1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shared/c2/barrierSetC2.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/divnode.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/mulnode.hpp"
  38 #include "opto/movenode.hpp"
  39 #include "opto/opaquenode.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "opto/subtypenode.hpp"
  43 #include "opto/superword.hpp"
  44 #include "opto/vectornode.hpp"
  45 #include "utilities/macros.hpp"
  46 
  47 //=============================================================================
  48 //------------------------------split_thru_phi---------------------------------
  49 // Split Node 'n' through merge point if there is enough win.
  50 Node* PhaseIdealLoop::split_thru_phi(Node* n, Node* region, int policy) {
  51   if ((n->Opcode() == Op_ConvI2L && n->bottom_type() != TypeLong::LONG) ||
  52       (n->Opcode() == Op_ConvL2I && n->bottom_type() != TypeInt::INT)) {
  53     // ConvI2L/ConvL2I may have type information on it which is unsafe to push up
  54     // so disable this for now
  55     return nullptr;
  56   }
  57 
  58   // Splitting range check CastIIs through a loop induction Phi can
  59   // cause new Phis to be created that are left unrelated to the loop
  60   // induction Phi and prevent optimizations (vectorization)
  61   if (n->Opcode() == Op_CastII && region->is_CountedLoop() &&
  62       n->in(1) == region->as_CountedLoop()->phi()) {
  63     return nullptr;
  64   }
  65 
  66   if (cannot_split_division(n, region)) {
  67     return nullptr;
  68   }
  69 
  70   int wins = 0;
  71   assert(!n->is_CFG(), "");
  72   assert(region->is_Region(), "");
  73 
  74   const Type* type = n->bottom_type();
  75   const TypeOopPtr* t_oop = _igvn.type(n)->isa_oopptr();
  76   Node* phi;
  77   if (t_oop != nullptr && t_oop->is_known_instance_field()) {
  78     int iid    = t_oop->instance_id();
  79     int index  = C->get_alias_index(t_oop);
  80     int offset = t_oop->offset();
  81     phi = new PhiNode(region, type, nullptr, iid, index, offset);
  82   } else {
  83     phi = PhiNode::make_blank(region, n);
  84   }
  85   uint old_unique = C->unique();
  86   for (uint i = 1; i < region->req(); i++) {
  87     Node* x;
  88     Node* the_clone = nullptr;
  89     if (region->in(i) == C->top()) {
  90       x = C->top();             // Dead path?  Use a dead data op
  91     } else {
  92       x = n->clone();           // Else clone up the data op
  93       the_clone = x;            // Remember for possible deletion.
  94       // Alter data node to use pre-phi inputs
  95       if (n->in(0) == region)
  96         x->set_req( 0, region->in(i) );
  97       for (uint j = 1; j < n->req(); j++) {
  98         Node* in = n->in(j);
  99         if (in->is_Phi() && in->in(0) == region)
 100           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
 101       }
 102     }
 103     // Check for a 'win' on some paths
 104     const Type* t = x->Value(&_igvn);
 105 
 106     bool singleton = t->singleton();
 107 
 108     // A TOP singleton indicates that there are no possible values incoming
 109     // along a particular edge. In most cases, this is OK, and the Phi will
 110     // be eliminated later in an Ideal call. However, we can't allow this to
 111     // happen if the singleton occurs on loop entry, as the elimination of
 112     // the PhiNode may cause the resulting node to migrate back to a previous
 113     // loop iteration.
 114     if (singleton && t == Type::TOP) {
 115       // Is_Loop() == false does not confirm the absence of a loop (e.g., an
 116       // irreducible loop may not be indicated by an affirmative is_Loop());
 117       // therefore, the only top we can split thru a phi is on a backedge of
 118       // a loop.
 119       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
 120     }
 121 
 122     if (singleton) {
 123       wins++;
 124       x = makecon(t);
 125     } else {
 126       // We now call Identity to try to simplify the cloned node.
 127       // Note that some Identity methods call phase->type(this).
 128       // Make sure that the type array is big enough for
 129       // our new node, even though we may throw the node away.
 130       // (Note: This tweaking with igvn only works because x is a new node.)
 131       _igvn.set_type(x, t);
 132       // If x is a TypeNode, capture any more-precise type permanently into Node
 133       // otherwise it will be not updated during igvn->transform since
 134       // igvn->type(x) is set to x->Value() already.
 135       x->raise_bottom_type(t);
 136       Node* y = x->Identity(&_igvn);
 137       if (y != x) {
 138         wins++;
 139         x = y;
 140       } else {
 141         y = _igvn.hash_find(x);
 142         if (y == nullptr) {
 143           y = similar_subtype_check(x, region->in(i));
 144         }
 145         if (y) {
 146           wins++;
 147           x = y;
 148         } else {
 149           // Else x is a new node we are keeping
 150           // We do not need register_new_node_with_optimizer
 151           // because set_type has already been called.
 152           _igvn._worklist.push(x);
 153         }
 154       }
 155     }
 156 
 157     phi->set_req( i, x );
 158 
 159     if (the_clone == nullptr) {
 160       continue;
 161     }
 162 
 163     if (the_clone != x) {
 164       _igvn.remove_dead_node(the_clone);
 165     } else if (region->is_Loop() && i == LoopNode::LoopBackControl &&
 166                n->is_Load() && can_move_to_inner_loop(n, region->as_Loop(), x)) {
 167       // it is not a win if 'x' moved from an outer to an inner loop
 168       // this edge case can only happen for Load nodes
 169       wins = 0;
 170       break;
 171     }
 172   }
 173   // Too few wins?
 174   if (wins <= policy) {
 175     _igvn.remove_dead_node(phi);
 176     return nullptr;
 177   }
 178 
 179   // Record Phi
 180   register_new_node( phi, region );
 181 
 182   for (uint i2 = 1; i2 < phi->req(); i2++) {
 183     Node *x = phi->in(i2);
 184     // If we commoned up the cloned 'x' with another existing Node,
 185     // the existing Node picks up a new use.  We need to make the
 186     // existing Node occur higher up so it dominates its uses.
 187     Node *old_ctrl;
 188     IdealLoopTree *old_loop;
 189 
 190     if (x->is_Con()) {
 191       assert(get_ctrl(x) == C->root(), "constant control is not root");
 192       continue;
 193     }
 194     // The occasional new node
 195     if (x->_idx >= old_unique) {     // Found a new, unplaced node?
 196       old_ctrl = nullptr;
 197       old_loop = nullptr;               // Not in any prior loop
 198     } else {
 199       old_ctrl = get_ctrl(x);
 200       old_loop = get_loop(old_ctrl); // Get prior loop
 201     }
 202     // New late point must dominate new use
 203     Node *new_ctrl = dom_lca(old_ctrl, region->in(i2));
 204     if (new_ctrl == old_ctrl) // Nothing is changed
 205       continue;
 206 
 207     IdealLoopTree *new_loop = get_loop(new_ctrl);
 208 
 209     // Don't move x into a loop if its uses are
 210     // outside of loop. Otherwise x will be cloned
 211     // for each use outside of this loop.
 212     IdealLoopTree *use_loop = get_loop(region);
 213     if (!new_loop->is_member(use_loop) &&
 214         (old_loop == nullptr || !new_loop->is_member(old_loop))) {
 215       // Take early control, later control will be recalculated
 216       // during next iteration of loop optimizations.
 217       new_ctrl = get_early_ctrl(x);
 218       new_loop = get_loop(new_ctrl);
 219     }
 220     // Set new location
 221     set_ctrl(x, new_ctrl);
 222     // If changing loop bodies, see if we need to collect into new body
 223     if (old_loop != new_loop) {
 224       if (old_loop && !old_loop->_child)
 225         old_loop->_body.yank(x);
 226       if (!new_loop->_child)
 227         new_loop->_body.push(x);  // Collect body info
 228     }
 229   }
 230 
 231   return phi;
 232 }
 233 
 234 // Test whether node 'x' can move into an inner loop relative to node 'n'.
 235 // Note: The test is not exact. Returns true if 'x' COULD end up in an inner loop,
 236 // BUT it can also return true and 'x' is in the outer loop
 237 bool PhaseIdealLoop::can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x) {
 238   IdealLoopTree* n_loop_tree = get_loop(n_loop);
 239   IdealLoopTree* x_loop_tree = get_loop(get_early_ctrl(x));
 240   // x_loop_tree should be outer or same loop as n_loop_tree
 241   return !x_loop_tree->is_member(n_loop_tree);
 242 }
 243 
 244 // Subtype checks that carry profile data don't common so look for a replacement by following edges
 245 Node* PhaseIdealLoop::similar_subtype_check(const Node* x, Node* r_in) {
 246   if (x->is_SubTypeCheck()) {
 247     Node* in1 = x->in(1);
 248     for (DUIterator_Fast imax, i = in1->fast_outs(imax); i < imax; i++) {
 249       Node* u = in1->fast_out(i);
 250       if (u != x && u->is_SubTypeCheck() && u->in(1) == x->in(1) && u->in(2) == x->in(2)) {
 251         for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) {
 252           Node* bol = u->fast_out(j);
 253           for (DUIterator_Fast kmax, k = bol->fast_outs(kmax); k < kmax; k++) {
 254             Node* iff = bol->fast_out(k);
 255             // Only dominating subtype checks are interesting: otherwise we risk replacing a subtype check by another with
 256             // unrelated profile
 257             if (iff->is_If() && is_dominator(iff, r_in)) {
 258               return u;
 259             }
 260           }
 261         }
 262       }
 263     }
 264   }
 265   return nullptr;
 266 }
 267 
 268 // Return true if 'n' is a Div or Mod node (without zero check If node which was removed earlier) with a loop phi divisor
 269 // of a trip-counted (integer or long) loop with a backedge input that could be zero (include zero in its type range). In
 270 // this case, we cannot split the division to the backedge as it could freely float above the loop exit check resulting in
 271 // a division by zero. This situation is possible because the type of an increment node of an iv phi (trip-counter) could
 272 // include zero while the iv phi does not (see PhiNode::Value() for trip-counted loops where we improve types of iv phis).
 273 // We also need to check other loop phis as they could have been created in the same split-if pass when applying
 274 // PhaseIdealLoop::split_thru_phi() to split nodes through an iv phi.
 275 bool PhaseIdealLoop::cannot_split_division(const Node* n, const Node* region) const {
 276   const Type* zero;
 277   switch (n->Opcode()) {
 278     case Op_DivI:
 279     case Op_ModI:
 280     case Op_UDivI:
 281     case Op_UModI:
 282       zero = TypeInt::ZERO;
 283       break;
 284     case Op_DivL:
 285     case Op_ModL:
 286     case Op_UDivL:
 287     case Op_UModL:
 288       zero = TypeLong::ZERO;
 289       break;
 290     default:
 291       return false;
 292   }
 293 
 294   if (n->in(0) != nullptr) {
 295     // Cannot split through phi if Div or Mod node has a control dependency to a zero check.
 296     return true;
 297   }
 298 
 299   Node* divisor = n->in(2);
 300   return is_divisor_loop_phi(divisor, region) &&
 301          loop_phi_backedge_type_contains_zero(divisor, zero);
 302 }
 303 
 304 bool PhaseIdealLoop::is_divisor_loop_phi(const Node* divisor, const Node* loop) {
 305   return loop->is_Loop() && divisor->is_Phi() && divisor->in(0) == loop;
 306 }
 307 
 308 bool PhaseIdealLoop::loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const {
 309     return _igvn.type(phi_divisor->in(LoopNode::LoopBackControl))->filter_speculative(zero) != Type::TOP;
 310 }
 311 
 312 //------------------------------dominated_by------------------------------------
 313 // Replace the dominated test with an obvious true or false.  Place it on the
 314 // IGVN worklist for later cleanup.  Move control-dependent data Nodes on the
 315 // live path up to the dominating control.
 316 void PhaseIdealLoop::dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip, bool pin_array_access_nodes) {
 317   if (VerifyLoopOptimizations && PrintOpto) { tty->print_cr("dominating test"); }
 318 
 319   // prevdom is the dominating projection of the dominating test.
 320   assert(iff->Opcode() == Op_If ||
 321          iff->Opcode() == Op_CountedLoopEnd ||
 322          iff->Opcode() == Op_LongCountedLoopEnd ||
 323          iff->Opcode() == Op_RangeCheck ||
 324          iff->Opcode() == Op_ParsePredicate,
 325         "Check this code when new subtype is added");
 326 
 327   int pop = prevdom->Opcode();
 328   assert( pop == Op_IfFalse || pop == Op_IfTrue, "" );
 329   if (flip) {
 330     if (pop == Op_IfTrue)
 331       pop = Op_IfFalse;
 332     else
 333       pop = Op_IfTrue;
 334   }
 335   // 'con' is set to true or false to kill the dominated test.
 336   Node* con = makecon(pop == Op_IfTrue ? TypeInt::ONE : TypeInt::ZERO);
 337   // Hack the dominated test
 338   _igvn.replace_input_of(iff, 1, con);
 339 
 340   // If I don't have a reachable TRUE and FALSE path following the IfNode then
 341   // I can assume this path reaches an infinite loop.  In this case it's not
 342   // important to optimize the data Nodes - either the whole compilation will
 343   // be tossed or this path (and all data Nodes) will go dead.
 344   if (iff->outcnt() != 2) {
 345     return;
 346   }
 347 
 348   // Make control-dependent data Nodes on the live path (path that will remain
 349   // once the dominated IF is removed) become control-dependent on the
 350   // dominating projection.
 351   Node* dp = iff->proj_out_or_null(pop == Op_IfTrue);
 352 
 353   if (dp == nullptr) {
 354     return;
 355   }
 356 
 357   rewire_safe_outputs_to_dominator(dp, prevdom, pin_array_access_nodes);
 358 }
 359 
 360 void PhaseIdealLoop::rewire_safe_outputs_to_dominator(Node* source, Node* dominator, const bool pin_array_access_nodes) {
 361   IdealLoopTree* old_loop = get_loop(source);
 362 
 363   for (DUIterator_Fast imax, i = source->fast_outs(imax); i < imax; i++) {
 364     Node* out = source->fast_out(i); // Control-dependent node
 365     // Do not rewire Div and Mod nodes which could have a zero divisor to avoid skipping their zero check.
 366     if (out->depends_only_on_test() && _igvn.no_dependent_zero_check(out)) {
 367       assert(out->in(0) == source, "must be control dependent on source");
 368       _igvn.replace_input_of(out, 0, dominator);
 369       if (pin_array_access_nodes) {
 370         // Because of Loop Predication, Loads and range check Cast nodes that are control dependent on this range
 371         // check (that is about to be removed) now depend on multiple dominating Hoisted Check Predicates. After the
 372         // removal of this range check, these control dependent nodes end up at the lowest/nearest dominating predicate
 373         // in the graph. To ensure that these Loads/Casts do not float above any of the dominating checks (even when the
 374         // lowest dominating check is later replaced by yet another dominating check), we need to pin them at the lowest
 375         // dominating check.
 376         Node* clone = out->pin_array_access_node();
 377         if (clone != nullptr) {
 378           clone = _igvn.register_new_node_with_optimizer(clone, out);
 379           _igvn.replace_node(out, clone);
 380           out = clone;
 381         }
 382       }
 383       set_early_ctrl(out, false);
 384       IdealLoopTree* new_loop = get_loop(get_ctrl(out));
 385       if (old_loop != new_loop) {
 386         if (!old_loop->_child) {
 387           old_loop->_body.yank(out);
 388         }
 389         if (!new_loop->_child) {
 390           new_loop->_body.push(out);
 391         }
 392       }
 393       --i;
 394       --imax;
 395     }
 396   }
 397 }
 398 
 399 //------------------------------has_local_phi_input----------------------------
 400 // Return TRUE if 'n' has Phi inputs from its local block and no other
 401 // block-local inputs (all non-local-phi inputs come from earlier blocks)
 402 Node *PhaseIdealLoop::has_local_phi_input( Node *n ) {
 403   Node *n_ctrl = get_ctrl(n);
 404   // See if some inputs come from a Phi in this block, or from before
 405   // this block.
 406   uint i;
 407   for( i = 1; i < n->req(); i++ ) {
 408     Node *phi = n->in(i);
 409     if( phi->is_Phi() && phi->in(0) == n_ctrl )
 410       break;
 411   }
 412   if( i >= n->req() )
 413     return nullptr;                // No Phi inputs; nowhere to clone thru
 414 
 415   // Check for inputs created between 'n' and the Phi input.  These
 416   // must split as well; they have already been given the chance
 417   // (courtesy of a post-order visit) and since they did not we must
 418   // recover the 'cost' of splitting them by being very profitable
 419   // when splitting 'n'.  Since this is unlikely we simply give up.
 420   for( i = 1; i < n->req(); i++ ) {
 421     Node *m = n->in(i);
 422     if( get_ctrl(m) == n_ctrl && !m->is_Phi() ) {
 423       // We allow the special case of AddP's with no local inputs.
 424       // This allows us to split-up address expressions.
 425       if (m->is_AddP() &&
 426           get_ctrl(m->in(AddPNode::Base)) != n_ctrl &&
 427           get_ctrl(m->in(AddPNode::Address)) != n_ctrl &&
 428           get_ctrl(m->in(AddPNode::Offset)) != n_ctrl) {
 429         // Move the AddP up to the dominating point. That's fine because control of m's inputs
 430         // must dominate get_ctrl(m) == n_ctrl and we just checked that the input controls are != n_ctrl.
 431         Node* c = find_non_split_ctrl(idom(n_ctrl));
 432         if (c->is_OuterStripMinedLoop()) {
 433           c->as_Loop()->verify_strip_mined(1);
 434           c = c->in(LoopNode::EntryControl);
 435         }
 436         set_ctrl_and_loop(m, c);
 437         continue;
 438       }
 439       return nullptr;
 440     }
 441     assert(n->is_Phi() || m->is_Phi() || is_dominator(get_ctrl(m), n_ctrl), "m has strange control");
 442   }
 443 
 444   return n_ctrl;
 445 }
 446 
 447 // Replace expressions like ((V+I) << 2) with (V<<2 + I<<2).
 448 Node* PhaseIdealLoop::remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt) {
 449   assert(bt == T_INT || bt == T_LONG, "only for integers");
 450   int n_op = n->Opcode();
 451 
 452   if (n_op == Op_LShift(bt)) {
 453     // Scale is loop invariant
 454     Node* scale = n->in(2);
 455     Node* scale_ctrl = get_ctrl(scale);
 456     IdealLoopTree* scale_loop = get_loop(scale_ctrl);
 457     if (n_loop == scale_loop || !scale_loop->is_member(n_loop)) {
 458       return nullptr;
 459     }
 460     const TypeInt* scale_t = scale->bottom_type()->isa_int();
 461     if (scale_t != nullptr && scale_t->is_con() && scale_t->get_con() >= 16) {
 462       return nullptr;              // Dont bother with byte/short masking
 463     }
 464     // Add must vary with loop (else shift would be loop-invariant)
 465     Node* add = n->in(1);
 466     Node* add_ctrl = get_ctrl(add);
 467     IdealLoopTree* add_loop = get_loop(add_ctrl);
 468     if (n_loop != add_loop) {
 469       return nullptr;  // happens w/ evil ZKM loops
 470     }
 471 
 472     // Convert I-V into I+ (0-V); same for V-I
 473     if (add->Opcode() == Op_Sub(bt) &&
 474         _igvn.type(add->in(1)) != TypeInteger::zero(bt)) {
 475       assert(add->Opcode() == Op_SubI || add->Opcode() == Op_SubL, "");
 476       Node* zero = integercon(0, bt);
 477       Node* neg = SubNode::make(zero, add->in(2), bt);
 478       register_new_node_with_ctrl_of(neg, add->in(2));
 479       add = AddNode::make(add->in(1), neg, bt);
 480       register_new_node(add, add_ctrl);
 481     }
 482     if (add->Opcode() != Op_Add(bt)) return nullptr;
 483     assert(add->Opcode() == Op_AddI || add->Opcode() == Op_AddL, "");
 484     // See if one add input is loop invariant
 485     Node* add_var = add->in(1);
 486     Node* add_var_ctrl = get_ctrl(add_var);
 487     IdealLoopTree* add_var_loop = get_loop(add_var_ctrl);
 488     Node* add_invar = add->in(2);
 489     Node* add_invar_ctrl = get_ctrl(add_invar);
 490     IdealLoopTree* add_invar_loop = get_loop(add_invar_ctrl);
 491     if (add_invar_loop == n_loop) {
 492       // Swap to find the invariant part
 493       add_invar = add_var;
 494       add_invar_ctrl = add_var_ctrl;
 495       add_invar_loop = add_var_loop;
 496       add_var = add->in(2);
 497     } else if (add_var_loop != n_loop) { // Else neither input is loop invariant
 498       return nullptr;
 499     }
 500     if (n_loop == add_invar_loop || !add_invar_loop->is_member(n_loop)) {
 501       return nullptr;              // No invariant part of the add?
 502     }
 503 
 504     // Yes!  Reshape address expression!
 505     Node* inv_scale = LShiftNode::make(add_invar, scale, bt);
 506     Node* inv_scale_ctrl =
 507             dom_depth(add_invar_ctrl) > dom_depth(scale_ctrl) ?
 508             add_invar_ctrl : scale_ctrl;
 509     register_new_node(inv_scale, inv_scale_ctrl);
 510     Node* var_scale = LShiftNode::make(add_var, scale, bt);
 511     register_new_node(var_scale, n_ctrl);
 512     Node* var_add = AddNode::make(var_scale, inv_scale, bt);
 513     register_new_node(var_add, n_ctrl);
 514     _igvn.replace_node(n, var_add);
 515     return var_add;
 516   }
 517   return nullptr;
 518 }
 519 
 520 //------------------------------remix_address_expressions----------------------
 521 // Rework addressing expressions to get the most loop-invariant stuff
 522 // moved out.  We'd like to do all associative operators, but it's especially
 523 // important (common) to do address expressions.
 524 Node* PhaseIdealLoop::remix_address_expressions(Node* n) {
 525   if (!has_ctrl(n))  return nullptr;
 526   Node* n_ctrl = get_ctrl(n);
 527   IdealLoopTree* n_loop = get_loop(n_ctrl);
 528 
 529   // See if 'n' mixes loop-varying and loop-invariant inputs and
 530   // itself is loop-varying.
 531 
 532   // Only interested in binary ops (and AddP)
 533   if (n->req() < 3 || n->req() > 4) return nullptr;
 534 
 535   Node* n1_ctrl = get_ctrl(n->in(                    1));
 536   Node* n2_ctrl = get_ctrl(n->in(                    2));
 537   Node* n3_ctrl = get_ctrl(n->in(n->req() == 3 ? 2 : 3));
 538   IdealLoopTree* n1_loop = get_loop(n1_ctrl);
 539   IdealLoopTree* n2_loop = get_loop(n2_ctrl);
 540   IdealLoopTree* n3_loop = get_loop(n3_ctrl);
 541 
 542   // Does one of my inputs spin in a tighter loop than self?
 543   if ((n_loop->is_member(n1_loop) && n_loop != n1_loop) ||
 544       (n_loop->is_member(n2_loop) && n_loop != n2_loop) ||
 545       (n_loop->is_member(n3_loop) && n_loop != n3_loop)) {
 546     return nullptr;                // Leave well enough alone
 547   }
 548 
 549   // Is at least one of my inputs loop-invariant?
 550   if (n1_loop == n_loop &&
 551       n2_loop == n_loop &&
 552       n3_loop == n_loop) {
 553     return nullptr;                // No loop-invariant inputs
 554   }
 555 
 556   Node* res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_INT);
 557   if (res != nullptr) {
 558     return res;
 559   }
 560   res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_LONG);
 561   if (res != nullptr) {
 562     return res;
 563   }
 564 
 565   int n_op = n->Opcode();
 566   // Replace (I+V) with (V+I)
 567   if (n_op == Op_AddI ||
 568       n_op == Op_AddL ||
 569       n_op == Op_AddF ||
 570       n_op == Op_AddD ||
 571       n_op == Op_MulI ||
 572       n_op == Op_MulL ||
 573       n_op == Op_MulF ||
 574       n_op == Op_MulD) {
 575     if (n2_loop == n_loop) {
 576       assert(n1_loop != n_loop, "");
 577       n->swap_edges(1, 2);
 578     }
 579   }
 580 
 581   // Replace ((I1 +p V) +p I2) with ((I1 +p I2) +p V),
 582   // but not if I2 is a constant. Skip for irreducible loops.
