1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_LOOPNODE_HPP 26 #define SHARE_OPTO_LOOPNODE_HPP 27 28 #include "opto/cfgnode.hpp" 29 #include "opto/multnode.hpp" 30 #include "opto/phaseX.hpp" 31 #include "opto/predicates.hpp" 32 #include "opto/subnode.hpp" 33 #include "opto/type.hpp" 34 #include "utilities/checkedCast.hpp" 35 36 class CmpNode; 37 class BaseCountedLoopEndNode; 38 class CountedLoopNode; 39 class IdealLoopTree; 40 class LoopNode; 41 class Node; 42 class OuterStripMinedLoopEndNode; 43 class PredicateBlock; 44 class PathFrequency; 45 class PhaseIdealLoop; 46 class LoopSelector; 47 class UnswitchedLoopSelector; 48 class VectorSet; 49 class VSharedData; 50 class Invariance; 51 struct small_cache; 52 53 // 54 // I D E A L I Z E D L O O P S 55 // 56 // Idealized loops are the set of loops I perform more interesting 57 // transformations on, beyond simple hoisting. 58 59 //------------------------------LoopNode--------------------------------------- 60 // Simple loop header. Fall in path on left, loop-back path on right. 61 class LoopNode : public RegionNode { 62 // Size is bigger to hold the flags. However, the flags do not change 63 // the semantics so it does not appear in the hash & cmp functions. 64 virtual uint size_of() const { return sizeof(*this); } 65 protected: 66 uint _loop_flags; 67 // Names for flag bitfields 68 enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3, 69 MainHasNoPreLoop = 1<<2, 70 HasExactTripCount = 1<<3, 71 InnerLoop = 1<<4, 72 PartialPeelLoop = 1<<5, 73 PartialPeelFailed = 1<<6, 74 WasSlpAnalyzed = 1<<7, 75 PassedSlpAnalysis = 1<<8, 76 DoUnrollOnly = 1<<9, 77 VectorizedLoop = 1<<10, 78 HasAtomicPostLoop = 1<<11, 79 StripMined = 1<<12, 80 SubwordLoop = 1<<13, 81 ProfileTripFailed = 1<<14, 82 LoopNestInnerLoop = 1<<15, 83 LoopNestLongOuterLoop = 1<<16, 84 MultiversionFastLoop = 1<<17, 85 MultiversionSlowLoop = 2<<17, 86 MultiversionDelayedSlowLoop = 3<<17, 87 MultiversionFlagsMask = 3<<17, 88 }; 89 char _unswitch_count; 90 enum { _unswitch_max=3 }; 91 92 // Expected trip count from profile data 93 float _profile_trip_cnt; 94 95 public: 96 // Names for edge indices 97 enum { Self=0, EntryControl, LoopBackControl }; 98 99 bool is_inner_loop() const { return _loop_flags & InnerLoop; } 100 void set_inner_loop() { _loop_flags |= InnerLoop; } 101 102 bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; } 103 bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; } 104 void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; } 105 bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; } 106 bool is_strip_mined() const { return _loop_flags & StripMined; } 107 bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; } 108 bool is_subword_loop() const { return _loop_flags & SubwordLoop; } 109 bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; } 110 bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; } 111 112 void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; } 113 void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; } 114 void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; } 115 void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; } 116 void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; } 117 void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; } 118 void mark_strip_mined() { _loop_flags |= StripMined; } 119 void clear_strip_mined() { _loop_flags &= ~StripMined; } 120 void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; } 121 void mark_subword_loop() { _loop_flags |= SubwordLoop; } 122 void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; } 123 void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; } 124 125 int unswitch_max() { return _unswitch_max; } 126 int unswitch_count() { return _unswitch_count; } 127 128 void set_unswitch_count(int val) { 129 assert (val <= unswitch_max(), "too many unswitches"); 130 _unswitch_count = val; 131 } 132 133 void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; } 134 float profile_trip_cnt() { return _profile_trip_cnt; } 135 136 #ifndef PRODUCT 137 uint _stress_peeling_attempts = 0; 138 #endif 139 140 LoopNode(Node *entry, Node *backedge) 141 : RegionNode(3), _loop_flags(0), _unswitch_count(0), 142 _profile_trip_cnt(COUNT_UNKNOWN) { 143 init_class_id(Class_Loop); 144 init_req(EntryControl, entry); 145 init_req(LoopBackControl, backedge); 146 } 147 148 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 149 virtual int Opcode() const; 150 bool can_be_counted_loop(PhaseValues* phase) const { 151 return req() == 3 && in(0) != nullptr && 152 in(1) != nullptr && phase->type(in(1)) != Type::TOP && 153 in(2) != nullptr && phase->type(in(2)) != Type::TOP; 154 } 155 bool is_valid_counted_loop(BasicType bt) const; 156 #ifndef PRODUCT 157 virtual void dump_spec(outputStream *st) const; 158 #endif 159 160 void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN; 161 virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; } 162 virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; } 163 virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; } 164 virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; } 165 virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; } 166 }; 167 168 //------------------------------Counted Loops---------------------------------- 169 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit 170 // path (and maybe some other exit paths). The trip-counter exit is always 171 // last in the loop. The trip-counter have to stride by a constant; 172 // the exit value is also loop invariant. 173 174 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs. The 175 // CountedLoopNode has the incoming loop control and the loop-back-control 176 // which is always the IfTrue before the matching CountedLoopEndNode. The 177 // CountedLoopEndNode has an incoming control (possibly not the 178 // CountedLoopNode if there is control flow in the loop), the post-increment 179 // trip-counter value, and the limit. The trip-counter value is always of 180 // the form (Op old-trip-counter stride). The old-trip-counter is produced 181 // by a Phi connected to the CountedLoopNode. The stride is constant. 182 // The Op is any commutable opcode, including Add, Mul, Xor. The 183 // CountedLoopEndNode also takes in the loop-invariant limit value. 184 185 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the 186 // loop-back control. From CountedLoopEndNodes I can reach CountedLoopNodes 187 // via the old-trip-counter from the Op node. 188 189 //------------------------------CountedLoopNode-------------------------------- 190 // CountedLoopNodes head simple counted loops. CountedLoopNodes have as 191 // inputs the incoming loop-start control and the loop-back control, so they 192 // act like RegionNodes. They also take in the initial trip counter, the 193 // loop-invariant stride and the loop-invariant limit value. CountedLoopNodes 194 // produce a loop-body control and the trip counter value. Since 195 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model. 196 197 class BaseCountedLoopNode : public LoopNode { 198 public: 199 BaseCountedLoopNode(Node *entry, Node *backedge) 200 : LoopNode(entry, backedge) { 201 } 202 203 Node *init_control() const { return in(EntryControl); } 204 Node *back_control() const { return in(LoopBackControl); } 205 206 Node* init_trip() const; 207 Node* stride() const; 208 bool stride_is_con() const; 209 Node* limit() const; 210 Node* incr() const; 211 Node* phi() const; 212 213 BaseCountedLoopEndNode* loopexit_or_null() const; 214 BaseCountedLoopEndNode* loopexit() const; 215 216 virtual BasicType bt() const = 0; 217 218 jlong stride_con() const; 219 220 static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt); 221 222 virtual void set_trip_count(julong tc) = 0; 223 virtual julong trip_count() const = 0; 224 225 bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; } 226 void set_exact_trip_count(julong tc) { 227 set_trip_count(tc); 228 _loop_flags |= HasExactTripCount; 229 } 230 void set_nonexact_trip_count() { 231 _loop_flags &= ~HasExactTripCount; 232 } 233 }; 234 235 236 class CountedLoopNode : public BaseCountedLoopNode { 237 // Size is bigger to hold _main_idx. However, _main_idx does not change 238 // the semantics so it does not appear in the hash & cmp functions. 239 virtual uint size_of() const { return sizeof(*this); } 240 241 // For Pre- and Post-loops during debugging ONLY, this holds the index of 242 // the Main CountedLoop. Used to assert that we understand the graph shape. 243 node_idx_t _main_idx; 244 245 // Known trip count calculated by compute_exact_trip_count() 246 uint _trip_count; 247 248 // Log2 of original loop bodies in unrolled loop 249 int _unrolled_count_log2; 250 251 // Node count prior to last unrolling - used to decide if 252 // unroll,optimize,unroll,optimize,... is making progress 253 int _node_count_before_unroll; 254 255 // If slp analysis is performed we record the maximum 256 // vector mapped unroll factor here 257 int _slp_maximum_unroll_factor; 258 259 public: 260 CountedLoopNode(Node *entry, Node *backedge) 261 : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint), 262 _unrolled_count_log2(0), _node_count_before_unroll(0), 263 _slp_maximum_unroll_factor(0) { 264 init_class_id(Class_CountedLoop); 265 // Initialize _trip_count to the largest possible value. 266 // Will be reset (lower) if the loop's trip count is known. 267 } 268 269 virtual int Opcode() const; 270 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 271 272 CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); } 273 CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); } 274 int stride_con() const; 275 276 // Match increment with optional truncation 277 static Node* 278 match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type, 279 BasicType bt); 280 281 // A 'main' loop has a pre-loop and a post-loop. The 'main' loop 282 // can run short a few iterations and may start a few iterations in. 283 // It will be RCE'd and unrolled and aligned. 284 285 // A following 'post' loop will run any remaining iterations. Used 286 // during Range Check Elimination, the 'post' loop will do any final 287 // iterations with full checks. Also used by Loop Unrolling, where 288 // the 'post' loop will do any epilog iterations needed. Basically, 289 // a 'post' loop can not profitably be further unrolled or RCE'd. 290 291 // A preceding 'pre' loop will run at least 1 iteration (to do peeling), 292 // it may do under-flow checks for RCE and may do alignment iterations 293 // so the following main loop 'knows' that it is striding down cache 294 // lines. 