1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_LOOPNODE_HPP 26 #define SHARE_OPTO_LOOPNODE_HPP 27 28 #include "opto/cfgnode.hpp" 29 #include "opto/multnode.hpp" 30 #include "opto/phaseX.hpp" 31 #include "opto/predicates.hpp" 32 #include "opto/subnode.hpp" 33 #include "opto/type.hpp" 34 #include "utilities/checkedCast.hpp" 35 36 class CmpNode; 37 class BaseCountedLoopEndNode; 38 class CountedLoopNode; 39 class IdealLoopTree; 40 class LoopNode; 41 class Node; 42 class OuterStripMinedLoopEndNode; 43 class PredicateBlock; 44 class PathFrequency; 45 class PhaseIdealLoop; 46 class LoopSelector; 47 class UnswitchedLoopSelector; 48 class VectorSet; 49 class VSharedData; 50 class Invariance; 51 struct small_cache; 52 53 // 54 // I D E A L I Z E D L O O P S 55 // 56 // Idealized loops are the set of loops I perform more interesting 57 // transformations on, beyond simple hoisting. 58 59 //------------------------------LoopNode--------------------------------------- 60 // Simple loop header. Fall in path on left, loop-back path on right. 61 class LoopNode : public RegionNode { 62 // Size is bigger to hold the flags. However, the flags do not change 63 // the semantics so it does not appear in the hash & cmp functions. 64 virtual uint size_of() const { return sizeof(*this); } 65 protected: 66 uint _loop_flags; 67 // Names for flag bitfields 68 enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3, 69 MainHasNoPreLoop = 1<<2, 70 HasExactTripCount = 1<<3, 71 InnerLoop = 1<<4, 72 PartialPeelLoop = 1<<5, 73 PartialPeelFailed = 1<<6, 74 WasSlpAnalyzed = 1<<7, 75 PassedSlpAnalysis = 1<<8, 76 DoUnrollOnly = 1<<9, 77 VectorizedLoop = 1<<10, 78 HasAtomicPostLoop = 1<<11, 79 StripMined = 1<<12, 80 SubwordLoop = 1<<13, 81 ProfileTripFailed = 1<<14, 82 LoopNestInnerLoop = 1<<15, 83 LoopNestLongOuterLoop = 1<<16, 84 MultiversionFastLoop = 1<<17, 85 MultiversionSlowLoop = 2<<17, 86 MultiversionDelayedSlowLoop = 3<<17, 87 MultiversionFlagsMask = 3<<17, 88 }; 89 char _unswitch_count; 90 enum { _unswitch_max=3 }; 91 92 // Expected trip count from profile data 93 float _profile_trip_cnt; 94 95 public: 96 // Names for edge indices 97 enum { Self=0, EntryControl, LoopBackControl }; 98 99 bool is_inner_loop() const { return _loop_flags & InnerLoop; } 100 void set_inner_loop() { _loop_flags |= InnerLoop; } 101 102 bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; } 103 bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; } 104 void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; } 105 bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; } 106 bool is_strip_mined() const { return _loop_flags & StripMined; } 107 bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; } 108 bool is_subword_loop() const { return _loop_flags & SubwordLoop; } 109 bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; } 110 bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; } 111 112 void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; } 113 void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; } 114 void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; } 115 void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; } 116 void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; } 117 void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; } 118 void mark_strip_mined() { _loop_flags |= StripMined; } 119 void clear_strip_mined() { _loop_flags &= ~StripMined; } 120 void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; } 121 void mark_subword_loop() { _loop_flags |= SubwordLoop; } 122 void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; } 123 void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; } 124 125 int unswitch_max() { return _unswitch_max; } 126 int unswitch_count() { return _unswitch_count; } 127 128 void set_unswitch_count(int val) { 129 assert (val <= unswitch_max(), "too many unswitches"); 130 _unswitch_count = val; 131 } 132 133 void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; } 134 float profile_trip_cnt() { return _profile_trip_cnt; } 135 136 #ifndef PRODUCT 137 uint _stress_peeling_attempts = 0; 138 #endif 139 140 LoopNode(Node *entry, Node *backedge) 141 : RegionNode(3), _loop_flags(0), _unswitch_count(0), 142 _profile_trip_cnt(COUNT_UNKNOWN) { 143 init_class_id(Class_Loop); 144 init_req(EntryControl, entry); 145 init_req(LoopBackControl, backedge); 146 } 147 148 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 149 virtual int Opcode() const; 150 bool can_be_counted_loop(PhaseValues* phase) const { 151 return req() == 3 && in(0) != nullptr && 152 in(1) != nullptr && phase->type(in(1)) != Type::TOP && 153 in(2) != nullptr && phase->type(in(2)) != Type::TOP; 154 } 155 bool is_valid_counted_loop(BasicType bt) const; 156 #ifndef PRODUCT 157 virtual void dump_spec(outputStream *st) const; 158 #endif 159 160 void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN; 161 virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; } 162 virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; } 163 virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; } 164 virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; } 165 virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; } 166 }; 167 168 //------------------------------Counted Loops---------------------------------- 169 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit 170 // path (and maybe some other exit paths). The trip-counter exit is always 171 // last in the loop. The trip-counter have to stride by a constant; 172 // the exit value is also loop invariant. 173 174 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs. The 175 // CountedLoopNode has the incoming loop control and the loop-back-control 176 // which is always the IfTrue before the matching CountedLoopEndNode. The 177 // CountedLoopEndNode has an incoming control (possibly not the 178 // CountedLoopNode if there is control flow in the loop), the post-increment 179 // trip-counter value, and the limit. The trip-counter value is always of 180 // the form (Op old-trip-counter stride). The old-trip-counter is produced 181 // by a Phi connected to the CountedLoopNode. The stride is constant. 182 // The Op is any commutable opcode, including Add, Mul, Xor. The 183 // CountedLoopEndNode also takes in the loop-invariant limit value. 184 185 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the 186 // loop-back control. From CountedLoopEndNodes I can reach CountedLoopNodes 187 // via the old-trip-counter from the Op node. 188 189 //------------------------------CountedLoopNode-------------------------------- 190 // CountedLoopNodes head simple counted loops. CountedLoopNodes have as 191 // inputs the incoming loop-start control and the loop-back control, so they 192 // act like RegionNodes. They also take in the initial trip counter, the 193 // loop-invariant stride and the loop-invariant limit value. CountedLoopNodes 194 // produce a loop-body control and the trip counter value. Since 195 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model. 196 197 class BaseCountedLoopNode : public LoopNode { 198 public: 199 BaseCountedLoopNode(Node *entry, Node *backedge) 200 : LoopNode(entry, backedge) { 201 } 202 203 Node *init_control() const { return in(EntryControl); } 204 Node *back_control() const { return in(LoopBackControl); } 205 206 Node* init_trip() const; 207 Node* stride() const; 208 bool stride_is_con() const; 209 Node* limit() const; 210 Node* incr() const; 211 Node* phi() const; 212 213 BaseCountedLoopEndNode* loopexit_or_null() const; 214 BaseCountedLoopEndNode* loopexit() const; 215 216 virtual BasicType bt() const = 0; 217 218 jlong stride_con() const; 219 220 static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt); 221 }; 222 223 224 class CountedLoopNode : public BaseCountedLoopNode { 225 // Size is bigger to hold _main_idx. However, _main_idx does not change 226 // the semantics so it does not appear in the hash & cmp functions. 227 virtual uint size_of() const { return sizeof(*this); } 228 229 // For Pre- and Post-loops during debugging ONLY, this holds the index of 230 // the Main CountedLoop. Used to assert that we understand the graph shape. 231 node_idx_t _main_idx; 232 233 // Known trip count calculated by compute_exact_trip_count() 234 uint _trip_count; 235 236 // Log2 of original loop bodies in unrolled loop 237 int _unrolled_count_log2; 238 239 // Node count prior to last unrolling - used to decide if 240 // unroll,optimize,unroll,optimize,... is making progress 241 int _node_count_before_unroll; 242 243 // If slp analysis is performed we record the maximum 244 // vector mapped unroll factor here 245 int _slp_maximum_unroll_factor; 246 247 public: 248 CountedLoopNode(Node *entry, Node *backedge) 249 : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint), 250 _unrolled_count_log2(0), _node_count_before_unroll(0), 251 _slp_maximum_unroll_factor(0) { 252 init_class_id(Class_CountedLoop); 253 // Initialize _trip_count to the largest possible value. 254 // Will be reset (lower) if the loop's trip count is known. 255 } 256 257 virtual int Opcode() const; 258 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 259 260 CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); } 261 CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); } 262 int stride_con() const; 263 264 // Match increment with optional truncation 265 static Node* 266 match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type, 267 BasicType bt); 268 269 // A 'main' loop has a pre-loop and a post-loop. The 'main' loop 270 // can run short a few iterations and may start a few iterations in. 271 // It will be RCE'd and unrolled and aligned. 272 273 // A following 'post' loop will run any remaining iterations. Used 274 // during Range Check Elimination, the 'post' loop will do any final 275 // iterations with full checks. Also used by Loop Unrolling, where 276 // the 'post' loop will do any epilog iterations needed. Basically, 277 // a 'post' loop can not profitably be further unrolled or RCE'd. 278 279 // A preceding 'pre' loop will run at least 1 iteration (to do peeling), 280 // it may do under-flow checks for RCE and may do alignment iterations 281 // so the following main loop 'knows' that it is striding down cache 282 // lines. 