1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_LOOPNODE_HPP
  26 #define SHARE_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 #include "utilities/checkedCast.hpp"
  34 
  35 class CmpNode;
  36 class BaseCountedLoopEndNode;
  37 class CountedLoopNode;
  38 class IdealLoopTree;
  39 class LoopNode;
  40 class Node;
  41 class OuterStripMinedLoopEndNode;
  42 class PredicateBlock;
  43 class PathFrequency;
  44 class PhaseIdealLoop;
  45 class VectorSet;
  46 class Invariance;
  47 struct small_cache;
  48 
  49 //
  50 //                  I D E A L I Z E D   L O O P S
  51 //
  52 // Idealized loops are the set of loops I perform more interesting
  53 // transformations on, beyond simple hoisting.
  54 
  55 //------------------------------LoopNode---------------------------------------
  56 // Simple loop header.  Fall in path on left, loop-back path on right.
  57 class LoopNode : public RegionNode {
  58   // Size is bigger to hold the flags.  However, the flags do not change
  59   // the semantics so it does not appear in the hash & cmp functions.
  60   virtual uint size_of() const { return sizeof(*this); }
  61 protected:
  62   uint _loop_flags;
  63   // Names for flag bitfields
  64   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  65          MainHasNoPreLoop      = 1<<2,
  66          HasExactTripCount     = 1<<3,
  67          InnerLoop             = 1<<4,
  68          PartialPeelLoop       = 1<<5,
  69          PartialPeelFailed     = 1<<6,
  70          WasSlpAnalyzed        = 1<<7,
  71          PassedSlpAnalysis     = 1<<8,
  72          DoUnrollOnly          = 1<<9,
  73          VectorizedLoop        = 1<<10,
  74          HasAtomicPostLoop     = 1<<11,
  75          StripMined            = 1<<12,
  76          SubwordLoop           = 1<<13,
  77          ProfileTripFailed     = 1<<14,
  78          LoopNestInnerLoop     = 1<<15,
  79          LoopNestLongOuterLoop = 1<<16 };
  80   char _unswitch_count;
  81   enum { _unswitch_max=3 };
  82 
  83   // Expected trip count from profile data
  84   float _profile_trip_cnt;
  85 
  86 public:
  87   // Names for edge indices
  88   enum { Self=0, EntryControl, LoopBackControl };
  89 
  90   bool is_inner_loop() const { return _loop_flags & InnerLoop; }
  91   void set_inner_loop() { _loop_flags |= InnerLoop; }
  92 
  93   bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
  94   bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  95   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  96   bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  97   bool is_strip_mined() const { return _loop_flags & StripMined; }
  98   bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
  99   bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
 100   bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; }
 101   bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; }
 102 
 103   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
 104   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 105   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 106   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 107   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 108   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 109   void mark_strip_mined() { _loop_flags |= StripMined; }
 110   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 111   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
 112   void mark_subword_loop() { _loop_flags |= SubwordLoop; }
 113   void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; }
 114   void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; }
 115 
 116   int unswitch_max() { return _unswitch_max; }
 117   int unswitch_count() { return _unswitch_count; }
 118 
 119   void set_unswitch_count(int val) {
 120     assert (val <= unswitch_max(), "too many unswitches");
 121     _unswitch_count = val;
 122   }
 123 
 124   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 125   float profile_trip_cnt()             { return _profile_trip_cnt; }
 126 
 127   LoopNode(Node *entry, Node *backedge)
 128     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
 129       _profile_trip_cnt(COUNT_UNKNOWN) {
 130     init_class_id(Class_Loop);
 131     init_req(EntryControl, entry);
 132     init_req(LoopBackControl, backedge);
 133   }
 134 
 135   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 136   virtual int Opcode() const;
 137   bool can_be_counted_loop(PhaseValues* phase) const {
 138     return req() == 3 && in(0) != nullptr &&
 139       in(1) != nullptr && phase->type(in(1)) != Type::TOP &&
 140       in(2) != nullptr && phase->type(in(2)) != Type::TOP;
 141   }
 142   bool is_valid_counted_loop(BasicType bt) const;
 143 #ifndef PRODUCT
 144   virtual void dump_spec(outputStream *st) const;
 145 #endif
 146 
 147   void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
 148   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 149   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; }
 150   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; }
 151   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; }
 152   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; }
 153 };
 154 
 155 //------------------------------Counted Loops----------------------------------
 156 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 157 // path (and maybe some other exit paths).  The trip-counter exit is always
 158 // last in the loop.  The trip-counter have to stride by a constant;
 159 // the exit value is also loop invariant.
 160 
 161 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 162 // CountedLoopNode has the incoming loop control and the loop-back-control
 163 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 164 // CountedLoopEndNode has an incoming control (possibly not the
 165 // CountedLoopNode if there is control flow in the loop), the post-increment
 166 // trip-counter value, and the limit.  The trip-counter value is always of
 167 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 168 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 169 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 170 // CountedLoopEndNode also takes in the loop-invariant limit value.
 171 
 172 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 173 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 174 // via the old-trip-counter from the Op node.
 175 
 176 //------------------------------CountedLoopNode--------------------------------
 177 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 178 // inputs the incoming loop-start control and the loop-back control, so they
 179 // act like RegionNodes.  They also take in the initial trip counter, the
 180 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 181 // produce a loop-body control and the trip counter value.  Since
 182 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 183 
 184 class BaseCountedLoopNode : public LoopNode {
 185 public:
 186   BaseCountedLoopNode(Node *entry, Node *backedge)
 187     : LoopNode(entry, backedge) {
 188   }
 189 
 190   Node *init_control() const { return in(EntryControl); }
 191   Node *back_control() const { return in(LoopBackControl); }
 192 
 193   Node* init_trip() const;
 194   Node* stride() const;
 195   bool stride_is_con() const;
 196   Node* limit() const;
 197   Node* incr() const;
 198   Node* phi() const;
 199 
 200   BaseCountedLoopEndNode* loopexit_or_null() const;
 201   BaseCountedLoopEndNode* loopexit() const;
 202 
 203   virtual BasicType bt() const = 0;
 204 
 205   jlong stride_con() const;
 206 
 207   static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt);
 208 };
 209 
 210 
 211 class CountedLoopNode : public BaseCountedLoopNode {
 212   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 213   // the semantics so it does not appear in the hash & cmp functions.
 214   virtual uint size_of() const { return sizeof(*this); }
 215 
 216   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 217   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 218   node_idx_t _main_idx;
 219 
 220   // Known trip count calculated by compute_exact_trip_count()
 221   uint  _trip_count;
 222 
 223   // Log2 of original loop bodies in unrolled loop
 224   int _unrolled_count_log2;
 225 
 226   // Node count prior to last unrolling - used to decide if
 227   // unroll,optimize,unroll,optimize,... is making progress
 228   int _node_count_before_unroll;
 229 
 230   // If slp analysis is performed we record the maximum
 231   // vector mapped unroll factor here
 232   int _slp_maximum_unroll_factor;
 233 
 234   // Cached CountedLoopEndNode of pre loop for main loops
 235   CountedLoopEndNode* _pre_loop_end;
 236 
 237 public:
 238   CountedLoopNode(Node *entry, Node *backedge)
 239     : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 240       _unrolled_count_log2(0), _node_count_before_unroll(0),
 241       _slp_maximum_unroll_factor(0), _pre_loop_end(nullptr) {
 242     init_class_id(Class_CountedLoop);
 243     // Initialize _trip_count to the largest possible value.
 244     // Will be reset (lower) if the loop's trip count is known.
 245   }
 246 
 247   virtual int Opcode() const;
 248   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 249 
 250   CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 251   CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 252   int   stride_con() const;
 253 
 254   // Match increment with optional truncation
 255   static Node*
 256   match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type,
 257                                       BasicType bt);
 258 
 259   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 260   // can run short a few iterations and may start a few iterations in.
 261   // It will be RCE'd and unrolled and aligned.
 262 
 263   // A following 'post' loop will run any remaining iterations.  Used
 264   // during Range Check Elimination, the 'post' loop will do any final
 265   // iterations with full checks.  Also used by Loop Unrolling, where
 266   // the 'post' loop will do any epilog iterations needed.  Basically,
 267   // a 'post' loop can not profitably be further unrolled or RCE'd.
