1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_LOOPNODE_HPP
  26 #define SHARE_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/predicates.hpp"
  32 #include "opto/subnode.hpp"
  33 #include "opto/type.hpp"
  34 #include "utilities/checkedCast.hpp"
  35 
  36 class CmpNode;
  37 class BaseCountedLoopEndNode;
  38 class CountedLoopNode;
  39 class IdealLoopTree;
  40 class LoopNode;
  41 class Node;
  42 class OuterStripMinedLoopEndNode;
  43 class PredicateBlock;
  44 class PathFrequency;
  45 class PhaseIdealLoop;
  46 class UnswitchCandidate;
  47 class LoopSelector;
  48 class UnswitchedLoopSelector;
  49 class VectorSet;
  50 class VSharedData;
  51 class Invariance;
  52 struct small_cache;
  53 
  54 //
  55 //                  I D E A L I Z E D   L O O P S
  56 //
  57 // Idealized loops are the set of loops I perform more interesting
  58 // transformations on, beyond simple hoisting.
  59 
  60 //------------------------------LoopNode---------------------------------------
  61 // Simple loop header.  Fall in path on left, loop-back path on right.
  62 class LoopNode : public RegionNode {
  63   // Size is bigger to hold the flags.  However, the flags do not change
  64   // the semantics so it does not appear in the hash & cmp functions.
  65   virtual uint size_of() const { return sizeof(*this); }
  66 protected:
  67   uint _loop_flags;
  68   // Names for flag bitfields
  69   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  70          MainHasNoPreLoop      = 1<<2,
  71          HasExactTripCount     = 1<<3,
  72          InnerLoop             = 1<<4,
  73          PartialPeelLoop       = 1<<5,
  74          PartialPeelFailed     = 1<<6,
  75          WasSlpAnalyzed        = 1<<7,
  76          PassedSlpAnalysis     = 1<<8,
  77          DoUnrollOnly          = 1<<9,
  78          VectorizedLoop        = 1<<10,
  79          HasAtomicPostLoop     = 1<<11,
  80          StripMined            = 1<<12,
  81          SubwordLoop           = 1<<13,
  82          ProfileTripFailed     = 1<<14,
  83          LoopNestInnerLoop     = 1<<15,
  84          LoopNestLongOuterLoop = 1<<16,
  85          MultiversionFastLoop         = 1<<17,
  86          MultiversionSlowLoop         = 2<<17,
  87          MultiversionDelayedSlowLoop  = 3<<17,
  88          MultiversionFlagsMask        = 3<<17,
  89          FlatArrays            = 1<<18};
  90   char _unswitch_count;
  91   enum { _unswitch_max=3 };
  92 
  93   // Expected trip count from profile data
  94   float _profile_trip_cnt;
  95 
  96 public:
  97   // Names for edge indices
  98   enum { Self=0, EntryControl, LoopBackControl };
  99 
 100   bool is_inner_loop() const { return _loop_flags & InnerLoop; }
 101   void set_inner_loop() { _loop_flags |= InnerLoop; }
 102 
 103   bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
 104   bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
 105   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
 106   bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
 107   bool is_strip_mined() const { return _loop_flags & StripMined; }
 108   bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
 109   bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
 110   bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; }
 111   bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; }
 112   bool is_flat_arrays() const { return _loop_flags & FlatArrays; }
 113 
 114   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
 115   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 116   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 117   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 118   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 119   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 120   void mark_strip_mined() { _loop_flags |= StripMined; }
 121   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 122   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
 123   void mark_subword_loop() { _loop_flags |= SubwordLoop; }
 124   void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; }
 125   void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; }
 126   void mark_flat_arrays() { _loop_flags |= FlatArrays; }
 127 
 128   int unswitch_max() { return _unswitch_max; }
 129   int unswitch_count() { return _unswitch_count; }
 130 
 131   void set_unswitch_count(int val) {
 132     assert (val <= unswitch_max(), "too many unswitches");
 133     _unswitch_count = val;
 134   }
 135 
 136   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 137   float profile_trip_cnt()             { return _profile_trip_cnt; }
 138 
 139 #ifndef PRODUCT
 140   uint _stress_peeling_attempts = 0;
 141 #endif
 142 
 143   LoopNode(Node *entry, Node *backedge)
 144     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
 145       _profile_trip_cnt(COUNT_UNKNOWN) {
 146     init_class_id(Class_Loop);
 147     init_req(EntryControl, entry);
 148     init_req(LoopBackControl, backedge);
 149   }
 150 
 151   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 152   virtual int Opcode() const;
 153   bool can_be_counted_loop(PhaseValues* phase) const {
 154     return req() == 3 && in(0) != nullptr &&
 155       in(1) != nullptr && phase->type(in(1)) != Type::TOP &&
 156       in(2) != nullptr && phase->type(in(2)) != Type::TOP;
 157   }
 158   bool is_valid_counted_loop(BasicType bt) const;
 159 #ifndef PRODUCT
 160   virtual void dump_spec(outputStream *st) const;
 161 #endif
 162 
 163   void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
 164   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 165   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; }
 166   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; }
 167   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; }
 168   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; }
 169 };
 170 
 171 //------------------------------Counted Loops----------------------------------
 172 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 173 // path (and maybe some other exit paths).  The trip-counter exit is always
 174 // last in the loop.  The trip-counter have to stride by a constant;
 175 // the exit value is also loop invariant.
 176 
 177 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 178 // CountedLoopNode has the incoming loop control and the loop-back-control
 179 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 180 // CountedLoopEndNode has an incoming control (possibly not the
 181 // CountedLoopNode if there is control flow in the loop), the post-increment
 182 // trip-counter value, and the limit.  The trip-counter value is always of
 183 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 184 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 185 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 186 // CountedLoopEndNode also takes in the loop-invariant limit value.
 187 
 188 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 189 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 190 // via the old-trip-counter from the Op node.
 191 
 192 //------------------------------CountedLoopNode--------------------------------
 193 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 194 // inputs the incoming loop-start control and the loop-back control, so they
 195 // act like RegionNodes.  They also take in the initial trip counter, the
 196 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 197 // produce a loop-body control and the trip counter value.  Since
 198 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 199 
 200 class BaseCountedLoopNode : public LoopNode {
 201 public:
 202   BaseCountedLoopNode(Node *entry, Node *backedge)
 203     : LoopNode(entry, backedge) {
 204   }
 205 
 206   Node *init_control() const { return in(EntryControl); }
 207   Node *back_control() const { return in(LoopBackControl); }
 208 
 209   Node* init_trip() const;
 210   Node* stride() const;
 211   bool stride_is_con() const;
 212   Node* limit() const;
 213   Node* incr() const;
 214   Node* phi() const;
 215 
 216   BaseCountedLoopEndNode* loopexit_or_null() const;
 217   BaseCountedLoopEndNode* loopexit() const;
 218 
 219   virtual BasicType bt() const = 0;
 220 
 221   jlong stride_con() const;
 222 
 223   static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt);
 224 
 225   virtual void set_trip_count(julong tc) = 0;
 226   virtual julong trip_count() const = 0;
 227 
 228   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 229   void set_exact_trip_count(julong tc) {
 230     set_trip_count(tc);
 231     _loop_flags |= HasExactTripCount;
 232   }
 233   void set_nonexact_trip_count() {
 234     _loop_flags &= ~HasExactTripCount;
 235   }
 236 };
 237 
 238 
 239 class CountedLoopNode : public BaseCountedLoopNode {
 240   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 241   // the semantics so it does not appear in the hash & cmp functions.
 242   virtual uint size_of() const { return sizeof(*this); }
 243 
 244   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 245   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 246   node_idx_t _main_idx;
 247 
 248   // Known trip count calculated by compute_exact_trip_count()
 249   uint  _trip_count;
 250 
 251   // Log2 of original loop bodies in unrolled loop
 252   int _unrolled_count_log2;
 253 
 254   // Node count prior to last unrolling - used to decide if
 255   // unroll,optimize,unroll,optimize,... is making progress
 256   int _node_count_before_unroll;
 257 
 258   // If slp analysis is performed we record the maximum
 259   // vector mapped unroll factor here
 260   int _slp_maximum_unroll_factor;
 261 
 262 public:
 263   CountedLoopNode(Node *entry, Node *backedge)
 264     : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 265       _unrolled_count_log2(0), _node_count_before_unroll(0),
 266       _slp_maximum_unroll_factor(0) {
 267     init_class_id(Class_CountedLoop);
 268     // Initialize _trip_count to the largest possible value.
 269     // Will be reset (lower) if the loop's trip count is known.
 270   }
 271 
 272   virtual int Opcode() const;
 273   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 274 
 275   CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 276   CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 277   int   stride_con() const;
 278 
 279   // Match increment with optional truncation
 280   static Node*
 281   match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type,
 282                                       BasicType bt);
 283 
 284   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 285   // can run short a few iterations and may start a few iterations in.
 286   // It will be RCE'd and unrolled and aligned.
 287 
 288   // A following 'post' loop will run any remaining iterations.  Used
 289   // during Range Check Elimination, the 'post' loop will do any final
 290   // iterations with full checks.  Also used by Loop Unrolling, where
 291   // the 'post' loop will do any epilog iterations needed.  Basically,
 292   // a 'post' loop can not profitably be further unrolled or RCE'd.
 293 
 294   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 295   // it may do under-flow checks for RCE and may do alignment iterations
 296   // so the following main loop 'knows' that it is striding down cache
 297   // lines.
 298 
 299   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 300   // Aligned, may be missing it's pre-loop.