 583   if (n_op == Op_AddP && n_loop->_head->is_Loop()) {
 584     if (n2_loop == n_loop && n3_loop != n_loop) {
 585       if (n->in(2)->Opcode() == Op_AddP && !n->in(3)->is_Con()) {
 586         Node* n22_ctrl = get_ctrl(n->in(2)->in(2));
 587         Node* n23_ctrl = get_ctrl(n->in(2)->in(3));
 588         IdealLoopTree* n22loop = get_loop(n22_ctrl);
 589         IdealLoopTree* n23_loop = get_loop(n23_ctrl);
 590         if (n22loop != n_loop && n22loop->is_member(n_loop) &&
 591             n23_loop == n_loop) {
 592           Node* add1 = new AddPNode(n->in(1), n->in(2)->in(2), n->in(3));
 593           // Stuff new AddP in the loop preheader
 594           register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl));
 595           Node* add2 = new AddPNode(n->in(1), add1, n->in(2)->in(3));
 596           register_new_node(add2, n_ctrl);
 597           _igvn.replace_node(n, add2);
 598           return add2;
 599         }
 600       }
 601     }
 602 
 603     // Replace (I1 +p (I2 + V)) with ((I1 +p I2) +p V)
 604     if (n2_loop != n_loop && n3_loop == n_loop) {
 605       if (n->in(3)->Opcode() == Op_AddX) {
 606         Node* V = n->in(3)->in(1);
 607         Node* I = n->in(3)->in(2);
 608         if (is_member(n_loop,get_ctrl(V))) {
 609         } else {
 610           Node *tmp = V; V = I; I = tmp;
 611         }
 612         if (!is_member(n_loop,get_ctrl(I))) {
 613           Node* add1 = new AddPNode(n->in(1), n->in(2), I);
 614           // Stuff new AddP in the loop preheader
 615           register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl));
 616           Node* add2 = new AddPNode(n->in(1), add1, V);
 617           register_new_node(add2, n_ctrl);
 618           _igvn.replace_node(n, add2);
 619           return add2;
 620         }
 621       }
 622     }
 623   }
 624 
 625   return nullptr;
 626 }
 627 
 628 // Optimize ((in1[2*i] * in2[2*i]) + (in1[2*i+1] * in2[2*i+1]))
 629 Node *PhaseIdealLoop::convert_add_to_muladd(Node* n) {
 630   assert(n->Opcode() == Op_AddI, "sanity");
 631   Node * nn = nullptr;
 632   Node * in1 = n->in(1);
 633   Node * in2 = n->in(2);
 634   if (in1->Opcode() == Op_MulI && in2->Opcode() == Op_MulI) {
 635     IdealLoopTree* loop_n = get_loop(get_ctrl(n));
 636     if (loop_n->is_counted() &&
 637         loop_n->_head->as_Loop()->is_valid_counted_loop(T_INT) &&
 638         Matcher::match_rule_supported(Op_MulAddVS2VI) &&
 639         Matcher::match_rule_supported(Op_MulAddS2I)) {
 640       Node* mul_in1 = in1->in(1);
 641       Node* mul_in2 = in1->in(2);
 642       Node* mul_in3 = in2->in(1);
 643       Node* mul_in4 = in2->in(2);
 644       if (mul_in1->Opcode() == Op_LoadS &&
 645           mul_in2->Opcode() == Op_LoadS &&
 646           mul_in3->Opcode() == Op_LoadS &&
 647           mul_in4->Opcode() == Op_LoadS) {
 648         IdealLoopTree* loop1 = get_loop(get_ctrl(mul_in1));
 649         IdealLoopTree* loop2 = get_loop(get_ctrl(mul_in2));
 650         IdealLoopTree* loop3 = get_loop(get_ctrl(mul_in3));
 651         IdealLoopTree* loop4 = get_loop(get_ctrl(mul_in4));
 652         IdealLoopTree* loop5 = get_loop(get_ctrl(in1));
 653         IdealLoopTree* loop6 = get_loop(get_ctrl(in2));
 654         // All nodes should be in the same counted loop.
 655         if (loop_n == loop1 && loop_n == loop2 && loop_n == loop3 &&
 656             loop_n == loop4 && loop_n == loop5 && loop_n == loop6) {
 657           Node* adr1 = mul_in1->in(MemNode::Address);
 658           Node* adr2 = mul_in2->in(MemNode::Address);
 659           Node* adr3 = mul_in3->in(MemNode::Address);
 660           Node* adr4 = mul_in4->in(MemNode::Address);
 661           if (adr1->is_AddP() && adr2->is_AddP() && adr3->is_AddP() && adr4->is_AddP()) {
 662             if ((adr1->in(AddPNode::Base) == adr3->in(AddPNode::Base)) &&
 663                 (adr2->in(AddPNode::Base) == adr4->in(AddPNode::Base))) {
 664               nn = new MulAddS2INode(mul_in1, mul_in2, mul_in3, mul_in4);
 665               register_new_node_with_ctrl_of(nn, n);
 666               _igvn.replace_node(n, nn);
 667               return nn;
 668             } else if ((adr1->in(AddPNode::Base) == adr4->in(AddPNode::Base)) &&
 669                        (adr2->in(AddPNode::Base) == adr3->in(AddPNode::Base))) {
 670               nn = new MulAddS2INode(mul_in1, mul_in2, mul_in4, mul_in3);
 671               register_new_node_with_ctrl_of(nn, n);
 672               _igvn.replace_node(n, nn);
 673               return nn;
 674             }
 675           }
 676         }
 677       }
 678     }
 679   }
 680   return nn;
 681 }
 682 
 683 //------------------------------conditional_move-------------------------------
 684 // Attempt to replace a Phi with a conditional move.  We have some pretty
 685 // strict profitability requirements.  All Phis at the merge point must
 686 // be converted, so we can remove the control flow.  We need to limit the
 687 // number of c-moves to a small handful.  All code that was in the side-arms
 688 // of the CFG diamond is now speculatively executed.  This code has to be
 689 // "cheap enough".  We are pretty much limited to CFG diamonds that merge
 690 // 1 or 2 items with a total of 1 or 2 ops executed speculatively.
 691 Node *PhaseIdealLoop::conditional_move( Node *region ) {
 692 
 693   assert(region->is_Region(), "sanity check");
 694   if (region->req() != 3) return nullptr;
 695 
 696   // Check for CFG diamond
 697   Node *lp = region->in(1);
 698   Node *rp = region->in(2);
 699   if (!lp || !rp) return nullptr;
 700   Node *lp_c = lp->in(0);
 701   if (lp_c == nullptr || lp_c != rp->in(0) || !lp_c->is_If()) return nullptr;
 702   IfNode *iff = lp_c->as_If();
 703 
 704   // Check for ops pinned in an arm of the diamond.
 705   // Can't remove the control flow in this case
 706   if (lp->outcnt() > 1) return nullptr;
 707   if (rp->outcnt() > 1) return nullptr;
 708 
 709   IdealLoopTree* r_loop = get_loop(region);
 710   assert(r_loop == get_loop(iff), "sanity");
 711   // Always convert to CMOVE if all results are used only outside this loop.
 712   bool used_inside_loop = (r_loop == _ltree_root);
 713 
 714   // Check profitability
 715   int cost = 0;
 716   int phis = 0;
 717   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 718     Node *out = region->fast_out(i);
 719     if (!out->is_Phi()) continue; // Ignore other control edges, etc
 720     phis++;
 721     PhiNode* phi = out->as_Phi();
 722     BasicType bt = phi->type()->basic_type();
 723     switch (bt) {
 724     case T_DOUBLE:
 725     case T_FLOAT:
 726       if (C->use_cmove()) {
 727         continue; //TODO: maybe we want to add some cost
 728       }
 729       cost += Matcher::float_cmove_cost(); // Could be very expensive
 730       break;
 731     case T_LONG: {
 732       cost += Matcher::long_cmove_cost(); // May encodes as 2 CMOV's
 733     }
 734     case T_INT:                 // These all CMOV fine
 735     case T_ADDRESS: {           // (RawPtr)
 736       cost++;
 737       break;
 738     }
 739     case T_NARROWOOP: // Fall through
 740     case T_OBJECT: {            // Base oops are OK, but not derived oops
 741       const TypeOopPtr *tp = phi->type()->make_ptr()->isa_oopptr();
 742       // Derived pointers are Bad (tm): what's the Base (for GC purposes) of a
 743       // CMOVE'd derived pointer?  It's a CMOVE'd derived base.  Thus
 744       // CMOVE'ing a derived pointer requires we also CMOVE the base.  If we
 745       // have a Phi for the base here that we convert to a CMOVE all is well
 746       // and good.  But if the base is dead, we'll not make a CMOVE.  Later
 747       // the allocator will have to produce a base by creating a CMOVE of the
 748       // relevant bases.  This puts the allocator in the business of
 749       // manufacturing expensive instructions, generally a bad plan.
 750       // Just Say No to Conditionally-Moved Derived Pointers.
 751       if (tp && tp->offset() != 0)
 752         return nullptr;
 753       cost++;
 754       break;
 755     }
 756     default:
 757       return nullptr;              // In particular, can't do memory or I/O
 758     }
 759     // Add in cost any speculative ops
 760     for (uint j = 1; j < region->req(); j++) {
 761       Node *proj = region->in(j);
 762       Node *inp = phi->in(j);
 763       if (get_ctrl(inp) == proj) { // Found local op
 764         cost++;
 765         // Check for a chain of dependent ops; these will all become
 766         // speculative in a CMOV.
 767         for (uint k = 1; k < inp->req(); k++)
 768           if (get_ctrl(inp->in(k)) == proj)
 769             cost += ConditionalMoveLimit; // Too much speculative goo
 770       }
 771     }
 772     // See if the Phi is used by a Cmp or Narrow oop Decode/Encode.
 773     // This will likely Split-If, a higher-payoff operation.
 774     for (DUIterator_Fast kmax, k = phi->fast_outs(kmax); k < kmax; k++) {
 775       Node* use = phi->fast_out(k);
 776       if (use->is_Cmp() || use->is_DecodeNarrowPtr() || use->is_EncodeNarrowPtr())
 777         cost += ConditionalMoveLimit;
 778       // Is there a use inside the loop?
 779       // Note: check only basic types since CMoveP is pinned.
 780       if (!used_inside_loop && is_java_primitive(bt)) {
 781         IdealLoopTree* u_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use);
 782         if (r_loop == u_loop || r_loop->is_member(u_loop)) {
 783           used_inside_loop = true;
 784         }
 785       }
 786     }
 787   }//for
 788   Node* bol = iff->in(1);
 789   assert(!bol->is_OpaqueInitializedAssertionPredicate(), "Initialized Assertion Predicates cannot form a diamond with Halt");
 790   if (bol->is_OpaqueTemplateAssertionPredicate()) {
 791     // Ignore Template Assertion Predicates with OpaqueTemplateAssertionPredicate nodes.
 792     return nullptr;
 793   }
 794   if (bol->is_OpaqueMultiversioning()) {
 795     assert(bol->as_OpaqueMultiversioning()->is_useless(), "Must be useless, i.e. fast main loop has already disappeared.");
 796     // Ignore multiversion_if that just lost its loops. The OpaqueMultiversioning is marked useless,
 797     // and will make the multiversion_if constant fold in the next IGVN round.
 798     return nullptr;
 799   }
 800   if (!bol->is_Bool()) {
 801     assert(false, "Expected Bool, but got %s", NodeClassNames[bol->Opcode()]);
 802     return nullptr;
 803   }
 804   int cmp_op = bol->in(1)->Opcode();
 805   if (cmp_op == Op_SubTypeCheck) { // SubTypeCheck expansion expects an IfNode
 806     return nullptr;
 807   }
 808   // It is expensive to generate flags from a float compare.
 809   // Avoid duplicated float compare.
 810   if (phis > 1 && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) return nullptr;
 811 
 812   float infrequent_prob = PROB_UNLIKELY_MAG(3);
 813   // Ignore cost and blocks frequency if CMOVE can be moved outside the loop.
 814   if (used_inside_loop) {
 815     if (cost >= ConditionalMoveLimit) return nullptr; // Too much goo
 816 
 817     // BlockLayoutByFrequency optimization moves infrequent branch
 818     // from hot path. No point in CMOV'ing in such case (110 is used
 819     // instead of 100 to take into account not exactness of float value).
 820     if (BlockLayoutByFrequency) {
 821       infrequent_prob = MAX2(infrequent_prob, (float)BlockLayoutMinDiamondPercentage/110.0f);
 822     }
 823   }
 824   // Check for highly predictable branch.  No point in CMOV'ing if
 825   // we are going to predict accurately all the time.
 826   if (C->use_cmove() && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) {
 827     //keep going
 828   } else if (iff->_prob < infrequent_prob ||
 829       iff->_prob > (1.0f - infrequent_prob))
 830     return nullptr;
 831 
 832   // --------------
 833   // Now replace all Phis with CMOV's
 834   Node *cmov_ctrl = iff->in(0);
 835   uint flip = (lp->Opcode() == Op_IfTrue);
 836   Node_List wq;
 837   while (1) {
 838     PhiNode* phi = nullptr;
 839     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 840       Node *out = region->fast_out(i);
 841       if (out->is_Phi()) {
 842         phi = out->as_Phi();
 843         break;
 844       }
 845     }
 846     if (phi == nullptr || _igvn.type(phi) == Type::TOP || !CMoveNode::supported(_igvn.type(phi))) {
 847       break;
 848     }
 849     // Move speculative ops
 850     wq.push(phi);
 851     while (wq.size() > 0) {
 852       Node *n = wq.pop();
 853       for (uint j = 1; j < n->req(); j++) {
 854         Node* m = n->in(j);
 855         if (m != nullptr && !is_dominator(get_ctrl(m), cmov_ctrl)) {
 856           set_ctrl(m, cmov_ctrl);
 857           wq.push(m);
 858         }
 859       }
 860     }
 861     Node* cmov = CMoveNode::make(iff->in(1), phi->in(1+flip), phi->in(2-flip), _igvn.type(phi));
 862     register_new_node(cmov, cmov_ctrl);
 863     _igvn.replace_node(phi, cmov);
 864 #ifndef PRODUCT
 865     if (TraceLoopOpts) {
 866       tty->print("CMOV  ");
 867       r_loop->dump_head();
 868       if (Verbose) {
 869         bol->in(1)->dump(1);
 870         cmov->dump(1);
 871       }
 872     }
 873     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
 874 #endif
 875   }
 876 
 877   // The useless CFG diamond will fold up later; see the optimization in
 878   // RegionNode::Ideal.
 879   _igvn._worklist.push(region);
 880 
 881   return iff->in(1);
 882 }
 883 
 884 static void enqueue_cfg_uses(Node* m, Unique_Node_List& wq) {
 885   for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
 886     Node* u = m->fast_out(i);
 887     if (u->is_CFG()) {
 888       if (u->is_NeverBranch()) {
 889         u = u->as_NeverBranch()->proj_out(0);
 890         enqueue_cfg_uses(u, wq);
 891       } else {
 892         wq.push(u);
 893       }
 894     }
 895   }
 896 }
 897 
 898 // Try moving a store out of a loop, right before the loop
 899 Node* PhaseIdealLoop::try_move_store_before_loop(Node* n, Node *n_ctrl) {
 900   // Store has to be first in the loop body
 901   IdealLoopTree *n_loop = get_loop(n_ctrl);
 902   if (n->is_Store() && n_loop != _ltree_root &&
 903       n_loop->is_loop() && n_loop->_head->is_Loop() &&
 904       n->in(0) != nullptr) {
 905     Node* address = n->in(MemNode::Address);
 906     Node* value = n->in(MemNode::ValueIn);
 907     Node* mem = n->in(MemNode::Memory);
 908     IdealLoopTree* address_loop = get_loop(get_ctrl(address));
 909     IdealLoopTree* value_loop = get_loop(get_ctrl(value));
 910 
 911     // - address and value must be loop invariant
 912     // - memory must be a memory Phi for the loop
 913     // - Store must be the only store on this memory slice in the
 914     // loop: if there's another store following this one then value
 915     // written at iteration i by the second store could be overwritten
 916     // at iteration i+n by the first store: it's not safe to move the
 917     // first store out of the loop
 918     // - nothing must observe the memory Phi: it guarantees no read
 919     // before the store, we are also guaranteed the store post
 920     // dominates the loop head (ignoring a possible early
 921     // exit). Otherwise there would be extra Phi involved between the
 922     // loop's Phi and the store.
 923     // - there must be no early exit from the loop before the Store
 924     // (such an exit most of the time would be an extra use of the
 925     // memory Phi but sometimes is a bottom memory Phi that takes the
 926     // store as input).
 927 
 928     if (!n_loop->is_member(address_loop) &&
 929         !n_loop->is_member(value_loop) &&
 930         mem->is_Phi() && mem->in(0) == n_loop->_head &&
 931         mem->outcnt() == 1 &&
 932         mem->in(LoopNode::LoopBackControl) == n) {
 933 
 934       assert(n_loop->_tail != nullptr, "need a tail");
 935       assert(is_dominator(n_ctrl, n_loop->_tail), "store control must not be in a branch in the loop");
 936 
 937       // Verify that there's no early exit of the loop before the store.
 938       bool ctrl_ok = false;
 939       {
 940         // Follow control from loop head until n, we exit the loop or
 941         // we reach the tail
 942         ResourceMark rm;
 943         Unique_Node_List wq;
 944         wq.push(n_loop->_head);
 945 
 946         for (uint next = 0; next < wq.size(); ++next) {
 947           Node *m = wq.at(next);
 948           if (m == n->in(0)) {
 949             ctrl_ok = true;
 950             continue;
 951           }
 952           assert(!has_ctrl(m), "should be CFG");
 953           if (!n_loop->is_member(get_loop(m)) || m == n_loop->_tail) {
 954             ctrl_ok = false;
 955             break;
 956           }
 957           enqueue_cfg_uses(m, wq);
 958           if (wq.size() > 10) {
 959             ctrl_ok = false;
 960             break;
 961           }
 962         }
 963       }
 964       if (ctrl_ok) {
 965         // move the Store
 966         _igvn.replace_input_of(mem, LoopNode::LoopBackControl, mem);
 967         _igvn.replace_input_of(n, 0, n_loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl));
 968         _igvn.replace_input_of(n, MemNode::Memory, mem->in(LoopNode::EntryControl));
 969         // Disconnect the phi now. An empty phi can confuse other
 970         // optimizations in this pass of loop opts.
 971         _igvn.replace_node(mem, mem->in(LoopNode::EntryControl));
 972         n_loop->_body.yank(mem);
 973 
 974         set_ctrl_and_loop(n, n->in(0));
 975 
 976         return n;
 977       }
 978     }
 979   }
 980   return nullptr;
 981 }
 982 
 983 // Try moving a store out of a loop, right after the loop
 984 void PhaseIdealLoop::try_move_store_after_loop(Node* n) {
 985   if (n->is_Store() && n->in(0) != nullptr) {
 986     Node *n_ctrl = get_ctrl(n);
 987     IdealLoopTree *n_loop = get_loop(n_ctrl);
 988     // Store must be in a loop
 989     if (n_loop != _ltree_root && !n_loop->_irreducible) {
 990       Node* address = n->in(MemNode::Address);
 991       Node* value = n->in(MemNode::ValueIn);
 992       IdealLoopTree* address_loop = get_loop(get_ctrl(address));
 993       // address must be loop invariant
 994       if (!n_loop->is_member(address_loop)) {
 995         // Store must be last on this memory slice in the loop and
 996         // nothing in the loop must observe it
 997         Node* phi = nullptr;
 998         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 999           Node* u = n->fast_out(i);
1000           if (has_ctrl(u)) { // control use?
1001             IdealLoopTree *u_loop = get_loop(get_ctrl(u));
1002             if (!n_loop->is_member(u_loop)) {
1003               continue;
1004             }
1005             if (u->is_Phi() && u->in(0) == n_loop->_head) {
1006               assert(_igvn.type(u) == Type::MEMORY, "bad phi");
1007               // multiple phis on the same slice are possible
1008               if (phi != nullptr) {
1009                 return;
1010               }
1011               phi = u;
1012               continue;
1013             }
1014           }
1015           return;
1016         }
1017         if (phi != nullptr) {
1018           // Nothing in the loop before the store (next iteration)
1019           // must observe the stored value
1020           bool mem_ok = true;
1021           {
1022             ResourceMark rm;
1023             Unique_Node_List wq;
1024             wq.push(phi);
1025             for (uint next = 0; next < wq.size() && mem_ok; ++next) {
1026               Node *m = wq.at(next);
1027               for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax && mem_ok; i++) {
1028                 Node* u = m->fast_out(i);
1029                 if (u->is_Store() || u->is_Phi()) {
1030                   if (u != n) {
1031                     wq.push(u);
1032                     mem_ok = (wq.size() <= 10);
1033                   }
1034                 } else {
1035                   mem_ok = false;
1036                   break;
1037                 }
1038               }
1039             }
1040           }
1041           if (mem_ok) {
1042             // Move the store out of the loop if the LCA of all
1043             // users (except for the phi) is outside the loop.
1044             Node* hook = new Node(1);
1045             hook->init_req(0, n_ctrl); // Add an input to prevent hook from being dead
1046             _igvn.rehash_node_delayed(phi);
1047             int count = phi->replace_edge(n, hook, &_igvn);
1048             assert(count > 0, "inconsistent phi");
1049 
1050             // Compute latest point this store can go
1051             Node* lca = get_late_ctrl(n, get_ctrl(n));
1052             if (lca->is_OuterStripMinedLoop()) {
1053               lca = lca->in(LoopNode::EntryControl);
1054             }
1055             if (n_loop->is_member(get_loop(lca))) {
1056               // LCA is in the loop - bail out
1057               _igvn.replace_node(hook, n);
1058               return;
1059             }
1060 #ifdef ASSERT
1061             if (n_loop->_head->is_Loop() && n_loop->_head->as_Loop()->is_strip_mined()) {
1062               assert(n_loop->_head->Opcode() == Op_CountedLoop, "outer loop is a strip mined");
1063               n_loop->_head->as_Loop()->verify_strip_mined(1);
1064               Node* outer = n_loop->_head->as_CountedLoop()->outer_loop();
1065               IdealLoopTree* outer_loop = get_loop(outer);
1066               assert(n_loop->_parent == outer_loop, "broken loop tree");
1067               assert(get_loop(lca) == outer_loop, "safepoint in outer loop consume all memory state");
1068             }
1069 #endif
1070             lca = place_outside_loop(lca, n_loop);
1071             assert(!n_loop->is_member(get_loop(lca)), "control must not be back in the loop");
1072             assert(get_loop(lca)->_nest < n_loop->_nest || get_loop(lca)->_head->as_Loop()->is_in_infinite_subgraph(), "must not be moved into inner loop");
1073 
1074             // Move store out of the loop
1075             _igvn.replace_node(hook, n->in(MemNode::Memory));
1076             _igvn.replace_input_of(n, 0, lca);
1077             set_ctrl_and_loop(n, lca);
1078 
1079             // Disconnect the phi now. An empty phi can confuse other
1080             // optimizations in this pass of loop opts..
1081             if (phi->in(LoopNode::LoopBackControl) == phi) {
1082               _igvn.replace_node(phi, phi->in(LoopNode::EntryControl));
1083               n_loop->_body.yank(phi);
1084             }
1085           }
1086         }
1087       }
1088     }
1089   }
1090 }
1091 
1092 // Split some nodes that take a counted loop phi as input at a counted
1093 // loop can cause vectorization of some expressions to fail
1094 bool PhaseIdealLoop::split_thru_phi_could_prevent_vectorization(Node* n, Node* n_blk) {
1095   if (!n_blk->is_CountedLoop()) {
1096     return false;
1097   }
1098 
1099   int opcode = n->Opcode();
1100 
1101   if (opcode != Op_AndI &&
1102       opcode != Op_MulI &&
1103       opcode != Op_RotateRight &&
1104       opcode != Op_RShiftI) {
1105     return false;
1106   }
1107 
1108   return n->in(1) == n_blk->as_BaseCountedLoop()->phi();
1109 }
1110 
1111 //------------------------------split_if_with_blocks_pre-----------------------
1112 // Do the real work in a non-recursive function.  Data nodes want to be
1113 // cloned in the pre-order so they can feed each other nicely.
1114 Node *PhaseIdealLoop::split_if_with_blocks_pre( Node *n ) {
1115   // Cloning these guys is unlikely to win
1116   int n_op = n->Opcode();
1117   if (n_op == Op_MergeMem) {
1118     return n;
1119   }
1120   if (n->is_Proj()) {
1121     return n;
1122   }
1123   // Do not clone-up CmpFXXX variations, as these are always
1124   // followed by a CmpI
1125   if (n->is_Cmp()) {
1126     return n;
1127   }
1128   // Attempt to use a conditional move instead of a phi/branch
1129   if (ConditionalMoveLimit > 0 && n_op == Op_Region) {
1130     Node *cmov = conditional_move( n );
1131     if (cmov) {
1132       return cmov;
1133     }
1134   }
1135   if (n->is_CFG() || n->is_LoadStore()) {
1136     return n;
1137   }
1138   if (n->is_Opaque1()) { // Opaque nodes cannot be mod'd
1139     if (!C->major_progress()) {   // If chance of no more loop opts...
1140       _igvn._worklist.push(n);  // maybe we'll remove them
1141     }
1142     return n;
1143   }
1144 
1145   if (n->is_Con()) {
1146     return n;   // No cloning for Con nodes
1147   }
1148 
1149   Node *n_ctrl = get_ctrl(n);
1150   if (!n_ctrl) {
1151     return n;       // Dead node
1152   }
1153 
1154   Node* res = try_move_store_before_loop(n, n_ctrl);
1155   if (res != nullptr) {
1156     return n;
1157   }
1158 
1159   // Attempt to remix address expressions for loop invariants
1160   Node *m = remix_address_expressions( n );
1161   if( m ) return m;
1162 
1163   if (n_op == Op_AddI) {
1164     Node *nn = convert_add_to_muladd( n );
1165     if ( nn ) return nn;
1166   }
1167 
1168   if (n->is_ConstraintCast()) {
1169     Node* dom_cast = n->as_ConstraintCast()->dominating_cast(&_igvn, this);
1170     // ConstraintCastNode::dominating_cast() uses node control input to determine domination.