295 296 // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or 297 // Aligned, may be missing it's pre-loop. 298 bool is_normal_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; } 299 bool is_pre_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Pre; } 300 bool is_main_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Main; } 301 bool is_post_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Post; } 302 bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; } 303 bool has_passed_slp () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; } 304 bool is_unroll_only () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; } 305 bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; } 306 bool has_atomic_post_loop () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; } 307 void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; } 308 309 IfNode* find_multiversion_if_from_multiversion_fast_main_loop(); 310 311 int main_idx() const { return _main_idx; } 312 313 void set_trip_count(julong tc) { 314 assert(tc < max_juint, "Cannot set trip count to max_juint"); 315 _trip_count = checked_cast<uint>(tc); 316 } 317 julong trip_count() const { return _trip_count; } 318 319 void set_pre_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; } 320 void set_main_loop ( ) { assert(is_normal_loop(),""); _loop_flags |= Main; } 321 void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; } 322 void set_normal_loop( ) { _loop_flags &= ~PreMainPostFlagsMask; } 323 324 void set_notpassed_slp() { 325 _loop_flags &= ~PassedSlpAnalysis; 326 } 327 328 void double_unrolled_count() { _unrolled_count_log2++; } 329 int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); } 330 331 void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; } 332 int node_count_before_unroll() { return _node_count_before_unroll; } 333 void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; } 334 int slp_max_unroll() const { return _slp_maximum_unroll_factor; } 335 336 // Multiversioning allows us to duplicate a CountedLoop, and have two versions, and the multiversion_if 337 // decides which one is taken: 338 // (1) fast_loop: We enter this loop by default, by default the multiversion_if has its condition set to 339 // "true", guarded by a OpaqueMultiversioning. If we want to make a speculative assumption 340 // for an optimization, we can add the runtime-check to the multiversion_if, and if the 341 // assumption fails we take the slow_loop instead, where we do not make the same speculative 342 // assumption. 343 // We call it the "fast_loop" because it has more optimizations, enabled by the speculative 344 // runtime-checks at the multiversion_if, and we expect the fast_loop to execute faster. 345 // (2) slow_loop: By default, it is not taken, until a runtime-check is added to the multiversion_if while 346 // optimizing the fast_looop. If such a runtime-check is never added, then after loop-opts 347 // the multiversion_if constant folds to true, and the slow_loop is folded away. To save 348 // compile time, we delay the optimization of the slow_loop until a runtime-check is added 349 // to the multiversion_if, at which point we resume optimizations for the slow_loop. 350 // We call it the "slow_loop" because it has fewer optimizations, since this is the fall-back 351 // loop where we do not make any of the speculative assumptions we make for the fast_loop. 352 // Hence, we expect the slow_loop to execute slower. 353 bool is_multiversion() const { return (_loop_flags & MultiversionFlagsMask) != Normal; } 354 bool is_multiversion_fast_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionFastLoop; } 355 bool is_multiversion_slow_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionSlowLoop; } 356 bool is_multiversion_delayed_slow_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionDelayedSlowLoop; } 357 void set_multiversion_fast_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionFastLoop; } 358 void set_multiversion_slow_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionSlowLoop; } 359 void set_multiversion_delayed_slow_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionDelayedSlowLoop; } 360 void set_no_multiversion() { assert( is_multiversion(), ""); _loop_flags &= ~MultiversionFlagsMask; } 361 362 virtual LoopNode* skip_strip_mined(int expect_skeleton = 1); 363 OuterStripMinedLoopNode* outer_loop() const; 364 virtual IfTrueNode* outer_loop_tail() const; 365 virtual OuterStripMinedLoopEndNode* outer_loop_end() const; 366 virtual IfFalseNode* outer_loop_exit() const; 367 virtual SafePointNode* outer_safepoint() const; 368 369 Node* skip_assertion_predicates_with_halt(); 370 371 virtual BasicType bt() const { 372 return T_INT; 373 } 374 375 Node* is_canonical_loop_entry(); 376 CountedLoopEndNode* find_pre_loop_end(); 377 378 Node* uncasted_init_trip(bool uncasted); 379 380 #ifndef PRODUCT 381 virtual void dump_spec(outputStream *st) const; 382 #endif 383 }; 384 385 class LongCountedLoopNode : public BaseCountedLoopNode { 386 private: 387 virtual uint size_of() const { return sizeof(*this); } 388 389 // Known trip count calculated by compute_exact_trip_count() 390 julong _trip_count; 391 392 public: 393 LongCountedLoopNode(Node *entry, Node *backedge) 394 : BaseCountedLoopNode(entry, backedge), _trip_count(max_julong) { 395 init_class_id(Class_LongCountedLoop); 396 } 397 398 virtual int Opcode() const; 399 400 virtual BasicType bt() const { 401 return T_LONG; 402 } 403 404 void set_trip_count(julong tc) { 405 assert(tc < max_julong, "Cannot set trip count to max_julong"); 406 _trip_count = tc; 407 } 408 julong trip_count() const { return _trip_count; } 409 410 LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); } 411 LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); } 412 }; 413 414 415 //------------------------------CountedLoopEndNode----------------------------- 416 // CountedLoopEndNodes end simple trip counted loops. They act much like 417 // IfNodes. 418 419 class BaseCountedLoopEndNode : public IfNode { 420 public: 421 enum { TestControl, TestValue }; 422 BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 423 : IfNode(control, test, prob, cnt) { 424 init_class_id(Class_BaseCountedLoopEnd); 425 } 426 427 Node *cmp_node() const { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; } 428 Node* incr() const { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; } 429 Node* limit() const { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; } 430 Node* stride() const { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; } 431 Node* init_trip() const { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; } 432 bool stride_is_con() const { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); } 433 434 PhiNode* phi() const { 435 Node* tmp = incr(); 436 if (tmp && tmp->req() == 3) { 437 Node* phi = tmp->in(1); 438 if (phi->is_Phi()) { 439 return phi->as_Phi(); 440 } 441 } 442 return nullptr; 443 } 444 445 BaseCountedLoopNode* loopnode() const { 446 // The CountedLoopNode that goes with this CountedLoopEndNode may 447 // have been optimized out by the IGVN so be cautious with the 448 // pattern matching on the graph 449 PhiNode* iv_phi = phi(); 450 if (iv_phi == nullptr) { 451 return nullptr; 452 } 453 Node* ln = iv_phi->in(0); 454 if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) { 455 return nullptr; 456 } 457 if (ln->as_BaseCountedLoop()->bt() != bt()) { 458 return nullptr; 459 } 460 return ln->as_BaseCountedLoop(); 461 } 462 463 BoolTest::mask test_trip() const { return in(TestValue)->as_Bool()->_test._test; } 464 465 jlong stride_con() const; 466 virtual BasicType bt() const = 0; 467 468 static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt); 469 }; 470 471 class CountedLoopEndNode : public BaseCountedLoopEndNode { 472 public: 473 474 CountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 475 : BaseCountedLoopEndNode(control, test, prob, cnt) { 476 init_class_id(Class_CountedLoopEnd); 477 } 478 virtual int Opcode() const; 479 480 CountedLoopNode* loopnode() const { 481 return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode(); 482 } 483 484 virtual BasicType bt() const { 485 return T_INT; 486 } 487 488 #ifndef PRODUCT 489 virtual void dump_spec(outputStream *st) const; 490 #endif 491 }; 492 493 class LongCountedLoopEndNode : public BaseCountedLoopEndNode { 494 public: 495 LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 496 : BaseCountedLoopEndNode(control, test, prob, cnt) { 497 init_class_id(Class_LongCountedLoopEnd); 498 } 499 500 LongCountedLoopNode* loopnode() const { 501 return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode(); 502 } 503 504 virtual int Opcode() const; 505 506 virtual BasicType bt() const { 507 return T_LONG; 508 } 509 }; 510 511 512 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const { 513 Node* bctrl = back_control(); 514 if (bctrl == nullptr) return nullptr; 515 516 Node* lexit = bctrl->in(0); 517 if (!lexit->is_BaseCountedLoopEnd()) { 518 return nullptr; 519 } 520 BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd(); 521 if (result->bt() != bt()) { 522 return nullptr; 523 } 524 return result; 525 } 526 527 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const { 528 BaseCountedLoopEndNode* cle = loopexit_or_null(); 529 assert(cle != nullptr, "loopexit is null"); 530 return cle; 531 } 532 533 inline Node* BaseCountedLoopNode::init_trip() const { 534 BaseCountedLoopEndNode* cle = loopexit_or_null(); 535 return cle != nullptr ? cle->init_trip() : nullptr; 536 } 537 inline Node* BaseCountedLoopNode::stride() const { 538 BaseCountedLoopEndNode* cle = loopexit_or_null(); 539 return cle != nullptr ? cle->stride() : nullptr; 540 } 541 542 inline bool BaseCountedLoopNode::stride_is_con() const { 543 BaseCountedLoopEndNode* cle = loopexit_or_null(); 544 return cle != nullptr && cle->stride_is_con(); 545 } 546 inline Node* BaseCountedLoopNode::limit() const { 547 BaseCountedLoopEndNode* cle = loopexit_or_null(); 548 return cle != nullptr ? cle->limit() : nullptr; 549 } 550 inline Node* BaseCountedLoopNode::incr() const { 551 BaseCountedLoopEndNode* cle = loopexit_or_null(); 552 return cle != nullptr ? cle->incr() : nullptr; 553 } 554 inline Node* BaseCountedLoopNode::phi() const { 555 BaseCountedLoopEndNode* cle = loopexit_or_null(); 556 return cle != nullptr ? cle->phi() : nullptr; 557 } 558 559 inline jlong BaseCountedLoopNode::stride_con() const { 560 BaseCountedLoopEndNode* cle = loopexit_or_null(); 561 return cle != nullptr ? cle->stride_con() : 0; 562 } 563 564 565 //------------------------------LoopLimitNode----------------------------- 566 // Counted Loop limit node which represents exact final iterator value: 567 // trip_count = (limit - init_trip + stride - 1)/stride 568 // final_value= trip_count * stride + init_trip. 569 // Use HW instructions to calculate it when it can overflow in integer. 