1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_LOOPNODE_HPP
  26 #define SHARE_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/predicates.hpp"
  32 #include "opto/subnode.hpp"
  33 #include "opto/type.hpp"
  34 #include "utilities/checkedCast.hpp"
  35 
  36 class CmpNode;
  37 class BaseCountedLoopEndNode;
  38 class CountedLoopNode;
  39 class IdealLoopTree;
  40 class LoopNode;
  41 class Node;
  42 class OuterStripMinedLoopEndNode;
  43 class PredicateBlock;
  44 class PathFrequency;
  45 class PhaseIdealLoop;
  46 class LoopSelector;
  47 class UnswitchedLoopSelector;
  48 class VectorSet;
  49 class VSharedData;
  50 class Invariance;
  51 struct small_cache;
  52 
  53 //
  54 //                  I D E A L I Z E D   L O O P S
  55 //
  56 // Idealized loops are the set of loops I perform more interesting
  57 // transformations on, beyond simple hoisting.
  58 
  59 //------------------------------LoopNode---------------------------------------
  60 // Simple loop header.  Fall in path on left, loop-back path on right.
  61 class LoopNode : public RegionNode {
  62   // Size is bigger to hold the flags.  However, the flags do not change
  63   // the semantics so it does not appear in the hash & cmp functions.
  64   virtual uint size_of() const { return sizeof(*this); }
  65 protected:
  66   uint _loop_flags;
  67   // Names for flag bitfields
  68   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  69          MainHasNoPreLoop      = 1<<2,
  70          HasExactTripCount     = 1<<3,
  71          InnerLoop             = 1<<4,
  72          PartialPeelLoop       = 1<<5,
  73          PartialPeelFailed     = 1<<6,
  74          WasSlpAnalyzed        = 1<<7,
  75          PassedSlpAnalysis     = 1<<8,
  76          DoUnrollOnly          = 1<<9,
  77          VectorizedLoop        = 1<<10,
  78          HasAtomicPostLoop     = 1<<11,
  79          StripMined            = 1<<12,
  80          SubwordLoop           = 1<<13,
  81          ProfileTripFailed     = 1<<14,
  82          LoopNestInnerLoop     = 1<<15,
  83          LoopNestLongOuterLoop = 1<<16,
  84          MultiversionFastLoop         = 1<<17,
  85          MultiversionSlowLoop         = 2<<17,
  86          MultiversionDelayedSlowLoop  = 3<<17,
  87          MultiversionFlagsMask        = 3<<17,
  88        };
  89   char _unswitch_count;
  90   enum { _unswitch_max=3 };
  91 
  92   // Expected trip count from profile data
  93   float _profile_trip_cnt;
  94 
  95 public:
  96   // Names for edge indices
  97   enum { Self=0, EntryControl, LoopBackControl };
  98 
  99   bool is_inner_loop() const { return _loop_flags & InnerLoop; }
 100   void set_inner_loop() { _loop_flags |= InnerLoop; }
 101 
 102   bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
 103   bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
 104   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
 105   bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
 106   bool is_strip_mined() const { return _loop_flags & StripMined; }
 107   bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
 108   bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
 109   bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; }
 110   bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; }
 111 
 112   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
 113   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 114   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 115   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 116   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 117   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 118   void mark_strip_mined() { _loop_flags |= StripMined; }
 119   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 120   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
 121   void mark_subword_loop() { _loop_flags |= SubwordLoop; }
 122   void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; }
 123   void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; }
 124 
 125   int unswitch_max() { return _unswitch_max; }
 126   int unswitch_count() { return _unswitch_count; }
 127 
 128   void set_unswitch_count(int val) {
 129     assert (val <= unswitch_max(), "too many unswitches");
 130     _unswitch_count = val;
 131   }
 132 
 133   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 134   float profile_trip_cnt()             { return _profile_trip_cnt; }
 135 
 136 #ifndef PRODUCT
 137   uint _stress_peeling_attempts = 0;
 138 #endif
 139 
 140   LoopNode(Node *entry, Node *backedge)
 141     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
 142       _profile_trip_cnt(COUNT_UNKNOWN) {
 143     init_class_id(Class_Loop);
 144     init_req(EntryControl, entry);
 145     init_req(LoopBackControl, backedge);
 146   }
 147 
 148   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 149   virtual int Opcode() const;
 150   bool can_be_counted_loop(PhaseValues* phase) const {
 151     return req() == 3 && in(0) != nullptr &&
 152       in(1) != nullptr && phase->type(in(1)) != Type::TOP &&
 153       in(2) != nullptr && phase->type(in(2)) != Type::TOP;
 154   }
 155   bool is_valid_counted_loop(BasicType bt) const;
 156 #ifndef PRODUCT
 157   virtual void dump_spec(outputStream *st) const;
 158 #endif
 159 
 160   void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
 161   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 162   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; }
 163   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; }
 164   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; }
 165   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; }
 166 };
 167 
 168 //------------------------------Counted Loops----------------------------------
 169 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 170 // path (and maybe some other exit paths).  The trip-counter exit is always
 171 // last in the loop.  The trip-counter have to stride by a constant;
 172 // the exit value is also loop invariant.
 173 
 174 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 175 // CountedLoopNode has the incoming loop control and the loop-back-control
 176 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 177 // CountedLoopEndNode has an incoming control (possibly not the
 178 // CountedLoopNode if there is control flow in the loop), the post-increment
 179 // trip-counter value, and the limit.  The trip-counter value is always of
 180 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 181 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 182 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 183 // CountedLoopEndNode also takes in the loop-invariant limit value.
 184 
 185 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 186 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 187 // via the old-trip-counter from the Op node.
 188 
 189 //------------------------------CountedLoopNode--------------------------------
 190 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 191 // inputs the incoming loop-start control and the loop-back control, so they
 192 // act like RegionNodes.  They also take in the initial trip counter, the
 193 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 194 // produce a loop-body control and the trip counter value.  Since
 195 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 196 
 197 class BaseCountedLoopNode : public LoopNode {
 198 public:
 199   BaseCountedLoopNode(Node *entry, Node *backedge)
 200     : LoopNode(entry, backedge) {
 201   }
 202 
 203   Node *init_control() const { return in(EntryControl); }
 204   Node *back_control() const { return in(LoopBackControl); }
 205 
 206   Node* init_trip() const;
 207   Node* stride() const;
 208   bool stride_is_con() const;
 209   Node* limit() const;
 210   Node* incr() const;
 211   Node* phi() const;
 212 
 213   BaseCountedLoopEndNode* loopexit_or_null() const;
 214   BaseCountedLoopEndNode* loopexit() const;
 215 
 216   virtual BasicType bt() const = 0;
 217 
 218   jlong stride_con() const;
 219 
 220   static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt);
 221 };
 222 
 223 
 224 class CountedLoopNode : public BaseCountedLoopNode {
 225   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 226   // the semantics so it does not appear in the hash & cmp functions.
 227   virtual uint size_of() const { return sizeof(*this); }
 228 
 229   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 230   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 231   node_idx_t _main_idx;
 232 
 233   // Known trip count calculated by compute_exact_trip_count()
 234   uint  _trip_count;
 235 
 236   // Log2 of original loop bodies in unrolled loop
 237   int _unrolled_count_log2;
 238 
 239   // Node count prior to last unrolling - used to decide if
 240   // unroll,optimize,unroll,optimize,... is making progress
 241   int _node_count_before_unroll;
 242 
 243   // If slp analysis is performed we record the maximum
 244   // vector mapped unroll factor here
 245   int _slp_maximum_unroll_factor;
 246 
 247 public:
 248   CountedLoopNode(Node *entry, Node *backedge)
 249     : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 250       _unrolled_count_log2(0), _node_count_before_unroll(0),
 251       _slp_maximum_unroll_factor(0) {
 252     init_class_id(Class_CountedLoop);
 253     // Initialize _trip_count to the largest possible value.
 254     // Will be reset (lower) if the loop's trip count is known.
 255   }
 256 
 257   virtual int Opcode() const;
 258   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 259 
 260   CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 261   CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 262   int   stride_con() const;
 263 
 264   // Match increment with optional truncation
 265   static Node*
 266   match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type,
 267                                       BasicType bt);
 268 
 269   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 270   // can run short a few iterations and may start a few iterations in.
 271   // It will be RCE'd and unrolled and aligned.
 272 
 273   // A following 'post' loop will run any remaining iterations.  Used
 274   // during Range Check Elimination, the 'post' loop will do any final
 275   // iterations with full checks.  Also used by Loop Unrolling, where
 276   // the 'post' loop will do any epilog iterations needed.  Basically,
 277   // a 'post' loop can not profitably be further unrolled or RCE'd.
 278 
 279   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 280   // it may do under-flow checks for RCE and may do alignment iterations
 281   // so the following main loop 'knows' that it is striding down cache
 282   // lines.
 283 
 284   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 285   // Aligned, may be missing it's pre-loop.
 286   bool is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 287   bool is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 288   bool is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 289   bool is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 290   bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 291   bool has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 292   bool is_unroll_only   () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 293   bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 294   bool has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 295   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 296 
 297   IfNode* find_multiversion_if_from_multiversion_fast_main_loop();
 298 
 299   int main_idx() const { return _main_idx; }
 300 
 301 
 302   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 303   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 304   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 305   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 306 
 307   // We use max_juint for the default value of _trip_count to signal it wasn't set.