1171     // Node control inputs don't necessarily agree with loop control info (due to
1172     // transformations happened in between), thus additional dominance check is needed
1173     // to keep loop info valid.
1174     if (dom_cast != nullptr && is_dominator(get_ctrl(dom_cast), get_ctrl(n))) {
1175       _igvn.replace_node(n, dom_cast);
1176       return dom_cast;
1177     }
1178   }
1179 
1180   // Determine if the Node has inputs from some local Phi.
1181   // Returns the block to clone thru.
1182   Node *n_blk = has_local_phi_input( n );
1183   if( !n_blk ) return n;
1184 
1185   // Do not clone the trip counter through on a CountedLoop
1186   // (messes up the canonical shape).
1187   if (((n_blk->is_CountedLoop() || (n_blk->is_Loop() && n_blk->as_Loop()->is_loop_nest_inner_loop())) && n->Opcode() == Op_AddI) ||
1188       (n_blk->is_LongCountedLoop() && n->Opcode() == Op_AddL)) {
1189     return n;
1190   }
1191   // Pushing a shift through the iv Phi can get in the way of addressing optimizations or range check elimination
1192   if (n_blk->is_BaseCountedLoop() && n->Opcode() == Op_LShift(n_blk->as_BaseCountedLoop()->bt()) &&
1193       n->in(1) == n_blk->as_BaseCountedLoop()->phi()) {
1194     return n;
1195   }
1196 
1197   if (split_thru_phi_could_prevent_vectorization(n, n_blk)) {
1198     return n;
1199   }
1200 
1201   // Check for having no control input; not pinned.  Allow
1202   // dominating control.
1203   if (n->in(0)) {
1204     Node *dom = idom(n_blk);
1205     if (dom_lca(n->in(0), dom) != n->in(0)) {
1206       return n;
1207     }
1208   }
1209   // Policy: when is it profitable.  You must get more wins than
1210   // policy before it is considered profitable.  Policy is usually 0,
1211   // so 1 win is considered profitable.  Big merges will require big
1212   // cloning, so get a larger policy.
1213   int policy = n_blk->req() >> 2;
1214 
1215   // If the loop is a candidate for range check elimination,
1216   // delay splitting through it's phi until a later loop optimization
1217   if (n_blk->is_BaseCountedLoop()) {
1218     IdealLoopTree *lp = get_loop(n_blk);
1219     if (lp && lp->_rce_candidate) {
1220       return n;
1221     }
1222   }
1223 
1224   if (must_throttle_split_if()) return n;
1225 
1226   // Split 'n' through the merge point if it is profitable
1227   Node *phi = split_thru_phi( n, n_blk, policy );
1228   if (!phi) return n;
1229 
1230   // Found a Phi to split thru!
1231   // Replace 'n' with the new phi
1232   _igvn.replace_node( n, phi );
1233   // Moved a load around the loop, 'en-registering' something.
1234   if (n_blk->is_Loop() && n->is_Load() &&
1235       !phi->in(LoopNode::LoopBackControl)->is_Load())
1236     C->set_major_progress();
1237 
1238   return phi;
1239 }
1240 
1241 static bool merge_point_too_heavy(Compile* C, Node* region) {
1242   // Bail out if the region and its phis have too many users.
1243   int weight = 0;
1244   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1245     weight += region->fast_out(i)->outcnt();
1246   }
1247   int nodes_left = C->max_node_limit() - C->live_nodes();
1248   if (weight * 8 > nodes_left) {
1249     if (PrintOpto) {
1250       tty->print_cr("*** Split-if bails out:  %d nodes, region weight %d", C->unique(), weight);
1251     }
1252     return true;
1253   } else {
1254     return false;
1255   }
1256 }
1257 
1258 static bool merge_point_safe(Node* region) {
1259   // 4799512: Stop split_if_with_blocks from splitting a block with a ConvI2LNode
1260   // having a PhiNode input. This sidesteps the dangerous case where the split
1261   // ConvI2LNode may become TOP if the input Value() does not
1262   // overlap the ConvI2L range, leaving a node which may not dominate its
1263   // uses.
1264   // A better fix for this problem can be found in the BugTraq entry, but
1265   // expediency for Mantis demands this hack.
1266 #ifdef _LP64
1267   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1268     Node* n = region->fast_out(i);
1269     if (n->is_Phi()) {
1270       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1271         Node* m = n->fast_out(j);
1272         if (m->Opcode() == Op_ConvI2L)
1273           return false;
1274         if (m->is_CastII()) {
1275           return false;
1276         }
1277       }
1278     }
1279   }
1280 #endif
1281   return true;
1282 }
1283 
1284 
1285 //------------------------------place_outside_loop---------------------------------
1286 // Place some computation outside of this loop on the path to the use passed as argument
1287 Node* PhaseIdealLoop::place_outside_loop(Node* useblock, IdealLoopTree* loop) const {
1288   Node* head = loop->_head;
1289   assert(!loop->is_member(get_loop(useblock)), "must be outside loop");
1290   if (head->is_Loop() && head->as_Loop()->is_strip_mined()) {
1291     loop = loop->_parent;
1292     assert(loop->_head->is_OuterStripMinedLoop(), "malformed strip mined loop");
1293   }
1294 
1295   // Pick control right outside the loop
1296   for (;;) {
1297     Node* dom = idom(useblock);
1298     if (loop->is_member(get_loop(dom))) {
1299       break;
1300     }
1301     useblock = dom;
1302   }
1303   assert(find_non_split_ctrl(useblock) == useblock, "should be non split control");
1304   return useblock;
1305 }
1306 
1307 
1308 bool PhaseIdealLoop::identical_backtoback_ifs(Node *n) {
1309   if (!n->is_If() || n->is_BaseCountedLoopEnd()) {
1310     return false;
1311   }
1312   if (!n->in(0)->is_Region()) {
1313     return false;
1314   }
1315 
1316   Node* region = n->in(0);
1317   Node* dom = idom(region);
1318   if (!dom->is_If() ||  !n->as_If()->same_condition(dom, &_igvn)) {
1319     return false;
1320   }
1321   IfNode* dom_if = dom->as_If();
1322   Node* proj_true = dom_if->proj_out(1);
1323   Node* proj_false = dom_if->proj_out(0);
1324 
1325   for (uint i = 1; i < region->req(); i++) {
1326     if (is_dominator(proj_true, region->in(i))) {
1327       continue;
1328     }
1329     if (is_dominator(proj_false, region->in(i))) {
1330       continue;
1331     }
1332     return false;
1333   }
1334 
1335   return true;
1336 }
1337 
1338 
1339 bool PhaseIdealLoop::can_split_if(Node* n_ctrl) {
1340   if (must_throttle_split_if()) {
1341     return false;
1342   }
1343 
1344   // Do not do 'split-if' if irreducible loops are present.
1345   if (_has_irreducible_loops) {
1346     return false;
1347   }
1348 
1349   if (merge_point_too_heavy(C, n_ctrl)) {
1350     return false;
1351   }
1352 
1353   // Do not do 'split-if' if some paths are dead.  First do dead code
1354   // elimination and then see if its still profitable.
1355   for (uint i = 1; i < n_ctrl->req(); i++) {
1356     if (n_ctrl->in(i) == C->top()) {
1357       return false;
1358     }
1359   }
1360 
1361   // If trying to do a 'Split-If' at the loop head, it is only
1362   // profitable if the cmp folds up on BOTH paths.  Otherwise we
1363   // risk peeling a loop forever.
1364 
1365   // CNC - Disabled for now.  Requires careful handling of loop
1366   // body selection for the cloned code.  Also, make sure we check
1367   // for any input path not being in the same loop as n_ctrl.  For
1368   // irreducible loops we cannot check for 'n_ctrl->is_Loop()'
1369   // because the alternative loop entry points won't be converted
1370   // into LoopNodes.
1371   IdealLoopTree *n_loop = get_loop(n_ctrl);
1372   for (uint j = 1; j < n_ctrl->req(); j++) {
1373     if (get_loop(n_ctrl->in(j)) != n_loop) {
1374       return false;
1375     }
1376   }
1377 
1378   // Check for safety of the merge point.
1379   if (!merge_point_safe(n_ctrl)) {
1380     return false;
1381   }
1382 
1383   return true;
1384 }
1385 
1386 // Detect if the node is the inner strip-mined loop
1387 // Return: null if it's not the case, or the exit of outer strip-mined loop
1388 static Node* is_inner_of_stripmined_loop(const Node* out) {
1389   Node* out_le = nullptr;
1390 
1391   if (out->is_CountedLoopEnd()) {
1392       const CountedLoopNode* loop = out->as_CountedLoopEnd()->loopnode();
1393 
1394       if (loop != nullptr && loop->is_strip_mined()) {
1395         out_le = loop->in(LoopNode::EntryControl)->as_OuterStripMinedLoop()->outer_loop_exit();
1396       }
1397   }
1398 
1399   return out_le;
1400 }
1401 
1402 //------------------------------split_if_with_blocks_post----------------------
1403 // Do the real work in a non-recursive function.  CFG hackery wants to be
1404 // in the post-order, so it can dirty the I-DOM info and not use the dirtied
1405 // info.
1406 void PhaseIdealLoop::split_if_with_blocks_post(Node *n) {
1407 
1408   // Cloning Cmp through Phi's involves the split-if transform.
1409   // FastLock is not used by an If
1410   if (n->is_Cmp() && !n->is_FastLock()) {
1411     Node *n_ctrl = get_ctrl(n);
1412     // Determine if the Node has inputs from some local Phi.
1413     // Returns the block to clone thru.
1414     Node *n_blk = has_local_phi_input(n);
1415     if (n_blk != n_ctrl) {
1416       return;
1417     }
1418 
1419     if (!can_split_if(n_ctrl)) {
1420       return;
1421     }
1422 
1423     if (n->outcnt() != 1) {
1424       return; // Multiple bool's from 1 compare?
1425     }
1426     Node *bol = n->unique_out();
1427     assert(bol->is_Bool(), "expect a bool here");
1428     if (bol->outcnt() != 1) {
1429       return;// Multiple branches from 1 compare?
1430     }
1431     Node *iff = bol->unique_out();
1432 
1433     // Check some safety conditions
1434     if (iff->is_If()) {        // Classic split-if?
1435       if (iff->in(0) != n_ctrl) {
1436         return; // Compare must be in same blk as if
1437       }
1438     } else if (iff->is_CMove()) { // Trying to split-up a CMOVE
1439       // Can't split CMove with different control.
1440       if (get_ctrl(iff) != n_ctrl) {
1441         return;
1442       }
1443       if (get_ctrl(iff->in(2)) == n_ctrl ||
1444           get_ctrl(iff->in(3)) == n_ctrl) {
1445         return;                 // Inputs not yet split-up
1446       }
1447       if (get_loop(n_ctrl) != get_loop(get_ctrl(iff))) {
1448         return;                 // Loop-invar test gates loop-varying CMOVE
1449       }
1450     } else {
1451       return;  // some other kind of node, such as an Allocate
1452     }
1453 
1454     // When is split-if profitable?  Every 'win' on means some control flow
1455     // goes dead, so it's almost always a win.
1456     int policy = 0;
1457     // Split compare 'n' through the merge point if it is profitable
1458     Node *phi = split_thru_phi( n, n_ctrl, policy);
1459     if (!phi) {
1460       return;
1461     }
1462 
1463     // Found a Phi to split thru!
1464     // Replace 'n' with the new phi
1465     _igvn.replace_node(n, phi);
1466 
1467     // Now split the bool up thru the phi
1468     Node *bolphi = split_thru_phi(bol, n_ctrl, -1);
1469     guarantee(bolphi != nullptr, "null boolean phi node");
1470 
1471     _igvn.replace_node(bol, bolphi);
1472     assert(iff->in(1) == bolphi, "");
1473 
1474     if (bolphi->Value(&_igvn)->singleton()) {
1475       return;
1476     }
1477 
1478     // Conditional-move?  Must split up now
1479     if (!iff->is_If()) {
1480       Node *cmovphi = split_thru_phi(iff, n_ctrl, -1);
1481       _igvn.replace_node(iff, cmovphi);
1482       return;
1483     }
1484 
1485     // Now split the IF
1486     C->print_method(PHASE_BEFORE_SPLIT_IF, 4, iff);
1487     if (TraceLoopOpts) {
1488       tty->print_cr("Split-If");
1489     }
1490     do_split_if(iff);
1491     C->print_method(PHASE_AFTER_SPLIT_IF, 4, iff);
1492     return;
1493   }
1494 
1495   // Two identical ifs back to back can be merged
1496   if (try_merge_identical_ifs(n)) {
1497     return;
1498   }
1499 
1500   // Check for an IF ready to split; one that has its
1501   // condition codes input coming from a Phi at the block start.
1502   int n_op = n->Opcode();
1503 
1504   // Check for an IF being dominated by another IF same test
1505   if (n_op == Op_If ||
1506       n_op == Op_RangeCheck) {
1507     Node *bol = n->in(1);
1508     uint max = bol->outcnt();
1509     // Check for same test used more than once?
1510     if (bol->is_Bool() && (max > 1 || bol->in(1)->is_SubTypeCheck())) {
1511       // Search up IDOMs to see if this IF is dominated.
1512       Node* cmp = bol->in(1);
1513       Node *cutoff = cmp->is_SubTypeCheck() ? dom_lca(get_ctrl(cmp->in(1)), get_ctrl(cmp->in(2))) : get_ctrl(bol);
1514 
1515       // Now search up IDOMs till cutoff, looking for a dominating test
1516       Node *prevdom = n;
1517       Node *dom = idom(prevdom);
1518       while (dom != cutoff) {
1519         if (dom->req() > 1 && n->as_If()->same_condition(dom, &_igvn) && prevdom->in(0) == dom &&
1520             safe_for_if_replacement(dom)) {
1521           // It's invalid to move control dependent data nodes in the inner
1522           // strip-mined loop, because:
1523           //  1) break validation of LoopNode::verify_strip_mined()
1524           //  2) move code with side-effect in strip-mined loop
1525           // Move to the exit of outer strip-mined loop in that case.
1526           Node* out_le = is_inner_of_stripmined_loop(dom);
1527           if (out_le != nullptr) {
1528             prevdom = out_le;
1529           }
1530           // Replace the dominated test with an obvious true or false.
1531           // Place it on the IGVN worklist for later cleanup.
1532           C->set_major_progress();
1533           // Split if: pin array accesses that are control dependent on a range check and moved to a regular if,
1534           // to prevent an array load from floating above its range check. There are three cases:
1535           // 1. Move from RangeCheck "a" to RangeCheck "b": don't need to pin. If we ever remove b, then we pin
1536           //    all its array accesses at that point.
1537           // 2. We move from RangeCheck "a" to regular if "b": need to pin. If we ever remove b, then its array
1538           //    accesses would start to float, since we don't pin at that point.
1539           // 3. If we move from regular if: don't pin. All array accesses are already assumed to be pinned.
1540           bool pin_array_access_nodes =  n->Opcode() == Op_RangeCheck &&
1541                                          prevdom->in(0)->Opcode() != Op_RangeCheck;
1542           dominated_by(prevdom->as_IfProj(), n->as_If(), false, pin_array_access_nodes);
1543           DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
1544           return;
1545         }
1546         prevdom = dom;
1547         dom = idom(prevdom);
1548       }
1549     }
1550   }
1551 
1552   try_sink_out_of_loop(n);
1553   if (C->failing()) {
1554     return;
1555   }
1556 
1557   try_move_store_after_loop(n);
1558 }
1559 
1560 // Transform:
1561 //
1562 // if (some_condition) {
1563 //   // body 1
1564 // } else {
1565 //   // body 2
1566 // }
1567 // if (some_condition) {
1568 //   // body 3
1569 // } else {
1570 //   // body 4
1571 // }
1572 //
1573 // into:
1574 //
1575 //
1576 // if (some_condition) {
1577 //   // body 1
1578 //   // body 3
1579 // } else {
1580 //   // body 2
1581 //   // body 4
1582 // }
1583 bool PhaseIdealLoop::try_merge_identical_ifs(Node* n) {
1584   if (identical_backtoback_ifs(n) && can_split_if(n->in(0))) {
1585     Node *n_ctrl = n->in(0);
1586     IfNode* dom_if = idom(n_ctrl)->as_If();
1587     if (n->in(1) != dom_if->in(1)) {
1588       assert(n->in(1)->in(1)->is_SubTypeCheck() &&
1589              (n->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr ||
1590               dom_if->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr), "only for subtype checks with profile data attached");
1591       _igvn.replace_input_of(n, 1, dom_if->in(1));
1592     }
1593     ProjNode* dom_proj_true = dom_if->proj_out(1);
1594     ProjNode* dom_proj_false = dom_if->proj_out(0);
1595 
1596     // Now split the IF
1597     RegionNode* new_false_region;
1598     RegionNode* new_true_region;
1599     do_split_if(n, &new_false_region, &new_true_region);
1600     assert(new_false_region->req() == new_true_region->req(), "");
1601 #ifdef ASSERT
1602     for (uint i = 1; i < new_false_region->req(); ++i) {
1603       assert(new_false_region->in(i)->in(0) == new_true_region->in(i)->in(0), "unexpected shape following split if");
1604       assert(i == new_false_region->req() - 1 || new_false_region->in(i)->in(0)->in(1) == new_false_region->in(i + 1)->in(0)->in(1), "unexpected shape following split if");
1605     }
1606 #endif
1607     assert(new_false_region->in(1)->in(0)->in(1) == dom_if->in(1), "dominating if and dominated if after split must share test");
1608 
1609     // We now have:
1610     // if (some_condition) {
1611     //   // body 1
1612     //   if (some_condition) {
1613     //     body3: // new_true_region
1614     //     // body3
1615     //   } else {
1616     //     goto body4;
1617     //   }
1618     // } else {
1619     //   // body 2
1620     //  if (some_condition) {
1621     //     goto body3;
1622     //   } else {
1623     //     body4:   // new_false_region
1624     //     // body4;
1625     //   }
1626     // }
1627     //
1628 
1629     // clone pinned nodes thru the resulting regions
1630     push_pinned_nodes_thru_region(dom_if, new_true_region);
1631     push_pinned_nodes_thru_region(dom_if, new_false_region);
1632 
1633     // Optimize out the cloned ifs. Because pinned nodes were cloned, this also allows a CastPP that would be dependent
1634     // on a projection of n to have the dom_if as a control dependency. We don't want the CastPP to end up with an
1635     // unrelated control dependency.
1636     for (uint i = 1; i < new_false_region->req(); i++) {
1637       if (is_dominator(dom_proj_true, new_false_region->in(i))) {
1638         dominated_by(dom_proj_true->as_IfProj(), new_false_region->in(i)->in(0)->as_If());
1639       } else {
1640         assert(is_dominator(dom_proj_false, new_false_region->in(i)), "bad if");
1641         dominated_by(dom_proj_false->as_IfProj(), new_false_region->in(i)->in(0)->as_If());
1642       }
1643     }
1644     return true;
1645   }
1646   return false;
1647 }
1648 
1649 void PhaseIdealLoop::push_pinned_nodes_thru_region(IfNode* dom_if, Node* region) {
1650   for (DUIterator i = region->outs(); region->has_out(i); i++) {
1651     Node* u = region->out(i);
1652     if (!has_ctrl(u) || u->is_Phi() || !u->depends_only_on_test() || !_igvn.no_dependent_zero_check(u)) {
1653       continue;
1654     }
1655     assert(u->in(0) == region, "not a control dependent node?");
1656     uint j = 1;
1657     for (; j < u->req(); ++j) {
1658       Node* in = u->in(j);
1659       if (!is_dominator(ctrl_or_self(in), dom_if)) {
1660         break;
1661       }
1662     }
1663     if (j == u->req()) {
1664       Node *phi = PhiNode::make_blank(region, u);
1665       for (uint k = 1; k < region->req(); ++k) {
1666         Node* clone = u->clone();
1667         clone->set_req(0, region->in(k));
1668         register_new_node(clone, region->in(k));
1669         phi->init_req(k, clone);
1670       }
1671       register_new_node(phi, region);
1672       _igvn.replace_node(u, phi);
1673       --i;
1674     }
1675   }
1676 }
1677 
1678 bool PhaseIdealLoop::safe_for_if_replacement(const Node* dom) const {
1679   if (!dom->is_CountedLoopEnd()) {
1680     return true;
1681   }
1682   CountedLoopEndNode* le = dom->as_CountedLoopEnd();
1683   CountedLoopNode* cl = le->loopnode();
1684   if (cl == nullptr) {
1685     return true;
1686   }
1687   if (!cl->is_main_loop()) {
1688     return true;
1689   }
1690   if (cl->is_canonical_loop_entry() == nullptr) {
1691     return true;
1692   }
1693   // Further unrolling is possible so loop exit condition might change
1694   return false;
1695 }
1696 
1697 // See if a shared loop-varying computation has no loop-varying uses.
1698 // Happens if something is only used for JVM state in uncommon trap exits,
1699 // like various versions of induction variable+offset.  Clone the
1700 // computation per usage to allow it to sink out of the loop.
1701 void PhaseIdealLoop::try_sink_out_of_loop(Node* n) {
1702   if (has_ctrl(n) &&
1703       !n->is_Phi() &&
1704       !n->is_Bool() &&
1705       !n->is_Proj() &&
1706       !n->is_MergeMem() &&
1707       !n->is_CMove() &&
1708       !n->is_OpaqueNotNull() &&
1709       !n->is_OpaqueInitializedAssertionPredicate() &&
1710       !n->is_OpaqueTemplateAssertionPredicate() &&
1711       !n->is_Type()) {
1712     Node *n_ctrl = get_ctrl(n);
1713     IdealLoopTree *n_loop = get_loop(n_ctrl);
1714 
1715     if (n->in(0) != nullptr) {
1716       IdealLoopTree* loop_ctrl = get_loop(n->in(0));
1717       if (n_loop != loop_ctrl && n_loop->is_member(loop_ctrl)) {
1718         // n has a control input inside a loop but get_ctrl() is member of an outer loop. This could happen, for example,
1719         // for Div nodes inside a loop (control input inside loop) without a use except for an UCT (outside the loop).
1720         // Rewire control of n to right outside of the loop, regardless if its input(s) are later sunk or not.
1721         Node* maybe_pinned_n = n;
1722         Node* outside_ctrl = place_outside_loop(n_ctrl, loop_ctrl);
1723         if (n->depends_only_on_test()) {
1724           Node* pinned_clone = n->pin_array_access_node();
1725           if (pinned_clone != nullptr) {
1726             // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a
1727             // range check for that access. If that condition is replaced by an identical dominating one, then an
1728             // unpinned load would risk floating above its range check.
1729             register_new_node(pinned_clone, n_ctrl);
1730             maybe_pinned_n = pinned_clone;
1731             _igvn.replace_node(n, pinned_clone);
1732           }
1733         }
1734         _igvn.replace_input_of(maybe_pinned_n, 0, outside_ctrl);
1735       }
1736     }
1737     if (n_loop != _ltree_root && n->outcnt() > 1) {
1738       // Compute early control: needed for anti-dependence analysis. It's also possible that as a result of
1739       // previous transformations in this loop opts round, the node can be hoisted now: early control will tell us.
1740       Node* early_ctrl = compute_early_ctrl(n, n_ctrl);
1741       if (n_loop->is_member(get_loop(early_ctrl)) && // check that this one can't be hoisted now
1742           ctrl_of_all_uses_out_of_loop(n, early_ctrl, n_loop)) { // All uses in outer loops!
1743         if (n->is_Store() || n->is_LoadStore()) {
1744             assert(false, "no node with a side effect");
1745             C->record_failure("no node with a side effect");
1746             return;
1747         }
1748         Node* outer_loop_clone = nullptr;
1749         for (DUIterator_Last jmin, j = n->last_outs(jmin); j >= jmin;) {
1750           Node* u = n->last_out(j); // Clone private computation per use
1751           _igvn.rehash_node_delayed(u);
1752           Node* x = nullptr;
1753           if (n->depends_only_on_test()) {
1754             // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a
1755             // range check for that access. If that condition is replaced by an identical dominating one, then an
1756             // unpinned load would risk floating above its range check.
1757             x = n->pin_array_access_node();
1758           }
1759           if (x == nullptr) {
1760             x = n->clone();
1761           }
1762           Node* x_ctrl = nullptr;
1763           if (u->is_Phi()) {
1764             // Replace all uses of normal nodes.  Replace Phi uses
1765             // individually, so the separate Nodes can sink down
1766             // different paths.
1767             uint k = 1;
1768             while (u->in(k) != n) k++;
1769             u->set_req(k, x);
1770             // x goes next to Phi input path
1771             x_ctrl = u->in(0)->in(k);
1772             // Find control for 'x' next to use but not inside inner loops.
1773             x_ctrl = place_outside_loop(x_ctrl, n_loop);
1774             --j;
1775           } else {              // Normal use
1776             if (has_ctrl(u)) {
1777               x_ctrl = get_ctrl(u);
1778             } else {
1779               x_ctrl = u->in(0);
1780             }
1781             // Find control for 'x' next to use but not inside inner loops.
