1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_LOOPNODE_HPP 26 #define SHARE_OPTO_LOOPNODE_HPP 27 28 #include "opto/cfgnode.hpp" 29 #include "opto/multnode.hpp" 30 #include "opto/phaseX.hpp" 31 #include "opto/predicates.hpp" 32 #include "opto/subnode.hpp" 33 #include "opto/type.hpp" 34 #include "utilities/checkedCast.hpp" 35 36 class CmpNode; 37 class BaseCountedLoopEndNode; 38 class CountedLoopNode; 39 class IdealLoopTree; 40 class LoopNode; 41 class Node; 42 class OuterStripMinedLoopEndNode; 43 class PredicateBlock; 44 class PathFrequency; 45 class PhaseIdealLoop; 46 class UnswitchCandidate; 47 class LoopSelector; 48 class UnswitchedLoopSelector; 49 class VectorSet; 50 class VSharedData; 51 class Invariance; 52 struct small_cache; 53 54 // 55 // I D E A L I Z E D L O O P S 56 // 57 // Idealized loops are the set of loops I perform more interesting 58 // transformations on, beyond simple hoisting. 59 60 //------------------------------LoopNode--------------------------------------- 61 // Simple loop header. Fall in path on left, loop-back path on right. 62 class LoopNode : public RegionNode { 63 // Size is bigger to hold the flags. However, the flags do not change 64 // the semantics so it does not appear in the hash & cmp functions. 65 virtual uint size_of() const { return sizeof(*this); } 66 protected: 67 uint _loop_flags; 68 // Names for flag bitfields 69 enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3, 70 MainHasNoPreLoop = 1<<2, 71 HasExactTripCount = 1<<3, 72 InnerLoop = 1<<4, 73 PartialPeelLoop = 1<<5, 74 PartialPeelFailed = 1<<6, 75 WasSlpAnalyzed = 1<<7, 76 PassedSlpAnalysis = 1<<8, 77 DoUnrollOnly = 1<<9, 78 VectorizedLoop = 1<<10, 79 HasAtomicPostLoop = 1<<11, 80 StripMined = 1<<12, 81 SubwordLoop = 1<<13, 82 ProfileTripFailed = 1<<14, 83 LoopNestInnerLoop = 1<<15, 84 LoopNestLongOuterLoop = 1<<16, 85 MultiversionFastLoop = 1<<17, 86 MultiversionSlowLoop = 2<<17, 87 MultiversionDelayedSlowLoop = 3<<17, 88 MultiversionFlagsMask = 3<<17, 89 FlatArrays = 1<<18}; 90 char _unswitch_count; 91 enum { _unswitch_max=3 }; 92 93 // Expected trip count from profile data 94 float _profile_trip_cnt; 95 96 public: 97 // Names for edge indices 98 enum { Self=0, EntryControl, LoopBackControl }; 99 100 bool is_inner_loop() const { return _loop_flags & InnerLoop; } 101 void set_inner_loop() { _loop_flags |= InnerLoop; } 102 103 bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; } 104 bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; } 105 void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; } 106 bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; } 107 bool is_strip_mined() const { return _loop_flags & StripMined; } 108 bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; } 109 bool is_subword_loop() const { return _loop_flags & SubwordLoop; } 110 bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; } 111 bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; } 112 bool is_flat_arrays() const { return _loop_flags & FlatArrays; } 113 114 void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; } 115 void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; } 116 void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; } 117 void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; } 118 void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; } 119 void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; } 120 void mark_strip_mined() { _loop_flags |= StripMined; } 121 void clear_strip_mined() { _loop_flags &= ~StripMined; } 122 void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; } 123 void mark_subword_loop() { _loop_flags |= SubwordLoop; } 124 void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; } 125 void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; } 126 void mark_flat_arrays() { _loop_flags |= FlatArrays; } 127 128 int unswitch_max() { return _unswitch_max; } 129 int unswitch_count() { return _unswitch_count; } 130 131 void set_unswitch_count(int val) { 132 assert (val <= unswitch_max(), "too many unswitches"); 133 _unswitch_count = val; 134 } 135 136 void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; } 137 float profile_trip_cnt() { return _profile_trip_cnt; } 138 139 #ifndef PRODUCT 140 uint _stress_peeling_attempts = 0; 141 #endif 142 143 LoopNode(Node *entry, Node *backedge) 144 : RegionNode(3), _loop_flags(0), _unswitch_count(0), 145 _profile_trip_cnt(COUNT_UNKNOWN) { 146 init_class_id(Class_Loop); 147 init_req(EntryControl, entry); 148 init_req(LoopBackControl, backedge); 149 } 150 151 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 152 virtual int Opcode() const; 153 bool can_be_counted_loop(PhaseValues* phase) const { 154 return req() == 3 && in(0) != nullptr && 155 in(1) != nullptr && phase->type(in(1)) != Type::TOP && 156 in(2) != nullptr && phase->type(in(2)) != Type::TOP; 157 } 158 bool is_valid_counted_loop(BasicType bt) const; 159 #ifndef PRODUCT 160 virtual void dump_spec(outputStream *st) const; 161 #endif 162 163 void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN; 164 virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; } 165 virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; } 166 virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; } 167 virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; } 168 virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; } 169 }; 170 171 //------------------------------Counted Loops---------------------------------- 172 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit 173 // path (and maybe some other exit paths). The trip-counter exit is always 174 // last in the loop. The trip-counter have to stride by a constant; 175 // the exit value is also loop invariant. 176 177 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs. The 178 // CountedLoopNode has the incoming loop control and the loop-back-control 179 // which is always the IfTrue before the matching CountedLoopEndNode. The 180 // CountedLoopEndNode has an incoming control (possibly not the 181 // CountedLoopNode if there is control flow in the loop), the post-increment 182 // trip-counter value, and the limit. The trip-counter value is always of 183 // the form (Op old-trip-counter stride). The old-trip-counter is produced 184 // by a Phi connected to the CountedLoopNode. The stride is constant. 185 // The Op is any commutable opcode, including Add, Mul, Xor. The 186 // CountedLoopEndNode also takes in the loop-invariant limit value. 187 188 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the 189 // loop-back control. From CountedLoopEndNodes I can reach CountedLoopNodes 190 // via the old-trip-counter from the Op node. 191 192 //------------------------------CountedLoopNode-------------------------------- 193 // CountedLoopNodes head simple counted loops. CountedLoopNodes have as 194 // inputs the incoming loop-start control and the loop-back control, so they 195 // act like RegionNodes. They also take in the initial trip counter, the 196 // loop-invariant stride and the loop-invariant limit value. CountedLoopNodes 197 // produce a loop-body control and the trip counter value. Since 198 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model. 199 200 class BaseCountedLoopNode : public LoopNode { 201 public: 202 BaseCountedLoopNode(Node *entry, Node *backedge) 203 : LoopNode(entry, backedge) { 204 } 205 206 Node *init_control() const { return in(EntryControl); } 207 Node *back_control() const { return in(LoopBackControl); } 208 209 Node* init_trip() const; 210 Node* stride() const; 211 bool stride_is_con() const; 212 Node* limit() const; 213 Node* incr() const; 214 Node* phi() const; 215 216 BaseCountedLoopEndNode* loopexit_or_null() const; 217 BaseCountedLoopEndNode* loopexit() const; 218 219 virtual BasicType bt() const = 0; 220 221 jlong stride_con() const; 222 223 static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt); 224 225 virtual void set_trip_count(julong tc) = 0; 226 virtual julong trip_count() const = 0; 227 228 bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; } 229 void set_exact_trip_count(julong tc) { 230 set_trip_count(tc); 231 _loop_flags |= HasExactTripCount; 232 } 233 void set_nonexact_trip_count() { 234 _loop_flags &= ~HasExactTripCount; 235 } 236 }; 237 238 239 class CountedLoopNode : public BaseCountedLoopNode { 240 // Size is bigger to hold _main_idx. However, _main_idx does not change 241 // the semantics so it does not appear in the hash & cmp functions. 242 virtual uint size_of() const { return sizeof(*this); } 243 244 // For Pre- and Post-loops during debugging ONLY, this holds the index of 245 // the Main CountedLoop. Used to assert that we understand the graph shape. 246 node_idx_t _main_idx; 247 248 // Known trip count calculated by compute_exact_trip_count() 249 uint _trip_count; 250 251 // Log2 of original loop bodies in unrolled loop 252 int _unrolled_count_log2; 253 254 // Node count prior to last unrolling - used to decide if 255 // unroll,optimize,unroll,optimize,... is making progress 256 int _node_count_before_unroll; 257 258 // If slp analysis is performed we record the maximum 259 // vector mapped unroll factor here 260 int _slp_maximum_unroll_factor; 261 262 public: 263 CountedLoopNode(Node *entry, Node *backedge) 264 : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint), 265 _unrolled_count_log2(0), _node_count_before_unroll(0), 266 _slp_maximum_unroll_factor(0) { 267 init_class_id(Class_CountedLoop); 268 // Initialize _trip_count to the largest possible value. 269 // Will be reset (lower) if the loop's trip count is known. 270 } 271 272 virtual int Opcode() const; 273 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 274 275 CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); } 276 CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); } 277 int stride_con() const; 278 279 // Match increment with optional truncation 280 static Node* 281 match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type, 282 BasicType bt); 283 284 // A 'main' loop has a pre-loop and a post-loop. The 'main' loop 285 // can run short a few iterations and may start a few iterations in. 286 // It will be RCE'd and unrolled and aligned. 287 288 // A following 'post' loop will run any remaining iterations. Used 289 // during Range Check Elimination, the 'post' loop will do any final 290 // iterations with full checks. Also used by Loop Unrolling, where 291 // the 'post' loop will do any epilog iterations needed. Basically, 292 // a 'post' loop can not profitably be further unrolled or RCE'd. 293 294 // A preceding 'pre' loop will run at least 1 iteration (to do peeling), 295 // it may do under-flow checks for RCE and may do alignment iterations 296 // so the following main loop 'knows' that it is striding down cache 297 // lines. 