1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_LOOPNODE_HPP
  26 #define SHARE_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 #include "utilities/checkedCast.hpp"
  34 
  35 class CmpNode;
  36 class BaseCountedLoopEndNode;
  37 class CountedLoopNode;
  38 class IdealLoopTree;
  39 class LoopNode;
  40 class Node;
  41 class OuterStripMinedLoopEndNode;
  42 class PredicateBlock;
  43 class PathFrequency;
  44 class PhaseIdealLoop;
  45 class VectorSet;
  46 class VSharedData;
  47 class Invariance;
  48 struct small_cache;
  49 
  50 //
  51 //                  I D E A L I Z E D   L O O P S
  52 //
  53 // Idealized loops are the set of loops I perform more interesting
  54 // transformations on, beyond simple hoisting.
  55 
  56 //------------------------------LoopNode---------------------------------------
  57 // Simple loop header.  Fall in path on left, loop-back path on right.
  58 class LoopNode : public RegionNode {
  59   // Size is bigger to hold the flags.  However, the flags do not change
  60   // the semantics so it does not appear in the hash & cmp functions.
  61   virtual uint size_of() const { return sizeof(*this); }
  62 protected:
  63   uint _loop_flags;
  64   // Names for flag bitfields
  65   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  66          MainHasNoPreLoop      = 1<<2,
  67          HasExactTripCount     = 1<<3,
  68          InnerLoop             = 1<<4,
  69          PartialPeelLoop       = 1<<5,
  70          PartialPeelFailed     = 1<<6,
  71          WasSlpAnalyzed        = 1<<7,
  72          PassedSlpAnalysis     = 1<<8,
  73          DoUnrollOnly          = 1<<9,
  74          VectorizedLoop        = 1<<10,
  75          HasAtomicPostLoop     = 1<<11,
  76          StripMined            = 1<<12,
  77          SubwordLoop           = 1<<13,
  78          ProfileTripFailed     = 1<<14,
  79          LoopNestInnerLoop     = 1<<15,
  80          LoopNestLongOuterLoop = 1<<16 };
  81   char _unswitch_count;
  82   enum { _unswitch_max=3 };
  83 
  84   // Expected trip count from profile data
  85   float _profile_trip_cnt;
  86 
  87 public:
  88   // Names for edge indices
  89   enum { Self=0, EntryControl, LoopBackControl };
  90 
  91   bool is_inner_loop() const { return _loop_flags & InnerLoop; }
  92   void set_inner_loop() { _loop_flags |= InnerLoop; }
  93 
  94   bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
  95   bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  96   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  97   bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  98   bool is_strip_mined() const { return _loop_flags & StripMined; }
  99   bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
 100   bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
 101   bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; }
 102   bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; }
 103 
 104   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
 105   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 106   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 107   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 108   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 109   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 110   void mark_strip_mined() { _loop_flags |= StripMined; }
 111   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 112   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
 113   void mark_subword_loop() { _loop_flags |= SubwordLoop; }
 114   void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; }
 115   void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; }
 116 
 117   int unswitch_max() { return _unswitch_max; }
 118   int unswitch_count() { return _unswitch_count; }
 119 
 120   void set_unswitch_count(int val) {
 121     assert (val <= unswitch_max(), "too many unswitches");
 122     _unswitch_count = val;
 123   }
 124 
 125   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 126   float profile_trip_cnt()             { return _profile_trip_cnt; }
 127 
 128   LoopNode(Node *entry, Node *backedge)
 129     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
 130       _profile_trip_cnt(COUNT_UNKNOWN) {
 131     init_class_id(Class_Loop);
 132     init_req(EntryControl, entry);
 133     init_req(LoopBackControl, backedge);
 134   }
 135 
 136   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 137   virtual int Opcode() const;
 138   bool can_be_counted_loop(PhaseValues* phase) const {
 139     return req() == 3 && in(0) != nullptr &&
 140       in(1) != nullptr && phase->type(in(1)) != Type::TOP &&
 141       in(2) != nullptr && phase->type(in(2)) != Type::TOP;
 142   }
 143   bool is_valid_counted_loop(BasicType bt) const;
 144 #ifndef PRODUCT
 145   virtual void dump_spec(outputStream *st) const;
 146 #endif
 147 
 148   void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
 149   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 150   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; }
 151   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; }
 152   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; }
 153   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; }
 154 };
 155 
 156 //------------------------------Counted Loops----------------------------------
 157 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 158 // path (and maybe some other exit paths).  The trip-counter exit is always
 159 // last in the loop.  The trip-counter have to stride by a constant;
 160 // the exit value is also loop invariant.
 161 
 162 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 163 // CountedLoopNode has the incoming loop control and the loop-back-control
 164 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 165 // CountedLoopEndNode has an incoming control (possibly not the
 166 // CountedLoopNode if there is control flow in the loop), the post-increment
 167 // trip-counter value, and the limit.  The trip-counter value is always of
 168 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 169 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 170 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 171 // CountedLoopEndNode also takes in the loop-invariant limit value.
 172 
 173 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 174 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 175 // via the old-trip-counter from the Op node.
 176 
 177 //------------------------------CountedLoopNode--------------------------------
 178 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 179 // inputs the incoming loop-start control and the loop-back control, so they
 180 // act like RegionNodes.  They also take in the initial trip counter, the
 181 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 182 // produce a loop-body control and the trip counter value.  Since
 183 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 184 
 185 class BaseCountedLoopNode : public LoopNode {
 186 public:
 187   BaseCountedLoopNode(Node *entry, Node *backedge)
 188     : LoopNode(entry, backedge) {
 189   }
 190 
 191   Node *init_control() const { return in(EntryControl); }
 192   Node *back_control() const { return in(LoopBackControl); }
 193 
 194   Node* init_trip() const;
 195   Node* stride() const;
 196   bool stride_is_con() const;
 197   Node* limit() const;
 198   Node* incr() const;
 199   Node* phi() const;
 200 
 201   BaseCountedLoopEndNode* loopexit_or_null() const;
 202   BaseCountedLoopEndNode* loopexit() const;
 203 
 204   virtual BasicType bt() const = 0;
 205 
 206   jlong stride_con() const;
 207 
 208   static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt);
 209 };
 210 
 211 
 212 class CountedLoopNode : public BaseCountedLoopNode {
 213   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 214   // the semantics so it does not appear in the hash & cmp functions.
 215   virtual uint size_of() const { return sizeof(*this); }
 216 
 217   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 218   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 219   node_idx_t _main_idx;
 220 
 221   // Known trip count calculated by compute_exact_trip_count()
 222   uint  _trip_count;
 223 
 224   // Log2 of original loop bodies in unrolled loop
 225   int _unrolled_count_log2;
 226 
 227   // Node count prior to last unrolling - used to decide if
 228   // unroll,optimize,unroll,optimize,... is making progress
 229   int _node_count_before_unroll;
 230 
 231   // If slp analysis is performed we record the maximum
 232   // vector mapped unroll factor here
 233   int _slp_maximum_unroll_factor;
 234 
 235 public:
 236   CountedLoopNode(Node *entry, Node *backedge)
 237     : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 238       _unrolled_count_log2(0), _node_count_before_unroll(0),
 239       _slp_maximum_unroll_factor(0) {
 240     init_class_id(Class_CountedLoop);
 241     // Initialize _trip_count to the largest possible value.
 242     // Will be reset (lower) if the loop's trip count is known.
 243   }
 244 
 245   virtual int Opcode() const;
 246   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 247 
 248   CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 249   CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 250   int   stride_con() const;
 251 
 252   // Match increment with optional truncation
 253   static Node*
 254   match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type,
 255                                       BasicType bt);
 256 
 257   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 258   // can run short a few iterations and may start a few iterations in.
 259   // It will be RCE'd and unrolled and aligned.
 260 
 261   // A following 'post' loop will run any remaining iterations.  Used
 262   // during Range Check Elimination, the 'post' loop will do any final
 263   // iterations with full checks.  Also used by Loop Unrolling, where
 264   // the 'post' loop will do any epilog iterations needed.  Basically,
 265   // a 'post' loop can not profitably be further unrolled or RCE'd.
 266 
 267   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 268   // it may do under-flow checks for RCE and may do alignment iterations
 269   // so the following main loop 'knows' that it is striding down cache
 270   // lines.