1782             x_ctrl = place_outside_loop(x_ctrl, n_loop);
1783             // Replace all uses
1784             if (u->is_ConstraintCast() && _igvn.type(n)->higher_equal(u->bottom_type()) && u->in(0) == x_ctrl) {
1785               // If we're sinking a chain of data nodes, we might have inserted a cast to pin the use which is not necessary
1786               // anymore now that we're going to pin n as well
1787               _igvn.replace_node(u, x);
1788               --j;
1789             } else {
1790               int nb = u->replace_edge(n, x, &_igvn);
1791               j -= nb;
1792             }
1793           }
1794 
1795           if (n->is_Load()) {
1796             // For loads, add a control edge to a CFG node outside of the loop
1797             // to force them to not combine and return back inside the loop
1798             // during GVN optimization (4641526).
1799             assert(x_ctrl == get_late_ctrl_with_anti_dep(x->as_Load(), early_ctrl, x_ctrl), "anti-dependences were already checked");
1800 
1801             IdealLoopTree* x_loop = get_loop(x_ctrl);
1802             Node* x_head = x_loop->_head;
1803             if (x_head->is_Loop() && x_head->is_OuterStripMinedLoop()) {
1804               // Do not add duplicate LoadNodes to the outer strip mined loop
1805               if (outer_loop_clone != nullptr) {
1806                 _igvn.replace_node(x, outer_loop_clone);
1807                 continue;
1808               }
1809               outer_loop_clone = x;
1810             }
1811             x->set_req(0, x_ctrl);
1812           } else if (n->in(0) != nullptr){
1813             x->set_req(0, x_ctrl);
1814           }
1815           assert(dom_depth(n_ctrl) <= dom_depth(x_ctrl), "n is later than its clone");
1816           assert(!n_loop->is_member(get_loop(x_ctrl)), "should have moved out of loop");
1817           register_new_node(x, x_ctrl);
1818 
1819           // Chain of AddP nodes: (AddP base (AddP base (AddP base )))
1820           // All AddP nodes must keep the same base after sinking so:
1821           // 1- We don't add a CastPP here until the last one of the chain is sunk: if part of the chain is not sunk,
1822           // their bases remain the same.
1823           // (see 2- below)
1824           assert(!x->is_AddP() || !x->in(AddPNode::Address)->is_AddP() ||
1825                  x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base) ||
1826                  !x->in(AddPNode::Address)->in(AddPNode::Base)->eqv_uncast(x->in(AddPNode::Base)), "unexpected AddP shape");
1827           if (x->in(0) == nullptr && !x->is_DecodeNarrowPtr() &&
1828               !(x->is_AddP() && x->in(AddPNode::Address)->is_AddP() && x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base))) {
1829             assert(!x->is_Load(), "load should be pinned");
1830             // Use a cast node to pin clone out of loop
1831             Node* cast = nullptr;
1832             for (uint k = 0; k < x->req(); k++) {
1833               Node* in = x->in(k);
1834               if (in != nullptr && n_loop->is_member(get_loop(get_ctrl(in)))) {
1835                 const Type* in_t = _igvn.type(in);
1836                 cast = ConstraintCastNode::make_cast_for_type(x_ctrl, in, in_t,
1837                                                               ConstraintCastNode::UnconditionalDependency, nullptr);
1838               }
1839               if (cast != nullptr) {
1840                 Node* prev = _igvn.hash_find_insert(cast);
1841                 if (prev != nullptr && get_ctrl(prev) == x_ctrl) {
1842                   cast->destruct(&_igvn);
1843                   cast = prev;
1844                 } else {
1845                   register_new_node(cast, x_ctrl);
1846                 }
1847                 x->replace_edge(in, cast);
1848                 // Chain of AddP nodes:
1849                 // 2- A CastPP of the base is only added now that all AddP nodes are sunk
1850                 if (x->is_AddP() && k == AddPNode::Base) {
1851                   update_addp_chain_base(x, n->in(AddPNode::Base), cast);
1852                 }
1853                 break;
1854               }
1855             }
1856             assert(cast != nullptr, "must have added a cast to pin the node");
1857           }
1858         }
1859         _igvn.remove_dead_node(n);
1860       }
1861       _dom_lca_tags_round = 0;
1862     }
1863   }
1864 }
1865 
1866 void PhaseIdealLoop::update_addp_chain_base(Node* x, Node* old_base, Node* new_base) {
1867   ResourceMark rm;
1868   Node_List wq;
1869   wq.push(x);
1870   while (wq.size() != 0) {
1871     Node* n = wq.pop();
1872     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1873       Node* u = n->fast_out(i);
1874       if (u->is_AddP() && u->in(AddPNode::Base) == old_base) {
1875         _igvn.replace_input_of(u, AddPNode::Base, new_base);
1876         wq.push(u);
1877       }
1878     }
1879   }
1880 }
1881 
1882 // Compute the early control of a node by following its inputs until we reach
1883 // nodes that are pinned. Then compute the LCA of the control of all pinned nodes.
1884 Node* PhaseIdealLoop::compute_early_ctrl(Node* n, Node* n_ctrl) {
1885   Node* early_ctrl = nullptr;
1886   ResourceMark rm;
1887   Unique_Node_List wq;
1888   wq.push(n);
1889   for (uint i = 0; i < wq.size(); i++) {
1890     Node* m = wq.at(i);
1891     Node* c = nullptr;
1892     if (m->is_CFG()) {
1893       c = m;
1894     } else if (m->pinned()) {
1895       c = m->in(0);
1896     } else {
1897       for (uint j = 0; j < m->req(); j++) {
1898         Node* in = m->in(j);
1899         if (in != nullptr) {
1900           wq.push(in);
1901         }
1902       }
1903     }
1904     if (c != nullptr) {
1905       assert(is_dominator(c, n_ctrl), "control input must dominate current control");
1906       if (early_ctrl == nullptr || is_dominator(early_ctrl, c)) {
1907         early_ctrl = c;
1908       }
1909     }
1910   }
1911   assert(is_dominator(early_ctrl, n_ctrl), "early control must dominate current control");
1912   return early_ctrl;
1913 }
1914 
1915 bool PhaseIdealLoop::ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop) {
1916   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1917     Node* u = n->fast_out(i);
1918     if (u->is_Opaque1()) {
1919       return false;  // Found loop limit, bugfix for 4677003
1920     }
1921     // We can't reuse tags in PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal() so make sure calls to
1922     // get_late_ctrl_with_anti_dep() use their own tag
1923     _dom_lca_tags_round++;
1924     assert(_dom_lca_tags_round != 0, "shouldn't wrap around");
1925 
1926     if (u->is_Phi()) {
1927       for (uint j = 1; j < u->req(); ++j) {
1928         if (u->in(j) == n && !ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, u->in(0)->in(j))) {
1929           return false;
1930         }
1931       }
1932     } else {
1933       Node* ctrl = has_ctrl(u) ? get_ctrl(u) : u->in(0);
1934       if (!ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, ctrl)) {
1935         return false;
1936       }
1937     }
1938   }
1939   return true;
1940 }
1941 
1942 bool PhaseIdealLoop::ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl) {
1943   if (n->is_Load()) {
1944     ctrl = get_late_ctrl_with_anti_dep(n->as_Load(), n_ctrl, ctrl);
1945   }
1946   IdealLoopTree *u_loop = get_loop(ctrl);
1947   if (u_loop == n_loop) {
1948     return false; // Found loop-varying use
1949   }
1950   if (n_loop->is_member(u_loop)) {
1951     return false; // Found use in inner loop
1952   }
1953   // Sinking a node from a pre loop to its main loop pins the node between the pre and main loops. If that node is input
1954   // to a check that's eliminated by range check elimination, it becomes input to an expression that feeds into the exit
1955   // test of the pre loop above the point in the graph where it's pinned.
1956   if (n_loop->_head->is_CountedLoop() && n_loop->_head->as_CountedLoop()->is_pre_loop()) {
1957     CountedLoopNode* pre_loop = n_loop->_head->as_CountedLoop();
1958     if (is_dominator(pre_loop->loopexit(), ctrl)) {
1959       return false;
1960     }
1961   }
1962   return true;
1963 }
1964 
1965 //------------------------------split_if_with_blocks---------------------------
1966 // Check for aggressive application of 'split-if' optimization,
1967 // using basic block level info.
1968 void PhaseIdealLoop::split_if_with_blocks(VectorSet &visited, Node_Stack &nstack) {
1969   Node* root = C->root();
1970   visited.set(root->_idx); // first, mark root as visited
1971   // Do pre-visit work for root
1972   Node* n   = split_if_with_blocks_pre(root);
1973   uint  cnt = n->outcnt();
1974   uint  i   = 0;
1975 
1976   while (true) {
1977     // Visit all children
1978     if (i < cnt) {
1979       Node* use = n->raw_out(i);
1980       ++i;
1981       if (use->outcnt() != 0 && !visited.test_set(use->_idx)) {
1982         // Now do pre-visit work for this use
1983         use = split_if_with_blocks_pre(use);
1984         nstack.push(n, i); // Save parent and next use's index.
1985         n   = use;         // Process all children of current use.
1986         cnt = use->outcnt();
1987         i   = 0;
1988       }
1989     }
1990     else {
1991       // All of n's children have been processed, complete post-processing.
1992       if (cnt != 0 && !n->is_Con()) {
1993         assert(has_node(n), "no dead nodes");
1994         split_if_with_blocks_post(n);
1995         if (C->failing()) {
1996           return;
1997         }
1998       }
1999       if (must_throttle_split_if()) {
2000         nstack.clear();
2001       }
2002       if (nstack.is_empty()) {
2003         // Finished all nodes on stack.
2004         break;
2005       }
2006       // Get saved parent node and next use's index. Visit the rest of uses.
2007       n   = nstack.node();
2008       cnt = n->outcnt();
2009       i   = nstack.index();
2010       nstack.pop();
2011     }
2012   }
2013 }
2014 
2015 
2016 //=============================================================================
2017 //
2018 //                   C L O N E   A   L O O P   B O D Y
2019 //
2020 
2021 //------------------------------clone_iff--------------------------------------
2022 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
2023 // "Nearly" because all Nodes have been cloned from the original in the loop,
2024 // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
2025 // through the Phi recursively, and return a Bool.
2026 Node* PhaseIdealLoop::clone_iff(PhiNode* phi) {
2027 
2028   // Convert this Phi into a Phi merging Bools
2029   uint i;
2030   for (i = 1; i < phi->req(); i++) {
2031     Node* b = phi->in(i);
2032     if (b->is_Phi()) {
2033       _igvn.replace_input_of(phi, i, clone_iff(b->as_Phi()));
2034     } else {
2035       assert(b->is_Bool() || b->is_OpaqueNotNull() || b->is_OpaqueInitializedAssertionPredicate(),
2036              "bool, non-null check with OpaqueNotNull or Initialized Assertion Predicate with its Opaque node");
2037     }
2038   }
2039   Node* n = phi->in(1);
2040   Node* sample_opaque = nullptr;
2041   Node *sample_bool = nullptr;
2042   if (n->is_OpaqueNotNull() || n->is_OpaqueInitializedAssertionPredicate()) {
2043     sample_opaque = n;
2044     sample_bool = n->in(1);
2045     assert(sample_bool->is_Bool(), "wrong type");
2046   } else {
2047     sample_bool = n;
2048   }
2049   Node *sample_cmp = sample_bool->in(1);
2050 
2051   // Make Phis to merge the Cmp's inputs.
2052   PhiNode *phi1 = new PhiNode(phi->in(0), Type::TOP);
2053   PhiNode *phi2 = new PhiNode(phi->in(0), Type::TOP);
2054   for (i = 1; i < phi->req(); i++) {
2055     Node *n1 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(1) : phi->in(i)->in(1)->in(1)->in(1);
2056     Node *n2 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(2) : phi->in(i)->in(1)->in(1)->in(2);
2057     phi1->set_req(i, n1);
2058     phi2->set_req(i, n2);
2059     phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type()));
2060     phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type()));
2061   }
2062   // See if these Phis have been made before.
2063   // Register with optimizer
2064   Node *hit1 = _igvn.hash_find_insert(phi1);
2065   if (hit1) {                   // Hit, toss just made Phi
2066     _igvn.remove_dead_node(phi1); // Remove new phi
2067     assert(hit1->is_Phi(), "" );
2068     phi1 = (PhiNode*)hit1;      // Use existing phi
2069   } else {                      // Miss
2070     _igvn.register_new_node_with_optimizer(phi1);
2071   }
2072   Node *hit2 = _igvn.hash_find_insert(phi2);
2073   if (hit2) {                   // Hit, toss just made Phi
2074     _igvn.remove_dead_node(phi2); // Remove new phi
2075     assert(hit2->is_Phi(), "" );
2076     phi2 = (PhiNode*)hit2;      // Use existing phi
2077   } else {                      // Miss
2078     _igvn.register_new_node_with_optimizer(phi2);
2079   }
2080   // Register Phis with loop/block info
2081   set_ctrl(phi1, phi->in(0));
2082   set_ctrl(phi2, phi->in(0));
2083   // Make a new Cmp
2084   Node *cmp = sample_cmp->clone();
2085   cmp->set_req(1, phi1);
2086   cmp->set_req(2, phi2);
2087   _igvn.register_new_node_with_optimizer(cmp);
2088   set_ctrl(cmp, phi->in(0));
2089 
2090   // Make a new Bool
2091   Node *b = sample_bool->clone();
2092   b->set_req(1,cmp);
2093   _igvn.register_new_node_with_optimizer(b);
2094   set_ctrl(b, phi->in(0));
2095 
2096   if (sample_opaque != nullptr) {
2097     Node* opaque = sample_opaque->clone();
2098     opaque->set_req(1, b);
2099     _igvn.register_new_node_with_optimizer(opaque);
2100     set_ctrl(opaque, phi->in(0));
2101     return opaque;
2102   }
2103 
2104   assert(b->is_Bool(), "");
2105   return b;
2106 }
2107 
2108 //------------------------------clone_bool-------------------------------------
2109 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
2110 // "Nearly" because all Nodes have been cloned from the original in the loop,
2111 // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
2112 // through the Phi recursively, and return a Bool.
2113 CmpNode*PhaseIdealLoop::clone_bool(PhiNode* phi) {
2114   uint i;
2115   // Convert this Phi into a Phi merging Bools
2116   for( i = 1; i < phi->req(); i++ ) {
2117     Node *b = phi->in(i);
2118     if( b->is_Phi() ) {
2119       _igvn.replace_input_of(phi, i, clone_bool(b->as_Phi()));
2120     } else {
2121       assert( b->is_Cmp() || b->is_top(), "inputs are all Cmp or TOP" );
2122     }
2123   }
2124 
2125   Node *sample_cmp = phi->in(1);
2126 
2127   // Make Phis to merge the Cmp's inputs.
2128   PhiNode *phi1 = new PhiNode( phi->in(0), Type::TOP );
2129   PhiNode *phi2 = new PhiNode( phi->in(0), Type::TOP );
2130   for( uint j = 1; j < phi->req(); j++ ) {
2131     Node *cmp_top = phi->in(j); // Inputs are all Cmp or TOP
2132     Node *n1, *n2;
2133     if( cmp_top->is_Cmp() ) {
2134       n1 = cmp_top->in(1);
2135       n2 = cmp_top->in(2);
2136     } else {
2137       n1 = n2 = cmp_top;
2138     }
2139     phi1->set_req( j, n1 );
2140     phi2->set_req( j, n2 );
2141     phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type()));
2142     phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type()));
2143   }
2144 
2145   // See if these Phis have been made before.
2146   // Register with optimizer
2147   Node *hit1 = _igvn.hash_find_insert(phi1);
2148   if( hit1 ) {                  // Hit, toss just made Phi
2149     _igvn.remove_dead_node(phi1); // Remove new phi
2150     assert( hit1->is_Phi(), "" );
2151     phi1 = (PhiNode*)hit1;      // Use existing phi
2152   } else {                      // Miss
2153     _igvn.register_new_node_with_optimizer(phi1);
2154   }
2155   Node *hit2 = _igvn.hash_find_insert(phi2);
2156   if( hit2 ) {                  // Hit, toss just made Phi
2157     _igvn.remove_dead_node(phi2); // Remove new phi
2158     assert( hit2->is_Phi(), "" );
2159     phi2 = (PhiNode*)hit2;      // Use existing phi
2160   } else {                      // Miss
2161     _igvn.register_new_node_with_optimizer(phi2);
2162   }
2163   // Register Phis with loop/block info
2164   set_ctrl(phi1, phi->in(0));
2165   set_ctrl(phi2, phi->in(0));
2166   // Make a new Cmp
2167   Node *cmp = sample_cmp->clone();
2168   cmp->set_req( 1, phi1 );
2169   cmp->set_req( 2, phi2 );
2170   _igvn.register_new_node_with_optimizer(cmp);
2171   set_ctrl(cmp, phi->in(0));
2172 
2173   assert( cmp->is_Cmp(), "" );
2174   return (CmpNode*)cmp;
2175 }
2176 
2177 void PhaseIdealLoop::clone_loop_handle_data_uses(Node* old, Node_List &old_new,
2178                                                  IdealLoopTree* loop, IdealLoopTree* outer_loop,
2179                                                  Node_List*& split_if_set, Node_List*& split_bool_set,
2180                                                  Node_List*& split_cex_set, Node_List& worklist,
2181                                                  uint new_counter, CloneLoopMode mode) {
2182   Node* nnn = old_new[old->_idx];
2183   // Copy uses to a worklist, so I can munge the def-use info
2184   // with impunity.
2185   for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++)
2186     worklist.push(old->fast_out(j));
2187 
2188   while( worklist.size() ) {
2189     Node *use = worklist.pop();
2190     if (!has_node(use))  continue; // Ignore dead nodes
2191     if (use->in(0) == C->top())  continue;
2192     IdealLoopTree *use_loop = get_loop( has_ctrl(use) ? get_ctrl(use) : use );
2193     // Check for data-use outside of loop - at least one of OLD or USE
2194     // must not be a CFG node.
2195 #ifdef ASSERT
2196     if (loop->_head->as_Loop()->is_strip_mined() && outer_loop->is_member(use_loop) && !loop->is_member(use_loop) && old_new[use->_idx] == nullptr) {
2197       Node* sfpt = loop->_head->as_CountedLoop()->outer_safepoint();
2198       assert(mode != IgnoreStripMined, "incorrect cloning mode");
2199       assert((mode == ControlAroundStripMined && use == sfpt) || !use->is_reachable_from_root(), "missed a node");
2200     }
2201 #endif
2202     if (!loop->is_member(use_loop) && !outer_loop->is_member(use_loop) && (!old->is_CFG() || !use->is_CFG())) {
2203 
2204       // If the Data use is an IF, that means we have an IF outside the
2205       // loop that is switching on a condition that is set inside the
2206       // loop.  Happens if people set a loop-exit flag; then test the flag
2207       // in the loop to break the loop, then test is again outside the
2208       // loop to determine which way the loop exited.
2209       //
2210       // For several uses we need to make sure that there is no phi between,
2211       // the use and the Bool/Cmp. We therefore clone the Bool/Cmp down here
2212       // to avoid such a phi in between.
2213       // For example, it is unexpected that there is a Phi between an
2214       // AllocateArray node and its ValidLengthTest input that could cause
2215       // split if to break.
2216       assert(!use->is_OpaqueTemplateAssertionPredicate(),
2217              "should not clone a Template Assertion Predicate which should be removed once it's useless");
2218       if (use->is_If() || use->is_CMove() || use->is_OpaqueNotNull() || use->is_OpaqueInitializedAssertionPredicate() ||
2219           (use->Opcode() == Op_AllocateArray && use->in(AllocateNode::ValidLengthTest) == old)) {
2220         // Since this code is highly unlikely, we lazily build the worklist
2221         // of such Nodes to go split.
2222         if (!split_if_set) {
2223           split_if_set = new Node_List();
2224         }
2225         split_if_set->push(use);
2226       }
2227       if (use->is_Bool()) {
2228         if (!split_bool_set) {
2229           split_bool_set = new Node_List();
2230         }
2231         split_bool_set->push(use);
2232       }
2233       if (use->Opcode() == Op_CreateEx) {
2234         if (!split_cex_set) {
2235           split_cex_set = new Node_List();
2236         }
2237         split_cex_set->push(use);
2238       }
2239 
2240 
2241       // Get "block" use is in
2242       uint idx = 0;
2243       while( use->in(idx) != old ) idx++;
2244       Node *prev = use->is_CFG() ? use : get_ctrl(use);
2245       assert(!loop->is_member(get_loop(prev)) && !outer_loop->is_member(get_loop(prev)), "" );
2246       Node* cfg = (prev->_idx >= new_counter && prev->is_Region())
2247         ? prev->in(2)
2248         : idom(prev);
2249       if( use->is_Phi() )     // Phi use is in prior block
2250         cfg = prev->in(idx);  // NOT in block of Phi itself
2251       if (cfg->is_top()) {    // Use is dead?
2252         _igvn.replace_input_of(use, idx, C->top());
2253         continue;
2254       }
2255 
2256       // If use is referenced through control edge... (idx == 0)
2257       if (mode == IgnoreStripMined && idx == 0) {
2258         LoopNode *head = loop->_head->as_Loop();
2259         if (head->is_strip_mined() && is_dominator(head->outer_loop_exit(), prev)) {
2260           // That node is outside the inner loop, leave it outside the
2261           // outer loop as well to not confuse verification code.
2262           assert(!loop->_parent->is_member(use_loop), "should be out of the outer loop");
2263           _igvn.replace_input_of(use, 0, head->outer_loop_exit());
2264           continue;
2265         }
2266       }
2267 
2268       while(!outer_loop->is_member(get_loop(cfg))) {
2269         prev = cfg;
2270         cfg = (cfg->_idx >= new_counter && cfg->is_Region()) ? cfg->in(2) : idom(cfg);
2271       }
2272       // If the use occurs after merging several exits from the loop, then
2273       // old value must have dominated all those exits.  Since the same old
2274       // value was used on all those exits we did not need a Phi at this
2275       // merge point.  NOW we do need a Phi here.  Each loop exit value
2276       // is now merged with the peeled body exit; each exit gets its own
2277       // private Phi and those Phis need to be merged here.
2278       Node *phi;
2279       if( prev->is_Region() ) {
2280         if( idx == 0 ) {      // Updating control edge?
2281           phi = prev;         // Just use existing control
2282         } else {              // Else need a new Phi
2283           phi = PhiNode::make( prev, old );
2284           // Now recursively fix up the new uses of old!
2285           for( uint i = 1; i < prev->req(); i++ ) {
2286             worklist.push(phi); // Onto worklist once for each 'old' input
2287           }
2288         }
2289       } else {
2290         // Get new RegionNode merging old and new loop exits
2291         prev = old_new[prev->_idx];
2292         assert( prev, "just made this in step 7" );
2293         if( idx == 0) {      // Updating control edge?
2294           phi = prev;         // Just use existing control
2295         } else {              // Else need a new Phi
2296           // Make a new Phi merging data values properly
2297           phi = PhiNode::make( prev, old );
2298           phi->set_req( 1, nnn );
2299         }
2300       }
2301       // If inserting a new Phi, check for prior hits
2302       if( idx != 0 ) {
2303         Node *hit = _igvn.hash_find_insert(phi);
2304         if( hit == nullptr ) {
2305           _igvn.register_new_node_with_optimizer(phi); // Register new phi
2306         } else {                                      // or
2307           // Remove the new phi from the graph and use the hit
2308           _igvn.remove_dead_node(phi);
2309           phi = hit;                                  // Use existing phi
2310         }
2311         set_ctrl(phi, prev);
2312       }
2313       // Make 'use' use the Phi instead of the old loop body exit value
2314       assert(use->in(idx) == old, "old is still input of use");
2315       // We notify all uses of old, including use, and the indirect uses,
2316       // that may now be optimized because we have replaced old with phi.
2317       _igvn.add_users_to_worklist(old);
2318       if (idx == 0 &&
2319           use->depends_only_on_test()) {
2320         Node* pinned_clone = use->pin_array_access_node();
2321         if (pinned_clone != nullptr) {
2322           // Pin array access nodes: control is updated here to a region. If, after some transformations, only one path
2323           // into the region is left, an array load could become dependent on a condition that's not a range check for
2324           // that access. If that condition is replaced by an identical dominating one, then an unpinned load would risk
2325           // floating above its range check.
2326           pinned_clone->set_req(0, phi);
2327           register_new_node_with_ctrl_of(pinned_clone, use);
2328           _igvn.replace_node(use, pinned_clone);
2329           continue;
2330         }
2331       }
2332       _igvn.replace_input_of(use, idx, phi);
2333       if( use->_idx >= new_counter ) { // If updating new phis
2334         // Not needed for correctness, but prevents a weak assert
2335         // in AddPNode from tripping (when we end up with different
2336         // base & derived Phis that will become the same after
2337         // IGVN does CSE).
2338         Node *hit = _igvn.hash_find_insert(use);
2339         if( hit )             // Go ahead and re-hash for hits.