 301   bool is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 302   bool is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 303   bool is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 304   bool is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 305   bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 306   bool has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 307   bool is_unroll_only   () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 308   bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 309   bool has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 310   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 311 
 312   IfNode* find_multiversion_if_from_multiversion_fast_main_loop();
 313 
 314   int main_idx() const { return _main_idx; }
 315 
 316   void set_trip_count(julong tc) {
 317     assert(tc < max_juint, "Cannot set trip count to max_juint");
 318     _trip_count = checked_cast<uint>(tc);
 319   }
 320   julong trip_count() const      { return _trip_count; }
 321 
 322   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 323   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 324   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 325   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 326 
 327   void set_notpassed_slp() {
 328     _loop_flags &= ~PassedSlpAnalysis;
 329   }
 330 
 331   void double_unrolled_count() { _unrolled_count_log2++; }
 332   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 333 
 334   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 335   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 336   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 337   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 338 
 339   // Multiversioning allows us to duplicate a CountedLoop, and have two versions, and the multiversion_if
 340   // decides which one is taken:
 341   // (1) fast_loop: We enter this loop by default, by default the multiversion_if has its condition set to
 342   //                "true", guarded by a OpaqueMultiversioning. If we want to make a speculative assumption
 343   //                for an optimization, we can add the runtime-check to the multiversion_if, and if the
 344   //                assumption fails we take the slow_loop instead, where we do not make the same speculative
 345   //                assumption.
 346   //                We call it the "fast_loop" because it has more optimizations, enabled by the speculative
 347   //                runtime-checks at the multiversion_if, and we expect the fast_loop to execute faster.
 348   // (2) slow_loop: By default, it is not taken, until a runtime-check is added to the multiversion_if while
 349   //                optimizing the fast_looop. If such a runtime-check is never added, then after loop-opts
 350   //                the multiversion_if constant folds to true, and the slow_loop is folded away. To save
 351   //                compile time, we delay the optimization of the slow_loop until a runtime-check is added
 352   //                to the multiversion_if, at which point we resume optimizations for the slow_loop.
 353   //                We call it the "slow_loop" because it has fewer optimizations, since this is the fall-back
 354   //                loop where we do not make any of the speculative assumptions we make for the fast_loop.
 355   //                Hence, we expect the slow_loop to execute slower.
 356   bool is_multiversion()                   const { return (_loop_flags & MultiversionFlagsMask) != Normal; }
 357   bool is_multiversion_fast_loop()         const { return (_loop_flags & MultiversionFlagsMask) == MultiversionFastLoop; }
 358   bool is_multiversion_slow_loop()         const { return (_loop_flags & MultiversionFlagsMask) == MultiversionSlowLoop; }
 359   bool is_multiversion_delayed_slow_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionDelayedSlowLoop; }
 360   void set_multiversion_fast_loop()         { assert(!is_multiversion(), ""); _loop_flags |= MultiversionFastLoop; }
 361   void set_multiversion_slow_loop()         { assert(!is_multiversion(), ""); _loop_flags |= MultiversionSlowLoop; }
 362   void set_multiversion_delayed_slow_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionDelayedSlowLoop; }
 363   void set_no_multiversion()                { assert( is_multiversion(), ""); _loop_flags &= ~MultiversionFlagsMask; }
 364 
 365   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
 366   OuterStripMinedLoopNode* outer_loop() const;
 367   virtual IfTrueNode* outer_loop_tail() const;
 368   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 369   virtual IfFalseNode* outer_loop_exit() const;
 370   virtual SafePointNode* outer_safepoint() const;
 371 
 372   Node* skip_assertion_predicates_with_halt();
 373 
 374   virtual BasicType bt() const {
 375     return T_INT;
 376   }
 377 
 378   Node* is_canonical_loop_entry();
 379   CountedLoopEndNode* find_pre_loop_end();
 380 
 381   Node* uncasted_init_trip(bool uncasted);
 382 
 383 #ifndef PRODUCT
 384   virtual void dump_spec(outputStream *st) const;
 385 #endif
 386 };
 387 
 388 class LongCountedLoopNode : public BaseCountedLoopNode {
 389 private:
 390   virtual uint size_of() const { return sizeof(*this); }
 391 
 392   // Known trip count calculated by compute_exact_trip_count()
 393   julong _trip_count;
 394 
 395 public:
 396   LongCountedLoopNode(Node *entry, Node *backedge)
 397     : BaseCountedLoopNode(entry, backedge), _trip_count(max_julong) {
 398     init_class_id(Class_LongCountedLoop);
 399   }
 400 
 401   virtual int Opcode() const;
 402 
 403   virtual BasicType bt() const {
 404     return T_LONG;
 405   }
 406 
 407   void set_trip_count(julong tc) {
 408     assert(tc < max_julong, "Cannot set trip count to max_julong");
 409     _trip_count = tc;
 410   }
 411   julong trip_count() const      { return _trip_count; }
 412 
 413   LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 414   LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 415 };
 416 
 417 
 418 //------------------------------CountedLoopEndNode-----------------------------
 419 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 420 // IfNodes.
 421 
 422 class BaseCountedLoopEndNode : public IfNode {
 423 public:
 424   enum { TestControl, TestValue };
 425   BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 426     : IfNode(control, test, prob, cnt) {
 427     init_class_id(Class_BaseCountedLoopEnd);
 428   }
 429 
 430   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; }
 431   Node* incr() const                { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 432   Node* limit() const               { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 433   Node* stride() const              { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 434   Node* init_trip() const           { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 435   bool stride_is_con() const        { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); }
 436 
 437   PhiNode* phi() const {
 438     Node* tmp = incr();
 439     if (tmp && tmp->req() == 3) {
 440       Node* phi = tmp->in(1);
 441       if (phi->is_Phi()) {
 442         return phi->as_Phi();
 443       }
 444     }
 445     return nullptr;
 446   }
 447 
 448   BaseCountedLoopNode* loopnode() const {
 449     // The CountedLoopNode that goes with this CountedLoopEndNode may
 450     // have been optimized out by the IGVN so be cautious with the
 451     // pattern matching on the graph
 452     PhiNode* iv_phi = phi();
 453     if (iv_phi == nullptr) {
 454       return nullptr;
 455     }
 456     Node* ln = iv_phi->in(0);
 457     if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) {
 458       return nullptr;
 459     }
 460     if (ln->as_BaseCountedLoop()->bt() != bt()) {
 461       return nullptr;
 462     }
 463     return ln->as_BaseCountedLoop();
 464   }
 465 
 466   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 467 
 468   jlong stride_con() const;
 469   virtual BasicType bt() const = 0;
 470 
 471   static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt);
 472 };
 473 
 474 class CountedLoopEndNode : public BaseCountedLoopEndNode {
 475 public:
 476 
 477   CountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 478     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 479     init_class_id(Class_CountedLoopEnd);
 480   }
 481   virtual int Opcode() const;
 482 
 483   CountedLoopNode* loopnode() const {
 484     return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 485   }
 486 
 487   virtual BasicType bt() const {
 488     return T_INT;
 489   }
 490 
 491 #ifndef PRODUCT
 492   virtual void dump_spec(outputStream *st) const;
 493 #endif
 494 };
 495 
 496 class LongCountedLoopEndNode : public BaseCountedLoopEndNode {
 497 public:
 498   LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 499     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 500     init_class_id(Class_LongCountedLoopEnd);
 501   }
 502 
 503   LongCountedLoopNode* loopnode() const {
 504     return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 505   }
 506 
 507   virtual int Opcode() const;
 508 
 509   virtual BasicType bt() const {
 510     return T_LONG;
 511   }
 512 };
 513 
 514 
 515 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const {
 516   Node* bctrl = back_control();
 517   if (bctrl == nullptr) return nullptr;
 518 
 519   Node* lexit = bctrl->in(0);
 520   if (!lexit->is_BaseCountedLoopEnd()) {
 521     return nullptr;
 522   }
 523   BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd();
 524   if (result->bt() != bt()) {
 525     return nullptr;
 526   }
 527   return result;
 528 }
 529 
 530 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const {
 531   BaseCountedLoopEndNode* cle = loopexit_or_null();
 532   assert(cle != nullptr, "loopexit is null");
 533   return cle;
 534 }
 535 
 536 inline Node* BaseCountedLoopNode::init_trip() const {
 537   BaseCountedLoopEndNode* cle = loopexit_or_null();
 538   return cle != nullptr ? cle->init_trip() : nullptr;
 539 }
 540 inline Node* BaseCountedLoopNode::stride() const {
 541   BaseCountedLoopEndNode* cle = loopexit_or_null();
 542   return cle != nullptr ? cle->stride() : nullptr;
 543 }
 544 
 545 inline bool BaseCountedLoopNode::stride_is_con() const {
 546   BaseCountedLoopEndNode* cle = loopexit_or_null();
 547   return cle != nullptr && cle->stride_is_con();
 548 }
 549 inline Node* BaseCountedLoopNode::limit() const {
 550   BaseCountedLoopEndNode* cle = loopexit_or_null();
 551   return cle != nullptr ? cle->limit() : nullptr;
 552 }
 553 inline Node* BaseCountedLoopNode::incr() const {
 554   BaseCountedLoopEndNode* cle = loopexit_or_null();
 555   return cle != nullptr ? cle->incr() : nullptr;
 556 }
 557 inline Node* BaseCountedLoopNode::phi() const {
 558   BaseCountedLoopEndNode* cle = loopexit_or_null();
 559   return cle != nullptr ? cle->phi() : nullptr;
 560 }
 561 
 562 inline jlong BaseCountedLoopNode::stride_con() const {
 563   BaseCountedLoopEndNode* cle = loopexit_or_null();
 564   return cle != nullptr ? cle->stride_con() : 0;
 565 }
 566 
 567 
 568 //------------------------------LoopLimitNode-----------------------------
 569 // Counted Loop limit node which represents exact final iterator value:
 570 // trip_count = (limit - init_trip + stride - 1)/stride
 571 // final_value= trip_count * stride + init_trip.
 572 // Use HW instructions to calculate it when it can overflow in integer.
 573 // Note, final_value should fit into integer since counted loop has
 574 // limit check: limit <= max_int-stride.
