1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_LOOPNODE_HPP
  26 #define SHARE_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/predicates.hpp"
  32 #include "opto/subnode.hpp"
  33 #include "opto/type.hpp"
  34 #include "utilities/checkedCast.hpp"
  35 
  36 class CmpNode;
  37 class BaseCountedLoopEndNode;
  38 class CountedLoopNode;
  39 class IdealLoopTree;
  40 class LoopNode;
  41 class Node;
  42 class OuterStripMinedLoopEndNode;
  43 class PredicateBlock;
  44 class PathFrequency;
  45 class PhaseIdealLoop;
  46 class UnswitchCandidate;
  47 class LoopSelector;
  48 class UnswitchedLoopSelector;
  49 class VectorSet;
  50 class VSharedData;
  51 class Invariance;
  52 struct small_cache;
  53 
  54 //
  55 //                  I D E A L I Z E D   L O O P S
  56 //
  57 // Idealized loops are the set of loops I perform more interesting
  58 // transformations on, beyond simple hoisting.
  59 
  60 //------------------------------LoopNode---------------------------------------
  61 // Simple loop header.  Fall in path on left, loop-back path on right.
  62 class LoopNode : public RegionNode {
  63   // Size is bigger to hold the flags.  However, the flags do not change
  64   // the semantics so it does not appear in the hash & cmp functions.
  65   virtual uint size_of() const { return sizeof(*this); }
  66 protected:
  67   uint _loop_flags;
  68   // Names for flag bitfields
  69   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  70          MainHasNoPreLoop      = 1<<2,
  71          HasExactTripCount     = 1<<3,
  72          InnerLoop             = 1<<4,
  73          PartialPeelLoop       = 1<<5,
  74          PartialPeelFailed     = 1<<6,
  75          WasSlpAnalyzed        = 1<<7,
  76          PassedSlpAnalysis     = 1<<8,
  77          DoUnrollOnly          = 1<<9,
  78          VectorizedLoop        = 1<<10,
  79          HasAtomicPostLoop     = 1<<11,
  80          StripMined            = 1<<12,
  81          SubwordLoop           = 1<<13,
  82          ProfileTripFailed     = 1<<14,
  83          LoopNestInnerLoop     = 1<<15,
  84          LoopNestLongOuterLoop = 1<<16,
  85          MultiversionFastLoop         = 1<<17,
  86          MultiversionSlowLoop         = 2<<17,
  87          MultiversionDelayedSlowLoop  = 3<<17,
  88          MultiversionFlagsMask        = 3<<17,
  89          FlatArrays            = 1<<18};
  90   char _unswitch_count;
  91   enum { _unswitch_max=3 };
  92 
  93   // Expected trip count from profile data
  94   float _profile_trip_cnt;
  95 
  96 public:
  97   // Names for edge indices
  98   enum { Self=0, EntryControl, LoopBackControl };
  99 
 100   bool is_inner_loop() const { return _loop_flags & InnerLoop; }
 101   void set_inner_loop() { _loop_flags |= InnerLoop; }
 102 
 103   bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
 104   bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
 105   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
 106   bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
 107   bool is_strip_mined() const { return _loop_flags & StripMined; }
 108   bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
 109   bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
 110   bool is_loop_nest_inner_loop() const { return _loop_flags & LoopNestInnerLoop; }
 111   bool is_loop_nest_outer_loop() const { return _loop_flags & LoopNestLongOuterLoop; }
 112   bool is_flat_arrays() const { return _loop_flags & FlatArrays; }
 113 
 114   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
 115   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 116   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 117   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 118   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 119   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 120   void mark_strip_mined() { _loop_flags |= StripMined; }
 121   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 122   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
 123   void mark_subword_loop() { _loop_flags |= SubwordLoop; }
 124   void mark_loop_nest_inner_loop() { _loop_flags |= LoopNestInnerLoop; }
 125   void mark_loop_nest_outer_loop() { _loop_flags |= LoopNestLongOuterLoop; }
 126   void mark_flat_arrays() { _loop_flags |= FlatArrays; }
 127 
 128   int unswitch_max() { return _unswitch_max; }
 129   int unswitch_count() { return _unswitch_count; }
 130 
 131   void set_unswitch_count(int val) {
 132     assert (val <= unswitch_max(), "too many unswitches");
 133     _unswitch_count = val;
 134   }
 135 
 136   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 137   float profile_trip_cnt()             { return _profile_trip_cnt; }
 138 
 139   LoopNode(Node *entry, Node *backedge)
 140     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
 141       _profile_trip_cnt(COUNT_UNKNOWN) {
 142     init_class_id(Class_Loop);
 143     init_req(EntryControl, entry);
 144     init_req(LoopBackControl, backedge);
 145   }
 146 
 147   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 148   virtual int Opcode() const;
 149   bool can_be_counted_loop(PhaseValues* phase) const {
 150     return req() == 3 && in(0) != nullptr &&
 151       in(1) != nullptr && phase->type(in(1)) != Type::TOP &&
 152       in(2) != nullptr && phase->type(in(2)) != Type::TOP;
 153   }
 154   bool is_valid_counted_loop(BasicType bt) const;
 155 #ifndef PRODUCT
 156   virtual void dump_spec(outputStream *st) const;
 157 #endif
 158 
 159   void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
 160   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 161   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return nullptr; }
 162   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return nullptr; }
 163   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return nullptr; }
 164   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return nullptr; }
 165 };
 166 
 167 //------------------------------Counted Loops----------------------------------
 168 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 169 // path (and maybe some other exit paths).  The trip-counter exit is always
 170 // last in the loop.  The trip-counter have to stride by a constant;
 171 // the exit value is also loop invariant.
 172 
 173 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 174 // CountedLoopNode has the incoming loop control and the loop-back-control
 175 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 176 // CountedLoopEndNode has an incoming control (possibly not the
 177 // CountedLoopNode if there is control flow in the loop), the post-increment
 178 // trip-counter value, and the limit.  The trip-counter value is always of
 179 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 180 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 181 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 182 // CountedLoopEndNode also takes in the loop-invariant limit value.
 183 
 184 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 185 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 186 // via the old-trip-counter from the Op node.
 187 
 188 //------------------------------CountedLoopNode--------------------------------
 189 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 190 // inputs the incoming loop-start control and the loop-back control, so they
 191 // act like RegionNodes.  They also take in the initial trip counter, the
 192 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 193 // produce a loop-body control and the trip counter value.  Since
 194 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 195 
 196 class BaseCountedLoopNode : public LoopNode {
 197 public:
 198   BaseCountedLoopNode(Node *entry, Node *backedge)
 199     : LoopNode(entry, backedge) {
 200   }
 201 
 202   Node *init_control() const { return in(EntryControl); }
 203   Node *back_control() const { return in(LoopBackControl); }
 204 
 205   Node* init_trip() const;
 206   Node* stride() const;
 207   bool stride_is_con() const;
 208   Node* limit() const;
 209   Node* incr() const;
 210   Node* phi() const;
 211 
 212   BaseCountedLoopEndNode* loopexit_or_null() const;
 213   BaseCountedLoopEndNode* loopexit() const;
 214 
 215   virtual BasicType bt() const = 0;
 216 
 217   jlong stride_con() const;
 218 
 219   static BaseCountedLoopNode* make(Node* entry, Node* backedge, BasicType bt);
 220 };
 221 
 222 
 223 class CountedLoopNode : public BaseCountedLoopNode {
 224   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 225   // the semantics so it does not appear in the hash & cmp functions.
 226   virtual uint size_of() const { return sizeof(*this); }
 227 
 228   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 229   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 230   node_idx_t _main_idx;
 231 
 232   // Known trip count calculated by compute_exact_trip_count()
 233   uint  _trip_count;
 234 
 235   // Log2 of original loop bodies in unrolled loop
 236   int _unrolled_count_log2;
 237 
 238   // Node count prior to last unrolling - used to decide if
 239   // unroll,optimize,unroll,optimize,... is making progress
 240   int _node_count_before_unroll;
 241 
 242   // If slp analysis is performed we record the maximum
 243   // vector mapped unroll factor here
 244   int _slp_maximum_unroll_factor;
 245 
 246 public:
 247   CountedLoopNode(Node *entry, Node *backedge)
 248     : BaseCountedLoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 249       _unrolled_count_log2(0), _node_count_before_unroll(0),
 250       _slp_maximum_unroll_factor(0) {
 251     init_class_id(Class_CountedLoop);
 252     // Initialize _trip_count to the largest possible value.
 253     // Will be reset (lower) if the loop's trip count is known.
 254   }
 255 
 256   virtual int Opcode() const;
 257   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 258 
 259   CountedLoopEndNode* loopexit_or_null() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 260   CountedLoopEndNode* loopexit() const { return (CountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 261   int   stride_con() const;
 262 
 263   // Match increment with optional truncation
 264   static Node*
 265   match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInteger** trunc_type,
 266                                       BasicType bt);
 267 
 268   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 269   // can run short a few iterations and may start a few iterations in.
 270   // It will be RCE'd and unrolled and aligned.
 271 
 272   // A following 'post' loop will run any remaining iterations.  Used
 273   // during Range Check Elimination, the 'post' loop will do any final
 274   // iterations with full checks.  Also used by Loop Unrolling, where
 275   // the 'post' loop will do any epilog iterations needed.  Basically,
 276   // a 'post' loop can not profitably be further unrolled or RCE'd.
 277 
 278   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 279   // it may do under-flow checks for RCE and may do alignment iterations
 280   // so the following main loop 'knows' that it is striding down cache
 281   // lines.
 282 
 283   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 284   // Aligned, may be missing it's pre-loop.