298 299 // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or 300 // Aligned, may be missing it's pre-loop. 301 bool is_normal_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; } 302 bool is_pre_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Pre; } 303 bool is_main_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Main; } 304 bool is_post_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Post; } 305 bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; } 306 bool has_passed_slp () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; } 307 bool is_unroll_only () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; } 308 bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; } 309 bool has_atomic_post_loop () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; } 310 void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; } 311 312 IfNode* find_multiversion_if_from_multiversion_fast_main_loop(); 313 314 int main_idx() const { return _main_idx; } 315 316 void set_trip_count(julong tc) { 317 assert(tc < max_juint, "Cannot set trip count to max_juint"); 318 _trip_count = checked_cast<uint>(tc); 319 } 320 julong trip_count() const { return _trip_count; } 321 322 void set_pre_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; } 323 void set_main_loop ( ) { assert(is_normal_loop(),""); _loop_flags |= Main; } 324 void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; } 325 void set_normal_loop( ) { _loop_flags &= ~PreMainPostFlagsMask; } 326 327 void set_notpassed_slp() { 328 _loop_flags &= ~PassedSlpAnalysis; 329 } 330 331 void double_unrolled_count() { _unrolled_count_log2++; } 332 int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); } 333 334 void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; } 335 int node_count_before_unroll() { return _node_count_before_unroll; } 336 void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; } 337 int slp_max_unroll() const { return _slp_maximum_unroll_factor; } 338 339 // Multiversioning allows us to duplicate a CountedLoop, and have two versions, and the multiversion_if 340 // decides which one is taken: 341 // (1) fast_loop: We enter this loop by default, by default the multiversion_if has its condition set to 342 // "true", guarded by a OpaqueMultiversioning. If we want to make a speculative assumption 343 // for an optimization, we can add the runtime-check to the multiversion_if, and if the 344 // assumption fails we take the slow_loop instead, where we do not make the same speculative 345 // assumption. 346 // We call it the "fast_loop" because it has more optimizations, enabled by the speculative 347 // runtime-checks at the multiversion_if, and we expect the fast_loop to execute faster. 348 // (2) slow_loop: By default, it is not taken, until a runtime-check is added to the multiversion_if while 349 // optimizing the fast_looop. If such a runtime-check is never added, then after loop-opts 350 // the multiversion_if constant folds to true, and the slow_loop is folded away. To save 351 // compile time, we delay the optimization of the slow_loop until a runtime-check is added 352 // to the multiversion_if, at which point we resume optimizations for the slow_loop. 353 // We call it the "slow_loop" because it has fewer optimizations, since this is the fall-back 354 // loop where we do not make any of the speculative assumptions we make for the fast_loop. 355 // Hence, we expect the slow_loop to execute slower. 356 bool is_multiversion() const { return (_loop_flags & MultiversionFlagsMask) != Normal; } 357 bool is_multiversion_fast_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionFastLoop; } 358 bool is_multiversion_slow_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionSlowLoop; } 359 bool is_multiversion_delayed_slow_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionDelayedSlowLoop; } 360 void set_multiversion_fast_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionFastLoop; } 361 void set_multiversion_slow_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionSlowLoop; } 362 void set_multiversion_delayed_slow_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionDelayedSlowLoop; } 363 void set_no_multiversion() { assert( is_multiversion(), ""); _loop_flags &= ~MultiversionFlagsMask; } 364 365 virtual LoopNode* skip_strip_mined(int expect_skeleton = 1); 366 OuterStripMinedLoopNode* outer_loop() const; 367 virtual IfTrueNode* outer_loop_tail() const; 368 virtual OuterStripMinedLoopEndNode* outer_loop_end() const; 369 virtual IfFalseNode* outer_loop_exit() const; 370 virtual SafePointNode* outer_safepoint() const; 371 372 Node* skip_assertion_predicates_with_halt(); 373 374 virtual BasicType bt() const { 375 return T_INT; 376 } 377 378 Node* is_canonical_loop_entry(); 379 CountedLoopEndNode* find_pre_loop_end(); 380 381 Node* uncasted_init_trip(bool uncasted); 382 383 #ifndef PRODUCT 384 virtual void dump_spec(outputStream *st) const; 385 #endif 386 }; 387 388 class LongCountedLoopNode : public BaseCountedLoopNode { 389 private: 390 virtual uint size_of() const { return sizeof(*this); } 391 392 // Known trip count calculated by compute_exact_trip_count() 393 julong _trip_count; 394 395 public: 396 LongCountedLoopNode(Node *entry, Node *backedge) 397 : BaseCountedLoopNode(entry, backedge), _trip_count(max_julong) { 398 init_class_id(Class_LongCountedLoop); 399 } 400 401 virtual int Opcode() const; 402 403 virtual BasicType bt() const { 404 return T_LONG; 405 } 406 407 void set_trip_count(julong tc) { 408 assert(tc < max_julong, "Cannot set trip count to max_julong"); 409 _trip_count = tc; 410 } 411 julong trip_count() const { return _trip_count; } 412 413 LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); } 414 LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); } 415 }; 416 417 418 //------------------------------CountedLoopEndNode----------------------------- 419 // CountedLoopEndNodes end simple trip counted loops. They act much like 420 // IfNodes. 421 422 class BaseCountedLoopEndNode : public IfNode { 423 public: 424 enum { TestControl, TestValue }; 425 BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 426 : IfNode(control, test, prob, cnt) { 427 init_class_id(Class_BaseCountedLoopEnd); 428 } 429 430 Node *cmp_node() const { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; } 431 Node* incr() const { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; } 432 Node* limit() const { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; } 433 Node* stride() const { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; } 434 Node* init_trip() const { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; } 435 bool stride_is_con() const { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); } 436 437 PhiNode* phi() const { 438 Node* tmp = incr(); 439 if (tmp && tmp->req() == 3) { 440 Node* phi = tmp->in(1); 441 if (phi->is_Phi()) { 442 return phi->as_Phi(); 443 } 444 } 445 return nullptr; 446 } 447 448 BaseCountedLoopNode* loopnode() const { 449 // The CountedLoopNode that goes with this CountedLoopEndNode may 450 // have been optimized out by the IGVN so be cautious with the 451 // pattern matching on the graph 452 PhiNode* iv_phi = phi(); 453 if (iv_phi == nullptr) { 454 return nullptr; 455 } 456 Node* ln = iv_phi->in(0); 457 if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) { 458 return nullptr; 459 } 460 if (ln->as_BaseCountedLoop()->bt() != bt()) { 461 return nullptr; 462 } 463 return ln->as_BaseCountedLoop(); 464 } 465 466 BoolTest::mask test_trip() const { return in(TestValue)->as_Bool()->_test._test; } 467 468 jlong stride_con() const; 469 virtual BasicType bt() const = 0; 470 471 static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt); 472 }; 473 474 class CountedLoopEndNode : public BaseCountedLoopEndNode { 475 public: 476 477 CountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 478 : BaseCountedLoopEndNode(control, test, prob, cnt) { 479 init_class_id(Class_CountedLoopEnd); 480 } 481 virtual int Opcode() const; 482 483 CountedLoopNode* loopnode() const { 484 return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode(); 485 } 486 487 virtual BasicType bt() const { 488 return T_INT; 489 } 490 491 #ifndef PRODUCT 492 virtual void dump_spec(outputStream *st) const; 493 #endif 494 }; 495 496 class LongCountedLoopEndNode : public BaseCountedLoopEndNode { 497 public: 498 LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt) 499 : BaseCountedLoopEndNode(control, test, prob, cnt) { 500 init_class_id(Class_LongCountedLoopEnd); 501 } 502 503 LongCountedLoopNode* loopnode() const { 504 return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode(); 505 } 506 507 virtual int Opcode() const; 508 509 virtual BasicType bt() const { 510 return T_LONG; 511 } 512 }; 513 514 515 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const { 516 Node* bctrl = back_control(); 517 if (bctrl == nullptr) return nullptr; 518 519 Node* lexit = bctrl->in(0); 520 if (!lexit->is_BaseCountedLoopEnd()) { 521 return nullptr; 522 } 523 BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd(); 524 if (result->bt() != bt()) { 525 return nullptr; 526 } 527 return result; 528 } 529 530 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const { 531 BaseCountedLoopEndNode* cle = loopexit_or_null(); 532 assert(cle != nullptr, "loopexit is null"); 533 return cle; 534 } 535 536 inline Node* BaseCountedLoopNode::init_trip() const { 537 BaseCountedLoopEndNode* cle = loopexit_or_null(); 538 return cle != nullptr ? cle->init_trip() : nullptr; 539 } 540 inline Node* BaseCountedLoopNode::stride() const { 541 BaseCountedLoopEndNode* cle = loopexit_or_null(); 542 return cle != nullptr ? cle->stride() : nullptr; 543 } 544 545 inline bool BaseCountedLoopNode::stride_is_con() const { 546 BaseCountedLoopEndNode* cle = loopexit_or_null(); 547 return cle != nullptr && cle->stride_is_con(); 548 } 549 inline Node* BaseCountedLoopNode::limit() const { 550 BaseCountedLoopEndNode* cle = loopexit_or_null(); 551 return cle != nullptr ? cle->limit() : nullptr; 552 } 553 inline Node* BaseCountedLoopNode::incr() const { 554 BaseCountedLoopEndNode* cle = loopexit_or_null(); 555 return cle != nullptr ? cle->incr() : nullptr; 556 } 557 inline Node* BaseCountedLoopNode::phi() const { 558 BaseCountedLoopEndNode* cle = loopexit_or_null(); 559 return cle != nullptr ? cle->phi() : nullptr; 560 } 561 562 inline jlong BaseCountedLoopNode::stride_con() const { 563 BaseCountedLoopEndNode* cle = loopexit_or_null(); 564 return cle != nullptr ? cle->stride_con() : 0; 565 } 566 567 568 //------------------------------LoopLimitNode----------------------------- 569 // Counted Loop limit node which represents exact final iterator value: 570 // trip_count = (limit - init_trip + stride - 1)/stride 571 // final_value= trip_count * stride + init_trip. 572 // Use HW instructions to calculate it when it can overflow in integer. 