570 // Note, final_value should fit into integer since counted loop has 571 // limit check: limit <= max_int-stride. 572 class LoopLimitNode : public Node { 573 enum { Init=1, Limit=2, Stride=3 }; 574 public: 575 LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(nullptr,init,limit,stride) { 576 // Put it on the Macro nodes list to optimize during macro nodes expansion. 577 init_flags(Flag_is_macro); 578 C->add_macro_node(this); 579 } 580 virtual int Opcode() const; 581 virtual const Type *bottom_type() const { return TypeInt::INT; } 582 virtual uint ideal_reg() const { return Op_RegI; } 583 virtual const Type* Value(PhaseGVN* phase) const; 584 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 585 virtual Node* Identity(PhaseGVN* phase); 586 }; 587 588 // Support for strip mining 589 class OuterStripMinedLoopNode : public LoopNode { 590 private: 591 void fix_sunk_stores_when_back_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) const; 592 void handle_sunk_stores_when_finishing_construction(PhaseIterGVN* igvn); 593 594 public: 595 OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge) 596 : LoopNode(entry, backedge) { 597 init_class_id(Class_OuterStripMinedLoop); 598 init_flags(Flag_is_macro); 599 C->add_macro_node(this); 600 } 601 602 virtual int Opcode() const; 603 604 virtual IfTrueNode* outer_loop_tail() const; 605 virtual OuterStripMinedLoopEndNode* outer_loop_end() const; 606 virtual IfFalseNode* outer_loop_exit() const; 607 virtual SafePointNode* outer_safepoint() const; 608 CountedLoopNode* inner_counted_loop() const { return unique_ctrl_out()->as_CountedLoop(); } 609 CountedLoopEndNode* inner_counted_loop_end() const { return inner_counted_loop()->loopexit(); } 610 IfFalseNode* inner_loop_exit() const { return inner_counted_loop_end()->proj_out(false)->as_IfFalse(); } 611 612 void adjust_strip_mined_loop(PhaseIterGVN* igvn); 613 614 void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const; 615 616 void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop); 617 618 static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop); 619 620 Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn, 621 PhaseIdealLoop* iloop); 622 }; 623 624 class OuterStripMinedLoopEndNode : public IfNode { 625 public: 626 OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt) 627 : IfNode(control, test, prob, cnt) { 628 init_class_id(Class_OuterStripMinedLoopEnd); 629 } 630 631 virtual int Opcode() const; 632 633 virtual const Type* Value(PhaseGVN* phase) const; 634 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 635 636 bool is_expanded(PhaseGVN *phase) const; 637 }; 638 639 // -----------------------------IdealLoopTree---------------------------------- 640 class IdealLoopTree : public ResourceObj { 641 public: 642 IdealLoopTree *_parent; // Parent in loop tree 643 IdealLoopTree *_next; // Next sibling in loop tree 644 IdealLoopTree *_child; // First child in loop tree 645 646 // The head-tail backedge defines the loop. 647 // If a loop has multiple backedges, this is addressed during cleanup where 648 // we peel off the multiple backedges, merging all edges at the bottom and 649 // ensuring that one proper backedge flow into the loop. 650 Node *_head; // Head of loop 651 Node *_tail; // Tail of loop 652 inline Node *tail(); // Handle lazy update of _tail field 653 inline Node *head(); // Handle lazy update of _head field 654 PhaseIdealLoop* _phase; 655 int _local_loop_unroll_limit; 656 int _local_loop_unroll_factor; 657 658 Node_List _body; // Loop body for inner loops 659 660 uint16_t _nest; // Nesting depth 661 uint8_t _irreducible:1, // True if irreducible 662 _has_call:1, // True if has call safepoint 663 _has_sfpt:1, // True if has non-call safepoint 664 _rce_candidate:1, // True if candidate for range check elimination 665 _has_range_checks:1, 666 _has_range_checks_computed:1; 667 668 Node_List* _safepts; // List of safepoints in this loop 669 Node_List* _required_safept; // A inner loop cannot delete these safepts; 670 bool _allow_optimizations; // Allow loop optimizations 671 672 IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail ) 673 : _parent(nullptr), _next(nullptr), _child(nullptr), 674 _head(head), _tail(tail), 675 _phase(phase), 676 _local_loop_unroll_limit(0), _local_loop_unroll_factor(0), 677 _body(Compile::current()->comp_arena()), 678 _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0), 679 _has_range_checks(0), _has_range_checks_computed(0), 680 _safepts(nullptr), 681 _required_safept(nullptr), 682 _allow_optimizations(true) 683 { 684 precond(_head != nullptr); 685 precond(_tail != nullptr); 686 } 687 688 // Is 'l' a member of 'this'? 689 bool is_member(const IdealLoopTree *l) const; // Test for nested membership 690 691 // Set loop nesting depth. Accumulate has_call bits. 692 int set_nest( uint depth ); 693 694 // Split out multiple fall-in edges from the loop header. Move them to a 695 // private RegionNode before the loop. This becomes the loop landing pad. 696 void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ); 697 698 // Split out the outermost loop from this shared header. 699 void split_outer_loop( PhaseIdealLoop *phase ); 700 701 // Merge all the backedges from the shared header into a private Region. 702 // Feed that region as the one backedge to this loop. 703 void merge_many_backedges( PhaseIdealLoop *phase ); 704 705 // Split shared headers and insert loop landing pads. 706 // Insert a LoopNode to replace the RegionNode. 707 // Returns TRUE if loop tree is structurally changed. 708 bool beautify_loops( PhaseIdealLoop *phase ); 709 710 // Perform optimization to use the loop predicates for null checks and range checks. 711 // Applies to any loop level (not just the innermost one) 712 bool loop_predication( PhaseIdealLoop *phase); 713 bool can_apply_loop_predication(); 714 715 // Perform iteration-splitting on inner loops. Split iterations to 716 // avoid range checks or one-shot null checks. Returns false if the 717 // current round of loop opts should stop. 718 bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new ); 719 720 // Driver for various flavors of iteration splitting. Returns false 721 // if the current round of loop opts should stop. 722 bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ); 723 724 // Given dominators, try to find loops with calls that must always be 725 // executed (call dominates loop tail). These loops do not need non-call 726 // safepoints (ncsfpt). 727 void check_safepts(VectorSet &visited, Node_List &stack); 728 729 // Allpaths backwards scan from loop tail, terminating each path at first safepoint 730 // encountered. 731 void allpaths_check_safepts(VectorSet &visited, Node_List &stack); 732 733 // Remove safepoints from loop. Optionally keeping one. 734 void remove_safepoints(PhaseIdealLoop* phase, bool keep_one); 735 736 // Convert to counted loops where possible 737 void counted_loop( PhaseIdealLoop *phase ); 738 739 // Check for Node being a loop-breaking test 740 Node *is_loop_exit(Node *iff) const; 741 742 // Remove simplistic dead code from loop body 743 void DCE_loop_body(); 744 745 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage. 746 // Replace with a 1-in-10 exit guess. 747 void adjust_loop_exit_prob( PhaseIdealLoop *phase ); 748 749 // Return TRUE or FALSE if the loop should never be RCE'd or aligned. 750 // Useful for unrolling loops with NO array accesses. 751 bool policy_peel_only( PhaseIdealLoop *phase ) const; 752 753 // Return TRUE or FALSE if the loop should be unswitched -- clone 754 // loop with an invariant test 755 bool policy_unswitching( PhaseIdealLoop *phase ) const; 756 757 // Micro-benchmark spamming. Remove empty loops. 758 bool do_remove_empty_loop( PhaseIdealLoop *phase ); 759 760 // Convert one-iteration loop into normal code. 761 bool do_one_iteration_loop( PhaseIdealLoop *phase ); 762 763 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can 764 // move some loop-invariant test (usually a null-check) before the loop. 765 bool policy_peeling(PhaseIdealLoop *phase); 766 767 uint estimate_peeling(PhaseIdealLoop *phase); 768 769 // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any 770 // known trip count in the counted loop node. 771 bool policy_maximally_unroll(PhaseIdealLoop *phase) const; 772 773 // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll 774 // if the loop is a counted loop and the loop body is small enough. 775 bool policy_unroll(PhaseIdealLoop *phase); 776 777 // Loop analyses to map to a maximal superword unrolling for vectorization. 778 void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct); 779 780 // Return TRUE or FALSE if the loop should be range-check-eliminated. 781 // Gather a list of IF tests that are dominated by iteration splitting; 782 // also gather the end of the first split and the start of the 2nd split. 783 bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const; 784 785 // Return TRUE if "iff" is a range check. 786 bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const; 787 bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset, 788 jlong& scale) const; 789 790 // Estimate the number of nodes required when cloning a loop (body). 791 uint est_loop_clone_sz(uint factor) const; 792 // Estimate the number of nodes required when unrolling a loop (body). 793 uint est_loop_unroll_sz(uint factor) const; 794 795 // Compute loop trip count if possible 796 void compute_trip_count(PhaseIdealLoop* phase, BasicType bt); 797 798 // Compute loop trip count from profile data 799 float compute_profile_trip_cnt_helper(Node* n); 800 void compute_profile_trip_cnt( PhaseIdealLoop *phase ); 801 802 // Reassociate invariant expressions. 803 void reassociate_invariants(PhaseIdealLoop *phase); 804 // Reassociate invariant binary expressions. 805 Node* reassociate(Node* n1, PhaseIdealLoop *phase); 806 // Reassociate invariant add, subtract, and compare expressions. 807 Node* reassociate_add_sub_cmp(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop* phase); 808 // Return nonzero index of invariant operand if invariant and variant 809 // are combined with an associative binary. Helper for reassociate_invariants. 