_arraycopy_Java.
4615 // This only works for expanding the current library call,
4616 // not another intrinsic.  (E.g., don't use this for making an
4617 // arraycopy call inside of the copyOf intrinsic.)
4618 CallJavaNode*
4619 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4620   // When compiling the intrinsic method itself, do not use this technique.
4621   guarantee(callee() != C->method(), "cannot make slow-call to self");
4622 
4623   ciMethod* method = callee();
4624   // ensure the JVMS we have will be correct for this call
4625   guarantee(method_id == method->intrinsic_id(), "must match");
4626 
4627   const TypeFunc* tf = TypeFunc::make(method);
4628   if (res_not_null) {
4629     assert(tf->return_type() == T_OBJECT, "");
4630     const TypeTuple* range = tf->range();
4631     const Type** fields = TypeTuple::fields(range->cnt());
4632     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4633     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4634     tf = TypeFunc::make(tf->domain(), new_range);
4635   }
4636   CallJavaNode* slow_call;
4637   if (is_static) {
4638     assert(!is_virtual, "");
4639     slow_call = new CallStaticJavaNode(C, tf,
4640                            SharedRuntime::get_resolve_static_call_stub(), method);
4641   } else if (is_virtual) {
4642     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4643     int vtable_index = Method::invalid_vtable_index;
4644     if (UseInlineCaches) {
4645       // Suppress the vtable call
4646     } else {
4647       // hashCode and clone are not a miranda methods,
4648       // so the vtable index is fixed.
4649       // No need to use the linkResolver to get it.
4650        vtable_index = method->vtable_index();
4651        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4652               "bad index %d", vtable_index);
4653     }
4654     slow_call = new CallDynamicJavaNode(tf,

4671   set_edges_for_java_call(slow_call);
4672   return slow_call;
4673 }
4674 
4675 
4676 /**
4677  * Build special case code for calls to hashCode on an object. This call may
4678  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4679  * slightly different code.
4680  */
4681 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4682   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4683   assert(!(is_virtual && is_static), "either virtual, special, or static");
4684 
4685   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4686 
4687   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4688   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4689   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4690   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4691   Node* obj = nullptr;







4692   if (!is_static) {
4693     // Check for hashing null object
4694     obj = null_check_receiver();
4695     if (stopped())  return true;        // unconditionally null
4696     result_reg->init_req(_null_path, top());
4697     result_val->init_req(_null_path, top());
4698   } else {
4699     // Do a null check, and return zero if null.
4700     // System.identityHashCode(null) == 0
4701     obj = argument(0);
4702     Node* null_ctl = top();
4703     obj = null_check_oop(obj, &null_ctl);
4704     result_reg->init_req(_null_path, null_ctl);
4705     result_val->init_req(_null_path, _gvn.intcon(0));
4706   }
4707 
4708   // Unconditionally null?  Then return right away.
4709   if (stopped()) {
4710     set_control( result_reg->in(_null_path));
4711     if (!stopped())
4712       set_result(result_val->in(_null_path));
4713     return true;
4714   }
4715 
4716   // We only go to the fast case code if we pass a number of guards.  The
4717   // paths which do not pass are accumulated in the slow_region.
4718   RegionNode* slow_region = new RegionNode(1);
4719   record_for_igvn(slow_region);
4720 
4721   // If this is a virtual call, we generate a funny guard.  We pull out
4722   // the vtable entry corresponding to hashCode() from the target object.
4723   // If the target method which we are calling happens to be the native
4724   // Object hashCode() method, we pass the guard.  We do not need this
4725   // guard for non-virtual calls -- the caller is known to be the native
4726   // Object hashCode().
4727   if (is_virtual) {
4728     // After null check, get the object's klass.
4729     Node* obj_klass = load_object_klass(obj);
4730     generate_virtual_guard(obj_klass, slow_region);
4731   }
4732 
4733   // Get the header out of the object, use LoadMarkNode when available
4734   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4735   // The control of the load must be null. Otherwise, the load can move before
4736   // the null check after castPP removal.
4737   Node* no_ctrl = nullptr;
4738   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4739 
4740   if (!UseObjectMonitorTable) {
4741     // Test the header to see if it is safe to read w.r.t. locking.
4742     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);

4743     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4744     if (LockingMode == LM_LIGHTWEIGHT) {
4745       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4746       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4747       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4748 
4749       generate_slow_guard(test_monitor, slow_region);
4750     } else {
4751       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4752       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4753       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4754 
4755       generate_slow_guard(test_not_unlocked, slow_region);
4756     }
4757   }
4758 
4759   // Get the hash value and check to see that it has been properly assigned.
4760   // We depend on hash_mask being at most 32 bits and avoid the use of
4761   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4762   // vm: see markWord.hpp.

4797     // this->control() comes from set_results_for_java_call
4798     result_reg->init_req(_slow_path, control());
4799     result_val->init_req(_slow_path, slow_result);
4800     result_io  ->set_req(_slow_path, i_o());
4801     result_mem ->set_req(_slow_path, reset_memory());
4802   }
4803 
4804   // Return the combined state.
4805   set_i_o(        _gvn.transform(result_io)  );
4806   set_all_memory( _gvn.transform(result_mem));
4807 
4808   set_result(result_reg, result_val);
4809   return true;
4810 }
4811 
4812 //---------------------------inline_native_getClass----------------------------
4813 // public final native Class<?> java.lang.Object.getClass();
4814 //
4815 // Build special case code for calls to getClass on an object.
4816 bool LibraryCallKit::inline_native_getClass() {
4817   Node* obj = null_check_receiver();









4818   if (stopped())  return true;
4819   set_result(load_mirror_from_klass(load_object_klass(obj)));
4820   return true;
4821 }
4822 
4823 //-----------------inline_native_Reflection_getCallerClass---------------------
4824 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4825 //
4826 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4827 //
4828 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4829 // in that it must skip particular security frames and checks for
4830 // caller sensitive methods.
4831 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4832 #ifndef PRODUCT
4833   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4834     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4835   }
4836 #endif
4837 

5149     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5150 
5151     flags |= RC_NARROW_MEM; // narrow in memory
5152   }
5153 
5154   // Call it.  Note that the length argument is not scaled.
5155   make_runtime_call(flags,
5156                     OptoRuntime::unsafe_setmemory_Type(),
5157                     StubRoutines::unsafe_setmemory(),
5158                     "unsafe_setmemory",
5159                     dst_type,
5160                     dst_addr, size XTOP, byte);
5161 
5162   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5163 
5164   return true;
5165 }
5166 
5167 #undef XTOP
5168 














5169 //------------------------clone_coping-----------------------------------
5170 // Helper function for inline_native_clone.
5171 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5172   assert(obj_size != nullptr, "");
5173   Node* raw_obj = alloc_obj->in(1);
5174   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5175 
5176   AllocateNode* alloc = nullptr;
5177   if (ReduceBulkZeroing &&
5178       // If we are implementing an array clone without knowing its source type
5179       // (can happen when compiling the array-guarded branch of a reflective
5180       // Object.clone() invocation), initialize the array within the allocation.
5181       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5182       // to a runtime clone call that assumes fully initialized source arrays.
5183       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5184     // We will be completely responsible for initializing this object -
5185     // mark Initialize node as complete.
5186     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5187     // The object was just allocated - there should be no any stores!
5188     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");

5219 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5220 //
5221 // The general case has two steps, allocation and copying.
5222 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5223 //
5224 // Copying also has two cases, oop arrays and everything else.
5225 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5226 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5227 //
5228 // These steps fold up nicely if and when the cloned object's klass
5229 // can be sharply typed as an object array, a type array, or an instance.
5230 //
5231 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5232   PhiNode* result_val;
5233 
5234   // Set the reexecute bit for the interpreter to reexecute
5235   // the bytecode that invokes Object.clone if deoptimization happens.
5236   { PreserveReexecuteState preexecs(this);
5237     jvms()->set_should_reexecute(true);
5238 
5239     Node* obj = null_check_receiver();

5240     if (stopped())  return true;
5241 
5242     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();






5243 
5244     // If we are going to clone an instance, we need its exact type to
5245     // know the number and types of fields to convert the clone to
5246     // loads/stores. Maybe a speculative type can help us.
5247     if (!obj_type->klass_is_exact() &&
5248         obj_type->speculative_type() != nullptr &&
5249         obj_type->speculative_type()->is_instance_klass()) {

5250       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5251       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5252           !spec_ik->has_injected_fields()) {
5253         if (!obj_type->isa_instptr() ||
5254             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5255           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5256         }
5257       }
5258     }
5259 
5260     // Conservatively insert a memory barrier on all memory slices.
5261     // Do not let writes into the original float below the clone.
5262     insert_mem_bar(Op_MemBarCPUOrder);
5263 
5264     // paths into result_reg:
5265     enum {
5266       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5267       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5268       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5269       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5270       PATH_LIMIT
5271     };
5272     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5273     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5274     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5275     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5276     record_for_igvn(result_reg);
5277 

5278     Node* obj_klass = load_object_klass(obj);





5279     Node* array_obj = obj;
5280     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5281     if (array_ctl != nullptr) {
5282       // It's an array.
5283       PreserveJVMState pjvms(this);
5284       set_control(array_ctl);
5285       Node* obj_length = load_array_length(array_obj);
5286       Node* array_size = nullptr; // Size of the array without object alignment padding.
5287       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5288 
5289       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5290       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5291         // If it is an oop array, it requires very special treatment,
5292         // because gc barriers are required when accessing the array.
5293         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5294         if (is_obja != nullptr) {
5295           PreserveJVMState pjvms2(this);
5296           set_control(is_obja);
5297           // Generate a direct call to the right arraycopy function(s).
5298           // Clones are always tightly coupled.
5299           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5300           ac->set_clone_oop_array();
5301           Node* n = _gvn.transform(ac);
5302           assert(n == ac, "cannot disappear");
5303           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5304 
5305           result_reg->init_req(_objArray_path, control());
5306           result_val->init_req(_objArray_path, alloc_obj);
5307           result_i_o ->set_req(_objArray_path, i_o());
5308           result_mem ->set_req(_objArray_path, reset_memory());
5309         }
5310       }
5311       // Otherwise, there are no barriers to worry about.
5312       // (We can dispense with card marks if we know the allocation
5313       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5314       //  causes the non-eden paths to take compensating steps to
5315       //  simulate a fresh allocation, so that no further
5316       //  card marks are required in compiled code to initialize
5317       //  the object.)
5318 
5319       if (!stopped()) {
5320         copy_to_clone(array_obj, alloc_obj, array_size, true);
5321 
5322         // Present the results of the copy.
5323         result_reg->init_req(_array_path, control());
5324         result_val->init_req(_array_path, alloc_obj);
5325         result_i_o ->set_req(_array_path, i_o());
5326         result_mem ->set_req(_array_path, reset_memory());




