573 // Note, final_value should fit into integer since counted loop has 574 // limit check: limit <= max_int-stride. 575 class LoopLimitNode : public Node { 576 enum { Init=1, Limit=2, Stride=3 }; 577 public: 578 LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(nullptr,init,limit,stride) { 579 // Put it on the Macro nodes list to optimize during macro nodes expansion. 580 init_flags(Flag_is_macro); 581 C->add_macro_node(this); 582 } 583 virtual int Opcode() const; 584 virtual const Type *bottom_type() const { return TypeInt::INT; } 585 virtual uint ideal_reg() const { return Op_RegI; } 586 virtual const Type* Value(PhaseGVN* phase) const; 587 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 588 virtual Node* Identity(PhaseGVN* phase); 589 }; 590 591 // Support for strip mining 592 class OuterStripMinedLoopNode : public LoopNode { 593 private: 594 void fix_sunk_stores_when_back_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) const; 595 void handle_sunk_stores_when_finishing_construction(PhaseIterGVN* igvn); 596 597 public: 598 OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge) 599 : LoopNode(entry, backedge) { 600 init_class_id(Class_OuterStripMinedLoop); 601 init_flags(Flag_is_macro); 602 C->add_macro_node(this); 603 } 604 605 virtual int Opcode() const; 606 607 virtual IfTrueNode* outer_loop_tail() const; 608 virtual OuterStripMinedLoopEndNode* outer_loop_end() const; 609 virtual IfFalseNode* outer_loop_exit() const; 610 virtual SafePointNode* outer_safepoint() const; 611 CountedLoopNode* inner_counted_loop() const { return unique_ctrl_out()->as_CountedLoop(); } 612 CountedLoopEndNode* inner_counted_loop_end() const { return inner_counted_loop()->loopexit(); } 613 IfFalseNode* inner_loop_exit() const { return inner_counted_loop_end()->proj_out(false)->as_IfFalse(); } 614 615 void adjust_strip_mined_loop(PhaseIterGVN* igvn); 616 617 void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const; 618 619 void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop); 620 621 static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop); 622 623 Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn, 624 PhaseIdealLoop* iloop); 625 }; 626 627 class OuterStripMinedLoopEndNode : public IfNode { 628 public: 629 OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt) 630 : IfNode(control, test, prob, cnt) { 631 init_class_id(Class_OuterStripMinedLoopEnd); 632 } 633 634 virtual int Opcode() const; 635 636 virtual const Type* Value(PhaseGVN* phase) const; 637 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 638 639 bool is_expanded(PhaseGVN *phase) const; 640 }; 641 642 // -----------------------------IdealLoopTree---------------------------------- 643 class IdealLoopTree : public ResourceObj { 644 public: 645 IdealLoopTree *_parent; // Parent in loop tree 646 IdealLoopTree *_next; // Next sibling in loop tree 647 IdealLoopTree *_child; // First child in loop tree 648 649 // The head-tail backedge defines the loop. 650 // If a loop has multiple backedges, this is addressed during cleanup where 651 // we peel off the multiple backedges, merging all edges at the bottom and 652 // ensuring that one proper backedge flow into the loop. 653 Node *_head; // Head of loop 654 Node *_tail; // Tail of loop 655 inline Node *tail(); // Handle lazy update of _tail field 656 inline Node *head(); // Handle lazy update of _head field 657 PhaseIdealLoop* _phase; 658 int _local_loop_unroll_limit; 659 int _local_loop_unroll_factor; 660 661 Node_List _body; // Loop body for inner loops 662 663 uint16_t _nest; // Nesting depth 664 uint8_t _irreducible:1, // True if irreducible 665 _has_call:1, // True if has call safepoint 666 _has_sfpt:1, // True if has non-call safepoint 667 _rce_candidate:1, // True if candidate for range check elimination 668 _has_range_checks:1, 669 _has_range_checks_computed:1; 670 671 Node_List* _safepts; // List of safepoints in this loop 672 Node_List* _required_safept; // A inner loop cannot delete these safepts; 673 bool _allow_optimizations; // Allow loop optimizations 674 675 IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail ) 676 : _parent(nullptr), _next(nullptr), _child(nullptr), 677 _head(head), _tail(tail), 678 _phase(phase), 679 _local_loop_unroll_limit(0), _local_loop_unroll_factor(0), 680 _body(Compile::current()->comp_arena()), 681 _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0), 682 _has_range_checks(0), _has_range_checks_computed(0), 683 _safepts(nullptr), 684 _required_safept(nullptr), 685 _allow_optimizations(true) 686 { 687 precond(_head != nullptr); 688 precond(_tail != nullptr); 689 } 690 691 // Is 'l' a member of 'this'? 692 bool is_member(const IdealLoopTree *l) const; // Test for nested membership 693 694 // Set loop nesting depth. Accumulate has_call bits. 695 int set_nest( uint depth ); 696 697 // Split out multiple fall-in edges from the loop header. Move them to a 698 // private RegionNode before the loop. This becomes the loop landing pad. 699 void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ); 700 701 // Split out the outermost loop from this shared header. 702 void split_outer_loop( PhaseIdealLoop *phase ); 703 704 // Merge all the backedges from the shared header into a private Region. 705 // Feed that region as the one backedge to this loop. 706 void merge_many_backedges( PhaseIdealLoop *phase ); 707 708 // Split shared headers and insert loop landing pads. 709 // Insert a LoopNode to replace the RegionNode. 710 // Returns TRUE if loop tree is structurally changed. 711 bool beautify_loops( PhaseIdealLoop *phase ); 712 713 // Perform optimization to use the loop predicates for null checks and range checks. 714 // Applies to any loop level (not just the innermost one) 715 bool loop_predication( PhaseIdealLoop *phase); 716 bool can_apply_loop_predication(); 717 718 // Perform iteration-splitting on inner loops. Split iterations to 719 // avoid range checks or one-shot null checks. Returns false if the 720 // current round of loop opts should stop. 721 bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new ); 722 723 // Driver for various flavors of iteration splitting. Returns false 724 // if the current round of loop opts should stop. 725 bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ); 726 727 // Given dominators, try to find loops with calls that must always be 728 // executed (call dominates loop tail). These loops do not need non-call 729 // safepoints (ncsfpt). 730 void check_safepts(VectorSet &visited, Node_List &stack); 731 732 // Allpaths backwards scan from loop tail, terminating each path at first safepoint 733 // encountered. 734 void allpaths_check_safepts(VectorSet &visited, Node_List &stack); 735 736 // Remove safepoints from loop. Optionally keeping one. 737 void remove_safepoints(PhaseIdealLoop* phase, bool keep_one); 738 739 // Convert to counted loops where possible 740 void counted_loop( PhaseIdealLoop *phase ); 741 742 // Check for Node being a loop-breaking test 743 Node *is_loop_exit(Node *iff) const; 744 745 // Remove simplistic dead code from loop body 746 void DCE_loop_body(); 747 748 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage. 749 // Replace with a 1-in-10 exit guess. 750 void adjust_loop_exit_prob( PhaseIdealLoop *phase ); 751 752 // Return TRUE or FALSE if the loop should never be RCE'd or aligned. 753 // Useful for unrolling loops with NO array accesses. 754 bool policy_peel_only( PhaseIdealLoop *phase ) const; 755 756 // Return TRUE or FALSE if the loop should be unswitched -- clone 757 // loop with an invariant test 758 bool policy_unswitching( PhaseIdealLoop *phase ) const; 759 bool no_unswitch_candidate() const; 760 761 // Micro-benchmark spamming. Remove empty loops. 762 bool do_remove_empty_loop( PhaseIdealLoop *phase ); 763 764 // Convert one-iteration loop into normal code. 765 bool do_one_iteration_loop( PhaseIdealLoop *phase ); 766 767 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can 768 // move some loop-invariant test (usually a null-check) before the loop. 769 bool policy_peeling(PhaseIdealLoop *phase); 770 771 uint estimate_peeling(PhaseIdealLoop *phase); 772 773 // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any 774 // known trip count in the counted loop node. 775 bool policy_maximally_unroll(PhaseIdealLoop *phase) const; 776 777 // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll 778 // if the loop is a counted loop and the loop body is small enough. 779 bool policy_unroll(PhaseIdealLoop *phase); 780 781 // Loop analyses to map to a maximal superword unrolling for vectorization. 782 void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct); 783 784 // Return TRUE or FALSE if the loop should be range-check-eliminated. 785 // Gather a list of IF tests that are dominated by iteration splitting; 786 // also gather the end of the first split and the start of the 2nd split. 787 bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const; 788 789 // Return TRUE if "iff" is a range check. 790 bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const; 791 bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset, 792 jlong& scale) const; 793 794 // Estimate the number of nodes required when cloning a loop (body). 795 uint est_loop_clone_sz(uint factor) const; 796 // Estimate the number of nodes required when unrolling a loop (body). 797 uint est_loop_unroll_sz(uint factor) const; 798 799 // Compute loop trip count if possible 800 void compute_trip_count(PhaseIdealLoop* phase, BasicType bt); 801 802 // Compute loop trip count from profile data 803 float compute_profile_trip_cnt_helper(Node* n); 804 void compute_profile_trip_cnt( PhaseIdealLoop *phase ); 805 806 // Reassociate invariant expressions. 807 void reassociate_invariants(PhaseIdealLoop *phase); 808 // Reassociate invariant binary expressions. 809 Node* reassociate(Node* n1, PhaseIdealLoop *phase); 810 // Reassociate invariant add, subtract, and compare expressions. 811 Node* reassociate_add_sub_cmp(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop* phase); 812 // Return nonzero index of invariant operand if invariant and variant 813 // are combined with an associative binary. Helper for reassociate_invariants. 