< prev index next >

src/hotspot/share/opto/library_call.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"

  26 #include "ci/ciUtilities.inline.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "opto/vectornode.hpp"

 298   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 299   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 300   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 301   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 302   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 303 
 304   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 305 
 306   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 307 
 308   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 309   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 310   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 311   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 312 
 313   case vmIntrinsics::_compressStringC:
 314   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 315   case vmIntrinsics::_inflateStringC:
 316   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 317 


 318   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 319   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 320   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 321   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 322   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 323   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 324   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 325   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 326   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);

 327 
 328   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);

 337 
 338   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 339   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 340   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 341   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 342   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 343   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 344   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 345   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 346   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 347 
 348   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 483                                                                                          "notifyJvmtiEnd", false, true);
 484   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 485                                                                                          "notifyJvmtiMount", false, false);
 486   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 487                                                                                          "notifyJvmtiUnmount", false, false);
 488   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 489 #endif
 490 
 491 #ifdef JFR_HAVE_INTRINSICS
 492   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 493   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 494   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 495 #endif
 496   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 497   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 498   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 499   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 500   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 501   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 502   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();

 503   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 504   case vmIntrinsics::_getLength:                return inline_native_getLength();
 505   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 506   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 507   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 508   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 509   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 510   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 511   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 512 
 513   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 514   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);



 515 
 516   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 517 
 518   case vmIntrinsics::_isInstance:
 519   case vmIntrinsics::_isHidden:
 520   case vmIntrinsics::_getSuperclass:
 521   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 522 
 523   case vmIntrinsics::_floatToRawIntBits:
 524   case vmIntrinsics::_floatToIntBits:
 525   case vmIntrinsics::_intBitsToFloat:
 526   case vmIntrinsics::_doubleToRawLongBits:
 527   case vmIntrinsics::_doubleToLongBits:
 528   case vmIntrinsics::_longBitsToDouble:
 529   case vmIntrinsics::_floatToFloat16:
 530   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 531   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 532   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 533   case vmIntrinsics::_floatIsFinite:
 534   case vmIntrinsics::_floatIsInfinite:

2288     case vmIntrinsics::_remainderUnsigned_l: {
2289       zero_check_long(argument(2));
2290       // Compile-time detect of null-exception
2291       if (stopped()) {
2292         return true; // keep the graph constructed so far
2293       }
2294       n = new UModLNode(control(), argument(0), argument(2));
2295       break;
2296     }
2297     default:  fatal_unexpected_iid(id);  break;
2298   }
2299   set_result(_gvn.transform(n));
2300   return true;
2301 }
2302 
2303 //----------------------------inline_unsafe_access----------------------------
2304 
2305 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2306   // Attempt to infer a sharper value type from the offset and base type.
2307   ciKlass* sharpened_klass = nullptr;

2308 
2309   // See if it is an instance field, with an object type.
2310   if (alias_type->field() != nullptr) {
2311     if (alias_type->field()->type()->is_klass()) {
2312       sharpened_klass = alias_type->field()->type()->as_klass();

2313     }
2314   }
2315 
2316   const TypeOopPtr* result = nullptr;
2317   // See if it is a narrow oop array.
2318   if (adr_type->isa_aryptr()) {
2319     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2320       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();

2321       if (elem_type != nullptr && elem_type->is_loaded()) {
2322         // Sharpen the value type.
2323         result = elem_type;
2324       }
2325     }
2326   }
2327 
2328   // The sharpened class might be unloaded if there is no class loader
2329   // contraint in place.
2330   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2331     // Sharpen the value type.
2332     result = TypeOopPtr::make_from_klass(sharpened_klass);



2333   }
2334   if (result != nullptr) {
2335 #ifndef PRODUCT
2336     if (C->print_intrinsics() || C->print_inlining()) {
2337       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2338       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2339     }
2340 #endif
2341   }
2342   return result;
2343 }
2344 
2345 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2346   switch (kind) {
2347       case Relaxed:
2348         return MO_UNORDERED;
2349       case Opaque:
2350         return MO_RELAXED;
2351       case Acquire:
2352         return MO_ACQUIRE;
2353       case Release:
2354         return MO_RELEASE;
2355       case Volatile:
2356         return MO_SEQ_CST;
2357       default:
2358         ShouldNotReachHere();
2359         return 0;
2360   }
2361 }
2362 
2363 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2364   if (callee()->is_static())  return false;  // caller must have the capability!
2365   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2366   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2367   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2368   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2369 
2370   if (is_reference_type(type)) {
2371     decorators |= ON_UNKNOWN_OOP_REF;
2372   }
2373 
2374   if (unaligned) {
2375     decorators |= C2_UNALIGNED;
2376   }
2377 
2378 #ifndef PRODUCT
2379   {
2380     ResourceMark rm;
2381     // Check the signatures.
2382     ciSignature* sig = callee()->signature();
2383 #ifdef ASSERT
2384     if (!is_store) {
2385       // Object getReference(Object base, int/long offset), etc.
2386       BasicType rtype = sig->return_type()->basic_type();
2387       assert(rtype == type, "getter must return the expected value");
2388       assert(sig->count() == 2, "oop getter has 2 arguments");
2389       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2390       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2391     } else {
2392       // void putReference(Object base, int/long offset, Object x), etc.
2393       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2394       assert(sig->count() == 3, "oop putter has 3 arguments");
2395       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2396       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2397       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2398       assert(vtype == type, "putter must accept the expected value");
2399     }
2400 #endif // ASSERT
2401  }
2402 #endif //PRODUCT
2403 
2404   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2405 
2406   Node* receiver = argument(0);  // type: oop
2407 
2408   // Build address expression.
2409   Node* heap_base_oop = top();
2410 
2411   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2412   Node* base = argument(1);  // type: oop
2413   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2414   Node* offset = argument(2);  // type: long
2415   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2416   // to be plain byte offsets, which are also the same as those accepted
2417   // by oopDesc::field_addr.
2418   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2419          "fieldOffset must be byte-scaled");

















































2420   // 32-bit machines ignore the high half!
2421   offset = ConvL2X(offset);
2422 
2423   // Save state and restore on bailout
2424   uint old_sp = sp();
2425   SafePointNode* old_map = clone_map();
2426 
2427   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2428   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2429 
2430   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2431     if (type != T_OBJECT) {
2432       decorators |= IN_NATIVE; // off-heap primitive access
2433     } else {
2434       set_map(old_map);
2435       set_sp(old_sp);
2436       return false; // off-heap oop accesses are not supported
2437     }
2438   } else {
2439     heap_base_oop = base; // on-heap or mixed access
2440   }
2441 
2442   // Can base be null? Otherwise, always on-heap access.
2443   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2444 
2445   if (!can_access_non_heap) {
2446     decorators |= IN_HEAP;
2447   }
2448 
2449   Node* val = is_store ? argument(4) : nullptr;
2450 
2451   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2452   if (adr_type == TypePtr::NULL_PTR) {
2453     set_map(old_map);
2454     set_sp(old_sp);
2455     return false; // off-heap access with zero address
2456   }
2457 
2458   // Try to categorize the address.
2459   Compile::AliasType* alias_type = C->alias_type(adr_type);
2460   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2461 
2462   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2463       alias_type->adr_type() == TypeAryPtr::RANGE) {
2464     set_map(old_map);
2465     set_sp(old_sp);
2466     return false; // not supported
2467   }
2468 
2469   bool mismatched = false;
2470   BasicType bt = alias_type->basic_type();




























2471   if (bt != T_ILLEGAL) {
2472     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2473     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2474       // Alias type doesn't differentiate between byte[] and boolean[]).
2475       // Use address type to get the element type.
2476       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2477     }
2478     if (is_reference_type(bt, true)) {
2479       // accessing an array field with getReference is not a mismatch
2480       bt = T_OBJECT;
2481     }
2482     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2483       // Don't intrinsify mismatched object accesses
2484       set_map(old_map);
2485       set_sp(old_sp);
2486       return false;
2487     }
2488     mismatched = (bt != type);
2489   } else if (alias_type->adr_type()->isa_oopptr()) {
2490     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2491   }
2492 























2493   destruct_map_clone(old_map);
2494   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2495 
2496   if (mismatched) {
2497     decorators |= C2_MISMATCHED;
2498   }
2499 
2500   // First guess at the value type.
2501   const Type *value_type = Type::get_const_basic_type(type);
2502 
2503   // Figure out the memory ordering.
2504   decorators |= mo_decorator_for_access_kind(kind);
2505 
2506   if (!is_store && type == T_OBJECT) {
2507     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2508     if (tjp != nullptr) {
2509       value_type = tjp;


2510     }
2511   }
2512 
2513   receiver = null_check(receiver);
2514   if (stopped()) {
2515     return true;
2516   }
2517   // Heap pointers get a null-check from the interpreter,
2518   // as a courtesy.  However, this is not guaranteed by Unsafe,
2519   // and it is not possible to fully distinguish unintended nulls
2520   // from intended ones in this API.
2521 
2522   if (!is_store) {
2523     Node* p = nullptr;
2524     // Try to constant fold a load from a constant field
2525     ciField* field = alias_type->field();
2526     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2527       // final or stable field
2528       p = make_constant_from_field(field, heap_base_oop);
2529     }
2530 
2531     if (p == nullptr) { // Could not constant fold the load
2532       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);









2533       // Normalize the value returned by getBoolean in the following cases
2534       if (type == T_BOOLEAN &&
2535           (mismatched ||
2536            heap_base_oop == top() ||                  // - heap_base_oop is null or
2537            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2538                                                       //   and the unsafe access is made to large offset
2539                                                       //   (i.e., larger than the maximum offset necessary for any
2540                                                       //   field access)
2541             ) {
2542           IdealKit ideal = IdealKit(this);
2543 #define __ ideal.
2544           IdealVariable normalized_result(ideal);
2545           __ declarations_done();
2546           __ set(normalized_result, p);
2547           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2548           __ set(normalized_result, ideal.ConI(1));
2549           ideal.end_if();
2550           final_sync(ideal);
2551           p = __ value(normalized_result);
2552 #undef __
2553       }
2554     }
2555     if (type == T_ADDRESS) {
2556       p = gvn().transform(new CastP2XNode(nullptr, p));
2557       p = ConvX2UL(p);
2558     }
2559     // The load node has the control of the preceding MemBarCPUOrder.  All
2560     // following nodes will have the control of the MemBarCPUOrder inserted at
2561     // the end of this method.  So, pushing the load onto the stack at a later
2562     // point is fine.
2563     set_result(p);
2564   } else {
2565     if (bt == T_ADDRESS) {
2566       // Repackage the long as a pointer.
2567       val = ConvL2X(val);
2568       val = gvn().transform(new CastX2PNode(val));
2569     }
2570     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
























































2571   }
2572 














2573   return true;
2574 }
2575 
2576 //----------------------------inline_unsafe_load_store----------------------------
2577 // This method serves a couple of different customers (depending on LoadStoreKind):
2578 //
2579 // LS_cmp_swap:
2580 //
2581 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2582 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2583 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2584 //
2585 // LS_cmp_swap_weak:
2586 //
2587 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2588 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2589 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2590 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2591 //
2592 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);

2761     }
2762     case LS_cmp_swap:
2763     case LS_cmp_swap_weak:
2764     case LS_get_add:
2765       break;
2766     default:
2767       ShouldNotReachHere();
2768   }
2769 
2770   // Null check receiver.
2771   receiver = null_check(receiver);
2772   if (stopped()) {
2773     return true;
2774   }
2775 
2776   int alias_idx = C->get_alias_index(adr_type);
2777 
2778   if (is_reference_type(type)) {
2779     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2780 













2781     // Transformation of a value which could be null pointer (CastPP #null)
2782     // could be delayed during Parse (for example, in adjust_map_after_if()).
2783     // Execute transformation here to avoid barrier generation in such case.
2784     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2785       newval = _gvn.makecon(TypePtr::NULL_PTR);
2786 
2787     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2788       // Refine the value to a null constant, when it is known to be null
2789       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2790     }
2791   }
2792 
2793   Node* result = nullptr;
2794   switch (kind) {
2795     case LS_cmp_exchange: {
2796       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2797                                             oldval, newval, value_type, type, decorators);
2798       break;
2799     }
2800     case LS_cmp_swap_weak:

2947                     Deoptimization::Action_make_not_entrant);
2948     }
2949     if (stopped()) {
2950       return true;
2951     }
2952 #endif //INCLUDE_JVMTI
2953 
2954   Node* test = nullptr;
2955   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2956     // Note:  The argument might still be an illegal value like
2957     // Serializable.class or Object[].class.   The runtime will handle it.
2958     // But we must make an explicit check for initialization.
2959     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2960     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2961     // can generate code to load it as unsigned byte.
2962     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2963     Node* bits = intcon(InstanceKlass::fully_initialized);
2964     test = _gvn.transform(new SubINode(inst, bits));
2965     // The 'test' is non-zero if we need to take a slow path.
2966   }
2967 
2968   Node* obj = new_instance(kls, test);





2969   set_result(obj);
2970   return true;
2971 }
2972 
2973 //------------------------inline_native_time_funcs--------------
2974 // inline code for System.currentTimeMillis() and System.nanoTime()
2975 // these have the same type and signature
2976 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2977   const TypeFunc* tf = OptoRuntime::void_long_Type();
2978   const TypePtr* no_memory_effects = nullptr;
2979   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2980   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2981 #ifdef ASSERT
2982   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2983   assert(value_top == top(), "second value must be top");
2984 #endif
2985   set_result(value);
2986   return true;
2987 }
2988 

3729   Node* thread = _gvn.transform(new ThreadLocalNode());
3730   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3731   Node* thread_obj_handle
3732     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3733   thread_obj_handle = _gvn.transform(thread_obj_handle);
3734   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3735   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3736 
3737   // Change the _monitor_owner_id of the JavaThread
3738   Node* tid = load_field_from_object(arr, "tid", "J");
3739   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3740   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3741 
3742   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3743   return true;
3744 }
3745 
3746 const Type* LibraryCallKit::scopedValueCache_type() {
3747   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3748   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3749   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3750 
3751   // Because we create the scopedValue cache lazily we have to make the
3752   // type of the result BotPTR.
3753   bool xk = etype->klass_is_exact();
3754   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3755   return objects_type;
3756 }
3757 
3758 Node* LibraryCallKit::scopedValueCache_helper() {
3759   Node* thread = _gvn.transform(new ThreadLocalNode());
3760   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3761   // We cannot use immutable_memory() because we might flip onto a
3762   // different carrier thread, at which point we'll need to use that
3763   // carrier thread's cache.
3764   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3765   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3766   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3767 }
3768 
3769 //------------------------inline_native_scopedValueCache------------------
3770 bool LibraryCallKit::inline_native_scopedValueCache() {
3771   Node* cache_obj_handle = scopedValueCache_helper();
3772   const Type* objects_type = scopedValueCache_type();
3773   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3774 

