1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_LOOPNODE_HPP
  26 #define SHARE_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/predicates.hpp"
  32 #include "opto/subnode.hpp"
  33 #include "opto/type.hpp"
  34 #include "utilities/checkedCast.hpp"
  35 
  36 class CmpNode;
  37 class BaseCountedLoopEndNode;
  38 class CountedLoopNode;
  39 class IdealLoopTree;
  40 class LoopNode;
  41 class Node;
  42 class OuterStripMinedLoopEndNode;
  43 class PredicateBlock;
  44 class PathFrequency;
  45 class PhaseIdealLoop;
  46 class UnswitchedLoopSelector;
  47 class VectorSet;
  48 class VSharedData;
  49 class Invariance;
  50 struct small_cache;
  51 
  52 //
  53 //                  I D E A L I Z E D   L O O P S
  54 //
  55 // Idealized loops are the set of loops I perform more interesting
  56 // transformations on, beyond simple hoisting.
  57 
  58 //------------------------------LoopNode---------------------------------------
  59 // Simple loop header.  Fall in path on left, loop-back path on right.
  60 class LoopNode : public RegionNode {
  61   // Size is bigger to hold the flags.  However, the flags do not change
  62   // the semantics so it does not appear in the hash & cmp functions.
  63   virtual uint size_of() const { return sizeof(*this); }
  64 protected:
  65   uint _loop_flags;
  66   // Names for flag bitfields
  67   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  68          MainHasNoPreLoop      = 1<<2,
  69          HasExactTripCount     = 1<<3,
  70          InnerLoop             = 1<<4,
  71          PartialPeelLoop       = 1<<5,
  72          PartialPeelFailed     = 1<<6,
  73          WasSlpAnalyzed        = 1<<7,
  74          PassedSlpAnalysis     = 1<<8,
  75          DoUnrollOnly          = 1<<9,
  76          VectorizedLoop        = 1<<10,
  77          HasAtomicPostLoop     = 1<<11,
  78          StripMined            = 1<<12,
  79          SubwordLoop           = 1<<13,
  80          ProfileTripFailed     = 1<<14,
  81          LoopNestInnerLoop     = 1<<15,
  82          LoopNestLongOuterLoop = 1<<16 };
  83   char _unswitch_count;
  84   enum { _unswitch_max=3 };
  85 
  86   // Expected trip count from profile data
  87   float _profile_trip_cnt;
  88 
  89 public:
  90   // Names for edge indices
  91   enum { Self=0, EntryControl, LoopBackControl };
  92 
  93   bool is_inner_loop() const { return _loop_flags & InnerLoop; }
  94   void set_inner_loop() { _loop_flags |= InnerLoop; }
  95 
  96   bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
  97   bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  98   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  99   bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
 100   bool is_strip_mined() const { return _loop_flags & StripMined; }
 101   bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
 102   bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
 103   bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; }
 104   bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; }
 105 
 106   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
 107   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 108   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 109   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 110   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 111   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 112   void mark_strip_mined() { _loop_flags |= StripMined; }
 113   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 114   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
 115   void mark_subword_loop() { _loop_flags |= SubwordLoop; }
 116   void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; }
 117   void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; }
 118 
 119   int unswitch_max() { return _unswitch_max; }
 120   int unswitch_count() { return _unswitch_count; }
 121 
 122   void set_unswitch_count(int val) {
 123     assert (val <= unswitch_max(), "too many unswitches");
 124     _unswitch_count = val;
 125   }
 126 
 127   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 128   float profile_trip_cnt()             { return _profile_trip_cnt; }
 129 
 130   LoopNode(Node *entry, Node *backedge)
 131     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
 132       _profile_trip_cnt(COUNT_UNKNOWN) {
 133     init_class_id(Class_Loop);
 134     init_req(EntryControl, entry);
 135     init_req(LoopBackControl, backedge);
 136   }
 137 
 138   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 139   virtual int Opcode() const;
 140   bool can_be_counted_loop(PhaseValues* phase) const {
 141     return req() == 3 && in(0) != nullptr &&
 142       in(1) != nullptr && phase->type(in(1)) != Type::TOP &&
 143       in(2) != nullptr && phase->type(in(2)) != Type::TOP;
 144   }
 145   bool is_valid_counted_loop(BasicType bt) const;
 146 #ifndef PRODUCT
 147   virtual void dump_spec(outputStream *st) const;
 148 #endif
 149 
 150   void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
 151   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 152   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; }
 153   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; }
 154   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; }
 155   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; }
 156 };
 157 
 158 //------------------------------Counted Loops----------------------------------
 159 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 160 // path (and maybe some other exit paths).  The trip-counter exit is always
 161 // last in the loop.  The trip-counter have to stride by a constant;
 162 // the exit value is also loop invariant.
 163 
 164 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 165 // CountedLoopNode has the incoming loop control and the loop-back-control
 166 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 167 // CountedLoopEndNode has an incoming control (possibly not the
 168 // CountedLoopNode if there is control flow in the loop), the post-increment
 169 // trip-counter value, and the limit.  The trip-counter value is always of
 170 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 171 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 172 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 173 // CountedLoopEndNode also takes in the loop-invariant limit value.
 174 
 175 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 176 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 177 // via the old-trip-counter from the Op node.
 178 
 179 //------------------------------CountedLoopNode--------------------------------
 180 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 181 // inputs the incoming loop-start control and the loop-back control, so they
 182 // act like RegionNodes.  They also take in the initial trip counter, the
 183 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 184 // produce a loop-body control and the trip counter value.  Since
 185 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 186 
 187 class BaseCountedLoopNode : public LoopNode {
 188 public:
 189   BaseCountedLoopNode(Node *entry, Node *backedge)
 190     : LoopNode(entry, backedge) {
 191   }
 192 
 193   Node *init_control() const { return in(EntryControl); }
 194   Node *back_control() const { return in(LoopBackControl); }
 195 
 196   Node* init_trip() const;
 197   Node* stride() const;
 198   bool stride_is_con() const;
 199   Node* limit() const;
 200   Node* incr() const;
 201   Node* phi() const;
 202 
 203   BaseCountedLoopEndNode* loopexit_or_null() const;
 204   BaseCountedLoopEndNode* loopexit() const;
 205 
 206   virtual BasicType bt() const = 0;
 207 
 208   jlong stride_con() const;
 209 
 210   static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt);
 211 };
 212 
 213 
 214 class CountedLoopNode : public BaseCountedLoopNode {
 215   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 216   // the semantics so it does not appear in the hash & cmp functions.
 217   virtual uint size_of() const { return sizeof(*this); }
 218 
 219   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 220   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 221   node_idx_t _main_idx;
 222 
 223   // Known trip count calculated by compute_exact_trip_count()
 224   uint  _trip_count;
 225 
 226   // Log2 of original loop bodies in unrolled loop
 227   int _unrolled_count_log2;
 228 
 229   // Node count prior to last unrolling - used to decide if
 230   // unroll,optimize,unroll,optimize,... is making progress
 231   int _node_count_before_unroll;
 232 
 233   // If slp analysis is performed we record the maximum
 234   // vector mapped unroll factor here
 235   int _slp_maximum_unroll_factor;
 236 
 237 public:
 238   CountedLoopNode(Node *entry, Node *backedge)
 239     : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 240       _unrolled_count_log2(0), _node_count_before_unroll(0),
 241       _slp_maximum_unroll_factor(0) {
 242     init_class_id(Class_CountedLoop);
 243     // Initialize _trip_count to the largest possible value.
 244     // Will be reset (lower) if the loop's trip count is known.
 245   }
 246 
 247   virtual int Opcode() const;
 248   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 249 
 250   CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 251   CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 252   int   stride_con() const;
 253 
 254   // Match increment with optional truncation
 255   static Node*
 256   match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type,
 257                                       BasicType bt);
 258 
 259   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 260   // can run short a few iterations and may start a few iterations in.
 261   // It will be RCE'd and unrolled and aligned.
 262 
 263   // A following 'post' loop will run any remaining iterations.  Used
 264   // during Range Check Elimination, the 'post' loop will do any final
 265   // iterations with full checks.  Also used by Loop Unrolling, where
 266   // the 'post' loop will do any epilog iterations needed.  Basically,
 267   // a 'post' loop can not profitably be further unrolled or RCE'd.
 268 
 269   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 270   // it may do under-flow checks for RCE and may do alignment iterations
 271   // so the following main loop 'knows' that it is striding down cache
 272   // lines.
 273 
 274   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 275   // Aligned, may be missing it's pre-loop.
