1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shared/c2/barrierSetC2.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/divnode.hpp"
  35 #include "opto/inlinetypenode.hpp"
  36 #include "opto/loopnode.hpp"
  37 #include "opto/matcher.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/movenode.hpp"
  40 #include "opto/opaquenode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "opto/subnode.hpp"
  43 #include "opto/subtypenode.hpp"
  44 #include "opto/superword.hpp"
  45 #include "opto/vectornode.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 //=============================================================================
  49 //------------------------------split_thru_phi---------------------------------
  50 // Split Node 'n' through merge point if there is enough win.
  51 Node* PhaseIdealLoop::split_thru_phi(Node* n, Node* region, int policy) {
  52   if ((n->Opcode() == Op_ConvI2L && n->bottom_type() != TypeLong::LONG) ||
  53       (n->Opcode() == Op_ConvL2I && n->bottom_type() != TypeInt::INT)) {
  54     // ConvI2L/ConvL2I may have type information on it which is unsafe to push up
  55     // so disable this for now
  56     return nullptr;
  57   }
  58 
  59   // Splitting range check CastIIs through a loop induction Phi can
  60   // cause new Phis to be created that are left unrelated to the loop
  61   // induction Phi and prevent optimizations (vectorization)
  62   if (n->Opcode() == Op_CastII && region->is_CountedLoop() &&
  63       n->in(1) == region->as_CountedLoop()->phi()) {
  64     return nullptr;
  65   }
  66 
  67   // Inline types should not be split through Phis because they cannot be merged
  68   // through Phi nodes but each value input needs to be merged individually.
  69   if (n->is_InlineType()) {
  70     return nullptr;
  71   }
  72 
  73   if (cannot_split_division(n, region)) {
  74     return nullptr;
  75   }
  76 
  77   int wins = 0;
  78   assert(!n->is_CFG(), "");
  79   assert(region->is_Region(), "");
  80 
  81   const Type* type = n->bottom_type();
  82   const TypeOopPtr* t_oop = _igvn.type(n)->isa_oopptr();
  83   Node* phi;
  84   if (t_oop != nullptr && t_oop->is_known_instance_field()) {
  85     int iid    = t_oop->instance_id();
  86     int index  = C->get_alias_index(t_oop);
  87     int offset = t_oop->offset();
  88     phi = new PhiNode(region, type, nullptr, iid, index, offset);
  89   } else {
  90     phi = PhiNode::make_blank(region, n);
  91   }
  92   uint old_unique = C->unique();
  93   for (uint i = 1; i < region->req(); i++) {
  94     Node* x;
  95     Node* the_clone = nullptr;
  96     if (region->in(i) == C->top()) {
  97       x = C->top();             // Dead path?  Use a dead data op
  98     } else {
  99       x = n->clone();           // Else clone up the data op
 100       the_clone = x;            // Remember for possible deletion.
 101       // Alter data node to use pre-phi inputs
 102       if (n->in(0) == region)
 103         x->set_req( 0, region->in(i) );
 104       for (uint j = 1; j < n->req(); j++) {
 105         Node* in = n->in(j);
 106         if (in->is_Phi() && in->in(0) == region)
 107           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
 108       }
 109     }
 110     // Check for a 'win' on some paths
 111     const Type* t = x->Value(&_igvn);
 112 
 113     bool singleton = t->singleton();
 114 
 115     // A TOP singleton indicates that there are no possible values incoming
 116     // along a particular edge. In most cases, this is OK, and the Phi will
 117     // be eliminated later in an Ideal call. However, we can't allow this to
 118     // happen if the singleton occurs on loop entry, as the elimination of
 119     // the PhiNode may cause the resulting node to migrate back to a previous
 120     // loop iteration.
 121     if (singleton && t == Type::TOP) {
 122       // Is_Loop() == false does not confirm the absence of a loop (e.g., an
 123       // irreducible loop may not be indicated by an affirmative is_Loop());
 124       // therefore, the only top we can split thru a phi is on a backedge of
 125       // a loop.
 126       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
 127     }
 128 
 129     if (singleton) {
 130       wins++;
 131       x = makecon(t);
 132     } else {
 133       // We now call Identity to try to simplify the cloned node.
 134       // Note that some Identity methods call phase->type(this).
 135       // Make sure that the type array is big enough for
 136       // our new node, even though we may throw the node away.
 137       // (Note: This tweaking with igvn only works because x is a new node.)
 138       _igvn.set_type(x, t);
 139       // If x is a TypeNode, capture any more-precise type permanently into Node
 140       // otherwise it will be not updated during igvn->transform since
 141       // igvn->type(x) is set to x->Value() already.
 142       x->raise_bottom_type(t);
 143       Node* y = x->Identity(&_igvn);
 144       if (y != x) {
 145         wins++;
 146         x = y;
 147       } else {
 148         y = _igvn.hash_find(x);
 149         if (y == nullptr) {
 150           y = similar_subtype_check(x, region->in(i));
 151         }
 152         if (y) {
 153           wins++;
 154           x = y;
 155         } else {
 156           // Else x is a new node we are keeping
 157           // We do not need register_new_node_with_optimizer
 158           // because set_type has already been called.
 159           _igvn._worklist.push(x);
 160         }
 161       }
 162     }
 163 
 164     phi->set_req( i, x );
 165 
 166     if (the_clone == nullptr) {
 167       continue;
 168     }
 169 
 170     if (the_clone != x) {
 171       _igvn.remove_dead_node(the_clone);
 172     } else if (region->is_Loop() && i == LoopNode::LoopBackControl &&
 173                n->is_Load() && can_move_to_inner_loop(n, region->as_Loop(), x)) {
 174       // it is not a win if 'x' moved from an outer to an inner loop
 175       // this edge case can only happen for Load nodes
 176       wins = 0;
 177       break;
 178     }
 179   }
 180   // Too few wins?
 181   if (wins <= policy) {
 182     _igvn.remove_dead_node(phi);
 183     return nullptr;
 184   }
 185 
 186   // Record Phi
 187   register_new_node( phi, region );
 188 
 189   for (uint i2 = 1; i2 < phi->req(); i2++) {
 190     Node *x = phi->in(i2);
 191     // If we commoned up the cloned 'x' with another existing Node,
 192     // the existing Node picks up a new use.  We need to make the
 193     // existing Node occur higher up so it dominates its uses.
 194     Node *old_ctrl;
 195     IdealLoopTree *old_loop;
 196 
 197     if (x->is_Con()) {
 198       assert(get_ctrl(x) == C->root(), "constant control is not root");
 199       continue;
 200     }
 201     // The occasional new node
 202     if (x->_idx >= old_unique) {     // Found a new, unplaced node?
 203       old_ctrl = nullptr;
 204       old_loop = nullptr;               // Not in any prior loop
 205     } else {
 206       old_ctrl = get_ctrl(x);
 207       old_loop = get_loop(old_ctrl); // Get prior loop
 208     }
 209     // New late point must dominate new use
 210     Node *new_ctrl = dom_lca(old_ctrl, region->in(i2));
 211     if (new_ctrl == old_ctrl) // Nothing is changed
 212       continue;
 213 
 214     IdealLoopTree *new_loop = get_loop(new_ctrl);
 215 
 216     // Don't move x into a loop if its uses are
 217     // outside of loop. Otherwise x will be cloned
 218     // for each use outside of this loop.
 219     IdealLoopTree *use_loop = get_loop(region);
 220     if (!new_loop->is_member(use_loop) &&
 221         (old_loop == nullptr || !new_loop->is_member(old_loop))) {
 222       // Take early control, later control will be recalculated
 223       // during next iteration of loop optimizations.
 224       new_ctrl = get_early_ctrl(x);
 225       new_loop = get_loop(new_ctrl);
 226     }
 227     // Set new location
 228     set_ctrl(x, new_ctrl);
 229     // If changing loop bodies, see if we need to collect into new body
 230     if (old_loop != new_loop) {
 231       if (old_loop && !old_loop->_child)
 232         old_loop->_body.yank(x);
 233       if (!new_loop->_child)
 234         new_loop->_body.push(x);  // Collect body info
 235     }
 236   }
 237 
 238   return phi;
 239 }
 240 
 241 // Test whether node 'x' can move into an inner loop relative to node 'n'.
 242 // Note: The test is not exact. Returns true if 'x' COULD end up in an inner loop,
 243 // BUT it can also return true and 'x' is in the outer loop
 244 bool PhaseIdealLoop::can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x) {
 245   IdealLoopTree* n_loop_tree = get_loop(n_loop);
 246   IdealLoopTree* x_loop_tree = get_loop(get_early_ctrl(x));
 247   // x_loop_tree should be outer or same loop as n_loop_tree
 248   return !x_loop_tree->is_member(n_loop_tree);
 249 }
 250 
 251 // Subtype checks that carry profile data don't common so look for a replacement by following edges
 252 Node* PhaseIdealLoop::similar_subtype_check(const Node* x, Node* r_in) {
 253   if (x->is_SubTypeCheck()) {
 254     Node* in1 = x->in(1);
 255     for (DUIterator_Fast imax, i = in1->fast_outs(imax); i < imax; i++) {
 256       Node* u = in1->fast_out(i);
 257       if (u != x && u->is_SubTypeCheck() && u->in(1) == x->in(1) && u->in(2) == x->in(2)) {
 258         for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) {
 259           Node* bol = u->fast_out(j);
 260           for (DUIterator_Fast kmax, k = bol->fast_outs(kmax); k < kmax; k++) {
 261             Node* iff = bol->fast_out(k);
 262             // Only dominating subtype checks are interesting: otherwise we risk replacing a subtype check by another with
 263             // unrelated profile
 264             if (iff->is_If() && is_dominator(iff, r_in)) {
 265               return u;
 266             }
 267           }
 268         }
 269       }
 270     }
 271   }
 272   return nullptr;
 273 }
 274 
 275 // Return true if 'n' is a Div or Mod node (without zero check If node which was removed earlier) with a loop phi divisor
 276 // of a trip-counted (integer or long) loop with a backedge input that could be zero (include zero in its type range). In
 277 // this case, we cannot split the division to the backedge as it could freely float above the loop exit check resulting in
 278 // a division by zero. This situation is possible because the type of an increment node of an iv phi (trip-counter) could
 279 // include zero while the iv phi does not (see PhiNode::Value() for trip-counted loops where we improve types of iv phis).
 280 // We also need to check other loop phis as they could have been created in the same split-if pass when applying
 281 // PhaseIdealLoop::split_thru_phi() to split nodes through an iv phi.
 282 bool PhaseIdealLoop::cannot_split_division(const Node* n, const Node* region) const {
 283   const Type* zero;
 284   switch (n->Opcode()) {
 285     case Op_DivI:
 286     case Op_ModI:
 287     case Op_UDivI:
 288     case Op_UModI:
 289       zero = TypeInt::ZERO;
 290       break;
 291     case Op_DivL:
 292     case Op_ModL:
 293     case Op_UDivL:
 294     case Op_UModL:
 295       zero = TypeLong::ZERO;
 296       break;
 297     default:
 298       return false;
 299   }
 300 
 301   if (n->in(0) != nullptr) {
 302     // Cannot split through phi if Div or Mod node has a control dependency to a zero check.
 303     return true;
 304   }
 305 
 306   Node* divisor = n->in(2);
 307   return is_divisor_loop_phi(divisor, region) &&
 308          loop_phi_backedge_type_contains_zero(divisor, zero);
 309 }
 310 
 311 bool PhaseIdealLoop::is_divisor_loop_phi(const Node* divisor, const Node* loop) {
 312   return loop->is_Loop() && divisor->is_Phi() && divisor->in(0) == loop;
 313 }
 314 
 315 bool PhaseIdealLoop::loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const {
 316     return _igvn.type(phi_divisor->in(LoopNode::LoopBackControl))->filter_speculative(zero) != Type::TOP;
 317 }
 318 
 319 //------------------------------dominated_by------------------------------------
 320 // Replace the dominated test with an obvious true or false.  Place it on the
 321 // IGVN worklist for later cleanup.  Move control-dependent data Nodes on the
 322 // live path up to the dominating control.
 323 void PhaseIdealLoop::dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip, bool pin_array_access_nodes) {
 324   if (VerifyLoopOptimizations && PrintOpto) { tty->print_cr("dominating test"); }
 325 
 326   // prevdom is the dominating projection of the dominating test.
 327   assert(iff->Opcode() == Op_If ||
 328          iff->Opcode() == Op_CountedLoopEnd ||
 329          iff->Opcode() == Op_LongCountedLoopEnd ||
 330          iff->Opcode() == Op_RangeCheck ||
 331          iff->Opcode() == Op_ParsePredicate,
 332         "Check this code when new subtype is added");
 333 
 334   int pop = prevdom->Opcode();
 335   assert( pop == Op_IfFalse || pop == Op_IfTrue, "" );
 336   if (flip) {
 337     if (pop == Op_IfTrue)
 338       pop = Op_IfFalse;
 339     else
 340       pop = Op_IfTrue;
 341   }
 342   // 'con' is set to true or false to kill the dominated test.
 343   Node* con = makecon(pop == Op_IfTrue ? TypeInt::ONE : TypeInt::ZERO);
 344   // Hack the dominated test
 345   _igvn.replace_input_of(iff, 1, con);
 346 
 347   // If I don't have a reachable TRUE and FALSE path following the IfNode then
 348   // I can assume this path reaches an infinite loop.  In this case it's not
 349   // important to optimize the data Nodes - either the whole compilation will
 350   // be tossed or this path (and all data Nodes) will go dead.
 351   if (iff->outcnt() != 2) {
 352     return;
 353   }
 354 
 355   // Make control-dependent data Nodes on the live path (path that will remain
 356   // once the dominated IF is removed) become control-dependent on the
 357   // dominating projection.
 358   Node* dp = iff->proj_out_or_null(pop == Op_IfTrue);
 359 
 360   if (dp == nullptr) {
 361     return;
 362   }
 363 
 364   rewire_safe_outputs_to_dominator(dp, prevdom, pin_array_access_nodes);
 365 }
 366 
 367 void PhaseIdealLoop::rewire_safe_outputs_to_dominator(Node* source, Node* dominator, const bool pin_array_access_nodes) {
 368   IdealLoopTree* old_loop = get_loop(source);
 369 
 370   for (DUIterator_Fast imax, i = source->fast_outs(imax); i < imax; i++) {
 371     Node* out = source->fast_out(i); // Control-dependent node
 372     // Do not rewire Div and Mod nodes which could have a zero divisor to avoid skipping their zero check.
 373     if (out->depends_only_on_test() && _igvn.no_dependent_zero_check(out)) {
 374       assert(out->in(0) == source, "must be control dependent on source");
 375       _igvn.replace_input_of(out, 0, dominator);
 376       if (pin_array_access_nodes) {
 377         // Because of Loop Predication, Loads and range check Cast nodes that are control dependent on this range
 378         // check (that is about to be removed) now depend on multiple dominating Hoisted Check Predicates. After the
 379         // removal of this range check, these control dependent nodes end up at the lowest/nearest dominating predicate
 380         // in the graph. To ensure that these Loads/Casts do not float above any of the dominating checks (even when the
 381         // lowest dominating check is later replaced by yet another dominating check), we need to pin them at the lowest
 382         // dominating check.
 383         Node* clone = out->pin_array_access_node();
 384         if (clone != nullptr) {
 385           clone = _igvn.register_new_node_with_optimizer(clone, out);
 386           _igvn.replace_node(out, clone);
 387           out = clone;
 388         }
 389       }
 390       set_early_ctrl(out, false);
 391       IdealLoopTree* new_loop = get_loop(get_ctrl(out));
 392       if (old_loop != new_loop) {
 393         if (!old_loop->_child) {
 394           old_loop->_body.yank(out);
 395         }
 396         if (!new_loop->_child) {
 397           new_loop->_body.push(out);
 398         }
 399       }
 400       --i;
 401       --imax;
 402     }
 403   }
 404 }
 405 
 406 //------------------------------has_local_phi_input----------------------------
 407 // Return TRUE if 'n' has Phi inputs from its local block and no other
 408 // block-local inputs (all non-local-phi inputs come from earlier blocks)
 409 Node *PhaseIdealLoop::has_local_phi_input( Node *n ) {
 410   Node *n_ctrl = get_ctrl(n);
 411   // See if some inputs come from a Phi in this block, or from before
 412   // this block.
 413   uint i;
 414   for( i = 1; i < n->req(); i++ ) {
 415     Node *phi = n->in(i);
 416     if( phi->is_Phi() && phi->in(0) == n_ctrl )
 417       break;
 418   }
 419   if( i >= n->req() )
 420     return nullptr;                // No Phi inputs; nowhere to clone thru
 421 
 422   // Check for inputs created between 'n' and the Phi input.  These
 423   // must split as well; they have already been given the chance
 424   // (courtesy of a post-order visit) and since they did not we must
 425   // recover the 'cost' of splitting them by being very profitable
 426   // when splitting 'n'.  Since this is unlikely we simply give up.
 427   for( i = 1; i < n->req(); i++ ) {
 428     Node *m = n->in(i);
 429     if( get_ctrl(m) == n_ctrl && !m->is_Phi() ) {
 430       // We allow the special case of AddP's with no local inputs.
 431       // This allows us to split-up address expressions.
 432       if (m->is_AddP() &&
 433           get_ctrl(m->in(AddPNode::Base)) != n_ctrl &&
 434           get_ctrl(m->in(AddPNode::Address)) != n_ctrl &&
 435           get_ctrl(m->in(AddPNode::Offset)) != n_ctrl) {
 436         // Move the AddP up to the dominating point. That's fine because control of m's inputs
 437         // must dominate get_ctrl(m) == n_ctrl and we just checked that the input controls are != n_ctrl.
 438         Node* c = find_non_split_ctrl(idom(n_ctrl));
 439         if (c->is_OuterStripMinedLoop()) {
 440           c->as_Loop()->verify_strip_mined(1);
 441           c = c->in(LoopNode::EntryControl);
 442         }
 443         set_ctrl_and_loop(m, c);
 444         continue;
 445       }
 446       return nullptr;
 447     }
 448     assert(n->is_Phi() || m->is_Phi() || is_dominator(get_ctrl(m), n_ctrl), "m has strange control");
 449   }
 450 
 451   return n_ctrl;
 452 }
 453 
 454 // Replace expressions like ((V+I) << 2) with (V<<2 + I<<2).