 285   bool is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 286   bool is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 287   bool is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 288   bool is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 289   bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 290   bool has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 291   bool is_unroll_only   () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 292   bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 293   bool has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 294   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 295 
 296   IfNode* find_multiversion_if_from_multiversion_fast_main_loop();
 297 
 298   int main_idx() const { return _main_idx; }
 299 
 300 
 301   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 302   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 303   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 304   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 305 
 306   void set_trip_count(uint tc) { _trip_count = tc; }
 307   uint trip_count()            { return _trip_count; }
 308 
 309   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 310   void set_exact_trip_count(uint tc) {
 311     _trip_count = tc;
 312     _loop_flags |= HasExactTripCount;
 313   }
 314   void set_nonexact_trip_count() {
 315     _loop_flags &= ~HasExactTripCount;
 316   }
 317   void set_notpassed_slp() {
 318     _loop_flags &= ~PassedSlpAnalysis;
 319   }
 320 
 321   void double_unrolled_count() { _unrolled_count_log2++; }
 322   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 323 
 324   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 325   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 326   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 327   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 328 
 329   // Multiversioning allows us to duplicate a CountedLoop, and have two versions, and the multiversion_if
 330   // decides which one is taken:
 331   // (1) fast_loop: We enter this loop by default, by default the multiversion_if has its condition set to
 332   //                "true", guarded by a OpaqueMultiversioning. If we want to make a speculative assumption
 333   //                for an optimization, we can add the runtime-check to the multiversion_if, and if the
 334   //                assumption fails we take the slow_loop instead, where we do not make the same speculative
 335   //                assumption.
 336   //                We call it the "fast_loop" because it has more optimizations, enabled by the speculative
 337   //                runtime-checks at the multiversion_if, and we expect the fast_loop to execute faster.
 338   // (2) slow_loop: By default, it is not taken, until a runtime-check is added to the multiversion_if while
 339   //                optimizing the fast_looop. If such a runtime-check is never added, then after loop-opts
 340   //                the multiversion_if constant folds to true, and the slow_loop is folded away. To save
 341   //                compile time, we delay the optimization of the slow_loop until a runtime-check is added
 342   //                to the multiversion_if, at which point we resume optimizations for the slow_loop.
 343   //                We call it the "slow_loop" because it has fewer optimizations, since this is the fall-back
 344   //                loop where we do not make any of the speculative assumptions we make for the fast_loop.
 345   //                Hence, we expect the slow_loop to execute slower.
 346   bool is_multiversion()                   const { return (_loop_flags & MultiversionFlagsMask) != Normal; }
 347   bool is_multiversion_fast_loop()         const { return (_loop_flags & MultiversionFlagsMask) == MultiversionFastLoop; }
 348   bool is_multiversion_slow_loop()         const { return (_loop_flags & MultiversionFlagsMask) == MultiversionSlowLoop; }
 349   bool is_multiversion_delayed_slow_loop() const { return (_loop_flags & MultiversionFlagsMask) == MultiversionDelayedSlowLoop; }
 350   void set_multiversion_fast_loop()         { assert(!is_multiversion(), ""); _loop_flags |= MultiversionFastLoop; }
 351   void set_multiversion_slow_loop()         { assert(!is_multiversion(), ""); _loop_flags |= MultiversionSlowLoop; }
 352   void set_multiversion_delayed_slow_loop() { assert(!is_multiversion(), ""); _loop_flags |= MultiversionDelayedSlowLoop; }
 353   void set_no_multiversion()                { assert( is_multiversion(), ""); _loop_flags &= ~MultiversionFlagsMask; }
 354 
 355   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
 356   OuterStripMinedLoopNode* outer_loop() const;
 357   virtual IfTrueNode* outer_loop_tail() const;
 358   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 359   virtual IfFalseNode* outer_loop_exit() const;
 360   virtual SafePointNode* outer_safepoint() const;
 361 
 362   Node* skip_assertion_predicates_with_halt();
 363 
 364   virtual BasicType bt() const {
 365     return T_INT;
 366   }
 367 
 368   Node* is_canonical_loop_entry();
 369   CountedLoopEndNode* find_pre_loop_end();
 370 
 371   Node* uncasted_init_trip(bool uncasted);
 372 
 373 #ifndef PRODUCT
 374   virtual void dump_spec(outputStream *st) const;
 375 #endif
 376 };
 377 
 378 class LongCountedLoopNode : public BaseCountedLoopNode {
 379 public:
 380   LongCountedLoopNode(Node *entry, Node *backedge)
 381     : BaseCountedLoopNode(entry, backedge) {
 382     init_class_id(Class_LongCountedLoop);
 383   }
 384 
 385   virtual int Opcode() const;
 386 
 387   virtual BasicType bt() const {
 388     return T_LONG;
 389   }
 390 
 391   LongCountedLoopEndNode* loopexit_or_null() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit_or_null(); }
 392   LongCountedLoopEndNode* loopexit() const { return (LongCountedLoopEndNode*) BaseCountedLoopNode::loopexit(); }
 393 };
 394 
 395 
 396 //------------------------------CountedLoopEndNode-----------------------------
 397 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 398 // IfNodes.
 399 
 400 class BaseCountedLoopEndNode : public IfNode {
 401 public:
 402   enum { TestControl, TestValue };
 403   BaseCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 404     : IfNode(control, test, prob, cnt) {
 405     init_class_id(Class_BaseCountedLoopEnd);
 406   }
 407 
 408   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : nullptr; }
 409   Node* incr() const                { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 410   Node* limit() const               { Node* tmp = cmp_node(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 411   Node* stride() const              { Node* tmp = incr(); return (tmp && tmp->req() == 3) ? tmp->in(2) : nullptr; }
 412   Node* init_trip() const           { Node* tmp = phi(); return (tmp && tmp->req() == 3) ? tmp->in(1) : nullptr; }
 413   bool stride_is_con() const        { Node *tmp = stride(); return (tmp != nullptr && tmp->is_Con()); }
 414 
 415   PhiNode* phi() const {
 416     Node* tmp = incr();
 417     if (tmp && tmp->req() == 3) {
 418       Node* phi = tmp->in(1);
 419       if (phi->is_Phi()) {
 420         return phi->as_Phi();
 421       }
 422     }
 423     return nullptr;
 424   }
 425 
 426   BaseCountedLoopNode* loopnode() const {
 427     // The CountedLoopNode that goes with this CountedLoopEndNode may
 428     // have been optimized out by the IGVN so be cautious with the
 429     // pattern matching on the graph
 430     PhiNode* iv_phi = phi();
 431     if (iv_phi == nullptr) {
 432       return nullptr;
 433     }
 434     Node* ln = iv_phi->in(0);
 435     if (!ln->is_BaseCountedLoop() || ln->as_BaseCountedLoop()->loopexit_or_null() != this) {
 436       return nullptr;
 437     }
 438     if (ln->as_BaseCountedLoop()->bt() != bt()) {
 439       return nullptr;
 440     }
 441     return ln->as_BaseCountedLoop();
 442   }
 443 
 444   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 445 
 446   jlong stride_con() const;
 447   virtual BasicType bt() const = 0;
 448 
 449   static BaseCountedLoopEndNode* make(Node* control, Node* test, float prob, float cnt, BasicType bt);
 450 };
 451 
 452 class CountedLoopEndNode : public BaseCountedLoopEndNode {
 453 public:
 454 
 455   CountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 456     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 457     init_class_id(Class_CountedLoopEnd);
 458   }
 459   virtual int Opcode() const;
 460 
 461   CountedLoopNode* loopnode() const {
 462     return (CountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 463   }
 464 
 465   virtual BasicType bt() const {
 466     return T_INT;
 467   }
 468 
 469 #ifndef PRODUCT
 470   virtual void dump_spec(outputStream *st) const;
 471 #endif
 472 };
 473 
 474 class LongCountedLoopEndNode : public BaseCountedLoopEndNode {
 475 public:
 476   LongCountedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 477     : BaseCountedLoopEndNode(control, test, prob, cnt) {
 478     init_class_id(Class_LongCountedLoopEnd);
 479   }
 480 
 481   LongCountedLoopNode* loopnode() const {
 482     return (LongCountedLoopNode*) BaseCountedLoopEndNode::loopnode();
 483   }
 484 
 485   virtual int Opcode() const;
 486 
 487   virtual BasicType bt() const {
 488     return T_LONG;
 489   }
 490 };
 491 
 492 
 493 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit_or_null() const {
 494   Node* bctrl = back_control();
 495   if (bctrl == nullptr) return nullptr;
 496 
 497   Node* lexit = bctrl->in(0);
 498   if (!lexit->is_BaseCountedLoopEnd()) {
 499     return nullptr;
 500   }
 501   BaseCountedLoopEndNode* result = lexit->as_BaseCountedLoopEnd();
 502   if (result->bt() != bt()) {
 503     return nullptr;
 504   }
 505   return result;
 506 }
 507 
 508 inline BaseCountedLoopEndNode* BaseCountedLoopNode::loopexit() const {
 509   BaseCountedLoopEndNode* cle = loopexit_or_null();
 510   assert(cle != nullptr, "loopexit is null");
 511   return cle;
 512 }
 513 
 514 inline Node* BaseCountedLoopNode::init_trip() const {
 515   BaseCountedLoopEndNode* cle = loopexit_or_null();
 516   return cle != nullptr ? cle->init_trip() : nullptr;
 517 }
 518 inline Node* BaseCountedLoopNode::stride() const {
 519   BaseCountedLoopEndNode* cle = loopexit_or_null();
 520   return cle != nullptr ? cle->stride() : nullptr;
 521 }
 522 
 523 inline bool BaseCountedLoopNode::stride_is_con() const {
 524   BaseCountedLoopEndNode* cle = loopexit_or_null();
 525   return cle != nullptr && cle->stride_is_con();
 526 }
 527 inline Node* BaseCountedLoopNode::limit() const {
 528   BaseCountedLoopEndNode* cle = loopexit_or_null();
 529   return cle != nullptr ? cle->limit() : nullptr;
 530 }
 531 inline Node* BaseCountedLoopNode::incr() const {
 532   BaseCountedLoopEndNode* cle = loopexit_or_null();
 533   return cle != nullptr ? cle->incr() : nullptr;
 534 }
 535 inline Node* BaseCountedLoopNode::phi() const {
 536   BaseCountedLoopEndNode* cle = loopexit_or_null();
 537   return cle != nullptr ? cle->phi() : nullptr;
 538 }
 539 
 540 inline jlong BaseCountedLoopNode::stride_con() const {
 541   BaseCountedLoopEndNode* cle = loopexit_or_null();
 542   return cle != nullptr ? cle->stride_con() : 0;
 543 }
 544 
 545 
 546 //------------------------------LoopLimitNode-----------------------------
 547 // Counted Loop limit node which represents exact final iterator value:
 548 // trip_count = (limit - init_trip + stride - 1)/stride
 549 // final_value= trip_count * stride + init_trip.