 276   bool is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 277   bool is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 278   bool is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 279   bool is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 280   bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 281   bool has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 282   bool is_unroll_only   () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 283   bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 284   bool has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 285   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 286 
 287   int main_idx() const { return _main_idx; }
 288 
 289 
 290   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 291   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 292   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 293   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 294 
 295   void set_trip_count(uint tc) { _trip_count = tc; }
 296   uint trip_count()            { return _trip_count; }
 297 
 298   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 299   void set_exact_trip_count(uint tc) {
 300     _trip_count = tc;
 301     _loop_flags |= HasExactTripCount;
 302   }
 303   void set_nonexact_trip_count() {
 304     _loop_flags &= ~HasExactTripCount;
 305   }
 306   void set_notpassed_slp() {
 307     _loop_flags &= ~PassedSlpAnalysis;
 308   }
 309 
 310   void double_unrolled_count() { _unrolled_count_log2++; }
 311   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 312 
 313   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 314   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 315   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 316   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 317 
 318   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
 319   OuterStripMinedLoopNode* outer_loop() const;
 320   virtual IfTrueNode* outer_loop_tail() const;
 321   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 322   virtual IfFalseNode* outer_loop_exit() const;
 323   virtual SafePointNode* outer_safepoint() const;
 324 
 325   Node* skip_assertion_predicates_with_halt();
 326 
 327   virtual BasicType bt() const {
 328     return T_INT;
 329   }
 330 
 331   Node* is_canonical_loop_entry();
 332   CountedLoopEndNode* find_pre_loop_end();
 333 
 334 #ifndef PRODUCT
 335   virtual void dump_spec(outputStream *st) const;
 336 #endif
 337 };
 338 
 339 class LongCountedLoopNode : public BaseCountedLoopNode {
 340 public:
 341   LongCountedLoopNode(Node *entry, Node *backedge)
 342     : BaseCountedLoopNode(entry, backedge) {
 343     init_class_id(Class_LongCountedLoop);
 344   }
 345 
 346   virtual int Opcode() const;
 347 
 348   virtual BasicType bt() const {
 349     return T_LONG;
 350   }
 351 
 352   LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 353   LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 354 };
 355 
 356 
 357 //------------------------------CountedLoopEndNode-----------------------------
 358 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 359 // IfNodes.
 360 
 361 class BaseCountedLoopEndNode : public IfNode {
 362 public:
 363   enum { TestControl, TestValue };
 364   BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 365     : IfNode(control, test, prob, cnt) {
 366     init_class_id(Class_BaseCountedLoopEnd);
 367   }
 368 
 369   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; }
 370   Node* incr() const                { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 371   Node* limit() const               { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 372   Node* stride() const              { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 373   Node* init_trip() const           { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 374   bool stride_is_con() const        { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); }
 375 
 376   PhiNode* phi() const {
 377     Node* tmp = incr();
 378     if (tmp && tmp->req() == 3) {
 379       Node* phi = tmp->in(1);
 380       if (phi->is_Phi()) {
 381         return phi->as_Phi();
 382       }
 383     }
 384     return nullptr;
 385   }
 386 
 387   BaseCountedLoopNode* loopnode() const {
 388     // The CountedLoopNode that goes with this CountedLoopEndNode may
 389     // have been optimized out by the IGVN so be cautious with the
 390     // pattern matching on the graph
 391     PhiNode* iv_phi = phi();
 392     if (iv_phi == nullptr) {
 393       return nullptr;
 394     }
 395     Node* ln = iv_phi->in(0);
 396     if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) {
 397       return nullptr;
 398     }
 399     if (ln->as_BaseCountedLoop()->bt() != bt()) {
 400       return nullptr;
 401     }
 402     return ln->as_BaseCountedLoop();
 403   }
 404 
 405   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 406 
 407   jlong stride_con() const;
 408   virtual BasicType bt() const = 0;
 409 
 410   static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt);
 411 };
 412 
 413 class CountedLoopEndNode : public BaseCountedLoopEndNode {
 414 public:
 415 
 416   CountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 417     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 418     init_class_id(Class_CountedLoopEnd);
 419   }
 420   virtual int Opcode() const;
 421 
 422   CountedLoopNode* loopnode() const {
 423     return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 424   }
 425 
 426   virtual BasicType bt() const {
 427     return T_INT;
 428   }
 429 
 430 #ifndef PRODUCT
 431   virtual void dump_spec(outputStream *st) const;
 432 #endif
 433 };
 434 
 435 class LongCountedLoopEndNode : public BaseCountedLoopEndNode {
 436 public:
 437   LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 438     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 439     init_class_id(Class_LongCountedLoopEnd);
 440   }
 441 
 442   LongCountedLoopNode* loopnode() const {
 443     return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 444   }
 445 
 446   virtual int Opcode() const;
 447 
 448   virtual BasicType bt() const {
 449     return T_LONG;
 450   }
 451 };
 452 
 453 
 454 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const {
 455   Node* bctrl = back_control();
 456   if (bctrl == nullptr) return nullptr;
 457 
 458   Node* lexit = bctrl->in(0);
 459   if (!lexit->is_BaseCountedLoopEnd()) {
 460     return nullptr;
 461   }
 462   BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd();
 463   if (result->bt() != bt()) {
 464     return nullptr;
 465   }
 466   return result;
 467 }
 468 
 469 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const {
 470   BaseCountedLoopEndNode* cle = loopexit_or_null();
 471   assert(cle != nullptr, "loopexit is null");
 472   return cle;
 473 }
 474 
 475 inline Node* BaseCountedLoopNode::init_trip() const {
 476   BaseCountedLoopEndNode* cle = loopexit_or_null();
 477   return cle != nullptr ? cle->init_trip() : nullptr;
 478 }
 479 inline Node* BaseCountedLoopNode::stride() const {
 480   BaseCountedLoopEndNode* cle = loopexit_or_null();
 481   return cle != nullptr ? cle->stride() : nullptr;
 482 }
 483 
 484 inline bool BaseCountedLoopNode::stride_is_con() const {
 485   BaseCountedLoopEndNode* cle = loopexit_or_null();
 486   return cle != nullptr && cle->stride_is_con();
 487 }
 488 inline Node* BaseCountedLoopNode::limit() const {
 489   BaseCountedLoopEndNode* cle = loopexit_or_null();
 490   return cle != nullptr ? cle->limit() : nullptr;
 491 }
 492 inline Node* BaseCountedLoopNode::incr() const {
 493   BaseCountedLoopEndNode* cle = loopexit_or_null();
 494   return cle != nullptr ? cle->incr() : nullptr;
 495 }
 496 inline Node* BaseCountedLoopNode::phi() const {
 497   BaseCountedLoopEndNode* cle = loopexit_or_null();
 498   return cle != nullptr ? cle->phi() : nullptr;
 499 }
 500 
 501 inline jlong BaseCountedLoopNode::stride_con() const {
 502   BaseCountedLoopEndNode* cle = loopexit_or_null();
 503   return cle != nullptr ? cle->stride_con() : 0;
 504 }
 505 
 506 
 507 //------------------------------LoopLimitNode-----------------------------
 508 // Counted Loop limit node which represents exact final iterator value:
 509 // trip_count = (limit - init_trip + stride - 1)/stride
 510 // final_value= trip_count * stride + init_trip.
 511 // Use HW instructions to calculate it when it can overflow in integer.
 512 // Note, final_value should fit into integer since counted loop has
 513 // limit check: limit <= max_int-stride.
 514 class LoopLimitNode : public Node {
 515   enum { Init=1, Limit=2, Stride=3 };
 516  public:
 517   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(nullptr,init,limit,stride) {
 518     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 519     init_flags(Flag_is_macro);
 520     C->add_macro_node(this);
 521   }
 522   virtual int Opcode() const;
 523   virtual const Type *bottom_type() const { return TypeInt::INT; }
 524   virtual uint ideal_reg() const { return Op_RegI; }
 525   virtual const Type* Value(PhaseGVN* phase) const;
 526   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 527   virtual Node* Identity(PhaseGVN* phase);
 528 };
 529 
 530 // Support for strip mining
 531 class OuterStripMinedLoopNode : public LoopNode {
 532 private:
 533   static void fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 534 
 535 public:
 536   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 537     : LoopNode(entry, backedge) {
 538     init_class_id(Class_OuterStripMinedLoop);
 539     init_flags(Flag_is_macro);
 540     C->add_macro_node(this);
 541   }
 542 
 543   virtual int Opcode() const;
 544 
 545   virtual IfTrueNode* outer_loop_tail() const;
 546   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 547   virtual IfFalseNode* outer_loop_exit() const;
 548   virtual SafePointNode* outer_safepoint() const;
 549   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 550 
 551   void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const;
 552 
 553   void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 554 
 555   static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 556 
 557   Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
 558                          PhaseIdealLoop* iloop);
 559 };
 560 
 561 class OuterStripMinedLoopEndNode : public IfNode {
 562 public:
 563   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 564     : IfNode(control, test, prob, cnt) {
 565     init_class_id(Class_OuterStripMinedLoopEnd);
 566   }
 567 
 568   virtual int Opcode() const;
 569 
 570   virtual const Type* Value(PhaseGVN* phase) const;
 571   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 572 
 573   bool is_expanded(PhaseGVN *phase) const;
 574 };
 575 
 576 // -----------------------------IdealLoopTree----------------------------------
 577 class IdealLoopTree : public ResourceObj {
 578 public:
 579   IdealLoopTree *_parent;       // Parent in loop tree
 580   IdealLoopTree *_next;         // Next sibling in loop tree
 581   IdealLoopTree *_child;        // First child in loop tree
 582 
 583   // The head-tail backedge defines the loop.
