1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_LOOPNODE_HPP
  26 #define SHARE_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 #include "utilities/checkedCast.hpp"
  34 
  35 class CmpNode;
  36 class BaseCountedLoopEndNode;
  37 class CountedLoopNode;
  38 class IdealLoopTree;
  39 class LoopNode;
  40 class Node;
  41 class OuterStripMinedLoopEndNode;
  42 class PredicateBlock;
  43 class PathFrequency;
  44 class PhaseIdealLoop;
  45 class VectorSet;
  46 class VSharedData;
  47 class Invariance;
  48 struct small_cache;
  49 
  50 //
  51 //                  I D E A L I Z E D   L O O P S
  52 //
  53 // Idealized loops are the set of loops I perform more interesting
  54 // transformations on, beyond simple hoisting.
  55 
  56 //------------------------------LoopNode---------------------------------------
  57 // Simple loop header.  Fall in path on left, loop-back path on right.
  58 class LoopNode : public RegionNode {
  59   // Size is bigger to hold the flags.  However, the flags do not change
  60   // the semantics so it does not appear in the hash & cmp functions.
  61   virtual uint size_of() const { return sizeof(*this); }
  62 protected:
  63   uint _loop_flags;
  64   // Names for flag bitfields
  65   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  66          MainHasNoPreLoop      = 1<<2,
  67          HasExactTripCount     = 1<<3,
  68          InnerLoop             = 1<<4,
  69          PartialPeelLoop       = 1<<5,
  70          PartialPeelFailed     = 1<<6,
  71          WasSlpAnalyzed        = 1<<7,
  72          PassedSlpAnalysis     = 1<<8,
  73          DoUnrollOnly          = 1<<9,
  74          VectorizedLoop        = 1<<10,
  75          HasAtomicPostLoop     = 1<<11,
  76          StripMined            = 1<<12,
  77          SubwordLoop           = 1<<13,
  78          ProfileTripFailed     = 1<<14,
  79          LoopNestInnerLoop     = 1<<15,
  80          LoopNestLongOuterLoop = 1<<16,
  81          FlatArrays            = 1<<17};
  82   char _unswitch_count;
  83   enum { _unswitch_max=3 };
  84 
  85   // Expected trip count from profile data
  86   float _profile_trip_cnt;
  87 
  88 public:
  89   // Names for edge indices
  90   enum { Self=0, EntryControl, LoopBackControl };
  91 
  92   bool is_inner_loop() const { return _loop_flags & InnerLoop; }
  93   void set_inner_loop() { _loop_flags |= InnerLoop; }
  94 
  95   bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
  96   bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  97   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  98   bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  99   bool is_strip_mined() const { return _loop_flags & StripMined; }
 100   bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
 101   bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
 102   bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; }
 103   bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; }
 104   bool is_flat_arrays() const { return _loop_flags & FlatArrays; }
 105 
 106   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
 107   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 108   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 109   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 110   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 111   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 112   void mark_strip_mined() { _loop_flags |= StripMined; }
 113   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 114   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
 115   void mark_subword_loop() { _loop_flags |= SubwordLoop; }
 116   void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; }
 117   void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; }
 118   void mark_flat_arrays() { _loop_flags |= FlatArrays; }
 119 
 120   int unswitch_max() { return _unswitch_max; }
 121   int unswitch_count() { return _unswitch_count; }
 122 
 123   void set_unswitch_count(int val) {
 124     assert (val <= unswitch_max(), "too many unswitches");
 125     _unswitch_count = val;
 126   }
 127 
 128   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 129   float profile_trip_cnt()             { return _profile_trip_cnt; }
 130 
 131   LoopNode(Node *entry, Node *backedge)
 132     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
 133       _profile_trip_cnt(COUNT_UNKNOWN) {
 134     init_class_id(Class_Loop);
 135     init_req(EntryControl, entry);
 136     init_req(LoopBackControl, backedge);
 137   }
 138 
 139   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 140   virtual int Opcode() const;
 141   bool can_be_counted_loop(PhaseValues* phase) const {
 142     return req() == 3 && in(0) != nullptr &&
 143       in(1) != nullptr && phase->type(in(1)) != Type::TOP &&
 144       in(2) != nullptr && phase->type(in(2)) != Type::TOP;
 145   }
 146   bool is_valid_counted_loop(BasicType bt) const;
 147 #ifndef PRODUCT
 148   virtual void dump_spec(outputStream *st) const;
 149 #endif
 150 
 151   void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
 152   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 153   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; }
 154   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; }
 155   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; }
 156   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; }
 157 };
 158 
 159 //------------------------------Counted Loops----------------------------------
 160 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 161 // path (and maybe some other exit paths).  The trip-counter exit is always
 162 // last in the loop.  The trip-counter have to stride by a constant;
 163 // the exit value is also loop invariant.
 164 
 165 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 166 // CountedLoopNode has the incoming loop control and the loop-back-control
 167 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 168 // CountedLoopEndNode has an incoming control (possibly not the
 169 // CountedLoopNode if there is control flow in the loop), the post-increment
 170 // trip-counter value, and the limit.  The trip-counter value is always of
 171 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 172 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 173 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 174 // CountedLoopEndNode also takes in the loop-invariant limit value.
 175 
 176 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 177 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 178 // via the old-trip-counter from the Op node.
 179 
 180 //------------------------------CountedLoopNode--------------------------------
 181 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 182 // inputs the incoming loop-start control and the loop-back control, so they
 183 // act like RegionNodes.  They also take in the initial trip counter, the
 184 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 185 // produce a loop-body control and the trip counter value.  Since
 186 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 187 
 188 class BaseCountedLoopNode : public LoopNode {
 189 public:
 190   BaseCountedLoopNode(Node *entry, Node *backedge)
 191     : LoopNode(entry, backedge) {
 192   }
 193 
 194   Node *init_control() const { return in(EntryControl); }
 195   Node *back_control() const { return in(LoopBackControl); }
 196 
 197   Node* init_trip() const;
 198   Node* stride() const;
 199   bool stride_is_con() const;
 200   Node* limit() const;
 201   Node* incr() const;
 202   Node* phi() const;
 203 
 204   BaseCountedLoopEndNode* loopexit_or_null() const;
 205   BaseCountedLoopEndNode* loopexit() const;
 206 
 207   virtual BasicType bt() const = 0;
 208 
 209   jlong stride_con() const;
 210 
 211   static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt);
 212 };
 213 
 214 
 215 class CountedLoopNode : public BaseCountedLoopNode {
 216   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 217   // the semantics so it does not appear in the hash & cmp functions.
 218   virtual uint size_of() const { return sizeof(*this); }
 219 
 220   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 221   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 222   node_idx_t _main_idx;
 223 
 224   // Known trip count calculated by compute_exact_trip_count()
 225   uint  _trip_count;
 226 
 227   // Log2 of original loop bodies in unrolled loop
 228   int _unrolled_count_log2;
 229 
 230   // Node count prior to last unrolling - used to decide if
 231   // unroll,optimize,unroll,optimize,... is making progress
 232   int _node_count_before_unroll;
 233 
 234   // If slp analysis is performed we record the maximum
 235   // vector mapped unroll factor here
 236   int _slp_maximum_unroll_factor;
 237 
 238 public:
 239   CountedLoopNode(Node *entry, Node *backedge)
 240     : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 241       _unrolled_count_log2(0), _node_count_before_unroll(0),
 242       _slp_maximum_unroll_factor(0) {
 243     init_class_id(Class_CountedLoop);
 244     // Initialize _trip_count to the largest possible value.
 245     // Will be reset (lower) if the loop's trip count is known.
 246   }
 247 
 248   virtual int Opcode() const;
 249   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 250 
 251   CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 252   CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 253   int   stride_con() const;
 254 
 255   // Match increment with optional truncation
 256   static Node*
 257   match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type,
 258                                       BasicType bt);
 259 
 260   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 261   // can run short a few iterations and may start a few iterations in.
 262   // It will be RCE'd and unrolled and aligned.
 263 
 264   // A following 'post' loop will run any remaining iterations.  Used
 265   // during Range Check Elimination, the 'post' loop will do any final
 266   // iterations with full checks.  Also used by Loop Unrolling, where
 267   // the 'post' loop will do any epilog iterations needed.  Basically,
 268   // a 'post' loop can not profitably be further unrolled or RCE'd.