 455 Node* PhaseIdealLoop::remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt) {
 456   assert(bt == T_INT || bt == T_LONG, "only for integers");
 457   int n_op = n->Opcode();
 458 
 459   if (n_op == Op_LShift(bt)) {
 460     // Scale is loop invariant
 461     Node* scale = n->in(2);
 462     Node* scale_ctrl = get_ctrl(scale);
 463     IdealLoopTree* scale_loop = get_loop(scale_ctrl);
 464     if (n_loop == scale_loop || !scale_loop->is_member(n_loop)) {
 465       return nullptr;
 466     }
 467     const TypeInt* scale_t = scale->bottom_type()->isa_int();
 468     if (scale_t != nullptr && scale_t->is_con() && scale_t->get_con() >= 16) {
 469       return nullptr;              // Dont bother with byte/short masking
 470     }
 471     // Add must vary with loop (else shift would be loop-invariant)
 472     Node* add = n->in(1);
 473     Node* add_ctrl = get_ctrl(add);
 474     IdealLoopTree* add_loop = get_loop(add_ctrl);
 475     if (n_loop != add_loop) {
 476       return nullptr;  // happens w/ evil ZKM loops
 477     }
 478 
 479     // Convert I-V into I+ (0-V); same for V-I
 480     if (add->Opcode() == Op_Sub(bt) &&
 481         _igvn.type(add->in(1)) != TypeInteger::zero(bt)) {
 482       assert(add->Opcode() == Op_SubI || add->Opcode() == Op_SubL, "");
 483       Node* zero = integercon(0, bt);
 484       Node* neg = SubNode::make(zero, add->in(2), bt);
 485       register_new_node_with_ctrl_of(neg, add->in(2));
 486       add = AddNode::make(add->in(1), neg, bt);
 487       register_new_node(add, add_ctrl);
 488     }
 489     if (add->Opcode() != Op_Add(bt)) return nullptr;
 490     assert(add->Opcode() == Op_AddI || add->Opcode() == Op_AddL, "");
 491     // See if one add input is loop invariant
 492     Node* add_var = add->in(1);
 493     Node* add_var_ctrl = get_ctrl(add_var);
 494     IdealLoopTree* add_var_loop = get_loop(add_var_ctrl);
 495     Node* add_invar = add->in(2);
 496     Node* add_invar_ctrl = get_ctrl(add_invar);
 497     IdealLoopTree* add_invar_loop = get_loop(add_invar_ctrl);
 498     if (add_invar_loop == n_loop) {
 499       // Swap to find the invariant part
 500       add_invar = add_var;
 501       add_invar_ctrl = add_var_ctrl;
 502       add_invar_loop = add_var_loop;
 503       add_var = add->in(2);
 504     } else if (add_var_loop != n_loop) { // Else neither input is loop invariant
 505       return nullptr;
 506     }
 507     if (n_loop == add_invar_loop || !add_invar_loop->is_member(n_loop)) {
 508       return nullptr;              // No invariant part of the add?
 509     }
 510 
 511     // Yes!  Reshape address expression!
 512     Node* inv_scale = LShiftNode::make(add_invar, scale, bt);
 513     Node* inv_scale_ctrl =
 514             dom_depth(add_invar_ctrl) > dom_depth(scale_ctrl) ?
 515             add_invar_ctrl : scale_ctrl;
 516     register_new_node(inv_scale, inv_scale_ctrl);
 517     Node* var_scale = LShiftNode::make(add_var, scale, bt);
 518     register_new_node(var_scale, n_ctrl);
 519     Node* var_add = AddNode::make(var_scale, inv_scale, bt);
 520     register_new_node(var_add, n_ctrl);
 521     _igvn.replace_node(n, var_add);
 522     return var_add;
 523   }
 524   return nullptr;
 525 }
 526 
 527 //------------------------------remix_address_expressions----------------------
 528 // Rework addressing expressions to get the most loop-invariant stuff
 529 // moved out.  We'd like to do all associative operators, but it's especially
 530 // important (common) to do address expressions.
 531 Node* PhaseIdealLoop::remix_address_expressions(Node* n) {
 532   if (!has_ctrl(n))  return nullptr;
 533   Node* n_ctrl = get_ctrl(n);
 534   IdealLoopTree* n_loop = get_loop(n_ctrl);
 535 
 536   // See if 'n' mixes loop-varying and loop-invariant inputs and
 537   // itself is loop-varying.
 538 
 539   // Only interested in binary ops (and AddP)
 540   if (n->req() < 3 || n->req() > 4) return nullptr;
 541 
 542   Node* n1_ctrl = get_ctrl(n->in(                    1));
 543   Node* n2_ctrl = get_ctrl(n->in(                    2));
 544   Node* n3_ctrl = get_ctrl(n->in(n->req() == 3 ? 2 : 3));
 545   IdealLoopTree* n1_loop = get_loop(n1_ctrl);
 546   IdealLoopTree* n2_loop = get_loop(n2_ctrl);
 547   IdealLoopTree* n3_loop = get_loop(n3_ctrl);
 548 
 549   // Does one of my inputs spin in a tighter loop than self?
 550   if ((n_loop->is_member(n1_loop) && n_loop != n1_loop) ||
 551       (n_loop->is_member(n2_loop) && n_loop != n2_loop) ||
 552       (n_loop->is_member(n3_loop) && n_loop != n3_loop)) {
 553     return nullptr;                // Leave well enough alone
 554   }
 555 
 556   // Is at least one of my inputs loop-invariant?
 557   if (n1_loop == n_loop &&
 558       n2_loop == n_loop &&
 559       n3_loop == n_loop) {
 560     return nullptr;                // No loop-invariant inputs
 561   }
 562 
 563   Node* res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_INT);
 564   if (res != nullptr) {
 565     return res;
 566   }
 567   res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_LONG);
 568   if (res != nullptr) {
 569     return res;
 570   }
 571 
 572   int n_op = n->Opcode();
 573   // Replace (I+V) with (V+I)
 574   if (n_op == Op_AddI ||
 575       n_op == Op_AddL ||
 576       n_op == Op_AddF ||
 577       n_op == Op_AddD ||
 578       n_op == Op_MulI ||
 579       n_op == Op_MulL ||
 580       n_op == Op_MulF ||
 581       n_op == Op_MulD) {
 582     if (n2_loop == n_loop) {
 583       assert(n1_loop != n_loop, "");
 584       n->swap_edges(1, 2);
 585     }
 586   }
 587 
 588   // Replace ((I1 +p V) +p I2) with ((I1 +p I2) +p V),
 589   // but not if I2 is a constant. Skip for irreducible loops.
 590   if (n_op == Op_AddP && n_loop->_head->is_Loop()) {
 591     if (n2_loop == n_loop && n3_loop != n_loop) {
 592       if (n->in(2)->Opcode() == Op_AddP && !n->in(3)->is_Con()) {
 593         Node* n22_ctrl = get_ctrl(n->in(2)->in(2));
 594         Node* n23_ctrl = get_ctrl(n->in(2)->in(3));
 595         IdealLoopTree* n22loop = get_loop(n22_ctrl);
 596         IdealLoopTree* n23_loop = get_loop(n23_ctrl);
 597         if (n22loop != n_loop && n22loop->is_member(n_loop) &&
 598             n23_loop == n_loop) {
 599           Node* add1 = new AddPNode(n->in(1), n->in(2)->in(2), n->in(3));
 600           // Stuff new AddP in the loop preheader
 601           register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl));
 602           Node* add2 = new AddPNode(n->in(1), add1, n->in(2)->in(3));
 603           register_new_node(add2, n_ctrl);
 604           _igvn.replace_node(n, add2);
 605           return add2;
 606         }
 607       }
 608     }
 609 
 610     // Replace (I1 +p (I2 + V)) with ((I1 +p I2) +p V)
 611     if (n2_loop != n_loop && n3_loop == n_loop) {
 612       if (n->in(3)->Opcode() == Op_AddX) {
 613         Node* V = n->in(3)->in(1);
 614         Node* I = n->in(3)->in(2);
 615         if (is_member(n_loop,get_ctrl(V))) {
 616         } else {
 617           Node *tmp = V; V = I; I = tmp;
 618         }
 619         if (!is_member(n_loop,get_ctrl(I))) {
 620           Node* add1 = new AddPNode(n->in(1), n->in(2), I);
 621           // Stuff new AddP in the loop preheader
 622           register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl));
 623           Node* add2 = new AddPNode(n->in(1), add1, V);
 624           register_new_node(add2, n_ctrl);
 625           _igvn.replace_node(n, add2);
 626           return add2;
 627         }
 628       }
 629     }
 630   }
 631 
 632   return nullptr;
 633 }
 634 
 635 // Optimize ((in1[2*i] * in2[2*i]) + (in1[2*i+1] * in2[2*i+1]))
 636 Node *PhaseIdealLoop::convert_add_to_muladd(Node* n) {
 637   assert(n->Opcode() == Op_AddI, "sanity");
 638   Node * nn = nullptr;
 639   Node * in1 = n->in(1);
 640   Node * in2 = n->in(2);
 641   if (in1->Opcode() == Op_MulI && in2->Opcode() == Op_MulI) {
 642     IdealLoopTree* loop_n = get_loop(get_ctrl(n));
 643     if (loop_n->is_counted() &&
 644         loop_n->_head->as_Loop()->is_valid_counted_loop(T_INT) &&
 645         Matcher::match_rule_supported(Op_MulAddVS2VI) &&
 646         Matcher::match_rule_supported(Op_MulAddS2I)) {
 647       Node* mul_in1 = in1->in(1);
 648       Node* mul_in2 = in1->in(2);
 649       Node* mul_in3 = in2->in(1);
 650       Node* mul_in4 = in2->in(2);
 651       if (mul_in1->Opcode() == Op_LoadS &&
 652           mul_in2->Opcode() == Op_LoadS &&
 653           mul_in3->Opcode() == Op_LoadS &&
 654           mul_in4->Opcode() == Op_LoadS) {
 655         IdealLoopTree* loop1 = get_loop(get_ctrl(mul_in1));
 656         IdealLoopTree* loop2 = get_loop(get_ctrl(mul_in2));
 657         IdealLoopTree* loop3 = get_loop(get_ctrl(mul_in3));
 658         IdealLoopTree* loop4 = get_loop(get_ctrl(mul_in4));
 659         IdealLoopTree* loop5 = get_loop(get_ctrl(in1));
 660         IdealLoopTree* loop6 = get_loop(get_ctrl(in2));
 661         // All nodes should be in the same counted loop.
 662         if (loop_n == loop1 && loop_n == loop2 && loop_n == loop3 &&
 663             loop_n == loop4 && loop_n == loop5 && loop_n == loop6) {
 664           Node* adr1 = mul_in1->in(MemNode::Address);
 665           Node* adr2 = mul_in2->in(MemNode::Address);
 666           Node* adr3 = mul_in3->in(MemNode::Address);
 667           Node* adr4 = mul_in4->in(MemNode::Address);
 668           if (adr1->is_AddP() && adr2->is_AddP() && adr3->is_AddP() && adr4->is_AddP()) {
 669             if ((adr1->in(AddPNode::Base) == adr3->in(AddPNode::Base)) &&
 670                 (adr2->in(AddPNode::Base) == adr4->in(AddPNode::Base))) {
 671               nn = new MulAddS2INode(mul_in1, mul_in2, mul_in3, mul_in4);
 672               register_new_node_with_ctrl_of(nn, n);
 673               _igvn.replace_node(n, nn);
 674               return nn;
 675             } else if ((adr1->in(AddPNode::Base) == adr4->in(AddPNode::Base)) &&
 676                        (adr2->in(AddPNode::Base) == adr3->in(AddPNode::Base))) {
 677               nn = new MulAddS2INode(mul_in1, mul_in2, mul_in4, mul_in3);
 678               register_new_node_with_ctrl_of(nn, n);
 679               _igvn.replace_node(n, nn);
 680               return nn;
 681             }
 682           }
 683         }
 684       }
 685     }
 686   }
 687   return nn;
 688 }
 689 
 690 //------------------------------conditional_move-------------------------------
 691 // Attempt to replace a Phi with a conditional move.  We have some pretty
 692 // strict profitability requirements.  All Phis at the merge point must
 693 // be converted, so we can remove the control flow.  We need to limit the
 694 // number of c-moves to a small handful.  All code that was in the side-arms
 695 // of the CFG diamond is now speculatively executed.  This code has to be
 696 // "cheap enough".  We are pretty much limited to CFG diamonds that merge
 697 // 1 or 2 items with a total of 1 or 2 ops executed speculatively.
 698 Node *PhaseIdealLoop::conditional_move( Node *region ) {
 699 
 700   assert(region->is_Region(), "sanity check");
 701   if (region->req() != 3) return nullptr;
 702 
 703   // Check for CFG diamond
 704   Node *lp = region->in(1);
 705   Node *rp = region->in(2);
 706   if (!lp || !rp) return nullptr;
 707   Node *lp_c = lp->in(0);
 708   if (lp_c == nullptr || lp_c != rp->in(0) || !lp_c->is_If()) return nullptr;
 709   IfNode *iff = lp_c->as_If();
 710 
 711   // Check for ops pinned in an arm of the diamond.
 712   // Can't remove the control flow in this case
 713   if (lp->outcnt() > 1) return nullptr;
 714   if (rp->outcnt() > 1) return nullptr;
 715 
 716   IdealLoopTree* r_loop = get_loop(region);
 717   assert(r_loop == get_loop(iff), "sanity");
 718   // Always convert to CMOVE if all results are used only outside this loop.
 719   bool used_inside_loop = (r_loop == _ltree_root);
 720 
 721   // Check profitability
 722   int cost = 0;
 723   int phis = 0;
 724   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 725     Node *out = region->fast_out(i);
 726     if (!out->is_Phi()) continue; // Ignore other control edges, etc
 727     phis++;
 728     PhiNode* phi = out->as_Phi();
 729     BasicType bt = phi->type()->basic_type();
 730     switch (bt) {
 731     case T_DOUBLE:
 732     case T_FLOAT:
 733       if (C->use_cmove()) {
 734         continue; //TODO: maybe we want to add some cost
 735       }
 736       cost += Matcher::float_cmove_cost(); // Could be very expensive
 737       break;
 738     case T_LONG: {
 739       cost += Matcher::long_cmove_cost(); // May encodes as 2 CMOV's
 740     }
 741     case T_INT:                 // These all CMOV fine
 742     case T_ADDRESS: {           // (RawPtr)
 743       cost++;
 744       break;
 745     }
 746     case T_NARROWOOP: // Fall through
 747     case T_OBJECT: {            // Base oops are OK, but not derived oops
 748       const TypeOopPtr *tp = phi->type()->make_ptr()->isa_oopptr();
 749       // Derived pointers are Bad (tm): what's the Base (for GC purposes) of a
 750       // CMOVE'd derived pointer?  It's a CMOVE'd derived base.  Thus
 751       // CMOVE'ing a derived pointer requires we also CMOVE the base.  If we
 752       // have a Phi for the base here that we convert to a CMOVE all is well
 753       // and good.  But if the base is dead, we'll not make a CMOVE.  Later
 754       // the allocator will have to produce a base by creating a CMOVE of the
 755       // relevant bases.  This puts the allocator in the business of
 756       // manufacturing expensive instructions, generally a bad plan.
 757       // Just Say No to Conditionally-Moved Derived Pointers.
 758       if (tp && tp->offset() != 0)
 759         return nullptr;
 760       cost++;
 761       break;
 762     }
 763     default:
 764       return nullptr;              // In particular, can't do memory or I/O
 765     }
 766     // Add in cost any speculative ops
 767     for (uint j = 1; j < region->req(); j++) {
 768       Node *proj = region->in(j);
 769       Node *inp = phi->in(j);
 770       if (inp->isa_InlineType()) {
 771         // TODO 8302217 This prevents PhiNode::push_inline_types_through
 772         return nullptr;
 773       }
 774       if (get_ctrl(inp) == proj) { // Found local op
 775         cost++;
 776         // Check for a chain of dependent ops; these will all become
 777         // speculative in a CMOV.
 778         for (uint k = 1; k < inp->req(); k++)
 779           if (get_ctrl(inp->in(k)) == proj)
 780             cost += ConditionalMoveLimit; // Too much speculative goo
 781       }
 782     }
 783     // See if the Phi is used by a Cmp or Narrow oop Decode/Encode.
 784     // This will likely Split-If, a higher-payoff operation.
 785     for (DUIterator_Fast kmax, k = phi->fast_outs(kmax); k < kmax; k++) {
 786       Node* use = phi->fast_out(k);
 787       if (use->is_Cmp() || use->is_DecodeNarrowPtr() || use->is_EncodeNarrowPtr())
 788         cost += ConditionalMoveLimit;
 789       // Is there a use inside the loop?
 790       // Note: check only basic types since CMoveP is pinned.
 791       if (!used_inside_loop && is_java_primitive(bt)) {
 792         IdealLoopTree* u_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use);
 793         if (r_loop == u_loop || r_loop->is_member(u_loop)) {
 794           used_inside_loop = true;
 795         }
 796       }
 797     }
 798   }//for
 799   Node* bol = iff->in(1);
 800   assert(!bol->is_OpaqueInitializedAssertionPredicate(), "Initialized Assertion Predicates cannot form a diamond with Halt");
 801   if (bol->is_OpaqueTemplateAssertionPredicate()) {
 802     // Ignore Template Assertion Predicates with OpaqueTemplateAssertionPredicate nodes.
 803     return nullptr;
 804   }
 805   if (bol->is_OpaqueMultiversioning()) {
 806     assert(bol->as_OpaqueMultiversioning()->is_useless(), "Must be useless, i.e. fast main loop has already disappeared.");
 807     // Ignore multiversion_if that just lost its loops. The OpaqueMultiversioning is marked useless,
 808     // and will make the multiversion_if constant fold in the next IGVN round.
 809     return nullptr;
 810   }
 811   if (!bol->is_Bool()) {
 812     assert(false, "Expected Bool, but got %s", NodeClassNames[bol->Opcode()]);
 813     return nullptr;
 814   }
 815   int cmp_op = bol->in(1)->Opcode();
 816   if (cmp_op == Op_SubTypeCheck) { // SubTypeCheck expansion expects an IfNode
 817     return nullptr;
 818   }
 819   // It is expensive to generate flags from a float compare.
 820   // Avoid duplicated float compare.
 821   if (phis > 1 && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) return nullptr;
 822 
 823   float infrequent_prob = PROB_UNLIKELY_MAG(3);
 824   // Ignore cost and blocks frequency if CMOVE can be moved outside the loop.
 825   if (used_inside_loop) {
 826     if (cost >= ConditionalMoveLimit) return nullptr; // Too much goo
 827 
 828     // BlockLayoutByFrequency optimization moves infrequent branch
 829     // from hot path. No point in CMOV'ing in such case (110 is used
 830     // instead of 100 to take into account not exactness of float value).
 831     if (BlockLayoutByFrequency) {
 832       infrequent_prob = MAX2(infrequent_prob, (float)BlockLayoutMinDiamondPercentage/110.0f);
 833     }
 834   }
 835   // Check for highly predictable branch.  No point in CMOV'ing if
 836   // we are going to predict accurately all the time.
 837   if (C->use_cmove() && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) {
 838     //keep going
 839   } else if (iff->_prob < infrequent_prob ||
 840       iff->_prob > (1.0f - infrequent_prob))
 841     return nullptr;
 842 
 843   // --------------
 844   // Now replace all Phis with CMOV's
 845   Node *cmov_ctrl = iff->in(0);
 846   uint flip = (lp->Opcode() == Op_IfTrue);
 847   Node_List wq;
 848   while (1) {
 849     PhiNode* phi = nullptr;
 850     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 851       Node *out = region->fast_out(i);
 852       if (out->is_Phi()) {
 853         phi = out->as_Phi();
 854         break;
 855       }
 856     }
 857     if (phi == nullptr || _igvn.type(phi) == Type::TOP || !CMoveNode::supported(_igvn.type(phi))) {
 858       break;
 859     }
 860     // Move speculative ops
 861     wq.push(phi);
 862     while (wq.size() > 0) {
 863       Node *n = wq.pop();
 864       for (uint j = 1; j < n->req(); j++) {
 865         Node* m = n->in(j);
 866         if (m != nullptr && !is_dominator(get_ctrl(m), cmov_ctrl)) {
 867           set_ctrl(m, cmov_ctrl);
 868           wq.push(m);
 869         }
 870       }
 871     }
 872     Node* cmov = CMoveNode::make(iff->in(1), phi->in(1+flip), phi->in(2-flip), _igvn.type(phi));
 873     register_new_node(cmov, cmov_ctrl);
 874     _igvn.replace_node(phi, cmov);
 875 #ifndef PRODUCT
 876     if (TraceLoopOpts) {
 877       tty->print("CMOV  ");
 878       r_loop->dump_head();
 879       if (Verbose) {
 880         bol->in(1)->dump(1);
 881         cmov->dump(1);
 882       }
 883     }
 884     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
 885 #endif
 886   }
 887 
 888   // The useless CFG diamond will fold up later; see the optimization in
 889   // RegionNode::Ideal.