5327       }
5328     }
5329 
5330     // We only go to the instance fast case code if we pass a number of guards.
5331     // The paths which do not pass are accumulated in the slow_region.
5332     RegionNode* slow_region = new RegionNode(1);
5333     record_for_igvn(slow_region);
5334     if (!stopped()) {
5335       // It's an instance (we did array above).  Make the slow-path tests.
5336       // If this is a virtual call, we generate a funny guard.  We grab
5337       // the vtable entry corresponding to clone() from the target object.
5338       // If the target method which we are calling happens to be the
5339       // Object clone() method, we pass the guard.  We do not need this
5340       // guard for non-virtual calls; the caller is known to be the native
5341       // Object clone().
5342       if (is_virtual) {
5343         generate_virtual_guard(obj_klass, slow_region);
5344       }
5345 
5346       // The object must be easily cloneable and must not have a finalizer.
5347       // Both of these conditions may be checked in a single test.
5348       // We could optimize the test further, but we don't care.
5349       generate_misc_flags_guard(obj_klass,
5350                                 // Test both conditions:
5351                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5352                                 // Must be cloneable but not finalizer:
5353                                 KlassFlags::_misc_is_cloneable_fast,

5445         set_jvms(sfpt->jvms());
5446         _reexecute_sp = jvms()->sp();
5447 
5448         return saved_jvms;
5449       }
5450     }
5451   }
5452   return nullptr;
5453 }
5454 
5455 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5456 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5457 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5458   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5459   uint size = alloc->req();
5460   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5461   old_jvms->set_map(sfpt);
5462   for (uint i = 0; i < size; i++) {
5463     sfpt->init_req(i, alloc->in(i));
5464   }












5465   // re-push array length for deoptimization
5466   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5467   old_jvms->set_sp(old_jvms->sp()+1);
5468   old_jvms->set_monoff(old_jvms->monoff()+1);
5469   old_jvms->set_scloff(old_jvms->scloff()+1);
5470   old_jvms->set_endoff(old_jvms->endoff()+1);











5471   old_jvms->set_should_reexecute(true);
5472 
5473   sfpt->set_i_o(map()->i_o());
5474   sfpt->set_memory(map()->memory());
5475   sfpt->set_control(map()->control());
5476   return sfpt;
5477 }
5478 
5479 // In case of a deoptimization, we restart execution at the
5480 // allocation, allocating a new array. We would leave an uninitialized
5481 // array in the heap that GCs wouldn't expect. Move the allocation
5482 // after the traps so we don't allocate the array if we
5483 // deoptimize. This is possible because tightly_coupled_allocation()
5484 // guarantees there's no observer of the allocated array at this point
5485 // and the control flow is simple enough.
5486 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5487                                                     int saved_reexecute_sp, uint new_idx) {
5488   if (saved_jvms_before_guards != nullptr && !stopped()) {
5489     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5490 
5491     assert(alloc != nullptr, "only with a tightly coupled allocation");
5492     // restore JVM state to the state at the arraycopy
5493     saved_jvms_before_guards->map()->set_control(map()->control());
5494     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5495     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5496     // If we've improved the types of some nodes (null check) while
5497     // emitting the guards, propagate them to the current state
5498     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5499     set_jvms(saved_jvms_before_guards);
5500     _reexecute_sp = saved_reexecute_sp;
5501 
5502     // Remove the allocation from above the guards
5503     CallProjections callprojs;
5504     alloc->extract_projections(&callprojs, true);
5505     InitializeNode* init = alloc->initialization();
5506     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5507     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5508     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5509 
5510     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5511     // the allocation (i.e. is only valid if the allocation succeeds):
5512     // 1) replace CastIINode with AllocateArrayNode's length here
5513     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5514     //
5515     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5516     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5517     Node* init_control = init->proj_out(TypeFunc::Control);
5518     Node* alloc_length = alloc->Ideal_length();
5519 #ifdef ASSERT
5520     Node* prev_cast = nullptr;
5521 #endif
5522     for (uint i = 0; i < init_control->outcnt(); i++) {
5523       Node* init_out = init_control->raw_out(i);
5524       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5525 #ifdef ASSERT
5526         if (prev_cast == nullptr) {
5527           prev_cast = init_out;

5529           if (prev_cast->cmp(*init_out) == false) {
5530             prev_cast->dump();
5531             init_out->dump();
5532             assert(false, "not equal CastIINode");
5533           }
5534         }
5535 #endif
5536         C->gvn_replace_by(init_out, alloc_length);
5537       }
5538     }
5539     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5540 
5541     // move the allocation here (after the guards)
5542     _gvn.hash_delete(alloc);
5543     alloc->set_req(TypeFunc::Control, control());
5544     alloc->set_req(TypeFunc::I_O, i_o());
5545     Node *mem = reset_memory();
5546     set_all_memory(mem);
5547     alloc->set_req(TypeFunc::Memory, mem);
5548     set_control(init->proj_out_or_null(TypeFunc::Control));
5549     set_i_o(callprojs.fallthrough_ioproj);
5550 
5551     // Update memory as done in GraphKit::set_output_for_allocation()
5552     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5553     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5554     if (ary_type->isa_aryptr() && length_type != nullptr) {
5555       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5556     }
5557     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5558     int            elemidx  = C->get_alias_index(telemref);
5559     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5560     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5561 
5562     Node* allocx = _gvn.transform(alloc);
5563     assert(allocx == alloc, "where has the allocation gone?");
5564     assert(dest->is_CheckCastPP(), "not an allocation result?");
5565 
5566     _gvn.hash_delete(dest);
5567     dest->set_req(0, control());
5568     Node* destx = _gvn.transform(dest);
5569     assert(destx == dest, "where has the allocation result gone?");

5867         top_src  = src_type->isa_aryptr();
5868         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5869         src_spec = true;
5870       }
5871       if (!has_dest) {
5872         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5873         dest_type  = _gvn.type(dest);
5874         top_dest  = dest_type->isa_aryptr();
5875         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5876         dest_spec = true;
5877       }
5878     }
5879   }
5880 
5881   if (has_src && has_dest && can_emit_guards) {
5882     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5883     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5884     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5885     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5886 
5887     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5888       // If both arrays are object arrays then having the exact types
5889       // for both will remove the need for a subtype check at runtime
5890       // before the call and may make it possible to pick a faster copy
5891       // routine (without a subtype check on every element)
5892       // Do we have the exact type of src?
5893       bool could_have_src = src_spec;
5894       // Do we have the exact type of dest?
5895       bool could_have_dest = dest_spec;
5896       ciKlass* src_k = nullptr;
5897       ciKlass* dest_k = nullptr;
5898       if (!src_spec) {
5899         src_k = src_type->speculative_type_not_null();
5900         if (src_k != nullptr && src_k->is_array_klass()) {
5901           could_have_src = true;
5902         }
5903       }
5904       if (!dest_spec) {
5905         dest_k = dest_type->speculative_type_not_null();
5906         if (dest_k != nullptr && dest_k->is_array_klass()) {
5907           could_have_dest = true;
5908         }
5909       }
5910       if (could_have_src && could_have_dest) {
5911         // If we can have both exact types, emit the missing guards
5912         if (could_have_src && !src_spec) {
5913           src = maybe_cast_profiled_obj(src, src_k, true);


5914         }
5915         if (could_have_dest && !dest_spec) {
5916           dest = maybe_cast_profiled_obj(dest, dest_k, true);


5917         }
5918       }
5919     }
5920   }
5921 
5922   ciMethod* trap_method = method();
5923   int trap_bci = bci();
5924   if (saved_jvms_before_guards != nullptr) {
5925     trap_method = alloc->jvms()->method();
5926     trap_bci = alloc->jvms()->bci();
5927   }
5928 
5929   bool negative_length_guard_generated = false;
5930 
5931   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5932       can_emit_guards &&
5933       !src->is_top() && !dest->is_top()) {
5934     // validate arguments: enables transformation the ArrayCopyNode
5935     validated = true;
5936 
5937     RegionNode* slow_region = new RegionNode(1);
5938     record_for_igvn(slow_region);
5939 
5940     // (1) src and dest are arrays.
5941     generate_non_array_guard(load_object_klass(src), slow_region, &src);
5942     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
5943 
5944     // (2) src and dest arrays must have elements of the same BasicType
5945     // done at macro expansion or at Ideal transformation time
5946 
5947     // (4) src_offset must not be negative.
5948     generate_negative_guard(src_offset, slow_region);
5949 
5950     // (5) dest_offset must not be negative.
5951     generate_negative_guard(dest_offset, slow_region);
5952 
5953     // (7) src_offset + length must not exceed length of src.

5956                          slow_region);
5957 
5958     // (8) dest_offset + length must not exceed length of dest.
5959     generate_limit_guard(dest_offset, length,
5960                          load_array_length(dest),
5961                          slow_region);
5962 
5963     // (6) length must not be negative.
5964     // This is also checked in generate_arraycopy() during macro expansion, but
5965     // we also have to check it here for the case where the ArrayCopyNode will
5966     // be eliminated by Escape Analysis.
5967     if (EliminateAllocations) {
5968       generate_negative_guard(length, slow_region);
5969       negative_length_guard_generated = true;
5970     }
5971 
5972     // (9) each element of an oop array must be assignable
5973     Node* dest_klass = load_object_klass(dest);
5974     if (src != dest) {
5975       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);






5976 
5977       if (not_subtype_ctrl != top()) {
5978         PreserveJVMState pjvms(this);
5979         set_control(not_subtype_ctrl);
5980         uncommon_trap(Deoptimization::Reason_intrinsic,
5981                       Deoptimization::Action_make_not_entrant);
5982         assert(stopped(), "Should be stopped");






















5983       }
5984     }

5985     {
5986       PreserveJVMState pjvms(this);
5987       set_control(_gvn.transform(slow_region));
5988       uncommon_trap(Deoptimization::Reason_intrinsic,
5989                     Deoptimization::Action_make_not_entrant);
5990       assert(stopped(), "Should be stopped");
5991     }
5992 
5993     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5994     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5995     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5996     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5997   }
5998 
5999   if (stopped()) {
6000     return true;
6001   }
6002 
6003   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6004                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6005                                           // so the compiler has a chance to eliminate them: during macro expansion,
6006                                           // we have to set their control (CastPP nodes are eliminated).
6007                                           load_object_klass(src), load_object_klass(dest),
6008                                           load_array_length(src), load_array_length(dest));
6009 
6010   ac->set_arraycopy(validated);
6011 
6012   Node* n = _gvn.transform(ac);
6013   if (n == ac) {
6014     ac->connect_outputs(this);
6015   } else {

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "ci/ciSymbols.hpp"
  29 #include "classfile/vmIntrinsics.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/castnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/convertnode.hpp"
  43 #include "opto/countbitsnode.hpp"
  44 #include "opto/idealKit.hpp"
  45 #include "opto/library_call.hpp"
  46 #include "opto/mathexactnode.hpp"