283 284 // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or 285 // Aligned, may be missing it's pre-loop. 286 bool is_normal_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; } 287 bool is_pre_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Pre; } 288 bool is_main_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Main; } 289 bool is_post_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Post; } 290 bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; } 291 bool has_passed_slp () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; } 292 bool is_unroll_only () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; } 293 bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; } 294 bool has_atomic_post_loop () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; } 295 void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; } 296 297 IfNode* find_multiversion_if_from_multiversion_fast_main_loop(); 298 299 int main_idx() const { return _main_idx; } 300 301 302 void set_pre_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; } 303 void set_main_loop ( ) { assert(is_normal_loop(),""); _loop_flags |= Main; } 304 void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; } 305 void set_normal_loop( ) { _loop_flags &= ~PreMainPostFlagsMask; } 306 307 // We use max_juint for the default value of _trip_count to signal it wasn't set. 308 // We shouldn't set _trip_count to max_juint explicitly. 309 void set_trip_count(uint tc) { assert(tc < max_juint, "Cannot set trip count to max_juint"); _trip_count = tc; } 310 uint trip_count() { return _trip_count; } 311 312 bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; } 313 void set_exact_trip_count(uint tc) { 314 assert(tc < max_juint, "Cannot set trip count to max_juint"); 315 _trip_count = tc; 316 _loop_flags |= HasExactTripCount; 317 } 318 void set_nonexact_trip_count() { 319 _loop_flags &= ~HasExactTripCount; 320 } 321 void set_notpassed_slp() { 322 _loop_flags &= ~PassedSlpAnalysis; 323 } 324 325 void double_unrolled_count() { _unrolled_count_log2++; } 326 int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); } 327 328 void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; } 329 int node_count_before_unroll() { return _node_count_before_unroll; } 330 void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; } 331 int slp_max_unroll() const { return _slp_maximum_unroll_factor; } 332 333 // Multiversioning allows us to duplicate a CountedLoop, and have two versions, and the multiversion_if 334 // decides which one is taken: 335 // (1) fast_loop: We enter this loop by default, by default the multiversion_if has its condition set to 336 // "true", guarded by a OpaqueMultiversioning. If we want to make a speculative assumption 337 // for an optimization, we can add the runtime-check to the multiversion_if, and if the 338 // assumption fails we take the slow_loop instead, where we do not make the same speculative 339 // assumption. 340 // We call it the "fast_loop" because it has more optimizations, enabled by the speculative 341 // runtime-checks at the multiversion_if, and we expect the fast_loop to execute faster. 342 // (2) slow_loop: By default, it is not taken, until a runtime-check is added to the multiversion_if while 343 // optimizing the fast_looop. If such a runtime-check is never added, then after loop-opts 344 // the multiversion_if constant folds to true, and the slow_loop is folded away. To save 345 // compile time, we delay the optimization of the slow_loop until a runtime-check is added 346 // to the multiversion_if, at which point we resume optimizations for the slow_loop. 347 // We call it the "slow_loop" because it has fewer optimizations, since this is the fall-back 348 // loop where we do not make any of the speculative assumptions we make for the fast_loop. 349 // Hence, we expect the slow_loop to execute slower. 350 bool is_multiversion() const { return (_loop_flags & MultiversionFlagsMask) != Normal; } 351 bool is_multiversion_fast_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionFastLoop; } 352 bool is_multiversion_slow_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionSlowLoop; } 353 bool is_multiversion_delayed_slow_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionDelayedSlowLoop; } 354 void set_multiversion_fast_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionFastLoop; } 355 void set_multiversion_slow_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionSlowLoop; } 356 void set_multiversion_delayed_slow_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionDelayedSlowLoop; } 357 void set_no_multiversion() { assert( is_multiversion(), ""); _loop_flags &= ~MultiversionFlagsMask; } 358 359 virtual LoopNode* skip_strip_mined(int expect_skeleton = 1); 360 OuterStripMinedLoopNode* outer_loop() const; 361 virtual IfTrueNode* outer_loop_tail() const; 362 virtual OuterStripMinedLoopEndNode* outer_loop_end() const; 363 virtual IfFalseNode* outer_loop_exit() const; 364 virtual SafePointNode* outer_safepoint() const; 365 366 Node* skip_assertion_predicates_with_halt(); 367 368 virtual BasicType bt() const { 369 return T_INT; 370 } 371 372 Node* is_canonical_loop_entry(); 373 CountedLoopEndNode* find_pre_loop_end(); 374 375 Node* uncasted_init_trip(bool uncasted); 376 377 #ifndef PRODUCT 378 virtual void dump_spec(outputStream *st) const; 379 #endif 380 }; 381 382 class LongCountedLoopNode : public BaseCountedLoopNode { 383 public: 384 LongCountedLoopNode(Node *entry, Node *backedge) 385 : BaseCountedLoopNode(entry, backedge) { 386 init_class_id(Class_LongCountedLoop); 387 } 388 389 virtual int Opcode() const; 390 391 virtual BasicType bt() const { 392 return T_LONG; 393 } 394 395 LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); } 396 LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); } 397 }; 398 399 400 //------------------------------CountedLoopEndNode----------------------------- 401 // CountedLoopEndNodes end simple trip counted loops. They act much like 402 // IfNodes. 403 404 class BaseCountedLoopEndNode : public IfNode { 405 public: 406 enum { TestControl, TestValue }; 407 BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 408 : IfNode(control, test, prob, cnt) { 409 init_class_id(Class_BaseCountedLoopEnd); 410 } 411 412 Node *cmp_node() const { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; } 413 Node* incr() const { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; } 414 Node* limit() const { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; } 415 Node* stride() const { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; } 416 Node* init_trip() const { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; } 417 bool stride_is_con() const { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); } 418 419 PhiNode* phi() const { 420 Node* tmp = incr(); 421 if (tmp && tmp->req() == 3) { 422 Node* phi = tmp->in(1); 423 if (phi->is_Phi()) { 424 return phi->as_Phi(); 425 } 426 } 427 return nullptr; 428 } 429 430 BaseCountedLoopNode* loopnode() const { 431 // The CountedLoopNode that goes with this CountedLoopEndNode may 432 // have been optimized out by the IGVN so be cautious with the 433 // pattern matching on the graph 434 PhiNode* iv_phi = phi(); 435 if (iv_phi == nullptr) { 436 return nullptr; 437 } 438 Node* ln = iv_phi->in(0); 439 if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) { 440 return nullptr; 441 } 442 if (ln->as_BaseCountedLoop()->bt() != bt()) { 443 return nullptr; 444 } 445 return ln->as_BaseCountedLoop(); 446 } 447 448 BoolTest::mask test_trip() const { return in(TestValue)->as_Bool()->_test._test; } 449 450 jlong stride_con() const; 451 virtual BasicType bt() const = 0; 452 453 static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt); 454 }; 455 456 class CountedLoopEndNode : public BaseCountedLoopEndNode { 457 public: 458 459 CountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 460 : BaseCountedLoopEndNode(control, test, prob, cnt) { 461 init_class_id(Class_CountedLoopEnd); 462 } 463 virtual int Opcode() const; 464 465 CountedLoopNode* loopnode() const { 466 return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode(); 467 } 468 469 virtual BasicType bt() const { 470 return T_INT; 471 } 472 473 #ifndef PRODUCT 474 virtual void dump_spec(outputStream *st) const; 475 #endif 476 }; 477 478 class LongCountedLoopEndNode : public BaseCountedLoopEndNode { 479 public: 480 LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 481 : BaseCountedLoopEndNode(control, test, prob, cnt) { 482 init_class_id(Class_LongCountedLoopEnd); 483 } 484 485 LongCountedLoopNode* loopnode() const { 486 return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode(); 487 } 488 489 virtual int Opcode() const; 490 491 virtual BasicType bt() const { 492 return T_LONG; 493 } 494 }; 495 496 497 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const { 498 Node* bctrl = back_control(); 499 if (bctrl == nullptr) return nullptr; 500 501 Node* lexit = bctrl->in(0); 502 if (!lexit->is_BaseCountedLoopEnd()) { 503 return nullptr; 504 } 505 BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd(); 506 if (result->bt() != bt()) { 507 return nullptr; 508 } 509 return result; 510 } 511 512 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const { 513 BaseCountedLoopEndNode* cle = loopexit_or_null(); 514 assert(cle != nullptr, "loopexit is null"); 515 return cle; 516 } 517 518 inline Node* BaseCountedLoopNode::init_trip() const { 519 BaseCountedLoopEndNode* cle = loopexit_or_null(); 520 return cle != nullptr ? cle->init_trip() : nullptr; 521 } 522 inline Node* BaseCountedLoopNode::stride() const { 523 BaseCountedLoopEndNode* cle = loopexit_or_null(); 524 return cle != nullptr ? cle->stride() : nullptr; 525 } 526 527 inline bool BaseCountedLoopNode::stride_is_con() const { 528 BaseCountedLoopEndNode* cle = loopexit_or_null(); 529 return cle != nullptr && cle->stride_is_con(); 530 } 531 inline Node* BaseCountedLoopNode::limit() const { 532 BaseCountedLoopEndNode* cle = loopexit_or_null(); 533 return cle != nullptr ? cle->limit() : nullptr; 534 } 535 inline Node* BaseCountedLoopNode::incr() const { 536 BaseCountedLoopEndNode* cle = loopexit_or_null(); 537 return cle != nullptr ? cle->incr() : nullptr; 538 } 539 inline Node* BaseCountedLoopNode::phi() const { 540 BaseCountedLoopEndNode* cle = loopexit_or_null(); 541 return cle != nullptr ? cle->phi() : nullptr; 542 } 543 544 inline jlong BaseCountedLoopNode::stride_con() const { 545 BaseCountedLoopEndNode* cle = loopexit_or_null(); 546 return cle != nullptr ? cle->stride_con() : 0; 547 } 548 549 550 //------------------------------LoopLimitNode----------------------------- 551 // Counted Loop limit node which represents exact final iterator value: 552 // trip_count = (limit - init_trip + stride - 1)/stride 553 // final_value= trip_count * stride + init_trip. 554 // Use HW instructions to calculate it when it can overflow in integer. 