 269 
 270   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 271   // it may do under-flow checks for RCE and may do alignment iterations
 272   // so the following main loop 'knows' that it is striding down cache
 273   // lines.
 274 
 275   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 276   // Aligned, may be missing it's pre-loop.
 277   bool is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 278   bool is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 279   bool is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 280   bool is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 281   bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 282   bool has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 283   bool is_unroll_only   () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 284   bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 285   bool has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 286   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 287 
 288   int main_idx() const { return _main_idx; }
 289 
 290 
 291   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 292   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 293   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 294   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 295 
 296   void set_trip_count(uint tc) { _trip_count = tc; }
 297   uint trip_count()            { return _trip_count; }
 298 
 299   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 300   void set_exact_trip_count(uint tc) {
 301     _trip_count = tc;
 302     _loop_flags |= HasExactTripCount;
 303   }
 304   void set_nonexact_trip_count() {
 305     _loop_flags &= ~HasExactTripCount;
 306   }
 307   void set_notpassed_slp() {
 308     _loop_flags &= ~PassedSlpAnalysis;
 309   }
 310 
 311   void double_unrolled_count() { _unrolled_count_log2++; }
 312   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 313 
 314   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 315   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 316   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 317   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 318 
 319   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
 320   OuterStripMinedLoopNode* outer_loop() const;
 321   virtual IfTrueNode* outer_loop_tail() const;
 322   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 323   virtual IfFalseNode* outer_loop_exit() const;
 324   virtual SafePointNode* outer_safepoint() const;
 325 
 326   Node* skip_assertion_predicates_with_halt();
 327 
 328   virtual BasicType bt() const {
 329     return T_INT;
 330   }
 331 
 332   Node* is_canonical_loop_entry();
 333   CountedLoopEndNode* find_pre_loop_end();
 334 
 335 #ifndef PRODUCT
 336   virtual void dump_spec(outputStream *st) const;
 337 #endif
 338 };
 339 
 340 class LongCountedLoopNode : public BaseCountedLoopNode {
 341 public:
 342   LongCountedLoopNode(Node *entry, Node *backedge)
 343     : BaseCountedLoopNode(entry, backedge) {
 344     init_class_id(Class_LongCountedLoop);
 345   }
 346 
 347   virtual int Opcode() const;
 348 
 349   virtual BasicType bt() const {
 350     return T_LONG;
 351   }
 352 
 353   LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 354   LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 355 };
 356 
 357 
 358 //------------------------------CountedLoopEndNode-----------------------------
 359 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 360 // IfNodes.
 361 
 362 class BaseCountedLoopEndNode : public IfNode {
 363 public:
 364   enum { TestControl, TestValue };
 365   BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 366     : IfNode(control, test, prob, cnt) {
 367     init_class_id(Class_BaseCountedLoopEnd);
 368   }
 369 
 370   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; }
 371   Node* incr() const                { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 372   Node* limit() const               { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 373   Node* stride() const              { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 374   Node* init_trip() const           { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 375   bool stride_is_con() const        { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); }
 376 
 377   PhiNode* phi() const {
 378     Node* tmp = incr();
 379     if (tmp && tmp->req() == 3) {
 380       Node* phi = tmp->in(1);
 381       if (phi->is_Phi()) {
 382         return phi->as_Phi();
 383       }
 384     }
 385     return nullptr;
 386   }
 387 
 388   BaseCountedLoopNode* loopnode() const {
 389     // The CountedLoopNode that goes with this CountedLoopEndNode may
 390     // have been optimized out by the IGVN so be cautious with the
 391     // pattern matching on the graph
 392     PhiNode* iv_phi = phi();
 393     if (iv_phi == nullptr) {
 394       return nullptr;
 395     }
 396     Node* ln = iv_phi->in(0);
 397     if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) {
 398       return nullptr;
 399     }
 400     if (ln->as_BaseCountedLoop()->bt() != bt()) {
 401       return nullptr;
 402     }
 403     return ln->as_BaseCountedLoop();
 404   }
 405 
 406   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 407 
 408   jlong stride_con() const;
 409   virtual BasicType bt() const = 0;
 410 
 411   static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt);
 412 };
 413 
 414 class CountedLoopEndNode : public BaseCountedLoopEndNode {
 415 public:
 416 
 417   CountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 418     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 419     init_class_id(Class_CountedLoopEnd);
 420   }
 421   virtual int Opcode() const;
 422 
 423   CountedLoopNode* loopnode() const {
 424     return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 425   }
 426 
 427   virtual BasicType bt() const {
 428     return T_INT;
 429   }
 430 
 431 #ifndef PRODUCT
 432   virtual void dump_spec(outputStream *st) const;
 433 #endif
 434 };
 435 
 436 class LongCountedLoopEndNode : public BaseCountedLoopEndNode {
 437 public:
 438   LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 439     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 440     init_class_id(Class_LongCountedLoopEnd);
 441   }
 442 
 443   LongCountedLoopNode* loopnode() const {
 444     return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 445   }
 446 
 447   virtual int Opcode() const;
 448 
 449   virtual BasicType bt() const {
 450     return T_LONG;
 451   }
 452 };
 453 
 454 
 455 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const {
 456   Node* bctrl = back_control();
 457   if (bctrl == nullptr) return nullptr;
 458 
 459   Node* lexit = bctrl->in(0);
 460   if (!lexit->is_BaseCountedLoopEnd()) {
 461     return nullptr;
 462   }
 463   BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd();
 464   if (result->bt() != bt()) {
 465     return nullptr;
 466   }
 467   return result;
 468 }
 469 
 470 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const {
 471   BaseCountedLoopEndNode* cle = loopexit_or_null();
 472   assert(cle != nullptr, "loopexit is null");
 473   return cle;
 474 }
 475 
 476 inline Node* BaseCountedLoopNode::init_trip() const {
 477   BaseCountedLoopEndNode* cle = loopexit_or_null();
 478   return cle != nullptr ? cle->init_trip() : nullptr;
 479 }
 480 inline Node* BaseCountedLoopNode::stride() const {
 481   BaseCountedLoopEndNode* cle = loopexit_or_null();
 482   return cle != nullptr ? cle->stride() : nullptr;
 483 }
 484 
 485 inline bool BaseCountedLoopNode::stride_is_con() const {
 486   BaseCountedLoopEndNode* cle = loopexit_or_null();
 487   return cle != nullptr && cle->stride_is_con();
 488 }
 489 inline Node* BaseCountedLoopNode::limit() const {
 490   BaseCountedLoopEndNode* cle = loopexit_or_null();
 491   return cle != nullptr ? cle->limit() : nullptr;
 492 }
 493 inline Node* BaseCountedLoopNode::incr() const {
 494   BaseCountedLoopEndNode* cle = loopexit_or_null();
 495   return cle != nullptr ? cle->incr() : nullptr;
 496 }
 497 inline Node* BaseCountedLoopNode::phi() const {
 498   BaseCountedLoopEndNode* cle = loopexit_or_null();
 499   return cle != nullptr ? cle->phi() : nullptr;
 500 }
 501 
 502 inline jlong BaseCountedLoopNode::stride_con() const {
 503   BaseCountedLoopEndNode* cle = loopexit_or_null();
 504   return cle != nullptr ? cle->stride_con() : 0;
 505 }
 506 
 507 
 508 //------------------------------LoopLimitNode-----------------------------
 509 // Counted Loop limit node which represents exact final iterator value:
 510 // trip_count = (limit - init_trip + stride - 1)/stride
 511 // final_value= trip_count * stride + init_trip.
 512 // Use HW instructions to calculate it when it can overflow in integer.
 513 // Note, final_value should fit into integer since counted loop has
 514 // limit check: limit <= max_int-stride.