 299   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 300   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 301   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 302   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 303   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 304 
 305   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 306 
 307   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 308 
 309   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 310   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 311   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 312   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 313 
 314   case vmIntrinsics::_compressStringC:
 315   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 316   case vmIntrinsics::_inflateStringC:
 317   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 318 
 319   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 320   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 321   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 322   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 323   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 324   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 325   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 326   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 327   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 328   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 329   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 330   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 331 
 332   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 333   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 334   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 335   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 336   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 337   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 338   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 339   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 340   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 341   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 342 
 343   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 344   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 345   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 346   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 347   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 348   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 349   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 350   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 351   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 352 
 353   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 354   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 355   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 356   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 357   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 358   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 359   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 360   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 361   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 488                                                                                          "notifyJvmtiEnd", false, true);
 489   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 490                                                                                          "notifyJvmtiMount", false, false);
 491   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 492                                                                                          "notifyJvmtiUnmount", false, false);
 493   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 494 #endif
 495 
 496 #ifdef JFR_HAVE_INTRINSICS
 497   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 498   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 499   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 500 #endif
 501   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 502   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 503   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 504   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 505   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 506   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 507   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 508   case vmIntrinsics::_isFlatArray:              return inline_unsafe_isFlatArray();
 509   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 510   case vmIntrinsics::_getLength:                return inline_native_getLength();
 511   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 512   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 513   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 514   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 515   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 516   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 517   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 518 
 519   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 520   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 521   case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false);
 522   case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true);
 523   case vmIntrinsics::_newNullableAtomicArray:     return inline_newArray(/* null_free */ false, /* atomic */ true);
 524 
 525   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 526 
 527   case vmIntrinsics::_isInstance:
 528   case vmIntrinsics::_isHidden:
 529   case vmIntrinsics::_getSuperclass:
 530   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 531 
 532   case vmIntrinsics::_floatToRawIntBits:
 533   case vmIntrinsics::_floatToIntBits:
 534   case vmIntrinsics::_intBitsToFloat:
 535   case vmIntrinsics::_doubleToRawLongBits:
 536   case vmIntrinsics::_doubleToLongBits:
 537   case vmIntrinsics::_longBitsToDouble:
 538   case vmIntrinsics::_floatToFloat16:
 539   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 540   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 541   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 542   case vmIntrinsics::_floatIsFinite:
 543   case vmIntrinsics::_floatIsInfinite:

2297     case vmIntrinsics::_remainderUnsigned_l: {
2298       zero_check_long(argument(2));
2299       // Compile-time detect of null-exception
2300       if (stopped()) {
2301         return true; // keep the graph constructed so far
2302       }
2303       n = new UModLNode(control(), argument(0), argument(2));
2304       break;
2305     }
2306     default:  fatal_unexpected_iid(id);  break;
2307   }
2308   set_result(_gvn.transform(n));
2309   return true;
2310 }
2311 
2312 //----------------------------inline_unsafe_access----------------------------
2313 
2314 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2315   // Attempt to infer a sharper value type from the offset and base type.
2316   ciKlass* sharpened_klass = nullptr;
2317   bool null_free = false;
2318 
2319   // See if it is an instance field, with an object type.
2320   if (alias_type->field() != nullptr) {
2321     if (alias_type->field()->type()->is_klass()) {
2322       sharpened_klass = alias_type->field()->type()->as_klass();
2323       null_free = alias_type->field()->is_null_free();
2324     }
2325   }
2326 
2327   const TypeOopPtr* result = nullptr;
2328   // See if it is a narrow oop array.
2329   if (adr_type->isa_aryptr()) {
2330     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2331       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2332       null_free = adr_type->is_aryptr()->is_null_free();
2333       if (elem_type != nullptr && elem_type->is_loaded()) {
2334         // Sharpen the value type.
2335         result = elem_type;
2336       }
2337     }
2338   }
2339 
2340   // The sharpened class might be unloaded if there is no class loader
2341   // contraint in place.
2342   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2343     // Sharpen the value type.
2344     result = TypeOopPtr::make_from_klass(sharpened_klass);
2345     if (null_free) {
2346       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2347     }
2348   }
2349   if (result != nullptr) {
2350 #ifndef PRODUCT
2351     if (C->print_intrinsics() || C->print_inlining()) {
2352       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2353       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2354     }
2355 #endif
2356   }
2357   return result;
2358 }
2359 
2360 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2361   switch (kind) {
2362       case Relaxed:
2363         return MO_UNORDERED;
2364       case Opaque:
2365         return MO_RELAXED;
2366       case Acquire:
2367         return MO_ACQUIRE;
2368       case Release:
2369         return MO_RELEASE;
2370       case Volatile:
2371         return MO_SEQ_CST;
2372       default:
2373         ShouldNotReachHere();
2374         return 0;
2375   }
2376 }
2377 
2378 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2379   if (callee()->is_static())  return false;  // caller must have the capability!
2380   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2381   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2382   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2383   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2384 
2385   if (is_reference_type(type)) {
2386     decorators |= ON_UNKNOWN_OOP_REF;
2387   }
2388 
2389   if (unaligned) {
2390     decorators |= C2_UNALIGNED;
2391   }
2392 
2393 #ifndef PRODUCT
2394   {
2395     ResourceMark rm;
2396     // Check the signatures.
2397     ciSignature* sig = callee()->signature();
2398 #ifdef ASSERT
2399     if (!is_store) {
2400       // Object getReference(Object base, int/long offset), etc.
2401       BasicType rtype = sig->return_type()->basic_type();
2402       assert(rtype == type, "getter must return the expected value");
2403       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2404       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2405       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2406     } else {
2407       // void putReference(Object base, int/long offset, Object x), etc.
2408       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2409       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2410       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2411       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2412       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2413       assert(vtype == type, "putter must accept the expected value");
2414     }
2415 #endif // ASSERT
2416  }
2417 #endif //PRODUCT
2418 
2419   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2420 
2421   Node* receiver = argument(0);  // type: oop
2422 
2423   // Build address expression.
2424   Node* heap_base_oop = top();
2425 
2426   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2427   Node* base = argument(1);  // type: oop
2428   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2429   Node* offset = argument(2);  // type: long
2430   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2431   // to be plain byte offsets, which are also the same as those accepted
2432   // by oopDesc::field_addr.
2433   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2434          "fieldOffset must be byte-scaled");
2435 
2436   ciInlineKlass* inline_klass = nullptr;
2437   if (is_flat) {
2438     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2439     if (cls == nullptr || cls->const_oop() == nullptr) {
2440       return false;
2441     }
2442     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2443     if (!mirror_type->is_inlinetype()) {
2444       return false;
2445     }
2446     inline_klass = mirror_type->as_inline_klass();
2447   }
2448 
2449   if (base->is_InlineType()) {
2450     assert(!is_store, "InlineTypeNodes are non-larval value objects");
2451     InlineTypeNode* vt = base->as_InlineType();
2452     if (offset->is_Con()) {
2453       long off = find_long_con(offset, 0);
2454       ciInlineKlass* vk = vt->type()->inline_klass();
2455       if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2456         return false;
2457       }
2458 
2459       ciField* field = vk->get_non_flat_field_by_offset(off);
2460       if (field != nullptr) {
2461         BasicType bt = type2field[field->type()->basic_type()];
2462         if (bt == T_ARRAY || bt == T_NARROWOOP) {
2463           bt = T_OBJECT;
2464         }
2465         if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2466           Node* value = vt->field_value_by_offset(off, false);
2467           if (value->is_InlineType()) {
2468             value = value->as_InlineType()->adjust_scalarization_depth(this);
2469           }
2470           set_result(value);
2471           return true;
2472         }
2473       }
2474     }
2475     {
2476       // Re-execute the unsafe access if allocation triggers deoptimization.
2477       PreserveReexecuteState preexecs(this);
2478       jvms()->set_should_reexecute(true);
2479       vt = vt->buffer(this);
2480     }
2481     base = vt->get_oop();
2482   }
2483 
2484   // 32-bit machines ignore the high half!
2485   offset = ConvL2X(offset);
2486 
2487   // Save state and restore on bailout
2488   uint old_sp = sp();
2489   SafePointNode* old_map = clone_map();
2490 
2491   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2492   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2493 
2494   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2495     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2496       decorators |= IN_NATIVE; // off-heap primitive access
2497     } else {
2498       set_map(old_map);
2499       set_sp(old_sp);
2500       return false; // off-heap oop accesses are not supported
2501     }
2502   } else {
2503     heap_base_oop = base; // on-heap or mixed access
2504   }
2505 
2506   // Can base be null? Otherwise, always on-heap access.
2507   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2508 
2509   if (!can_access_non_heap) {
2510     decorators |= IN_HEAP;
2511   }
2512 
2513   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2514 
2515   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2516   if (adr_type == TypePtr::NULL_PTR) {
2517     set_map(old_map);
2518     set_sp(old_sp);
2519     return false; // off-heap access with zero address
2520   }
2521 
2522   // Try to categorize the address.
2523   Compile::AliasType* alias_type = C->alias_type(adr_type);
2524   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2525 
2526   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2527       alias_type->adr_type() == TypeAryPtr::RANGE) {
2528     set_map(old_map);
2529     set_sp(old_sp);
2530     return false; // not supported
2531   }
2532 
2533   bool mismatched = false;
2534   BasicType bt = T_ILLEGAL;
2535   ciField* field = nullptr;
2536   if (adr_type->isa_instptr()) {
2537     const TypeInstPtr* instptr = adr_type->is_instptr();
2538     ciInstanceKlass* k = instptr->instance_klass();
2539     int off = instptr->offset();
2540     if (instptr->const_oop() != nullptr &&
2541         k == ciEnv::current()->Class_klass() &&
2542         instptr->offset() >= (k->size_helper() * wordSize)) {
2543       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2544       field = k->get_field_by_offset(off, true);
2545     } else {
2546       field = k->get_non_flat_field_by_offset(off);
2547     }
2548     if (field != nullptr) {
2549       bt = type2field[field->type()->basic_type()];
2550     }
2551     if (bt != alias_type->basic_type()) {
2552       // Type mismatch. Is it an access to a nested flat field?
2553       field = k->get_field_by_offset(off, false);
2554       if (field != nullptr) {
2555         bt = type2field[field->type()->basic_type()];
2556       }
2557     }
2558     assert(bt == alias_type->basic_type() || is_flat, "should match");
2559   } else {
2560     bt = alias_type->basic_type();
2561   }
2562 
2563   if (bt != T_ILLEGAL) {
2564     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2565     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2566       // Alias type doesn't differentiate between byte[] and boolean[]).
2567       // Use address type to get the element type.
2568       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2569     }
2570     if (is_reference_type(bt, true)) {
2571       // accessing an array field with getReference is not a mismatch
2572       bt = T_OBJECT;
2573     }
2574     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2575       // Don't intrinsify mismatched object accesses
2576       set_map(old_map);
2577       set_sp(old_sp);
2578       return false;
2579     }
2580     mismatched = (bt != type);
2581   } else if (alias_type->adr_type()->isa_oopptr()) {
2582     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2583   }
2584 
2585   if (is_flat) {
2586     if (adr_type->isa_instptr()) {
2587       if (field == nullptr || field->type() != inline_klass) {
2588         mismatched = true;
2589       }
2590     } else if (adr_type->isa_aryptr()) {
2591       const Type* elem = adr_type->is_aryptr()->elem();
2592       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2593         mismatched = true;
2594       }
2595     } else {
2596       mismatched = true;
2597     }
2598     if (is_store) {
2599       const Type* val_t = _gvn.type(val);
2600       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2601         set_map(old_map);
2602         set_sp(old_sp);
2603         return false;
2604       }
2605     }
2606   }
2607 
2608   destruct_map_clone(old_map);
2609   assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2610 
2611   if (mismatched) {
2612     decorators |= C2_MISMATCHED;
2613   }
2614 
2615   // First guess at the value type.
2616   const Type *value_type = Type::get_const_basic_type(type);
2617 
2618   // Figure out the memory ordering.
2619   decorators |= mo_decorator_for_access_kind(kind);
2620 
2621   if (!is_store) {
2622     if (type == T_OBJECT && !is_flat) {
2623       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2624       if (tjp != nullptr) {
2625         value_type = tjp;
2626       }
2627     }
2628   }
2629 
2630   receiver = null_check(receiver);
2631   if (stopped()) {
2632     return true;
2633   }
2634   // Heap pointers get a null-check from the interpreter,
2635   // as a courtesy.  However, this is not guaranteed by Unsafe,
2636   // and it is not possible to fully distinguish unintended nulls
2637   // from intended ones in this API.
2638 
2639   if (!is_store) {
2640     Node* p = nullptr;
2641     // Try to constant fold a load from a constant field
2642 
2643     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2644       // final or stable field
2645       p = make_constant_from_field(field, heap_base_oop);
2646     }
2647 
2648     if (p == nullptr) { // Could not constant fold the load
2649       if (is_flat) {
2650         if (adr_type->isa_instptr() && !mismatched) {
2651           ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2652           int offset = adr_type->is_instptr()->offset();
2653           p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, nullptr, holder, offset, false, -1, decorators);
2654         } else {
2655           p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, nullptr, 0, false, -1, decorators);
2656         }
2657       } else {
2658         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2659         const TypeOopPtr* ptr = value_type->make_oopptr();
2660         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2661           // Load a non-flattened inline type from memory
2662           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass());
2663         }
2664       }
2665       // Normalize the value returned by getBoolean in the following cases
2666       if (type == T_BOOLEAN &&
2667           (mismatched ||
2668            heap_base_oop == top() ||                  // - heap_base_oop is null or
2669            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2670                                                       //   and the unsafe access is made to large offset
2671                                                       //   (i.e., larger than the maximum offset necessary for any
2672                                                       //   field access)
2673             ) {
2674           IdealKit ideal = IdealKit(this);
2675 #define __ ideal.
2676           IdealVariable normalized_result(ideal);
2677           __ declarations_done();
2678           __ set(normalized_result, p);
2679           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2680           __ set(normalized_result, ideal.ConI(1));
2681           ideal.end_if();
2682           final_sync(ideal);
2683           p = __ value(normalized_result);
2684 #undef __
2685       }
2686     }
2687     if (type == T_ADDRESS) {
2688       p = gvn().transform(new CastP2XNode(nullptr, p));
2689       p = ConvX2UL(p);
2690     }
2691     // The load node has the control of the preceding MemBarCPUOrder.  All
2692     // following nodes will have the control of the MemBarCPUOrder inserted at
2693     // the end of this method.  So, pushing the load onto the stack at a later
2694     // point is fine.
2695     set_result(p);
2696   } else {
2697     if (bt == T_ADDRESS) {
2698       // Repackage the long as a pointer.
2699       val = ConvL2X(val);
2700       val = gvn().transform(new CastX2PNode(val));
2701     }
2702     if (is_flat) {
2703       if (adr_type->isa_instptr() && !mismatched) {
2704         ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2705         int offset = adr_type->is_instptr()->offset();
2706         val->as_InlineType()->store_flat(this, base, base, nullptr, holder, offset, false, -1, decorators);
2707       } else {
2708         val->as_InlineType()->store_flat(this, base, adr, nullptr, val->bottom_type()->inline_klass(), 0, false, -1, decorators);
2709       }
2710     } else {
2711       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2712     }
2713   }
2714 
2715   return true;
2716 }
2717 
2718 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2719   Node* receiver = argument(0);
2720   Node* value = argument(1);
2721 
2722   const Type* type = gvn().type(value);
2723   if (!type->is_inlinetypeptr()) {
2724     C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type");
2725     return false;
2726   }
2727 
2728   null_check(receiver);
2729   if (stopped()) {
2730     return true;
2731   }
2732 
2733   value = null_check(value);
2734   if (stopped()) {
2735     return true;
2736   }
2737 
2738   ciInlineKlass* vk = type->inline_klass();
2739   Node* klass = makecon(TypeKlassPtr::make(vk));
2740   Node* obj = new_instance(klass);
2741   AllocateNode::Ideal_allocation(obj)->_larval = true;
2742 
2743   assert(value->is_InlineType(), "must be an InlineTypeNode");
2744   value->as_InlineType()->store(this, obj, obj, vk);
2745 
2746   set_result(obj);
2747   return true;
2748 }
2749 
2750 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2751   Node* receiver = argument(0);
2752   Node* buffer = argument(1);
2753 
2754   const Type* type = gvn().type(buffer);
2755   if (!type->is_inlinetypeptr()) {
2756     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type");
2757     return false;
2758   }
2759 
2760   AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer);
2761   if (alloc == nullptr) {
2762     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer");
2763     return false;
2764   }
2765 
2766   null_check(receiver);
2767   if (stopped()) {
2768     return true;
2769   }
2770 
2771   // Unset the larval bit in the object header
2772   Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned);
2773   Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place)));
2774   access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP);
2775 
2776   // We must ensure that the buffer is properly published
2777   insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
2778   assert(!type->maybe_null(), "result of an allocation should not be null");
2779   set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass()));
2780   return true;
2781 }
2782 
2783 //----------------------------inline_unsafe_load_store----------------------------
2784 // This method serves a couple of different customers (depending on LoadStoreKind):
2785 //
2786 // LS_cmp_swap:
2787 //
2788 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2789 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2790 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2791 //
2792 // LS_cmp_swap_weak:
2793 //
2794 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2795 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2796 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2797 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2798 //
2799 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2800 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2801 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2802 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);