 271 
 272   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 273   // Aligned, may be missing it's pre-loop.
 274   bool is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 275   bool is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 276   bool is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 277   bool is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 278   bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 279   bool has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 280   bool is_unroll_only   () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 281   bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 282   bool has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 283   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 284 
 285   int main_idx() const { return _main_idx; }
 286 
 287 
 288   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 289   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 290   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 291   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 292 
 293   void set_trip_count(uint tc) { _trip_count = tc; }
 294   uint trip_count()            { return _trip_count; }
 295 
 296   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 297   void set_exact_trip_count(uint tc) {
 298     _trip_count = tc;
 299     _loop_flags |= HasExactTripCount;
 300   }
 301   void set_nonexact_trip_count() {
 302     _loop_flags &= ~HasExactTripCount;
 303   }
 304   void set_notpassed_slp() {
 305     _loop_flags &= ~PassedSlpAnalysis;
 306   }
 307 
 308   void double_unrolled_count() { _unrolled_count_log2++; }
 309   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 310 
 311   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 312   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 313   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 314   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 315 
 316   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
 317   OuterStripMinedLoopNode* outer_loop() const;
 318   virtual IfTrueNode* outer_loop_tail() const;
 319   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 320   virtual IfFalseNode* outer_loop_exit() const;
 321   virtual SafePointNode* outer_safepoint() const;
 322 
 323   Node* skip_assertion_predicates_with_halt();
 324 
 325   virtual BasicType bt() const {
 326     return T_INT;
 327   }
 328 
 329   Node* is_canonical_loop_entry();
 330   CountedLoopEndNode* find_pre_loop_end();
 331 
 332 #ifndef PRODUCT
 333   virtual void dump_spec(outputStream *st) const;
 334 #endif
 335 };
 336 
 337 class LongCountedLoopNode : public BaseCountedLoopNode {
 338 public:
 339   LongCountedLoopNode(Node *entry, Node *backedge)
 340     : BaseCountedLoopNode(entry, backedge) {
 341     init_class_id(Class_LongCountedLoop);
 342   }
 343 
 344   virtual int Opcode() const;
 345 
 346   virtual BasicType bt() const {
 347     return T_LONG;
 348   }
 349 
 350   LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 351   LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 352 };
 353 
 354 
 355 //------------------------------CountedLoopEndNode-----------------------------
 356 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 357 // IfNodes.
 358 
 359 class BaseCountedLoopEndNode : public IfNode {
 360 public:
 361   enum { TestControl, TestValue };
 362   BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 363     : IfNode(control, test, prob, cnt) {
 364     init_class_id(Class_BaseCountedLoopEnd);
 365   }
 366 
 367   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; }
 368   Node* incr() const                { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 369   Node* limit() const               { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 370   Node* stride() const              { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 371   Node* init_trip() const           { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 372   bool stride_is_con() const        { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); }
 373 
 374   PhiNode* phi() const {
 375     Node* tmp = incr();
 376     if (tmp && tmp->req() == 3) {
 377       Node* phi = tmp->in(1);
 378       if (phi->is_Phi()) {
 379         return phi->as_Phi();
 380       }
 381     }
 382     return nullptr;
 383   }
 384 
 385   BaseCountedLoopNode* loopnode() const {
 386     // The CountedLoopNode that goes with this CountedLoopEndNode may
 387     // have been optimized out by the IGVN so be cautious with the
 388     // pattern matching on the graph
 389     PhiNode* iv_phi = phi();
 390     if (iv_phi == nullptr) {
 391       return nullptr;
 392     }
 393     Node* ln = iv_phi->in(0);
 394     if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) {
 395       return nullptr;
 396     }
 397     if (ln->as_BaseCountedLoop()->bt() != bt()) {
 398       return nullptr;
 399     }
 400     return ln->as_BaseCountedLoop();
 401   }
 402 
 403   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 404 
 405   jlong stride_con() const;
 406   virtual BasicType bt() const = 0;
 407 
 408   static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt);
 409 };
 410 
 411 class CountedLoopEndNode : public BaseCountedLoopEndNode {
 412 public:
 413 
 414   CountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 415     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 416     init_class_id(Class_CountedLoopEnd);
 417   }
 418   virtual int Opcode() const;
 419 
 420   CountedLoopNode* loopnode() const {
 421     return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 422   }
 423 
 424   virtual BasicType bt() const {
 425     return T_INT;
 426   }
 427 
 428 #ifndef PRODUCT
 429   virtual void dump_spec(outputStream *st) const;
 430 #endif
 431 };
 432 
 433 class LongCountedLoopEndNode : public BaseCountedLoopEndNode {
 434 public:
 435   LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 436     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 437     init_class_id(Class_LongCountedLoopEnd);
 438   }
 439 
 440   LongCountedLoopNode* loopnode() const {
 441     return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 442   }
 443 
 444   virtual int Opcode() const;
 445 
 446   virtual BasicType bt() const {
 447     return T_LONG;
 448   }
 449 };
 450 
 451 
 452 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const {
 453   Node* bctrl = back_control();
 454   if (bctrl == nullptr) return nullptr;
 455 
 456   Node* lexit = bctrl->in(0);
 457   if (!lexit->is_BaseCountedLoopEnd()) {
 458     return nullptr;
 459   }
 460   BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd();
 461   if (result->bt() != bt()) {
 462     return nullptr;
 463   }
 464   return result;
 465 }
 466 
 467 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const {
 468   BaseCountedLoopEndNode* cle = loopexit_or_null();
 469   assert(cle != nullptr, "loopexit is null");
 470   return cle;
 471 }
 472 
 473 inline Node* BaseCountedLoopNode::init_trip() const {
 474   BaseCountedLoopEndNode* cle = loopexit_or_null();
 475   return cle != nullptr ? cle->init_trip() : nullptr;
 476 }
 477 inline Node* BaseCountedLoopNode::stride() const {
 478   BaseCountedLoopEndNode* cle = loopexit_or_null();
 479   return cle != nullptr ? cle->stride() : nullptr;
 480 }
 481 
 482 inline bool BaseCountedLoopNode::stride_is_con() const {
 483   BaseCountedLoopEndNode* cle = loopexit_or_null();
 484   return cle != nullptr && cle->stride_is_con();
 485 }
 486 inline Node* BaseCountedLoopNode::limit() const {
 487   BaseCountedLoopEndNode* cle = loopexit_or_null();
 488   return cle != nullptr ? cle->limit() : nullptr;
 489 }
 490 inline Node* BaseCountedLoopNode::incr() const {
 491   BaseCountedLoopEndNode* cle = loopexit_or_null();
 492   return cle != nullptr ? cle->incr() : nullptr;
 493 }
 494 inline Node* BaseCountedLoopNode::phi() const {
 495   BaseCountedLoopEndNode* cle = loopexit_or_null();
 496   return cle != nullptr ? cle->phi() : nullptr;
 497 }
 498 
 499 inline jlong BaseCountedLoopNode::stride_con() const {
 500   BaseCountedLoopEndNode* cle = loopexit_or_null();
 501   return cle != nullptr ? cle->stride_con() : 0;
 502 }
 503 
 504 
 505 //------------------------------LoopLimitNode-----------------------------
 506 // Counted Loop limit node which represents exact final iterator value:
 507 // trip_count = (limit - init_trip + stride - 1)/stride
 508 // final_value= trip_count * stride + init_trip.
 509 // Use HW instructions to calculate it when it can overflow in integer.
 510 // Note, final_value should fit into integer since counted loop has
 511 // limit check: limit <= max_int-stride.