3858   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3859 
3860   // Result of top level CFG and Memory.
3861   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3862   record_for_igvn(result_rgn);
3863   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3864   record_for_igvn(result_mem);
3865 
3866   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3867   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3868   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3869   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3870 
3871   // Set output state.
3872   set_control(_gvn.transform(result_rgn));
3873   set_all_memory(_gvn.transform(result_mem));
3874 
3875   return true;
3876 }
3877 
3878 //---------------------------load_mirror_from_klass----------------------------
3879 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3880 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3881   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3882   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3883   // mirror = ((OopHandle)mirror)->resolve();
3884   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3885 }
3886 
3887 //-----------------------load_klass_from_mirror_common-------------------------
3888 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3889 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3890 // and branch to the given path on the region.
3891 // If never_see_null, take an uncommon trap on null, so we can optimistically
3892 // compile for the non-null case.
3893 // If the region is null, force never_see_null = true.
3894 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3895                                                     bool never_see_null,
3896                                                     RegionNode* region,
3897                                                     int null_path,
3898                                                     int offset) {
3899   if (region == nullptr)  never_see_null = true;
3900   Node* p = basic_plus_adr(mirror, offset);
3901   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3902   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3903   Node* null_ctl = top();
3904   kls = null_check_oop(kls, &null_ctl, never_see_null);
3905   if (region != nullptr) {
3906     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

3910   }
3911   return kls;
3912 }
3913 
3914 //--------------------(inline_native_Class_query helpers)---------------------
3915 // Use this for JVM_ACC_INTERFACE.
3916 // Fall through if (mods & mask) == bits, take the guard otherwise.
3917 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3918                                                  ByteSize offset, const Type* type, BasicType bt) {
3919   // Branch around if the given klass has the given modifier bit set.
3920   // Like generate_guard, adds a new path onto the region.
3921   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3922   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3923   Node* mask = intcon(modifier_mask);
3924   Node* bits = intcon(modifier_bits);
3925   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3926   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3927   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3928   return generate_fair_guard(bol, region);
3929 }

3930 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3931   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3932                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
3933 }
3934 
3935 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3936 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3937   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3938                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3939 }
3940 
3941 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3942   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3943 }
3944 
3945 //-------------------------inline_native_Class_query-------------------
3946 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3947   const Type* return_type = TypeInt::BOOL;
3948   Node* prim_return_value = top();  // what happens if it's a primitive class?
3949   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4068 
4069   case vmIntrinsics::_getClassAccessFlags:
4070     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4071     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4072     break;
4073 
4074   default:
4075     fatal_unexpected_iid(id);
4076     break;
4077   }
4078 
4079   // Fall-through is the normal case of a query to a real class.
4080   phi->init_req(1, query_value);
4081   region->init_req(1, control());
4082 
4083   C->set_has_split_ifs(true); // Has chance for split-if optimization
4084   set_result(region, phi);
4085   return true;
4086 }
4087 

4088 //-------------------------inline_Class_cast-------------------
4089 bool LibraryCallKit::inline_Class_cast() {
4090   Node* mirror = argument(0); // Class
4091   Node* obj    = argument(1);
4092   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4093   if (mirror_con == nullptr) {
4094     return false;  // dead path (mirror->is_top()).
4095   }
4096   if (obj == nullptr || obj->is_top()) {
4097     return false;  // dead path
4098   }
4099   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4100 
4101   // First, see if Class.cast() can be folded statically.
4102   // java_mirror_type() returns non-null for compile-time Class constants.
4103   ciType* tm = mirror_con->java_mirror_type();

4104   if (tm != nullptr && tm->is_klass() &&
4105       tp != nullptr) {
4106     if (!tp->is_loaded()) {
4107       // Don't use intrinsic when class is not loaded.
4108       return false;
4109     } else {
4110       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());




4111       if (static_res == Compile::SSC_always_true) {
4112         // isInstance() is true - fold the code.
4113         set_result(obj);
4114         return true;
4115       } else if (static_res == Compile::SSC_always_false) {
4116         // Don't use intrinsic, have to throw ClassCastException.
4117         // If the reference is null, the non-intrinsic bytecode will
4118         // be optimized appropriately.
4119         return false;
4120       }
4121     }
4122   }
4123 
4124   // Bailout intrinsic and do normal inlining if exception path is frequent.
4125   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4126     return false;
4127   }
4128 
4129   // Generate dynamic checks.
4130   // Class.cast() is java implementation of _checkcast bytecode.
4131   // Do checkcast (Parse::do_checkcast()) optimizations here.
4132 
4133   mirror = null_check(mirror);
4134   // If mirror is dead, only null-path is taken.
4135   if (stopped()) {
4136     return true;
4137   }
4138 
4139   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4140   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4141   RegionNode* region = new RegionNode(PATH_LIMIT);
4142   record_for_igvn(region);
4143 
4144   // Now load the mirror's klass metaobject, and null-check it.
4145   // If kls is null, we have a primitive mirror and
4146   // nothing is an instance of a primitive type.
4147   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4148 
4149   Node* res = top();


4150   if (!stopped()) {

4151     Node* bad_type_ctrl = top();
4152     // Do checkcast optimizations.
4153     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4154     region->init_req(_bad_type_path, bad_type_ctrl);
4155   }
4156   if (region->in(_prim_path) != top() ||
4157       region->in(_bad_type_path) != top()) {

4158     // Let Interpreter throw ClassCastException.
4159     PreserveJVMState pjvms(this);
4160     set_control(_gvn.transform(region));



4161     uncommon_trap(Deoptimization::Reason_intrinsic,
4162                   Deoptimization::Action_maybe_recompile);
4163   }
4164   if (!stopped()) {
4165     set_result(res);
4166   }
4167   return true;
4168 }
4169 
4170 
4171 //--------------------------inline_native_subtype_check------------------------
4172 // This intrinsic takes the JNI calls out of the heart of
4173 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4174 bool LibraryCallKit::inline_native_subtype_check() {
4175   // Pull both arguments off the stack.
4176   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4177   args[0] = argument(0);
4178   args[1] = argument(1);
4179   Node* klasses[2];             // corresponding Klasses: superk, subk
4180   klasses[0] = klasses[1] = top();
4181 
4182   enum {
4183     // A full decision tree on {superc is prim, subc is prim}:
4184     _prim_0_path = 1,           // {P,N} => false
4185                                 // {P,P} & superc!=subc => false
4186     _prim_same_path,            // {P,P} & superc==subc => true
4187     _prim_1_path,               // {N,P} => false
4188     _ref_subtype_path,          // {N,N} & subtype check wins => true
4189     _both_ref_path,             // {N,N} & subtype check loses => false
4190     PATH_LIMIT
4191   };
4192 
4193   RegionNode* region = new RegionNode(PATH_LIMIT);

4194   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4195   record_for_igvn(region);

4196 
4197   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4198   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4199   int class_klass_offset = java_lang_Class::klass_offset();
4200 
4201   // First null-check both mirrors and load each mirror's klass metaobject.
4202   int which_arg;
4203   for (which_arg = 0; which_arg <= 1; which_arg++) {
4204     Node* arg = args[which_arg];
4205     arg = null_check(arg);
4206     if (stopped())  break;
4207     args[which_arg] = arg;
4208 
4209     Node* p = basic_plus_adr(arg, class_klass_offset);
4210     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4211     klasses[which_arg] = _gvn.transform(kls);
4212   }
4213 
4214   // Having loaded both klasses, test each for null.
4215   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4216   for (which_arg = 0; which_arg <= 1; which_arg++) {
4217     Node* kls = klasses[which_arg];
4218     Node* null_ctl = top();
4219     kls = null_check_oop(kls, &null_ctl, never_see_null);
4220     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4221     region->init_req(prim_path, null_ctl);



4222     if (stopped())  break;
4223     klasses[which_arg] = kls;
4224   }
4225 
4226   if (!stopped()) {
4227     // now we have two reference types, in klasses[0..1]
4228     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4229     Node* superk = klasses[0];  // the receiver
4230     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4231     // now we have a successful reference subtype check
4232     region->set_req(_ref_subtype_path, control());
4233   }
4234 
4235   // If both operands are primitive (both klasses null), then
4236   // we must return true when they are identical primitives.
4237   // It is convenient to test this after the first null klass check.
4238   set_control(region->in(_prim_0_path)); // go back to first null check

4239   if (!stopped()) {
4240     // Since superc is primitive, make a guard for the superc==subc case.
4241     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4242     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4243     generate_guard(bol_eq, region, PROB_FAIR);
4244     if (region->req() == PATH_LIMIT+1) {
4245       // A guard was added.  If the added guard is taken, superc==subc.
4246       region->swap_edges(PATH_LIMIT, _prim_same_path);
4247       region->del_req(PATH_LIMIT);
4248     }
4249     region->set_req(_prim_0_path, control()); // Not equal after all.
4250   }
4251 
4252   // these are the only paths that produce 'true':
4253   phi->set_req(_prim_same_path,   intcon(1));
4254   phi->set_req(_ref_subtype_path, intcon(1));
4255 
4256   // pull together the cases:
4257   assert(region->req() == PATH_LIMIT, "sane region");
4258   for (uint i = 1; i < region->req(); i++) {
4259     Node* ctl = region->in(i);
4260     if (ctl == nullptr || ctl == top()) {
4261       region->set_req(i, top());
4262       phi   ->set_req(i, top());
4263     } else if (phi->in(i) == nullptr) {
4264       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4265     }
4266   }
4267 
4268   set_control(_gvn.transform(region));
4269   set_result(_gvn.transform(phi));
4270   return true;
4271 }
4272 
4273 //---------------------generate_array_guard_common------------------------
4274 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4275                                                   bool obj_array, bool not_array, Node** obj) {
4276 
4277   if (stopped()) {
4278     return nullptr;
4279   }
4280 
4281   // If obj_array/non_array==false/false:
4282   // Branch around if the given klass is in fact an array (either obj or prim).
4283   // If obj_array/non_array==false/true:
4284   // Branch around if the given klass is not an array klass of any kind.
4285   // If obj_array/non_array==true/true:
4286   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4287   // If obj_array/non_array==true/false:
4288   // Branch around if the kls is an oop array (Object[] or subtype)
4289   //
4290   // Like generate_guard, adds a new path onto the region.
4291   jint  layout_con = 0;
4292   Node* layout_val = get_layout_helper(kls, layout_con);
4293   if (layout_val == nullptr) {
4294     bool query = (obj_array
4295                   ? Klass::layout_helper_is_objArray(layout_con)
4296                   : Klass::layout_helper_is_array(layout_con));
4297     if (query == not_array) {







4298       return nullptr;                       // never a branch
4299     } else {                             // always a branch
4300       Node* always_branch = control();
4301       if (region != nullptr)
4302         region->add_req(always_branch);
4303       set_control(top());
4304       return always_branch;
4305     }
4306   }





















4307   // Now test the correct condition.
4308   jint  nval = (obj_array
4309                 ? (jint)(Klass::_lh_array_tag_type_value
4310                    <<    Klass::_lh_array_tag_shift)
4311                 : Klass::_lh_neutral_value);
4312   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4313   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4314   // invert the test if we are looking for a non-array
4315   if (not_array)  btest = BoolTest(btest).negate();
4316   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4317   Node* ctrl = generate_fair_guard(bol, region);
4318   Node* is_array_ctrl = not_array ? control() : ctrl;
4319   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4320     // Keep track of the fact that 'obj' is an array to prevent
4321     // array specific accesses from floating above the guard.
4322     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4323   }
4324   return ctrl;
4325 }
4326 



























































4327 
4328 //-----------------------inline_native_newArray--------------------------
4329 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4330 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4331 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4332   Node* mirror;
4333   Node* count_val;
4334   if (uninitialized) {
4335     null_check_receiver();
4336     mirror    = argument(1);
4337     count_val = argument(2);
4338   } else {
4339     mirror    = argument(0);
4340     count_val = argument(1);
4341   }
4342 
4343   mirror = null_check(mirror);
4344   // If mirror or obj is dead, only null-path is taken.
4345   if (stopped())  return true;
4346 
4347   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4348   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4349   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4455   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4456   { PreserveReexecuteState preexecs(this);
4457     jvms()->set_should_reexecute(true);
4458 
4459     array_type_mirror = null_check(array_type_mirror);
4460     original          = null_check(original);
4461 
4462     // Check if a null path was taken unconditionally.
4463     if (stopped())  return true;
4464 
4465     Node* orig_length = load_array_length(original);
4466 
4467     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4468     klass_node = null_check(klass_node);
4469 
4470     RegionNode* bailout = new RegionNode(1);
4471     record_for_igvn(bailout);
4472 
4473     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4474     // Bail out if that is so.
4475     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);












4476     if (not_objArray != nullptr) {
4477       // Improve the klass node's type from the new optimistic assumption:
4478       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4479       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4480       Node* cast = new CastPPNode(control(), klass_node, akls);
4481       klass_node = _gvn.transform(cast);
4482     }
4483 
4484     // Bail out if either start or end is negative.
4485     generate_negative_guard(start, bailout, &start);
4486     generate_negative_guard(end,   bailout, &end);
4487 
4488     Node* length = end;
4489     if (_gvn.type(start) != TypeInt::ZERO) {
4490       length = _gvn.transform(new SubINode(end, start));
4491     }
4492 
4493     // Bail out if length is negative (i.e., if start > end).
4494     // Without this the new_array would throw
4495     // NegativeArraySizeException but IllegalArgumentException is what
4496     // should be thrown
4497     generate_negative_guard(length, bailout, &length);
4498 







































4499     // Bail out if start is larger than the original length
4500     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4501     generate_negative_guard(orig_tail, bailout, &orig_tail);
4502 
4503     if (bailout->req() > 1) {
4504       PreserveJVMState pjvms(this);
4505       set_control(_gvn.transform(bailout));
4506       uncommon_trap(Deoptimization::Reason_intrinsic,
4507                     Deoptimization::Action_maybe_recompile);
4508     }
4509 
4510     if (!stopped()) {
4511       // How many elements will we copy from the original?
4512       // The answer is MinI(orig_tail, length).
4513       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4514 
4515       // Generate a direct call to the right arraycopy function(s).
4516       // We know the copy is disjoint but we might not know if the
4517       // oop stores need checking.
4518       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4524       // to the copyOf to be validated, including that the copy to the
4525       // new array won't trigger an ArrayStoreException. That subtype
4526       // check can be optimized if we know something on the type of
4527       // the input array from type speculation.
4528       if (_gvn.type(klass_node)->singleton()) {
4529         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4530         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4531 
4532         int test = C->static_subtype_check(superk, subk);
4533         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4534           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4535           if (t_original->speculative_type() != nullptr) {
4536             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4537           }
4538         }
4539       }
4540 
4541       bool validated = false;
4542       // Reason_class_check rather than Reason_intrinsic because we
4543       // want to intrinsify even if this traps.
4544       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4545         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4546 
4547         if (not_subtype_ctrl != top()) {
4548           PreserveJVMState pjvms(this);
4549           set_control(not_subtype_ctrl);
4550           uncommon_trap(Deoptimization::Reason_class_check,
4551                         Deoptimization::Action_make_not_entrant);
4552           assert(stopped(), "Should be stopped");
4553         }
4554         validated = true;
4555       }
4556 
4557       if (!stopped()) {
4558         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4559 
4560         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4561                                                 load_object_klass(original), klass_node);
4562         if (!is_copyOfRange) {
4563           ac->set_copyof(validated);
4564         } else {