2968     }
2969     case LS_cmp_swap:
2970     case LS_cmp_swap_weak:
2971     case LS_get_add:
2972       break;
2973     default:
2974       ShouldNotReachHere();
2975   }
2976 
2977   // Null check receiver.
2978   receiver = null_check(receiver);
2979   if (stopped()) {
2980     return true;
2981   }
2982 
2983   int alias_idx = C->get_alias_index(adr_type);
2984 
2985   if (is_reference_type(type)) {
2986     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2987 
2988     if (oldval != nullptr && oldval->is_InlineType()) {
2989       // Re-execute the unsafe access if allocation triggers deoptimization.
2990       PreserveReexecuteState preexecs(this);
2991       jvms()->set_should_reexecute(true);
2992       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
2993     }
2994     if (newval != nullptr && newval->is_InlineType()) {
2995       // Re-execute the unsafe access if allocation triggers deoptimization.
2996       PreserveReexecuteState preexecs(this);
2997       jvms()->set_should_reexecute(true);
2998       newval = newval->as_InlineType()->buffer(this)->get_oop();
2999     }
3000 
3001     // Transformation of a value which could be null pointer (CastPP #null)
3002     // could be delayed during Parse (for example, in adjust_map_after_if()).
3003     // Execute transformation here to avoid barrier generation in such case.
3004     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3005       newval = _gvn.makecon(TypePtr::NULL_PTR);
3006 
3007     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
3008       // Refine the value to a null constant, when it is known to be null
3009       oldval = _gvn.makecon(TypePtr::NULL_PTR);
3010     }
3011   }
3012 
3013   Node* result = nullptr;
3014   switch (kind) {
3015     case LS_cmp_exchange: {
3016       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
3017                                             oldval, newval, value_type, type, decorators);
3018       break;
3019     }
3020     case LS_cmp_swap_weak:

3167                     Deoptimization::Action_make_not_entrant);
3168     }
3169     if (stopped()) {
3170       return true;
3171     }
3172 #endif //INCLUDE_JVMTI
3173 
3174   Node* test = nullptr;
3175   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3176     // Note:  The argument might still be an illegal value like
3177     // Serializable.class or Object[].class.   The runtime will handle it.
3178     // But we must make an explicit check for initialization.
3179     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3180     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3181     // can generate code to load it as unsigned byte.
3182     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3183     Node* bits = intcon(InstanceKlass::fully_initialized);
3184     test = _gvn.transform(new SubINode(inst, bits));
3185     // The 'test' is non-zero if we need to take a slow path.
3186   }
3187   Node* obj = nullptr;
3188   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3189   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3190     obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3191   } else {
3192     obj = new_instance(kls, test);
3193   }
3194   set_result(obj);
3195   return true;
3196 }
3197 
3198 //------------------------inline_native_time_funcs--------------
3199 // inline code for System.currentTimeMillis() and System.nanoTime()
3200 // these have the same type and signature
3201 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3202   const TypeFunc* tf = OptoRuntime::void_long_Type();
3203   const TypePtr* no_memory_effects = nullptr;
3204   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3205   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3206 #ifdef ASSERT
3207   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3208   assert(value_top == top(), "second value must be top");
3209 #endif
3210   set_result(value);
3211   return true;
3212 }
3213 

3954   Node* thread = _gvn.transform(new ThreadLocalNode());
3955   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3956   Node* thread_obj_handle
3957     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3958   thread_obj_handle = _gvn.transform(thread_obj_handle);
3959   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3960   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3961 
3962   // Change the _monitor_owner_id of the JavaThread
3963   Node* tid = load_field_from_object(arr, "tid", "J");
3964   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3965   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3966 
3967   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3968   return true;
3969 }
3970 
3971 const Type* LibraryCallKit::scopedValueCache_type() {
3972   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3973   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3974   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3975 
3976   // Because we create the scopedValue cache lazily we have to make the
3977   // type of the result BotPTR.
3978   bool xk = etype->klass_is_exact();
3979   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
3980   return objects_type;
3981 }
3982 
3983 Node* LibraryCallKit::scopedValueCache_helper() {
3984   Node* thread = _gvn.transform(new ThreadLocalNode());
3985   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3986   // We cannot use immutable_memory() because we might flip onto a
3987   // different carrier thread, at which point we'll need to use that
3988   // carrier thread's cache.
3989   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3990   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3991   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3992 }
3993 
3994 //------------------------inline_native_scopedValueCache------------------
3995 bool LibraryCallKit::inline_native_scopedValueCache() {
3996   Node* cache_obj_handle = scopedValueCache_helper();
3997   const Type* objects_type = scopedValueCache_type();
3998   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3999 

4083   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
4084 
4085   // Result of top level CFG and Memory.
4086   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4087   record_for_igvn(result_rgn);
4088   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4089   record_for_igvn(result_mem);
4090 
4091   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
4092   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
4093   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
4094   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4095 
4096   // Set output state.
4097   set_control(_gvn.transform(result_rgn));
4098   set_all_memory(_gvn.transform(result_mem));
4099 
4100   return true;
4101 }
4102 









