1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_LOOPNODE_HPP 26 #define SHARE_OPTO_LOOPNODE_HPP 27 28 #include "opto/cfgnode.hpp" 29 #include "opto/multnode.hpp" 30 #include "opto/phaseX.hpp" 31 #include "opto/predicates.hpp" 32 #include "opto/subnode.hpp" 33 #include "opto/type.hpp" 34 #include "utilities/checkedCast.hpp" 35 36 class CmpNode; 37 class BaseCountedLoopEndNode; 38 class CountedLoopNode; 39 class IdealLoopTree; 40 class LoopNode; 41 class Node; 42 class OuterStripMinedLoopEndNode; 43 class PredicateBlock; 44 class PathFrequency; 45 class PhaseIdealLoop; 46 class UnswitchedLoopSelector; 47 class VectorSet; 48 class VSharedData; 49 class Invariance; 50 struct small_cache; 51 52 // 53 // I D E A L I Z E D L O O P S 54 // 55 // Idealized loops are the set of loops I perform more interesting 56 // transformations on, beyond simple hoisting. 57 58 //------------------------------LoopNode--------------------------------------- 59 // Simple loop header. Fall in path on left, loop-back path on right. 60 class LoopNode : public RegionNode { 61 // Size is bigger to hold the flags. However, the flags do not change 62 // the semantics so it does not appear in the hash & cmp functions. 63 virtual uint size_of() const { return sizeof(*this); } 64 protected: 65 uint _loop_flags; 66 // Names for flag bitfields 67 enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3, 68 MainHasNoPreLoop = 1<<2, 69 HasExactTripCount = 1<<3, 70 InnerLoop = 1<<4, 71 PartialPeelLoop = 1<<5, 72 PartialPeelFailed = 1<<6, 73 WasSlpAnalyzed = 1<<7, 74 PassedSlpAnalysis = 1<<8, 75 DoUnrollOnly = 1<<9, 76 VectorizedLoop = 1<<10, 77 HasAtomicPostLoop = 1<<11, 78 StripMined = 1<<12, 79 SubwordLoop = 1<<13, 80 ProfileTripFailed = 1<<14, 81 LoopNestInnerLoop = 1<<15, 82 LoopNestLongOuterLoop = 1<<16 }; 83 char _unswitch_count; 84 enum { _unswitch_max=3 }; 85 86 // Expected trip count from profile data 87 float _profile_trip_cnt; 88 89 public: 90 // Names for edge indices 91 enum { Self=0, EntryControl, LoopBackControl }; 92 93 bool is_inner_loop() const { return _loop_flags & InnerLoop; } 94 void set_inner_loop() { _loop_flags |= InnerLoop; } 95 96 bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; } 97 bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; } 98 void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; } 99 bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; } 100 bool is_strip_mined() const { return _loop_flags & StripMined; } 101 bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; } 102 bool is_subword_loop() const { return _loop_flags & SubwordLoop; } 103 bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; } 104 bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; } 105 106 void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; } 107 void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; } 108 void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; } 109 void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; } 110 void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; } 111 void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; } 112 void mark_strip_mined() { _loop_flags |= StripMined; } 113 void clear_strip_mined() { _loop_flags &= ~StripMined; } 114 void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; } 115 void mark_subword_loop() { _loop_flags |= SubwordLoop; } 116 void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; } 117 void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; } 118 119 int unswitch_max() { return _unswitch_max; } 120 int unswitch_count() { return _unswitch_count; } 121 122 void set_unswitch_count(int val) { 123 assert (val <= unswitch_max(), "too many unswitches"); 124 _unswitch_count = val; 125 } 126 127 void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; } 128 float profile_trip_cnt() { return _profile_trip_cnt; } 129 130 LoopNode(Node *entry, Node *backedge) 131 : RegionNode(3), _loop_flags(0), _unswitch_count(0), 132 _profile_trip_cnt(COUNT_UNKNOWN) { 133 init_class_id(Class_Loop); 134 init_req(EntryControl, entry); 135 init_req(LoopBackControl, backedge); 136 } 137 138 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 139 virtual int Opcode() const; 140 bool can_be_counted_loop(PhaseValues* phase) const { 141 return req() == 3 && in(0) != nullptr && 142 in(1) != nullptr && phase->type(in(1)) != Type::TOP && 143 in(2) != nullptr && phase->type(in(2)) != Type::TOP; 144 } 145 bool is_valid_counted_loop(BasicType bt) const; 146 #ifndef PRODUCT 147 virtual void dump_spec(outputStream *st) const; 148 #endif 149 150 void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN; 151 virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; } 152 virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; } 153 virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; } 154 virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; } 155 virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; } 156 }; 157 158 //------------------------------Counted Loops---------------------------------- 159 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit 160 // path (and maybe some other exit paths). The trip-counter exit is always 161 // last in the loop. The trip-counter have to stride by a constant; 162 // the exit value is also loop invariant. 163 164 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs. The 165 // CountedLoopNode has the incoming loop control and the loop-back-control 166 // which is always the IfTrue before the matching CountedLoopEndNode. The 167 // CountedLoopEndNode has an incoming control (possibly not the 168 // CountedLoopNode if there is control flow in the loop), the post-increment 169 // trip-counter value, and the limit. The trip-counter value is always of 170 // the form (Op old-trip-counter stride). The old-trip-counter is produced 171 // by a Phi connected to the CountedLoopNode. The stride is constant. 172 // The Op is any commutable opcode, including Add, Mul, Xor. The 173 // CountedLoopEndNode also takes in the loop-invariant limit value. 174 175 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the 176 // loop-back control. From CountedLoopEndNodes I can reach CountedLoopNodes 177 // via the old-trip-counter from the Op node. 178 179 //------------------------------CountedLoopNode-------------------------------- 180 // CountedLoopNodes head simple counted loops. CountedLoopNodes have as 181 // inputs the incoming loop-start control and the loop-back control, so they 182 // act like RegionNodes. They also take in the initial trip counter, the 183 // loop-invariant stride and the loop-invariant limit value. CountedLoopNodes 184 // produce a loop-body control and the trip counter value. Since 185 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model. 186 187 class BaseCountedLoopNode : public LoopNode { 188 public: 189 BaseCountedLoopNode(Node *entry, Node *backedge) 190 : LoopNode(entry, backedge) { 191 } 192 193 Node *init_control() const { return in(EntryControl); } 194 Node *back_control() const { return in(LoopBackControl); } 195 196 Node* init_trip() const; 197 Node* stride() const; 198 bool stride_is_con() const; 199 Node* limit() const; 200 Node* incr() const; 201 Node* phi() const; 202 203 BaseCountedLoopEndNode* loopexit_or_null() const; 204 BaseCountedLoopEndNode* loopexit() const; 205 206 virtual BasicType bt() const = 0; 207 208 jlong stride_con() const; 209 210 static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt); 211 }; 212 213 214 class CountedLoopNode : public BaseCountedLoopNode { 215 // Size is bigger to hold _main_idx. However, _main_idx does not change 216 // the semantics so it does not appear in the hash & cmp functions. 217 virtual uint size_of() const { return sizeof(*this); } 218 219 // For Pre- and Post-loops during debugging ONLY, this holds the index of 220 // the Main CountedLoop. Used to assert that we understand the graph shape. 221 node_idx_t _main_idx; 222 223 // Known trip count calculated by compute_exact_trip_count() 224 uint _trip_count; 225 226 // Log2 of original loop bodies in unrolled loop 227 int _unrolled_count_log2; 228 229 // Node count prior to last unrolling - used to decide if 230 // unroll,optimize,unroll,optimize,... is making progress 231 int _node_count_before_unroll; 232 233 // If slp analysis is performed we record the maximum 234 // vector mapped unroll factor here 235 int _slp_maximum_unroll_factor; 236 237 public: 238 CountedLoopNode(Node *entry, Node *backedge) 239 : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint), 240 _unrolled_count_log2(0), _node_count_before_unroll(0), 241 _slp_maximum_unroll_factor(0) { 242 init_class_id(Class_CountedLoop); 243 // Initialize _trip_count to the largest possible value. 244 // Will be reset (lower) if the loop's trip count is known. 245 } 246 247 virtual int Opcode() const; 248 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 249 250 CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); } 251 CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); } 252 int stride_con() const; 253 254 // Match increment with optional truncation 255 static Node* 256 match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type, 257 BasicType bt); 258 259 // A 'main' loop has a pre-loop and a post-loop. The 'main' loop 260 // can run short a few iterations and may start a few iterations in. 261 // It will be RCE'd and unrolled and aligned. 262 263 // A following 'post' loop will run any remaining iterations. Used 264 // during Range Check Elimination, the 'post' loop will do any final 265 // iterations with full checks. Also used by Loop Unrolling, where 266 // the 'post' loop will do any epilog iterations needed. Basically, 267 // a 'post' loop can not profitably be further unrolled or RCE'd. 268 269 // A preceding 'pre' loop will run at least 1 iteration (to do peeling), 270 // it may do under-flow checks for RCE and may do alignment iterations 271 // so the following main loop 'knows' that it is striding down cache 272 // lines. 