 308   // We shouldn't set _trip_count to max_juint explicitly.
 309   void set_trip_count(uint tc) { assert(tc < max_juint, "Cannot set trip count to max_juint"); _trip_count = tc; }
 310   uint trip_count()            { return _trip_count; }
 311 
 312   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 313   void set_exact_trip_count(uint tc) {
 314     assert(tc < max_juint, "Cannot set trip count to max_juint");
 315     _trip_count = tc;
 316     _loop_flags |= HasExactTripCount;
 317   }
 318   void set_nonexact_trip_count() {
 319     _loop_flags &= ~HasExactTripCount;
 320   }
 321   void set_notpassed_slp() {
 322     _loop_flags &= ~PassedSlpAnalysis;
 323   }
 324 
 325   void double_unrolled_count() { _unrolled_count_log2++; }
 326   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 327 
 328   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 329   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 330   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 331   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 332 
 333   // Multiversioning allows us to duplicate a CountedLoop, and have two versions, and the multiversion_if
 334   // decides which one is taken:
 335   // (1) fast_loop: We enter this loop by default, by default the multiversion_if has its condition set to
 336   //                "true", guarded by a OpaqueMultiversioning. If we want to make a speculative assumption
 337   //                for an optimization, we can add the runtime-check to the multiversion_if, and if the
 338   //                assumption fails we take the slow_loop instead, where we do not make the same speculative
 339   //                assumption.
 340   //                We call it the "fast_loop" because it has more optimizations, enabled by the speculative
 341   //                runtime-checks at the multiversion_if, and we expect the fast_loop to execute faster.
 342   // (2) slow_loop: By default, it is not taken, until a runtime-check is added to the multiversion_if while
 343   //                optimizing the fast_looop. If such a runtime-check is never added, then after loop-opts
 344   //                the multiversion_if constant folds to true, and the slow_loop is folded away. To save
 345   //                compile time, we delay the optimization of the slow_loop until a runtime-check is added
 346   //                to the multiversion_if, at which point we resume optimizations for the slow_loop.
 347   //                We call it the "slow_loop" because it has fewer optimizations, since this is the fall-back
 348   //                loop where we do not make any of the speculative assumptions we make for the fast_loop.
 349   //                Hence, we expect the slow_loop to execute slower.
 350   bool is_multiversion()                   const { return (_loop_flags & MultiversionFlagsMask) != Normal; }
 351   bool is_multiversion_fast_loop()         const { return (_loop_flags & MultiversionFlagsMask) == MultiversionFastLoop; }
 352   bool is_multiversion_slow_loop()         const { return (_loop_flags & MultiversionFlagsMask) == MultiversionSlowLoop; }
 353   bool is_multiversion_delayed_slow_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionDelayedSlowLoop; }
 354   void set_multiversion_fast_loop()         { assert(!is_multiversion(), ""); _loop_flags |= MultiversionFastLoop; }
 355   void set_multiversion_slow_loop()         { assert(!is_multiversion(), ""); _loop_flags |= MultiversionSlowLoop; }
 356   void set_multiversion_delayed_slow_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionDelayedSlowLoop; }
 357   void set_no_multiversion()                { assert( is_multiversion(), ""); _loop_flags &= ~MultiversionFlagsMask; }
 358 
 359   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
 360   OuterStripMinedLoopNode* outer_loop() const;
 361   virtual IfTrueNode* outer_loop_tail() const;
 362   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 363   virtual IfFalseNode* outer_loop_exit() const;
 364   virtual SafePointNode* outer_safepoint() const;
 365 
 366   Node* skip_assertion_predicates_with_halt();
 367 
 368   virtual BasicType bt() const {
 369     return T_INT;
 370   }
 371 
 372   Node* is_canonical_loop_entry();
 373   CountedLoopEndNode* find_pre_loop_end();
 374 
 375   Node* uncasted_init_trip(bool uncasted);
 376 
 377 #ifndef PRODUCT
 378   virtual void dump_spec(outputStream *st) const;
 379 #endif
 380 };
 381 
 382 class LongCountedLoopNode : public BaseCountedLoopNode {
 383 public:
 384   LongCountedLoopNode(Node *entry, Node *backedge)
 385     : BaseCountedLoopNode(entry, backedge) {
 386     init_class_id(Class_LongCountedLoop);
 387   }
 388 
 389   virtual int Opcode() const;
 390 
 391   virtual BasicType bt() const {
 392     return T_LONG;
 393   }
 394 
 395   LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 396   LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 397 };
 398 
 399 
 400 //------------------------------CountedLoopEndNode-----------------------------
 401 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 402 // IfNodes.
 403 
 404 class BaseCountedLoopEndNode : public IfNode {
 405 public:
 406   enum { TestControl, TestValue };
 407   BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 408     : IfNode(control, test, prob, cnt) {
 409     init_class_id(Class_BaseCountedLoopEnd);
 410   }
 411 
 412   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; }
 413   Node* incr() const                { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 414   Node* limit() const               { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 415   Node* stride() const              { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 416   Node* init_trip() const           { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 417   bool stride_is_con() const        { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); }
 418 
 419   PhiNode* phi() const {
 420     Node* tmp = incr();
 421     if (tmp && tmp->req() == 3) {
 422       Node* phi = tmp->in(1);
 423       if (phi->is_Phi()) {
 424         return phi->as_Phi();
 425       }
 426     }
 427     return nullptr;
 428   }
 429 
 430   BaseCountedLoopNode* loopnode() const {
 431     // The CountedLoopNode that goes with this CountedLoopEndNode may
 432     // have been optimized out by the IGVN so be cautious with the
 433     // pattern matching on the graph
 434     PhiNode* iv_phi = phi();
 435     if (iv_phi == nullptr) {
 436       return nullptr;
 437     }
 438     Node* ln = iv_phi->in(0);
 439     if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) {
 440       return nullptr;
 441     }
 442     if (ln->as_BaseCountedLoop()->bt() != bt()) {
 443       return nullptr;
 444     }
 445     return ln->as_BaseCountedLoop();
 446   }
 447 
 448   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 449 
 450   jlong stride_con() const;
 451   virtual BasicType bt() const = 0;
 452 
 453   static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt);
 454 };
 455 
 456 class CountedLoopEndNode : public BaseCountedLoopEndNode {
 457 public:
 458 
 459   CountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 460     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 461     init_class_id(Class_CountedLoopEnd);
 462   }
 463   virtual int Opcode() const;
 464 
 465   CountedLoopNode* loopnode() const {
 466     return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 467   }
 468 
 469   virtual BasicType bt() const {
 470     return T_INT;
 471   }
 472 
 473 #ifndef PRODUCT
 474   virtual void dump_spec(outputStream *st) const;
 475 #endif
 476 };
 477 
 478 class LongCountedLoopEndNode : public BaseCountedLoopEndNode {
 479 public:
 480   LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 481     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 482     init_class_id(Class_LongCountedLoopEnd);
 483   }
 484 
 485   LongCountedLoopNode* loopnode() const {
 486     return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 487   }
 488 
 489   virtual int Opcode() const;
 490 
 491   virtual BasicType bt() const {
 492     return T_LONG;
 493   }
 494 };
 495 
 496 
 497 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const {
 498   Node* bctrl = back_control();
 499   if (bctrl == nullptr) return nullptr;
 500 
 501   Node* lexit = bctrl->in(0);
 502   if (!lexit->is_BaseCountedLoopEnd()) {
 503     return nullptr;
 504   }
 505   BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd();
 506   if (result->bt() != bt()) {
 507     return nullptr;
 508   }
 509   return result;
 510 }
 511 
 512 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const {
 513   BaseCountedLoopEndNode* cle = loopexit_or_null();
 514   assert(cle != nullptr, "loopexit is null");
 515   return cle;
 516 }
 517 
 518 inline Node* BaseCountedLoopNode::init_trip() const {
 519   BaseCountedLoopEndNode* cle = loopexit_or_null();
 520   return cle != nullptr ? cle->init_trip() : nullptr;
 521 }
 522 inline Node* BaseCountedLoopNode::stride() const {
 523   BaseCountedLoopEndNode* cle = loopexit_or_null();
 524   return cle != nullptr ? cle->stride() : nullptr;
 525 }
 526 
 527 inline bool BaseCountedLoopNode::stride_is_con() const {
 528   BaseCountedLoopEndNode* cle = loopexit_or_null();
 529   return cle != nullptr && cle->stride_is_con();
 530 }
 531 inline Node* BaseCountedLoopNode::limit() const {
 532   BaseCountedLoopEndNode* cle = loopexit_or_null();
 533   return cle != nullptr ? cle->limit() : nullptr;
 534 }
 535 inline Node* BaseCountedLoopNode::incr() const {
 536   BaseCountedLoopEndNode* cle = loopexit_or_null();
 537   return cle != nullptr ? cle->incr() : nullptr;
 538 }
 539 inline Node* BaseCountedLoopNode::phi() const {
 540   BaseCountedLoopEndNode* cle = loopexit_or_null();
 541   return cle != nullptr ? cle->phi() : nullptr;
 542 }
 543 
 544 inline jlong BaseCountedLoopNode::stride_con() const {
 545   BaseCountedLoopEndNode* cle = loopexit_or_null();
 546   return cle != nullptr ? cle->stride_con() : 0;
 547 }
 548 
 549 
 550 //------------------------------LoopLimitNode-----------------------------
 551 // Counted Loop limit node which represents exact final iterator value:
 552 // trip_count = (limit - init_trip + stride - 1)/stride
 553 // final_value= trip_count * stride + init_trip.