555 // Note, final_value should fit into integer since counted loop has 556 // limit check: limit <= max_int-stride. 557 class LoopLimitNode : public Node { 558 enum { Init=1, Limit=2, Stride=3 }; 559 public: 560 LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(nullptr,init,limit,stride) { 561 // Put it on the Macro nodes list to optimize during macro nodes expansion. 562 init_flags(Flag_is_macro); 563 C->add_macro_node(this); 564 } 565 virtual int Opcode() const; 566 virtual const Type *bottom_type() const { return TypeInt::INT; } 567 virtual uint ideal_reg() const { return Op_RegI; } 568 virtual const Type* Value(PhaseGVN* phase) const; 569 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 570 virtual Node* Identity(PhaseGVN* phase); 571 }; 572 573 // Support for strip mining 574 class OuterStripMinedLoopNode : public LoopNode { 575 private: 576 void fix_sunk_stores_when_back_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) const; 577 void handle_sunk_stores_when_finishing_construction(PhaseIterGVN* igvn); 578 579 public: 580 OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge) 581 : LoopNode(entry, backedge) { 582 init_class_id(Class_OuterStripMinedLoop); 583 init_flags(Flag_is_macro); 584 C->add_macro_node(this); 585 } 586 587 virtual int Opcode() const; 588 589 virtual IfTrueNode* outer_loop_tail() const; 590 virtual OuterStripMinedLoopEndNode* outer_loop_end() const; 591 virtual IfFalseNode* outer_loop_exit() const; 592 virtual SafePointNode* outer_safepoint() const; 593 CountedLoopNode* inner_counted_loop() const { return unique_ctrl_out()->as_CountedLoop(); } 594 CountedLoopEndNode* inner_counted_loop_end() const { return inner_counted_loop()->loopexit(); } 595 IfFalseNode* inner_loop_exit() const { return inner_counted_loop_end()->proj_out(false)->as_IfFalse(); } 596 597 void adjust_strip_mined_loop(PhaseIterGVN* igvn); 598 599 void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const; 600 601 void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop); 602 603 static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop); 604 605 Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn, 606 PhaseIdealLoop* iloop); 607 }; 608 609 class OuterStripMinedLoopEndNode : public IfNode { 610 public: 611 OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt) 612 : IfNode(control, test, prob, cnt) { 613 init_class_id(Class_OuterStripMinedLoopEnd); 614 } 615 616 virtual int Opcode() const; 617 618 virtual const Type* Value(PhaseGVN* phase) const; 619 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 620 621 bool is_expanded(PhaseGVN *phase) const; 622 }; 623 624 // -----------------------------IdealLoopTree---------------------------------- 625 class IdealLoopTree : public ResourceObj { 626 public: 627 IdealLoopTree *_parent; // Parent in loop tree 628 IdealLoopTree *_next; // Next sibling in loop tree 629 IdealLoopTree *_child; // First child in loop tree 630 631 // The head-tail backedge defines the loop. 632 // If a loop has multiple backedges, this is addressed during cleanup where 633 // we peel off the multiple backedges, merging all edges at the bottom and 634 // ensuring that one proper backedge flow into the loop. 635 Node *_head; // Head of loop 636 Node *_tail; // Tail of loop 637 inline Node *tail(); // Handle lazy update of _tail field 638 inline Node *head(); // Handle lazy update of _head field 639 PhaseIdealLoop* _phase; 640 int _local_loop_unroll_limit; 641 int _local_loop_unroll_factor; 642 643 Node_List _body; // Loop body for inner loops 644 645 uint16_t _nest; // Nesting depth 646 uint8_t _irreducible:1, // True if irreducible 647 _has_call:1, // True if has call safepoint 648 _has_sfpt:1, // True if has non-call safepoint 649 _rce_candidate:1, // True if candidate for range check elimination 650 _has_range_checks:1, 651 _has_range_checks_computed:1; 652 653 Node_List* _safepts; // List of safepoints in this loop 654 Node_List* _required_safept; // A inner loop cannot delete these safepts; 655 bool _allow_optimizations; // Allow loop optimizations 656 657 IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail ) 658 : _parent(nullptr), _next(nullptr), _child(nullptr), 659 _head(head), _tail(tail), 660 _phase(phase), 661 _local_loop_unroll_limit(0), _local_loop_unroll_factor(0), 662 _body(Compile::current()->comp_arena()), 663 _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0), 664 _has_range_checks(0), _has_range_checks_computed(0), 665 _safepts(nullptr), 666 _required_safept(nullptr), 667 _allow_optimizations(true) 668 { 669 precond(_head != nullptr); 670 precond(_tail != nullptr); 671 } 672 673 // Is 'l' a member of 'this'? 674 bool is_member(const IdealLoopTree *l) const; // Test for nested membership 675 676 // Set loop nesting depth. Accumulate has_call bits. 677 int set_nest( uint depth ); 678 679 // Split out multiple fall-in edges from the loop header. Move them to a 680 // private RegionNode before the loop. This becomes the loop landing pad. 681 void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ); 682 683 // Split out the outermost loop from this shared header. 684 void split_outer_loop( PhaseIdealLoop *phase ); 685 686 // Merge all the backedges from the shared header into a private Region. 687 // Feed that region as the one backedge to this loop. 688 void merge_many_backedges( PhaseIdealLoop *phase ); 689 690 // Split shared headers and insert loop landing pads. 691 // Insert a LoopNode to replace the RegionNode. 692 // Returns TRUE if loop tree is structurally changed. 693 bool beautify_loops( PhaseIdealLoop *phase ); 694 695 // Perform optimization to use the loop predicates for null checks and range checks. 696 // Applies to any loop level (not just the innermost one) 697 bool loop_predication( PhaseIdealLoop *phase); 698 bool can_apply_loop_predication(); 699 700 // Perform iteration-splitting on inner loops. Split iterations to 701 // avoid range checks or one-shot null checks. Returns false if the 702 // current round of loop opts should stop. 703 bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new ); 704 705 // Driver for various flavors of iteration splitting. Returns false 706 // if the current round of loop opts should stop. 707 bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ); 708 709 // Given dominators, try to find loops with calls that must always be 710 // executed (call dominates loop tail). These loops do not need non-call 711 // safepoints (ncsfpt). 712 void check_safepts(VectorSet &visited, Node_List &stack); 713 714 // Allpaths backwards scan from loop tail, terminating each path at first safepoint 715 // encountered. 716 void allpaths_check_safepts(VectorSet &visited, Node_List &stack); 717 718 // Remove safepoints from loop. Optionally keeping one. 719 void remove_safepoints(PhaseIdealLoop* phase, bool keep_one); 720 721 // Convert to counted loops where possible 722 void counted_loop( PhaseIdealLoop *phase ); 723 724 // Check for Node being a loop-breaking test 725 Node *is_loop_exit(Node *iff) const; 726 727 // Remove simplistic dead code from loop body 728 void DCE_loop_body(); 729 730 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage. 731 // Replace with a 1-in-10 exit guess. 732 void adjust_loop_exit_prob( PhaseIdealLoop *phase ); 733 734 // Return TRUE or FALSE if the loop should never be RCE'd or aligned. 735 // Useful for unrolling loops with NO array accesses. 736 bool policy_peel_only( PhaseIdealLoop *phase ) const; 737 738 // Return TRUE or FALSE if the loop should be unswitched -- clone 739 // loop with an invariant test 740 bool policy_unswitching( PhaseIdealLoop *phase ) const; 741 742 // Micro-benchmark spamming. Remove empty loops. 743 bool do_remove_empty_loop( PhaseIdealLoop *phase ); 744 745 // Convert one iteration loop into normal code. 746 bool do_one_iteration_loop( PhaseIdealLoop *phase ); 747 748 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can 749 // move some loop-invariant test (usually a null-check) before the loop. 750 bool policy_peeling(PhaseIdealLoop *phase); 751 752 uint estimate_peeling(PhaseIdealLoop *phase); 753 754 // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any 755 // known trip count in the counted loop node. 756 bool policy_maximally_unroll(PhaseIdealLoop *phase) const; 757 758 // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll 759 // if the loop is a counted loop and the loop body is small enough. 760 bool policy_unroll(PhaseIdealLoop *phase); 761 762 // Loop analyses to map to a maximal superword unrolling for vectorization. 763 void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct); 764 765 // Return TRUE or FALSE if the loop should be range-check-eliminated. 766 // Gather a list of IF tests that are dominated by iteration splitting; 767 // also gather the end of the first split and the start of the 2nd split. 768 bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const; 769 770 // Return TRUE if "iff" is a range check. 771 bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const; 772 bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset, 773 jlong& scale) const; 774 775 // Estimate the number of nodes required when cloning a loop (body). 