 890   _igvn._worklist.push(region);
 891 
 892   return iff->in(1);
 893 }
 894 
 895 static void enqueue_cfg_uses(Node* m, Unique_Node_List& wq) {
 896   for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
 897     Node* u = m->fast_out(i);
 898     if (u->is_CFG()) {
 899       if (u->is_NeverBranch()) {
 900         u = u->as_NeverBranch()->proj_out(0);
 901         enqueue_cfg_uses(u, wq);
 902       } else {
 903         wq.push(u);
 904       }
 905     }
 906   }
 907 }
 908 
 909 // Try moving a store out of a loop, right before the loop
 910 Node* PhaseIdealLoop::try_move_store_before_loop(Node* n, Node *n_ctrl) {
 911   // Store has to be first in the loop body
 912   IdealLoopTree *n_loop = get_loop(n_ctrl);
 913   if (n->is_Store() && n_loop != _ltree_root &&
 914       n_loop->is_loop() && n_loop->_head->is_Loop() &&
 915       n->in(0) != nullptr) {
 916     Node* address = n->in(MemNode::Address);
 917     Node* value = n->in(MemNode::ValueIn);
 918     Node* mem = n->in(MemNode::Memory);
 919     IdealLoopTree* address_loop = get_loop(get_ctrl(address));
 920     IdealLoopTree* value_loop = get_loop(get_ctrl(value));
 921 
 922     // - address and value must be loop invariant
 923     // - memory must be a memory Phi for the loop
 924     // - Store must be the only store on this memory slice in the
 925     // loop: if there's another store following this one then value
 926     // written at iteration i by the second store could be overwritten
 927     // at iteration i+n by the first store: it's not safe to move the
 928     // first store out of the loop
 929     // - nothing must observe the memory Phi: it guarantees no read
 930     // before the store, we are also guaranteed the store post
 931     // dominates the loop head (ignoring a possible early
 932     // exit). Otherwise there would be extra Phi involved between the
 933     // loop's Phi and the store.
 934     // - there must be no early exit from the loop before the Store
 935     // (such an exit most of the time would be an extra use of the
 936     // memory Phi but sometimes is a bottom memory Phi that takes the
 937     // store as input).
 938 
 939     if (!n_loop->is_member(address_loop) &&
 940         !n_loop->is_member(value_loop) &&
 941         mem->is_Phi() && mem->in(0) == n_loop->_head &&
 942         mem->outcnt() == 1 &&
 943         mem->in(LoopNode::LoopBackControl) == n) {
 944 
 945       assert(n_loop->_tail != nullptr, "need a tail");
 946       assert(is_dominator(n_ctrl, n_loop->_tail), "store control must not be in a branch in the loop");
 947 
 948       // Verify that there's no early exit of the loop before the store.
 949       bool ctrl_ok = false;
 950       {
 951         // Follow control from loop head until n, we exit the loop or
 952         // we reach the tail
 953         ResourceMark rm;
 954         Unique_Node_List wq;
 955         wq.push(n_loop->_head);
 956 
 957         for (uint next = 0; next < wq.size(); ++next) {
 958           Node *m = wq.at(next);
 959           if (m == n->in(0)) {
 960             ctrl_ok = true;
 961             continue;
 962           }
 963           assert(!has_ctrl(m), "should be CFG");
 964           if (!n_loop->is_member(get_loop(m)) || m == n_loop->_tail) {
 965             ctrl_ok = false;
 966             break;
 967           }
 968           enqueue_cfg_uses(m, wq);
 969           if (wq.size() > 10) {
 970             ctrl_ok = false;
 971             break;
 972           }
 973         }
 974       }
 975       if (ctrl_ok) {
 976         // move the Store
 977         _igvn.replace_input_of(mem, LoopNode::LoopBackControl, mem);
 978         _igvn.replace_input_of(n, 0, n_loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl));
 979         _igvn.replace_input_of(n, MemNode::Memory, mem->in(LoopNode::EntryControl));
 980         // Disconnect the phi now. An empty phi can confuse other
 981         // optimizations in this pass of loop opts.
 982         _igvn.replace_node(mem, mem->in(LoopNode::EntryControl));
 983         n_loop->_body.yank(mem);
 984 
 985         set_ctrl_and_loop(n, n->in(0));
 986 
 987         return n;
 988       }
 989     }
 990   }
 991   return nullptr;
 992 }
 993 
 994 // Try moving a store out of a loop, right after the loop
 995 void PhaseIdealLoop::try_move_store_after_loop(Node* n) {
 996   if (n->is_Store() && n->in(0) != nullptr) {
 997     Node *n_ctrl = get_ctrl(n);
 998     IdealLoopTree *n_loop = get_loop(n_ctrl);
 999     // Store must be in a loop
1000     if (n_loop != _ltree_root && !n_loop->_irreducible) {
1001       Node* address = n->in(MemNode::Address);
1002       Node* value = n->in(MemNode::ValueIn);
1003       IdealLoopTree* address_loop = get_loop(get_ctrl(address));
1004       // address must be loop invariant
1005       if (!n_loop->is_member(address_loop)) {
1006         // Store must be last on this memory slice in the loop and
1007         // nothing in the loop must observe it
1008         Node* phi = nullptr;
1009         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1010           Node* u = n->fast_out(i);
1011           if (has_ctrl(u)) { // control use?
1012             IdealLoopTree *u_loop = get_loop(get_ctrl(u));
1013             if (!n_loop->is_member(u_loop)) {
1014               continue;
1015             }
1016             if (u->is_Phi() && u->in(0) == n_loop->_head) {
1017               assert(_igvn.type(u) == Type::MEMORY, "bad phi");
1018               // multiple phis on the same slice are possible
1019               if (phi != nullptr) {
1020                 return;
1021               }
1022               phi = u;
1023               continue;
1024             }
1025           }
1026           return;
1027         }
1028         if (phi != nullptr) {
1029           // Nothing in the loop before the store (next iteration)
1030           // must observe the stored value
1031           bool mem_ok = true;
1032           {
1033             ResourceMark rm;
1034             Unique_Node_List wq;
1035             wq.push(phi);
1036             for (uint next = 0; next < wq.size() && mem_ok; ++next) {
1037               Node *m = wq.at(next);
1038               for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax && mem_ok; i++) {
1039                 Node* u = m->fast_out(i);
1040                 if (u->is_Store() || u->is_Phi()) {
1041                   if (u != n) {
1042                     wq.push(u);
1043                     mem_ok = (wq.size() <= 10);
1044                   }
1045                 } else {
1046                   mem_ok = false;
1047                   break;
1048                 }
1049               }
1050             }
1051           }
1052           if (mem_ok) {
1053             // Move the store out of the loop if the LCA of all
1054             // users (except for the phi) is outside the loop.
1055             Node* hook = new Node(1);
1056             hook->init_req(0, n_ctrl); // Add an input to prevent hook from being dead
1057             _igvn.rehash_node_delayed(phi);
1058             int count = phi->replace_edge(n, hook, &_igvn);
1059             assert(count > 0, "inconsistent phi");
1060 
1061             // Compute latest point this store can go
1062             Node* lca = get_late_ctrl(n, get_ctrl(n));
1063             if (lca->is_OuterStripMinedLoop()) {
1064               lca = lca->in(LoopNode::EntryControl);
1065             }
1066             if (n_loop->is_member(get_loop(lca))) {
1067               // LCA is in the loop - bail out
1068               _igvn.replace_node(hook, n);
1069               return;
1070             }
1071 #ifdef ASSERT
1072             if (n_loop->_head->is_Loop() && n_loop->_head->as_Loop()->is_strip_mined()) {
1073               assert(n_loop->_head->Opcode() == Op_CountedLoop, "outer loop is a strip mined");
1074               n_loop->_head->as_Loop()->verify_strip_mined(1);
1075               Node* outer = n_loop->_head->as_CountedLoop()->outer_loop();
1076               IdealLoopTree* outer_loop = get_loop(outer);
1077               assert(n_loop->_parent == outer_loop, "broken loop tree");
1078               assert(get_loop(lca) == outer_loop, "safepoint in outer loop consume all memory state");
1079             }
1080 #endif
1081             lca = place_outside_loop(lca, n_loop);
1082             assert(!n_loop->is_member(get_loop(lca)), "control must not be back in the loop");
1083             assert(get_loop(lca)->_nest < n_loop->_nest || get_loop(lca)->_head->as_Loop()->is_in_infinite_subgraph(), "must not be moved into inner loop");
1084 
1085             // Move store out of the loop
1086             _igvn.replace_node(hook, n->in(MemNode::Memory));
1087             _igvn.replace_input_of(n, 0, lca);
1088             set_ctrl_and_loop(n, lca);
1089 
1090             // Disconnect the phi now. An empty phi can confuse other
1091             // optimizations in this pass of loop opts..
1092             if (phi->in(LoopNode::LoopBackControl) == phi) {
1093               _igvn.replace_node(phi, phi->in(LoopNode::EntryControl));
1094               n_loop->_body.yank(phi);
1095             }
1096           }
1097         }
1098       }
1099     }
1100   }
1101 }
1102 
1103 // We can't use immutable memory for the flat array check because we are loading the mark word which is
1104 // mutable. Although the bits we are interested in are immutable (we check for markWord::unlocked_value),
1105 // we need to use raw memory to not break anti dependency analysis. Below code will attempt to still move
1106 // flat array checks out of loops, mainly to enable loop unswitching.
1107 void PhaseIdealLoop::move_flat_array_check_out_of_loop(Node* n) {
1108   // Skip checks for more than one array
1109   if (n->req() > 3) {
1110     return;
1111   }
1112   Node* mem = n->in(FlatArrayCheckNode::Memory);
1113   Node* array = n->in(FlatArrayCheckNode::ArrayOrKlass)->uncast();
1114   IdealLoopTree* check_loop = get_loop(get_ctrl(n));
1115   IdealLoopTree* ary_loop = get_loop(get_ctrl(array));
1116 
1117   // Check if array is loop invariant
1118   if (!check_loop->is_member(ary_loop)) {
1119     // Walk up memory graph from the check until we leave the loop
1120     VectorSet wq;
1121     wq.set(mem->_idx);
1122     while (check_loop->is_member(get_loop(ctrl_or_self(mem)))) {
1123       if (mem->is_Phi()) {
1124         mem = mem->in(1);
1125       } else if (mem->is_MergeMem()) {
1126         mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1127       } else if (mem->is_Proj()) {
1128         mem = mem->in(0);
1129       } else if (mem->is_MemBar() || mem->is_SafePoint()) {
1130         mem = mem->in(TypeFunc::Memory);
1131       } else if (mem->is_Store() || mem->is_LoadStore() || mem->is_ClearArray()) {
1132         mem = mem->in(MemNode::Memory);
1133       } else {
1134 #ifdef ASSERT
1135         mem->dump();
1136 #endif
1137         ShouldNotReachHere();
1138       }
1139       if (wq.test_set(mem->_idx)) {
1140         return;
1141       }
1142     }
1143     // Replace memory input and re-compute ctrl to move the check out of the loop
1144     _igvn.replace_input_of(n, 1, mem);
1145     set_ctrl_and_loop(n, get_early_ctrl(n));
1146     Node* bol = n->unique_out();
1147     set_ctrl_and_loop(bol, get_early_ctrl(bol));
1148   }
1149 }
1150 
1151 //------------------------------split_if_with_blocks_pre-----------------------
1152 // Do the real work in a non-recursive function.  Data nodes want to be
1153 // cloned in the pre-order so they can feed each other nicely.
1154 Node *PhaseIdealLoop::split_if_with_blocks_pre( Node *n ) {
1155   // Cloning these guys is unlikely to win
1156   int n_op = n->Opcode();
1157   if (n_op == Op_MergeMem) {
1158     return n;
1159   }
1160   if (n->is_Proj()) {
1161     return n;
1162   }
1163 
1164   if (n->isa_FlatArrayCheck()) {
1165     move_flat_array_check_out_of_loop(n);
1166     return n;
1167   }
1168 
1169   // Do not clone-up CmpFXXX variations, as these are always
1170   // followed by a CmpI
1171   if (n->is_Cmp()) {
1172     return n;
1173   }
1174   // Attempt to use a conditional move instead of a phi/branch
1175   if (ConditionalMoveLimit > 0 && n_op == Op_Region) {
1176     Node *cmov = conditional_move( n );
1177     if (cmov) {
1178       return cmov;
1179     }
1180   }
1181   if (n->is_CFG() || n->is_LoadStore()) {
1182     return n;
1183   }
1184   if (n->is_Opaque1()) { // Opaque nodes cannot be mod'd
1185     if (!C->major_progress()) {   // If chance of no more loop opts...
1186       _igvn._worklist.push(n);  // maybe we'll remove them
1187     }
1188     return n;
1189   }
1190 
1191   if (n->is_Con()) {
1192     return n;   // No cloning for Con nodes
1193   }
1194 
1195   Node *n_ctrl = get_ctrl(n);
1196   if (!n_ctrl) {
1197     return n;       // Dead node
1198   }
1199 
1200   Node* res = try_move_store_before_loop(n, n_ctrl);
1201   if (res != nullptr) {
1202     return n;
1203   }
1204 
1205   // Attempt to remix address expressions for loop invariants
1206   Node *m = remix_address_expressions( n );
1207   if( m ) return m;
1208 
1209   if (n_op == Op_AddI) {
1210     Node *nn = convert_add_to_muladd( n );
1211     if ( nn ) return nn;
1212   }
1213 
1214   if (n->is_ConstraintCast()) {
1215     Node* dom_cast = n->as_ConstraintCast()->dominating_cast(&_igvn, this);
1216     // ConstraintCastNode::dominating_cast() uses node control input to determine domination.
1217     // Node control inputs don't necessarily agree with loop control info (due to
1218     // transformations happened in between), thus additional dominance check is needed
1219     // to keep loop info valid.
1220     if (dom_cast != nullptr && is_dominator(get_ctrl(dom_cast), get_ctrl(n))) {
1221       _igvn.replace_node(n, dom_cast);
1222       return dom_cast;
1223     }
1224   }
1225 
1226   // Determine if the Node has inputs from some local Phi.
1227   // Returns the block to clone thru.
1228   Node *n_blk = has_local_phi_input( n );
1229   if( !n_blk ) return n;
1230 
1231   // Do not clone the trip counter through on a CountedLoop
1232   // (messes up the canonical shape).
1233   if (((n_blk->is_CountedLoop() || (n_blk->is_Loop() && n_blk->as_Loop()->is_loop_nest_inner_loop())) && n->Opcode() == Op_AddI) ||
1234       (n_blk->is_LongCountedLoop() && n->Opcode() == Op_AddL)) {
1235     return n;
1236   }
1237   // Pushing a shift through the iv Phi can get in the way of addressing optimizations or range check elimination
1238   if (n_blk->is_BaseCountedLoop() && n->Opcode() == Op_LShift(n_blk->as_BaseCountedLoop()->bt()) &&
1239       n->in(1) == n_blk->as_BaseCountedLoop()->phi()) {
1240     return n;
1241   }
1242 
1243   // Check for having no control input; not pinned.  Allow
1244   // dominating control.
1245   if (n->in(0)) {
1246     Node *dom = idom(n_blk);
1247     if (dom_lca(n->in(0), dom) != n->in(0)) {
1248       return n;
1249     }
1250   }
1251   // Policy: when is it profitable.  You must get more wins than
1252   // policy before it is considered profitable.  Policy is usually 0,
1253   // so 1 win is considered profitable.  Big merges will require big
1254   // cloning, so get a larger policy.
1255   int policy = n_blk->req() >> 2;
1256 
1257   // If the loop is a candidate for range check elimination,
1258   // delay splitting through it's phi until a later loop optimization
1259   if (n_blk->is_BaseCountedLoop()) {
1260     IdealLoopTree *lp = get_loop(n_blk);
1261     if (lp && lp->_rce_candidate) {
1262       return n;
1263     }
1264   }
1265 
1266   if (must_throttle_split_if()) return n;
1267 
1268   // Split 'n' through the merge point if it is profitable
1269   Node *phi = split_thru_phi( n, n_blk, policy );
1270   if (!phi) return n;
1271 
1272   // Found a Phi to split thru!
1273   // Replace 'n' with the new phi
1274   _igvn.replace_node( n, phi );
1275   // Moved a load around the loop, 'en-registering' something.
1276   if (n_blk->is_Loop() && n->is_Load() &&
1277       !phi->in(LoopNode::LoopBackControl)->is_Load())
1278     C->set_major_progress();
1279 
1280   return phi;
1281 }
1282 
1283 static bool merge_point_too_heavy(Compile* C, Node* region) {
1284   // Bail out if the region and its phis have too many users.
1285   int weight = 0;
1286   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1287     weight += region->fast_out(i)->outcnt();
1288   }
1289   int nodes_left = C->max_node_limit() - C->live_nodes();
1290   if (weight * 8 > nodes_left) {
1291     if (PrintOpto) {
1292       tty->print_cr("*** Split-if bails out:  %d nodes, region weight %d", C->unique(), weight);
1293     }
1294     return true;
1295   } else {
1296     return false;
1297   }
1298 }
1299 
1300 static bool merge_point_safe(Node* region) {
1301   // 4799512: Stop split_if_with_blocks from splitting a block with a ConvI2LNode
1302   // having a PhiNode input. This sidesteps the dangerous case where the split
1303   // ConvI2LNode may become TOP if the input Value() does not
1304   // overlap the ConvI2L range, leaving a node which may not dominate its
1305   // uses.
1306   // A better fix for this problem can be found in the BugTraq entry, but
1307   // expediency for Mantis demands this hack.
1308 #ifdef _LP64
1309   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1310     Node* n = region->fast_out(i);
1311     if (n->is_Phi()) {
1312       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1313         Node* m = n->fast_out(j);
1314         if (m->Opcode() == Op_ConvI2L)
1315           return false;
1316         if (m->is_CastII()) {
1317           return false;
1318         }
1319       }
1320     }
1321   }
1322 #endif
1323   return true;
1324 }
1325 
1326 
1327 //------------------------------place_outside_loop---------------------------------
1328 // Place some computation outside of this loop on the path to the use passed as argument
1329 Node* PhaseIdealLoop::place_outside_loop(Node* useblock, IdealLoopTree* loop) const {
1330   Node* head = loop->_head;
1331   assert(!loop->is_member(get_loop(useblock)), "must be outside loop");
1332   if (head->is_Loop() && head->as_Loop()->is_strip_mined()) {
1333     loop = loop->_parent;
1334     assert(loop->_head->is_OuterStripMinedLoop(), "malformed strip mined loop");
1335   }
1336 
1337   // Pick control right outside the loop
1338   for (;;) {
1339     Node* dom = idom(useblock);
1340     if (loop->is_member(get_loop(dom))) {
1341       break;
1342     }
1343     useblock = dom;
1344   }
1345   assert(find_non_split_ctrl(useblock) == useblock, "should be non split control");
1346   return useblock;
1347 }
1348 
1349 
1350 bool PhaseIdealLoop::identical_backtoback_ifs(Node *n) {
1351   if (!n->is_If() || n->is_BaseCountedLoopEnd()) {
1352     return false;
1353   }
1354   if (!n->in(0)->is_Region()) {
1355     return false;
1356   }
1357 
1358   Node* region = n->in(0);
1359   Node* dom = idom(region);
1360   if (!dom->is_If() ||  !n->as_If()->same_condition(dom, &_igvn)) {
1361     return false;
1362   }
1363   IfNode* dom_if = dom->as_If();
1364   Node* proj_true = dom_if->proj_out(1);
1365   Node* proj_false = dom_if->proj_out(0);
1366 
1367   for (uint i = 1; i < region->req(); i++) {
1368     if (is_dominator(proj_true, region->in(i))) {
1369       continue;
1370     }
1371     if (is_dominator(proj_false, region->in(i))) {
1372       continue;
1373     }
1374     return false;
1375   }
1376 
1377   return true;
1378 }
1379 
1380 
1381 bool PhaseIdealLoop::can_split_if(Node* n_ctrl) {
1382   if (must_throttle_split_if()) {
1383     return false;
1384   }
1385 
1386   // Do not do 'split-if' if irreducible loops are present.