 554 // Use HW instructions to calculate it when it can overflow in integer.
 555 // Note, final_value should fit into integer since counted loop has
 556 // limit check: limit <= max_int-stride.
 557 class LoopLimitNode : public Node {
 558   enum { Init=1, Limit=2, Stride=3 };
 559  public:
 560   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(nullptr,init,limit,stride) {
 561     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 562     init_flags(Flag_is_macro);
 563     C->add_macro_node(this);
 564   }
 565   virtual int Opcode() const;
 566   virtual const Type *bottom_type() const { return TypeInt::INT; }
 567   virtual uint ideal_reg() const { return Op_RegI; }
 568   virtual const Type* Value(PhaseGVN* phase) const;
 569   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 570   virtual Node* Identity(PhaseGVN* phase);
 571 };
 572 
 573 // Support for strip mining
 574 class OuterStripMinedLoopNode : public LoopNode {
 575 private:
 576   void fix_sunk_stores_when_back_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) const;
 577   void handle_sunk_stores_when_finishing_construction(PhaseIterGVN* igvn);
 578 
 579 public:
 580   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 581     : LoopNode(entry, backedge) {
 582     init_class_id(Class_OuterStripMinedLoop);
 583     init_flags(Flag_is_macro);
 584     C->add_macro_node(this);
 585   }
 586 
 587   virtual int Opcode() const;
 588 
 589   virtual IfTrueNode* outer_loop_tail() const;
 590   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 591   virtual IfFalseNode* outer_loop_exit() const;
 592   virtual SafePointNode* outer_safepoint() const;
 593   CountedLoopNode* inner_counted_loop() const { return unique_ctrl_out()->as_CountedLoop(); }
 594   CountedLoopEndNode* inner_counted_loop_end() const { return  inner_counted_loop()->loopexit(); }
 595   IfFalseNode* inner_loop_exit() const { return inner_counted_loop_end()->proj_out(false)->as_IfFalse(); }
 596 
 597   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 598 
 599   void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const;
 600 
 601   void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 602 
 603   static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 604 
 605   Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
 606                          PhaseIdealLoop* iloop);
 607 };
 608 
 609 class OuterStripMinedLoopEndNode : public IfNode {
 610 public:
 611   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 612     : IfNode(control, test, prob, cnt) {
 613     init_class_id(Class_OuterStripMinedLoopEnd);
 614   }
 615 
 616   virtual int Opcode() const;
 617 
 618   virtual const Type* Value(PhaseGVN* phase) const;
 619   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 620 
 621   bool is_expanded(PhaseGVN *phase) const;
 622 };
 623 
 624 // -----------------------------IdealLoopTree----------------------------------
 625 class IdealLoopTree : public ResourceObj {
 626 public:
 627   IdealLoopTree *_parent;       // Parent in loop tree
 628   IdealLoopTree *_next;         // Next sibling in loop tree
 629   IdealLoopTree *_child;        // First child in loop tree
 630 
 631   // The head-tail backedge defines the loop.
 632   // If a loop has multiple backedges, this is addressed during cleanup where
 633   // we peel off the multiple backedges,  merging all edges at the bottom and
 634   // ensuring that one proper backedge flow into the loop.
 635   Node *_head;                  // Head of loop
 636   Node *_tail;                  // Tail of loop
 637   inline Node *tail();          // Handle lazy update of _tail field
 638   inline Node *head();          // Handle lazy update of _head field
 639   PhaseIdealLoop* _phase;
 640   int _local_loop_unroll_limit;
 641   int _local_loop_unroll_factor;
 642 
 643   Node_List _body;              // Loop body for inner loops
 644 
 645   uint16_t _nest;               // Nesting depth
 646   uint8_t _irreducible:1,       // True if irreducible
 647           _has_call:1,          // True if has call safepoint
 648           _has_sfpt:1,          // True if has non-call safepoint
 649           _rce_candidate:1,     // True if candidate for range check elimination
 650           _has_range_checks:1,
 651           _has_range_checks_computed:1;
 652 
 653   Node_List* _safepts;          // List of safepoints in this loop
 654   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 655   bool  _allow_optimizations;   // Allow loop optimizations
 656 
 657   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 658     : _parent(nullptr), _next(nullptr), _child(nullptr),
 659       _head(head), _tail(tail),
 660       _phase(phase),
 661       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
 662       _body(Compile::current()->comp_arena()),
 663       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 664       _has_range_checks(0), _has_range_checks_computed(0),
 665       _safepts(nullptr),
 666       _required_safept(nullptr),
 667       _allow_optimizations(true)
 668   {
 669     precond(_head != nullptr);
 670     precond(_tail != nullptr);
 671   }
 672 
 673   // Is 'l' a member of 'this'?
 674   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 675 
 676   // Set loop nesting depth.  Accumulate has_call bits.
 677   int set_nest( uint depth );
 678 
 679   // Split out multiple fall-in edges from the loop header.  Move them to a
 680   // private RegionNode before the loop.  This becomes the loop landing pad.
 681   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 682 
 683   // Split out the outermost loop from this shared header.
 684   void split_outer_loop( PhaseIdealLoop *phase );
 685 
 686   // Merge all the backedges from the shared header into a private Region.
 687   // Feed that region as the one backedge to this loop.
 688   void merge_many_backedges( PhaseIdealLoop *phase );
 689 
 690   // Split shared headers and insert loop landing pads.
 691   // Insert a LoopNode to replace the RegionNode.
 692   // Returns TRUE if loop tree is structurally changed.
 693   bool beautify_loops( PhaseIdealLoop *phase );
 694 
 695   // Perform optimization to use the loop predicates for null checks and range checks.
 696   // Applies to any loop level (not just the innermost one)
 697   bool loop_predication( PhaseIdealLoop *phase);
 698   bool can_apply_loop_predication();
 699 
 700   // Perform iteration-splitting on inner loops.  Split iterations to
 701   // avoid range checks or one-shot null checks.  Returns false if the
 702   // current round of loop opts should stop.
 703   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 704 
 705   // Driver for various flavors of iteration splitting.  Returns false
 706   // if the current round of loop opts should stop.
 707   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 708 
 709   // Given dominators, try to find loops with calls that must always be
 710   // executed (call dominates loop tail).  These loops do not need non-call
 711   // safepoints (ncsfpt).
 712   void check_safepts(VectorSet &visited, Node_List &stack);
 713 
 714   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 715   // encountered.
 716   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 717 
 718   // Remove safepoints from loop. Optionally keeping one.
 719   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 720 
 721   // Convert to counted loops where possible
 722   void counted_loop( PhaseIdealLoop *phase );
 723 
 724   // Check for Node being a loop-breaking test
 725   Node *is_loop_exit(Node *iff) const;
 726 
 727   // Remove simplistic dead code from loop body
 728   void DCE_loop_body();
 729 
 730   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 731   // Replace with a 1-in-10 exit guess.
 732   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 733 
 734   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 735   // Useful for unrolling loops with NO array accesses.
 736   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 737 
 738   // Return TRUE or FALSE if the loop should be unswitched -- clone
 739   // loop with an invariant test
 740   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 741 
 742   // Micro-benchmark spamming.  Remove empty loops.
 743   bool do_remove_empty_loop( PhaseIdealLoop *phase );
 744 
 745   // Convert one iteration loop into normal code.
 746   bool do_one_iteration_loop( PhaseIdealLoop *phase );
 747 
 748   // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
 749   // move some loop-invariant test (usually a null-check) before the loop.
 750   bool policy_peeling(PhaseIdealLoop *phase);
 751 
 752   uint estimate_peeling(PhaseIdealLoop *phase);
 753 
 754   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 755   // known trip count in the counted loop node.
 756   bool policy_maximally_unroll(PhaseIdealLoop *phase) const;
 757 
 758   // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll
 759   // if the loop is a counted loop and the loop body is small enough.
 760   bool policy_unroll(PhaseIdealLoop *phase);
 761 
 762   // Loop analyses to map to a maximal superword unrolling for vectorization.
 763   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 764 
 765   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 766   // Gather a list of IF tests that are dominated by iteration splitting;
 767   // also gather the end of the first split and the start of the 2nd split.
 768   bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const;
 769 
 770   // Return TRUE if "iff" is a range check.
 771   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const;
 772   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset,
 773                          jlong& scale) const;
 774 
 775   // Estimate the number of nodes required when cloning a loop (body).
 776   uint est_loop_clone_sz(uint factor) const;
 777   // Estimate the number of nodes required when unrolling a loop (body).
 778   uint est_loop_unroll_sz(uint factor) const;
 779 
 780   // Compute loop trip count if possible
 781   void compute_trip_count(PhaseIdealLoop* phase);
 782 
 783   // Compute loop trip count from profile data
 784   float compute_profile_trip_cnt_helper(Node* n);
 785   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 786 
 787   // Reassociate invariant expressions.
 788   void reassociate_invariants(PhaseIdealLoop *phase);
 789   // Reassociate invariant binary expressions.
 790   Node* reassociate(Node* n1, PhaseIdealLoop *phase);
 791   // Reassociate invariant add, subtract, and compare expressions.