4610 
4611 //-----------------------generate_method_call----------------------------
4612 // Use generate_method_call to make a slow-call to the real
4613 // method if the fast path fails.  An alternative would be to
4614 // use a stub like OptoRuntime::slow_arraycopy_Java.
4615 // This only works for expanding the current library call,
4616 // not another intrinsic.  (E.g., don't use this for making an
4617 // arraycopy call inside of the copyOf intrinsic.)
4618 CallJavaNode*
4619 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4620   // When compiling the intrinsic method itself, do not use this technique.
4621   guarantee(callee() != C->method(), "cannot make slow-call to self");
4622 
4623   ciMethod* method = callee();
4624   // ensure the JVMS we have will be correct for this call
4625   guarantee(method_id == method->intrinsic_id(), "must match");
4626 
4627   const TypeFunc* tf = TypeFunc::make(method);
4628   if (res_not_null) {
4629     assert(tf->return_type() == T_OBJECT, "");
4630     const TypeTuple* range = tf->range();
4631     const Type** fields = TypeTuple::fields(range->cnt());
4632     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4633     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4634     tf = TypeFunc::make(tf->domain(), new_range);
4635   }
4636   CallJavaNode* slow_call;
4637   if (is_static) {
4638     assert(!is_virtual, "");
4639     slow_call = new CallStaticJavaNode(C, tf,
4640                            SharedRuntime::get_resolve_static_call_stub(), method);
4641   } else if (is_virtual) {
4642     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4643     int vtable_index = Method::invalid_vtable_index;
4644     if (UseInlineCaches) {
4645       // Suppress the vtable call
4646     } else {
4647       // hashCode and clone are not a miranda methods,
4648       // so the vtable index is fixed.
4649       // No need to use the linkResolver to get it.
4650        vtable_index = method->vtable_index();
4651        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4652               "bad index %d", vtable_index);
4653     }
4654     slow_call = new CallDynamicJavaNode(tf,

4671   set_edges_for_java_call(slow_call);
4672   return slow_call;
4673 }
4674 
4675 
4676 /**
4677  * Build special case code for calls to hashCode on an object. This call may
4678  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4679  * slightly different code.
4680  */
4681 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4682   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4683   assert(!(is_virtual && is_static), "either virtual, special, or static");
4684 
4685   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4686 
4687   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4688   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4689   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4690   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4691   Node* obj = nullptr;







4692   if (!is_static) {
4693     // Check for hashing null object
4694     obj = null_check_receiver();
4695     if (stopped())  return true;        // unconditionally null
4696     result_reg->init_req(_null_path, top());
4697     result_val->init_req(_null_path, top());
4698   } else {
4699     // Do a null check, and return zero if null.
4700     // System.identityHashCode(null) == 0
4701     obj = argument(0);
4702     Node* null_ctl = top();
4703     obj = null_check_oop(obj, &null_ctl);
4704     result_reg->init_req(_null_path, null_ctl);
4705     result_val->init_req(_null_path, _gvn.intcon(0));
4706   }
4707 
4708   // Unconditionally null?  Then return right away.
4709   if (stopped()) {
4710     set_control( result_reg->in(_null_path));
4711     if (!stopped())
4712       set_result(result_val->in(_null_path));
4713     return true;
4714   }
4715 
4716   // We only go to the fast case code if we pass a number of guards.  The
4717   // paths which do not pass are accumulated in the slow_region.
4718   RegionNode* slow_region = new RegionNode(1);
4719   record_for_igvn(slow_region);
4720 
4721   // If this is a virtual call, we generate a funny guard.  We pull out
4722   // the vtable entry corresponding to hashCode() from the target object.
4723   // If the target method which we are calling happens to be the native
4724   // Object hashCode() method, we pass the guard.  We do not need this
4725   // guard for non-virtual calls -- the caller is known to be the native
4726   // Object hashCode().
4727   if (is_virtual) {
4728     // After null check, get the object's klass.
4729     Node* obj_klass = load_object_klass(obj);
4730     generate_virtual_guard(obj_klass, slow_region);
4731   }
4732 
4733   // Get the header out of the object, use LoadMarkNode when available
4734   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4735   // The control of the load must be null. Otherwise, the load can move before
4736   // the null check after castPP removal.
4737   Node* no_ctrl = nullptr;
4738   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4739 
4740   if (!UseObjectMonitorTable) {
4741     // Test the header to see if it is safe to read w.r.t. locking.
4742     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);

4743     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4744     if (LockingMode == LM_LIGHTWEIGHT) {
4745       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4746       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4747       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4748 
4749       generate_slow_guard(test_monitor, slow_region);
4750     } else {
4751       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4752       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4753       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4754 
4755       generate_slow_guard(test_not_unlocked, slow_region);
4756     }
4757   }
4758 
4759   // Get the hash value and check to see that it has been properly assigned.
4760   // We depend on hash_mask being at most 32 bits and avoid the use of
4761   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4762   // vm: see markWord.hpp.

4797     // this->control() comes from set_results_for_java_call
4798     result_reg->init_req(_slow_path, control());
4799     result_val->init_req(_slow_path, slow_result);
4800     result_io  ->set_req(_slow_path, i_o());
4801     result_mem ->set_req(_slow_path, reset_memory());
4802   }
4803 
4804   // Return the combined state.
4805   set_i_o(        _gvn.transform(result_io)  );
4806   set_all_memory( _gvn.transform(result_mem));
4807 
4808   set_result(result_reg, result_val);
4809   return true;
4810 }
4811 
4812 //---------------------------inline_native_getClass----------------------------
4813 // public final native Class<?> java.lang.Object.getClass();
4814 //
4815 // Build special case code for calls to getClass on an object.
4816 bool LibraryCallKit::inline_native_getClass() {
4817   Node* obj = null_check_receiver();









4818   if (stopped())  return true;
4819   set_result(load_mirror_from_klass(load_object_klass(obj)));
4820   return true;
4821 }
4822 
4823 //-----------------inline_native_Reflection_getCallerClass---------------------
4824 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4825 //
4826 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4827 //
4828 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4829 // in that it must skip particular security frames and checks for
4830 // caller sensitive methods.
4831 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4832 #ifndef PRODUCT
4833   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4834     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4835   }
4836 #endif
4837 

5149     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5150 
5151     flags |= RC_NARROW_MEM; // narrow in memory
5152   }
5153 
5154   // Call it.  Note that the length argument is not scaled.
5155   make_runtime_call(flags,
5156                     OptoRuntime::unsafe_setmemory_Type(),
5157                     StubRoutines::unsafe_setmemory(),
5158                     "unsafe_setmemory",
5159                     dst_type,
5160                     dst_addr, size XTOP, byte);
5161 
5162   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5163 
5164   return true;
5165 }
5166 
5167 #undef XTOP
5168 














5169 //------------------------clone_coping-----------------------------------
5170 // Helper function for inline_native_clone.
5171 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5172   assert(obj_size != nullptr, "");
5173   Node* raw_obj = alloc_obj->in(1);
5174   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5175 
5176   AllocateNode* alloc = nullptr;
5177   if (ReduceBulkZeroing &&
5178       // If we are implementing an array clone without knowing its source type
5179       // (can happen when compiling the array-guarded branch of a reflective
5180       // Object.clone() invocation), initialize the array within the allocation.
5181       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5182       // to a runtime clone call that assumes fully initialized source arrays.
5183       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5184     // We will be completely responsible for initializing this object -
5185     // mark Initialize node as complete.
5186     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5187     // The object was just allocated - there should be no any stores!
5188     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");

5219 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5220 //
5221 // The general case has two steps, allocation and copying.
5222 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5223 //
5224 // Copying also has two cases, oop arrays and everything else.
5225 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5226 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5227 //
5228 // These steps fold up nicely if and when the cloned object's klass
5229 // can be sharply typed as an object array, a type array, or an instance.
5230 //
5231 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5232   PhiNode* result_val;
5233 
5234   // Set the reexecute bit for the interpreter to reexecute
5235   // the bytecode that invokes Object.clone if deoptimization happens.
5236   { PreserveReexecuteState preexecs(this);
5237     jvms()->set_should_reexecute(true);
5238 
5239     Node* obj = null_check_receiver();

5240     if (stopped())  return true;
5241 
5242     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();






5243 
5244     // If we are going to clone an instance, we need its exact type to
5245     // know the number and types of fields to convert the clone to
5246     // loads/stores. Maybe a speculative type can help us.
5247     if (!obj_type->klass_is_exact() &&
5248         obj_type->speculative_type() != nullptr &&
5249         obj_type->speculative_type()->is_instance_klass()) {

5250       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5251       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5252           !spec_ik->has_injected_fields()) {
5253         if (!obj_type->isa_instptr() ||
5254             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5255           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5256         }
5257       }
5258     }
5259 
5260     // Conservatively insert a memory barrier on all memory slices.
5261     // Do not let writes into the original float below the clone.
5262     insert_mem_bar(Op_MemBarCPUOrder);
5263 
5264     // paths into result_reg:
5265     enum {
5266       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5267       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5268       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5269       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5270       PATH_LIMIT
5271     };
5272     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5273     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5274     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5275     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5276     record_for_igvn(result_reg);
5277 

5278     Node* obj_klass = load_object_klass(obj);





5279     Node* array_obj = obj;
5280     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5281     if (array_ctl != nullptr) {
5282       // It's an array.
5283       PreserveJVMState pjvms(this);
5284       set_control(array_ctl);
5285       Node* obj_length = load_array_length(array_obj);
5286       Node* array_size = nullptr; // Size of the array without object alignment padding.
5287       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5288 
5289       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5290       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5291         // If it is an oop array, it requires very special treatment,
5292         // because gc barriers are required when accessing the array.
5293         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5294         if (is_obja != nullptr) {
5295           PreserveJVMState pjvms2(this);
5296           set_control(is_obja);
5297           // Generate a direct call to the right arraycopy function(s).
5298           // Clones are always tightly coupled.
5299           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5300           ac->set_clone_oop_array();
5301           Node* n = _gvn.transform(ac);
5302           assert(n == ac, "cannot disappear");
5303           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5304 
5305           result_reg->init_req(_objArray_path, control());
5306           result_val->init_req(_objArray_path, alloc_obj);
5307           result_i_o ->set_req(_objArray_path, i_o());
5308           result_mem ->set_req(_objArray_path, reset_memory());
5309         }
5310       }
5311       // Otherwise, there are no barriers to worry about.
5312       // (We can dispense with card marks if we know the allocation
5313       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5314       //  causes the non-eden paths to take compensating steps to
5315       //  simulate a fresh allocation, so that no further
5316       //  card marks are required in compiled code to initialize
5317       //  the object.)
5318 
5319       if (!stopped()) {
5320         copy_to_clone(array_obj, alloc_obj, array_size, true);
5321 
5322         // Present the results of the copy.
5323         result_reg->init_req(_array_path, control());
5324         result_val->init_req(_array_path, alloc_obj);
5325         result_i_o ->set_req(_array_path, i_o());
5326         result_mem ->set_req(_array_path, reset_memory());




































5327       }
5328     }
5329 
5330     // We only go to the instance fast case code if we pass a number of guards.
5331     // The paths which do not pass are accumulated in the slow_region.
5332     RegionNode* slow_region = new RegionNode(1);
5333     record_for_igvn(slow_region);
5334     if (!stopped()) {
5335       // It's an instance (we did array above).  Make the slow-path tests.
5336       // If this is a virtual call, we generate a funny guard.  We grab
5337       // the vtable entry corresponding to clone() from the target object.
5338       // If the target method which we are calling happens to be the
5339       // Object clone() method, we pass the guard.  We do not need this
5340       // guard for non-virtual calls; the caller is known to be the native
5341       // Object clone().
5342       if (is_virtual) {
5343         generate_virtual_guard(obj_klass, slow_region);
5344       }
5345 
5346       // The object must be easily cloneable and must not have a finalizer.
5347       // Both of these conditions may be checked in a single test.
5348       // We could optimize the test further, but we don't care.
5349       generate_misc_flags_guard(obj_klass,
5350                                 // Test both conditions:
5351                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5352                                 // Must be cloneable but not finalizer:
5353                                 KlassFlags::_misc_is_cloneable_fast,

5445         set_jvms(sfpt->jvms());
5446         _reexecute_sp = jvms()->sp();
5447 
5448         return saved_jvms;
5449       }
5450     }
5451   }
5452   return nullptr;
5453 }
5454 
5455 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5456 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5457 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5458   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5459   uint size = alloc->req();
5460   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5461   old_jvms->set_map(sfpt);
5462   for (uint i = 0; i < size; i++) {
5463     sfpt->init_req(i, alloc->in(i));
5464   }












5465   // re-push array length for deoptimization
5466   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5467   old_jvms->set_sp(old_jvms->sp()+1);
5468   old_jvms->set_monoff(old_jvms->monoff()+1);
5469   old_jvms->set_scloff(old_jvms->scloff()+1);
5470   old_jvms->set_endoff(old_jvms->endoff()+1);











5471   old_jvms->set_should_reexecute(true);
5472 
5473   sfpt->set_i_o(map()->i_o());
5474   sfpt->set_memory(map()->memory());
5475   sfpt->set_control(map()->control());
5476   return sfpt;
5477 }
5478 
5479 // In case of a deoptimization, we restart execution at the
5480 // allocation, allocating a new array. We would leave an uninitialized
5481 // array in the heap that GCs wouldn't expect. Move the allocation
5482 // after the traps so we don't allocate the array if we
5483 // deoptimize. This is possible because tightly_coupled_allocation()
5484 // guarantees there's no observer of the allocated array at this point
5485 // and the control flow is simple enough.
5486 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5487                                                     int saved_reexecute_sp, uint new_idx) {
5488   if (saved_jvms_before_guards != nullptr && !stopped()) {
5489     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5490 
5491     assert(alloc != nullptr, "only with a tightly coupled allocation");
5492     // restore JVM state to the state at the arraycopy
5493     saved_jvms_before_guards->map()->set_control(map()->control());
5494     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5495     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5496     // If we've improved the types of some nodes (null check) while
5497     // emitting the guards, propagate them to the current state
5498     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5499     set_jvms(saved_jvms_before_guards);
5500     _reexecute_sp = saved_reexecute_sp;
5501 
5502     // Remove the allocation from above the guards
5503     CallProjections callprojs;
5504     alloc->extract_projections(&callprojs, true);
5505     InitializeNode* init = alloc->initialization();
5506     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5507     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5508     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5509 
5510     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5511     // the allocation (i.e. is only valid if the allocation succeeds):
5512     // 1) replace CastIINode with AllocateArrayNode's length here
5513     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5514     //
5515     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5516     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5517     Node* init_control = init->proj_out(TypeFunc::Control);
5518     Node* alloc_length = alloc->Ideal_length();
5519 #ifdef ASSERT
5520     Node* prev_cast = nullptr;
5521 #endif
5522     for (uint i = 0; i < init_control->outcnt(); i++) {
5523       Node* init_out = init_control->raw_out(i);
5524       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5525 #ifdef ASSERT
5526         if (prev_cast == nullptr) {
5527           prev_cast = init_out;