 268 
 269   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 270   // it may do under-flow checks for RCE and may do alignment iterations
 271   // so the following main loop 'knows' that it is striding down cache
 272   // lines.
 273 
 274   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 275   // Aligned, may be missing it's pre-loop.
 276   bool is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 277   bool is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 278   bool is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 279   bool is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 280   bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 281   bool has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 282   bool is_unroll_only   () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 283   bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 284   bool has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 285   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 286 
 287   int main_idx() const { return _main_idx; }
 288 
 289 
 290   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 291   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 292   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 293   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 294 
 295   void set_trip_count(uint tc) { _trip_count = tc; }
 296   uint trip_count()            { return _trip_count; }
 297 
 298   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 299   void set_exact_trip_count(uint tc) {
 300     _trip_count = tc;
 301     _loop_flags |= HasExactTripCount;
 302   }
 303   void set_nonexact_trip_count() {
 304     _loop_flags &= ~HasExactTripCount;
 305   }
 306   void set_notpassed_slp() {
 307     _loop_flags &= ~PassedSlpAnalysis;
 308   }
 309 
 310   void double_unrolled_count() { _unrolled_count_log2++; }
 311   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 312 
 313   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 314   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 315   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 316   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 317 
 318   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
 319   OuterStripMinedLoopNode* outer_loop() const;
 320   virtual IfTrueNode* outer_loop_tail() const;
 321   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 322   virtual IfFalseNode* outer_loop_exit() const;
 323   virtual SafePointNode* outer_safepoint() const;
 324 
 325   Node* skip_assertion_predicates_with_halt();
 326 
 327   virtual BasicType bt() const {
 328     return T_INT;
 329   }
 330 
 331   Node* is_canonical_loop_entry();
 332   CountedLoopEndNode* find_pre_loop_end();
 333   CountedLoopNode* pre_loop_head() const;
 334   CountedLoopEndNode* pre_loop_end();
 335   void set_pre_loop_end(CountedLoopEndNode* pre_loop_end);
 336 
 337 #ifndef PRODUCT
 338   virtual void dump_spec(outputStream *st) const;
 339 #endif
 340 };
 341 
 342 class LongCountedLoopNode : public BaseCountedLoopNode {
 343 public:
 344   LongCountedLoopNode(Node *entry, Node *backedge)
 345     : BaseCountedLoopNode(entry, backedge) {
 346     init_class_id(Class_LongCountedLoop);
 347   }
 348 
 349   virtual int Opcode() const;
 350 
 351   virtual BasicType bt() const {
 352     return T_LONG;
 353   }
 354 
 355   LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 356   LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 357 };
 358 
 359 
 360 //------------------------------CountedLoopEndNode-----------------------------
 361 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 362 // IfNodes.
 363 
 364 class BaseCountedLoopEndNode : public IfNode {
 365 public:
 366   enum { TestControl, TestValue };
 367   BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 368     : IfNode(control, test, prob, cnt) {
 369     init_class_id(Class_BaseCountedLoopEnd);
 370   }
 371 
 372   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; }
 373   Node* incr() const                { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 374   Node* limit() const               { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 375   Node* stride() const              { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 376   Node* init_trip() const           { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 377   bool stride_is_con() const        { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); }
 378 
 379   PhiNode* phi() const {
 380     Node* tmp = incr();
 381     if (tmp && tmp->req() == 3) {
 382       Node* phi = tmp->in(1);
 383       if (phi->is_Phi()) {
 384         return phi->as_Phi();
 385       }
 386     }
 387     return nullptr;
 388   }
 389 
 390   BaseCountedLoopNode* loopnode() const {
 391     // The CountedLoopNode that goes with this CountedLoopEndNode may
 392     // have been optimized out by the IGVN so be cautious with the
 393     // pattern matching on the graph
 394     PhiNode* iv_phi = phi();
 395     if (iv_phi == nullptr) {
 396       return nullptr;
 397     }
 398     Node* ln = iv_phi->in(0);
 399     if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) {
 400       return nullptr;
 401     }
 402     if (ln->as_BaseCountedLoop()->bt() != bt()) {
 403       return nullptr;
 404     }
 405     return ln->as_BaseCountedLoop();
 406   }
 407 
 408   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 409 
 410   jlong stride_con() const;
 411   virtual BasicType bt() const = 0;
 412 
 413   static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt);
 414 };
 415 
 416 class CountedLoopEndNode : public BaseCountedLoopEndNode {
 417 public:
 418 
 419   CountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 420     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 421     init_class_id(Class_CountedLoopEnd);
 422   }
 423   virtual int Opcode() const;
 424 
 425   CountedLoopNode* loopnode() const {
 426     return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 427   }
 428 
 429   virtual BasicType bt() const {
 430     return T_INT;
 431   }
 432 
 433 #ifndef PRODUCT
 434   virtual void dump_spec(outputStream *st) const;
 435 #endif
 436 };
 437 
 438 class LongCountedLoopEndNode : public BaseCountedLoopEndNode {
 439 public:
 440   LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 441     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 442     init_class_id(Class_LongCountedLoopEnd);
 443   }
 444 
 445   LongCountedLoopNode* loopnode() const {
 446     return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 447   }
 448 
 449   virtual int Opcode() const;
 450 
 451   virtual BasicType bt() const {
 452     return T_LONG;
 453   }
 454 };
 455 
 456 
 457 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const {
 458   Node* bctrl = back_control();
 459   if (bctrl == nullptr) return nullptr;
 460 
 461   Node* lexit = bctrl->in(0);
 462   if (!lexit->is_BaseCountedLoopEnd()) {
 463     return nullptr;
 464   }
 465   BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd();
 466   if (result->bt() != bt()) {
 467     return nullptr;
 468   }
 469   return result;
 470 }
 471 
 472 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const {
 473   BaseCountedLoopEndNode* cle = loopexit_or_null();
 474   assert(cle != nullptr, "loopexit is null");
 475   return cle;
 476 }
 477 
 478 inline Node* BaseCountedLoopNode::init_trip() const {
 479   BaseCountedLoopEndNode* cle = loopexit_or_null();
 480   return cle != nullptr ? cle->init_trip() : nullptr;
 481 }
 482 inline Node* BaseCountedLoopNode::stride() const {
 483   BaseCountedLoopEndNode* cle = loopexit_or_null();
 484   return cle != nullptr ? cle->stride() : nullptr;
 485 }
 486 
 487 inline bool BaseCountedLoopNode::stride_is_con() const {
 488   BaseCountedLoopEndNode* cle = loopexit_or_null();
 489   return cle != nullptr && cle->stride_is_con();
 490 }
 491 inline Node* BaseCountedLoopNode::limit() const {
 492   BaseCountedLoopEndNode* cle = loopexit_or_null();
 493   return cle != nullptr ? cle->limit() : nullptr;
 494 }
 495 inline Node* BaseCountedLoopNode::incr() const {
 496   BaseCountedLoopEndNode* cle = loopexit_or_null();
 497   return cle != nullptr ? cle->incr() : nullptr;
 498 }
 499 inline Node* BaseCountedLoopNode::phi() const {
 500   BaseCountedLoopEndNode* cle = loopexit_or_null();
 501   return cle != nullptr ? cle->phi() : nullptr;
 502 }
 503 
 504 inline jlong BaseCountedLoopNode::stride_con() const {
 505   BaseCountedLoopEndNode* cle = loopexit_or_null();
 506   return cle != nullptr ? cle->stride_con() : 0;
 507 }
 508 
 509 
 510 //------------------------------LoopLimitNode-----------------------------
 511 // Counted Loop limit node which represents exact final iterator value:
 512 // trip_count = (limit - init_trip + stride - 1)/stride
 513 // final_value= trip_count * stride + init_trip.
 514 // Use HW instructions to calculate it when it can overflow in integer.
 515 // Note, final_value should fit into integer since counted loop has
 516 // limit check: limit <= max_int-stride.