273 274 // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or 275 // Aligned, may be missing it's pre-loop. 276 bool is_normal_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; } 277 bool is_pre_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Pre; } 278 bool is_main_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Main; } 279 bool is_post_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Post; } 280 bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; } 281 bool has_passed_slp () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; } 282 bool is_unroll_only () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; } 283 bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; } 284 bool has_atomic_post_loop () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; } 285 void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; } 286 287 int main_idx() const { return _main_idx; } 288 289 290 void set_pre_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; } 291 void set_main_loop ( ) { assert(is_normal_loop(),""); _loop_flags |= Main; } 292 void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; } 293 void set_normal_loop( ) { _loop_flags &= ~PreMainPostFlagsMask; } 294 295 void set_trip_count(uint tc) { _trip_count = tc; } 296 uint trip_count() { return _trip_count; } 297 298 bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; } 299 void set_exact_trip_count(uint tc) { 300 _trip_count = tc; 301 _loop_flags |= HasExactTripCount; 302 } 303 void set_nonexact_trip_count() { 304 _loop_flags &= ~HasExactTripCount; 305 } 306 void set_notpassed_slp() { 307 _loop_flags &= ~PassedSlpAnalysis; 308 } 309 310 void double_unrolled_count() { _unrolled_count_log2++; } 311 int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); } 312 313 void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; } 314 int node_count_before_unroll() { return _node_count_before_unroll; } 315 void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; } 316 int slp_max_unroll() const { return _slp_maximum_unroll_factor; } 317 318 virtual LoopNode* skip_strip_mined(int expect_skeleton = 1); 319 OuterStripMinedLoopNode* outer_loop() const; 320 virtual IfTrueNode* outer_loop_tail() const; 321 virtual OuterStripMinedLoopEndNode* outer_loop_end() const; 322 virtual IfFalseNode* outer_loop_exit() const; 323 virtual SafePointNode* outer_safepoint() const; 324 325 Node* skip_assertion_predicates_with_halt(); 326 327 virtual BasicType bt() const { 328 return T_INT; 329 } 330 331 Node* is_canonical_loop_entry(); 332 CountedLoopEndNode* find_pre_loop_end(); 333 334 #ifndef PRODUCT 335 virtual void dump_spec(outputStream *st) const; 336 #endif 337 }; 338 339 class LongCountedLoopNode : public BaseCountedLoopNode { 340 public: 341 LongCountedLoopNode(Node *entry, Node *backedge) 342 : BaseCountedLoopNode(entry, backedge) { 343 init_class_id(Class_LongCountedLoop); 344 } 345 346 virtual int Opcode() const; 347 348 virtual BasicType bt() const { 349 return T_LONG; 350 } 351 352 LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); } 353 LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); } 354 }; 355 356 357 //------------------------------CountedLoopEndNode----------------------------- 358 // CountedLoopEndNodes end simple trip counted loops. They act much like 359 // IfNodes. 360 361 class BaseCountedLoopEndNode : public IfNode { 362 public: 363 enum { TestControl, TestValue }; 364 BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 365 : IfNode(control, test, prob, cnt) { 366 init_class_id(Class_BaseCountedLoopEnd); 367 } 368 369 Node *cmp_node() const { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; } 370 Node* incr() const { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; } 371 Node* limit() const { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; } 372 Node* stride() const { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; } 373 Node* init_trip() const { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; } 374 bool stride_is_con() const { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); } 375 376 PhiNode* phi() const { 377 Node* tmp = incr(); 378 if (tmp && tmp->req() == 3) { 379 Node* phi = tmp->in(1); 380 if (phi->is_Phi()) { 381 return phi->as_Phi(); 382 } 383 } 384 return nullptr; 385 } 386 387 BaseCountedLoopNode* loopnode() const { 388 // The CountedLoopNode that goes with this CountedLoopEndNode may 389 // have been optimized out by the IGVN so be cautious with the 390 // pattern matching on the graph 391 PhiNode* iv_phi = phi(); 392 if (iv_phi == nullptr) { 393 return nullptr; 394 } 395 Node* ln = iv_phi->in(0); 396 if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) { 397 return nullptr; 398 } 399 if (ln->as_BaseCountedLoop()->bt() != bt()) { 400 return nullptr; 401 } 402 return ln->as_BaseCountedLoop(); 403 } 404 405 BoolTest::mask test_trip() const { return in(TestValue)->as_Bool()->_test._test; } 406 407 jlong stride_con() const; 408 virtual BasicType bt() const = 0; 409 410 static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt); 411 }; 412 413 class CountedLoopEndNode : public BaseCountedLoopEndNode { 414 public: 415 416 CountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 417 : BaseCountedLoopEndNode(control, test, prob, cnt) { 418 init_class_id(Class_CountedLoopEnd); 419 } 420 virtual int Opcode() const; 421 422 CountedLoopNode* loopnode() const { 423 return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode(); 424 } 425 426 virtual BasicType bt() const { 427 return T_INT; 428 } 429 430 #ifndef PRODUCT 431 virtual void dump_spec(outputStream *st) const; 432 #endif 433 }; 434 435 class LongCountedLoopEndNode : public BaseCountedLoopEndNode { 436 public: 437 LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 438 : BaseCountedLoopEndNode(control, test, prob, cnt) { 439 init_class_id(Class_LongCountedLoopEnd); 440 } 441 442 LongCountedLoopNode* loopnode() const { 443 return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode(); 444 } 445 446 virtual int Opcode() const; 447 448 virtual BasicType bt() const { 449 return T_LONG; 450 } 451 }; 452 453 454 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const { 455 Node* bctrl = back_control(); 456 if (bctrl == nullptr) return nullptr; 457 458 Node* lexit = bctrl->in(0); 459 if (!lexit->is_BaseCountedLoopEnd()) { 460 return nullptr; 461 } 462 BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd(); 463 if (result->bt() != bt()) { 464 return nullptr; 465 } 466 return result; 467 } 468 469 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const { 470 BaseCountedLoopEndNode* cle = loopexit_or_null(); 471 assert(cle != nullptr, "loopexit is null"); 472 return cle; 473 } 474 475 inline Node* BaseCountedLoopNode::init_trip() const { 476 BaseCountedLoopEndNode* cle = loopexit_or_null(); 477 return cle != nullptr ? cle->init_trip() : nullptr; 478 } 479 inline Node* BaseCountedLoopNode::stride() const { 480 BaseCountedLoopEndNode* cle = loopexit_or_null(); 481 return cle != nullptr ? cle->stride() : nullptr; 482 } 483 484 inline bool BaseCountedLoopNode::stride_is_con() const { 485 BaseCountedLoopEndNode* cle = loopexit_or_null(); 486 return cle != nullptr && cle->stride_is_con(); 487 } 488 inline Node* BaseCountedLoopNode::limit() const { 489 BaseCountedLoopEndNode* cle = loopexit_or_null(); 490 return cle != nullptr ? cle->limit() : nullptr; 491 } 492 inline Node* BaseCountedLoopNode::incr() const { 493 BaseCountedLoopEndNode* cle = loopexit_or_null(); 494 return cle != nullptr ? cle->incr() : nullptr; 495 } 496 inline Node* BaseCountedLoopNode::phi() const { 497 BaseCountedLoopEndNode* cle = loopexit_or_null(); 498 return cle != nullptr ? cle->phi() : nullptr; 499 } 500 501 inline jlong BaseCountedLoopNode::stride_con() const { 502 BaseCountedLoopEndNode* cle = loopexit_or_null(); 503 return cle != nullptr ? cle->stride_con() : 0; 504 } 505 506 507 //------------------------------LoopLimitNode----------------------------- 508 // Counted Loop limit node which represents exact final iterator value: 509 // trip_count = (limit - init_trip + stride - 1)/stride 510 // final_value= trip_count * stride + init_trip. 511 // Use HW instructions to calculate it when it can overflow in integer. 512 // Note, final_value should fit into integer since counted loop has 513 // limit check: limit <= max_int-stride. 514 class LoopLimitNode : public Node { 515 enum { Init=1, Limit=2, Stride=3 }; 516 public: 517 LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(nullptr,init,limit,stride) { 518 // Put it on the Macro nodes list to optimize during macro nodes expansion. 