5529           if (prev_cast->cmp(*init_out) == false) {
5530             prev_cast->dump();
5531             init_out->dump();
5532             assert(false, "not equal CastIINode");
5533           }
5534         }
5535 #endif
5536         C->gvn_replace_by(init_out, alloc_length);
5537       }
5538     }
5539     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5540 
5541     // move the allocation here (after the guards)
5542     _gvn.hash_delete(alloc);
5543     alloc->set_req(TypeFunc::Control, control());
5544     alloc->set_req(TypeFunc::I_O, i_o());
5545     Node *mem = reset_memory();
5546     set_all_memory(mem);
5547     alloc->set_req(TypeFunc::Memory, mem);
5548     set_control(init->proj_out_or_null(TypeFunc::Control));
5549     set_i_o(callprojs.fallthrough_ioproj);
5550 
5551     // Update memory as done in GraphKit::set_output_for_allocation()
5552     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5553     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5554     if (ary_type->isa_aryptr() && length_type != nullptr) {
5555       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5556     }
5557     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5558     int            elemidx  = C->get_alias_index(telemref);
5559     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5560     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5561 
5562     Node* allocx = _gvn.transform(alloc);
5563     assert(allocx == alloc, "where has the allocation gone?");
5564     assert(dest->is_CheckCastPP(), "not an allocation result?");
5565 
5566     _gvn.hash_delete(dest);
5567     dest->set_req(0, control());
5568     Node* destx = _gvn.transform(dest);
5569     assert(destx == dest, "where has the allocation result gone?");

5867         top_src  = src_type->isa_aryptr();
5868         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5869         src_spec = true;
5870       }
5871       if (!has_dest) {
5872         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5873         dest_type  = _gvn.type(dest);
5874         top_dest  = dest_type->isa_aryptr();
5875         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5876         dest_spec = true;
5877       }
5878     }
5879   }
5880 
5881   if (has_src && has_dest && can_emit_guards) {
5882     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5883     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5884     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5885     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5886 
5887     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5888       // If both arrays are object arrays then having the exact types
5889       // for both will remove the need for a subtype check at runtime
5890       // before the call and may make it possible to pick a faster copy
5891       // routine (without a subtype check on every element)
5892       // Do we have the exact type of src?
5893       bool could_have_src = src_spec;
5894       // Do we have the exact type of dest?
5895       bool could_have_dest = dest_spec;
5896       ciKlass* src_k = nullptr;
5897       ciKlass* dest_k = nullptr;
5898       if (!src_spec) {
5899         src_k = src_type->speculative_type_not_null();
5900         if (src_k != nullptr && src_k->is_array_klass()) {
5901           could_have_src = true;
5902         }
5903       }
5904       if (!dest_spec) {
5905         dest_k = dest_type->speculative_type_not_null();
5906         if (dest_k != nullptr && dest_k->is_array_klass()) {
5907           could_have_dest = true;
5908         }
5909       }
5910       if (could_have_src && could_have_dest) {
5911         // If we can have both exact types, emit the missing guards
5912         if (could_have_src && !src_spec) {
5913           src = maybe_cast_profiled_obj(src, src_k, true);


5914         }
5915         if (could_have_dest && !dest_spec) {
5916           dest = maybe_cast_profiled_obj(dest, dest_k, true);


5917         }
5918       }
5919     }
5920   }
5921 
5922   ciMethod* trap_method = method();
5923   int trap_bci = bci();
5924   if (saved_jvms_before_guards != nullptr) {
5925     trap_method = alloc->jvms()->method();
5926     trap_bci = alloc->jvms()->bci();
5927   }
5928 
5929   bool negative_length_guard_generated = false;
5930 
5931   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5932       can_emit_guards &&
5933       !src->is_top() && !dest->is_top()) {
5934     // validate arguments: enables transformation the ArrayCopyNode
5935     validated = true;
5936 
5937     RegionNode* slow_region = new RegionNode(1);
5938     record_for_igvn(slow_region);
5939 
5940     // (1) src and dest are arrays.
5941     generate_non_array_guard(load_object_klass(src), slow_region, &src);
5942     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
5943 
5944     // (2) src and dest arrays must have elements of the same BasicType
5945     // done at macro expansion or at Ideal transformation time
5946 
5947     // (4) src_offset must not be negative.
5948     generate_negative_guard(src_offset, slow_region);
5949 
5950     // (5) dest_offset must not be negative.
5951     generate_negative_guard(dest_offset, slow_region);
5952 
5953     // (7) src_offset + length must not exceed length of src.

5956                          slow_region);
5957 
5958     // (8) dest_offset + length must not exceed length of dest.
5959     generate_limit_guard(dest_offset, length,
5960                          load_array_length(dest),
5961                          slow_region);
5962 
5963     // (6) length must not be negative.
5964     // This is also checked in generate_arraycopy() during macro expansion, but
5965     // we also have to check it here for the case where the ArrayCopyNode will
5966     // be eliminated by Escape Analysis.
5967     if (EliminateAllocations) {
5968       generate_negative_guard(length, slow_region);
5969       negative_length_guard_generated = true;
5970     }
5971 
5972     // (9) each element of an oop array must be assignable
5973     Node* dest_klass = load_object_klass(dest);
5974     if (src != dest) {
5975       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);






5976 
5977       if (not_subtype_ctrl != top()) {
5978         PreserveJVMState pjvms(this);
5979         set_control(not_subtype_ctrl);
5980         uncommon_trap(Deoptimization::Reason_intrinsic,
5981                       Deoptimization::Action_make_not_entrant);
5982         assert(stopped(), "Should be stopped");






















5983       }
5984     }

5985     {
5986       PreserveJVMState pjvms(this);
5987       set_control(_gvn.transform(slow_region));
5988       uncommon_trap(Deoptimization::Reason_intrinsic,
5989                     Deoptimization::Action_make_not_entrant);
5990       assert(stopped(), "Should be stopped");
5991     }
5992 
5993     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5994     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5995     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5996     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5997   }
5998 
5999   if (stopped()) {
6000     return true;
6001   }
6002 
6003   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6004                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6005                                           // so the compiler has a chance to eliminate them: during macro expansion,
6006                                           // we have to set their control (CastPP nodes are eliminated).
6007                                           load_object_klass(src), load_object_klass(dest),
6008                                           load_array_length(src), load_array_length(dest));
6009 
6010   ac->set_arraycopy(validated);
6011 
6012   Node* n = _gvn.transform(ac);
6013   if (n == ac) {
6014     ac->connect_outputs(this);
6015   } else {

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "ci/ciSymbols.hpp"
  29 #include "classfile/vmIntrinsics.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/accessDecorators.hpp"
  36 #include "oops/klass.inline.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "opto/addnode.hpp"
  39 #include "opto/arraycopynode.hpp"
  40 #include "opto/c2compiler.hpp"
  41 #include "opto/castnode.hpp"
  42 #include "opto/cfgnode.hpp"
  43 #include "opto/convertnode.hpp"
  44 #include "opto/countbitsnode.hpp"
  45 #include "opto/idealKit.hpp"
  46 #include "opto/library_call.hpp"
  47 #include "opto/mathexactnode.hpp"
  48 #include "opto/mulnode.hpp"
  49 #include "opto/narrowptrnode.hpp"
  50 #include "opto/opaquenode.hpp"
  51 #include "opto/parse.hpp"
  52 #include "opto/runtime.hpp"
  53 #include "opto/rootnode.hpp"
  54 #include "opto/subnode.hpp"
  55 #include "opto/vectornode.hpp"

 300   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 301   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 302   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 303   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 304   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 305 
 306   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 307 
 308   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 309 
 310   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 311   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 312   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 313   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 314 
 315   case vmIntrinsics::_compressStringC:
 316   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 317   case vmIntrinsics::_inflateStringC:
 318   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 319 
 320   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 321   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 322   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 323   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 324   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 325   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 326   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 327   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 328   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 329   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 330   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 331   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 332 
 333   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 334   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 335   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 336   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 337   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 338   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 339   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 340   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 341   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 342   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 343 
 344   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 345   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 346   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 347   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 348   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 349   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 350   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 351   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 352   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 353 
 354   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 355   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 356   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 357   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 358   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 359   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 360   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 361   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 362   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);

 489                                                                                          "notifyJvmtiEnd", false, true);
 490   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 491                                                                                          "notifyJvmtiMount", false, false);
 492   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 493                                                                                          "notifyJvmtiUnmount", false, false);
 494   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 495 #endif
 496 
 497 #ifdef JFR_HAVE_INTRINSICS
 498   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 499   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 500   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 501 #endif
 502   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 503   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 504   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 505   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 506   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 507   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 508   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 509   case vmIntrinsics::_isFlatArray:              return inline_unsafe_isFlatArray();
 510   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 511   case vmIntrinsics::_getLength:                return inline_native_getLength();
 512   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 513   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 514   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 515   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 516   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 517   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 518   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 519 
 520   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 521   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 522   case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false);
 523   case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true);
 524   case vmIntrinsics::_newNullableAtomicArray:     return inline_newArray(/* null_free */ false, /* atomic */ true);
 525 
 526   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 527 
 528   case vmIntrinsics::_isInstance:
 529   case vmIntrinsics::_isHidden:
 530   case vmIntrinsics::_getSuperclass:
 531   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 532 
 533   case vmIntrinsics::_floatToRawIntBits:
 534   case vmIntrinsics::_floatToIntBits:
 535   case vmIntrinsics::_intBitsToFloat:
 536   case vmIntrinsics::_doubleToRawLongBits:
 537   case vmIntrinsics::_doubleToLongBits:
 538   case vmIntrinsics::_longBitsToDouble:
 539   case vmIntrinsics::_floatToFloat16:
 540   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 541   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 542   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 543   case vmIntrinsics::_floatIsFinite:
 544   case vmIntrinsics::_floatIsInfinite:

2298     case vmIntrinsics::_remainderUnsigned_l: {
2299       zero_check_long(argument(2));
2300       // Compile-time detect of null-exception
2301       if (stopped()) {
2302         return true; // keep the graph constructed so far
2303       }
2304       n = new UModLNode(control(), argument(0), argument(2));
2305       break;
2306     }
2307     default:  fatal_unexpected_iid(id);  break;
2308   }
2309   set_result(_gvn.transform(n));
2310   return true;
2311 }
2312 
2313 //----------------------------inline_unsafe_access----------------------------
2314 
2315 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2316   // Attempt to infer a sharper value type from the offset and base type.
2317   ciKlass* sharpened_klass = nullptr;
2318   bool null_free = false;
2319 
2320   // See if it is an instance field, with an object type.
2321   if (alias_type->field() != nullptr) {
2322     if (alias_type->field()->type()->is_klass()) {
2323       sharpened_klass = alias_type->field()->type()->as_klass();
2324       null_free = alias_type->field()->is_null_free();
2325     }
2326   }
2327 
2328   const TypeOopPtr* result = nullptr;
2329   // See if it is a narrow oop array.
2330   if (adr_type->isa_aryptr()) {
2331     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2332       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2333       null_free = adr_type->is_aryptr()->is_null_free();
2334       if (elem_type != nullptr && elem_type->is_loaded()) {
2335         // Sharpen the value type.
2336         result = elem_type;
2337       }
2338     }
2339   }
2340 
2341   // The sharpened class might be unloaded if there is no class loader
2342   // contraint in place.
2343   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2344     // Sharpen the value type.
2345     result = TypeOopPtr::make_from_klass(sharpened_klass);
2346     if (null_free) {
2347       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2348     }
2349   }
2350   if (result != nullptr) {
2351 #ifndef PRODUCT
2352     if (C->print_intrinsics() || C->print_inlining()) {
2353       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2354       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2355     }
2356 #endif
2357   }
2358   return result;
2359 }
2360 
2361 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2362   switch (kind) {
2363       case Relaxed:
2364         return MO_UNORDERED;
2365       case Opaque:
2366         return MO_RELAXED;
2367       case Acquire:
2368         return MO_ACQUIRE;
2369       case Release:
2370         return MO_RELEASE;
2371       case Volatile:
2372         return MO_SEQ_CST;
2373       default:
2374         ShouldNotReachHere();
2375         return 0;
2376   }
2377 }
2378 
2379 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2380   if (callee()->is_static())  return false;  // caller must have the capability!
2381   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2382   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2383   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2384   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2385 
2386   if (is_reference_type(type)) {
2387     decorators |= ON_UNKNOWN_OOP_REF;
2388   }
2389 
2390   if (unaligned) {
2391     decorators |= C2_UNALIGNED;
2392   }
2393 
2394 #ifndef PRODUCT
2395   {
2396     ResourceMark rm;
2397     // Check the signatures.
2398     ciSignature* sig = callee()->signature();
2399 #ifdef ASSERT
2400     if (!is_store) {
2401       // Object getReference(Object base, int/long offset), etc.
2402       BasicType rtype = sig->return_type()->basic_type();
2403       assert(rtype == type, "getter must return the expected value");
2404       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2405       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2406       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2407     } else {
2408       // void putReference(Object base, int/long offset, Object x), etc.
2409       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2410       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2411       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2412       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2413       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2414       assert(vtype == type, "putter must accept the expected value");
2415     }
2416 #endif // ASSERT
2417  }
2418 #endif //PRODUCT
2419 
2420   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2421 
2422   Node* receiver = argument(0);  // type: oop
2423 
2424   // Build address expression.
2425   Node* heap_base_oop = top();
2426 
2427   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2428   Node* base = argument(1);  // type: oop
2429   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2430   Node* offset = argument(2);  // type: long
2431   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2432   // to be plain byte offsets, which are also the same as those accepted
2433   // by oopDesc::field_addr.
2434   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2435          "fieldOffset must be byte-scaled");
2436 
2437   ciInlineKlass* inline_klass = nullptr;
2438   if (is_flat) {
2439     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2440     if (cls == nullptr || cls->const_oop() == nullptr) {
2441       return false;
2442     }
2443     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2444     if (!mirror_type->is_inlinetype()) {
2445       return false;
2446     }
2447     inline_klass = mirror_type->as_inline_klass();
2448   }
2449 
2450   if (base->is_InlineType()) {
2451     assert(!is_store, "InlineTypeNodes are non-larval value objects");
2452     InlineTypeNode* vt = base->as_InlineType();
2453     if (offset->is_Con()) {
2454       long off = find_long_con(offset, 0);
2455       ciInlineKlass* vk = vt->type()->inline_klass();
2456       if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2457         return false;
2458       }
2459 
2460       ciField* field = vk->get_non_flat_field_by_offset(off);
2461       if (field != nullptr) {
2462         BasicType bt = type2field[field->type()->basic_type()];
2463         if (bt == T_ARRAY || bt == T_NARROWOOP) {
2464           bt = T_OBJECT;
2465         }
2466         if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2467           Node* value = vt->field_value_by_offset(off, false);
2468           if (value->is_InlineType()) {
2469             value = value->as_InlineType()->adjust_scalarization_depth(this);
2470           }
2471           set_result(value);
2472           return true;
2473         }
2474       }
2475     }
2476     {
2477       // Re-execute the unsafe access if allocation triggers deoptimization.
2478       PreserveReexecuteState preexecs(this);
2479       jvms()->set_should_reexecute(true);
2480       vt = vt->buffer(this);
2481     }
2482     base = vt->get_oop();
2483   }
2484 
2485   // 32-bit machines ignore the high half!
2486   offset = ConvL2X(offset);
2487 
2488   // Save state and restore on bailout
2489   uint old_sp = sp();
2490   SafePointNode* old_map = clone_map();
2491 
2492   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2493   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2494 
2495   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2496     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2497       decorators |= IN_NATIVE; // off-heap primitive access
2498     } else {
2499       set_map(old_map);
2500       set_sp(old_sp);
2501       return false; // off-heap oop accesses are not supported
2502     }
2503   } else {
2504     heap_base_oop = base; // on-heap or mixed access
2505   }
2506 
2507   // Can base be null? Otherwise, always on-heap access.
2508   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2509 
2510   if (!can_access_non_heap) {
2511     decorators |= IN_HEAP;
2512   }
2513 
2514   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2515 
2516   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2517   if (adr_type == TypePtr::NULL_PTR) {
2518     set_map(old_map);
2519     set_sp(old_sp);
2520     return false; // off-heap access with zero address
2521   }
2522 
2523   // Try to categorize the address.
2524   Compile::AliasType* alias_type = C->alias_type(adr_type);
2525   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2526 
2527   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2528       alias_type->adr_type() == TypeAryPtr::RANGE) {
2529     set_map(old_map);
2530     set_sp(old_sp);
2531     return false; // not supported
2532   }
2533 
2534   bool mismatched = false;
2535   BasicType bt = T_ILLEGAL;
2536   ciField* field = nullptr;
2537   if (adr_type->isa_instptr()) {
2538     const TypeInstPtr* instptr = adr_type->is_instptr();
2539     ciInstanceKlass* k = instptr->instance_klass();
2540     int off = instptr->offset();
2541     if (instptr->const_oop() != nullptr &&
2542         k == ciEnv::current()->Class_klass() &&
2543         instptr->offset() >= (k->size_helper() * wordSize)) {
2544       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2545       field = k->get_field_by_offset(off, true);
2546     } else {
2547       field = k->get_non_flat_field_by_offset(off);
2548     }
2549     if (field != nullptr) {
2550       bt = type2field[field->type()->basic_type()];
2551     }
2552     if (bt != alias_type->basic_type()) {
2553       // Type mismatch. Is it an access to a nested flat field?
2554       field = k->get_field_by_offset(off, false);
2555       if (field != nullptr) {
2556         bt = type2field[field->type()->basic_type()];
2557       }
2558     }
2559     assert(bt == alias_type->basic_type() || is_flat, "should match");
2560   } else {
2561     bt = alias_type->basic_type();
2562   }
2563 
2564   if (bt != T_ILLEGAL) {
2565     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2566     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2567       // Alias type doesn't differentiate between byte[] and boolean[]).
2568       // Use address type to get the element type.
2569       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2570     }
2571     if (is_reference_type(bt, true)) {
2572       // accessing an array field with getReference is not a mismatch
2573       bt = T_OBJECT;
2574     }
2575     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2576       // Don't intrinsify mismatched object accesses
2577       set_map(old_map);
2578       set_sp(old_sp);
2579       return false;
2580     }
2581     mismatched = (bt != type);
2582   } else if (alias_type->adr_type()->isa_oopptr()) {
2583     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2584   }
2585 
2586   if (is_flat) {
2587     if (adr_type->isa_instptr()) {
2588       if (field == nullptr || field->type() != inline_klass) {
2589         mismatched = true;
2590       }
2591     } else if (adr_type->isa_aryptr()) {
2592       const Type* elem = adr_type->is_aryptr()->elem();
2593       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2594         mismatched = true;
2595       }
2596     } else {
2597       mismatched = true;
2598     }
2599     if (is_store) {
2600       const Type* val_t = _gvn.type(val);
2601       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2602         set_map(old_map);
2603         set_sp(old_sp);
2604         return false;
2605       }
2606     }
2607   }
2608 
2609   destruct_map_clone(old_map);
2610   assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2611 
2612   if (mismatched) {
2613     decorators |= C2_MISMATCHED;
2614   }
2615 
2616   // First guess at the value type.
2617   const Type *value_type = Type::get_const_basic_type(type);
2618 
2619   // Figure out the memory ordering.
2620   decorators |= mo_decorator_for_access_kind(kind);
2621 
2622   if (!is_store) {
2623     if (type == T_OBJECT && !is_flat) {
2624       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2625       if (tjp != nullptr) {
2626         value_type = tjp;
2627       }
2628     }
2629   }
2630 
2631   receiver = null_check(receiver);
2632   if (stopped()) {
2633     return true;
2634   }
2635   // Heap pointers get a null-check from the interpreter,
2636   // as a courtesy.  However, this is not guaranteed by Unsafe,
2637   // and it is not possible to fully distinguish unintended nulls
2638   // from intended ones in this API.
2639 
2640   if (!is_store) {
2641     Node* p = nullptr;
2642     // Try to constant fold a load from a constant field
2643 
2644     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2645       // final or stable field
2646       p = make_constant_from_field(field, heap_base_oop);
2647     }
2648 
2649     if (p == nullptr) { // Could not constant fold the load
2650       if (is_flat) {
2651         p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, adr_type, false, false, true);
2652       } else {
2653         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2654         const TypeOopPtr* ptr = value_type->make_oopptr();
2655         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2656           // Load a non-flattened inline type from memory
2657           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass());
2658         }
2659       }
2660       // Normalize the value returned by getBoolean in the following cases
2661       if (type == T_BOOLEAN &&
2662           (mismatched ||
2663            heap_base_oop == top() ||                  // - heap_base_oop is null or
2664            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2665                                                       //   and the unsafe access is made to large offset
2666                                                       //   (i.e., larger than the maximum offset necessary for any
2667                                                       //   field access)
2668             ) {
2669           IdealKit ideal = IdealKit(this);
2670 #define __ ideal.
2671           IdealVariable normalized_result(ideal);
2672           __ declarations_done();
2673           __ set(normalized_result, p);
2674           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2675           __ set(normalized_result, ideal.ConI(1));
2676           ideal.end_if();
2677           final_sync(ideal);
2678           p = __ value(normalized_result);
2679 #undef __
2680       }
2681     }
2682     if (type == T_ADDRESS) {
2683       p = gvn().transform(new CastP2XNode(nullptr, p));
2684       p = ConvX2UL(p);
2685     }
2686     // The load node has the control of the preceding MemBarCPUOrder.  All
2687     // following nodes will have the control of the MemBarCPUOrder inserted at
2688     // the end of this method.  So, pushing the load onto the stack at a later
2689     // point is fine.
2690     set_result(p);
2691   } else {
2692     if (bt == T_ADDRESS) {
2693       // Repackage the long as a pointer.
2694       val = ConvL2X(val);
2695       val = gvn().transform(new CastX2PNode(val));
2696     }
2697     if (is_flat) {
2698       val->as_InlineType()->store_flat(this, base, adr, false, false, true, decorators);
2699     } else {
2700       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2701     }
2702   }
2703 
2704   return true;
2705 }
2706 
2707 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2708   Node* receiver = argument(0);
2709   Node* value = argument(1);
2710 
2711   const Type* type = gvn().type(value);
2712   if (!type->is_inlinetypeptr()) {
2713     C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type");
2714     return false;
2715   }
2716 
2717   null_check(receiver);
2718   if (stopped()) {
2719     return true;
2720   }
2721 
2722   value = null_check(value);
2723   if (stopped()) {
2724     return true;
2725   }
2726 
2727   ciInlineKlass* vk = type->inline_klass();
2728   Node* klass = makecon(TypeKlassPtr::make(vk));
2729   Node* obj = new_instance(klass);
2730   AllocateNode::Ideal_allocation(obj)->_larval = true;
2731 
2732   assert(value->is_InlineType(), "must be an InlineTypeNode");
2733   Node* payload_ptr = basic_plus_adr(obj, vk->payload_offset());
2734   value->as_InlineType()->store_flat(this, obj, payload_ptr, false, true, true, IN_HEAP | MO_UNORDERED);
2735 
2736   set_result(obj);
2737   return true;
2738 }
2739 
2740 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2741   Node* receiver = argument(0);
2742   Node* buffer = argument(1);
2743 
2744   const Type* type = gvn().type(buffer);
2745   if (!type->is_inlinetypeptr()) {
2746     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type");
2747     return false;
2748   }
2749 
2750   AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer);
2751   if (alloc == nullptr) {
2752     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer");
2753     return false;
2754   }
2755 
2756   null_check(receiver);
2757   if (stopped()) {
2758     return true;
2759   }
2760 
2761   // Unset the larval bit in the object header
2762   Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned);
2763   Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place)));
2764   access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP);
2765 
2766   // We must ensure that the buffer is properly published
2767   insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
2768   assert(!type->maybe_null(), "result of an allocation should not be null");
2769   set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass()));
2770   return true;
2771 }
2772 
2773 //----------------------------inline_unsafe_load_store----------------------------
2774 // This method serves a couple of different customers (depending on LoadStoreKind):
2775 //
2776 // LS_cmp_swap:
2777 //
2778 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2779 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2780 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2781 //
2782 // LS_cmp_swap_weak:
2783 //
2784 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2785 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2786 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2787 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2788 //
2789 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);

2958     }
2959     case LS_cmp_swap:
2960     case LS_cmp_swap_weak:
2961     case LS_get_add:
2962       break;
2963     default:
2964       ShouldNotReachHere();
2965   }
2966 
2967   // Null check receiver.
2968   receiver = null_check(receiver);
2969   if (stopped()) {
2970     return true;
2971   }
2972 
2973   int alias_idx = C->get_alias_index(adr_type);
2974 
2975   if (is_reference_type(type)) {
2976     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2977 
2978     if (oldval != nullptr && oldval->is_InlineType()) {
2979       // Re-execute the unsafe access if allocation triggers deoptimization.
2980       PreserveReexecuteState preexecs(this);
2981       jvms()->set_should_reexecute(true);
2982       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
2983     }
2984     if (newval != nullptr && newval->is_InlineType()) {
2985       // Re-execute the unsafe access if allocation triggers deoptimization.
2986       PreserveReexecuteState preexecs(this);
2987       jvms()->set_should_reexecute(true);
2988       newval = newval->as_InlineType()->buffer(this)->get_oop();
2989     }
2990 
2991     // Transformation of a value which could be null pointer (CastPP #null)
2992     // could be delayed during Parse (for example, in adjust_map_after_if()).
2993     // Execute transformation here to avoid barrier generation in such case.
2994     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2995       newval = _gvn.makecon(TypePtr::NULL_PTR);
2996 
2997     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2998       // Refine the value to a null constant, when it is known to be null
2999       oldval = _gvn.makecon(TypePtr::NULL_PTR);
3000     }
3001   }
3002 
3003   Node* result = nullptr;
3004   switch (kind) {
3005     case LS_cmp_exchange: {
3006       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
3007                                             oldval, newval, value_type, type, decorators);
3008       break;
3009     }
3010     case LS_cmp_swap_weak:

3157                     Deoptimization::Action_make_not_entrant);
3158     }
3159     if (stopped()) {
3160       return true;
3161     }
3162 #endif //INCLUDE_JVMTI
3163 
3164   Node* test = nullptr;
3165   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3166     // Note:  The argument might still be an illegal value like
3167     // Serializable.class or Object[].class.   The runtime will handle it.
3168     // But we must make an explicit check for initialization.
3169     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3170     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3171     // can generate code to load it as unsigned byte.
3172     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3173     Node* bits = intcon(InstanceKlass::fully_initialized);
3174     test = _gvn.transform(new SubINode(inst, bits));
3175     // The 'test' is non-zero if we need to take a slow path.
3176   }
3177   Node* obj = nullptr;
3178   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3179   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3180     obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3181   } else {
3182     obj = new_instance(kls, test);
3183   }
3184   set_result(obj);
3185   return true;
3186 }
3187 
3188 //------------------------inline_native_time_funcs--------------
3189 // inline code for System.currentTimeMillis() and System.nanoTime()
3190 // these have the same type and signature
3191 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3192   const TypeFunc* tf = OptoRuntime::void_long_Type();
3193   const TypePtr* no_memory_effects = nullptr;
3194   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3195   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3196 #ifdef ASSERT
3197   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3198   assert(value_top == top(), "second value must be top");
3199 #endif
3200   set_result(value);
3201   return true;
3202 }
3203 

3944   Node* thread = _gvn.transform(new ThreadLocalNode());
3945   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3946   Node* thread_obj_handle
3947     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3948   thread_obj_handle = _gvn.transform(thread_obj_handle);
3949   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3950   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3951 
3952   // Change the _monitor_owner_id of the JavaThread
3953   Node* tid = load_field_from_object(arr, "tid", "J");
3954   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3955   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3956 
3957   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3958   return true;
3959 }
3960 
3961 const Type* LibraryCallKit::scopedValueCache_type() {
3962   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3963   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3964   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3965 
3966   // Because we create the scopedValue cache lazily we have to make the
3967   // type of the result BotPTR.
3968   bool xk = etype->klass_is_exact();
3969   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
3970   return objects_type;
3971 }
3972 
3973 Node* LibraryCallKit::scopedValueCache_helper() {
3974   Node* thread = _gvn.transform(new ThreadLocalNode());
3975   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3976   // We cannot use immutable_memory() because we might flip onto a
3977   // different carrier thread, at which point we'll need to use that
3978   // carrier thread's cache.
3979   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3980   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3981   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3982 }
3983 
3984 //------------------------inline_native_scopedValueCache------------------
3985 bool LibraryCallKit::inline_native_scopedValueCache() {
3986   Node* cache_obj_handle = scopedValueCache_helper();
3987   const Type* objects_type = scopedValueCache_type();
3988   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3989 

4073   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
4074 
4075   // Result of top level CFG and Memory.
4076   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4077   record_for_igvn(result_rgn);
4078   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4079   record_for_igvn(result_mem);
4080 
4081   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
4082   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
4083   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
4084   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4085 
4086   // Set output state.
4087   set_control(_gvn.transform(result_rgn));
4088   set_all_memory(_gvn.transform(result_mem));
4089 
4090   return true;
4091 }
4092 









4093 //-----------------------load_klass_from_mirror_common-------------------------
4094 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
4095 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
4096 // and branch to the given path on the region.
4097 // If never_see_null, take an uncommon trap on null, so we can optimistically
4098 // compile for the non-null case.
4099 // If the region is null, force never_see_null = true.
4100 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
4101                                                     bool never_see_null,
4102                                                     RegionNode* region,
4103                                                     int null_path,
4104                                                     int offset) {
4105   if (region == nullptr)  never_see_null = true;
4106   Node* p = basic_plus_adr(mirror, offset);
4107   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4108   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
4109   Node* null_ctl = top();
4110   kls = null_check_oop(kls, &null_ctl, never_see_null);
4111   if (region != nullptr) {
4112     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).