 550 // Use HW instructions to calculate it when it can overflow in integer.
 551 // Note, final_value should fit into integer since counted loop has
 552 // limit check: limit <= max_int-stride.
 553 class LoopLimitNode : public Node {
 554   enum { Init=1, Limit=2, Stride=3 };
 555  public:
 556   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(nullptr,init,limit,stride) {
 557     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 558     init_flags(Flag_is_macro);
 559     C->add_macro_node(this);
 560   }
 561   virtual int Opcode() const;
 562   virtual const Type *bottom_type() const { return TypeInt::INT; }
 563   virtual uint ideal_reg() const { return Op_RegI; }
 564   virtual const Type* Value(PhaseGVN* phase) const;
 565   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 566   virtual Node* Identity(PhaseGVN* phase);
 567 };
 568 
 569 // Support for strip mining
 570 class OuterStripMinedLoopNode : public LoopNode {
 571 private:
 572   static void fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 573 
 574 public:
 575   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 576     : LoopNode(entry, backedge) {
 577     init_class_id(Class_OuterStripMinedLoop);
 578     init_flags(Flag_is_macro);
 579     C->add_macro_node(this);
 580   }
 581 
 582   virtual int Opcode() const;
 583 
 584   virtual IfTrueNode* outer_loop_tail() const;
 585   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 586   virtual IfFalseNode* outer_loop_exit() const;
 587   virtual SafePointNode* outer_safepoint() const;
 588   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 589 
 590   void remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const;
 591 
 592   void transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 593 
 594   static Node* register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop);
 595 
 596   Node* register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
 597                          PhaseIdealLoop* iloop);
 598 };
 599 
 600 class OuterStripMinedLoopEndNode : public IfNode {
 601 public:
 602   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 603     : IfNode(control, test, prob, cnt) {
 604     init_class_id(Class_OuterStripMinedLoopEnd);
 605   }
 606 
 607   virtual int Opcode() const;
 608 
 609   virtual const Type* Value(PhaseGVN* phase) const;
 610   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 611 
 612   bool is_expanded(PhaseGVN *phase) const;
 613 };
 614 
 615 // -----------------------------IdealLoopTree----------------------------------
 616 class IdealLoopTree : public ResourceObj {
 617 public:
 618   IdealLoopTree *_parent;       // Parent in loop tree
 619   IdealLoopTree *_next;         // Next sibling in loop tree
 620   IdealLoopTree *_child;        // First child in loop tree
 621 
 622   // The head-tail backedge defines the loop.
 623   // If a loop has multiple backedges, this is addressed during cleanup where
 624   // we peel off the multiple backedges,  merging all edges at the bottom and
 625   // ensuring that one proper backedge flow into the loop.
 626   Node *_head;                  // Head of loop
 627   Node *_tail;                  // Tail of loop
 628   inline Node *tail();          // Handle lazy update of _tail field
 629   inline Node *head();          // Handle lazy update of _head field
 630   PhaseIdealLoop* _phase;
 631   int _local_loop_unroll_limit;
 632   int _local_loop_unroll_factor;
 633 
 634   Node_List _body;              // Loop body for inner loops
 635 
 636   uint16_t _nest;               // Nesting depth
 637   uint8_t _irreducible:1,       // True if irreducible
 638           _has_call:1,          // True if has call safepoint
 639           _has_sfpt:1,          // True if has non-call safepoint
 640           _rce_candidate:1,     // True if candidate for range check elimination
 641           _has_range_checks:1,
 642           _has_range_checks_computed:1;
 643 
 644   Node_List* _safepts;          // List of safepoints in this loop
 645   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 646   bool  _allow_optimizations;   // Allow loop optimizations
 647 
 648   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 649     : _parent(nullptr), _next(nullptr), _child(nullptr),
 650       _head(head), _tail(tail),
 651       _phase(phase),
 652       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
 653       _body(Compile::current()->comp_arena()),
 654       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 655       _has_range_checks(0), _has_range_checks_computed(0),
 656       _safepts(nullptr),
 657       _required_safept(nullptr),
 658       _allow_optimizations(true)
 659   {
 660     precond(_head != nullptr);
 661     precond(_tail != nullptr);
 662   }
 663 
 664   // Is 'l' a member of 'this'?
 665   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 666 
 667   // Set loop nesting depth.  Accumulate has_call bits.
 668   int set_nest( uint depth );
 669 
 670   // Split out multiple fall-in edges from the loop header.  Move them to a
 671   // private RegionNode before the loop.  This becomes the loop landing pad.
 672   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 673 
 674   // Split out the outermost loop from this shared header.
 675   void split_outer_loop( PhaseIdealLoop *phase );
 676 
 677   // Merge all the backedges from the shared header into a private Region.
 678   // Feed that region as the one backedge to this loop.
 679   void merge_many_backedges( PhaseIdealLoop *phase );
 680 
 681   // Split shared headers and insert loop landing pads.
 682   // Insert a LoopNode to replace the RegionNode.
 683   // Returns TRUE if loop tree is structurally changed.
 684   bool beautify_loops( PhaseIdealLoop *phase );
 685 
 686   // Perform optimization to use the loop predicates for null checks and range checks.
 687   // Applies to any loop level (not just the innermost one)
 688   bool loop_predication( PhaseIdealLoop *phase);
 689   bool can_apply_loop_predication();
 690 
 691   // Perform iteration-splitting on inner loops.  Split iterations to
 692   // avoid range checks or one-shot null checks.  Returns false if the
 693   // current round of loop opts should stop.
 694   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 695 
 696   // Driver for various flavors of iteration splitting.  Returns false
 697   // if the current round of loop opts should stop.
 698   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 699 
 700   // Given dominators, try to find loops with calls that must always be
 701   // executed (call dominates loop tail).  These loops do not need non-call
 702   // safepoints (ncsfpt).
 703   void check_safepts(VectorSet &visited, Node_List &stack);
 704 
 705   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 706   // encountered.
 707   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 708 
 709   // Remove safepoints from loop. Optionally keeping one.
 710   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 711 
 712   // Convert to counted loops where possible
 713   void counted_loop( PhaseIdealLoop *phase );
 714 
 715   // Check for Node being a loop-breaking test
 716   Node *is_loop_exit(Node *iff) const;
 717 
 718   // Remove simplistic dead code from loop body
 719   void DCE_loop_body();
 720 
 721   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 722   // Replace with a 1-in-10 exit guess.
 723   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 724 
 725   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 726   // Useful for unrolling loops with NO array accesses.
 727   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 728 
 729   // Return TRUE or FALSE if the loop should be unswitched -- clone
 730   // loop with an invariant test
 731   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 732   bool no_unswitch_candidate() const;
 733 
 734   // Micro-benchmark spamming.  Remove empty loops.
 735   bool do_remove_empty_loop( PhaseIdealLoop *phase );
 736 
 737   // Convert one iteration loop into normal code.
 738   bool do_one_iteration_loop( PhaseIdealLoop *phase );
 739 
 740   // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
 741   // move some loop-invariant test (usually a null-check) before the loop.
 742   bool policy_peeling(PhaseIdealLoop *phase);
 743 
 744   uint estimate_peeling(PhaseIdealLoop *phase);
 745 
 746   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 747   // known trip count in the counted loop node.
 748   bool policy_maximally_unroll(PhaseIdealLoop *phase) const;
 749 
 750   // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll
 751   // if the loop is a counted loop and the loop body is small enough.
 752   bool policy_unroll(PhaseIdealLoop *phase);
 753 
 754   // Loop analyses to map to a maximal superword unrolling for vectorization.
 755   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 756 
 757   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 758   // Gather a list of IF tests that are dominated by iteration splitting;
 759   // also gather the end of the first split and the start of the 2nd split.
 760   bool policy_range_check(PhaseIdealLoop* phase, bool provisional, BasicType bt) const;
 761 
 762   // Return TRUE if "iff" is a range check.
 763   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode* predicate_proj)) const;
 764   bool is_range_check_if(IfProjNode* if_success_proj, PhaseIdealLoop* phase, BasicType bt, Node* iv, Node*& range, Node*& offset,
 765                          jlong& scale) const;
 766 
 767   // Estimate the number of nodes required when cloning a loop (body).
 768   uint est_loop_clone_sz(uint factor) const;
 769   // Estimate the number of nodes required when unrolling a loop (body).
 770   uint est_loop_unroll_sz(uint factor) const;
 771 
 772   // Compute loop trip count if possible
 773   void compute_trip_count(PhaseIdealLoop* phase);
 774 
 775   // Compute loop trip count from profile data
 776   float compute_profile_trip_cnt_helper(Node* n);
 777   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 778 
 779   // Reassociate invariant expressions.
 780   void reassociate_invariants(PhaseIdealLoop *phase);
 781   // Reassociate invariant binary expressions.
 782   Node* reassociate(Node* n1, PhaseIdealLoop *phase);
 783   // Reassociate invariant add, subtract, and compare expressions.
 784   Node* reassociate_add_sub_cmp(Node* n1, int inv1_idx, int inv2_idx, PhaseIdealLoop* phase);
 785   // Return nonzero index of invariant operand if invariant and variant
 786   // are combined with an associative binary. Helper for reassociate_invariants.
 787   int find_invariant(Node* n, PhaseIdealLoop *phase);
 788   // Return TRUE if "n" is associative.
 789   bool is_associative(Node* n, Node* base=nullptr);
 790   // Return TRUE if "n" is an associative cmp node.
 791   bool is_associative_cmp(Node* n);
 792 
 793   // Return true if n is invariant
 794   bool is_invariant(Node* n) const;
 795 
 796   // Put loop body on igvn work list
 797   void record_for_igvn();
 798 
 799   bool is_root() { return _parent == nullptr; }
 800   // A proper/reducible loop w/o any (occasional) dead back-edge.