 584   // If a loop has multiple backedges, this is addressed during cleanup where
 585   // we peel off the multiple backedges,  merging all edges at the bottom and
 586   // ensuring that one proper backedge flow into the loop.
 587   Node *_head;                  // Head of loop
 588   Node *_tail;                  // Tail of loop
 589   inline Node *tail();          // Handle lazy update of _tail field
 590   inline Node *head();          // Handle lazy update of _head field
 591   PhaseIdealLoop* _phase;
 592   int _local_loop_unroll_limit;
 593   int _local_loop_unroll_factor;
 594 
 595   Node_List _body;              // Loop body for inner loops
 596 
 597   uint16_t _nest;               // Nesting depth
 598   uint8_t _irreducible:1,       // True if irreducible
 599           _has_call:1,          // True if has call safepoint
 600           _has_sfpt:1,          // True if has non-call safepoint
 601           _rce_candidate:1,     // True if candidate for range check elimination
 602           _has_range_checks:1,
 603           _has_range_checks_computed:1;
 604 
 605   Node_List* _safepts;          // List of safepoints in this loop
 606   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 607   bool  _allow_optimizations;   // Allow loop optimizations
 608 
 609   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 610     : _parent(nullptr), _next(nullptr), _child(nullptr),
 611       _head(head), _tail(tail),
 612       _phase(phase),
 613       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
 614       _body(Compile::current()->comp_arena()),
 615       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 616       _has_range_checks(0), _has_range_checks_computed(0),
 617       _safepts(nullptr),
 618       _required_safept(nullptr),
 619       _allow_optimizations(true)
 620   {
 621     precond(_head != nullptr);
 622     precond(_tail != nullptr);
 623   }
 624 
 625   // Is 'l' a member of 'this'?
 626   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 627 
 628   // Set loop nesting depth.  Accumulate has_call bits.
 629   int set_nest( uint depth );
 630 
 631   // Split out multiple fall-in edges from the loop header.  Move them to a
 632   // private RegionNode before the loop.  This becomes the loop landing pad.
 633   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 634 
 635   // Split out the outermost loop from this shared header.
 636   void split_outer_loop( PhaseIdealLoop *phase );
 637 
 638   // Merge all the backedges from the shared header into a private Region.
 639   // Feed that region as the one backedge to this loop.
 640   void merge_many_backedges( PhaseIdealLoop *phase );
 641 
 642   // Split shared headers and insert loop landing pads.
 643   // Insert a LoopNode to replace the RegionNode.
 644   // Returns TRUE if loop tree is structurally changed.
 645   bool beautify_loops( PhaseIdealLoop *phase );
 646 
 647   // Perform optimization to use the loop predicates for null checks and range checks.
 648   // Applies to any loop level (not just the innermost one)
 649   bool loop_predication( PhaseIdealLoop *phase);
 650   bool can_apply_loop_predication();
 651 
 652   // Perform iteration-splitting on inner loops.  Split iterations to
 653   // avoid range checks or one-shot null checks.  Returns false if the
 654   // current round of loop opts should stop.
 655   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 656 
 657   // Driver for various flavors of iteration splitting.  Returns false
 658   // if the current round of loop opts should stop.
 659   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 660 
 661   // Given dominators, try to find loops with calls that must always be
 662   // executed (call dominates loop tail).  These loops do not need non-call
 663   // safepoints (ncsfpt).
 664   void check_safepts(VectorSet &visited, Node_List &stack);
 665 
 666   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 667   // encountered.
 668   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 669 
 670   // Remove safepoints from loop. Optionally keeping one.
 671   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 672 
 673   // Convert to counted loops where possible
 674   void counted_loop( PhaseIdealLoop *phase );
 675 
 676   // Check for Node being a loop-breaking test
 677   Node *is_loop_exit(Node *iff) const;
 678 
 679   // Remove simplistic dead code from loop body
 680   void DCE_loop_body();
 681 
 682   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 683   // Replace with a 1-in-10 exit guess.
 684   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 685 
 686   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 687   // Useful for unrolling loops with NO array accesses.
 688   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 689 
 690   // Return TRUE or FALSE if the loop should be unswitched -- clone
 691   // loop with an invariant test
 692   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 693 
 694   // Micro-benchmark spamming.  Remove empty loops.
 695   bool do_remove_empty_loop( PhaseIdealLoop *phase );
 696 
 697   // Convert one iteration loop into normal code.
 698   bool do_one_iteration_loop( PhaseIdealLoop *phase );
 699 
 700   // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
 701   // move some loop-invariant test (usually a null-check) before the loop.
 702   bool policy_peeling(PhaseIdealLoop *phase);
 703 
 704   uint estimate_peeling(PhaseIdealLoop *phase);
 705 
 706   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 707   // known trip count in the counted loop node.
 708   bool policy_maximally_unroll(PhaseIdealLoop *phase) const;
 709 
 710   // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll
 711   // if the loop is a counted loop and the loop body is small enough.
 712   bool policy_unroll(PhaseIdealLoop *phase);
 713 
 714   // Loop analyses to map to a maximal superword unrolling for vectorization.
 715   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 716 
 717   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 718   // Gather a list of IF tests that are dominated by iteration splitting;
 719   // also gather the end of the first split and the start of the 2nd split.
 720   bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const;
 721 
 722   // Return TRUE if "iff" is a range check.
 723   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const;
 724   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset,
 725                          jlong& scale) const;
 726 
 727   // Estimate the number of nodes required when cloning a loop (body).
 728   uint est_loop_clone_sz(uint factor) const;
 729   // Estimate the number of nodes required when unrolling a loop (body).
 730   uint est_loop_unroll_sz(uint factor) const;
 731 
 732   // Compute loop trip count if possible
 733   void compute_trip_count(PhaseIdealLoop* phase);
 734 
 735   // Compute loop trip count from profile data
 736   float compute_profile_trip_cnt_helper(Node* n);
 737   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 738 
 739   // Reassociate invariant expressions.
 740   void reassociate_invariants(PhaseIdealLoop *phase);
 741   // Reassociate invariant binary expressions.
 742   Node* reassociate(Node* n1, PhaseIdealLoop *phase);
 743   // Reassociate invariant add, subtract, and compare expressions.
 744   Node* reassociate_add_sub_cmp(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop* phase);
 745   // Return nonzero index of invariant operand if invariant and variant
 746   // are combined with an associative binary. Helper for reassociate_invariants.
 747   int find_invariant(Node* n, PhaseIdealLoop *phase);
 748   // Return TRUE if "n" is associative.
 749   bool is_associative(Node* n, Node* base=nullptr);
 750   // Return TRUE if "n" is an associative cmp node.
 751   bool is_associative_cmp(Node* n);
 752 
 753   // Return true if n is invariant
 754   bool is_invariant(Node* n) const;
 755 
 756   // Put loop body on igvn work list
 757   void record_for_igvn();
 758 
 759   bool is_root() { return _parent == nullptr; }
 760   // A proper/reducible loop w/o any (occasional) dead back-edge.
 761   bool is_loop() { return !_irreducible && !tail()->is_top(); }
 762   bool is_counted()   { return is_loop() && _head->is_CountedLoop(); }
 763   bool is_innermost() { return is_loop() && _child == nullptr; }
 764 
 765   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 766 
 767   bool compute_has_range_checks() const;
 768   bool range_checks_present() {
 769     if (!_has_range_checks_computed) {
 770       if (compute_has_range_checks()) {
 771         _has_range_checks = 1;
 772       }
 773       _has_range_checks_computed = 1;
 774     }
 775     return _has_range_checks;
 776   }
 777 
 778   // Return the parent's IdealLoopTree for a strip mined loop which is the outer strip mined loop.
 779   // In all other cases, return this.
 780   IdealLoopTree* skip_strip_mined() {
 781     return _head->as_Loop()->is_strip_mined() ? _parent : this;
 782   }
 783 
 784 #ifndef PRODUCT
 785   void dump_head();       // Dump loop head only
 786   void dump();            // Dump this loop recursively
 787 #endif
 788 
 789 #ifdef ASSERT
 790   GrowableArray<IdealLoopTree*> collect_sorted_children() const;
 791   bool verify_tree(IdealLoopTree* loop_verify) const;
 792 #endif
 793 
 794  private:
 795   enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop.
 796 
 797   // Estimate the number of nodes resulting from control and data flow merge.
 798   uint est_loop_flow_merge_sz() const;
 799 
 800   // Check if the number of residual iterations is large with unroll_cnt.
 801   // Return true if the residual iterations are more than 10% of the trip count.
 802   bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const {
 803     return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt();
 804   }
 805 
 806   void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const;
 807 
 808   bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const;
 809 
 810   void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const;
 811 
 812   bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq,
 813                          Node* sfpt) const;
 814 
 815   bool empty_loop_candidate(PhaseIdealLoop* phase) const;
 816 
 817   bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const;
 818 };
 819 
 820 // -----------------------------PhaseIdealLoop---------------------------------
 821 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees
 822 // into a loop tree. Drives the loop-based transformations on the ideal graph.