 792   Node* reassociate_add_sub_cmp(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop* phase);
 793   // Return nonzero index of invariant operand if invariant and variant
 794   // are combined with an associative binary. Helper for reassociate_invariants.
 795   int find_invariant(Node* n, PhaseIdealLoop *phase);
 796   // Return TRUE if "n" is associative.
 797   bool is_associative(Node* n, Node* base=nullptr);
 798   // Return TRUE if "n" is an associative cmp node.
 799   bool is_associative_cmp(Node* n);
 800 
 801   // Return true if n is invariant
 802   bool is_invariant(Node* n) const;
 803 
 804   // Put loop body on igvn work list
 805   void record_for_igvn();
 806 
 807   bool is_root() { return _parent == nullptr; }
 808   // A proper/reducible loop w/o any (occasional) dead back-edge.
 809   bool is_loop() { return !_irreducible && !tail()->is_top(); }
 810   bool is_counted()   { return is_loop() && _head->is_CountedLoop(); }
 811   bool is_innermost() { return is_loop() && _child == nullptr; }
 812 
 813   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 814 
 815   bool compute_has_range_checks() const;
 816   bool range_checks_present() {
 817     if (!_has_range_checks_computed) {
 818       if (compute_has_range_checks()) {
 819         _has_range_checks = 1;
 820       }
 821       _has_range_checks_computed = 1;
 822     }
 823     return _has_range_checks;
 824   }
 825 
 826   // Return the parent's IdealLoopTree for a strip mined loop which is the outer strip mined loop.
 827   // In all other cases, return this.
 828   IdealLoopTree* skip_strip_mined() {
 829     return _head->as_Loop()->is_strip_mined() ? _parent : this;
 830   }
 831 
 832 #ifndef PRODUCT
 833   void dump_head();       // Dump loop head only
 834   void dump();            // Dump this loop recursively
 835 #endif
 836 
 837 #ifdef ASSERT
 838   GrowableArray<IdealLoopTree*> collect_sorted_children() const;
 839   bool verify_tree(IdealLoopTree* loop_verify) const;
 840 #endif
 841 
 842  private:
 843   enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop.
 844 
 845   // Estimate the number of nodes resulting from control and data flow merge.
 846   uint est_loop_flow_merge_sz() const;
 847 
 848   // Check if the number of residual iterations is large with unroll_cnt.
 849   // Return true if the residual iterations are more than 10% of the trip count.
 850   bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const {
 851     return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt();
 852   }
 853 
 854   void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const;
 855 
 856   bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const;
 857 
 858   void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const;
 859 
 860   bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq,
 861                          Node* sfpt) const;
 862 
 863   bool empty_loop_candidate(PhaseIdealLoop* phase) const;
 864 
 865   bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const;
 866 };
 867 
 868 // -----------------------------PhaseIdealLoop---------------------------------
 869 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees
 870 // into a loop tree. Drives the loop-based transformations on the ideal graph.
 871 class PhaseIdealLoop : public PhaseTransform {
 872   friend class IdealLoopTree;
 873   friend class SuperWord;
 874   friend class ShenandoahBarrierC2Support;
 875   friend class AutoNodeBudget;
 876 
 877   // Map loop membership for CFG nodes, and ctrl for non-CFG nodes.
 878   Node_List _loop_or_ctrl;
 879 
 880   // Pre-computed def-use info
 881   PhaseIterGVN &_igvn;
 882 
 883   // Head of loop tree
 884   IdealLoopTree* _ltree_root;
 885 
 886   // Array of pre-order numbers, plus post-visited bit.
 887   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 888   // ODD for post-visited.  Other bits are the pre-order number.
 889   uint *_preorders;
 890   uint _max_preorder;
 891 
 892   ReallocMark _nesting; // Safety checks for arena reallocation
 893 
 894   const PhaseIdealLoop* _verify_me;
 895   bool _verify_only;
 896 
 897   // Allocate _preorders[] array
 898   void allocate_preorders() {
 899     _max_preorder = C->unique()+8;
 900     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 901     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 902   }
 903 
 904   // Allocate _preorders[] array
 905   void reallocate_preorders() {
 906     _nesting.check(); // Check if a potential re-allocation in the resource arena is safe
 907     if ( _max_preorder < C->unique() ) {
 908       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 909       _max_preorder = C->unique();
 910     }
 911     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 912   }
 913 
 914   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 915   // adds new nodes.
 916   void check_grow_preorders( ) {
 917     _nesting.check(); // Check if a potential re-allocation in the resource arena is safe
 918     if ( _max_preorder < C->unique() ) {
 919       uint newsize = _max_preorder<<1;  // double size of array
 920       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 921       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 922       _max_preorder = newsize;
 923     }
 924   }
 925   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 926   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 927   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 928   void set_preorder_visited( Node *n, int pre_order ) {
 929     assert( !is_visited( n ), "already set" );
 930     _preorders[n->_idx] = (pre_order<<1);
 931   };
 932   // Return pre-order number.
 933   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 934 
 935   // Check for being post-visited.
 936   // Should be previsited already (checked with assert(is_visited(n))).
 937   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 938 
 939   // Mark as post visited
 940   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 941 
 942 public:
 943   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 944   // Returns true if "n" is a data node, false if it's a control node.
 945   bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; }
 946 
 947 private:
 948   // clear out dead code after build_loop_late
 949   Node_List _deadlist;
 950   Node_List _zero_trip_guard_opaque_nodes;
 951   Node_List _multiversion_opaque_nodes;
 952 
 953   // Support for faster execution of get_late_ctrl()/dom_lca()
 954   // when a node has many uses and dominator depth is deep.
 955   GrowableArray<jlong> _dom_lca_tags;
 956   uint _dom_lca_tags_round;
 957   void   init_dom_lca_tags();
 958 
 959   // Helper for debugging bad dominance relationships
 960   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 961 
 962   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 963 
 964   // Inline wrapper for frequent cases:
 965   // 1) only one use
 966   // 2) a use is the same as the current LCA passed as 'n1'
 967   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 968     assert( n->is_CFG(), "" );
 969     // Fast-path null lca
 970     if( lca != nullptr && lca != n ) {
 971       assert( lca->is_CFG(), "" );
 972       // find LCA of all uses
 973       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 974     }
 975     return find_non_split_ctrl(n);
 976   }
 977   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 978 
 979   // Helper function for directing control inputs away from CFG split points.
 980   Node *find_non_split_ctrl( Node *ctrl ) const {
 981     if (ctrl != nullptr) {
 982       if (ctrl->is_MultiBranch()) {
 983         ctrl = ctrl->in(0);
 984       }
 985       assert(ctrl->is_CFG(), "CFG");
 986     }
 987     return ctrl;
 988   }
 989 
 990   void cast_incr_before_loop(Node* incr, Node* ctrl, CountedLoopNode* loop);
 991 
 992 #ifdef ASSERT
 993   static void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
 994 #endif
 995  private:
 996   static void get_opaque_template_assertion_predicate_nodes(ParsePredicateSuccessProj* parse_predicate_proj,
 997                                                             Unique_Node_List& list);
 998   void update_main_loop_assertion_predicates(CountedLoopNode* new_main_loop_head, int stride_con_before_unroll);
 999   void initialize_assertion_predicates_for_peeled_loop(CountedLoopNode* peeled_loop_head,
1000                                                        CountedLoopNode* remaining_loop_head,
1001                                                        uint first_node_index_in_cloned_loop_body,
1002                                                        const Node_List& old_new);
1003   void initialize_assertion_predicates_for_main_loop(CountedLoopNode* pre_loop_head,
1004                                                      CountedLoopNode* main_loop_head,
1005                                                      uint first_node_index_in_pre_loop_body,
1006                                                      uint last_node_index_in_pre_loop_body,
1007                                                      DEBUG_ONLY(uint last_node_index_from_backedge_goo COMMA)
1008                                                      const Node_List& old_new);
1009   void initialize_assertion_predicates_for_post_loop(CountedLoopNode* main_loop_head, CountedLoopNode* post_loop_head,
1010                                                      uint first_node_index_in_cloned_loop_body);
1011   void create_assertion_predicates_at_loop(CountedLoopNode* source_loop_head, CountedLoopNode* target_loop_head,
1012                                            const NodeInLoopBody& _node_in_loop_body, bool kill_old_template);
1013   void create_assertion_predicates_at_main_or_post_loop(CountedLoopNode* source_loop_head,
1014                                                         CountedLoopNode* target_loop_head,
1015                                                         const NodeInLoopBody& _node_in_loop_body,
1016                                                         bool kill_old_template);
1017   void rewire_old_target_loop_entry_dependency_to_new_entry(CountedLoopNode* target_loop_head,
1018                                                             const Node* old_target_loop_entry,
1019                                                             uint node_index_before_new_assertion_predicate_nodes);
1020   void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit,
1021                                          Node* bol);
1022   void log_loop_tree();
1023 
1024 public:
1025 
1026   PhaseIterGVN &igvn() const { return _igvn; }
1027 
1028   bool has_node(const Node* n) const {
1029     guarantee(n != nullptr, "No Node.");
1030     return _loop_or_ctrl[n->_idx] != nullptr;
1031   }
1032   // check if transform created new nodes that need _ctrl recorded
1033   Node *get_late_ctrl( Node *n, Node *early );
1034   Node *get_early_ctrl( Node *n );
1035   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
1036   void set_early_ctrl(Node* n, bool update_body);
1037   void set_subtree_ctrl(Node* n, bool update_body);
1038   void set_ctrl( Node *n, Node *ctrl ) {
1039     assert( !has_node(n) || has_ctrl(n), "" );
1040     assert( ctrl->in(0), "cannot set dead control node" );
1041     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
1042     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1));
1043   }
1044   void set_root_as_ctrl(Node* n) {
1045     assert(!has_node(n) || has_ctrl(n), "");
1046     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)C->root() + 1));
1047   }
1048   // Set control and update loop membership
1049   void set_ctrl_and_loop(Node* n, Node* ctrl) {
1050     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
1051     IdealLoopTree* new_loop = get_loop(ctrl);
1052     if (old_loop != new_loop) {
1053       if (old_loop->_child == nullptr) old_loop->_body.yank(n);
1054       if (new_loop->_child == nullptr) new_loop->_body.push(n);
1055     }
1056     set_ctrl(n, ctrl);
1057   }
1058   // Control nodes can be replaced or subsumed.  During this pass they
1059   // get their replacement Node in slot 1.  Instead of updating the block
1060   // location of all Nodes in the subsumed block, we lazily do it.  As we
1061   // pull such a subsumed block out of the array, we write back the final
1062   // correct block.