810 int find_invariant(Node* n, PhaseIdealLoop *phase); 811 // Return TRUE if "n" is associative. 812 bool is_associative(Node* n, Node* base=nullptr); 813 // Return TRUE if "n" is an associative cmp node. 814 bool is_associative_cmp(Node* n); 815 816 // Return true if n is invariant 817 bool is_invariant(Node* n) const; 818 819 // Put loop body on igvn work list 820 void record_for_igvn(); 821 822 bool is_root() { return _parent == nullptr; } 823 // A proper/reducible loop w/o any (occasional) dead back-edge. 824 bool is_loop() { return !_irreducible && !tail()->is_top(); } 825 bool is_counted() { return is_loop() && _head->is_CountedLoop(); } 826 bool is_innermost() { return is_loop() && _child == nullptr; } 827 828 void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase); 829 830 bool compute_has_range_checks() const; 831 bool range_checks_present() { 832 if (!_has_range_checks_computed) { 833 if (compute_has_range_checks()) { 834 _has_range_checks = 1; 835 } 836 _has_range_checks_computed = 1; 837 } 838 return _has_range_checks; 839 } 840 841 // Return the parent's IdealLoopTree for a strip mined loop which is the outer strip mined loop. 842 // In all other cases, return this. 843 IdealLoopTree* skip_strip_mined() { 844 return _head->as_Loop()->is_strip_mined() ? _parent : this; 845 } 846 847 #ifndef PRODUCT 848 void dump_head(); // Dump loop head only 849 void dump(); // Dump this loop recursively 850 #endif 851 852 #ifdef ASSERT 853 GrowableArray<IdealLoopTree*> collect_sorted_children() const; 854 bool verify_tree(IdealLoopTree* loop_verify) const; 855 #endif 856 857 private: 858 enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop. 859 860 // Estimate the number of nodes resulting from control and data flow merge. 861 uint est_loop_flow_merge_sz() const; 862 863 // Check if the number of residual iterations is large with unroll_cnt. 864 // Return true if the residual iterations are more than 10% of the trip count. 865 bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const { 866 return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt(); 867 } 868 869 void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const; 870 871 bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const; 872 873 void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const; 874 875 bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq, 876 Node* sfpt) const; 877 878 bool empty_loop_candidate(PhaseIdealLoop* phase) const; 879 880 bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const; 881 }; 882 883 // -----------------------------PhaseIdealLoop--------------------------------- 884 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees 885 // into a loop tree. Drives the loop-based transformations on the ideal graph. 886 class PhaseIdealLoop : public PhaseTransform { 887 friend class IdealLoopTree; 888 friend class SuperWord; 889 friend class ShenandoahBarrierC2Support; 890 friend class AutoNodeBudget; 891 892 // Map loop membership for CFG nodes, and ctrl for non-CFG nodes. 893 Node_List _loop_or_ctrl; 894 895 // Pre-computed def-use info 896 PhaseIterGVN &_igvn; 897 898 // Head of loop tree 899 IdealLoopTree* _ltree_root; 900 901 // Array of pre-order numbers, plus post-visited bit. 902 // ZERO for not pre-visited. EVEN for pre-visited but not post-visited. 903 // ODD for post-visited. Other bits are the pre-order number. 904 uint *_preorders; 905 uint _max_preorder; 906 907 ReallocMark _nesting; // Safety checks for arena reallocation 908 909 const PhaseIdealLoop* _verify_me; 910 bool _verify_only; 911 912 // Allocate _preorders[] array 913 void allocate_preorders() { 914 _max_preorder = C->unique()+8; 915 _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder); 916 memset(_preorders, 0, sizeof(uint) * _max_preorder); 917 } 918 919 // Allocate _preorders[] array 920 void reallocate_preorders() { 921 _nesting.check(); // Check if a potential re-allocation in the resource arena is safe 922 if ( _max_preorder < C->unique() ) { 923 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique()); 924 _max_preorder = C->unique(); 925 } 926 memset(_preorders, 0, sizeof(uint) * _max_preorder); 927 } 928 929 // Check to grow _preorders[] array for the case when build_loop_tree_impl() 930 // adds new nodes. 931 void check_grow_preorders( ) { 932 _nesting.check(); // Check if a potential re-allocation in the resource arena is safe 933 if ( _max_preorder < C->unique() ) { 934 uint newsize = _max_preorder<<1; // double size of array 935 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize); 936 memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder)); 937 _max_preorder = newsize; 938 } 939 } 940 // Check for pre-visited. Zero for NOT visited; non-zero for visited. 941 int is_visited( Node *n ) const { return _preorders[n->_idx]; } 942 // Pre-order numbers are written to the Nodes array as low-bit-set values. 943 void set_preorder_visited( Node *n, int pre_order ) { 944 assert( !is_visited( n ), "already set" ); 945 _preorders[n->_idx] = (pre_order<<1); 946 }; 947 // Return pre-order number. 948 int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; } 949 950 // Check for being post-visited. 951 // Should be previsited already (checked with assert(is_visited(n))). 952 int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; } 953 954 // Mark as post visited 955 void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; } 956 957 public: 958 // Set/get control node out. Set lower bit to distinguish from IdealLoopTree 959 // Returns true if "n" is a data node, false if it's a control node. 960 bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; } 961 962 private: 963 // clear out dead code after build_loop_late 964 Node_List _deadlist; 965 Node_List _zero_trip_guard_opaque_nodes; 966 Node_List _multiversion_opaque_nodes; 967 968 // Support for faster execution of get_late_ctrl()/dom_lca() 969 // when a node has many uses and dominator depth is deep. 970 GrowableArray<jlong> _dom_lca_tags; 971 uint _dom_lca_tags_round; 972 void init_dom_lca_tags(); 973 974 // Helper for debugging bad dominance relationships 975 bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early); 976 977 Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false); 978 979 // Inline wrapper for frequent cases: 980 // 1) only one use 981 // 2) a use is the same as the current LCA passed as 'n1' 982 Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) { 983 assert( n->is_CFG(), "" ); 984 // Fast-path null lca 985 if( lca != nullptr && lca != n ) { 986 assert( lca->is_CFG(), "" ); 987 // find LCA of all uses 988 n = dom_lca_for_get_late_ctrl_internal( lca, n, tag ); 989 } 990 return find_non_split_ctrl(n); 991 } 992 Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag ); 993 994 // Helper function for directing control inputs away from CFG split points. 995 Node *find_non_split_ctrl( Node *ctrl ) const { 996 if (ctrl != nullptr) { 997 if (ctrl->is_MultiBranch()) { 998 ctrl = ctrl->in(0); 999 } 1000 assert(ctrl->is_CFG(), "CFG"); 1001 } 1002 return ctrl; 1003 } 1004 1005 void cast_incr_before_loop(Node* incr, Node* ctrl, CountedLoopNode* loop); 1006 1007 #ifdef ASSERT 1008 static void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop); 1009 #endif 1010 private: 1011 static void get_opaque_template_assertion_predicate_nodes(ParsePredicateSuccessProj* parse_predicate_proj, 1012 Unique_Node_List& list); 1013 void update_main_loop_assertion_predicates(CountedLoopNode* new_main_loop_head, int stride_con_before_unroll); 1014 void initialize_assertion_predicates_for_peeled_loop(CountedLoopNode* peeled_loop_head, 1015 CountedLoopNode* remaining_loop_head, 1016 uint first_node_index_in_cloned_loop_body, 1017 const Node_List& old_new); 1018 void initialize_assertion_predicates_for_main_loop(CountedLoopNode* pre_loop_head, 1019 CountedLoopNode* main_loop_head, 1020 uint first_node_index_in_pre_loop_body, 1021 uint last_node_index_in_pre_loop_body, 1022 DEBUG_ONLY(uint last_node_index_from_backedge_goo COMMA) 1023 const Node_List& old_new); 1024 void initialize_assertion_predicates_for_post_loop(CountedLoopNode* main_loop_head, CountedLoopNode* post_loop_head, 1025 uint first_node_index_in_cloned_loop_body); 1026 void create_assertion_predicates_at_loop(CountedLoopNode* source_loop_head, CountedLoopNode* target_loop_head, 1027 const NodeInLoopBody& _node_in_loop_body, bool kill_old_template); 1028 void create_assertion_predicates_at_main_or_post_loop(CountedLoopNode* source_loop_head, 1029 CountedLoopNode* target_loop_head, 1030 const NodeInLoopBody& _node_in_loop_body, 1031 bool kill_old_template); 1032 void rewire_old_target_loop_entry_dependency_to_new_entry(CountedLoopNode* target_loop_head, 1033 const Node* old_target_loop_entry, 1034 uint node_index_before_new_assertion_predicate_nodes); 1035 void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit, 1036 Node* bol); 1037 void log_loop_tree(); 1038 1039 public: 1040 1041 PhaseIterGVN &igvn() const { return _igvn; } 1042 1043 bool has_node(const Node* n) const { 1044 guarantee(n != nullptr, "No Node."); 1045 return _loop_or_ctrl[n->_idx] != nullptr; 1046 } 1047 // check if transform created new nodes that need _ctrl recorded 1048 Node *get_late_ctrl( Node *n, Node *early ); 1049 Node *get_early_ctrl( Node *n ); 1050 Node *get_early_ctrl_for_expensive(Node *n, Node* earliest); 1051 void set_early_ctrl(Node* n, bool update_body); 1052 void set_subtree_ctrl(Node* n, bool update_body); 1053 void set_ctrl( Node *n, Node *ctrl ) { 1054 assert( !has_node(n) || has_ctrl(n), "" ); 1055 assert( ctrl->in(0), "cannot set dead control node" ); 1056 assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" ); 1057 _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1)); 1058 } 1059 void set_root_as_ctrl(Node* n) { 1060 assert(!has_node(n) || has_ctrl(n), ""); 1061 _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)C->root() + 1)); 1062 } 1063 // Set control and update loop membership 1064 void set_ctrl_and_loop(Node* n, Node* ctrl) { 1065 IdealLoopTree* old_loop = get_loop(get_ctrl(n)); 1066 IdealLoopTree* new_loop = get_loop(ctrl); 1067 if (old_loop != new_loop) { 1068 if (old_loop->_child == nullptr) old_loop->_body.yank(n); 1069 if (new_loop->_child == nullptr) new_loop->_body.push(n); 1070 } 1071 set_ctrl(n, ctrl); 1072 } 1073 // Control nodes can be replaced or subsumed. During this pass they 1074 // get their replacement Node in slot 1. Instead of updating the block 1075 // location of all Nodes in the subsumed block, we lazily do it. As we 1076 // pull such a subsumed block out of the array, we write back the final 1077 // correct block. 