 575 class LoopLimitNode : public Node {
 576   enum { Init=1, Limit=2, Stride=3 };
 577  public:
 578   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(nullptr,init,limit,stride) {
 579     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 580     init_flags(Flag_is_macro);
 581     C->add_macro_node(this);
 582   }
 583   virtual int Opcode() const;
 584   virtual const Type *bottom_type() const { return TypeInt::INT; }
 585   virtual uint ideal_reg() const { return Op_RegI; }
 586   virtual const Type* Value(PhaseGVN* phase) const;
 587   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 588   virtual Node* Identity(PhaseGVN* phase);
 589 };
 590 
 591 // Support for strip mining
 592 class OuterStripMinedLoopNode : public LoopNode {
 593 private:
 594   void fix_sunk_stores_when_back_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) const;
 595   void handle_sunk_stores_when_finishing_construction(PhaseIterGVN* igvn);
 596 
 597 public:
 598   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 599     : LoopNode(entry, backedge) {
 600     init_class_id(Class_OuterStripMinedLoop);
 601     init_flags(Flag_is_macro);
 602     C->add_macro_node(this);
 603   }
 604 
 605   virtual int Opcode() const;
 606 
 607   virtual IfTrueNode* outer_loop_tail() const;
 608   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 609   virtual IfFalseNode* outer_loop_exit() const;
 610   virtual SafePointNode* outer_safepoint() const;
 611   CountedLoopNode* inner_counted_loop() const { return unique_ctrl_out()->as_CountedLoop(); }
 612   CountedLoopEndNode* inner_counted_loop_end() const { return  inner_counted_loop()->loopexit(); }
 613   IfFalseNode* inner_loop_exit() const { return inner_counted_loop_end()->proj_out(false)->as_IfFalse(); }
 614 
 615   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 616 
 617   void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const;
 618 
 619   void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 620 
 621   static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 622 
 623   Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
 624                          PhaseIdealLoop* iloop);
 625 };
 626 
 627 class OuterStripMinedLoopEndNode : public IfNode {
 628 public:
 629   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 630     : IfNode(control, test, prob, cnt) {
 631     init_class_id(Class_OuterStripMinedLoopEnd);
 632   }
 633 
 634   virtual int Opcode() const;
 635 
 636   virtual const Type* Value(PhaseGVN* phase) const;
 637   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 638 
 639   bool is_expanded(PhaseGVN *phase) const;
 640 };
 641 
 642 // -----------------------------IdealLoopTree----------------------------------
 643 class IdealLoopTree : public ResourceObj {
 644 public:
 645   IdealLoopTree *_parent;       // Parent in loop tree
 646   IdealLoopTree *_next;         // Next sibling in loop tree
 647   IdealLoopTree *_child;        // First child in loop tree
 648 
 649   // The head-tail backedge defines the loop.
 650   // If a loop has multiple backedges, this is addressed during cleanup where
 651   // we peel off the multiple backedges,  merging all edges at the bottom and
 652   // ensuring that one proper backedge flow into the loop.
 653   Node *_head;                  // Head of loop
 654   Node *_tail;                  // Tail of loop
 655   inline Node *tail();          // Handle lazy update of _tail field
 656   inline Node *head();          // Handle lazy update of _head field
 657   PhaseIdealLoop* _phase;
 658   int _local_loop_unroll_limit;
 659   int _local_loop_unroll_factor;
 660 
 661   Node_List _body;              // Loop body for inner loops
 662 
 663   uint16_t _nest;               // Nesting depth
 664   uint8_t _irreducible:1,       // True if irreducible
 665           _has_call:1,          // True if has call safepoint
 666           _has_sfpt:1,          // True if has non-call safepoint
 667           _rce_candidate:1,     // True if candidate for range check elimination
 668           _has_range_checks:1,
 669           _has_range_checks_computed:1;
 670 
 671   Node_List* _safepts;          // List of safepoints in this loop
 672   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 673   bool  _allow_optimizations;   // Allow loop optimizations
 674 
 675   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 676     : _parent(nullptr), _next(nullptr), _child(nullptr),
 677       _head(head), _tail(tail),
 678       _phase(phase),
 679       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
 680       _body(Compile::current()->comp_arena()),
 681       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 682       _has_range_checks(0), _has_range_checks_computed(0),
 683       _safepts(nullptr),
 684       _required_safept(nullptr),
 685       _allow_optimizations(true)
 686   {
 687     precond(_head != nullptr);
 688     precond(_tail != nullptr);
 689   }
 690 
 691   // Is 'l' a member of 'this'?
 692   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 693 
 694   // Set loop nesting depth.  Accumulate has_call bits.
 695   int set_nest( uint depth );
 696 
 697   // Split out multiple fall-in edges from the loop header.  Move them to a
 698   // private RegionNode before the loop.  This becomes the loop landing pad.
 699   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 700 
 701   // Split out the outermost loop from this shared header.
 702   void split_outer_loop( PhaseIdealLoop *phase );
 703 
 704   // Merge all the backedges from the shared header into a private Region.
 705   // Feed that region as the one backedge to this loop.
 706   void merge_many_backedges( PhaseIdealLoop *phase );
 707 
 708   // Split shared headers and insert loop landing pads.
 709   // Insert a LoopNode to replace the RegionNode.
 710   // Returns TRUE if loop tree is structurally changed.
 711   bool beautify_loops( PhaseIdealLoop *phase );
 712 
 713   // Perform optimization to use the loop predicates for null checks and range checks.
 714   // Applies to any loop level (not just the innermost one)
 715   bool loop_predication( PhaseIdealLoop *phase);
 716   bool can_apply_loop_predication();
 717 
 718   // Perform iteration-splitting on inner loops.  Split iterations to
 719   // avoid range checks or one-shot null checks.  Returns false if the
 720   // current round of loop opts should stop.
 721   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 722 
 723   // Driver for various flavors of iteration splitting.  Returns false
 724   // if the current round of loop opts should stop.
 725   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 726 
 727   // Given dominators, try to find loops with calls that must always be
 728   // executed (call dominates loop tail).  These loops do not need non-call
 729   // safepoints (ncsfpt).
 730   void check_safepts(VectorSet &visited, Node_List &stack);
 731 
 732   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 733   // encountered.
 734   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 735 
 736   // Remove safepoints from loop. Optionally keeping one.
 737   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 738 
 739   // Convert to counted loops where possible
 740   void counted_loop( PhaseIdealLoop *phase );
 741 
 742   // Check for Node being a loop-breaking test
 743   Node *is_loop_exit(Node *iff) const;
 744 
 745   // Remove simplistic dead code from loop body
 746   void DCE_loop_body();
 747 
 748   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 749   // Replace with a 1-in-10 exit guess.
 750   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 751 
 752   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 753   // Useful for unrolling loops with NO array accesses.
 754   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 755 
 756   // Return TRUE or FALSE if the loop should be unswitched -- clone
 757   // loop with an invariant test
 758   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 759   bool no_unswitch_candidate() const;
 760 
 761   // Micro-benchmark spamming.  Remove empty loops.
 762   bool do_remove_empty_loop( PhaseIdealLoop *phase );
 763 
 764   // Convert one-iteration loop into normal code.
 765   bool do_one_iteration_loop( PhaseIdealLoop *phase );
 766 
 767   // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
 768   // move some loop-invariant test (usually a null-check) before the loop.
 769   bool policy_peeling(PhaseIdealLoop *phase);
 770 
 771   uint estimate_peeling(PhaseIdealLoop *phase);
 772 
 773   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 774   // known trip count in the counted loop node.
 775   bool policy_maximally_unroll(PhaseIdealLoop *phase) const;
 776 
 777   // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll
 778   // if the loop is a counted loop and the loop body is small enough.
 779   bool policy_unroll(PhaseIdealLoop *phase);
 780 
 781   // Loop analyses to map to a maximal superword unrolling for vectorization.
 782   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 783 
 784   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 785   // Gather a list of IF tests that are dominated by iteration splitting;
 786   // also gather the end of the first split and the start of the 2nd split.
 787   bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const;
 788 
 789   // Return TRUE if "iff" is a range check.
 790   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const;
 791   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset,
 792                          jlong& scale) const;
 793 
 794   // Estimate the number of nodes required when cloning a loop (body).
 795   uint est_loop_clone_sz(uint factor) const;
 796   // Estimate the number of nodes required when unrolling a loop (body).
 797   uint est_loop_unroll_sz(uint factor) const;
 798 
 799   // Compute loop trip count if possible
 800   void compute_trip_count(PhaseIdealLoop* phase, BasicType bt);
 801 
 802   // Compute loop trip count from profile data
 803   float compute_profile_trip_cnt_helper(Node* n);
 804   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 805 
 806   // Reassociate invariant expressions.
 807   void reassociate_invariants(PhaseIdealLoop *phase);
 808   // Reassociate invariant binary expressions.
 809   Node* reassociate(Node* n1, PhaseIdealLoop *phase);
 810   // Reassociate invariant add, subtract, and compare expressions.
 811   Node* reassociate_add_sub_cmp(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop* phase);
 812   // Return nonzero index of invariant operand if invariant and variant
 813   // are combined with an associative binary. Helper for reassociate_invariants.
 814   int find_invariant(Node* n, PhaseIdealLoop *phase);
 815   // Return TRUE if "n" is associative.
 816   bool is_associative(Node* n, Node* base=nullptr);
 817   // Return TRUE if "n" is an associative cmp node.
 818   bool is_associative_cmp(Node* n);
 819 
 820   // Return true if n is invariant
 821   bool is_invariant(Node* n) const;
 822 
 823   // Put loop body on igvn work list
 824   void record_for_igvn();
 825 
 826   bool is_root() { return _parent == nullptr; }
 827   // A proper/reducible loop w/o any (occasional) dead back-edge.