1063   Node* get_ctrl(const Node* i) {
1064     assert(has_node(i), "");
1065     Node *n = get_ctrl_no_update(i);
1066     _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1));
1067     assert(has_node(i) && has_ctrl(i), "");
1068     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
1069     return n;
1070   }
1071 
1072   bool is_dominator(Node* dominator, Node* n);
1073   bool is_strict_dominator(Node* dominator, Node* n);
1074 
1075   // return get_ctrl for a data node and self(n) for a CFG node
1076   Node* ctrl_or_self(Node* n) {
1077     if (has_ctrl(n))
1078       return get_ctrl(n);
1079     else {
1080       assert (n->is_CFG(), "must be a CFG node");
1081       return n;
1082     }
1083   }
1084 
1085   Node* get_ctrl_no_update_helper(const Node* i) const {
1086     assert(has_ctrl(i), "should be control, not loop");
1087     return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1);
1088   }
1089 
1090   Node* get_ctrl_no_update(const Node* i) const {
1091     assert( has_ctrl(i), "" );
1092     Node *n = get_ctrl_no_update_helper(i);
1093     if (!n->in(0)) {
1094       // Skip dead CFG nodes
1095       do {
1096         n = get_ctrl_no_update_helper(n);
1097       } while (!n->in(0));
1098       n = find_non_split_ctrl(n);
1099     }
1100     return n;
1101   }
1102 
1103   // Check for loop being set
1104   // "n" must be a control node. Returns true if "n" is known to be in a loop.
1105   bool has_loop( Node *n ) const {
1106     assert(!has_node(n) || !has_ctrl(n), "");
1107     return has_node(n);
1108   }
1109   // Set loop
1110   void set_loop( Node *n, IdealLoopTree *loop ) {
1111     _loop_or_ctrl.map(n->_idx, (Node*)loop);
1112   }
1113   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
1114   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
1115   // from old_node to new_node to support the lazy update.  Reference
1116   // replaces loop reference, since that is not needed for dead node.
1117   void lazy_update(Node *old_node, Node *new_node) {
1118     assert(old_node != new_node, "no cycles please");
1119     // Re-use the side array slot for this node to provide the
1120     // forwarding pointer.
1121     _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
1122   }
1123   void lazy_replace(Node *old_node, Node *new_node) {
1124     _igvn.replace_node(old_node, new_node);
1125     lazy_update(old_node, new_node);
1126   }
1127 
1128 private:
1129 
1130   // Place 'n' in some loop nest, where 'n' is a CFG node
1131   void build_loop_tree();
1132   int build_loop_tree_impl(Node* n, int pre_order);
1133   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
1134   // loop tree, not the root.
1135   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
1136 
1137 #ifdef ASSERT
1138   // verify that regions in irreducible loops are marked is_in_irreducible_loop
1139   void verify_regions_in_irreducible_loops();
1140   bool is_in_irreducible_loop(RegionNode* region);
1141 #endif
1142 
1143   // Place Data nodes in some loop nest
1144   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1145   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1146   void build_loop_late_post_work(Node* n, bool pinned);
1147   void build_loop_late_post(Node* n);
1148   void verify_strip_mined_scheduling(Node *n, Node* least);
1149 
1150   // Array of immediate dominance info for each CFG node indexed by node idx
1151 private:
1152   uint _idom_size;
1153   Node **_idom;                  // Array of immediate dominators
1154   uint *_dom_depth;              // Used for fast LCA test
1155   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
1156   LoopOptsMode _mode;
1157 
1158   // build the loop tree and perform any requested optimizations
1159   void build_and_optimize();
1160 
1161   // Dominators for the sea of nodes
1162   void Dominators();
1163 
1164   // Compute the Ideal Node to Loop mapping
1165   PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) :
1166     PhaseTransform(Ideal_Loop),
1167     _loop_or_ctrl(igvn.C->comp_arena()),
1168     _igvn(igvn),
1169     _verify_me(nullptr),
1170     _verify_only(false),
1171     _mode(mode),
1172     _nodes_required(UINT_MAX) {
1173     assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop");
1174     build_and_optimize();
1175   }
1176 
1177 #ifndef PRODUCT
1178   // Verify that verify_me made the same decisions as a fresh run
1179   // or only verify that the graph is valid if verify_me is null.
1180   PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) :
1181     PhaseTransform(Ideal_Loop),
1182     _loop_or_ctrl(igvn.C->comp_arena()),
1183     _igvn(igvn),
1184     _verify_me(verify_me),
1185     _verify_only(verify_me == nullptr),
1186     _mode(LoopOptsVerify),
1187     _nodes_required(UINT_MAX) {
1188     DEBUG_ONLY(C->set_phase_verify_ideal_loop();)
1189     build_and_optimize();
1190     DEBUG_ONLY(C->reset_phase_verify_ideal_loop();)
1191   }
1192 #endif
1193 
1194   Node* insert_convert_node_if_needed(BasicType target, Node* input);
1195 
1196 public:
1197   Node* idom_no_update(Node* d) const {
1198     return idom_no_update(d->_idx);
1199   }
1200 
1201   Node* idom_no_update(uint didx) const {
1202     assert(didx < _idom_size, "oob");
1203     Node* n = _idom[didx];
1204     assert(n != nullptr,"Bad immediate dominator info.");
1205     while (n->in(0) == nullptr) { // Skip dead CFG nodes
1206       n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1);
1207       assert(n != nullptr,"Bad immediate dominator info.");
1208     }
1209     return n;
1210   }
1211 
1212   Node *idom(Node* d) const {
1213     return idom(d->_idx);
1214   }
1215 
1216   Node *idom(uint didx) const {
1217     Node *n = idom_no_update(didx);
1218     _idom[didx] = n; // Lazily remove dead CFG nodes from table.
1219     return n;
1220   }
1221 
1222   uint dom_depth(Node* d) const {
1223     guarantee(d != nullptr, "Null dominator info.");
1224     guarantee(d->_idx < _idom_size, "");
1225     return _dom_depth[d->_idx];
1226   }
1227   void set_idom(Node* d, Node* n, uint dom_depth);
1228   // Locally compute IDOM using dom_lca call
1229   Node *compute_idom( Node *region ) const;
1230   // Recompute dom_depth
1231   void recompute_dom_depth();
1232 
1233   // Is safept not required by an outer loop?
1234   bool is_deleteable_safept(Node* sfpt);
1235 
1236   // Replace parallel induction variable (parallel to trip counter)
1237   void replace_parallel_iv(IdealLoopTree *loop);
1238 
1239   Node *dom_lca( Node *n1, Node *n2 ) const {
1240     return find_non_split_ctrl(dom_lca_internal(n1, n2));
1241   }
1242   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
1243 
1244   Node* dominated_node(Node* c1, Node* c2) {
1245     assert(is_dominator(c1, c2) || is_dominator(c2, c1), "nodes must be related");
1246     return is_dominator(c1, c2) ? c2 : c1;
1247   }
1248 
1249   // Return control node that's dominated by the 2 others
1250   Node* dominated_node(Node* c1, Node* c2, Node* c3) {
1251     return dominated_node(c1, dominated_node(c2, c3));
1252   }
1253 
1254   // Build and verify the loop tree without modifying the graph.  This
1255   // is useful to verify that all inputs properly dominate their uses.
1256   static void verify(PhaseIterGVN& igvn) {
1257 #ifdef ASSERT
1258     ResourceMark rm;
1259     Compile::TracePhase tp(_t_idealLoopVerify);
1260     PhaseIdealLoop v(igvn);
1261 #endif
1262   }
1263 
1264   // Recommended way to use PhaseIdealLoop.
1265   // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations.