 512 class LoopLimitNode : public Node {
 513   enum { Init=1, Limit=2, Stride=3 };
 514  public:
 515   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 516     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 517     init_flags(Flag_is_macro);
 518     C->add_macro_node(this);
 519   }
 520   virtual int Opcode() const;
 521   virtual const Type *bottom_type() const { return TypeInt::INT; }
 522   virtual uint ideal_reg() const { return Op_RegI; }
 523   virtual const Type* Value(PhaseGVN* phase) const;
 524   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 525   virtual Node* Identity(PhaseGVN* phase);
 526 };
 527 
 528 // Support for strip mining
 529 class OuterStripMinedLoopNode : public LoopNode {
 530 private:
 531   static void fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 532 
 533 public:
 534   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 535     : LoopNode(entry, backedge) {
 536     init_class_id(Class_OuterStripMinedLoop);
 537     init_flags(Flag_is_macro);
 538     C->add_macro_node(this);
 539   }
 540 
 541   virtual int Opcode() const;
 542 
 543   virtual IfTrueNode* outer_loop_tail() const;
 544   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 545   virtual IfFalseNode* outer_loop_exit() const;
 546   virtual SafePointNode* outer_safepoint() const;
 547   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 548 
 549   void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const;
 550 
 551   void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 552 
 553   static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 554 
 555   Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
 556                          PhaseIdealLoop* iloop);
 557 };
 558 
 559 class OuterStripMinedLoopEndNode : public IfNode {
 560 public:
 561   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 562     : IfNode(control, test, prob, cnt) {
 563     init_class_id(Class_OuterStripMinedLoopEnd);
 564   }
 565 
 566   virtual int Opcode() const;
 567 
 568   virtual const Type* Value(PhaseGVN* phase) const;
 569   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 570 
 571   bool is_expanded(PhaseGVN *phase) const;
 572 };
 573 
 574 // -----------------------------IdealLoopTree----------------------------------
 575 class IdealLoopTree : public ResourceObj {
 576 public:
 577   IdealLoopTree *_parent;       // Parent in loop tree
 578   IdealLoopTree *_next;         // Next sibling in loop tree
 579   IdealLoopTree *_child;        // First child in loop tree
 580 
 581   // The head-tail backedge defines the loop.
 582   // If a loop has multiple backedges, this is addressed during cleanup where
 583   // we peel off the multiple backedges,  merging all edges at the bottom and
 584   // ensuring that one proper backedge flow into the loop.
 585   Node *_head;                  // Head of loop
 586   Node *_tail;                  // Tail of loop
 587   inline Node *tail();          // Handle lazy update of _tail field
 588   inline Node *head();          // Handle lazy update of _head field
 589   PhaseIdealLoop* _phase;
 590   int _local_loop_unroll_limit;
 591   int _local_loop_unroll_factor;
 592 
 593   Node_List _body;              // Loop body for inner loops
 594 
 595   uint16_t _nest;               // Nesting depth
 596   uint8_t _irreducible:1,       // True if irreducible
 597           _has_call:1,          // True if has call safepoint
 598           _has_sfpt:1,          // True if has non-call safepoint
 599           _rce_candidate:1,     // True if candidate for range check elimination
 600           _has_range_checks:1,
 601           _has_range_checks_computed:1;
 602 
 603   Node_List* _safepts;          // List of safepoints in this loop
 604   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 605   bool  _allow_optimizations;   // Allow loop optimizations
 606 
 607   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 608     : _parent(0), _next(0), _child(0),
 609       _head(head), _tail(tail),
 610       _phase(phase),
 611       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
 612       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 613       _has_range_checks(0), _has_range_checks_computed(0),
 614       _safepts(nullptr),
 615       _required_safept(nullptr),
 616       _allow_optimizations(true)
 617   {
 618     precond(_head != nullptr);
 619     precond(_tail != nullptr);
 620   }
 621 
 622   // Is 'l' a member of 'this'?
 623   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 624 
 625   // Set loop nesting depth.  Accumulate has_call bits.
 626   int set_nest( uint depth );
 627 
 628   // Split out multiple fall-in edges from the loop header.  Move them to a
 629   // private RegionNode before the loop.  This becomes the loop landing pad.
 630   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 631 
 632   // Split out the outermost loop from this shared header.
 633   void split_outer_loop( PhaseIdealLoop *phase );
 634 
 635   // Merge all the backedges from the shared header into a private Region.
 636   // Feed that region as the one backedge to this loop.
 637   void merge_many_backedges( PhaseIdealLoop *phase );
 638 
 639   // Split shared headers and insert loop landing pads.
 640   // Insert a LoopNode to replace the RegionNode.
 641   // Returns TRUE if loop tree is structurally changed.
 642   bool beautify_loops( PhaseIdealLoop *phase );
 643 
 644   // Perform optimization to use the loop predicates for null checks and range checks.
 645   // Applies to any loop level (not just the innermost one)
 646   bool loop_predication( PhaseIdealLoop *phase);
 647   bool can_apply_loop_predication();
 648 
 649   // Perform iteration-splitting on inner loops.  Split iterations to
 650   // avoid range checks or one-shot null checks.  Returns false if the
 651   // current round of loop opts should stop.
 652   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 653 
 654   // Driver for various flavors of iteration splitting.  Returns false
 655   // if the current round of loop opts should stop.
 656   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 657 
 658   // Given dominators, try to find loops with calls that must always be
 659   // executed (call dominates loop tail).  These loops do not need non-call
 660   // safepoints (ncsfpt).
 661   void check_safepts(VectorSet &visited, Node_List &stack);
 662 
 663   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 664   // encountered.
 665   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 666 
 667   // Remove safepoints from loop. Optionally keeping one.
 668   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 669 
 670   // Convert to counted loops where possible
 671   void counted_loop( PhaseIdealLoop *phase );
 672 
 673   // Check for Node being a loop-breaking test
 674   Node *is_loop_exit(Node *iff) const;
 675 
 676   // Remove simplistic dead code from loop body
 677   void DCE_loop_body();
 678 
 679   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 680   // Replace with a 1-in-10 exit guess.
 681   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 682 
 683   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 684   // Useful for unrolling loops with NO array accesses.
 685   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 686 
 687   // Return TRUE or FALSE if the loop should be unswitched -- clone
 688   // loop with an invariant test
 689   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 690 
 691   // Micro-benchmark spamming.  Remove empty loops.
 692   bool do_remove_empty_loop( PhaseIdealLoop *phase );
 693 
 694   // Convert one iteration loop into normal code.
 695   bool do_one_iteration_loop( PhaseIdealLoop *phase );
 696 
 697   // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
 698   // move some loop-invariant test (usually a null-check) before the loop.
 699   bool policy_peeling(PhaseIdealLoop *phase);
 700 
 701   uint estimate_peeling(PhaseIdealLoop *phase);
 702 
 703   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 704   // known trip count in the counted loop node.
 705   bool policy_maximally_unroll(PhaseIdealLoop *phase) const;
 706 
 707   // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll
 708   // if the loop is a counted loop and the loop body is small enough.
 709   bool policy_unroll(PhaseIdealLoop *phase);
 710 
 711   // Loop analyses to map to a maximal superword unrolling for vectorization.
 712   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 713 
 714   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 715   // Gather a list of IF tests that are dominated by iteration splitting;
 716   // also gather the end of the first split and the start of the 2nd split.
 717   bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const;
 718 
 719   // Return TRUE if "iff" is a range check.
 720   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const;
 721   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset,
 722                          jlong& scale) const;
 723 
 724   // Estimate the number of nodes required when cloning a loop (body).
 725   uint est_loop_clone_sz(uint factor) const;
 726   // Estimate the number of nodes required when unrolling a loop (body).
 727   uint est_loop_unroll_sz(uint factor) const;
 728 
 729   // Compute loop trip count if possible
 730   void compute_trip_count(PhaseIdealLoop* phase);
 731 
 732   // Compute loop trip count from profile data
 733   float compute_profile_trip_cnt_helper(Node* n);
 734   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 735 
 736   // Reassociate invariant expressions.
 737   void reassociate_invariants(PhaseIdealLoop *phase);
 738   // Reassociate invariant binary expressions.
 739   Node* reassociate(Node* n1, PhaseIdealLoop *phase);
 740   // Reassociate invariant add and subtract expressions.
 741   Node* reassociate_add_sub(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop *phase);
 742   // Return nonzero index of invariant operand if invariant and variant
 743   // are combined with an associative binary. Helper for reassociate_invariants.
 744   int find_invariant(Node* n, PhaseIdealLoop *phase);
 745   // Return TRUE if "n" is associative.
 746   bool is_associative(Node* n, Node* base=nullptr);
 747 
 748   // Return true if n is invariant
 749   bool is_invariant(Node* n) const;
 750 
 751   // Put loop body on igvn work list
 752   void record_for_igvn();
 753 
 754   bool is_root() { return _parent == nullptr; }
 755   // A proper/reducible loop w/o any (occasional) dead back-edge.