1078 Node* get_ctrl(const Node* i) { 1079 assert(has_node(i), ""); 1080 Node *n = get_ctrl_no_update(i); 1081 _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1)); 1082 assert(has_node(i) && has_ctrl(i), ""); 1083 assert(n == find_non_split_ctrl(n), "must return legal ctrl" ); 1084 return n; 1085 } 1086 1087 bool is_dominator(Node* dominator, Node* n); 1088 bool is_strict_dominator(Node* dominator, Node* n); 1089 1090 // return get_ctrl for a data node and self(n) for a CFG node 1091 Node* ctrl_or_self(Node* n) { 1092 if (has_ctrl(n)) 1093 return get_ctrl(n); 1094 else { 1095 assert (n->is_CFG(), "must be a CFG node"); 1096 return n; 1097 } 1098 } 1099 1100 Node* get_ctrl_no_update_helper(const Node* i) const { 1101 assert(has_ctrl(i), "should be control, not loop"); 1102 return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1); 1103 } 1104 1105 Node* get_ctrl_no_update(const Node* i) const { 1106 assert( has_ctrl(i), "" ); 1107 Node *n = get_ctrl_no_update_helper(i); 1108 if (!n->in(0)) { 1109 // Skip dead CFG nodes 1110 do { 1111 n = get_ctrl_no_update_helper(n); 1112 } while (!n->in(0)); 1113 n = find_non_split_ctrl(n); 1114 } 1115 return n; 1116 } 1117 1118 // Check for loop being set 1119 // "n" must be a control node. Returns true if "n" is known to be in a loop. 1120 bool has_loop( Node *n ) const { 1121 assert(!has_node(n) || !has_ctrl(n), ""); 1122 return has_node(n); 1123 } 1124 // Set loop 1125 void set_loop( Node *n, IdealLoopTree *loop ) { 1126 _loop_or_ctrl.map(n->_idx, (Node*)loop); 1127 } 1128 // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms. Replace 1129 // the 'old_node' with 'new_node'. Kill old-node. Add a reference 1130 // from old_node to new_node to support the lazy update. Reference 1131 // replaces loop reference, since that is not needed for dead node. 1132 void lazy_update(Node *old_node, Node *new_node) { 1133 assert(old_node != new_node, "no cycles please"); 1134 // Re-use the side array slot for this node to provide the 1135 // forwarding pointer. 1136 _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1)); 1137 } 1138 void lazy_replace(Node *old_node, Node *new_node) { 1139 _igvn.replace_node(old_node, new_node); 1140 lazy_update(old_node, new_node); 1141 } 1142 1143 private: 1144 1145 // Place 'n' in some loop nest, where 'n' is a CFG node 1146 void build_loop_tree(); 1147 int build_loop_tree_impl(Node* n, int pre_order); 1148 // Insert loop into the existing loop tree. 'innermost' is a leaf of the 1149 // loop tree, not the root. 1150 IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost ); 1151 1152 #ifdef ASSERT 1153 // verify that regions in irreducible loops are marked is_in_irreducible_loop 1154 void verify_regions_in_irreducible_loops(); 1155 bool is_in_irreducible_loop(RegionNode* region); 1156 #endif 1157 1158 // Place Data nodes in some loop nest 1159 void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); 1160 void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); 1161 void build_loop_late_post_work(Node* n, bool pinned); 1162 void build_loop_late_post(Node* n); 1163 void verify_strip_mined_scheduling(Node *n, Node* least); 1164 1165 // Array of immediate dominance info for each CFG node indexed by node idx 1166 private: 1167 uint _idom_size; 1168 Node **_idom; // Array of immediate dominators 1169 uint *_dom_depth; // Used for fast LCA test 1170 GrowableArray<uint>* _dom_stk; // For recomputation of dom depth 1171 LoopOptsMode _mode; 1172 1173 // build the loop tree and perform any requested optimizations 1174 void build_and_optimize(); 1175 1176 // Dominators for the sea of nodes 1177 void Dominators(); 1178 1179 // Compute the Ideal Node to Loop mapping 1180 PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) : 1181 PhaseTransform(Ideal_Loop), 1182 _loop_or_ctrl(igvn.C->comp_arena()), 1183 _igvn(igvn), 1184 _verify_me(nullptr), 1185 _verify_only(false), 1186 _mode(mode), 1187 _nodes_required(UINT_MAX) { 1188 assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop"); 1189 build_and_optimize(); 1190 } 1191 1192 #ifndef PRODUCT 1193 // Verify that verify_me made the same decisions as a fresh run 1194 // or only verify that the graph is valid if verify_me is null. 1195 PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) : 1196 PhaseTransform(Ideal_Loop), 1197 _loop_or_ctrl(igvn.C->comp_arena()), 1198 _igvn(igvn), 1199 _verify_me(verify_me), 1200 _verify_only(verify_me == nullptr), 1201 _mode(LoopOptsVerify), 1202 _nodes_required(UINT_MAX) { 1203 DEBUG_ONLY(C->set_phase_verify_ideal_loop();) 1204 build_and_optimize(); 1205 DEBUG_ONLY(C->reset_phase_verify_ideal_loop();) 1206 } 1207 #endif 1208 1209 Node* insert_convert_node_if_needed(BasicType target, Node* input); 1210 1211 public: 1212 Node* idom_no_update(Node* d) const { 1213 return idom_no_update(d->_idx); 1214 } 1215 1216 Node* idom_no_update(uint didx) const { 1217 assert(didx < _idom_size, "oob"); 1218 Node* n = _idom[didx]; 1219 assert(n != nullptr,"Bad immediate dominator info."); 1220 while (n->in(0) == nullptr) { // Skip dead CFG nodes 1221 n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1); 1222 assert(n != nullptr,"Bad immediate dominator info."); 1223 } 1224 return n; 1225 } 1226 1227 Node *idom(Node* d) const { 1228 return idom(d->_idx); 1229 } 1230 1231 Node *idom(uint didx) const { 1232 Node *n = idom_no_update(didx); 1233 _idom[didx] = n; // Lazily remove dead CFG nodes from table. 1234 return n; 1235 } 1236 1237 uint dom_depth(Node* d) const { 1238 guarantee(d != nullptr, "Null dominator info."); 1239 guarantee(d->_idx < _idom_size, ""); 1240 return _dom_depth[d->_idx]; 1241 } 1242 void set_idom(Node* d, Node* n, uint dom_depth); 1243 // Locally compute IDOM using dom_lca call 1244 Node *compute_idom( Node *region ) const; 1245 // Recompute dom_depth 1246 void recompute_dom_depth(); 1247 1248 // Is safept not required by an outer loop? 1249 bool is_deleteable_safept(Node* sfpt); 1250 1251 // Replace parallel induction variable (parallel to trip counter) 1252 void replace_parallel_iv(IdealLoopTree *loop); 1253 1254 Node *dom_lca( Node *n1, Node *n2 ) const { 1255 return find_non_split_ctrl(dom_lca_internal(n1, n2)); 1256 } 1257 Node *dom_lca_internal( Node *n1, Node *n2 ) const; 1258 1259 Node* dominated_node(Node* c1, Node* c2) { 1260 assert(is_dominator(c1, c2) || is_dominator(c2, c1), "nodes must be related"); 1261 return is_dominator(c1, c2) ? c2 : c1; 1262 } 1263 1264 // Return control node that's dominated by the 2 others 1265 Node* dominated_node(Node* c1, Node* c2, Node* c3) { 1266 return dominated_node(c1, dominated_node(c2, c3)); 1267 } 1268 1269 // Build and verify the loop tree without modifying the graph. This 1270 // is useful to verify that all inputs properly dominate their uses. 1271 static void verify(PhaseIterGVN& igvn) { 1272 #ifdef ASSERT 1273 ResourceMark rm; 1274 Compile::TracePhase tp(_t_idealLoopVerify); 1275 PhaseIdealLoop v(igvn); 1276 #endif 1277 } 1278 1279 // Recommended way to use PhaseIdealLoop. 1280 // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations. 1281 static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) { 1282 ResourceMark rm; 1283 PhaseIdealLoop v(igvn, mode); 1284 1285 Compile* C = Compile::current(); 1286 if (!C->failing()) { 1287 // Cleanup any modified bits 1288 igvn.optimize(); 1289 if (C->failing()) { return; } 1290 v.log_loop_tree(); 1291 } 1292 } 1293 1294 // True if the method has at least 1 irreducible loop 1295 bool _has_irreducible_loops; 1296 1297 // Per-Node transform 1298 virtual Node* transform(Node* n) { return nullptr; } 1299 1300 Node* loop_exit_control(Node* x, IdealLoopTree* loop); 1301 Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob); 1302 Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr); 1303 Node* loop_iv_stride(Node* incr, Node*& xphi); 1304 PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x); 1305 1306 bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt); 1307 1308 Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt); 1309 bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new); 1310 #ifdef ASSERT 1311 bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop); 1312 #endif 1313 void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt); 1314 SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop); 1315 IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift); 1316 IdealLoopTree* create_outer_strip_mined_loop(Node* init_control, 1317 IdealLoopTree* loop, float cl_prob, float le_fcnt, 1318 Node*& entry_control, Node*& iffalse); 1319 1320 Node* exact_limit( IdealLoopTree *loop ); 1321 1322 // Return a post-walked LoopNode 1323 IdealLoopTree *get_loop( Node *n ) const { 1324 // Dead nodes have no loop, so return the top level loop instead 1325 if (!has_node(n)) return _ltree_root; 1326 assert(!has_ctrl(n), ""); 1327 return (IdealLoopTree*)_loop_or_ctrl[n->_idx]; 1328 } 1329 1330 IdealLoopTree* ltree_root() const { return _ltree_root; } 1331 1332 // Is 'n' a (nested) member of 'loop'? 1333 int is_member( const IdealLoopTree *loop, Node *n ) const { 1334 return loop->is_member(get_loop(n)); } 1335 1336 // This is the basic building block of the loop optimizations. It clones an 1337 // entire loop body. It makes an old_new loop body mapping; with this 1338 // mapping you can find the new-loop equivalent to an old-loop node. All 1339 // new-loop nodes are exactly equal to their old-loop counterparts, all 1340 // edges are the same. All exits from the old-loop now have a RegionNode 1341 // that merges the equivalent new-loop path. This is true even for the 1342 // normal "loop-exit" condition. All uses of loop-invariant old-loop values 1343 // now come from (one or more) Phis that merge their new-loop equivalents. 1344 // Parameter side_by_side_idom: 1345 // When side_by_size_idom is null, the dominator tree is constructed for 1346 // the clone loop to dominate the original. Used in construction of 1347 // pre-main-post loop sequence. 1348 // When nonnull, the clone and original are side-by-side, both are 1349 // dominated by the passed in side_by_side_idom node. Used in 1350 // construction of unswitched loops. 