814 int find_invariant(Node* n, PhaseIdealLoop *phase); 815 // Return TRUE if "n" is associative. 816 bool is_associative(Node* n, Node* base=nullptr); 817 // Return TRUE if "n" is an associative cmp node. 818 bool is_associative_cmp(Node* n); 819 820 // Return true if n is invariant 821 bool is_invariant(Node* n) const; 822 823 // Put loop body on igvn work list 824 void record_for_igvn(); 825 826 bool is_root() { return _parent == nullptr; } 827 // A proper/reducible loop w/o any (occasional) dead back-edge. 828 bool is_loop() { return !_irreducible && !tail()->is_top(); } 829 bool is_counted() { return is_loop() && _head->is_CountedLoop(); } 830 bool is_innermost() { return is_loop() && _child == nullptr; } 831 832 void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase); 833 834 bool compute_has_range_checks() const; 835 bool range_checks_present() { 836 if (!_has_range_checks_computed) { 837 if (compute_has_range_checks()) { 838 _has_range_checks = 1; 839 } 840 _has_range_checks_computed = 1; 841 } 842 return _has_range_checks; 843 } 844 845 // Return the parent's IdealLoopTree for a strip mined loop which is the outer strip mined loop. 846 // In all other cases, return this. 847 IdealLoopTree* skip_strip_mined() { 848 return _head->as_Loop()->is_strip_mined() ? _parent : this; 849 } 850 851 #ifndef PRODUCT 852 void dump_head(); // Dump loop head only 853 void dump(); // Dump this loop recursively 854 #endif 855 856 #ifdef ASSERT 857 GrowableArray<IdealLoopTree*> collect_sorted_children() const; 858 bool verify_tree(IdealLoopTree* loop_verify) const; 859 #endif 860 861 private: 862 enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop. 863 864 // Estimate the number of nodes resulting from control and data flow merge. 865 uint est_loop_flow_merge_sz() const; 866 867 // Check if the number of residual iterations is large with unroll_cnt. 868 // Return true if the residual iterations are more than 10% of the trip count. 869 bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const { 870 return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt(); 871 } 872 873 void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const; 874 875 bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const; 876 877 void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const; 878 879 bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq, 880 Node* sfpt) const; 881 882 bool empty_loop_candidate(PhaseIdealLoop* phase) const; 883 884 bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const; 885 }; 886 887 // -----------------------------PhaseIdealLoop--------------------------------- 888 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees 889 // into a loop tree. Drives the loop-based transformations on the ideal graph. 890 class PhaseIdealLoop : public PhaseTransform { 891 friend class IdealLoopTree; 892 friend class SuperWord; 893 friend class ShenandoahBarrierC2Support; 894 friend class AutoNodeBudget; 895 896 // Map loop membership for CFG nodes, and ctrl for non-CFG nodes. 897 Node_List _loop_or_ctrl; 898 899 // Pre-computed def-use info 900 PhaseIterGVN &_igvn; 901 902 // Head of loop tree 903 IdealLoopTree* _ltree_root; 904 905 // Array of pre-order numbers, plus post-visited bit. 906 // ZERO for not pre-visited. EVEN for pre-visited but not post-visited. 907 // ODD for post-visited. Other bits are the pre-order number. 908 uint *_preorders; 909 uint _max_preorder; 910 911 ReallocMark _nesting; // Safety checks for arena reallocation 912 913 const PhaseIdealLoop* _verify_me; 914 bool _verify_only; 915 916 // Allocate _preorders[] array 917 void allocate_preorders() { 918 _max_preorder = C->unique()+8; 919 _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder); 920 memset(_preorders, 0, sizeof(uint) * _max_preorder); 921 } 922 923 // Allocate _preorders[] array 924 void reallocate_preorders() { 925 _nesting.check(); // Check if a potential re-allocation in the resource arena is safe 926 if ( _max_preorder < C->unique() ) { 927 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique()); 928 _max_preorder = C->unique(); 929 } 930 memset(_preorders, 0, sizeof(uint) * _max_preorder); 931 } 932 933 // Check to grow _preorders[] array for the case when build_loop_tree_impl() 934 // adds new nodes. 935 void check_grow_preorders( ) { 936 _nesting.check(); // Check if a potential re-allocation in the resource arena is safe 937 if ( _max_preorder < C->unique() ) { 938 uint newsize = _max_preorder<<1; // double size of array 939 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize); 940 memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder)); 941 _max_preorder = newsize; 942 } 943 } 944 // Check for pre-visited. Zero for NOT visited; non-zero for visited. 945 int is_visited( Node *n ) const { return _preorders[n->_idx]; } 946 // Pre-order numbers are written to the Nodes array as low-bit-set values. 947 void set_preorder_visited( Node *n, int pre_order ) { 948 assert( !is_visited( n ), "already set" ); 949 _preorders[n->_idx] = (pre_order<<1); 950 }; 951 // Return pre-order number. 952 int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; } 953 954 // Check for being post-visited. 955 // Should be previsited already (checked with assert(is_visited(n))). 956 int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; } 957 958 // Mark as post visited 959 void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; } 960 961 public: 962 // Set/get control node out. Set lower bit to distinguish from IdealLoopTree 963 // Returns true if "n" is a data node, false if it's a control node. 964 bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; } 965 966 private: 967 // clear out dead code after build_loop_late 968 Node_List _deadlist; 969 Node_List _zero_trip_guard_opaque_nodes; 970 Node_List _multiversion_opaque_nodes; 971 972 // Support for faster execution of get_late_ctrl()/dom_lca() 973 // when a node has many uses and dominator depth is deep. 974 GrowableArray<jlong> _dom_lca_tags; 975 uint _dom_lca_tags_round; 976 void init_dom_lca_tags(); 977 978 // Helper for debugging bad dominance relationships 979 bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early); 980 981 Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false); 982 983 // Inline wrapper for frequent cases: 984 // 1) only one use 985 // 2) a use is the same as the current LCA passed as 'n1' 986 Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) { 987 assert( n->is_CFG(), "" ); 988 // Fast-path null lca 989 if( lca != nullptr && lca != n ) { 990 assert( lca->is_CFG(), "" ); 991 // find LCA of all uses 992 n = dom_lca_for_get_late_ctrl_internal( lca, n, tag ); 993 } 994 return find_non_split_ctrl(n); 995 } 996 Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag ); 997 998 // Helper function for directing control inputs away from CFG split points. 999 Node *find_non_split_ctrl( Node *ctrl ) const { 1000 if (ctrl != nullptr) { 1001 if (ctrl->is_MultiBranch()) { 1002 ctrl = ctrl->in(0); 1003 } 1004 assert(ctrl->is_CFG(), "CFG"); 1005 } 1006 return ctrl; 1007 } 1008 1009 void cast_incr_before_loop(Node* incr, Node* ctrl, CountedLoopNode* loop); 1010 1011 #ifdef ASSERT 1012 static void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop); 1013 #endif 1014 private: 1015 static void get_opaque_template_assertion_predicate_nodes(ParsePredicateSuccessProj* parse_predicate_proj, 1016 Unique_Node_List& list); 1017 void update_main_loop_assertion_predicates(CountedLoopNode* new_main_loop_head, int stride_con_before_unroll); 1018 void initialize_assertion_predicates_for_peeled_loop(CountedLoopNode* peeled_loop_head, 1019 CountedLoopNode* remaining_loop_head, 1020 uint first_node_index_in_cloned_loop_body, 1021 const Node_List& old_new); 1022 void initialize_assertion_predicates_for_main_loop(CountedLoopNode* pre_loop_head, 1023 CountedLoopNode* main_loop_head, 1024 uint first_node_index_in_pre_loop_body, 1025 uint last_node_index_in_pre_loop_body, 1026 DEBUG_ONLY(uint last_node_index_from_backedge_goo COMMA) 1027 const Node_List& old_new); 1028 void initialize_assertion_predicates_for_post_loop(CountedLoopNode* main_loop_head, CountedLoopNode* post_loop_head, 1029 uint first_node_index_in_cloned_loop_body); 1030 void create_assertion_predicates_at_loop(CountedLoopNode* source_loop_head, CountedLoopNode* target_loop_head, 1031 const NodeInLoopBody& _node_in_loop_body, bool kill_old_template); 1032 void create_assertion_predicates_at_main_or_post_loop(CountedLoopNode* source_loop_head, 1033 CountedLoopNode* target_loop_head, 1034 const NodeInLoopBody& _node_in_loop_body, 1035 bool kill_old_template); 1036 void rewire_old_target_loop_entry_dependency_to_new_entry(CountedLoopNode* target_loop_head, 1037 const Node* old_target_loop_entry, 1038 uint node_index_before_new_assertion_predicate_nodes); 1039 void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit, 1040 Node* bol); 1041 void log_loop_tree(); 1042 1043 public: 1044 1045 PhaseIterGVN &igvn() const { return _igvn; } 1046 1047 bool has_node(const Node* n) const { 1048 guarantee(n != nullptr, "No Node."); 1049 return _loop_or_ctrl[n->_idx] != nullptr; 1050 } 1051 // check if transform created new nodes that need _ctrl recorded 1052 Node *get_late_ctrl( Node *n, Node *early ); 1053 Node *get_early_ctrl( Node *n ); 1054 Node *get_early_ctrl_for_expensive(Node *n, Node* earliest); 1055 void set_early_ctrl(Node* n, bool update_body); 1056 void set_subtree_ctrl(Node* n, bool update_body); 1057 void set_ctrl( Node *n, Node *ctrl ) { 1058 assert( !has_node(n) || has_ctrl(n), "" ); 1059 assert( ctrl->in(0), "cannot set dead control node" ); 1060 assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" ); 1061 _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1)); 1062 } 1063 void set_root_as_ctrl(Node* n) { 1064 assert(!has_node(n) || has_ctrl(n), ""); 1065 _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)C->root() + 1)); 1066 } 1067 // Set control and update loop membership 1068 void set_ctrl_and_loop(Node* n, Node* ctrl) { 1069 IdealLoopTree* old_loop = get_loop(get_ctrl(n)); 1070 IdealLoopTree* new_loop = get_loop(ctrl); 1071 if (old_loop != new_loop) { 1072 if (old_loop->_child == nullptr) old_loop->_body.yank(n); 1073 if (new_loop->_child == nullptr) new_loop->_body.push(n); 1074 } 1075 set_ctrl(n, ctrl); 1076 } 1077 // Control nodes can be replaced or subsumed. During this pass they 1078 // get their replacement Node in slot 1. Instead of updating the block 1079 // location of all Nodes in the subsumed block, we lazily do it. As we 1080 // pull such a subsumed block out of the array, we write back the final 1081 // correct block. 