4103 //-----------------------load_klass_from_mirror_common-------------------------
4104 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
4105 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
4106 // and branch to the given path on the region.
4107 // If never_see_null, take an uncommon trap on null, so we can optimistically
4108 // compile for the non-null case.
4109 // If the region is null, force never_see_null = true.
4110 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
4111                                                     bool never_see_null,
4112                                                     RegionNode* region,
4113                                                     int null_path,
4114                                                     int offset) {
4115   if (region == nullptr)  never_see_null = true;
4116   Node* p = basic_plus_adr(mirror, offset);
4117   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4118   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
4119   Node* null_ctl = top();
4120   kls = null_check_oop(kls, &null_ctl, never_see_null);
4121   if (region != nullptr) {
4122     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

4126   }
4127   return kls;
4128 }
4129 
4130 //--------------------(inline_native_Class_query helpers)---------------------
4131 // Use this for JVM_ACC_INTERFACE.
4132 // Fall through if (mods & mask) == bits, take the guard otherwise.
4133 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4134                                                  ByteSize offset, const Type* type, BasicType bt) {
4135   // Branch around if the given klass has the given modifier bit set.
4136   // Like generate_guard, adds a new path onto the region.
4137   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4138   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4139   Node* mask = intcon(modifier_mask);
4140   Node* bits = intcon(modifier_bits);
4141   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4142   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4143   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4144   return generate_fair_guard(bol, region);
4145 }
4146 
4147 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4148   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4149                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4150 }
4151 
4152 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4153 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4154   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4155                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4156 }
4157 
4158 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4159   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4160 }
4161 
4162 //-------------------------inline_native_Class_query-------------------
4163 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4164   const Type* return_type = TypeInt::BOOL;
4165   Node* prim_return_value = top();  // what happens if it's a primitive class?
4166   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4285 
4286   case vmIntrinsics::_getClassAccessFlags:
4287     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4288     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4289     break;
4290 
4291   default:
4292     fatal_unexpected_iid(id);
4293     break;
4294   }
4295 
4296   // Fall-through is the normal case of a query to a real class.
4297   phi->init_req(1, query_value);
4298   region->init_req(1, control());
4299 
4300   C->set_has_split_ifs(true); // Has chance for split-if optimization
4301   set_result(region, phi);
4302   return true;
4303 }
4304 
4305 
4306 //-------------------------inline_Class_cast-------------------
4307 bool LibraryCallKit::inline_Class_cast() {
4308   Node* mirror = argument(0); // Class
4309   Node* obj    = argument(1);
4310   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4311   if (mirror_con == nullptr) {
4312     return false;  // dead path (mirror->is_top()).
4313   }
4314   if (obj == nullptr || obj->is_top()) {
4315     return false;  // dead path
4316   }
4317   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4318 
4319   // First, see if Class.cast() can be folded statically.
4320   // java_mirror_type() returns non-null for compile-time Class constants.
4321   bool is_null_free_array = false;
4322   ciType* tm = mirror_con->java_mirror_type(&is_null_free_array);
4323   if (tm != nullptr && tm->is_klass() &&
4324       tp != nullptr) {
4325     if (!tp->is_loaded()) {
4326       // Don't use intrinsic when class is not loaded.
4327       return false;
4328     } else {
4329       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4330       if (is_null_free_array) {
4331         tklass = tklass->is_aryklassptr()->cast_to_null_free();
4332       }
4333       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4334       if (static_res == Compile::SSC_always_true) {
4335         // isInstance() is true - fold the code.
4336         set_result(obj);
4337         return true;
4338       } else if (static_res == Compile::SSC_always_false) {
4339         // Don't use intrinsic, have to throw ClassCastException.
4340         // If the reference is null, the non-intrinsic bytecode will
4341         // be optimized appropriately.
4342         return false;
4343       }
4344     }
4345   }
4346 
4347   // Bailout intrinsic and do normal inlining if exception path is frequent.
4348   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4349     return false;
4350   }
4351 
4352   // Generate dynamic checks.
4353   // Class.cast() is java implementation of _checkcast bytecode.
4354   // Do checkcast (Parse::do_checkcast()) optimizations here.
4355 
4356   mirror = null_check(mirror);
4357   // If mirror is dead, only null-path is taken.
4358   if (stopped()) {
4359     return true;
4360   }
4361 
4362   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4363   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4364   RegionNode* region = new RegionNode(PATH_LIMIT);
4365   record_for_igvn(region);
4366 
4367   // Now load the mirror's klass metaobject, and null-check it.
4368   // If kls is null, we have a primitive mirror and
4369   // nothing is an instance of a primitive type.
4370   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4371 
4372   Node* res = top();
4373   Node* io = i_o();
4374   Node* mem = merged_memory();
4375   if (!stopped()) {
4376 
4377     Node* bad_type_ctrl = top();
4378     // Do checkcast optimizations.
4379     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4380     region->init_req(_bad_type_path, bad_type_ctrl);
4381   }
4382   if (region->in(_prim_path) != top() ||
4383       region->in(_bad_type_path) != top() ||
4384       region->in(_npe_path) != top()) {
4385     // Let Interpreter throw ClassCastException.
4386     PreserveJVMState pjvms(this);
4387     set_control(_gvn.transform(region));
4388     // Set IO and memory because gen_checkcast may override them when buffering inline types
4389     set_i_o(io);
4390     set_all_memory(mem);
4391     uncommon_trap(Deoptimization::Reason_intrinsic,
4392                   Deoptimization::Action_maybe_recompile);
4393   }
4394   if (!stopped()) {
4395     set_result(res);
4396   }
4397   return true;
4398 }
4399 
4400 
4401 //--------------------------inline_native_subtype_check------------------------
4402 // This intrinsic takes the JNI calls out of the heart of
4403 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4404 bool LibraryCallKit::inline_native_subtype_check() {
4405   // Pull both arguments off the stack.
4406   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4407   args[0] = argument(0);
4408   args[1] = argument(1);
4409   Node* klasses[2];             // corresponding Klasses: superk, subk
4410   klasses[0] = klasses[1] = top();
4411 
4412   enum {
4413     // A full decision tree on {superc is prim, subc is prim}:
4414     _prim_0_path = 1,           // {P,N} => false
4415                                 // {P,P} & superc!=subc => false
4416     _prim_same_path,            // {P,P} & superc==subc => true
4417     _prim_1_path,               // {N,P} => false
4418     _ref_subtype_path,          // {N,N} & subtype check wins => true
4419     _both_ref_path,             // {N,N} & subtype check loses => false
4420     PATH_LIMIT
4421   };
4422 
4423   RegionNode* region = new RegionNode(PATH_LIMIT);
4424   RegionNode* prim_region = new RegionNode(2);
4425   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4426   record_for_igvn(region);
4427   record_for_igvn(prim_region);
4428 
4429   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4430   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4431   int class_klass_offset = java_lang_Class::klass_offset();
4432 
4433   // First null-check both mirrors and load each mirror's klass metaobject.
4434   int which_arg;
4435   for (which_arg = 0; which_arg <= 1; which_arg++) {
4436     Node* arg = args[which_arg];
4437     arg = null_check(arg);
4438     if (stopped())  break;
4439     args[which_arg] = arg;
4440 
4441     Node* p = basic_plus_adr(arg, class_klass_offset);
4442     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4443     klasses[which_arg] = _gvn.transform(kls);
4444   }
4445 
4446   // Having loaded both klasses, test each for null.
4447   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4448   for (which_arg = 0; which_arg <= 1; which_arg++) {
4449     Node* kls = klasses[which_arg];
4450     Node* null_ctl = top();
4451     kls = null_check_oop(kls, &null_ctl, never_see_null);
4452     if (which_arg == 0) {
4453       prim_region->init_req(1, null_ctl);
4454     } else {
4455       region->init_req(_prim_1_path, null_ctl);
4456     }
4457     if (stopped())  break;
4458     klasses[which_arg] = kls;
4459   }
4460 
4461   if (!stopped()) {
4462     // now we have two reference types, in klasses[0..1]
4463     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4464     Node* superk = klasses[0];  // the receiver
4465     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));

4466     region->set_req(_ref_subtype_path, control());
4467   }
4468 
4469   // If both operands are primitive (both klasses null), then
4470   // we must return true when they are identical primitives.
4471   // It is convenient to test this after the first null klass check.
4472   // This path is also used if superc is a value mirror.
4473   set_control(_gvn.transform(prim_region));
4474   if (!stopped()) {
4475     // Since superc is primitive, make a guard for the superc==subc case.
4476     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4477     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4478     generate_fair_guard(bol_eq, region);
4479     if (region->req() == PATH_LIMIT+1) {
4480       // A guard was added.  If the added guard is taken, superc==subc.
4481       region->swap_edges(PATH_LIMIT, _prim_same_path);
4482       region->del_req(PATH_LIMIT);
4483     }
4484     region->set_req(_prim_0_path, control()); // Not equal after all.
4485   }
4486 
4487   // these are the only paths that produce 'true':
4488   phi->set_req(_prim_same_path,   intcon(1));
4489   phi->set_req(_ref_subtype_path, intcon(1));
4490 
4491   // pull together the cases:
4492   assert(region->req() == PATH_LIMIT, "sane region");
4493   for (uint i = 1; i < region->req(); i++) {
4494     Node* ctl = region->in(i);
4495     if (ctl == nullptr || ctl == top()) {
4496       region->set_req(i, top());
4497       phi   ->set_req(i, top());
4498     } else if (phi->in(i) == nullptr) {
4499       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4500     }
4501   }
4502 
4503   set_control(_gvn.transform(region));
4504   set_result(_gvn.transform(phi));
4505   return true;
4506 }
4507 
4508 //---------------------generate_array_guard_common------------------------
4509 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) {

4510 
4511   if (stopped()) {
4512     return nullptr;
4513   }
4514 









4515   // Like generate_guard, adds a new path onto the region.
4516   jint  layout_con = 0;
4517   Node* layout_val = get_layout_helper(kls, layout_con);
4518   if (layout_val == nullptr) {
4519     bool query = 0;
4520     switch(kind) {
4521       case ObjectArray:    query = Klass::layout_helper_is_objArray(layout_con); break;
4522       case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break;
4523       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4524       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4525       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4526       default:
4527         ShouldNotReachHere();
4528     }
4529     if (!query) {
4530       return nullptr;                       // never a branch
4531     } else {                             // always a branch
4532       Node* always_branch = control();
4533       if (region != nullptr)
4534         region->add_req(always_branch);
4535       set_control(top());
4536       return always_branch;
4537     }
4538   }
4539   unsigned int value = 0;
4540   BoolTest::mask btest = BoolTest::illegal;
4541   switch(kind) {
4542     case ObjectArray:
4543     case NonObjectArray: {
4544       value = Klass::_lh_array_tag_obj_value;
4545       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4546       btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne;
4547       break;
4548     }
4549     case TypeArray: {
4550       value = Klass::_lh_array_tag_type_value;
4551       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4552       btest = BoolTest::eq;
4553       break;
4554     }
4555     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4556     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4557     default:
4558       ShouldNotReachHere();
4559   }
4560   // Now test the correct condition.
4561   jint nval = (jint)value;