1387   if (_has_irreducible_loops) {
1388     return false;
1389   }
1390 
1391   if (merge_point_too_heavy(C, n_ctrl)) {
1392     return false;
1393   }
1394 
1395   // Do not do 'split-if' if some paths are dead.  First do dead code
1396   // elimination and then see if its still profitable.
1397   for (uint i = 1; i < n_ctrl->req(); i++) {
1398     if (n_ctrl->in(i) == C->top()) {
1399       return false;
1400     }
1401   }
1402 
1403   // If trying to do a 'Split-If' at the loop head, it is only
1404   // profitable if the cmp folds up on BOTH paths.  Otherwise we
1405   // risk peeling a loop forever.
1406 
1407   // CNC - Disabled for now.  Requires careful handling of loop
1408   // body selection for the cloned code.  Also, make sure we check
1409   // for any input path not being in the same loop as n_ctrl.  For
1410   // irreducible loops we cannot check for 'n_ctrl->is_Loop()'
1411   // because the alternative loop entry points won't be converted
1412   // into LoopNodes.
1413   IdealLoopTree *n_loop = get_loop(n_ctrl);
1414   for (uint j = 1; j < n_ctrl->req(); j++) {
1415     if (get_loop(n_ctrl->in(j)) != n_loop) {
1416       return false;
1417     }
1418   }
1419 
1420   // Check for safety of the merge point.
1421   if (!merge_point_safe(n_ctrl)) {
1422     return false;
1423   }
1424 
1425   return true;
1426 }
1427 
1428 // Detect if the node is the inner strip-mined loop
1429 // Return: null if it's not the case, or the exit of outer strip-mined loop
1430 static Node* is_inner_of_stripmined_loop(const Node* out) {
1431   Node* out_le = nullptr;
1432 
1433   if (out->is_CountedLoopEnd()) {
1434       const CountedLoopNode* loop = out->as_CountedLoopEnd()->loopnode();
1435 
1436       if (loop != nullptr && loop->is_strip_mined()) {
1437         out_le = loop->in(LoopNode::EntryControl)->as_OuterStripMinedLoop()->outer_loop_exit();
1438       }
1439   }
1440 
1441   return out_le;
1442 }
1443 
1444 bool PhaseIdealLoop::flat_array_element_type_check(Node *n) {
1445   // If the CmpP is a subtype check for a value that has just been
1446   // loaded from an array, the subtype check guarantees the value
1447   // can't be stored in a flat array and the load of the value
1448   // happens with a flat array check then: push the type check
1449   // through the phi of the flat array check. This needs special
1450   // logic because the subtype check's input is not a phi but a
1451   // LoadKlass that must first be cloned through the phi.
1452   if (n->Opcode() != Op_CmpP) {
1453     return false;
1454   }
1455 
1456   Node* klassptr = n->in(1);
1457   Node* klasscon = n->in(2);
1458 
1459   if (klassptr->is_DecodeNarrowPtr()) {
1460     klassptr = klassptr->in(1);
1461   }
1462 
1463   if (klassptr->Opcode() != Op_LoadKlass && klassptr->Opcode() != Op_LoadNKlass) {
1464     return false;
1465   }
1466 
1467   if (!klasscon->is_Con()) {
1468     return false;
1469   }
1470 
1471   Node* addr = klassptr->in(MemNode::Address);
1472 
1473   if (!addr->is_AddP()) {
1474     return false;
1475   }
1476 
1477   intptr_t offset;
1478   Node* obj = AddPNode::Ideal_base_and_offset(addr, &_igvn, offset);
1479 
1480   if (obj == nullptr) {
1481     return false;
1482   }
1483 
1484   assert(obj != nullptr && addr->in(AddPNode::Base) == addr->in(AddPNode::Address), "malformed AddP?");
1485   if (obj->Opcode() == Op_CastPP) {
1486     obj = obj->in(1);
1487   }
1488 
1489   if (!obj->is_Phi()) {
1490     return false;
1491   }
1492 
1493   Node* region = obj->in(0);
1494 
1495   Node* phi = PhiNode::make_blank(region, n->in(1));
1496   for (uint i = 1; i < region->req(); i++) {
1497     Node* in = obj->in(i);
1498     Node* ctrl = region->in(i);
1499     if (addr->in(AddPNode::Base) != obj) {
1500       Node* cast = addr->in(AddPNode::Base);
1501       assert(cast->Opcode() == Op_CastPP && cast->in(0) != nullptr, "inconsistent subgraph");
1502       Node* cast_clone = cast->clone();
1503       cast_clone->set_req(0, ctrl);
1504       cast_clone->set_req(1, in);
1505       register_new_node(cast_clone, ctrl);
1506       const Type* tcast = cast_clone->Value(&_igvn);
1507       _igvn.set_type(cast_clone, tcast);
1508       cast_clone->as_Type()->set_type(tcast);
1509       in = cast_clone;
1510     }
1511     Node* addr_clone = addr->clone();
1512     addr_clone->set_req(AddPNode::Base, in);
1513     addr_clone->set_req(AddPNode::Address, in);
1514     register_new_node(addr_clone, ctrl);
1515     _igvn.set_type(addr_clone, addr_clone->Value(&_igvn));
1516     Node* klassptr_clone = klassptr->clone();
1517     klassptr_clone->set_req(2, addr_clone);
1518     register_new_node(klassptr_clone, ctrl);
1519     _igvn.set_type(klassptr_clone, klassptr_clone->Value(&_igvn));
1520     if (klassptr != n->in(1)) {
1521       Node* decode = n->in(1);
1522       assert(decode->is_DecodeNarrowPtr(), "inconsistent subgraph");
1523       Node* decode_clone = decode->clone();
1524       decode_clone->set_req(1, klassptr_clone);
1525       register_new_node(decode_clone, ctrl);
1526       _igvn.set_type(decode_clone, decode_clone->Value(&_igvn));
1527       klassptr_clone = decode_clone;
1528     }
1529     phi->set_req(i, klassptr_clone);
1530   }
1531   register_new_node(phi, region);
1532   Node* orig = n->in(1);
1533   _igvn.replace_input_of(n, 1, phi);
1534   split_if_with_blocks_post(n);
1535   if (n->outcnt() != 0) {
1536     _igvn.replace_input_of(n, 1, orig);
1537     _igvn.remove_dead_node(phi);
1538   }
1539   return true;
1540 }
1541 
1542 //------------------------------split_if_with_blocks_post----------------------
1543 // Do the real work in a non-recursive function.  CFG hackery wants to be
1544 // in the post-order, so it can dirty the I-DOM info and not use the dirtied
1545 // info.
1546 void PhaseIdealLoop::split_if_with_blocks_post(Node *n) {
1547 
1548   if (flat_array_element_type_check(n)) {
1549     return;
1550   }
1551 
1552   // Cloning Cmp through Phi's involves the split-if transform.
1553   // FastLock is not used by an If
1554   if (n->is_Cmp() && !n->is_FastLock()) {
1555     Node *n_ctrl = get_ctrl(n);
1556     // Determine if the Node has inputs from some local Phi.
1557     // Returns the block to clone thru.
1558     Node *n_blk = has_local_phi_input(n);
1559     if (n_blk != n_ctrl) {
1560       return;
1561     }
1562 
1563     if (!can_split_if(n_ctrl)) {
1564       return;
1565     }
1566 
1567     if (n->outcnt() != 1) {
1568       return; // Multiple bool's from 1 compare?
1569     }
1570     Node *bol = n->unique_out();
1571     assert(bol->is_Bool(), "expect a bool here");
1572     if (bol->outcnt() != 1) {
1573       return;// Multiple branches from 1 compare?
1574     }
1575     Node *iff = bol->unique_out();
1576 
1577     // Check some safety conditions
1578     if (iff->is_If()) {        // Classic split-if?
1579       if (iff->in(0) != n_ctrl) {
1580         return; // Compare must be in same blk as if
1581       }
1582     } else if (iff->is_CMove()) { // Trying to split-up a CMOVE
1583       // Can't split CMove with different control.
1584       if (get_ctrl(iff) != n_ctrl) {
1585         return;
1586       }
1587       if (get_ctrl(iff->in(2)) == n_ctrl ||
1588           get_ctrl(iff->in(3)) == n_ctrl) {
1589         return;                 // Inputs not yet split-up
1590       }
1591       if (get_loop(n_ctrl) != get_loop(get_ctrl(iff))) {
1592         return;                 // Loop-invar test gates loop-varying CMOVE
1593       }
1594     } else {
1595       return;  // some other kind of node, such as an Allocate
1596     }
1597 
1598     // When is split-if profitable?  Every 'win' on means some control flow
1599     // goes dead, so it's almost always a win.
1600     int policy = 0;
1601     // Split compare 'n' through the merge point if it is profitable
1602     Node *phi = split_thru_phi( n, n_ctrl, policy);
1603     if (!phi) {
1604       return;
1605     }
1606 
1607     // Found a Phi to split thru!
1608     // Replace 'n' with the new phi
1609     _igvn.replace_node(n, phi);
1610 
1611     // Now split the bool up thru the phi
1612     Node *bolphi = split_thru_phi(bol, n_ctrl, -1);
1613     guarantee(bolphi != nullptr, "null boolean phi node");
1614 
1615     _igvn.replace_node(bol, bolphi);
1616     assert(iff->in(1) == bolphi, "");
1617 
1618     if (bolphi->Value(&_igvn)->singleton()) {
1619       return;
1620     }
1621 
1622     // Conditional-move?  Must split up now
1623     if (!iff->is_If()) {
1624       Node *cmovphi = split_thru_phi(iff, n_ctrl, -1);
1625       _igvn.replace_node(iff, cmovphi);
1626       return;
1627     }
1628 
1629     // Now split the IF
1630     C->print_method(PHASE_BEFORE_SPLIT_IF, 4, iff);
1631     if (TraceLoopOpts) {
1632       tty->print_cr("Split-If");
1633     }
1634     do_split_if(iff);
1635     C->print_method(PHASE_AFTER_SPLIT_IF, 4, iff);
1636     return;
1637   }
1638 
1639   // Two identical ifs back to back can be merged
1640   if (try_merge_identical_ifs(n)) {
1641     return;
1642   }
1643 
1644   // Check for an IF ready to split; one that has its
1645   // condition codes input coming from a Phi at the block start.
1646   int n_op = n->Opcode();
1647 
1648   // Check for an IF being dominated by another IF same test
1649   if (n_op == Op_If ||
1650       n_op == Op_RangeCheck) {
1651     Node *bol = n->in(1);
1652     uint max = bol->outcnt();
1653     // Check for same test used more than once?
1654     if (bol->is_Bool() && (max > 1 || bol->in(1)->is_SubTypeCheck())) {
1655       // Search up IDOMs to see if this IF is dominated.
1656       Node* cmp = bol->in(1);
1657       Node *cutoff = cmp->is_SubTypeCheck() ? dom_lca(get_ctrl(cmp->in(1)), get_ctrl(cmp->in(2))) : get_ctrl(bol);
1658 
1659       // Now search up IDOMs till cutoff, looking for a dominating test
1660       Node *prevdom = n;
1661       Node *dom = idom(prevdom);
1662       while (dom != cutoff) {
1663         if (dom->req() > 1 && n->as_If()->same_condition(dom, &_igvn) && prevdom->in(0) == dom &&
1664             safe_for_if_replacement(dom)) {
1665           // It's invalid to move control dependent data nodes in the inner
1666           // strip-mined loop, because:
1667           //  1) break validation of LoopNode::verify_strip_mined()
1668           //  2) move code with side-effect in strip-mined loop
1669           // Move to the exit of outer strip-mined loop in that case.
1670           Node* out_le = is_inner_of_stripmined_loop(dom);
1671           if (out_le != nullptr) {
1672             prevdom = out_le;
1673           }
1674           // Replace the dominated test with an obvious true or false.
1675           // Place it on the IGVN worklist for later cleanup.
1676           C->set_major_progress();
1677           // Split if: pin array accesses that are control dependent on a range check and moved to a regular if,
1678           // to prevent an array load from floating above its range check. There are three cases:
1679           // 1. Move from RangeCheck "a" to RangeCheck "b": don't need to pin. If we ever remove b, then we pin
1680           //    all its array accesses at that point.
1681           // 2. We move from RangeCheck "a" to regular if "b": need to pin. If we ever remove b, then its array
1682           //    accesses would start to float, since we don't pin at that point.
1683           // 3. If we move from regular if: don't pin. All array accesses are already assumed to be pinned.
1684           bool pin_array_access_nodes =  n->Opcode() == Op_RangeCheck &&
1685                                          prevdom->in(0)->Opcode() != Op_RangeCheck;
1686           dominated_by(prevdom->as_IfProj(), n->as_If(), false, pin_array_access_nodes);
1687           DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
1688           return;
1689         }
1690         prevdom = dom;
1691         dom = idom(prevdom);
1692       }
1693     }
1694   }
1695 
1696   try_sink_out_of_loop(n);
1697   if (C->failing()) {
1698     return;
1699   }
1700 
1701   try_move_store_after_loop(n);
1702 
1703   // Remove multiple allocations of the same inline type
1704   if (n->is_InlineType()) {
1705     n->as_InlineType()->remove_redundant_allocations(this);
1706   }
1707 }
1708 
1709 // Transform:
1710 //
1711 // if (some_condition) {
1712 //   // body 1
1713 // } else {
1714 //   // body 2
1715 // }
1716 // if (some_condition) {
1717 //   // body 3
1718 // } else {
1719 //   // body 4
1720 // }
1721 //
1722 // into:
1723 //
1724 //
1725 // if (some_condition) {
1726 //   // body 1
1727 //   // body 3
1728 // } else {
1729 //   // body 2
1730 //   // body 4
1731 // }
1732 bool PhaseIdealLoop::try_merge_identical_ifs(Node* n) {
1733   if (identical_backtoback_ifs(n) && can_split_if(n->in(0))) {
1734     Node *n_ctrl = n->in(0);
1735     IfNode* dom_if = idom(n_ctrl)->as_If();
1736     if (n->in(1) != dom_if->in(1)) {
1737       assert(n->in(1)->in(1)->is_SubTypeCheck() &&
1738              (n->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr ||
1739               dom_if->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr), "only for subtype checks with profile data attached");
1740       _igvn.replace_input_of(n, 1, dom_if->in(1));
1741     }
1742     ProjNode* dom_proj_true = dom_if->proj_out(1);
1743     ProjNode* dom_proj_false = dom_if->proj_out(0);
1744 
1745     // Now split the IF
1746     RegionNode* new_false_region;
1747     RegionNode* new_true_region;
1748     do_split_if(n, &new_false_region, &new_true_region);
1749     assert(new_false_region->req() == new_true_region->req(), "");
1750 #ifdef ASSERT
1751     for (uint i = 1; i < new_false_region->req(); ++i) {
1752       assert(new_false_region->in(i)->in(0) == new_true_region->in(i)->in(0), "unexpected shape following split if");
1753       assert(i == new_false_region->req() - 1 || new_false_region->in(i)->in(0)->in(1) == new_false_region->in(i + 1)->in(0)->in(1), "unexpected shape following split if");
1754     }
1755 #endif
1756     assert(new_false_region->in(1)->in(0)->in(1) == dom_if->in(1), "dominating if and dominated if after split must share test");
1757 
1758     // We now have:
1759     // if (some_condition) {
1760     //   // body 1
1761     //   if (some_condition) {
1762     //     body3: // new_true_region
1763     //     // body3
1764     //   } else {
1765     //     goto body4;
1766     //   }
1767     // } else {
1768     //   // body 2
1769     //  if (some_condition) {
1770     //     goto body3;
1771     //   } else {
1772     //     body4:   // new_false_region
1773     //     // body4;
1774     //   }
1775     // }
1776     //
1777 
1778     // clone pinned nodes thru the resulting regions
1779     push_pinned_nodes_thru_region(dom_if, new_true_region);
1780     push_pinned_nodes_thru_region(dom_if, new_false_region);
1781 
1782     // Optimize out the cloned ifs. Because pinned nodes were cloned, this also allows a CastPP that would be dependent
1783     // on a projection of n to have the dom_if as a control dependency. We don't want the CastPP to end up with an
1784     // unrelated control dependency.
1785     for (uint i = 1; i < new_false_region->req(); i++) {
1786       if (is_dominator(dom_proj_true, new_false_region->in(i))) {
1787         dominated_by(dom_proj_true->as_IfProj(), new_false_region->in(i)->in(0)->as_If());
1788       } else {
1789         assert(is_dominator(dom_proj_false, new_false_region->in(i)), "bad if");
1790         dominated_by(dom_proj_false->as_IfProj(), new_false_region->in(i)->in(0)->as_If());
1791       }
1792     }
1793     return true;
1794   }
1795   return false;
1796 }
1797 
1798 void PhaseIdealLoop::push_pinned_nodes_thru_region(IfNode* dom_if, Node* region) {
1799   for (DUIterator i = region->outs(); region->has_out(i); i++) {
1800     Node* u = region->out(i);
1801     if (!has_ctrl(u) || u->is_Phi() || !u->depends_only_on_test() || !_igvn.no_dependent_zero_check(u)) {
1802       continue;
1803     }
1804     assert(u->in(0) == region, "not a control dependent node?");
1805     uint j = 1;
1806     for (; j < u->req(); ++j) {
1807       Node* in = u->in(j);
1808       if (!is_dominator(ctrl_or_self(in), dom_if)) {
1809         break;
1810       }
1811     }
1812     if (j == u->req()) {
1813       Node *phi = PhiNode::make_blank(region, u);
1814       for (uint k = 1; k < region->req(); ++k) {
1815         Node* clone = u->clone();
1816         clone->set_req(0, region->in(k));
1817         register_new_node(clone, region->in(k));
1818         phi->init_req(k, clone);
1819       }
1820       register_new_node(phi, region);
1821       _igvn.replace_node(u, phi);
1822       --i;
1823     }
1824   }
1825 }
1826 
1827 bool PhaseIdealLoop::safe_for_if_replacement(const Node* dom) const {
1828   if (!dom->is_CountedLoopEnd()) {
1829     return true;
1830   }
1831   CountedLoopEndNode* le = dom->as_CountedLoopEnd();
1832   CountedLoopNode* cl = le->loopnode();
1833   if (cl == nullptr) {
1834     return true;
1835   }
1836   if (!cl->is_main_loop()) {
1837     return true;
1838   }
1839   if (cl->is_canonical_loop_entry() == nullptr) {
1840     return true;
1841   }
1842   // Further unrolling is possible so loop exit condition might change
1843   return false;
1844 }
1845 
1846 // See if a shared loop-varying computation has no loop-varying uses.
1847 // Happens if something is only used for JVM state in uncommon trap exits,
1848 // like various versions of induction variable+offset.  Clone the
1849 // computation per usage to allow it to sink out of the loop.