 756   bool is_loop() { return !_irreducible && !tail()->is_top(); }
 757   bool is_counted()   { return is_loop() && _head->is_CountedLoop(); }
 758   bool is_innermost() { return is_loop() && _child == nullptr; }
 759 
 760   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 761 
 762   bool compute_has_range_checks() const;
 763   bool range_checks_present() {
 764     if (!_has_range_checks_computed) {
 765       if (compute_has_range_checks()) {
 766         _has_range_checks = 1;
 767       }
 768       _has_range_checks_computed = 1;
 769     }
 770     return _has_range_checks;
 771   }
 772 
 773 #ifndef PRODUCT
 774   void dump_head();       // Dump loop head only
 775   void dump();            // Dump this loop recursively
 776 #endif
 777 
 778 #ifdef ASSERT
 779   GrowableArray<IdealLoopTree*> collect_sorted_children() const;
 780   bool verify_tree(IdealLoopTree* loop_verify) const;
 781 #endif
 782 
 783  private:
 784   enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop.
 785 
 786   // Estimate the number of nodes resulting from control and data flow merge.
 787   uint est_loop_flow_merge_sz() const;
 788 
 789   // Check if the number of residual iterations is large with unroll_cnt.
 790   // Return true if the residual iterations are more than 10% of the trip count.
 791   bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const {
 792     return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt();
 793   }
 794 
 795   void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const;
 796 
 797   bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const;
 798 
 799   void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const;
 800 
 801   bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq,
 802                          Node* sfpt) const;
 803 
 804   bool empty_loop_candidate(PhaseIdealLoop* phase) const;
 805 
 806   bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const;
 807 };
 808 
 809 // -----------------------------PhaseIdealLoop---------------------------------
 810 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees
 811 // into a loop tree. Drives the loop-based transformations on the ideal graph.
 812 class PhaseIdealLoop : public PhaseTransform {
 813   friend class IdealLoopTree;
 814   friend class SuperWord;
 815   friend class ShenandoahBarrierC2Support;
 816   friend class AutoNodeBudget;
 817 
 818   // Map loop membership for CFG nodes, and ctrl for non-CFG nodes.
 819   Node_List _loop_or_ctrl;
 820 
 821   // Pre-computed def-use info
 822   PhaseIterGVN &_igvn;
 823 
 824   // Head of loop tree
 825   IdealLoopTree* _ltree_root;
 826 
 827   // Array of pre-order numbers, plus post-visited bit.
 828   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 829   // ODD for post-visited.  Other bits are the pre-order number.
 830   uint *_preorders;
 831   uint _max_preorder;
 832 
 833   const PhaseIdealLoop* _verify_me;
 834   bool _verify_only;
 835 
 836   // Allocate _preorders[] array
 837   void allocate_preorders() {
 838     _max_preorder = C->unique()+8;
 839     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 840     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 841   }
 842 
 843   // Allocate _preorders[] array
 844   void reallocate_preorders() {
 845     if ( _max_preorder < C->unique() ) {
 846       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 847       _max_preorder = C->unique();
 848     }
 849     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 850   }
 851 
 852   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 853   // adds new nodes.
 854   void check_grow_preorders( ) {
 855     if ( _max_preorder < C->unique() ) {
 856       uint newsize = _max_preorder<<1;  // double size of array
 857       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 858       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 859       _max_preorder = newsize;
 860     }
 861   }
 862   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 863   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 864   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 865   void set_preorder_visited( Node *n, int pre_order ) {
 866     assert( !is_visited( n ), "already set" );
 867     _preorders[n->_idx] = (pre_order<<1);
 868   };
 869   // Return pre-order number.
 870   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 871 
 872   // Check for being post-visited.
 873   // Should be previsited already (checked with assert(is_visited(n))).
 874   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 875 
 876   // Mark as post visited
 877   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 878 
 879 public:
 880   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 881   // Returns true if "n" is a data node, false if it's a control node.
 882   bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; }
 883 
 884 private:
 885   // clear out dead code after build_loop_late
 886   Node_List _deadlist;
 887   Node_List _zero_trip_guard_opaque_nodes;
 888 
 889   // Support for faster execution of get_late_ctrl()/dom_lca()
 890   // when a node has many uses and dominator depth is deep.
 891   GrowableArray<jlong> _dom_lca_tags;
 892   uint _dom_lca_tags_round;
 893   void   init_dom_lca_tags();
 894 
 895   // Helper for debugging bad dominance relationships
 896   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 897 
 898   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 899 
 900   // Inline wrapper for frequent cases:
 901   // 1) only one use
 902   // 2) a use is the same as the current LCA passed as 'n1'
 903   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 904     assert( n->is_CFG(), "" );
 905     // Fast-path null lca
 906     if( lca != nullptr && lca != n ) {
 907       assert( lca->is_CFG(), "" );
 908       // find LCA of all uses
 909       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 910     }
 911     return find_non_split_ctrl(n);
 912   }
 913   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 914 
 915   // Helper function for directing control inputs away from CFG split points.
 916   Node *find_non_split_ctrl( Node *ctrl ) const {
 917     if (ctrl != nullptr) {
 918       if (ctrl->is_MultiBranch()) {
 919         ctrl = ctrl->in(0);
 920       }
 921       assert(ctrl->is_CFG(), "CFG");
 922     }
 923     return ctrl;
 924   }
 925 
 926   Node* cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 927 
 928 #ifdef ASSERT
 929   void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
 930 #endif
 931   void copy_assertion_predicates_to_main_loop_helper(const PredicateBlock* predicate_block, Node* init, Node* stride,
 932                                                      IdealLoopTree* outer_loop, LoopNode* outer_main_head,
 933                                                      uint dd_main_head, uint idx_before_pre_post,
 934                                                      uint idx_after_post_before_pre, Node* zero_trip_guard_proj_main,
 935                                                      Node* zero_trip_guard_proj_post, const Node_List &old_new);
 936   void copy_assertion_predicates_to_main_loop(CountedLoopNode* pre_head, Node* init, Node* stride, IdealLoopTree* outer_loop,
 937                                               LoopNode* outer_main_head, uint dd_main_head, uint idx_before_pre_post,
 938                                               uint idx_after_post_before_pre, Node* zero_trip_guard_proj_main,
 939                                               Node* zero_trip_guard_proj_post, const Node_List& old_new);
 940   Node* clone_assertion_predicate_and_initialize(Node* iff, Node* new_init, Node* new_stride, Node* predicate,
 941                                                  Node* uncommon_proj, Node* control, IdealLoopTree* outer_loop,
 942                                                  Node* input_proj);
 943   static void count_opaque_loop_nodes(Node* n, uint& init, uint& stride);
 944   static bool subgraph_has_opaque(Node* n);
 945   Node* create_bool_from_template_assertion_predicate(Node* template_assertion_predicate, Node* new_init, Node* new_stride,
 946                                                       Node* control);
 947   static bool assertion_predicate_has_loop_opaque_node(IfNode* iff);
 948   static void get_assertion_predicates(Node* predicate, Unique_Node_List& list, bool get_opaque = false);
 949   void update_main_loop_assertion_predicates(Node* ctrl, CountedLoopNode* loop_head, Node* init, int stride_con);
 950   void copy_assertion_predicates_to_post_loop(LoopNode* main_loop_head, CountedLoopNode* post_loop_head, Node* init,
 951                                               Node* stride);
 952   void initialize_assertion_predicates_for_peeled_loop(const PredicateBlock* predicate_block, LoopNode* outer_loop_head,
 953                                                        int dd_outer_loop_head, Node* init, Node* stride,
 954                                                        IdealLoopTree* outer_loop, uint idx_before_clone,
 955                                                        const Node_List& old_new);
 956   void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit,
 957                                          Node* bol);
 958 #ifdef ASSERT
 959   bool only_has_infinite_loops();
 960 #endif
 961 
 962   void log_loop_tree();
 963 
 964 public:
 965 
 966   PhaseIterGVN &igvn() const { return _igvn; }
 967 
 968   bool has_node(const Node* n) const {
 969     guarantee(n != nullptr, "No Node.");
 970     return _loop_or_ctrl[n->_idx] != nullptr;
 971   }
 972   // check if transform created new nodes that need _ctrl recorded
 973   Node *get_late_ctrl( Node *n, Node *early );
 974   Node *get_early_ctrl( Node *n );
 975   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 976   void set_early_ctrl(Node* n, bool update_body);
 977   void set_subtree_ctrl(Node* n, bool update_body);
 978   void set_ctrl( Node *n, Node *ctrl ) {
 979     assert( !has_node(n) || has_ctrl(n), "" );
 980     assert( ctrl->in(0), "cannot set dead control node" );
 981     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 982     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1));
 983   }
 984   // Set control and update loop membership
 985   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 986     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 987     IdealLoopTree* new_loop = get_loop(ctrl);
 988     if (old_loop != new_loop) {
 989       if (old_loop->_child == nullptr) old_loop->_body.yank(n);
 990       if (new_loop->_child == nullptr) new_loop->_body.push(n);
 991     }
 992     set_ctrl(n, ctrl);
 993   }
 994   // Control nodes can be replaced or subsumed.  During this pass they
 995   // get their replacement Node in slot 1.  Instead of updating the block
 996   // location of all Nodes in the subsumed block, we lazily do it.  As we
 997   // pull such a subsumed block out of the array, we write back the final
 998   // correct block.