 823 class PhaseIdealLoop : public PhaseTransform {
 824   friend class IdealLoopTree;
 825   friend class SuperWord;
 826   friend class ShenandoahBarrierC2Support;
 827   friend class AutoNodeBudget;
 828 
 829   // Map loop membership for CFG nodes, and ctrl for non-CFG nodes.
 830   Node_List _loop_or_ctrl;
 831 
 832   // Pre-computed def-use info
 833   PhaseIterGVN &_igvn;
 834 
 835   // Head of loop tree
 836   IdealLoopTree* _ltree_root;
 837 
 838   // Array of pre-order numbers, plus post-visited bit.
 839   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 840   // ODD for post-visited.  Other bits are the pre-order number.
 841   uint *_preorders;
 842   uint _max_preorder;
 843 
 844   ReallocMark _nesting; // Safety checks for arena reallocation
 845 
 846   const PhaseIdealLoop* _verify_me;
 847   bool _verify_only;
 848 
 849   // Allocate _preorders[] array
 850   void allocate_preorders() {
 851     _max_preorder = C->unique()+8;
 852     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 853     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 854   }
 855 
 856   // Allocate _preorders[] array
 857   void reallocate_preorders() {
 858     _nesting.check(); // Check if a potential re-allocation in the resource arena is safe
 859     if ( _max_preorder < C->unique() ) {
 860       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 861       _max_preorder = C->unique();
 862     }
 863     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 864   }
 865 
 866   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 867   // adds new nodes.
 868   void check_grow_preorders( ) {
 869     _nesting.check(); // Check if a potential re-allocation in the resource arena is safe
 870     if ( _max_preorder < C->unique() ) {
 871       uint newsize = _max_preorder<<1;  // double size of array
 872       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 873       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 874       _max_preorder = newsize;
 875     }
 876   }
 877   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 878   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 879   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 880   void set_preorder_visited( Node *n, int pre_order ) {
 881     assert( !is_visited( n ), "already set" );
 882     _preorders[n->_idx] = (pre_order<<1);
 883   };
 884   // Return pre-order number.
 885   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 886 
 887   // Check for being post-visited.
 888   // Should be previsited already (checked with assert(is_visited(n))).
 889   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 890 
 891   // Mark as post visited
 892   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 893 
 894 public:
 895   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 896   // Returns true if "n" is a data node, false if it's a control node.
 897   bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; }
 898 
 899 private:
 900   // clear out dead code after build_loop_late
 901   Node_List _deadlist;
 902   Node_List _zero_trip_guard_opaque_nodes;
 903 
 904   // Support for faster execution of get_late_ctrl()/dom_lca()
 905   // when a node has many uses and dominator depth is deep.
 906   GrowableArray<jlong> _dom_lca_tags;
 907   uint _dom_lca_tags_round;
 908   void   init_dom_lca_tags();
 909 
 910   // Helper for debugging bad dominance relationships
 911   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 912 
 913   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 914 
 915   // Inline wrapper for frequent cases:
 916   // 1) only one use
 917   // 2) a use is the same as the current LCA passed as 'n1'
 918   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 919     assert( n->is_CFG(), "" );
 920     // Fast-path null lca
 921     if( lca != nullptr && lca != n ) {
 922       assert( lca->is_CFG(), "" );
 923       // find LCA of all uses
 924       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 925     }
 926     return find_non_split_ctrl(n);
 927   }
 928   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 929 
 930   // Helper function for directing control inputs away from CFG split points.
 931   Node *find_non_split_ctrl( Node *ctrl ) const {
 932     if (ctrl != nullptr) {
 933       if (ctrl->is_MultiBranch()) {
 934         ctrl = ctrl->in(0);
 935       }
 936       assert(ctrl->is_CFG(), "CFG");
 937     }
 938     return ctrl;
 939   }
 940 
 941 #ifdef ASSERT
 942   void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
 943 #endif
 944   void copy_assertion_predicates_to_main_loop_helper(const PredicateBlock* predicate_block, Node* init, Node* stride,
 945                                                      IdealLoopTree* outer_loop, LoopNode* outer_main_head,
 946                                                      uint dd_main_head, uint idx_before_pre_post,
 947                                                      uint idx_after_post_before_pre, Node* zero_trip_guard_proj_main,
 948                                                      Node* zero_trip_guard_proj_post, const Node_List &old_new);
 949   void copy_assertion_predicates_to_main_loop(CountedLoopNode* pre_head, Node* init, Node* stride, IdealLoopTree* outer_loop,
 950                                               LoopNode* outer_main_head, uint dd_main_head, uint idx_before_pre_post,
 951                                               uint idx_after_post_before_pre, Node* zero_trip_guard_proj_main,
 952                                               Node* zero_trip_guard_proj_post, const Node_List& old_new);
 953   Node* clone_template_assertion_predicate(IfNode* iff, Node* new_init, Node* predicate, Node* uncommon_proj, Node* control,
 954                                            IdealLoopTree* outer_loop, Node* new_control);
 955   IfTrueNode* create_initialized_assertion_predicate(IfNode* template_assertion_predicate, Node* new_init,
 956                                                      Node* new_stride, Node* control);
 957   static void count_opaque_loop_nodes(Node* n, uint& init, uint& stride);
 958   static bool assertion_predicate_has_loop_opaque_node(IfNode* iff);
 959   static void get_assertion_predicates(Node* predicate, Unique_Node_List& list, bool get_opaque = false);
 960   void update_main_loop_assertion_predicates(Node* ctrl, CountedLoopNode* loop_head, Node* init, int stride_con);
 961   void copy_assertion_predicates_to_post_loop(LoopNode* main_loop_head, CountedLoopNode* post_loop_head,
 962                                               Node* stride);
 963   void initialize_assertion_predicates_for_peeled_loop(const PredicateBlock* predicate_block, LoopNode* outer_loop_head,
 964                                                        int dd_outer_loop_head, Node* init, Node* stride,
 965                                                        IdealLoopTree* outer_loop, uint idx_before_clone,
 966                                                        const Node_List& old_new);
 967   void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit,
 968                                          Node* bol);
 969   void log_loop_tree();
 970 
 971 public:
 972 
 973   PhaseIterGVN &igvn() const { return _igvn; }
 974 
 975   bool has_node(const Node* n) const {
 976     guarantee(n != nullptr, "No Node.");
 977     return _loop_or_ctrl[n->_idx] != nullptr;
 978   }
 979   // check if transform created new nodes that need _ctrl recorded
 980   Node *get_late_ctrl( Node *n, Node *early );
 981   Node *get_early_ctrl( Node *n );
 982   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 983   void set_early_ctrl(Node* n, bool update_body);
 984   void set_subtree_ctrl(Node* n, bool update_body);
 985   void set_ctrl( Node *n, Node *ctrl ) {
 986     assert( !has_node(n) || has_ctrl(n), "" );
 987     assert( ctrl->in(0), "cannot set dead control node" );
 988     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 989     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1));
 990   }
 991   // Set control and update loop membership
 992   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 993     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 994     IdealLoopTree* new_loop = get_loop(ctrl);
 995     if (old_loop != new_loop) {
 996       if (old_loop->_child == nullptr) old_loop->_body.yank(n);
 997       if (new_loop->_child == nullptr) new_loop->_body.push(n);
 998     }
 999     set_ctrl(n, ctrl);
1000   }
1001   // Control nodes can be replaced or subsumed.  During this pass they
1002   // get their replacement Node in slot 1.  Instead of updating the block
1003   // location of all Nodes in the subsumed block, we lazily do it.  As we
1004   // pull such a subsumed block out of the array, we write back the final
1005   // correct block.
1006   Node* get_ctrl(const Node* i) {
1007     assert(has_node(i), "");
1008     Node *n = get_ctrl_no_update(i);
1009     _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1));
1010     assert(has_node(i) && has_ctrl(i), "");
1011     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
1012     return n;
1013   }
1014 
1015   bool is_dominator(Node* dominator, Node* n);
1016   bool is_strict_dominator(Node* dominator, Node* n);
1017 
1018   // return get_ctrl for a data node and self(n) for a CFG node
1019   Node* ctrl_or_self(Node* n) {
1020     if (has_ctrl(n))
1021       return get_ctrl(n);
1022     else {
1023       assert (n->is_CFG(), "must be a CFG node");
1024       return n;
1025     }
1026   }
1027 
1028   Node* get_ctrl_no_update_helper(const Node* i) const {
1029     assert(has_ctrl(i), "should be control, not loop");
1030     return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1);
1031   }
1032 
1033   Node* get_ctrl_no_update(const Node* i) const {
1034     assert( has_ctrl(i), "" );
1035     Node *n = get_ctrl_no_update_helper(i);
1036     if (!n->in(0)) {
1037       // Skip dead CFG nodes
1038       do {
1039         n = get_ctrl_no_update_helper(n);
1040       } while (!n->in(0));
1041       n = find_non_split_ctrl(n);
1042     }
1043     return n;
1044   }
1045 
1046   // Check for loop being set
1047   // "n" must be a control node. Returns true if "n" is known to be in a loop.