1850 void PhaseIdealLoop::try_sink_out_of_loop(Node* n) {
1851   if (has_ctrl(n) &&
1852       !n->is_Phi() &&
1853       !n->is_Bool() &&
1854       !n->is_Proj() &&
1855       !n->is_MergeMem() &&
1856       !n->is_CMove() &&
1857       !n->is_OpaqueNotNull() &&
1858       !n->is_OpaqueInitializedAssertionPredicate() &&
1859       !n->is_OpaqueTemplateAssertionPredicate() &&
1860       !n->is_Type()) {
1861     Node *n_ctrl = get_ctrl(n);
1862     IdealLoopTree *n_loop = get_loop(n_ctrl);
1863 
1864     if (n->in(0) != nullptr) {
1865       IdealLoopTree* loop_ctrl = get_loop(n->in(0));
1866       if (n_loop != loop_ctrl && n_loop->is_member(loop_ctrl)) {
1867         // n has a control input inside a loop but get_ctrl() is member of an outer loop. This could happen, for example,
1868         // for Div nodes inside a loop (control input inside loop) without a use except for an UCT (outside the loop).
1869         // Rewire control of n to right outside of the loop, regardless if its input(s) are later sunk or not.
1870         Node* maybe_pinned_n = n;
1871         Node* outside_ctrl = place_outside_loop(n_ctrl, loop_ctrl);
1872         if (n->depends_only_on_test()) {
1873           Node* pinned_clone = n->pin_array_access_node();
1874           if (pinned_clone != nullptr) {
1875             // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a
1876             // range check for that access. If that condition is replaced by an identical dominating one, then an
1877             // unpinned load would risk floating above its range check.
1878             register_new_node(pinned_clone, n_ctrl);
1879             maybe_pinned_n = pinned_clone;
1880             _igvn.replace_node(n, pinned_clone);
1881           }
1882         }
1883         _igvn.replace_input_of(maybe_pinned_n, 0, outside_ctrl);
1884       }
1885     }
1886     if (n_loop != _ltree_root && n->outcnt() > 1) {
1887       // Compute early control: needed for anti-dependence analysis. It's also possible that as a result of
1888       // previous transformations in this loop opts round, the node can be hoisted now: early control will tell us.
1889       Node* early_ctrl = compute_early_ctrl(n, n_ctrl);
1890       if (n_loop->is_member(get_loop(early_ctrl)) && // check that this one can't be hoisted now
1891           ctrl_of_all_uses_out_of_loop(n, early_ctrl, n_loop)) { // All uses in outer loops!
1892         if (n->is_Store() || n->is_LoadStore()) {
1893             assert(false, "no node with a side effect");
1894             C->record_failure("no node with a side effect");
1895             return;
1896         }
1897         Node* outer_loop_clone = nullptr;
1898         for (DUIterator_Last jmin, j = n->last_outs(jmin); j >= jmin;) {
1899           Node* u = n->last_out(j); // Clone private computation per use
1900           _igvn.rehash_node_delayed(u);
1901           Node* x = nullptr;
1902           if (n->depends_only_on_test()) {
1903             // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a
1904             // range check for that access. If that condition is replaced by an identical dominating one, then an
1905             // unpinned load would risk floating above its range check.
1906             x = n->pin_array_access_node();
1907           }
1908           if (x == nullptr) {
1909             x = n->clone();
1910           }
1911           Node* x_ctrl = nullptr;
1912           if (u->is_Phi()) {
1913             // Replace all uses of normal nodes.  Replace Phi uses
1914             // individually, so the separate Nodes can sink down
1915             // different paths.
1916             uint k = 1;
1917             while (u->in(k) != n) k++;
1918             u->set_req(k, x);
1919             // x goes next to Phi input path
1920             x_ctrl = u->in(0)->in(k);
1921             // Find control for 'x' next to use but not inside inner loops.
1922             x_ctrl = place_outside_loop(x_ctrl, n_loop);
1923             --j;
1924           } else {              // Normal use
1925             if (has_ctrl(u)) {
1926               x_ctrl = get_ctrl(u);
1927             } else {
1928               x_ctrl = u->in(0);
1929             }
1930             // Find control for 'x' next to use but not inside inner loops.
1931             x_ctrl = place_outside_loop(x_ctrl, n_loop);
1932             // Replace all uses
1933             if (u->is_ConstraintCast() && _igvn.type(n)->higher_equal(u->bottom_type()) && u->in(0) == x_ctrl) {
1934               // If we're sinking a chain of data nodes, we might have inserted a cast to pin the use which is not necessary
1935               // anymore now that we're going to pin n as well
1936               _igvn.replace_node(u, x);
1937               --j;
1938             } else {
1939               int nb = u->replace_edge(n, x, &_igvn);
1940               j -= nb;
1941             }
1942           }
1943 
1944           if (n->is_Load()) {
1945             // For loads, add a control edge to a CFG node outside of the loop
1946             // to force them to not combine and return back inside the loop
1947             // during GVN optimization (4641526).
1948             assert(x_ctrl == get_late_ctrl_with_anti_dep(x->as_Load(), early_ctrl, x_ctrl), "anti-dependences were already checked");
1949 
1950             IdealLoopTree* x_loop = get_loop(x_ctrl);
1951             Node* x_head = x_loop->_head;
1952             if (x_head->is_Loop() && x_head->is_OuterStripMinedLoop()) {
1953               // Do not add duplicate LoadNodes to the outer strip mined loop
1954               if (outer_loop_clone != nullptr) {
1955                 _igvn.replace_node(x, outer_loop_clone);
1956                 continue;
1957               }
1958               outer_loop_clone = x;
1959             }
1960             x->set_req(0, x_ctrl);
1961           } else if (n->in(0) != nullptr){
1962             x->set_req(0, x_ctrl);
1963           }
1964           assert(dom_depth(n_ctrl) <= dom_depth(x_ctrl), "n is later than its clone");
1965           assert(!n_loop->is_member(get_loop(x_ctrl)), "should have moved out of loop");
1966           register_new_node(x, x_ctrl);
1967 
1968           // Chain of AddP nodes: (AddP base (AddP base (AddP base )))
1969           // All AddP nodes must keep the same base after sinking so:
1970           // 1- We don't add a CastPP here until the last one of the chain is sunk: if part of the chain is not sunk,
1971           // their bases remain the same.
1972           // (see 2- below)
1973           assert(!x->is_AddP() || !x->in(AddPNode::Address)->is_AddP() ||
1974                  x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base) ||
1975                  !x->in(AddPNode::Address)->in(AddPNode::Base)->eqv_uncast(x->in(AddPNode::Base)), "unexpected AddP shape");
1976           if (x->in(0) == nullptr && !x->is_DecodeNarrowPtr() &&
1977               !(x->is_AddP() && x->in(AddPNode::Address)->is_AddP() && x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base))) {
1978             assert(!x->is_Load(), "load should be pinned");
1979             // Use a cast node to pin clone out of loop
1980             Node* cast = nullptr;
1981             for (uint k = 0; k < x->req(); k++) {
1982               Node* in = x->in(k);
1983               if (in != nullptr && n_loop->is_member(get_loop(get_ctrl(in)))) {
1984                 const Type* in_t = _igvn.type(in);
1985                 cast = ConstraintCastNode::make_cast_for_type(x_ctrl, in, in_t,
1986                                                               ConstraintCastNode::UnconditionalDependency, nullptr);
1987               }
1988               if (cast != nullptr) {
1989                 Node* prev = _igvn.hash_find_insert(cast);
1990                 if (prev != nullptr && get_ctrl(prev) == x_ctrl) {
1991                   cast->destruct(&_igvn);
1992                   cast = prev;
1993                 } else {
1994                   register_new_node(cast, x_ctrl);
1995                 }
1996                 x->replace_edge(in, cast);
1997                 // Chain of AddP nodes:
1998                 // 2- A CastPP of the base is only added now that all AddP nodes are sunk
1999                 if (x->is_AddP() && k == AddPNode::Base) {
2000                   update_addp_chain_base(x, n->in(AddPNode::Base), cast);
2001                 }
2002                 break;
2003               }
2004             }
2005             assert(cast != nullptr, "must have added a cast to pin the node");
2006           }
2007         }
2008         _igvn.remove_dead_node(n);
2009       }
2010       _dom_lca_tags_round = 0;
2011     }
2012   }
2013 }
2014 
2015 void PhaseIdealLoop::update_addp_chain_base(Node* x, Node* old_base, Node* new_base) {
2016   ResourceMark rm;
2017   Node_List wq;
2018   wq.push(x);
2019   while (wq.size() != 0) {
2020     Node* n = wq.pop();
2021     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2022       Node* u = n->fast_out(i);
2023       if (u->is_AddP() && u->in(AddPNode::Base) == old_base) {
2024         _igvn.replace_input_of(u, AddPNode::Base, new_base);
2025         wq.push(u);
2026       }
2027     }
2028   }
2029 }
2030 
2031 // Compute the early control of a node by following its inputs until we reach
2032 // nodes that are pinned. Then compute the LCA of the control of all pinned nodes.
2033 Node* PhaseIdealLoop::compute_early_ctrl(Node* n, Node* n_ctrl) {
2034   Node* early_ctrl = nullptr;
2035   ResourceMark rm;
2036   Unique_Node_List wq;
2037   wq.push(n);
2038   for (uint i = 0; i < wq.size(); i++) {
2039     Node* m = wq.at(i);
2040     Node* c = nullptr;
2041     if (m->is_CFG()) {
2042       c = m;
2043     } else if (m->pinned()) {
2044       c = m->in(0);
2045     } else {
2046       for (uint j = 0; j < m->req(); j++) {
2047         Node* in = m->in(j);
2048         if (in != nullptr) {
2049           wq.push(in);
2050         }
2051       }
2052     }
2053     if (c != nullptr) {
2054       assert(is_dominator(c, n_ctrl), "control input must dominate current control");
2055       if (early_ctrl == nullptr || is_dominator(early_ctrl, c)) {
2056         early_ctrl = c;
2057       }
2058     }
2059   }
2060   assert(is_dominator(early_ctrl, n_ctrl), "early control must dominate current control");
2061   return early_ctrl;
2062 }
2063 
2064 bool PhaseIdealLoop::ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop) {
2065   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2066     Node* u = n->fast_out(i);
2067     if (u->is_Opaque1()) {
2068       return false;  // Found loop limit, bugfix for 4677003
2069     }
2070     // We can't reuse tags in PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal() so make sure calls to
2071     // get_late_ctrl_with_anti_dep() use their own tag
2072     _dom_lca_tags_round++;
2073     assert(_dom_lca_tags_round != 0, "shouldn't wrap around");
2074 
2075     if (u->is_Phi()) {
2076       for (uint j = 1; j < u->req(); ++j) {
2077         if (u->in(j) == n && !ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, u->in(0)->in(j))) {
2078           return false;
2079         }
2080       }
2081     } else {
2082       Node* ctrl = has_ctrl(u) ? get_ctrl(u) : u->in(0);
2083       if (!ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, ctrl)) {
2084         return false;
2085       }
2086     }
2087   }
2088   return true;
2089 }
2090 
2091 bool PhaseIdealLoop::ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl) {
2092   if (n->is_Load()) {
2093     ctrl = get_late_ctrl_with_anti_dep(n->as_Load(), n_ctrl, ctrl);
2094   }
2095   IdealLoopTree *u_loop = get_loop(ctrl);
2096   if (u_loop == n_loop) {
2097     return false; // Found loop-varying use
2098   }
2099   if (n_loop->is_member(u_loop)) {
2100     return false; // Found use in inner loop
2101   }
2102   // Sinking a node from a pre loop to its main loop pins the node between the pre and main loops. If that node is input
2103   // to a check that's eliminated by range check elimination, it becomes input to an expression that feeds into the exit
2104   // test of the pre loop above the point in the graph where it's pinned.
2105   if (n_loop->_head->is_CountedLoop() && n_loop->_head->as_CountedLoop()->is_pre_loop()) {
2106     CountedLoopNode* pre_loop = n_loop->_head->as_CountedLoop();
2107     if (is_dominator(pre_loop->loopexit(), ctrl)) {
2108       return false;
2109     }
2110   }
2111   return true;
2112 }
2113 
2114 //------------------------------split_if_with_blocks---------------------------
2115 // Check for aggressive application of 'split-if' optimization,
2116 // using basic block level info.
2117 void PhaseIdealLoop::split_if_with_blocks(VectorSet &visited, Node_Stack &nstack) {
2118   Node* root = C->root();
2119   visited.set(root->_idx); // first, mark root as visited
2120   // Do pre-visit work for root
2121   Node* n   = split_if_with_blocks_pre(root);
2122   uint  cnt = n->outcnt();
2123   uint  i   = 0;
2124 
2125   while (true) {
2126     // Visit all children
2127     if (i < cnt) {
2128       Node* use = n->raw_out(i);
2129       ++i;
2130       if (use->outcnt() != 0 && !visited.test_set(use->_idx)) {
2131         // Now do pre-visit work for this use
2132         use = split_if_with_blocks_pre(use);
2133         nstack.push(n, i); // Save parent and next use's index.
2134         n   = use;         // Process all children of current use.
2135         cnt = use->outcnt();
2136         i   = 0;
2137       }
2138     }
2139     else {
2140       // All of n's children have been processed, complete post-processing.
2141       if (cnt != 0 && !n->is_Con()) {
2142         assert(has_node(n), "no dead nodes");
2143         split_if_with_blocks_post(n);
2144         if (C->failing()) {
2145           return;
2146         }
2147       }
2148       if (must_throttle_split_if()) {
2149         nstack.clear();
2150       }
2151       if (nstack.is_empty()) {
2152         // Finished all nodes on stack.
2153         break;
2154       }
2155       // Get saved parent node and next use's index. Visit the rest of uses.
2156       n   = nstack.node();
2157       cnt = n->outcnt();
2158       i   = nstack.index();
2159       nstack.pop();
2160     }
2161   }
2162 }
2163 
2164 
2165 //=============================================================================
2166 //
2167 //                   C L O N E   A   L O O P   B O D Y
2168 //
2169 
2170 //------------------------------clone_iff--------------------------------------
2171 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
2172 // "Nearly" because all Nodes have been cloned from the original in the loop,
2173 // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
2174 // through the Phi recursively, and return a Bool.
2175 Node* PhaseIdealLoop::clone_iff(PhiNode* phi) {
2176 
2177   // Convert this Phi into a Phi merging Bools
2178   uint i;
2179   for (i = 1; i < phi->req(); i++) {
2180     Node* b = phi->in(i);
2181     if (b->is_Phi()) {
2182       _igvn.replace_input_of(phi, i, clone_iff(b->as_Phi()));
2183     } else {
2184       assert(b->is_Bool() || b->is_OpaqueNotNull() || b->is_OpaqueInitializedAssertionPredicate(),
2185              "bool, non-null check with OpaqueNotNull or Initialized Assertion Predicate with its Opaque node");
2186     }
2187   }
2188   Node* n = phi->in(1);
2189   Node* sample_opaque = nullptr;
2190   Node *sample_bool = nullptr;
2191   if (n->is_OpaqueNotNull() || n->is_OpaqueInitializedAssertionPredicate()) {
2192     sample_opaque = n;
2193     sample_bool = n->in(1);
2194     assert(sample_bool->is_Bool(), "wrong type");
2195   } else {
2196     sample_bool = n;
2197   }
2198   Node* sample_cmp = sample_bool->in(1);
2199   const Type* t = Type::TOP;
2200   const TypePtr* at = nullptr;
2201   if (sample_cmp->is_FlatArrayCheck()) {
2202     // Left input of a FlatArrayCheckNode is memory, set the (adr) type of the phi accordingly
2203     assert(sample_cmp->in(1)->bottom_type() == Type::MEMORY, "unexpected input type");
2204     t = Type::MEMORY;
2205     at = TypeRawPtr::BOTTOM;
2206   }
2207 
2208   // Make Phis to merge the Cmp's inputs.
2209   PhiNode *phi1 = new PhiNode(phi->in(0), t, at);
2210   PhiNode *phi2 = new PhiNode(phi->in(0), Type::TOP);
2211   for (i = 1; i < phi->req(); i++) {
2212     Node *n1 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(1) : phi->in(i)->in(1)->in(1)->in(1);
2213     Node *n2 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(2) : phi->in(i)->in(1)->in(1)->in(2);
2214     phi1->set_req(i, n1);
2215     phi2->set_req(i, n2);
2216     phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type()));
2217     phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type()));
2218   }
2219   // See if these Phis have been made before.
2220   // Register with optimizer
2221   Node *hit1 = _igvn.hash_find_insert(phi1);
2222   if (hit1) {                   // Hit, toss just made Phi
2223     _igvn.remove_dead_node(phi1); // Remove new phi
2224     assert(hit1->is_Phi(), "" );
2225     phi1 = (PhiNode*)hit1;      // Use existing phi
2226   } else {                      // Miss
2227     _igvn.register_new_node_with_optimizer(phi1);
2228   }
2229   Node *hit2 = _igvn.hash_find_insert(phi2);
2230   if (hit2) {                   // Hit, toss just made Phi
2231     _igvn.remove_dead_node(phi2); // Remove new phi
2232     assert(hit2->is_Phi(), "" );
2233     phi2 = (PhiNode*)hit2;      // Use existing phi
2234   } else {                      // Miss
2235     _igvn.register_new_node_with_optimizer(phi2);
2236   }
2237   // Register Phis with loop/block info
2238   set_ctrl(phi1, phi->in(0));
2239   set_ctrl(phi2, phi->in(0));
2240   // Make a new Cmp
2241   Node *cmp = sample_cmp->clone();
2242   cmp->set_req(1, phi1);
2243   cmp->set_req(2, phi2);
2244   _igvn.register_new_node_with_optimizer(cmp);
2245   set_ctrl(cmp, phi->in(0));
2246 
2247   // Make a new Bool
2248   Node *b = sample_bool->clone();
2249   b->set_req(1,cmp);
2250   _igvn.register_new_node_with_optimizer(b);
2251   set_ctrl(b, phi->in(0));
2252 
2253   if (sample_opaque != nullptr) {
2254     Node* opaque = sample_opaque->clone();
2255     opaque->set_req(1, b);
2256     _igvn.register_new_node_with_optimizer(opaque);
2257     set_ctrl(opaque, phi->in(0));
2258     return opaque;
2259   }
2260 
2261   assert(b->is_Bool(), "");
2262   return b;
2263 }
2264 
2265 //------------------------------clone_bool-------------------------------------
2266 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
2267 // "Nearly" because all Nodes have been cloned from the original in the loop,
2268 // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
2269 // through the Phi recursively, and return a Bool.
2270 CmpNode*PhaseIdealLoop::clone_bool(PhiNode* phi) {
2271   uint i;
2272   // Convert this Phi into a Phi merging Bools
2273   for( i = 1; i < phi->req(); i++ ) {
2274     Node *b = phi->in(i);
2275     if( b->is_Phi() ) {
2276       _igvn.replace_input_of(phi, i, clone_bool(b->as_Phi()));
2277     } else {
2278       assert( b->is_Cmp() || b->is_top(), "inputs are all Cmp or TOP" );
2279     }
2280   }
2281 
2282   Node *sample_cmp = phi->in(1);
2283 
2284   // Make Phis to merge the Cmp's inputs.
2285   PhiNode *phi1 = new PhiNode( phi->in(0), Type::TOP );
2286   PhiNode *phi2 = new PhiNode( phi->in(0), Type::TOP );
2287   for( uint j = 1; j < phi->req(); j++ ) {
2288     Node *cmp_top = phi->in(j); // Inputs are all Cmp or TOP
2289     Node *n1, *n2;
2290     if( cmp_top->is_Cmp() ) {
2291       n1 = cmp_top->in(1);
2292       n2 = cmp_top->in(2);
2293     } else {
2294       n1 = n2 = cmp_top;
2295     }
2296     phi1->set_req( j, n1 );
2297     phi2->set_req( j, n2 );
2298     phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type()));
2299     phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type()));
2300   }
2301 
2302   // See if these Phis have been made before.