 999   Node* get_ctrl(const Node* i) {
1000     assert(has_node(i), "");
1001     Node *n = get_ctrl_no_update(i);
1002     _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1));
1003     assert(has_node(i) && has_ctrl(i), "");
1004     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
1005     return n;
1006   }
1007   // true if CFG node d dominates CFG node n
1008   bool is_dominator(Node *d, Node *n);
1009   // return get_ctrl for a data node and self(n) for a CFG node
1010   Node* ctrl_or_self(Node* n) {
1011     if (has_ctrl(n))
1012       return get_ctrl(n);
1013     else {
1014       assert (n->is_CFG(), "must be a CFG node");
1015       return n;
1016     }
1017   }
1018 
1019   Node* get_ctrl_no_update_helper(const Node* i) const {
1020     assert(has_ctrl(i), "should be control, not loop");
1021     return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1);
1022   }
1023 
1024   Node* get_ctrl_no_update(const Node* i) const {
1025     assert( has_ctrl(i), "" );
1026     Node *n = get_ctrl_no_update_helper(i);
1027     if (!n->in(0)) {
1028       // Skip dead CFG nodes
1029       do {
1030         n = get_ctrl_no_update_helper(n);
1031       } while (!n->in(0));
1032       n = find_non_split_ctrl(n);
1033     }
1034     return n;
1035   }
1036 
1037   // Check for loop being set
1038   // "n" must be a control node. Returns true if "n" is known to be in a loop.
1039   bool has_loop( Node *n ) const {
1040     assert(!has_node(n) || !has_ctrl(n), "");
1041     return has_node(n);
1042   }
1043   // Set loop
1044   void set_loop( Node *n, IdealLoopTree *loop ) {
1045     _loop_or_ctrl.map(n->_idx, (Node*)loop);
1046   }
1047   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
1048   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
1049   // from old_node to new_node to support the lazy update.  Reference
1050   // replaces loop reference, since that is not needed for dead node.
1051   void lazy_update(Node *old_node, Node *new_node) {
1052     assert(old_node != new_node, "no cycles please");
1053     // Re-use the side array slot for this node to provide the
1054     // forwarding pointer.
1055     _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
1056   }
1057   void lazy_replace(Node *old_node, Node *new_node) {
1058     _igvn.replace_node(old_node, new_node);
1059     lazy_update(old_node, new_node);
1060   }
1061 
1062 private:
1063 
1064   // Place 'n' in some loop nest, where 'n' is a CFG node
1065   void build_loop_tree();
1066   int build_loop_tree_impl( Node *n, int pre_order );
1067   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
1068   // loop tree, not the root.
1069   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
1070 
1071 #ifdef ASSERT
1072   // verify that regions in irreducible loops are marked is_in_irreducible_loop
1073   void verify_regions_in_irreducible_loops();
1074   bool is_in_irreducible_loop(RegionNode* region);
1075 #endif
1076 
1077   // Place Data nodes in some loop nest
1078   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1079   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1080   void build_loop_late_post_work(Node* n, bool pinned);
1081   void build_loop_late_post(Node* n);
1082   void verify_strip_mined_scheduling(Node *n, Node* least);
1083 
1084   // Array of immediate dominance info for each CFG node indexed by node idx
1085 private:
1086   uint _idom_size;
1087   Node **_idom;                  // Array of immediate dominators
1088   uint *_dom_depth;              // Used for fast LCA test
1089   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
1090   LoopOptsMode _mode;
1091 
1092   // build the loop tree and perform any requested optimizations
1093   void build_and_optimize();
1094 
1095   // Dominators for the sea of nodes
1096   void Dominators();
1097 
1098   // Compute the Ideal Node to Loop mapping
1099   PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) :
1100     PhaseTransform(Ideal_Loop),
1101     _loop_or_ctrl(igvn.C->comp_arena()),
1102     _igvn(igvn),
1103     _verify_me(nullptr),
1104     _verify_only(false),
1105     _mode(mode),
1106     _nodes_required(UINT_MAX) {
1107     assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop");
1108     build_and_optimize();
1109   }
1110 
1111 #ifndef PRODUCT
1112   // Verify that verify_me made the same decisions as a fresh run
1113   // or only verify that the graph is valid if verify_me is null.
1114   PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) :
1115     PhaseTransform(Ideal_Loop),
1116     _loop_or_ctrl(igvn.C->comp_arena()),
1117     _igvn(igvn),
1118     _verify_me(verify_me),
1119     _verify_only(verify_me == nullptr),
1120     _mode(LoopOptsVerify),
1121     _nodes_required(UINT_MAX) {
1122     build_and_optimize();
1123   }
1124 #endif
1125 
1126 public:
1127   Node* idom_no_update(Node* d) const {
1128     return idom_no_update(d->_idx);
1129   }
1130 
1131   Node* idom_no_update(uint didx) const {
1132     assert(didx < _idom_size, "oob");
1133     Node* n = _idom[didx];
1134     assert(n != nullptr,"Bad immediate dominator info.");
1135     while (n->in(0) == nullptr) { // Skip dead CFG nodes
1136       n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1);
1137       assert(n != nullptr,"Bad immediate dominator info.");
1138     }
1139     return n;
1140   }
1141 
1142   Node *idom(Node* d) const {
1143     return idom(d->_idx);
1144   }
1145 
1146   Node *idom(uint didx) const {
1147     Node *n = idom_no_update(didx);
1148     _idom[didx] = n; // Lazily remove dead CFG nodes from table.
1149     return n;
1150   }
1151 
1152   uint dom_depth(Node* d) const {
1153     guarantee(d != nullptr, "Null dominator info.");
1154     guarantee(d->_idx < _idom_size, "");
1155     return _dom_depth[d->_idx];
1156   }
1157   void set_idom(Node* d, Node* n, uint dom_depth);
1158   // Locally compute IDOM using dom_lca call
1159   Node *compute_idom( Node *region ) const;
1160   // Recompute dom_depth
1161   void recompute_dom_depth();
1162 
1163   // Is safept not required by an outer loop?
1164   bool is_deleteable_safept(Node* sfpt);
1165 
1166   // Replace parallel induction variable (parallel to trip counter)
1167   void replace_parallel_iv(IdealLoopTree *loop);
1168 
1169   Node *dom_lca( Node *n1, Node *n2 ) const {
1170     return find_non_split_ctrl(dom_lca_internal(n1, n2));
1171   }
1172   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
1173 
1174   // Build and verify the loop tree without modifying the graph.  This
1175   // is useful to verify that all inputs properly dominate their uses.
1176   static void verify(PhaseIterGVN& igvn) {
1177 #ifdef ASSERT
1178     ResourceMark rm;
1179     Compile::TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
1180     PhaseIdealLoop v(igvn);
1181 #endif
1182   }
1183 
1184   // Recommended way to use PhaseIdealLoop.
1185   // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations.
