1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_LOOPNODE_HPP
  26 #define SHARE_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/predicates.hpp"
  32 #include "opto/subnode.hpp"
  33 #include "opto/type.hpp"
  34 #include "utilities/checkedCast.hpp"
  35 
  36 class CmpNode;
  37 class BaseCountedLoopEndNode;
  38 class CountedLoopNode;
  39 class IdealLoopTree;
  40 class LoopNode;
  41 class Node;
  42 class OuterStripMinedLoopEndNode;
  43 class PredicateBlock;
  44 class PathFrequency;
  45 class PhaseIdealLoop;
  46 class LoopSelector;
  47 class UnswitchedLoopSelector;
  48 class VectorSet;
  49 class VSharedData;
  50 class Invariance;
  51 struct small_cache;
  52 
  53 //
  54 //                  I D E A L I Z E D   L O O P S
  55 //
  56 // Idealized loops are the set of loops I perform more interesting
  57 // transformations on, beyond simple hoisting.
  58 
  59 //------------------------------LoopNode---------------------------------------
  60 // Simple loop header.  Fall in path on left, loop-back path on right.
  61 class LoopNode : public RegionNode {
  62   // Size is bigger to hold the flags.  However, the flags do not change
  63   // the semantics so it does not appear in the hash & cmp functions.
  64   virtual uint size_of() const { return sizeof(*this); }
  65 protected:
  66   uint _loop_flags;
  67   // Names for flag bitfields
  68   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  69          MainHasNoPreLoop      = 1<<2,
  70          HasExactTripCount     = 1<<3,
  71          InnerLoop             = 1<<4,
  72          PartialPeelLoop       = 1<<5,
  73          PartialPeelFailed     = 1<<6,
  74          WasSlpAnalyzed        = 1<<7,
  75          PassedSlpAnalysis     = 1<<8,
  76          DoUnrollOnly          = 1<<9,
  77          VectorizedLoop        = 1<<10,
  78          HasAtomicPostLoop     = 1<<11,
  79          StripMined            = 1<<12,
  80          SubwordLoop           = 1<<13,
  81          ProfileTripFailed     = 1<<14,
  82          LoopNestInnerLoop     = 1<<15,
  83          LoopNestLongOuterLoop = 1<<16,
  84          MultiversionFastLoop         = 1<<17,
  85          MultiversionSlowLoop         = 2<<17,
  86          MultiversionDelayedSlowLoop  = 3<<17,
  87          MultiversionFlagsMask        = 3<<17,
  88        };
  89   char _unswitch_count;
  90   enum { _unswitch_max=3 };
  91 
  92   // Expected trip count from profile data
  93   float _profile_trip_cnt;
  94 
  95 public:
  96   // Names for edge indices
  97   enum { Self=0, EntryControl, LoopBackControl };
  98 
  99   bool is_inner_loop() const { return _loop_flags & InnerLoop; }
 100   void set_inner_loop() { _loop_flags |= InnerLoop; }
 101 
 102   bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
 103   bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
 104   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
 105   bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
 106   bool is_strip_mined() const { return _loop_flags & StripMined; }
 107   bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
 108   bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
 109   bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; }
 110   bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; }
 111 
 112   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
 113   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 114   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 115   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 116   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 117   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 118   void mark_strip_mined() { _loop_flags |= StripMined; }
 119   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 120   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
 121   void mark_subword_loop() { _loop_flags |= SubwordLoop; }
 122   void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; }
 123   void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; }
 124 
 125   int unswitch_max() { return _unswitch_max; }
 126   int unswitch_count() { return _unswitch_count; }
 127 
 128   void set_unswitch_count(int val) {
 129     assert (val <= unswitch_max(), "too many unswitches");
 130     _unswitch_count = val;
 131   }
 132 
 133   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 134   float profile_trip_cnt()             { return _profile_trip_cnt; }
 135 
 136 #ifndef PRODUCT
 137   uint _stress_peeling_attempts = 0;
 138 #endif
 139 
 140   LoopNode(Node *entry, Node *backedge)
 141     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
 142       _profile_trip_cnt(COUNT_UNKNOWN) {
 143     init_class_id(Class_Loop);
 144     init_req(EntryControl, entry);
 145     init_req(LoopBackControl, backedge);
 146   }
 147 
 148   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 149   virtual int Opcode() const;
 150   bool can_be_counted_loop(PhaseValues* phase) const {
 151     return req() == 3 && in(0) != nullptr &&
 152       in(1) != nullptr && phase->type(in(1)) != Type::TOP &&
 153       in(2) != nullptr && phase->type(in(2)) != Type::TOP;
 154   }
 155   bool is_valid_counted_loop(BasicType bt) const;
 156 #ifndef PRODUCT
 157   virtual void dump_spec(outputStream *st) const;
 158 #endif
 159 
 160   void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
 161   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 162   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; }
 163   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; }
 164   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; }
 165   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; }
 166 };
 167 
 168 //------------------------------Counted Loops----------------------------------
 169 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 170 // path (and maybe some other exit paths).  The trip-counter exit is always
 171 // last in the loop.  The trip-counter have to stride by a constant;
 172 // the exit value is also loop invariant.
 173 
 174 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 175 // CountedLoopNode has the incoming loop control and the loop-back-control
 176 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 177 // CountedLoopEndNode has an incoming control (possibly not the
 178 // CountedLoopNode if there is control flow in the loop), the post-increment
 179 // trip-counter value, and the limit.  The trip-counter value is always of
 180 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 181 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 182 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 183 // CountedLoopEndNode also takes in the loop-invariant limit value.
 184 
 185 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 186 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 187 // via the old-trip-counter from the Op node.
 188 
 189 //------------------------------CountedLoopNode--------------------------------
 190 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 191 // inputs the incoming loop-start control and the loop-back control, so they
 192 // act like RegionNodes.  They also take in the initial trip counter, the
 193 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 194 // produce a loop-body control and the trip counter value.  Since
 195 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 196 
 197 class BaseCountedLoopNode : public LoopNode {
 198 public:
 199   BaseCountedLoopNode(Node *entry, Node *backedge)
 200     : LoopNode(entry, backedge) {
 201   }
 202 
 203   Node *init_control() const { return in(EntryControl); }
 204   Node *back_control() const { return in(LoopBackControl); }
 205 
 206   Node* init_trip() const;
 207   Node* stride() const;
 208   bool stride_is_con() const;
 209   Node* limit() const;
 210   Node* incr() const;
 211   Node* phi() const;
 212 
 213   BaseCountedLoopEndNode* loopexit_or_null() const;
 214   BaseCountedLoopEndNode* loopexit() const;
 215 
 216   virtual BasicType bt() const = 0;
 217 
 218   jlong stride_con() const;
 219 
 220   static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt);
 221 
 222   virtual void set_trip_count(julong tc) = 0;
 223   virtual julong trip_count() const = 0;
 224 
 225   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 226   void set_exact_trip_count(julong tc) {
 227     set_trip_count(tc);
 228     _loop_flags |= HasExactTripCount;
 229   }
 230   void set_nonexact_trip_count() {
 231     _loop_flags &= ~HasExactTripCount;
 232   }
 233 };
 234 
 235 
 236 class CountedLoopNode : public BaseCountedLoopNode {
 237   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 238   // the semantics so it does not appear in the hash & cmp functions.
 239   virtual uint size_of() const { return sizeof(*this); }
 240 
 241   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 242   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 243   node_idx_t _main_idx;
 244 
 245   // Known trip count calculated by compute_exact_trip_count()
 246   uint  _trip_count;
 247 
 248   // Log2 of original loop bodies in unrolled loop
 249   int _unrolled_count_log2;
 250 
 251   // Node count prior to last unrolling - used to decide if
 252   // unroll,optimize,unroll,optimize,... is making progress
 253   int _node_count_before_unroll;
 254 
 255   // If slp analysis is performed we record the maximum
 256   // vector mapped unroll factor here
 257   int _slp_maximum_unroll_factor;
 258 
 259 public:
 260   CountedLoopNode(Node *entry, Node *backedge)
 261     : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 262       _unrolled_count_log2(0), _node_count_before_unroll(0),
 263       _slp_maximum_unroll_factor(0) {
 264     init_class_id(Class_CountedLoop);
 265     // Initialize _trip_count to the largest possible value.
 266     // Will be reset (lower) if the loop's trip count is known.
 267   }
 268 
 269   virtual int Opcode() const;
 270   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 271 
 272   CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 273   CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 274   int   stride_con() const;
 275 
 276   // Match increment with optional truncation
 277   static Node*
 278   match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type,
 279                                       BasicType bt);
 280 
 281   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 282   // can run short a few iterations and may start a few iterations in.
 283   // It will be RCE'd and unrolled and aligned.
 284 
 285   // A following 'post' loop will run any remaining iterations.  Used
 286   // during Range Check Elimination, the 'post' loop will do any final
 287   // iterations with full checks.  Also used by Loop Unrolling, where
 288   // the 'post' loop will do any epilog iterations needed.  Basically,
 289   // a 'post' loop can not profitably be further unrolled or RCE'd.
 290 
 291   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 292   // it may do under-flow checks for RCE and may do alignment iterations
 293   // so the following main loop 'knows' that it is striding down cache
 294   // lines.
 295 
 296   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 297   // Aligned, may be missing it's pre-loop.
 298   bool is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 299   bool is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 300   bool is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 301   bool is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 302   bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 303   bool has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 304   bool is_unroll_only   () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 305   bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 306   bool has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 307   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 308 
 309   IfNode* find_multiversion_if_from_multiversion_fast_main_loop();
 310 
 311   int main_idx() const { return _main_idx; }
 312 
 313   void set_trip_count(julong tc) {
 314     assert(tc < max_juint, "Cannot set trip count to max_juint");
 315     _trip_count = checked_cast<uint>(tc);
 316   }
 317   julong trip_count() const      { return _trip_count; }
 318 
 319   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 320   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 321   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 322   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 323 
 324   void set_notpassed_slp() {
 325     _loop_flags &= ~PassedSlpAnalysis;
 326   }
 327 
 328   void double_unrolled_count() { _unrolled_count_log2++; }
 329   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 330 
 331   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 332   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 333   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 334   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 335 
 336   // Multiversioning allows us to duplicate a CountedLoop, and have two versions, and the multiversion_if
 337   // decides which one is taken:
 338   // (1) fast_loop: We enter this loop by default, by default the multiversion_if has its condition set to
 339   //                "true", guarded by a OpaqueMultiversioning. If we want to make a speculative assumption
 340   //                for an optimization, we can add the runtime-check to the multiversion_if, and if the
 341   //                assumption fails we take the slow_loop instead, where we do not make the same speculative
 342   //                assumption.