2303   // Register with optimizer
2304   Node *hit1 = _igvn.hash_find_insert(phi1);
2305   if( hit1 ) {                  // Hit, toss just made Phi
2306     _igvn.remove_dead_node(phi1); // Remove new phi
2307     assert( hit1->is_Phi(), "" );
2308     phi1 = (PhiNode*)hit1;      // Use existing phi
2309   } else {                      // Miss
2310     _igvn.register_new_node_with_optimizer(phi1);
2311   }
2312   Node *hit2 = _igvn.hash_find_insert(phi2);
2313   if( hit2 ) {                  // Hit, toss just made Phi
2314     _igvn.remove_dead_node(phi2); // Remove new phi
2315     assert( hit2->is_Phi(), "" );
2316     phi2 = (PhiNode*)hit2;      // Use existing phi
2317   } else {                      // Miss
2318     _igvn.register_new_node_with_optimizer(phi2);
2319   }
2320   // Register Phis with loop/block info
2321   set_ctrl(phi1, phi->in(0));
2322   set_ctrl(phi2, phi->in(0));
2323   // Make a new Cmp
2324   Node *cmp = sample_cmp->clone();
2325   cmp->set_req( 1, phi1 );
2326   cmp->set_req( 2, phi2 );
2327   _igvn.register_new_node_with_optimizer(cmp);
2328   set_ctrl(cmp, phi->in(0));
2329 
2330   assert( cmp->is_Cmp(), "" );
2331   return (CmpNode*)cmp;
2332 }
2333 
2334 void PhaseIdealLoop::clone_loop_handle_data_uses(Node* old, Node_List &old_new,
2335                                                  IdealLoopTree* loop, IdealLoopTree* outer_loop,
2336                                                  Node_List*& split_if_set, Node_List*& split_bool_set,
2337                                                  Node_List*& split_cex_set, Node_List& worklist,
2338                                                  uint new_counter, CloneLoopMode mode) {
2339   Node* nnn = old_new[old->_idx];
2340   // Copy uses to a worklist, so I can munge the def-use info
2341   // with impunity.
2342   for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++)
2343     worklist.push(old->fast_out(j));
2344 
2345   while( worklist.size() ) {
2346     Node *use = worklist.pop();
2347     if (!has_node(use))  continue; // Ignore dead nodes
2348     if (use->in(0) == C->top())  continue;
2349     IdealLoopTree *use_loop = get_loop( has_ctrl(use) ? get_ctrl(use) : use );
2350     // Check for data-use outside of loop - at least one of OLD or USE
2351     // must not be a CFG node.
2352 #ifdef ASSERT
2353     if (loop->_head->as_Loop()->is_strip_mined() && outer_loop->is_member(use_loop) && !loop->is_member(use_loop) && old_new[use->_idx] == nullptr) {
2354       Node* sfpt = loop->_head->as_CountedLoop()->outer_safepoint();
2355       assert(mode != IgnoreStripMined, "incorrect cloning mode");
2356       assert((mode == ControlAroundStripMined && use == sfpt) || !use->is_reachable_from_root(), "missed a node");
2357     }
2358 #endif
2359     if (!loop->is_member(use_loop) && !outer_loop->is_member(use_loop) && (!old->is_CFG() || !use->is_CFG())) {
2360 
2361       // If the Data use is an IF, that means we have an IF outside the
2362       // loop that is switching on a condition that is set inside the
2363       // loop.  Happens if people set a loop-exit flag; then test the flag
2364       // in the loop to break the loop, then test is again outside the
2365       // loop to determine which way the loop exited.
2366       //
2367       // For several uses we need to make sure that there is no phi between,
2368       // the use and the Bool/Cmp. We therefore clone the Bool/Cmp down here
2369       // to avoid such a phi in between.
2370       // For example, it is unexpected that there is a Phi between an
2371       // AllocateArray node and its ValidLengthTest input that could cause
2372       // split if to break.
2373       assert(!use->is_OpaqueTemplateAssertionPredicate(),
2374              "should not clone a Template Assertion Predicate which should be removed once it's useless");
2375       if (use->is_If() || use->is_CMove() || use->is_OpaqueNotNull() || use->is_OpaqueInitializedAssertionPredicate() ||
2376           (use->Opcode() == Op_AllocateArray && use->in(AllocateNode::ValidLengthTest) == old)) {
2377         // Since this code is highly unlikely, we lazily build the worklist
2378         // of such Nodes to go split.
2379         if (!split_if_set) {
2380           split_if_set = new Node_List();
2381         }
2382         split_if_set->push(use);
2383       }
2384       if (use->is_Bool()) {
2385         if (!split_bool_set) {
2386           split_bool_set = new Node_List();
2387         }
2388         split_bool_set->push(use);
2389       }
2390       if (use->Opcode() == Op_CreateEx) {
2391         if (!split_cex_set) {
2392           split_cex_set = new Node_List();
2393         }
2394         split_cex_set->push(use);
2395       }
2396 
2397 
2398       // Get "block" use is in
2399       uint idx = 0;
2400       while( use->in(idx) != old ) idx++;
2401       Node *prev = use->is_CFG() ? use : get_ctrl(use);
2402       assert(!loop->is_member(get_loop(prev)) && !outer_loop->is_member(get_loop(prev)), "" );
2403       Node* cfg = (prev->_idx >= new_counter && prev->is_Region())
2404         ? prev->in(2)
2405         : idom(prev);
2406       if( use->is_Phi() )     // Phi use is in prior block
2407         cfg = prev->in(idx);  // NOT in block of Phi itself
2408       if (cfg->is_top()) {    // Use is dead?
2409         _igvn.replace_input_of(use, idx, C->top());
2410         continue;
2411       }
2412 
2413       // If use is referenced through control edge... (idx == 0)
2414       if (mode == IgnoreStripMined && idx == 0) {
2415         LoopNode *head = loop->_head->as_Loop();
2416         if (head->is_strip_mined() && is_dominator(head->outer_loop_exit(), prev)) {
2417           // That node is outside the inner loop, leave it outside the
2418           // outer loop as well to not confuse verification code.
2419           assert(!loop->_parent->is_member(use_loop), "should be out of the outer loop");
2420           _igvn.replace_input_of(use, 0, head->outer_loop_exit());
2421           continue;
2422         }
2423       }
2424 
2425       while(!outer_loop->is_member(get_loop(cfg))) {
2426         prev = cfg;
2427         cfg = (cfg->_idx >= new_counter && cfg->is_Region()) ? cfg->in(2) : idom(cfg);
2428       }
2429       // If the use occurs after merging several exits from the loop, then
2430       // old value must have dominated all those exits.  Since the same old
2431       // value was used on all those exits we did not need a Phi at this
2432       // merge point.  NOW we do need a Phi here.  Each loop exit value
2433       // is now merged with the peeled body exit; each exit gets its own
2434       // private Phi and those Phis need to be merged here.
2435       Node *phi;
2436       if( prev->is_Region() ) {
2437         if( idx == 0 ) {      // Updating control edge?
2438           phi = prev;         // Just use existing control
2439         } else {              // Else need a new Phi
2440           phi = PhiNode::make( prev, old );
2441           // Now recursively fix up the new uses of old!
2442           for( uint i = 1; i < prev->req(); i++ ) {
2443             worklist.push(phi); // Onto worklist once for each 'old' input
2444           }
2445         }
2446       } else {
2447         // Get new RegionNode merging old and new loop exits
2448         prev = old_new[prev->_idx];
2449         assert( prev, "just made this in step 7" );
2450         if( idx == 0) {      // Updating control edge?
2451           phi = prev;         // Just use existing control
2452         } else {              // Else need a new Phi
2453           // Make a new Phi merging data values properly
2454           phi = PhiNode::make( prev, old );
2455           phi->set_req( 1, nnn );
2456         }
2457       }
2458       // If inserting a new Phi, check for prior hits
2459       if( idx != 0 ) {
2460         Node *hit = _igvn.hash_find_insert(phi);
2461         if( hit == nullptr ) {
2462           _igvn.register_new_node_with_optimizer(phi); // Register new phi
2463         } else {                                      // or
2464           // Remove the new phi from the graph and use the hit
2465           _igvn.remove_dead_node(phi);
2466           phi = hit;                                  // Use existing phi
2467         }
2468         set_ctrl(phi, prev);
2469       }
2470       // Make 'use' use the Phi instead of the old loop body exit value
2471       assert(use->in(idx) == old, "old is still input of use");
2472       // We notify all uses of old, including use, and the indirect uses,
2473       // that may now be optimized because we have replaced old with phi.
2474       _igvn.add_users_to_worklist(old);
2475       if (idx == 0 &&
2476           use->depends_only_on_test()) {
2477         Node* pinned_clone = use->pin_array_access_node();
2478         if (pinned_clone != nullptr) {
2479           // Pin array access nodes: control is updated here to a region. If, after some transformations, only one path
2480           // into the region is left, an array load could become dependent on a condition that's not a range check for
2481           // that access. If that condition is replaced by an identical dominating one, then an unpinned load would risk
2482           // floating above its range check.
2483           pinned_clone->set_req(0, phi);
2484           register_new_node_with_ctrl_of(pinned_clone, use);
2485           _igvn.replace_node(use, pinned_clone);
2486           continue;
2487         }
2488       }
2489       _igvn.replace_input_of(use, idx, phi);
2490       if( use->_idx >= new_counter ) { // If updating new phis
2491         // Not needed for correctness, but prevents a weak assert
2492         // in AddPNode from tripping (when we end up with different
2493         // base & derived Phis that will become the same after
2494         // IGVN does CSE).
2495         Node *hit = _igvn.hash_find_insert(use);
2496         if( hit )             // Go ahead and re-hash for hits.
2497           _igvn.replace_node( use, hit );
2498       }
2499     }
2500   }
2501 }
2502 
2503 static void collect_nodes_in_outer_loop_not_reachable_from_sfpt(Node* n, const IdealLoopTree *loop, const IdealLoopTree* outer_loop,
2504                                                                 const Node_List &old_new, Unique_Node_List& wq, PhaseIdealLoop* phase,
2505                                                                 bool check_old_new) {
2506   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2507     Node* u = n->fast_out(j);
2508     assert(check_old_new || old_new[u->_idx] == nullptr, "shouldn't have been cloned");
2509     if (!u->is_CFG() && (!check_old_new || old_new[u->_idx] == nullptr)) {
2510       Node* c = phase->get_ctrl(u);
2511       IdealLoopTree* u_loop = phase->get_loop(c);
2512       assert(!loop->is_member(u_loop) || !loop->_body.contains(u), "can be in outer loop or out of both loops only");
2513       if (!loop->is_member(u_loop)) {
2514         if (outer_loop->is_member(u_loop)) {
2515           wq.push(u);
2516         } else {
2517           // nodes pinned with control in the outer loop but not referenced from the safepoint must be moved out of
2518           // the outer loop too
2519           Node* u_c = u->in(0);
2520           if (u_c != nullptr) {
2521             IdealLoopTree* u_c_loop = phase->get_loop(u_c);
2522             if (outer_loop->is_member(u_c_loop) && !loop->is_member(u_c_loop)) {
2523               wq.push(u);
2524             }
2525           }
2526         }
2527       }
2528     }
2529   }
2530 }
2531 
2532 void PhaseIdealLoop::clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
2533                                       IdealLoopTree* outer_loop, int dd, Node_List &old_new,
2534                                       Node_List& extra_data_nodes) {
2535   if (head->is_strip_mined() && mode != IgnoreStripMined) {
2536     CountedLoopNode* cl = head->as_CountedLoop();
2537     Node* l = cl->outer_loop();
2538     Node* tail = cl->outer_loop_tail();
2539     IfNode* le = cl->outer_loop_end();
2540     Node* sfpt = cl->outer_safepoint();
2541     CountedLoopEndNode* cle = cl->loopexit();
2542     CountedLoopNode* new_cl = old_new[cl->_idx]->as_CountedLoop();
2543     CountedLoopEndNode* new_cle = new_cl->as_CountedLoop()->loopexit_or_null();
2544     Node* cle_out = cle->proj_out(false);
2545 
2546     Node* new_sfpt = nullptr;
2547     Node* new_cle_out = cle_out->clone();
2548     old_new.map(cle_out->_idx, new_cle_out);
2549     if (mode == CloneIncludesStripMined) {
2550       // clone outer loop body
2551       Node* new_l = l->clone();
2552       Node* new_tail = tail->clone();
2553       IfNode* new_le = le->clone()->as_If();
2554       new_sfpt = sfpt->clone();
2555 
2556       set_loop(new_l, outer_loop->_parent);
2557       set_idom(new_l, new_l->in(LoopNode::EntryControl), dd);
2558       set_loop(new_cle_out, outer_loop->_parent);
2559       set_idom(new_cle_out, new_cle, dd);
2560       set_loop(new_sfpt, outer_loop->_parent);
2561       set_idom(new_sfpt, new_cle_out, dd);
2562       set_loop(new_le, outer_loop->_parent);
2563       set_idom(new_le, new_sfpt, dd);
2564       set_loop(new_tail, outer_loop->_parent);
2565       set_idom(new_tail, new_le, dd);
2566       set_idom(new_cl, new_l, dd);
2567 
2568       old_new.map(l->_idx, new_l);
2569       old_new.map(tail->_idx, new_tail);
2570       old_new.map(le->_idx, new_le);
2571       old_new.map(sfpt->_idx, new_sfpt);
2572 
2573       new_l->set_req(LoopNode::LoopBackControl, new_tail);
2574       new_l->set_req(0, new_l);
2575       new_tail->set_req(0, new_le);
2576       new_le->set_req(0, new_sfpt);
2577       new_sfpt->set_req(0, new_cle_out);
2578       new_cle_out->set_req(0, new_cle);
2579       new_cl->set_req(LoopNode::EntryControl, new_l);
2580 
2581       _igvn.register_new_node_with_optimizer(new_l);
2582       _igvn.register_new_node_with_optimizer(new_tail);
2583       _igvn.register_new_node_with_optimizer(new_le);
2584     } else {
2585       Node *newhead = old_new[loop->_head->_idx];
2586       newhead->as_Loop()->clear_strip_mined();
2587       _igvn.replace_input_of(newhead, LoopNode::EntryControl, newhead->in(LoopNode::EntryControl)->in(LoopNode::EntryControl));
2588       set_idom(newhead, newhead->in(LoopNode::EntryControl), dd);
2589     }
2590     // Look at data node that were assigned a control in the outer
2591     // loop: they are kept in the outer loop by the safepoint so start
2592     // from the safepoint node's inputs.
2593     IdealLoopTree* outer_loop = get_loop(l);
2594     Node_Stack stack(2);
2595     stack.push(sfpt, 1);
2596     uint new_counter = C->unique();
2597     while (stack.size() > 0) {
2598       Node* n = stack.node();
2599       uint i = stack.index();
2600       while (i < n->req() &&
2601              (n->in(i) == nullptr ||
2602               !has_ctrl(n->in(i)) ||
2603               get_loop(get_ctrl(n->in(i))) != outer_loop ||
2604               (old_new[n->in(i)->_idx] != nullptr && old_new[n->in(i)->_idx]->_idx >= new_counter))) {
2605         i++;
2606       }
2607       if (i < n->req()) {
2608         stack.set_index(i+1);
2609         stack.push(n->in(i), 0);
2610       } else {
2611         assert(old_new[n->_idx] == nullptr || n == sfpt || old_new[n->_idx]->_idx < new_counter, "no clone yet");
2612         Node* m = n == sfpt ? new_sfpt : n->clone();
2613         if (m != nullptr) {
2614           for (uint i = 0; i < n->req(); i++) {
2615             if (m->in(i) != nullptr && old_new[m->in(i)->_idx] != nullptr) {
2616               m->set_req(i, old_new[m->in(i)->_idx]);
2617             }
2618           }
2619         } else {
2620           assert(n == sfpt && mode != CloneIncludesStripMined, "where's the safepoint clone?");
2621         }
2622         if (n != sfpt) {
2623           extra_data_nodes.push(n);
2624           _igvn.register_new_node_with_optimizer(m);
2625           assert(get_ctrl(n) == cle_out, "what other control?");
2626           set_ctrl(m, new_cle_out);
2627           old_new.map(n->_idx, m);
2628         }
2629         stack.pop();
2630       }
2631     }
2632     if (mode == CloneIncludesStripMined) {
2633       _igvn.register_new_node_with_optimizer(new_sfpt);
2634       _igvn.register_new_node_with_optimizer(new_cle_out);
2635     }
2636     // Some other transformation may have pessimistically assigned some
2637     // data nodes to the outer loop. Set their control so they are out
2638     // of the outer loop.
2639     ResourceMark rm;
2640     Unique_Node_List wq;
2641     for (uint i = 0; i < extra_data_nodes.size(); i++) {
2642       Node* old = extra_data_nodes.at(i);
2643       collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true);
2644     }
2645 
2646     for (uint i = 0; i < loop->_body.size(); i++) {
2647       Node* old = loop->_body.at(i);
2648       collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true);
2649     }
2650 
2651     Node* inner_out = sfpt->in(0);
2652     if (inner_out->outcnt() > 1) {
2653       collect_nodes_in_outer_loop_not_reachable_from_sfpt(inner_out, loop, outer_loop, old_new, wq, this, true);
2654     }
2655 
2656     Node* new_ctrl = cl->outer_loop_exit();
2657     assert(get_loop(new_ctrl) != outer_loop, "must be out of the loop nest");
2658     for (uint i = 0; i < wq.size(); i++) {
2659       Node* n = wq.at(i);
2660       set_ctrl(n, new_ctrl);
2661       if (n->in(0) != nullptr) {
2662         _igvn.replace_input_of(n, 0, new_ctrl);
2663       }
2664       collect_nodes_in_outer_loop_not_reachable_from_sfpt(n, loop, outer_loop, old_new, wq, this, false);
2665     }
2666   } else {
2667     Node *newhead = old_new[loop->_head->_idx];
2668     set_idom(newhead, newhead->in(LoopNode::EntryControl), dd);
2669   }
2670 }
2671 
2672 //------------------------------clone_loop-------------------------------------
2673 //
2674 //                   C L O N E   A   L O O P   B O D Y
2675 //
2676 // This is the basic building block of the loop optimizations.  It clones an
2677 // entire loop body.  It makes an old_new loop body mapping; with this mapping
2678 // you can find the new-loop equivalent to an old-loop node.  All new-loop
2679 // nodes are exactly equal to their old-loop counterparts, all edges are the
2680 // same.  All exits from the old-loop now have a RegionNode that merges the
2681 // equivalent new-loop path.  This is true even for the normal "loop-exit"
2682 // condition.  All uses of loop-invariant old-loop values now come from (one
2683 // or more) Phis that merge their new-loop equivalents.
2684 //
2685 // This operation leaves the graph in an illegal state: there are two valid
2686 // control edges coming from the loop pre-header to both loop bodies.  I'll
2687 // definitely have to hack the graph after running this transform.
2688 //
2689 // From this building block I will further edit edges to perform loop peeling
2690 // or loop unrolling or iteration splitting (Range-Check-Elimination), etc.
2691 //
2692 // Parameter side_by_size_idom:
2693 //   When side_by_size_idom is null, the dominator tree is constructed for
2694 //      the clone loop to dominate the original.  Used in construction of
2695 //      pre-main-post loop sequence.
2696 //   When nonnull, the clone and original are side-by-side, both are
2697 //      dominated by the side_by_side_idom node.  Used in construction of
2698 //      unswitched loops.