 517 class LoopLimitNode : public Node {
 518   enum { Init=1, Limit=2, Stride=3 };
 519  public:
 520   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 521     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 522     init_flags(Flag_is_macro);
 523     C->add_macro_node(this);
 524   }
 525   virtual int Opcode() const;
 526   virtual const Type *bottom_type() const { return TypeInt::INT; }
 527   virtual uint ideal_reg() const { return Op_RegI; }
 528   virtual const Type* Value(PhaseGVN* phase) const;
 529   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 530   virtual Node* Identity(PhaseGVN* phase);
 531 };
 532 
 533 // Support for strip mining
 534 class OuterStripMinedLoopNode : public LoopNode {
 535 private:
 536   static void fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 537 
 538 public:
 539   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 540     : LoopNode(entry, backedge) {
 541     init_class_id(Class_OuterStripMinedLoop);
 542     init_flags(Flag_is_macro);
 543     C->add_macro_node(this);
 544   }
 545 
 546   virtual int Opcode() const;
 547 
 548   virtual IfTrueNode* outer_loop_tail() const;
 549   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 550   virtual IfFalseNode* outer_loop_exit() const;
 551   virtual SafePointNode* outer_safepoint() const;
 552   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 553 
 554   void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const;
 555 
 556   void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 557 
 558   static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 559 
 560   Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
 561                          PhaseIdealLoop* iloop);
 562 };
 563 
 564 class OuterStripMinedLoopEndNode : public IfNode {
 565 public:
 566   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 567     : IfNode(control, test, prob, cnt) {
 568     init_class_id(Class_OuterStripMinedLoopEnd);
 569   }
 570 
 571   virtual int Opcode() const;
 572 
 573   virtual const Type* Value(PhaseGVN* phase) const;
 574   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 575 
 576   bool is_expanded(PhaseGVN *phase) const;
 577 };
 578 
 579 // -----------------------------IdealLoopTree----------------------------------
 580 class IdealLoopTree : public ResourceObj {
 581 public:
 582   IdealLoopTree *_parent;       // Parent in loop tree
 583   IdealLoopTree *_next;         // Next sibling in loop tree
 584   IdealLoopTree *_child;        // First child in loop tree
 585 
 586   // The head-tail backedge defines the loop.
 587   // If a loop has multiple backedges, this is addressed during cleanup where
 588   // we peel off the multiple backedges,  merging all edges at the bottom and
 589   // ensuring that one proper backedge flow into the loop.
 590   Node *_head;                  // Head of loop
 591   Node *_tail;                  // Tail of loop
 592   inline Node *tail();          // Handle lazy update of _tail field
 593   inline Node *head();          // Handle lazy update of _head field
 594   PhaseIdealLoop* _phase;
 595   int _local_loop_unroll_limit;
 596   int _local_loop_unroll_factor;
 597 
 598   Node_List _body;              // Loop body for inner loops
 599 
 600   uint16_t _nest;               // Nesting depth
 601   uint8_t _irreducible:1,       // True if irreducible
 602           _has_call:1,          // True if has call safepoint
 603           _has_sfpt:1,          // True if has non-call safepoint
 604           _rce_candidate:1,     // True if candidate for range check elimination
 605           _has_range_checks:1,
 606           _has_range_checks_computed:1;
 607 
 608   Node_List* _safepts;          // List of safepoints in this loop
 609   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 610   bool  _allow_optimizations;   // Allow loop optimizations
 611 
 612   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 613     : _parent(0), _next(0), _child(0),
 614       _head(head), _tail(tail),
 615       _phase(phase),
 616       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
 617       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 618       _has_range_checks(0), _has_range_checks_computed(0),
 619       _safepts(nullptr),
 620       _required_safept(nullptr),
 621       _allow_optimizations(true)
 622   {
 623     precond(_head != nullptr);
 624     precond(_tail != nullptr);
 625   }
 626 
 627   // Is 'l' a member of 'this'?
 628   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 629 
 630   // Set loop nesting depth.  Accumulate has_call bits.
 631   int set_nest( uint depth );
 632 
 633   // Split out multiple fall-in edges from the loop header.  Move them to a
 634   // private RegionNode before the loop.  This becomes the loop landing pad.
 635   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 636 
 637   // Split out the outermost loop from this shared header.
 638   void split_outer_loop( PhaseIdealLoop *phase );
 639 
 640   // Merge all the backedges from the shared header into a private Region.
 641   // Feed that region as the one backedge to this loop.
 642   void merge_many_backedges( PhaseIdealLoop *phase );
 643 
 644   // Split shared headers and insert loop landing pads.
 645   // Insert a LoopNode to replace the RegionNode.
 646   // Returns TRUE if loop tree is structurally changed.
 647   bool beautify_loops( PhaseIdealLoop *phase );
 648 
 649   // Perform optimization to use the loop predicates for null checks and range checks.
 650   // Applies to any loop level (not just the innermost one)
 651   bool loop_predication( PhaseIdealLoop *phase);
 652   bool can_apply_loop_predication();
 653 
 654   // Perform iteration-splitting on inner loops.  Split iterations to
 655   // avoid range checks or one-shot null checks.  Returns false if the
 656   // current round of loop opts should stop.
 657   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 658 
 659   // Driver for various flavors of iteration splitting.  Returns false
 660   // if the current round of loop opts should stop.
 661   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 662 
 663   // Given dominators, try to find loops with calls that must always be
 664   // executed (call dominates loop tail).  These loops do not need non-call
 665   // safepoints (ncsfpt).
 666   void check_safepts(VectorSet &visited, Node_List &stack);
 667 
 668   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 669   // encountered.
 670   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 671 
 672   // Remove safepoints from loop. Optionally keeping one.
 673   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 674 
 675   // Convert to counted loops where possible
 676   void counted_loop( PhaseIdealLoop *phase );
 677 
 678   // Check for Node being a loop-breaking test
 679   Node *is_loop_exit(Node *iff) const;
 680 
 681   // Remove simplistic dead code from loop body
 682   void DCE_loop_body();
 683 
 684   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 685   // Replace with a 1-in-10 exit guess.
 686   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 687 
 688   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 689   // Useful for unrolling loops with NO array accesses.
 690   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 691 
 692   // Return TRUE or FALSE if the loop should be unswitched -- clone
 693   // loop with an invariant test
 694   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 695 
 696   // Micro-benchmark spamming.  Remove empty loops.
 697   bool do_remove_empty_loop( PhaseIdealLoop *phase );
 698 
 699   // Convert one iteration loop into normal code.
 700   bool do_one_iteration_loop( PhaseIdealLoop *phase );
 701 
 702   // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
 703   // move some loop-invariant test (usually a null-check) before the loop.
 704   bool policy_peeling(PhaseIdealLoop *phase);
 705 
 706   uint estimate_peeling(PhaseIdealLoop *phase);
 707 
 708   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 709   // known trip count in the counted loop node.
 710   bool policy_maximally_unroll(PhaseIdealLoop *phase) const;
 711 
 712   // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll
 713   // if the loop is a counted loop and the loop body is small enough.
 714   bool policy_unroll(PhaseIdealLoop *phase);
 715 
 716   // Loop analyses to map to a maximal superword unrolling for vectorization.
 717   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 718 
 719   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 720   // Gather a list of IF tests that are dominated by iteration splitting;
 721   // also gather the end of the first split and the start of the 2nd split.
 722   bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const;
 723 
 724   // Return TRUE if "iff" is a range check.
 725   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const;
 726   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset,
 727                          jlong& scale) const;
 728 
 729   // Estimate the number of nodes required when cloning a loop (body).
 730   uint est_loop_clone_sz(uint factor) const;
 731   // Estimate the number of nodes required when unrolling a loop (body).
 732   uint est_loop_unroll_sz(uint factor) const;
 733 
 734   // Compute loop trip count if possible
 735   void compute_trip_count(PhaseIdealLoop* phase);
 736 
 737   // Compute loop trip count from profile data
 738   float compute_profile_trip_cnt_helper(Node* n);
 739   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 740 
 741   // Reassociate invariant expressions.
 742   void reassociate_invariants(PhaseIdealLoop *phase);
 743   // Reassociate invariant binary expressions.
 744   Node* reassociate(Node* n1, PhaseIdealLoop *phase);
 745   // Reassociate invariant add and subtract expressions.
 746   Node* reassociate_add_sub(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop *phase);
 747   // Return nonzero index of invariant operand if invariant and variant
 748   // are combined with an associative binary. Helper for reassociate_invariants.
 749   int find_invariant(Node* n, PhaseIdealLoop *phase);
 750   // Return TRUE if "n" is associative.