1048   bool has_loop( Node *n ) const {
1049     assert(!has_node(n) || !has_ctrl(n), "");
1050     return has_node(n);
1051   }
1052   // Set loop
1053   void set_loop( Node *n, IdealLoopTree *loop ) {
1054     _loop_or_ctrl.map(n->_idx, (Node*)loop);
1055   }
1056   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
1057   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
1058   // from old_node to new_node to support the lazy update.  Reference
1059   // replaces loop reference, since that is not needed for dead node.
1060   void lazy_update(Node *old_node, Node *new_node) {
1061     assert(old_node != new_node, "no cycles please");
1062     // Re-use the side array slot for this node to provide the
1063     // forwarding pointer.
1064     _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
1065   }
1066   void lazy_replace(Node *old_node, Node *new_node) {
1067     _igvn.replace_node(old_node, new_node);
1068     lazy_update(old_node, new_node);
1069   }
1070 
1071 private:
1072 
1073   // Place 'n' in some loop nest, where 'n' is a CFG node
1074   void build_loop_tree();
1075   int build_loop_tree_impl(Node* n, int pre_order);
1076   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
1077   // loop tree, not the root.
1078   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
1079 
1080 #ifdef ASSERT
1081   // verify that regions in irreducible loops are marked is_in_irreducible_loop
1082   void verify_regions_in_irreducible_loops();
1083   bool is_in_irreducible_loop(RegionNode* region);
1084 #endif
1085 
1086   // Place Data nodes in some loop nest
1087   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1088   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1089   void build_loop_late_post_work(Node* n, bool pinned);
1090   void build_loop_late_post(Node* n);
1091   void verify_strip_mined_scheduling(Node *n, Node* least);
1092 
1093   // Array of immediate dominance info for each CFG node indexed by node idx
1094 private:
1095   uint _idom_size;
1096   Node **_idom;                  // Array of immediate dominators
1097   uint *_dom_depth;              // Used for fast LCA test
1098   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
1099   LoopOptsMode _mode;
1100 
1101   // build the loop tree and perform any requested optimizations
1102   void build_and_optimize();
1103 
1104   // Dominators for the sea of nodes
1105   void Dominators();
1106 
1107   // Compute the Ideal Node to Loop mapping
1108   PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) :
1109     PhaseTransform(Ideal_Loop),
1110     _loop_or_ctrl(igvn.C->comp_arena()),
1111     _igvn(igvn),
1112     _verify_me(nullptr),
1113     _verify_only(false),
1114     _mode(mode),
1115     _nodes_required(UINT_MAX) {
1116     assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop");
1117     build_and_optimize();
1118   }
1119 
1120 #ifndef PRODUCT
1121   // Verify that verify_me made the same decisions as a fresh run
1122   // or only verify that the graph is valid if verify_me is null.
1123   PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) :
1124     PhaseTransform(Ideal_Loop),
1125     _loop_or_ctrl(igvn.C->comp_arena()),
1126     _igvn(igvn),
1127     _verify_me(verify_me),
1128     _verify_only(verify_me == nullptr),
1129     _mode(LoopOptsVerify),
1130     _nodes_required(UINT_MAX) {
1131     DEBUG_ONLY(C->set_phase_verify_ideal_loop();)
1132     build_and_optimize();
1133     DEBUG_ONLY(C->reset_phase_verify_ideal_loop();)
1134   }
1135 #endif
1136 
1137   Node* insert_convert_node_if_needed(BasicType target, Node* input);
1138 
1139 public:
1140   Node* idom_no_update(Node* d) const {
1141     return idom_no_update(d->_idx);
1142   }
1143 
1144   Node* idom_no_update(uint didx) const {
1145     assert(didx < _idom_size, "oob");
1146     Node* n = _idom[didx];
1147     assert(n != nullptr,"Bad immediate dominator info.");
1148     while (n->in(0) == nullptr) { // Skip dead CFG nodes
1149       n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1);
1150       assert(n != nullptr,"Bad immediate dominator info.");
1151     }
1152     return n;
1153   }
1154 
1155   Node *idom(Node* d) const {
1156     return idom(d->_idx);
1157   }
1158 
1159   Node *idom(uint didx) const {
1160     Node *n = idom_no_update(didx);
1161     _idom[didx] = n; // Lazily remove dead CFG nodes from table.
1162     return n;
1163   }
1164 
1165   uint dom_depth(Node* d) const {
1166     guarantee(d != nullptr, "Null dominator info.");
1167     guarantee(d->_idx < _idom_size, "");
1168     return _dom_depth[d->_idx];
1169   }
1170   void set_idom(Node* d, Node* n, uint dom_depth);
1171   // Locally compute IDOM using dom_lca call
1172   Node *compute_idom( Node *region ) const;
1173   // Recompute dom_depth
1174   void recompute_dom_depth();
1175 
1176   // Is safept not required by an outer loop?
1177   bool is_deleteable_safept(Node* sfpt);
1178 
1179   // Replace parallel induction variable (parallel to trip counter)
1180   void replace_parallel_iv(IdealLoopTree *loop);
1181 
1182   Node *dom_lca( Node *n1, Node *n2 ) const {
1183     return find_non_split_ctrl(dom_lca_internal(n1, n2));
1184   }
1185   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
1186 
1187   Node* dominated_node(Node* c1, Node* c2) {
1188     assert(is_dominator(c1, c2) || is_dominator(c2, c1), "nodes must be related");
1189     return is_dominator(c1, c2) ? c2 : c1;
1190   }
1191 
1192   // Return control node that's dominated by the 2 others
1193   Node* dominated_node(Node* c1, Node* c2, Node* c3) {
1194     return dominated_node(c1, dominated_node(c2, c3));
1195   }
1196 
1197   // Build and verify the loop tree without modifying the graph.  This
1198   // is useful to verify that all inputs properly dominate their uses.
1199   static void verify(PhaseIterGVN& igvn) {
1200 #ifdef ASSERT
1201     ResourceMark rm;
1202     Compile::TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
1203     PhaseIdealLoop v(igvn);
1204 #endif
1205   }
1206 
1207   // Recommended way to use PhaseIdealLoop.
1208   // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations.
1209   static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) {
1210     ResourceMark rm;
1211     PhaseIdealLoop v(igvn, mode);
1212 
1213     Compile* C = Compile::current();
1214     if (!C->failing()) {
1215       // Cleanup any modified bits
1216       igvn.optimize();
1217       if (C->failing()) { return; }
1218       v.log_loop_tree();
1219     }
1220   }
1221 
1222   // True if the method has at least 1 irreducible loop
1223   bool _has_irreducible_loops;
1224 
1225   // Per-Node transform
1226   virtual Node* transform(Node* n) { return nullptr; }
1227 
1228   Node* loop_exit_control(Node* x, IdealLoopTree* loop);
1229   Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob);
1230   Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr);
1231   Node* loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi);
1232   PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop);
1233 
1234   bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt);
1235 
1236   Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt);
1237   bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new);
1238 #ifdef ASSERT
1239   bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop);
1240 #endif
1241   void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt);
1242   SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop);
1243   IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift);
1244   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
1245                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
1246                                                Node*& entry_control, Node*& iffalse);
1247 
1248   Node* exact_limit( IdealLoopTree *loop );
1249 
1250   // Return a post-walked LoopNode
1251   IdealLoopTree *get_loop( Node *n ) const {
1252     // Dead nodes have no loop, so return the top level loop instead
1253     if (!has_node(n))  return _ltree_root;
1254     assert(!has_ctrl(n), "");
1255     return (IdealLoopTree*)_loop_or_ctrl[n->_idx];
1256   }
1257 
1258   IdealLoopTree* ltree_root() const { return _ltree_root; }
1259 
1260   // Is 'n' a (nested) member of 'loop'?
1261   int is_member( const IdealLoopTree *loop, Node *n ) const {
1262     return loop->is_member(get_loop(n)); }
1263 
1264   // This is the basic building block of the loop optimizations.  It clones an
1265   // entire loop body.  It makes an old_new loop body mapping; with this
1266   // mapping you can find the new-loop equivalent to an old-loop node.  All
1267   // new-loop nodes are exactly equal to their old-loop counterparts, all
1268   // edges are the same.  All exits from the old-loop now have a RegionNode
1269   // that merges the equivalent new-loop path.  This is true even for the
1270   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
1271   // now come from (one or more) Phis that merge their new-loop equivalents.
1272   // Parameter side_by_side_idom:
1273   //   When side_by_size_idom is null, the dominator tree is constructed for
1274   //      the clone loop to dominate the original.  Used in construction of
1275   //      pre-main-post loop sequence.
1276   //   When nonnull, the clone and original are side-by-side, both are
1277   //      dominated by the passed in side_by_side_idom node.  Used in
1278   //      construction of unswitched loops.