 343   //                We call it the "fast_loop" because it has more optimizations, enabled by the speculative
 344   //                runtime-checks at the multiversion_if, and we expect the fast_loop to execute faster.
 345   // (2) slow_loop: By default, it is not taken, until a runtime-check is added to the multiversion_if while
 346   //                optimizing the fast_looop. If such a runtime-check is never added, then after loop-opts
 347   //                the multiversion_if constant folds to true, and the slow_loop is folded away. To save
 348   //                compile time, we delay the optimization of the slow_loop until a runtime-check is added
 349   //                to the multiversion_if, at which point we resume optimizations for the slow_loop.
 350   //                We call it the "slow_loop" because it has fewer optimizations, since this is the fall-back
 351   //                loop where we do not make any of the speculative assumptions we make for the fast_loop.
 352   //                Hence, we expect the slow_loop to execute slower.
 353   bool is_multiversion()                   const { return (_loop_flags & MultiversionFlagsMask) != Normal; }
 354   bool is_multiversion_fast_loop()         const { return (_loop_flags & MultiversionFlagsMask) == MultiversionFastLoop; }
 355   bool is_multiversion_slow_loop()         const { return (_loop_flags & MultiversionFlagsMask) == MultiversionSlowLoop; }
 356   bool is_multiversion_delayed_slow_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionDelayedSlowLoop; }
 357   void set_multiversion_fast_loop()         { assert(!is_multiversion(), ""); _loop_flags |= MultiversionFastLoop; }
 358   void set_multiversion_slow_loop()         { assert(!is_multiversion(), ""); _loop_flags |= MultiversionSlowLoop; }
 359   void set_multiversion_delayed_slow_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionDelayedSlowLoop; }
 360   void set_no_multiversion()                { assert( is_multiversion(), ""); _loop_flags &= ~MultiversionFlagsMask; }
 361 
 362   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
 363   OuterStripMinedLoopNode* outer_loop() const;
 364   virtual IfTrueNode* outer_loop_tail() const;
 365   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 366   virtual IfFalseNode* outer_loop_exit() const;
 367   virtual SafePointNode* outer_safepoint() const;
 368 
 369   Node* skip_assertion_predicates_with_halt();
 370 
 371   virtual BasicType bt() const {
 372     return T_INT;
 373   }
 374 
 375   Node* is_canonical_loop_entry();
 376   CountedLoopEndNode* find_pre_loop_end();
 377 
 378   Node* uncasted_init_trip(bool uncasted);
 379 
 380 #ifndef PRODUCT
 381   virtual void dump_spec(outputStream *st) const;
 382 #endif
 383 };
 384 
 385 class LongCountedLoopNode : public BaseCountedLoopNode {
 386 private:
 387   virtual uint size_of() const { return sizeof(*this); }
 388 
 389   // Known trip count calculated by compute_exact_trip_count()
 390   julong _trip_count;
 391 
 392 public:
 393   LongCountedLoopNode(Node *entry, Node *backedge)
 394     : BaseCountedLoopNode(entry, backedge), _trip_count(max_julong) {
 395     init_class_id(Class_LongCountedLoop);
 396   }
 397 
 398   virtual int Opcode() const;
 399 
 400   virtual BasicType bt() const {
 401     return T_LONG;
 402   }
 403 
 404   void set_trip_count(julong tc) {
 405     assert(tc < max_julong, "Cannot set trip count to max_julong");
 406     _trip_count = tc;
 407   }
 408   julong trip_count() const      { return _trip_count; }
 409 
 410   LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 411   LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 412 };
 413 
 414 
 415 //------------------------------CountedLoopEndNode-----------------------------
 416 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 417 // IfNodes.
 418 
 419 class BaseCountedLoopEndNode : public IfNode {
 420 public:
 421   enum { TestControl, TestValue };
 422   BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 423     : IfNode(control, test, prob, cnt) {
 424     init_class_id(Class_BaseCountedLoopEnd);
 425   }
 426 
 427   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; }
 428   Node* incr() const                { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 429   Node* limit() const               { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 430   Node* stride() const              { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 431   Node* init_trip() const           { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 432   bool stride_is_con() const        { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); }
 433 
 434   PhiNode* phi() const {
 435     Node* tmp = incr();
 436     if (tmp && tmp->req() == 3) {
 437       Node* phi = tmp->in(1);
 438       if (phi->is_Phi()) {
 439         return phi->as_Phi();
 440       }
 441     }
 442     return nullptr;
 443   }
 444 
 445   BaseCountedLoopNode* loopnode() const {
 446     // The CountedLoopNode that goes with this CountedLoopEndNode may
 447     // have been optimized out by the IGVN so be cautious with the
 448     // pattern matching on the graph
 449     PhiNode* iv_phi = phi();
 450     if (iv_phi == nullptr) {
 451       return nullptr;
 452     }
 453     Node* ln = iv_phi->in(0);
 454     if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) {
 455       return nullptr;
 456     }
 457     if (ln->as_BaseCountedLoop()->bt() != bt()) {
 458       return nullptr;
 459     }
 460     return ln->as_BaseCountedLoop();
 461   }
 462 
 463   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 464 
 465   jlong stride_con() const;
 466   virtual BasicType bt() const = 0;
 467 
 468   static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt);
 469 };
 470 
 471 class CountedLoopEndNode : public BaseCountedLoopEndNode {
 472 public:
 473 
 474   CountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 475     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 476     init_class_id(Class_CountedLoopEnd);
 477   }
 478   virtual int Opcode() const;
 479 
 480   CountedLoopNode* loopnode() const {
 481     return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 482   }
 483 
 484   virtual BasicType bt() const {
 485     return T_INT;
 486   }
 487 
 488 #ifndef PRODUCT
 489   virtual void dump_spec(outputStream *st) const;
 490 #endif
 491 };
 492 
 493 class LongCountedLoopEndNode : public BaseCountedLoopEndNode {
 494 public:
 495   LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 496     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 497     init_class_id(Class_LongCountedLoopEnd);
 498   }
 499 
 500   LongCountedLoopNode* loopnode() const {
 501     return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 502   }
 503 
 504   virtual int Opcode() const;
 505 
 506   virtual BasicType bt() const {
 507     return T_LONG;
 508   }
 509 };
 510 
 511 
 512 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const {
 513   Node* bctrl = back_control();
 514   if (bctrl == nullptr) return nullptr;
 515 
 516   Node* lexit = bctrl->in(0);
 517   if (!lexit->is_BaseCountedLoopEnd()) {
 518     return nullptr;
 519   }
 520   BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd();
 521   if (result->bt() != bt()) {
 522     return nullptr;
 523   }
 524   return result;
 525 }
 526 
 527 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const {
 528   BaseCountedLoopEndNode* cle = loopexit_or_null();
 529   assert(cle != nullptr, "loopexit is null");
 530   return cle;
 531 }
 532 
 533 inline Node* BaseCountedLoopNode::init_trip() const {
 534   BaseCountedLoopEndNode* cle = loopexit_or_null();
 535   return cle != nullptr ? cle->init_trip() : nullptr;
 536 }
 537 inline Node* BaseCountedLoopNode::stride() const {
 538   BaseCountedLoopEndNode* cle = loopexit_or_null();
 539   return cle != nullptr ? cle->stride() : nullptr;
 540 }
 541 
 542 inline bool BaseCountedLoopNode::stride_is_con() const {
 543   BaseCountedLoopEndNode* cle = loopexit_or_null();
 544   return cle != nullptr && cle->stride_is_con();
 545 }
 546 inline Node* BaseCountedLoopNode::limit() const {
 547   BaseCountedLoopEndNode* cle = loopexit_or_null();
 548   return cle != nullptr ? cle->limit() : nullptr;
 549 }
 550 inline Node* BaseCountedLoopNode::incr() const {
 551   BaseCountedLoopEndNode* cle = loopexit_or_null();
 552   return cle != nullptr ? cle->incr() : nullptr;
 553 }
 554 inline Node* BaseCountedLoopNode::phi() const {
 555   BaseCountedLoopEndNode* cle = loopexit_or_null();
 556   return cle != nullptr ? cle->phi() : nullptr;
 557 }
 558 
 559 inline jlong BaseCountedLoopNode::stride_con() const {
 560   BaseCountedLoopEndNode* cle = loopexit_or_null();
 561   return cle != nullptr ? cle->stride_con() : 0;
 562 }
 563 
 564 
 565 //------------------------------LoopLimitNode-----------------------------
 566 // Counted Loop limit node which represents exact final iterator value:
 567 // trip_count = (limit - init_trip + stride - 1)/stride
 568 // final_value= trip_count * stride + init_trip.
 569 // Use HW instructions to calculate it when it can overflow in integer.
 570 // Note, final_value should fit into integer since counted loop has
 571 // limit check: limit <= max_int-stride.