1266   static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) {
1267     ResourceMark rm;
1268     PhaseIdealLoop v(igvn, mode);
1269 
1270     Compile* C = Compile::current();
1271     if (!C->failing()) {
1272       // Cleanup any modified bits
1273       igvn.optimize();
1274       if (C->failing()) { return; }
1275       v.log_loop_tree();
1276     }
1277   }
1278 
1279   // True if the method has at least 1 irreducible loop
1280   bool _has_irreducible_loops;
1281 
1282   // Per-Node transform
1283   virtual Node* transform(Node* n) { return nullptr; }
1284 
1285   Node* loop_exit_control(Node* x, IdealLoopTree* loop);
1286   Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob);
1287   Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr);
1288   Node* loop_iv_stride(Node* incr, Node*& xphi);
1289   PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x);
1290 
1291   bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt);
1292 
1293   Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt);
1294   bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new);
1295 #ifdef ASSERT
1296   bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop);
1297 #endif
1298   void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt);
1299   SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop);
1300   IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift);
1301   IdealLoopTree* create_outer_strip_mined_loop(Node* init_control,
1302                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
1303                                                Node*& entry_control, Node*& iffalse);
1304 
1305   Node* exact_limit( IdealLoopTree *loop );
1306 
1307   // Return a post-walked LoopNode
1308   IdealLoopTree *get_loop( Node *n ) const {
1309     // Dead nodes have no loop, so return the top level loop instead
1310     if (!has_node(n))  return _ltree_root;
1311     assert(!has_ctrl(n), "");
1312     return (IdealLoopTree*)_loop_or_ctrl[n->_idx];
1313   }
1314 
1315   IdealLoopTree* ltree_root() const { return _ltree_root; }
1316 
1317   // Is 'n' a (nested) member of 'loop'?
1318   int is_member( const IdealLoopTree *loop, Node *n ) const {
1319     return loop->is_member(get_loop(n)); }
1320 
1321   // This is the basic building block of the loop optimizations.  It clones an
1322   // entire loop body.  It makes an old_new loop body mapping; with this
1323   // mapping you can find the new-loop equivalent to an old-loop node.  All
1324   // new-loop nodes are exactly equal to their old-loop counterparts, all
1325   // edges are the same.  All exits from the old-loop now have a RegionNode
1326   // that merges the equivalent new-loop path.  This is true even for the
1327   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
1328   // now come from (one or more) Phis that merge their new-loop equivalents.
1329   // Parameter side_by_side_idom:
1330   //   When side_by_size_idom is null, the dominator tree is constructed for
1331   //      the clone loop to dominate the original.  Used in construction of
1332   //      pre-main-post loop sequence.
1333   //   When nonnull, the clone and original are side-by-side, both are
1334   //      dominated by the passed in side_by_side_idom node.  Used in
1335   //      construction of unswitched loops.
1336   enum CloneLoopMode {
1337     IgnoreStripMined = 0,        // Only clone inner strip mined loop
1338     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
1339     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
1340                                  // result control flow branches
1341                                  // either to inner clone or outer
1342                                  // strip mined loop.
1343   };
1344   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1345                   CloneLoopMode mode, Node* side_by_side_idom = nullptr);
1346   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1347                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1348                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1349                                    Node_List*& split_cex_set, Node_List& worklist,
1350                                    uint new_counter, CloneLoopMode mode);
1351   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1352                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1353                         Node_List& extra_data_nodes);
1354 
1355   // If we got the effect of peeling, either by actually peeling or by
1356   // making a pre-loop which must execute at least once, we can remove
1357   // all loop-invariant dominated tests in the main body.
1358   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1359 
1360   // Generate code to do a loop peel for the given loop (and body).
1361   // old_new is a temp array.
1362   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1363 
1364   // Add pre and post loops around the given loop.  These loops are used
1365   // during RCE, unrolling and aligning loops.
1366   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1367 
1368   // Add post loop after the given loop.
1369   Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new,
1370                          CountedLoopNode* main_head, CountedLoopEndNode* main_end,
1371                          Node* incr, Node* limit, CountedLoopNode*& post_head);
1372 
1373   // Add a vector post loop between a vector main loop and the current post loop
1374   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1375   // If Node n lives in the back_ctrl block, we clone a private version of n
1376   // in preheader_ctrl block and return that, otherwise return n.
1377   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1378 
1379   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1380   // unroll to do double iterations.  The next round of major loop transforms
1381   // will repeat till the doubled loop body does all remaining iterations in 1
1382   // pass.
1383   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1384 
1385   // Unroll the loop body one step - make each trip do 2 iterations.
1386   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1387 
1388   // Return true if exp is a constant times an induction var
1389   bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0);
1390 
1391   bool is_iv(Node* exp, Node* iv, BasicType bt);
1392 
1393   // Return true if exp is a scaled induction var plus (or minus) constant
1394   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0);
1395   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) {
1396     jlong long_scale;
1397     if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) {
1398       int int_scale = checked_cast<int>(long_scale);
1399       if (p_scale != nullptr) {
1400         *p_scale = int_scale;
1401       }
1402       return true;
1403     }
1404     return false;
1405   }
1406   // Helper for finding more complex matches to is_scaled_iv_plus_offset.
1407   bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv,
1408                                       BasicType bt,
1409                                       jlong* p_scale, Node** p_offset,
1410                                       bool* p_short_scale, int depth);
1411 
1412   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1413   IfTrueNode* create_new_if_for_predicate(const ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1414                                           Deoptimization::DeoptReason reason, int opcode,
1415                                           bool rewire_uncommon_proj_phi_inputs = false);
1416 
1417  private:
1418   // Helper functions for create_new_if_for_predicate()
1419   void set_ctrl_of_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
1420   Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl);
1421   Node* clone_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
1422   void fix_cloned_data_node_controls(const ProjNode* orig, Node* new_uncommon_proj,
1423                                      const OrigToNewHashtable& orig_to_clone);
1424   bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt,
1425                                        Node* loop_entry);
1426 
1427  public:
1428   void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true);
1429 
1430   // Replace the control input of 'node' with 'new_control' and set the dom depth to the one of 'new_control'.
1431   void replace_control(Node* node, Node* new_control) {
1432     _igvn.replace_input_of(node, 0, new_control);
1433     set_idom(node, new_control, dom_depth(new_control));
1434   }
1435 
1436   void replace_loop_entry(LoopNode* loop_head, Node* new_entry) {
1437     _igvn.replace_input_of(loop_head, LoopNode::EntryControl, new_entry);
1438     set_idom(loop_head, new_entry, dom_depth(new_entry));
1439   }
1440 
1441   // Construct a range check for a predicate if
1442   BoolNode* rc_predicate(Node* ctrl, int scale, Node* offset, Node* init, Node* limit,
1443                          jint stride, Node* range, bool upper, bool& overflow);
1444 
1445   // Implementation of the loop predication to promote checks outside the loop
1446   bool loop_predication_impl(IdealLoopTree *loop);
1447 
1448  private:
1449   bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj,
1450                                     ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero,
1451                                     Invariance& invar, Deoptimization::DeoptReason deopt_reason);
1452   bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const;
1453   bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt);
1454   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1455                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1456                                         Node_List& if_proj_list);
1457   IfTrueNode* create_template_assertion_predicate(CountedLoopNode* loop_head, ParsePredicateNode* parse_predicate,
1458                                                   IfProjNode* new_control, int scale, Node* offset, Node* range);
1459   void eliminate_hoisted_range_check(IfTrueNode* hoisted_check_proj, IfTrueNode* template_assertion_predicate_proj);
1460 
1461   // Helper function to collect predicate for eliminating the useless ones
1462   void eliminate_useless_predicates() const;
1463 
1464   void eliminate_useless_zero_trip_guard();
1465   void eliminate_useless_multiversion_if();
1466 
1467  public:
1468   // Change the control input of expensive nodes to allow commoning by
1469   // IGVN when it is guaranteed to not result in a more frequent
1470   // execution of the expensive node. Return true if progress.
1471   bool process_expensive_nodes();
1472 
1473   // Check whether node has become unreachable
1474   bool is_node_unreachable(Node *n) const {
1475     return !has_node(n) || n->is_unreachable(_igvn);
1476   }
1477 
1478   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1479   void do_range_check(IdealLoopTree* loop);
1480 
1481   // Clone loop with an invariant test (that does not exit) and
1482   // insert a clone of the test that selects which version to
1483   // execute.
1484   void do_unswitching(IdealLoopTree* loop, Node_List& old_new);
1485 
1486   IfNode* find_unswitch_candidate(const IdealLoopTree* loop) const;
1487 
1488  private:
1489   static bool has_control_dependencies_from_predicates(LoopNode* head);
1490   static void revert_to_normal_loop(const LoopNode* loop_head);
1491 
1492   void hoist_invariant_check_casts(const IdealLoopTree* loop, const Node_List& old_new,
1493                                    const UnswitchedLoopSelector& unswitched_loop_selector);
1494   void add_unswitched_loop_version_bodies_to_igvn(IdealLoopTree* loop, const Node_List& old_new);
1495   static void increment_unswitch_counts(LoopNode* original_head, LoopNode* new_head);
1496   void remove_unswitch_candidate_from_loops(const Node_List& old_new, const UnswitchedLoopSelector& unswitched_loop_selector);
1497 #ifndef PRODUCT
1498   static void trace_loop_unswitching_count(IdealLoopTree* loop, LoopNode* original_head);
1499   static void trace_loop_unswitching_impossible(const LoopNode* original_head);
1500   static void trace_loop_unswitching_result(const UnswitchedLoopSelector& unswitched_loop_selector,
1501                                             const LoopNode* original_head, const LoopNode* new_head);
1502   static void trace_loop_multiversioning_result(const LoopSelector& loop_selector,
1503                                                 const LoopNode* original_head, const LoopNode* new_head);
1504 #endif
1505 
1506  public:
1507 
1508   // Range Check Elimination uses this function!