4116   }
4117   return kls;
4118 }
4119 
4120 //--------------------(inline_native_Class_query helpers)---------------------
4121 // Use this for JVM_ACC_INTERFACE.
4122 // Fall through if (mods & mask) == bits, take the guard otherwise.
4123 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4124                                                  ByteSize offset, const Type* type, BasicType bt) {
4125   // Branch around if the given klass has the given modifier bit set.
4126   // Like generate_guard, adds a new path onto the region.
4127   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4128   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4129   Node* mask = intcon(modifier_mask);
4130   Node* bits = intcon(modifier_bits);
4131   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4132   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4133   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4134   return generate_fair_guard(bol, region);
4135 }
4136 
4137 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4138   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4139                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4140 }
4141 
4142 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4143 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4144   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4145                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4146 }
4147 
4148 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4149   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4150 }
4151 
4152 //-------------------------inline_native_Class_query-------------------
4153 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4154   const Type* return_type = TypeInt::BOOL;
4155   Node* prim_return_value = top();  // what happens if it's a primitive class?
4156   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);

4275 
4276   case vmIntrinsics::_getClassAccessFlags:
4277     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4278     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4279     break;
4280 
4281   default:
4282     fatal_unexpected_iid(id);
4283     break;
4284   }
4285 
4286   // Fall-through is the normal case of a query to a real class.
4287   phi->init_req(1, query_value);
4288   region->init_req(1, control());
4289 
4290   C->set_has_split_ifs(true); // Has chance for split-if optimization
4291   set_result(region, phi);
4292   return true;
4293 }
4294 
4295 
4296 //-------------------------inline_Class_cast-------------------
4297 bool LibraryCallKit::inline_Class_cast() {
4298   Node* mirror = argument(0); // Class
4299   Node* obj    = argument(1);
4300   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4301   if (mirror_con == nullptr) {
4302     return false;  // dead path (mirror->is_top()).
4303   }
4304   if (obj == nullptr || obj->is_top()) {
4305     return false;  // dead path
4306   }
4307   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4308 
4309   // First, see if Class.cast() can be folded statically.
4310   // java_mirror_type() returns non-null for compile-time Class constants.
4311   bool is_null_free_array = false;
4312   ciType* tm = mirror_con->java_mirror_type(&is_null_free_array);
4313   if (tm != nullptr && tm->is_klass() &&
4314       tp != nullptr) {
4315     if (!tp->is_loaded()) {
4316       // Don't use intrinsic when class is not loaded.
4317       return false;
4318     } else {
4319       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4320       if (is_null_free_array) {
4321         tklass = tklass->is_aryklassptr()->cast_to_null_free();
4322       }
4323       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4324       if (static_res == Compile::SSC_always_true) {
4325         // isInstance() is true - fold the code.
4326         set_result(obj);
4327         return true;
4328       } else if (static_res == Compile::SSC_always_false) {
4329         // Don't use intrinsic, have to throw ClassCastException.
4330         // If the reference is null, the non-intrinsic bytecode will
4331         // be optimized appropriately.
4332         return false;
4333       }
4334     }
4335   }
4336 
4337   // Bailout intrinsic and do normal inlining if exception path is frequent.
4338   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4339     return false;
4340   }
4341 
4342   // Generate dynamic checks.
4343   // Class.cast() is java implementation of _checkcast bytecode.
4344   // Do checkcast (Parse::do_checkcast()) optimizations here.
4345 
4346   mirror = null_check(mirror);
4347   // If mirror is dead, only null-path is taken.
4348   if (stopped()) {
4349     return true;
4350   }
4351 
4352   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4353   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4354   RegionNode* region = new RegionNode(PATH_LIMIT);
4355   record_for_igvn(region);
4356 
4357   // Now load the mirror's klass metaobject, and null-check it.
4358   // If kls is null, we have a primitive mirror and
4359   // nothing is an instance of a primitive type.
4360   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4361 
4362   Node* res = top();
4363   Node* io = i_o();
4364   Node* mem = merged_memory();
4365   if (!stopped()) {
4366 
4367     Node* bad_type_ctrl = top();
4368     // Do checkcast optimizations.
4369     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4370     region->init_req(_bad_type_path, bad_type_ctrl);
4371   }
4372   if (region->in(_prim_path) != top() ||
4373       region->in(_bad_type_path) != top() ||
4374       region->in(_npe_path) != top()) {
4375     // Let Interpreter throw ClassCastException.
4376     PreserveJVMState pjvms(this);
4377     set_control(_gvn.transform(region));
4378     // Set IO and memory because gen_checkcast may override them when buffering inline types
4379     set_i_o(io);
4380     set_all_memory(mem);
4381     uncommon_trap(Deoptimization::Reason_intrinsic,
4382                   Deoptimization::Action_maybe_recompile);
4383   }
4384   if (!stopped()) {
4385     set_result(res);
4386   }
4387   return true;
4388 }
4389 
4390 
4391 //--------------------------inline_native_subtype_check------------------------
4392 // This intrinsic takes the JNI calls out of the heart of
4393 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4394 bool LibraryCallKit::inline_native_subtype_check() {
4395   // Pull both arguments off the stack.
4396   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4397   args[0] = argument(0);
4398   args[1] = argument(1);
4399   Node* klasses[2];             // corresponding Klasses: superk, subk
4400   klasses[0] = klasses[1] = top();
4401 
4402   enum {
4403     // A full decision tree on {superc is prim, subc is prim}:
4404     _prim_0_path = 1,           // {P,N} => false
4405                                 // {P,P} & superc!=subc => false
4406     _prim_same_path,            // {P,P} & superc==subc => true
4407     _prim_1_path,               // {N,P} => false
4408     _ref_subtype_path,          // {N,N} & subtype check wins => true
4409     _both_ref_path,             // {N,N} & subtype check loses => false
4410     PATH_LIMIT
4411   };
4412 
4413   RegionNode* region = new RegionNode(PATH_LIMIT);
4414   RegionNode* prim_region = new RegionNode(2);
4415   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4416   record_for_igvn(region);
4417   record_for_igvn(prim_region);
4418 
4419   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4420   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4421   int class_klass_offset = java_lang_Class::klass_offset();
4422 
4423   // First null-check both mirrors and load each mirror's klass metaobject.
4424   int which_arg;
4425   for (which_arg = 0; which_arg <= 1; which_arg++) {
4426     Node* arg = args[which_arg];
4427     arg = null_check(arg);
4428     if (stopped())  break;
4429     args[which_arg] = arg;
4430 
4431     Node* p = basic_plus_adr(arg, class_klass_offset);
4432     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4433     klasses[which_arg] = _gvn.transform(kls);
4434   }
4435 
4436   // Having loaded both klasses, test each for null.
4437   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4438   for (which_arg = 0; which_arg <= 1; which_arg++) {
4439     Node* kls = klasses[which_arg];
4440     Node* null_ctl = top();
4441     kls = null_check_oop(kls, &null_ctl, never_see_null);
4442     if (which_arg == 0) {
4443       prim_region->init_req(1, null_ctl);
4444     } else {
4445       region->init_req(_prim_1_path, null_ctl);
4446     }
4447     if (stopped())  break;
4448     klasses[which_arg] = kls;
4449   }
4450 
4451   if (!stopped()) {
4452     // now we have two reference types, in klasses[0..1]
4453     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4454     Node* superk = klasses[0];  // the receiver
4455     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));

4456     region->set_req(_ref_subtype_path, control());
4457   }
4458 
4459   // If both operands are primitive (both klasses null), then
4460   // we must return true when they are identical primitives.
4461   // It is convenient to test this after the first null klass check.
4462   // This path is also used if superc is a value mirror.
4463   set_control(_gvn.transform(prim_region));
4464   if (!stopped()) {
4465     // Since superc is primitive, make a guard for the superc==subc case.
4466     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4467     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4468     generate_fair_guard(bol_eq, region);
4469     if (region->req() == PATH_LIMIT+1) {
4470       // A guard was added.  If the added guard is taken, superc==subc.
4471       region->swap_edges(PATH_LIMIT, _prim_same_path);
4472       region->del_req(PATH_LIMIT);
4473     }
4474     region->set_req(_prim_0_path, control()); // Not equal after all.
4475   }
4476 
4477   // these are the only paths that produce 'true':
4478   phi->set_req(_prim_same_path,   intcon(1));
4479   phi->set_req(_ref_subtype_path, intcon(1));
4480 
4481   // pull together the cases:
4482   assert(region->req() == PATH_LIMIT, "sane region");
4483   for (uint i = 1; i < region->req(); i++) {
4484     Node* ctl = region->in(i);
4485     if (ctl == nullptr || ctl == top()) {
4486       region->set_req(i, top());
4487       phi   ->set_req(i, top());
4488     } else if (phi->in(i) == nullptr) {
4489       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4490     }
4491   }
4492 
4493   set_control(_gvn.transform(region));
4494   set_result(_gvn.transform(phi));
4495   return true;
4496 }
4497 
4498 //---------------------generate_array_guard_common------------------------
4499 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) {

4500 
4501   if (stopped()) {
4502     return nullptr;
4503   }
4504 









4505   // Like generate_guard, adds a new path onto the region.
4506   jint  layout_con = 0;
4507   Node* layout_val = get_layout_helper(kls, layout_con);
4508   if (layout_val == nullptr) {
4509     bool query = 0;
4510     switch(kind) {
4511       case ObjectArray:    query = Klass::layout_helper_is_objArray(layout_con); break;
4512       case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break;
4513       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4514       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4515       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4516       default:
4517         ShouldNotReachHere();
4518     }
4519     if (!query) {
4520       return nullptr;                       // never a branch
4521     } else {                             // always a branch
4522       Node* always_branch = control();
4523       if (region != nullptr)
4524         region->add_req(always_branch);
4525       set_control(top());
4526       return always_branch;
4527     }
4528   }
4529   unsigned int value = 0;
4530   BoolTest::mask btest = BoolTest::illegal;
4531   switch(kind) {
4532     case ObjectArray:
4533     case NonObjectArray: {
4534       value = Klass::_lh_array_tag_obj_value;
4535       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4536       btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne;
4537       break;
4538     }
4539     case TypeArray: {
4540       value = Klass::_lh_array_tag_type_value;
4541       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4542       btest = BoolTest::eq;
4543       break;
4544     }
4545     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4546     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4547     default:
4548       ShouldNotReachHere();
4549   }
4550   // Now test the correct condition.
4551   jint nval = (jint)value;



4552   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));



4553   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4554   Node* ctrl = generate_fair_guard(bol, region);
4555   Node* is_array_ctrl = kind == NonArray ? control() : ctrl;
4556   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4557     // Keep track of the fact that 'obj' is an array to prevent
4558     // array specific accesses from floating above the guard.
4559     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4560   }
4561   return ctrl;
4562 }
4563 
4564 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal);
4565 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal);
4566 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length);
4567 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) {
4568   assert(null_free || atomic, "nullable implies atomic");
4569   Node* componentType = argument(0);
4570   Node* length = argument(1);
4571   Node* init_val = null_free ? argument(2) : nullptr;
4572 
4573   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4574   if (tp != nullptr) {
4575     ciInstanceKlass* ik = tp->instance_klass();
4576     if (ik == C->env()->Class_klass()) {
4577       ciType* t = tp->java_mirror_type();
4578       if (t != nullptr && t->is_inlinetype()) {
4579         ciInlineKlass* vk = t->as_inline_klass();
4580         bool flat = vk->maybe_flat_in_array();
4581         if (flat && atomic) {
4582           // Only flat if we have a corresponding atomic layout
4583           flat = null_free ? vk->has_atomic_layout() : vk->has_nullable_atomic_layout();
4584         }
4585         // TODO 8350865 refactor
4586         if (flat && !atomic) {
4587           flat = vk->has_non_atomic_layout();
4588         }
4589 
4590         // TOOD 8350865 ZGC needs card marks on initializing oop stores
4591         if (UseZGC && null_free && !flat) {
4592           return false;
4593         }
4594 
4595         ciArrayKlass* array_klass = ciArrayKlass::make(t, flat, null_free, atomic);
4596         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4597           const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
4598           if (null_free) {
4599             if (init_val->is_InlineType()) {
4600               if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) {
4601                 // Zeroing is enough because the init value is the all-zero value
4602                 init_val = nullptr;
4603               } else {
4604                 init_val = init_val->as_InlineType()->buffer(this);
4605               }
4606             }
4607             // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)?
4608           }
4609           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val);
4610           const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr();
4611           assert(arytype->is_null_free() == null_free, "inconsistency");
4612           assert(arytype->is_not_null_free() == !null_free, "inconsistency");
4613           assert(arytype->is_flat() == flat, "inconsistency");
4614           assert(arytype->is_aryptr()->is_not_flat() == !flat, "inconsistency");
4615           set_result(obj);
4616           return true;
4617         }
4618       }
4619     }
4620   }
4621   return false;
4622 }
4623 
4624 //-----------------------inline_native_newArray--------------------------
4625 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4626 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4627 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4628   Node* mirror;
4629   Node* count_val;
4630   if (uninitialized) {
4631     null_check_receiver();
4632     mirror    = argument(1);
4633     count_val = argument(2);
4634   } else {
4635     mirror    = argument(0);
4636     count_val = argument(1);
4637   }
4638 
4639   mirror = null_check(mirror);
4640   // If mirror or obj is dead, only null-path is taken.
4641   if (stopped())  return true;
4642 
4643   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4644   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4645   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);