 572 class LoopLimitNode : public Node {
 573   enum { Init=1, Limit=2, Stride=3 };
 574  public:
 575   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(nullptr,init,limit,stride) {
 576     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 577     init_flags(Flag_is_macro);
 578     C->add_macro_node(this);
 579   }
 580   virtual int Opcode() const;
 581   virtual const Type *bottom_type() const { return TypeInt::INT; }
 582   virtual uint ideal_reg() const { return Op_RegI; }
 583   virtual const Type* Value(PhaseGVN* phase) const;
 584   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 585   virtual Node* Identity(PhaseGVN* phase);
 586 };
 587 
 588 // Support for strip mining
 589 class OuterStripMinedLoopNode : public LoopNode {
 590 private:
 591   void fix_sunk_stores_when_back_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) const;
 592   void handle_sunk_stores_when_finishing_construction(PhaseIterGVN* igvn);
 593 
 594 public:
 595   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 596     : LoopNode(entry, backedge) {
 597     init_class_id(Class_OuterStripMinedLoop);
 598     init_flags(Flag_is_macro);
 599     C->add_macro_node(this);
 600   }
 601 
 602   virtual int Opcode() const;
 603 
 604   virtual IfTrueNode* outer_loop_tail() const;
 605   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 606   virtual IfFalseNode* outer_loop_exit() const;
 607   virtual SafePointNode* outer_safepoint() const;
 608   CountedLoopNode* inner_counted_loop() const { return unique_ctrl_out()->as_CountedLoop(); }
 609   CountedLoopEndNode* inner_counted_loop_end() const { return  inner_counted_loop()->loopexit(); }
 610   IfFalseNode* inner_loop_exit() const { return inner_counted_loop_end()->proj_out(false)->as_IfFalse(); }
 611 
 612   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 613 
 614   void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const;
 615 
 616   void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 617 
 618   static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 619 
 620   Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
 621                          PhaseIdealLoop* iloop);
 622 };
 623 
 624 class OuterStripMinedLoopEndNode : public IfNode {
 625 public:
 626   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 627     : IfNode(control, test, prob, cnt) {
 628     init_class_id(Class_OuterStripMinedLoopEnd);
 629   }
 630 
 631   virtual int Opcode() const;
 632 
 633   virtual const Type* Value(PhaseGVN* phase) const;
 634   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 635 
 636   bool is_expanded(PhaseGVN *phase) const;
 637 };
 638 
 639 // -----------------------------IdealLoopTree----------------------------------
 640 class IdealLoopTree : public ResourceObj {
 641 public:
 642   IdealLoopTree *_parent;       // Parent in loop tree
 643   IdealLoopTree *_next;         // Next sibling in loop tree
 644   IdealLoopTree *_child;        // First child in loop tree
 645 
 646   // The head-tail backedge defines the loop.
 647   // If a loop has multiple backedges, this is addressed during cleanup where
 648   // we peel off the multiple backedges,  merging all edges at the bottom and
 649   // ensuring that one proper backedge flow into the loop.
 650   Node *_head;                  // Head of loop
 651   Node *_tail;                  // Tail of loop
 652   inline Node *tail();          // Handle lazy update of _tail field
 653   inline Node *head();          // Handle lazy update of _head field
 654   PhaseIdealLoop* _phase;
 655   int _local_loop_unroll_limit;
 656   int _local_loop_unroll_factor;
 657 
 658   Node_List _body;              // Loop body for inner loops
 659 
 660   uint16_t _nest;               // Nesting depth
 661   uint8_t _irreducible:1,       // True if irreducible
 662           _has_call:1,          // True if has call safepoint
 663           _has_sfpt:1,          // True if has non-call safepoint
 664           _rce_candidate:1,     // True if candidate for range check elimination
 665           _has_range_checks:1,
 666           _has_range_checks_computed:1;
 667 
 668   Node_List* _safepts;          // List of safepoints in this loop
 669   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 670   bool  _allow_optimizations;   // Allow loop optimizations
 671 
 672   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 673     : _parent(nullptr), _next(nullptr), _child(nullptr),
 674       _head(head), _tail(tail),
 675       _phase(phase),
 676       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
 677       _body(Compile::current()->comp_arena()),
 678       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 679       _has_range_checks(0), _has_range_checks_computed(0),
 680       _safepts(nullptr),
 681       _required_safept(nullptr),
 682       _allow_optimizations(true)
 683   {
 684     precond(_head != nullptr);
 685     precond(_tail != nullptr);
 686   }
 687 
 688   // Is 'l' a member of 'this'?
 689   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 690 
 691   // Set loop nesting depth.  Accumulate has_call bits.
 692   int set_nest( uint depth );
 693 
 694   // Split out multiple fall-in edges from the loop header.  Move them to a
 695   // private RegionNode before the loop.  This becomes the loop landing pad.
 696   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 697 
 698   // Split out the outermost loop from this shared header.
 699   void split_outer_loop( PhaseIdealLoop *phase );
 700 
 701   // Merge all the backedges from the shared header into a private Region.
 702   // Feed that region as the one backedge to this loop.
 703   void merge_many_backedges( PhaseIdealLoop *phase );
 704 
 705   // Split shared headers and insert loop landing pads.
 706   // Insert a LoopNode to replace the RegionNode.
 707   // Returns TRUE if loop tree is structurally changed.
 708   bool beautify_loops( PhaseIdealLoop *phase );
 709 
 710   // Perform optimization to use the loop predicates for null checks and range checks.
 711   // Applies to any loop level (not just the innermost one)
 712   bool loop_predication( PhaseIdealLoop *phase);
 713   bool can_apply_loop_predication();
 714 
 715   // Perform iteration-splitting on inner loops.  Split iterations to
 716   // avoid range checks or one-shot null checks.  Returns false if the
 717   // current round of loop opts should stop.
 718   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 719 
 720   // Driver for various flavors of iteration splitting.  Returns false
 721   // if the current round of loop opts should stop.
 722   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 723 
 724   // Given dominators, try to find loops with calls that must always be
 725   // executed (call dominates loop tail).  These loops do not need non-call
 726   // safepoints (ncsfpt).
 727   void check_safepts(VectorSet &visited, Node_List &stack);
 728 
 729   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 730   // encountered.
 731   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 732 
 733   // Remove safepoints from loop. Optionally keeping one.
 734   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 735 
 736   // Convert to counted loops where possible
 737   void counted_loop( PhaseIdealLoop *phase );
 738 
 739   // Check for Node being a loop-breaking test
 740   Node *is_loop_exit(Node *iff) const;
 741 
 742   // Remove simplistic dead code from loop body
 743   void DCE_loop_body();
 744 
 745   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 746   // Replace with a 1-in-10 exit guess.
 747   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 748 
 749   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 750   // Useful for unrolling loops with NO array accesses.
 751   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 752 
 753   // Return TRUE or FALSE if the loop should be unswitched -- clone
 754   // loop with an invariant test
 755   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 756 
 757   // Micro-benchmark spamming.  Remove empty loops.
 758   bool do_remove_empty_loop( PhaseIdealLoop *phase );
 759 
 760   // Convert one-iteration loop into normal code.
 761   bool do_one_iteration_loop( PhaseIdealLoop *phase );
 762 
 763   // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
 764   // move some loop-invariant test (usually a null-check) before the loop.
 765   bool policy_peeling(PhaseIdealLoop *phase);
 766 
 767   uint estimate_peeling(PhaseIdealLoop *phase);
 768 
 769   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 770   // known trip count in the counted loop node.
 771   bool policy_maximally_unroll(PhaseIdealLoop *phase) const;
 772 
 773   // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll
 774   // if the loop is a counted loop and the loop body is small enough.
 775   bool policy_unroll(PhaseIdealLoop *phase);
 776 
 777   // Loop analyses to map to a maximal superword unrolling for vectorization.
 778   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 779 
 780   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 781   // Gather a list of IF tests that are dominated by iteration splitting;
 782   // also gather the end of the first split and the start of the 2nd split.
 783   bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const;
 784 
 785   // Return TRUE if "iff" is a range check.
 786   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const;
 787   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset,
 788                          jlong& scale) const;
 789 
 790   // Estimate the number of nodes required when cloning a loop (body).
 791   uint est_loop_clone_sz(uint factor) const;
 792   // Estimate the number of nodes required when unrolling a loop (body).
 793   uint est_loop_unroll_sz(uint factor) const;
 794 
 795   // Compute loop trip count if possible
 796   void compute_trip_count(PhaseIdealLoop* phase, BasicType bt);
 797 
 798   // Compute loop trip count from profile data
 799   float compute_profile_trip_cnt_helper(Node* n);
 800   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 801 
 802   // Reassociate invariant expressions.
 803   void reassociate_invariants(PhaseIdealLoop *phase);
 804   // Reassociate invariant binary expressions.
 805   Node* reassociate(Node* n1, PhaseIdealLoop *phase);
 806   // Reassociate invariant add, subtract, and compare expressions.
 807   Node* reassociate_add_sub_cmp(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop* phase);
 808   // Return nonzero index of invariant operand if invariant and variant
 809   // are combined with an associative binary. Helper for reassociate_invariants.
 810   int find_invariant(Node* n, PhaseIdealLoop *phase);
 811   // Return TRUE if "n" is associative.
 812   bool is_associative(Node* n, Node* base=nullptr);
 813   // Return TRUE if "n" is an associative cmp node.
 814   bool is_associative_cmp(Node* n);
 815 
 816   // Return true if n is invariant
 817   bool is_invariant(Node* n) const;
 818 
 819   // Put loop body on igvn work list
 820   void record_for_igvn();
 821 
 822   bool is_root() { return _parent == nullptr; }
 823   // A proper/reducible loop w/o any (occasional) dead back-edge.
 824   bool is_loop() { return !_irreducible && !tail()->is_top(); }
 825   bool is_counted()   { return is_loop() && _head->is_CountedLoop(); }
 826   bool is_innermost() { return is_loop() && _child == nullptr; }
 827 
 828   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 829 
 830   bool compute_has_range_checks() const;
 831   bool range_checks_present() {
 832     if (!_has_range_checks_computed) {
 833       if (compute_has_range_checks()) {
 834         _has_range_checks = 1;
 835       }
 836       _has_range_checks_computed = 1;
 837     }
 838     return _has_range_checks;
 839   }
 840 
 841   // Return the parent's IdealLoopTree for a strip mined loop which is the outer strip mined loop.
 842   // In all other cases, return this.
 843   IdealLoopTree* skip_strip_mined() {
 844     return _head->as_Loop()->is_strip_mined() ? _parent : this;
 845   }
 846 
 847 #ifndef PRODUCT
 848   void dump_head();       // Dump loop head only
 849   void dump();            // Dump this loop recursively
 850 #endif
 851 
 852 #ifdef ASSERT
 853   GrowableArray<IdealLoopTree*> collect_sorted_children() const;
 854   bool verify_tree(IdealLoopTree* loop_verify) const;
 855 #endif
 856 
 857  private:
 858   enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop.
 859 
 860   // Estimate the number of nodes resulting from control and data flow merge.
 861   uint est_loop_flow_merge_sz() const;
 862 
 863   // Check if the number of residual iterations is large with unroll_cnt.