1509   // Constrain the main loop iterations so the affine function:
1510   //    low_limit <= scale_con * I + offset  <  upper_limit
1511   // always holds true.  That is, either increase the number of iterations in
1512   // the pre-loop or the post-loop until the condition holds true in the main
1513   // loop.  Scale_con, offset and limit are all loop invariant.
1514   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
1515   // Helper function for add_constraint().
1516   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
1517 
1518   // Partially peel loop up through last_peel node.
1519   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1520   bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new);
1521 
1522   // AutoVectorize the loop: replace scalar ops with vector ops.
1523   enum AutoVectorizeStatus {
1524     Impossible,      // This loop has the wrong shape to even try vectorization.
1525     Success,         // We just successfully vectorized the loop.
1526     TriedAndFailed,  // We tried to vectorize, but failed.
1527   };
1528   AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared);
1529 
1530   void maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new);
1531   void do_multiversioning(IdealLoopTree* lpt, Node_List& old_new);
1532   IfTrueNode* create_new_if_for_multiversion(IfTrueNode* multiversioning_fast_proj);
1533   bool try_resume_optimizations_for_delayed_slow_loop(IdealLoopTree* lpt);
1534 
1535   // Move an unordered Reduction out of loop if possible
1536   void move_unordered_reduction_out_of_loop(IdealLoopTree* loop);
1537 
1538   // Create a scheduled list of nodes control dependent on ctrl set.
1539   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1540   // Has a use in the vector set
1541   bool has_use_in_set( Node* n, VectorSet& vset );
1542   // Has use internal to the vector set (ie. not in a phi at the loop head)
1543   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1544   // clone "n" for uses that are outside of loop
1545   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1546   // clone "n" for special uses that are in the not_peeled region
1547   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1548                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1549   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1550   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1551 #ifdef ASSERT
1552   // Validate the loop partition sets: peel and not_peel
1553   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1554   // Ensure that uses outside of loop are of the right form
1555   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1556                                  uint orig_exit_idx, uint clone_exit_idx);
1557   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1558 #endif
1559 
1560   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1561   int stride_of_possible_iv( Node* iff );
1562   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1563   // Return the (unique) control output node that's in the loop (if it exists.)
1564   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1565   // Insert a signed compare loop exit cloned from an unsigned compare.
1566   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1567   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1568   // Utility to register node "n" with PhaseIdealLoop
1569   void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth);
1570   // Utility to create an if-projection
1571   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1572   // Force the iff control output to be the live_proj
1573   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1574   // Insert a region before an if projection
1575   RegionNode* insert_region_before_proj(ProjNode* proj);
1576   // Insert a new if before an if projection
1577   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1578 
1579   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1580   // "Nearly" because all Nodes have been cloned from the original in the loop,
1581   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1582   // through the Phi recursively, and return a Bool.
1583   Node* clone_iff(PhiNode* phi);
1584   CmpNode* clone_bool(PhiNode* phi);
1585 
1586 
1587   // Rework addressing expressions to get the most loop-invariant stuff
1588   // moved out.  We'd like to do all associative operators, but it's especially
1589   // important (common) to do address expressions.
1590   Node* remix_address_expressions(Node* n);
1591   Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt);
1592 
1593   // Convert add to muladd to generate MuladdS2I under certain criteria
1594   Node * convert_add_to_muladd(Node * n);
1595 
1596   // Attempt to use a conditional move instead of a phi/branch
1597   Node *conditional_move( Node *n );
1598 
1599   // Check for aggressive application of 'split-if' optimization,
1600   // using basic block level info.
1601   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack);
1602   Node *split_if_with_blocks_pre ( Node *n );
1603   void  split_if_with_blocks_post( Node *n );
1604   Node *has_local_phi_input( Node *n );
1605   // Mark an IfNode as being dominated by a prior test,
1606   // without actually altering the CFG (and hence IDOM info).
1607   void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false);
1608   void rewire_safe_outputs_to_dominator(Node* source, Node* dominator, bool pin_array_access_nodes);
1609 
1610   // Split Node 'n' through merge point
1611   RegionNode* split_thru_region(Node* n, RegionNode* region);
1612   // Split Node 'n' through merge point if there is enough win.
1613   Node *split_thru_phi( Node *n, Node *region, int policy );
1614   // Found an If getting its condition-code input from a Phi in the
1615   // same block.  Split thru the Region.
1616   void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr);
1617 
1618   // Conversion of fill/copy patterns into intrinsic versions
1619   bool do_intrinsify_fill();
1620   bool intrinsify_fill(IdealLoopTree* lpt);
1621   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1622                        Node*& shift, Node*& offset);
1623 
1624 private:
1625   // Return a type based on condition control flow
1626   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1627   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); }
1628  // Helpers for filtered type
1629   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1630 
1631   // Helper functions
1632   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1633   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1634   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1635   bool split_up( Node *n, Node *blk1, Node *blk2 );
1636 
1637   Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const;
1638   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1639   void try_move_store_after_loop(Node* n);
1640   bool identical_backtoback_ifs(Node *n);
1641   bool can_split_if(Node *n_ctrl);
1642   bool cannot_split_division(const Node* n, const Node* region) const;
1643   static bool is_divisor_loop_phi(const Node* divisor, const Node* loop);
1644   bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const;
1645 
1646   // Determine if a method is too big for a/another round of split-if, based on
1647   // a magic (approximate) ratio derived from the equally magic constant 35000,
1648   // previously used for this purpose (but without relating to the node limit).
1649   bool must_throttle_split_if() {
1650     uint threshold = C->max_node_limit() * 2 / 5;
1651     return C->live_nodes() > threshold;
1652   }
1653 
1654   // A simplistic node request tracking mechanism, where
1655   //   = UINT_MAX   Request not valid or made final.
1656   //   < UINT_MAX   Nodes currently requested (estimate).
1657   uint _nodes_required;
1658 
1659   enum { REQUIRE_MIN = 70 };
1660 
1661   uint nodes_required() const { return _nodes_required; }
1662 
1663   // Given the _currently_  available number of nodes, check  whether there is
1664   // "room" for an additional request or not, considering the already required
1665   // number of  nodes.  Return TRUE if  the new request is  exceeding the node
1666   // budget limit, otherwise return FALSE.  Note that this interpretation will
1667   // act pessimistic on  additional requests when new nodes  have already been
1668   // generated since the 'begin'.  This behaviour fits with the intention that
1669   // node estimates/requests should be made upfront.
1670   bool exceeding_node_budget(uint required = 0) {
1671     assert(C->live_nodes() < C->max_node_limit(), "sanity");
1672     uint available = C->max_node_limit() - C->live_nodes();
1673     return available < required + _nodes_required + REQUIRE_MIN;
1674   }
1675 
1676   uint require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1677     precond(require > 0);
1678     _nodes_required += MAX2(require, minreq);
1679     return _nodes_required;
1680   }
1681 
1682   bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1683     return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0;
1684   }
1685 
1686   uint require_nodes_begin() {
1687     assert(_nodes_required == UINT_MAX, "Bad state (begin).");
1688     _nodes_required = 0;
1689     return C->live_nodes();
1690   }
1691 
1692   // When a node request is final,  optionally check that the requested number
1693   // of nodes was  reasonably correct with respect to the  number of new nodes
1694   // introduced since the last 'begin'. Always check that we have not exceeded
1695   // the maximum node limit.
1696   void require_nodes_final(uint live_at_begin, bool check_estimate) {
1697     assert(_nodes_required < UINT_MAX, "Bad state (final).");
1698 
1699 #ifdef ASSERT
1700     if (check_estimate) {
1701       // Check that the node budget request was not off by too much (x2).
1702       // Should this be the case we _surely_ need to improve the estimates
1703       // used in our budget calculations.
1704       if (C->live_nodes() - live_at_begin > 2 * _nodes_required) {
1705         log_info(compilation)("Bad node estimate: actual = %d >> request = %d",
1706                               C->live_nodes() - live_at_begin, _nodes_required);
1707       }
1708     }
1709 #endif
1710     // Assert that we have stayed within the node budget limit.