1082 Node* get_ctrl(const Node* i) { 1083 assert(has_node(i), ""); 1084 Node *n = get_ctrl_no_update(i); 1085 _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1)); 1086 assert(has_node(i) && has_ctrl(i), ""); 1087 assert(n == find_non_split_ctrl(n), "must return legal ctrl" ); 1088 return n; 1089 } 1090 1091 bool is_dominator(Node* dominator, Node* n); 1092 bool is_strict_dominator(Node* dominator, Node* n); 1093 1094 // return get_ctrl for a data node and self(n) for a CFG node 1095 Node* ctrl_or_self(Node* n) { 1096 if (has_ctrl(n)) 1097 return get_ctrl(n); 1098 else { 1099 assert (n->is_CFG(), "must be a CFG node"); 1100 return n; 1101 } 1102 } 1103 1104 Node* get_ctrl_no_update_helper(const Node* i) const { 1105 assert(has_ctrl(i), "should be control, not loop"); 1106 return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1); 1107 } 1108 1109 Node* get_ctrl_no_update(const Node* i) const { 1110 assert( has_ctrl(i), "" ); 1111 Node *n = get_ctrl_no_update_helper(i); 1112 if (!n->in(0)) { 1113 // Skip dead CFG nodes 1114 do { 1115 n = get_ctrl_no_update_helper(n); 1116 } while (!n->in(0)); 1117 n = find_non_split_ctrl(n); 1118 } 1119 return n; 1120 } 1121 1122 // Check for loop being set 1123 // "n" must be a control node. Returns true if "n" is known to be in a loop. 1124 bool has_loop( Node *n ) const { 1125 assert(!has_node(n) || !has_ctrl(n), ""); 1126 return has_node(n); 1127 } 1128 // Set loop 1129 void set_loop( Node *n, IdealLoopTree *loop ) { 1130 _loop_or_ctrl.map(n->_idx, (Node*)loop); 1131 } 1132 // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms. Replace 1133 // the 'old_node' with 'new_node'. Kill old-node. Add a reference 1134 // from old_node to new_node to support the lazy update. Reference 1135 // replaces loop reference, since that is not needed for dead node. 1136 void lazy_update(Node *old_node, Node *new_node) { 1137 assert(old_node != new_node, "no cycles please"); 1138 // Re-use the side array slot for this node to provide the 1139 // forwarding pointer. 1140 _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1)); 1141 } 1142 void lazy_replace(Node *old_node, Node *new_node) { 1143 _igvn.replace_node(old_node, new_node); 1144 lazy_update(old_node, new_node); 1145 } 1146 1147 private: 1148 1149 // Place 'n' in some loop nest, where 'n' is a CFG node 1150 void build_loop_tree(); 1151 int build_loop_tree_impl(Node* n, int pre_order); 1152 // Insert loop into the existing loop tree. 'innermost' is a leaf of the 1153 // loop tree, not the root. 1154 IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost ); 1155 1156 #ifdef ASSERT 1157 // verify that regions in irreducible loops are marked is_in_irreducible_loop 1158 void verify_regions_in_irreducible_loops(); 1159 bool is_in_irreducible_loop(RegionNode* region); 1160 #endif 1161 1162 // Place Data nodes in some loop nest 1163 void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); 1164 void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); 1165 void build_loop_late_post_work(Node* n, bool pinned); 1166 void build_loop_late_post(Node* n); 1167 void verify_strip_mined_scheduling(Node *n, Node* least); 1168 1169 // Array of immediate dominance info for each CFG node indexed by node idx 1170 private: 1171 uint _idom_size; 1172 Node **_idom; // Array of immediate dominators 1173 uint *_dom_depth; // Used for fast LCA test 1174 GrowableArray<uint>* _dom_stk; // For recomputation of dom depth 1175 LoopOptsMode _mode; 1176 1177 // build the loop tree and perform any requested optimizations 1178 void build_and_optimize(); 1179 1180 // Dominators for the sea of nodes 1181 void Dominators(); 1182 1183 // Compute the Ideal Node to Loop mapping 1184 PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) : 1185 PhaseTransform(Ideal_Loop), 1186 _loop_or_ctrl(igvn.C->comp_arena()), 1187 _igvn(igvn), 1188 _verify_me(nullptr), 1189 _verify_only(false), 1190 _mode(mode), 1191 _nodes_required(UINT_MAX) { 1192 assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop"); 1193 build_and_optimize(); 1194 } 1195 1196 #ifndef PRODUCT 1197 // Verify that verify_me made the same decisions as a fresh run 1198 // or only verify that the graph is valid if verify_me is null. 1199 PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) : 1200 PhaseTransform(Ideal_Loop), 1201 _loop_or_ctrl(igvn.C->comp_arena()), 1202 _igvn(igvn), 1203 _verify_me(verify_me), 1204 _verify_only(verify_me == nullptr), 1205 _mode(LoopOptsVerify), 1206 _nodes_required(UINT_MAX) { 1207 DEBUG_ONLY(C->set_phase_verify_ideal_loop();) 1208 build_and_optimize(); 1209 DEBUG_ONLY(C->reset_phase_verify_ideal_loop();) 1210 } 1211 #endif 1212 1213 Node* insert_convert_node_if_needed(BasicType target, Node* input); 1214 1215 public: 1216 Node* idom_no_update(Node* d) const { 1217 return idom_no_update(d->_idx); 1218 } 1219 1220 Node* idom_no_update(uint didx) const { 1221 assert(didx < _idom_size, "oob"); 1222 Node* n = _idom[didx]; 1223 assert(n != nullptr,"Bad immediate dominator info."); 1224 while (n->in(0) == nullptr) { // Skip dead CFG nodes 1225 n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1); 1226 assert(n != nullptr,"Bad immediate dominator info."); 1227 } 1228 return n; 1229 } 1230 1231 Node *idom(Node* d) const { 1232 return idom(d->_idx); 1233 } 1234 1235 Node *idom(uint didx) const { 1236 Node *n = idom_no_update(didx); 1237 _idom[didx] = n; // Lazily remove dead CFG nodes from table. 1238 return n; 1239 } 1240 1241 uint dom_depth(Node* d) const { 1242 guarantee(d != nullptr, "Null dominator info."); 1243 guarantee(d->_idx < _idom_size, ""); 1244 return _dom_depth[d->_idx]; 1245 } 1246 void set_idom(Node* d, Node* n, uint dom_depth); 1247 // Locally compute IDOM using dom_lca call 1248 Node *compute_idom( Node *region ) const; 1249 // Recompute dom_depth 1250 void recompute_dom_depth(); 1251 1252 // Is safept not required by an outer loop? 1253 bool is_deleteable_safept(Node* sfpt); 1254 1255 // Replace parallel induction variable (parallel to trip counter) 1256 void replace_parallel_iv(IdealLoopTree *loop); 1257 1258 Node *dom_lca( Node *n1, Node *n2 ) const { 1259 return find_non_split_ctrl(dom_lca_internal(n1, n2)); 1260 } 1261 Node *dom_lca_internal( Node *n1, Node *n2 ) const; 1262 1263 Node* dominated_node(Node* c1, Node* c2) { 1264 assert(is_dominator(c1, c2) || is_dominator(c2, c1), "nodes must be related"); 1265 return is_dominator(c1, c2) ? c2 : c1; 1266 } 1267 1268 // Return control node that's dominated by the 2 others 1269 Node* dominated_node(Node* c1, Node* c2, Node* c3) { 1270 return dominated_node(c1, dominated_node(c2, c3)); 1271 } 1272 1273 // Build and verify the loop tree without modifying the graph. This 1274 // is useful to verify that all inputs properly dominate their uses. 1275 static void verify(PhaseIterGVN& igvn) { 1276 #ifdef ASSERT 1277 ResourceMark rm; 1278 Compile::TracePhase tp(_t_idealLoopVerify); 1279 PhaseIdealLoop v(igvn); 1280 #endif 1281 } 1282 1283 // Recommended way to use PhaseIdealLoop. 1284 // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations. 1285 static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) { 1286 ResourceMark rm; 1287 PhaseIdealLoop v(igvn, mode); 1288 1289 Compile* C = Compile::current(); 1290 if (!C->failing()) { 1291 // Cleanup any modified bits 1292 igvn.optimize(); 1293 if (C->failing()) { return; } 1294 v.log_loop_tree(); 1295 } 1296 } 1297 1298 // True if the method has at least 1 irreducible loop 1299 bool _has_irreducible_loops; 1300 1301 // Per-Node transform 1302 virtual Node* transform(Node* n) { return nullptr; } 1303 1304 Node* loop_exit_control(Node* x, IdealLoopTree* loop); 1305 Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob); 1306 Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr); 1307 Node* loop_iv_stride(Node* incr, Node*& xphi); 1308 PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x); 1309 1310 bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt); 1311 1312 Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt); 1313 bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new); 1314 #ifdef ASSERT 1315 bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop); 1316 #endif 1317 void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt); 1318 SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop); 1319 IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift); 1320 IdealLoopTree* create_outer_strip_mined_loop(Node* init_control, 1321 IdealLoopTree* loop, float cl_prob, float le_fcnt, 1322 Node*& entry_control, Node*& iffalse); 1323 1324 Node* exact_limit( IdealLoopTree *loop ); 1325 1326 // Return a post-walked LoopNode 1327 IdealLoopTree *get_loop( Node *n ) const { 1328 // Dead nodes have no loop, so return the top level loop instead 1329 if (!has_node(n)) return _ltree_root; 1330 assert(!has_ctrl(n), ""); 1331 return (IdealLoopTree*)_loop_or_ctrl[n->_idx]; 1332 } 1333 1334 IdealLoopTree* ltree_root() const { return _ltree_root; } 1335 1336 // Is 'n' a (nested) member of 'loop'? 1337 int is_member( const IdealLoopTree *loop, Node *n ) const { 1338 return loop->is_member(get_loop(n)); } 1339 1340 // This is the basic building block of the loop optimizations. It clones an 1341 // entire loop body. It makes an old_new loop body mapping; with this 1342 // mapping you can find the new-loop equivalent to an old-loop node. All 1343 // new-loop nodes are exactly equal to their old-loop counterparts, all 1344 // edges are the same. All exits from the old-loop now have a RegionNode 1345 // that merges the equivalent new-loop path. This is true even for the 1346 // normal "loop-exit" condition. All uses of loop-invariant old-loop values 1347 // now come from (one or more) Phis that merge their new-loop equivalents. 1348 // Parameter side_by_side_idom: 1349 // When side_by_size_idom is null, the dominator tree is constructed for 1350 // the clone loop to dominate the original. Used in construction of 1351 // pre-main-post loop sequence. 1352 // When nonnull, the clone and original are side-by-side, both are 1353 // dominated by the passed in side_by_side_idom node. Used in 1354 // construction of unswitched loops. 