776 uint est_loop_clone_sz(uint factor) const; 777 // Estimate the number of nodes required when unrolling a loop (body). 778 uint est_loop_unroll_sz(uint factor) const; 779 780 // Compute loop trip count if possible 781 void compute_trip_count(PhaseIdealLoop* phase); 782 783 // Compute loop trip count from profile data 784 float compute_profile_trip_cnt_helper(Node* n); 785 void compute_profile_trip_cnt( PhaseIdealLoop *phase ); 786 787 // Reassociate invariant expressions. 788 void reassociate_invariants(PhaseIdealLoop *phase); 789 // Reassociate invariant binary expressions. 790 Node* reassociate(Node* n1, PhaseIdealLoop *phase); 791 // Reassociate invariant add, subtract, and compare expressions. 792 Node* reassociate_add_sub_cmp(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop* phase); 793 // Return nonzero index of invariant operand if invariant and variant 794 // are combined with an associative binary. Helper for reassociate_invariants. 795 int find_invariant(Node* n, PhaseIdealLoop *phase); 796 // Return TRUE if "n" is associative. 797 bool is_associative(Node* n, Node* base=nullptr); 798 // Return TRUE if "n" is an associative cmp node. 799 bool is_associative_cmp(Node* n); 800 801 // Return true if n is invariant 802 bool is_invariant(Node* n) const; 803 804 // Put loop body on igvn work list 805 void record_for_igvn(); 806 807 bool is_root() { return _parent == nullptr; } 808 // A proper/reducible loop w/o any (occasional) dead back-edge. 809 bool is_loop() { return !_irreducible && !tail()->is_top(); } 810 bool is_counted() { return is_loop() && _head->is_CountedLoop(); } 811 bool is_innermost() { return is_loop() && _child == nullptr; } 812 813 void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase); 814 815 bool compute_has_range_checks() const; 816 bool range_checks_present() { 817 if (!_has_range_checks_computed) { 818 if (compute_has_range_checks()) { 819 _has_range_checks = 1; 820 } 821 _has_range_checks_computed = 1; 822 } 823 return _has_range_checks; 824 } 825 826 // Return the parent's IdealLoopTree for a strip mined loop which is the outer strip mined loop. 827 // In all other cases, return this. 828 IdealLoopTree* skip_strip_mined() { 829 return _head->as_Loop()->is_strip_mined() ? _parent : this; 830 } 831 832 #ifndef PRODUCT 833 void dump_head(); // Dump loop head only 834 void dump(); // Dump this loop recursively 835 #endif 836 837 #ifdef ASSERT 838 GrowableArray<IdealLoopTree*> collect_sorted_children() const; 839 bool verify_tree(IdealLoopTree* loop_verify) const; 840 #endif 841 842 private: 843 enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop. 844 845 // Estimate the number of nodes resulting from control and data flow merge. 846 uint est_loop_flow_merge_sz() const; 847 848 // Check if the number of residual iterations is large with unroll_cnt. 849 // Return true if the residual iterations are more than 10% of the trip count. 850 bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const { 851 return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt(); 852 } 853 854 void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const; 855 856 bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const; 857 858 void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const; 859 860 bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq, 861 Node* sfpt) const; 862 863 bool empty_loop_candidate(PhaseIdealLoop* phase) const; 864 865 bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const; 866 }; 867 868 // -----------------------------PhaseIdealLoop--------------------------------- 869 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees 870 // into a loop tree. Drives the loop-based transformations on the ideal graph. 871 class PhaseIdealLoop : public PhaseTransform { 872 friend class IdealLoopTree; 873 friend class SuperWord; 874 friend class ShenandoahBarrierC2Support; 875 friend class AutoNodeBudget; 876 877 // Map loop membership for CFG nodes, and ctrl for non-CFG nodes. 878 Node_List _loop_or_ctrl; 879 880 // Pre-computed def-use info 881 PhaseIterGVN &_igvn; 882 883 // Head of loop tree 884 IdealLoopTree* _ltree_root; 885 886 // Array of pre-order numbers, plus post-visited bit. 887 // ZERO for not pre-visited. EVEN for pre-visited but not post-visited. 888 // ODD for post-visited. Other bits are the pre-order number. 889 uint *_preorders; 890 uint _max_preorder; 891 892 ReallocMark _nesting; // Safety checks for arena reallocation 893 894 const PhaseIdealLoop* _verify_me; 895 bool _verify_only; 896 897 // Allocate _preorders[] array 898 void allocate_preorders() { 899 _max_preorder = C->unique()+8; 900 _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder); 901 memset(_preorders, 0, sizeof(uint) * _max_preorder); 902 } 903 904 // Allocate _preorders[] array 905 void reallocate_preorders() { 906 _nesting.check(); // Check if a potential re-allocation in the resource arena is safe 907 if ( _max_preorder < C->unique() ) { 908 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique()); 909 _max_preorder = C->unique(); 910 } 911 memset(_preorders, 0, sizeof(uint) * _max_preorder); 912 } 913 914 // Check to grow _preorders[] array for the case when build_loop_tree_impl() 915 // adds new nodes. 916 void check_grow_preorders( ) { 917 _nesting.check(); // Check if a potential re-allocation in the resource arena is safe 918 if ( _max_preorder < C->unique() ) { 919 uint newsize = _max_preorder<<1; // double size of array 920 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize); 921 memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder)); 922 _max_preorder = newsize; 923 } 924 } 925 // Check for pre-visited. Zero for NOT visited; non-zero for visited. 926 int is_visited( Node *n ) const { return _preorders[n->_idx]; } 927 // Pre-order numbers are written to the Nodes array as low-bit-set values. 928 void set_preorder_visited( Node *n, int pre_order ) { 929 assert( !is_visited( n ), "already set" ); 930 _preorders[n->_idx] = (pre_order<<1); 931 }; 932 // Return pre-order number. 933 int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; } 934 935 // Check for being post-visited. 936 // Should be previsited already (checked with assert(is_visited(n))). 937 int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; } 938 939 // Mark as post visited 940 void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; } 941 942 public: 943 // Set/get control node out. Set lower bit to distinguish from IdealLoopTree 944 // Returns true if "n" is a data node, false if it's a control node. 945 bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; } 946 947 private: 948 // clear out dead code after build_loop_late 949 Node_List _deadlist; 950 Node_List _zero_trip_guard_opaque_nodes; 951 Node_List _multiversion_opaque_nodes; 952 953 // Support for faster execution of get_late_ctrl()/dom_lca() 954 // when a node has many uses and dominator depth is deep. 955 GrowableArray<jlong> _dom_lca_tags; 956 uint _dom_lca_tags_round; 957 void init_dom_lca_tags(); 958 959 // Helper for debugging bad dominance relationships 960 bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early); 961 962 Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false); 963 964 // Inline wrapper for frequent cases: 965 // 1) only one use 966 // 2) a use is the same as the current LCA passed as 'n1' 967 Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) { 968 assert( n->is_CFG(), "" ); 969 // Fast-path null lca 970 if( lca != nullptr && lca != n ) { 971 assert( lca->is_CFG(), "" ); 972 // find LCA of all uses 973 n = dom_lca_for_get_late_ctrl_internal( lca, n, tag ); 974 } 975 return find_non_split_ctrl(n); 976 } 977 Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag ); 978 979 // Helper function for directing control inputs away from CFG split points. 980 Node *find_non_split_ctrl( Node *ctrl ) const { 981 if (ctrl != nullptr) { 982 if (ctrl->is_MultiBranch()) { 983 ctrl = ctrl->in(0); 984 } 985 assert(ctrl->is_CFG(), "CFG"); 986 } 987 return ctrl; 988 } 989 990 void cast_incr_before_loop(Node* incr, Node* ctrl, CountedLoopNode* loop); 991 992 #ifdef ASSERT 993 static void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop); 994 #endif 995 private: 996 static void get_opaque_template_assertion_predicate_nodes(ParsePredicateSuccessProj* parse_predicate_proj, 997 Unique_Node_List& list); 998 void update_main_loop_assertion_predicates(CountedLoopNode* new_main_loop_head, int stride_con_before_unroll); 999 void initialize_assertion_predicates_for_peeled_loop(CountedLoopNode* peeled_loop_head, 1000 CountedLoopNode* remaining_loop_head, 1001 uint first_node_index_in_cloned_loop_body, 1002 const Node_List& old_new); 1003 void initialize_assertion_predicates_for_main_loop(CountedLoopNode* pre_loop_head, 1004 CountedLoopNode* main_loop_head, 1005 uint first_node_index_in_pre_loop_body, 1006 uint last_node_index_in_pre_loop_body, 1007 DEBUG_ONLY(uint last_node_index_from_backedge_goo COMMA) 1008 const Node_List& old_new); 1009 void initialize_assertion_predicates_for_post_loop(CountedLoopNode* main_loop_head, CountedLoopNode* post_loop_head, 1010 uint first_node_index_in_cloned_loop_body); 1011 void create_assertion_predicates_at_loop(CountedLoopNode* source_loop_head, CountedLoopNode* target_loop_head, 1012 const NodeInLoopBody& _node_in_loop_body, bool kill_old_template); 1013 void create_assertion_predicates_at_main_or_post_loop(CountedLoopNode* source_loop_head, 1014 CountedLoopNode* target_loop_head, 1015 const NodeInLoopBody& _node_in_loop_body, 1016 bool kill_old_template); 1017 void rewire_old_target_loop_entry_dependency_to_new_entry(CountedLoopNode* target_loop_head, 1018 const Node* old_target_loop_entry, 1019 uint node_index_before_new_assertion_predicate_nodes); 1020 void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit, 1021 Node* bol); 1022 void log_loop_tree(); 1023 1024 public: 1025 1026 PhaseIterGVN &igvn() const { return _igvn; } 1027 1028 bool has_node(const Node* n) const { 1029 guarantee(n != nullptr, "No Node."); 1030 return _loop_or_ctrl[n->_idx] != nullptr; 1031 } 1032 // check if transform created new nodes that need _ctrl recorded 1033 Node *get_late_ctrl( Node *n, Node *early ); 1034 Node *get_early_ctrl( Node *n ); 1035 Node *get_early_ctrl_for_expensive(Node *n, Node* earliest); 1036 void set_early_ctrl(Node* n, bool update_body); 1037 void set_subtree_ctrl(Node* n, bool update_body); 1038 void set_ctrl( Node *n, Node *ctrl ) { 1039 assert( !has_node(n) || has_ctrl(n), "" ); 1040 assert( ctrl->in(0), "cannot set dead control node" ); 1041 assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" ); 1042 _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1)); 1043 } 1044 void set_root_as_ctrl(Node* n) { 1045 assert(!has_node(n) || has_ctrl(n), ""); 1046 _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)C->root() + 1)); 1047 } 1048 // Set control and update loop membership 1049 void set_ctrl_and_loop(Node* n, Node* ctrl) { 1050 IdealLoopTree* old_loop = get_loop(get_ctrl(n)); 1051 IdealLoopTree* new_loop = get_loop(ctrl); 1052 if (old_loop != new_loop) { 1053 if (old_loop->_child == nullptr) old_loop->_body.yank(n); 1054 if (new_loop->_child == nullptr) new_loop->_body.push(n); 1055 } 1056 set_ctrl(n, ctrl); 1057 } 1058 // Control nodes can be replaced or subsumed. During this pass they 1059 // get their replacement Node in slot 1. Instead of updating the block 1060 // location of all Nodes in the subsumed block, we lazily do it. As we 1061 // pull such a subsumed block out of the array, we write back the final 1062 // correct block. 