4751   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4752   { PreserveReexecuteState preexecs(this);
4753     jvms()->set_should_reexecute(true);
4754 
4755     array_type_mirror = null_check(array_type_mirror);
4756     original          = null_check(original);
4757 
4758     // Check if a null path was taken unconditionally.
4759     if (stopped())  return true;
4760 
4761     Node* orig_length = load_array_length(original);
4762 
4763     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4764     klass_node = null_check(klass_node);
4765 
4766     RegionNode* bailout = new RegionNode(1);
4767     record_for_igvn(bailout);
4768 
4769     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4770     // Bail out if that is so.
4771     // Inline type array may have object field that would require a
4772     // write barrier. Conservatively, go to slow path.
4773     // TODO 8251971: Optimize for the case when flat src/dst are later found
4774     // to not contain oops (i.e., move this check to the macro expansion phase).
4775     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4776     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
4777     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
4778     bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
4779                         // Can src array be flat and contain oops?
4780                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
4781                         // Can dest array be flat and contain oops?
4782                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
4783     Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
4784     if (not_objArray != nullptr) {
4785       // Improve the klass node's type from the new optimistic assumption:
4786       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4787       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
4788       Node* cast = new CastPPNode(control(), klass_node, akls);
4789       klass_node = _gvn.transform(cast);
4790     }
4791 
4792     // Bail out if either start or end is negative.
4793     generate_negative_guard(start, bailout, &start);
4794     generate_negative_guard(end,   bailout, &end);
4795 
4796     Node* length = end;
4797     if (_gvn.type(start) != TypeInt::ZERO) {
4798       length = _gvn.transform(new SubINode(end, start));
4799     }
4800 
4801     // Bail out if length is negative (i.e., if start > end).
4802     // Without this the new_array would throw
4803     // NegativeArraySizeException but IllegalArgumentException is what
4804     // should be thrown
4805     generate_negative_guard(length, bailout, &length);
4806 
4807     // Handle inline type arrays
4808     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
4809     if (!stopped()) {
4810       // TODO JDK-8329224
4811       if (!orig_t->is_null_free()) {
4812         // Not statically known to be null free, add a check
4813         generate_fair_guard(null_free_array_test(original), bailout);
4814       }
4815       orig_t = _gvn.type(original)->isa_aryptr();
4816       if (orig_t != nullptr && orig_t->is_flat()) {
4817         // Src is flat, check that dest is flat as well
4818         if (exclude_flat) {
4819           // Dest can't be flat, bail out
4820           bailout->add_req(control());
4821           set_control(top());
4822         } else {
4823           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
4824         }
4825         // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy.
4826       } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) &&
4827                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
4828                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
4829         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
4830         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
4831         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
4832         if (orig_t != nullptr) {
4833           orig_t = orig_t->cast_to_not_flat();
4834           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
4835         }
4836       }
4837       if (!can_validate) {
4838         // No validation. The subtype check emitted at macro expansion time will not go to the slow
4839         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
4840         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
4841         generate_fair_guard(flat_array_test(klass_node), bailout);
4842         generate_fair_guard(null_free_array_test(original), bailout);
4843       }
4844     }
4845 
4846     // Bail out if start is larger than the original length
4847     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4848     generate_negative_guard(orig_tail, bailout, &orig_tail);
4849 
4850     if (bailout->req() > 1) {
4851       PreserveJVMState pjvms(this);
4852       set_control(_gvn.transform(bailout));
4853       uncommon_trap(Deoptimization::Reason_intrinsic,
4854                     Deoptimization::Action_maybe_recompile);
4855     }
4856 
4857     if (!stopped()) {
4858       // How many elements will we copy from the original?
4859       // The answer is MinI(orig_tail, length).
4860       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4861 
4862       // Generate a direct call to the right arraycopy function(s).
4863       // We know the copy is disjoint but we might not know if the
4864       // oop stores need checking.
4865       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).

4871       // to the copyOf to be validated, including that the copy to the
4872       // new array won't trigger an ArrayStoreException. That subtype
4873       // check can be optimized if we know something on the type of
4874       // the input array from type speculation.
4875       if (_gvn.type(klass_node)->singleton()) {
4876         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4877         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4878 
4879         int test = C->static_subtype_check(superk, subk);
4880         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4881           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4882           if (t_original->speculative_type() != nullptr) {
4883             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4884           }
4885         }
4886       }
4887 
4888       bool validated = false;
4889       // Reason_class_check rather than Reason_intrinsic because we
4890       // want to intrinsify even if this traps.
4891       if (can_validate) {
4892         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4893 
4894         if (not_subtype_ctrl != top()) {
4895           PreserveJVMState pjvms(this);
4896           set_control(not_subtype_ctrl);
4897           uncommon_trap(Deoptimization::Reason_class_check,
4898                         Deoptimization::Action_make_not_entrant);
4899           assert(stopped(), "Should be stopped");
4900         }
4901         validated = true;
4902       }
4903 
4904       if (!stopped()) {
4905         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4906 
4907         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4908                                                 load_object_klass(original), klass_node);
4909         if (!is_copyOfRange) {
4910           ac->set_copyof(validated);
4911         } else {

4957 
4958 //-----------------------generate_method_call----------------------------
4959 // Use generate_method_call to make a slow-call to the real
4960 // method if the fast path fails.  An alternative would be to
4961 // use a stub like OptoRuntime::slow_arraycopy_Java.
4962 // This only works for expanding the current library call,
4963 // not another intrinsic.  (E.g., don't use this for making an
4964 // arraycopy call inside of the copyOf intrinsic.)
4965 CallJavaNode*
4966 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4967   // When compiling the intrinsic method itself, do not use this technique.
4968   guarantee(callee() != C->method(), "cannot make slow-call to self");
4969 
4970   ciMethod* method = callee();
4971   // ensure the JVMS we have will be correct for this call
4972   guarantee(method_id == method->intrinsic_id(), "must match");
4973 
4974   const TypeFunc* tf = TypeFunc::make(method);
4975   if (res_not_null) {
4976     assert(tf->return_type() == T_OBJECT, "");
4977     const TypeTuple* range = tf->range_cc();
4978     const Type** fields = TypeTuple::fields(range->cnt());
4979     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4980     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4981     tf = TypeFunc::make(tf->domain_cc(), new_range);
4982   }
4983   CallJavaNode* slow_call;
4984   if (is_static) {
4985     assert(!is_virtual, "");
4986     slow_call = new CallStaticJavaNode(C, tf,
4987                            SharedRuntime::get_resolve_static_call_stub(), method);
4988   } else if (is_virtual) {
4989     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4990     int vtable_index = Method::invalid_vtable_index;
4991     if (UseInlineCaches) {
4992       // Suppress the vtable call
4993     } else {
4994       // hashCode and clone are not a miranda methods,
4995       // so the vtable index is fixed.
4996       // No need to use the linkResolver to get it.
4997        vtable_index = method->vtable_index();
4998        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4999               "bad index %d", vtable_index);
5000     }
5001     slow_call = new CallDynamicJavaNode(tf,

5018   set_edges_for_java_call(slow_call);
5019   return slow_call;
5020 }
5021 
5022 
5023 /**
5024  * Build special case code for calls to hashCode on an object. This call may
5025  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
5026  * slightly different code.
5027  */
5028 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
5029   assert(is_static == callee()->is_static(), "correct intrinsic selection");
5030   assert(!(is_virtual && is_static), "either virtual, special, or static");
5031 
5032   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
5033 
5034   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5035   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
5036   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
5037   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5038   Node* obj = argument(0);
5039 
5040   // Don't intrinsify hashcode on inline types for now.
5041   // The "is locked" runtime check below also serves as inline type check and goes to the slow path.
5042   if (gvn().type(obj)->is_inlinetypeptr()) {
5043     return false;
5044   }
5045 
5046   if (!is_static) {
5047     // Check for hashing null object
5048     obj = null_check_receiver();
5049     if (stopped())  return true;        // unconditionally null
5050     result_reg->init_req(_null_path, top());
5051     result_val->init_req(_null_path, top());
5052   } else {
5053     // Do a null check, and return zero if null.
5054     // System.identityHashCode(null) == 0

5055     Node* null_ctl = top();
5056     obj = null_check_oop(obj, &null_ctl);
5057     result_reg->init_req(_null_path, null_ctl);
5058     result_val->init_req(_null_path, _gvn.intcon(0));
5059   }
5060 
5061   // Unconditionally null?  Then return right away.
5062   if (stopped()) {
5063     set_control( result_reg->in(_null_path));
5064     if (!stopped())
5065       set_result(result_val->in(_null_path));
5066     return true;
5067   }
5068 
5069   // We only go to the fast case code if we pass a number of guards.  The
5070   // paths which do not pass are accumulated in the slow_region.
5071   RegionNode* slow_region = new RegionNode(1);
5072   record_for_igvn(slow_region);
5073 
5074   // If this is a virtual call, we generate a funny guard.  We pull out
5075   // the vtable entry corresponding to hashCode() from the target object.
5076   // If the target method which we are calling happens to be the native
5077   // Object hashCode() method, we pass the guard.  We do not need this
5078   // guard for non-virtual calls -- the caller is known to be the native
5079   // Object hashCode().
5080   if (is_virtual) {
5081     // After null check, get the object's klass.
5082     Node* obj_klass = load_object_klass(obj);
5083     generate_virtual_guard(obj_klass, slow_region);
5084   }
5085 
5086   // Get the header out of the object, use LoadMarkNode when available
5087   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5088   // The control of the load must be null. Otherwise, the load can move before
5089   // the null check after castPP removal.
5090   Node* no_ctrl = nullptr;
5091   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5092 
5093   if (!UseObjectMonitorTable) {
5094     // Test the header to see if it is safe to read w.r.t. locking.
5095   // This also serves as guard against inline types
5096     Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
5097     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5098     if (LockingMode == LM_LIGHTWEIGHT) {
5099       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5100       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5101       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5102 
5103       generate_slow_guard(test_monitor, slow_region);
5104     } else {
5105       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
5106       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
5107       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
5108 
5109       generate_slow_guard(test_not_unlocked, slow_region);
5110     }
5111   }
5112 
5113   // Get the hash value and check to see that it has been properly assigned.
5114   // We depend on hash_mask being at most 32 bits and avoid the use of
5115   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5116   // vm: see markWord.hpp.

5151     // this->control() comes from set_results_for_java_call
5152     result_reg->init_req(_slow_path, control());
5153     result_val->init_req(_slow_path, slow_result);
5154     result_io  ->set_req(_slow_path, i_o());
5155     result_mem ->set_req(_slow_path, reset_memory());
5156   }
5157 
5158   // Return the combined state.
5159   set_i_o(        _gvn.transform(result_io)  );
5160   set_all_memory( _gvn.transform(result_mem));
5161 
5162   set_result(result_reg, result_val);
5163   return true;
5164 }
5165 
5166 //---------------------------inline_native_getClass----------------------------
5167 // public final native Class<?> java.lang.Object.getClass();
5168 //
5169 // Build special case code for calls to getClass on an object.
5170 bool LibraryCallKit::inline_native_getClass() {
5171   Node* obj = argument(0);
5172   if (obj->is_InlineType()) {
5173     const Type* t = _gvn.type(obj);
5174     if (t->maybe_null()) {
5175       null_check(obj);
5176     }
5177     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5178     return true;
5179   }
5180   obj = null_check_receiver();
5181   if (stopped())  return true;
5182   set_result(load_mirror_from_klass(load_object_klass(obj)));
5183   return true;
5184 }
5185 
5186 //-----------------inline_native_Reflection_getCallerClass---------------------
5187 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5188 //
5189 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5190 //
5191 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5192 // in that it must skip particular security frames and checks for
5193 // caller sensitive methods.
5194 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5195 #ifndef PRODUCT
5196   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5197     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5198   }
5199 #endif
5200 

5512     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5513 
5514     flags |= RC_NARROW_MEM; // narrow in memory
5515   }
5516 
5517   // Call it.  Note that the length argument is not scaled.
5518   make_runtime_call(flags,
5519                     OptoRuntime::unsafe_setmemory_Type(),
5520                     StubRoutines::unsafe_setmemory(),
5521                     "unsafe_setmemory",
5522                     dst_type,
5523                     dst_addr, size XTOP, byte);
5524 
5525   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5526 
5527   return true;
5528 }
5529 
5530 #undef XTOP
5531 
5532 //----------------------inline_unsafe_isFlatArray------------------------
5533 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass);
5534 // This intrinsic exploits assumptions made by the native implementation
5535 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks.
5536 bool LibraryCallKit::inline_unsafe_isFlatArray() {
5537   Node* cls = argument(1);
5538   Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset());
5539   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p,
5540                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
5541   Node* result = flat_array_test(kls);
5542   set_result(result);
5543   return true;
5544 }
5545 
5546 //------------------------clone_coping-----------------------------------
5547 // Helper function for inline_native_clone.
5548 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5549   assert(obj_size != nullptr, "");
5550   Node* raw_obj = alloc_obj->in(1);
5551   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5552 
5553   AllocateNode* alloc = nullptr;
5554   if (ReduceBulkZeroing &&
5555       // If we are implementing an array clone without knowing its source type
5556       // (can happen when compiling the array-guarded branch of a reflective
5557       // Object.clone() invocation), initialize the array within the allocation.
5558       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5559       // to a runtime clone call that assumes fully initialized source arrays.
5560       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5561     // We will be completely responsible for initializing this object -
5562     // mark Initialize node as complete.
5563     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5564     // The object was just allocated - there should be no any stores!
5565     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");

5596 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5597 //
5598 // The general case has two steps, allocation and copying.
5599 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5600 //
5601 // Copying also has two cases, oop arrays and everything else.
5602 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5603 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5604 //
5605 // These steps fold up nicely if and when the cloned object's klass
5606 // can be sharply typed as an object array, a type array, or an instance.
5607 //
5608 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5609   PhiNode* result_val;
5610 
5611   // Set the reexecute bit for the interpreter to reexecute
5612   // the bytecode that invokes Object.clone if deoptimization happens.
5613   { PreserveReexecuteState preexecs(this);
5614     jvms()->set_should_reexecute(true);
5615 
5616     Node* obj = argument(0);
5617     obj = null_check_receiver();
5618     if (stopped())  return true;
5619 
5620     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5621     if (obj_type->is_inlinetypeptr()) {
5622       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5623       // no identity.
5624       set_result(obj);
5625       return true;
5626     }
5627 
5628     // If we are going to clone an instance, we need its exact type to
5629     // know the number and types of fields to convert the clone to
5630     // loads/stores. Maybe a speculative type can help us.
5631     if (!obj_type->klass_is_exact() &&
5632         obj_type->speculative_type() != nullptr &&
5633         obj_type->speculative_type()->is_instance_klass() &&
5634         !obj_type->speculative_type()->is_inlinetype()) {
5635       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5636       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5637           !spec_ik->has_injected_fields()) {
5638         if (!obj_type->isa_instptr() ||
5639             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5640           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5641         }
5642       }
5643     }
5644 
5645     // Conservatively insert a memory barrier on all memory slices.
5646     // Do not let writes into the original float below the clone.
5647     insert_mem_bar(Op_MemBarCPUOrder);
5648 
5649     // paths into result_reg:
5650     enum {
5651       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5652       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5653       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5654       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5655       PATH_LIMIT
5656     };
5657     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5658     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5659     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5660     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5661     record_for_igvn(result_reg);
5662 
5663     // TODO 8350865 For arrays, this might be folded and then not account for atomic arrays
5664     Node* obj_klass = load_object_klass(obj);
5665     // We only go to the fast case code if we pass a number of guards.
5666     // The paths which do not pass are accumulated in the slow_region.
5667     RegionNode* slow_region = new RegionNode(1);
5668     record_for_igvn(slow_region);
5669 
5670     Node* array_obj = obj;
5671     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5672     if (array_ctl != nullptr) {
5673       // It's an array.
5674       PreserveJVMState pjvms(this);
5675       set_control(array_ctl);