 828   bool is_loop() { return !_irreducible && !tail()->is_top(); }
 829   bool is_counted()   { return is_loop() && _head->is_CountedLoop(); }
 830   bool is_innermost() { return is_loop() && _child == nullptr; }
 831 
 832   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 833 
 834   bool compute_has_range_checks() const;
 835   bool range_checks_present() {
 836     if (!_has_range_checks_computed) {
 837       if (compute_has_range_checks()) {
 838         _has_range_checks = 1;
 839       }
 840       _has_range_checks_computed = 1;
 841     }
 842     return _has_range_checks;
 843   }
 844 
 845   // Return the parent's IdealLoopTree for a strip mined loop which is the outer strip mined loop.
 846   // In all other cases, return this.
 847   IdealLoopTree* skip_strip_mined() {
 848     return _head->as_Loop()->is_strip_mined() ? _parent : this;
 849   }
 850 
 851 #ifndef PRODUCT
 852   void dump_head();       // Dump loop head only
 853   void dump();            // Dump this loop recursively
 854 #endif
 855 
 856 #ifdef ASSERT
 857   GrowableArray<IdealLoopTree*> collect_sorted_children() const;
 858   bool verify_tree(IdealLoopTree* loop_verify) const;
 859 #endif
 860 
 861  private:
 862   enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop.
 863 
 864   // Estimate the number of nodes resulting from control and data flow merge.
 865   uint est_loop_flow_merge_sz() const;
 866 
 867   // Check if the number of residual iterations is large with unroll_cnt.
 868   // Return true if the residual iterations are more than 10% of the trip count.
 869   bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const {
 870     return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt();
 871   }
 872 
 873   void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const;
 874 
 875   bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const;
 876 
 877   void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const;
 878 
 879   bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq,
 880                          Node* sfpt) const;
 881 
 882   bool empty_loop_candidate(PhaseIdealLoop* phase) const;
 883 
 884   bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const;
 885 };
 886 
 887 // -----------------------------PhaseIdealLoop---------------------------------
 888 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees
 889 // into a loop tree. Drives the loop-based transformations on the ideal graph.
 890 class PhaseIdealLoop : public PhaseTransform {
 891   friend class IdealLoopTree;
 892   friend class SuperWord;
 893   friend class ShenandoahBarrierC2Support;
 894   friend class AutoNodeBudget;
 895 
 896   // Map loop membership for CFG nodes, and ctrl for non-CFG nodes.
 897   Node_List _loop_or_ctrl;
 898 
 899   // Pre-computed def-use info
 900   PhaseIterGVN &_igvn;
 901 
 902   // Head of loop tree
 903   IdealLoopTree* _ltree_root;
 904 
 905   // Array of pre-order numbers, plus post-visited bit.
 906   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 907   // ODD for post-visited.  Other bits are the pre-order number.
 908   uint *_preorders;
 909   uint _max_preorder;
 910 
 911   ReallocMark _nesting; // Safety checks for arena reallocation
 912 
 913   const PhaseIdealLoop* _verify_me;
 914   bool _verify_only;
 915 
 916   // Allocate _preorders[] array
 917   void allocate_preorders() {
 918     _max_preorder = C->unique()+8;
 919     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 920     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 921   }
 922 
 923   // Allocate _preorders[] array
 924   void reallocate_preorders() {
 925     _nesting.check(); // Check if a potential re-allocation in the resource arena is safe
 926     if ( _max_preorder < C->unique() ) {
 927       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 928       _max_preorder = C->unique();
 929     }
 930     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 931   }
 932 
 933   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 934   // adds new nodes.
 935   void check_grow_preorders( ) {
 936     _nesting.check(); // Check if a potential re-allocation in the resource arena is safe
 937     if ( _max_preorder < C->unique() ) {
 938       uint newsize = _max_preorder<<1;  // double size of array
 939       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 940       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 941       _max_preorder = newsize;
 942     }
 943   }
 944   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 945   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 946   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 947   void set_preorder_visited( Node *n, int pre_order ) {
 948     assert( !is_visited( n ), "already set" );
 949     _preorders[n->_idx] = (pre_order<<1);
 950   };
 951   // Return pre-order number.
 952   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 953 
 954   // Check for being post-visited.
 955   // Should be previsited already (checked with assert(is_visited(n))).
 956   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 957 
 958   // Mark as post visited
 959   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 960 
 961 public:
 962   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 963   // Returns true if "n" is a data node, false if it's a control node.
 964   bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; }
 965 
 966 private:
 967   // clear out dead code after build_loop_late
 968   Node_List _deadlist;
 969   Node_List _zero_trip_guard_opaque_nodes;
 970   Node_List _multiversion_opaque_nodes;
 971 
 972   // Support for faster execution of get_late_ctrl()/dom_lca()
 973   // when a node has many uses and dominator depth is deep.
 974   GrowableArray<jlong> _dom_lca_tags;
 975   uint _dom_lca_tags_round;
 976   void   init_dom_lca_tags();
 977 
 978   // Helper for debugging bad dominance relationships
 979   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 980 
 981   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 982 
 983   // Inline wrapper for frequent cases:
 984   // 1) only one use
 985   // 2) a use is the same as the current LCA passed as 'n1'
 986   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 987     assert( n->is_CFG(), "" );
 988     // Fast-path null lca
 989     if( lca != nullptr && lca != n ) {
 990       assert( lca->is_CFG(), "" );
 991       // find LCA of all uses
 992       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 993     }
 994     return find_non_split_ctrl(n);
 995   }
 996   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 997 
 998   // Helper function for directing control inputs away from CFG split points.
 999   Node *find_non_split_ctrl( Node *ctrl ) const {
1000     if (ctrl != nullptr) {
1001       if (ctrl->is_MultiBranch()) {
1002         ctrl = ctrl->in(0);
1003       }
1004       assert(ctrl->is_CFG(), "CFG");
1005     }
1006     return ctrl;
1007   }
1008 
1009   void cast_incr_before_loop(Node* incr, Node* ctrl, CountedLoopNode* loop);
1010 
1011 #ifdef ASSERT
1012   static void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
1013 #endif
1014  private:
1015   static void get_opaque_template_assertion_predicate_nodes(ParsePredicateSuccessProj* parse_predicate_proj,
1016                                                             Unique_Node_List& list);
1017   void update_main_loop_assertion_predicates(CountedLoopNode* new_main_loop_head, int stride_con_before_unroll);
1018   void initialize_assertion_predicates_for_peeled_loop(CountedLoopNode* peeled_loop_head,
1019                                                        CountedLoopNode* remaining_loop_head,
1020                                                        uint first_node_index_in_cloned_loop_body,
1021                                                        const Node_List& old_new);
1022   void initialize_assertion_predicates_for_main_loop(CountedLoopNode* pre_loop_head,
1023                                                      CountedLoopNode* main_loop_head,
1024                                                      uint first_node_index_in_pre_loop_body,
1025                                                      uint last_node_index_in_pre_loop_body,
1026                                                      DEBUG_ONLY(uint last_node_index_from_backedge_goo COMMA)
1027                                                      const Node_List& old_new);
1028   void initialize_assertion_predicates_for_post_loop(CountedLoopNode* main_loop_head, CountedLoopNode* post_loop_head,
1029                                                      uint first_node_index_in_cloned_loop_body);
1030   void create_assertion_predicates_at_loop(CountedLoopNode* source_loop_head, CountedLoopNode* target_loop_head,
1031                                            const NodeInLoopBody& _node_in_loop_body, bool kill_old_template);
1032   void create_assertion_predicates_at_main_or_post_loop(CountedLoopNode* source_loop_head,
1033                                                         CountedLoopNode* target_loop_head,
1034                                                         const NodeInLoopBody& _node_in_loop_body,
1035                                                         bool kill_old_template);
1036   void rewire_old_target_loop_entry_dependency_to_new_entry(CountedLoopNode* target_loop_head,
1037                                                             const Node* old_target_loop_entry,
1038                                                             uint node_index_before_new_assertion_predicate_nodes);
1039   void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit,
1040                                          Node* bol);
1041   void log_loop_tree();
1042 
1043 public:
1044 
1045   PhaseIterGVN &igvn() const { return _igvn; }
1046 
1047   bool has_node(const Node* n) const {
1048     guarantee(n != nullptr, "No Node.");
1049     return _loop_or_ctrl[n->_idx] != nullptr;
1050   }
1051   // check if transform created new nodes that need _ctrl recorded
1052   Node *get_late_ctrl( Node *n, Node *early );
1053   Node *get_early_ctrl( Node *n );
1054   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
1055   void set_early_ctrl(Node* n, bool update_body);
1056   void set_subtree_ctrl(Node* n, bool update_body);
1057   void set_ctrl( Node *n, Node *ctrl ) {
1058     assert( !has_node(n) || has_ctrl(n), "" );
1059     assert( ctrl->in(0), "cannot set dead control node" );
1060     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
1061     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1));
1062   }
1063   void set_root_as_ctrl(Node* n) {
1064     assert(!has_node(n) || has_ctrl(n), "");
1065     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)C->root() + 1));
1066   }
1067   // Set control and update loop membership
1068   void set_ctrl_and_loop(Node* n, Node* ctrl) {
1069     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
1070     IdealLoopTree* new_loop = get_loop(ctrl);
1071     if (old_loop != new_loop) {
1072       if (old_loop->_child == nullptr) old_loop->_body.yank(n);
1073       if (new_loop->_child == nullptr) new_loop->_body.push(n);
1074     }
1075     set_ctrl(n, ctrl);
1076   }
1077   // Control nodes can be replaced or subsumed.  During this pass they
1078   // get their replacement Node in slot 1.  Instead of updating the block
1079   // location of all Nodes in the subsumed block, we lazily do it.  As we
1080   // pull such a subsumed block out of the array, we write back the final
1081   // correct block.