 515 class LoopLimitNode : public Node {
 516   enum { Init=1, Limit=2, Stride=3 };
 517  public:
 518   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 519     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 520     init_flags(Flag_is_macro);
 521     C->add_macro_node(this);
 522   }
 523   virtual int Opcode() const;
 524   virtual const Type *bottom_type() const { return TypeInt::INT; }
 525   virtual uint ideal_reg() const { return Op_RegI; }
 526   virtual const Type* Value(PhaseGVN* phase) const;
 527   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 528   virtual Node* Identity(PhaseGVN* phase);
 529 };
 530 
 531 // Support for strip mining
 532 class OuterStripMinedLoopNode : public LoopNode {
 533 private:
 534   static void fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 535 
 536 public:
 537   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 538     : LoopNode(entry, backedge) {
 539     init_class_id(Class_OuterStripMinedLoop);
 540     init_flags(Flag_is_macro);
 541     C->add_macro_node(this);
 542   }
 543 
 544   virtual int Opcode() const;
 545 
 546   virtual IfTrueNode* outer_loop_tail() const;
 547   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 548   virtual IfFalseNode* outer_loop_exit() const;
 549   virtual SafePointNode* outer_safepoint() const;
 550   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 551 
 552   void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const;
 553 
 554   void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 555 
 556   static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 557 
 558   Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
 559                          PhaseIdealLoop* iloop);
 560 };
 561 
 562 class OuterStripMinedLoopEndNode : public IfNode {
 563 public:
 564   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 565     : IfNode(control, test, prob, cnt) {
 566     init_class_id(Class_OuterStripMinedLoopEnd);
 567   }
 568 
 569   virtual int Opcode() const;
 570 
 571   virtual const Type* Value(PhaseGVN* phase) const;
 572   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 573 
 574   bool is_expanded(PhaseGVN *phase) const;
 575 };
 576 
 577 // -----------------------------IdealLoopTree----------------------------------
 578 class IdealLoopTree : public ResourceObj {
 579 public:
 580   IdealLoopTree *_parent;       // Parent in loop tree
 581   IdealLoopTree *_next;         // Next sibling in loop tree
 582   IdealLoopTree *_child;        // First child in loop tree
 583 
 584   // The head-tail backedge defines the loop.
 585   // If a loop has multiple backedges, this is addressed during cleanup where
 586   // we peel off the multiple backedges,  merging all edges at the bottom and
 587   // ensuring that one proper backedge flow into the loop.
 588   Node *_head;                  // Head of loop
 589   Node *_tail;                  // Tail of loop
 590   inline Node *tail();          // Handle lazy update of _tail field
 591   inline Node *head();          // Handle lazy update of _head field
 592   PhaseIdealLoop* _phase;
 593   int _local_loop_unroll_limit;
 594   int _local_loop_unroll_factor;
 595 
 596   Node_List _body;              // Loop body for inner loops
 597 
 598   uint16_t _nest;               // Nesting depth
 599   uint8_t _irreducible:1,       // True if irreducible
 600           _has_call:1,          // True if has call safepoint
 601           _has_sfpt:1,          // True if has non-call safepoint
 602           _rce_candidate:1,     // True if candidate for range check elimination
 603           _has_range_checks:1,
 604           _has_range_checks_computed:1;
 605 
 606   Node_List* _safepts;          // List of safepoints in this loop
 607   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 608   bool  _allow_optimizations;   // Allow loop optimizations
 609 
 610   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 611     : _parent(0), _next(0), _child(0),
 612       _head(head), _tail(tail),
 613       _phase(phase),
 614       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
 615       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 616       _has_range_checks(0), _has_range_checks_computed(0),
 617       _safepts(nullptr),
 618       _required_safept(nullptr),
 619       _allow_optimizations(true)
 620   {
 621     precond(_head != nullptr);
 622     precond(_tail != nullptr);
 623   }
 624 
 625   // Is 'l' a member of 'this'?
 626   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 627 
 628   // Set loop nesting depth.  Accumulate has_call bits.
 629   int set_nest( uint depth );
 630 
 631   // Split out multiple fall-in edges from the loop header.  Move them to a
 632   // private RegionNode before the loop.  This becomes the loop landing pad.
 633   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 634 
 635   // Split out the outermost loop from this shared header.
 636   void split_outer_loop( PhaseIdealLoop *phase );
 637 
 638   // Merge all the backedges from the shared header into a private Region.
 639   // Feed that region as the one backedge to this loop.
 640   void merge_many_backedges( PhaseIdealLoop *phase );
 641 
 642   // Split shared headers and insert loop landing pads.
 643   // Insert a LoopNode to replace the RegionNode.
 644   // Returns TRUE if loop tree is structurally changed.
 645   bool beautify_loops( PhaseIdealLoop *phase );
 646 
 647   // Perform optimization to use the loop predicates for null checks and range checks.
 648   // Applies to any loop level (not just the innermost one)
 649   bool loop_predication( PhaseIdealLoop *phase);
 650   bool can_apply_loop_predication();
 651 
 652   // Perform iteration-splitting on inner loops.  Split iterations to
 653   // avoid range checks or one-shot null checks.  Returns false if the
 654   // current round of loop opts should stop.
 655   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 656 
 657   // Driver for various flavors of iteration splitting.  Returns false
 658   // if the current round of loop opts should stop.
 659   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 660 
 661   // Given dominators, try to find loops with calls that must always be
 662   // executed (call dominates loop tail).  These loops do not need non-call
 663   // safepoints (ncsfpt).
 664   void check_safepts(VectorSet &visited, Node_List &stack);
 665 
 666   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 667   // encountered.
 668   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 669 
 670   // Remove safepoints from loop. Optionally keeping one.
 671   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 672 
 673   // Convert to counted loops where possible
 674   void counted_loop( PhaseIdealLoop *phase );
 675 
 676   // Check for Node being a loop-breaking test
 677   Node *is_loop_exit(Node *iff) const;
 678 
 679   // Remove simplistic dead code from loop body
 680   void DCE_loop_body();
 681 
 682   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 683   // Replace with a 1-in-10 exit guess.
 684   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 685 
 686   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 687   // Useful for unrolling loops with NO array accesses.
 688   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 689 
 690   // Return TRUE or FALSE if the loop should be unswitched -- clone
 691   // loop with an invariant test
 692   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 693 
 694   // Micro-benchmark spamming.  Remove empty loops.
 695   bool do_remove_empty_loop( PhaseIdealLoop *phase );
 696 
 697   // Convert one iteration loop into normal code.
 698   bool do_one_iteration_loop( PhaseIdealLoop *phase );
 699 
 700   // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
 701   // move some loop-invariant test (usually a null-check) before the loop.
 702   bool policy_peeling(PhaseIdealLoop *phase);
 703 
 704   uint estimate_peeling(PhaseIdealLoop *phase);
 705 
 706   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 707   // known trip count in the counted loop node.
 708   bool policy_maximally_unroll(PhaseIdealLoop *phase) const;
 709 
 710   // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll
 711   // if the loop is a counted loop and the loop body is small enough.
 712   bool policy_unroll(PhaseIdealLoop *phase);
 713 
 714   // Loop analyses to map to a maximal superword unrolling for vectorization.
 715   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 716 
 717   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 718   // Gather a list of IF tests that are dominated by iteration splitting;
 719   // also gather the end of the first split and the start of the 2nd split.
 720   bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const;
 721 
 722   // Return TRUE if "iff" is a range check.
 723   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const;
 724   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset,
 725                          jlong& scale) const;
 726 
 727   // Estimate the number of nodes required when cloning a loop (body).
 728   uint est_loop_clone_sz(uint factor) const;
 729   // Estimate the number of nodes required when unrolling a loop (body).
 730   uint est_loop_unroll_sz(uint factor) const;
 731 
 732   // Compute loop trip count if possible
 733   void compute_trip_count(PhaseIdealLoop* phase);
 734 
 735   // Compute loop trip count from profile data
 736   float compute_profile_trip_cnt_helper(Node* n);
 737   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 738 
 739   // Reassociate invariant expressions.
 740   void reassociate_invariants(PhaseIdealLoop *phase);
 741   // Reassociate invariant binary expressions.
 742   Node* reassociate(Node* n1, PhaseIdealLoop *phase);
 743   // Reassociate invariant add and subtract expressions.
 744   Node* reassociate_add_sub(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop *phase);
 745   // Return nonzero index of invariant operand if invariant and variant
 746   // are combined with an associative binary. Helper for reassociate_invariants.
 747   int find_invariant(Node* n, PhaseIdealLoop *phase);
 748   // Return TRUE if "n" is associative.
 749   bool is_associative(Node* n, Node* base=nullptr);
 750 
 751   // Return true if n is invariant
 752   bool is_invariant(Node* n) const;
 753 
 754   // Put loop body on igvn work list
 755   void record_for_igvn();
 756 
 757   bool is_root() { return _parent == nullptr; }
 758   // A proper/reducible loop w/o any (occasional) dead back-edge.