519 init_flags(Flag_is_macro); 520 C->add_macro_node(this); 521 } 522 virtual int Opcode() const; 523 virtual const Type *bottom_type() const { return TypeInt::INT; } 524 virtual uint ideal_reg() const { return Op_RegI; } 525 virtual const Type* Value(PhaseGVN* phase) const; 526 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 527 virtual Node* Identity(PhaseGVN* phase); 528 }; 529 530 // Support for strip mining 531 class OuterStripMinedLoopNode : public LoopNode { 532 private: 533 static void fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop); 534 535 public: 536 OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge) 537 : LoopNode(entry, backedge) { 538 init_class_id(Class_OuterStripMinedLoop); 539 init_flags(Flag_is_macro); 540 C->add_macro_node(this); 541 } 542 543 virtual int Opcode() const; 544 545 virtual IfTrueNode* outer_loop_tail() const; 546 virtual OuterStripMinedLoopEndNode* outer_loop_end() const; 547 virtual IfFalseNode* outer_loop_exit() const; 548 virtual SafePointNode* outer_safepoint() const; 549 void adjust_strip_mined_loop(PhaseIterGVN* igvn); 550 551 void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const; 552 553 void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop); 554 555 static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop); 556 557 Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn, 558 PhaseIdealLoop* iloop); 559 }; 560 561 class OuterStripMinedLoopEndNode : public IfNode { 562 public: 563 OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt) 564 : IfNode(control, test, prob, cnt) { 565 init_class_id(Class_OuterStripMinedLoopEnd); 566 } 567 568 virtual int Opcode() const; 569 570 virtual const Type* Value(PhaseGVN* phase) const; 571 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 572 573 bool is_expanded(PhaseGVN *phase) const; 574 }; 575 576 // -----------------------------IdealLoopTree---------------------------------- 577 class IdealLoopTree : public ResourceObj { 578 public: 579 IdealLoopTree *_parent; // Parent in loop tree 580 IdealLoopTree *_next; // Next sibling in loop tree 581 IdealLoopTree *_child; // First child in loop tree 582 583 // The head-tail backedge defines the loop. 584 // If a loop has multiple backedges, this is addressed during cleanup where 585 // we peel off the multiple backedges, merging all edges at the bottom and 586 // ensuring that one proper backedge flow into the loop. 587 Node *_head; // Head of loop 588 Node *_tail; // Tail of loop 589 inline Node *tail(); // Handle lazy update of _tail field 590 inline Node *head(); // Handle lazy update of _head field 591 PhaseIdealLoop* _phase; 592 int _local_loop_unroll_limit; 593 int _local_loop_unroll_factor; 594 595 Node_List _body; // Loop body for inner loops 596 597 uint16_t _nest; // Nesting depth 598 uint8_t _irreducible:1, // True if irreducible 599 _has_call:1, // True if has call safepoint 600 _has_sfpt:1, // True if has non-call safepoint 601 _rce_candidate:1, // True if candidate for range check elimination 602 _has_range_checks:1, 603 _has_range_checks_computed:1; 604 605 Node_List* _safepts; // List of safepoints in this loop 606 Node_List* _required_safept; // A inner loop cannot delete these safepts; 607 bool _allow_optimizations; // Allow loop optimizations 608 609 IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail ) 610 : _parent(nullptr), _next(nullptr), _child(nullptr), 611 _head(head), _tail(tail), 612 _phase(phase), 613 _local_loop_unroll_limit(0), _local_loop_unroll_factor(0), 614 _body(Compile::current()->comp_arena()), 615 _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0), 616 _has_range_checks(0), _has_range_checks_computed(0), 617 _safepts(nullptr), 618 _required_safept(nullptr), 619 _allow_optimizations(true) 620 { 621 precond(_head != nullptr); 622 precond(_tail != nullptr); 623 } 624 625 // Is 'l' a member of 'this'? 626 bool is_member(const IdealLoopTree *l) const; // Test for nested membership 627 628 // Set loop nesting depth. Accumulate has_call bits. 629 int set_nest( uint depth ); 630 631 // Split out multiple fall-in edges from the loop header. Move them to a 632 // private RegionNode before the loop. This becomes the loop landing pad. 633 void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ); 634 635 // Split out the outermost loop from this shared header. 636 void split_outer_loop( PhaseIdealLoop *phase ); 637 638 // Merge all the backedges from the shared header into a private Region. 639 // Feed that region as the one backedge to this loop. 640 void merge_many_backedges( PhaseIdealLoop *phase ); 641 642 // Split shared headers and insert loop landing pads. 643 // Insert a LoopNode to replace the RegionNode. 644 // Returns TRUE if loop tree is structurally changed. 645 bool beautify_loops( PhaseIdealLoop *phase ); 646 647 // Perform optimization to use the loop predicates for null checks and range checks. 648 // Applies to any loop level (not just the innermost one) 649 bool loop_predication( PhaseIdealLoop *phase); 650 bool can_apply_loop_predication(); 651 652 // Perform iteration-splitting on inner loops. Split iterations to 653 // avoid range checks or one-shot null checks. Returns false if the 654 // current round of loop opts should stop. 655 bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new ); 656 657 // Driver for various flavors of iteration splitting. Returns false 658 // if the current round of loop opts should stop. 659 bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ); 660 661 // Given dominators, try to find loops with calls that must always be 662 // executed (call dominates loop tail). These loops do not need non-call 663 // safepoints (ncsfpt). 664 void check_safepts(VectorSet &visited, Node_List &stack); 665 666 // Allpaths backwards scan from loop tail, terminating each path at first safepoint 667 // encountered. 668 void allpaths_check_safepts(VectorSet &visited, Node_List &stack); 669 670 // Remove safepoints from loop. Optionally keeping one. 671 void remove_safepoints(PhaseIdealLoop* phase, bool keep_one); 672 673 // Convert to counted loops where possible 674 void counted_loop( PhaseIdealLoop *phase ); 675 676 // Check for Node being a loop-breaking test 677 Node *is_loop_exit(Node *iff) const; 678 679 // Remove simplistic dead code from loop body 680 void DCE_loop_body(); 681 682 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage. 683 // Replace with a 1-in-10 exit guess. 684 void adjust_loop_exit_prob( PhaseIdealLoop *phase ); 685 686 // Return TRUE or FALSE if the loop should never be RCE'd or aligned. 687 // Useful for unrolling loops with NO array accesses. 688 bool policy_peel_only( PhaseIdealLoop *phase ) const; 689 690 // Return TRUE or FALSE if the loop should be unswitched -- clone 691 // loop with an invariant test 692 bool policy_unswitching( PhaseIdealLoop *phase ) const; 693 694 // Micro-benchmark spamming. Remove empty loops. 695 bool do_remove_empty_loop( PhaseIdealLoop *phase ); 696 697 // Convert one iteration loop into normal code. 698 bool do_one_iteration_loop( PhaseIdealLoop *phase ); 699 700 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can 701 // move some loop-invariant test (usually a null-check) before the loop. 702 bool policy_peeling(PhaseIdealLoop *phase); 703 704 uint estimate_peeling(PhaseIdealLoop *phase); 705 706 // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any 707 // known trip count in the counted loop node. 708 bool policy_maximally_unroll(PhaseIdealLoop *phase) const; 709 710 // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll 711 // if the loop is a counted loop and the loop body is small enough. 712 bool policy_unroll(PhaseIdealLoop *phase); 713 714 // Loop analyses to map to a maximal superword unrolling for vectorization. 715 void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct); 716 717 // Return TRUE or FALSE if the loop should be range-check-eliminated. 718 // Gather a list of IF tests that are dominated by iteration splitting; 719 // also gather the end of the first split and the start of the 2nd split. 720 bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const; 721 722 // Return TRUE if "iff" is a range check. 723 bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const; 724 bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset, 725 jlong& scale) const; 726 727 // Estimate the number of nodes required when cloning a loop (body). 728 uint est_loop_clone_sz(uint factor) const; 729 // Estimate the number of nodes required when unrolling a loop (body). 730 uint est_loop_unroll_sz(uint factor) const; 731 732 // Compute loop trip count if possible 733 void compute_trip_count(PhaseIdealLoop* phase); 734 735 // Compute loop trip count from profile data 736 float compute_profile_trip_cnt_helper(Node* n); 737 void compute_profile_trip_cnt( PhaseIdealLoop *phase ); 738 739 // Reassociate invariant expressions. 740 void reassociate_invariants(PhaseIdealLoop *phase); 741 // Reassociate invariant binary expressions. 742 Node* reassociate(Node* n1, PhaseIdealLoop *phase); 743 // Reassociate invariant add, subtract, and compare expressions. 744 Node* reassociate_add_sub_cmp(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop* phase); 745 // Return nonzero index of invariant operand if invariant and variant 746 // are combined with an associative binary. Helper for reassociate_invariants. 747 int find_invariant(Node* n, PhaseIdealLoop *phase); 748 // Return TRUE if "n" is associative. 749 bool is_associative(Node* n, Node* base=nullptr); 750 // Return TRUE if "n" is an associative cmp node. 751 bool is_associative_cmp(Node* n); 752 753 // Return true if n is invariant 754 bool is_invariant(Node* n) const; 755 756 // Put loop body on igvn work list 757 void record_for_igvn(); 758 759 bool is_root() { return _parent == nullptr; } 760 // A proper/reducible loop w/o any (occasional) dead back-edge. 761 bool is_loop() { return !_irreducible && !tail()->is_top(); } 762 bool is_counted() { return is_loop() && _head->is_CountedLoop(); } 763 bool is_innermost() { return is_loop() && _child == nullptr; } 764 765 void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase); 766 767 bool compute_has_range_checks() const; 768 bool range_checks_present() { 769 if (!_has_range_checks_computed) { 770 if (compute_has_range_checks()) { 771 _has_range_checks = 1; 772 } 773 _has_range_checks_computed = 1; 774 } 775 return _has_range_checks; 776 } 777 778 // Return the parent's IdealLoopTree for a strip mined loop which is the outer strip mined loop. 779 // In all other cases, return this. 780 IdealLoopTree* skip_strip_mined() { 781 return _head->as_Loop()->is_strip_mined() ? _parent : this; 782 } 783 784 #ifndef PRODUCT 785 void dump_head(); // Dump loop head only 786 void dump(); // Dump this loop recursively 787 #endif 788 789 #ifdef ASSERT 790 GrowableArray<IdealLoopTree*> collect_sorted_children() const; 791 bool verify_tree(IdealLoopTree* loop_verify) const; 792 #endif 793 794 private: 795 enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop. 796 797 // Estimate the number of nodes resulting from control and data flow merge. 