1063 Node* get_ctrl(const Node* i) { 1064 assert(has_node(i), ""); 1065 Node *n = get_ctrl_no_update(i); 1066 _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1)); 1067 assert(has_node(i) && has_ctrl(i), ""); 1068 assert(n == find_non_split_ctrl(n), "must return legal ctrl" ); 1069 return n; 1070 } 1071 1072 bool is_dominator(Node* dominator, Node* n); 1073 bool is_strict_dominator(Node* dominator, Node* n); 1074 1075 // return get_ctrl for a data node and self(n) for a CFG node 1076 Node* ctrl_or_self(Node* n) { 1077 if (has_ctrl(n)) 1078 return get_ctrl(n); 1079 else { 1080 assert (n->is_CFG(), "must be a CFG node"); 1081 return n; 1082 } 1083 } 1084 1085 Node* get_ctrl_no_update_helper(const Node* i) const { 1086 assert(has_ctrl(i), "should be control, not loop"); 1087 return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1); 1088 } 1089 1090 Node* get_ctrl_no_update(const Node* i) const { 1091 assert( has_ctrl(i), "" ); 1092 Node *n = get_ctrl_no_update_helper(i); 1093 if (!n->in(0)) { 1094 // Skip dead CFG nodes 1095 do { 1096 n = get_ctrl_no_update_helper(n); 1097 } while (!n->in(0)); 1098 n = find_non_split_ctrl(n); 1099 } 1100 return n; 1101 } 1102 1103 // Check for loop being set 1104 // "n" must be a control node. Returns true if "n" is known to be in a loop. 1105 bool has_loop( Node *n ) const { 1106 assert(!has_node(n) || !has_ctrl(n), ""); 1107 return has_node(n); 1108 } 1109 // Set loop 1110 void set_loop( Node *n, IdealLoopTree *loop ) { 1111 _loop_or_ctrl.map(n->_idx, (Node*)loop); 1112 } 1113 // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms. Replace 1114 // the 'old_node' with 'new_node'. Kill old-node. Add a reference 1115 // from old_node to new_node to support the lazy update. Reference 1116 // replaces loop reference, since that is not needed for dead node. 1117 void lazy_update(Node *old_node, Node *new_node) { 1118 assert(old_node != new_node, "no cycles please"); 1119 // Re-use the side array slot for this node to provide the 1120 // forwarding pointer. 1121 _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1)); 1122 } 1123 void lazy_replace(Node *old_node, Node *new_node) { 1124 _igvn.replace_node(old_node, new_node); 1125 lazy_update(old_node, new_node); 1126 } 1127 1128 private: 1129 1130 // Place 'n' in some loop nest, where 'n' is a CFG node 1131 void build_loop_tree(); 1132 int build_loop_tree_impl(Node* n, int pre_order); 1133 // Insert loop into the existing loop tree. 'innermost' is a leaf of the 1134 // loop tree, not the root. 1135 IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost ); 1136 1137 #ifdef ASSERT 1138 // verify that regions in irreducible loops are marked is_in_irreducible_loop 1139 void verify_regions_in_irreducible_loops(); 1140 bool is_in_irreducible_loop(RegionNode* region); 1141 #endif 1142 1143 // Place Data nodes in some loop nest 1144 void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); 1145 void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); 1146 void build_loop_late_post_work(Node* n, bool pinned); 1147 void build_loop_late_post(Node* n); 1148 void verify_strip_mined_scheduling(Node *n, Node* least); 1149 1150 // Array of immediate dominance info for each CFG node indexed by node idx 1151 private: 1152 uint _idom_size; 1153 Node **_idom; // Array of immediate dominators 1154 uint *_dom_depth; // Used for fast LCA test 1155 GrowableArray<uint>* _dom_stk; // For recomputation of dom depth 1156 LoopOptsMode _mode; 1157 1158 // build the loop tree and perform any requested optimizations 1159 void build_and_optimize(); 1160 1161 // Dominators for the sea of nodes 1162 void Dominators(); 1163 1164 // Compute the Ideal Node to Loop mapping 1165 PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) : 1166 PhaseTransform(Ideal_Loop), 1167 _loop_or_ctrl(igvn.C->comp_arena()), 1168 _igvn(igvn), 1169 _verify_me(nullptr), 1170 _verify_only(false), 1171 _mode(mode), 1172 _nodes_required(UINT_MAX) { 1173 assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop"); 1174 build_and_optimize(); 1175 } 1176 1177 #ifndef PRODUCT 1178 // Verify that verify_me made the same decisions as a fresh run 1179 // or only verify that the graph is valid if verify_me is null. 1180 PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) : 1181 PhaseTransform(Ideal_Loop), 1182 _loop_or_ctrl(igvn.C->comp_arena()), 1183 _igvn(igvn), 1184 _verify_me(verify_me), 1185 _verify_only(verify_me == nullptr), 1186 _mode(LoopOptsVerify), 1187 _nodes_required(UINT_MAX) { 1188 DEBUG_ONLY(C->set_phase_verify_ideal_loop();) 1189 build_and_optimize(); 1190 DEBUG_ONLY(C->reset_phase_verify_ideal_loop();) 1191 } 1192 #endif 1193 1194 Node* insert_convert_node_if_needed(BasicType target, Node* input); 1195 1196 public: 1197 Node* idom_no_update(Node* d) const { 1198 return idom_no_update(d->_idx); 1199 } 1200 1201 Node* idom_no_update(uint didx) const { 1202 assert(didx < _idom_size, "oob"); 1203 Node* n = _idom[didx]; 1204 assert(n != nullptr,"Bad immediate dominator info."); 1205 while (n->in(0) == nullptr) { // Skip dead CFG nodes 1206 n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1); 1207 assert(n != nullptr,"Bad immediate dominator info."); 1208 } 1209 return n; 1210 } 1211 1212 Node *idom(Node* d) const { 1213 return idom(d->_idx); 1214 } 1215 1216 Node *idom(uint didx) const { 1217 Node *n = idom_no_update(didx); 1218 _idom[didx] = n; // Lazily remove dead CFG nodes from table. 1219 return n; 1220 } 1221 1222 uint dom_depth(Node* d) const { 1223 guarantee(d != nullptr, "Null dominator info."); 1224 guarantee(d->_idx < _idom_size, ""); 1225 return _dom_depth[d->_idx]; 1226 } 1227 void set_idom(Node* d, Node* n, uint dom_depth); 1228 // Locally compute IDOM using dom_lca call 1229 Node *compute_idom( Node *region ) const; 1230 // Recompute dom_depth 1231 void recompute_dom_depth(); 1232 1233 // Is safept not required by an outer loop? 1234 bool is_deleteable_safept(Node* sfpt); 1235 1236 // Replace parallel induction variable (parallel to trip counter) 1237 void replace_parallel_iv(IdealLoopTree *loop); 1238 1239 Node *dom_lca( Node *n1, Node *n2 ) const { 1240 return find_non_split_ctrl(dom_lca_internal(n1, n2)); 1241 } 1242 Node *dom_lca_internal( Node *n1, Node *n2 ) const; 1243 1244 Node* dominated_node(Node* c1, Node* c2) { 1245 assert(is_dominator(c1, c2) || is_dominator(c2, c1), "nodes must be related"); 1246 return is_dominator(c1, c2) ? c2 : c1; 1247 } 1248 1249 // Return control node that's dominated by the 2 others 1250 Node* dominated_node(Node* c1, Node* c2, Node* c3) { 1251 return dominated_node(c1, dominated_node(c2, c3)); 1252 } 1253 1254 // Build and verify the loop tree without modifying the graph. This 1255 // is useful to verify that all inputs properly dominate their uses. 1256 static void verify(PhaseIterGVN& igvn) { 1257 #ifdef ASSERT 1258 ResourceMark rm; 1259 Compile::TracePhase tp(_t_idealLoopVerify); 1260 PhaseIdealLoop v(igvn); 1261 #endif 1262 } 1263 1264 // Recommended way to use PhaseIdealLoop. 1265 // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations. 1266 static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) { 1267 ResourceMark rm; 1268 PhaseIdealLoop v(igvn, mode); 1269 1270 Compile* C = Compile::current(); 1271 if (!C->failing()) { 1272 // Cleanup any modified bits 1273 igvn.optimize(); 1274 if (C->failing()) { return; } 1275 v.log_loop_tree(); 1276 } 1277 } 1278 1279 // True if the method has at least 1 irreducible loop 1280 bool _has_irreducible_loops; 1281 1282 // Per-Node transform 1283 virtual Node* transform(Node* n) { return nullptr; } 1284 1285 Node* loop_exit_control(Node* x, IdealLoopTree* loop); 1286 Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob); 1287 Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr); 1288 Node* loop_iv_stride(Node* incr, Node*& xphi); 1289 PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x); 1290 1291 bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt); 1292 1293 Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt); 1294 bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new); 1295 #ifdef ASSERT 1296 bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop); 1297 #endif 1298 void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt); 1299 SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop); 1300 IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift); 1301 IdealLoopTree* create_outer_strip_mined_loop(Node* init_control, 1302 IdealLoopTree* loop, float cl_prob, float le_fcnt, 1303 Node*& entry_control, Node*& iffalse); 1304 1305 Node* exact_limit( IdealLoopTree *loop ); 1306 1307 // Return a post-walked LoopNode 1308 IdealLoopTree *get_loop( Node *n ) const { 1309 // Dead nodes have no loop, so return the top level loop instead 1310 if (!has_node(n)) return _ltree_root; 1311 assert(!has_ctrl(n), ""); 1312 return (IdealLoopTree*)_loop_or_ctrl[n->_idx]; 1313 } 1314 1315 IdealLoopTree* ltree_root() const { return _ltree_root; } 1316 1317 // Is 'n' a (nested) member of 'loop'? 