 801   bool is_loop() { return !_irreducible && !tail()->is_top(); }
 802   bool is_counted()   { return is_loop() && _head->is_CountedLoop(); }
 803   bool is_innermost() { return is_loop() && _child == nullptr; }
 804 
 805   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 806 
 807   bool compute_has_range_checks() const;
 808   bool range_checks_present() {
 809     if (!_has_range_checks_computed) {
 810       if (compute_has_range_checks()) {
 811         _has_range_checks = 1;
 812       }
 813       _has_range_checks_computed = 1;
 814     }
 815     return _has_range_checks;
 816   }
 817 
 818   // Return the parent's IdealLoopTree for a strip mined loop which is the outer strip mined loop.
 819   // In all other cases, return this.
 820   IdealLoopTree* skip_strip_mined() {
 821     return _head->as_Loop()->is_strip_mined() ? _parent : this;
 822   }
 823 
 824 #ifndef PRODUCT
 825   void dump_head();       // Dump loop head only
 826   void dump();            // Dump this loop recursively
 827 #endif
 828 
 829 #ifdef ASSERT
 830   GrowableArray<IdealLoopTree*> collect_sorted_children() const;
 831   bool verify_tree(IdealLoopTree* loop_verify) const;
 832 #endif
 833 
 834  private:
 835   enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop.
 836 
 837   // Estimate the number of nodes resulting from control and data flow merge.
 838   uint est_loop_flow_merge_sz() const;
 839 
 840   // Check if the number of residual iterations is large with unroll_cnt.
 841   // Return true if the residual iterations are more than 10% of the trip count.
 842   bool is_residual_iters_large(int unroll_cnt, CountedLoopNode *cl) const {
 843     return (unroll_cnt - 1) * (100.0 / LoopPercentProfileLimit) > cl->profile_trip_cnt();
 844   }
 845 
 846   void collect_loop_core_nodes(PhaseIdealLoop* phase, Unique_Node_List& wq) const;
 847 
 848   bool empty_loop_with_data_nodes(PhaseIdealLoop* phase) const;
 849 
 850   void enqueue_data_nodes(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq) const;
 851 
 852   bool process_safepoint(PhaseIdealLoop* phase, Unique_Node_List& empty_loop_nodes, Unique_Node_List& wq,
 853                          Node* sfpt) const;
 854 
 855   bool empty_loop_candidate(PhaseIdealLoop* phase) const;
 856 
 857   bool empty_loop_with_extra_nodes_candidate(PhaseIdealLoop* phase) const;
 858 };
 859 
 860 // -----------------------------PhaseIdealLoop---------------------------------
 861 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees
 862 // into a loop tree. Drives the loop-based transformations on the ideal graph.
 863 class PhaseIdealLoop : public PhaseTransform {
 864   friend class IdealLoopTree;
 865   friend class SuperWord;
 866   friend class ShenandoahBarrierC2Support;
 867   friend class AutoNodeBudget;
 868 
 869   // Map loop membership for CFG nodes, and ctrl for non-CFG nodes.
 870   Node_List _loop_or_ctrl;
 871 
 872   // Pre-computed def-use info
 873   PhaseIterGVN &_igvn;
 874 
 875   // Head of loop tree
 876   IdealLoopTree* _ltree_root;
 877 
 878   // Array of pre-order numbers, plus post-visited bit.
 879   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 880   // ODD for post-visited.  Other bits are the pre-order number.
 881   uint *_preorders;
 882   uint _max_preorder;
 883 
 884   ReallocMark _nesting; // Safety checks for arena reallocation
 885 
 886   const PhaseIdealLoop* _verify_me;
 887   bool _verify_only;
 888 
 889   // Allocate _preorders[] array
 890   void allocate_preorders() {
 891     _max_preorder = C->unique()+8;
 892     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 893     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 894   }
 895 
 896   // Allocate _preorders[] array
 897   void reallocate_preorders() {
 898     _nesting.check(); // Check if a potential re-allocation in the resource arena is safe
 899     if ( _max_preorder < C->unique() ) {
 900       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 901       _max_preorder = C->unique();
 902     }
 903     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 904   }
 905 
 906   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 907   // adds new nodes.
 908   void check_grow_preorders( ) {
 909     _nesting.check(); // Check if a potential re-allocation in the resource arena is safe
 910     if ( _max_preorder < C->unique() ) {
 911       uint newsize = _max_preorder<<1;  // double size of array
 912       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 913       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 914       _max_preorder = newsize;
 915     }
 916   }
 917   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 918   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 919   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 920   void set_preorder_visited( Node *n, int pre_order ) {
 921     assert( !is_visited( n ), "already set" );
 922     _preorders[n->_idx] = (pre_order<<1);
 923   };
 924   // Return pre-order number.
 925   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 926 
 927   // Check for being post-visited.
 928   // Should be previsited already (checked with assert(is_visited(n))).
 929   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 930 
 931   // Mark as post visited
 932   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 933 
 934 public:
 935   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 936   // Returns true if "n" is a data node, false if it's a control node.
 937   bool has_ctrl(const Node* n) const { return ((intptr_t)_loop_or_ctrl[n->_idx]) & 1; }
 938 
 939 private:
 940   // clear out dead code after build_loop_late
 941   Node_List _deadlist;
 942   Node_List _zero_trip_guard_opaque_nodes;
 943   Node_List _multiversion_opaque_nodes;
 944 
 945   // Support for faster execution of get_late_ctrl()/dom_lca()
 946   // when a node has many uses and dominator depth is deep.
 947   GrowableArray<jlong> _dom_lca_tags;
 948   uint _dom_lca_tags_round;
 949   void   init_dom_lca_tags();
 950 
 951   // Helper for debugging bad dominance relationships
 952   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 953 
 954   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 955 
 956   // Inline wrapper for frequent cases:
 957   // 1) only one use
 958   // 2) a use is the same as the current LCA passed as 'n1'
 959   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 960     assert( n->is_CFG(), "" );
 961     // Fast-path null lca
 962     if( lca != nullptr && lca != n ) {
 963       assert( lca->is_CFG(), "" );
 964       // find LCA of all uses
 965       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 966     }
 967     return find_non_split_ctrl(n);
 968   }
 969   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 970 
 971   // Helper function for directing control inputs away from CFG split points.
 972   Node *find_non_split_ctrl( Node *ctrl ) const {
 973     if (ctrl != nullptr) {
 974       if (ctrl->is_MultiBranch()) {
 975         ctrl = ctrl->in(0);
 976       }
 977       assert(ctrl->is_CFG(), "CFG");
 978     }
 979     return ctrl;
 980   }
 981 
 982   void cast_incr_before_loop(Node* incr, Node* ctrl, CountedLoopNode* loop);
 983 
 984 #ifdef ASSERT
 985   static void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
 986 #endif
 987  private:
 988   static void get_opaque_template_assertion_predicate_nodes(ParsePredicateSuccessProj* parse_predicate_proj,
 989                                                             Unique_Node_List& list);
 990   void update_main_loop_assertion_predicates(CountedLoopNode* new_main_loop_head, int stride_con_before_unroll);
 991   void initialize_assertion_predicates_for_peeled_loop(CountedLoopNode* peeled_loop_head,
 992                                                        CountedLoopNode* remaining_loop_head,
 993                                                        uint first_node_index_in_cloned_loop_body,
 994                                                        const Node_List& old_new);
 995   void initialize_assertion_predicates_for_main_loop(CountedLoopNode* pre_loop_head,
 996                                                      CountedLoopNode* main_loop_head,
 997                                                      uint first_node_index_in_pre_loop_body,
 998                                                      uint last_node_index_in_pre_loop_body,
 999                                                      DEBUG_ONLY(uint last_node_index_from_backedge_goo COMMA)
1000                                                      const Node_List& old_new);
1001   void initialize_assertion_predicates_for_post_loop(CountedLoopNode* main_loop_head, CountedLoopNode* post_loop_head,
1002                                                      uint first_node_index_in_cloned_loop_body);
1003   void create_assertion_predicates_at_loop(CountedLoopNode* source_loop_head, CountedLoopNode* target_loop_head,
1004                                            const NodeInLoopBody& _node_in_loop_body, bool kill_old_template);
1005   void create_assertion_predicates_at_main_or_post_loop(CountedLoopNode* source_loop_head,
1006                                                         CountedLoopNode* target_loop_head,
1007                                                         const NodeInLoopBody& _node_in_loop_body,
1008                                                         bool kill_old_template);
1009   void rewire_old_target_loop_entry_dependency_to_new_entry(CountedLoopNode* target_loop_head,
1010                                                             const Node* old_target_loop_entry,
1011                                                             uint node_index_before_new_assertion_predicate_nodes);
1012   void insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, Node* cmp_limit,
1013                                          Node* bol);
1014   void log_loop_tree();
1015 
1016 public:
1017 
1018   PhaseIterGVN &igvn() const { return _igvn; }
1019 
1020   bool has_node(const Node* n) const {
1021     guarantee(n != nullptr, "No Node.");
1022     return _loop_or_ctrl[n->_idx] != nullptr;
1023   }
1024   // check if transform created new nodes that need _ctrl recorded
1025   Node *get_late_ctrl( Node *n, Node *early );
1026   Node *get_early_ctrl( Node *n );
1027   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
1028   void set_early_ctrl(Node* n, bool update_body);
1029   void set_subtree_ctrl(Node* n, bool update_body);
1030   void set_ctrl( Node *n, Node *ctrl ) {
1031     assert( !has_node(n) || has_ctrl(n), "" );
1032     assert( ctrl->in(0), "cannot set dead control node" );
1033     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
1034     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)ctrl + 1));
1035   }
1036   void set_root_as_ctrl(Node* n) {
1037     assert(!has_node(n) || has_ctrl(n), "");
1038     _loop_or_ctrl.map(n->_idx, (Node*)((intptr_t)C->root() + 1));
1039   }
1040   // Set control and update loop membership
1041   void set_ctrl_and_loop(Node* n, Node* ctrl) {
1042     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
1043     IdealLoopTree* new_loop = get_loop(ctrl);
1044     if (old_loop != new_loop) {
1045       if (old_loop->_child == nullptr) old_loop->_body.yank(n);
1046       if (new_loop->_child == nullptr) new_loop->_body.push(n);
1047     }
1048     set_ctrl(n, ctrl);
1049   }
1050   // Control nodes can be replaced or subsumed.  During this pass they
1051   // get their replacement Node in slot 1.  Instead of updating the block
1052   // location of all Nodes in the subsumed block, we lazily do it.  As we
1053   // pull such a subsumed block out of the array, we write back the final
1054   // correct block.