 751   bool is_associative(Node* n, Node* base=nullptr);
 752 
 753   // Return true if n is invariant
 754   bool is_invariant(Node* n) const;
 755 
 756   // Put loop body on igvn work list
 757   void record_for_igvn();
 758 
 759   bool is_root() { return _parent == nullptr; }
 760   // A proper/reducible loop w/o any (occasional) dead back-edge.
 761   bool is_loop() { return !_irreducible && !tail()->is_top(); }
 762   bool is_counted()   { return is_loop() && _head->is_CountedLoop(); }
 763   bool is_innermost() { return is_loop() && _child == nullptr; }
 764 
 765   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 766 
 767   bool compute_has_range_checks() const;
 768   bool range_checks_present() {
 769     if (!_has_range_checks_computed) {
 770       if (compute_has_range_checks()) {
 771         _has_range_checks = 1;
 772       }
 773       _has_range_checks_computed = 1;
 774     }
 775     return _has_range_checks;
 776   }
 777 
 778 #ifndef PRODUCT
 779   void dump_head();       // Dump loop head only
 780   void dump();            // Dump this loop recursively
 781 #endif
 782 
 783 #ifdef ASSERT
 784   GrowableArray<IdealLoopTree*> collect_sorted_children() const;
 785   bool verify_tree(IdealLoopTree* loop_verify) const;
 786 #endif
 787 
 788  private:
 789   enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop.
 790 
 791   // Estimate the number of nodes resulting from control and data flow merge.
 792   uint est_loop_flow_merge_sz() const;
 793 
 794   // Check if the number of residual iterations is large with unroll_cnt.
 795   // Return true if the residual iterations are more than 10% of the trip count.
 796   bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const {
 797     return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt();
 798   }
 799 
 800   void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const;
 801 
 802   bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const;
 803 
 804   void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const;
 805 
 806   bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq,
 807                          Node* sfpt) const;
 808 
 809   bool empty_loop_candidate(PhaseIdealLoop* phase) const;
 810 
 811   bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const;
 812 };
 813 
 814 // -----------------------------PhaseIdealLoop---------------------------------
 815 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees
 816 // into a loop tree. Drives the loop-based transformations on the ideal graph.
 817 class PhaseIdealLoop : public PhaseTransform {
 818   friend class IdealLoopTree;
 819   friend class SuperWord;
 820   friend class ShenandoahBarrierC2Support;
 821   friend class AutoNodeBudget;
 822 
 823   // Map loop membership for CFG nodes, and ctrl for non-CFG nodes.
 824   Node_List _loop_or_ctrl;
 825 
 826   // Pre-computed def-use info
 827   PhaseIterGVN &_igvn;
 828 
 829   // Head of loop tree
 830   IdealLoopTree* _ltree_root;
 831 
 832   // Array of pre-order numbers, plus post-visited bit.
 833   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 834   // ODD for post-visited.  Other bits are the pre-order number.
 835   uint *_preorders;
 836   uint _max_preorder;
 837 
 838   const PhaseIdealLoop* _verify_me;
 839   bool _verify_only;
 840 
 841   // Allocate _preorders[] array
 842   void allocate_preorders() {
 843     _max_preorder = C->unique()+8;
 844     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 845     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 846   }
 847 
 848   // Allocate _preorders[] array
 849   void reallocate_preorders() {
 850     if ( _max_preorder < C->unique() ) {
 851       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 852       _max_preorder = C->unique();
 853     }
 854     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 855   }
 856 
 857   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 858   // adds new nodes.
 859   void check_grow_preorders( ) {
 860     if ( _max_preorder < C->unique() ) {
 861       uint newsize = _max_preorder<<1;  // double size of array
 862       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 863       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 864       _max_preorder = newsize;
 865     }
 866   }
 867   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 868   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 869   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 870   void set_preorder_visited( Node *n, int pre_order ) {
 871     assert( !is_visited( n ), "already set" );
 872     _preorders[n->_idx] = (pre_order<<1);
 873   };
 874   // Return pre-order number.
 875   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 876 
 877   // Check for being post-visited.
 878   // Should be previsited already (checked with assert(is_visited(n))).
 879   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 880 
 881   // Mark as post visited
 882   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 883 
 884 public:
 885   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 886   // Returns true if "n" is a data node, false if it's a control node.
 887   bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; }
 888 
 889 private:
 890   // clear out dead code after build_loop_late
 891   Node_List _deadlist;
 892   Node_List _zero_trip_guard_opaque_nodes;
 893 
 894   // Support for faster execution of get_late_ctrl()/dom_lca()
 895   // when a node has many uses and dominator depth is deep.
 896   GrowableArray<jlong> _dom_lca_tags;
 897   uint _dom_lca_tags_round;
 898   void   init_dom_lca_tags();
 899 
 900   // Helper for debugging bad dominance relationships
 901   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 902 
 903   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 904 
 905   // Inline wrapper for frequent cases:
 906   // 1) only one use
 907   // 2) a use is the same as the current LCA passed as 'n1'
 908   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 909     assert( n->is_CFG(), "" );
 910     // Fast-path null lca
 911     if( lca != nullptr && lca != n ) {
 912       assert( lca->is_CFG(), "" );
 913       // find LCA of all uses
 914       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 915     }
 916     return find_non_split_ctrl(n);
 917   }
 918   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 919 
 920   // Helper function for directing control inputs away from CFG split points.
 921   Node *find_non_split_ctrl( Node *ctrl ) const {
 922     if (ctrl != nullptr) {
 923       if (ctrl->is_MultiBranch()) {
 924         ctrl = ctrl->in(0);
 925       }
 926       assert(ctrl->is_CFG(), "CFG");
 927     }
 928     return ctrl;
 929   }
 930 
 931   Node* cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 932 
 933 #ifdef ASSERT
 934   void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
 935 #endif
 936   void copy_assertion_predicates_to_main_loop_helper(const PredicateBlock* predicate_block, Node* init, Node* stride,
 937                                                      IdealLoopTree* outer_loop, LoopNode* outer_main_head,
 938                                                      uint dd_main_head, uint idx_before_pre_post,
 939                                                      uint idx_after_post_before_pre, Node* zero_trip_guard_proj_main,
 940                                                      Node* zero_trip_guard_proj_post, const Node_List &old_new);
 941   void copy_assertion_predicates_to_main_loop(CountedLoopNode* pre_head, Node* init, Node* stride, IdealLoopTree* outer_loop,
 942                                               LoopNode* outer_main_head, uint dd_main_head, uint idx_before_pre_post,
 943                                               uint idx_after_post_before_pre, Node* zero_trip_guard_proj_main,
 944                                               Node* zero_trip_guard_proj_post, const Node_List& old_new);
 945   Node* clone_assertion_predicate_and_initialize(Node* iff, Node* new_init, Node* new_stride, Node* predicate,
 946                                                  Node* uncommon_proj, Node* control, IdealLoopTree* outer_loop,
 947                                                  Node* input_proj);
 948   static void count_opaque_loop_nodes(Node* n, uint& init, uint& stride);
 949   static bool subgraph_has_opaque(Node* n);
 950   Node* create_bool_from_template_assertion_predicate(Node* template_assertion_predicate, Node* new_init, Node* new_stride,
 951                                                       Node* control);
 952   static bool assertion_predicate_has_loop_opaque_node(IfNode* iff);
 953   static void get_assertion_predicates(Node* predicate, Unique_Node_List& list, bool get_opaque = false);
 954   void update_main_loop_assertion_predicates(Node* ctrl, CountedLoopNode* loop_head, Node* init, int stride_con);
 955   void copy_assertion_predicates_to_post_loop(LoopNode* main_loop_head, CountedLoopNode* post_loop_head, Node* init,
 956                                               Node* stride);
 957   void initialize_assertion_predicates_for_peeled_loop(const PredicateBlock* predicate_block, LoopNode* outer_loop_head,
 958                                                        int dd_outer_loop_head, Node* init, Node* stride,
 959                                                        IdealLoopTree* outer_loop, uint idx_before_clone,
 960                                                        const Node_List& old_new);
 961   void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit,
 962                                          Node* bol);
 963 #ifdef ASSERT
 964   bool only_has_infinite_loops();
 965 #endif
 966 
 967   void log_loop_tree();
 968 
 969 public:
 970 
 971   PhaseIterGVN &igvn() const { return _igvn; }
 972 
 973   bool has_node(const Node* n) const {
 974     guarantee(n != nullptr, "No Node.");
 975     return _loop_or_ctrl[n->_idx] != nullptr;
 976   }
 977   // check if transform created new nodes that need _ctrl recorded
 978   Node *get_late_ctrl( Node *n, Node *early );
 979   Node *get_early_ctrl( Node *n );
 980   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 981   void set_early_ctrl(Node* n, bool update_body);
 982   void set_subtree_ctrl(Node* n, bool update_body);
 983   void set_ctrl( Node *n, Node *ctrl ) {
 984     assert( !has_node(n) || has_ctrl(n), "" );
 985     assert( ctrl->in(0), "cannot set dead control node" );
 986     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 987     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1));
 988   }
 989   // Set control and update loop membership
 990   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 991     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 992     IdealLoopTree* new_loop = get_loop(ctrl);
 993     if (old_loop != new_loop) {
 994       if (old_loop->_child == nullptr) old_loop->_body.yank(n);
 995       if (new_loop->_child == nullptr) new_loop->_body.push(n);
 996     }
 997     set_ctrl(n, ctrl);
 998   }
 999   // Control nodes can be replaced or subsumed.  During this pass they
1000   // get their replacement Node in slot 1.  Instead of updating the block
1001   // location of all Nodes in the subsumed block, we lazily do it.  As we
1002   // pull such a subsumed block out of the array, we write back the final
1003   // correct block.