 864   // Return true if the residual iterations are more than 10% of the trip count.
 865   bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const {
 866     return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt();
 867   }
 868 
 869   void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const;
 870 
 871   bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const;
 872 
 873   void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const;
 874 
 875   bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq,
 876                          Node* sfpt) const;
 877 
 878   bool empty_loop_candidate(PhaseIdealLoop* phase) const;
 879 
 880   bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const;
 881 };
 882 
 883 // -----------------------------PhaseIdealLoop---------------------------------
 884 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees
 885 // into a loop tree. Drives the loop-based transformations on the ideal graph.
 886 class PhaseIdealLoop : public PhaseTransform {
 887   friend class IdealLoopTree;
 888   friend class SuperWord;
 889   friend class ShenandoahBarrierC2Support;
 890   friend class AutoNodeBudget;
 891 
 892   // Map loop membership for CFG nodes, and ctrl for non-CFG nodes.
 893   //
 894   // Exception: dead CFG nodes may instead have a ctrl/idom forwarding
 895   //            installed. See: forward_ctrl
 896   Node_List _loop_or_ctrl;
 897 
 898   // Pre-computed def-use info
 899   PhaseIterGVN &_igvn;
 900 
 901   // Head of loop tree
 902   IdealLoopTree* _ltree_root;
 903 
 904   // Array of pre-order numbers, plus post-visited bit.
 905   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 906   // ODD for post-visited.  Other bits are the pre-order number.
 907   uint *_preorders;
 908   uint _max_preorder;
 909 
 910   ReallocMark _nesting; // Safety checks for arena reallocation
 911 
 912   const PhaseIdealLoop* _verify_me;
 913   bool _verify_only;
 914 
 915   // Allocate _preorders[] array
 916   void allocate_preorders() {
 917     _max_preorder = C->unique()+8;
 918     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 919     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 920   }
 921 
 922   // Allocate _preorders[] array
 923   void reallocate_preorders() {
 924     _nesting.check(); // Check if a potential re-allocation in the resource arena is safe
 925     if ( _max_preorder < C->unique() ) {
 926       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 927       _max_preorder = C->unique();
 928     }
 929     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 930   }
 931 
 932   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 933   // adds new nodes.
 934   void check_grow_preorders( ) {
 935     _nesting.check(); // Check if a potential re-allocation in the resource arena is safe
 936     if ( _max_preorder < C->unique() ) {
 937       uint newsize = _max_preorder<<1;  // double size of array
 938       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 939       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 940       _max_preorder = newsize;
 941     }
 942   }
 943   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 944   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 945   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 946   void set_preorder_visited( Node *n, int pre_order ) {
 947     assert( !is_visited( n ), "already set" );
 948     _preorders[n->_idx] = (pre_order<<1);
 949   };
 950   // Return pre-order number.
 951   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 952 
 953   // Check for being post-visited.
 954   // Should be previsited already (checked with assert(is_visited(n))).
 955   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 956 
 957   // Mark as post visited
 958   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 959 
 960 public:
 961   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 962   // Returns true if "n" is a data node, false if it's a CFG node.
 963   //
 964   // Exception:
 965   // control nodes that are dead because of "replace_node_and_forward_ctrl"
 966   // or have otherwise modified their ctrl state by "forward_ctrl".
 967   // They return "true", because they have a ctrl "forwarding" to the other ctrl node they
 968   // were replaced with.
 969   bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; }
 970 
 971 private:
 972   // clear out dead code after build_loop_late
 973   Node_List _deadlist;
 974   Node_List _zero_trip_guard_opaque_nodes;
 975   Node_List _multiversion_opaque_nodes;
 976 
 977   // Support for faster execution of get_late_ctrl()/dom_lca()
 978   // when a node has many uses and dominator depth is deep.
 979   GrowableArray<jlong> _dom_lca_tags;
 980   uint _dom_lca_tags_round;
 981   void   init_dom_lca_tags();
 982 
 983   // Helper for debugging bad dominance relationships
 984   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 985 
 986   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 987 
 988   // Inline wrapper for frequent cases:
 989   // 1) only one use
 990   // 2) a use is the same as the current LCA passed as 'n1'
 991   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 992     assert( n->is_CFG(), "" );
 993     // Fast-path null lca
 994     if( lca != nullptr && lca != n ) {
 995       assert( lca->is_CFG(), "" );
 996       // find LCA of all uses
 997       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 998     }
 999     return find_non_split_ctrl(n);
1000   }
1001   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
1002 
1003   // Helper function for directing control inputs away from CFG split points.
1004   Node *find_non_split_ctrl( Node *ctrl ) const {
1005     if (ctrl != nullptr) {
1006       if (ctrl->is_MultiBranch()) {
1007         ctrl = ctrl->in(0);
1008       }
1009       assert(ctrl->is_CFG(), "CFG");
1010     }
1011     return ctrl;
1012   }
1013 
1014   void cast_incr_before_loop(Node* incr, Node* ctrl, CountedLoopNode* loop);
1015 
1016 #ifdef ASSERT
1017   static void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
1018 #endif
1019  private:
1020   static void get_opaque_template_assertion_predicate_nodes(ParsePredicateSuccessProj* parse_predicate_proj,
1021                                                             Unique_Node_List& list);
1022   void update_main_loop_assertion_predicates(CountedLoopNode* new_main_loop_head, int stride_con_before_unroll);
1023   void initialize_assertion_predicates_for_peeled_loop(CountedLoopNode* peeled_loop_head,
1024                                                        CountedLoopNode* remaining_loop_head,
1025                                                        uint first_node_index_in_cloned_loop_body,
1026                                                        const Node_List& old_new);
1027   void initialize_assertion_predicates_for_main_loop(CountedLoopNode* pre_loop_head,
1028                                                      CountedLoopNode* main_loop_head,
1029                                                      uint first_node_index_in_pre_loop_body,
1030                                                      uint last_node_index_in_pre_loop_body,
1031                                                      DEBUG_ONLY(uint last_node_index_from_backedge_goo COMMA)
1032                                                      const Node_List& old_new);
1033   void initialize_assertion_predicates_for_post_loop(CountedLoopNode* main_loop_head, CountedLoopNode* post_loop_head,
1034                                                      uint first_node_index_in_cloned_loop_body);
1035   void create_assertion_predicates_at_loop(CountedLoopNode* source_loop_head, CountedLoopNode* target_loop_head,
1036                                            const NodeInLoopBody& _node_in_loop_body, bool kill_old_template);
1037   void create_assertion_predicates_at_main_or_post_loop(CountedLoopNode* source_loop_head,
1038                                                         CountedLoopNode* target_loop_head,
1039                                                         const NodeInLoopBody& _node_in_loop_body,
1040                                                         bool kill_old_template);
1041   void rewire_old_target_loop_entry_dependency_to_new_entry(CountedLoopNode* target_loop_head,
1042                                                             const Node* old_target_loop_entry,
1043                                                             uint node_index_before_new_assertion_predicate_nodes);
1044   void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit,
1045                                          Node* bol);
1046   void log_loop_tree();
1047 
1048 public:
1049 
1050   PhaseIterGVN &igvn() const { return _igvn; }
1051 
1052   bool has_node(const Node* n) const {
1053     guarantee(n != nullptr, "No Node.");
1054     return _loop_or_ctrl[n->_idx] != nullptr;
1055   }
1056   // check if transform created new nodes that need _ctrl recorded
1057   Node *get_late_ctrl( Node *n, Node *early );
1058   Node *get_early_ctrl( Node *n );
1059   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
1060   void set_early_ctrl(Node* n, bool update_body);
1061   void set_subtree_ctrl(Node* n, bool update_body);
1062   void set_ctrl( Node *n, Node *ctrl ) {
1063     assert( !has_node(n) || has_ctrl(n), "" );
1064     assert( ctrl->in(0), "cannot set dead control node" );
1065     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
1066     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1));
1067   }
1068   void set_root_as_ctrl(Node* n) {
1069     assert(!has_node(n) || has_ctrl(n), "");
1070     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)C->root() + 1));
1071   }
1072   // Set control and update loop membership
1073   void set_ctrl_and_loop(Node* n, Node* ctrl) {
1074     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
1075     IdealLoopTree* new_loop = get_loop(ctrl);
1076     if (old_loop != new_loop) {
1077       if (old_loop->_child == nullptr) old_loop->_body.yank(n);
1078       if (new_loop->_child == nullptr) new_loop->_body.push(n);
1079     }
1080     set_ctrl(n, ctrl);
1081   }
1082 
1083   // Retrieves the ctrl for a data node i.
1084   Node* get_ctrl(const Node* i) {
1085     assert(has_node(i) && has_ctrl(i), "must be data node with ctrl");
1086     Node* n = get_ctrl_no_update(i);
1087     // We store the found ctrl in the side-table again. In most cases,
1088     // this is a no-op, since we just read from _loop_or_ctrl. But in cases
1089     // where there was a ctrl forwarding via dead ctrl nodes, this shortens the path.
1090     // See: forward_ctrl
1091     _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1));
1092     assert(has_node(i) && has_ctrl(i), "must still be data node with ctrl");
1093     assert(n == find_non_split_ctrl(n), "must return legal ctrl");
1094     return n;
1095   }
1096 
1097   bool is_dominator(Node* dominator, Node* n);
1098   bool is_strict_dominator(Node* dominator, Node* n);
1099 
1100   // return get_ctrl for a data node and self(n) for a CFG node
1101   Node* ctrl_or_self(Node* n) {
1102     if (has_ctrl(n))
1103       return get_ctrl(n);
1104     else {
1105       assert (n->is_CFG(), "must be a CFG node");
1106       return n;
1107     }
1108   }
1109 
1110 private:
1111   Node* get_ctrl_no_update_helper(const Node* i) const {
1112     // We expect only data nodes (which must have a ctrl set), or
1113     // dead ctrl nodes that have a ctrl "forwarding".
1114     // See: forward_ctrl.
1115     assert(has_ctrl(i), "only data nodes or ctrl nodes with ctrl forwarding expected");
1116     return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1);
1117   }
1118 
1119   // Compute the ctrl of node i, jumping over ctrl forwardings.