 759   bool is_loop() { return !_irreducible && !tail()->is_top(); }
 760   bool is_counted()   { return is_loop() && _head->is_CountedLoop(); }
 761   bool is_innermost() { return is_loop() && _child == nullptr; }
 762 
 763   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 764 
 765   bool compute_has_range_checks() const;
 766   bool range_checks_present() {
 767     if (!_has_range_checks_computed) {
 768       if (compute_has_range_checks()) {
 769         _has_range_checks = 1;
 770       }
 771       _has_range_checks_computed = 1;
 772     }
 773     return _has_range_checks;
 774   }
 775 
 776 #ifndef PRODUCT
 777   void dump_head();       // Dump loop head only
 778   void dump();            // Dump this loop recursively
 779 #endif
 780 
 781 #ifdef ASSERT
 782   GrowableArray<IdealLoopTree*> collect_sorted_children() const;
 783   bool verify_tree(IdealLoopTree* loop_verify) const;
 784 #endif
 785 
 786  private:
 787   enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop.
 788 
 789   // Estimate the number of nodes resulting from control and data flow merge.
 790   uint est_loop_flow_merge_sz() const;
 791 
 792   // Check if the number of residual iterations is large with unroll_cnt.
 793   // Return true if the residual iterations are more than 10% of the trip count.
 794   bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const {
 795     return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt();
 796   }
 797 
 798   void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const;
 799 
 800   bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const;
 801 
 802   void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const;
 803 
 804   bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq,
 805                          Node* sfpt) const;
 806 
 807   bool empty_loop_candidate(PhaseIdealLoop* phase) const;
 808 
 809   bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const;
 810 };
 811 
 812 // -----------------------------PhaseIdealLoop---------------------------------
 813 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees
 814 // into a loop tree. Drives the loop-based transformations on the ideal graph.
 815 class PhaseIdealLoop : public PhaseTransform {
 816   friend class IdealLoopTree;
 817   friend class SuperWord;
 818   friend class ShenandoahBarrierC2Support;
 819   friend class AutoNodeBudget;
 820 
 821   // Map loop membership for CFG nodes, and ctrl for non-CFG nodes.
 822   Node_List _loop_or_ctrl;
 823 
 824   // Pre-computed def-use info
 825   PhaseIterGVN &_igvn;
 826 
 827   // Head of loop tree
 828   IdealLoopTree* _ltree_root;
 829 
 830   // Array of pre-order numbers, plus post-visited bit.
 831   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 832   // ODD for post-visited.  Other bits are the pre-order number.
 833   uint *_preorders;
 834   uint _max_preorder;
 835 
 836   const PhaseIdealLoop* _verify_me;
 837   bool _verify_only;
 838 
 839   // Allocate _preorders[] array
 840   void allocate_preorders() {
 841     _max_preorder = C->unique()+8;
 842     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 843     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 844   }
 845 
 846   // Allocate _preorders[] array
 847   void reallocate_preorders() {
 848     if ( _max_preorder < C->unique() ) {
 849       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 850       _max_preorder = C->unique();
 851     }
 852     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 853   }
 854 
 855   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 856   // adds new nodes.
 857   void check_grow_preorders( ) {
 858     if ( _max_preorder < C->unique() ) {
 859       uint newsize = _max_preorder<<1;  // double size of array
 860       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 861       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 862       _max_preorder = newsize;
 863     }
 864   }
 865   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 866   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 867   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 868   void set_preorder_visited( Node *n, int pre_order ) {
 869     assert( !is_visited( n ), "already set" );
 870     _preorders[n->_idx] = (pre_order<<1);
 871   };
 872   // Return pre-order number.
 873   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 874 
 875   // Check for being post-visited.
 876   // Should be previsited already (checked with assert(is_visited(n))).
 877   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 878 
 879   // Mark as post visited
 880   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 881 
 882 public:
 883   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 884   // Returns true if "n" is a data node, false if it's a control node.
 885   bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; }
 886 
 887 private:
 888   // clear out dead code after build_loop_late
 889   Node_List _deadlist;
 890   Node_List _zero_trip_guard_opaque_nodes;
 891 
 892   // Support for faster execution of get_late_ctrl()/dom_lca()
 893   // when a node has many uses and dominator depth is deep.
 894   GrowableArray<jlong> _dom_lca_tags;
 895   uint _dom_lca_tags_round;
 896   void   init_dom_lca_tags();
 897 
 898   // Helper for debugging bad dominance relationships
 899   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 900 
 901   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 902 
 903   // Inline wrapper for frequent cases:
 904   // 1) only one use
 905   // 2) a use is the same as the current LCA passed as 'n1'
 906   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 907     assert( n->is_CFG(), "" );
 908     // Fast-path null lca
 909     if( lca != nullptr && lca != n ) {
 910       assert( lca->is_CFG(), "" );
 911       // find LCA of all uses
 912       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 913     }
 914     return find_non_split_ctrl(n);
 915   }
 916   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 917 
 918   // Helper function for directing control inputs away from CFG split points.
 919   Node *find_non_split_ctrl( Node *ctrl ) const {
 920     if (ctrl != nullptr) {
 921       if (ctrl->is_MultiBranch()) {
 922         ctrl = ctrl->in(0);
 923       }
 924       assert(ctrl->is_CFG(), "CFG");
 925     }
 926     return ctrl;
 927   }
 928 
 929   Node* cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 930 
 931 #ifdef ASSERT
 932   void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
 933 #endif
 934   void copy_assertion_predicates_to_main_loop_helper(const PredicateBlock* predicate_block, Node* init, Node* stride,
 935                                                      IdealLoopTree* outer_loop, LoopNode* outer_main_head,
 936                                                      uint dd_main_head, uint idx_before_pre_post,
 937                                                      uint idx_after_post_before_pre, Node* zero_trip_guard_proj_main,
 938                                                      Node* zero_trip_guard_proj_post, const Node_List &old_new);
 939   void copy_assertion_predicates_to_main_loop(CountedLoopNode* pre_head, Node* init, Node* stride, IdealLoopTree* outer_loop,
 940                                               LoopNode* outer_main_head, uint dd_main_head, uint idx_before_pre_post,
 941                                               uint idx_after_post_before_pre, Node* zero_trip_guard_proj_main,
 942                                               Node* zero_trip_guard_proj_post, const Node_List& old_new);
 943   Node* clone_assertion_predicate_and_initialize(Node* iff, Node* new_init, Node* new_stride, Node* predicate,
 944                                                  Node* uncommon_proj, Node* control, IdealLoopTree* outer_loop,
 945                                                  Node* input_proj);
 946   static void count_opaque_loop_nodes(Node* n, uint& init, uint& stride);
 947   static bool subgraph_has_opaque(Node* n);
 948   Node* create_bool_from_template_assertion_predicate(Node* template_assertion_predicate, Node* new_init, Node* new_stride,
 949                                                       Node* control);
 950   static bool assertion_predicate_has_loop_opaque_node(IfNode* iff);
 951   static void get_assertion_predicates(Node* predicate, Unique_Node_List& list, bool get_opaque = false);
 952   void update_main_loop_assertion_predicates(Node* ctrl, CountedLoopNode* loop_head, Node* init, int stride_con);
 953   void copy_assertion_predicates_to_post_loop(LoopNode* main_loop_head, CountedLoopNode* post_loop_head, Node* init,
 954                                               Node* stride);
 955   void initialize_assertion_predicates_for_peeled_loop(const PredicateBlock* predicate_block, LoopNode* outer_loop_head,
 956                                                        int dd_outer_loop_head, Node* init, Node* stride,
 957                                                        IdealLoopTree* outer_loop, uint idx_before_clone,
 958                                                        const Node_List& old_new);
 959   void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit,
 960                                          Node* bol);
 961 #ifdef ASSERT
 962   bool only_has_infinite_loops();
 963 #endif
 964 
 965   void log_loop_tree();
 966 
 967 public:
 968 
 969   PhaseIterGVN &igvn() const { return _igvn; }
 970 
 971   bool has_node(const Node* n) const {
 972     guarantee(n != nullptr, "No Node.");
 973     return _loop_or_ctrl[n->_idx] != nullptr;
 974   }
 975   // check if transform created new nodes that need _ctrl recorded
 976   Node *get_late_ctrl( Node *n, Node *early );
 977   Node *get_early_ctrl( Node *n );
 978   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 979   void set_early_ctrl(Node* n, bool update_body);
 980   void set_subtree_ctrl(Node* n, bool update_body);
 981   void set_ctrl( Node *n, Node *ctrl ) {
 982     assert( !has_node(n) || has_ctrl(n), "" );
 983     assert( ctrl->in(0), "cannot set dead control node" );
 984     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 985     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1));
 986   }
 987   // Set control and update loop membership
 988   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 989     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 990     IdealLoopTree* new_loop = get_loop(ctrl);
 991     if (old_loop != new_loop) {
 992       if (old_loop->_child == nullptr) old_loop->_body.yank(n);
 993       if (new_loop->_child == nullptr) new_loop->_body.push(n);
 994     }
 995     set_ctrl(n, ctrl);
 996   }
 997   // Control nodes can be replaced or subsumed.  During this pass they
 998   // get their replacement Node in slot 1.  Instead of updating the block
 999   // location of all Nodes in the subsumed block, we lazily do it.  As we
1000   // pull such a subsumed block out of the array, we write back the final
1001   // correct block.