1279   enum CloneLoopMode {
1280     IgnoreStripMined = 0,        // Only clone inner strip mined loop
1281     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
1282     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
1283                                  // result control flow branches
1284                                  // either to inner clone or outer
1285                                  // strip mined loop.
1286   };
1287   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1288                   CloneLoopMode mode, Node* side_by_side_idom = nullptr);
1289   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1290                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1291                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1292                                    Node_List*& split_cex_set, Node_List& worklist,
1293                                    uint new_counter, CloneLoopMode mode);
1294   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1295                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1296                         Node_List& extra_data_nodes);
1297 
1298   // If we got the effect of peeling, either by actually peeling or by
1299   // making a pre-loop which must execute at least once, we can remove
1300   // all loop-invariant dominated tests in the main body.
1301   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1302 
1303   // Generate code to do a loop peel for the given loop (and body).
1304   // old_new is a temp array.
1305   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1306 
1307   // Add pre and post loops around the given loop.  These loops are used
1308   // during RCE, unrolling and aligning loops.
1309   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1310 
1311   // Add post loop after the given loop.
1312   Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new,
1313                          CountedLoopNode* main_head, CountedLoopEndNode* main_end,
1314                          Node*& incr, Node* limit, CountedLoopNode*& post_head);
1315 
1316   // Add a vector post loop between a vector main loop and the current post loop
1317   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1318   // If Node n lives in the back_ctrl block, we clone a private version of n
1319   // in preheader_ctrl block and return that, otherwise return n.
1320   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1321 
1322   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1323   // unroll to do double iterations.  The next round of major loop transforms
1324   // will repeat till the doubled loop body does all remaining iterations in 1
1325   // pass.
1326   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1327 
1328   // Unroll the loop body one step - make each trip do 2 iterations.
1329   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1330 
1331   // Return true if exp is a constant times an induction var
1332   bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0);
1333 
1334   bool is_iv(Node* exp, Node* iv, BasicType bt);
1335 
1336   // Return true if exp is a scaled induction var plus (or minus) constant
1337   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0);
1338   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) {
1339     jlong long_scale;
1340     if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) {
1341       int int_scale = checked_cast<int>(long_scale);
1342       if (p_scale != nullptr) {
1343         *p_scale = int_scale;
1344       }
1345       return true;
1346     }
1347     return false;
1348   }
1349   // Helper for finding more complex matches to is_scaled_iv_plus_offset.
1350   bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv,
1351                                       BasicType bt,
1352                                       jlong* p_scale, Node** p_offset,
1353                                       bool* p_short_scale, int depth);
1354 
1355   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1356   IfTrueNode* create_new_if_for_predicate(
1357       ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry, Deoptimization::DeoptReason reason, int opcode,
1358       bool rewire_uncommon_proj_phi_inputs = false
1359       NOT_PRODUCT (COMMA AssertionPredicateType assertion_predicate_type = AssertionPredicateType::None));
1360 
1361  private:
1362   // Helper functions for create_new_if_for_predicate()
1363   void set_ctrl_of_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
1364   Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl);
1365   Node* clone_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
1366   void fix_cloned_data_node_controls(const ProjNode* orig, Node* new_uncommon_proj,
1367                                      const OrigToNewHashtable& orig_to_clone);
1368   bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt,
1369                                        Node* loop_entry);
1370 
1371  public:
1372   void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true);
1373 
1374   void replace_loop_entry(LoopNode* loop_head, Node* new_entry) {
1375     _igvn.replace_input_of(loop_head, LoopNode::EntryControl, new_entry);
1376     set_idom(loop_head, new_entry, dom_depth(new_entry));
1377   }
1378 
1379   // Construct a range check for a predicate if
1380   BoolNode* rc_predicate(Node* ctrl, int scale, Node* offset, Node* init, Node* limit,
1381                          jint stride, Node* range, bool upper, bool& overflow);
1382 
1383   // Implementation of the loop predication to promote checks outside the loop
1384   bool loop_predication_impl(IdealLoopTree *loop);
1385 
1386  private:
1387   bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj,
1388                                     ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero,
1389                                     Invariance& invar, Deoptimization::DeoptReason deopt_reason);
1390   bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const;
1391   bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt);
1392   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1393                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1394                                         Node_List& if_proj_list);
1395   IfTrueNode* create_template_assertion_predicate(int if_opcode, CountedLoopNode* loop_head,
1396                                                   ParsePredicateSuccessProj* parse_predicate_proj,
1397                                                   IfProjNode* new_control, int scale, Node* offset,
1398                                                   Node* range, Deoptimization::DeoptReason deopt_reason);
1399   void eliminate_hoisted_range_check(IfTrueNode* hoisted_check_proj, IfTrueNode* template_assertion_predicate_proj);
1400 
1401   // Helper function to collect predicate for eliminating the useless ones
1402   void eliminate_useless_predicates();
1403 
1404   void eliminate_useless_parse_predicates();
1405   void mark_all_parse_predicates_useless() const;
1406   void mark_loop_associated_parse_predicates_useful();
1407   static void mark_useful_parse_predicates_for_loop(IdealLoopTree* loop);
1408   void add_useless_parse_predicates_to_igvn_worklist();
1409 
1410   void eliminate_useless_template_assertion_predicates();
1411   void collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates);
1412   static void collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop, Unique_Node_List& useful_predicates);
1413   void eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates);
1414 
1415   void eliminate_useless_zero_trip_guard();
1416 
1417  public:
1418   // Change the control input of expensive nodes to allow commoning by
1419   // IGVN when it is guaranteed to not result in a more frequent
1420   // execution of the expensive node. Return true if progress.
1421   bool process_expensive_nodes();
1422 
1423   // Check whether node has become unreachable
1424   bool is_node_unreachable(Node *n) const {
1425     return !has_node(n) || n->is_unreachable(_igvn);
1426   }
1427 
1428   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1429   void do_range_check(IdealLoopTree *loop, Node_List &old_new);
1430 
1431   // Clone loop with an invariant test (that does not exit) and
1432   // insert a clone of the test that selects which version to
1433   // execute.
1434   void do_unswitching(IdealLoopTree* loop, Node_List& old_new);
1435 
1436   IfNode* find_unswitch_candidate(const IdealLoopTree* loop) const;
1437 
1438  private:
1439   static bool has_control_dependencies_from_predicates(LoopNode* head);
1440   static void revert_to_normal_loop(const LoopNode* loop_head);
1441 
1442   void hoist_invariant_check_casts(const IdealLoopTree* loop, const Node_List& old_new,
1443                                    const UnswitchedLoopSelector& unswitched_loop_selector);
1444   void add_unswitched_loop_version_bodies_to_igvn(IdealLoopTree* loop, const Node_List& old_new);
1445   static void increment_unswitch_counts(LoopNode* original_head, LoopNode* new_head);
1446   void remove_unswitch_candidate_from_loops(const Node_List& old_new, const UnswitchedLoopSelector& unswitched_loop_selector);
1447 #ifndef PRODUCT
1448   static void trace_loop_unswitching_count(IdealLoopTree* loop, LoopNode* original_head);
1449   static void trace_loop_unswitching_impossible(const LoopNode* original_head);
1450   static void trace_loop_unswitching_result(const UnswitchedLoopSelector& unswitched_loop_selector,
1451                                             const LoopNode* original_head, const LoopNode* new_head);
1452 #endif
1453 
1454  public:
1455 
1456   // Range Check Elimination uses this function!
1457   // Constrain the main loop iterations so the affine function:
1458   //    low_limit <= scale_con * I + offset  <  upper_limit
1459   // always holds true.  That is, either increase the number of iterations in
1460   // the pre-loop or the post-loop until the condition holds true in the main
1461   // loop.  Scale_con, offset and limit are all loop invariant.
1462   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
1463   // Helper function for add_constraint().
1464   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
1465 
1466   // Partially peel loop up through last_peel node.
1467   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1468   bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new);
1469 
1470   // AutoVectorize the loop: replace scalar ops with vector ops.
1471   enum AutoVectorizeStatus {
1472     Impossible,      // This loop has the wrong shape to even try vectorization.
1473     Success,         // We just successfully vectorized the loop.
1474     TriedAndFailed,  // We tried to vectorize, but failed.
1475   };
1476   AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared);
1477 
1478   // Move an unordered Reduction out of loop if possible
1479   void move_unordered_reduction_out_of_loop(IdealLoopTree* loop);
1480 
1481   // Create a scheduled list of nodes control dependent on ctrl set.
1482   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1483   // Has a use in the vector set
1484   bool has_use_in_set( Node* n, VectorSet& vset );
1485   // Has use internal to the vector set (ie. not in a phi at the loop head)
1486   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1487   // clone "n" for uses that are outside of loop
1488   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1489   // clone "n" for special uses that are in the not_peeled region
1490   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1491                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1492   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1493   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1494 #ifdef ASSERT
1495   // Validate the loop partition sets: peel and not_peel
1496   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1497   // Ensure that uses outside of loop are of the right form
1498   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1499                                  uint orig_exit_idx, uint clone_exit_idx);
1500   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1501 #endif
1502 
1503   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1504   int stride_of_possible_iv( Node* iff );
1505   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1506   // Return the (unique) control output node that's in the loop (if it exists.)