1120   Node* get_ctrl_no_update(const Node* i) const {
1121     assert(has_ctrl(i), "only data nodes expected");
1122     Node* n = get_ctrl_no_update_helper(i);
1123     if (n->in(0) == nullptr) {
1124       // We encountered a dead CFG node.
1125       // If everything went right, this dead CFG node should have had a ctrl
1126       // forwarding installed, using "forward_ctrl". We now have to jump from
1127       // the old (dead) ctrl node to the new (live) ctrl node, in possibly
1128       // multiple ctrl forwarding steps.
1129       do {
1130         n = get_ctrl_no_update_helper(n);
1131       } while (n->in(0) == nullptr);
1132       n = find_non_split_ctrl(n);
1133     }
1134     return n;
1135   }
1136 
1137 public:
1138   // Check for loop being set
1139   // "n" must be a control node. Returns true if "n" is known to be in a loop.
1140   bool has_loop( Node *n ) const {
1141     assert(!has_node(n) || !has_ctrl(n), "");
1142     return has_node(n);
1143   }
1144   // Set loop
1145   void set_loop( Node *n, IdealLoopTree *loop ) {
1146     _loop_or_ctrl.map(n->_idx, (Node*)loop);
1147   }
1148 
1149   // Install a ctrl "forwarding" from an old (dead) control node.
1150   // This is a "lazy" update of the "get_ctrl" and "idom" mechanism:
1151   // - Install a forwarding from old_node (dead ctrl) to new_node.
1152   // - When querying "get_ctrl": jump from data node over possibly
1153   //   multiple dead ctrl nodes with ctrl forwarding to eventually
1154   //   reach a live ctrl node. Shorten the path to avoid chasing the
1155   //   forwarding in the future.
1156   // - When querying "idom": from some node get its old idom, which
1157   //   may be dead but has an idom forwarding to the new and live
1158   //   idom. Shorten the path to avoid chasing the forwarding in the
1159   //   future.
1160   //   Note: while the "idom" information is stored in the "_idom"
1161   //   side-table, the idom forwarding piggybacks on the ctrl
1162   //   forwarding on "_loop_or_ctrl".
1163   // Using "forward_ctrl" allows us to only edit the entry for the old
1164   // dead node now, and we do not have to update all the nodes that had
1165   // the old_node as their "get_ctrl" or "idom". We clean up the forwarding
1166   // links when we query "get_ctrl" or "idom" for these nodes the next time.
1167   void forward_ctrl(Node* old_node, Node* new_node) {
1168     assert(!has_ctrl(old_node) && old_node->is_CFG() && old_node->in(0) == nullptr,
1169            "must be dead ctrl (CFG) node");
1170     assert(!has_ctrl(new_node) && new_node->is_CFG() && new_node->in(0) != nullptr,
1171            "must be live ctrl (CFG) node");
1172     assert(old_node != new_node, "no cycles please");
1173     // Re-use the side array slot for this node to provide the
1174     // forwarding pointer.
1175     _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
1176     assert(has_ctrl(old_node), "must have installed ctrl forwarding");
1177   }
1178 
1179   // Replace the old ctrl node with a new ctrl node.
1180   // - Update the node inputs of all uses.
1181   // - Lazily update the ctrl and idom info of all uses, via a ctrl/idom forwarding.
1182   void replace_node_and_forward_ctrl(Node* old_node, Node* new_node) {
1183     _igvn.replace_node(old_node, new_node);
1184     forward_ctrl(old_node, new_node);
1185   }
1186 
1187 private:
1188 
1189   // Place 'n' in some loop nest, where 'n' is a CFG node
1190   void build_loop_tree();
1191   int build_loop_tree_impl(Node* n, int pre_order);
1192   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
1193   // loop tree, not the root.
1194   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
1195 
1196 #ifdef ASSERT
1197   // verify that regions in irreducible loops are marked is_in_irreducible_loop
1198   void verify_regions_in_irreducible_loops();
1199   bool is_in_irreducible_loop(RegionNode* region);
1200 #endif
1201 
1202   // Place Data nodes in some loop nest
1203   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1204   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1205   void build_loop_late_post_work(Node* n, bool pinned);
1206   void build_loop_late_post(Node* n);
1207   void verify_strip_mined_scheduling(Node *n, Node* least);
1208 
1209   // Array of immediate dominance info for each CFG node indexed by node idx
1210 private:
1211   uint _idom_size;
1212   Node **_idom;                  // Array of immediate dominators
1213   uint *_dom_depth;              // Used for fast LCA test
1214   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
1215   LoopOptsMode _mode;
1216 
1217   // build the loop tree and perform any requested optimizations
1218   void build_and_optimize();
1219 
1220   // Dominators for the sea of nodes
1221   void Dominators();
1222 
1223   // Compute the Ideal Node to Loop mapping
1224   PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) :
1225     PhaseTransform(Ideal_Loop),
1226     _loop_or_ctrl(igvn.C->comp_arena()),
1227     _igvn(igvn),
1228     _verify_me(nullptr),
1229     _verify_only(false),
1230     _mode(mode),
1231     _nodes_required(UINT_MAX) {
1232     assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop");
1233     build_and_optimize();
1234   }
1235 
1236 #ifndef PRODUCT
1237   // Verify that verify_me made the same decisions as a fresh run
1238   // or only verify that the graph is valid if verify_me is null.
1239   PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) :
1240     PhaseTransform(Ideal_Loop),
1241     _loop_or_ctrl(igvn.C->comp_arena()),
1242     _igvn(igvn),
1243     _verify_me(verify_me),
1244     _verify_only(verify_me == nullptr),
1245     _mode(LoopOptsVerify),
1246     _nodes_required(UINT_MAX) {
1247     DEBUG_ONLY(C->set_phase_verify_ideal_loop();)
1248     build_and_optimize();
1249     DEBUG_ONLY(C->reset_phase_verify_ideal_loop();)
1250   }
1251 #endif
1252 
1253   Node* insert_convert_node_if_needed(BasicType target, Node* input);
1254 
1255   Node* idom_no_update(Node* d) const {
1256     return idom_no_update(d->_idx);
1257   }
1258 
1259   Node* idom_no_update(uint node_idx) const {
1260     assert(node_idx < _idom_size, "oob");
1261     Node* n = _idom[node_idx];
1262     assert(n != nullptr,"Bad immediate dominator info.");
1263     while (n->in(0) == nullptr) { // Skip dead CFG nodes
1264       // We encountered a dead CFG node.
1265       // If everything went right, this dead CFG node should have had an idom
1266       // forwarding installed, using "forward_ctrl". We now have to jump from
1267       // the old (dead) idom node to the new (live) idom node, in possibly
1268       // multiple idom forwarding steps.
1269       // Note that we piggyback on "_loop_or_ctrl" to do the forwarding,
1270       // since we forward both "get_ctrl" and "idom" from the dead to the
1271       // new live ctrl/idom nodes.
1272       n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1);
1273       assert(n != nullptr,"Bad immediate dominator info.");
1274     }
1275     return n;
1276   }
1277 
1278 public:
1279   Node* idom(Node* n) const {
1280     return idom(n->_idx);
1281   }
1282 
1283   Node* idom(uint node_idx) const {
1284     Node* n = idom_no_update(node_idx);
1285     // We store the found idom in the side-table again. In most cases,
1286     // this is a no-op, since we just read from _idom. But in cases where
1287     // there was an idom forwarding via dead idom nodes, this shortens the path.
1288     // See: forward_ctrl
1289     _idom[node_idx] = n;
1290     return n;
1291   }
1292 
1293   uint dom_depth(Node* d) const {
1294     guarantee(d != nullptr, "Null dominator info.");
1295     guarantee(d->_idx < _idom_size, "");
1296     return _dom_depth[d->_idx];
1297   }
1298   void set_idom(Node* d, Node* n, uint dom_depth);
1299   // Locally compute IDOM using dom_lca call
1300   Node *compute_idom( Node *region ) const;
1301   // Recompute dom_depth
1302   void recompute_dom_depth();
1303 
1304   // Is safept not required by an outer loop?
1305   bool is_deleteable_safept(Node* sfpt);
1306 
1307   // Replace parallel induction variable (parallel to trip counter)
1308   void replace_parallel_iv(IdealLoopTree *loop);
1309 
1310   Node *dom_lca( Node *n1, Node *n2 ) const {
1311     return find_non_split_ctrl(dom_lca_internal(n1, n2));
1312   }
1313   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
1314 
1315   Node* dominated_node(Node* c1, Node* c2) {
1316     assert(is_dominator(c1, c2) || is_dominator(c2, c1), "nodes must be related");
1317     return is_dominator(c1, c2) ? c2 : c1;
1318   }
1319 
1320   // Return control node that's dominated by the 2 others
1321   Node* dominated_node(Node* c1, Node* c2, Node* c3) {
1322     return dominated_node(c1, dominated_node(c2, c3));
1323   }
1324 
1325   // Build and verify the loop tree without modifying the graph.  This
1326   // is useful to verify that all inputs properly dominate their uses.
1327   static void verify(PhaseIterGVN& igvn) {
1328 #ifdef ASSERT
1329     ResourceMark rm;
1330     Compile::TracePhase tp(_t_idealLoopVerify);
1331     PhaseIdealLoop v(igvn);
1332 #endif
1333   }
1334 
1335   // Recommended way to use PhaseIdealLoop.
1336   // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations.
1337   static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) {
1338     ResourceMark rm;
1339     PhaseIdealLoop v(igvn, mode);
1340 
1341     Compile* C = Compile::current();
1342     if (!C->failing()) {
1343       // Cleanup any modified bits
1344       igvn.optimize();
1345       if (C->failing()) { return; }
1346       v.log_loop_tree();
1347     }
1348   }
1349 
1350   // True if the method has at least 1 irreducible loop
1351   bool _has_irreducible_loops;
1352 
1353   // Per-Node transform
1354   virtual Node* transform(Node* n) { return nullptr; }
1355 
1356   Node* loop_exit_control(Node* x, IdealLoopTree* loop);
1357   Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob);
1358   Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr);
1359   Node* loop_iv_stride(Node* incr, Node*& xphi);
1360   PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x);
1361 
1362   bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt);
1363 
1364   Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt);
1365   bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new);
1366 #ifdef ASSERT
1367   bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop);
1368 #endif
1369   void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt);
1370   SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop);
1371   IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift);
1372   IdealLoopTree* create_outer_strip_mined_loop(Node* init_control,
1373                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
1374                                                Node*& entry_control, Node*& iffalse);
1375 
1376   Node* exact_limit( IdealLoopTree *loop );
1377 
1378   // Return a post-walked LoopNode
1379   IdealLoopTree *get_loop( Node *n ) const {
1380     // Dead nodes have no loop, so return the top level loop instead
1381     if (!has_node(n))  return _ltree_root;
1382     assert(!has_ctrl(n), "");
1383     return (IdealLoopTree*)_loop_or_ctrl[n->_idx];
1384   }
1385 
1386   IdealLoopTree* ltree_root() const { return _ltree_root; }
1387 
1388   // Is 'n' a (nested) member of 'loop'?