2699 void PhaseIdealLoop::clone_loop( IdealLoopTree *loop, Node_List &old_new, int dd,
2700                                 CloneLoopMode mode, Node* side_by_side_idom) {
2701 
2702   LoopNode* head = loop->_head->as_Loop();
2703   head->verify_strip_mined(1);
2704 
2705   if (C->do_vector_loop() && PrintOpto) {
2706     const char* mname = C->method()->name()->as_quoted_ascii();
2707     if (mname != nullptr) {
2708       tty->print("PhaseIdealLoop::clone_loop: for vectorize method %s\n", mname);
2709     }
2710   }
2711 
2712   CloneMap& cm = C->clone_map();
2713   if (C->do_vector_loop()) {
2714     cm.set_clone_idx(cm.max_gen()+1);
2715 #ifndef PRODUCT
2716     if (PrintOpto) {
2717       tty->print_cr("PhaseIdealLoop::clone_loop: _clone_idx %d", cm.clone_idx());
2718       loop->dump_head();
2719     }
2720 #endif
2721   }
2722 
2723   // Step 1: Clone the loop body.  Make the old->new mapping.
2724   clone_loop_body(loop->_body, old_new, &cm);
2725 
2726   IdealLoopTree* outer_loop = (head->is_strip_mined() && mode != IgnoreStripMined) ? get_loop(head->as_CountedLoop()->outer_loop()) : loop;
2727 
2728   // Step 2: Fix the edges in the new body.  If the old input is outside the
2729   // loop use it.  If the old input is INside the loop, use the corresponding
2730   // new node instead.
2731   fix_body_edges(loop->_body, loop, old_new, dd, outer_loop->_parent, false);
2732 
2733   Node_List extra_data_nodes; // data nodes in the outer strip mined loop
2734   clone_outer_loop(head, mode, loop, outer_loop, dd, old_new, extra_data_nodes);
2735 
2736   // Step 3: Now fix control uses.  Loop varying control uses have already
2737   // been fixed up (as part of all input edges in Step 2).  Loop invariant
2738   // control uses must be either an IfFalse or an IfTrue.  Make a merge
2739   // point to merge the old and new IfFalse/IfTrue nodes; make the use
2740   // refer to this.
2741   Node_List worklist;
2742   uint new_counter = C->unique();
2743   fix_ctrl_uses(loop->_body, loop, old_new, mode, side_by_side_idom, &cm, worklist);
2744 
2745   // Step 4: If loop-invariant use is not control, it must be dominated by a
2746   // loop exit IfFalse/IfTrue.  Find "proper" loop exit.  Make a Region
2747   // there if needed.  Make a Phi there merging old and new used values.
2748   Node_List *split_if_set = nullptr;
2749   Node_List *split_bool_set = nullptr;
2750   Node_List *split_cex_set = nullptr;
2751   fix_data_uses(loop->_body, loop, mode, outer_loop, new_counter, old_new, worklist, split_if_set, split_bool_set, split_cex_set);
2752 
2753   for (uint i = 0; i < extra_data_nodes.size(); i++) {
2754     Node* old = extra_data_nodes.at(i);
2755     clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set,
2756                                 split_bool_set, split_cex_set, worklist, new_counter,
2757                                 mode);
2758   }
2759 
2760   // Check for IFs that need splitting/cloning.  Happens if an IF outside of
2761   // the loop uses a condition set in the loop.  The original IF probably
2762   // takes control from one or more OLD Regions (which in turn get from NEW
2763   // Regions).  In any case, there will be a set of Phis for each merge point
2764   // from the IF up to where the original BOOL def exists the loop.
2765   finish_clone_loop(split_if_set, split_bool_set, split_cex_set);
2766 
2767 }
2768 
2769 void PhaseIdealLoop::finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set) {
2770   if (split_if_set) {
2771     while (split_if_set->size()) {
2772       Node *iff = split_if_set->pop();
2773       uint input = iff->Opcode() == Op_AllocateArray ? AllocateNode::ValidLengthTest : 1;
2774       if (iff->in(input)->is_Phi()) {
2775         Node *b = clone_iff(iff->in(input)->as_Phi());
2776         _igvn.replace_input_of(iff, input, b);
2777       }
2778     }
2779   }
2780   if (split_bool_set) {
2781     while (split_bool_set->size()) {
2782       Node *b = split_bool_set->pop();
2783       Node *phi = b->in(1);
2784       assert(phi->is_Phi(), "");
2785       CmpNode *cmp = clone_bool((PhiNode*) phi);
2786       _igvn.replace_input_of(b, 1, cmp);
2787     }
2788   }
2789   if (split_cex_set) {
2790     while (split_cex_set->size()) {
2791       Node *b = split_cex_set->pop();
2792       assert(b->in(0)->is_Region(), "");
2793       assert(b->in(1)->is_Phi(), "");
2794       assert(b->in(0)->in(0) == b->in(1)->in(0), "");
2795       split_up(b, b->in(0), nullptr);
2796     }
2797   }
2798 }
2799 
2800 void PhaseIdealLoop::fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
2801                                    uint new_counter, Node_List &old_new, Node_List &worklist, Node_List*& split_if_set,
2802                                    Node_List*& split_bool_set, Node_List*& split_cex_set) {
2803   for(uint i = 0; i < body.size(); i++ ) {
2804     Node* old = body.at(i);
2805     clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set,
2806                                 split_bool_set, split_cex_set, worklist, new_counter,
2807                                 mode);
2808   }
2809 }
2810 
2811 void PhaseIdealLoop::fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
2812                                    Node* side_by_side_idom, CloneMap* cm, Node_List &worklist) {
2813   LoopNode* head = loop->_head->as_Loop();
2814   for(uint i = 0; i < body.size(); i++ ) {
2815     Node* old = body.at(i);
2816     if( !old->is_CFG() ) continue;
2817 
2818     // Copy uses to a worklist, so I can munge the def-use info
2819     // with impunity.
2820     for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++) {
2821       worklist.push(old->fast_out(j));
2822     }
2823 
2824     while (worklist.size()) {  // Visit all uses
2825       Node *use = worklist.pop();
2826       if (!has_node(use))  continue; // Ignore dead nodes
2827       IdealLoopTree *use_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use );
2828       if (!loop->is_member(use_loop) && use->is_CFG()) {
2829         // Both OLD and USE are CFG nodes here.
2830         assert(use->is_Proj(), "" );
2831         Node* nnn = old_new[old->_idx];
2832 
2833         Node* newuse = nullptr;
2834         if (head->is_strip_mined() && mode != IgnoreStripMined) {
2835           CountedLoopNode* cl = head->as_CountedLoop();
2836           CountedLoopEndNode* cle = cl->loopexit();
2837           Node* cle_out = cle->proj_out_or_null(false);
2838           if (use == cle_out) {
2839             IfNode* le = cl->outer_loop_end();
2840             use = le->proj_out(false);
2841             use_loop = get_loop(use);
2842             if (mode == CloneIncludesStripMined) {
2843               nnn = old_new[le->_idx];
2844             } else {
2845               newuse = old_new[cle_out->_idx];
2846             }
2847           }
2848         }
2849         if (newuse == nullptr) {
2850           newuse = use->clone();
2851         }
2852 
2853         // Clone the loop exit control projection
2854         if (C->do_vector_loop() && cm != nullptr) {
2855           cm->verify_insert_and_clone(use, newuse, cm->clone_idx());
2856         }
2857         newuse->set_req(0,nnn);
2858         _igvn.register_new_node_with_optimizer(newuse);
2859         set_loop(newuse, use_loop);
2860         set_idom(newuse, nnn, dom_depth(nnn) + 1 );
2861 
2862         // We need a Region to merge the exit from the peeled body and the
2863         // exit from the old loop body.
2864         RegionNode *r = new RegionNode(3);
2865         uint dd_r = MIN2(dom_depth(newuse), dom_depth(use));
2866         assert(dd_r >= dom_depth(dom_lca(newuse, use)), "" );
2867 
2868         // The original user of 'use' uses 'r' instead.
2869         for (DUIterator_Last lmin, l = use->last_outs(lmin); l >= lmin;) {
2870           Node* useuse = use->last_out(l);
2871           _igvn.rehash_node_delayed(useuse);
2872           uint uses_found = 0;
2873           if (useuse->in(0) == use) {
2874             useuse->set_req(0, r);
2875             uses_found++;
2876             if (useuse->is_CFG()) {
2877               // This is not a dom_depth > dd_r because when new
2878               // control flow is constructed by a loop opt, a node and
2879               // its dominator can end up at the same dom_depth
2880               assert(dom_depth(useuse) >= dd_r, "");
2881               set_idom(useuse, r, dom_depth(useuse));
2882             }
2883           }
2884           for (uint k = 1; k < useuse->req(); k++) {
2885             if( useuse->in(k) == use ) {
2886               useuse->set_req(k, r);
2887               uses_found++;
2888               if (useuse->is_Loop() && k == LoopNode::EntryControl) {
2889                 // This is not a dom_depth > dd_r because when new
2890                 // control flow is constructed by a loop opt, a node
2891                 // and its dominator can end up at the same dom_depth
2892                 assert(dom_depth(useuse) >= dd_r , "");
2893                 set_idom(useuse, r, dom_depth(useuse));
2894               }
2895             }
2896           }
2897           l -= uses_found;    // we deleted 1 or more copies of this edge
2898         }
2899 
2900         assert(use->is_Proj(), "loop exit should be projection");
2901         // lazy_replace() below moves all nodes that are:
2902         // - control dependent on the loop exit or
2903         // - have control set to the loop exit
2904         // below the post-loop merge point. lazy_replace() takes a dead control as first input. To make it
2905         // possible to use it, the loop exit projection is cloned and becomes the new exit projection. The initial one
2906         // becomes dead and is "replaced" by the region.
2907         Node* use_clone = use->clone();
2908         register_control(use_clone, use_loop, idom(use), dom_depth(use));
2909         // Now finish up 'r'
2910         r->set_req(1, newuse);
2911         r->set_req(2, use_clone);
2912         _igvn.register_new_node_with_optimizer(r);
2913         set_loop(r, use_loop);
2914         set_idom(r, (side_by_side_idom == nullptr) ? newuse->in(0) : side_by_side_idom, dd_r);
2915         lazy_replace(use, r);
2916         // Map the (cloned) old use to the new merge point
2917         old_new.map(use_clone->_idx, r);
2918       } // End of if a loop-exit test
2919     }
2920   }
2921 }
2922 
2923 void PhaseIdealLoop::fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
2924                                     IdealLoopTree* parent, bool partial) {
2925   for(uint i = 0; i < body.size(); i++ ) {
2926     Node *old = body.at(i);
2927     Node *nnn = old_new[old->_idx];
2928     // Fix CFG/Loop controlling the new node
2929     if (has_ctrl(old)) {
2930       set_ctrl(nnn, old_new[get_ctrl(old)->_idx]);
2931     } else {
2932       set_loop(nnn, parent);
2933       if (old->outcnt() > 0) {
2934         Node* dom = idom(old);
2935         if (old_new[dom->_idx] != nullptr) {
2936           dom = old_new[dom->_idx];
2937           set_idom(nnn, dom, dd );
2938         }
2939       }
2940     }
2941     // Correct edges to the new node
2942     for (uint j = 0; j < nnn->req(); j++) {
2943         Node *n = nnn->in(j);
2944         if (n != nullptr) {
2945           IdealLoopTree *old_in_loop = get_loop(has_ctrl(n) ? get_ctrl(n) : n);
2946           if (loop->is_member(old_in_loop)) {
2947             if (old_new[n->_idx] != nullptr) {
2948               nnn->set_req(j, old_new[n->_idx]);
2949             } else {
2950               assert(!body.contains(n), "");
2951               assert(partial, "node not cloned");
2952             }
2953           }
2954         }
2955     }
2956     _igvn.hash_find_insert(nnn);
2957   }
2958 }
2959 
2960 void PhaseIdealLoop::clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm) {
2961   for (uint i = 0; i < body.size(); i++) {
2962     Node* old = body.at(i);
2963     Node* nnn = old->clone();
2964     old_new.map(old->_idx, nnn);
2965     if (C->do_vector_loop() && cm != nullptr) {
2966       cm->verify_insert_and_clone(old, nnn, cm->clone_idx());
2967     }
2968     _igvn.register_new_node_with_optimizer(nnn);
2969   }
2970 }
2971 
2972 
2973 //---------------------- stride_of_possible_iv -------------------------------------
2974 // Looks for an iff/bool/comp with one operand of the compare
2975 // being a cycle involving an add and a phi,
2976 // with an optional truncation (left-shift followed by a right-shift)
2977 // of the add. Returns zero if not an iv.
2978 int PhaseIdealLoop::stride_of_possible_iv(Node* iff) {
2979   Node* trunc1 = nullptr;
2980   Node* trunc2 = nullptr;
2981   const TypeInteger* ttype = nullptr;
2982   if (!iff->is_If() || iff->in(1) == nullptr || !iff->in(1)->is_Bool()) {
2983     return 0;
2984   }
2985   BoolNode* bl = iff->in(1)->as_Bool();
2986   Node* cmp = bl->in(1);
2987   if (!cmp || (cmp->Opcode() != Op_CmpI && cmp->Opcode() != Op_CmpU)) {
2988     return 0;
2989   }
2990   // Must have an invariant operand
2991   if (is_member(get_loop(iff), get_ctrl(cmp->in(2)))) {
2992     return 0;
2993   }
2994   Node* add2 = nullptr;
2995   Node* cmp1 = cmp->in(1);
2996   if (cmp1->is_Phi()) {
2997     // (If (Bool (CmpX phi:(Phi ...(Optional-trunc(AddI phi add2))) )))
2998     Node* phi = cmp1;
2999     for (uint i = 1; i < phi->req(); i++) {
3000       Node* in = phi->in(i);
3001       Node* add = CountedLoopNode::match_incr_with_optional_truncation(in,
3002                                 &trunc1, &trunc2, &ttype, T_INT);
3003       if (add && add->in(1) == phi) {
3004         add2 = add->in(2);
3005         break;
3006       }
3007     }
3008   } else {
3009     // (If (Bool (CmpX addtrunc:(Optional-trunc((AddI (Phi ...addtrunc...) add2)) )))
3010     Node* addtrunc = cmp1;
3011     Node* add = CountedLoopNode::match_incr_with_optional_truncation(addtrunc,
3012                                 &trunc1, &trunc2, &ttype, T_INT);
3013     if (add && add->in(1)->is_Phi()) {
3014       Node* phi = add->in(1);
3015       for (uint i = 1; i < phi->req(); i++) {
3016         if (phi->in(i) == addtrunc) {
3017           add2 = add->in(2);
3018           break;
3019         }
3020       }
3021     }
3022   }
3023   if (add2 != nullptr) {
3024     const TypeInt* add2t = _igvn.type(add2)->is_int();
3025     if (add2t->is_con()) {
3026       return add2t->get_con();
3027     }
3028   }
3029   return 0;
3030 }
3031 
3032 
3033 //---------------------- stay_in_loop -------------------------------------
3034 // Return the (unique) control output node that's in the loop (if it exists.)
3035 Node* PhaseIdealLoop::stay_in_loop( Node* n, IdealLoopTree *loop) {
3036   Node* unique = nullptr;
3037   if (!n) return nullptr;
3038   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3039     Node* use = n->fast_out(i);
3040     if (!has_ctrl(use) && loop->is_member(get_loop(use))) {
3041       if (unique != nullptr) {
3042         return nullptr;
3043       }
3044       unique = use;
3045     }
3046   }
3047   return unique;
3048 }
3049 
3050 //------------------------------ register_node -------------------------------------
3051 // Utility to register node "n" with PhaseIdealLoop
3052 void PhaseIdealLoop::register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth) {
3053   _igvn.register_new_node_with_optimizer(n);
3054   loop->_body.push(n);
3055   if (n->is_CFG()) {
3056     set_loop(n, loop);
3057     set_idom(n, pred, ddepth);
3058   } else {
3059     set_ctrl(n, pred);
3060   }
3061 }
3062 
3063 //------------------------------ proj_clone -------------------------------------
3064 // Utility to create an if-projection
3065 ProjNode* PhaseIdealLoop::proj_clone(ProjNode* p, IfNode* iff) {
3066   ProjNode* c = p->clone()->as_Proj();
3067   c->set_req(0, iff);
3068   return c;
3069 }
3070 
3071 //------------------------------ short_circuit_if -------------------------------------
3072 // Force the iff control output to be the live_proj
3073 Node* PhaseIdealLoop::short_circuit_if(IfNode* iff, ProjNode* live_proj) {
3074   guarantee(live_proj != nullptr, "null projection");
3075   int proj_con = live_proj->_con;
3076   assert(proj_con == 0 || proj_con == 1, "false or true projection");
3077   Node* con = intcon(proj_con);
3078   if (iff) {
3079     iff->set_req(1, con);
3080   }
3081   return con;
3082 }
3083 
3084 //------------------------------ insert_if_before_proj -------------------------------------
3085 // Insert a new if before an if projection (* - new node)
3086 //
3087 // before
3088 //           if(test)
3089 //           /     \
3090 //          v       v
3091 //    other-proj   proj (arg)
3092 //
3093 // after
3094 //           if(test)
3095 //           /     \
3096 //          /       v
3097 //         |      * proj-clone
3098 //         v          |
3099 //    other-proj      v
3100 //                * new_if(relop(cmp[IU](left,right)))
3101 //                  /  \
3102 //                 v    v
3103 //         * new-proj  proj
3104 //         (returned)
3105 //
3106 ProjNode* PhaseIdealLoop::insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj) {
3107   IfNode* iff = proj->in(0)->as_If();
3108   IdealLoopTree *loop = get_loop(proj);
3109   ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj();
3110   uint ddepth = dom_depth(proj);
3111 
3112   _igvn.rehash_node_delayed(iff);
3113   _igvn.rehash_node_delayed(proj);
3114 
3115   proj->set_req(0, nullptr);  // temporary disconnect
3116   ProjNode* proj2 = proj_clone(proj, iff);
3117   register_node(proj2, loop, iff, ddepth);
3118 
3119   Node* cmp = Signed ? (Node*) new CmpINode(left, right) : (Node*) new CmpUNode(left, right);
3120   register_node(cmp, loop, proj2, ddepth);
3121 
3122   BoolNode* bol = new BoolNode(cmp, relop);
3123   register_node(bol, loop, proj2, ddepth);
3124 
3125   int opcode = iff->Opcode();
3126   assert(opcode == Op_If || opcode == Op_RangeCheck, "unexpected opcode");
3127   IfNode* new_if = IfNode::make_with_same_profile(iff, proj2, bol);
3128   register_node(new_if, loop, proj2, ddepth);
3129 
3130   proj->set_req(0, new_if); // reattach
3131   set_idom(proj, new_if, ddepth);
3132 
3133   ProjNode* new_exit = proj_clone(other_proj, new_if)->as_Proj();
3134   guarantee(new_exit != nullptr, "null exit node");
3135   register_node(new_exit, get_loop(other_proj), new_if, ddepth);
3136 
3137   return new_exit;
3138 }
3139 
3140 //------------------------------ insert_region_before_proj -------------------------------------
3141 // Insert a region before an if projection (* - new node)
3142 //
3143 // before
3144 //           if(test)
3145 //          /      |
3146 //         v       |
3147 //       proj      v
3148 //               other-proj
3149 //
3150 // after
3151 //           if(test)
3152 //          /      |
3153 //         v       |
3154 // * proj-clone    v
3155 //         |     other-proj
3156 //         v
3157 // * new-region
3158 //         |
3159 //         v
3160 // *      dum_if
3161 //       /     \
3162 //      v       \
3163 // * dum-proj    v
3164 //              proj
3165 //
3166 RegionNode* PhaseIdealLoop::insert_region_before_proj(ProjNode* proj) {
3167   IfNode* iff = proj->in(0)->as_If();
3168   IdealLoopTree *loop = get_loop(proj);
3169   ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj();
3170   uint ddepth = dom_depth(proj);
3171 
3172   _igvn.rehash_node_delayed(iff);
3173   _igvn.rehash_node_delayed(proj);
3174 
3175   proj->set_req(0, nullptr);  // temporary disconnect
3176   ProjNode* proj2 = proj_clone(proj, iff);
3177   register_node(proj2, loop, iff, ddepth);
3178 
3179   RegionNode* reg = new RegionNode(2);
3180   reg->set_req(1, proj2);
3181   register_node(reg, loop, iff, ddepth);
3182 
3183   IfNode* dum_if = new IfNode(reg, short_circuit_if(nullptr, proj), iff->_prob, iff->_fcnt);
3184   register_node(dum_if, loop, reg, ddepth);
3185 
3186   proj->set_req(0, dum_if); // reattach
3187   set_idom(proj, dum_if, ddepth);
3188 
3189   ProjNode* dum_proj = proj_clone(other_proj, dum_if);
3190   register_node(dum_proj, loop, dum_if, ddepth);
3191 
3192   return reg;
3193 }
3194 
3195 // Idea
3196 // ----
3197 // Partial Peeling tries to rotate the loop in such a way that it can later be turned into a counted loop. Counted loops
3198 // require a signed loop exit test. When calling this method, we've only found a suitable unsigned test to partial peel
3199 // with. Therefore, we try to split off a signed loop exit test from the unsigned test such that it can be used as new
3200 // loop exit while keeping the unsigned test unchanged and preserving the same behavior as if we've used the unsigned
3201 // test alone instead:
3202 //
3203 // Before Partial Peeling:
3204 //   Loop:
3205 //     <peeled section>
3206 //     Split off signed loop exit test
3207 //     <-- CUT HERE -->
3208 //     Unchanged unsigned loop exit test
3209 //     <rest of unpeeled section>
3210 //     goto Loop
3211 //
3212 // After Partial Peeling:
3213 //   <cloned peeled section>
3214 //   Cloned split off signed loop exit test
3215 //   Loop:
3216 //     Unchanged unsigned loop exit test
3217 //     <rest of unpeeled section>
3218 //     <peeled section>
3219 //     Split off signed loop exit test
3220 //     goto Loop
3221 //
3222 // Details
3223 // -------
3224 // Before:
3225 //          if (i <u limit)    Unsigned loop exit condition
3226 //         /       |
3227 //        v        v
3228 //   exit-proj   stay-in-loop-proj
3229 //
3230 // Split off a signed loop exit test (i.e. with CmpI) from an unsigned loop exit test (i.e. with CmpU) and insert it
3231 // before the CmpU on the stay-in-loop path and keep both tests:
3232 //
3233 //          if (i <u limit)    Signed loop exit test
3234 //        /        |
3235 //       /  if (i <u limit)    Unsigned loop exit test
3236 //      /  /       |
3237 //     v  v        v
3238 //  exit-region  stay-in-loop-proj
3239 //
3240 // Implementation
3241 // --------------
3242 // We need to make sure that the new signed loop exit test is properly inserted into the graph such that the unsigned
3243 // loop exit test still dominates the same set of control nodes, the ctrl() relation from data nodes to both loop
3244 // exit tests is preserved, and their loop nesting is correct.