1186   static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) {
1187     ResourceMark rm;
1188     PhaseIdealLoop v(igvn, mode);
1189 
1190     Compile* C = Compile::current();
1191     if (!C->failing()) {
1192       // Cleanup any modified bits
1193       igvn.optimize();
1194       if (C->failing()) { return; }
1195       v.log_loop_tree();
1196     }
1197   }
1198 
1199   // True if the method has at least 1 irreducible loop
1200   bool _has_irreducible_loops;
1201 
1202   // Per-Node transform
1203   virtual Node* transform(Node* n) { return nullptr; }
1204 
1205   Node* loop_exit_control(Node* x, IdealLoopTree* loop);
1206   Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob);
1207   Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr);
1208   Node* loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi);
1209   PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop);
1210 
1211   bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt);
1212 
1213   Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt);
1214   bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new);
1215 #ifdef ASSERT
1216   bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop);
1217 #endif
1218   void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt);
1219   SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop);
1220   IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift);
1221   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
1222                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
1223                                                Node*& entry_control, Node*& iffalse);
1224 
1225   Node* exact_limit( IdealLoopTree *loop );
1226 
1227   // Return a post-walked LoopNode
1228   IdealLoopTree *get_loop( Node *n ) const {
1229     // Dead nodes have no loop, so return the top level loop instead
1230     if (!has_node(n))  return _ltree_root;
1231     assert(!has_ctrl(n), "");
1232     return (IdealLoopTree*)_loop_or_ctrl[n->_idx];
1233   }
1234 
1235   IdealLoopTree* ltree_root() const { return _ltree_root; }
1236 
1237   // Is 'n' a (nested) member of 'loop'?
1238   int is_member( const IdealLoopTree *loop, Node *n ) const {
1239     return loop->is_member(get_loop(n)); }
1240 
1241   // This is the basic building block of the loop optimizations.  It clones an
1242   // entire loop body.  It makes an old_new loop body mapping; with this
1243   // mapping you can find the new-loop equivalent to an old-loop node.  All
1244   // new-loop nodes are exactly equal to their old-loop counterparts, all
1245   // edges are the same.  All exits from the old-loop now have a RegionNode
1246   // that merges the equivalent new-loop path.  This is true even for the
1247   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
1248   // now come from (one or more) Phis that merge their new-loop equivalents.
1249   // Parameter side_by_side_idom:
1250   //   When side_by_size_idom is null, the dominator tree is constructed for
1251   //      the clone loop to dominate the original.  Used in construction of
1252   //      pre-main-post loop sequence.
1253   //   When nonnull, the clone and original are side-by-side, both are
1254   //      dominated by the passed in side_by_side_idom node.  Used in
1255   //      construction of unswitched loops.
1256   enum CloneLoopMode {
1257     IgnoreStripMined = 0,        // Only clone inner strip mined loop
1258     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
1259     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
1260                                  // result control flow branches
1261                                  // either to inner clone or outer
1262                                  // strip mined loop.
1263   };
1264   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1265                   CloneLoopMode mode, Node* side_by_side_idom = nullptr);
1266   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1267                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1268                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1269                                    Node_List*& split_cex_set, Node_List& worklist,
1270                                    uint new_counter, CloneLoopMode mode);
1271   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1272                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1273                         Node_List& extra_data_nodes);
1274 
1275   // If we got the effect of peeling, either by actually peeling or by
1276   // making a pre-loop which must execute at least once, we can remove
1277   // all loop-invariant dominated tests in the main body.
1278   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1279 
1280   // Generate code to do a loop peel for the given loop (and body).
1281   // old_new is a temp array.
1282   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1283 
1284   // Add pre and post loops around the given loop.  These loops are used
1285   // during RCE, unrolling and aligning loops.
1286   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1287 
1288   // Add post loop after the given loop.
1289   Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new,
1290                          CountedLoopNode* main_head, CountedLoopEndNode* main_end,
1291                          Node*& incr, Node* limit, CountedLoopNode*& post_head);
1292 
1293   // Add a vector post loop between a vector main loop and the current post loop
1294   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1295   // If Node n lives in the back_ctrl block, we clone a private version of n
1296   // in preheader_ctrl block and return that, otherwise return n.
1297   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1298 
1299   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1300   // unroll to do double iterations.  The next round of major loop transforms
1301   // will repeat till the doubled loop body does all remaining iterations in 1
1302   // pass.
1303   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1304 
1305   // Unroll the loop body one step - make each trip do 2 iterations.
1306   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1307 
1308   // Return true if exp is a constant times an induction var
1309   bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0);
1310 
1311   bool is_iv(Node* exp, Node* iv, BasicType bt);
1312 
1313   // Return true if exp is a scaled induction var plus (or minus) constant
1314   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0);
1315   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) {
1316     jlong long_scale;
1317     if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) {
1318       int int_scale = checked_cast<int>(long_scale);
1319       if (p_scale != nullptr) {
1320         *p_scale = int_scale;
1321       }
1322       return true;
1323     }
1324     return false;
1325   }
1326   // Helper for finding more complex matches to is_scaled_iv_plus_offset.
1327   bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv,
1328                                       BasicType bt,
1329                                       jlong* p_scale, Node** p_offset,
1330                                       bool* p_short_scale, int depth);
1331 
1332   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1333   IfProjNode* create_new_if_for_predicate(ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1334                                           Deoptimization::DeoptReason reason, int opcode,
1335                                           bool rewire_uncommon_proj_phi_inputs = false);
1336 
1337  private:
1338   // Helper functions for create_new_if_for_predicate()
1339   void set_ctrl_of_nodes_with_same_ctrl(Node* node, ProjNode* old_ctrl, Node* new_ctrl);
1340   Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl);
1341   Node* clone_nodes_with_same_ctrl(Node* node, ProjNode* old_ctrl, Node* new_ctrl);
1342   Dict clone_nodes(const Node_List& list_to_clone);
1343   void rewire_cloned_nodes_to_ctrl(const ProjNode* old_ctrl, Node* new_ctrl, const Node_List& nodes_with_same_ctrl,
1344                                    const Dict& old_new_mapping);
1345   void rewire_inputs_of_clones_to_clones(Node* new_ctrl, Node* clone, const Dict& old_new_mapping, const Node* next);
1346   bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt,
1347                                        Node* loop_entry);
1348 
1349  public:
1350   void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true);
1351 
1352   // Construct a range check for a predicate if
1353   BoolNode* rc_predicate(IdealLoopTree* loop, Node* ctrl, int scale, Node* offset, Node* init, Node* limit,
1354                          jint stride, Node* range, bool upper, bool& overflow);
1355 
1356   // Implementation of the loop predication to promote checks outside the loop
1357   bool loop_predication_impl(IdealLoopTree *loop);
1358 
1359  private:
1360   bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj,
1361                                     ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero,
1362                                     Invariance& invar, Deoptimization::DeoptReason reason);
1363   bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const;
1364   bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt);
1365   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1366                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1367                                         Node_List& if_proj_list);
1368   IfProjNode* add_template_assertion_predicate(IfNode* iff, IdealLoopTree* loop, IfProjNode* if_proj,
1369                                                ParsePredicateSuccessProj* parse_predicate_proj,
1370                                                IfProjNode* upper_bound_proj, int scale, Node* offset, Node* init, Node* limit,
1371                                                jint stride, Node* rng, bool& overflow, Deoptimization::DeoptReason reason);
1372   Node* add_range_check_elimination_assertion_predicate(IdealLoopTree* loop, Node* predicate_proj, int scale_con,
1373                                                         Node* offset, Node* limit, jint stride_con, Node* value);
1374 
1375   // Helper function to collect predicate for eliminating the useless ones
1376   void eliminate_useless_predicates();
1377 
1378   void eliminate_useless_parse_predicates();
1379   void mark_all_parse_predicates_useless() const;
1380   void mark_loop_associated_parse_predicates_useful();
1381   static void mark_useful_parse_predicates_for_loop(IdealLoopTree* loop);
1382   void add_useless_parse_predicates_to_igvn_worklist();
1383 
1384   void eliminate_useless_template_assertion_predicates();
1385   void collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates);
1386   static void collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop, Unique_Node_List& useful_predicates);
1387   void eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates);
1388 
1389   void eliminate_useless_zero_trip_guard();
1390 
1391   bool has_control_dependencies_from_predicates(LoopNode* head) const;
1392   void verify_fast_loop(LoopNode* head, const ProjNode* proj_true) const NOT_DEBUG_RETURN;
1393  public:
1394   // Change the control input of expensive nodes to allow commoning by
1395   // IGVN when it is guaranteed to not result in a more frequent
1396   // execution of the expensive node. Return true if progress.
1397   bool process_expensive_nodes();
1398 
1399   // Check whether node has become unreachable
1400   bool is_node_unreachable(Node *n) const {
1401     return !has_node(n) || n->is_unreachable(_igvn);
1402   }
1403 
1404   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1405   void do_range_check(IdealLoopTree *loop, Node_List &old_new);
1406 
1407   // Create a slow version of the loop by cloning the loop
1408   // and inserting an if to select fast-slow versions.