1389   int is_member( const IdealLoopTree *loop, Node *n ) const {
1390     return loop->is_member(get_loop(n)); }
1391 
1392   // This is the basic building block of the loop optimizations.  It clones an
1393   // entire loop body.  It makes an old_new loop body mapping; with this
1394   // mapping you can find the new-loop equivalent to an old-loop node.  All
1395   // new-loop nodes are exactly equal to their old-loop counterparts, all
1396   // edges are the same.  All exits from the old-loop now have a RegionNode
1397   // that merges the equivalent new-loop path.  This is true even for the
1398   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
1399   // now come from (one or more) Phis that merge their new-loop equivalents.
1400   // Parameter side_by_side_idom:
1401   //   When side_by_size_idom is null, the dominator tree is constructed for
1402   //      the clone loop to dominate the original.  Used in construction of
1403   //      pre-main-post loop sequence.
1404   //   When nonnull, the clone and original are side-by-side, both are
1405   //      dominated by the passed in side_by_side_idom node.  Used in
1406   //      construction of unswitched loops.
1407   enum CloneLoopMode {
1408     IgnoreStripMined = 0,        // Only clone inner strip mined loop
1409     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
1410     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
1411                                  // result control flow branches
1412                                  // either to inner clone or outer
1413                                  // strip mined loop.
1414   };
1415   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1416                   CloneLoopMode mode, Node* side_by_side_idom = nullptr);
1417   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1418                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1419                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1420                                    Node_List*& split_cex_set, Node_List& worklist,
1421                                    uint new_counter, CloneLoopMode mode);
1422   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1423                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1424                         Node_List& extra_data_nodes);
1425 
1426   // If we got the effect of peeling, either by actually peeling or by
1427   // making a pre-loop which must execute at least once, we can remove
1428   // all loop-invariant dominated tests in the main body.
1429   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1430 
1431   // Generate code to do a loop peel for the given loop (and body).
1432   // old_new is a temp array.
1433   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1434 
1435   // Add pre and post loops around the given loop.  These loops are used
1436   // during RCE, unrolling and aligning loops.
1437   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1438 
1439   // Find the last store in the body of an OuterStripMinedLoop when following memory uses
1440   Node *find_last_store_in_outer_loop(Node* store, const IdealLoopTree* outer_loop);
1441 
1442   // Add post loop after the given loop.
1443   Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new,
1444                          CountedLoopNode* main_head, CountedLoopEndNode* main_end,
1445                          Node* incr, Node* limit, CountedLoopNode*& post_head);
1446 
1447   // Add a vector post loop between a vector main loop and the current post loop
1448   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1449   // If Node n lives in the back_ctrl block, we clone a private version of n
1450   // in preheader_ctrl block and return that, otherwise return n.
1451   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1452 
1453   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1454   // unroll to do double iterations.  The next round of major loop transforms
1455   // will repeat till the doubled loop body does all remaining iterations in 1
1456   // pass.
1457   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1458 
1459   // Unroll the loop body one step - make each trip do 2 iterations.
1460   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1461 
1462   // Return true if exp is a constant times an induction var
1463   bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0);
1464 
1465   bool is_iv(Node* exp, Node* iv, BasicType bt);
1466 
1467   // Return true if exp is a scaled induction var plus (or minus) constant
1468   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0);
1469   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) {
1470     jlong long_scale;
1471     if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) {
1472       int int_scale = checked_cast<int>(long_scale);
1473       if (p_scale != nullptr) {
1474         *p_scale = int_scale;
1475       }
1476       return true;
1477     }
1478     return false;
1479   }
1480   // Helper for finding more complex matches to is_scaled_iv_plus_offset.
1481   bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv,
1482                                       BasicType bt,
1483                                       jlong* p_scale, Node** p_offset,
1484                                       bool* p_short_scale, int depth);
1485 
1486   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1487   IfTrueNode* create_new_if_for_predicate(const ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1488                                           Deoptimization::DeoptReason reason, int opcode,
1489                                           bool rewire_uncommon_proj_phi_inputs = false);
1490 
1491  private:
1492   // Helper functions for create_new_if_for_predicate()
1493   void set_ctrl_of_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
1494   Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl);
1495   Node* clone_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
1496   void fix_cloned_data_node_controls(const ProjNode* orig, Node* new_uncommon_proj,
1497                                      const OrigToNewHashtable& orig_to_clone);
1498   bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt,
1499                                        Node* loop_entry);
1500 
1501  public:
1502   void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true);
1503 
1504   // Replace the control input of 'node' with 'new_control' and set the dom depth to the one of 'new_control'.
1505   void replace_control(Node* node, Node* new_control) {
1506     _igvn.replace_input_of(node, 0, new_control);
1507     set_idom(node, new_control, dom_depth(new_control));
1508   }
1509 
1510   void replace_loop_entry(LoopNode* loop_head, Node* new_entry) {
1511     _igvn.replace_input_of(loop_head, LoopNode::EntryControl, new_entry);
1512     set_idom(loop_head, new_entry, dom_depth(new_entry));
1513   }
1514 
1515   // Construct a range check for a predicate if
1516   BoolNode* rc_predicate(Node* ctrl, int scale, Node* offset, Node* init, Node* limit,
1517                          jint stride, Node* range, bool upper, bool& overflow);
1518 
1519   // Implementation of the loop predication to promote checks outside the loop
1520   bool loop_predication_impl(IdealLoopTree *loop);
1521 
1522  private:
1523   bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj,
1524                                     ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero,
1525                                     Invariance& invar, Deoptimization::DeoptReason deopt_reason);
1526   bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const;
1527   bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt);
1528   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1529                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1530                                         Node_List& if_proj_list);
1531   IfTrueNode* create_template_assertion_predicate(CountedLoopNode* loop_head, ParsePredicateNode* parse_predicate,
1532                                                   IfProjNode* new_control, int scale, Node* offset, Node* range);
1533   void eliminate_hoisted_range_check(IfTrueNode* hoisted_check_proj, IfTrueNode* template_assertion_predicate_proj);
1534 
1535   // Helper function to collect predicate for eliminating the useless ones
1536   void eliminate_useless_predicates() const;
1537 
1538   void eliminate_useless_zero_trip_guard();
1539   void eliminate_useless_multiversion_if();
1540 
1541  public:
1542   // Change the control input of expensive nodes to allow commoning by
1543   // IGVN when it is guaranteed to not result in a more frequent
1544   // execution of the expensive node. Return true if progress.
1545   bool process_expensive_nodes();
1546 
1547   // Check whether node has become unreachable
1548   bool is_node_unreachable(Node *n) const {
1549     return !has_node(n) || n->is_unreachable(_igvn);
1550   }
1551 
1552   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1553   void do_range_check(IdealLoopTree* loop);
1554 
1555   // Clone loop with an invariant test (that does not exit) and
1556   // insert a clone of the test that selects which version to
1557   // execute.
1558   void do_unswitching(IdealLoopTree* loop, Node_List& old_new);
1559 
1560   IfNode* find_unswitch_candidate(const IdealLoopTree* loop) const;
1561 
1562  private:
1563   static bool has_control_dependencies_from_predicates(LoopNode* head);
1564   static void revert_to_normal_loop(const LoopNode* loop_head);
1565 
1566   void hoist_invariant_check_casts(const IdealLoopTree* loop, const Node_List& old_new,
1567                                    const UnswitchedLoopSelector& unswitched_loop_selector);
1568   void add_unswitched_loop_version_bodies_to_igvn(IdealLoopTree* loop, const Node_List& old_new);
1569   static void increment_unswitch_counts(LoopNode* original_head, LoopNode* new_head);
1570   void remove_unswitch_candidate_from_loops(const Node_List& old_new, const UnswitchedLoopSelector& unswitched_loop_selector);
1571 #ifndef PRODUCT
1572   static void trace_loop_unswitching_count(IdealLoopTree* loop, LoopNode* original_head);
1573   static void trace_loop_unswitching_impossible(const LoopNode* original_head);
1574   static void trace_loop_unswitching_result(const UnswitchedLoopSelector& unswitched_loop_selector,
1575                                             const LoopNode* original_head, const LoopNode* new_head);
1576   static void trace_loop_multiversioning_result(const LoopSelector& loop_selector,
1577                                                 const LoopNode* original_head, const LoopNode* new_head);
1578 #endif
1579 
1580  public:
1581 
1582   // Range Check Elimination uses this function!
1583   // Constrain the main loop iterations so the affine function:
1584   //    low_limit <= scale_con * I + offset  <  upper_limit
1585   // always holds true.  That is, either increase the number of iterations in
1586   // the pre-loop or the post-loop until the condition holds true in the main
1587   // loop.  Scale_con, offset and limit are all loop invariant.
1588   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
1589   // Helper function for add_constraint().
1590   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
1591 
1592   // Partially peel loop up through last_peel node.
1593   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1594   bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new);
1595 
1596   // AutoVectorize the loop: replace scalar ops with vector ops.
1597   enum AutoVectorizeStatus {
1598     Impossible,      // This loop has the wrong shape to even try vectorization.
1599     Success,         // We just successfully vectorized the loop.
1600     TriedAndFailed,  // We tried to vectorize, but failed.
1601   };
1602   AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared);
1603 
1604   void maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new);
1605   void do_multiversioning(IdealLoopTree* lpt, Node_List& old_new);
1606   IfTrueNode* create_new_if_for_multiversion(IfTrueNode* multiversioning_fast_proj);
1607   bool try_resume_optimizations_for_delayed_slow_loop(IdealLoopTree* lpt);
1608 
1609   // Create a scheduled list of nodes control dependent on ctrl set.