2340           _igvn.replace_node( use, hit );
2341       }
2342     }
2343   }
2344 }
2345 
2346 static void collect_nodes_in_outer_loop_not_reachable_from_sfpt(Node* n, const IdealLoopTree *loop, const IdealLoopTree* outer_loop,
2347                                                                 const Node_List &old_new, Unique_Node_List& wq, PhaseIdealLoop* phase,
2348                                                                 bool check_old_new) {
2349   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2350     Node* u = n->fast_out(j);
2351     assert(check_old_new || old_new[u->_idx] == nullptr, "shouldn't have been cloned");
2352     if (!u->is_CFG() && (!check_old_new || old_new[u->_idx] == nullptr)) {
2353       Node* c = phase->get_ctrl(u);
2354       IdealLoopTree* u_loop = phase->get_loop(c);
2355       assert(!loop->is_member(u_loop) || !loop->_body.contains(u), "can be in outer loop or out of both loops only");
2356       if (!loop->is_member(u_loop)) {
2357         if (outer_loop->is_member(u_loop)) {
2358           wq.push(u);
2359         } else {
2360           // nodes pinned with control in the outer loop but not referenced from the safepoint must be moved out of
2361           // the outer loop too
2362           Node* u_c = u->in(0);
2363           if (u_c != nullptr) {
2364             IdealLoopTree* u_c_loop = phase->get_loop(u_c);
2365             if (outer_loop->is_member(u_c_loop) && !loop->is_member(u_c_loop)) {
2366               wq.push(u);
2367             }
2368           }
2369         }
2370       }
2371     }
2372   }
2373 }
2374 
2375 void PhaseIdealLoop::clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
2376                                       IdealLoopTree* outer_loop, int dd, Node_List &old_new,
2377                                       Node_List& extra_data_nodes) {
2378   if (head->is_strip_mined() && mode != IgnoreStripMined) {
2379     CountedLoopNode* cl = head->as_CountedLoop();
2380     Node* l = cl->outer_loop();
2381     Node* tail = cl->outer_loop_tail();
2382     IfNode* le = cl->outer_loop_end();
2383     Node* sfpt = cl->outer_safepoint();
2384     CountedLoopEndNode* cle = cl->loopexit();
2385     CountedLoopNode* new_cl = old_new[cl->_idx]->as_CountedLoop();
2386     CountedLoopEndNode* new_cle = new_cl->as_CountedLoop()->loopexit_or_null();
2387     Node* cle_out = cle->proj_out(false);
2388 
2389     Node* new_sfpt = nullptr;
2390     Node* new_cle_out = cle_out->clone();
2391     old_new.map(cle_out->_idx, new_cle_out);
2392     if (mode == CloneIncludesStripMined) {
2393       // clone outer loop body
2394       Node* new_l = l->clone();
2395       Node* new_tail = tail->clone();
2396       IfNode* new_le = le->clone()->as_If();
2397       new_sfpt = sfpt->clone();
2398 
2399       set_loop(new_l, outer_loop->_parent);
2400       set_idom(new_l, new_l->in(LoopNode::EntryControl), dd);
2401       set_loop(new_cle_out, outer_loop->_parent);
2402       set_idom(new_cle_out, new_cle, dd);
2403       set_loop(new_sfpt, outer_loop->_parent);
2404       set_idom(new_sfpt, new_cle_out, dd);
2405       set_loop(new_le, outer_loop->_parent);
2406       set_idom(new_le, new_sfpt, dd);
2407       set_loop(new_tail, outer_loop->_parent);
2408       set_idom(new_tail, new_le, dd);
2409       set_idom(new_cl, new_l, dd);
2410 
2411       old_new.map(l->_idx, new_l);
2412       old_new.map(tail->_idx, new_tail);
2413       old_new.map(le->_idx, new_le);
2414       old_new.map(sfpt->_idx, new_sfpt);
2415 
2416       new_l->set_req(LoopNode::LoopBackControl, new_tail);
2417       new_l->set_req(0, new_l);
2418       new_tail->set_req(0, new_le);
2419       new_le->set_req(0, new_sfpt);
2420       new_sfpt->set_req(0, new_cle_out);
2421       new_cle_out->set_req(0, new_cle);
2422       new_cl->set_req(LoopNode::EntryControl, new_l);
2423 
2424       _igvn.register_new_node_with_optimizer(new_l);
2425       _igvn.register_new_node_with_optimizer(new_tail);
2426       _igvn.register_new_node_with_optimizer(new_le);
2427     } else {
2428       Node *newhead = old_new[loop->_head->_idx];
2429       newhead->as_Loop()->clear_strip_mined();
2430       _igvn.replace_input_of(newhead, LoopNode::EntryControl, newhead->in(LoopNode::EntryControl)->in(LoopNode::EntryControl));
2431       set_idom(newhead, newhead->in(LoopNode::EntryControl), dd);
2432     }
2433     // Look at data node that were assigned a control in the outer
2434     // loop: they are kept in the outer loop by the safepoint so start
2435     // from the safepoint node's inputs.
2436     IdealLoopTree* outer_loop = get_loop(l);
2437     Node_Stack stack(2);
2438     stack.push(sfpt, 1);
2439     uint new_counter = C->unique();
2440     while (stack.size() > 0) {
2441       Node* n = stack.node();
2442       uint i = stack.index();
2443       while (i < n->req() &&
2444              (n->in(i) == nullptr ||
2445               !has_ctrl(n->in(i)) ||
2446               get_loop(get_ctrl(n->in(i))) != outer_loop ||
2447               (old_new[n->in(i)->_idx] != nullptr && old_new[n->in(i)->_idx]->_idx >= new_counter))) {
2448         i++;
2449       }
2450       if (i < n->req()) {
2451         stack.set_index(i+1);
2452         stack.push(n->in(i), 0);
2453       } else {
2454         assert(old_new[n->_idx] == nullptr || n == sfpt || old_new[n->_idx]->_idx < new_counter, "no clone yet");
2455         Node* m = n == sfpt ? new_sfpt : n->clone();
2456         if (m != nullptr) {
2457           for (uint i = 0; i < n->req(); i++) {
2458             if (m->in(i) != nullptr && old_new[m->in(i)->_idx] != nullptr) {
2459               m->set_req(i, old_new[m->in(i)->_idx]);
2460             }
2461           }
2462         } else {
2463           assert(n == sfpt && mode != CloneIncludesStripMined, "where's the safepoint clone?");
2464         }
2465         if (n != sfpt) {
2466           extra_data_nodes.push(n);
2467           _igvn.register_new_node_with_optimizer(m);
2468           assert(get_ctrl(n) == cle_out, "what other control?");
2469           set_ctrl(m, new_cle_out);
2470           old_new.map(n->_idx, m);
2471         }
2472         stack.pop();
2473       }
2474     }
2475     if (mode == CloneIncludesStripMined) {
2476       _igvn.register_new_node_with_optimizer(new_sfpt);
2477       _igvn.register_new_node_with_optimizer(new_cle_out);
2478     }
2479     // Some other transformation may have pessimistically assigned some
2480     // data nodes to the outer loop. Set their control so they are out
2481     // of the outer loop.
2482     ResourceMark rm;
2483     Unique_Node_List wq;
2484     for (uint i = 0; i < extra_data_nodes.size(); i++) {
2485       Node* old = extra_data_nodes.at(i);
2486       collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true);
2487     }
2488 
2489     for (uint i = 0; i < loop->_body.size(); i++) {
2490       Node* old = loop->_body.at(i);
2491       collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true);
2492     }
2493 
2494     Node* inner_out = sfpt->in(0);
2495     if (inner_out->outcnt() > 1) {
2496       collect_nodes_in_outer_loop_not_reachable_from_sfpt(inner_out, loop, outer_loop, old_new, wq, this, true);
2497     }
2498 
2499     Node* new_ctrl = cl->outer_loop_exit();
2500     assert(get_loop(new_ctrl) != outer_loop, "must be out of the loop nest");
2501     for (uint i = 0; i < wq.size(); i++) {
2502       Node* n = wq.at(i);
2503       set_ctrl(n, new_ctrl);
2504       if (n->in(0) != nullptr) {
2505         _igvn.replace_input_of(n, 0, new_ctrl);
2506       }
2507       collect_nodes_in_outer_loop_not_reachable_from_sfpt(n, loop, outer_loop, old_new, wq, this, false);
2508     }
2509   } else {
2510     Node *newhead = old_new[loop->_head->_idx];
2511     set_idom(newhead, newhead->in(LoopNode::EntryControl), dd);
2512   }
2513 }
2514 
2515 //------------------------------clone_loop-------------------------------------
2516 //
2517 //                   C L O N E   A   L O O P   B O D Y
2518 //
2519 // This is the basic building block of the loop optimizations.  It clones an
2520 // entire loop body.  It makes an old_new loop body mapping; with this mapping
2521 // you can find the new-loop equivalent to an old-loop node.  All new-loop
2522 // nodes are exactly equal to their old-loop counterparts, all edges are the
2523 // same.  All exits from the old-loop now have a RegionNode that merges the
2524 // equivalent new-loop path.  This is true even for the normal "loop-exit"
2525 // condition.  All uses of loop-invariant old-loop values now come from (one
2526 // or more) Phis that merge their new-loop equivalents.
2527 //
2528 // This operation leaves the graph in an illegal state: there are two valid
2529 // control edges coming from the loop pre-header to both loop bodies.  I'll
2530 // definitely have to hack the graph after running this transform.
2531 //
2532 // From this building block I will further edit edges to perform loop peeling
2533 // or loop unrolling or iteration splitting (Range-Check-Elimination), etc.
2534 //
2535 // Parameter side_by_size_idom:
2536 //   When side_by_size_idom is null, the dominator tree is constructed for
2537 //      the clone loop to dominate the original.  Used in construction of
2538 //      pre-main-post loop sequence.
2539 //   When nonnull, the clone and original are side-by-side, both are
2540 //      dominated by the side_by_side_idom node.  Used in construction of
2541 //      unswitched loops.
2542 void PhaseIdealLoop::clone_loop( IdealLoopTree *loop, Node_List &old_new, int dd,
2543                                 CloneLoopMode mode, Node* side_by_side_idom) {
2544 
2545   LoopNode* head = loop->_head->as_Loop();
2546   head->verify_strip_mined(1);
2547 
2548   if (C->do_vector_loop() && PrintOpto) {
2549     const char* mname = C->method()->name()->as_quoted_ascii();
2550     if (mname != nullptr) {
2551       tty->print("PhaseIdealLoop::clone_loop: for vectorize method %s\n", mname);
2552     }
2553   }
2554 
2555   CloneMap& cm = C->clone_map();
2556   if (C->do_vector_loop()) {
2557     cm.set_clone_idx(cm.max_gen()+1);
2558 #ifndef PRODUCT
2559     if (PrintOpto) {
2560       tty->print_cr("PhaseIdealLoop::clone_loop: _clone_idx %d", cm.clone_idx());
2561       loop->dump_head();
2562     }
2563 #endif
2564   }
2565 
2566   // Step 1: Clone the loop body.  Make the old->new mapping.
2567   clone_loop_body(loop->_body, old_new, &cm);
2568 
2569   IdealLoopTree* outer_loop = (head->is_strip_mined() && mode != IgnoreStripMined) ? get_loop(head->as_CountedLoop()->outer_loop()) : loop;
2570 
2571   // Step 2: Fix the edges in the new body.  If the old input is outside the
2572   // loop use it.  If the old input is INside the loop, use the corresponding
2573   // new node instead.
2574   fix_body_edges(loop->_body, loop, old_new, dd, outer_loop->_parent, false);
2575 
2576   Node_List extra_data_nodes; // data nodes in the outer strip mined loop
2577   clone_outer_loop(head, mode, loop, outer_loop, dd, old_new, extra_data_nodes);
2578 
2579   // Step 3: Now fix control uses.  Loop varying control uses have already
2580   // been fixed up (as part of all input edges in Step 2).  Loop invariant
2581   // control uses must be either an IfFalse or an IfTrue.  Make a merge
2582   // point to merge the old and new IfFalse/IfTrue nodes; make the use
2583   // refer to this.
2584   Node_List worklist;
2585   uint new_counter = C->unique();
2586   fix_ctrl_uses(loop->_body, loop, old_new, mode, side_by_side_idom, &cm, worklist);
2587 
2588   // Step 4: If loop-invariant use is not control, it must be dominated by a
2589   // loop exit IfFalse/IfTrue.  Find "proper" loop exit.  Make a Region
2590   // there if needed.  Make a Phi there merging old and new used values.
2591   Node_List *split_if_set = nullptr;
2592   Node_List *split_bool_set = nullptr;
2593   Node_List *split_cex_set = nullptr;
2594   fix_data_uses(loop->_body, loop, mode, outer_loop, new_counter, old_new, worklist, split_if_set, split_bool_set, split_cex_set);
2595 
2596   for (uint i = 0; i < extra_data_nodes.size(); i++) {
2597     Node* old = extra_data_nodes.at(i);
2598     clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set,
2599                                 split_bool_set, split_cex_set, worklist, new_counter,
2600                                 mode);
2601   }
2602 
2603   // Check for IFs that need splitting/cloning.  Happens if an IF outside of
2604   // the loop uses a condition set in the loop.  The original IF probably
2605   // takes control from one or more OLD Regions (which in turn get from NEW
2606   // Regions).  In any case, there will be a set of Phis for each merge point
2607   // from the IF up to where the original BOOL def exists the loop.
2608   finish_clone_loop(split_if_set, split_bool_set, split_cex_set);
2609 
2610 }
2611 
2612 void PhaseIdealLoop::finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set) {
2613   if (split_if_set) {
2614     while (split_if_set->size()) {
2615       Node *iff = split_if_set->pop();
2616       uint input = iff->Opcode() == Op_AllocateArray ? AllocateNode::ValidLengthTest : 1;
2617       if (iff->in(input)->is_Phi()) {
2618         Node *b = clone_iff(iff->in(input)->as_Phi());
2619         _igvn.replace_input_of(iff, input, b);
2620       }
2621     }
2622   }
2623   if (split_bool_set) {
2624     while (split_bool_set->size()) {
2625       Node *b = split_bool_set->pop();
2626       Node *phi = b->in(1);
2627       assert(phi->is_Phi(), "");
2628       CmpNode *cmp = clone_bool((PhiNode*) phi);
2629       _igvn.replace_input_of(b, 1, cmp);
2630     }
2631   }
2632   if (split_cex_set) {
2633     while (split_cex_set->size()) {
2634       Node *b = split_cex_set->pop();
2635       assert(b->in(0)->is_Region(), "");
2636       assert(b->in(1)->is_Phi(), "");
2637       assert(b->in(0)->in(0) == b->in(1)->in(0), "");
2638       split_up(b, b->in(0), nullptr);
2639     }
2640   }
2641 }
2642 
2643 void PhaseIdealLoop::fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
2644                                    uint new_counter, Node_List &old_new, Node_List &worklist, Node_List*& split_if_set,
2645                                    Node_List*& split_bool_set, Node_List*& split_cex_set) {
2646   for(uint i = 0; i < body.size(); i++ ) {
2647     Node* old = body.at(i);
2648     clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set,
2649                                 split_bool_set, split_cex_set, worklist, new_counter,
2650                                 mode);
2651   }
2652 }
2653 
2654 void PhaseIdealLoop::fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
2655                                    Node* side_by_side_idom, CloneMap* cm, Node_List &worklist) {
2656   LoopNode* head = loop->_head->as_Loop();
2657   for(uint i = 0; i < body.size(); i++ ) {
2658     Node* old = body.at(i);
2659     if( !old->is_CFG() ) continue;
2660 
2661     // Copy uses to a worklist, so I can munge the def-use info
2662     // with impunity.
2663     for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++) {
2664       worklist.push(old->fast_out(j));
2665     }
2666 
2667     while (worklist.size()) {  // Visit all uses
2668       Node *use = worklist.pop();
2669       if (!has_node(use))  continue; // Ignore dead nodes
2670       IdealLoopTree *use_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use );
2671       if (!loop->is_member(use_loop) && use->is_CFG()) {
2672         // Both OLD and USE are CFG nodes here.
2673         assert(use->is_Proj(), "" );
2674         Node* nnn = old_new[old->_idx];
2675 
2676         Node* newuse = nullptr;
2677         if (head->is_strip_mined() && mode != IgnoreStripMined) {
2678           CountedLoopNode* cl = head->as_CountedLoop();
2679           CountedLoopEndNode* cle = cl->loopexit();
2680           Node* cle_out = cle->proj_out_or_null(false);
2681           if (use == cle_out) {
2682             IfNode* le = cl->outer_loop_end();
2683             use = le->proj_out(false);
2684             use_loop = get_loop(use);
2685             if (mode == CloneIncludesStripMined) {
2686               nnn = old_new[le->_idx];
2687             } else {
2688               newuse = old_new[cle_out->_idx];
2689             }
2690           }
2691         }
2692         if (newuse == nullptr) {
2693           newuse = use->clone();
2694         }
2695 
2696         // Clone the loop exit control projection
2697         if (C->do_vector_loop() && cm != nullptr) {
2698           cm->verify_insert_and_clone(use, newuse, cm->clone_idx());
2699         }
2700         newuse->set_req(0,nnn);
2701         _igvn.register_new_node_with_optimizer(newuse);
2702         set_loop(newuse, use_loop);
2703         set_idom(newuse, nnn, dom_depth(nnn) + 1 );
2704 
2705         // We need a Region to merge the exit from the peeled body and the
2706         // exit from the old loop body.
2707         RegionNode *r = new RegionNode(3);
2708         uint dd_r = MIN2(dom_depth(newuse), dom_depth(use));
2709         assert(dd_r >= dom_depth(dom_lca(newuse, use)), "" );
2710 
2711         // The original user of 'use' uses 'r' instead.
2712         for (DUIterator_Last lmin, l = use->last_outs(lmin); l >= lmin;) {
2713           Node* useuse = use->last_out(l);
2714           _igvn.rehash_node_delayed(useuse);
2715           uint uses_found = 0;
2716           if (useuse->in(0) == use) {
2717             useuse->set_req(0, r);
2718             uses_found++;
2719             if (useuse->is_CFG()) {
2720               // This is not a dom_depth > dd_r because when new
2721               // control flow is constructed by a loop opt, a node and
2722               // its dominator can end up at the same dom_depth
2723               assert(dom_depth(useuse) >= dd_r, "");
2724               set_idom(useuse, r, dom_depth(useuse));
2725             }
2726           }
2727           for (uint k = 1; k < useuse->req(); k++) {
2728             if( useuse->in(k) == use ) {
2729               useuse->set_req(k, r);
2730               uses_found++;
2731               if (useuse->is_Loop() && k == LoopNode::EntryControl) {
2732                 // This is not a dom_depth > dd_r because when new
2733                 // control flow is constructed by a loop opt, a node
2734                 // and its dominator can end up at the same dom_depth
2735                 assert(dom_depth(useuse) >= dd_r , "");
2736                 set_idom(useuse, r, dom_depth(useuse));
2737               }
2738             }
2739           }
2740           l -= uses_found;    // we deleted 1 or more copies of this edge
2741         }
2742 
2743         assert(use->is_Proj(), "loop exit should be projection");
2744         // lazy_replace() below moves all nodes that are:
2745         // - control dependent on the loop exit or
2746         // - have control set to the loop exit
2747         // below the post-loop merge point. lazy_replace() takes a dead control as first input. To make it
2748         // possible to use it, the loop exit projection is cloned and becomes the new exit projection. The initial one
2749         // becomes dead and is "replaced" by the region.
2750         Node* use_clone = use->clone();
2751         register_control(use_clone, use_loop, idom(use), dom_depth(use));
2752         // Now finish up 'r'
2753         r->set_req(1, newuse);
2754         r->set_req(2, use_clone);
2755         _igvn.register_new_node_with_optimizer(r);
2756         set_loop(r, use_loop);
2757         set_idom(r, (side_by_side_idom == nullptr) ? newuse->in(0) : side_by_side_idom, dd_r);
2758         lazy_replace(use, r);
2759         // Map the (cloned) old use to the new merge point
2760         old_new.map(use_clone->_idx, r);
2761       } // End of if a loop-exit test
2762     }
2763   }
2764 }
2765 
2766 void PhaseIdealLoop::fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
2767                                     IdealLoopTree* parent, bool partial) {
2768   for(uint i = 0; i < body.size(); i++ ) {
2769     Node *old = body.at(i);
2770     Node *nnn = old_new[old->_idx];
2771     // Fix CFG/Loop controlling the new node
2772     if (has_ctrl(old)) {
2773       set_ctrl(nnn, old_new[get_ctrl(old)->_idx]);
2774     } else {
2775       set_loop(nnn, parent);
2776       if (old->outcnt() > 0) {
2777         Node* dom = idom(old);
2778         if (old_new[dom->_idx] != nullptr) {
2779           dom = old_new[dom->_idx];
2780           set_idom(nnn, dom, dd );
2781         }
2782       }
2783     }
2784     // Correct edges to the new node
2785     for (uint j = 0; j < nnn->req(); j++) {
2786         Node *n = nnn->in(j);
2787         if (n != nullptr) {
2788           IdealLoopTree *old_in_loop = get_loop(has_ctrl(n) ? get_ctrl(n) : n);
2789           if (loop->is_member(old_in_loop)) {
2790             if (old_new[n->_idx] != nullptr) {
2791               nnn->set_req(j, old_new[n->_idx]);
2792             } else {
2793               assert(!body.contains(n), "");
2794               assert(partial, "node not cloned");
2795             }
2796           }
2797         }
2798     }
2799     _igvn.hash_find_insert(nnn);
2800   }
2801 }
2802 
2803 void PhaseIdealLoop::clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm) {
2804   for (uint i = 0; i < body.size(); i++) {
2805     Node* old = body.at(i);
2806     Node* nnn = old->clone();
2807     old_new.map(old->_idx, nnn);
2808     if (C->do_vector_loop() && cm != nullptr) {
2809       cm->verify_insert_and_clone(old, nnn, cm->clone_idx());
2810     }
2811     _igvn.register_new_node_with_optimizer(nnn);
2812   }
2813 }
2814 
2815 
2816 //---------------------- stride_of_possible_iv -------------------------------------
2817 // Looks for an iff/bool/comp with one operand of the compare
2818 // being a cycle involving an add and a phi,
2819 // with an optional truncation (left-shift followed by a right-shift)
2820 // of the add. Returns zero if not an iv.
2821 int PhaseIdealLoop::stride_of_possible_iv(Node* iff) {
2822   Node* trunc1 = nullptr;
2823   Node* trunc2 = nullptr;
2824   const TypeInteger* ttype = nullptr;
2825   if (!iff->is_If() || iff->in(1) == nullptr || !iff->in(1)->is_Bool()) {
2826     return 0;
2827   }
2828   BoolNode* bl = iff->in(1)->as_Bool();
2829   Node* cmp = bl->in(1);
2830   if (!cmp || (cmp->Opcode() != Op_CmpI && cmp->Opcode() != Op_CmpU)) {
2831     return 0;
2832   }
2833   // Must have an invariant operand
2834   if (is_member(get_loop(iff), get_ctrl(cmp->in(2)))) {
2835     return 0;
2836   }
2837   Node* add2 = nullptr;
2838   Node* cmp1 = cmp->in(1);
2839   if (cmp1->is_Phi()) {
2840     // (If (Bool (CmpX phi:(Phi ...(Optional-trunc(AddI phi add2))) )))
2841     Node* phi = cmp1;
2842     for (uint i = 1; i < phi->req(); i++) {
2843       Node* in = phi->in(i);
2844       Node* add = CountedLoopNode::match_incr_with_optional_truncation(in,
2845                                 &trunc1, &trunc2, &ttype, T_INT);
2846       if (add && add->in(1) == phi) {
2847         add2 = add->in(2);
2848         break;
2849       }
2850     }
2851   } else {
2852     // (If (Bool (CmpX addtrunc:(Optional-trunc((AddI (Phi ...addtrunc...) add2)) )))
2853     Node* addtrunc = cmp1;
2854     Node* add = CountedLoopNode::match_incr_with_optional_truncation(addtrunc,
2855                                 &trunc1, &trunc2, &ttype, T_INT);
2856     if (add && add->in(1)->is_Phi()) {
2857       Node* phi = add->in(1);
2858       for (uint i = 1; i < phi->req(); i++) {
2859         if (phi->in(i) == addtrunc) {
2860           add2 = add->in(2);
2861           break;
2862         }
2863       }
2864     }
2865   }
2866   if (add2 != nullptr) {
2867     const TypeInt* add2t = _igvn.type(add2)->is_int();
2868     if (add2t->is_con()) {
2869       return add2t->get_con();
2870     }
2871   }
2872   return 0;
2873 }
2874 
2875 
2876 //---------------------- stay_in_loop -------------------------------------
2877 // Return the (unique) control output node that's in the loop (if it exists.)