1351 enum CloneLoopMode { 1352 IgnoreStripMined = 0, // Only clone inner strip mined loop 1353 CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops 1354 ControlAroundStripMined = 2 // Only clone inner strip mined loop, 1355 // result control flow branches 1356 // either to inner clone or outer 1357 // strip mined loop. 1358 }; 1359 void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth, 1360 CloneLoopMode mode, Node* side_by_side_idom = nullptr); 1361 void clone_loop_handle_data_uses(Node* old, Node_List &old_new, 1362 IdealLoopTree* loop, IdealLoopTree* companion_loop, 1363 Node_List*& split_if_set, Node_List*& split_bool_set, 1364 Node_List*& split_cex_set, Node_List& worklist, 1365 uint new_counter, CloneLoopMode mode); 1366 void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop, 1367 IdealLoopTree* outer_loop, int dd, Node_List &old_new, 1368 Node_List& extra_data_nodes); 1369 1370 // If we got the effect of peeling, either by actually peeling or by 1371 // making a pre-loop which must execute at least once, we can remove 1372 // all loop-invariant dominated tests in the main body. 1373 void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ); 1374 1375 // Generate code to do a loop peel for the given loop (and body). 1376 // old_new is a temp array. 1377 void do_peeling( IdealLoopTree *loop, Node_List &old_new ); 1378 1379 // Add pre and post loops around the given loop. These loops are used 1380 // during RCE, unrolling and aligning loops. 1381 void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ); 1382 1383 // Add post loop after the given loop. 1384 Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new, 1385 CountedLoopNode* main_head, CountedLoopEndNode* main_end, 1386 Node* incr, Node* limit, CountedLoopNode*& post_head); 1387 1388 // Add a vector post loop between a vector main loop and the current post loop 1389 void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new); 1390 // If Node n lives in the back_ctrl block, we clone a private version of n 1391 // in preheader_ctrl block and return that, otherwise return n. 1392 Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ); 1393 1394 // Take steps to maximally unroll the loop. Peel any odd iterations, then 1395 // unroll to do double iterations. The next round of major loop transforms 1396 // will repeat till the doubled loop body does all remaining iterations in 1 1397 // pass. 1398 void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ); 1399 1400 // Unroll the loop body one step - make each trip do 2 iterations. 1401 void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ); 1402 1403 // Return true if exp is a constant times an induction var 1404 bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0); 1405 1406 bool is_iv(Node* exp, Node* iv, BasicType bt); 1407 1408 // Return true if exp is a scaled induction var plus (or minus) constant 1409 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0); 1410 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) { 1411 jlong long_scale; 1412 if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) { 1413 int int_scale = checked_cast<int>(long_scale); 1414 if (p_scale != nullptr) { 1415 *p_scale = int_scale; 1416 } 1417 return true; 1418 } 1419 return false; 1420 } 1421 // Helper for finding more complex matches to is_scaled_iv_plus_offset. 1422 bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv, 1423 BasicType bt, 1424 jlong* p_scale, Node** p_offset, 1425 bool* p_short_scale, int depth); 1426 1427 // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted 1428 IfTrueNode* create_new_if_for_predicate(const ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry, 1429 Deoptimization::DeoptReason reason, int opcode, 1430 bool rewire_uncommon_proj_phi_inputs = false); 1431 1432 private: 1433 // Helper functions for create_new_if_for_predicate() 1434 void set_ctrl_of_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj); 1435 Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl); 1436 Node* clone_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj); 1437 void fix_cloned_data_node_controls(const ProjNode* orig, Node* new_uncommon_proj, 1438 const OrigToNewHashtable& orig_to_clone); 1439 bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt, 1440 Node* loop_entry); 1441 1442 public: 1443 void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true); 1444 1445 // Replace the control input of 'node' with 'new_control' and set the dom depth to the one of 'new_control'. 1446 void replace_control(Node* node, Node* new_control) { 1447 _igvn.replace_input_of(node, 0, new_control); 1448 set_idom(node, new_control, dom_depth(new_control)); 1449 } 1450 1451 void replace_loop_entry(LoopNode* loop_head, Node* new_entry) { 1452 _igvn.replace_input_of(loop_head, LoopNode::EntryControl, new_entry); 1453 set_idom(loop_head, new_entry, dom_depth(new_entry)); 1454 } 1455 1456 // Construct a range check for a predicate if 1457 BoolNode* rc_predicate(Node* ctrl, int scale, Node* offset, Node* init, Node* limit, 1458 jint stride, Node* range, bool upper, bool& overflow); 1459 1460 // Implementation of the loop predication to promote checks outside the loop 1461 bool loop_predication_impl(IdealLoopTree *loop); 1462 1463 private: 1464 bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj, 1465 ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero, 1466 Invariance& invar, Deoptimization::DeoptReason deopt_reason); 1467 bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const; 1468 bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt); 1469 void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt, 1470 PathFrequency& pf, Node_Stack& stack, VectorSet& seen, 1471 Node_List& if_proj_list); 1472 IfTrueNode* create_template_assertion_predicate(CountedLoopNode* loop_head, ParsePredicateNode* parse_predicate, 1473 IfProjNode* new_control, int scale, Node* offset, Node* range); 1474 void eliminate_hoisted_range_check(IfTrueNode* hoisted_check_proj, IfTrueNode* template_assertion_predicate_proj); 1475 1476 // Helper function to collect predicate for eliminating the useless ones 1477 void eliminate_useless_predicates() const; 1478 1479 void eliminate_useless_zero_trip_guard(); 1480 void eliminate_useless_multiversion_if(); 1481 1482 public: 1483 // Change the control input of expensive nodes to allow commoning by 1484 // IGVN when it is guaranteed to not result in a more frequent 1485 // execution of the expensive node. Return true if progress. 1486 bool process_expensive_nodes(); 1487 1488 // Check whether node has become unreachable 1489 bool is_node_unreachable(Node *n) const { 1490 return !has_node(n) || n->is_unreachable(_igvn); 1491 } 1492 1493 // Eliminate range-checks and other trip-counter vs loop-invariant tests. 1494 void do_range_check(IdealLoopTree* loop); 1495 1496 // Clone loop with an invariant test (that does not exit) and 1497 // insert a clone of the test that selects which version to 1498 // execute. 1499 void do_unswitching(IdealLoopTree* loop, Node_List& old_new); 1500 1501 IfNode* find_unswitch_candidate(const IdealLoopTree* loop) const; 1502 1503 private: 1504 static bool has_control_dependencies_from_predicates(LoopNode* head); 1505 static void revert_to_normal_loop(const LoopNode* loop_head); 1506 1507 void hoist_invariant_check_casts(const IdealLoopTree* loop, const Node_List& old_new, 1508 const UnswitchedLoopSelector& unswitched_loop_selector); 1509 void add_unswitched_loop_version_bodies_to_igvn(IdealLoopTree* loop, const Node_List& old_new); 1510 static void increment_unswitch_counts(LoopNode* original_head, LoopNode* new_head); 1511 void remove_unswitch_candidate_from_loops(const Node_List& old_new, const UnswitchedLoopSelector& unswitched_loop_selector); 1512 #ifndef PRODUCT 1513 static void trace_loop_unswitching_count(IdealLoopTree* loop, LoopNode* original_head); 1514 static void trace_loop_unswitching_impossible(const LoopNode* original_head); 1515 static void trace_loop_unswitching_result(const UnswitchedLoopSelector& unswitched_loop_selector, 1516 const LoopNode* original_head, const LoopNode* new_head); 1517 static void trace_loop_multiversioning_result(const LoopSelector& loop_selector, 1518 const LoopNode* original_head, const LoopNode* new_head); 1519 #endif 1520 1521 public: 1522 1523 // Range Check Elimination uses this function! 1524 // Constrain the main loop iterations so the affine function: 1525 // low_limit <= scale_con * I + offset < upper_limit 1526 // always holds true. That is, either increase the number of iterations in 1527 // the pre-loop or the post-loop until the condition holds true in the main 1528 // loop. Scale_con, offset and limit are all loop invariant. 1529 void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit); 1530 // Helper function for add_constraint(). 1531 Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round); 1532 1533 // Partially peel loop up through last_peel node. 1534 bool partial_peel( IdealLoopTree *loop, Node_List &old_new ); 1535 bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new); 1536 1537 // AutoVectorize the loop: replace scalar ops with vector ops. 1538 enum AutoVectorizeStatus { 1539 Impossible, // This loop has the wrong shape to even try vectorization. 1540 Success, // We just successfully vectorized the loop. 1541 TriedAndFailed, // We tried to vectorize, but failed. 1542 }; 1543 AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared); 1544 1545 void maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new); 1546 void do_multiversioning(IdealLoopTree* lpt, Node_List& old_new); 1547 IfTrueNode* create_new_if_for_multiversion(IfTrueNode* multiversioning_fast_proj); 1548 bool try_resume_optimizations_for_delayed_slow_loop(IdealLoopTree* lpt); 1549 1550 // Move an unordered Reduction out of loop if possible 1551 void move_unordered_reduction_out_of_loop(IdealLoopTree* loop); 1552 1553 // Create a scheduled list of nodes control dependent on ctrl set. 1554 void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched ); 1555 // Has a use in the vector set 1556 bool has_use_in_set( Node* n, VectorSet& vset ); 1557 // Has use internal to the vector set (ie. not in a phi at the loop head) 1558 bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ); 1559 // clone "n" for uses that are outside of loop 1560 int clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ); 1561 // clone "n" for special uses that are in the not_peeled region 1562 void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n, 1563 VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ); 1564 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist 1565 void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ); 1566 #ifdef ASSERT 1567 // Validate the loop partition sets: peel and not_peel 1568 bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel ); 1569 // Ensure that uses outside of loop are of the right form 1570 bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list, 1571 uint orig_exit_idx, uint clone_exit_idx); 1572 bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx); 1573 #endif 1574 1575 // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.) 