1082   Node* get_ctrl(const Node* i) {
1083     assert(has_node(i), "");
1084     Node *n = get_ctrl_no_update(i);
1085     _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1));
1086     assert(has_node(i) && has_ctrl(i), "");
1087     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
1088     return n;
1089   }
1090 
1091   bool is_dominator(Node* dominator, Node* n);
1092   bool is_strict_dominator(Node* dominator, Node* n);
1093 
1094   // return get_ctrl for a data node and self(n) for a CFG node
1095   Node* ctrl_or_self(Node* n) {
1096     if (has_ctrl(n))
1097       return get_ctrl(n);
1098     else {
1099       assert (n->is_CFG(), "must be a CFG node");
1100       return n;
1101     }
1102   }
1103 
1104   Node* get_ctrl_no_update_helper(const Node* i) const {
1105     assert(has_ctrl(i), "should be control, not loop");
1106     return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1);
1107   }
1108 
1109   Node* get_ctrl_no_update(const Node* i) const {
1110     assert( has_ctrl(i), "" );
1111     Node *n = get_ctrl_no_update_helper(i);
1112     if (!n->in(0)) {
1113       // Skip dead CFG nodes
1114       do {
1115         n = get_ctrl_no_update_helper(n);
1116       } while (!n->in(0));
1117       n = find_non_split_ctrl(n);
1118     }
1119     return n;
1120   }
1121 
1122   // Check for loop being set
1123   // "n" must be a control node. Returns true if "n" is known to be in a loop.
1124   bool has_loop( Node *n ) const {
1125     assert(!has_node(n) || !has_ctrl(n), "");
1126     return has_node(n);
1127   }
1128   // Set loop
1129   void set_loop( Node *n, IdealLoopTree *loop ) {
1130     _loop_or_ctrl.map(n->_idx, (Node*)loop);
1131   }
1132   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
1133   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
1134   // from old_node to new_node to support the lazy update.  Reference
1135   // replaces loop reference, since that is not needed for dead node.
1136   void lazy_update(Node *old_node, Node *new_node) {
1137     assert(old_node != new_node, "no cycles please");
1138     // Re-use the side array slot for this node to provide the
1139     // forwarding pointer.
1140     _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
1141   }
1142   void lazy_replace(Node *old_node, Node *new_node) {
1143     _igvn.replace_node(old_node, new_node);
1144     lazy_update(old_node, new_node);
1145   }
1146 
1147 private:
1148 
1149   // Place 'n' in some loop nest, where 'n' is a CFG node
1150   void build_loop_tree();
1151   int build_loop_tree_impl(Node* n, int pre_order);
1152   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
1153   // loop tree, not the root.
1154   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
1155 
1156 #ifdef ASSERT
1157   // verify that regions in irreducible loops are marked is_in_irreducible_loop
1158   void verify_regions_in_irreducible_loops();
1159   bool is_in_irreducible_loop(RegionNode* region);
1160 #endif
1161 
1162   // Place Data nodes in some loop nest
1163   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1164   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1165   void build_loop_late_post_work(Node* n, bool pinned);
1166   void build_loop_late_post(Node* n);
1167   void verify_strip_mined_scheduling(Node *n, Node* least);
1168 
1169   // Array of immediate dominance info for each CFG node indexed by node idx
1170 private:
1171   uint _idom_size;
1172   Node **_idom;                  // Array of immediate dominators
1173   uint *_dom_depth;              // Used for fast LCA test
1174   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
1175   LoopOptsMode _mode;
1176 
1177   // build the loop tree and perform any requested optimizations
1178   void build_and_optimize();
1179 
1180   // Dominators for the sea of nodes
1181   void Dominators();
1182 
1183   // Compute the Ideal Node to Loop mapping
1184   PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) :
1185     PhaseTransform(Ideal_Loop),
1186     _loop_or_ctrl(igvn.C->comp_arena()),
1187     _igvn(igvn),
1188     _verify_me(nullptr),
1189     _verify_only(false),
1190     _mode(mode),
1191     _nodes_required(UINT_MAX) {
1192     assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop");
1193     build_and_optimize();
1194   }
1195 
1196 #ifndef PRODUCT
1197   // Verify that verify_me made the same decisions as a fresh run
1198   // or only verify that the graph is valid if verify_me is null.
1199   PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) :
1200     PhaseTransform(Ideal_Loop),
1201     _loop_or_ctrl(igvn.C->comp_arena()),
1202     _igvn(igvn),
1203     _verify_me(verify_me),
1204     _verify_only(verify_me == nullptr),
1205     _mode(LoopOptsVerify),
1206     _nodes_required(UINT_MAX) {
1207     DEBUG_ONLY(C->set_phase_verify_ideal_loop();)
1208     build_and_optimize();
1209     DEBUG_ONLY(C->reset_phase_verify_ideal_loop();)
1210   }
1211 #endif
1212 
1213   Node* insert_convert_node_if_needed(BasicType target, Node* input);
1214 
1215 public:
1216   Node* idom_no_update(Node* d) const {
1217     return idom_no_update(d->_idx);
1218   }
1219 
1220   Node* idom_no_update(uint didx) const {
1221     assert(didx < _idom_size, "oob");
1222     Node* n = _idom[didx];
1223     assert(n != nullptr,"Bad immediate dominator info.");
1224     while (n->in(0) == nullptr) { // Skip dead CFG nodes
1225       n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1);
1226       assert(n != nullptr,"Bad immediate dominator info.");
1227     }
1228     return n;
1229   }
1230 
1231   Node *idom(Node* d) const {
1232     return idom(d->_idx);
1233   }
1234 
1235   Node *idom(uint didx) const {
1236     Node *n = idom_no_update(didx);
1237     _idom[didx] = n; // Lazily remove dead CFG nodes from table.
1238     return n;
1239   }
1240 
1241   uint dom_depth(Node* d) const {
1242     guarantee(d != nullptr, "Null dominator info.");
1243     guarantee(d->_idx < _idom_size, "");
1244     return _dom_depth[d->_idx];
1245   }
1246   void set_idom(Node* d, Node* n, uint dom_depth);
1247   // Locally compute IDOM using dom_lca call
1248   Node *compute_idom( Node *region ) const;
1249   // Recompute dom_depth
1250   void recompute_dom_depth();
1251 
1252   // Is safept not required by an outer loop?
1253   bool is_deleteable_safept(Node* sfpt);
1254 
1255   // Replace parallel induction variable (parallel to trip counter)
1256   void replace_parallel_iv(IdealLoopTree *loop);
1257 
1258   Node *dom_lca( Node *n1, Node *n2 ) const {
1259     return find_non_split_ctrl(dom_lca_internal(n1, n2));
1260   }
1261   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
1262 
1263   Node* dominated_node(Node* c1, Node* c2) {
1264     assert(is_dominator(c1, c2) || is_dominator(c2, c1), "nodes must be related");
1265     return is_dominator(c1, c2) ? c2 : c1;
1266   }
1267 
1268   // Return control node that's dominated by the 2 others
1269   Node* dominated_node(Node* c1, Node* c2, Node* c3) {
1270     return dominated_node(c1, dominated_node(c2, c3));
1271   }
1272 
1273   // Build and verify the loop tree without modifying the graph.  This
1274   // is useful to verify that all inputs properly dominate their uses.
1275   static void verify(PhaseIterGVN& igvn) {
1276 #ifdef ASSERT
1277     ResourceMark rm;
1278     Compile::TracePhase tp(_t_idealLoopVerify);
1279     PhaseIdealLoop v(igvn);
1280 #endif
1281   }
1282 
1283   // Recommended way to use PhaseIdealLoop.
1284   // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations.
1285   static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) {
1286     ResourceMark rm;
1287     PhaseIdealLoop v(igvn, mode);
1288 
1289     Compile* C = Compile::current();
1290     if (!C->failing()) {
1291       // Cleanup any modified bits
1292       igvn.optimize();
1293       if (C->failing()) { return; }
1294       v.log_loop_tree();
1295     }
1296   }
1297 
1298   // True if the method has at least 1 irreducible loop
1299   bool _has_irreducible_loops;
1300 
1301   // Per-Node transform
1302   virtual Node* transform(Node* n) { return nullptr; }
1303 
1304   Node* loop_exit_control(Node* x, IdealLoopTree* loop);
1305   Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob);
1306   Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr);
1307   Node* loop_iv_stride(Node* incr, Node*& xphi);
1308   PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x);
1309 
1310   bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt);
1311 
1312   Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt);
1313   bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new);
1314 #ifdef ASSERT
1315   bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop);
1316 #endif
1317   void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt);
1318   SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop);
1319   IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift);
1320   IdealLoopTree* create_outer_strip_mined_loop(Node* init_control,
1321                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
1322                                                Node*& entry_control, Node*& iffalse);
1323 
1324   Node* exact_limit( IdealLoopTree *loop );
1325 
1326   // Return a post-walked LoopNode
1327   IdealLoopTree *get_loop( Node *n ) const {
1328     // Dead nodes have no loop, so return the top level loop instead
1329     if (!has_node(n))  return _ltree_root;
1330     assert(!has_ctrl(n), "");
1331     return (IdealLoopTree*)_loop_or_ctrl[n->_idx];
1332   }
1333 
1334   IdealLoopTree* ltree_root() const { return _ltree_root; }
1335 
1336   // Is 'n' a (nested) member of 'loop'?
1337   int is_member( const IdealLoopTree *loop, Node *n ) const {
1338     return loop->is_member(get_loop(n)); }
1339 
1340   // This is the basic building block of the loop optimizations.  It clones an
1341   // entire loop body.  It makes an old_new loop body mapping; with this
1342   // mapping you can find the new-loop equivalent to an old-loop node.  All
1343   // new-loop nodes are exactly equal to their old-loop counterparts, all
1344   // edges are the same.  All exits from the old-loop now have a RegionNode
1345   // that merges the equivalent new-loop path.  This is true even for the
1346   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
1347   // now come from (one or more) Phis that merge their new-loop equivalents.