1610   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1611   // Has a use in the vector set
1612   bool has_use_in_set( Node* n, VectorSet& vset );
1613   // Has use internal to the vector set (ie. not in a phi at the loop head)
1614   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1615   // clone "n" for uses that are outside of loop
1616   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1617   // clone "n" for special uses that are in the not_peeled region
1618   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1619                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1620   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1621   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1622 #ifdef ASSERT
1623   // Validate the loop partition sets: peel and not_peel
1624   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1625   // Ensure that uses outside of loop are of the right form
1626   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1627                                  uint orig_exit_idx, uint clone_exit_idx);
1628   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1629 #endif
1630 
1631   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1632   int stride_of_possible_iv( Node* iff );
1633   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1634   // Return the (unique) control output node that's in the loop (if it exists.)
1635   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1636   // Insert a signed compare loop exit cloned from an unsigned compare.
1637   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1638   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1639   // Utility to register node "n" with PhaseIdealLoop
1640   void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth);
1641   // Utility to create an if-projection
1642   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1643   // Force the iff control output to be the live_proj
1644   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1645   // Insert a region before an if projection
1646   RegionNode* insert_region_before_proj(ProjNode* proj);
1647   // Insert a new if before an if projection
1648   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1649 
1650   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1651   // "Nearly" because all Nodes have been cloned from the original in the loop,
1652   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1653   // through the Phi recursively, and return a Bool.
1654   Node* clone_iff(PhiNode* phi);
1655   CmpNode* clone_bool(PhiNode* phi);
1656 
1657 
1658   // Rework addressing expressions to get the most loop-invariant stuff
1659   // moved out.  We'd like to do all associative operators, but it's especially
1660   // important (common) to do address expressions.
1661   Node* remix_address_expressions(Node* n);
1662   Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt);
1663 
1664   // Convert add to muladd to generate MuladdS2I under certain criteria
1665   Node * convert_add_to_muladd(Node * n);
1666 
1667   // Attempt to use a conditional move instead of a phi/branch
1668   Node *conditional_move( Node *n );
1669 
1670   // Check for aggressive application of 'split-if' optimization,
1671   // using basic block level info.
1672   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack);
1673   Node *split_if_with_blocks_pre ( Node *n );
1674   void  split_if_with_blocks_post( Node *n );
1675   Node *has_local_phi_input( Node *n );
1676   // Mark an IfNode as being dominated by a prior test,
1677   // without actually altering the CFG (and hence IDOM info).
1678   void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false);
1679   void rewire_safe_outputs_to_dominator(Node* source, Node* dominator, bool pin_array_access_nodes);
1680 
1681   // Split Node 'n' through merge point
1682   RegionNode* split_thru_region(Node* n, RegionNode* region);
1683   // Split Node 'n' through merge point if there is enough win.
1684   Node *split_thru_phi( Node *n, Node *region, int policy );
1685   // Found an If getting its condition-code input from a Phi in the
1686   // same block.  Split thru the Region.
1687   void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr);
1688 
1689 private:
1690   // Class to keep track of wins in split_thru_phi.
1691   class SplitThruPhiWins {
1692   private:
1693     // Region containing the phi we are splitting through.
1694     const Node* _region;
1695 
1696     // Sum of all wins regardless of where they happen. This applies to Loops phis as well as non-loop phis.
1697     int _total_wins;
1698 
1699     // For Loops, wins have different impact depending on if they happen on loop entry or on the backedge.
1700     // Number of wins on a loop entry edge if the split is through a loop head,
1701     // otherwise 0. Entry edge wins only pay dividends once on loop entry.
1702     int _loop_entry_wins;
1703     // Number of wins on a loop back-edge, which pay dividends on every iteration.
1704     int _loop_back_wins;
1705 
1706   public:
1707     SplitThruPhiWins(const Node* region) :
1708       _region(region),
1709       _total_wins(0),
1710       _loop_entry_wins(0),
1711       _loop_back_wins(0) {};
1712 
1713     void reset() {_total_wins = 0; _loop_entry_wins = 0; _loop_back_wins = 0;}
1714     void add_win(int ctrl_index) {
1715       if (_region->is_Loop() && ctrl_index == LoopNode::EntryControl) {
1716         _loop_entry_wins++;
1717       } else if (_region->is_Loop() && ctrl_index == LoopNode::LoopBackControl) {
1718         _loop_back_wins++;
1719       }
1720       _total_wins++;
1721     }
1722     // Is this split profitable with respect to the policy?
1723     bool profitable(int policy) const {
1724       assert(_region->is_Loop() || (_loop_entry_wins == 0 && _loop_back_wins == 0), "wins on loop edges without a loop");
1725       assert(!_region->is_Loop() || _total_wins == _loop_entry_wins + _loop_back_wins, "missed some win");
1726       // In general this means that the split has to have more wins than specified
1727       // in the policy. However, for loops we need to take into account where the
1728       // wins happen. We need to be careful when splitting, because splitting nodes
1729       // related to the iv through the phi can sufficiently rearrange the loop
1730       // structure to prevent RCE and thus vectorization. Thus, we only deem splitting
1731       // profitable if the win of a split is not on the entry edge, as such wins
1732       // only pay off once and have a high chance of messing up the loop structure.
1733       return (_loop_entry_wins == 0 && _total_wins > policy) ||
1734       // If there are wins on the entry edge but the backadge also has sufficient wins,
1735       // there is sufficient profitability to spilt regardless of the risk of messing
1736       // up the loop structure.
1737              _loop_back_wins > policy ||
1738       // If the policy is less than 0, a split is always profitable, i.e. we always
1739       // split. This is needed when we split a node and then must also split a
1740       // dependant node, i.e. spliting a Bool node after splitting a Cmp node.
1741              policy < 0;
1742     }
1743   };
1744 
1745 public:
1746 
1747   // Conversion of fill/copy patterns into intrinsic versions
1748   bool do_intrinsify_fill();
1749   bool intrinsify_fill(IdealLoopTree* lpt);
1750   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1751                        Node*& shift, Node*& offset);
1752 
1753 private:
1754   // Return a type based on condition control flow
1755   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1756   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); }
1757  // Helpers for filtered type
1758   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1759 
1760   // Helper functions
1761   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1762   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1763   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1764   bool split_up( Node *n, Node *blk1, Node *blk2 );
1765 
1766   Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const;
1767   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1768   void try_move_store_after_loop(Node* n);
1769   bool identical_backtoback_ifs(Node *n);
1770   bool can_split_if(Node *n_ctrl);
1771   bool cannot_split_division(const Node* n, const Node* region) const;
1772   static bool is_divisor_loop_phi(const Node* divisor, const Node* loop);
1773   bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const;
1774 
1775   // Determine if a method is too big for a/another round of split-if, based on
1776   // a magic (approximate) ratio derived from the equally magic constant 35000,
1777   // previously used for this purpose (but without relating to the node limit).
1778   bool must_throttle_split_if() {
1779     uint threshold = C->max_node_limit() * 2 / 5;
1780     return C->live_nodes() > threshold;
1781   }
1782 
1783   // A simplistic node request tracking mechanism, where
1784   //   = UINT_MAX   Request not valid or made final.
1785   //   < UINT_MAX   Nodes currently requested (estimate).
1786   uint _nodes_required;
1787 
1788   enum { REQUIRE_MIN = 70 };
1789 
1790   uint nodes_required() const { return _nodes_required; }
1791 
1792   // Given the _currently_  available number of nodes, check  whether there is
1793   // "room" for an additional request or not, considering the already required
1794   // number of  nodes.  Return TRUE if  the new request is  exceeding the node
1795   // budget limit, otherwise return FALSE.  Note that this interpretation will
1796   // act pessimistic on  additional requests when new nodes  have already been
1797   // generated since the 'begin'.  This behaviour fits with the intention that
1798   // node estimates/requests should be made upfront.
1799   bool exceeding_node_budget(uint required = 0) {
1800     assert(C->live_nodes() < C->max_node_limit(), "sanity");
1801     uint available = C->max_node_limit() - C->live_nodes();
1802     return available < required + _nodes_required + REQUIRE_MIN;
1803   }
1804 
1805   uint require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1806     precond(require > 0);
1807     _nodes_required += MAX2(require, minreq);
1808     return _nodes_required;
1809   }
1810 
1811   bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1812     return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0;
1813   }
1814 
1815   uint require_nodes_begin() {
1816     assert(_nodes_required == UINT_MAX, "Bad state (begin).");
1817     _nodes_required = 0;
1818     return C->live_nodes();
1819   }
1820 
1821   // When a node request is final,  optionally check that the requested number
1822   // of nodes was  reasonably correct with respect to the  number of new nodes
1823   // introduced since the last 'begin'. Always check that we have not exceeded
1824   // the maximum node limit.
1825   void require_nodes_final(uint live_at_begin, bool check_estimate) {
1826     assert(_nodes_required < UINT_MAX, "Bad state (final).");
1827 
1828 #ifdef ASSERT
1829     if (check_estimate) {
1830       // Check that the node budget request was not off by too much (x2).
1831       // Should this be the case we _surely_ need to improve the estimates
1832       // used in our budget calculations.
1833       if (C->live_nodes() - live_at_begin > 2 * _nodes_required) {
1834         log_info(compilation)("Bad node estimate: actual = %d >> request = %d",
1835                               C->live_nodes() - live_at_begin, _nodes_required);
1836       }
1837     }
1838 #endif
1839     // Assert that we have stayed within the node budget limit.