798 uint est_loop_flow_merge_sz() const; 799 800 // Check if the number of residual iterations is large with unroll_cnt. 801 // Return true if the residual iterations are more than 10% of the trip count. 802 bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const { 803 return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt(); 804 } 805 806 void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const; 807 808 bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const; 809 810 void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const; 811 812 bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq, 813 Node* sfpt) const; 814 815 bool empty_loop_candidate(PhaseIdealLoop* phase) const; 816 817 bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const; 818 }; 819 820 // -----------------------------PhaseIdealLoop--------------------------------- 821 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees 822 // into a loop tree. Drives the loop-based transformations on the ideal graph. 823 class PhaseIdealLoop : public PhaseTransform { 824 friend class IdealLoopTree; 825 friend class SuperWord; 826 friend class ShenandoahBarrierC2Support; 827 friend class AutoNodeBudget; 828 829 // Map loop membership for CFG nodes, and ctrl for non-CFG nodes. 830 Node_List _loop_or_ctrl; 831 832 // Pre-computed def-use info 833 PhaseIterGVN &_igvn; 834 835 // Head of loop tree 836 IdealLoopTree* _ltree_root; 837 838 // Array of pre-order numbers, plus post-visited bit. 839 // ZERO for not pre-visited. EVEN for pre-visited but not post-visited. 840 // ODD for post-visited. Other bits are the pre-order number. 841 uint *_preorders; 842 uint _max_preorder; 843 844 ReallocMark _nesting; // Safety checks for arena reallocation 845 846 const PhaseIdealLoop* _verify_me; 847 bool _verify_only; 848 849 // Allocate _preorders[] array 850 void allocate_preorders() { 851 _max_preorder = C->unique()+8; 852 _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder); 853 memset(_preorders, 0, sizeof(uint) * _max_preorder); 854 } 855 856 // Allocate _preorders[] array 857 void reallocate_preorders() { 858 _nesting.check(); // Check if a potential re-allocation in the resource arena is safe 859 if ( _max_preorder < C->unique() ) { 860 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique()); 861 _max_preorder = C->unique(); 862 } 863 memset(_preorders, 0, sizeof(uint) * _max_preorder); 864 } 865 866 // Check to grow _preorders[] array for the case when build_loop_tree_impl() 867 // adds new nodes. 868 void check_grow_preorders( ) { 869 _nesting.check(); // Check if a potential re-allocation in the resource arena is safe 870 if ( _max_preorder < C->unique() ) { 871 uint newsize = _max_preorder<<1; // double size of array 872 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize); 873 memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder)); 874 _max_preorder = newsize; 875 } 876 } 877 // Check for pre-visited. Zero for NOT visited; non-zero for visited. 878 int is_visited( Node *n ) const { return _preorders[n->_idx]; } 879 // Pre-order numbers are written to the Nodes array as low-bit-set values. 880 void set_preorder_visited( Node *n, int pre_order ) { 881 assert( !is_visited( n ), "already set" ); 882 _preorders[n->_idx] = (pre_order<<1); 883 }; 884 // Return pre-order number. 885 int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; } 886 887 // Check for being post-visited. 888 // Should be previsited already (checked with assert(is_visited(n))). 889 int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; } 890 891 // Mark as post visited 892 void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; } 893 894 public: 895 // Set/get control node out. Set lower bit to distinguish from IdealLoopTree 896 // Returns true if "n" is a data node, false if it's a control node. 897 bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; } 898 899 private: 900 // clear out dead code after build_loop_late 901 Node_List _deadlist; 902 Node_List _zero_trip_guard_opaque_nodes; 903 904 // Support for faster execution of get_late_ctrl()/dom_lca() 905 // when a node has many uses and dominator depth is deep. 906 GrowableArray<jlong> _dom_lca_tags; 907 uint _dom_lca_tags_round; 908 void init_dom_lca_tags(); 909 910 // Helper for debugging bad dominance relationships 911 bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early); 912 913 Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false); 914 915 // Inline wrapper for frequent cases: 916 // 1) only one use 917 // 2) a use is the same as the current LCA passed as 'n1' 918 Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) { 919 assert( n->is_CFG(), "" ); 920 // Fast-path null lca 921 if( lca != nullptr && lca != n ) { 922 assert( lca->is_CFG(), "" ); 923 // find LCA of all uses 924 n = dom_lca_for_get_late_ctrl_internal( lca, n, tag ); 925 } 926 return find_non_split_ctrl(n); 927 } 928 Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag ); 929 930 // Helper function for directing control inputs away from CFG split points. 931 Node *find_non_split_ctrl( Node *ctrl ) const { 932 if (ctrl != nullptr) { 933 if (ctrl->is_MultiBranch()) { 934 ctrl = ctrl->in(0); 935 } 936 assert(ctrl->is_CFG(), "CFG"); 937 } 938 return ctrl; 939 } 940 941 #ifdef ASSERT 942 void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop); 943 #endif 944 void copy_assertion_predicates_to_main_loop_helper(const PredicateBlock* predicate_block, Node* init, Node* stride, 945 IdealLoopTree* outer_loop, LoopNode* outer_main_head, 946 uint dd_main_head, uint idx_before_pre_post, 947 uint idx_after_post_before_pre, Node* zero_trip_guard_proj_main, 948 Node* zero_trip_guard_proj_post, const Node_List &old_new); 949 void copy_assertion_predicates_to_main_loop(CountedLoopNode* pre_head, Node* init, Node* stride, IdealLoopTree* outer_loop, 950 LoopNode* outer_main_head, uint dd_main_head, uint idx_before_pre_post, 951 uint idx_after_post_before_pre, Node* zero_trip_guard_proj_main, 952 Node* zero_trip_guard_proj_post, const Node_List& old_new); 953 Node* clone_template_assertion_predicate(IfNode* iff, Node* new_init, Node* predicate, Node* uncommon_proj, Node* control, 954 IdealLoopTree* outer_loop, Node* new_control); 955 IfTrueNode* create_initialized_assertion_predicate(IfNode* template_assertion_predicate, Node* new_init, 956 Node* new_stride, Node* control); 957 static void count_opaque_loop_nodes(Node* n, uint& init, uint& stride); 958 static bool assertion_predicate_has_loop_opaque_node(IfNode* iff); 959 static void get_assertion_predicates(Node* predicate, Unique_Node_List& list, bool get_opaque = false); 960 void update_main_loop_assertion_predicates(Node* ctrl, CountedLoopNode* loop_head, Node* init, int stride_con); 961 void copy_assertion_predicates_to_post_loop(LoopNode* main_loop_head, CountedLoopNode* post_loop_head, 962 Node* stride); 963 void initialize_assertion_predicates_for_peeled_loop(const PredicateBlock* predicate_block, LoopNode* outer_loop_head, 964 int dd_outer_loop_head, Node* init, Node* stride, 965 IdealLoopTree* outer_loop, uint idx_before_clone, 966 const Node_List& old_new); 967 void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit, 968 Node* bol); 969 void log_loop_tree(); 970 971 public: 972 973 PhaseIterGVN &igvn() const { return _igvn; } 974 975 bool has_node(const Node* n) const { 976 guarantee(n != nullptr, "No Node."); 977 return _loop_or_ctrl[n->_idx] != nullptr; 978 } 979 // check if transform created new nodes that need _ctrl recorded 980 Node *get_late_ctrl( Node *n, Node *early ); 981 Node *get_early_ctrl( Node *n ); 982 Node *get_early_ctrl_for_expensive(Node *n, Node* earliest); 983 void set_early_ctrl(Node* n, bool update_body); 984 void set_subtree_ctrl(Node* n, bool update_body); 985 void set_ctrl( Node *n, Node *ctrl ) { 986 assert( !has_node(n) || has_ctrl(n), "" ); 987 assert( ctrl->in(0), "cannot set dead control node" ); 988 assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" ); 989 _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1)); 990 } 991 // Set control and update loop membership 992 void set_ctrl_and_loop(Node* n, Node* ctrl) { 993 IdealLoopTree* old_loop = get_loop(get_ctrl(n)); 994 IdealLoopTree* new_loop = get_loop(ctrl); 995 if (old_loop != new_loop) { 996 if (old_loop->_child == nullptr) old_loop->_body.yank(n); 997 if (new_loop->_child == nullptr) new_loop->_body.push(n); 998 } 999 set_ctrl(n, ctrl); 1000 } 1001 // Control nodes can be replaced or subsumed. During this pass they 1002 // get their replacement Node in slot 1. Instead of updating the block 1003 // location of all Nodes in the subsumed block, we lazily do it. As we 1004 // pull such a subsumed block out of the array, we write back the final 1005 // correct block. 