1002   Node* get_ctrl(const Node* i) {
1003     assert(has_node(i), "");
1004     Node *n = get_ctrl_no_update(i);
1005     _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1));
1006     assert(has_node(i) && has_ctrl(i), "");
1007     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
1008     return n;
1009   }
1010   // true if CFG node d dominates CFG node n
1011   bool is_dominator(Node *d, Node *n);
1012   // return get_ctrl for a data node and self(n) for a CFG node
1013   Node* ctrl_or_self(Node* n) {
1014     if (has_ctrl(n))
1015       return get_ctrl(n);
1016     else {
1017       assert (n->is_CFG(), "must be a CFG node");
1018       return n;
1019     }
1020   }
1021 
1022   Node* get_ctrl_no_update_helper(const Node* i) const {
1023     assert(has_ctrl(i), "should be control, not loop");
1024     return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1);
1025   }
1026 
1027   Node* get_ctrl_no_update(const Node* i) const {
1028     assert( has_ctrl(i), "" );
1029     Node *n = get_ctrl_no_update_helper(i);
1030     if (!n->in(0)) {
1031       // Skip dead CFG nodes
1032       do {
1033         n = get_ctrl_no_update_helper(n);
1034       } while (!n->in(0));
1035       n = find_non_split_ctrl(n);
1036     }
1037     return n;
1038   }
1039 
1040   // Check for loop being set
1041   // "n" must be a control node. Returns true if "n" is known to be in a loop.
1042   bool has_loop( Node *n ) const {
1043     assert(!has_node(n) || !has_ctrl(n), "");
1044     return has_node(n);
1045   }
1046   // Set loop
1047   void set_loop( Node *n, IdealLoopTree *loop ) {
1048     _loop_or_ctrl.map(n->_idx, (Node*)loop);
1049   }
1050   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
1051   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
1052   // from old_node to new_node to support the lazy update.  Reference
1053   // replaces loop reference, since that is not needed for dead node.
1054   void lazy_update(Node *old_node, Node *new_node) {
1055     assert(old_node != new_node, "no cycles please");
1056     // Re-use the side array slot for this node to provide the
1057     // forwarding pointer.
1058     _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
1059   }
1060   void lazy_replace(Node *old_node, Node *new_node) {
1061     _igvn.replace_node(old_node, new_node);
1062     lazy_update(old_node, new_node);
1063   }
1064 
1065 private:
1066 
1067   // Place 'n' in some loop nest, where 'n' is a CFG node
1068   void build_loop_tree();
1069   int build_loop_tree_impl( Node *n, int pre_order );
1070   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
1071   // loop tree, not the root.
1072   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
1073 
1074 #ifdef ASSERT
1075   // verify that regions in irreducible loops are marked is_in_irreducible_loop
1076   void verify_regions_in_irreducible_loops();
1077   bool is_in_irreducible_loop(RegionNode* region);
1078 #endif
1079 
1080   // Place Data nodes in some loop nest
1081   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1082   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1083   void build_loop_late_post_work(Node* n, bool pinned);
1084   void build_loop_late_post(Node* n);
1085   void verify_strip_mined_scheduling(Node *n, Node* least);
1086 
1087   // Array of immediate dominance info for each CFG node indexed by node idx
1088 private:
1089   uint _idom_size;
1090   Node **_idom;                  // Array of immediate dominators
1091   uint *_dom_depth;              // Used for fast LCA test
1092   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
1093   LoopOptsMode _mode;
1094 
1095   // build the loop tree and perform any requested optimizations
1096   void build_and_optimize();
1097 
1098   // Dominators for the sea of nodes
1099   void Dominators();
1100 
1101   // Compute the Ideal Node to Loop mapping
1102   PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) :
1103     PhaseTransform(Ideal_Loop),
1104     _loop_or_ctrl(igvn.C->comp_arena()),
1105     _igvn(igvn),
1106     _verify_me(nullptr),
1107     _verify_only(false),
1108     _mode(mode),
1109     _nodes_required(UINT_MAX) {
1110     assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop");
1111     build_and_optimize();
1112   }
1113 
1114 #ifndef PRODUCT
1115   // Verify that verify_me made the same decisions as a fresh run
1116   // or only verify that the graph is valid if verify_me is null.
1117   PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) :
1118     PhaseTransform(Ideal_Loop),
1119     _loop_or_ctrl(igvn.C->comp_arena()),
1120     _igvn(igvn),
1121     _verify_me(verify_me),
1122     _verify_only(verify_me == nullptr),
1123     _mode(LoopOptsVerify),
1124     _nodes_required(UINT_MAX) {
1125     build_and_optimize();
1126   }
1127 #endif
1128 
1129 public:
1130   Node* idom_no_update(Node* d) const {
1131     return idom_no_update(d->_idx);
1132   }
1133 
1134   Node* idom_no_update(uint didx) const {
1135     assert(didx < _idom_size, "oob");
1136     Node* n = _idom[didx];
1137     assert(n != nullptr,"Bad immediate dominator info.");
1138     while (n->in(0) == nullptr) { // Skip dead CFG nodes
1139       n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1);
1140       assert(n != nullptr,"Bad immediate dominator info.");
1141     }
1142     return n;
1143   }
1144 
1145   Node *idom(Node* d) const {
1146     return idom(d->_idx);
1147   }
1148 
1149   Node *idom(uint didx) const {
1150     Node *n = idom_no_update(didx);
1151     _idom[didx] = n; // Lazily remove dead CFG nodes from table.
1152     return n;
1153   }
1154 
1155   uint dom_depth(Node* d) const {
1156     guarantee(d != nullptr, "Null dominator info.");
1157     guarantee(d->_idx < _idom_size, "");
1158     return _dom_depth[d->_idx];
1159   }
1160   void set_idom(Node* d, Node* n, uint dom_depth);
1161   // Locally compute IDOM using dom_lca call
1162   Node *compute_idom( Node *region ) const;
1163   // Recompute dom_depth
1164   void recompute_dom_depth();
1165 
1166   // Is safept not required by an outer loop?
1167   bool is_deleteable_safept(Node* sfpt);
1168 
1169   // Replace parallel induction variable (parallel to trip counter)
1170   void replace_parallel_iv(IdealLoopTree *loop);
1171 
1172   Node *dom_lca( Node *n1, Node *n2 ) const {
1173     return find_non_split_ctrl(dom_lca_internal(n1, n2));
1174   }
1175   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
1176 
1177   // Build and verify the loop tree without modifying the graph.  This
1178   // is useful to verify that all inputs properly dominate their uses.
1179   static void verify(PhaseIterGVN& igvn) {
1180 #ifdef ASSERT
1181     ResourceMark rm;
1182     Compile::TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
1183     PhaseIdealLoop v(igvn);
1184 #endif
1185   }
1186 
1187   // Recommended way to use PhaseIdealLoop.
1188   // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations.