4562   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));



4563   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4564   Node* ctrl = generate_fair_guard(bol, region);
4565   Node* is_array_ctrl = kind == NonArray ? control() : ctrl;
4566   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4567     // Keep track of the fact that 'obj' is an array to prevent
4568     // array specific accesses from floating above the guard.
4569     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4570   }
4571   return ctrl;
4572 }
4573 
4574 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal);
4575 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal);
4576 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length);
4577 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) {
4578   assert(null_free || atomic, "nullable implies atomic");
4579   Node* componentType = argument(0);
4580   Node* length = argument(1);
4581   Node* init_val = null_free ? argument(2) : nullptr;
4582 
4583   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4584   if (tp != nullptr) {
4585     ciInstanceKlass* ik = tp->instance_klass();
4586     if (ik == C->env()->Class_klass()) {
4587       ciType* t = tp->java_mirror_type();
4588       if (t != nullptr && t->is_inlinetype()) {
4589         ciInlineKlass* vk = t->as_inline_klass();
4590         bool flat = vk->maybe_flat_in_array();
4591         if (flat && atomic) {
4592           // Only flat if we have a corresponding atomic layout
4593           flat = null_free ? vk->has_atomic_layout() : vk->has_nullable_atomic_layout();
4594         }
4595         // TODO 8350865 refactor
4596         if (flat && !atomic) {
4597           flat = vk->has_non_atomic_layout();
4598         }
4599 
4600         // TOOD 8350865 ZGC needs card marks on initializing oop stores
4601         if (UseZGC && null_free && !flat) {
4602           return false;
4603         }
4604 
4605         ciArrayKlass* array_klass = ciArrayKlass::make(t, flat, null_free, atomic);
4606         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4607           const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
4608           if (null_free) {
4609             if (init_val->is_InlineType()) {
4610               if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) {
4611                 // Zeroing is enough because the init value is the all-zero value
4612                 init_val = nullptr;
4613               } else {
4614                 init_val = init_val->as_InlineType()->buffer(this);
4615               }
4616             }
4617             // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)?
4618           }
4619           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val);
4620           const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr();
4621           assert(arytype->is_null_free() == null_free, "inconsistency");
4622           assert(arytype->is_not_null_free() == !null_free, "inconsistency");
4623           assert(arytype->is_flat() == flat, "inconsistency");
4624           assert(arytype->is_aryptr()->is_not_flat() == !flat, "inconsistency");
4625           set_result(obj);
4626           return true;
4627         }
4628       }
4629     }
4630   }
4631   return false;
4632 }
4633 
4634 //-----------------------inline_native_newArray--------------------------
4635 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4636 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4637 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4638   Node* mirror;
4639   Node* count_val;
4640   if (uninitialized) {
4641     null_check_receiver();
4642     mirror    = argument(1);
4643     count_val = argument(2);
4644   } else {
4645     mirror    = argument(0);
4646     count_val = argument(1);
4647   }
4648 
4649   mirror = null_check(mirror);
4650   // If mirror or obj is dead, only null-path is taken.
4651   if (stopped())  return true;
4652 
4653   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4654   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4655   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4761   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4762   { PreserveReexecuteState preexecs(this);
4763     jvms()->set_should_reexecute(true);
4764 
4765     array_type_mirror = null_check(array_type_mirror);
4766     original          = null_check(original);
4767 
4768     // Check if a null path was taken unconditionally.
4769     if (stopped())  return true;
4770 
4771     Node* orig_length = load_array_length(original);
4772 
4773     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4774     klass_node = null_check(klass_node);
4775 
4776     RegionNode* bailout = new RegionNode(1);
4777     record_for_igvn(bailout);
4778 
4779     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4780     // Bail out if that is so.
4781     // Inline type array may have object field that would require a
4782     // write barrier. Conservatively, go to slow path.
4783     // TODO 8251971: Optimize for the case when flat src/dst are later found
4784     // to not contain oops (i.e., move this check to the macro expansion phase).
4785     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4786     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
4787     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
4788     bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
4789                         // Can src array be flat and contain oops?
4790                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
4791                         // Can dest array be flat and contain oops?
4792                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
4793     Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
4794     if (not_objArray != nullptr) {
4795       // Improve the klass node's type from the new optimistic assumption:
4796       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4797       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
4798       Node* cast = new CastPPNode(control(), klass_node, akls);
4799       klass_node = _gvn.transform(cast);
4800     }
4801 
4802     // Bail out if either start or end is negative.
4803     generate_negative_guard(start, bailout, &start);
4804     generate_negative_guard(end,   bailout, &end);
4805 
4806     Node* length = end;
4807     if (_gvn.type(start) != TypeInt::ZERO) {
4808       length = _gvn.transform(new SubINode(end, start));
4809     }
4810 
4811     // Bail out if length is negative (i.e., if start > end).
4812     // Without this the new_array would throw
4813     // NegativeArraySizeException but IllegalArgumentException is what
4814     // should be thrown
4815     generate_negative_guard(length, bailout, &length);
4816 
4817     // Handle inline type arrays
4818     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
4819     if (!stopped()) {
4820       // TODO JDK-8329224
4821       if (!orig_t->is_null_free()) {
4822         // Not statically known to be null free, add a check
4823         generate_fair_guard(null_free_array_test(original), bailout);
4824       }
4825       orig_t = _gvn.type(original)->isa_aryptr();
4826       if (orig_t != nullptr && orig_t->is_flat()) {
4827         // Src is flat, check that dest is flat as well
4828         if (exclude_flat) {
4829           // Dest can't be flat, bail out
4830           bailout->add_req(control());
4831           set_control(top());
4832         } else {
4833           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
4834         }
4835         // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy.
4836       } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) &&
4837                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
4838                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
4839         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
4840         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
4841         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
4842         if (orig_t != nullptr) {
4843           orig_t = orig_t->cast_to_not_flat();
4844           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
4845         }
4846       }
4847       if (!can_validate) {
4848         // No validation. The subtype check emitted at macro expansion time will not go to the slow
4849         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
4850         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
4851         generate_fair_guard(flat_array_test(klass_node), bailout);
4852         generate_fair_guard(null_free_array_test(original), bailout);
4853       }
4854     }
4855 
4856     // Bail out if start is larger than the original length
4857     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4858     generate_negative_guard(orig_tail, bailout, &orig_tail);
4859 
4860     if (bailout->req() > 1) {
4861       PreserveJVMState pjvms(this);
4862       set_control(_gvn.transform(bailout));
4863       uncommon_trap(Deoptimization::Reason_intrinsic,
4864                     Deoptimization::Action_maybe_recompile);
4865     }
4866 
4867     if (!stopped()) {
4868       // How many elements will we copy from the original?
4869       // The answer is MinI(orig_tail, length).
4870       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4871 
4872       // Generate a direct call to the right arraycopy function(s).
4873       // We know the copy is disjoint but we might not know if the
4874       // oop stores need checking.
4875       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4881       // to the copyOf to be validated, including that the copy to the
4882       // new array won't trigger an ArrayStoreException. That subtype
4883       // check can be optimized if we know something on the type of
4884       // the input array from type speculation.
4885       if (_gvn.type(klass_node)->singleton()) {
4886         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4887         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4888 
4889         int test = C->static_subtype_check(superk, subk);
4890         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4891           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4892           if (t_original->speculative_type() != nullptr) {
4893             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4894           }
4895         }
4896       }
4897 
4898       bool validated = false;
4899       // Reason_class_check rather than Reason_intrinsic because we
4900       // want to intrinsify even if this traps.
4901       if (can_validate) {
4902         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4903 
4904         if (not_subtype_ctrl != top()) {
4905           PreserveJVMState pjvms(this);
4906           set_control(not_subtype_ctrl);
4907           uncommon_trap(Deoptimization::Reason_class_check,
4908                         Deoptimization::Action_make_not_entrant);
4909           assert(stopped(), "Should be stopped");
4910         }
4911         validated = true;
4912       }
4913 
4914       if (!stopped()) {
4915         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4916 
4917         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4918                                                 load_object_klass(original), klass_node);
4919         if (!is_copyOfRange) {
4920           ac->set_copyof(validated);
4921         } else {

4967 
4968 //-----------------------generate_method_call----------------------------
4969 // Use generate_method_call to make a slow-call to the real
4970 // method if the fast path fails.  An alternative would be to
4971 // use a stub like OptoRuntime::slow_arraycopy_Java.
4972 // This only works for expanding the current library call,
4973 // not another intrinsic.  (E.g., don't use this for making an
4974 // arraycopy call inside of the copyOf intrinsic.)
4975 CallJavaNode*
4976 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4977   // When compiling the intrinsic method itself, do not use this technique.
4978   guarantee(callee() != C->method(), "cannot make slow-call to self");
4979 
4980   ciMethod* method = callee();
4981   // ensure the JVMS we have will be correct for this call
4982   guarantee(method_id == method->intrinsic_id(), "must match");
4983 
4984   const TypeFunc* tf = TypeFunc::make(method);
4985   if (res_not_null) {
4986     assert(tf->return_type() == T_OBJECT, "");
4987     const TypeTuple* range = tf->range_cc();
4988     const Type** fields = TypeTuple::fields(range->cnt());
4989     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4990     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4991     tf = TypeFunc::make(tf->domain_cc(), new_range);
4992   }
4993   CallJavaNode* slow_call;
4994   if (is_static) {
4995     assert(!is_virtual, "");
4996     slow_call = new CallStaticJavaNode(C, tf,
4997                            SharedRuntime::get_resolve_static_call_stub(), method);
4998   } else if (is_virtual) {
4999     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
5000     int vtable_index = Method::invalid_vtable_index;
5001     if (UseInlineCaches) {
5002       // Suppress the vtable call
5003     } else {
5004       // hashCode and clone are not a miranda methods,
5005       // so the vtable index is fixed.
5006       // No need to use the linkResolver to get it.
5007        vtable_index = method->vtable_index();
5008        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5009               "bad index %d", vtable_index);
5010     }
5011     slow_call = new CallDynamicJavaNode(tf,

5028   set_edges_for_java_call(slow_call);
5029   return slow_call;
5030 }
5031 
5032 
5033 /**
5034  * Build special case code for calls to hashCode on an object. This call may
5035  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
5036  * slightly different code.
5037  */
5038 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
5039   assert(is_static == callee()->is_static(), "correct intrinsic selection");
5040   assert(!(is_virtual && is_static), "either virtual, special, or static");
5041 
5042   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
5043 
5044   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5045   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
5046   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
5047   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5048   Node* obj = argument(0);
5049 
5050   // Don't intrinsify hashcode on inline types for now.
5051   // The "is locked" runtime check below also serves as inline type check and goes to the slow path.
5052   if (gvn().type(obj)->is_inlinetypeptr()) {
5053     return false;
5054   }
5055 
5056   if (!is_static) {
5057     // Check for hashing null object
5058     obj = null_check_receiver();
5059     if (stopped())  return true;        // unconditionally null
5060     result_reg->init_req(_null_path, top());
5061     result_val->init_req(_null_path, top());
5062   } else {
5063     // Do a null check, and return zero if null.
5064     // System.identityHashCode(null) == 0