2878 Node* PhaseIdealLoop::stay_in_loop( Node* n, IdealLoopTree *loop) {
2879   Node* unique = nullptr;
2880   if (!n) return nullptr;
2881   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2882     Node* use = n->fast_out(i);
2883     if (!has_ctrl(use) && loop->is_member(get_loop(use))) {
2884       if (unique != nullptr) {
2885         return nullptr;
2886       }
2887       unique = use;
2888     }
2889   }
2890   return unique;
2891 }
2892 
2893 //------------------------------ register_node -------------------------------------
2894 // Utility to register node "n" with PhaseIdealLoop
2895 void PhaseIdealLoop::register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth) {
2896   _igvn.register_new_node_with_optimizer(n);
2897   loop->_body.push(n);
2898   if (n->is_CFG()) {
2899     set_loop(n, loop);
2900     set_idom(n, pred, ddepth);
2901   } else {
2902     set_ctrl(n, pred);
2903   }
2904 }
2905 
2906 //------------------------------ proj_clone -------------------------------------
2907 // Utility to create an if-projection
2908 ProjNode* PhaseIdealLoop::proj_clone(ProjNode* p, IfNode* iff) {
2909   ProjNode* c = p->clone()->as_Proj();
2910   c->set_req(0, iff);
2911   return c;
2912 }
2913 
2914 //------------------------------ short_circuit_if -------------------------------------
2915 // Force the iff control output to be the live_proj
2916 Node* PhaseIdealLoop::short_circuit_if(IfNode* iff, ProjNode* live_proj) {
2917   guarantee(live_proj != nullptr, "null projection");
2918   int proj_con = live_proj->_con;
2919   assert(proj_con == 0 || proj_con == 1, "false or true projection");
2920   Node* con = intcon(proj_con);
2921   if (iff) {
2922     iff->set_req(1, con);
2923   }
2924   return con;
2925 }
2926 
2927 //------------------------------ insert_if_before_proj -------------------------------------
2928 // Insert a new if before an if projection (* - new node)
2929 //
2930 // before
2931 //           if(test)
2932 //           /     \
2933 //          v       v
2934 //    other-proj   proj (arg)
2935 //
2936 // after
2937 //           if(test)
2938 //           /     \
2939 //          /       v
2940 //         |      * proj-clone
2941 //         v          |
2942 //    other-proj      v
2943 //                * new_if(relop(cmp[IU](left,right)))
2944 //                  /  \
2945 //                 v    v
2946 //         * new-proj  proj
2947 //         (returned)
2948 //
2949 ProjNode* PhaseIdealLoop::insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj) {
2950   IfNode* iff = proj->in(0)->as_If();
2951   IdealLoopTree *loop = get_loop(proj);
2952   ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj();
2953   uint ddepth = dom_depth(proj);
2954 
2955   _igvn.rehash_node_delayed(iff);
2956   _igvn.rehash_node_delayed(proj);
2957 
2958   proj->set_req(0, nullptr);  // temporary disconnect
2959   ProjNode* proj2 = proj_clone(proj, iff);
2960   register_node(proj2, loop, iff, ddepth);
2961 
2962   Node* cmp = Signed ? (Node*) new CmpINode(left, right) : (Node*) new CmpUNode(left, right);
2963   register_node(cmp, loop, proj2, ddepth);
2964 
2965   BoolNode* bol = new BoolNode(cmp, relop);
2966   register_node(bol, loop, proj2, ddepth);
2967 
2968   int opcode = iff->Opcode();
2969   assert(opcode == Op_If || opcode == Op_RangeCheck, "unexpected opcode");
2970   IfNode* new_if = IfNode::make_with_same_profile(iff, proj2, bol);
2971   register_node(new_if, loop, proj2, ddepth);
2972 
2973   proj->set_req(0, new_if); // reattach
2974   set_idom(proj, new_if, ddepth);
2975 
2976   ProjNode* new_exit = proj_clone(other_proj, new_if)->as_Proj();
2977   guarantee(new_exit != nullptr, "null exit node");
2978   register_node(new_exit, get_loop(other_proj), new_if, ddepth);
2979 
2980   return new_exit;
2981 }
2982 
2983 //------------------------------ insert_region_before_proj -------------------------------------
2984 // Insert a region before an if projection (* - new node)
2985 //
2986 // before
2987 //           if(test)
2988 //          /      |
2989 //         v       |
2990 //       proj      v
2991 //               other-proj
2992 //
2993 // after
2994 //           if(test)
2995 //          /      |
2996 //         v       |
2997 // * proj-clone    v
2998 //         |     other-proj
2999 //         v
3000 // * new-region
3001 //         |
3002 //         v
3003 // *      dum_if
3004 //       /     \
3005 //      v       \
3006 // * dum-proj    v
3007 //              proj
3008 //
3009 RegionNode* PhaseIdealLoop::insert_region_before_proj(ProjNode* proj) {
3010   IfNode* iff = proj->in(0)->as_If();
3011   IdealLoopTree *loop = get_loop(proj);
3012   ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj();
3013   uint ddepth = dom_depth(proj);
3014 
3015   _igvn.rehash_node_delayed(iff);
3016   _igvn.rehash_node_delayed(proj);
3017 
3018   proj->set_req(0, nullptr);  // temporary disconnect
3019   ProjNode* proj2 = proj_clone(proj, iff);
3020   register_node(proj2, loop, iff, ddepth);
3021 
3022   RegionNode* reg = new RegionNode(2);
3023   reg->set_req(1, proj2);
3024   register_node(reg, loop, iff, ddepth);
3025 
3026   IfNode* dum_if = new IfNode(reg, short_circuit_if(nullptr, proj), iff->_prob, iff->_fcnt);
3027   register_node(dum_if, loop, reg, ddepth);
3028 
3029   proj->set_req(0, dum_if); // reattach
3030   set_idom(proj, dum_if, ddepth);
3031 
3032   ProjNode* dum_proj = proj_clone(other_proj, dum_if);
3033   register_node(dum_proj, loop, dum_if, ddepth);
3034 
3035   return reg;
3036 }
3037 
3038 // Idea
3039 // ----
3040 // Partial Peeling tries to rotate the loop in such a way that it can later be turned into a counted loop. Counted loops
3041 // require a signed loop exit test. When calling this method, we've only found a suitable unsigned test to partial peel
3042 // with. Therefore, we try to split off a signed loop exit test from the unsigned test such that it can be used as new
3043 // loop exit while keeping the unsigned test unchanged and preserving the same behavior as if we've used the unsigned
3044 // test alone instead:
3045 //
3046 // Before Partial Peeling:
3047 //   Loop:
3048 //     <peeled section>
3049 //     Split off signed loop exit test
3050 //     <-- CUT HERE -->
3051 //     Unchanged unsigned loop exit test
3052 //     <rest of unpeeled section>
3053 //     goto Loop
3054 //
3055 // After Partial Peeling:
3056 //   <cloned peeled section>
3057 //   Cloned split off signed loop exit test
3058 //   Loop:
3059 //     Unchanged unsigned loop exit test
3060 //     <rest of unpeeled section>
3061 //     <peeled section>
3062 //     Split off signed loop exit test
3063 //     goto Loop
3064 //
3065 // Details
3066 // -------
3067 // Before:
3068 //          if (i <u limit)    Unsigned loop exit condition
3069 //         /       |
3070 //        v        v
3071 //   exit-proj   stay-in-loop-proj
3072 //
3073 // Split off a signed loop exit test (i.e. with CmpI) from an unsigned loop exit test (i.e. with CmpU) and insert it
3074 // before the CmpU on the stay-in-loop path and keep both tests:
3075 //
3076 //          if (i <u limit)    Signed loop exit test
3077 //        /        |
3078 //       /  if (i <u limit)    Unsigned loop exit test
3079 //      /  /       |
3080 //     v  v        v
3081 //  exit-region  stay-in-loop-proj
3082 //
3083 // Implementation
3084 // --------------
3085 // We need to make sure that the new signed loop exit test is properly inserted into the graph such that the unsigned
3086 // loop exit test still dominates the same set of control nodes, the ctrl() relation from data nodes to both loop
3087 // exit tests is preserved, and their loop nesting is correct.
3088 //
3089 // To achieve that, we clone the unsigned loop exit test completely (leave it unchanged), insert the signed loop exit
3090 // test above it and kill the original unsigned loop exit test by setting it's condition to a constant
3091 // (i.e. stay-in-loop-const in graph below) such that IGVN can fold it later:
3092 //
3093 //           if (stay-in-loop-const)  Killed original unsigned loop exit test
3094 //          /       |
3095 //         /        v
3096 //        /  if (i <  limit)          Split off signed loop exit test
3097 //       /  /       |
3098 //      /  /        v
3099 //     /  /  if (i <u limit)          Cloned unsigned loop exit test
3100 //    /  /   /      |
3101 //   v  v  v        |
3102 //  exit-region     |
3103 //        |         |
3104 //    dummy-if      |
3105 //     /  |         |
3106 // dead   |         |
3107 //        v         v
3108 //   exit-proj   stay-in-loop-proj
3109 //
3110 // Note: The dummy-if is inserted to create a region to merge the loop exits between the original to be killed unsigned
3111 //       loop exit test and its exit projection while keeping the exit projection (also see insert_region_before_proj()).
3112 //
3113 // Requirements
3114 // ------------
3115 // Note that we can only split off a signed loop exit test from the unsigned loop exit test when the behavior is exactly
3116 // the same as before with only a single unsigned test. This is only possible if certain requirements are met.
3117 // Otherwise, we need to bail out (see comments in the code below).
3118 IfNode* PhaseIdealLoop::insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree* loop) {
3119   const bool Signed   = true;
3120   const bool Unsigned = false;
3121 
3122   BoolNode* bol = if_cmpu->in(1)->as_Bool();
3123   if (bol->_test._test != BoolTest::lt) {
3124     return nullptr;
3125   }
3126   CmpNode* cmpu = bol->in(1)->as_Cmp();
3127   assert(cmpu->Opcode() == Op_CmpU, "must be unsigned comparison");
3128 
3129   int stride = stride_of_possible_iv(if_cmpu);
3130   if (stride == 0) {
3131     return nullptr;
3132   }
3133 
3134   Node* lp_proj = stay_in_loop(if_cmpu, loop);
3135   guarantee(lp_proj != nullptr, "null loop node");
3136 
3137   ProjNode* lp_continue = lp_proj->as_Proj();
3138   ProjNode* lp_exit     = if_cmpu->proj_out(!lp_continue->is_IfTrue())->as_Proj();
3139   if (!lp_exit->is_IfFalse()) {
3140     // The loop exit condition is (i <u limit) ==> (i >= 0 && i < limit).
3141     // We therefore can't add a single exit condition.
3142     return nullptr;
3143   }
3144   // The unsigned loop exit condition is
3145   //   !(i <u  limit)
3146   // =   i >=u limit
3147   //
3148   // First, we note that for any x for which
3149   //   0 <= x <= INT_MAX
3150   // we can convert x to an unsigned int and still get the same guarantee:
3151   //   0 <=  (uint) x <=  INT_MAX = (uint) INT_MAX
3152   //   0 <=u (uint) x <=u INT_MAX = (uint) INT_MAX   (LEMMA)
3153   //
3154   // With that in mind, if
3155   //   limit >= 0             (COND)
3156   // then the unsigned loop exit condition
3157   //   i >=u limit            (ULE)
3158   // is equivalent to
3159   //   i < 0 || i >= limit    (SLE-full)
3160   // because either i is negative and therefore always greater than MAX_INT when converting to unsigned
3161   //   (uint) i >=u MAX_INT >= limit >= 0
3162   // or otherwise
3163   //   i >= limit >= 0
3164   // holds due to (LEMMA).
3165   //
3166   // For completeness, a counterexample with limit < 0:
3167   // Assume i = -3 and limit = -2:
3168   //   i  < 0
3169   //   -2 < 0
3170   // is true and thus also "i < 0 || i >= limit". But
3171   //   i  >=u limit
3172   //   -3 >=u -2
3173   // is false.
3174   Node* limit = cmpu->in(2);
3175   const TypeInt* type_limit = _igvn.type(limit)->is_int();
3176   if (type_limit->_lo < 0) {
3177     return nullptr;
3178   }
3179 
3180   // We prove below that we can extract a single signed loop exit condition from (SLE-full), depending on the stride:
3181   //   stride < 0:
3182   //     i < 0        (SLE = SLE-negative)
3183   //   stride > 0:
3184   //     i >= limit   (SLE = SLE-positive)
3185   // such that we have the following graph before Partial Peeling with stride > 0 (similar for stride < 0):
3186   //
3187   // Loop:
3188   //   <peeled section>
3189   //   i >= limit    (SLE-positive)
3190   //   <-- CUT HERE -->
3191   //   i >=u limit   (ULE)
3192   //   <rest of unpeeled section>
3193   //   goto Loop
3194   //
3195   // We exit the loop if:
3196   //   (SLE) is true OR (ULE) is true
3197   // However, if (SLE) is true then (ULE) also needs to be true to ensure the exact same behavior. Otherwise, we wrongly
3198   // exit a loop that should not have been exited if we did not apply Partial Peeling. More formally, we need to ensure:
3199   //   (SLE) IMPLIES (ULE)
3200   // This indeed holds when (COND) is given:
3201   // - stride > 0:
3202   //       i >=  limit             // (SLE = SLE-positive)
3203   //       i >=  limit >= 0        // (COND)
3204   //       i >=u limit >= 0        // (LEMMA)
3205   //     which is the unsigned loop exit condition (ULE).
3206   // - stride < 0:
3207   //       i        <  0           // (SLE = SLE-negative)
3208   //       (uint) i >u MAX_INT     // (NEG) all negative values are greater than MAX_INT when converted to unsigned
3209   //       MAX_INT >= limit >= 0   // (COND)
3210   //       MAX_INT >=u limit >= 0  // (LEMMA)
3211   //     and thus from (NEG) and (LEMMA):
3212   //       i >=u limit
3213   //     which is the unsigned loop exit condition (ULE).
3214   //
3215   //
3216   // After Partial Peeling, we have the following structure for stride > 0 (similar for stride < 0):
3217   //   <cloned peeled section>
3218   //   i >= limit (SLE-positive)
3219   //   Loop:
3220   //     i >=u limit (ULE)
3221   //     <rest of unpeeled section>
3222   //     <peeled section>
3223   //     i >= limit (SLE-positive)
3224   //     goto Loop
3225   Node* rhs_cmpi;
3226   if (stride > 0) {
3227     rhs_cmpi = limit; // For i >= limit
3228   } else {
3229     rhs_cmpi = makecon(TypeInt::ZERO); // For i < 0
3230   }
3231   // Create a new region on the exit path
3232   RegionNode* reg = insert_region_before_proj(lp_exit);
3233   guarantee(reg != nullptr, "null region node");
3234 
3235   // Clone the if-cmpu-true-false using a signed compare
3236   BoolTest::mask rel_i = stride > 0 ? bol->_test._test : BoolTest::ge;
3237   ProjNode* cmpi_exit = insert_if_before_proj(cmpu->in(1), Signed, rel_i, rhs_cmpi, lp_continue);
3238   reg->add_req(cmpi_exit);
3239 
3240   // Clone the if-cmpu-true-false
3241   BoolTest::mask rel_u = bol->_test._test;
3242   ProjNode* cmpu_exit = insert_if_before_proj(cmpu->in(1), Unsigned, rel_u, cmpu->in(2), lp_continue);
3243   reg->add_req(cmpu_exit);
3244 
3245   // Force original if to stay in loop.
3246   short_circuit_if(if_cmpu, lp_continue);
3247 
3248   return cmpi_exit->in(0)->as_If();
3249 }
3250 
3251 //------------------------------ remove_cmpi_loop_exit -------------------------------------
3252 // Remove a previously inserted signed compare loop exit.
3253 void PhaseIdealLoop::remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop) {
3254   Node* lp_proj = stay_in_loop(if_cmp, loop);
3255   assert(if_cmp->in(1)->in(1)->Opcode() == Op_CmpI &&
3256          stay_in_loop(lp_proj, loop)->is_If() &&
3257          stay_in_loop(lp_proj, loop)->in(1)->in(1)->Opcode() == Op_CmpU, "inserted cmpi before cmpu");
3258   Node* con = makecon(lp_proj->is_IfTrue() ? TypeInt::ONE : TypeInt::ZERO);
3259   if_cmp->set_req(1, con);
3260 }
3261 
3262 //------------------------------ scheduled_nodelist -------------------------------------
3263 // Create a post order schedule of nodes that are in the
3264 // "member" set.  The list is returned in "sched".
3265 // The first node in "sched" is the loop head, followed by
3266 // nodes which have no inputs in the "member" set, and then
3267 // followed by the nodes that have an immediate input dependence
3268 // on a node in "sched".
3269 void PhaseIdealLoop::scheduled_nodelist( IdealLoopTree *loop, VectorSet& member, Node_List &sched ) {
3270 
3271   assert(member.test(loop->_head->_idx), "loop head must be in member set");
3272   VectorSet visited;
3273   Node_Stack nstack(loop->_body.size());
3274 
3275   Node* n  = loop->_head;  // top of stack is cached in "n"
3276   uint idx = 0;
3277   visited.set(n->_idx);
3278 
3279   // Initially push all with no inputs from within member set
3280   for(uint i = 0; i < loop->_body.size(); i++ ) {
3281     Node *elt = loop->_body.at(i);
3282     if (member.test(elt->_idx)) {
3283       bool found = false;
3284       for (uint j = 0; j < elt->req(); j++) {
3285         Node* def = elt->in(j);
3286         if (def && member.test(def->_idx) && def != elt) {
3287           found = true;
3288           break;
3289         }
3290       }
3291       if (!found && elt != loop->_head) {
3292         nstack.push(n, idx);
3293         n = elt;
3294         assert(!visited.test(n->_idx), "not seen yet");
3295         visited.set(n->_idx);
3296       }
3297     }
3298   }
3299 
3300   // traverse out's that are in the member set
3301   while (true) {
3302     if (idx < n->outcnt()) {
3303       Node* use = n->raw_out(idx);
3304       idx++;
3305       if (!visited.test_set(use->_idx)) {
3306         if (member.test(use->_idx)) {
3307           nstack.push(n, idx);
3308           n = use;
3309           idx = 0;
3310         }
3311       }
3312     } else {
3313       // All outputs processed
3314       sched.push(n);
3315       if (nstack.is_empty()) break;
3316       n   = nstack.node();
3317       idx = nstack.index();
3318       nstack.pop();
3319     }
3320   }
3321 }
3322 
3323 
3324 //------------------------------ has_use_in_set -------------------------------------
3325 // Has a use in the vector set
3326 bool PhaseIdealLoop::has_use_in_set( Node* n, VectorSet& vset ) {
3327   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3328     Node* use = n->fast_out(j);
3329     if (vset.test(use->_idx)) {
3330       return true;
3331     }
3332   }
3333   return false;
3334 }
3335 
3336 
3337 //------------------------------ has_use_internal_to_set -------------------------------------
3338 // Has use internal to the vector set (ie. not in a phi at the loop head)
3339 bool PhaseIdealLoop::has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ) {
3340   Node* head  = loop->_head;
3341   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3342     Node* use = n->fast_out(j);
3343     if (vset.test(use->_idx) && !(use->is_Phi() && use->in(0) == head)) {
3344       return true;
3345     }
3346   }
3347   return false;
3348 }
3349 
3350 
3351 //------------------------------ clone_for_use_outside_loop -------------------------------------
3352 // clone "n" for uses that are outside of loop
3353 int PhaseIdealLoop::clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ) {
3354   int cloned = 0;
3355   assert(worklist.size() == 0, "should be empty");
3356   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3357     Node* use = n->fast_out(j);
3358     if( !loop->is_member(get_loop(has_ctrl(use) ? get_ctrl(use) : use)) ) {
3359       worklist.push(use);
3360     }
3361   }
3362 
3363   if (C->check_node_count(worklist.size() + NodeLimitFudgeFactor,
3364                           "Too many clones required in clone_for_use_outside_loop in partial peeling")) {
3365     return -1;
3366   }
3367 
3368   while( worklist.size() ) {
3369     Node *use = worklist.pop();
3370     if (!has_node(use) || use->in(0) == C->top()) continue;
3371     uint j;
3372     for (j = 0; j < use->req(); j++) {
3373       if (use->in(j) == n) break;
3374     }
3375     assert(j < use->req(), "must be there");
3376 
3377     // clone "n" and insert it between the inputs of "n" and the use outside the loop
3378     Node* n_clone = n->clone();
3379     _igvn.replace_input_of(use, j, n_clone);
3380     cloned++;
3381     Node* use_c;
3382     if (!use->is_Phi()) {
3383       use_c = has_ctrl(use) ? get_ctrl(use) : use->in(0);
3384     } else {
3385       // Use in a phi is considered a use in the associated predecessor block
3386       use_c = use->in(0)->in(j);
3387     }
3388     set_ctrl(n_clone, use_c);
3389     assert(!loop->is_member(get_loop(use_c)), "should be outside loop");
3390     get_loop(use_c)->_body.push(n_clone);
3391     _igvn.register_new_node_with_optimizer(n_clone);
3392 #ifndef PRODUCT
3393     if (TracePartialPeeling) {
3394       tty->print_cr("loop exit cloning old: %d new: %d newbb: %d", n->_idx, n_clone->_idx, get_ctrl(n_clone)->_idx);
3395     }
3396 #endif
3397   }
3398   return cloned;
3399 }
3400 
3401 
3402 //------------------------------ clone_for_special_use_inside_loop -------------------------------------
3403 // clone "n" for special uses that are in the not_peeled region.
3404 // If these def-uses occur in separate blocks, the code generator
3405 // marks the method as not compilable.  For example, if a "BoolNode"
3406 // is in a different basic block than the "IfNode" that uses it, then
3407 // the compilation is aborted in the code generator.
3408 void PhaseIdealLoop::clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
3409                                                         VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ) {
3410   if (n->is_Phi() || n->is_Load()) {
3411     return;
3412   }
3413   assert(worklist.size() == 0, "should be empty");
3414   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3415     Node* use = n->fast_out(j);
3416     if ( not_peel.test(use->_idx) &&
3417          (use->is_If() || use->is_CMove() || use->is_Bool()) &&
3418          use->in(1) == n)  {
3419       worklist.push(use);
3420     }
3421   }
3422   if (worklist.size() > 0) {
3423     // clone "n" and insert it between inputs of "n" and the use
3424     Node* n_clone = n->clone();
3425     loop->_body.push(n_clone);
3426     _igvn.register_new_node_with_optimizer(n_clone);
3427     set_ctrl(n_clone, get_ctrl(n));
3428     sink_list.push(n_clone);
3429     not_peel.set(n_clone->_idx);
3430 #ifndef PRODUCT
3431     if (TracePartialPeeling) {
3432       tty->print_cr("special not_peeled cloning old: %d new: %d", n->_idx, n_clone->_idx);
3433     }
3434 #endif
3435     while( worklist.size() ) {
3436       Node *use = worklist.pop();
3437       _igvn.rehash_node_delayed(use);
3438       for (uint j = 1; j < use->req(); j++) {
3439         if (use->in(j) == n) {
3440           use->set_req(j, n_clone);
3441         }
3442       }
3443     }
3444   }
3445 }
3446 
3447 
3448 //------------------------------ insert_phi_for_loop -------------------------------------
3449 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
3450 void PhaseIdealLoop::insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ) {
3451   Node *phi = PhiNode::make(lp, back_edge_val);
3452   phi->set_req(LoopNode::EntryControl, lp_entry_val);
3453   // Use existing phi if it already exists
3454   Node *hit = _igvn.hash_find_insert(phi);
3455   if( hit == nullptr ) {
3456     _igvn.register_new_node_with_optimizer(phi);
3457     set_ctrl(phi, lp);
3458   } else {
3459     // Remove the new phi from the graph and use the hit
3460     _igvn.remove_dead_node(phi);
3461     phi = hit;
3462   }
3463   _igvn.replace_input_of(use, idx, phi);
3464 }
3465 
3466 #ifdef ASSERT
3467 //------------------------------ is_valid_loop_partition -------------------------------------
3468 // Validate the loop partition sets: peel and not_peel
3469 bool PhaseIdealLoop::is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list,
3470                                               VectorSet& not_peel ) {
3471   uint i;
3472   // Check that peel_list entries are in the peel set
3473   for (i = 0; i < peel_list.size(); i++) {
3474     if (!peel.test(peel_list.at(i)->_idx)) {
3475       return false;
3476     }
3477   }
3478   // Check at loop members are in one of peel set or not_peel set
3479   for (i = 0; i < loop->_body.size(); i++ ) {
3480     Node *def  = loop->_body.at(i);
3481     uint di = def->_idx;
3482     // Check that peel set elements are in peel_list
3483     if (peel.test(di)) {
3484       if (not_peel.test(di)) {
3485         return false;
3486       }
3487       // Must be in peel_list also
3488       bool found = false;
3489       for (uint j = 0; j < peel_list.size(); j++) {
3490         if (peel_list.at(j)->_idx == di) {
3491           found = true;
3492           break;
3493         }
3494       }
3495       if (!found) {
3496         return false;
3497       }
3498     } else if (not_peel.test(di)) {
3499       if (peel.test(di)) {
3500         return false;
3501       }
3502     } else {
3503       return false;
3504     }
3505   }
3506   return true;
3507 }
3508 
3509 //------------------------------ is_valid_clone_loop_exit_use -------------------------------------
3510 // Ensure a use outside of loop is of the right form
3511 bool PhaseIdealLoop::is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx) {
3512   Node *use_c = has_ctrl(use) ? get_ctrl(use) : use;
3513   return (use->is_Phi() &&
3514           use_c->is_Region() && use_c->req() == 3 &&
3515           (use_c->in(exit_idx)->Opcode() == Op_IfTrue ||
3516            use_c->in(exit_idx)->Opcode() == Op_IfFalse ||
3517            use_c->in(exit_idx)->Opcode() == Op_JumpProj) &&
3518           loop->is_member( get_loop( use_c->in(exit_idx)->in(0) ) ) );
3519 }
3520 
3521 //------------------------------ is_valid_clone_loop_form -------------------------------------
3522 // Ensure that all uses outside of loop are of the right form
3523 bool PhaseIdealLoop::is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
3524                                                uint orig_exit_idx, uint clone_exit_idx) {
3525   uint len = peel_list.size();
3526   for (uint i = 0; i < len; i++) {
3527     Node *def = peel_list.at(i);
3528 
3529     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
3530       Node *use = def->fast_out(j);
3531       Node *use_c = has_ctrl(use) ? get_ctrl(use) : use;
3532       if (!loop->is_member(get_loop(use_c))) {
3533         // use is not in the loop, check for correct structure
3534         if (use->in(0) == def) {
3535           // Okay
3536         } else if (!is_valid_clone_loop_exit_use(loop, use, orig_exit_idx)) {
3537           return false;
3538         }
3539       }
3540     }
3541   }
3542   return true;
3543 }
3544 #endif
3545 
3546 //------------------------------ partial_peel -------------------------------------
3547 // Partially peel (aka loop rotation) the top portion of a loop (called
3548 // the peel section below) by cloning it and placing one copy just before
3549 // the new loop head and the other copy at the bottom of the new loop.