1189   static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) {
1190     ResourceMark rm;
1191     PhaseIdealLoop v(igvn, mode);
1192 
1193     Compile* C = Compile::current();
1194     if (!C->failing()) {
1195       // Cleanup any modified bits
1196       igvn.optimize();
1197       if (C->failing()) { return; }
1198       v.log_loop_tree();
1199     }
1200   }
1201 
1202   // True if the method has at least 1 irreducible loop
1203   bool _has_irreducible_loops;
1204 
1205   // Per-Node transform
1206   virtual Node* transform(Node* n) { return nullptr; }
1207 
1208   Node* loop_exit_control(Node* x, IdealLoopTree* loop);
1209   Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob);
1210   Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr);
1211   Node* loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi);
1212   PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop);
1213 
1214   bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt);
1215 
1216   Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt);
1217   bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new);
1218 #ifdef ASSERT
1219   bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop);
1220 #endif
1221   void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt);
1222   SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop);
1223   IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift);
1224   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
1225                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
1226                                                Node*& entry_control, Node*& iffalse);
1227 
1228   Node* exact_limit( IdealLoopTree *loop );
1229 
1230   // Return a post-walked LoopNode
1231   IdealLoopTree *get_loop( Node *n ) const {
1232     // Dead nodes have no loop, so return the top level loop instead
1233     if (!has_node(n))  return _ltree_root;
1234     assert(!has_ctrl(n), "");
1235     return (IdealLoopTree*)_loop_or_ctrl[n->_idx];
1236   }
1237 
1238   IdealLoopTree* ltree_root() const { return _ltree_root; }
1239 
1240   // Is 'n' a (nested) member of 'loop'?
1241   int is_member( const IdealLoopTree *loop, Node *n ) const {
1242     return loop->is_member(get_loop(n)); }
1243 
1244   // This is the basic building block of the loop optimizations.  It clones an
1245   // entire loop body.  It makes an old_new loop body mapping; with this
1246   // mapping you can find the new-loop equivalent to an old-loop node.  All
1247   // new-loop nodes are exactly equal to their old-loop counterparts, all
1248   // edges are the same.  All exits from the old-loop now have a RegionNode
1249   // that merges the equivalent new-loop path.  This is true even for the
1250   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
1251   // now come from (one or more) Phis that merge their new-loop equivalents.
1252   // Parameter side_by_side_idom:
1253   //   When side_by_size_idom is null, the dominator tree is constructed for
1254   //      the clone loop to dominate the original.  Used in construction of
1255   //      pre-main-post loop sequence.
1256   //   When nonnull, the clone and original are side-by-side, both are
1257   //      dominated by the passed in side_by_side_idom node.  Used in
1258   //      construction of unswitched loops.
1259   enum CloneLoopMode {
1260     IgnoreStripMined = 0,        // Only clone inner strip mined loop
1261     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
1262     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
1263                                  // result control flow branches
1264                                  // either to inner clone or outer
1265                                  // strip mined loop.
1266   };
1267   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1268                   CloneLoopMode mode, Node* side_by_side_idom = nullptr);
1269   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1270                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1271                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1272                                    Node_List*& split_cex_set, Node_List& worklist,
1273                                    uint new_counter, CloneLoopMode mode);
1274   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1275                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1276                         Node_List& extra_data_nodes);
1277 
1278   // If we got the effect of peeling, either by actually peeling or by
1279   // making a pre-loop which must execute at least once, we can remove
1280   // all loop-invariant dominated tests in the main body.
1281   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1282 
1283   // Generate code to do a loop peel for the given loop (and body).
1284   // old_new is a temp array.
1285   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1286 
1287   // Add pre and post loops around the given loop.  These loops are used
1288   // during RCE, unrolling and aligning loops.
1289   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1290 
1291   // Add post loop after the given loop.
1292   Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new,
1293                          CountedLoopNode* main_head, CountedLoopEndNode* main_end,
1294                          Node*& incr, Node* limit, CountedLoopNode*& post_head);
1295 
1296   // Add a vector post loop between a vector main loop and the current post loop
1297   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1298   // If Node n lives in the back_ctrl block, we clone a private version of n
1299   // in preheader_ctrl block and return that, otherwise return n.
1300   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1301 
1302   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1303   // unroll to do double iterations.  The next round of major loop transforms
1304   // will repeat till the doubled loop body does all remaining iterations in 1
1305   // pass.
1306   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1307 
1308   // Unroll the loop body one step - make each trip do 2 iterations.
1309   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1310 
1311   // Return true if exp is a constant times an induction var
1312   bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0);
1313 
1314   bool is_iv(Node* exp, Node* iv, BasicType bt);
1315 
1316   // Return true if exp is a scaled induction var plus (or minus) constant
1317   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0);
1318   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) {
1319     jlong long_scale;
1320     if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) {
1321       int int_scale = checked_cast<int>(long_scale);
1322       if (p_scale != nullptr) {
1323         *p_scale = int_scale;
1324       }
1325       return true;
1326     }
1327     return false;
1328   }
1329   // Helper for finding more complex matches to is_scaled_iv_plus_offset.
1330   bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv,
1331                                       BasicType bt,
1332                                       jlong* p_scale, Node** p_offset,
1333                                       bool* p_short_scale, int depth);
1334 
1335   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1336   IfProjNode* create_new_if_for_predicate(ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1337                                           Deoptimization::DeoptReason reason, int opcode,
1338                                           bool rewire_uncommon_proj_phi_inputs = false);
1339 
1340  private:
1341   // Helper functions for create_new_if_for_predicate()
1342   void set_ctrl_of_nodes_with_same_ctrl(Node* node, ProjNode* old_ctrl, Node* new_ctrl);
1343   Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl);
1344   Node* clone_nodes_with_same_ctrl(Node* node, ProjNode* old_ctrl, Node* new_ctrl);
1345   Dict clone_nodes(const Node_List& list_to_clone);
1346   void rewire_cloned_nodes_to_ctrl(const ProjNode* old_ctrl, Node* new_ctrl, const Node_List& nodes_with_same_ctrl,
1347                                    const Dict& old_new_mapping);
1348   void rewire_inputs_of_clones_to_clones(Node* new_ctrl, Node* clone, const Dict& old_new_mapping, const Node* next);
1349   bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt,
1350                                        Node* loop_entry);
1351 
1352  public:
1353   void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true);
1354 
1355   // Construct a range check for a predicate if
1356   BoolNode* rc_predicate(IdealLoopTree* loop, Node* ctrl, int scale, Node* offset, Node* init, Node* limit,
1357                          jint stride, Node* range, bool upper, bool& overflow);
1358 
1359   // Implementation of the loop predication to promote checks outside the loop
1360   bool loop_predication_impl(IdealLoopTree *loop);
1361 
1362  private:
1363   bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj,
1364                                     ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero,
1365                                     Invariance& invar, Deoptimization::DeoptReason reason);
1366   bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const;
1367   bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt);
1368   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1369                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1370                                         Node_List& if_proj_list);
1371   IfProjNode* add_template_assertion_predicate(IfNode* iff, IdealLoopTree* loop, IfProjNode* if_proj,
1372                                                ParsePredicateSuccessProj* parse_predicate_proj,
1373                                                IfProjNode* upper_bound_proj, int scale, Node* offset, Node* init, Node* limit,
1374                                                jint stride, Node* rng, bool& overflow, Deoptimization::DeoptReason reason);
1375   Node* add_range_check_elimination_assertion_predicate(IdealLoopTree* loop, Node* predicate_proj, int scale_con,
1376                                                         Node* offset, Node* limit, jint stride_con, Node* value);
1377 
1378   // Helper function to collect predicate for eliminating the useless ones
1379   void eliminate_useless_predicates();
1380 
1381   void eliminate_useless_parse_predicates();
1382   void mark_all_parse_predicates_useless() const;
1383   void mark_loop_associated_parse_predicates_useful();
1384   static void mark_useful_parse_predicates_for_loop(IdealLoopTree* loop);
1385   void add_useless_parse_predicates_to_igvn_worklist();
1386 
1387   void eliminate_useless_template_assertion_predicates();
1388   void collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates);
1389   static void collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop, Unique_Node_List& useful_predicates);
1390   void eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates);
1391 
1392   void eliminate_useless_zero_trip_guard();
1393 
1394   bool has_control_dependencies_from_predicates(LoopNode* head) const;
1395   void verify_fast_loop(LoopNode* head, const ProjNode* proj_true) const NOT_DEBUG_RETURN;
1396  public:
1397   // Change the control input of expensive nodes to allow commoning by
1398   // IGVN when it is guaranteed to not result in a more frequent
1399   // execution of the expensive node. Return true if progress.
1400   bool process_expensive_nodes();
1401 
1402   // Check whether node has become unreachable
1403   bool is_node_unreachable(Node *n) const {
1404     return !has_node(n) || n->is_unreachable(_igvn);
1405   }
1406 
1407   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1408   void do_range_check(IdealLoopTree *loop, Node_List &old_new);
1409 
1410   // Create a slow version of the loop by cloning the loop
1411   // and inserting an if to select fast-slow versions.