1507   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1508   // Insert a signed compare loop exit cloned from an unsigned compare.
1509   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1510   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1511   // Utility to register node "n" with PhaseIdealLoop
1512   void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth);
1513   // Utility to create an if-projection
1514   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1515   // Force the iff control output to be the live_proj
1516   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1517   // Insert a region before an if projection
1518   RegionNode* insert_region_before_proj(ProjNode* proj);
1519   // Insert a new if before an if projection
1520   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1521 
1522   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1523   // "Nearly" because all Nodes have been cloned from the original in the loop,
1524   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1525   // through the Phi recursively, and return a Bool.
1526   Node* clone_iff(PhiNode* phi);
1527   CmpNode* clone_bool(PhiNode* phi);
1528 
1529 
1530   // Rework addressing expressions to get the most loop-invariant stuff
1531   // moved out.  We'd like to do all associative operators, but it's especially
1532   // important (common) to do address expressions.
1533   Node* remix_address_expressions(Node* n);
1534   Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt);
1535 
1536   // Convert add to muladd to generate MuladdS2I under certain criteria
1537   Node * convert_add_to_muladd(Node * n);
1538 
1539   // Attempt to use a conditional move instead of a phi/branch
1540   Node *conditional_move( Node *n );
1541 
1542   bool split_thru_phi_could_prevent_vectorization(Node* n, Node* n_blk);
1543 
1544   // Check for aggressive application of 'split-if' optimization,
1545   // using basic block level info.
1546   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack);
1547   Node *split_if_with_blocks_pre ( Node *n );
1548   void  split_if_with_blocks_post( Node *n );
1549   Node *has_local_phi_input( Node *n );
1550   // Mark an IfNode as being dominated by a prior test,
1551   // without actually altering the CFG (and hence IDOM info).
1552   void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false);
1553   void rewire_safe_outputs_to_dominator(Node* source, Node* dominator, bool pin_array_access_nodes);
1554 
1555   // Split Node 'n' through merge point
1556   RegionNode* split_thru_region(Node* n, RegionNode* region);
1557   // Split Node 'n' through merge point if there is enough win.
1558   Node *split_thru_phi( Node *n, Node *region, int policy );
1559   // Found an If getting its condition-code input from a Phi in the
1560   // same block.  Split thru the Region.
1561   void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr);
1562 
1563   // Conversion of fill/copy patterns into intrinsic versions
1564   bool do_intrinsify_fill();
1565   bool intrinsify_fill(IdealLoopTree* lpt);
1566   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1567                        Node*& shift, Node*& offset);
1568 
1569 private:
1570   // Return a type based on condition control flow
1571   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1572   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); }
1573  // Helpers for filtered type
1574   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1575 
1576   // Helper functions
1577   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1578   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1579   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1580   bool split_up( Node *n, Node *blk1, Node *blk2 );
1581 
1582   Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const;
1583   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1584   void try_move_store_after_loop(Node* n);
1585   bool identical_backtoback_ifs(Node *n);
1586   bool can_split_if(Node *n_ctrl);
1587   bool cannot_split_division(const Node* n, const Node* region) const;
1588   static bool is_divisor_loop_phi(const Node* divisor, const Node* loop);
1589   bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const;
1590 
1591   // Determine if a method is too big for a/another round of split-if, based on
1592   // a magic (approximate) ratio derived from the equally magic constant 35000,
1593   // previously used for this purpose (but without relating to the node limit).
1594   bool must_throttle_split_if() {
1595     uint threshold = C->max_node_limit() * 2 / 5;
1596     return C->live_nodes() > threshold;
1597   }
1598 
1599   // A simplistic node request tracking mechanism, where
1600   //   = UINT_MAX   Request not valid or made final.
1601   //   < UINT_MAX   Nodes currently requested (estimate).
1602   uint _nodes_required;
1603 
1604   enum { REQUIRE_MIN = 70 };
1605 
1606   uint nodes_required() const { return _nodes_required; }
1607 
1608   // Given the _currently_  available number of nodes, check  whether there is
1609   // "room" for an additional request or not, considering the already required
1610   // number of  nodes.  Return TRUE if  the new request is  exceeding the node
1611   // budget limit, otherwise return FALSE.  Note that this interpretation will
1612   // act pessimistic on  additional requests when new nodes  have already been
1613   // generated since the 'begin'.  This behaviour fits with the intention that
1614   // node estimates/requests should be made upfront.
1615   bool exceeding_node_budget(uint required = 0) {
1616     assert(C->live_nodes() < C->max_node_limit(), "sanity");
1617     uint available = C->max_node_limit() - C->live_nodes();
1618     return available < required + _nodes_required + REQUIRE_MIN;
1619   }
1620 
1621   uint require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1622     precond(require > 0);
1623     _nodes_required += MAX2(require, minreq);
1624     return _nodes_required;
1625   }
1626 
1627   bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1628     return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0;
1629   }
1630 
1631   uint require_nodes_begin() {
1632     assert(_nodes_required == UINT_MAX, "Bad state (begin).");
1633     _nodes_required = 0;
1634     return C->live_nodes();
1635   }
1636 
1637   // When a node request is final,  optionally check that the requested number
1638   // of nodes was  reasonably correct with respect to the  number of new nodes
1639   // introduced since the last 'begin'. Always check that we have not exceeded
1640   // the maximum node limit.
1641   void require_nodes_final(uint live_at_begin, bool check_estimate) {
1642     assert(_nodes_required < UINT_MAX, "Bad state (final).");
1643 
1644 #ifdef ASSERT
1645     if (check_estimate) {
1646       // Check that the node budget request was not off by too much (x2).
1647       // Should this be the case we _surely_ need to improve the estimates
1648       // used in our budget calculations.
1649       if (C->live_nodes() - live_at_begin > 2 * _nodes_required) {
1650         log_info(compilation)("Bad node estimate: actual = %d >> request = %d",
1651                               C->live_nodes() - live_at_begin, _nodes_required);
1652       }
1653     }
1654 #endif
1655     // Assert that we have stayed within the node budget limit.
1656     assert(C->live_nodes() < C->max_node_limit(),
1657            "Exceeding node budget limit: %d + %d > %d (request = %d)",
1658            C->live_nodes() - live_at_begin, live_at_begin,
1659            C->max_node_limit(), _nodes_required);
1660 
1661     _nodes_required = UINT_MAX;
1662   }
1663 
1664  public:
1665   // Clone Parse Predicates to slow and fast loop when unswitching a loop
1666   void clone_parse_and_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, Node_List& old_new,
1667                                                                IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred);
1668  private:
1669   void clone_loop_predication_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new,
1670                                                             const PredicateBlock* predicate_block,
1671                                                             Deoptimization::DeoptReason reason, IfProjNode*& iffast_pred,
1672                                                             IfProjNode*& ifslow_pred);
1673   void clone_parse_predicate_to_unswitched_loops(const PredicateBlock* predicate_block, Deoptimization::DeoptReason reason,
1674                                                  IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred);
1675   IfProjNode* clone_parse_predicate_to_unswitched_loop(ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1676                                                        Deoptimization::DeoptReason reason, bool slow_loop);
1677   void clone_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new,
1678                                                      Deoptimization::DeoptReason reason, IfProjNode* old_predicate_proj,
1679                                                      ParsePredicateSuccessProj* fast_loop_parse_predicate_proj,
1680                                                      ParsePredicateSuccessProj* slow_loop_parse_predicate_proj);
1681   IfProjNode* clone_assertion_predicate_for_unswitched_loops(IfNode* template_assertion_predicate, IfProjNode* predicate,
1682                                                              Deoptimization::DeoptReason reason,
1683                                                              ParsePredicateSuccessProj* parse_predicate_proj);
1684   static void check_cloned_parse_predicate_for_unswitching(const Node* new_entry, bool is_fast_loop) PRODUCT_RETURN;
1685 
1686   bool _created_loop_node;
1687   DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);)
1688   NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;)
1689 
1690 public:
1691   void set_created_loop_node() { _created_loop_node = true; }
1692   bool created_loop_node()     { return _created_loop_node; }
1693   void register_new_node(Node* n, Node* blk);
1694   void register_new_node_with_ctrl_of(Node* new_node, Node* ctrl_of) {
1695     register_new_node(new_node, get_ctrl(ctrl_of));
1696   }
1697 
1698   Node* clone_and_register(Node* n, Node* ctrl) {