5065     Node* null_ctl = top();
5066     obj = null_check_oop(obj, &null_ctl);
5067     result_reg->init_req(_null_path, null_ctl);
5068     result_val->init_req(_null_path, _gvn.intcon(0));
5069   }
5070 
5071   // Unconditionally null?  Then return right away.
5072   if (stopped()) {
5073     set_control( result_reg->in(_null_path));
5074     if (!stopped())
5075       set_result(result_val->in(_null_path));
5076     return true;
5077   }
5078 
5079   // We only go to the fast case code if we pass a number of guards.  The
5080   // paths which do not pass are accumulated in the slow_region.
5081   RegionNode* slow_region = new RegionNode(1);
5082   record_for_igvn(slow_region);
5083 
5084   // If this is a virtual call, we generate a funny guard.  We pull out
5085   // the vtable entry corresponding to hashCode() from the target object.
5086   // If the target method which we are calling happens to be the native
5087   // Object hashCode() method, we pass the guard.  We do not need this
5088   // guard for non-virtual calls -- the caller is known to be the native
5089   // Object hashCode().
5090   if (is_virtual) {
5091     // After null check, get the object's klass.
5092     Node* obj_klass = load_object_klass(obj);
5093     generate_virtual_guard(obj_klass, slow_region);
5094   }
5095 
5096   // Get the header out of the object, use LoadMarkNode when available
5097   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5098   // The control of the load must be null. Otherwise, the load can move before
5099   // the null check after castPP removal.
5100   Node* no_ctrl = nullptr;
5101   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5102 
5103   if (!UseObjectMonitorTable) {
5104     // Test the header to see if it is safe to read w.r.t. locking.
5105   // This also serves as guard against inline types
5106     Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
5107     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5108     if (LockingMode == LM_LIGHTWEIGHT) {
5109       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5110       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5111       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5112 
5113       generate_slow_guard(test_monitor, slow_region);
5114     } else {
5115       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
5116       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
5117       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
5118 
5119       generate_slow_guard(test_not_unlocked, slow_region);
5120     }
5121   }
5122 
5123   // Get the hash value and check to see that it has been properly assigned.
5124   // We depend on hash_mask being at most 32 bits and avoid the use of
5125   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5126   // vm: see markWord.hpp.

5161     // this->control() comes from set_results_for_java_call
5162     result_reg->init_req(_slow_path, control());
5163     result_val->init_req(_slow_path, slow_result);
5164     result_io  ->set_req(_slow_path, i_o());
5165     result_mem ->set_req(_slow_path, reset_memory());
5166   }
5167 
5168   // Return the combined state.
5169   set_i_o(        _gvn.transform(result_io)  );
5170   set_all_memory( _gvn.transform(result_mem));
5171 
5172   set_result(result_reg, result_val);
5173   return true;
5174 }
5175 
5176 //---------------------------inline_native_getClass----------------------------
5177 // public final native Class<?> java.lang.Object.getClass();
5178 //
5179 // Build special case code for calls to getClass on an object.
5180 bool LibraryCallKit::inline_native_getClass() {
5181   Node* obj = argument(0);
5182   if (obj->is_InlineType()) {
5183     const Type* t = _gvn.type(obj);
5184     if (t->maybe_null()) {
5185       null_check(obj);
5186     }
5187     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5188     return true;
5189   }
5190   obj = null_check_receiver();
5191   if (stopped())  return true;
5192   set_result(load_mirror_from_klass(load_object_klass(obj)));
5193   return true;
5194 }
5195 
5196 //-----------------inline_native_Reflection_getCallerClass---------------------
5197 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5198 //
5199 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5200 //
5201 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5202 // in that it must skip particular security frames and checks for
5203 // caller sensitive methods.
5204 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5205 #ifndef PRODUCT
5206   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5207     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5208   }
5209 #endif
5210 

5522     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5523 
5524     flags |= RC_NARROW_MEM; // narrow in memory
5525   }
5526 
5527   // Call it.  Note that the length argument is not scaled.
5528   make_runtime_call(flags,
5529                     OptoRuntime::unsafe_setmemory_Type(),
5530                     StubRoutines::unsafe_setmemory(),
5531                     "unsafe_setmemory",
5532                     dst_type,
5533                     dst_addr, size XTOP, byte);
5534 
5535   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5536 
5537   return true;
5538 }
5539 
5540 #undef XTOP
5541 
5542 //----------------------inline_unsafe_isFlatArray------------------------
5543 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass);
5544 // This intrinsic exploits assumptions made by the native implementation
5545 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks.
5546 bool LibraryCallKit::inline_unsafe_isFlatArray() {
5547   Node* cls = argument(1);
5548   Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset());
5549   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p,
5550                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
5551   Node* result = flat_array_test(kls);
5552   set_result(result);
5553   return true;
5554 }
5555 
5556 //------------------------clone_coping-----------------------------------
5557 // Helper function for inline_native_clone.
5558 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5559   assert(obj_size != nullptr, "");
5560   Node* raw_obj = alloc_obj->in(1);
5561   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5562 
5563   AllocateNode* alloc = nullptr;
5564   if (ReduceBulkZeroing &&
5565       // If we are implementing an array clone without knowing its source type
5566       // (can happen when compiling the array-guarded branch of a reflective
5567       // Object.clone() invocation), initialize the array within the allocation.
5568       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5569       // to a runtime clone call that assumes fully initialized source arrays.
5570       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5571     // We will be completely responsible for initializing this object -
5572     // mark Initialize node as complete.
5573     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5574     // The object was just allocated - there should be no any stores!
5575     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");

5606 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5607 //
5608 // The general case has two steps, allocation and copying.
5609 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5610 //
5611 // Copying also has two cases, oop arrays and everything else.
5612 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5613 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5614 //
5615 // These steps fold up nicely if and when the cloned object's klass
5616 // can be sharply typed as an object array, a type array, or an instance.
5617 //
5618 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5619   PhiNode* result_val;
5620 
5621   // Set the reexecute bit for the interpreter to reexecute
5622   // the bytecode that invokes Object.clone if deoptimization happens.
5623   { PreserveReexecuteState preexecs(this);
5624     jvms()->set_should_reexecute(true);
5625 
5626     Node* obj = argument(0);
5627     obj = null_check_receiver();
5628     if (stopped())  return true;
5629 
5630     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5631     if (obj_type->is_inlinetypeptr()) {
5632       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5633       // no identity.
5634       set_result(obj);
5635       return true;
5636     }
5637 
5638     // If we are going to clone an instance, we need its exact type to
5639     // know the number and types of fields to convert the clone to
5640     // loads/stores. Maybe a speculative type can help us.
5641     if (!obj_type->klass_is_exact() &&
5642         obj_type->speculative_type() != nullptr &&
5643         obj_type->speculative_type()->is_instance_klass() &&
5644         !obj_type->speculative_type()->is_inlinetype()) {
5645       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5646       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5647           !spec_ik->has_injected_fields()) {
5648         if (!obj_type->isa_instptr() ||
5649             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5650           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5651         }
5652       }
5653     }
5654 
5655     // Conservatively insert a memory barrier on all memory slices.
5656     // Do not let writes into the original float below the clone.
5657     insert_mem_bar(Op_MemBarCPUOrder);
5658 
5659     // paths into result_reg:
5660     enum {
5661       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5662       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5663       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5664       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5665       PATH_LIMIT
5666     };
5667     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5668     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5669     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5670     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5671     record_for_igvn(result_reg);
5672 
5673     // TODO 8350865 For arrays, this might be folded and then not account for atomic arrays
5674     Node* obj_klass = load_object_klass(obj);
5675     // We only go to the fast case code if we pass a number of guards.
5676     // The paths which do not pass are accumulated in the slow_region.
5677     RegionNode* slow_region = new RegionNode(1);
5678     record_for_igvn(slow_region);
5679 
5680     Node* array_obj = obj;
5681     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5682     if (array_ctl != nullptr) {
5683       // It's an array.
5684       PreserveJVMState pjvms(this);
5685       set_control(array_ctl);



5686 
5687       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5688       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5689       if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5690           obj_type->can_be_inline_array() &&
5691           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5692         // Flat inline type array may have object field that would require a
5693         // write barrier. Conservatively, go to slow path.
5694         generate_fair_guard(flat_array_test(obj_klass), slow_region);













5695       }







5696 
5697       if (!stopped()) {
5698         Node* obj_length = load_array_length(array_obj);
5699         Node* array_size = nullptr; // Size of the array without object alignment padding.
5700         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5701 
5702         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5703         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5704           // If it is an oop array, it requires very special treatment,
5705           // because gc barriers are required when accessing the array.
5706           Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5707           if (is_obja != nullptr) {
5708             PreserveJVMState pjvms2(this);
5709             set_control(is_obja);
5710             // Generate a direct call to the right arraycopy function(s).
5711             // Clones are always tightly coupled.
5712             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5713             ac->set_clone_oop_array();
5714             Node* n = _gvn.transform(ac);
5715             assert(n == ac, "cannot disappear");
5716             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5717 
5718             result_reg->init_req(_objArray_path, control());
5719             result_val->init_req(_objArray_path, alloc_obj);
5720             result_i_o ->set_req(_objArray_path, i_o());
5721             result_mem ->set_req(_objArray_path, reset_memory());
5722           }
5723         }
5724         // Otherwise, there are no barriers to worry about.
5725         // (We can dispense with card marks if we know the allocation
5726         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5727         //  causes the non-eden paths to take compensating steps to
5728         //  simulate a fresh allocation, so that no further
5729         //  card marks are required in compiled code to initialize
5730         //  the object.)
5731 
5732         if (!stopped()) {
5733           copy_to_clone(obj, alloc_obj, array_size, true);
5734 
5735           // Present the results of the copy.
5736           result_reg->init_req(_array_path, control());
5737           result_val->init_req(_array_path, alloc_obj);
5738           result_i_o ->set_req(_array_path, i_o());
5739           result_mem ->set_req(_array_path, reset_memory());
5740         }
5741       }
5742     }
5743 




5744     if (!stopped()) {
5745       // It's an instance (we did array above).  Make the slow-path tests.
5746       // If this is a virtual call, we generate a funny guard.  We grab
5747       // the vtable entry corresponding to clone() from the target object.
5748       // If the target method which we are calling happens to be the
5749       // Object clone() method, we pass the guard.  We do not need this
5750       // guard for non-virtual calls; the caller is known to be the native
5751       // Object clone().
5752       if (is_virtual) {
5753         generate_virtual_guard(obj_klass, slow_region);
5754       }
5755 
5756       // The object must be easily cloneable and must not have a finalizer.
5757       // Both of these conditions may be checked in a single test.
5758       // We could optimize the test further, but we don't care.
5759       generate_misc_flags_guard(obj_klass,
5760                                 // Test both conditions:
5761                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5762                                 // Must be cloneable but not finalizer:
5763                                 KlassFlags::_misc_is_cloneable_fast,