1004   Node* get_ctrl(const Node* i) {
1005     assert(has_node(i), "");
1006     Node *n = get_ctrl_no_update(i);
1007     _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1));
1008     assert(has_node(i) && has_ctrl(i), "");
1009     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
1010     return n;
1011   }
1012   // true if CFG node d dominates CFG node n
1013   bool is_dominator(Node *d, Node *n);
1014   // return get_ctrl for a data node and self(n) for a CFG node
1015   Node* ctrl_or_self(Node* n) {
1016     if (has_ctrl(n))
1017       return get_ctrl(n);
1018     else {
1019       assert (n->is_CFG(), "must be a CFG node");
1020       return n;
1021     }
1022   }
1023 
1024   Node* get_ctrl_no_update_helper(const Node* i) const {
1025     assert(has_ctrl(i), "should be control, not loop");
1026     return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1);
1027   }
1028 
1029   Node* get_ctrl_no_update(const Node* i) const {
1030     assert( has_ctrl(i), "" );
1031     Node *n = get_ctrl_no_update_helper(i);
1032     if (!n->in(0)) {
1033       // Skip dead CFG nodes
1034       do {
1035         n = get_ctrl_no_update_helper(n);
1036       } while (!n->in(0));
1037       n = find_non_split_ctrl(n);
1038     }
1039     return n;
1040   }
1041 
1042   // Check for loop being set
1043   // "n" must be a control node. Returns true if "n" is known to be in a loop.
1044   bool has_loop( Node *n ) const {
1045     assert(!has_node(n) || !has_ctrl(n), "");
1046     return has_node(n);
1047   }
1048   // Set loop
1049   void set_loop( Node *n, IdealLoopTree *loop ) {
1050     _loop_or_ctrl.map(n->_idx, (Node*)loop);
1051   }
1052   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
1053   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
1054   // from old_node to new_node to support the lazy update.  Reference
1055   // replaces loop reference, since that is not needed for dead node.
1056   void lazy_update(Node *old_node, Node *new_node) {
1057     assert(old_node != new_node, "no cycles please");
1058     // Re-use the side array slot for this node to provide the
1059     // forwarding pointer.
1060     _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
1061   }
1062   void lazy_replace(Node *old_node, Node *new_node) {
1063     _igvn.replace_node(old_node, new_node);
1064     lazy_update(old_node, new_node);
1065   }
1066 
1067 private:
1068 
1069   // Place 'n' in some loop nest, where 'n' is a CFG node
1070   void build_loop_tree();
1071   int build_loop_tree_impl( Node *n, int pre_order );
1072   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
1073   // loop tree, not the root.
1074   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
1075 
1076 #ifdef ASSERT
1077   // verify that regions in irreducible loops are marked is_in_irreducible_loop
1078   void verify_regions_in_irreducible_loops();
1079   bool is_in_irreducible_loop(RegionNode* region);
1080 #endif
1081 
1082   // Place Data nodes in some loop nest
1083   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1084   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1085   void build_loop_late_post_work(Node* n, bool pinned);
1086   void build_loop_late_post(Node* n);
1087   void verify_strip_mined_scheduling(Node *n, Node* least);
1088 
1089   // Array of immediate dominance info for each CFG node indexed by node idx
1090 private:
1091   uint _idom_size;
1092   Node **_idom;                  // Array of immediate dominators
1093   uint *_dom_depth;              // Used for fast LCA test
1094   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
1095   LoopOptsMode _mode;
1096 
1097   // build the loop tree and perform any requested optimizations
1098   void build_and_optimize();
1099 
1100   // Dominators for the sea of nodes
1101   void Dominators();
1102 
1103   // Compute the Ideal Node to Loop mapping
1104   PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) :
1105     PhaseTransform(Ideal_Loop),
1106     _igvn(igvn),
1107     _verify_me(nullptr),
1108     _verify_only(false),
1109     _mode(mode),
1110     _nodes_required(UINT_MAX) {
1111     assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop");
1112     build_and_optimize();
1113   }
1114 
1115 #ifndef PRODUCT
1116   // Verify that verify_me made the same decisions as a fresh run
1117   // or only verify that the graph is valid if verify_me is null.
1118   PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) :
1119     PhaseTransform(Ideal_Loop),
1120     _igvn(igvn),
1121     _verify_me(verify_me),
1122     _verify_only(verify_me == nullptr),
1123     _mode(LoopOptsVerify),
1124     _nodes_required(UINT_MAX) {
1125     build_and_optimize();
1126   }
1127 #endif
1128 
1129 public:
1130   Node* idom_no_update(Node* d) const {
1131     return idom_no_update(d->_idx);
1132   }
1133 
1134   Node* idom_no_update(uint didx) const {
1135     assert(didx < _idom_size, "oob");
1136     Node* n = _idom[didx];
1137     assert(n != nullptr,"Bad immediate dominator info.");
1138     while (n->in(0) == nullptr) { // Skip dead CFG nodes
1139       n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1);
1140       assert(n != nullptr,"Bad immediate dominator info.");
1141     }
1142     return n;
1143   }
1144 
1145   Node *idom(Node* d) const {
1146     return idom(d->_idx);
1147   }
1148 
1149   Node *idom(uint didx) const {
1150     Node *n = idom_no_update(didx);
1151     _idom[didx] = n; // Lazily remove dead CFG nodes from table.
1152     return n;
1153   }
1154 
1155   uint dom_depth(Node* d) const {
1156     guarantee(d != nullptr, "Null dominator info.");
1157     guarantee(d->_idx < _idom_size, "");
1158     return _dom_depth[d->_idx];
1159   }
1160   void set_idom(Node* d, Node* n, uint dom_depth);
1161   // Locally compute IDOM using dom_lca call
1162   Node *compute_idom( Node *region ) const;
1163   // Recompute dom_depth
1164   void recompute_dom_depth();
1165 
1166   // Is safept not required by an outer loop?
1167   bool is_deleteable_safept(Node* sfpt);
1168 
1169   // Replace parallel induction variable (parallel to trip counter)
1170   void replace_parallel_iv(IdealLoopTree *loop);
1171 
1172   Node *dom_lca( Node *n1, Node *n2 ) const {
1173     return find_non_split_ctrl(dom_lca_internal(n1, n2));
1174   }
1175   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
1176 
1177   // Build and verify the loop tree without modifying the graph.  This
1178   // is useful to verify that all inputs properly dominate their uses.
1179   static void verify(PhaseIterGVN& igvn) {
1180 #ifdef ASSERT
1181     ResourceMark rm;
1182     Compile::TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
1183     PhaseIdealLoop v(igvn);
1184 #endif
1185   }
1186 
1187   // Recommended way to use PhaseIdealLoop.
1188   // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations.