1576 int stride_of_possible_iv( Node* iff ); 1577 bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; } 1578 // Return the (unique) control output node that's in the loop (if it exists.) 1579 Node* stay_in_loop( Node* n, IdealLoopTree *loop); 1580 // Insert a signed compare loop exit cloned from an unsigned compare. 1581 IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop); 1582 void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop); 1583 // Utility to register node "n" with PhaseIdealLoop 1584 void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth); 1585 // Utility to create an if-projection 1586 ProjNode* proj_clone(ProjNode* p, IfNode* iff); 1587 // Force the iff control output to be the live_proj 1588 Node* short_circuit_if(IfNode* iff, ProjNode* live_proj); 1589 // Insert a region before an if projection 1590 RegionNode* insert_region_before_proj(ProjNode* proj); 1591 // Insert a new if before an if projection 1592 ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj); 1593 1594 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps. 1595 // "Nearly" because all Nodes have been cloned from the original in the loop, 1596 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs 1597 // through the Phi recursively, and return a Bool. 1598 Node* clone_iff(PhiNode* phi); 1599 CmpNode* clone_bool(PhiNode* phi); 1600 1601 1602 // Rework addressing expressions to get the most loop-invariant stuff 1603 // moved out. We'd like to do all associative operators, but it's especially 1604 // important (common) to do address expressions. 1605 Node* remix_address_expressions(Node* n); 1606 Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt); 1607 1608 // Convert add to muladd to generate MuladdS2I under certain criteria 1609 Node * convert_add_to_muladd(Node * n); 1610 1611 // Attempt to use a conditional move instead of a phi/branch 1612 Node *conditional_move( Node *n ); 1613 1614 // Check for aggressive application of 'split-if' optimization, 1615 // using basic block level info. 1616 void split_if_with_blocks ( VectorSet &visited, Node_Stack &nstack); 1617 Node *split_if_with_blocks_pre ( Node *n ); 1618 void split_if_with_blocks_post( Node *n ); 1619 Node *has_local_phi_input( Node *n ); 1620 // Mark an IfNode as being dominated by a prior test, 1621 // without actually altering the CFG (and hence IDOM info). 1622 void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false); 1623 void rewire_safe_outputs_to_dominator(Node* source, Node* dominator, bool pin_array_access_nodes); 1624 1625 // Split Node 'n' through merge point 1626 RegionNode* split_thru_region(Node* n, RegionNode* region); 1627 // Split Node 'n' through merge point if there is enough win. 1628 Node *split_thru_phi( Node *n, Node *region, int policy ); 1629 // Found an If getting its condition-code input from a Phi in the 1630 // same block. Split thru the Region. 1631 void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr); 1632 1633 private: 1634 // Class to keep track of wins in split_thru_phi. 1635 class SplitThruPhiWins { 1636 private: 1637 // Region containing the phi we are splitting through. 1638 const Node* _region; 1639 1640 // Sum of all wins regardless of where they happen. This applies to Loops phis as well as non-loop phis. 1641 int _total_wins; 1642 1643 // For Loops, wins have different impact depending on if they happen on loop entry or on the backedge. 1644 // Number of wins on a loop entry edge if the split is through a loop head, 1645 // otherwise 0. Entry edge wins only pay dividends once on loop entry. 1646 int _loop_entry_wins; 1647 // Number of wins on a loop back-edge, which pay dividends on every iteration. 1648 int _loop_back_wins; 1649 1650 public: 1651 SplitThruPhiWins(const Node* region) : 1652 _region(region), 1653 _total_wins(0), 1654 _loop_entry_wins(0), 1655 _loop_back_wins(0) {}; 1656 1657 void reset() {_total_wins = 0; _loop_entry_wins = 0; _loop_back_wins = 0;} 1658 void add_win(int ctrl_index) { 1659 if (_region->is_Loop() && ctrl_index == LoopNode::EntryControl) { 1660 _loop_entry_wins++; 1661 } else if (_region->is_Loop() && ctrl_index == LoopNode::LoopBackControl) { 1662 _loop_back_wins++; 1663 } 1664 _total_wins++; 1665 } 1666 // Is this split profitable with respect to the policy? 1667 bool profitable(int policy) const { 1668 assert(_region->is_Loop() || (_loop_entry_wins == 0 && _loop_back_wins == 0), "wins on loop edges without a loop"); 1669 assert(!_region->is_Loop() || _total_wins == _loop_entry_wins + _loop_back_wins, "missed some win"); 1670 // In general this means that the split has to have more wins than specified 1671 // in the policy. However, for loops we need to take into account where the 1672 // wins happen. We need to be careful when splitting, because splitting nodes 1673 // related to the iv through the phi can sufficiently rearrange the loop 1674 // structure to prevent RCE and thus vectorization. Thus, we only deem splitting 1675 // profitable if the win of a split is not on the entry edge, as such wins 1676 // only pay off once and have a high chance of messing up the loop structure. 1677 return (_loop_entry_wins == 0 && _total_wins > policy) || 1678 // If there are wins on the entry edge but the backadge also has sufficient wins, 1679 // there is sufficient profitability to spilt regardless of the risk of messing 1680 // up the loop structure. 1681 _loop_back_wins > policy || 1682 // If the policy is less than 0, a split is always profitable, i.e. we always 1683 // split. This is needed when we split a node and then must also split a 1684 // dependant node, i.e. spliting a Bool node after splitting a Cmp node. 1685 policy < 0; 1686 } 1687 }; 1688 1689 public: 1690 1691 // Conversion of fill/copy patterns into intrinsic versions 1692 bool do_intrinsify_fill(); 1693 bool intrinsify_fill(IdealLoopTree* lpt); 1694 bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value, 1695 Node*& shift, Node*& offset); 1696 1697 private: 1698 // Return a type based on condition control flow 1699 const TypeInt* filtered_type( Node *n, Node* n_ctrl); 1700 const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); } 1701 // Helpers for filtered type 1702 const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl); 1703 1704 // Helper functions 1705 Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache ); 1706 Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true ); 1707 void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true ); 1708 bool split_up( Node *n, Node *blk1, Node *blk2 ); 1709 1710 Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const; 1711 Node* try_move_store_before_loop(Node* n, Node *n_ctrl); 1712 void try_move_store_after_loop(Node* n); 1713 bool identical_backtoback_ifs(Node *n); 1714 bool can_split_if(Node *n_ctrl); 1715 bool cannot_split_division(const Node* n, const Node* region) const; 1716 static bool is_divisor_loop_phi(const Node* divisor, const Node* loop); 1717 bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const; 1718 1719 // Determine if a method is too big for a/another round of split-if, based on 1720 // a magic (approximate) ratio derived from the equally magic constant 35000, 1721 // previously used for this purpose (but without relating to the node limit). 1722 bool must_throttle_split_if() { 1723 uint threshold = C->max_node_limit() * 2 / 5; 1724 return C->live_nodes() > threshold; 1725 } 1726 1727 // A simplistic node request tracking mechanism, where 1728 // = UINT_MAX Request not valid or made final. 1729 // < UINT_MAX Nodes currently requested (estimate). 1730 uint _nodes_required; 1731 1732 enum { REQUIRE_MIN = 70 }; 1733 1734 uint nodes_required() const { return _nodes_required; } 1735 1736 // Given the _currently_ available number of nodes, check whether there is 1737 // "room" for an additional request or not, considering the already required 1738 // number of nodes. Return TRUE if the new request is exceeding the node 1739 // budget limit, otherwise return FALSE. Note that this interpretation will 1740 // act pessimistic on additional requests when new nodes have already been 1741 // generated since the 'begin'. This behaviour fits with the intention that 1742 // node estimates/requests should be made upfront. 1743 bool exceeding_node_budget(uint required = 0) { 1744 assert(C->live_nodes() < C->max_node_limit(), "sanity"); 1745 uint available = C->max_node_limit() - C->live_nodes(); 1746 return available < required + _nodes_required + REQUIRE_MIN; 1747 } 1748 1749 uint require_nodes(uint require, uint minreq = REQUIRE_MIN) { 1750 precond(require > 0); 1751 _nodes_required += MAX2(require, minreq); 1752 return _nodes_required; 1753 } 1754 1755 bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) { 1756 return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0; 1757 } 1758 1759 uint require_nodes_begin() { 1760 assert(_nodes_required == UINT_MAX, "Bad state (begin)."); 1761 _nodes_required = 0; 1762 return C->live_nodes(); 1763 } 1764 1765 // When a node request is final, optionally check that the requested number 1766 // of nodes was reasonably correct with respect to the number of new nodes 1767 // introduced since the last 'begin'. Always check that we have not exceeded 1768 // the maximum node limit. 1769 void require_nodes_final(uint live_at_begin, bool check_estimate) { 1770 assert(_nodes_required < UINT_MAX, "Bad state (final)."); 1771 1772 #ifdef ASSERT 1773 if (check_estimate) { 1774 // Check that the node budget request was not off by too much (x2). 1775 // Should this be the case we _surely_ need to improve the estimates 1776 // used in our budget calculations. 1777 if (C->live_nodes() - live_at_begin > 2 * _nodes_required) { 1778 log_info(compilation)("Bad node estimate: actual = %d >> request = %d", 1779 C->live_nodes() - live_at_begin, _nodes_required); 1780 } 1781 } 1782 #endif 1783 // Assert that we have stayed within the node budget limit. 