5676 
5677       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5678       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5679       if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5680           obj_type->can_be_inline_array() &&
5681           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5682         // Flat inline type array may have object field that would require a
5683         // write barrier. Conservatively, go to slow path.
5684         generate_fair_guard(flat_array_test(obj_klass), slow_region);













5685       }







5686 
5687       if (!stopped()) {
5688         Node* obj_length = load_array_length(array_obj);
5689         Node* array_size = nullptr; // Size of the array without object alignment padding.
5690         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5691 
5692         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5693         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5694           // If it is an oop array, it requires very special treatment,
5695           // because gc barriers are required when accessing the array.
5696           Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5697           if (is_obja != nullptr) {
5698             PreserveJVMState pjvms2(this);
5699             set_control(is_obja);
5700             // Generate a direct call to the right arraycopy function(s).
5701             // Clones are always tightly coupled.
5702             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5703             ac->set_clone_oop_array();
5704             Node* n = _gvn.transform(ac);
5705             assert(n == ac, "cannot disappear");
5706             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5707 
5708             result_reg->init_req(_objArray_path, control());
5709             result_val->init_req(_objArray_path, alloc_obj);
5710             result_i_o ->set_req(_objArray_path, i_o());
5711             result_mem ->set_req(_objArray_path, reset_memory());
5712           }
5713         }
5714         // Otherwise, there are no barriers to worry about.
5715         // (We can dispense with card marks if we know the allocation
5716         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5717         //  causes the non-eden paths to take compensating steps to
5718         //  simulate a fresh allocation, so that no further
5719         //  card marks are required in compiled code to initialize
5720         //  the object.)
5721 
5722         if (!stopped()) {
5723           copy_to_clone(obj, alloc_obj, array_size, true);
5724 
5725           // Present the results of the copy.
5726           result_reg->init_req(_array_path, control());
5727           result_val->init_req(_array_path, alloc_obj);
5728           result_i_o ->set_req(_array_path, i_o());
5729           result_mem ->set_req(_array_path, reset_memory());
5730         }
5731       }
5732     }
5733 




5734     if (!stopped()) {
5735       // It's an instance (we did array above).  Make the slow-path tests.
5736       // If this is a virtual call, we generate a funny guard.  We grab
5737       // the vtable entry corresponding to clone() from the target object.
5738       // If the target method which we are calling happens to be the
5739       // Object clone() method, we pass the guard.  We do not need this
5740       // guard for non-virtual calls; the caller is known to be the native
5741       // Object clone().
5742       if (is_virtual) {
5743         generate_virtual_guard(obj_klass, slow_region);
5744       }
5745 
5746       // The object must be easily cloneable and must not have a finalizer.
5747       // Both of these conditions may be checked in a single test.
5748       // We could optimize the test further, but we don't care.
5749       generate_misc_flags_guard(obj_klass,
5750                                 // Test both conditions:
5751                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5752                                 // Must be cloneable but not finalizer:
5753                                 KlassFlags::_misc_is_cloneable_fast,

5845         set_jvms(sfpt->jvms());
5846         _reexecute_sp = jvms()->sp();
5847 
5848         return saved_jvms;
5849       }
5850     }
5851   }
5852   return nullptr;
5853 }
5854 
5855 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5856 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5857 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5858   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5859   uint size = alloc->req();
5860   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5861   old_jvms->set_map(sfpt);
5862   for (uint i = 0; i < size; i++) {
5863     sfpt->init_req(i, alloc->in(i));
5864   }
5865   int adjustment = 1;
5866   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
5867   if (ary_klass_ptr->is_null_free()) {
5868     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which
5869     // also requires the componentType and initVal on stack for re-execution.
5870     // Re-create and push the componentType.
5871     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
5872     ciInstance* instance = klass->component_mirror_instance();
5873     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
5874     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
5875     adjustment++;
5876   }
5877   // re-push array length for deoptimization
5878   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
5879   if (ary_klass_ptr->is_null_free()) {
5880     // Re-create and push the initVal.
5881     Node* init_val = alloc->in(AllocateNode::InitValue);
5882     if (init_val == nullptr) {
5883       init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass());
5884     } else if (UseCompressedOops) {
5885       init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr()));
5886     }
5887     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val);
5888     adjustment++;
5889   }
5890   old_jvms->set_sp(old_jvms->sp() + adjustment);
5891   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
5892   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
5893   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
5894   old_jvms->set_should_reexecute(true);
5895 
5896   sfpt->set_i_o(map()->i_o());
5897   sfpt->set_memory(map()->memory());
5898   sfpt->set_control(map()->control());
5899   return sfpt;
5900 }
5901 
5902 // In case of a deoptimization, we restart execution at the
5903 // allocation, allocating a new array. We would leave an uninitialized
5904 // array in the heap that GCs wouldn't expect. Move the allocation
5905 // after the traps so we don't allocate the array if we
5906 // deoptimize. This is possible because tightly_coupled_allocation()
5907 // guarantees there's no observer of the allocated array at this point
5908 // and the control flow is simple enough.
5909 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5910                                                     int saved_reexecute_sp, uint new_idx) {
5911   if (saved_jvms_before_guards != nullptr && !stopped()) {
5912     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5913 
5914     assert(alloc != nullptr, "only with a tightly coupled allocation");
5915     // restore JVM state to the state at the arraycopy
5916     saved_jvms_before_guards->map()->set_control(map()->control());
5917     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5918     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5919     // If we've improved the types of some nodes (null check) while
5920     // emitting the guards, propagate them to the current state
5921     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5922     set_jvms(saved_jvms_before_guards);
5923     _reexecute_sp = saved_reexecute_sp;
5924 
5925     // Remove the allocation from above the guards
5926     CallProjections* callprojs = alloc->extract_projections(true);

5927     InitializeNode* init = alloc->initialization();
5928     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5929     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5930     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5931 
5932     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5933     // the allocation (i.e. is only valid if the allocation succeeds):
5934     // 1) replace CastIINode with AllocateArrayNode's length here
5935     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5936     //
5937     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5938     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5939     Node* init_control = init->proj_out(TypeFunc::Control);
5940     Node* alloc_length = alloc->Ideal_length();
5941 #ifdef ASSERT
5942     Node* prev_cast = nullptr;
5943 #endif
5944     for (uint i = 0; i < init_control->outcnt(); i++) {
5945       Node* init_out = init_control->raw_out(i);
5946       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5947 #ifdef ASSERT
5948         if (prev_cast == nullptr) {
5949           prev_cast = init_out;

5951           if (prev_cast->cmp(*init_out) == false) {
5952             prev_cast->dump();
5953             init_out->dump();
5954             assert(false, "not equal CastIINode");
5955           }
5956         }
5957 #endif
5958         C->gvn_replace_by(init_out, alloc_length);
5959       }
5960     }
5961     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5962 
5963     // move the allocation here (after the guards)
5964     _gvn.hash_delete(alloc);
5965     alloc->set_req(TypeFunc::Control, control());
5966     alloc->set_req(TypeFunc::I_O, i_o());
5967     Node *mem = reset_memory();
5968     set_all_memory(mem);
5969     alloc->set_req(TypeFunc::Memory, mem);
5970     set_control(init->proj_out_or_null(TypeFunc::Control));
5971     set_i_o(callprojs->fallthrough_ioproj);
5972 
5973     // Update memory as done in GraphKit::set_output_for_allocation()
5974     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5975     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5976     if (ary_type->isa_aryptr() && length_type != nullptr) {
5977       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5978     }
5979     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5980     int            elemidx  = C->get_alias_index(telemref);
5981     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5982     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5983 
5984     Node* allocx = _gvn.transform(alloc);
5985     assert(allocx == alloc, "where has the allocation gone?");
5986     assert(dest->is_CheckCastPP(), "not an allocation result?");
5987 
5988     _gvn.hash_delete(dest);
5989     dest->set_req(0, control());
5990     Node* destx = _gvn.transform(dest);
5991     assert(destx == dest, "where has the allocation result gone?");

6289         top_src  = src_type->isa_aryptr();
6290         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6291         src_spec = true;
6292       }
6293       if (!has_dest) {
6294         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6295         dest_type  = _gvn.type(dest);
6296         top_dest  = dest_type->isa_aryptr();
6297         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6298         dest_spec = true;
6299       }
6300     }
6301   }
6302 
6303   if (has_src && has_dest && can_emit_guards) {
6304     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6305     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6306     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6307     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6308 
6309     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6310       // If both arrays are object arrays then having the exact types
6311       // for both will remove the need for a subtype check at runtime
6312       // before the call and may make it possible to pick a faster copy
6313       // routine (without a subtype check on every element)
6314       // Do we have the exact type of src?
6315       bool could_have_src = src_spec;
6316       // Do we have the exact type of dest?
6317       bool could_have_dest = dest_spec;
6318       ciKlass* src_k = nullptr;
6319       ciKlass* dest_k = nullptr;
6320       if (!src_spec) {
6321         src_k = src_type->speculative_type_not_null();
6322         if (src_k != nullptr && src_k->is_array_klass()) {
6323           could_have_src = true;
6324         }
6325       }
6326       if (!dest_spec) {
6327         dest_k = dest_type->speculative_type_not_null();
6328         if (dest_k != nullptr && dest_k->is_array_klass()) {
6329           could_have_dest = true;
6330         }
6331       }
6332       if (could_have_src && could_have_dest) {
6333         // If we can have both exact types, emit the missing guards
6334         if (could_have_src && !src_spec) {
6335           src = maybe_cast_profiled_obj(src, src_k, true);
6336           src_type = _gvn.type(src);
6337           top_src = src_type->isa_aryptr();
6338         }
6339         if (could_have_dest && !dest_spec) {
6340           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6341           dest_type = _gvn.type(dest);
6342           top_dest = dest_type->isa_aryptr();
6343         }
6344       }
6345     }
6346   }
6347 
6348   ciMethod* trap_method = method();
6349   int trap_bci = bci();
6350   if (saved_jvms_before_guards != nullptr) {
6351     trap_method = alloc->jvms()->method();
6352     trap_bci = alloc->jvms()->bci();
6353   }
6354 
6355   bool negative_length_guard_generated = false;
6356 
6357   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6358       can_emit_guards && !src->is_top() && !dest->is_top()) {

6359     // validate arguments: enables transformation the ArrayCopyNode
6360     validated = true;
6361 
6362     RegionNode* slow_region = new RegionNode(1);
6363     record_for_igvn(slow_region);
6364 
6365     // (1) src and dest are arrays.
6366     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6367     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6368 
6369     // (2) src and dest arrays must have elements of the same BasicType
6370     // done at macro expansion or at Ideal transformation time
6371 
6372     // (4) src_offset must not be negative.
6373     generate_negative_guard(src_offset, slow_region);
6374 
6375     // (5) dest_offset must not be negative.
6376     generate_negative_guard(dest_offset, slow_region);
6377 
6378     // (7) src_offset + length must not exceed length of src.

6381                          slow_region);
6382 
6383     // (8) dest_offset + length must not exceed length of dest.
6384     generate_limit_guard(dest_offset, length,
6385                          load_array_length(dest),
6386                          slow_region);
6387 
6388     // (6) length must not be negative.
6389     // This is also checked in generate_arraycopy() during macro expansion, but
6390     // we also have to check it here for the case where the ArrayCopyNode will
6391     // be eliminated by Escape Analysis.
6392     if (EliminateAllocations) {
6393       generate_negative_guard(length, slow_region);
6394       negative_length_guard_generated = true;
6395     }
6396 
6397     // (9) each element of an oop array must be assignable
6398     Node* dest_klass = load_object_klass(dest);
6399     if (src != dest) {
6400       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6401       slow_region->add_req(not_subtype_ctrl);
6402     }
6403 
6404     // TODO 8350865 Fix below logic. Also handle atomicity.
6405     generate_fair_guard(flat_array_test(src), slow_region);
6406     generate_fair_guard(flat_array_test(dest), slow_region);
6407 
6408     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6409     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6410     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6411     src_type = _gvn.type(src);
6412     top_src  = src_type->isa_aryptr();
6413 
6414     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6415     if (!stopped() && UseArrayFlattening) {
6416       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6417       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6418       if (top_src != nullptr && top_src->is_flat()) {
6419         // Src is flat, check that dest is flat as well
6420         if (top_dest != nullptr && !top_dest->is_flat()) {
6421           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6422           // Since dest is flat and src <: dest, dest must have the same type as src.
6423           top_dest = top_src->cast_to_exactness(false);
6424           assert(top_dest->is_flat(), "dest must be flat");
6425           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6426         }
6427       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6428         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6429         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6430         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6431         generate_fair_guard(flat_array_test(src), slow_region);
6432         if (top_src != nullptr) {
6433           top_src = top_src->cast_to_not_flat();
6434           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6435         }
6436       }
6437     }
6438 
6439     {
6440       PreserveJVMState pjvms(this);
6441       set_control(_gvn.transform(slow_region));
6442       uncommon_trap(Deoptimization::Reason_intrinsic,
6443                     Deoptimization::Action_make_not_entrant);
6444       assert(stopped(), "Should be stopped");
6445     }




6446     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6447   }
6448 
6449   if (stopped()) {
6450     return true;
6451   }
6452 
6453   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6454                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6455                                           // so the compiler has a chance to eliminate them: during macro expansion,
6456                                           // we have to set their control (CastPP nodes are eliminated).
6457                                           load_object_klass(src), load_object_klass(dest),
6458                                           load_array_length(src), load_array_length(dest));
6459 
6460   ac->set_arraycopy(validated);
6461 
6462   Node* n = _gvn.transform(ac);
6463   if (n == ac) {
6464     ac->connect_outputs(this);
6465   } else {
< prev index next >