1840     assert(C->live_nodes() < C->max_node_limit(),
1841            "Exceeding node budget limit: %d + %d > %d (request = %d)",
1842            C->live_nodes() - live_at_begin, live_at_begin,
1843            C->max_node_limit(), _nodes_required);
1844 
1845     _nodes_required = UINT_MAX;
1846   }
1847 
1848  private:
1849 
1850   bool _created_loop_node;
1851   DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);)
1852   NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;)
1853 
1854 public:
1855   void set_created_loop_node() { _created_loop_node = true; }
1856   bool created_loop_node()     { return _created_loop_node; }
1857   void register_new_node(Node* n, Node* blk);
1858   void register_new_node_with_ctrl_of(Node* new_node, Node* ctrl_of) {
1859     register_new_node(new_node, get_ctrl(ctrl_of));
1860   }
1861 
1862   Node* clone_and_register(Node* n, Node* ctrl) {
1863     n = n->clone();
1864     register_new_node(n, ctrl);
1865     return n;
1866   }
1867 
1868 #ifdef ASSERT
1869   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1870 #endif
1871 
1872 #ifndef PRODUCT
1873   void dump() const;
1874   void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging
1875   void dump_idom(Node* n, uint count) const;
1876   void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const;
1877   void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const;
1878   IdealLoopTree* get_loop_idx(Node* n) const {
1879     // Dead nodes have no loop, so return the top level loop instead
1880     return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root;
1881   }
1882   // Print some stats
1883   static void print_statistics();
1884   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1885   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1886   static volatile int _long_loop_candidates;
1887   static volatile int _long_loop_nests;
1888   static volatile int _long_loop_counted_loops;
1889 #endif
1890 
1891 #ifdef ASSERT
1892   void verify() const;
1893   bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const;
1894   bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const;
1895   bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const;
1896 #endif
1897 
1898   void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const;
1899 
1900   void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN;
1901 
1902   LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test);
1903 
1904 
1905   int extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1906                                 Node_List &range_checks);
1907 
1908   void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1909                                    Node* inner_iters_actual_int, Node* inner_phi,
1910                                    Node* iv_add, LoopNode* inner_head);
1911 
1912   Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA);
1913 
1914   bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl);
1915 
1916   bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop);
1917 
1918   bool would_sink_below_pre_loop_exit(IdealLoopTree* n_loop, Node* ctrl);
1919 
1920   Node* compute_early_ctrl(Node* n, Node* n_ctrl);
1921 
1922   void try_sink_out_of_loop(Node* n);
1923 
1924   Node* clamp(Node* R, Node* L, Node* H);
1925 
1926   bool safe_for_if_replacement(const Node* dom) const;
1927 
1928   void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region);
1929 
1930   bool try_merge_identical_ifs(Node* n);
1931 
1932   void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm);
1933 
1934   void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
1935                       IdealLoopTree* parent, bool partial);
1936 
1937   void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
1938                 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist);
1939 
1940   void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
1941                      uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set,
1942                      Node_List*& split_bool_set, Node_List*& split_cex_set);
1943 
1944   void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set);
1945 
1946   bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2);
1947 
1948   bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2);
1949   void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i);
1950   bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2);
1951   void clone_template_assertion_expression_down(Node* node);
1952 
1953   Node* similar_subtype_check(const Node* x, Node* r_in);
1954 
1955   void update_addp_chain_base(Node* x, Node* old_base, Node* new_base);
1956 
1957   bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x);
1958 
1959   void pin_array_access_nodes_dependent_on(Node* ctrl);
1960 
1961   Node* ensure_node_and_inputs_are_above_pre_end(CountedLoopEndNode* pre_end, Node* node);
1962 
1963   bool try_make_short_running_loop(IdealLoopTree* loop, jint stride_con, const Node_List& range_checks, const uint iters_limit);
1964 
1965   ConINode* intcon(jint i);
1966 
1967   ConLNode* longcon(jlong i);
1968 
1969   ConNode* makecon(const Type* t);
1970 
1971   ConNode* integercon(jlong l, BasicType bt);
1972 
1973   ConNode* zerocon(BasicType bt);
1974 };
1975 
1976 
1977 class AutoNodeBudget : public StackObj
1978 {
1979 public:
1980   enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK };
1981 
1982   AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK)
1983     : _phase(phase),
1984       _check_at_final(chk == BUDGET_CHECK),
1985       _nodes_at_begin(0)
1986   {
1987     precond(_phase != nullptr);
1988 
1989     _nodes_at_begin = _phase->require_nodes_begin();
1990   }
1991 
1992   ~AutoNodeBudget() {
1993 #ifndef PRODUCT
1994     if (TraceLoopOpts) {
1995       uint request = _phase->nodes_required();
1996       uint delta   = _phase->C->live_nodes() - _nodes_at_begin;
1997 
1998       if (request < delta) {
1999         tty->print_cr("Exceeding node budget: %d < %d", request, delta);
2000       } else {
2001         uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN;
2002         // Identify the worst estimates as "poor" ones.
2003         if (request > REQUIRE_MIN && delta > 0) {
2004           if ((delta >  REQUIRE_MIN && request >  3 * delta) ||
2005               (delta <= REQUIRE_MIN && request > 10 * delta)) {
2006             tty->print_cr("Poor node estimate: %d >> %d", request, delta);
2007           }
2008         }
2009       }
2010     }
2011 #endif // PRODUCT
2012     _phase->require_nodes_final(_nodes_at_begin, _check_at_final);
2013   }
2014 
2015 private:
2016   PhaseIdealLoop* _phase;
2017   bool _check_at_final;
2018   uint _nodes_at_begin;
2019 };
2020 
2021 inline Node* IdealLoopTree::tail() {
2022   // Handle lazy update of _tail field.
2023   if (_tail->in(0) == nullptr) {
2024     _tail = _phase->get_ctrl(_tail);
2025   }
2026   return _tail;
2027 }
2028 
2029 inline Node* IdealLoopTree::head() {
2030   // Handle lazy update of _head field.
2031   if (_head->in(0) == nullptr) {
2032     _head = _phase->get_ctrl(_head);
2033   }
2034   return _head;
2035 }
2036 
2037 // Iterate over the loop tree using a preorder, left-to-right traversal.
2038 //
2039 // Example that visits all counted loops from within PhaseIdealLoop
2040 //
2041 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2042 //   IdealLoopTree* lpt = iter.current();
2043 //   if (!lpt->is_counted()) continue;
2044 //   ...
2045 class LoopTreeIterator : public StackObj {
2046 private:
2047   IdealLoopTree* _root;
2048   IdealLoopTree* _curnt;
2049 
2050 public:
2051   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
2052 
2053   bool done() { return _curnt == nullptr; }       // Finished iterating?
2054 
2055   void next();                                 // Advance to next loop tree
2056 
2057   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
2058 };
2059 
2060 // Compute probability of reaching some CFG node from a fixed
2061 // dominating CFG node
2062 class PathFrequency {
2063 private:
2064   Node* _dom; // frequencies are computed relative to this node
2065   Node_Stack _stack;
2066   GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions
2067   GrowableArray<float> _freqs; // cache frequencies
2068   PhaseIdealLoop* _phase;
2069 
2070   float check_and_truncate_frequency(float f) {
2071     assert(f >= 0, "Incorrect frequency");
2072     // We do not perform an exact (f <= 1) check
2073     // this would be error prone with rounding of floats.
2074     // Performing a check like (f <= 1+eps) would be of benefit,
2075     // however, it is not evident how to determine such an eps,
2076     // given that an arbitrary number of add/mul operations
2077     // are performed on these frequencies.
2078     return (f > 1) ? 1 : f;
2079   }
2080 
2081 public:
2082   PathFrequency(Node* dom, PhaseIdealLoop* phase)
2083     : _dom(dom), _stack(0), _phase(phase) {
2084   }
2085 
2086   float to(Node* n);
2087 };
2088 
2089 // Class to clone a data node graph by taking a list of data nodes. This is done in 2 steps:
2090 //   1. Clone the data nodes
2091 //   2. Fix the cloned data inputs pointing to the old nodes to the cloned inputs by using an old->new mapping.
2092 class DataNodeGraph : public StackObj {
2093   PhaseIdealLoop* const _phase;
2094   const Unique_Node_List& _data_nodes;
2095   OrigToNewHashtable _orig_to_new;
2096 
2097  public:
2098   DataNodeGraph(const Unique_Node_List& data_nodes, PhaseIdealLoop* phase)
2099       : _phase(phase),
2100         _data_nodes(data_nodes),
2101         // Use 107 as best guess which is the first resize value in ResizeableHashTable::large_table_sizes.
2102         _orig_to_new(107, MaxNodeLimit)
2103   {
2104 #ifdef ASSERT
2105     for (uint i = 0; i < data_nodes.size(); i++) {
2106       assert(!data_nodes[i]->is_CFG(), "only data nodes");
2107     }
2108 #endif
2109   }
2110   NONCOPYABLE(DataNodeGraph);
2111 
2112  private:
2113   void clone(Node* node, Node* new_ctrl);
2114   void clone_data_nodes(Node* new_ctrl);
2115   void clone_data_nodes_and_transform_opaque_loop_nodes(const TransformStrategyForOpaqueLoopNodes& transform_strategy,
2116                                                         Node* new_ctrl);
2117   void rewire_clones_to_cloned_inputs();
2118   void transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node);
2119 
2120  public:
2121   // Clone the provided data node collection and rewire the clones in such a way to create an identical graph copy.
2122   // Set 'new_ctrl' as ctrl for the cloned nodes.
2123   const OrigToNewHashtable& clone(Node* new_ctrl) {
2124     assert(_orig_to_new.number_of_entries() == 0, "should not call this method twice in a row");
2125     clone_data_nodes(new_ctrl);
2126     rewire_clones_to_cloned_inputs();
2127     return _orig_to_new;
2128   }
2129 
2130   // Create a copy of the data nodes provided to the constructor by doing the following:
2131   // Clone all non-OpaqueLoop* nodes and rewire them to create an identical subgraph copy. For the OpaqueLoop* nodes,
2132   // apply the provided transformation strategy and include the transformed node into the subgraph copy to get a complete
2133   // "cloned-and-transformed" graph copy. For all newly cloned nodes (which could also be new OpaqueLoop* nodes), set
2134   // `new_ctrl` as ctrl.
2135   const OrigToNewHashtable& clone_with_opaque_loop_transform_strategy(
2136       const TransformStrategyForOpaqueLoopNodes& transform_strategy,
2137       Node* new_ctrl) {
2138     clone_data_nodes_and_transform_opaque_loop_nodes(transform_strategy, new_ctrl);
2139     rewire_clones_to_cloned_inputs();
2140     return _orig_to_new;
2141   }
2142 };
2143 #endif // SHARE_OPTO_LOOPNODE_HPP