1784 assert(C->live_nodes() < C->max_node_limit(), 1785 "Exceeding node budget limit: %d + %d > %d (request = %d)", 1786 C->live_nodes() - live_at_begin, live_at_begin, 1787 C->max_node_limit(), _nodes_required); 1788 1789 _nodes_required = UINT_MAX; 1790 } 1791 1792 private: 1793 1794 bool _created_loop_node; 1795 DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);) 1796 NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;) 1797 1798 public: 1799 void set_created_loop_node() { _created_loop_node = true; } 1800 bool created_loop_node() { return _created_loop_node; } 1801 void register_new_node(Node* n, Node* blk); 1802 void register_new_node_with_ctrl_of(Node* new_node, Node* ctrl_of) { 1803 register_new_node(new_node, get_ctrl(ctrl_of)); 1804 } 1805 1806 Node* clone_and_register(Node* n, Node* ctrl) { 1807 n = n->clone(); 1808 register_new_node(n, ctrl); 1809 return n; 1810 } 1811 1812 #ifdef ASSERT 1813 void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA); 1814 #endif 1815 1816 #ifndef PRODUCT 1817 void dump() const; 1818 void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging 1819 void dump_idom(Node* n, uint count) const; 1820 void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const; 1821 void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const; 1822 IdealLoopTree* get_loop_idx(Node* n) const { 1823 // Dead nodes have no loop, so return the top level loop instead 1824 return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root; 1825 } 1826 // Print some stats 1827 static void print_statistics(); 1828 static int _loop_invokes; // Count of PhaseIdealLoop invokes 1829 static int _loop_work; // Sum of PhaseIdealLoop x _unique 1830 static volatile int _long_loop_candidates; 1831 static volatile int _long_loop_nests; 1832 static volatile int _long_loop_counted_loops; 1833 #endif 1834 1835 #ifdef ASSERT 1836 void verify() const; 1837 bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const; 1838 bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const; 1839 bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const; 1840 #endif 1841 1842 void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const; 1843 1844 void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN; 1845 1846 LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test); 1847 1848 1849 int extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi, 1850 Node_List &range_checks); 1851 1852 void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi, 1853 Node* inner_iters_actual_int, Node* inner_phi, 1854 Node* iv_add, LoopNode* inner_head); 1855 1856 Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA); 1857 1858 bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl); 1859 1860 bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop); 1861 1862 Node* compute_early_ctrl(Node* n, Node* n_ctrl); 1863 1864 void try_sink_out_of_loop(Node* n); 1865 1866 Node* clamp(Node* R, Node* L, Node* H); 1867 1868 bool safe_for_if_replacement(const Node* dom) const; 1869 1870 void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region); 1871 1872 bool try_merge_identical_ifs(Node* n); 1873 1874 void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm); 1875 1876 void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd, 1877 IdealLoopTree* parent, bool partial); 1878 1879 void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode, 1880 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist); 1881 1882 void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop, 1883 uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set, 1884 Node_List*& split_bool_set, Node_List*& split_cex_set); 1885 1886 void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set); 1887 1888 bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2); 1889 1890 bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2); 1891 void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i); 1892 bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2); 1893 void clone_template_assertion_expression_down(Node* node); 1894 1895 Node* similar_subtype_check(const Node* x, Node* r_in); 1896 1897 void update_addp_chain_base(Node* x, Node* old_base, Node* new_base); 1898 1899 bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x); 1900 1901 void pin_array_access_nodes_dependent_on(Node* ctrl); 1902 1903 Node* ensure_node_and_inputs_are_above_pre_end(CountedLoopEndNode* pre_end, Node* node); 1904 1905 bool try_make_short_running_loop(IdealLoopTree* loop, jint stride_con, const Node_List& range_checks, const uint iters_limit); 1906 1907 ConINode* intcon(jint i); 1908 1909 ConLNode* longcon(jlong i); 1910 1911 ConNode* makecon(const Type* t); 1912 1913 ConNode* integercon(jlong l, BasicType bt); 1914 1915 ConNode* zerocon(BasicType bt); 1916 }; 1917 1918 1919 class AutoNodeBudget : public StackObj 1920 { 1921 public: 1922 enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK }; 1923 1924 AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK) 1925 : _phase(phase), 1926 _check_at_final(chk == BUDGET_CHECK), 1927 _nodes_at_begin(0) 1928 { 1929 precond(_phase != nullptr); 1930 1931 _nodes_at_begin = _phase->require_nodes_begin(); 1932 } 1933 1934 ~AutoNodeBudget() { 1935 #ifndef PRODUCT 1936 if (TraceLoopOpts) { 1937 uint request = _phase->nodes_required(); 1938 uint delta = _phase->C->live_nodes() - _nodes_at_begin; 1939 1940 if (request < delta) { 1941 tty->print_cr("Exceeding node budget: %d < %d", request, delta); 1942 } else { 1943 uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN; 1944 // Identify the worst estimates as "poor" ones. 1945 if (request > REQUIRE_MIN && delta > 0) { 1946 if ((delta > REQUIRE_MIN && request > 3 * delta) || 1947 (delta <= REQUIRE_MIN && request > 10 * delta)) { 1948 tty->print_cr("Poor node estimate: %d >> %d", request, delta); 1949 } 1950 } 1951 } 1952 } 1953 #endif // PRODUCT 1954 _phase->require_nodes_final(_nodes_at_begin, _check_at_final); 1955 } 1956 1957 private: 1958 PhaseIdealLoop* _phase; 1959 bool _check_at_final; 1960 uint _nodes_at_begin; 1961 }; 1962 1963 inline Node* IdealLoopTree::tail() { 1964 // Handle lazy update of _tail field. 1965 if (_tail->in(0) == nullptr) { 1966 _tail = _phase->get_ctrl(_tail); 1967 } 1968 return _tail; 1969 } 1970 1971 inline Node* IdealLoopTree::head() { 1972 // Handle lazy update of _head field. 1973 if (_head->in(0) == nullptr) { 1974 _head = _phase->get_ctrl(_head); 1975 } 1976 return _head; 1977 } 1978 1979 // Iterate over the loop tree using a preorder, left-to-right traversal. 1980 // 1981 // Example that visits all counted loops from within PhaseIdealLoop 1982 // 1983 // for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 1984 // IdealLoopTree* lpt = iter.current(); 1985 // if (!lpt->is_counted()) continue; 1986 // ... 1987 class LoopTreeIterator : public StackObj { 1988 private: 1989 IdealLoopTree* _root; 1990 IdealLoopTree* _curnt; 1991 1992 public: 1993 LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {} 1994 1995 bool done() { return _curnt == nullptr; } // Finished iterating? 1996 1997 void next(); // Advance to next loop tree 1998 1999 IdealLoopTree* current() { return _curnt; } // Return current value of iterator. 2000 }; 2001 2002 // Compute probability of reaching some CFG node from a fixed 2003 // dominating CFG node 2004 class PathFrequency { 2005 private: 2006 Node* _dom; // frequencies are computed relative to this node 2007 Node_Stack _stack; 2008 GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions 2009 GrowableArray<float> _freqs; // cache frequencies 2010 PhaseIdealLoop* _phase; 2011 2012 float check_and_truncate_frequency(float f) { 2013 assert(f >= 0, "Incorrect frequency"); 2014 // We do not perform an exact (f <= 1) check 2015 // this would be error prone with rounding of floats. 2016 // Performing a check like (f <= 1+eps) would be of benefit, 2017 // however, it is not evident how to determine such an eps, 2018 // given that an arbitrary number of add/mul operations 2019 // are performed on these frequencies. 2020 return (f > 1) ? 1 : f; 2021 } 2022 2023 public: 2024 PathFrequency(Node* dom, PhaseIdealLoop* phase) 2025 : _dom(dom), _stack(0), _phase(phase) { 2026 } 2027 2028 float to(Node* n); 2029 }; 2030 2031 // Class to clone a data node graph by taking a list of data nodes. This is done in 2 steps: 2032 // 1. Clone the data nodes 2033 // 2. Fix the cloned data inputs pointing to the old nodes to the cloned inputs by using an old->new mapping. 2034 class DataNodeGraph : public StackObj { 2035 PhaseIdealLoop* const _phase; 2036 const Unique_Node_List& _data_nodes; 2037 OrigToNewHashtable _orig_to_new; 2038 2039 public: 2040 DataNodeGraph(const Unique_Node_List& data_nodes, PhaseIdealLoop* phase) 2041 : _phase(phase), 2042 _data_nodes(data_nodes), 2043 // Use 107 as best guess which is the first resize value in ResizeableHashTable::large_table_sizes. 2044 _orig_to_new(107, MaxNodeLimit) 2045 { 2046 #ifdef ASSERT 2047 for (uint i = 0; i < data_nodes.size(); i++) { 2048 assert(!data_nodes[i]->is_CFG(), "only data nodes"); 2049 } 2050 #endif 2051 } 2052 NONCOPYABLE(DataNodeGraph); 2053 2054 private: 2055 void clone(Node* node, Node* new_ctrl); 2056 void clone_data_nodes(Node* new_ctrl); 2057 void clone_data_nodes_and_transform_opaque_loop_nodes(const TransformStrategyForOpaqueLoopNodes& transform_strategy, 2058 Node* new_ctrl); 2059 void rewire_clones_to_cloned_inputs(); 2060 void transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node); 2061 2062 public: 2063 // Clone the provided data node collection and rewire the clones in such a way to create an identical graph copy. 2064 // Set 'new_ctrl' as ctrl for the cloned nodes. 2065 const OrigToNewHashtable& clone(Node* new_ctrl) { 2066 assert(_orig_to_new.number_of_entries() == 0, "should not call this method twice in a row"); 2067 clone_data_nodes(new_ctrl); 2068 rewire_clones_to_cloned_inputs(); 2069 return _orig_to_new; 2070 } 2071 2072 // Create a copy of the data nodes provided to the constructor by doing the following: 2073 // Clone all non-OpaqueLoop* nodes and rewire them to create an identical subgraph copy. For the OpaqueLoop* nodes, 2074 // apply the provided transformation strategy and include the transformed node into the subgraph copy to get a complete 2075 // "cloned-and-transformed" graph copy. For all newly cloned nodes (which could also be new OpaqueLoop* nodes), set 2076 // `new_ctrl` as ctrl. 2077 const OrigToNewHashtable& clone_with_opaque_loop_transform_strategy( 2078 const TransformStrategyForOpaqueLoopNodes& transform_strategy, 2079 Node* new_ctrl) { 2080 clone_data_nodes_and_transform_opaque_loop_nodes(transform_strategy, new_ctrl); 2081 rewire_clones_to_cloned_inputs(); 2082 return _orig_to_new; 2083 } 2084 }; 2085 #endif // SHARE_OPTO_LOOPNODE_HPP