1006 Node* get_ctrl(const Node* i) { 1007 assert(has_node(i), ""); 1008 Node *n = get_ctrl_no_update(i); 1009 _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1)); 1010 assert(has_node(i) && has_ctrl(i), ""); 1011 assert(n == find_non_split_ctrl(n), "must return legal ctrl" ); 1012 return n; 1013 } 1014 1015 bool is_dominator(Node* dominator, Node* n); 1016 bool is_strict_dominator(Node* dominator, Node* n); 1017 1018 // return get_ctrl for a data node and self(n) for a CFG node 1019 Node* ctrl_or_self(Node* n) { 1020 if (has_ctrl(n)) 1021 return get_ctrl(n); 1022 else { 1023 assert (n->is_CFG(), "must be a CFG node"); 1024 return n; 1025 } 1026 } 1027 1028 Node* get_ctrl_no_update_helper(const Node* i) const { 1029 assert(has_ctrl(i), "should be control, not loop"); 1030 return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1); 1031 } 1032 1033 Node* get_ctrl_no_update(const Node* i) const { 1034 assert( has_ctrl(i), "" ); 1035 Node *n = get_ctrl_no_update_helper(i); 1036 if (!n->in(0)) { 1037 // Skip dead CFG nodes 1038 do { 1039 n = get_ctrl_no_update_helper(n); 1040 } while (!n->in(0)); 1041 n = find_non_split_ctrl(n); 1042 } 1043 return n; 1044 } 1045 1046 // Check for loop being set 1047 // "n" must be a control node. Returns true if "n" is known to be in a loop. 1048 bool has_loop( Node *n ) const { 1049 assert(!has_node(n) || !has_ctrl(n), ""); 1050 return has_node(n); 1051 } 1052 // Set loop 1053 void set_loop( Node *n, IdealLoopTree *loop ) { 1054 _loop_or_ctrl.map(n->_idx, (Node*)loop); 1055 } 1056 // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms. Replace 1057 // the 'old_node' with 'new_node'. Kill old-node. Add a reference 1058 // from old_node to new_node to support the lazy update. Reference 1059 // replaces loop reference, since that is not needed for dead node. 1060 void lazy_update(Node *old_node, Node *new_node) { 1061 assert(old_node != new_node, "no cycles please"); 1062 // Re-use the side array slot for this node to provide the 1063 // forwarding pointer. 1064 _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1)); 1065 } 1066 void lazy_replace(Node *old_node, Node *new_node) { 1067 _igvn.replace_node(old_node, new_node); 1068 lazy_update(old_node, new_node); 1069 } 1070 1071 private: 1072 1073 // Place 'n' in some loop nest, where 'n' is a CFG node 1074 void build_loop_tree(); 1075 int build_loop_tree_impl(Node* n, int pre_order); 1076 // Insert loop into the existing loop tree. 'innermost' is a leaf of the 1077 // loop tree, not the root. 1078 IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost ); 1079 1080 #ifdef ASSERT 1081 // verify that regions in irreducible loops are marked is_in_irreducible_loop 1082 void verify_regions_in_irreducible_loops(); 1083 bool is_in_irreducible_loop(RegionNode* region); 1084 #endif 1085 1086 // Place Data nodes in some loop nest 1087 void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); 1088 void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); 1089 void build_loop_late_post_work(Node* n, bool pinned); 1090 void build_loop_late_post(Node* n); 1091 void verify_strip_mined_scheduling(Node *n, Node* least); 1092 1093 // Array of immediate dominance info for each CFG node indexed by node idx 1094 private: 1095 uint _idom_size; 1096 Node **_idom; // Array of immediate dominators 1097 uint *_dom_depth; // Used for fast LCA test 1098 GrowableArray<uint>* _dom_stk; // For recomputation of dom depth 1099 LoopOptsMode _mode; 1100 1101 // build the loop tree and perform any requested optimizations 1102 void build_and_optimize(); 1103 1104 // Dominators for the sea of nodes 1105 void Dominators(); 1106 1107 // Compute the Ideal Node to Loop mapping 1108 PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) : 1109 PhaseTransform(Ideal_Loop), 1110 _loop_or_ctrl(igvn.C->comp_arena()), 1111 _igvn(igvn), 1112 _verify_me(nullptr), 1113 _verify_only(false), 1114 _mode(mode), 1115 _nodes_required(UINT_MAX) { 1116 assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop"); 1117 build_and_optimize(); 1118 } 1119 1120 #ifndef PRODUCT 1121 // Verify that verify_me made the same decisions as a fresh run 1122 // or only verify that the graph is valid if verify_me is null. 1123 PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) : 1124 PhaseTransform(Ideal_Loop), 1125 _loop_or_ctrl(igvn.C->comp_arena()), 1126 _igvn(igvn), 1127 _verify_me(verify_me), 1128 _verify_only(verify_me == nullptr), 1129 _mode(LoopOptsVerify), 1130 _nodes_required(UINT_MAX) { 1131 DEBUG_ONLY(C->set_phase_verify_ideal_loop();) 1132 build_and_optimize(); 1133 DEBUG_ONLY(C->reset_phase_verify_ideal_loop();) 1134 } 1135 #endif 1136 1137 public: 1138 Node* idom_no_update(Node* d) const { 1139 return idom_no_update(d->_idx); 1140 } 1141 1142 Node* idom_no_update(uint didx) const { 1143 assert(didx < _idom_size, "oob"); 1144 Node* n = _idom[didx]; 1145 assert(n != nullptr,"Bad immediate dominator info."); 1146 while (n->in(0) == nullptr) { // Skip dead CFG nodes 1147 n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1); 1148 assert(n != nullptr,"Bad immediate dominator info."); 1149 } 1150 return n; 1151 } 1152 1153 Node *idom(Node* d) const { 1154 return idom(d->_idx); 1155 } 1156 1157 Node *idom(uint didx) const { 1158 Node *n = idom_no_update(didx); 1159 _idom[didx] = n; // Lazily remove dead CFG nodes from table. 1160 return n; 1161 } 1162 1163 uint dom_depth(Node* d) const { 1164 guarantee(d != nullptr, "Null dominator info."); 1165 guarantee(d->_idx < _idom_size, ""); 1166 return _dom_depth[d->_idx]; 1167 } 1168 void set_idom(Node* d, Node* n, uint dom_depth); 1169 // Locally compute IDOM using dom_lca call 1170 Node *compute_idom( Node *region ) const; 1171 // Recompute dom_depth 1172 void recompute_dom_depth(); 1173 1174 // Is safept not required by an outer loop? 1175 bool is_deleteable_safept(Node* sfpt); 1176 1177 // Replace parallel induction variable (parallel to trip counter) 1178 void replace_parallel_iv(IdealLoopTree *loop); 1179 1180 Node *dom_lca( Node *n1, Node *n2 ) const { 1181 return find_non_split_ctrl(dom_lca_internal(n1, n2)); 1182 } 1183 Node *dom_lca_internal( Node *n1, Node *n2 ) const; 1184 1185 Node* dominated_node(Node* c1, Node* c2) { 1186 assert(is_dominator(c1, c2) || is_dominator(c2, c1), "nodes must be related"); 1187 return is_dominator(c1, c2) ? c2 : c1; 1188 } 1189 1190 // Return control node that's dominated by the 2 others 1191 Node* dominated_node(Node* c1, Node* c2, Node* c3) { 1192 return dominated_node(c1, dominated_node(c2, c3)); 1193 } 1194 1195 // Build and verify the loop tree without modifying the graph. This 1196 // is useful to verify that all inputs properly dominate their uses. 1197 static void verify(PhaseIterGVN& igvn) { 1198 #ifdef ASSERT 1199 ResourceMark rm; 1200 Compile::TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 1201 PhaseIdealLoop v(igvn); 1202 #endif 1203 } 1204 1205 // Recommended way to use PhaseIdealLoop. 1206 // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations. 1207 static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) { 1208 ResourceMark rm; 1209 PhaseIdealLoop v(igvn, mode); 1210 1211 Compile* C = Compile::current(); 1212 if (!C->failing()) { 1213 // Cleanup any modified bits 1214 igvn.optimize(); 1215 if (C->failing()) { return; } 1216 v.log_loop_tree(); 1217 } 1218 } 1219 1220 // True if the method has at least 1 irreducible loop 1221 bool _has_irreducible_loops; 1222 1223 // Per-Node transform 1224 virtual Node* transform(Node* n) { return nullptr; } 1225 1226 Node* loop_exit_control(Node* x, IdealLoopTree* loop); 1227 Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob); 1228 Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr); 1229 Node* loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi); 1230 PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop); 1231 1232 bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt); 1233 1234 Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt); 1235 bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new); 1236 #ifdef ASSERT 1237 bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop); 1238 #endif 1239 void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt); 1240 SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop); 1241 IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift); 1242 IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control, 1243 IdealLoopTree* loop, float cl_prob, float le_fcnt, 1244 Node*& entry_control, Node*& iffalse); 1245 1246 Node* exact_limit( IdealLoopTree *loop ); 1247 1248 // Return a post-walked LoopNode 1249 IdealLoopTree *get_loop( Node *n ) const { 1250 // Dead nodes have no loop, so return the top level loop instead 1251 if (!has_node(n)) return _ltree_root; 1252 assert(!has_ctrl(n), ""); 1253 return (IdealLoopTree*)_loop_or_ctrl[n->_idx]; 1254 } 1255 1256 IdealLoopTree* ltree_root() const { return _ltree_root; } 1257 1258 // Is 'n' a (nested) member of 'loop'? 1259 int is_member( const IdealLoopTree *loop, Node *n ) const { 1260 return loop->is_member(get_loop(n)); } 1261 1262 // This is the basic building block of the loop optimizations. It clones an 1263 // entire loop body. It makes an old_new loop body mapping; with this 1264 // mapping you can find the new-loop equivalent to an old-loop node. All 1265 // new-loop nodes are exactly equal to their old-loop counterparts, all 1266 // edges are the same. All exits from the old-loop now have a RegionNode 1267 // that merges the equivalent new-loop path. This is true even for the 1268 // normal "loop-exit" condition. All uses of loop-invariant old-loop values 1269 // now come from (one or more) Phis that merge their new-loop equivalents. 1270 // Parameter side_by_side_idom: 1271 // When side_by_size_idom is null, the dominator tree is constructed for 1272 // the clone loop to dominate the original. Used in construction of 1273 // pre-main-post loop sequence. 1274 // When nonnull, the clone and original are side-by-side, both are 1275 // dominated by the passed in side_by_side_idom node. Used in 1276 // construction of unswitched loops. 1277 enum CloneLoopMode { 1278 IgnoreStripMined = 0, // Only clone inner strip mined loop 1279 CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops 1280 ControlAroundStripMined = 2 // Only clone inner strip mined loop, 1281 // result control flow branches 1282 // either to inner clone or outer 1283 // strip mined loop. 1284 }; 1285 void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth, 1286 CloneLoopMode mode, Node* side_by_side_idom = nullptr); 1287 void clone_loop_handle_data_uses(Node* old, Node_List &old_new, 1288 IdealLoopTree* loop, IdealLoopTree* companion_loop, 1289 Node_List*& split_if_set, Node_List*& split_bool_set, 1290 Node_List*& split_cex_set, Node_List& worklist, 1291 uint new_counter, CloneLoopMode mode); 1292 void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop, 1293 IdealLoopTree* outer_loop, int dd, Node_List &old_new, 1294 Node_List& extra_data_nodes); 1295 1296 // If we got the effect of peeling, either by actually peeling or by 1297 // making a pre-loop which must execute at least once, we can remove 1298 // all loop-invariant dominated tests in the main body. 1299 void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ); 1300 1301 // Generate code to do a loop peel for the given loop (and body). 