1355 enum CloneLoopMode { 1356 IgnoreStripMined = 0, // Only clone inner strip mined loop 1357 CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops 1358 ControlAroundStripMined = 2 // Only clone inner strip mined loop, 1359 // result control flow branches 1360 // either to inner clone or outer 1361 // strip mined loop. 1362 }; 1363 void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth, 1364 CloneLoopMode mode, Node* side_by_side_idom = nullptr); 1365 void clone_loop_handle_data_uses(Node* old, Node_List &old_new, 1366 IdealLoopTree* loop, IdealLoopTree* companion_loop, 1367 Node_List*& split_if_set, Node_List*& split_bool_set, 1368 Node_List*& split_cex_set, Node_List& worklist, 1369 uint new_counter, CloneLoopMode mode); 1370 void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop, 1371 IdealLoopTree* outer_loop, int dd, Node_List &old_new, 1372 Node_List& extra_data_nodes); 1373 1374 // If we got the effect of peeling, either by actually peeling or by 1375 // making a pre-loop which must execute at least once, we can remove 1376 // all loop-invariant dominated tests in the main body. 1377 void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ); 1378 1379 // Generate code to do a loop peel for the given loop (and body). 1380 // old_new is a temp array. 1381 void do_peeling( IdealLoopTree *loop, Node_List &old_new ); 1382 1383 // Add pre and post loops around the given loop. These loops are used 1384 // during RCE, unrolling and aligning loops. 1385 void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ); 1386 1387 // Add post loop after the given loop. 1388 Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new, 1389 CountedLoopNode* main_head, CountedLoopEndNode* main_end, 1390 Node* incr, Node* limit, CountedLoopNode*& post_head); 1391 1392 // Add a vector post loop between a vector main loop and the current post loop 1393 void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new); 1394 // If Node n lives in the back_ctrl block, we clone a private version of n 1395 // in preheader_ctrl block and return that, otherwise return n. 1396 Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ); 1397 1398 // Take steps to maximally unroll the loop. Peel any odd iterations, then 1399 // unroll to do double iterations. The next round of major loop transforms 1400 // will repeat till the doubled loop body does all remaining iterations in 1 1401 // pass. 1402 void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ); 1403 1404 // Unroll the loop body one step - make each trip do 2 iterations. 1405 void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ); 1406 1407 // Return true if exp is a constant times an induction var 1408 bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0); 1409 1410 bool is_iv(Node* exp, Node* iv, BasicType bt); 1411 1412 // Return true if exp is a scaled induction var plus (or minus) constant 1413 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0); 1414 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) { 1415 jlong long_scale; 1416 if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) { 1417 int int_scale = checked_cast<int>(long_scale); 1418 if (p_scale != nullptr) { 1419 *p_scale = int_scale; 1420 } 1421 return true; 1422 } 1423 return false; 1424 } 1425 // Helper for finding more complex matches to is_scaled_iv_plus_offset. 1426 bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv, 1427 BasicType bt, 1428 jlong* p_scale, Node** p_offset, 1429 bool* p_short_scale, int depth); 1430 1431 // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted 1432 IfTrueNode* create_new_if_for_predicate(const ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry, 1433 Deoptimization::DeoptReason reason, int opcode, 1434 bool rewire_uncommon_proj_phi_inputs = false); 1435 1436 private: 1437 // Helper functions for create_new_if_for_predicate() 1438 void set_ctrl_of_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj); 1439 Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl); 1440 Node* clone_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj); 1441 void fix_cloned_data_node_controls(const ProjNode* orig, Node* new_uncommon_proj, 1442 const OrigToNewHashtable& orig_to_clone); 1443 bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt, 1444 Node* loop_entry); 1445 1446 public: 1447 void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true); 1448 1449 // Replace the control input of 'node' with 'new_control' and set the dom depth to the one of 'new_control'. 1450 void replace_control(Node* node, Node* new_control) { 1451 _igvn.replace_input_of(node, 0, new_control); 1452 set_idom(node, new_control, dom_depth(new_control)); 1453 } 1454 1455 void replace_loop_entry(LoopNode* loop_head, Node* new_entry) { 1456 _igvn.replace_input_of(loop_head, LoopNode::EntryControl, new_entry); 1457 set_idom(loop_head, new_entry, dom_depth(new_entry)); 1458 } 1459 1460 // Construct a range check for a predicate if 1461 BoolNode* rc_predicate(Node* ctrl, int scale, Node* offset, Node* init, Node* limit, 1462 jint stride, Node* range, bool upper, bool& overflow); 1463 1464 // Implementation of the loop predication to promote checks outside the loop 1465 bool loop_predication_impl(IdealLoopTree *loop); 1466 1467 private: 1468 bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj, 1469 ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero, 1470 Invariance& invar, Deoptimization::DeoptReason deopt_reason); 1471 bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const; 1472 bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt); 1473 void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt, 1474 PathFrequency& pf, Node_Stack& stack, VectorSet& seen, 1475 Node_List& if_proj_list); 1476 IfTrueNode* create_template_assertion_predicate(CountedLoopNode* loop_head, ParsePredicateNode* parse_predicate, 1477 IfProjNode* new_control, int scale, Node* offset, Node* range); 1478 void eliminate_hoisted_range_check(IfTrueNode* hoisted_check_proj, IfTrueNode* template_assertion_predicate_proj); 1479 1480 // Helper function to collect predicate for eliminating the useless ones 1481 void eliminate_useless_predicates() const; 1482 1483 void eliminate_useless_zero_trip_guard(); 1484 void eliminate_useless_multiversion_if(); 1485 1486 public: 1487 // Change the control input of expensive nodes to allow commoning by 1488 // IGVN when it is guaranteed to not result in a more frequent 1489 // execution of the expensive node. Return true if progress. 1490 bool process_expensive_nodes(); 1491 1492 // Check whether node has become unreachable 1493 bool is_node_unreachable(Node *n) const { 1494 return !has_node(n) || n->is_unreachable(_igvn); 1495 } 1496 1497 // Eliminate range-checks and other trip-counter vs loop-invariant tests. 1498 void do_range_check(IdealLoopTree* loop); 1499 1500 // Clone loop with an invariant test (that does not exit) and 1501 // insert a clone of the test that selects which version to 1502 // execute. 1503 void do_unswitching(IdealLoopTree* loop, Node_List& old_new); 1504 1505 IfNode* find_unswitch_candidates(const IdealLoopTree* loop, Node_List& flat_array_checks) const; 1506 IfNode* find_unswitch_candidate_from_idoms(const IdealLoopTree* loop) const; 1507 1508 private: 1509 static bool has_control_dependencies_from_predicates(LoopNode* head); 1510 static void revert_to_normal_loop(const LoopNode* loop_head); 1511 1512 void hoist_invariant_check_casts(const IdealLoopTree* loop, const Node_List& old_new, 1513 const UnswitchCandidate& unswitch_candidate, const IfNode* loop_selector); 1514 void add_unswitched_loop_version_bodies_to_igvn(IdealLoopTree* loop, const Node_List& old_new); 1515 static void increment_unswitch_counts(LoopNode* original_head, LoopNode* new_head); 1516 void remove_unswitch_candidate_from_loops(const Node_List& old_new, const UnswitchedLoopSelector& unswitched_loop_selector); 1517 #ifndef PRODUCT 1518 static void trace_loop_unswitching_count(IdealLoopTree* loop, LoopNode* original_head); 1519 static void trace_loop_unswitching_impossible(const LoopNode* original_head); 1520 static void trace_loop_unswitching_result(const UnswitchedLoopSelector& unswitched_loop_selector, 1521 const UnswitchCandidate& unswitch_candidate, 1522 const LoopNode* original_head, const LoopNode* new_head); 1523 static void trace_loop_multiversioning_result(const LoopSelector& loop_selector, 1524 const LoopNode* original_head, const LoopNode* new_head); 1525 #endif 1526 1527 public: 1528 1529 // Range Check Elimination uses this function! 1530 // Constrain the main loop iterations so the affine function: 1531 // low_limit <= scale_con * I + offset < upper_limit 1532 // always holds true. That is, either increase the number of iterations in 1533 // the pre-loop or the post-loop until the condition holds true in the main 1534 // loop. Scale_con, offset and limit are all loop invariant. 1535 void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit); 1536 // Helper function for add_constraint(). 1537 Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round); 1538 1539 // Partially peel loop up through last_peel node. 1540 bool partial_peel( IdealLoopTree *loop, Node_List &old_new ); 1541 bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new); 1542 1543 // AutoVectorize the loop: replace scalar ops with vector ops. 1544 enum AutoVectorizeStatus { 1545 Impossible, // This loop has the wrong shape to even try vectorization. 1546 Success, // We just successfully vectorized the loop. 1547 TriedAndFailed, // We tried to vectorize, but failed. 1548 }; 1549 AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared); 1550 1551 void maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new); 1552 void do_multiversioning(IdealLoopTree* lpt, Node_List& old_new); 1553 IfTrueNode* create_new_if_for_multiversion(IfTrueNode* multiversioning_fast_proj); 1554 bool try_resume_optimizations_for_delayed_slow_loop(IdealLoopTree* lpt); 1555 1556 // Move an unordered Reduction out of loop if possible 1557 void move_unordered_reduction_out_of_loop(IdealLoopTree* loop); 1558 1559 // Create a scheduled list of nodes control dependent on ctrl set. 1560 void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched ); 1561 // Has a use in the vector set 1562 bool has_use_in_set( Node* n, VectorSet& vset ); 1563 // Has use internal to the vector set (ie. not in a phi at the loop head) 1564 bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ); 1565 // clone "n" for uses that are outside of loop 1566 int clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ); 1567 // clone "n" for special uses that are in the not_peeled region 1568 void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n, 1569 VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ); 1570 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist 1571 void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ); 1572 #ifdef ASSERT 1573 // Validate the loop partition sets: peel and not_peel 1574 bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel ); 1575 // Ensure that uses outside of loop are of the right form 1576 bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list, 1577 uint orig_exit_idx, uint clone_exit_idx); 1578 bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx); 1579 #endif 1580 1581 // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.) 