1055   Node* get_ctrl(const Node* i) {
1056     assert(has_node(i), "");
1057     Node *n = get_ctrl_no_update(i);
1058     _loop_or_ctrl.map(i->_idx, (Node*)((intptr_t)n + 1));
1059     assert(has_node(i) && has_ctrl(i), "");
1060     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
1061     return n;
1062   }
1063 
1064   bool is_dominator(Node* dominator, Node* n);
1065   bool is_strict_dominator(Node* dominator, Node* n);
1066 
1067   // return get_ctrl for a data node and self(n) for a CFG node
1068   Node* ctrl_or_self(Node* n) {
1069     if (has_ctrl(n))
1070       return get_ctrl(n);
1071     else {
1072       assert (n->is_CFG(), "must be a CFG node");
1073       return n;
1074     }
1075   }
1076 
1077   Node* get_ctrl_no_update_helper(const Node* i) const {
1078     assert(has_ctrl(i), "should be control, not loop");
1079     return (Node*)(((intptr_t)_loop_or_ctrl[i->_idx]) & ~1);
1080   }
1081 
1082   Node* get_ctrl_no_update(const Node* i) const {
1083     assert( has_ctrl(i), "" );
1084     Node *n = get_ctrl_no_update_helper(i);
1085     if (!n->in(0)) {
1086       // Skip dead CFG nodes
1087       do {
1088         n = get_ctrl_no_update_helper(n);
1089       } while (!n->in(0));
1090       n = find_non_split_ctrl(n);
1091     }
1092     return n;
1093   }
1094 
1095   // Check for loop being set
1096   // "n" must be a control node. Returns true if "n" is known to be in a loop.
1097   bool has_loop( Node *n ) const {
1098     assert(!has_node(n) || !has_ctrl(n), "");
1099     return has_node(n);
1100   }
1101   // Set loop
1102   void set_loop( Node *n, IdealLoopTree *loop ) {
1103     _loop_or_ctrl.map(n->_idx, (Node*)loop);
1104   }
1105   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
1106   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
1107   // from old_node to new_node to support the lazy update.  Reference
1108   // replaces loop reference, since that is not needed for dead node.
1109   void lazy_update(Node *old_node, Node *new_node) {
1110     assert(old_node != new_node, "no cycles please");
1111     // Re-use the side array slot for this node to provide the
1112     // forwarding pointer.
1113     _loop_or_ctrl.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
1114   }
1115   void lazy_replace(Node *old_node, Node *new_node) {
1116     _igvn.replace_node(old_node, new_node);
1117     lazy_update(old_node, new_node);
1118   }
1119 
1120 private:
1121 
1122   // Place 'n' in some loop nest, where 'n' is a CFG node
1123   void build_loop_tree();
1124   int build_loop_tree_impl(Node* n, int pre_order);
1125   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
1126   // loop tree, not the root.
1127   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
1128 
1129 #ifdef ASSERT
1130   // verify that regions in irreducible loops are marked is_in_irreducible_loop
1131   void verify_regions_in_irreducible_loops();
1132   bool is_in_irreducible_loop(RegionNode* region);
1133 #endif
1134 
1135   // Place Data nodes in some loop nest
1136   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1137   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
1138   void build_loop_late_post_work(Node* n, bool pinned);
1139   void build_loop_late_post(Node* n);
1140   void verify_strip_mined_scheduling(Node *n, Node* least);
1141 
1142   // Array of immediate dominance info for each CFG node indexed by node idx
1143 private:
1144   uint _idom_size;
1145   Node **_idom;                  // Array of immediate dominators
1146   uint *_dom_depth;              // Used for fast LCA test
1147   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
1148   LoopOptsMode _mode;
1149 
1150   // build the loop tree and perform any requested optimizations
1151   void build_and_optimize();
1152 
1153   // Dominators for the sea of nodes
1154   void Dominators();
1155 
1156   // Compute the Ideal Node to Loop mapping
1157   PhaseIdealLoop(PhaseIterGVN& igvn, LoopOptsMode mode) :
1158     PhaseTransform(Ideal_Loop),
1159     _loop_or_ctrl(igvn.C->comp_arena()),
1160     _igvn(igvn),
1161     _verify_me(nullptr),
1162     _verify_only(false),
1163     _mode(mode),
1164     _nodes_required(UINT_MAX) {
1165     assert(mode != LoopOptsVerify, "wrong constructor to verify IdealLoop");
1166     build_and_optimize();
1167   }
1168 
1169 #ifndef PRODUCT
1170   // Verify that verify_me made the same decisions as a fresh run
1171   // or only verify that the graph is valid if verify_me is null.
1172   PhaseIdealLoop(PhaseIterGVN& igvn, const PhaseIdealLoop* verify_me = nullptr) :
1173     PhaseTransform(Ideal_Loop),
1174     _loop_or_ctrl(igvn.C->comp_arena()),
1175     _igvn(igvn),
1176     _verify_me(verify_me),
1177     _verify_only(verify_me == nullptr),
1178     _mode(LoopOptsVerify),
1179     _nodes_required(UINT_MAX) {
1180     DEBUG_ONLY(C->set_phase_verify_ideal_loop();)
1181     build_and_optimize();
1182     DEBUG_ONLY(C->reset_phase_verify_ideal_loop();)
1183   }
1184 #endif
1185 
1186   Node* insert_convert_node_if_needed(BasicType target, Node* input);
1187 
1188 public:
1189   Node* idom_no_update(Node* d) const {
1190     return idom_no_update(d->_idx);
1191   }
1192 
1193   Node* idom_no_update(uint didx) const {
1194     assert(didx < _idom_size, "oob");
1195     Node* n = _idom[didx];
1196     assert(n != nullptr,"Bad immediate dominator info.");
1197     while (n->in(0) == nullptr) { // Skip dead CFG nodes
1198       n = (Node*)(((intptr_t)_loop_or_ctrl[n->_idx]) & ~1);
1199       assert(n != nullptr,"Bad immediate dominator info.");
1200     }
1201     return n;
1202   }
1203 
1204   Node *idom(Node* d) const {
1205     return idom(d->_idx);
1206   }
1207 
1208   Node *idom(uint didx) const {
1209     Node *n = idom_no_update(didx);
1210     _idom[didx] = n; // Lazily remove dead CFG nodes from table.
1211     return n;
1212   }
1213 
1214   uint dom_depth(Node* d) const {
1215     guarantee(d != nullptr, "Null dominator info.");
1216     guarantee(d->_idx < _idom_size, "");
1217     return _dom_depth[d->_idx];
1218   }
1219   void set_idom(Node* d, Node* n, uint dom_depth);
1220   // Locally compute IDOM using dom_lca call
1221   Node *compute_idom( Node *region ) const;
1222   // Recompute dom_depth
1223   void recompute_dom_depth();
1224 
1225   // Is safept not required by an outer loop?
1226   bool is_deleteable_safept(Node* sfpt);
1227 
1228   // Replace parallel induction variable (parallel to trip counter)
1229   void replace_parallel_iv(IdealLoopTree *loop);
1230 
1231   Node *dom_lca( Node *n1, Node *n2 ) const {
1232     return find_non_split_ctrl(dom_lca_internal(n1, n2));
1233   }
1234   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
1235 
1236   Node* dominated_node(Node* c1, Node* c2) {
1237     assert(is_dominator(c1, c2) || is_dominator(c2, c1), "nodes must be related");
1238     return is_dominator(c1, c2) ? c2 : c1;
1239   }
1240 
1241   // Return control node that's dominated by the 2 others
1242   Node* dominated_node(Node* c1, Node* c2, Node* c3) {
1243     return dominated_node(c1, dominated_node(c2, c3));
1244   }
1245 
1246   // Build and verify the loop tree without modifying the graph.  This
1247   // is useful to verify that all inputs properly dominate their uses.
1248   static void verify(PhaseIterGVN& igvn) {
1249 #ifdef ASSERT
1250     ResourceMark rm;
1251     Compile::TracePhase tp(_t_idealLoopVerify);
1252     PhaseIdealLoop v(igvn);
1253 #endif
1254   }
1255 
1256   // Recommended way to use PhaseIdealLoop.
1257   // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations.
1258   static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) {
1259     ResourceMark rm;
1260     PhaseIdealLoop v(igvn, mode);
1261 
1262     Compile* C = Compile::current();
1263     if (!C->failing()) {
1264       // Cleanup any modified bits
1265       igvn.optimize();
1266       if (C->failing()) { return; }
1267       v.log_loop_tree();
1268     }
1269   }
1270 
1271   // True if the method has at least 1 irreducible loop
1272   bool _has_irreducible_loops;
1273 
1274   // Per-Node transform
1275   virtual Node* transform(Node* n) { return nullptr; }
1276 
1277   Node* loop_exit_control(Node* x, IdealLoopTree* loop);
1278   Node* loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob);
1279   Node* loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr);
1280   Node* loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi);
1281   PhiNode* loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop);
1282 
1283   bool is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt);
1284 
1285   Node* loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, BasicType bt);
1286   bool create_loop_nest(IdealLoopTree* loop, Node_List &old_new);
1287 #ifdef ASSERT
1288   bool convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop);
1289 #endif
1290   void add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, SafePointNode* sfpt);
1291   SafePointNode* find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop);
1292   IdealLoopTree* insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift);
1293   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
1294                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
1295                                                Node*& entry_control, Node*& iffalse);
1296 
1297   Node* exact_limit( IdealLoopTree *loop );
1298 
1299   // Return a post-walked LoopNode
1300   IdealLoopTree *get_loop( Node *n ) const {
1301     // Dead nodes have no loop, so return the top level loop instead
1302     if (!has_node(n))  return _ltree_root;
1303     assert(!has_ctrl(n), "");
1304     return (IdealLoopTree*)_loop_or_ctrl[n->_idx];
1305   }
1306 
1307   IdealLoopTree* ltree_root() const { return _ltree_root; }
1308 
1309   // Is 'n' a (nested) member of 'loop'?