1302 // old_new is a temp array. 1303 void do_peeling( IdealLoopTree *loop, Node_List &old_new ); 1304 1305 // Add pre and post loops around the given loop. These loops are used 1306 // during RCE, unrolling and aligning loops. 1307 void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ); 1308 1309 // Add post loop after the given loop. 1310 Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new, 1311 CountedLoopNode* main_head, CountedLoopEndNode* main_end, 1312 Node*& incr, Node* limit, CountedLoopNode*& post_head); 1313 1314 // Add a vector post loop between a vector main loop and the current post loop 1315 void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new); 1316 // If Node n lives in the back_ctrl block, we clone a private version of n 1317 // in preheader_ctrl block and return that, otherwise return n. 1318 Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ); 1319 1320 // Take steps to maximally unroll the loop. Peel any odd iterations, then 1321 // unroll to do double iterations. The next round of major loop transforms 1322 // will repeat till the doubled loop body does all remaining iterations in 1 1323 // pass. 1324 void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ); 1325 1326 // Unroll the loop body one step - make each trip do 2 iterations. 1327 void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ); 1328 1329 // Return true if exp is a constant times an induction var 1330 bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0); 1331 1332 bool is_iv(Node* exp, Node* iv, BasicType bt); 1333 1334 // Return true if exp is a scaled induction var plus (or minus) constant 1335 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0); 1336 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) { 1337 jlong long_scale; 1338 if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) { 1339 int int_scale = checked_cast<int>(long_scale); 1340 if (p_scale != nullptr) { 1341 *p_scale = int_scale; 1342 } 1343 return true; 1344 } 1345 return false; 1346 } 1347 // Helper for finding more complex matches to is_scaled_iv_plus_offset. 1348 bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv, 1349 BasicType bt, 1350 jlong* p_scale, Node** p_offset, 1351 bool* p_short_scale, int depth); 1352 1353 // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted 1354 IfTrueNode* create_new_if_for_predicate( 1355 ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry, Deoptimization::DeoptReason reason, int opcode, 1356 bool rewire_uncommon_proj_phi_inputs = false 1357 NOT_PRODUCT (COMMA AssertionPredicateType assertion_predicate_type = AssertionPredicateType::None)); 1358 1359 private: 1360 // Helper functions for create_new_if_for_predicate() 1361 void set_ctrl_of_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj); 1362 Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl); 1363 Node* clone_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj); 1364 void fix_cloned_data_node_controls(const ProjNode* orig, Node* new_uncommon_proj, 1365 const OrigToNewHashtable& orig_to_clone); 1366 bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt, 1367 Node* loop_entry); 1368 1369 public: 1370 void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true); 1371 1372 void replace_loop_entry(LoopNode* loop_head, Node* new_entry) { 1373 _igvn.replace_input_of(loop_head, LoopNode::EntryControl, new_entry); 1374 set_idom(loop_head, new_entry, dom_depth(new_entry)); 1375 } 1376 1377 // Construct a range check for a predicate if 1378 BoolNode* rc_predicate(Node* ctrl, int scale, Node* offset, Node* init, Node* limit, 1379 jint stride, Node* range, bool upper, bool& overflow); 1380 1381 // Implementation of the loop predication to promote checks outside the loop 1382 bool loop_predication_impl(IdealLoopTree *loop); 1383 1384 private: 1385 bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj, 1386 ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero, 1387 Invariance& invar, Deoptimization::DeoptReason deopt_reason); 1388 bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const; 1389 bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt); 1390 void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt, 1391 PathFrequency& pf, Node_Stack& stack, VectorSet& seen, 1392 Node_List& if_proj_list); 1393 IfTrueNode* create_template_assertion_predicate(int if_opcode, CountedLoopNode* loop_head, 1394 ParsePredicateSuccessProj* parse_predicate_proj, 1395 IfProjNode* new_control, int scale, Node* offset, 1396 Node* range, Deoptimization::DeoptReason deopt_reason); 1397 void eliminate_hoisted_range_check(IfTrueNode* hoisted_check_proj, IfTrueNode* template_assertion_predicate_proj); 1398 1399 // Helper function to collect predicate for eliminating the useless ones 1400 void eliminate_useless_predicates(); 1401 1402 void eliminate_useless_parse_predicates(); 1403 void mark_all_parse_predicates_useless() const; 1404 void mark_loop_associated_parse_predicates_useful(); 1405 static void mark_useful_parse_predicates_for_loop(IdealLoopTree* loop); 1406 void add_useless_parse_predicates_to_igvn_worklist(); 1407 1408 void eliminate_useless_template_assertion_predicates(); 1409 void collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates); 1410 static void collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop, Unique_Node_List& useful_predicates); 1411 void eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates); 1412 1413 void eliminate_useless_zero_trip_guard(); 1414 1415 public: 1416 // Change the control input of expensive nodes to allow commoning by 1417 // IGVN when it is guaranteed to not result in a more frequent 1418 // execution of the expensive node. Return true if progress. 1419 bool process_expensive_nodes(); 1420 1421 // Check whether node has become unreachable 1422 bool is_node_unreachable(Node *n) const { 1423 return !has_node(n) || n->is_unreachable(_igvn); 1424 } 1425 1426 // Eliminate range-checks and other trip-counter vs loop-invariant tests. 1427 void do_range_check(IdealLoopTree *loop, Node_List &old_new); 1428 1429 // Clone loop with an invariant test (that does not exit) and 1430 // insert a clone of the test that selects which version to 1431 // execute. 1432 void do_unswitching(IdealLoopTree* loop, Node_List& old_new); 1433 1434 IfNode* find_unswitch_candidate(const IdealLoopTree* loop) const; 1435 1436 private: 1437 static bool has_control_dependencies_from_predicates(LoopNode* head); 1438 static void revert_to_normal_loop(const LoopNode* loop_head); 1439 1440 void hoist_invariant_check_casts(const IdealLoopTree* loop, const Node_List& old_new, 1441 const UnswitchedLoopSelector& unswitched_loop_selector); 1442 void add_unswitched_loop_version_bodies_to_igvn(IdealLoopTree* loop, const Node_List& old_new); 1443 static void increment_unswitch_counts(LoopNode* original_head, LoopNode* new_head); 1444 void remove_unswitch_candidate_from_loops(const Node_List& old_new, const UnswitchedLoopSelector& unswitched_loop_selector); 1445 #ifndef PRODUCT 1446 static void trace_loop_unswitching_count(IdealLoopTree* loop, LoopNode* original_head); 1447 static void trace_loop_unswitching_impossible(const LoopNode* original_head); 1448 static void trace_loop_unswitching_result(const UnswitchedLoopSelector& unswitched_loop_selector, 1449 const LoopNode* original_head, const LoopNode* new_head); 1450 #endif 1451 1452 public: 1453 1454 // Range Check Elimination uses this function! 1455 // Constrain the main loop iterations so the affine function: 1456 // low_limit <= scale_con * I + offset < upper_limit 1457 // always holds true. That is, either increase the number of iterations in 1458 // the pre-loop or the post-loop until the condition holds true in the main 1459 // loop. Scale_con, offset and limit are all loop invariant. 1460 void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit); 1461 // Helper function for add_constraint(). 1462 Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round); 1463 1464 // Partially peel loop up through last_peel node. 1465 bool partial_peel( IdealLoopTree *loop, Node_List &old_new ); 1466 bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new); 1467 1468 // AutoVectorize the loop: replace scalar ops with vector ops. 1469 enum AutoVectorizeStatus { 1470 Impossible, // This loop has the wrong shape to even try vectorization. 1471 Success, // We just successfully vectorized the loop. 1472 TriedAndFailed, // We tried to vectorize, but failed. 1473 }; 1474 AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared); 1475 1476 // Move an unordered Reduction out of loop if possible 1477 void move_unordered_reduction_out_of_loop(IdealLoopTree* loop); 1478 1479 // Create a scheduled list of nodes control dependent on ctrl set. 1480 void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched ); 1481 // Has a use in the vector set 1482 bool has_use_in_set( Node* n, VectorSet& vset ); 1483 // Has use internal to the vector set (ie. not in a phi at the loop head) 1484 bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ); 1485 // clone "n" for uses that are outside of loop 1486 int clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ); 1487 // clone "n" for special uses that are in the not_peeled region 1488 void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n, 1489 VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ); 1490 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist 1491 void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ); 1492 #ifdef ASSERT 1493 // Validate the loop partition sets: peel and not_peel 1494 bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel ); 1495 // Ensure that uses outside of loop are of the right form 1496 bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list, 1497 uint orig_exit_idx, uint clone_exit_idx); 1498 bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx); 1499 #endif 1500 1501 // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.) 