1582 int stride_of_possible_iv( Node* iff ); 1583 bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; } 1584 // Return the (unique) control output node that's in the loop (if it exists.) 1585 Node* stay_in_loop( Node* n, IdealLoopTree *loop); 1586 // Insert a signed compare loop exit cloned from an unsigned compare. 1587 IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop); 1588 void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop); 1589 // Utility to register node "n" with PhaseIdealLoop 1590 void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth); 1591 // Utility to create an if-projection 1592 ProjNode* proj_clone(ProjNode* p, IfNode* iff); 1593 // Force the iff control output to be the live_proj 1594 Node* short_circuit_if(IfNode* iff, ProjNode* live_proj); 1595 // Insert a region before an if projection 1596 RegionNode* insert_region_before_proj(ProjNode* proj); 1597 // Insert a new if before an if projection 1598 ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj); 1599 1600 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps. 1601 // "Nearly" because all Nodes have been cloned from the original in the loop, 1602 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs 1603 // through the Phi recursively, and return a Bool. 1604 Node* clone_iff(PhiNode* phi); 1605 CmpNode* clone_bool(PhiNode* phi); 1606 1607 1608 // Rework addressing expressions to get the most loop-invariant stuff 1609 // moved out. We'd like to do all associative operators, but it's especially 1610 // important (common) to do address expressions. 1611 Node* remix_address_expressions(Node* n); 1612 Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt); 1613 1614 // Convert add to muladd to generate MuladdS2I under certain criteria 1615 Node * convert_add_to_muladd(Node * n); 1616 1617 // Attempt to use a conditional move instead of a phi/branch 1618 Node *conditional_move( Node *n ); 1619 1620 // Check for aggressive application of 'split-if' optimization, 1621 // using basic block level info. 1622 void split_if_with_blocks ( VectorSet &visited, Node_Stack &nstack); 1623 Node *split_if_with_blocks_pre ( Node *n ); 1624 void split_if_with_blocks_post( Node *n ); 1625 Node *has_local_phi_input( Node *n ); 1626 // Mark an IfNode as being dominated by a prior test, 1627 // without actually altering the CFG (and hence IDOM info). 1628 void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false); 1629 void rewire_safe_outputs_to_dominator(Node* source, Node* dominator, bool pin_array_access_nodes); 1630 1631 // Split Node 'n' through merge point 1632 RegionNode* split_thru_region(Node* n, RegionNode* region); 1633 // Split Node 'n' through merge point if there is enough win. 1634 Node *split_thru_phi( Node *n, Node *region, int policy ); 1635 // Found an If getting its condition-code input from a Phi in the 1636 // same block. Split thru the Region. 1637 void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr); 1638 1639 private: 1640 // Class to keep track of wins in split_thru_phi. 1641 class SplitThruPhiWins { 1642 private: 1643 // Region containing the phi we are splitting through. 1644 const Node* _region; 1645 1646 // Sum of all wins regardless of where they happen. This applies to Loops phis as well as non-loop phis. 1647 int _total_wins; 1648 1649 // For Loops, wins have different impact depending on if they happen on loop entry or on the backedge. 1650 // Number of wins on a loop entry edge if the split is through a loop head, 1651 // otherwise 0. Entry edge wins only pay dividends once on loop entry. 1652 int _loop_entry_wins; 1653 // Number of wins on a loop back-edge, which pay dividends on every iteration. 1654 int _loop_back_wins; 1655 1656 public: 1657 SplitThruPhiWins(const Node* region) : 1658 _region(region), 1659 _total_wins(0), 1660 _loop_entry_wins(0), 1661 _loop_back_wins(0) {}; 1662 1663 void reset() {_total_wins = 0; _loop_entry_wins = 0; _loop_back_wins = 0;} 1664 void add_win(int ctrl_index) { 1665 if (_region->is_Loop() && ctrl_index == LoopNode::EntryControl) { 1666 _loop_entry_wins++; 1667 } else if (_region->is_Loop() && ctrl_index == LoopNode::LoopBackControl) { 1668 _loop_back_wins++; 1669 } 1670 _total_wins++; 1671 } 1672 // Is this split profitable with respect to the policy? 1673 bool profitable(int policy) const { 1674 assert(_region->is_Loop() || (_loop_entry_wins == 0 && _loop_back_wins == 0), "wins on loop edges without a loop"); 1675 assert(!_region->is_Loop() || _total_wins == _loop_entry_wins + _loop_back_wins, "missed some win"); 1676 // In general this means that the split has to have more wins than specified 1677 // in the policy. However, for loops we need to take into account where the 1678 // wins happen. We need to be careful when splitting, because splitting nodes 1679 // related to the iv through the phi can sufficiently rearrange the loop 1680 // structure to prevent RCE and thus vectorization. Thus, we only deem splitting 1681 // profitable if the win of a split is not on the entry edge, as such wins 1682 // only pay off once and have a high chance of messing up the loop structure. 1683 return (_loop_entry_wins == 0 && _total_wins > policy) || 1684 // If there are wins on the entry edge but the backadge also has sufficient wins, 1685 // there is sufficient profitability to spilt regardless of the risk of messing 1686 // up the loop structure. 1687 _loop_back_wins > policy || 1688 // If the policy is less than 0, a split is always profitable, i.e. we always 1689 // split. This is needed when we split a node and then must also split a 1690 // dependant node, i.e. spliting a Bool node after splitting a Cmp node. 1691 policy < 0; 1692 } 1693 }; 1694 1695 public: 1696 1697 // Conversion of fill/copy patterns into intrinsic versions 1698 bool do_intrinsify_fill(); 1699 bool intrinsify_fill(IdealLoopTree* lpt); 1700 bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value, 1701 Node*& shift, Node*& offset); 1702 1703 private: 1704 // Return a type based on condition control flow 1705 const TypeInt* filtered_type( Node *n, Node* n_ctrl); 1706 const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); } 1707 // Helpers for filtered type 1708 const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl); 1709 1710 // Helper functions 1711 Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache ); 1712 Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true ); 1713 void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true ); 1714 bool split_up( Node *n, Node *blk1, Node *blk2 ); 1715 1716 Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const; 1717 Node* try_move_store_before_loop(Node* n, Node *n_ctrl); 1718 void try_move_store_after_loop(Node* n); 1719 void move_flat_array_check_out_of_loop(Node* n); 1720 bool identical_backtoback_ifs(Node *n); 1721 bool flat_array_element_type_check(Node *n); 1722 bool can_split_if(Node *n_ctrl); 1723 bool cannot_split_division(const Node* n, const Node* region) const; 1724 static bool is_divisor_loop_phi(const Node* divisor, const Node* loop); 1725 bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const; 1726 1727 // Determine if a method is too big for a/another round of split-if, based on 1728 // a magic (approximate) ratio derived from the equally magic constant 35000, 1729 // previously used for this purpose (but without relating to the node limit). 1730 bool must_throttle_split_if() { 1731 uint threshold = C->max_node_limit() * 2 / 5; 1732 return C->live_nodes() > threshold; 1733 } 1734 1735 // A simplistic node request tracking mechanism, where 1736 // = UINT_MAX Request not valid or made final. 1737 // < UINT_MAX Nodes currently requested (estimate). 1738 uint _nodes_required; 1739 1740 enum { REQUIRE_MIN = 70 }; 1741 1742 uint nodes_required() const { return _nodes_required; } 1743 1744 // Given the _currently_ available number of nodes, check whether there is 1745 // "room" for an additional request or not, considering the already required 1746 // number of nodes. Return TRUE if the new request is exceeding the node 1747 // budget limit, otherwise return FALSE. Note that this interpretation will 1748 // act pessimistic on additional requests when new nodes have already been 1749 // generated since the 'begin'. This behaviour fits with the intention that 1750 // node estimates/requests should be made upfront. 1751 bool exceeding_node_budget(uint required = 0) { 1752 assert(C->live_nodes() < C->max_node_limit(), "sanity"); 1753 uint available = C->max_node_limit() - C->live_nodes(); 1754 return available < required + _nodes_required + REQUIRE_MIN; 1755 } 1756 1757 uint require_nodes(uint require, uint minreq = REQUIRE_MIN) { 1758 precond(require > 0); 1759 _nodes_required += MAX2(require, minreq); 1760 return _nodes_required; 1761 } 1762 1763 bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) { 1764 return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0; 1765 } 1766 1767 uint require_nodes_begin() { 1768 assert(_nodes_required == UINT_MAX, "Bad state (begin)."); 1769 _nodes_required = 0; 1770 return C->live_nodes(); 1771 } 1772 1773 // When a node request is final, optionally check that the requested number 1774 // of nodes was reasonably correct with respect to the number of new nodes 1775 // introduced since the last 'begin'. Always check that we have not exceeded 1776 // the maximum node limit. 1777 void require_nodes_final(uint live_at_begin, bool check_estimate) { 1778 assert(_nodes_required < UINT_MAX, "Bad state (final)."); 1779 1780 #ifdef ASSERT 1781 if (check_estimate) { 1782 // Check that the node budget request was not off by too much (x2). 1783 // Should this be the case we _surely_ need to improve the estimates 1784 // used in our budget calculations. 1785 if (C->live_nodes() - live_at_begin > 2 * _nodes_required) { 1786 log_info(compilation)("Bad node estimate: actual = %d >> request = %d", 1787 C->live_nodes() - live_at_begin, _nodes_required); 1788 } 1789 } 1790 #endif 1791 // Assert that we have stayed within the node budget limit. 