1409   // Return the inserted if.
1410   IfNode* create_slow_version_of_loop(IdealLoopTree *loop,
1411                                         Node_List &old_new,
1412                                         IfNode* unswitch_iff,
1413                                         CloneLoopMode mode);
1414 
1415   // Clone loop with an invariant test (that does not exit) and
1416   // insert a clone of the test that selects which version to
1417   // execute.
1418   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1419 
1420   // Find candidate "if" for unswitching
1421   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1422 
1423   // Range Check Elimination uses this function!
1424   // Constrain the main loop iterations so the affine function:
1425   //    low_limit <= scale_con * I + offset  <  upper_limit
1426   // always holds true.  That is, either increase the number of iterations in
1427   // the pre-loop or the post-loop until the condition holds true in the main
1428   // loop.  Scale_con, offset and limit are all loop invariant.
1429   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
1430   // Helper function for add_constraint().
1431   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
1432 
1433   // Partially peel loop up through last_peel node.
1434   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1435   bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new);
1436 
1437   // AutoVectorize the loop: replace scalar ops with vector ops.
1438   enum AutoVectorizeStatus {
1439     Impossible,      // This loop has the wrong shape to even try vectorization.
1440     Success,         // We just successfully vectorized the loop.
1441     TriedAndFailed,  // We tried to vectorize, but failed.
1442   };
1443   AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared);
1444 
1445   // Move UnorderedReduction out of loop if possible
1446   void move_unordered_reduction_out_of_loop(IdealLoopTree* loop);
1447 
1448   // Create a scheduled list of nodes control dependent on ctrl set.
1449   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1450   // Has a use in the vector set
1451   bool has_use_in_set( Node* n, VectorSet& vset );
1452   // Has use internal to the vector set (ie. not in a phi at the loop head)
1453   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1454   // clone "n" for uses that are outside of loop
1455   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1456   // clone "n" for special uses that are in the not_peeled region
1457   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1458                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1459   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1460   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1461 #ifdef ASSERT
1462   // Validate the loop partition sets: peel and not_peel
1463   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1464   // Ensure that uses outside of loop are of the right form
1465   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1466                                  uint orig_exit_idx, uint clone_exit_idx);
1467   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1468 #endif
1469 
1470   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1471   int stride_of_possible_iv( Node* iff );
1472   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1473   // Return the (unique) control output node that's in the loop (if it exists.)
1474   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1475   // Insert a signed compare loop exit cloned from an unsigned compare.
1476   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1477   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1478   // Utility to register node "n" with PhaseIdealLoop
1479   void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth);
1480   // Utility to create an if-projection
1481   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1482   // Force the iff control output to be the live_proj
1483   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1484   // Insert a region before an if projection
1485   RegionNode* insert_region_before_proj(ProjNode* proj);
1486   // Insert a new if before an if projection
1487   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1488 
1489   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1490   // "Nearly" because all Nodes have been cloned from the original in the loop,
1491   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1492   // through the Phi recursively, and return a Bool.
1493   Node* clone_iff(PhiNode* phi);
1494   CmpNode* clone_bool(PhiNode* phi);
1495 
1496 
1497   // Rework addressing expressions to get the most loop-invariant stuff
1498   // moved out.  We'd like to do all associative operators, but it's especially
1499   // important (common) to do address expressions.
1500   Node* remix_address_expressions(Node* n);
1501   Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt);
1502 
1503   // Convert add to muladd to generate MuladdS2I under certain criteria
1504   Node * convert_add_to_muladd(Node * n);
1505 
1506   // Attempt to use a conditional move instead of a phi/branch
1507   Node *conditional_move( Node *n );
1508 
1509   // Check for aggressive application of 'split-if' optimization,
1510   // using basic block level info.
1511   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack);
1512   Node *split_if_with_blocks_pre ( Node *n );
1513   void  split_if_with_blocks_post( Node *n );
1514   Node *has_local_phi_input( Node *n );
1515   // Mark an IfNode as being dominated by a prior test,
1516   // without actually altering the CFG (and hence IDOM info).
1517   void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false);
1518 
1519   // Split Node 'n' through merge point
1520   RegionNode* split_thru_region(Node* n, RegionNode* region);
1521   // Split Node 'n' through merge point if there is enough win.
1522   Node *split_thru_phi( Node *n, Node *region, int policy );
1523   // Found an If getting its condition-code input from a Phi in the
1524   // same block.  Split thru the Region.
1525   void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr);
1526 
1527   // Conversion of fill/copy patterns into intrinsic versions
1528   bool do_intrinsify_fill();
1529   bool intrinsify_fill(IdealLoopTree* lpt);
1530   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1531                        Node*& shift, Node*& offset);
1532 
1533 private:
1534   // Return a type based on condition control flow
1535   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1536   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); }
1537  // Helpers for filtered type
1538   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1539 
1540   // Helper functions
1541   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1542   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1543   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1544   bool split_up( Node *n, Node *blk1, Node *blk2 );
1545 
1546   Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const;
1547   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1548   void try_move_store_after_loop(Node* n);
1549   bool identical_backtoback_ifs(Node *n);
1550   bool can_split_if(Node *n_ctrl);
1551   bool cannot_split_division(const Node* n, const Node* region) const;
1552   static bool is_divisor_counted_loop_phi(const Node* divisor, const Node* loop);
1553   bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const;
1554 
1555   // Determine if a method is too big for a/another round of split-if, based on
1556   // a magic (approximate) ratio derived from the equally magic constant 35000,
1557   // previously used for this purpose (but without relating to the node limit).
1558   bool must_throttle_split_if() {
1559     uint threshold = C->max_node_limit() * 2 / 5;
1560     return C->live_nodes() > threshold;
1561   }
1562 
1563   // A simplistic node request tracking mechanism, where
1564   //   = UINT_MAX   Request not valid or made final.
1565   //   < UINT_MAX   Nodes currently requested (estimate).
1566   uint _nodes_required;
1567 
1568   enum { REQUIRE_MIN = 70 };
1569 
1570   uint nodes_required() const { return _nodes_required; }
1571 
1572   // Given the _currently_  available number of nodes, check  whether there is
1573   // "room" for an additional request or not, considering the already required
1574   // number of  nodes.  Return TRUE if  the new request is  exceeding the node
1575   // budget limit, otherwise return FALSE.  Note that this interpretation will
1576   // act pessimistic on  additional requests when new nodes  have already been
1577   // generated since the 'begin'.  This behaviour fits with the intention that
1578   // node estimates/requests should be made upfront.
1579   bool exceeding_node_budget(uint required = 0) {
1580     assert(C->live_nodes() < C->max_node_limit(), "sanity");
1581     uint available = C->max_node_limit() - C->live_nodes();
1582     return available < required + _nodes_required + REQUIRE_MIN;
1583   }
1584 
1585   uint require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1586     precond(require > 0);
1587     _nodes_required += MAX2(require, minreq);
1588     return _nodes_required;
1589   }
1590 
1591   bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1592     return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0;
1593   }
1594 
1595   uint require_nodes_begin() {
1596     assert(_nodes_required == UINT_MAX, "Bad state (begin).");
1597     _nodes_required = 0;
1598     return C->live_nodes();
1599   }
1600 
1601   // When a node request is final,  optionally check that the requested number
1602   // of nodes was  reasonably correct with respect to the  number of new nodes
1603   // introduced since the last 'begin'. Always check that we have not exceeded
1604   // the maximum node limit.
1605   void require_nodes_final(uint live_at_begin, bool check_estimate) {
1606     assert(_nodes_required < UINT_MAX, "Bad state (final).");
1607 
1608 #ifdef ASSERT
1609     if (check_estimate) {
1610       // Check that the node budget request was not off by too much (x2).
1611       // Should this be the case we _surely_ need to improve the estimates
1612       // used in our budget calculations.
1613       if (C->live_nodes() - live_at_begin > 2 * _nodes_required) {
1614         log_info(compilation)("Bad node estimate: actual = %d >> request = %d",
1615                               C->live_nodes() - live_at_begin, _nodes_required);
1616       }
1617     }
1618 #endif
1619     // Assert that we have stayed within the node budget limit.