1502 int stride_of_possible_iv( Node* iff ); 1503 bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; } 1504 // Return the (unique) control output node that's in the loop (if it exists.) 1505 Node* stay_in_loop( Node* n, IdealLoopTree *loop); 1506 // Insert a signed compare loop exit cloned from an unsigned compare. 1507 IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop); 1508 void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop); 1509 // Utility to register node "n" with PhaseIdealLoop 1510 void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth); 1511 // Utility to create an if-projection 1512 ProjNode* proj_clone(ProjNode* p, IfNode* iff); 1513 // Force the iff control output to be the live_proj 1514 Node* short_circuit_if(IfNode* iff, ProjNode* live_proj); 1515 // Insert a region before an if projection 1516 RegionNode* insert_region_before_proj(ProjNode* proj); 1517 // Insert a new if before an if projection 1518 ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj); 1519 1520 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps. 1521 // "Nearly" because all Nodes have been cloned from the original in the loop, 1522 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs 1523 // through the Phi recursively, and return a Bool. 1524 Node* clone_iff(PhiNode* phi); 1525 CmpNode* clone_bool(PhiNode* phi); 1526 1527 1528 // Rework addressing expressions to get the most loop-invariant stuff 1529 // moved out. We'd like to do all associative operators, but it's especially 1530 // important (common) to do address expressions. 1531 Node* remix_address_expressions(Node* n); 1532 Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt); 1533 1534 // Convert add to muladd to generate MuladdS2I under certain criteria 1535 Node * convert_add_to_muladd(Node * n); 1536 1537 // Attempt to use a conditional move instead of a phi/branch 1538 Node *conditional_move( Node *n ); 1539 1540 bool split_thru_phi_could_prevent_vectorization(Node* n, Node* n_blk); 1541 1542 // Check for aggressive application of 'split-if' optimization, 1543 // using basic block level info. 1544 void split_if_with_blocks ( VectorSet &visited, Node_Stack &nstack); 1545 Node *split_if_with_blocks_pre ( Node *n ); 1546 void split_if_with_blocks_post( Node *n ); 1547 Node *has_local_phi_input( Node *n ); 1548 // Mark an IfNode as being dominated by a prior test, 1549 // without actually altering the CFG (and hence IDOM info). 1550 void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false); 1551 void rewire_safe_outputs_to_dominator(Node* source, Node* dominator, bool pin_array_access_nodes); 1552 1553 // Split Node 'n' through merge point 1554 RegionNode* split_thru_region(Node* n, RegionNode* region); 1555 // Split Node 'n' through merge point if there is enough win. 1556 Node *split_thru_phi( Node *n, Node *region, int policy ); 1557 // Found an If getting its condition-code input from a Phi in the 1558 // same block. Split thru the Region. 1559 void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr); 1560 1561 // Conversion of fill/copy patterns into intrinsic versions 1562 bool do_intrinsify_fill(); 1563 bool intrinsify_fill(IdealLoopTree* lpt); 1564 bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value, 1565 Node*& shift, Node*& offset); 1566 1567 private: 1568 // Return a type based on condition control flow 1569 const TypeInt* filtered_type( Node *n, Node* n_ctrl); 1570 const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); } 1571 // Helpers for filtered type 1572 const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl); 1573 1574 // Helper functions 1575 Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache ); 1576 Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true ); 1577 void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true ); 1578 bool split_up( Node *n, Node *blk1, Node *blk2 ); 1579 1580 Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const; 1581 Node* try_move_store_before_loop(Node* n, Node *n_ctrl); 1582 void try_move_store_after_loop(Node* n); 1583 bool identical_backtoback_ifs(Node *n); 1584 bool can_split_if(Node *n_ctrl); 1585 bool cannot_split_division(const Node* n, const Node* region) const; 1586 static bool is_divisor_loop_phi(const Node* divisor, const Node* loop); 1587 bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const; 1588 1589 // Determine if a method is too big for a/another round of split-if, based on 1590 // a magic (approximate) ratio derived from the equally magic constant 35000, 1591 // previously used for this purpose (but without relating to the node limit). 1592 bool must_throttle_split_if() { 1593 uint threshold = C->max_node_limit() * 2 / 5; 1594 return C->live_nodes() > threshold; 1595 } 1596 1597 // A simplistic node request tracking mechanism, where 1598 // = UINT_MAX Request not valid or made final. 1599 // < UINT_MAX Nodes currently requested (estimate). 1600 uint _nodes_required; 1601 1602 enum { REQUIRE_MIN = 70 }; 1603 1604 uint nodes_required() const { return _nodes_required; } 1605 1606 // Given the _currently_ available number of nodes, check whether there is 1607 // "room" for an additional request or not, considering the already required 1608 // number of nodes. Return TRUE if the new request is exceeding the node 1609 // budget limit, otherwise return FALSE. Note that this interpretation will 1610 // act pessimistic on additional requests when new nodes have already been 1611 // generated since the 'begin'. This behaviour fits with the intention that 1612 // node estimates/requests should be made upfront. 1613 bool exceeding_node_budget(uint required = 0) { 1614 assert(C->live_nodes() < C->max_node_limit(), "sanity"); 1615 uint available = C->max_node_limit() - C->live_nodes(); 1616 return available < required + _nodes_required + REQUIRE_MIN; 1617 } 1618 1619 uint require_nodes(uint require, uint minreq = REQUIRE_MIN) { 1620 precond(require > 0); 1621 _nodes_required += MAX2(require, minreq); 1622 return _nodes_required; 1623 } 1624 1625 bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) { 1626 return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0; 1627 } 1628 1629 uint require_nodes_begin() { 1630 assert(_nodes_required == UINT_MAX, "Bad state (begin)."); 1631 _nodes_required = 0; 1632 return C->live_nodes(); 1633 } 1634 1635 // When a node request is final, optionally check that the requested number 1636 // of nodes was reasonably correct with respect to the number of new nodes 1637 // introduced since the last 'begin'. Always check that we have not exceeded 1638 // the maximum node limit. 1639 void require_nodes_final(uint live_at_begin, bool check_estimate) { 1640 assert(_nodes_required < UINT_MAX, "Bad state (final)."); 1641 1642 #ifdef ASSERT 1643 if (check_estimate) { 1644 // Check that the node budget request was not off by too much (x2). 1645 // Should this be the case we _surely_ need to improve the estimates 1646 // used in our budget calculations. 1647 if (C->live_nodes() - live_at_begin > 2 * _nodes_required) { 1648 log_info(compilation)("Bad node estimate: actual = %d >> request = %d", 1649 C->live_nodes() - live_at_begin, _nodes_required); 1650 } 1651 } 1652 #endif 1653 // Assert that we have stayed within the node budget limit. 1654 assert(C->live_nodes() < C->max_node_limit(), 1655 "Exceeding node budget limit: %d + %d > %d (request = %d)", 1656 C->live_nodes() - live_at_begin, live_at_begin, 1657 C->max_node_limit(), _nodes_required); 1658 1659 _nodes_required = UINT_MAX; 1660 } 1661 1662 public: 1663 // Clone Parse Predicates to slow and fast loop when unswitching a loop 1664 void clone_parse_and_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, Node_List& old_new, 1665 IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred); 1666 private: 1667 void clone_loop_predication_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new, 1668 const PredicateBlock* predicate_block, 1669 Deoptimization::DeoptReason reason, IfProjNode*& iffast_pred, 1670 IfProjNode*& ifslow_pred); 1671 void clone_parse_predicate_to_unswitched_loops(const PredicateBlock* predicate_block, Deoptimization::DeoptReason reason, 1672 IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred); 1673 IfProjNode* clone_parse_predicate_to_unswitched_loop(ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry, 1674 Deoptimization::DeoptReason reason, bool slow_loop); 1675 void clone_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new, 1676 Deoptimization::DeoptReason reason, IfProjNode* old_predicate_proj, 1677 ParsePredicateSuccessProj* fast_loop_parse_predicate_proj, 1678 ParsePredicateSuccessProj* slow_loop_parse_predicate_proj); 1679 IfProjNode* clone_assertion_predicate_for_unswitched_loops(IfNode* template_assertion_predicate, IfProjNode* predicate, 1680 Deoptimization::DeoptReason reason, 1681 ParsePredicateSuccessProj* parse_predicate_proj); 1682 static void check_cloned_parse_predicate_for_unswitching(const Node* new_entry, bool is_fast_loop) PRODUCT_RETURN; 1683 1684 bool _created_loop_node; 1685 DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);) 1686 NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;) 1687 1688 public: 1689 void set_created_loop_node() { _created_loop_node = true; } 1690 bool created_loop_node() { return _created_loop_node; } 