1792 assert(C->live_nodes() < C->max_node_limit(), 1793 "Exceeding node budget limit: %d + %d > %d (request = %d)", 1794 C->live_nodes() - live_at_begin, live_at_begin, 1795 C->max_node_limit(), _nodes_required); 1796 1797 _nodes_required = UINT_MAX; 1798 } 1799 1800 private: 1801 1802 bool _created_loop_node; 1803 DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);) 1804 NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;) 1805 1806 public: 1807 void set_created_loop_node() { _created_loop_node = true; } 1808 bool created_loop_node() { return _created_loop_node; } 1809 void register_new_node(Node* n, Node* blk); 1810 void register_new_node_with_ctrl_of(Node* new_node, Node* ctrl_of) { 1811 register_new_node(new_node, get_ctrl(ctrl_of)); 1812 } 1813 1814 Node* clone_and_register(Node* n, Node* ctrl) { 1815 n = n->clone(); 1816 register_new_node(n, ctrl); 1817 return n; 1818 } 1819 1820 #ifdef ASSERT 1821 void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA); 1822 #endif 1823 1824 #ifndef PRODUCT 1825 void dump() const; 1826 void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging 1827 void dump_idom(Node* n, uint count) const; 1828 void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const; 1829 void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const; 1830 IdealLoopTree* get_loop_idx(Node* n) const { 1831 // Dead nodes have no loop, so return the top level loop instead 1832 return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root; 1833 } 1834 // Print some stats 1835 static void print_statistics(); 1836 static int _loop_invokes; // Count of PhaseIdealLoop invokes 1837 static int _loop_work; // Sum of PhaseIdealLoop x _unique 1838 static volatile int _long_loop_candidates; 1839 static volatile int _long_loop_nests; 1840 static volatile int _long_loop_counted_loops; 1841 #endif 1842 1843 #ifdef ASSERT 1844 void verify() const; 1845 bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const; 1846 bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const; 1847 bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const; 1848 #endif 1849 1850 void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const; 1851 1852 void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN; 1853 1854 LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test); 1855 1856 1857 int extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi, 1858 Node_List &range_checks); 1859 1860 void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi, 1861 Node* inner_iters_actual_int, Node* inner_phi, 1862 Node* iv_add, LoopNode* inner_head); 1863 1864 Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA); 1865 1866 bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl); 1867 1868 bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop); 1869 1870 Node* compute_early_ctrl(Node* n, Node* n_ctrl); 1871 1872 void try_sink_out_of_loop(Node* n); 1873 1874 Node* clamp(Node* R, Node* L, Node* H); 1875 1876 bool safe_for_if_replacement(const Node* dom) const; 1877 1878 void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region); 1879 1880 bool try_merge_identical_ifs(Node* n); 1881 1882 void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm); 1883 1884 void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd, 1885 IdealLoopTree* parent, bool partial); 1886 1887 void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode, 1888 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist); 1889 1890 void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop, 1891 uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set, 1892 Node_List*& split_bool_set, Node_List*& split_cex_set); 1893 1894 void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set); 1895 1896 bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2); 1897 1898 bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2); 1899 void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i); 1900 bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2); 1901 void clone_template_assertion_expression_down(Node* node); 1902 1903 Node* similar_subtype_check(const Node* x, Node* r_in); 1904 1905 void update_addp_chain_base(Node* x, Node* old_base, Node* new_base); 1906 1907 bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x); 1908 1909 void pin_array_access_nodes_dependent_on(Node* ctrl); 1910 1911 void collect_flat_array_checks(const IdealLoopTree* loop, Node_List& flat_array_checks) const; 1912 1913 Node* ensure_node_and_inputs_are_above_pre_end(CountedLoopEndNode* pre_end, Node* node); 1914 1915 bool try_make_short_running_loop(IdealLoopTree* loop, jint stride_con, const Node_List& range_checks, const uint iters_limit); 1916 1917 ConINode* intcon(jint i); 1918 1919 ConLNode* longcon(jlong i); 1920 1921 ConNode* makecon(const Type* t); 1922 1923 ConNode* integercon(jlong l, BasicType bt); 1924 1925 ConNode* zerocon(BasicType bt); 1926 }; 1927 1928 1929 class AutoNodeBudget : public StackObj 1930 { 1931 public: 1932 enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK }; 1933 1934 AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK) 1935 : _phase(phase), 1936 _check_at_final(chk == BUDGET_CHECK), 1937 _nodes_at_begin(0) 1938 { 1939 precond(_phase != nullptr); 1940 1941 _nodes_at_begin = _phase->require_nodes_begin(); 1942 } 1943 1944 ~AutoNodeBudget() { 1945 #ifndef PRODUCT 1946 if (TraceLoopOpts) { 1947 uint request = _phase->nodes_required(); 1948 uint delta = _phase->C->live_nodes() - _nodes_at_begin; 1949 1950 if (request < delta) { 1951 tty->print_cr("Exceeding node budget: %d < %d", request, delta); 1952 } else { 1953 uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN; 1954 // Identify the worst estimates as "poor" ones. 1955 if (request > REQUIRE_MIN && delta > 0) { 1956 if ((delta > REQUIRE_MIN && request > 3 * delta) || 1957 (delta <= REQUIRE_MIN && request > 10 * delta)) { 1958 tty->print_cr("Poor node estimate: %d >> %d", request, delta); 1959 } 1960 } 1961 } 1962 } 1963 #endif // PRODUCT 1964 _phase->require_nodes_final(_nodes_at_begin, _check_at_final); 1965 } 1966 1967 private: 1968 PhaseIdealLoop* _phase; 1969 bool _check_at_final; 1970 uint _nodes_at_begin; 1971 }; 1972 1973 inline Node* IdealLoopTree::tail() { 1974 // Handle lazy update of _tail field. 1975 if (_tail->in(0) == nullptr) { 1976 _tail = _phase->get_ctrl(_tail); 1977 } 1978 return _tail; 1979 } 1980 1981 inline Node* IdealLoopTree::head() { 1982 // Handle lazy update of _head field. 1983 if (_head->in(0) == nullptr) { 1984 _head = _phase->get_ctrl(_head); 1985 } 1986 return _head; 1987 } 1988 1989 // Iterate over the loop tree using a preorder, left-to-right traversal. 1990 // 1991 // Example that visits all counted loops from within PhaseIdealLoop 1992 // 1993 // for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 1994 // IdealLoopTree* lpt = iter.current(); 1995 // if (!lpt->is_counted()) continue; 1996 // ... 1997 class LoopTreeIterator : public StackObj { 1998 private: 1999 IdealLoopTree* _root; 2000 IdealLoopTree* _curnt; 2001 2002 public: 2003 LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {} 2004 2005 bool done() { return _curnt == nullptr; } // Finished iterating? 2006 2007 void next(); // Advance to next loop tree 2008 2009 IdealLoopTree* current() { return _curnt; } // Return current value of iterator. 2010 }; 2011 2012 // Compute probability of reaching some CFG node from a fixed 2013 // dominating CFG node 2014 class PathFrequency { 2015 private: 2016 Node* _dom; // frequencies are computed relative to this node 2017 Node_Stack _stack; 2018 GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions 2019 GrowableArray<float> _freqs; // cache frequencies 2020 PhaseIdealLoop* _phase; 2021 2022 float check_and_truncate_frequency(float f) { 2023 assert(f >= 0, "Incorrect frequency"); 2024 // We do not perform an exact (f <= 1) check 2025 // this would be error prone with rounding of floats. 2026 // Performing a check like (f <= 1+eps) would be of benefit, 2027 // however, it is not evident how to determine such an eps, 2028 // given that an arbitrary number of add/mul operations 2029 // are performed on these frequencies. 2030 return (f > 1) ? 1 : f; 2031 } 2032 2033 public: 2034 PathFrequency(Node* dom, PhaseIdealLoop* phase) 2035 : _dom(dom), _stack(0), _phase(phase) { 2036 } 2037 2038 float to(Node* n); 2039 }; 2040 2041 // Class to clone a data node graph by taking a list of data nodes. This is done in 2 steps: 2042 // 1. Clone the data nodes 2043 // 2. Fix the cloned data inputs pointing to the old nodes to the cloned inputs by using an old->new mapping. 2044 class DataNodeGraph : public StackObj { 2045 PhaseIdealLoop* const _phase; 2046 const Unique_Node_List& _data_nodes; 2047 OrigToNewHashtable _orig_to_new; 2048 2049 public: 2050 DataNodeGraph(const Unique_Node_List& data_nodes, PhaseIdealLoop* phase) 2051 : _phase(phase), 2052 _data_nodes(data_nodes), 2053 // Use 107 as best guess which is the first resize value in ResizeableHashTable::large_table_sizes. 2054 _orig_to_new(107, MaxNodeLimit) 2055 { 2056 #ifdef ASSERT 2057 for (uint i = 0; i < data_nodes.size(); i++) { 2058 assert(!data_nodes[i]->is_CFG(), "only data nodes"); 2059 } 2060 #endif 2061 } 2062 NONCOPYABLE(DataNodeGraph); 2063 2064 private: 2065 void clone(Node* node, Node* new_ctrl); 2066 void clone_data_nodes(Node* new_ctrl); 2067 void clone_data_nodes_and_transform_opaque_loop_nodes(const TransformStrategyForOpaqueLoopNodes& transform_strategy, 2068 Node* new_ctrl); 2069 void rewire_clones_to_cloned_inputs(); 2070 void transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node); 2071 2072 public: 2073 // Clone the provided data node collection and rewire the clones in such a way to create an identical graph copy. 2074 // Set 'new_ctrl' as ctrl for the cloned nodes. 2075 const OrigToNewHashtable& clone(Node* new_ctrl) { 2076 assert(_orig_to_new.number_of_entries() == 0, "should not call this method twice in a row"); 2077 clone_data_nodes(new_ctrl); 2078 rewire_clones_to_cloned_inputs(); 2079 return _orig_to_new; 2080 } 2081 2082 // Create a copy of the data nodes provided to the constructor by doing the following: 2083 // Clone all non-OpaqueLoop* nodes and rewire them to create an identical subgraph copy. For the OpaqueLoop* nodes, 2084 // apply the provided transformation strategy and include the transformed node into the subgraph copy to get a complete 2085 // "cloned-and-transformed" graph copy. For all newly cloned nodes (which could also be new OpaqueLoop* nodes), set 2086 // `new_ctrl` as ctrl. 2087 const OrigToNewHashtable& clone_with_opaque_loop_transform_strategy( 2088 const TransformStrategyForOpaqueLoopNodes& transform_strategy, 2089 Node* new_ctrl) { 2090 clone_data_nodes_and_transform_opaque_loop_nodes(transform_strategy, new_ctrl); 2091 rewire_clones_to_cloned_inputs(); 2092 return _orig_to_new; 2093 } 2094 }; 2095 #endif // SHARE_OPTO_LOOPNODE_HPP