1318 int is_member( const IdealLoopTree *loop, Node *n ) const { 1319 return loop->is_member(get_loop(n)); } 1320 1321 // This is the basic building block of the loop optimizations. It clones an 1322 // entire loop body. It makes an old_new loop body mapping; with this 1323 // mapping you can find the new-loop equivalent to an old-loop node. All 1324 // new-loop nodes are exactly equal to their old-loop counterparts, all 1325 // edges are the same. All exits from the old-loop now have a RegionNode 1326 // that merges the equivalent new-loop path. This is true even for the 1327 // normal "loop-exit" condition. All uses of loop-invariant old-loop values 1328 // now come from (one or more) Phis that merge their new-loop equivalents. 1329 // Parameter side_by_side_idom: 1330 // When side_by_size_idom is null, the dominator tree is constructed for 1331 // the clone loop to dominate the original. Used in construction of 1332 // pre-main-post loop sequence. 1333 // When nonnull, the clone and original are side-by-side, both are 1334 // dominated by the passed in side_by_side_idom node. Used in 1335 // construction of unswitched loops. 1336 enum CloneLoopMode { 1337 IgnoreStripMined = 0, // Only clone inner strip mined loop 1338 CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops 1339 ControlAroundStripMined = 2 // Only clone inner strip mined loop, 1340 // result control flow branches 1341 // either to inner clone or outer 1342 // strip mined loop. 1343 }; 1344 void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth, 1345 CloneLoopMode mode, Node* side_by_side_idom = nullptr); 1346 void clone_loop_handle_data_uses(Node* old, Node_List &old_new, 1347 IdealLoopTree* loop, IdealLoopTree* companion_loop, 1348 Node_List*& split_if_set, Node_List*& split_bool_set, 1349 Node_List*& split_cex_set, Node_List& worklist, 1350 uint new_counter, CloneLoopMode mode); 1351 void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop, 1352 IdealLoopTree* outer_loop, int dd, Node_List &old_new, 1353 Node_List& extra_data_nodes); 1354 1355 // If we got the effect of peeling, either by actually peeling or by 1356 // making a pre-loop which must execute at least once, we can remove 1357 // all loop-invariant dominated tests in the main body. 1358 void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ); 1359 1360 // Generate code to do a loop peel for the given loop (and body). 1361 // old_new is a temp array. 1362 void do_peeling( IdealLoopTree *loop, Node_List &old_new ); 1363 1364 // Add pre and post loops around the given loop. These loops are used 1365 // during RCE, unrolling and aligning loops. 1366 void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ); 1367 1368 // Add post loop after the given loop. 1369 Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new, 1370 CountedLoopNode* main_head, CountedLoopEndNode* main_end, 1371 Node* incr, Node* limit, CountedLoopNode*& post_head); 1372 1373 // Add a vector post loop between a vector main loop and the current post loop 1374 void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new); 1375 // If Node n lives in the back_ctrl block, we clone a private version of n 1376 // in preheader_ctrl block and return that, otherwise return n. 1377 Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ); 1378 1379 // Take steps to maximally unroll the loop. Peel any odd iterations, then 1380 // unroll to do double iterations. The next round of major loop transforms 1381 // will repeat till the doubled loop body does all remaining iterations in 1 1382 // pass. 1383 void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ); 1384 1385 // Unroll the loop body one step - make each trip do 2 iterations. 1386 void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ); 1387 1388 // Return true if exp is a constant times an induction var 1389 bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0); 1390 1391 bool is_iv(Node* exp, Node* iv, BasicType bt); 1392 1393 // Return true if exp is a scaled induction var plus (or minus) constant 1394 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0); 1395 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) { 1396 jlong long_scale; 1397 if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) { 1398 int int_scale = checked_cast<int>(long_scale); 1399 if (p_scale != nullptr) { 1400 *p_scale = int_scale; 1401 } 1402 return true; 1403 } 1404 return false; 1405 } 1406 // Helper for finding more complex matches to is_scaled_iv_plus_offset. 1407 bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv, 1408 BasicType bt, 1409 jlong* p_scale, Node** p_offset, 1410 bool* p_short_scale, int depth); 1411 1412 // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted 1413 IfTrueNode* create_new_if_for_predicate(const ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry, 1414 Deoptimization::DeoptReason reason, int opcode, 1415 bool rewire_uncommon_proj_phi_inputs = false); 1416 1417 private: 1418 // Helper functions for create_new_if_for_predicate() 1419 void set_ctrl_of_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj); 1420 Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl); 1421 Node* clone_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj); 1422 void fix_cloned_data_node_controls(const ProjNode* orig, Node* new_uncommon_proj, 1423 const OrigToNewHashtable& orig_to_clone); 1424 bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt, 1425 Node* loop_entry); 1426 1427 public: 1428 void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true); 1429 1430 // Replace the control input of 'node' with 'new_control' and set the dom depth to the one of 'new_control'. 1431 void replace_control(Node* node, Node* new_control) { 1432 _igvn.replace_input_of(node, 0, new_control); 1433 set_idom(node, new_control, dom_depth(new_control)); 1434 } 1435 1436 void replace_loop_entry(LoopNode* loop_head, Node* new_entry) { 1437 _igvn.replace_input_of(loop_head, LoopNode::EntryControl, new_entry); 1438 set_idom(loop_head, new_entry, dom_depth(new_entry)); 1439 } 1440 1441 // Construct a range check for a predicate if 1442 BoolNode* rc_predicate(Node* ctrl, int scale, Node* offset, Node* init, Node* limit, 1443 jint stride, Node* range, bool upper, bool& overflow); 1444 1445 // Implementation of the loop predication to promote checks outside the loop 1446 bool loop_predication_impl(IdealLoopTree *loop); 1447 1448 private: 1449 bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj, 1450 ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero, 1451 Invariance& invar, Deoptimization::DeoptReason deopt_reason); 1452 bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const; 1453 bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt); 1454 void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt, 1455 PathFrequency& pf, Node_Stack& stack, VectorSet& seen, 1456 Node_List& if_proj_list); 1457 IfTrueNode* create_template_assertion_predicate(CountedLoopNode* loop_head, ParsePredicateNode* parse_predicate, 1458 IfProjNode* new_control, int scale, Node* offset, Node* range); 1459 void eliminate_hoisted_range_check(IfTrueNode* hoisted_check_proj, IfTrueNode* template_assertion_predicate_proj); 1460 1461 // Helper function to collect predicate for eliminating the useless ones 1462 void eliminate_useless_predicates() const; 1463 1464 void eliminate_useless_zero_trip_guard(); 1465 void eliminate_useless_multiversion_if(); 1466 1467 public: 1468 // Change the control input of expensive nodes to allow commoning by 1469 // IGVN when it is guaranteed to not result in a more frequent 1470 // execution of the expensive node. Return true if progress. 1471 bool process_expensive_nodes(); 1472 1473 // Check whether node has become unreachable 1474 bool is_node_unreachable(Node *n) const { 1475 return !has_node(n) || n->is_unreachable(_igvn); 1476 } 1477 1478 // Eliminate range-checks and other trip-counter vs loop-invariant tests. 1479 void do_range_check(IdealLoopTree* loop); 1480 1481 // Clone loop with an invariant test (that does not exit) and 1482 // insert a clone of the test that selects which version to 1483 // execute. 1484 void do_unswitching(IdealLoopTree* loop, Node_List& old_new); 1485 1486 IfNode* find_unswitch_candidate(const IdealLoopTree* loop) const; 1487 1488 private: 1489 static bool has_control_dependencies_from_predicates(LoopNode* head); 1490 static void revert_to_normal_loop(const LoopNode* loop_head); 1491 1492 void hoist_invariant_check_casts(const IdealLoopTree* loop, const Node_List& old_new, 1493 const UnswitchedLoopSelector& unswitched_loop_selector); 1494 void add_unswitched_loop_version_bodies_to_igvn(IdealLoopTree* loop, const Node_List& old_new); 1495 static void increment_unswitch_counts(LoopNode* original_head, LoopNode* new_head); 1496 void remove_unswitch_candidate_from_loops(const Node_List& old_new, const UnswitchedLoopSelector& unswitched_loop_selector); 1497 #ifndef PRODUCT 1498 static void trace_loop_unswitching_count(IdealLoopTree* loop, LoopNode* original_head); 1499 static void trace_loop_unswitching_impossible(const LoopNode* original_head); 1500 static void trace_loop_unswitching_result(const UnswitchedLoopSelector& unswitched_loop_selector, 1501 const LoopNode* original_head, const LoopNode* new_head); 1502 static void trace_loop_multiversioning_result(const LoopSelector& loop_selector, 1503 const LoopNode* original_head, const LoopNode* new_head); 1504 #endif 1505 1506 public: 1507 1508 // Range Check Elimination uses this function! 1509 // Constrain the main loop iterations so the affine function: 1510 // low_limit <= scale_con * I + offset < upper_limit 1511 // always holds true. That is, either increase the number of iterations in 1512 // the pre-loop or the post-loop until the condition holds true in the main 1513 // loop. Scale_con, offset and limit are all loop invariant. 