1310   int is_member( const IdealLoopTree *loop, Node *n ) const {
1311     return loop->is_member(get_loop(n)); }
1312 
1313   // This is the basic building block of the loop optimizations.  It clones an
1314   // entire loop body.  It makes an old_new loop body mapping; with this
1315   // mapping you can find the new-loop equivalent to an old-loop node.  All
1316   // new-loop nodes are exactly equal to their old-loop counterparts, all
1317   // edges are the same.  All exits from the old-loop now have a RegionNode
1318   // that merges the equivalent new-loop path.  This is true even for the
1319   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
1320   // now come from (one or more) Phis that merge their new-loop equivalents.
1321   // Parameter side_by_side_idom:
1322   //   When side_by_size_idom is null, the dominator tree is constructed for
1323   //      the clone loop to dominate the original.  Used in construction of
1324   //      pre-main-post loop sequence.
1325   //   When nonnull, the clone and original are side-by-side, both are
1326   //      dominated by the passed in side_by_side_idom node.  Used in
1327   //      construction of unswitched loops.
1328   enum CloneLoopMode {
1329     IgnoreStripMined = 0,        // Only clone inner strip mined loop
1330     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
1331     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
1332                                  // result control flow branches
1333                                  // either to inner clone or outer
1334                                  // strip mined loop.
1335   };
1336   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1337                   CloneLoopMode mode, Node* side_by_side_idom = nullptr);
1338   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1339                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1340                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1341                                    Node_List*& split_cex_set, Node_List& worklist,
1342                                    uint new_counter, CloneLoopMode mode);
1343   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1344                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1345                         Node_List& extra_data_nodes);
1346 
1347   // If we got the effect of peeling, either by actually peeling or by
1348   // making a pre-loop which must execute at least once, we can remove
1349   // all loop-invariant dominated tests in the main body.
1350   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1351 
1352   // Generate code to do a loop peel for the given loop (and body).
1353   // old_new is a temp array.
1354   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1355 
1356   // Add pre and post loops around the given loop.  These loops are used
1357   // during RCE, unrolling and aligning loops.
1358   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1359 
1360   // Add post loop after the given loop.
1361   Node *insert_post_loop(IdealLoopTree* loop, Node_List& old_new,
1362                          CountedLoopNode* main_head, CountedLoopEndNode* main_end,
1363                          Node* incr, Node* limit, CountedLoopNode*& post_head);
1364 
1365   // Add a vector post loop between a vector main loop and the current post loop
1366   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1367   // If Node n lives in the back_ctrl block, we clone a private version of n
1368   // in preheader_ctrl block and return that, otherwise return n.
1369   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1370 
1371   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1372   // unroll to do double iterations.  The next round of major loop transforms
1373   // will repeat till the doubled loop body does all remaining iterations in 1
1374   // pass.
1375   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1376 
1377   // Unroll the loop body one step - make each trip do 2 iterations.
1378   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1379 
1380   // Return true if exp is a constant times an induction var
1381   bool is_scaled_iv(Node* exp, Node* iv, BasicType bt, jlong* p_scale, bool* p_short_scale, int depth = 0);
1382 
1383   bool is_iv(Node* exp, Node* iv, BasicType bt);
1384 
1385   // Return true if exp is a scaled induction var plus (or minus) constant
1386   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, BasicType bt, jlong* p_scale, Node** p_offset, bool* p_short_scale = nullptr, int depth = 0);
1387   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset) {
1388     jlong long_scale;
1389     if (is_scaled_iv_plus_offset(exp, iv, T_INT, &long_scale, p_offset)) {
1390       int int_scale = checked_cast<int>(long_scale);
1391       if (p_scale != nullptr) {
1392         *p_scale = int_scale;
1393       }
1394       return true;
1395     }
1396     return false;
1397   }
1398   // Helper for finding more complex matches to is_scaled_iv_plus_offset.
1399   bool is_scaled_iv_plus_extra_offset(Node* exp1, Node* offset2, Node* iv,
1400                                       BasicType bt,
1401                                       jlong* p_scale, Node** p_offset,
1402                                       bool* p_short_scale, int depth);
1403 
1404   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1405   IfTrueNode* create_new_if_for_predicate(const ParsePredicateSuccessProj* parse_predicate_proj, Node* new_entry,
1406                                           Deoptimization::DeoptReason reason, int opcode,
1407                                           bool rewire_uncommon_proj_phi_inputs = false);
1408 
1409  private:
1410   // Helper functions for create_new_if_for_predicate()
1411   void set_ctrl_of_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
1412   Unique_Node_List find_nodes_with_same_ctrl(Node* node, const ProjNode* ctrl);
1413   Node* clone_nodes_with_same_ctrl(Node* start_node, ProjNode* old_uncommon_proj, Node* new_uncommon_proj);
1414   void fix_cloned_data_node_controls(const ProjNode* orig, Node* new_uncommon_proj,
1415                                      const OrigToNewHashtable& orig_to_clone);
1416   bool has_dominating_loop_limit_check(Node* init_trip, Node* limit, jlong stride_con, BasicType iv_bt,
1417                                        Node* loop_entry);
1418 
1419  public:
1420   void register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body = true);
1421 
1422   // Replace the control input of 'node' with 'new_control' and set the dom depth to the one of 'new_control'.
1423   void replace_control(Node* node, Node* new_control) {
1424     _igvn.replace_input_of(node, 0, new_control);
1425     set_idom(node, new_control, dom_depth(new_control));
1426   }
1427 
1428   void replace_loop_entry(LoopNode* loop_head, Node* new_entry) {
1429     _igvn.replace_input_of(loop_head, LoopNode::EntryControl, new_entry);
1430     set_idom(loop_head, new_entry, dom_depth(new_entry));
1431   }
1432 
1433   // Construct a range check for a predicate if
1434   BoolNode* rc_predicate(Node* ctrl, int scale, Node* offset, Node* init, Node* limit,
1435                          jint stride, Node* range, bool upper, bool& overflow);
1436 
1437   // Implementation of the loop predication to promote checks outside the loop
1438   bool loop_predication_impl(IdealLoopTree *loop);
1439 
1440  private:
1441   bool loop_predication_impl_helper(IdealLoopTree* loop, IfProjNode* if_success_proj,
1442                                     ParsePredicateSuccessProj* parse_predicate_proj, CountedLoopNode* cl, ConNode* zero,
1443                                     Invariance& invar, Deoptimization::DeoptReason deopt_reason);
1444   bool can_create_loop_predicates(const PredicateBlock* profiled_loop_predicate_block) const;
1445   bool loop_predication_should_follow_branches(IdealLoopTree* loop, float& loop_trip_cnt);
1446   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1447                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1448                                         Node_List& if_proj_list);
1449   IfTrueNode* create_template_assertion_predicate(CountedLoopNode* loop_head, ParsePredicateNode* parse_predicate,
1450                                                   IfProjNode* new_control, int scale, Node* offset, Node* range);
1451   void eliminate_hoisted_range_check(IfTrueNode* hoisted_check_proj, IfTrueNode* template_assertion_predicate_proj);
1452 
1453   // Helper function to collect predicate for eliminating the useless ones
1454   void eliminate_useless_predicates() const;
1455 
1456   void eliminate_useless_zero_trip_guard();
1457   void eliminate_useless_multiversion_if();
1458 
1459  public:
1460   // Change the control input of expensive nodes to allow commoning by
1461   // IGVN when it is guaranteed to not result in a more frequent
1462   // execution of the expensive node. Return true if progress.
1463   bool process_expensive_nodes();
1464 
1465   // Check whether node has become unreachable
1466   bool is_node_unreachable(Node *n) const {
1467     return !has_node(n) || n->is_unreachable(_igvn);
1468   }
1469 
1470   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1471   void do_range_check(IdealLoopTree* loop);
1472 
1473   // Clone loop with an invariant test (that does not exit) and
1474   // insert a clone of the test that selects which version to
1475   // execute.
1476   void do_unswitching(IdealLoopTree* loop, Node_List& old_new);
1477 
1478   IfNode* find_unswitch_candidates(const IdealLoopTree* loop, Node_List& flat_array_checks) const;
1479   IfNode* find_unswitch_candidate_from_idoms(const IdealLoopTree* loop) const;
1480 
1481  private:
1482   static bool has_control_dependencies_from_predicates(LoopNode* head);
1483   static void revert_to_normal_loop(const LoopNode* loop_head);
1484 
1485   void hoist_invariant_check_casts(const IdealLoopTree* loop, const Node_List& old_new,
1486                                    const UnswitchCandidate& unswitch_candidate, const IfNode* loop_selector);
1487   void add_unswitched_loop_version_bodies_to_igvn(IdealLoopTree* loop, const Node_List& old_new);
1488   static void increment_unswitch_counts(LoopNode* original_head, LoopNode* new_head);
1489   void remove_unswitch_candidate_from_loops(const Node_List& old_new, const UnswitchedLoopSelector& unswitched_loop_selector);
1490 #ifndef PRODUCT
1491   static void trace_loop_unswitching_count(IdealLoopTree* loop, LoopNode* original_head);
1492   static void trace_loop_unswitching_impossible(const LoopNode* original_head);
1493   static void trace_loop_unswitching_result(const UnswitchedLoopSelector& unswitched_loop_selector,
1494                                             const UnswitchCandidate& unswitch_candidate,
1495                                             const LoopNode* original_head, const LoopNode* new_head);
1496   static void trace_loop_multiversioning_result(const LoopSelector& loop_selector,
1497                                                 const LoopNode* original_head, const LoopNode* new_head);
1498 #endif
1499 
1500  public:
1501 
1502   // Range Check Elimination uses this function!