1699     n = n->clone();
1700     register_new_node(n, ctrl);
1701     return n;
1702   }
1703 
1704 #ifdef ASSERT
1705   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1706 #endif
1707 
1708 #ifndef PRODUCT
1709   void dump() const;
1710   void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging
1711   void dump_idom(Node* n, uint count) const;
1712   void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const;
1713   void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const;
1714   IdealLoopTree* get_loop_idx(Node* n) const {
1715     // Dead nodes have no loop, so return the top level loop instead
1716     return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root;
1717   }
1718   // Print some stats
1719   static void print_statistics();
1720   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1721   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1722   static volatile int _long_loop_candidates;
1723   static volatile int _long_loop_nests;
1724   static volatile int _long_loop_counted_loops;
1725 #endif
1726 
1727 #ifdef ASSERT
1728   void verify() const;
1729   bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const;
1730   bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const;
1731   bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const;
1732 #endif
1733 
1734   void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const;
1735 
1736   void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN;
1737 
1738   LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test);
1739 
1740 
1741   int extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1742                                 Node_List &range_checks);
1743 
1744   void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1745                                    Node* inner_iters_actual_int, Node* inner_phi,
1746                                    Node* iv_add, LoopNode* inner_head);
1747 
1748   Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA);
1749 
1750   bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl);
1751 
1752   bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop);
1753 
1754   Node* compute_early_ctrl(Node* n, Node* n_ctrl);
1755 
1756   void try_sink_out_of_loop(Node* n);
1757 
1758   Node* clamp(Node* R, Node* L, Node* H);
1759 
1760   bool safe_for_if_replacement(const Node* dom) const;
1761 
1762   void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region);
1763 
1764   bool try_merge_identical_ifs(Node* n);
1765 
1766   void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm);
1767 
1768   void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
1769                       IdealLoopTree* parent, bool partial);
1770 
1771   void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
1772                 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist);
1773 
1774   void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
1775                      uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set,
1776                      Node_List*& split_bool_set, Node_List*& split_cex_set);
1777 
1778   void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set);
1779 
1780   bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2);
1781 
1782   bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2);
1783   void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i);
1784   bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2);
1785   void clone_template_assertion_expression_down(Node* node);
1786 
1787   Node* similar_subtype_check(const Node* x, Node* r_in);
1788 
1789   void update_addp_chain_base(Node* x, Node* old_base, Node* new_base);
1790 
1791   bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x);
1792 
1793   void pin_array_access_nodes_dependent_on(Node* ctrl);
1794 
1795   Node* ensure_node_and_inputs_are_above_pre_end(CountedLoopEndNode* pre_end, Node* node);
1796 };
1797 
1798 
1799 class AutoNodeBudget : public StackObj
1800 {
1801 public:
1802   enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK };
1803 
1804   AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK)
1805     : _phase(phase),
1806       _check_at_final(chk == BUDGET_CHECK),
1807       _nodes_at_begin(0)
1808   {
1809     precond(_phase != nullptr);
1810 
1811     _nodes_at_begin = _phase->require_nodes_begin();
1812   }
1813 
1814   ~AutoNodeBudget() {
1815 #ifndef PRODUCT
1816     if (TraceLoopOpts) {
1817       uint request = _phase->nodes_required();
1818       uint delta   = _phase->C->live_nodes() - _nodes_at_begin;
1819 
1820       if (request < delta) {
1821         tty->print_cr("Exceeding node budget: %d < %d", request, delta);
1822       } else {
1823         uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN;
1824         // Identify the worst estimates as "poor" ones.
1825         if (request > REQUIRE_MIN && delta > 0) {
1826           if ((delta >  REQUIRE_MIN && request >  3 * delta) ||
1827               (delta <= REQUIRE_MIN && request > 10 * delta)) {
1828             tty->print_cr("Poor node estimate: %d >> %d", request, delta);
1829           }
1830         }
1831       }
1832     }
1833 #endif // PRODUCT
1834     _phase->require_nodes_final(_nodes_at_begin, _check_at_final);
1835   }
1836 
1837 private:
1838   PhaseIdealLoop* _phase;
1839   bool _check_at_final;
1840   uint _nodes_at_begin;
1841 };
1842 
1843 inline Node* IdealLoopTree::tail() {
1844   // Handle lazy update of _tail field.
1845   if (_tail->in(0) == nullptr) {
1846     _tail = _phase->get_ctrl(_tail);
1847   }
1848   return _tail;
1849 }
1850 
1851 inline Node* IdealLoopTree::head() {
1852   // Handle lazy update of _head field.
1853   if (_head->in(0) == nullptr) {
1854     _head = _phase->get_ctrl(_head);
1855   }
1856   return _head;
1857 }
1858 
1859 // Iterate over the loop tree using a preorder, left-to-right traversal.
1860 //
1861 // Example that visits all counted loops from within PhaseIdealLoop
1862 //
1863 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1864 //   IdealLoopTree* lpt = iter.current();
1865 //   if (!lpt->is_counted()) continue;
1866 //   ...
1867 class LoopTreeIterator : public StackObj {
1868 private:
1869   IdealLoopTree* _root;
1870   IdealLoopTree* _curnt;
1871 
1872 public:
1873   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1874 
1875   bool done() { return _curnt == nullptr; }       // Finished iterating?
1876 
1877   void next();                                 // Advance to next loop tree
1878 
1879   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1880 };
1881 
1882 // Compute probability of reaching some CFG node from a fixed
1883 // dominating CFG node
1884 class PathFrequency {
1885 private:
1886   Node* _dom; // frequencies are computed relative to this node
1887   Node_Stack _stack;
1888   GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions
1889   GrowableArray<float> _freqs; // cache frequencies
1890   PhaseIdealLoop* _phase;
1891 
1892   float check_and_truncate_frequency(float f) {
1893     assert(f >= 0, "Incorrect frequency");
1894     // We do not perform an exact (f <= 1) check
1895     // this would be error prone with rounding of floats.
1896     // Performing a check like (f <= 1+eps) would be of benefit,
1897     // however, it is not evident how to determine such an eps,
1898     // given that an arbitrary number of add/mul operations
1899     // are performed on these frequencies.
1900     return (f > 1) ? 1 : f;
1901   }
1902 
1903 public:
1904   PathFrequency(Node* dom, PhaseIdealLoop* phase)
1905     : _dom(dom), _stack(0), _phase(phase) {
1906   }
1907 
1908   float to(Node* n);
1909 };
1910 
1911 // Class to clone a data node graph by taking a list of data nodes. This is done in 2 steps:
1912 //   1. Clone the data nodes
1913 //   2. Fix the cloned data inputs pointing to the old nodes to the cloned inputs by using an old->new mapping.
1914 class DataNodeGraph : public StackObj {
1915   PhaseIdealLoop* const _phase;
1916   const Unique_Node_List& _data_nodes;
1917   OrigToNewHashtable _orig_to_new;
1918 
1919  public:
1920   DataNodeGraph(const Unique_Node_List& data_nodes, PhaseIdealLoop* phase)
1921       : _phase(phase),
1922         _data_nodes(data_nodes),
1923         // Use 107 as best guess which is the first resize value in ResizeableResourceHashtable::large_table_sizes.
1924         _orig_to_new(107, MaxNodeLimit)
1925   {
1926 #ifdef ASSERT
1927     for (uint i = 0; i < data_nodes.size(); i++) {
1928       assert(!data_nodes[i]->is_CFG(), "only data nodes");
1929     }
1930 #endif
1931   }
1932   NONCOPYABLE(DataNodeGraph);
1933 
1934  private:
1935   void clone(Node* node, Node* new_ctrl);
1936   void clone_data_nodes(Node* new_ctrl);
1937   void clone_data_nodes_and_transform_opaque_loop_nodes(const TransformStrategyForOpaqueLoopNodes& transform_strategy,
1938                                                         Node* new_ctrl);
1939   void rewire_clones_to_cloned_inputs();
1940   void transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node);
1941 
1942  public:
1943   // Clone the provided data node collection and rewire the clones in such a way to create an identical graph copy.
1944   // Set 'new_ctrl' as ctrl for the cloned nodes.
1945   const OrigToNewHashtable& clone(Node* new_ctrl) {
1946     assert(_orig_to_new.number_of_entries() == 0, "should not call this method twice in a row");
1947     clone_data_nodes(new_ctrl);
1948     rewire_clones_to_cloned_inputs();
1949     return _orig_to_new;
1950   }
1951 
1952   // Create a copy of the data nodes provided to the constructor by doing the following:
1953   // Clone all non-OpaqueLoop* nodes and rewire them to create an identical subgraph copy. For the OpaqueLoop* nodes,
1954   // apply the provided transformation strategy and include the transformed node into the subgraph copy to get a complete
1955   // "cloned-and-transformed" graph copy. For all newly cloned nodes (which could also be new OpaqueLoop* nodes), set
1956   // `new_ctrl` as ctrl.
1957   const OrigToNewHashtable& clone_with_opaque_loop_transform_strategy(
1958       const TransformStrategyForOpaqueLoopNodes& transform_strategy,
1959       Node* new_ctrl) {
1960     clone_data_nodes_and_transform_opaque_loop_nodes(transform_strategy, new_ctrl);
1961     rewire_clones_to_cloned_inputs();
1962     return _orig_to_new;
1963   }
1964 };
1965 #endif // SHARE_OPTO_LOOPNODE_HPP