5855         set_jvms(sfpt->jvms());
5856         _reexecute_sp = jvms()->sp();
5857 
5858         return saved_jvms;
5859       }
5860     }
5861   }
5862   return nullptr;
5863 }
5864 
5865 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5866 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5867 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5868   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5869   uint size = alloc->req();
5870   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5871   old_jvms->set_map(sfpt);
5872   for (uint i = 0; i < size; i++) {
5873     sfpt->init_req(i, alloc->in(i));
5874   }
5875   int adjustment = 1;
5876   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
5877   if (ary_klass_ptr->is_null_free()) {
5878     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which
5879     // also requires the componentType and initVal on stack for re-execution.
5880     // Re-create and push the componentType.
5881     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
5882     ciInstance* instance = klass->component_mirror_instance();
5883     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
5884     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
5885     adjustment++;
5886   }
5887   // re-push array length for deoptimization
5888   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
5889   if (ary_klass_ptr->is_null_free()) {
5890     // Re-create and push the initVal.
5891     Node* init_val = alloc->in(AllocateNode::InitValue);
5892     if (init_val == nullptr) {
5893       init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass());
5894     } else if (UseCompressedOops) {
5895       init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr()));
5896     }
5897     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val);
5898     adjustment++;
5899   }
5900   old_jvms->set_sp(old_jvms->sp() + adjustment);
5901   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
5902   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
5903   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
5904   old_jvms->set_should_reexecute(true);
5905 
5906   sfpt->set_i_o(map()->i_o());
5907   sfpt->set_memory(map()->memory());
5908   sfpt->set_control(map()->control());
5909   return sfpt;
5910 }
5911 
5912 // In case of a deoptimization, we restart execution at the
5913 // allocation, allocating a new array. We would leave an uninitialized
5914 // array in the heap that GCs wouldn't expect. Move the allocation
5915 // after the traps so we don't allocate the array if we
5916 // deoptimize. This is possible because tightly_coupled_allocation()
5917 // guarantees there's no observer of the allocated array at this point
5918 // and the control flow is simple enough.
5919 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5920                                                     int saved_reexecute_sp, uint new_idx) {
5921   if (saved_jvms_before_guards != nullptr && !stopped()) {
5922     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5923 
5924     assert(alloc != nullptr, "only with a tightly coupled allocation");
5925     // restore JVM state to the state at the arraycopy
5926     saved_jvms_before_guards->map()->set_control(map()->control());
5927     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5928     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5929     // If we've improved the types of some nodes (null check) while
5930     // emitting the guards, propagate them to the current state
5931     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5932     set_jvms(saved_jvms_before_guards);
5933     _reexecute_sp = saved_reexecute_sp;
5934 
5935     // Remove the allocation from above the guards
5936     CallProjections* callprojs = alloc->extract_projections(true);

5937     InitializeNode* init = alloc->initialization();
5938     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5939     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5940     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5941 
5942     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5943     // the allocation (i.e. is only valid if the allocation succeeds):
5944     // 1) replace CastIINode with AllocateArrayNode's length here
5945     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5946     //
5947     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5948     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5949     Node* init_control = init->proj_out(TypeFunc::Control);
5950     Node* alloc_length = alloc->Ideal_length();
5951 #ifdef ASSERT
5952     Node* prev_cast = nullptr;
5953 #endif
5954     for (uint i = 0; i < init_control->outcnt(); i++) {
5955       Node* init_out = init_control->raw_out(i);
5956       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5957 #ifdef ASSERT
5958         if (prev_cast == nullptr) {
5959           prev_cast = init_out;

5961           if (prev_cast->cmp(*init_out) == false) {
5962             prev_cast->dump();
5963             init_out->dump();
5964             assert(false, "not equal CastIINode");
5965           }
5966         }
5967 #endif
5968         C->gvn_replace_by(init_out, alloc_length);
5969       }
5970     }
5971     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5972 
5973     // move the allocation here (after the guards)
5974     _gvn.hash_delete(alloc);
5975     alloc->set_req(TypeFunc::Control, control());
5976     alloc->set_req(TypeFunc::I_O, i_o());
5977     Node *mem = reset_memory();
5978     set_all_memory(mem);
5979     alloc->set_req(TypeFunc::Memory, mem);
5980     set_control(init->proj_out_or_null(TypeFunc::Control));
5981     set_i_o(callprojs->fallthrough_ioproj);
5982 
5983     // Update memory as done in GraphKit::set_output_for_allocation()
5984     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5985     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5986     if (ary_type->isa_aryptr() && length_type != nullptr) {
5987       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5988     }
5989     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5990     int            elemidx  = C->get_alias_index(telemref);
5991     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5992     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5993 
5994     Node* allocx = _gvn.transform(alloc);
5995     assert(allocx == alloc, "where has the allocation gone?");
5996     assert(dest->is_CheckCastPP(), "not an allocation result?");
5997 
5998     _gvn.hash_delete(dest);
5999     dest->set_req(0, control());
6000     Node* destx = _gvn.transform(dest);
6001     assert(destx == dest, "where has the allocation result gone?");

6299         top_src  = src_type->isa_aryptr();
6300         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6301         src_spec = true;
6302       }
6303       if (!has_dest) {
6304         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6305         dest_type  = _gvn.type(dest);
6306         top_dest  = dest_type->isa_aryptr();
6307         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6308         dest_spec = true;
6309       }
6310     }
6311   }
6312 
6313   if (has_src && has_dest && can_emit_guards) {
6314     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6315     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6316     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6317     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6318 
6319     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6320       // If both arrays are object arrays then having the exact types
6321       // for both will remove the need for a subtype check at runtime
6322       // before the call and may make it possible to pick a faster copy
6323       // routine (without a subtype check on every element)
6324       // Do we have the exact type of src?
6325       bool could_have_src = src_spec;
6326       // Do we have the exact type of dest?
6327       bool could_have_dest = dest_spec;
6328       ciKlass* src_k = nullptr;
6329       ciKlass* dest_k = nullptr;
6330       if (!src_spec) {
6331         src_k = src_type->speculative_type_not_null();
6332         if (src_k != nullptr && src_k->is_array_klass()) {
6333           could_have_src = true;
6334         }
6335       }
6336       if (!dest_spec) {
6337         dest_k = dest_type->speculative_type_not_null();
6338         if (dest_k != nullptr && dest_k->is_array_klass()) {
6339           could_have_dest = true;
6340         }
6341       }
6342       if (could_have_src && could_have_dest) {
6343         // If we can have both exact types, emit the missing guards
6344         if (could_have_src && !src_spec) {
6345           src = maybe_cast_profiled_obj(src, src_k, true);
6346           src_type = _gvn.type(src);
6347           top_src = src_type->isa_aryptr();
6348         }
6349         if (could_have_dest && !dest_spec) {
6350           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6351           dest_type = _gvn.type(dest);
6352           top_dest = dest_type->isa_aryptr();
6353         }
6354       }
6355     }
6356   }
6357 
6358   ciMethod* trap_method = method();
6359   int trap_bci = bci();
6360   if (saved_jvms_before_guards != nullptr) {
6361     trap_method = alloc->jvms()->method();
6362     trap_bci = alloc->jvms()->bci();
6363   }
6364 
6365   bool negative_length_guard_generated = false;
6366 
6367   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6368       can_emit_guards && !src->is_top() && !dest->is_top()) {

6369     // validate arguments: enables transformation the ArrayCopyNode
6370     validated = true;
6371 
6372     RegionNode* slow_region = new RegionNode(1);
6373     record_for_igvn(slow_region);
6374 
6375     // (1) src and dest are arrays.
6376     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6377     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6378 
6379     // (2) src and dest arrays must have elements of the same BasicType
6380     // done at macro expansion or at Ideal transformation time
6381 
6382     // (4) src_offset must not be negative.
6383     generate_negative_guard(src_offset, slow_region);
6384 
6385     // (5) dest_offset must not be negative.
6386     generate_negative_guard(dest_offset, slow_region);
6387 
6388     // (7) src_offset + length must not exceed length of src.

6391                          slow_region);
6392 
6393     // (8) dest_offset + length must not exceed length of dest.
6394     generate_limit_guard(dest_offset, length,
6395                          load_array_length(dest),
6396                          slow_region);
6397 
6398     // (6) length must not be negative.
6399     // This is also checked in generate_arraycopy() during macro expansion, but
6400     // we also have to check it here for the case where the ArrayCopyNode will
6401     // be eliminated by Escape Analysis.
6402     if (EliminateAllocations) {
6403       generate_negative_guard(length, slow_region);
6404       negative_length_guard_generated = true;
6405     }
6406 
6407     // (9) each element of an oop array must be assignable
6408     Node* dest_klass = load_object_klass(dest);
6409     if (src != dest) {
6410       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6411       slow_region->add_req(not_subtype_ctrl);
6412     }
6413 
6414     // TODO 8350865 Fix below logic. Also handle atomicity.
6415     generate_fair_guard(flat_array_test(src), slow_region);
6416     generate_fair_guard(flat_array_test(dest), slow_region);
6417 
6418     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6419     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6420     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6421     src_type = _gvn.type(src);
6422     top_src  = src_type->isa_aryptr();
6423 
6424     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6425     if (!stopped() && UseArrayFlattening) {
6426       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6427       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6428       if (top_src != nullptr && top_src->is_flat()) {
6429         // Src is flat, check that dest is flat as well
6430         if (top_dest != nullptr && !top_dest->is_flat()) {
6431           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6432           // Since dest is flat and src <: dest, dest must have the same type as src.
6433           top_dest = top_src->cast_to_exactness(false);
6434           assert(top_dest->is_flat(), "dest must be flat");
6435           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6436         }
6437       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6438         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6439         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6440         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6441         generate_fair_guard(flat_array_test(src), slow_region);
6442         if (top_src != nullptr) {
6443           top_src = top_src->cast_to_not_flat();
6444           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6445         }
6446       }
6447     }
6448 
6449     {
6450       PreserveJVMState pjvms(this);
6451       set_control(_gvn.transform(slow_region));
6452       uncommon_trap(Deoptimization::Reason_intrinsic,
6453                     Deoptimization::Action_make_not_entrant);
6454       assert(stopped(), "Should be stopped");
6455     }




6456     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6457   }
6458 
6459   if (stopped()) {
6460     return true;
6461   }
6462 
6463   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6464                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6465                                           // so the compiler has a chance to eliminate them: during macro expansion,
6466                                           // we have to set their control (CastPP nodes are eliminated).
6467                                           load_object_klass(src), load_object_klass(dest),
6468                                           load_array_length(src), load_array_length(dest));
6469 
6470   ac->set_arraycopy(validated);
6471 
6472   Node* n = _gvn.transform(ac);
6473   if (n == ac) {
6474     ac->connect_outputs(this);
6475   } else {
< prev index next >