1412   // Return the inserted if.
1413   IfNode* create_slow_version_of_loop(IdealLoopTree *loop,
1414                                       Node_List &old_new,
1415                                       Node_List &unswitch_iffs,
1416                                       CloneLoopMode mode);
1417 
1418   // Clone loop with an invariant test (that does not exit) and
1419   // insert a clone of the test that selects which version to
1420   // execute.
1421   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1422 
1423   // Find candidate "if" for unswitching
1424   IfNode* find_unswitching_candidate(const IdealLoopTree *loop, Node_List& unswitch_iffs) const;
1425 
1426   // Range Check Elimination uses this function!
1427   // Constrain the main loop iterations so the affine function:
1428   //    low_limit <= scale_con * I + offset  <  upper_limit
1429   // always holds true.  That is, either increase the number of iterations in
1430   // the pre-loop or the post-loop until the condition holds true in the main
1431   // loop.  Scale_con, offset and limit are all loop invariant.
1432   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
1433   // Helper function for add_constraint().
1434   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
1435 
1436   // Partially peel loop up through last_peel node.
1437   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1438   bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new);
1439 
1440   // AutoVectorize the loop: replace scalar ops with vector ops.
1441   enum AutoVectorizeStatus {
1442     Impossible,      // This loop has the wrong shape to even try vectorization.
1443     Success,         // We just successfully vectorized the loop.
1444     TriedAndFailed,  // We tried to vectorize, but failed.
1445   };
1446   AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared);
1447 
1448   // Move UnorderedReduction out of loop if possible
1449   void move_unordered_reduction_out_of_loop(IdealLoopTree* loop);
1450 
1451   // Create a scheduled list of nodes control dependent on ctrl set.
1452   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1453   // Has a use in the vector set
1454   bool has_use_in_set( Node* n, VectorSet& vset );
1455   // Has use internal to the vector set (ie. not in a phi at the loop head)
1456   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1457   // clone "n" for uses that are outside of loop
1458   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1459   // clone "n" for special uses that are in the not_peeled region
1460   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1461                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1462   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1463   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1464 #ifdef ASSERT
1465   // Validate the loop partition sets: peel and not_peel
1466   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1467   // Ensure that uses outside of loop are of the right form
1468   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1469                                  uint orig_exit_idx, uint clone_exit_idx);
1470   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1471 #endif
1472 
1473   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1474   int stride_of_possible_iv( Node* iff );
1475   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1476   // Return the (unique) control output node that's in the loop (if it exists.)
1477   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1478   // Insert a signed compare loop exit cloned from an unsigned compare.
1479   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1480   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1481   // Utility to register node "n" with PhaseIdealLoop
1482   void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth);
1483   // Utility to create an if-projection
1484   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1485   // Force the iff control output to be the live_proj
1486   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1487   // Insert a region before an if projection
1488   RegionNode* insert_region_before_proj(ProjNode* proj);
1489   // Insert a new if before an if projection
1490   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1491 
1492   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1493   // "Nearly" because all Nodes have been cloned from the original in the loop,
1494   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1495   // through the Phi recursively, and return a Bool.
1496   Node* clone_iff(PhiNode* phi);
1497   CmpNode* clone_bool(PhiNode* phi);
1498 
1499 
1500   // Rework addressing expressions to get the most loop-invariant stuff
1501   // moved out.  We'd like to do all associative operators, but it's especially
1502   // important (common) to do address expressions.
1503   Node* remix_address_expressions(Node* n);
1504   Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt);
1505 
1506   // Convert add to muladd to generate MuladdS2I under certain criteria
1507   Node * convert_add_to_muladd(Node * n);
1508 
1509   // Attempt to use a conditional move instead of a phi/branch
1510   Node *conditional_move( Node *n );
1511 
1512   // Check for aggressive application of 'split-if' optimization,
1513   // using basic block level info.
1514   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack);
1515   Node *split_if_with_blocks_pre ( Node *n );
1516   void  split_if_with_blocks_post( Node *n );
1517   Node *has_local_phi_input( Node *n );
1518   // Mark an IfNode as being dominated by a prior test,
1519   // without actually altering the CFG (and hence IDOM info).
1520   void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false);
1521 
1522   // Split Node 'n' through merge point
1523   RegionNode* split_thru_region(Node* n, RegionNode* region);
1524   // Split Node 'n' through merge point if there is enough win.
1525   Node *split_thru_phi( Node *n, Node *region, int policy );
1526   // Found an If getting its condition-code input from a Phi in the
1527   // same block.  Split thru the Region.
1528   void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr);
1529 
1530   // Conversion of fill/copy patterns into intrinsic versions
1531   bool do_intrinsify_fill();
1532   bool intrinsify_fill(IdealLoopTree* lpt);
1533   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1534                        Node*& shift, Node*& offset);
1535 
1536 private:
1537   // Return a type based on condition control flow
1538   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1539   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); }
1540  // Helpers for filtered type
1541   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1542 
1543   // Helper functions
1544   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1545   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1546   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1547   bool split_up( Node *n, Node *blk1, Node *blk2 );
1548 
1549   Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const;
1550   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1551   void try_move_store_after_loop(Node* n);
1552   void move_flat_array_check_out_of_loop(Node* n);
1553   bool identical_backtoback_ifs(Node *n);
1554   bool flat_array_element_type_check(Node *n);
1555   bool can_split_if(Node *n_ctrl);
1556   bool cannot_split_division(const Node* n, const Node* region) const;
1557   static bool is_divisor_counted_loop_phi(const Node* divisor, const Node* loop);
1558   bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const;
1559 
1560   // Determine if a method is too big for a/another round of split-if, based on
1561   // a magic (approximate) ratio derived from the equally magic constant 35000,
1562   // previously used for this purpose (but without relating to the node limit).
1563   bool must_throttle_split_if() {
1564     uint threshold = C->max_node_limit() * 2 / 5;
1565     return C->live_nodes() > threshold;
1566   }
1567 
1568   // A simplistic node request tracking mechanism, where
1569   //   = UINT_MAX   Request not valid or made final.
1570   //   < UINT_MAX   Nodes currently requested (estimate).
1571   uint _nodes_required;
1572 
1573   enum { REQUIRE_MIN = 70 };
1574 
1575   uint nodes_required() const { return _nodes_required; }
1576 
1577   // Given the _currently_  available number of nodes, check  whether there is
1578   // "room" for an additional request or not, considering the already required
1579   // number of  nodes.  Return TRUE if  the new request is  exceeding the node
1580   // budget limit, otherwise return FALSE.  Note that this interpretation will
1581   // act pessimistic on  additional requests when new nodes  have already been
1582   // generated since the 'begin'.  This behaviour fits with the intention that
1583   // node estimates/requests should be made upfront.
1584   bool exceeding_node_budget(uint required = 0) {
1585     assert(C->live_nodes() < C->max_node_limit(), "sanity");
1586     uint available = C->max_node_limit() - C->live_nodes();
1587     return available < required + _nodes_required + REQUIRE_MIN;
1588   }
1589 
1590   uint require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1591     precond(require > 0);
1592     _nodes_required += MAX2(require, minreq);
1593     return _nodes_required;
1594   }
1595 
1596   bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1597     return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0;
1598   }
1599 
1600   uint require_nodes_begin() {
1601     assert(_nodes_required == UINT_MAX, "Bad state (begin).");
1602     _nodes_required = 0;
1603     return C->live_nodes();
1604   }
1605 
1606   // When a node request is final,  optionally check that the requested number
1607   // of nodes was  reasonably correct with respect to the  number of new nodes
1608   // introduced since the last 'begin'. Always check that we have not exceeded
1609   // the maximum node limit.
1610   void require_nodes_final(uint live_at_begin, bool check_estimate) {
1611     assert(_nodes_required < UINT_MAX, "Bad state (final).");
1612 
1613 #ifdef ASSERT
1614     if (check_estimate) {
1615       // Check that the node budget request was not off by too much (x2).
1616       // Should this be the case we _surely_ need to improve the estimates
1617       // used in our budget calculations.
1618       if (C->live_nodes() - live_at_begin > 2 * _nodes_required) {
1619         log_info(compilation)("Bad node estimate: actual = %d >> request = %d",
1620                               C->live_nodes() - live_at_begin, _nodes_required);
1621       }
1622     }
1623 #endif
1624     // Assert that we have stayed within the node budget limit.