1348   // Parameter side_by_side_idom:
1349   //   When side_by_size_idom is null, the dominator tree is constructed for
1350   //      the clone loop to dominate the original.  Used in construction of
1351   //      pre-main-post loop sequence.
1352   //   When nonnull, the clone and original are side-by-side, both are
1353   //      dominated by the passed in side_by_side_idom node.  Used in
1354   //      construction of unswitched loops.
1355   enum CloneLoopMode {
1356     IgnoreStripMined = 0,        // Only clone inner strip mined loop
1357     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
1358     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
1359                                  // result control flow branches
1360                                  // either to inner clone or outer
1361                                  // strip mined loop.
1362   };
1363   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1364                   CloneLoopMode mode, Node* side_by_side_idom = nullptr);
1365   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1366                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1367                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1368                                    Node_List*& split_cex_set, Node_List& worklist,
1369                                    uint new_counter, CloneLoopMode mode);
1370   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1371                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1372                         Node_List& extra_data_nodes);
1373 
1374   // If we got the effect of peeling, either by actually peeling or by
1375   // making a pre-loop which must execute at least once, we can remove
1376   // all loop-invariant dominated tests in the main body.
1377   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1378 
1379   // Generate code to do a loop peel for the given loop (and body).
1380   // old_new is a temp array.
1381   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1382 
1383   // Add pre and post loops around the given loop.  These loops are used
1384   // during RCE, unrolling and aligning loops.
1385   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1386 
1387   // Add post loop after the given loop.
1388   Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new,
1389                          CountedLoopNode* main_head, CountedLoopEndNode* main_end,
1390                          Node* incr, Node* limit, CountedLoopNode*& post_head);
1391 
1392   // Add a vector post loop between a vector main loop and the current post loop
1393   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1394   // If Node n lives in the back_ctrl block, we clone a private version of n
1395   // in preheader_ctrl block and return that, otherwise return n.
1396   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1397 
1398   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1399   // unroll to do double iterations.  The next round of major loop transforms
1400   // will repeat till the doubled loop body does all remaining iterations in 1
1401   // pass.
1402   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1403 
1404   // Unroll the loop body one step - make each trip do 2 iterations.
1405   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1406 
1407   // Return true if exp is a constant times an induction var
1408   bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0);
1409 
1410   bool is_iv(Node* exp, Node* iv, BasicType bt);
1411 
1412   // Return true if exp is a scaled induction var plus (or minus) constant
1413   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0);
1414   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) {
1415     jlong long_scale;
1416     if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) {
1417       int int_scale = checked_cast<int>(long_scale);
1418       if (p_scale != nullptr) {
1419         *p_scale = int_scale;
1420       }
1421       return true;
1422     }
1423     return false;
1424   }
1425   // Helper for finding more complex matches to is_scaled_iv_plus_offset.
1426   bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv,
1427                                       BasicType bt,
1428                                       jlong* p_scale, Node** p_offset,
1429                                       bool* p_short_scale, int depth);
1430 
1431   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1432   IfTrueNode* create_new_if_for_predicate(const ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1433                                           Deoptimization::DeoptReason reason, int opcode,
1434                                           bool rewire_uncommon_proj_phi_inputs = false);
1435 
1436  private:
1437   // Helper functions for create_new_if_for_predicate()
1438   void set_ctrl_of_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
1439   Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl);
1440   Node* clone_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
1441   void fix_cloned_data_node_controls(const ProjNode* orig, Node* new_uncommon_proj,
1442                                      const OrigToNewHashtable& orig_to_clone);
1443   bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt,
1444                                        Node* loop_entry);
1445 
1446  public:
1447   void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true);
1448 
1449   // Replace the control input of 'node' with 'new_control' and set the dom depth to the one of 'new_control'.
1450   void replace_control(Node* node, Node* new_control) {
1451     _igvn.replace_input_of(node, 0, new_control);
1452     set_idom(node, new_control, dom_depth(new_control));
1453   }
1454 
1455   void replace_loop_entry(LoopNode* loop_head, Node* new_entry) {
1456     _igvn.replace_input_of(loop_head, LoopNode::EntryControl, new_entry);
1457     set_idom(loop_head, new_entry, dom_depth(new_entry));
1458   }
1459 
1460   // Construct a range check for a predicate if
1461   BoolNode* rc_predicate(Node* ctrl, int scale, Node* offset, Node* init, Node* limit,
1462                          jint stride, Node* range, bool upper, bool& overflow);
1463 
1464   // Implementation of the loop predication to promote checks outside the loop
1465   bool loop_predication_impl(IdealLoopTree *loop);
1466 
1467  private:
1468   bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj,
1469                                     ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero,
1470                                     Invariance& invar, Deoptimization::DeoptReason deopt_reason);
1471   bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const;
1472   bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt);
1473   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1474                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1475                                         Node_List& if_proj_list);
1476   IfTrueNode* create_template_assertion_predicate(CountedLoopNode* loop_head, ParsePredicateNode* parse_predicate,
1477                                                   IfProjNode* new_control, int scale, Node* offset, Node* range);
1478   void eliminate_hoisted_range_check(IfTrueNode* hoisted_check_proj, IfTrueNode* template_assertion_predicate_proj);
1479 
1480   // Helper function to collect predicate for eliminating the useless ones
1481   void eliminate_useless_predicates() const;
1482 
1483   void eliminate_useless_zero_trip_guard();
1484   void eliminate_useless_multiversion_if();
1485 
1486  public:
1487   // Change the control input of expensive nodes to allow commoning by
1488   // IGVN when it is guaranteed to not result in a more frequent
1489   // execution of the expensive node. Return true if progress.
1490   bool process_expensive_nodes();
1491 
1492   // Check whether node has become unreachable
1493   bool is_node_unreachable(Node *n) const {
1494     return !has_node(n) || n->is_unreachable(_igvn);
1495   }
1496 
1497   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1498   void do_range_check(IdealLoopTree* loop);
1499 
1500   // Clone loop with an invariant test (that does not exit) and
1501   // insert a clone of the test that selects which version to
1502   // execute.
1503   void do_unswitching(IdealLoopTree* loop, Node_List& old_new);
1504 
1505   IfNode* find_unswitch_candidates(const IdealLoopTree* loop, Node_List& flat_array_checks) const;
1506   IfNode* find_unswitch_candidate_from_idoms(const IdealLoopTree* loop) const;
1507 
1508  private:
1509   static bool has_control_dependencies_from_predicates(LoopNode* head);
1510   static void revert_to_normal_loop(const LoopNode* loop_head);
1511 
1512   void hoist_invariant_check_casts(const IdealLoopTree* loop, const Node_List& old_new,
1513                                    const UnswitchCandidate& unswitch_candidate, const IfNode* loop_selector);
1514   void add_unswitched_loop_version_bodies_to_igvn(IdealLoopTree* loop, const Node_List& old_new);
1515   static void increment_unswitch_counts(LoopNode* original_head, LoopNode* new_head);
1516   void remove_unswitch_candidate_from_loops(const Node_List& old_new, const UnswitchedLoopSelector& unswitched_loop_selector);
1517 #ifndef PRODUCT
1518   static void trace_loop_unswitching_count(IdealLoopTree* loop, LoopNode* original_head);
1519   static void trace_loop_unswitching_impossible(const LoopNode* original_head);
1520   static void trace_loop_unswitching_result(const UnswitchedLoopSelector& unswitched_loop_selector,
1521                                             const UnswitchCandidate& unswitch_candidate,
1522                                             const LoopNode* original_head, const LoopNode* new_head);
1523   static void trace_loop_multiversioning_result(const LoopSelector& loop_selector,
1524                                                 const LoopNode* original_head, const LoopNode* new_head);
1525 #endif
1526 
1527  public:
1528 
1529   // Range Check Elimination uses this function!
1530   // Constrain the main loop iterations so the affine function:
1531   //    low_limit <= scale_con * I + offset  <  upper_limit
1532   // always holds true.  That is, either increase the number of iterations in
1533   // the pre-loop or the post-loop until the condition holds true in the main
1534   // loop.  Scale_con, offset and limit are all loop invariant.
1535   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
1536   // Helper function for add_constraint().
1537   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
1538 
1539   // Partially peel loop up through last_peel node.
1540   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1541   bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new);
1542 
1543   // AutoVectorize the loop: replace scalar ops with vector ops.
1544   enum AutoVectorizeStatus {
1545     Impossible,      // This loop has the wrong shape to even try vectorization.
1546     Success,         // We just successfully vectorized the loop.
1547     TriedAndFailed,  // We tried to vectorize, but failed.
1548   };
1549   AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared);
1550 
1551   void maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new);
1552   void do_multiversioning(IdealLoopTree* lpt, Node_List& old_new);
1553   IfTrueNode* create_new_if_for_multiversion(IfTrueNode* multiversioning_fast_proj);
1554   bool try_resume_optimizations_for_delayed_slow_loop(IdealLoopTree* lpt);
1555 
1556   // Move an unordered Reduction out of loop if possible
1557   void move_unordered_reduction_out_of_loop(IdealLoopTree* loop);
1558 
1559   // Create a scheduled list of nodes control dependent on ctrl set.
1560   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1561   // Has a use in the vector set
1562   bool has_use_in_set( Node* n, VectorSet& vset );
1563   // Has use internal to the vector set (ie. not in a phi at the loop head)
1564   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1565   // clone "n" for uses that are outside of loop
1566   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1567   // clone "n" for special uses that are in the not_peeled region
1568   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1569                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1570   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1571   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1572 #ifdef ASSERT
1573   // Validate the loop partition sets: peel and not_peel
1574   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1575   // Ensure that uses outside of loop are of the right form
1576   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1577                                  uint orig_exit_idx, uint clone_exit_idx);
1578   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1579 #endif
1580 
1581   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1582   int stride_of_possible_iv( Node* iff );
1583   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1584   // Return the (unique) control output node that's in the loop (if it exists.)