1189   static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) {
1190     ResourceMark rm;
1191     PhaseIdealLoop v(igvn, mode);
1192 
1193     Compile* C = Compile::current();
1194     if (!C->failing()) {
1195       // Cleanup any modified bits
1196       igvn.optimize();
1197       if (C->failing()) { return; }
1198       v.log_loop_tree();
1199     }
1200   }
1201 
1202   // True if the method has at least 1 irreducible loop
1203   bool _has_irreducible_loops;
1204 
1205   // Per-Node transform
1206   virtual Node* transform(Node* n) { return nullptr; }
1207 
1208   Node* loop_exit_control(Node* x, IdealLoopTree* loop);
1209   Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob);
1210   Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr);
1211   Node* loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi);
1212   PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop);
1213 
1214   bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt);
1215 
1216   Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt);
1217   bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new);
1218 #ifdef ASSERT
1219   bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop);
1220 #endif
1221   void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt);
1222   SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop);
1223   IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift);
1224   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
1225                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
1226                                                Node*& entry_control, Node*& iffalse);
1227 
1228   Node* exact_limit( IdealLoopTree *loop );
1229 
1230   // Return a post-walked LoopNode
1231   IdealLoopTree *get_loop( Node *n ) const {
1232     // Dead nodes have no loop, so return the top level loop instead
1233     if (!has_node(n))  return _ltree_root;
1234     assert(!has_ctrl(n), "");
1235     return (IdealLoopTree*)_loop_or_ctrl[n->_idx];
1236   }
1237 
1238   IdealLoopTree* ltree_root() const { return _ltree_root; }
1239 
1240   // Is 'n' a (nested) member of 'loop'?
1241   int is_member( const IdealLoopTree *loop, Node *n ) const {
1242     return loop->is_member(get_loop(n)); }
1243 
1244   // This is the basic building block of the loop optimizations.  It clones an
1245   // entire loop body.  It makes an old_new loop body mapping; with this
1246   // mapping you can find the new-loop equivalent to an old-loop node.  All
1247   // new-loop nodes are exactly equal to their old-loop counterparts, all
1248   // edges are the same.  All exits from the old-loop now have a RegionNode
1249   // that merges the equivalent new-loop path.  This is true even for the
1250   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
1251   // now come from (one or more) Phis that merge their new-loop equivalents.
1252   // Parameter side_by_side_idom:
1253   //   When side_by_size_idom is null, the dominator tree is constructed for
1254   //      the clone loop to dominate the original.  Used in construction of
1255   //      pre-main-post loop sequence.
1256   //   When nonnull, the clone and original are side-by-side, both are
1257   //      dominated by the passed in side_by_side_idom node.  Used in
1258   //      construction of unswitched loops.
1259   enum CloneLoopMode {
1260     IgnoreStripMined = 0,        // Only clone inner strip mined loop
1261     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
1262     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
1263                                  // result control flow branches
1264                                  // either to inner clone or outer
1265                                  // strip mined loop.
1266   };
1267   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1268                   CloneLoopMode mode, Node* side_by_side_idom = nullptr);
1269   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1270                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1271                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1272                                    Node_List*& split_cex_set, Node_List& worklist,
1273                                    uint new_counter, CloneLoopMode mode);
1274   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1275                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1276                         Node_List& extra_data_nodes);
1277 
1278   // If we got the effect of peeling, either by actually peeling or by
1279   // making a pre-loop which must execute at least once, we can remove
1280   // all loop-invariant dominated tests in the main body.
1281   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1282 
1283   // Generate code to do a loop peel for the given loop (and body).
1284   // old_new is a temp array.
1285   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1286 
1287   // Add pre and post loops around the given loop.  These loops are used
1288   // during RCE, unrolling and aligning loops.
1289   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1290 
1291   // Add post loop after the given loop.
1292   Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new,
1293                          CountedLoopNode* main_head, CountedLoopEndNode* main_end,
1294                          Node*& incr, Node* limit, CountedLoopNode*& post_head);
1295 
1296   // Add a vector post loop between a vector main loop and the current post loop
1297   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1298   // If Node n lives in the back_ctrl block, we clone a private version of n
1299   // in preheader_ctrl block and return that, otherwise return n.
1300   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1301 
1302   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1303   // unroll to do double iterations.  The next round of major loop transforms
1304   // will repeat till the doubled loop body does all remaining iterations in 1
1305   // pass.
1306   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1307 
1308   // Unroll the loop body one step - make each trip do 2 iterations.
1309   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1310 
1311   // Return true if exp is a constant times an induction var
1312   bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0);
1313 
1314   bool is_iv(Node* exp, Node* iv, BasicType bt);
1315 
1316   // Return true if exp is a scaled induction var plus (or minus) constant
1317   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0);
1318   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) {
1319     jlong long_scale;
1320     if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) {
1321       int int_scale = checked_cast<int>(long_scale);
1322       if (p_scale != nullptr) {
1323         *p_scale = int_scale;
1324       }
1325       return true;
1326     }
1327     return false;
1328   }
1329   // Helper for finding more complex matches to is_scaled_iv_plus_offset.
1330   bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv,
1331                                       BasicType bt,
1332                                       jlong* p_scale, Node** p_offset,
1333                                       bool* p_short_scale, int depth);
1334 
1335   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1336   IfProjNode* create_new_if_for_predicate(ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1337                                           Deoptimization::DeoptReason reason, int opcode,
1338                                           bool rewire_uncommon_proj_phi_inputs = false);
1339 
1340  private:
1341   // Helper functions for create_new_if_for_predicate()
1342   void set_ctrl_of_nodes_with_same_ctrl(Node* node, ProjNode* old_ctrl, Node* new_ctrl);
1343   Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl);
1344   Node* clone_nodes_with_same_ctrl(Node* node, ProjNode* old_ctrl, Node* new_ctrl);
1345   Dict clone_nodes(const Node_List& list_to_clone);
1346   void rewire_cloned_nodes_to_ctrl(const ProjNode* old_ctrl, Node* new_ctrl, const Node_List& nodes_with_same_ctrl,
1347                                    const Dict& old_new_mapping);
1348   void rewire_inputs_of_clones_to_clones(Node* new_ctrl, Node* clone, const Dict& old_new_mapping, const Node* next);
1349 
1350  public:
1351   void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true);
1352 
1353   // Construct a range check for a predicate if
1354   BoolNode* rc_predicate(IdealLoopTree* loop, Node* ctrl, int scale, Node* offset, Node* init, Node* limit,
1355                          jint stride, Node* range, bool upper, bool& overflow);
1356 
1357   // Implementation of the loop predication to promote checks outside the loop
1358   bool loop_predication_impl(IdealLoopTree *loop);
1359 
1360  private:
1361   bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj,
1362                                     ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero,
1363                                     Invariance& invar, Deoptimization::DeoptReason reason);
1364   bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const;
1365   bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt);
1366   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1367                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1368                                         Node_List& if_proj_list);
1369   IfProjNode* add_template_assertion_predicate(IfNode* iff, IdealLoopTree* loop, IfProjNode* if_proj,
1370                                                ParsePredicateSuccessProj* parse_predicate_proj,
1371                                                IfProjNode* upper_bound_proj, int scale, Node* offset, Node* init, Node* limit,
1372                                                jint stride, Node* rng, bool& overflow, Deoptimization::DeoptReason reason);
1373   Node* add_range_check_elimination_assertion_predicate(IdealLoopTree* loop, Node* predicate_proj, int scale_con,
1374                                                         Node* offset, Node* limit, jint stride_con, Node* value);
1375 
1376   // Helper function to collect predicate for eliminating the useless ones
1377   void eliminate_useless_predicates();
1378 
1379   void eliminate_useless_parse_predicates();
1380   void mark_all_parse_predicates_useless() const;
1381   void mark_loop_associated_parse_predicates_useful();
1382   static void mark_useful_parse_predicates_for_loop(IdealLoopTree* loop);
1383   void add_useless_parse_predicates_to_igvn_worklist();
1384 
1385   void eliminate_useless_template_assertion_predicates();
1386   void collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates);
1387   static void collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop, Unique_Node_List& useful_predicates);
1388   void eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates);
1389 
1390   void eliminate_useless_zero_trip_guard();
1391 
1392   bool has_control_dependencies_from_predicates(LoopNode* head) const;
1393   void verify_fast_loop(LoopNode* head, const ProjNode* proj_true) const NOT_DEBUG_RETURN;
1394  public:
1395   // Change the control input of expensive nodes to allow commoning by
1396   // IGVN when it is guaranteed to not result in a more frequent
1397   // execution of the expensive node. Return true if progress.