1514 void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit); 1515 // Helper function for add_constraint(). 1516 Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round); 1517 1518 // Partially peel loop up through last_peel node. 1519 bool partial_peel( IdealLoopTree *loop, Node_List &old_new ); 1520 bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new); 1521 1522 // AutoVectorize the loop: replace scalar ops with vector ops. 1523 enum AutoVectorizeStatus { 1524 Impossible, // This loop has the wrong shape to even try vectorization. 1525 Success, // We just successfully vectorized the loop. 1526 TriedAndFailed, // We tried to vectorize, but failed. 1527 }; 1528 AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared); 1529 1530 void maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new); 1531 void do_multiversioning(IdealLoopTree* lpt, Node_List& old_new); 1532 IfTrueNode* create_new_if_for_multiversion(IfTrueNode* multiversioning_fast_proj); 1533 bool try_resume_optimizations_for_delayed_slow_loop(IdealLoopTree* lpt); 1534 1535 // Move an unordered Reduction out of loop if possible 1536 void move_unordered_reduction_out_of_loop(IdealLoopTree* loop); 1537 1538 // Create a scheduled list of nodes control dependent on ctrl set. 1539 void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched ); 1540 // Has a use in the vector set 1541 bool has_use_in_set( Node* n, VectorSet& vset ); 1542 // Has use internal to the vector set (ie. not in a phi at the loop head) 1543 bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ); 1544 // clone "n" for uses that are outside of loop 1545 int clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ); 1546 // clone "n" for special uses that are in the not_peeled region 1547 void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n, 1548 VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ); 1549 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist 1550 void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ); 1551 #ifdef ASSERT 1552 // Validate the loop partition sets: peel and not_peel 1553 bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel ); 1554 // Ensure that uses outside of loop are of the right form 1555 bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list, 1556 uint orig_exit_idx, uint clone_exit_idx); 1557 bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx); 1558 #endif 1559 1560 // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.) 1561 int stride_of_possible_iv( Node* iff ); 1562 bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; } 1563 // Return the (unique) control output node that's in the loop (if it exists.) 1564 Node* stay_in_loop( Node* n, IdealLoopTree *loop); 1565 // Insert a signed compare loop exit cloned from an unsigned compare. 1566 IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop); 1567 void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop); 1568 // Utility to register node "n" with PhaseIdealLoop 1569 void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth); 1570 // Utility to create an if-projection 1571 ProjNode* proj_clone(ProjNode* p, IfNode* iff); 1572 // Force the iff control output to be the live_proj 1573 Node* short_circuit_if(IfNode* iff, ProjNode* live_proj); 1574 // Insert a region before an if projection 1575 RegionNode* insert_region_before_proj(ProjNode* proj); 1576 // Insert a new if before an if projection 1577 ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj); 1578 1579 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps. 1580 // "Nearly" because all Nodes have been cloned from the original in the loop, 1581 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs 1582 // through the Phi recursively, and return a Bool. 1583 Node* clone_iff(PhiNode* phi); 1584 CmpNode* clone_bool(PhiNode* phi); 1585 1586 1587 // Rework addressing expressions to get the most loop-invariant stuff 1588 // moved out. We'd like to do all associative operators, but it's especially 1589 // important (common) to do address expressions. 1590 Node* remix_address_expressions(Node* n); 1591 Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt); 1592 1593 // Convert add to muladd to generate MuladdS2I under certain criteria 1594 Node * convert_add_to_muladd(Node * n); 1595 1596 // Attempt to use a conditional move instead of a phi/branch 1597 Node *conditional_move( Node *n ); 1598 1599 // Check for aggressive application of 'split-if' optimization, 1600 // using basic block level info. 1601 void split_if_with_blocks ( VectorSet &visited, Node_Stack &nstack); 1602 Node *split_if_with_blocks_pre ( Node *n ); 1603 void split_if_with_blocks_post( Node *n ); 1604 Node *has_local_phi_input( Node *n ); 1605 // Mark an IfNode as being dominated by a prior test, 1606 // without actually altering the CFG (and hence IDOM info). 1607 void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false); 1608 void rewire_safe_outputs_to_dominator(Node* source, Node* dominator, bool pin_array_access_nodes); 1609 1610 // Split Node 'n' through merge point 1611 RegionNode* split_thru_region(Node* n, RegionNode* region); 1612 // Split Node 'n' through merge point if there is enough win. 1613 Node *split_thru_phi( Node *n, Node *region, int policy ); 1614 // Found an If getting its condition-code input from a Phi in the 1615 // same block. Split thru the Region. 1616 void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr); 1617 1618 // Conversion of fill/copy patterns into intrinsic versions 1619 bool do_intrinsify_fill(); 1620 bool intrinsify_fill(IdealLoopTree* lpt); 1621 bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value, 1622 Node*& shift, Node*& offset); 1623 1624 private: 1625 // Return a type based on condition control flow 1626 const TypeInt* filtered_type( Node *n, Node* n_ctrl); 1627 const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); } 1628 // Helpers for filtered type 1629 const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl); 1630 1631 // Helper functions 1632 Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache ); 1633 Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true ); 1634 void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true ); 1635 bool split_up( Node *n, Node *blk1, Node *blk2 ); 1636 1637 Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const; 1638 Node* try_move_store_before_loop(Node* n, Node *n_ctrl); 1639 void try_move_store_after_loop(Node* n); 1640 bool identical_backtoback_ifs(Node *n); 1641 bool can_split_if(Node *n_ctrl); 1642 bool cannot_split_division(const Node* n, const Node* region) const; 1643 static bool is_divisor_loop_phi(const Node* divisor, const Node* loop); 1644 bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const; 1645 1646 // Determine if a method is too big for a/another round of split-if, based on 1647 // a magic (approximate) ratio derived from the equally magic constant 35000, 1648 // previously used for this purpose (but without relating to the node limit). 1649 bool must_throttle_split_if() { 1650 uint threshold = C->max_node_limit() * 2 / 5; 1651 return C->live_nodes() > threshold; 1652 } 1653 1654 // A simplistic node request tracking mechanism, where 1655 // = UINT_MAX Request not valid or made final. 1656 // < UINT_MAX Nodes currently requested (estimate). 1657 uint _nodes_required; 1658 1659 enum { REQUIRE_MIN = 70 }; 1660 1661 uint nodes_required() const { return _nodes_required; } 1662 1663 // Given the _currently_ available number of nodes, check whether there is 1664 // "room" for an additional request or not, considering the already required 1665 // number of nodes. Return TRUE if the new request is exceeding the node 1666 // budget limit, otherwise return FALSE. Note that this interpretation will 1667 // act pessimistic on additional requests when new nodes have already been 1668 // generated since the 'begin'. This behaviour fits with the intention that 1669 // node estimates/requests should be made upfront. 1670 bool exceeding_node_budget(uint required = 0) { 1671 assert(C->live_nodes() < C->max_node_limit(), "sanity"); 1672 uint available = C->max_node_limit() - C->live_nodes(); 1673 return available < required + _nodes_required + REQUIRE_MIN; 1674 } 1675 1676 uint require_nodes(uint require, uint minreq = REQUIRE_MIN) { 1677 precond(require > 0); 1678 _nodes_required += MAX2(require, minreq); 1679 return _nodes_required; 1680 } 1681 1682 bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) { 1683 return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0; 1684 } 1685 1686 uint require_nodes_begin() { 1687 assert(_nodes_required == UINT_MAX, "Bad state (begin)."); 1688 _nodes_required = 0; 1689 return C->live_nodes(); 1690 } 1691 1692 // When a node request is final, optionally check that the requested number 1693 // of nodes was reasonably correct with respect to the number of new nodes 1694 // introduced since the last 'begin'. Always check that we have not exceeded 1695 // the maximum node limit. 1696 void require_nodes_final(uint live_at_begin, bool check_estimate) { 1697 assert(_nodes_required < UINT_MAX, "Bad state (final)."); 1698 1699 #ifdef ASSERT 1700 if (check_estimate) { 1701 // Check that the node budget request was not off by too much (x2). 1702 // Should this be the case we _surely_ need to improve the estimates 1703 // used in our budget calculations. 1704 if (C->live_nodes() - live_at_begin > 2 * _nodes_required) { 1705 log_info(compilation)("Bad node estimate: actual = %d >> request = %d", 1706 C->live_nodes() - live_at_begin, _nodes_required); 1707 } 1708 } 1709 #endif 1710 // Assert that we have stayed within the node budget limit. 