1711     assert(C->live_nodes() < C->max_node_limit(),
1712            "Exceeding node budget limit: %d + %d > %d (request = %d)",
1713            C->live_nodes() - live_at_begin, live_at_begin,
1714            C->max_node_limit(), _nodes_required);
1715 
1716     _nodes_required = UINT_MAX;
1717   }
1718 
1719  private:
1720 
1721   bool _created_loop_node;
1722   DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);)
1723   NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;)
1724 
1725 public:
1726   void set_created_loop_node() { _created_loop_node = true; }
1727   bool created_loop_node()     { return _created_loop_node; }
1728   void register_new_node(Node* n, Node* blk);
1729   void register_new_node_with_ctrl_of(Node* new_node, Node* ctrl_of) {
1730     register_new_node(new_node, get_ctrl(ctrl_of));
1731   }
1732 
1733   Node* clone_and_register(Node* n, Node* ctrl) {
1734     n = n->clone();
1735     register_new_node(n, ctrl);
1736     return n;
1737   }
1738 
1739 #ifdef ASSERT
1740   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1741 #endif
1742 
1743 #ifndef PRODUCT
1744   void dump() const;
1745   void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging
1746   void dump_idom(Node* n, uint count) const;
1747   void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const;
1748   void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const;
1749   IdealLoopTree* get_loop_idx(Node* n) const {
1750     // Dead nodes have no loop, so return the top level loop instead
1751     return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root;
1752   }
1753   // Print some stats
1754   static void print_statistics();
1755   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1756   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1757   static volatile int _long_loop_candidates;
1758   static volatile int _long_loop_nests;
1759   static volatile int _long_loop_counted_loops;
1760 #endif
1761 
1762 #ifdef ASSERT
1763   void verify() const;
1764   bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const;
1765   bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const;
1766   bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const;
1767 #endif
1768 
1769   void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const;
1770 
1771   void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN;
1772 
1773   LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test);
1774 
1775 
1776   int extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1777                                 Node_List &range_checks);
1778 
1779   void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1780                                    Node* inner_iters_actual_int, Node* inner_phi,
1781                                    Node* iv_add, LoopNode* inner_head);
1782 
1783   Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA);
1784 
1785   bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl);
1786 
1787   bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop);
1788 
1789   Node* compute_early_ctrl(Node* n, Node* n_ctrl);
1790 
1791   void try_sink_out_of_loop(Node* n);
1792 
1793   Node* clamp(Node* R, Node* L, Node* H);
1794 
1795   bool safe_for_if_replacement(const Node* dom) const;
1796 
1797   void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region);
1798 
1799   bool try_merge_identical_ifs(Node* n);
1800 
1801   void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm);
1802 
1803   void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
1804                       IdealLoopTree* parent, bool partial);
1805 
1806   void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
1807                 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist);
1808 
1809   void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
1810                      uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set,
1811                      Node_List*& split_bool_set, Node_List*& split_cex_set);
1812 
1813   void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set);
1814 
1815   bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2);
1816 
1817   bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2);
1818   void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i);
1819   bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2);
1820   void clone_template_assertion_expression_down(Node* node);
1821 
1822   Node* similar_subtype_check(const Node* x, Node* r_in);
1823 
1824   void update_addp_chain_base(Node* x, Node* old_base, Node* new_base);
1825 
1826   bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x);
1827 
1828   void pin_array_access_nodes_dependent_on(Node* ctrl);
1829 
1830   Node* ensure_node_and_inputs_are_above_pre_end(CountedLoopEndNode* pre_end, Node* node);
1831 
1832   ConINode* intcon(jint i);
1833 
1834   ConLNode* longcon(jlong i);
1835 
1836   ConNode* makecon(const Type* t);
1837 
1838   ConNode* integercon(jlong l, BasicType bt);
1839 
1840   ConNode* zerocon(BasicType bt);
1841 };
1842 
1843 
1844 class AutoNodeBudget : public StackObj
1845 {
1846 public:
1847   enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK };
1848 
1849   AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK)
1850     : _phase(phase),
1851       _check_at_final(chk == BUDGET_CHECK),
1852       _nodes_at_begin(0)
1853   {
1854     precond(_phase != nullptr);
1855 
1856     _nodes_at_begin = _phase->require_nodes_begin();
1857   }
1858 
1859   ~AutoNodeBudget() {
1860 #ifndef PRODUCT
1861     if (TraceLoopOpts) {
1862       uint request = _phase->nodes_required();
1863       uint delta   = _phase->C->live_nodes() - _nodes_at_begin;
1864 
1865       if (request < delta) {
1866         tty->print_cr("Exceeding node budget: %d < %d", request, delta);
1867       } else {
1868         uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN;
1869         // Identify the worst estimates as "poor" ones.
1870         if (request > REQUIRE_MIN && delta > 0) {
1871           if ((delta >  REQUIRE_MIN && request >  3 * delta) ||
1872               (delta <= REQUIRE_MIN && request > 10 * delta)) {
1873             tty->print_cr("Poor node estimate: %d >> %d", request, delta);
1874           }
1875         }
1876       }
1877     }
1878 #endif // PRODUCT
1879     _phase->require_nodes_final(_nodes_at_begin, _check_at_final);
1880   }
1881 
1882 private:
1883   PhaseIdealLoop* _phase;
1884   bool _check_at_final;
1885   uint _nodes_at_begin;
1886 };
1887 
1888 inline Node* IdealLoopTree::tail() {
1889   // Handle lazy update of _tail field.
1890   if (_tail->in(0) == nullptr) {
1891     _tail = _phase->get_ctrl(_tail);
1892   }
1893   return _tail;
1894 }
1895 
1896 inline Node* IdealLoopTree::head() {
1897   // Handle lazy update of _head field.
1898   if (_head->in(0) == nullptr) {
1899     _head = _phase->get_ctrl(_head);
1900   }
1901   return _head;
1902 }
1903 
1904 // Iterate over the loop tree using a preorder, left-to-right traversal.
1905 //
1906 // Example that visits all counted loops from within PhaseIdealLoop
1907 //
1908 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1909 //   IdealLoopTree* lpt = iter.current();
1910 //   if (!lpt->is_counted()) continue;
1911 //   ...
1912 class LoopTreeIterator : public StackObj {
1913 private:
1914   IdealLoopTree* _root;
1915   IdealLoopTree* _curnt;
1916 
1917 public:
1918   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1919 
1920   bool done() { return _curnt == nullptr; }       // Finished iterating?
1921 
1922   void next();                                 // Advance to next loop tree
1923 
1924   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1925 };
1926 
1927 // Compute probability of reaching some CFG node from a fixed
1928 // dominating CFG node
1929 class PathFrequency {
1930 private:
1931   Node* _dom; // frequencies are computed relative to this node
1932   Node_Stack _stack;
1933   GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions
1934   GrowableArray<float> _freqs; // cache frequencies
1935   PhaseIdealLoop* _phase;
1936 
1937   float check_and_truncate_frequency(float f) {
1938     assert(f >= 0, "Incorrect frequency");
1939     // We do not perform an exact (f <= 1) check
1940     // this would be error prone with rounding of floats.
1941     // Performing a check like (f <= 1+eps) would be of benefit,
1942     // however, it is not evident how to determine such an eps,
1943     // given that an arbitrary number of add/mul operations
1944     // are performed on these frequencies.
1945     return (f > 1) ? 1 : f;
1946   }
1947 
1948 public:
1949   PathFrequency(Node* dom, PhaseIdealLoop* phase)
1950     : _dom(dom), _stack(0), _phase(phase) {
1951   }
1952 
1953   float to(Node* n);
1954 };
1955 
1956 // Class to clone a data node graph by taking a list of data nodes. This is done in 2 steps:
1957 //   1. Clone the data nodes
1958 //   2. Fix the cloned data inputs pointing to the old nodes to the cloned inputs by using an old->new mapping.
1959 class DataNodeGraph : public StackObj {
1960   PhaseIdealLoop* const _phase;
1961   const Unique_Node_List& _data_nodes;
1962   OrigToNewHashtable _orig_to_new;
1963 
1964  public:
1965   DataNodeGraph(const Unique_Node_List& data_nodes, PhaseIdealLoop* phase)
1966       : _phase(phase),
1967         _data_nodes(data_nodes),
1968         // Use 107 as best guess which is the first resize value in ResizeableResourceHashtable::large_table_sizes.
1969         _orig_to_new(107, MaxNodeLimit)
1970   {
1971 #ifdef ASSERT
1972     for (uint i = 0; i < data_nodes.size(); i++) {
1973       assert(!data_nodes[i]->is_CFG(), "only data nodes");
1974     }
1975 #endif
1976   }
1977   NONCOPYABLE(DataNodeGraph);
1978 
1979  private:
1980   void clone(Node* node, Node* new_ctrl);
1981   void clone_data_nodes(Node* new_ctrl);
1982   void clone_data_nodes_and_transform_opaque_loop_nodes(const TransformStrategyForOpaqueLoopNodes& transform_strategy,
1983                                                         Node* new_ctrl);
1984   void rewire_clones_to_cloned_inputs();
1985   void transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node);
1986 
1987  public:
1988   // Clone the provided data node collection and rewire the clones in such a way to create an identical graph copy.
1989   // Set 'new_ctrl' as ctrl for the cloned nodes.
1990   const OrigToNewHashtable& clone(Node* new_ctrl) {
1991     assert(_orig_to_new.number_of_entries() == 0, "should not call this method twice in a row");
1992     clone_data_nodes(new_ctrl);
1993     rewire_clones_to_cloned_inputs();
1994     return _orig_to_new;
1995   }
1996 
1997   // Create a copy of the data nodes provided to the constructor by doing the following:
1998   // Clone all non-OpaqueLoop* nodes and rewire them to create an identical subgraph copy. For the OpaqueLoop* nodes,
1999   // apply the provided transformation strategy and include the transformed node into the subgraph copy to get a complete
2000   // "cloned-and-transformed" graph copy. For all newly cloned nodes (which could also be new OpaqueLoop* nodes), set
2001   // `new_ctrl` as ctrl.
2002   const OrigToNewHashtable& clone_with_opaque_loop_transform_strategy(
2003       const TransformStrategyForOpaqueLoopNodes& transform_strategy,
2004       Node* new_ctrl) {
2005     clone_data_nodes_and_transform_opaque_loop_nodes(transform_strategy, new_ctrl);
2006     rewire_clones_to_cloned_inputs();
2007     return _orig_to_new;
2008   }
2009 };
2010 #endif // SHARE_OPTO_LOOPNODE_HPP