1398   bool process_expensive_nodes();
1399 
1400   // Check whether node has become unreachable
1401   bool is_node_unreachable(Node *n) const {
1402     return !has_node(n) || n->is_unreachable(_igvn);
1403   }
1404 
1405   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1406   void do_range_check(IdealLoopTree *loop, Node_List &old_new);
1407 
1408   // Create a slow version of the loop by cloning the loop
1409   // and inserting an if to select fast-slow versions.
1410   // Return the inserted if.
1411   IfNode* create_slow_version_of_loop(IdealLoopTree *loop,
1412                                         Node_List &old_new,
1413                                         IfNode* unswitch_iff,
1414                                         CloneLoopMode mode);
1415 
1416   // Clone loop with an invariant test (that does not exit) and
1417   // insert a clone of the test that selects which version to
1418   // execute.
1419   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1420 
1421   // Find candidate "if" for unswitching
1422   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1423 
1424   // Range Check Elimination uses this function!
1425   // Constrain the main loop iterations so the affine function:
1426   //    low_limit <= scale_con * I + offset  <  upper_limit
1427   // always holds true.  That is, either increase the number of iterations in
1428   // the pre-loop or the post-loop until the condition holds true in the main
1429   // loop.  Scale_con, offset and limit are all loop invariant.
1430   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
1431   // Helper function for add_constraint().
1432   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
1433 
1434   // Partially peel loop up through last_peel node.
1435   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1436   bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new);
1437 
1438   // Move UnorderedReduction out of loop if possible
1439   void move_unordered_reduction_out_of_loop(IdealLoopTree* loop);
1440 
1441   // Create a scheduled list of nodes control dependent on ctrl set.
1442   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1443   // Has a use in the vector set
1444   bool has_use_in_set( Node* n, VectorSet& vset );
1445   // Has use internal to the vector set (ie. not in a phi at the loop head)
1446   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1447   // clone "n" for uses that are outside of loop
1448   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1449   // clone "n" for special uses that are in the not_peeled region
1450   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1451                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1452   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1453   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1454 #ifdef ASSERT
1455   // Validate the loop partition sets: peel and not_peel
1456   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1457   // Ensure that uses outside of loop are of the right form
1458   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1459                                  uint orig_exit_idx, uint clone_exit_idx);
1460   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1461 #endif
1462 
1463   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1464   int stride_of_possible_iv( Node* iff );
1465   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1466   // Return the (unique) control output node that's in the loop (if it exists.)
1467   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1468   // Insert a signed compare loop exit cloned from an unsigned compare.
1469   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1470   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1471   // Utility to register node "n" with PhaseIdealLoop
1472   void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth);
1473   // Utility to create an if-projection
1474   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1475   // Force the iff control output to be the live_proj
1476   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1477   // Insert a region before an if projection
1478   RegionNode* insert_region_before_proj(ProjNode* proj);
1479   // Insert a new if before an if projection
1480   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1481 
1482   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1483   // "Nearly" because all Nodes have been cloned from the original in the loop,
1484   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1485   // through the Phi recursively, and return a Bool.
1486   Node* clone_iff(PhiNode* phi);
1487   CmpNode* clone_bool(PhiNode* phi);
1488 
1489 
1490   // Rework addressing expressions to get the most loop-invariant stuff
1491   // moved out.  We'd like to do all associative operators, but it's especially
1492   // important (common) to do address expressions.
1493   Node* remix_address_expressions(Node* n);
1494   Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt);
1495 
1496   // Convert add to muladd to generate MuladdS2I under certain criteria
1497   Node * convert_add_to_muladd(Node * n);
1498 
1499   // Attempt to use a conditional move instead of a phi/branch
1500   Node *conditional_move( Node *n );
1501 
1502   // Check for aggressive application of 'split-if' optimization,
1503   // using basic block level info.
1504   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack);
1505   Node *split_if_with_blocks_pre ( Node *n );
1506   void  split_if_with_blocks_post( Node *n );
1507   Node *has_local_phi_input( Node *n );
1508   // Mark an IfNode as being dominated by a prior test,
1509   // without actually altering the CFG (and hence IDOM info).
1510   void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool exclude_loop_predicate = false);
1511 
1512   // Split Node 'n' through merge point
1513   RegionNode* split_thru_region(Node* n, RegionNode* region);
1514   // Split Node 'n' through merge point if there is enough win.
1515   Node *split_thru_phi( Node *n, Node *region, int policy );
1516   // Found an If getting its condition-code input from a Phi in the
1517   // same block.  Split thru the Region.
1518   void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr);
1519 
1520   // Conversion of fill/copy patterns into intrinsic versions
1521   bool do_intrinsify_fill();
1522   bool intrinsify_fill(IdealLoopTree* lpt);
1523   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1524                        Node*& shift, Node*& offset);
1525 
1526 private:
1527   // Return a type based on condition control flow
1528   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1529   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); }
1530  // Helpers for filtered type
1531   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1532 
1533   // Helper functions
1534   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1535   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1536   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1537   bool split_up( Node *n, Node *blk1, Node *blk2 );
1538 
1539   Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const;
1540   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1541   void try_move_store_after_loop(Node* n);
1542   bool identical_backtoback_ifs(Node *n);
1543   bool can_split_if(Node *n_ctrl);
1544   bool cannot_split_division(const Node* n, const Node* region) const;
1545   static bool is_divisor_counted_loop_phi(const Node* divisor, const Node* loop);
1546   bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const;
1547 
1548   // Determine if a method is too big for a/another round of split-if, based on
1549   // a magic (approximate) ratio derived from the equally magic constant 35000,
1550   // previously used for this purpose (but without relating to the node limit).
1551   bool must_throttle_split_if() {
1552     uint threshold = C->max_node_limit() * 2 / 5;
1553     return C->live_nodes() > threshold;
1554   }
1555 
1556   // A simplistic node request tracking mechanism, where
1557   //   = UINT_MAX   Request not valid or made final.
1558   //   < UINT_MAX   Nodes currently requested (estimate).
1559   uint _nodes_required;
1560 
1561   enum { REQUIRE_MIN = 70 };
1562 
1563   uint nodes_required() const { return _nodes_required; }
1564 
1565   // Given the _currently_  available number of nodes, check  whether there is
1566   // "room" for an additional request or not, considering the already required
1567   // number of  nodes.  Return TRUE if  the new request is  exceeding the node
1568   // budget limit, otherwise return FALSE.  Note that this interpretation will
1569   // act pessimistic on  additional requests when new nodes  have already been
1570   // generated since the 'begin'.  This behaviour fits with the intention that
1571   // node estimates/requests should be made upfront.
1572   bool exceeding_node_budget(uint required = 0) {
1573     assert(C->live_nodes() < C->max_node_limit(), "sanity");
1574     uint available = C->max_node_limit() - C->live_nodes();
1575     return available < required + _nodes_required + REQUIRE_MIN;
1576   }
1577 
1578   uint require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1579     precond(require > 0);
1580     _nodes_required += MAX2(require, minreq);
1581     return _nodes_required;
1582   }
1583 
1584   bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1585     return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0;
1586   }
1587 
1588   uint require_nodes_begin() {
1589     assert(_nodes_required == UINT_MAX, "Bad state (begin).");
1590     _nodes_required = 0;
1591     return C->live_nodes();
1592   }
1593 
1594   // When a node request is final,  optionally check that the requested number
1595   // of nodes was  reasonably correct with respect to the  number of new nodes
1596   // introduced since the last 'begin'. Always check that we have not exceeded
1597   // the maximum node limit.
1598   void require_nodes_final(uint live_at_begin, bool check_estimate) {
1599     assert(_nodes_required < UINT_MAX, "Bad state (final).");
1600 
1601 #ifdef ASSERT
1602     if (check_estimate) {
1603       // Check that the node budget request was not off by too much (x2).
1604       // Should this be the case we _surely_ need to improve the estimates
1605       // used in our budget calculations.
1606       if (C->live_nodes() - live_at_begin > 2 * _nodes_required) {
1607         log_info(compilation)("Bad node estimate: actual = %d >> request = %d",
1608                               C->live_nodes() - live_at_begin, _nodes_required);
1609       }
1610     }
1611 #endif
1612     // Assert that we have stayed within the node budget limit.