1711 assert(C->live_nodes() < C->max_node_limit(), 1712 "Exceeding node budget limit: %d + %d > %d (request = %d)", 1713 C->live_nodes() - live_at_begin, live_at_begin, 1714 C->max_node_limit(), _nodes_required); 1715 1716 _nodes_required = UINT_MAX; 1717 } 1718 1719 private: 1720 1721 bool _created_loop_node; 1722 DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);) 1723 NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;) 1724 1725 public: 1726 void set_created_loop_node() { _created_loop_node = true; } 1727 bool created_loop_node() { return _created_loop_node; } 1728 void register_new_node(Node* n, Node* blk); 1729 void register_new_node_with_ctrl_of(Node* new_node, Node* ctrl_of) { 1730 register_new_node(new_node, get_ctrl(ctrl_of)); 1731 } 1732 1733 Node* clone_and_register(Node* n, Node* ctrl) { 1734 n = n->clone(); 1735 register_new_node(n, ctrl); 1736 return n; 1737 } 1738 1739 #ifdef ASSERT 1740 void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA); 1741 #endif 1742 1743 #ifndef PRODUCT 1744 void dump() const; 1745 void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging 1746 void dump_idom(Node* n, uint count) const; 1747 void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const; 1748 void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const; 1749 IdealLoopTree* get_loop_idx(Node* n) const { 1750 // Dead nodes have no loop, so return the top level loop instead 1751 return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root; 1752 } 1753 // Print some stats 1754 static void print_statistics(); 1755 static int _loop_invokes; // Count of PhaseIdealLoop invokes 1756 static int _loop_work; // Sum of PhaseIdealLoop x _unique 1757 static volatile int _long_loop_candidates; 1758 static volatile int _long_loop_nests; 1759 static volatile int _long_loop_counted_loops; 1760 #endif 1761 1762 #ifdef ASSERT 1763 void verify() const; 1764 bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const; 1765 bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const; 1766 bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const; 1767 #endif 1768 1769 void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const; 1770 1771 void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN; 1772 1773 LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test); 1774 1775 1776 int extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi, 1777 Node_List &range_checks); 1778 1779 void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi, 1780 Node* inner_iters_actual_int, Node* inner_phi, 1781 Node* iv_add, LoopNode* inner_head); 1782 1783 Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA); 1784 1785 bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl); 1786 1787 bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop); 1788 1789 Node* compute_early_ctrl(Node* n, Node* n_ctrl); 1790 1791 void try_sink_out_of_loop(Node* n); 1792 1793 Node* clamp(Node* R, Node* L, Node* H); 1794 1795 bool safe_for_if_replacement(const Node* dom) const; 1796 1797 void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region); 1798 1799 bool try_merge_identical_ifs(Node* n); 1800 1801 void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm); 1802 1803 void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd, 1804 IdealLoopTree* parent, bool partial); 1805 1806 void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode, 1807 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist); 1808 1809 void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop, 1810 uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set, 1811 Node_List*& split_bool_set, Node_List*& split_cex_set); 1812 1813 void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set); 1814 1815 bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2); 1816 1817 bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2); 1818 void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i); 1819 bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2); 1820 void clone_template_assertion_expression_down(Node* node); 1821 1822 Node* similar_subtype_check(const Node* x, Node* r_in); 1823 1824 void update_addp_chain_base(Node* x, Node* old_base, Node* new_base); 1825 1826 bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x); 1827 1828 void pin_array_access_nodes_dependent_on(Node* ctrl); 1829 1830 Node* ensure_node_and_inputs_are_above_pre_end(CountedLoopEndNode* pre_end, Node* node); 1831 1832 ConINode* intcon(jint i); 1833 1834 ConLNode* longcon(jlong i); 1835 1836 ConNode* makecon(const Type* t); 1837 1838 ConNode* integercon(jlong l, BasicType bt); 1839 1840 ConNode* zerocon(BasicType bt); 1841 }; 1842 1843 1844 class AutoNodeBudget : public StackObj 1845 { 1846 public: 1847 enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK }; 1848 1849 AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK) 1850 : _phase(phase), 1851 _check_at_final(chk == BUDGET_CHECK), 1852 _nodes_at_begin(0) 1853 { 1854 precond(_phase != nullptr); 1855 1856 _nodes_at_begin = _phase->require_nodes_begin(); 1857 } 1858 1859 ~AutoNodeBudget() { 1860 #ifndef PRODUCT 1861 if (TraceLoopOpts) { 1862 uint request = _phase->nodes_required(); 1863 uint delta = _phase->C->live_nodes() - _nodes_at_begin; 1864 1865 if (request < delta) { 1866 tty->print_cr("Exceeding node budget: %d < %d", request, delta); 1867 } else { 1868 uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN; 1869 // Identify the worst estimates as "poor" ones. 1870 if (request > REQUIRE_MIN && delta > 0) { 1871 if ((delta > REQUIRE_MIN && request > 3 * delta) || 1872 (delta <= REQUIRE_MIN && request > 10 * delta)) { 1873 tty->print_cr("Poor node estimate: %d >> %d", request, delta); 1874 } 1875 } 1876 } 1877 } 1878 #endif // PRODUCT 1879 _phase->require_nodes_final(_nodes_at_begin, _check_at_final); 1880 } 1881 1882 private: 1883 PhaseIdealLoop* _phase; 1884 bool _check_at_final; 1885 uint _nodes_at_begin; 1886 }; 1887 1888 inline Node* IdealLoopTree::tail() { 1889 // Handle lazy update of _tail field. 1890 if (_tail->in(0) == nullptr) { 1891 _tail = _phase->get_ctrl(_tail); 1892 } 1893 return _tail; 1894 } 1895 1896 inline Node* IdealLoopTree::head() { 1897 // Handle lazy update of _head field. 1898 if (_head->in(0) == nullptr) { 1899 _head = _phase->get_ctrl(_head); 1900 } 1901 return _head; 1902 } 1903 1904 // Iterate over the loop tree using a preorder, left-to-right traversal. 1905 // 1906 // Example that visits all counted loops from within PhaseIdealLoop 1907 // 1908 // for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 1909 // IdealLoopTree* lpt = iter.current(); 1910 // if (!lpt->is_counted()) continue; 1911 // ... 1912 class LoopTreeIterator : public StackObj { 1913 private: 1914 IdealLoopTree* _root; 1915 IdealLoopTree* _curnt; 1916 1917 public: 1918 LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {} 1919 1920 bool done() { return _curnt == nullptr; } // Finished iterating? 1921 1922 void next(); // Advance to next loop tree 1923 1924 IdealLoopTree* current() { return _curnt; } // Return current value of iterator. 1925 }; 1926 1927 // Compute probability of reaching some CFG node from a fixed 1928 // dominating CFG node 1929 class PathFrequency { 1930 private: 1931 Node* _dom; // frequencies are computed relative to this node 1932 Node_Stack _stack; 1933 GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions 1934 GrowableArray<float> _freqs; // cache frequencies 1935 PhaseIdealLoop* _phase; 1936 1937 float check_and_truncate_frequency(float f) { 1938 assert(f >= 0, "Incorrect frequency"); 1939 // We do not perform an exact (f <= 1) check 1940 // this would be error prone with rounding of floats. 1941 // Performing a check like (f <= 1+eps) would be of benefit, 1942 // however, it is not evident how to determine such an eps, 1943 // given that an arbitrary number of add/mul operations 1944 // are performed on these frequencies. 1945 return (f > 1) ? 1 : f; 1946 } 1947 1948 public: 1949 PathFrequency(Node* dom, PhaseIdealLoop* phase) 1950 : _dom(dom), _stack(0), _phase(phase) { 1951 } 1952 1953 float to(Node* n); 1954 }; 1955 1956 // Class to clone a data node graph by taking a list of data nodes. This is done in 2 steps: 1957 // 1. Clone the data nodes 1958 // 2. Fix the cloned data inputs pointing to the old nodes to the cloned inputs by using an old->new mapping. 1959 class DataNodeGraph : public StackObj { 1960 PhaseIdealLoop* const _phase; 1961 const Unique_Node_List& _data_nodes; 1962 OrigToNewHashtable _orig_to_new; 1963 1964 public: 1965 DataNodeGraph(const Unique_Node_List& data_nodes, PhaseIdealLoop* phase) 1966 : _phase(phase), 1967 _data_nodes(data_nodes), 1968 // Use 107 as best guess which is the first resize value in ResizeableResourceHashtable::large_table_sizes. 1969 _orig_to_new(107, MaxNodeLimit) 1970 { 1971 #ifdef ASSERT 1972 for (uint i = 0; i < data_nodes.size(); i++) { 1973 assert(!data_nodes[i]->is_CFG(), "only data nodes"); 1974 } 1975 #endif 1976 } 1977 NONCOPYABLE(DataNodeGraph); 1978 1979 private: 1980 void clone(Node* node, Node* new_ctrl); 1981 void clone_data_nodes(Node* new_ctrl); 1982 void clone_data_nodes_and_transform_opaque_loop_nodes(const TransformStrategyForOpaqueLoopNodes& transform_strategy, 1983 Node* new_ctrl); 1984 void rewire_clones_to_cloned_inputs(); 1985 void transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node); 1986 1987 public: 1988 // Clone the provided data node collection and rewire the clones in such a way to create an identical graph copy. 1989 // Set 'new_ctrl' as ctrl for the cloned nodes. 1990 const OrigToNewHashtable& clone(Node* new_ctrl) { 1991 assert(_orig_to_new.number_of_entries() == 0, "should not call this method twice in a row"); 1992 clone_data_nodes(new_ctrl); 1993 rewire_clones_to_cloned_inputs(); 1994 return _orig_to_new; 1995 } 1996 1997 // Create a copy of the data nodes provided to the constructor by doing the following: 1998 // Clone all non-OpaqueLoop* nodes and rewire them to create an identical subgraph copy. For the OpaqueLoop* nodes, 1999 // apply the provided transformation strategy and include the transformed node into the subgraph copy to get a complete 2000 // "cloned-and-transformed" graph copy. For all newly cloned nodes (which could also be new OpaqueLoop* nodes), set 2001 // `new_ctrl` as ctrl. 2002 const OrigToNewHashtable& clone_with_opaque_loop_transform_strategy( 2003 const TransformStrategyForOpaqueLoopNodes& transform_strategy, 2004 Node* new_ctrl) { 2005 clone_data_nodes_and_transform_opaque_loop_nodes(transform_strategy, new_ctrl); 2006 rewire_clones_to_cloned_inputs(); 2007 return _orig_to_new; 2008 } 2009 }; 2010 #endif // SHARE_OPTO_LOOPNODE_HPP