3550 //
3551 //    before                       after                where it came from
3552 //
3553 //    stmt1                        stmt1
3554 //  loop:                          stmt2                     clone
3555 //    stmt2                        if condA goto exitA       clone
3556 //    if condA goto exitA        new_loop:                   new
3557 //    stmt3                        stmt3                     clone
3558 //    if !condB goto loop          if condB goto exitB       clone
3559 //  exitB:                         stmt2                     orig
3560 //    stmt4                        if !condA goto new_loop   orig
3561 //  exitA:                         goto exitA
3562 //                               exitB:
3563 //                                 stmt4
3564 //                               exitA:
3565 //
3566 // Step 1: find the cut point: an exit test on probable
3567 //         induction variable.
3568 // Step 2: schedule (with cloning) operations in the peel
3569 //         section that can be executed after the cut into
3570 //         the section that is not peeled.  This may need
3571 //         to clone operations into exit blocks.  For
3572 //         instance, a reference to A[i] in the not-peel
3573 //         section and a reference to B[i] in an exit block
3574 //         may cause a left-shift of i by 2 to be placed
3575 //         in the peel block.  This step will clone the left
3576 //         shift into the exit block and sink the left shift
3577 //         from the peel to the not-peel section.
3578 // Step 3: clone the loop, retarget the control, and insert
3579 //         phis for values that are live across the new loop
3580 //         head.  This is very dependent on the graph structure
3581 //         from clone_loop.  It creates region nodes for
3582 //         exit control and associated phi nodes for values
3583 //         flow out of the loop through that exit.  The region
3584 //         node is dominated by the clone's control projection.
3585 //         So the clone's peel section is placed before the
3586 //         new loop head, and the clone's not-peel section is
3587 //         forms the top part of the new loop.  The original
3588 //         peel section forms the tail of the new loop.
3589 // Step 4: update the dominator tree and recompute the
3590 //         dominator depth.
3591 //
3592 //                   orig
3593 //
3594 //                   stmt1
3595 //                     |
3596 //                     v
3597 //                 predicates
3598 //                     |
3599 //                     v
3600 //                   loop<----+
3601 //                     |      |
3602 //                   stmt2    |
3603 //                     |      |
3604 //                     v      |
3605 //                    ifA     |
3606 //                   / |      |
3607 //                  v  v      |
3608 //               false true   ^  <-- last_peel
3609 //               /     |      |
3610 //              /   ===|==cut |
3611 //             /     stmt3    |  <-- first_not_peel
3612 //            /        |      |
3613 //            |        v      |
3614 //            v       ifB     |
3615 //          exitA:   / \      |
3616 //                  /   \     |
3617 //                 v     v    |
3618 //               false true   |
3619 //               /       \    |
3620 //              /         ----+
3621 //             |
3622 //             v
3623 //           exitB:
3624 //           stmt4
3625 //
3626 //
3627 //            after clone loop
3628 //
3629 //                   stmt1
3630 //                     |
3631 //                     v
3632 //                predicates
3633 //                 /       \
3634 //        clone   /         \   orig
3635 //               /           \
3636 //              /             \
3637 //             v               v
3638 //   +---->loop                loop<----+
3639 //   |      |                    |      |
3640 //   |    stmt2                stmt2    |
3641 //   |      |                    |      |
3642 //   |      v                    v      |
3643 //   |      ifA                 ifA     |
3644 //   |      | \                / |      |
3645 //   |      v  v              v  v      |
3646 //   ^    true  false      false true   ^  <-- last_peel
3647 //   |      |   ^   \       /    |      |
3648 //   | cut==|==  \   \     /  ===|==cut |
3649 //   |    stmt3   \   \   /    stmt3    |  <-- first_not_peel
3650 //   |      |    dom   | |       |      |
3651 //   |      v      \  1v v2      v      |
3652 //   |      ifB     regionA     ifB     |
3653 //   |      / \        |       / \      |
3654 //   |     /   \       v      /   \     |
3655 //   |    v     v    exitA:  v     v    |
3656 //   |    true  false      false true   |
3657 //   |    /     ^   \      /       \    |
3658 //   +----       \   \    /         ----+
3659 //               dom  \  /
3660 //                 \  1v v2
3661 //                  regionB
3662 //                     |
3663 //                     v
3664 //                   exitB:
3665 //                   stmt4
3666 //
3667 //
3668 //           after partial peel
3669 //
3670 //                  stmt1
3671 //                     |
3672 //                     v
3673 //                predicates
3674 //                 /
3675 //        clone   /             orig
3676 //               /          TOP
3677 //              /             \
3678 //             v               v
3679 //    TOP->loop                loop----+
3680 //          |                    |      |
3681 //        stmt2                stmt2    |
3682 //          |                    |      |
3683 //          v                    v      |
3684 //          ifA                 ifA     |
3685 //          | \                / |      |
3686 //          v  v              v  v      |
3687 //        true  false      false true   |     <-- last_peel
3688 //          |   ^   \       /    +------|---+
3689 //  +->newloop   \   \     /  === ==cut |   |
3690 //  |     stmt3   \   \   /     TOP     |   |
3691 //  |       |    dom   | |      stmt3   |   | <-- first_not_peel
3692 //  |       v      \  1v v2      v      |   |
3693 //  |       ifB     regionA     ifB     ^   v
3694 //  |       / \        |       / \      |   |
3695 //  |      /   \       v      /   \     |   |
3696 //  |     v     v    exitA:  v     v    |   |
3697 //  |     true  false      false true   |   |
3698 //  |     /     ^   \      /       \    |   |
3699 //  |    |       \   \    /         v   |   |
3700 //  |    |       dom  \  /         TOP  |   |
3701 //  |    |         \  1v v2             |   |
3702 //  ^    v          regionB             |   |
3703 //  |    |             |                |   |
3704 //  |    |             v                ^   v
3705 //  |    |           exitB:             |   |
3706 //  |    |           stmt4              |   |
3707 //  |    +------------>-----------------+   |
3708 //  |                                       |
3709 //  +-----------------<---------------------+
3710 //
3711 //
3712 //              final graph
3713 //
3714 //                  stmt1
3715 //                    |
3716 //                    v
3717 //                predicates
3718 //                    |
3719 //                    v
3720 //                  stmt2 clone
3721 //                    |
3722 //                    v
3723 //         ........> ifA clone
3724 //         :        / |
3725 //        dom      /  |
3726 //         :      v   v
3727 //         :  false   true
3728 //         :  |       |
3729 //         :  |       v
3730 //         :  |    newloop<-----+
3731 //         :  |        |        |
3732 //         :  |     stmt3 clone |
3733 //         :  |        |        |
3734 //         :  |        v        |
3735 //         :  |       ifB       |
3736 //         :  |      / \        |
3737 //         :  |     v   v       |
3738 //         :  |  false true     |
3739 //         :  |   |     |       |
3740 //         :  |   v    stmt2    |
3741 //         :  | exitB:  |       |
3742 //         :  | stmt4   v       |
3743 //         :  |       ifA orig  |
3744 //         :  |      /  \       |
3745 //         :  |     /    \      |
3746 //         :  |    v     v      |
3747 //         :  |  false  true    |
3748 //         :  |  /        \     |
3749 //         :  v  v         -----+
3750 //          RegionA
3751 //             |
3752 //             v
3753 //           exitA
3754 //
3755 bool PhaseIdealLoop::partial_peel( IdealLoopTree *loop, Node_List &old_new ) {
3756 
3757   assert(!loop->_head->is_CountedLoop(), "Non-counted loop only");
3758   if (!loop->_head->is_Loop()) {
3759     return false;
3760   }
3761   LoopNode *head = loop->_head->as_Loop();
3762 
3763   if (head->is_partial_peel_loop() || head->partial_peel_has_failed()) {
3764     return false;
3765   }
3766 
3767   // Check for complex exit control
3768   for (uint ii = 0; ii < loop->_body.size(); ii++) {
3769     Node *n = loop->_body.at(ii);
3770     int opc = n->Opcode();
3771     if (n->is_Call()        ||
3772         opc == Op_Catch     ||
3773         opc == Op_CatchProj ||
3774         opc == Op_Jump      ||
3775         opc == Op_JumpProj) {
3776 #ifndef PRODUCT
3777       if (TracePartialPeeling) {
3778         tty->print_cr("\nExit control too complex: lp: %d", head->_idx);
3779       }
3780 #endif
3781       return false;
3782     }
3783   }
3784 
3785   int dd = dom_depth(head);
3786 
3787   // Step 1: find cut point
3788 
3789   // Walk up dominators to loop head looking for first loop exit
3790   // which is executed on every path thru loop.
3791   IfNode *peel_if = nullptr;
3792   IfNode *peel_if_cmpu = nullptr;
3793 
3794   Node *iff = loop->tail();
3795   while (iff != head) {
3796     if (iff->is_If()) {
3797       Node *ctrl = get_ctrl(iff->in(1));
3798       if (ctrl->is_top()) return false; // Dead test on live IF.
3799       // If loop-varying exit-test, check for induction variable
3800       if (loop->is_member(get_loop(ctrl)) &&
3801           loop->is_loop_exit(iff) &&
3802           is_possible_iv_test(iff)) {
3803         Node* cmp = iff->in(1)->in(1);
3804         if (cmp->Opcode() == Op_CmpI) {
3805           peel_if = iff->as_If();
3806         } else {
3807           assert(cmp->Opcode() == Op_CmpU, "must be CmpI or CmpU");
3808           peel_if_cmpu = iff->as_If();
3809         }
3810       }
3811     }
3812     iff = idom(iff);
3813   }
3814 
3815   // Prefer signed compare over unsigned compare.
3816   IfNode* new_peel_if = nullptr;
3817   if (peel_if == nullptr) {
3818     if (!PartialPeelAtUnsignedTests || peel_if_cmpu == nullptr) {
3819       return false;   // No peel point found
3820     }
3821     new_peel_if = insert_cmpi_loop_exit(peel_if_cmpu, loop);
3822     if (new_peel_if == nullptr) {
3823       return false;   // No peel point found
3824     }
3825     peel_if = new_peel_if;
3826   }
3827   Node* last_peel        = stay_in_loop(peel_if, loop);
3828   Node* first_not_peeled = stay_in_loop(last_peel, loop);
3829   if (first_not_peeled == nullptr || first_not_peeled == head) {
3830     return false;
3831   }
3832 
3833 #ifndef PRODUCT
3834   if (TraceLoopOpts) {
3835     tty->print("PartialPeel  ");
3836     loop->dump_head();
3837   }
3838 
3839   if (TracePartialPeeling) {
3840     tty->print_cr("before partial peel one iteration");
3841     Node_List wl;
3842     Node* t = head->in(2);
3843     while (true) {
3844       wl.push(t);
3845       if (t == head) break;
3846       t = idom(t);
3847     }
3848     while (wl.size() > 0) {
3849       Node* tt = wl.pop();
3850       tt->dump();
3851       if (tt == last_peel) tty->print_cr("-- cut --");
3852     }
3853   }
3854 #endif
3855 
3856   C->print_method(PHASE_BEFORE_PARTIAL_PEELING, 4, head);
3857 
3858   VectorSet peel;
3859   VectorSet not_peel;
3860   Node_List peel_list;
3861   Node_List worklist;
3862   Node_List sink_list;
3863 
3864   uint estimate = loop->est_loop_clone_sz(1);
3865   if (exceeding_node_budget(estimate)) {
3866     return false;
3867   }
3868 
3869   // Set of cfg nodes to peel are those that are executable from
3870   // the head through last_peel.
3871   assert(worklist.size() == 0, "should be empty");
3872   worklist.push(head);
3873   peel.set(head->_idx);
3874   while (worklist.size() > 0) {
3875     Node *n = worklist.pop();
3876     if (n != last_peel) {
3877       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3878         Node* use = n->fast_out(j);
3879         if (use->is_CFG() &&
3880             loop->is_member(get_loop(use)) &&
3881             !peel.test_set(use->_idx)) {
3882           worklist.push(use);
3883         }
3884       }
3885     }
3886   }
3887 
3888   // Set of non-cfg nodes to peel are those that are control
3889   // dependent on the cfg nodes.
3890   for (uint i = 0; i < loop->_body.size(); i++) {
3891     Node *n = loop->_body.at(i);
3892     Node *n_c = has_ctrl(n) ? get_ctrl(n) : n;
3893     if (peel.test(n_c->_idx)) {
3894       peel.set(n->_idx);
3895     } else {
3896       not_peel.set(n->_idx);
3897     }
3898   }
3899 
3900   // Step 2: move operations from the peeled section down into the
3901   //         not-peeled section
3902 
3903   // Get a post order schedule of nodes in the peel region
3904   // Result in right-most operand.
3905   scheduled_nodelist(loop, peel, peel_list);
3906 
3907   assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition");
3908 
3909   // For future check for too many new phis
3910   uint old_phi_cnt = 0;
3911   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
3912     Node* use = head->fast_out(j);
3913     if (use->is_Phi()) old_phi_cnt++;
3914   }
3915 
3916 #ifndef PRODUCT
3917   if (TracePartialPeeling) {
3918     tty->print_cr("\npeeled list");
3919   }
3920 #endif
3921 
3922   // Evacuate nodes in peel region into the not_peeled region if possible
3923   bool too_many_clones = false;
3924   uint new_phi_cnt = 0;
3925   uint cloned_for_outside_use = 0;
3926   for (uint i = 0; i < peel_list.size();) {
3927     Node* n = peel_list.at(i);
3928 #ifndef PRODUCT
3929   if (TracePartialPeeling) n->dump();
3930 #endif
3931     bool incr = true;
3932     if (!n->is_CFG()) {
3933       if (has_use_in_set(n, not_peel)) {
3934         // If not used internal to the peeled region,
3935         // move "n" from peeled to not_peeled region.
3936         if (!has_use_internal_to_set(n, peel, loop)) {
3937           // if not pinned and not a load (which maybe anti-dependent on a store)
3938           // and not a CMove (Matcher expects only bool->cmove).
3939           if (n->in(0) == nullptr && !n->is_Load() && !n->is_CMove()) {
3940             int new_clones = clone_for_use_outside_loop(loop, n, worklist);
3941             if (C->failing()) return false;
3942             if (new_clones == -1) {
3943               too_many_clones = true;
3944               break;
3945             }
3946             cloned_for_outside_use += new_clones;
3947             sink_list.push(n);
3948             peel.remove(n->_idx);
3949             not_peel.set(n->_idx);
3950             peel_list.remove(i);
3951             incr = false;
3952 #ifndef PRODUCT
3953             if (TracePartialPeeling) {
3954               tty->print_cr("sink to not_peeled region: %d newbb: %d",
3955                             n->_idx, get_ctrl(n)->_idx);
3956             }
3957 #endif
3958           }
3959         } else {
3960           // Otherwise check for special def-use cases that span
3961           // the peel/not_peel boundary such as bool->if
3962           clone_for_special_use_inside_loop(loop, n, not_peel, sink_list, worklist);
3963           new_phi_cnt++;
3964         }
3965       }
3966     }
3967     if (incr) i++;
3968   }
3969 
3970   estimate += cloned_for_outside_use + new_phi_cnt;
3971   bool exceed_node_budget = !may_require_nodes(estimate);
3972   bool exceed_phi_limit = new_phi_cnt > old_phi_cnt + PartialPeelNewPhiDelta;
3973 
3974   if (too_many_clones || exceed_node_budget || exceed_phi_limit) {
3975 #ifndef PRODUCT
3976     if (TracePartialPeeling && exceed_phi_limit) {
3977       tty->print_cr("\nToo many new phis: %d  old %d new cmpi: %c",
3978                     new_phi_cnt, old_phi_cnt, new_peel_if != nullptr?'T':'F');
3979     }
3980 #endif
3981     if (new_peel_if != nullptr) {
3982       remove_cmpi_loop_exit(new_peel_if, loop);
3983     }
3984     // Inhibit more partial peeling on this loop
3985     assert(!head->is_partial_peel_loop(), "not partial peeled");
3986     head->mark_partial_peel_failed();
3987     if (cloned_for_outside_use > 0) {
3988       // Terminate this round of loop opts because
3989       // the graph outside this loop was changed.
3990       C->set_major_progress();
3991       return true;
3992     }
3993     return false;
3994   }
3995 
3996   // Step 3: clone loop, retarget control, and insert new phis
3997 
3998   // Create new loop head for new phis and to hang
3999   // the nodes being moved (sinked) from the peel region.
4000   LoopNode* new_head = new LoopNode(last_peel, last_peel);
4001   new_head->set_unswitch_count(head->unswitch_count()); // Preserve
4002   _igvn.register_new_node_with_optimizer(new_head);
4003   assert(first_not_peeled->in(0) == last_peel, "last_peel <- first_not_peeled");
4004   _igvn.replace_input_of(first_not_peeled, 0, new_head);
4005   set_loop(new_head, loop);
4006   loop->_body.push(new_head);
4007   not_peel.set(new_head->_idx);
4008   set_idom(new_head, last_peel, dom_depth(first_not_peeled));
4009   set_idom(first_not_peeled, new_head, dom_depth(first_not_peeled));
4010 
4011   while (sink_list.size() > 0) {
4012     Node* n = sink_list.pop();
4013     set_ctrl(n, new_head);
4014   }
4015 
4016   assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition");
4017 
4018   clone_loop(loop, old_new, dd, IgnoreStripMined);
4019 
4020   const uint clone_exit_idx = 1;
4021   const uint orig_exit_idx  = 2;
4022   assert(is_valid_clone_loop_form(loop, peel_list, orig_exit_idx, clone_exit_idx), "bad clone loop");
4023 
4024   Node* head_clone             = old_new[head->_idx];
4025   LoopNode* new_head_clone     = old_new[new_head->_idx]->as_Loop();
4026   Node* orig_tail_clone        = head_clone->in(2);
4027 
4028   // Add phi if "def" node is in peel set and "use" is not
4029 
4030   for (uint i = 0; i < peel_list.size(); i++) {
4031     Node *def  = peel_list.at(i);
4032     if (!def->is_CFG()) {
4033       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
4034         Node *use = def->fast_out(j);
4035         if (has_node(use) && use->in(0) != C->top() &&
4036             (!peel.test(use->_idx) ||
4037              (use->is_Phi() && use->in(0) == head)) ) {
4038           worklist.push(use);
4039         }
4040       }
4041       while( worklist.size() ) {
4042         Node *use = worklist.pop();
4043         for (uint j = 1; j < use->req(); j++) {
4044           Node* n = use->in(j);
4045           if (n == def) {
4046 
4047             // "def" is in peel set, "use" is not in peel set
4048             // or "use" is in the entry boundary (a phi) of the peel set
4049 
4050             Node* use_c = has_ctrl(use) ? get_ctrl(use) : use;
4051 
4052             if ( loop->is_member(get_loop( use_c )) ) {
4053               // use is in loop
4054               if (old_new[use->_idx] != nullptr) { // null for dead code
4055                 Node* use_clone = old_new[use->_idx];
4056                 _igvn.replace_input_of(use, j, C->top());
4057                 insert_phi_for_loop( use_clone, j, old_new[def->_idx], def, new_head_clone );
4058               }
4059             } else {
4060               assert(is_valid_clone_loop_exit_use(loop, use, orig_exit_idx), "clone loop format");
4061               // use is not in the loop, check if the live range includes the cut
4062               Node* lp_if = use_c->in(orig_exit_idx)->in(0);
4063               if (not_peel.test(lp_if->_idx)) {
4064                 assert(j == orig_exit_idx, "use from original loop");
4065                 insert_phi_for_loop( use, clone_exit_idx, old_new[def->_idx], def, new_head_clone );
4066               }
4067             }
4068           }
4069         }
4070       }
4071     }
4072   }
4073 
4074   // Step 3b: retarget control
4075 
4076   // Redirect control to the new loop head if a cloned node in
4077   // the not_peeled region has control that points into the peeled region.
4078   // This necessary because the cloned peeled region will be outside
4079   // the loop.
4080   //                            from    to
4081   //          cloned-peeled    <---+
4082   //    new_head_clone:            |    <--+
4083   //          cloned-not_peeled  in(0)    in(0)
4084   //          orig-peeled
4085 
4086   for (uint i = 0; i < loop->_body.size(); i++) {
4087     Node *n = loop->_body.at(i);
4088     if (!n->is_CFG()           && n->in(0) != nullptr        &&
4089         not_peel.test(n->_idx) && peel.test(n->in(0)->_idx)) {
4090       Node* n_clone = old_new[n->_idx];
4091       if (n_clone->depends_only_on_test()) {
4092         // Pin array access nodes: control is updated here to the loop head. If, after some transformations, the
4093         // backedge is removed, an array load could become dependent on a condition that's not a range check for that
4094         // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk
4095         // floating above its range check.
4096         Node* pinned_clone = n_clone->pin_array_access_node();
4097         if (pinned_clone != nullptr) {
4098           register_new_node_with_ctrl_of(pinned_clone, n_clone);
4099           old_new.map(n->_idx, pinned_clone);
4100           _igvn.replace_node(n_clone, pinned_clone);
4101           n_clone = pinned_clone;
4102         }
4103       }
4104       _igvn.replace_input_of(n_clone, 0, new_head_clone);
4105     }
4106   }
4107 
4108   // Backedge of the surviving new_head (the clone) is original last_peel
4109   _igvn.replace_input_of(new_head_clone, LoopNode::LoopBackControl, last_peel);
4110 
4111   // Cut first node in original not_peel set
4112   _igvn.rehash_node_delayed(new_head);                     // Multiple edge updates:
4113   new_head->set_req(LoopNode::EntryControl,    C->top());  //   use rehash_node_delayed / set_req instead of
4114   new_head->set_req(LoopNode::LoopBackControl, C->top());  //   multiple replace_input_of calls
4115 
4116   // Copy head_clone back-branch info to original head
4117   // and remove original head's loop entry and
4118   // clone head's back-branch
4119   _igvn.rehash_node_delayed(head); // Multiple edge updates
4120   head->set_req(LoopNode::EntryControl,    head_clone->in(LoopNode::LoopBackControl));
4121   head->set_req(LoopNode::LoopBackControl, C->top());
4122   _igvn.replace_input_of(head_clone, LoopNode::LoopBackControl, C->top());
4123 
4124   // Similarly modify the phis
4125   for (DUIterator_Fast kmax, k = head->fast_outs(kmax); k < kmax; k++) {
4126     Node* use = head->fast_out(k);
4127     if (use->is_Phi() && use->outcnt() > 0) {
4128       Node* use_clone = old_new[use->_idx];
4129       _igvn.rehash_node_delayed(use); // Multiple edge updates
4130       use->set_req(LoopNode::EntryControl,    use_clone->in(LoopNode::LoopBackControl));
4131       use->set_req(LoopNode::LoopBackControl, C->top());
4132       _igvn.replace_input_of(use_clone, LoopNode::LoopBackControl, C->top());
4133     }
4134   }
4135 
4136   // Step 4: update dominator tree and dominator depth
4137 
4138   set_idom(head, orig_tail_clone, dd);
4139   recompute_dom_depth();
4140 
4141   // Inhibit more partial peeling on this loop
4142   new_head_clone->set_partial_peel_loop();
4143   C->set_major_progress();
4144   loop->record_for_igvn();
4145 
4146 #ifndef PRODUCT
4147   if (TracePartialPeeling) {
4148     tty->print_cr("\nafter partial peel one iteration");
4149     Node_List wl;
4150     Node* t = last_peel;
4151     while (true) {
4152       wl.push(t);
4153       if (t == head_clone) break;
4154       t = idom(t);
4155     }
4156     while (wl.size() > 0) {
4157       Node* tt = wl.pop();
4158       if (tt == head) tty->print_cr("orig head");
4159       else if (tt == new_head_clone) tty->print_cr("new head");
4160       else if (tt == head_clone) tty->print_cr("clone head");
4161       tt->dump();
4162     }
4163   }
4164 #endif
4165 
4166   C->print_method(PHASE_AFTER_PARTIAL_PEELING, 4, new_head_clone);
4167 
4168   return true;
4169 }
4170 
4171 // Transform:
4172 //
4173 // loop<-----------------+
4174 //  |                    |
4175 // stmt1 stmt2 .. stmtn  |
4176 //  |     |        |     |
4177 //  \     |       /      |
4178 //    v   v     v        |
4179 //       region          |
4180 //         |             |
4181 //     shared_stmt       |
4182 //         |             |
4183 //         v             |
4184 //         if            |
4185 //         / \           |
4186 //        |   -----------+
4187 //        v
4188 //
4189 // into:
4190 //
4191 //    loop<-------------------+
4192 //     |                      |
4193 //     v                      |
4194 // +->loop                    |
4195 // |   |                      |
4196 // |  stmt1 stmt2 .. stmtn    |
4197 // |   |     |        |       |
4198 // |   |      \       /       |
4199 // |   |       v     v        |
4200 // |   |        region1       |
4201 // |   |           |          |
4202 // |  shared_stmt shared_stmt |
4203 // |   |           |          |
4204 // |   v           v          |
4205 // |   if          if         |
4206 // |   /\          / \        |
4207 // +--   |         |   -------+
4208 //       \         /
4209 //        v       v
4210 //         region2
4211 //
4212 // (region2 is shown to merge mirrored projections of the loop exit
4213 // ifs to make the diagram clearer but they really merge the same
4214 // projection)
4215 //
4216 // Conditions for this transformation to trigger:
4217 // - the path through stmt1 is frequent enough
4218 // - the inner loop will be turned into a counted loop after transformation
4219 bool PhaseIdealLoop::duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new) {
4220   if (!DuplicateBackedge) {
4221     return false;
4222   }
4223   assert(!loop->_head->is_CountedLoop() || StressDuplicateBackedge, "Non-counted loop only");
4224   if (!loop->_head->is_Loop()) {
4225     return false;
4226   }
4227 
4228   uint estimate = loop->est_loop_clone_sz(1);
4229   if (exceeding_node_budget(estimate)) {
4230     return false;
4231   }
4232 
4233   LoopNode *head = loop->_head->as_Loop();
4234 
4235   Node* region = nullptr;
4236   IfNode* exit_test = nullptr;
4237   uint inner;
4238   float f;
4239   if (StressDuplicateBackedge) {
4240     if (head->is_strip_mined()) {
4241       return false;
4242     }
4243     Node* c = head->in(LoopNode::LoopBackControl);
4244 
4245     while (c != head) {
4246       if (c->is_Region()) {
4247         region = c;
4248       }
4249       c = idom(c);
4250     }
4251 
4252     if (region == nullptr) {
4253       return false;
4254     }
4255 
4256     inner = 1;
4257   } else {
4258     // Is the shape of the loop that of a counted loop...