1503   // Constrain the main loop iterations so the affine function:
1504   //    low_limit <= scale_con * I + offset  <  upper_limit
1505   // always holds true.  That is, either increase the number of iterations in
1506   // the pre-loop or the post-loop until the condition holds true in the main
1507   // loop.  Scale_con, offset and limit are all loop invariant.
1508   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
1509   // Helper function for add_constraint().
1510   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
1511 
1512   // Partially peel loop up through last_peel node.
1513   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1514   bool duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new);
1515 
1516   // AutoVectorize the loop: replace scalar ops with vector ops.
1517   enum AutoVectorizeStatus {
1518     Impossible,      // This loop has the wrong shape to even try vectorization.
1519     Success,         // We just successfully vectorized the loop.
1520     TriedAndFailed,  // We tried to vectorize, but failed.
1521   };
1522   AutoVectorizeStatus auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared);
1523 
1524   void maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new);
1525   void do_multiversioning(IdealLoopTree* lpt, Node_List& old_new);
1526   IfTrueNode* create_new_if_for_multiversion(IfTrueNode* multiversioning_fast_proj);
1527   bool try_resume_optimizations_for_delayed_slow_loop(IdealLoopTree* lpt);
1528 
1529   // Move an unordered Reduction out of loop if possible
1530   void move_unordered_reduction_out_of_loop(IdealLoopTree* loop);
1531 
1532   // Create a scheduled list of nodes control dependent on ctrl set.
1533   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1534   // Has a use in the vector set
1535   bool has_use_in_set( Node* n, VectorSet& vset );
1536   // Has use internal to the vector set (ie. not in a phi at the loop head)
1537   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1538   // clone "n" for uses that are outside of loop
1539   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1540   // clone "n" for special uses that are in the not_peeled region
1541   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1542                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1543   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1544   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1545 #ifdef ASSERT
1546   // Validate the loop partition sets: peel and not_peel
1547   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1548   // Ensure that uses outside of loop are of the right form
1549   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1550                                  uint orig_exit_idx, uint clone_exit_idx);
1551   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1552 #endif
1553 
1554   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1555   int stride_of_possible_iv( Node* iff );
1556   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1557   // Return the (unique) control output node that's in the loop (if it exists.)
1558   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1559   // Insert a signed compare loop exit cloned from an unsigned compare.
1560   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1561   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1562   // Utility to register node "n" with PhaseIdealLoop
1563   void register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth);
1564   // Utility to create an if-projection
1565   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1566   // Force the iff control output to be the live_proj
1567   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1568   // Insert a region before an if projection
1569   RegionNode* insert_region_before_proj(ProjNode* proj);
1570   // Insert a new if before an if projection
1571   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1572 
1573   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1574   // "Nearly" because all Nodes have been cloned from the original in the loop,
1575   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1576   // through the Phi recursively, and return a Bool.
1577   Node* clone_iff(PhiNode* phi);
1578   CmpNode* clone_bool(PhiNode* phi);
1579 
1580 
1581   // Rework addressing expressions to get the most loop-invariant stuff
1582   // moved out.  We'd like to do all associative operators, but it's especially
1583   // important (common) to do address expressions.
1584   Node* remix_address_expressions(Node* n);
1585   Node* remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt);
1586 
1587   // Convert add to muladd to generate MuladdS2I under certain criteria
1588   Node * convert_add_to_muladd(Node * n);
1589 
1590   // Attempt to use a conditional move instead of a phi/branch
1591   Node *conditional_move( Node *n );
1592 
1593   // Check for aggressive application of 'split-if' optimization,
1594   // using basic block level info.
1595   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack);
1596   Node *split_if_with_blocks_pre ( Node *n );
1597   void  split_if_with_blocks_post( Node *n );
1598   Node *has_local_phi_input( Node *n );
1599   // Mark an IfNode as being dominated by a prior test,
1600   // without actually altering the CFG (and hence IDOM info).
1601   void dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip = false, bool pin_array_access_nodes = false);
1602   void rewire_safe_outputs_to_dominator(Node* source, Node* dominator, bool pin_array_access_nodes);
1603 
1604   // Split Node 'n' through merge point
1605   RegionNode* split_thru_region(Node* n, RegionNode* region);
1606   // Split Node 'n' through merge point if there is enough win.
1607   Node *split_thru_phi( Node *n, Node *region, int policy );
1608   // Found an If getting its condition-code input from a Phi in the
1609   // same block.  Split thru the Region.
1610   void do_split_if(Node *iff, RegionNode** new_false_region = nullptr, RegionNode** new_true_region = nullptr);
1611 
1612   // Conversion of fill/copy patterns into intrinsic versions
1613   bool do_intrinsify_fill();
1614   bool intrinsify_fill(IdealLoopTree* lpt);
1615   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1616                        Node*& shift, Node*& offset);
1617 
1618 private:
1619   // Return a type based on condition control flow
1620   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1621   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, nullptr); }
1622  // Helpers for filtered type
1623   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1624 
1625   // Helper functions
1626   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1627   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1628   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1629   bool split_up( Node *n, Node *blk1, Node *blk2 );
1630 
1631   Node* place_outside_loop(Node* useblock, IdealLoopTree* loop) const;
1632   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1633   void try_move_store_after_loop(Node* n);
1634   void move_flat_array_check_out_of_loop(Node* n);
1635   bool identical_backtoback_ifs(Node *n);
1636   bool flat_array_element_type_check(Node *n);
1637   bool can_split_if(Node *n_ctrl);
1638   bool cannot_split_division(const Node* n, const Node* region) const;
1639   static bool is_divisor_loop_phi(const Node* divisor, const Node* loop);
1640   bool loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const;
1641 
1642   // Determine if a method is too big for a/another round of split-if, based on
1643   // a magic (approximate) ratio derived from the equally magic constant 35000,
1644   // previously used for this purpose (but without relating to the node limit).
1645   bool must_throttle_split_if() {
1646     uint threshold = C->max_node_limit() * 2 / 5;
1647     return C->live_nodes() > threshold;
1648   }
1649 
1650   // A simplistic node request tracking mechanism, where
1651   //   = UINT_MAX   Request not valid or made final.
1652   //   < UINT_MAX   Nodes currently requested (estimate).
1653   uint _nodes_required;
1654 
1655   enum { REQUIRE_MIN = 70 };
1656 
1657   uint nodes_required() const { return _nodes_required; }
1658 
1659   // Given the _currently_  available number of nodes, check  whether there is
1660   // "room" for an additional request or not, considering the already required
1661   // number of  nodes.  Return TRUE if  the new request is  exceeding the node
1662   // budget limit, otherwise return FALSE.  Note that this interpretation will
1663   // act pessimistic on  additional requests when new nodes  have already been
1664   // generated since the 'begin'.  This behaviour fits with the intention that
1665   // node estimates/requests should be made upfront.
1666   bool exceeding_node_budget(uint required = 0) {
1667     assert(C->live_nodes() < C->max_node_limit(), "sanity");
1668     uint available = C->max_node_limit() - C->live_nodes();
1669     return available < required + _nodes_required + REQUIRE_MIN;
1670   }
1671 
1672   uint require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1673     precond(require > 0);
1674     _nodes_required += MAX2(require, minreq);
1675     return _nodes_required;
1676   }
1677 
1678   bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) {
1679     return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0;
1680   }
1681 
1682   uint require_nodes_begin() {
1683     assert(_nodes_required == UINT_MAX, "Bad state (begin).");
1684     _nodes_required = 0;
1685     return C->live_nodes();
1686   }
1687 
1688   // When a node request is final,  optionally check that the requested number
1689   // of nodes was  reasonably correct with respect to the  number of new nodes
1690   // introduced since the last 'begin'. Always check that we have not exceeded
1691   // the maximum node limit.
1692   void require_nodes_final(uint live_at_begin, bool check_estimate) {
1693     assert(_nodes_required < UINT_MAX, "Bad state (final).");
1694 
1695 #ifdef ASSERT
1696     if (check_estimate) {
1697       // Check that the node budget request was not off by too much (x2).
1698       // Should this be the case we _surely_ need to improve the estimates
1699       // used in our budget calculations.
1700       if (C->live_nodes() - live_at_begin > 2 * _nodes_required) {
1701         log_info(compilation)("Bad node estimate: actual = %d >> request = %d",
1702                               C->live_nodes() - live_at_begin, _nodes_required);
1703       }
1704     }
1705 #endif
1706     // Assert that we have stayed within the node budget limit.