1625     assert(C->live_nodes() < C->max_node_limit(),
1626            "Exceeding node budget limit: %d + %d > %d (request = %d)",
1627            C->live_nodes() - live_at_begin, live_at_begin,
1628            C->max_node_limit(), _nodes_required);
1629 
1630     _nodes_required = UINT_MAX;
1631   }
1632 
1633   // Clone Parse Predicates to slow and fast loop when unswitching a loop
1634   void clone_parse_and_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, Node_List& old_new,
1635                                                                IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred);
1636   void clone_loop_predication_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new,
1637                                                             const PredicateBlock* predicate_block,
1638                                                             Deoptimization::DeoptReason reason, IfProjNode*& iffast_pred,
1639                                                             IfProjNode*& ifslow_pred);
1640   void clone_parse_predicate_to_unswitched_loops(const PredicateBlock* predicate_block, Deoptimization::DeoptReason reason,
1641                                                  IfProjNode*& iffast_pred, IfProjNode*& ifslow_pred);
1642   IfProjNode* clone_parse_predicate_to_unswitched_loop(ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1643                                                        Deoptimization::DeoptReason reason, bool slow_loop);
1644   void clone_assertion_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new,
1645                                                      Deoptimization::DeoptReason reason, IfProjNode* old_predicate_proj,
1646                                                      ParsePredicateSuccessProj* fast_loop_parse_predicate_proj,
1647                                                      ParsePredicateSuccessProj* slow_loop_parse_predicate_proj);
1648   IfProjNode* clone_assertion_predicate_for_unswitched_loops(Node* iff, IfProjNode* predicate,
1649                                                              Deoptimization::DeoptReason reason,
1650                                                              ParsePredicateSuccessProj* parse_predicate_proj);
1651   static void check_cloned_parse_predicate_for_unswitching(const Node* new_entry, bool is_fast_loop) PRODUCT_RETURN;
1652 
1653   bool _created_loop_node;
1654   DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);)
1655   NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;)
1656 
1657 public:
1658   void set_created_loop_node() { _created_loop_node = true; }
1659   bool created_loop_node()     { return _created_loop_node; }
1660   void register_new_node(Node* n, Node* blk);
1661 
1662 #ifdef ASSERT
1663   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1664 #endif
1665 
1666 #ifndef PRODUCT
1667   void dump() const;
1668   void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging
1669   void dump_idom(Node* n, uint count) const;
1670   void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const;
1671   void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const;
1672   IdealLoopTree* get_loop_idx(Node* n) const {
1673     // Dead nodes have no loop, so return the top level loop instead
1674     return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root;
1675   }
1676   // Print some stats
1677   static void print_statistics();
1678   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1679   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1680   static volatile int _long_loop_candidates;
1681   static volatile int _long_loop_nests;
1682   static volatile int _long_loop_counted_loops;
1683 #endif
1684 
1685 #ifdef ASSERT
1686   void verify() const;
1687   bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const;
1688   bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const;
1689   bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const;
1690 #endif
1691 
1692   void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const;
1693 
1694   void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN;
1695 
1696   LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test);
1697 
1698 
1699   int extract_long_range_checks(const IdealLoopTree* loop, jlong stride_con, int iters_limit, PhiNode* phi,
1700                                       Node_List &range_checks);
1701 
1702   void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1703                                    Node* inner_iters_actual_int, Node* inner_phi,
1704                                    Node* iv_add, LoopNode* inner_head);
1705 
1706   Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA);
1707 
1708   bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl);
1709 
1710   bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop);
1711 
1712   Node* compute_early_ctrl(Node* n, Node* n_ctrl);
1713 
1714   void try_sink_out_of_loop(Node* n);
1715 
1716   Node* clamp(Node* R, Node* L, Node* H);
1717 
1718   bool safe_for_if_replacement(const Node* dom) const;
1719 
1720   void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region);
1721 
1722   bool try_merge_identical_ifs(Node* n);
1723 
1724   void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm);
1725 
1726   void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
1727                       IdealLoopTree* parent, bool partial);
1728 
1729   void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
1730                 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist);
1731 
1732   void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
1733                      uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set,
1734                      Node_List*& split_bool_set, Node_List*& split_cex_set);
1735 
1736   void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set);
1737 
1738   bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2);
1739 
1740   void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i);
1741 
1742   bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2);
1743 
1744   bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2);
1745 
1746 
1747   Node* similar_subtype_check(const Node* x, Node* r_in);
1748 
1749   void update_addp_chain_base(Node* x, Node* old_base, Node* new_base);
1750 
1751   bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x);
1752 };
1753 
1754 
1755 class AutoNodeBudget : public StackObj
1756 {
1757 public:
1758   enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK };
1759 
1760   AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK)
1761     : _phase(phase),
1762       _check_at_final(chk == BUDGET_CHECK),
1763       _nodes_at_begin(0)
1764   {
1765     precond(_phase != nullptr);
1766 
1767     _nodes_at_begin = _phase->require_nodes_begin();
1768   }
1769 
1770   ~AutoNodeBudget() {
1771 #ifndef PRODUCT
1772     if (TraceLoopOpts) {
1773       uint request = _phase->nodes_required();
1774       uint delta   = _phase->C->live_nodes() - _nodes_at_begin;
1775 
1776       if (request < delta) {
1777         tty->print_cr("Exceeding node budget: %d < %d", request, delta);
1778       } else {
1779         uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN;
1780         // Identify the worst estimates as "poor" ones.
1781         if (request > REQUIRE_MIN && delta > 0) {
1782           if ((delta >  REQUIRE_MIN && request >  3 * delta) ||
1783               (delta <= REQUIRE_MIN && request > 10 * delta)) {
1784             tty->print_cr("Poor node estimate: %d >> %d", request, delta);
1785           }
1786         }
1787       }
1788     }
1789 #endif // PRODUCT
1790     _phase->require_nodes_final(_nodes_at_begin, _check_at_final);
1791   }
1792 
1793 private:
1794   PhaseIdealLoop* _phase;
1795   bool _check_at_final;
1796   uint _nodes_at_begin;
1797 };
1798 
1799 inline Node* IdealLoopTree::tail() {
1800   // Handle lazy update of _tail field.
1801   if (_tail->in(0) == nullptr) {
1802     _tail = _phase->get_ctrl(_tail);
1803   }
1804   return _tail;
1805 }
1806 
1807 inline Node* IdealLoopTree::head() {
1808   // Handle lazy update of _head field.
1809   if (_head->in(0) == nullptr) {
1810     _head = _phase->get_ctrl(_head);
1811   }
1812   return _head;
1813 }
1814 
1815 // Iterate over the loop tree using a preorder, left-to-right traversal.
1816 //
1817 // Example that visits all counted loops from within PhaseIdealLoop
1818 //
1819 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1820 //   IdealLoopTree* lpt = iter.current();
1821 //   if (!lpt->is_counted()) continue;
1822 //   ...
1823 class LoopTreeIterator : public StackObj {
1824 private:
1825   IdealLoopTree* _root;
1826   IdealLoopTree* _curnt;
1827 
1828 public:
1829   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1830 
1831   bool done() { return _curnt == nullptr; }       // Finished iterating?
1832 
1833   void next();                                 // Advance to next loop tree
1834 
1835   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1836 };
1837 
1838 // Compute probability of reaching some CFG node from a fixed
1839 // dominating CFG node
1840 class PathFrequency {
1841 private:
1842   Node* _dom; // frequencies are computed relative to this node
1843   Node_Stack _stack;
1844   GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions
1845   GrowableArray<float> _freqs; // cache frequencies
1846   PhaseIdealLoop* _phase;
1847 
1848   float check_and_truncate_frequency(float f) {
1849     assert(f >= 0, "Incorrect frequency");
1850     // We do not perform an exact (f <= 1) check
1851     // this would be error prone with rounding of floats.
1852     // Performing a check like (f <= 1+eps) would be of benefit,
1853     // however, it is not evident how to determine such an eps,
1854     // given that an arbitrary number of add/mul operations
1855     // are performed on these frequencies.
1856     return (f > 1) ? 1 : f;
1857   }
1858 
1859 public:
1860   PathFrequency(Node* dom, PhaseIdealLoop* phase)
1861     : _dom(dom), _stack(0), _phase(phase) {
1862   }
1863 
1864   float to(Node* n);
1865 };
1866 
1867 #endif // SHARE_OPTO_LOOPNODE_HPP