1613     assert(C->live_nodes() < C->max_node_limit(),
1614            "Exceeding node budget limit: %d + %d > %d (request = %d)",
1615            C->live_nodes() - live_at_begin, live_at_begin,
1616            C->max_node_limit(), _nodes_required);
1617 
1618     _nodes_required = UINT_MAX;
1619   }
1620 
1621   // Clone Parse Predicates to slow and fast loop when unswitching a loop
1622   void clone_parse_and_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, Node_List& old_new,
1623                                                                IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred);
1624   void clone_loop_predication_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new,
1625                                                             const PredicateBlock* predicate_block,
1626                                                             Deoptimization::DeoptReason reason, IfProjNode*& iffast_pred,
1627                                                             IfProjNode*& ifslow_pred);
1628   void clone_parse_predicate_to_unswitched_loops(const PredicateBlock* predicate_block, Deoptimization::DeoptReason reason,
1629                                                  IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred);
1630   IfProjNode* clone_parse_predicate_to_unswitched_loop(ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1631                                                        Deoptimization::DeoptReason reason, bool slow_loop);
1632   void clone_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new,
1633                                                      Deoptimization::DeoptReason reason, IfProjNode* old_predicate_proj,
1634                                                      ParsePredicateSuccessProj* fast_loop_parse_predicate_proj,
1635                                                      ParsePredicateSuccessProj* slow_loop_parse_predicate_proj);
1636   IfProjNode* clone_assertion_predicate_for_unswitched_loops(Node* iff, IfProjNode* predicate,
1637                                                              Deoptimization::DeoptReason reason,
1638                                                              ParsePredicateSuccessProj* parse_predicate_proj);
1639   static void check_cloned_parse_predicate_for_unswitching(const Node* new_entry, bool is_fast_loop) PRODUCT_RETURN;
1640 
1641   bool _created_loop_node;
1642   DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);)
1643   NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;)
1644 
1645 public:
1646   void set_created_loop_node() { _created_loop_node = true; }
1647   bool created_loop_node()     { return _created_loop_node; }
1648   void register_new_node(Node* n, Node* blk);
1649 
1650 #ifdef ASSERT
1651   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1652 #endif
1653 
1654 #ifndef PRODUCT
1655   void dump() const;
1656   void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging
1657   void dump_idom(Node* n, uint count) const;
1658   void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const;
1659   void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const;
1660   IdealLoopTree* get_loop_idx(Node* n) const {
1661     // Dead nodes have no loop, so return the top level loop instead
1662     return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root;
1663   }
1664   // Print some stats
1665   static void print_statistics();
1666   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1667   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1668   static volatile int _long_loop_candidates;
1669   static volatile int _long_loop_nests;
1670   static volatile int _long_loop_counted_loops;
1671 #endif
1672 
1673 #ifdef ASSERT
1674   void verify() const;
1675   bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const;
1676   bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const;
1677   bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const;
1678 #endif
1679 
1680   void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const;
1681 
1682   void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN;
1683 
1684   LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test);
1685 
1686 
1687   int extract_long_range_checks(const IdealLoopTree* loop, jlong stride_con, int iters_limit, PhiNode* phi,
1688                                       Node_List &range_checks);
1689 
1690   void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1691                                    Node* inner_iters_actual_int, Node* inner_phi,
1692                                    Node* iv_add, LoopNode* inner_head);
1693 
1694   Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA);
1695 
1696   bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl);
1697 
1698   bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop);
1699 
1700   Node* compute_early_ctrl(Node* n, Node* n_ctrl);
1701 
1702   void try_sink_out_of_loop(Node* n);
1703 
1704   Node* clamp(Node* R, Node* L, Node* H);
1705 
1706   bool safe_for_if_replacement(const Node* dom) const;
1707 
1708   void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region);
1709 
1710   bool try_merge_identical_ifs(Node* n);
1711 
1712   void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm);
1713 
1714   void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
1715                       IdealLoopTree* parent, bool partial);
1716 
1717   void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
1718                 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist);
1719 
1720   void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
1721                      uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set,
1722                      Node_List*& split_bool_set, Node_List*& split_cex_set);
1723 
1724   void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set);
1725 
1726   bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2);
1727 
1728   void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i);
1729 
1730   bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2);
1731 
1732   bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2);
1733 
1734 
1735   Node* similar_subtype_check(const Node* x, Node* r_in);
1736 
1737   void update_addp_chain_base(Node* x, Node* old_base, Node* new_base);
1738 
1739   bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x);
1740 };
1741 
1742 
1743 class AutoNodeBudget : public StackObj
1744 {
1745 public:
1746   enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK };
1747 
1748   AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK)
1749     : _phase(phase),
1750       _check_at_final(chk == BUDGET_CHECK),
1751       _nodes_at_begin(0)
1752   {
1753     precond(_phase != nullptr);
1754 
1755     _nodes_at_begin = _phase->require_nodes_begin();
1756   }
1757 
1758   ~AutoNodeBudget() {
1759 #ifndef PRODUCT
1760     if (TraceLoopOpts) {
1761       uint request = _phase->nodes_required();
1762       uint delta   = _phase->C->live_nodes() - _nodes_at_begin;
1763 
1764       if (request < delta) {
1765         tty->print_cr("Exceeding node budget: %d < %d", request, delta);
1766       } else {
1767         uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN;
1768         // Identify the worst estimates as "poor" ones.
1769         if (request > REQUIRE_MIN && delta > 0) {
1770           if ((delta >  REQUIRE_MIN && request >  3 * delta) ||
1771               (delta <= REQUIRE_MIN && request > 10 * delta)) {
1772             tty->print_cr("Poor node estimate: %d >> %d", request, delta);
1773           }
1774         }
1775       }
1776     }
1777 #endif // PRODUCT
1778     _phase->require_nodes_final(_nodes_at_begin, _check_at_final);
1779   }
1780 
1781 private:
1782   PhaseIdealLoop* _phase;
1783   bool _check_at_final;
1784   uint _nodes_at_begin;
1785 };
1786 
1787 inline Node* IdealLoopTree::tail() {
1788   // Handle lazy update of _tail field.
1789   if (_tail->in(0) == nullptr) {
1790     _tail = _phase->get_ctrl(_tail);
1791   }
1792   return _tail;
1793 }
1794 
1795 inline Node* IdealLoopTree::head() {
1796   // Handle lazy update of _head field.
1797   if (_head->in(0) == nullptr) {
1798     _head = _phase->get_ctrl(_head);
1799   }
1800   return _head;
1801 }
1802 
1803 // Iterate over the loop tree using a preorder, left-to-right traversal.
1804 //
1805 // Example that visits all counted loops from within PhaseIdealLoop
1806 //
1807 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1808 //   IdealLoopTree* lpt = iter.current();
1809 //   if (!lpt->is_counted()) continue;
1810 //   ...
1811 class LoopTreeIterator : public StackObj {
1812 private:
1813   IdealLoopTree* _root;
1814   IdealLoopTree* _curnt;
1815 
1816 public:
1817   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1818 
1819   bool done() { return _curnt == nullptr; }       // Finished iterating?
1820 
1821   void next();                                 // Advance to next loop tree
1822 
1823   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1824 };
1825 
1826 // Compute probability of reaching some CFG node from a fixed
1827 // dominating CFG node
1828 class PathFrequency {
1829 private:
1830   Node* _dom; // frequencies are computed relative to this node
1831   Node_Stack _stack;
1832   GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions
1833   GrowableArray<float> _freqs; // cache frequencies
1834   PhaseIdealLoop* _phase;
1835 
1836   float check_and_truncate_frequency(float f) {
1837     assert(f >= 0, "Incorrect frequency");
1838     // We do not perform an exact (f <= 1) check
1839     // this would be error prone with rounding of floats.
1840     // Performing a check like (f <= 1+eps) would be of benefit,
1841     // however, it is not evident how to determine such an eps,
1842     // given that an arbitrary number of add/mul operations
1843     // are performed on these frequencies.
1844     return (f > 1) ? 1 : f;
1845   }
1846 
1847 public:
1848   PathFrequency(Node* dom, PhaseIdealLoop* phase)
1849     : _dom(dom), _stack(0), _phase(phase) {
1850   }
1851 
1852   float to(Node* n);
1853 };
1854 
1855 #endif // SHARE_OPTO_LOOPNODE_HPP