1585   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1586   // Insert a signed compare loop exit cloned from an unsigned compare.
1587   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1588   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1589   // Utility to register node "n" with PhaseIdealLoop
1590   void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth);
1591   // Utility to create an if-projection
1592   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1593   // Force the iff control output to be the live_proj
1594   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1595   // Insert a region before an if projection
1596   RegionNode* insert_region_before_proj(ProjNode* proj);
1597   // Insert a new if before an if projection
1598   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1599 
1600   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1601   // "Nearly" because all Nodes have been cloned from the original in the loop,
1602   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1603   // through the Phi recursively, and return a Bool.
1604   Node* clone_iff(PhiNode* phi);
1605   CmpNode* clone_bool(PhiNode* phi);
1606 
1607 
1608   // Rework addressing expressions to get the most loop-invariant stuff
1609   // moved out.  We'd like to do all associative operators, but it's especially
1610   // important (common) to do address expressions.
1611   Node* remix_address_expressions(Node* n);
1612   Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt);
1613 
1614   // Convert add to muladd to generate MuladdS2I under certain criteria
1615   Node * convert_add_to_muladd(Node * n);
1616 
1617   // Attempt to use a conditional move instead of a phi/branch
1618   Node *conditional_move( Node *n );
1619 
1620   // Check for aggressive application of 'split-if' optimization,
1621   // using basic block level info.
1622   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack);
1623   Node *split_if_with_blocks_pre ( Node *n );
1624   void  split_if_with_blocks_post( Node *n );
1625   Node *has_local_phi_input( Node *n );
1626   // Mark an IfNode as being dominated by a prior test,
1627   // without actually altering the CFG (and hence IDOM info).
1628   void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false);
1629   void rewire_safe_outputs_to_dominator(Node* source, Node* dominator, bool pin_array_access_nodes);
1630 
1631   // Split Node 'n' through merge point
1632   RegionNode* split_thru_region(Node* n, RegionNode* region);
1633   // Split Node 'n' through merge point if there is enough win.
1634   Node *split_thru_phi( Node *n, Node *region, int policy );
1635   // Found an If getting its condition-code input from a Phi in the
1636   // same block.  Split thru the Region.
1637   void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr);
1638 
1639 private:
1640   // Class to keep track of wins in split_thru_phi.
1641   class SplitThruPhiWins {
1642   private:
1643     // Region containing the phi we are splitting through.
1644     const Node* _region;
1645 
1646     // Sum of all wins regardless of where they happen. This applies to Loops phis as well as non-loop phis.
1647     int _total_wins;
1648 
1649     // For Loops, wins have different impact depending on if they happen on loop entry or on the backedge.
1650     // Number of wins on a loop entry edge if the split is through a loop head,
1651     // otherwise 0. Entry edge wins only pay dividends once on loop entry.
1652     int _loop_entry_wins;
1653     // Number of wins on a loop back-edge, which pay dividends on every iteration.
1654     int _loop_back_wins;
1655 
1656   public:
1657     SplitThruPhiWins(const Node* region) :
1658       _region(region),
1659       _total_wins(0),
1660       _loop_entry_wins(0),
1661       _loop_back_wins(0) {};
1662 
1663     void reset() {_total_wins = 0; _loop_entry_wins = 0; _loop_back_wins = 0;}
1664     void add_win(int ctrl_index) {
1665       if (_region->is_Loop() && ctrl_index == LoopNode::EntryControl) {
1666         _loop_entry_wins++;
1667       } else if (_region->is_Loop() && ctrl_index == LoopNode::LoopBackControl) {
1668         _loop_back_wins++;
1669       }
1670       _total_wins++;
1671     }
1672     // Is this split profitable with respect to the policy?
1673     bool profitable(int policy) const {
1674       assert(_region->is_Loop() || (_loop_entry_wins == 0 && _loop_back_wins == 0), "wins on loop edges without a loop");
1675       assert(!_region->is_Loop() || _total_wins == _loop_entry_wins + _loop_back_wins, "missed some win");
1676       // In general this means that the split has to have more wins than specified
1677       // in the policy. However, for loops we need to take into account where the
1678       // wins happen. We need to be careful when splitting, because splitting nodes
1679       // related to the iv through the phi can sufficiently rearrange the loop
1680       // structure to prevent RCE and thus vectorization. Thus, we only deem splitting
1681       // profitable if the win of a split is not on the entry edge, as such wins
1682       // only pay off once and have a high chance of messing up the loop structure.
1683       return (_loop_entry_wins == 0 && _total_wins > policy) ||
1684       // If there are wins on the entry edge but the backadge also has sufficient wins,
1685       // there is sufficient profitability to spilt regardless of the risk of messing
1686       // up the loop structure.
1687              _loop_back_wins > policy ||
1688       // If the policy is less than 0, a split is always profitable, i.e. we always
1689       // split. This is needed when we split a node and then must also split a
1690       // dependant node, i.e. spliting a Bool node after splitting a Cmp node.
1691              policy < 0;
1692     }
1693   };
1694 
1695 public:
1696 
1697   // Conversion of fill/copy patterns into intrinsic versions
1698   bool do_intrinsify_fill();
1699   bool intrinsify_fill(IdealLoopTree* lpt);
1700   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1701                        Node*& shift, Node*& offset);
1702 
1703 private:
1704   // Return a type based on condition control flow
1705   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1706   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); }
1707  // Helpers for filtered type
1708   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1709 
1710   // Helper functions
1711   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1712   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1713   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1714   bool split_up( Node *n, Node *blk1, Node *blk2 );
1715 
1716   Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const;
1717   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1718   void try_move_store_after_loop(Node* n);
1719   void move_flat_array_check_out_of_loop(Node* n);
1720   bool identical_backtoback_ifs(Node *n);
1721   bool flat_array_element_type_check(Node *n);
1722   bool can_split_if(Node *n_ctrl);
1723   bool cannot_split_division(const Node* n, const Node* region) const;
1724   static bool is_divisor_loop_phi(const Node* divisor, const Node* loop);
1725   bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const;
1726 
1727   // Determine if a method is too big for a/another round of split-if, based on
1728   // a magic (approximate) ratio derived from the equally magic constant 35000,
1729   // previously used for this purpose (but without relating to the node limit).
1730   bool must_throttle_split_if() {
1731     uint threshold = C->max_node_limit() * 2 / 5;
1732     return C->live_nodes() > threshold;
1733   }
1734 
1735   // A simplistic node request tracking mechanism, where
1736   //   = UINT_MAX   Request not valid or made final.
1737   //   < UINT_MAX   Nodes currently requested (estimate).
1738   uint _nodes_required;
1739 
1740   enum { REQUIRE_MIN = 70 };
1741 
1742   uint nodes_required() const { return _nodes_required; }
1743 
1744   // Given the _currently_  available number of nodes, check  whether there is
1745   // "room" for an additional request or not, considering the already required
1746   // number of  nodes.  Return TRUE if  the new request is  exceeding the node
1747   // budget limit, otherwise return FALSE.  Note that this interpretation will
1748   // act pessimistic on  additional requests when new nodes  have already been
1749   // generated since the 'begin'.  This behaviour fits with the intention that
1750   // node estimates/requests should be made upfront.
1751   bool exceeding_node_budget(uint required = 0) {
1752     assert(C->live_nodes() < C->max_node_limit(), "sanity");
1753     uint available = C->max_node_limit() - C->live_nodes();
1754     return available < required + _nodes_required + REQUIRE_MIN;
1755   }
1756 
1757   uint require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1758     precond(require > 0);
1759     _nodes_required += MAX2(require, minreq);
1760     return _nodes_required;
1761   }
1762 
1763   bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1764     return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0;
1765   }
1766 
1767   uint require_nodes_begin() {
1768     assert(_nodes_required == UINT_MAX, "Bad state (begin).");
1769     _nodes_required = 0;
1770     return C->live_nodes();
1771   }
1772 
1773   // When a node request is final,  optionally check that the requested number
1774   // of nodes was  reasonably correct with respect to the  number of new nodes
1775   // introduced since the last 'begin'. Always check that we have not exceeded
1776   // the maximum node limit.
1777   void require_nodes_final(uint live_at_begin, bool check_estimate) {
1778     assert(_nodes_required < UINT_MAX, "Bad state (final).");
1779 
1780 #ifdef ASSERT
1781     if (check_estimate) {
1782       // Check that the node budget request was not off by too much (x2).
1783       // Should this be the case we _surely_ need to improve the estimates
1784       // used in our budget calculations.
1785       if (C->live_nodes() - live_at_begin > 2 * _nodes_required) {
1786         log_info(compilation)("Bad node estimate: actual = %d >> request = %d",
1787                               C->live_nodes() - live_at_begin, _nodes_required);
1788       }
1789     }
1790 #endif
1791     // Assert that we have stayed within the node budget limit.