1620     assert(C->live_nodes() < C->max_node_limit(),
1621            "Exceeding node budget limit: %d + %d > %d (request = %d)",
1622            C->live_nodes() - live_at_begin, live_at_begin,
1623            C->max_node_limit(), _nodes_required);
1624 
1625     _nodes_required = UINT_MAX;
1626   }
1627 
1628   // Clone Parse Predicates to slow and fast loop when unswitching a loop
1629   void clone_parse_and_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, Node_List& old_new,
1630                                                                IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred);
1631   void clone_loop_predication_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new,
1632                                                             const PredicateBlock* predicate_block,
1633                                                             Deoptimization::DeoptReason reason, IfProjNode*& iffast_pred,
1634                                                             IfProjNode*& ifslow_pred);
1635   void clone_parse_predicate_to_unswitched_loops(const PredicateBlock* predicate_block, Deoptimization::DeoptReason reason,
1636                                                  IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred);
1637   IfProjNode* clone_parse_predicate_to_unswitched_loop(ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1638                                                        Deoptimization::DeoptReason reason, bool slow_loop);
1639   void clone_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new,
1640                                                      Deoptimization::DeoptReason reason, IfProjNode* old_predicate_proj,
1641                                                      ParsePredicateSuccessProj* fast_loop_parse_predicate_proj,
1642                                                      ParsePredicateSuccessProj* slow_loop_parse_predicate_proj);
1643   IfProjNode* clone_assertion_predicate_for_unswitched_loops(Node* iff, IfProjNode* predicate,
1644                                                              Deoptimization::DeoptReason reason,
1645                                                              ParsePredicateSuccessProj* parse_predicate_proj);
1646   static void check_cloned_parse_predicate_for_unswitching(const Node* new_entry, bool is_fast_loop) PRODUCT_RETURN;
1647 
1648   bool _created_loop_node;
1649   DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);)
1650   NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;)
1651 
1652 public:
1653   void set_created_loop_node() { _created_loop_node = true; }
1654   bool created_loop_node()     { return _created_loop_node; }
1655   void register_new_node(Node* n, Node* blk);
1656 
1657 #ifdef ASSERT
1658   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1659 #endif
1660 
1661 #ifndef PRODUCT
1662   void dump() const;
1663   void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging
1664   void dump_idom(Node* n, uint count) const;
1665   void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const;
1666   void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const;
1667   IdealLoopTree* get_loop_idx(Node* n) const {
1668     // Dead nodes have no loop, so return the top level loop instead
1669     return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root;
1670   }
1671   // Print some stats
1672   static void print_statistics();
1673   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1674   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1675   static volatile int _long_loop_candidates;
1676   static volatile int _long_loop_nests;
1677   static volatile int _long_loop_counted_loops;
1678 #endif
1679 
1680 #ifdef ASSERT
1681   void verify() const;
1682   bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const;
1683   bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const;
1684   bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const;
1685 #endif
1686 
1687   void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const;
1688 
1689   void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN;
1690 
1691   LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test);
1692 
1693 
1694   int extract_long_range_checks(const IdealLoopTree* loop, jlong stride_con, int iters_limit, PhiNode* phi,
1695                                       Node_List &range_checks);
1696 
1697   void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1698                                    Node* inner_iters_actual_int, Node* inner_phi,
1699                                    Node* iv_add, LoopNode* inner_head);
1700 
1701   Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA);
1702 
1703   bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl);
1704 
1705   bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop);
1706 
1707   Node* compute_early_ctrl(Node* n, Node* n_ctrl);
1708 
1709   void try_sink_out_of_loop(Node* n);
1710 
1711   Node* clamp(Node* R, Node* L, Node* H);
1712 
1713   bool safe_for_if_replacement(const Node* dom) const;
1714 
1715   void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region);
1716 
1717   bool try_merge_identical_ifs(Node* n);
1718 
1719   void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm);
1720 
1721   void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
1722                       IdealLoopTree* parent, bool partial);
1723 
1724   void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
1725                 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist);
1726 
1727   void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
1728                      uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set,
1729                      Node_List*& split_bool_set, Node_List*& split_cex_set);
1730 
1731   void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set);
1732 
1733   bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2);
1734 
1735   void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i);
1736 
1737   bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2);
1738 
1739   bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2);
1740 
1741 
1742   Node* similar_subtype_check(const Node* x, Node* r_in);
1743 
1744   void update_addp_chain_base(Node* x, Node* old_base, Node* new_base);
1745 
1746   bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x);
1747 };
1748 
1749 
1750 class AutoNodeBudget : public StackObj
1751 {
1752 public:
1753   enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK };
1754 
1755   AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK)
1756     : _phase(phase),
1757       _check_at_final(chk == BUDGET_CHECK),
1758       _nodes_at_begin(0)
1759   {
1760     precond(_phase != nullptr);
1761 
1762     _nodes_at_begin = _phase->require_nodes_begin();
1763   }
1764 
1765   ~AutoNodeBudget() {
1766 #ifndef PRODUCT
1767     if (TraceLoopOpts) {
1768       uint request = _phase->nodes_required();
1769       uint delta   = _phase->C->live_nodes() - _nodes_at_begin;
1770 
1771       if (request < delta) {
1772         tty->print_cr("Exceeding node budget: %d < %d", request, delta);
1773       } else {
1774         uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN;
1775         // Identify the worst estimates as "poor" ones.
1776         if (request > REQUIRE_MIN && delta > 0) {
1777           if ((delta >  REQUIRE_MIN && request >  3 * delta) ||
1778               (delta <= REQUIRE_MIN && request > 10 * delta)) {
1779             tty->print_cr("Poor node estimate: %d >> %d", request, delta);
1780           }
1781         }
1782       }
1783     }
1784 #endif // PRODUCT
1785     _phase->require_nodes_final(_nodes_at_begin, _check_at_final);
1786   }
1787 
1788 private:
1789   PhaseIdealLoop* _phase;
1790   bool _check_at_final;
1791   uint _nodes_at_begin;
1792 };
1793 
1794 inline Node* IdealLoopTree::tail() {
1795   // Handle lazy update of _tail field.
1796   if (_tail->in(0) == nullptr) {
1797     _tail = _phase->get_ctrl(_tail);
1798   }
1799   return _tail;
1800 }
1801 
1802 inline Node* IdealLoopTree::head() {
1803   // Handle lazy update of _head field.
1804   if (_head->in(0) == nullptr) {
1805     _head = _phase->get_ctrl(_head);
1806   }
1807   return _head;
1808 }
1809 
1810 // Iterate over the loop tree using a preorder, left-to-right traversal.
1811 //
1812 // Example that visits all counted loops from within PhaseIdealLoop
1813 //
1814 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1815 //   IdealLoopTree* lpt = iter.current();
1816 //   if (!lpt->is_counted()) continue;
1817 //   ...
1818 class LoopTreeIterator : public StackObj {
1819 private:
1820   IdealLoopTree* _root;
1821   IdealLoopTree* _curnt;
1822 
1823 public:
1824   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1825 
1826   bool done() { return _curnt == nullptr; }       // Finished iterating?
1827 
1828   void next();                                 // Advance to next loop tree
1829 
1830   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1831 };
1832 
1833 // Compute probability of reaching some CFG node from a fixed
1834 // dominating CFG node
1835 class PathFrequency {
1836 private:
1837   Node* _dom; // frequencies are computed relative to this node
1838   Node_Stack _stack;
1839   GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions
1840   GrowableArray<float> _freqs; // cache frequencies
1841   PhaseIdealLoop* _phase;
1842 
1843   float check_and_truncate_frequency(float f) {
1844     assert(f >= 0, "Incorrect frequency");
1845     // We do not perform an exact (f <= 1) check
1846     // this would be error prone with rounding of floats.
1847     // Performing a check like (f <= 1+eps) would be of benefit,
1848     // however, it is not evident how to determine such an eps,
1849     // given that an arbitrary number of add/mul operations
1850     // are performed on these frequencies.
1851     return (f > 1) ? 1 : f;
1852   }
1853 
1854 public:
1855   PathFrequency(Node* dom, PhaseIdealLoop* phase)
1856     : _dom(dom), _stack(0), _phase(phase) {
1857   }
1858 
1859   float to(Node* n);
1860 };
1861 
1862 #endif // SHARE_OPTO_LOOPNODE_HPP