1707     assert(C->live_nodes() < C->max_node_limit(),
1708            "Exceeding node budget limit: %d + %d > %d (request = %d)",
1709            C->live_nodes() - live_at_begin, live_at_begin,
1710            C->max_node_limit(), _nodes_required);
1711 
1712     _nodes_required = UINT_MAX;
1713   }
1714 
1715  private:
1716 
1717   bool _created_loop_node;
1718   DEBUG_ONLY(void dump_idoms(Node* early, Node* wrong_lca);)
1719   NOT_PRODUCT(void dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const;)
1720 
1721 public:
1722   void set_created_loop_node() { _created_loop_node = true; }
1723   bool created_loop_node()     { return _created_loop_node; }
1724   void register_new_node(Node* n, Node* blk);
1725   void register_new_node_with_ctrl_of(Node* new_node, Node* ctrl_of) {
1726     register_new_node(new_node, get_ctrl(ctrl_of));
1727   }
1728 
1729   Node* clone_and_register(Node* n, Node* ctrl) {
1730     n = n->clone();
1731     register_new_node(n, ctrl);
1732     return n;
1733   }
1734 
1735 #ifdef ASSERT
1736   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1737 #endif
1738 
1739 #ifndef PRODUCT
1740   void dump() const;
1741   void dump_idom(Node* n) const { dump_idom(n, 1000); } // For debugging
1742   void dump_idom(Node* n, uint count) const;
1743   void get_idoms(Node* n, uint count, Unique_Node_List& idoms) const;
1744   void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const;
1745   IdealLoopTree* get_loop_idx(Node* n) const {
1746     // Dead nodes have no loop, so return the top level loop instead
1747     return _loop_or_ctrl[n->_idx] ? (IdealLoopTree*)_loop_or_ctrl[n->_idx] : _ltree_root;
1748   }
1749   // Print some stats
1750   static void print_statistics();
1751   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1752   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1753   static volatile int _long_loop_candidates;
1754   static volatile int _long_loop_nests;
1755   static volatile int _long_loop_counted_loops;
1756 #endif
1757 
1758 #ifdef ASSERT
1759   void verify() const;
1760   bool verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const;
1761   bool verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const;
1762   bool verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const;
1763 #endif
1764 
1765   void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const;
1766 
1767   void check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) NOT_DEBUG_RETURN;
1768 
1769   LoopNode* create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, IfNode* exit_test);
1770 
1771 
1772   int extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1773                                 Node_List &range_checks);
1774 
1775   void transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1776                                    Node* inner_iters_actual_int, Node* inner_phi,
1777                                    Node* iv_add, LoopNode* inner_head);
1778 
1779   Node* get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA);
1780 
1781   bool ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl);
1782 
1783   bool ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop);
1784 
1785   Node* compute_early_ctrl(Node* n, Node* n_ctrl);
1786 
1787   void try_sink_out_of_loop(Node* n);
1788 
1789   Node* clamp(Node* R, Node* L, Node* H);
1790 
1791   bool safe_for_if_replacement(const Node* dom) const;
1792 
1793   void push_pinned_nodes_thru_region(IfNode* dom_if, Node* region);
1794 
1795   bool try_merge_identical_ifs(Node* n);
1796 
1797   void clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm);
1798 
1799   void fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
1800                       IdealLoopTree* parent, bool partial);
1801 
1802   void fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
1803                 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist);
1804 
1805   void fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
1806                      uint new_counter, Node_List& old_new, Node_List& worklist, Node_List*& split_if_set,
1807                      Node_List*& split_bool_set, Node_List*& split_cex_set);
1808 
1809   void finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set);
1810 
1811   bool at_relevant_ctrl(Node* n, const Node* blk1, const Node* blk2);
1812 
1813   bool clone_cmp_loadklass_down(Node* n, const Node* blk1, const Node* blk2);
1814   void clone_loadklass_nodes_at_cmp_index(const Node* n, Node* cmp, int i);
1815   bool clone_cmp_down(Node* n, const Node* blk1, const Node* blk2);
1816   void clone_template_assertion_expression_down(Node* node);
1817 
1818   Node* similar_subtype_check(const Node* x, Node* r_in);
1819 
1820   void update_addp_chain_base(Node* x, Node* old_base, Node* new_base);
1821 
1822   bool can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x);
1823 
1824   void pin_array_access_nodes_dependent_on(Node* ctrl);
1825 
1826   void collect_flat_array_checks(const IdealLoopTree* loop, Node_List& flat_array_checks) const;
1827 
1828   Node* ensure_node_and_inputs_are_above_pre_end(CountedLoopEndNode* pre_end, Node* node);
1829 
1830   ConINode* intcon(jint i);
1831 
1832   ConLNode* longcon(jlong i);
1833 
1834   ConNode* makecon(const Type* t);
1835 
1836   ConNode* integercon(jlong l, BasicType bt);
1837 
1838   ConNode* zerocon(BasicType bt);
1839 };
1840 
1841 
1842 class AutoNodeBudget : public StackObj
1843 {
1844 public:
1845   enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK };
1846 
1847   AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK)
1848     : _phase(phase),
1849       _check_at_final(chk == BUDGET_CHECK),
1850       _nodes_at_begin(0)
1851   {
1852     precond(_phase != nullptr);
1853 
1854     _nodes_at_begin = _phase->require_nodes_begin();
1855   }
1856 
1857   ~AutoNodeBudget() {
1858 #ifndef PRODUCT
1859     if (TraceLoopOpts) {
1860       uint request = _phase->nodes_required();
1861       uint delta   = _phase->C->live_nodes() - _nodes_at_begin;
1862 
1863       if (request < delta) {
1864         tty->print_cr("Exceeding node budget: %d < %d", request, delta);
1865       } else {
1866         uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN;
1867         // Identify the worst estimates as "poor" ones.
1868         if (request > REQUIRE_MIN && delta > 0) {
1869           if ((delta >  REQUIRE_MIN && request >  3 * delta) ||
1870               (delta <= REQUIRE_MIN && request > 10 * delta)) {
1871             tty->print_cr("Poor node estimate: %d >> %d", request, delta);
1872           }
1873         }
1874       }
1875     }
1876 #endif // PRODUCT
1877     _phase->require_nodes_final(_nodes_at_begin, _check_at_final);
1878   }
1879 
1880 private:
1881   PhaseIdealLoop* _phase;
1882   bool _check_at_final;
1883   uint _nodes_at_begin;
1884 };
1885 
1886 inline Node* IdealLoopTree::tail() {
1887   // Handle lazy update of _tail field.
1888   if (_tail->in(0) == nullptr) {
1889     _tail = _phase->get_ctrl(_tail);
1890   }
1891   return _tail;
1892 }
1893 
1894 inline Node* IdealLoopTree::head() {
1895   // Handle lazy update of _head field.
1896   if (_head->in(0) == nullptr) {
1897     _head = _phase->get_ctrl(_head);
1898   }
1899   return _head;
1900 }
1901 
1902 // Iterate over the loop tree using a preorder, left-to-right traversal.
1903 //
1904 // Example that visits all counted loops from within PhaseIdealLoop
1905 //
1906 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1907 //   IdealLoopTree* lpt = iter.current();
1908 //   if (!lpt->is_counted()) continue;
1909 //   ...
1910 class LoopTreeIterator : public StackObj {
1911 private:
1912   IdealLoopTree* _root;
1913   IdealLoopTree* _curnt;
1914 
1915 public:
1916   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1917 
1918   bool done() { return _curnt == nullptr; }       // Finished iterating?
1919 
1920   void next();                                 // Advance to next loop tree
1921 
1922   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1923 };
1924 
1925 // Compute probability of reaching some CFG node from a fixed
1926 // dominating CFG node
1927 class PathFrequency {
1928 private:
1929   Node* _dom; // frequencies are computed relative to this node
1930   Node_Stack _stack;
1931   GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions
1932   GrowableArray<float> _freqs; // cache frequencies
1933   PhaseIdealLoop* _phase;
1934 
1935   float check_and_truncate_frequency(float f) {
1936     assert(f >= 0, "Incorrect frequency");
1937     // We do not perform an exact (f <= 1) check
1938     // this would be error prone with rounding of floats.
1939     // Performing a check like (f <= 1+eps) would be of benefit,
1940     // however, it is not evident how to determine such an eps,
1941     // given that an arbitrary number of add/mul operations
1942     // are performed on these frequencies.
1943     return (f > 1) ? 1 : f;
1944   }
1945 
1946 public:
1947   PathFrequency(Node* dom, PhaseIdealLoop* phase)
1948     : _dom(dom), _stack(0), _phase(phase) {
1949   }
1950 
1951   float to(Node* n);
1952 };
1953 
1954 // Class to clone a data node graph by taking a list of data nodes. This is done in 2 steps:
1955 //   1. Clone the data nodes
1956 //   2. Fix the cloned data inputs pointing to the old nodes to the cloned inputs by using an old->new mapping.
1957 class DataNodeGraph : public StackObj {
1958   PhaseIdealLoop* const _phase;
1959   const Unique_Node_List& _data_nodes;
1960   OrigToNewHashtable _orig_to_new;
1961 
1962  public:
1963   DataNodeGraph(const Unique_Node_List& data_nodes, PhaseIdealLoop* phase)
1964       : _phase(phase),
1965         _data_nodes(data_nodes),
1966         // Use 107 as best guess which is the first resize value in ResizeableResourceHashtable::large_table_sizes.
1967         _orig_to_new(107, MaxNodeLimit)
1968   {
1969 #ifdef ASSERT
1970     for (uint i = 0; i < data_nodes.size(); i++) {
1971       assert(!data_nodes[i]->is_CFG(), "only data nodes");
1972     }
1973 #endif
1974   }
1975   NONCOPYABLE(DataNodeGraph);
1976 
1977  private:
1978   void clone(Node* node, Node* new_ctrl);
1979   void clone_data_nodes(Node* new_ctrl);
1980   void clone_data_nodes_and_transform_opaque_loop_nodes(const TransformStrategyForOpaqueLoopNodes& transform_strategy,
1981                                                         Node* new_ctrl);
1982   void rewire_clones_to_cloned_inputs();
1983   void transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node);
1984 
1985  public:
1986   // Clone the provided data node collection and rewire the clones in such a way to create an identical graph copy.
1987   // Set 'new_ctrl' as ctrl for the cloned nodes.
1988   const OrigToNewHashtable& clone(Node* new_ctrl) {
1989     assert(_orig_to_new.number_of_entries() == 0, "should not call this method twice in a row");
1990     clone_data_nodes(new_ctrl);
1991     rewire_clones_to_cloned_inputs();
1992     return _orig_to_new;
1993   }
1994 
1995   // Create a copy of the data nodes provided to the constructor by doing the following:
1996   // Clone all non-OpaqueLoop* nodes and rewire them to create an identical subgraph copy. For the OpaqueLoop* nodes,
1997   // apply the provided transformation strategy and include the transformed node into the subgraph copy to get a complete
1998   // "cloned-and-transformed" graph copy. For all newly cloned nodes (which could also be new OpaqueLoop* nodes), set
1999   // `new_ctrl` as ctrl.
2000   const OrigToNewHashtable& clone_with_opaque_loop_transform_strategy(
2001       const TransformStrategyForOpaqueLoopNodes& transform_strategy,
2002       Node* new_ctrl) {
2003     clone_data_nodes_and_transform_opaque_loop_nodes(transform_strategy, new_ctrl);
2004     rewire_clones_to_cloned_inputs();
2005     return _orig_to_new;
2006   }
2007 };
2008 #endif // SHARE_OPTO_LOOPNODE_HPP