1792     assert(C->live_nodes() < C->max_node_limit(),
1793            "Exceeding node budget limit: %d + %d > %d (request = %d)",
1794            C->live_nodes() - live_at_begin, live_at_begin,
1795            C->max_node_limit(), _nodes_required);
1796 
1797     _nodes_required = UINT_MAX;
1798   }
1799 
1800  private:
1801 
1802   bool _created_loop_node;
1803   DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);)
1804   NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;)
1805 
1806 public:
1807   void set_created_loop_node() { _created_loop_node = true; }
1808   bool created_loop_node()     { return _created_loop_node; }
1809   void register_new_node(Node* n, Node* blk);
1810   void register_new_node_with_ctrl_of(Node* new_node, Node* ctrl_of) {
1811     register_new_node(new_node, get_ctrl(ctrl_of));
1812   }
1813 
1814   Node* clone_and_register(Node* n, Node* ctrl) {
1815     n = n->clone();
1816     register_new_node(n, ctrl);
1817     return n;
1818   }
1819 
1820 #ifdef ASSERT
1821   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1822 #endif
1823 
1824 #ifndef PRODUCT
1825   void dump() const;
1826   void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging
1827   void dump_idom(Node* n, uint count) const;
1828   void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const;
1829   void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const;
1830   IdealLoopTree* get_loop_idx(Node* n) const {
1831     // Dead nodes have no loop, so return the top level loop instead
1832     return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root;
1833   }
1834   // Print some stats
1835   static void print_statistics();
1836   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1837   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1838   static volatile int _long_loop_candidates;
1839   static volatile int _long_loop_nests;
1840   static volatile int _long_loop_counted_loops;
1841 #endif
1842 
1843 #ifdef ASSERT
1844   void verify() const;
1845   bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const;
1846   bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const;
1847   bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const;
1848 #endif
1849 
1850   void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const;
1851 
1852   void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN;
1853 
1854   LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test);
1855 
1856 
1857   int extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1858                                 Node_List &range_checks);
1859 
1860   void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1861                                    Node* inner_iters_actual_int, Node* inner_phi,
1862                                    Node* iv_add, LoopNode* inner_head);
1863 
1864   Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA);
1865 
1866   bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl);
1867 
1868   bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop);
1869 
1870   Node* compute_early_ctrl(Node* n, Node* n_ctrl);
1871 
1872   void try_sink_out_of_loop(Node* n);
1873 
1874   Node* clamp(Node* R, Node* L, Node* H);
1875 
1876   bool safe_for_if_replacement(const Node* dom) const;
1877 
1878   void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region);
1879 
1880   bool try_merge_identical_ifs(Node* n);
1881 
1882   void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm);
1883 
1884   void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
1885                       IdealLoopTree* parent, bool partial);
1886 
1887   void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
1888                 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist);
1889 
1890   void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
1891                      uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set,
1892                      Node_List*& split_bool_set, Node_List*& split_cex_set);
1893 
1894   void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set);
1895 
1896   bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2);
1897 
1898   bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2);
1899   void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i);
1900   bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2);
1901   void clone_template_assertion_expression_down(Node* node);
1902 
1903   Node* similar_subtype_check(const Node* x, Node* r_in);
1904 
1905   void update_addp_chain_base(Node* x, Node* old_base, Node* new_base);
1906 
1907   bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x);
1908 
1909   void pin_array_access_nodes_dependent_on(Node* ctrl);
1910 
1911   void collect_flat_array_checks(const IdealLoopTree* loop, Node_List& flat_array_checks) const;
1912 
1913   Node* ensure_node_and_inputs_are_above_pre_end(CountedLoopEndNode* pre_end, Node* node);
1914 
1915   bool try_make_short_running_loop(IdealLoopTree* loop, jint stride_con, const Node_List& range_checks, const uint iters_limit);
1916 
1917   ConINode* intcon(jint i);
1918 
1919   ConLNode* longcon(jlong i);
1920 
1921   ConNode* makecon(const Type* t);
1922 
1923   ConNode* integercon(jlong l, BasicType bt);
1924 
1925   ConNode* zerocon(BasicType bt);
1926 };
1927 
1928 
1929 class AutoNodeBudget : public StackObj
1930 {
1931 public:
1932   enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK };
1933 
1934   AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK)
1935     : _phase(phase),
1936       _check_at_final(chk == BUDGET_CHECK),
1937       _nodes_at_begin(0)
1938   {
1939     precond(_phase != nullptr);
1940 
1941     _nodes_at_begin = _phase->require_nodes_begin();
1942   }
1943 
1944   ~AutoNodeBudget() {
1945 #ifndef PRODUCT
1946     if (TraceLoopOpts) {
1947       uint request = _phase->nodes_required();
1948       uint delta   = _phase->C->live_nodes() - _nodes_at_begin;
1949 
1950       if (request < delta) {
1951         tty->print_cr("Exceeding node budget: %d < %d", request, delta);
1952       } else {
1953         uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN;
1954         // Identify the worst estimates as "poor" ones.
1955         if (request > REQUIRE_MIN && delta > 0) {
1956           if ((delta >  REQUIRE_MIN && request >  3 * delta) ||
1957               (delta <= REQUIRE_MIN && request > 10 * delta)) {
1958             tty->print_cr("Poor node estimate: %d >> %d", request, delta);
1959           }
1960         }
1961       }
1962     }
1963 #endif // PRODUCT
1964     _phase->require_nodes_final(_nodes_at_begin, _check_at_final);
1965   }
1966 
1967 private:
1968   PhaseIdealLoop* _phase;
1969   bool _check_at_final;
1970   uint _nodes_at_begin;
1971 };
1972 
1973 inline Node* IdealLoopTree::tail() {
1974   // Handle lazy update of _tail field.
1975   if (_tail->in(0) == nullptr) {
1976     _tail = _phase->get_ctrl(_tail);
1977   }
1978   return _tail;
1979 }
1980 
1981 inline Node* IdealLoopTree::head() {
1982   // Handle lazy update of _head field.
1983   if (_head->in(0) == nullptr) {
1984     _head = _phase->get_ctrl(_head);
1985   }
1986   return _head;
1987 }
1988 
1989 // Iterate over the loop tree using a preorder, left-to-right traversal.
1990 //
1991 // Example that visits all counted loops from within PhaseIdealLoop
1992 //
1993 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1994 //   IdealLoopTree* lpt = iter.current();
1995 //   if (!lpt->is_counted()) continue;
1996 //   ...
1997 class LoopTreeIterator : public StackObj {
1998 private:
1999   IdealLoopTree* _root;
2000   IdealLoopTree* _curnt;
2001 
2002 public:
2003   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
2004 
2005   bool done() { return _curnt == nullptr; }       // Finished iterating?
2006 
2007   void next();                                 // Advance to next loop tree
2008 
2009   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
2010 };
2011 
2012 // Compute probability of reaching some CFG node from a fixed
2013 // dominating CFG node
2014 class PathFrequency {
2015 private:
2016   Node* _dom; // frequencies are computed relative to this node
2017   Node_Stack _stack;
2018   GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions
2019   GrowableArray<float> _freqs; // cache frequencies
2020   PhaseIdealLoop* _phase;
2021 
2022   float check_and_truncate_frequency(float f) {
2023     assert(f >= 0, "Incorrect frequency");
2024     // We do not perform an exact (f <= 1) check
2025     // this would be error prone with rounding of floats.
2026     // Performing a check like (f <= 1+eps) would be of benefit,
2027     // however, it is not evident how to determine such an eps,
2028     // given that an arbitrary number of add/mul operations
2029     // are performed on these frequencies.
2030     return (f > 1) ? 1 : f;
2031   }
2032 
2033 public:
2034   PathFrequency(Node* dom, PhaseIdealLoop* phase)
2035     : _dom(dom), _stack(0), _phase(phase) {
2036   }
2037 
2038   float to(Node* n);
2039 };
2040 
2041 // Class to clone a data node graph by taking a list of data nodes. This is done in 2 steps:
2042 //   1. Clone the data nodes
2043 //   2. Fix the cloned data inputs pointing to the old nodes to the cloned inputs by using an old->new mapping.
2044 class DataNodeGraph : public StackObj {
2045   PhaseIdealLoop* const _phase;
2046   const Unique_Node_List& _data_nodes;
2047   OrigToNewHashtable _orig_to_new;
2048 
2049  public:
2050   DataNodeGraph(const Unique_Node_List& data_nodes, PhaseIdealLoop* phase)
2051       : _phase(phase),
2052         _data_nodes(data_nodes),
2053         // Use 107 as best guess which is the first resize value in ResizeableHashTable::large_table_sizes.
2054         _orig_to_new(107, MaxNodeLimit)
2055   {
2056 #ifdef ASSERT
2057     for (uint i = 0; i < data_nodes.size(); i++) {
2058       assert(!data_nodes[i]->is_CFG(), "only data nodes");
2059     }
2060 #endif
2061   }
2062   NONCOPYABLE(DataNodeGraph);
2063 
2064  private:
2065   void clone(Node* node, Node* new_ctrl);
2066   void clone_data_nodes(Node* new_ctrl);
2067   void clone_data_nodes_and_transform_opaque_loop_nodes(const TransformStrategyForOpaqueLoopNodes& transform_strategy,
2068                                                         Node* new_ctrl);
2069   void rewire_clones_to_cloned_inputs();
2070   void transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node);
2071 
2072  public:
2073   // Clone the provided data node collection and rewire the clones in such a way to create an identical graph copy.
2074   // Set 'new_ctrl' as ctrl for the cloned nodes.
2075   const OrigToNewHashtable& clone(Node* new_ctrl) {
2076     assert(_orig_to_new.number_of_entries() == 0, "should not call this method twice in a row");
2077     clone_data_nodes(new_ctrl);
2078     rewire_clones_to_cloned_inputs();
2079     return _orig_to_new;
2080   }
2081 
2082   // Create a copy of the data nodes provided to the constructor by doing the following:
2083   // Clone all non-OpaqueLoop* nodes and rewire them to create an identical subgraph copy. For the OpaqueLoop* nodes,
2084   // apply the provided transformation strategy and include the transformed node into the subgraph copy to get a complete
2085   // "cloned-and-transformed" graph copy. For all newly cloned nodes (which could also be new OpaqueLoop* nodes), set
2086   // `new_ctrl` as ctrl.
2087   const OrigToNewHashtable& clone_with_opaque_loop_transform_strategy(
2088       const TransformStrategyForOpaqueLoopNodes& transform_strategy,
2089       Node* new_ctrl) {
2090     clone_data_nodes_and_transform_opaque_loop_nodes(transform_strategy, new_ctrl);
2091     rewire_clones_to_cloned_inputs();
2092     return _orig_to_new;
2093   }
2094 };
2095 #endif // SHARE_OPTO_LOOPNODE_HPP