4259     Node* back_control = loop_exit_control(head, loop);
4260     if (back_control == nullptr) {
4261       return false;
4262     }
4263 
4264     BoolTest::mask bt = BoolTest::illegal;
4265     float cl_prob = 0;
4266     Node* incr = nullptr;
4267     Node* limit = nullptr;
4268     Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
4269     if (cmp == nullptr || cmp->Opcode() != Op_CmpI) {
4270       return false;
4271     }
4272 
4273     // With an extra phi for the candidate iv?
4274     // Or the region node is the loop head
4275     if (!incr->is_Phi() || incr->in(0) == head) {
4276       return false;
4277     }
4278 
4279     PathFrequency pf(head, this);
4280     region = incr->in(0);
4281 
4282     // Go over all paths for the extra phi's region and see if that
4283     // path is frequent enough and would match the expected iv shape
4284     // if the extra phi is removed
4285     inner = 0;
4286     for (uint i = 1; i < incr->req(); ++i) {
4287       Node* in = incr->in(i);
4288       Node* trunc1 = nullptr;
4289       Node* trunc2 = nullptr;
4290       const TypeInteger* iv_trunc_t = nullptr;
4291       Node* orig_in = in;
4292       if (!(in = CountedLoopNode::match_incr_with_optional_truncation(in, &trunc1, &trunc2, &iv_trunc_t, T_INT))) {
4293         continue;
4294       }
4295       assert(in->Opcode() == Op_AddI, "wrong increment code");
4296       Node* xphi = nullptr;
4297       Node* stride = loop_iv_stride(in, loop, xphi);
4298 
4299       if (stride == nullptr) {
4300         continue;
4301       }
4302 
4303       PhiNode* phi = loop_iv_phi(xphi, nullptr, head, loop);
4304       if (phi == nullptr ||
4305           (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
4306           (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
4307         return false;
4308       }
4309 
4310       f = pf.to(region->in(i));
4311       if (f > 0.5) {
4312         inner = i;
4313         break;
4314       }
4315     }
4316 
4317     if (inner == 0) {
4318       return false;
4319     }
4320 
4321     exit_test = back_control->in(0)->as_If();
4322   }
4323 
4324   if (idom(region)->is_Catch()) {
4325     return false;
4326   }
4327 
4328   // Collect all control nodes that need to be cloned (shared_stmt in the diagram)
4329   Unique_Node_List wq;
4330   wq.push(head->in(LoopNode::LoopBackControl));
4331   for (uint i = 0; i < wq.size(); i++) {
4332     Node* c = wq.at(i);
4333     assert(get_loop(c) == loop, "not in the right loop?");
4334     if (c->is_Region()) {
4335       if (c != region) {
4336         for (uint j = 1; j < c->req(); ++j) {
4337           wq.push(c->in(j));
4338         }
4339       }
4340     } else {
4341       wq.push(c->in(0));
4342     }
4343     assert(!is_strict_dominator(c, region), "shouldn't go above region");
4344   }
4345 
4346   Node* region_dom = idom(region);
4347 
4348   // Can't do the transformation if this would cause a membar pair to
4349   // be split
4350   for (uint i = 0; i < wq.size(); i++) {
4351     Node* c = wq.at(i);
4352     if (c->is_MemBar() && (c->as_MemBar()->trailing_store() || c->as_MemBar()->trailing_load_store())) {
4353       assert(c->as_MemBar()->leading_membar()->trailing_membar() == c, "bad membar pair");
4354       if (!wq.member(c->as_MemBar()->leading_membar())) {
4355         return false;
4356       }
4357     }
4358   }
4359 
4360   // Collect data nodes that need to be clones as well
4361   int dd = dom_depth(head);
4362 
4363   for (uint i = 0; i < loop->_body.size(); ++i) {
4364     Node* n = loop->_body.at(i);
4365     if (has_ctrl(n)) {
4366       Node* c = get_ctrl(n);
4367       if (wq.member(c)) {
4368         wq.push(n);
4369       }
4370     } else {
4371       set_idom(n, idom(n), dd);
4372     }
4373   }
4374 
4375   // clone shared_stmt
4376   clone_loop_body(wq, old_new, nullptr);
4377 
4378   Node* region_clone = old_new[region->_idx];
4379   region_clone->set_req(inner, C->top());
4380   set_idom(region, region->in(inner), dd);
4381 
4382   // Prepare the outer loop
4383   Node* outer_head = new LoopNode(head->in(LoopNode::EntryControl), old_new[head->in(LoopNode::LoopBackControl)->_idx]);
4384   register_control(outer_head, loop->_parent, outer_head->in(LoopNode::EntryControl));
4385   _igvn.replace_input_of(head, LoopNode::EntryControl, outer_head);
4386   set_idom(head, outer_head, dd);
4387 
4388   fix_body_edges(wq, loop, old_new, dd, loop->_parent, true);
4389 
4390   // Make one of the shared_stmt copies only reachable from stmt1, the
4391   // other only from stmt2..stmtn.
4392   Node* dom = nullptr;
4393   for (uint i = 1; i < region->req(); ++i) {
4394     if (i != inner) {
4395       _igvn.replace_input_of(region, i, C->top());
4396     }
4397     Node* in = region_clone->in(i);
4398     if (in->is_top()) {
4399       continue;
4400     }
4401     if (dom == nullptr) {
4402       dom = in;
4403     } else {
4404       dom = dom_lca(dom, in);
4405     }
4406   }
4407 
4408   set_idom(region_clone, dom, dd);
4409 
4410   // Set up the outer loop
4411   for (uint i = 0; i < head->outcnt(); i++) {
4412     Node* u = head->raw_out(i);
4413     if (u->is_Phi()) {
4414       Node* outer_phi = u->clone();
4415       outer_phi->set_req(0, outer_head);
4416       Node* backedge = old_new[u->in(LoopNode::LoopBackControl)->_idx];
4417       if (backedge == nullptr) {
4418         backedge = u->in(LoopNode::LoopBackControl);
4419       }
4420       outer_phi->set_req(LoopNode::LoopBackControl, backedge);
4421       register_new_node(outer_phi, outer_head);
4422       _igvn.replace_input_of(u, LoopNode::EntryControl, outer_phi);
4423     }
4424   }
4425 
4426   // create control and data nodes for out of loop uses (including region2)
4427   Node_List worklist;
4428   uint new_counter = C->unique();
4429   fix_ctrl_uses(wq, loop, old_new, ControlAroundStripMined, outer_head, nullptr, worklist);
4430 
4431   Node_List *split_if_set = nullptr;
4432   Node_List *split_bool_set = nullptr;
4433   Node_List *split_cex_set = nullptr;
4434   fix_data_uses(wq, loop, ControlAroundStripMined, loop->skip_strip_mined(), new_counter, old_new, worklist,
4435                 split_if_set, split_bool_set, split_cex_set);
4436 
4437   finish_clone_loop(split_if_set, split_bool_set, split_cex_set);
4438 
4439   if (exit_test != nullptr) {
4440     float cnt = exit_test->_fcnt;
4441     if (cnt != COUNT_UNKNOWN) {
4442       exit_test->_fcnt = cnt * f;
4443       old_new[exit_test->_idx]->as_If()->_fcnt = cnt * (1 - f);
4444     }
4445   }
4446 
4447   C->set_major_progress();
4448 
4449   return true;
4450 }
4451 
4452 // AutoVectorize the loop: replace scalar ops with vector ops.
4453 PhaseIdealLoop::AutoVectorizeStatus
4454 PhaseIdealLoop::auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared) {
4455   // Counted loop only
4456   if (!lpt->is_counted()) {
4457     return AutoVectorizeStatus::Impossible;
4458   }
4459 
4460   // Main-loop only
4461   CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4462   if (!cl->is_main_loop()) {
4463     return AutoVectorizeStatus::Impossible;
4464   }
4465 
4466   VLoop vloop(lpt, false);
4467   if (!vloop.check_preconditions()) {
4468     return AutoVectorizeStatus::TriedAndFailed;
4469   }
4470 
4471   // Ensure the shared data is cleared before each use
4472   vshared.clear();
4473 
4474   const VLoopAnalyzer vloop_analyzer(vloop, vshared);
4475   if (!vloop_analyzer.success()) {
4476     return AutoVectorizeStatus::TriedAndFailed;
4477   }
4478 
4479   SuperWord sw(vloop_analyzer);
4480   if (!sw.transform_loop()) {
4481     return AutoVectorizeStatus::TriedAndFailed;
4482   }
4483 
4484   return AutoVectorizeStatus::Success;
4485 }
4486 
4487 // Just before insert_pre_post_loops, we can multiversion the loop:
4488 //
4489 //              multiversion_if
4490 //               |       |
4491 //         fast_loop   slow_loop
4492 //
4493 // In the fast_loop we can make speculative assumptions, and put the
4494 // conditions into the multiversion_if. If the conditions hold at runtime,
4495 // we enter the fast_loop, if the conditions fail, we take the slow_loop
4496 // instead which does not make any of the speculative assumptions.
4497 //
4498 // Note: we only multiversion the loop if the loop does not have any
4499 //       auto vectorization check Predicate. If we have that predicate,
4500 //       then we can simply add the speculative assumption checks to
4501 //       that Predicate. This means we do not need to duplicate the
4502 //       loop - we have a smaller graph and save compile time. Should
4503 //       the conditions ever fail, then we deopt / trap at the Predicate
4504 //       and recompile without that Predicate. At that point we will
4505 //       multiversion the loop, so that we can still have speculative
4506 //       runtime checks.
4507 //
4508 // We perform the multiversioning when the loop is still in its single
4509 // iteration form, even before we insert pre and post loops. This makes
4510 // the cloning much simpler. However, this means that both the fast
4511 // and the slow loop have to be optimized independently (adding pre
4512 // and post loops, unrolling the main loop, auto-vectorize etc.). And
4513 // we may end up not needing any speculative assumptions in the fast_loop
4514 // and then rejecting the slow_loop by constant folding the multiversion_if.
4515 //
4516 // Therefore, we "delay" the optimization of the slow_loop until we add
4517 // at least one speculative assumption for the fast_loop. If we never
4518 // add such a speculative runtime check, the OpaqueMultiversioningNode
4519 // of the multiversion_if constant folds to true after loop opts, and the
4520 // multiversion_if folds away the "delayed" slow_loop. If we add any
4521 // speculative assumption, then we notify the OpaqueMultiversioningNode
4522 // with "notify_slow_loop_that_it_can_resume_optimizations".
4523 //
4524 // Note: new runtime checks can be added to the multiversion_if with
4525 //       PhaseIdealLoop::create_new_if_for_multiversion
4526 void PhaseIdealLoop::maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new) {
4527   CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4528   LoopNode* outer_loop = cl->skip_strip_mined();
4529   Node* entry = outer_loop->in(LoopNode::EntryControl);
4530 
4531   // Check we have multiversioning enabled, and are not already multiversioned.
4532   if (!LoopMultiversioning || cl->is_multiversion()) { return; }
4533 
4534   // Check that we do not have a parse-predicate where we can add the runtime checks
4535   // during auto-vectorization.
4536   const Predicates predicates(entry);
4537   const PredicateBlock* predicate_block = predicates.auto_vectorization_check_block();
4538   if (predicate_block->has_parse_predicate()) { return; }
4539 
4540   // Check node budget.
4541   uint estimate = lpt->est_loop_clone_sz(2);
4542   if (!may_require_nodes(estimate)) { return; }
4543 
4544   do_multiversioning(lpt, old_new);
4545 }
4546 
4547 // Returns true if the Reduction node is unordered.
4548 static bool is_unordered_reduction(Node* n) {
4549   return n->is_Reduction() && !n->as_Reduction()->requires_strict_order();
4550 }
4551 
4552 // Having ReductionNodes in the loop is expensive. They need to recursively
4553 // fold together the vector values, for every vectorized loop iteration. If
4554 // we encounter the following pattern, we can vector accumulate the values
4555 // inside the loop, and only have a single UnorderedReduction after the loop.
4556 //
4557 // Note: UnorderedReduction represents a ReductionNode which does not require
4558 // calculating in strict order.
4559 //
4560 // CountedLoop     init
4561 //          |        |
4562 //          +------+ | +-----------------------+
4563 //                 | | |                       |
4564 //                PhiNode (s)                  |
4565 //                  |                          |
4566 //                  |          Vector          |
4567 //                  |            |             |
4568 //               UnorderedReduction (first_ur) |
4569 //                  |                          |
4570 //                 ...         Vector          |
4571 //                  |            |             |
4572 //               UnorderedReduction (last_ur)  |
4573 //                       |                     |
4574 //                       +---------------------+
4575 //
4576 // We patch the graph to look like this:
4577 //
4578 // CountedLoop   identity_vector
4579 //         |         |
4580 //         +-------+ | +---------------+
4581 //                 | | |               |
4582 //                PhiNode (v)          |
4583 //                   |                 |
4584 //                   |         Vector  |
4585 //                   |           |     |
4586 //                 VectorAccumulator   |
4587 //                   |                 |
4588 //                  ...        Vector  |
4589 //                   |           |     |
4590 //      init       VectorAccumulator   |
4591 //        |          |     |           |
4592 //     UnorderedReduction  +-----------+
4593 //
4594 // We turned the scalar (s) Phi into a vectorized one (v). In the loop, we
4595 // use vector_accumulators, which do the same reductions, but only element
4596 // wise. This is a single operation per vector_accumulator, rather than many
4597 // for a UnorderedReduction. We can then reduce the last vector_accumulator
4598 // after the loop, and also reduce the init value into it.
4599 //
4600 // We can not do this with all reductions. Some reductions do not allow the
4601 // reordering of operations (for example float addition/multiplication require
4602 // strict order).
4603 void PhaseIdealLoop::move_unordered_reduction_out_of_loop(IdealLoopTree* loop) {
4604   assert(!C->major_progress() && loop->is_counted() && loop->is_innermost(), "sanity");
4605 
4606   // Find all Phi nodes with an unordered Reduction on backedge.
4607   CountedLoopNode* cl = loop->_head->as_CountedLoop();
4608   for (DUIterator_Fast jmax, j = cl->fast_outs(jmax); j < jmax; j++) {
4609     Node* phi = cl->fast_out(j);
4610     // We have a phi with a single use, and an unordered Reduction on the backedge.
4611     if (!phi->is_Phi() || phi->outcnt() != 1 || !is_unordered_reduction(phi->in(2))) {
4612       continue;
4613     }
4614 
4615     ReductionNode* last_ur = phi->in(2)->as_Reduction();
4616     assert(!last_ur->requires_strict_order(), "must be");
4617 
4618     // Determine types
4619     const TypeVect* vec_t = last_ur->vect_type();
4620     uint vector_length    = vec_t->length();
4621     BasicType bt          = vec_t->element_basic_type();
4622 
4623     // Convert opcode from vector-reduction -> scalar -> normal-vector-op
4624     const int sopc        = VectorNode::scalar_opcode(last_ur->Opcode(), bt);
4625     const int vopc        = VectorNode::opcode(sopc, bt);
4626     if (!Matcher::match_rule_supported_vector(vopc, vector_length, bt)) {
4627         DEBUG_ONLY( last_ur->dump(); )
4628         assert(false, "do not have normal vector op for this reduction");
4629         continue; // not implemented -> fails
4630     }
4631 
4632     // Traverse up the chain of unordered Reductions, checking that it loops back to
4633     // the phi. Check that all unordered Reductions only have a single use, except for
4634     // the last (last_ur), which only has phi as a use in the loop, and all other uses
4635     // are outside the loop.
4636     ReductionNode* current = last_ur;
4637     ReductionNode* first_ur = nullptr;
4638     while (true) {
4639       assert(!current->requires_strict_order(), "sanity");
4640 
4641       // Expect no ctrl and a vector_input from within the loop.
4642       Node* ctrl = current->in(0);
4643       Node* vector_input = current->in(2);
4644       if (ctrl != nullptr || get_ctrl(vector_input) != cl) {
4645         DEBUG_ONLY( current->dump(1); )
4646         assert(false, "reduction has ctrl or bad vector_input");
4647         break; // Chain traversal fails.
4648       }
4649 
4650       assert(current->vect_type() != nullptr, "must have vector type");
4651       if (current->vect_type() != last_ur->vect_type()) {
4652         // Reductions do not have the same vector type (length and element type).
4653         break; // Chain traversal fails.
4654       }
4655 
4656       // Expect single use of an unordered Reduction, except for last_ur.
4657       if (current == last_ur) {
4658         // Expect all uses to be outside the loop, except phi.
4659         for (DUIterator_Fast kmax, k = current->fast_outs(kmax); k < kmax; k++) {
4660           Node* use = current->fast_out(k);
4661           if (use != phi && ctrl_or_self(use) == cl) {
4662             DEBUG_ONLY( current->dump(-1); )
4663             assert(false, "reduction has use inside loop");
4664             // Should not be allowed by SuperWord::mark_reductions
4665             return; // bail out of optimization
4666           }
4667         }
4668       } else {
4669         if (current->outcnt() != 1) {
4670           break; // Chain traversal fails.
4671         }
4672       }
4673 
4674       // Expect another unordered Reduction or phi as the scalar input.
4675       Node* scalar_input = current->in(1);
4676       if (is_unordered_reduction(scalar_input) &&
4677           scalar_input->Opcode() == current->Opcode()) {
4678         // Move up the unordered Reduction chain.
4679         current = scalar_input->as_Reduction();
4680         assert(!current->requires_strict_order(), "must be");
4681       } else if (scalar_input == phi) {
4682         // Chain terminates at phi.
4683         first_ur = current;
4684         current = nullptr;
4685         break; // Success.
4686       } else {
4687         // scalar_input is neither phi nor a matching reduction
4688         // Can for example be scalar reduction when we have
4689         // partial vectorization.
4690         break; // Chain traversal fails.
4691       }
4692     }
4693     if (current != nullptr) {
4694       // Chain traversal was not successful.
4695       continue;
4696     }
4697     assert(first_ur != nullptr, "must have successfully terminated chain traversal");
4698 
4699     Node* identity_scalar = ReductionNode::make_identity_con_scalar(_igvn, sopc, bt);
4700     set_root_as_ctrl(identity_scalar);
4701     VectorNode* identity_vector = VectorNode::scalar2vector(identity_scalar, vector_length, bt);
4702     register_new_node(identity_vector, C->root());
4703     assert(vec_t == identity_vector->vect_type(), "matching vector type");
4704     VectorNode::trace_new_vector(identity_vector, "Unordered Reduction");
4705 
4706     // Turn the scalar phi into a vector phi.
4707     _igvn.rehash_node_delayed(phi);
4708     Node* init = phi->in(1); // Remember init before replacing it.
4709     phi->set_req_X(1, identity_vector, &_igvn);
4710     phi->as_Type()->set_type(vec_t);
4711     _igvn.set_type(phi, vec_t);
4712 
4713     // Traverse down the chain of unordered Reductions, and replace them with vector_accumulators.
4714     current = first_ur;
4715     while (true) {
4716       // Create vector_accumulator to replace current.
4717       Node* last_vector_accumulator = current->in(1);
4718       Node* vector_input            = current->in(2);
4719       VectorNode* vector_accumulator = VectorNode::make(vopc, last_vector_accumulator, vector_input, vec_t);
4720       register_new_node(vector_accumulator, cl);
4721       _igvn.replace_node(current, vector_accumulator);
4722       VectorNode::trace_new_vector(vector_accumulator, "Unordered Reduction");
4723       if (current == last_ur) {
4724         break;
4725       }
4726       current = vector_accumulator->unique_out()->as_Reduction();
4727       assert(!current->requires_strict_order(), "must be");
4728     }
4729 
4730     // Create post-loop reduction.
4731     Node* last_accumulator = phi->in(2);
4732     Node* post_loop_reduction = ReductionNode::make(sopc, nullptr, init, last_accumulator, bt);
4733 
4734     // Take over uses of last_accumulator that are not in the loop.
4735     for (DUIterator i = last_accumulator->outs(); last_accumulator->has_out(i); i++) {
4736       Node* use = last_accumulator->out(i);
4737       if (use != phi && use != post_loop_reduction) {
4738         assert(ctrl_or_self(use) != cl, "use must be outside loop");
4739         use->replace_edge(last_accumulator, post_loop_reduction,  &_igvn);
4740         --i;
4741       }
4742     }
4743     register_new_node(post_loop_reduction, get_late_ctrl(post_loop_reduction, cl));
4744     VectorNode::trace_new_vector(post_loop_reduction, "Unordered Reduction");
4745 
4746     assert(last_accumulator->outcnt() == 2, "last_accumulator has 2 uses: phi and post_loop_reduction");
4747     assert(post_loop_reduction->outcnt() > 0, "should have taken over all non loop uses of last_accumulator");
4748     assert(phi->outcnt() == 1, "accumulator is the only use of phi");
4749   }
4750 }
4751 
4752 void DataNodeGraph::clone_data_nodes(Node* new_ctrl) {
4753   for (uint i = 0; i < _data_nodes.size(); i++) {
4754     clone(_data_nodes[i], new_ctrl);
4755   }
4756 }
4757 
4758 // Clone the given node and set it up properly. Set 'new_ctrl' as ctrl.
4759 void DataNodeGraph::clone(Node* node, Node* new_ctrl) {
4760   Node* clone = node->clone();
4761   _phase->igvn().register_new_node_with_optimizer(clone);
4762   _orig_to_new.put(node, clone);
4763   _phase->set_ctrl(clone, new_ctrl);
4764   if (node->is_CastII()) {
4765     clone->set_req(0, new_ctrl);
4766   }
4767 }
4768 
4769 // Rewire the data inputs of all (unprocessed) cloned nodes, whose inputs are still pointing to the same inputs as their
4770 // corresponding orig nodes, to the newly cloned inputs to create a separate cloned graph.
4771 void DataNodeGraph::rewire_clones_to_cloned_inputs() {
4772   _orig_to_new.iterate_all([&](Node* node, Node* clone) {
4773     for (uint i = 1; i < node->req(); i++) {
4774       Node** cloned_input = _orig_to_new.get(node->in(i));
4775       if (cloned_input != nullptr) {
4776         // Input was also cloned -> rewire clone to the cloned input.
4777         _phase->igvn().replace_input_of(clone, i, *cloned_input);
4778       }
4779     }
4780   });
4781 }
4782 
4783 // Clone all non-OpaqueLoop* nodes and apply the provided transformation strategy for OpaqueLoop* nodes.
4784 // Set 'new_ctrl' as ctrl for all cloned non-OpaqueLoop* nodes.
4785 void DataNodeGraph::clone_data_nodes_and_transform_opaque_loop_nodes(
4786     const TransformStrategyForOpaqueLoopNodes& transform_strategy,
4787     Node* new_ctrl) {
4788   for (uint i = 0; i < _data_nodes.size(); i++) {
4789     Node* data_node = _data_nodes[i];
4790     if (data_node->is_Opaque1()) {
4791       transform_opaque_node(transform_strategy, data_node);
4792     } else {
4793       clone(data_node, new_ctrl);
4794     }
4795   }
4796 }
4797 
4798 void DataNodeGraph::transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node) {
4799   Node* transformed_node;
4800   if (node->is_OpaqueLoopInit()) {
4801     transformed_node = transform_strategy.transform_opaque_init(node->as_OpaqueLoopInit());
4802   } else {
4803     assert(node->is_OpaqueLoopStride(), "must be OpaqueLoopStrideNode");
4804     transformed_node = transform_strategy.transform_opaque_stride(node->as_OpaqueLoopStride());
4805   }
4806   // Add an orig->new mapping to correctly update the inputs of the copied graph in rewire_clones_to_cloned_inputs().
4807   _orig_to_new.put(node, transformed_node);
4808 }