1691 void register_new_node(Node* n, Node* blk); 1692 void register_new_node_with_ctrl_of(Node* new_node, Node* ctrl_of) { 1693 register_new_node(new_node, get_ctrl(ctrl_of)); 1694 } 1695 1696 Node* clone_and_register(Node* n, Node* ctrl) { 1697 n = n->clone(); 1698 register_new_node(n, ctrl); 1699 return n; 1700 } 1701 1702 #ifdef ASSERT 1703 void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA); 1704 #endif 1705 1706 #ifndef PRODUCT 1707 void dump() const; 1708 void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging 1709 void dump_idom(Node* n, uint count) const; 1710 void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const; 1711 void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const; 1712 IdealLoopTree* get_loop_idx(Node* n) const { 1713 // Dead nodes have no loop, so return the top level loop instead 1714 return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root; 1715 } 1716 // Print some stats 1717 static void print_statistics(); 1718 static int _loop_invokes; // Count of PhaseIdealLoop invokes 1719 static int _loop_work; // Sum of PhaseIdealLoop x _unique 1720 static volatile int _long_loop_candidates; 1721 static volatile int _long_loop_nests; 1722 static volatile int _long_loop_counted_loops; 1723 #endif 1724 1725 #ifdef ASSERT 1726 void verify() const; 1727 bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const; 1728 bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const; 1729 bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const; 1730 #endif 1731 1732 void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const; 1733 1734 void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN; 1735 1736 LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test); 1737 1738 1739 int extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi, 1740 Node_List &range_checks); 1741 1742 void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi, 1743 Node* inner_iters_actual_int, Node* inner_phi, 1744 Node* iv_add, LoopNode* inner_head); 1745 1746 Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA); 1747 1748 bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl); 1749 1750 bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop); 1751 1752 Node* compute_early_ctrl(Node* n, Node* n_ctrl); 1753 1754 void try_sink_out_of_loop(Node* n); 1755 1756 Node* clamp(Node* R, Node* L, Node* H); 1757 1758 bool safe_for_if_replacement(const Node* dom) const; 1759 1760 void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region); 1761 1762 bool try_merge_identical_ifs(Node* n); 1763 1764 void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm); 1765 1766 void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd, 1767 IdealLoopTree* parent, bool partial); 1768 1769 void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode, 1770 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist); 1771 1772 void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop, 1773 uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set, 1774 Node_List*& split_bool_set, Node_List*& split_cex_set); 1775 1776 void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set); 1777 1778 bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2); 1779 1780 bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2); 1781 void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i); 1782 bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2); 1783 void clone_template_assertion_expression_down(Node* node); 1784 1785 Node* similar_subtype_check(const Node* x, Node* r_in); 1786 1787 void update_addp_chain_base(Node* x, Node* old_base, Node* new_base); 1788 1789 bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x); 1790 1791 void pin_array_access_nodes_dependent_on(Node* ctrl); 1792 1793 Node* ensure_node_and_inputs_are_above_pre_end(CountedLoopEndNode* pre_end, Node* node); 1794 }; 1795 1796 1797 class AutoNodeBudget : public StackObj 1798 { 1799 public: 1800 enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK }; 1801 1802 AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK) 1803 : _phase(phase), 1804 _check_at_final(chk == BUDGET_CHECK), 1805 _nodes_at_begin(0) 1806 { 1807 precond(_phase != nullptr); 1808 1809 _nodes_at_begin = _phase->require_nodes_begin(); 1810 } 1811 1812 ~AutoNodeBudget() { 1813 #ifndef PRODUCT 1814 if (TraceLoopOpts) { 1815 uint request = _phase->nodes_required(); 1816 uint delta = _phase->C->live_nodes() - _nodes_at_begin; 1817 1818 if (request < delta) { 1819 tty->print_cr("Exceeding node budget: %d < %d", request, delta); 1820 } else { 1821 uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN; 1822 // Identify the worst estimates as "poor" ones. 1823 if (request > REQUIRE_MIN && delta > 0) { 1824 if ((delta > REQUIRE_MIN && request > 3 * delta) || 1825 (delta <= REQUIRE_MIN && request > 10 * delta)) { 1826 tty->print_cr("Poor node estimate: %d >> %d", request, delta); 1827 } 1828 } 1829 } 1830 } 1831 #endif // PRODUCT 1832 _phase->require_nodes_final(_nodes_at_begin, _check_at_final); 1833 } 1834 1835 private: 1836 PhaseIdealLoop* _phase; 1837 bool _check_at_final; 1838 uint _nodes_at_begin; 1839 }; 1840 1841 inline Node* IdealLoopTree::tail() { 1842 // Handle lazy update of _tail field. 1843 if (_tail->in(0) == nullptr) { 1844 _tail = _phase->get_ctrl(_tail); 1845 } 1846 return _tail; 1847 } 1848 1849 inline Node* IdealLoopTree::head() { 1850 // Handle lazy update of _head field. 1851 if (_head->in(0) == nullptr) { 1852 _head = _phase->get_ctrl(_head); 1853 } 1854 return _head; 1855 } 1856 1857 // Iterate over the loop tree using a preorder, left-to-right traversal. 1858 // 1859 // Example that visits all counted loops from within PhaseIdealLoop 1860 // 1861 // for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 1862 // IdealLoopTree* lpt = iter.current(); 1863 // if (!lpt->is_counted()) continue; 1864 // ... 1865 class LoopTreeIterator : public StackObj { 1866 private: 1867 IdealLoopTree* _root; 1868 IdealLoopTree* _curnt; 1869 1870 public: 1871 LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {} 1872 1873 bool done() { return _curnt == nullptr; } // Finished iterating? 1874 1875 void next(); // Advance to next loop tree 1876 1877 IdealLoopTree* current() { return _curnt; } // Return current value of iterator. 1878 }; 1879 1880 // Compute probability of reaching some CFG node from a fixed 1881 // dominating CFG node 1882 class PathFrequency { 1883 private: 1884 Node* _dom; // frequencies are computed relative to this node 1885 Node_Stack _stack; 1886 GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions 1887 GrowableArray<float> _freqs; // cache frequencies 1888 PhaseIdealLoop* _phase; 1889 1890 float check_and_truncate_frequency(float f) { 1891 assert(f >= 0, "Incorrect frequency"); 1892 // We do not perform an exact (f <= 1) check 1893 // this would be error prone with rounding of floats. 1894 // Performing a check like (f <= 1+eps) would be of benefit, 1895 // however, it is not evident how to determine such an eps, 1896 // given that an arbitrary number of add/mul operations 1897 // are performed on these frequencies. 1898 return (f > 1) ? 1 : f; 1899 } 1900 1901 public: 1902 PathFrequency(Node* dom, PhaseIdealLoop* phase) 1903 : _dom(dom), _stack(0), _phase(phase) { 1904 } 1905 1906 float to(Node* n); 1907 }; 1908 1909 // Class to clone a data node graph by taking a list of data nodes. This is done in 2 steps: 1910 // 1. Clone the data nodes 1911 // 2. Fix the cloned data inputs pointing to the old nodes to the cloned inputs by using an old->new mapping. 1912 class DataNodeGraph : public StackObj { 1913 PhaseIdealLoop* const _phase; 1914 const Unique_Node_List& _data_nodes; 1915 OrigToNewHashtable _orig_to_new; 1916 1917 public: 1918 DataNodeGraph(const Unique_Node_List& data_nodes, PhaseIdealLoop* phase) 1919 : _phase(phase), 1920 _data_nodes(data_nodes), 1921 // Use 107 as best guess which is the first resize value in ResizeableResourceHashtable::large_table_sizes. 1922 _orig_to_new(107, MaxNodeLimit) 1923 { 1924 #ifdef ASSERT 1925 for (uint i = 0; i < data_nodes.size(); i++) { 1926 assert(!data_nodes[i]->is_CFG(), "only data nodes"); 1927 } 1928 #endif 1929 } 1930 NONCOPYABLE(DataNodeGraph); 1931 1932 private: 1933 void clone(Node* node, Node* new_ctrl); 1934 void clone_data_nodes(Node* new_ctrl); 1935 void clone_data_nodes_and_transform_opaque_loop_nodes(const TransformStrategyForOpaqueLoopNodes& transform_strategy, 1936 Node* new_ctrl); 1937 void rewire_clones_to_cloned_inputs(); 1938 void transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node); 1939 1940 public: 1941 // Clone the provided data node collection and rewire the clones in such a way to create an identical graph copy. 1942 // Set 'new_ctrl' as ctrl for the cloned nodes. 1943 const OrigToNewHashtable& clone(Node* new_ctrl) { 1944 assert(_orig_to_new.number_of_entries() == 0, "should not call this method twice in a row"); 1945 clone_data_nodes(new_ctrl); 1946 rewire_clones_to_cloned_inputs(); 1947 return _orig_to_new; 1948 } 1949 1950 // Create a copy of the data nodes provided to the constructor by doing the following: 1951 // Clone all non-OpaqueLoop* nodes and rewire them to create an identical subgraph copy. For the OpaqueLoop* nodes, 1952 // apply the provided transformation strategy and include the transformed node into the subgraph copy to get a complete 1953 // "cloned-and-transformed" graph copy. For all newly cloned nodes (which could also be new OpaqueLoop* nodes), set 1954 // `new_ctrl` as ctrl. 1955 const OrigToNewHashtable& clone_with_opaque_loop_transform_strategy( 1956 const TransformStrategyForOpaqueLoopNodes& transform_strategy, 1957 Node* new_ctrl) { 1958 clone_data_nodes_and_transform_opaque_loop_nodes(transform_strategy, new_ctrl); 1959 rewire_clones_to_cloned_inputs(); 1960 return _orig_to_new; 1961 } 1962 }; 1963 #endif // SHARE_OPTO_LOOPNODE_HPP