3245 //
3246 // To achieve that, we clone the unsigned loop exit test completely (leave it unchanged), insert the signed loop exit
3247 // test above it and kill the original unsigned loop exit test by setting it's condition to a constant
3248 // (i.e. stay-in-loop-const in graph below) such that IGVN can fold it later:
3249 //
3250 //           if (stay-in-loop-const)  Killed original unsigned loop exit test
3251 //          /       |
3252 //         /        v
3253 //        /  if (i <  limit)          Split off signed loop exit test
3254 //       /  /       |
3255 //      /  /        v
3256 //     /  /  if (i <u limit)          Cloned unsigned loop exit test
3257 //    /  /   /      |
3258 //   v  v  v        |
3259 //  exit-region     |
3260 //        |         |
3261 //    dummy-if      |
3262 //     /  |         |
3263 // dead   |         |
3264 //        v         v
3265 //   exit-proj   stay-in-loop-proj
3266 //
3267 // Note: The dummy-if is inserted to create a region to merge the loop exits between the original to be killed unsigned
3268 //       loop exit test and its exit projection while keeping the exit projection (also see insert_region_before_proj()).
3269 //
3270 // Requirements
3271 // ------------
3272 // Note that we can only split off a signed loop exit test from the unsigned loop exit test when the behavior is exactly
3273 // the same as before with only a single unsigned test. This is only possible if certain requirements are met.
3274 // Otherwise, we need to bail out (see comments in the code below).
3275 IfNode* PhaseIdealLoop::insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree* loop) {
3276   const bool Signed   = true;
3277   const bool Unsigned = false;
3278 
3279   BoolNode* bol = if_cmpu->in(1)->as_Bool();
3280   if (bol->_test._test != BoolTest::lt) {
3281     return nullptr;
3282   }
3283   CmpNode* cmpu = bol->in(1)->as_Cmp();
3284   assert(cmpu->Opcode() == Op_CmpU, "must be unsigned comparison");
3285 
3286   int stride = stride_of_possible_iv(if_cmpu);
3287   if (stride == 0) {
3288     return nullptr;
3289   }
3290 
3291   Node* lp_proj = stay_in_loop(if_cmpu, loop);
3292   guarantee(lp_proj != nullptr, "null loop node");
3293 
3294   ProjNode* lp_continue = lp_proj->as_Proj();
3295   ProjNode* lp_exit     = if_cmpu->proj_out(!lp_continue->is_IfTrue())->as_Proj();
3296   if (!lp_exit->is_IfFalse()) {
3297     // The loop exit condition is (i <u limit) ==> (i >= 0 && i < limit).
3298     // We therefore can't add a single exit condition.
3299     return nullptr;
3300   }
3301   // The unsigned loop exit condition is
3302   //   !(i <u  limit)
3303   // =   i >=u limit
3304   //
3305   // First, we note that for any x for which
3306   //   0 <= x <= INT_MAX
3307   // we can convert x to an unsigned int and still get the same guarantee:
3308   //   0 <=  (uint) x <=  INT_MAX = (uint) INT_MAX
3309   //   0 <=u (uint) x <=u INT_MAX = (uint) INT_MAX   (LEMMA)
3310   //
3311   // With that in mind, if
3312   //   limit >= 0             (COND)
3313   // then the unsigned loop exit condition
3314   //   i >=u limit            (ULE)
3315   // is equivalent to
3316   //   i < 0 || i >= limit    (SLE-full)
3317   // because either i is negative and therefore always greater than MAX_INT when converting to unsigned
3318   //   (uint) i >=u MAX_INT >= limit >= 0
3319   // or otherwise
3320   //   i >= limit >= 0
3321   // holds due to (LEMMA).
3322   //
3323   // For completeness, a counterexample with limit < 0:
3324   // Assume i = -3 and limit = -2:
3325   //   i  < 0
3326   //   -2 < 0
3327   // is true and thus also "i < 0 || i >= limit". But
3328   //   i  >=u limit
3329   //   -3 >=u -2
3330   // is false.
3331   Node* limit = cmpu->in(2);
3332   const TypeInt* type_limit = _igvn.type(limit)->is_int();
3333   if (type_limit->_lo < 0) {
3334     return nullptr;
3335   }
3336 
3337   // We prove below that we can extract a single signed loop exit condition from (SLE-full), depending on the stride:
3338   //   stride < 0:
3339   //     i < 0        (SLE = SLE-negative)
3340   //   stride > 0:
3341   //     i >= limit   (SLE = SLE-positive)
3342   // such that we have the following graph before Partial Peeling with stride > 0 (similar for stride < 0):
3343   //
3344   // Loop:
3345   //   <peeled section>
3346   //   i >= limit    (SLE-positive)
3347   //   <-- CUT HERE -->
3348   //   i >=u limit   (ULE)
3349   //   <rest of unpeeled section>
3350   //   goto Loop
3351   //
3352   // We exit the loop if:
3353   //   (SLE) is true OR (ULE) is true
3354   // However, if (SLE) is true then (ULE) also needs to be true to ensure the exact same behavior. Otherwise, we wrongly
3355   // exit a loop that should not have been exited if we did not apply Partial Peeling. More formally, we need to ensure:
3356   //   (SLE) IMPLIES (ULE)
3357   // This indeed holds when (COND) is given:
3358   // - stride > 0:
3359   //       i >=  limit             // (SLE = SLE-positive)
3360   //       i >=  limit >= 0        // (COND)
3361   //       i >=u limit >= 0        // (LEMMA)
3362   //     which is the unsigned loop exit condition (ULE).
3363   // - stride < 0:
3364   //       i        <  0           // (SLE = SLE-negative)
3365   //       (uint) i >u MAX_INT     // (NEG) all negative values are greater than MAX_INT when converted to unsigned
3366   //       MAX_INT >= limit >= 0   // (COND)
3367   //       MAX_INT >=u limit >= 0  // (LEMMA)
3368   //     and thus from (NEG) and (LEMMA):
3369   //       i >=u limit
3370   //     which is the unsigned loop exit condition (ULE).
3371   //
3372   //
3373   // After Partial Peeling, we have the following structure for stride > 0 (similar for stride < 0):
3374   //   <cloned peeled section>
3375   //   i >= limit (SLE-positive)
3376   //   Loop:
3377   //     i >=u limit (ULE)
3378   //     <rest of unpeeled section>
3379   //     <peeled section>
3380   //     i >= limit (SLE-positive)
3381   //     goto Loop
3382   Node* rhs_cmpi;
3383   if (stride > 0) {
3384     rhs_cmpi = limit; // For i >= limit
3385   } else {
3386     rhs_cmpi = makecon(TypeInt::ZERO); // For i < 0
3387   }
3388   // Create a new region on the exit path
3389   RegionNode* reg = insert_region_before_proj(lp_exit);
3390   guarantee(reg != nullptr, "null region node");
3391 
3392   // Clone the if-cmpu-true-false using a signed compare
3393   BoolTest::mask rel_i = stride > 0 ? bol->_test._test : BoolTest::ge;
3394   ProjNode* cmpi_exit = insert_if_before_proj(cmpu->in(1), Signed, rel_i, rhs_cmpi, lp_continue);
3395   reg->add_req(cmpi_exit);
3396 
3397   // Clone the if-cmpu-true-false
3398   BoolTest::mask rel_u = bol->_test._test;
3399   ProjNode* cmpu_exit = insert_if_before_proj(cmpu->in(1), Unsigned, rel_u, cmpu->in(2), lp_continue);
3400   reg->add_req(cmpu_exit);
3401 
3402   // Force original if to stay in loop.
3403   short_circuit_if(if_cmpu, lp_continue);
3404 
3405   return cmpi_exit->in(0)->as_If();
3406 }
3407 
3408 //------------------------------ remove_cmpi_loop_exit -------------------------------------
3409 // Remove a previously inserted signed compare loop exit.
3410 void PhaseIdealLoop::remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop) {
3411   Node* lp_proj = stay_in_loop(if_cmp, loop);
3412   assert(if_cmp->in(1)->in(1)->Opcode() == Op_CmpI &&
3413          stay_in_loop(lp_proj, loop)->is_If() &&
3414          stay_in_loop(lp_proj, loop)->in(1)->in(1)->Opcode() == Op_CmpU, "inserted cmpi before cmpu");
3415   Node* con = makecon(lp_proj->is_IfTrue() ? TypeInt::ONE : TypeInt::ZERO);
3416   if_cmp->set_req(1, con);
3417 }
3418 
3419 //------------------------------ scheduled_nodelist -------------------------------------
3420 // Create a post order schedule of nodes that are in the
3421 // "member" set.  The list is returned in "sched".
3422 // The first node in "sched" is the loop head, followed by
3423 // nodes which have no inputs in the "member" set, and then
3424 // followed by the nodes that have an immediate input dependence
3425 // on a node in "sched".
3426 void PhaseIdealLoop::scheduled_nodelist( IdealLoopTree *loop, VectorSet& member, Node_List &sched ) {
3427 
3428   assert(member.test(loop->_head->_idx), "loop head must be in member set");
3429   VectorSet visited;
3430   Node_Stack nstack(loop->_body.size());
3431 
3432   Node* n  = loop->_head;  // top of stack is cached in "n"
3433   uint idx = 0;
3434   visited.set(n->_idx);
3435 
3436   // Initially push all with no inputs from within member set
3437   for(uint i = 0; i < loop->_body.size(); i++ ) {
3438     Node *elt = loop->_body.at(i);
3439     if (member.test(elt->_idx)) {
3440       bool found = false;
3441       for (uint j = 0; j < elt->req(); j++) {
3442         Node* def = elt->in(j);
3443         if (def && member.test(def->_idx) && def != elt) {
3444           found = true;
3445           break;
3446         }
3447       }
3448       if (!found && elt != loop->_head) {
3449         nstack.push(n, idx);
3450         n = elt;
3451         assert(!visited.test(n->_idx), "not seen yet");
3452         visited.set(n->_idx);
3453       }
3454     }
3455   }
3456 
3457   // traverse out's that are in the member set
3458   while (true) {
3459     if (idx < n->outcnt()) {
3460       Node* use = n->raw_out(idx);
3461       idx++;
3462       if (!visited.test_set(use->_idx)) {
3463         if (member.test(use->_idx)) {
3464           nstack.push(n, idx);
3465           n = use;
3466           idx = 0;
3467         }
3468       }
3469     } else {
3470       // All outputs processed
3471       sched.push(n);
3472       if (nstack.is_empty()) break;
3473       n   = nstack.node();
3474       idx = nstack.index();
3475       nstack.pop();
3476     }
3477   }
3478 }
3479 
3480 
3481 //------------------------------ has_use_in_set -------------------------------------
3482 // Has a use in the vector set
3483 bool PhaseIdealLoop::has_use_in_set( Node* n, VectorSet& vset ) {
3484   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3485     Node* use = n->fast_out(j);
3486     if (vset.test(use->_idx)) {
3487       return true;
3488     }
3489   }
3490   return false;
3491 }
3492 
3493 
3494 //------------------------------ has_use_internal_to_set -------------------------------------
3495 // Has use internal to the vector set (ie. not in a phi at the loop head)
3496 bool PhaseIdealLoop::has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ) {
3497   Node* head  = loop->_head;
3498   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3499     Node* use = n->fast_out(j);
3500     if (vset.test(use->_idx) && !(use->is_Phi() && use->in(0) == head)) {
3501       return true;
3502     }
3503   }
3504   return false;
3505 }
3506 
3507 
3508 //------------------------------ clone_for_use_outside_loop -------------------------------------
3509 // clone "n" for uses that are outside of loop
3510 int PhaseIdealLoop::clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ) {
3511   int cloned = 0;
3512   assert(worklist.size() == 0, "should be empty");
3513   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3514     Node* use = n->fast_out(j);
3515     if( !loop->is_member(get_loop(has_ctrl(use) ? get_ctrl(use) : use)) ) {
3516       worklist.push(use);
3517     }
3518   }
3519 
3520   if (C->check_node_count(worklist.size() + NodeLimitFudgeFactor,
3521                           "Too many clones required in clone_for_use_outside_loop in partial peeling")) {
3522     return -1;
3523   }
3524 
3525   while( worklist.size() ) {
3526     Node *use = worklist.pop();
3527     if (!has_node(use) || use->in(0) == C->top()) continue;
3528     uint j;
3529     for (j = 0; j < use->req(); j++) {
3530       if (use->in(j) == n) break;
3531     }
3532     assert(j < use->req(), "must be there");
3533 
3534     // clone "n" and insert it between the inputs of "n" and the use outside the loop
3535     Node* n_clone = n->clone();
3536     _igvn.replace_input_of(use, j, n_clone);
3537     cloned++;
3538     Node* use_c;
3539     if (!use->is_Phi()) {
3540       use_c = has_ctrl(use) ? get_ctrl(use) : use->in(0);
3541     } else {
3542       // Use in a phi is considered a use in the associated predecessor block
3543       use_c = use->in(0)->in(j);
3544     }
3545     set_ctrl(n_clone, use_c);
3546     assert(!loop->is_member(get_loop(use_c)), "should be outside loop");
3547     get_loop(use_c)->_body.push(n_clone);
3548     _igvn.register_new_node_with_optimizer(n_clone);
3549 #ifndef PRODUCT
3550     if (TracePartialPeeling) {
3551       tty->print_cr("loop exit cloning old: %d new: %d newbb: %d", n->_idx, n_clone->_idx, get_ctrl(n_clone)->_idx);
3552     }
3553 #endif
3554   }
3555   return cloned;
3556 }
3557 
3558 
3559 //------------------------------ clone_for_special_use_inside_loop -------------------------------------
3560 // clone "n" for special uses that are in the not_peeled region.
3561 // If these def-uses occur in separate blocks, the code generator
3562 // marks the method as not compilable.  For example, if a "BoolNode"
3563 // is in a different basic block than the "IfNode" that uses it, then
3564 // the compilation is aborted in the code generator.
3565 void PhaseIdealLoop::clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
3566                                                         VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ) {
3567   if (n->is_Phi() || n->is_Load()) {
3568     return;
3569   }
3570   assert(worklist.size() == 0, "should be empty");
3571   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3572     Node* use = n->fast_out(j);
3573     if ( not_peel.test(use->_idx) &&
3574          (use->is_If() || use->is_CMove() || use->is_Bool()) &&
3575          use->in(1) == n)  {
3576       worklist.push(use);
3577     }
3578   }
3579   if (worklist.size() > 0) {
3580     // clone "n" and insert it between inputs of "n" and the use
3581     Node* n_clone = n->clone();
3582     loop->_body.push(n_clone);
3583     _igvn.register_new_node_with_optimizer(n_clone);
3584     set_ctrl(n_clone, get_ctrl(n));
3585     sink_list.push(n_clone);
3586     not_peel.set(n_clone->_idx);
3587 #ifndef PRODUCT
3588     if (TracePartialPeeling) {
3589       tty->print_cr("special not_peeled cloning old: %d new: %d", n->_idx, n_clone->_idx);
3590     }
3591 #endif
3592     while( worklist.size() ) {
3593       Node *use = worklist.pop();
3594       _igvn.rehash_node_delayed(use);
3595       for (uint j = 1; j < use->req(); j++) {
3596         if (use->in(j) == n) {
3597           use->set_req(j, n_clone);
3598         }
3599       }
3600     }
3601   }
3602 }
3603 
3604 
3605 //------------------------------ insert_phi_for_loop -------------------------------------
3606 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
3607 void PhaseIdealLoop::insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ) {
3608   Node *phi = PhiNode::make(lp, back_edge_val);
3609   phi->set_req(LoopNode::EntryControl, lp_entry_val);
3610   // Use existing phi if it already exists
3611   Node *hit = _igvn.hash_find_insert(phi);
3612   if( hit == nullptr ) {
3613     _igvn.register_new_node_with_optimizer(phi);
3614     set_ctrl(phi, lp);
3615   } else {
3616     // Remove the new phi from the graph and use the hit
3617     _igvn.remove_dead_node(phi);
3618     phi = hit;
3619   }
3620   _igvn.replace_input_of(use, idx, phi);
3621 }
3622 
3623 #ifdef ASSERT
3624 //------------------------------ is_valid_loop_partition -------------------------------------
3625 // Validate the loop partition sets: peel and not_peel
3626 bool PhaseIdealLoop::is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list,
3627                                               VectorSet& not_peel ) {
3628   uint i;
3629   // Check that peel_list entries are in the peel set
3630   for (i = 0; i < peel_list.size(); i++) {
3631     if (!peel.test(peel_list.at(i)->_idx)) {
3632       return false;
3633     }
3634   }
3635   // Check at loop members are in one of peel set or not_peel set
3636   for (i = 0; i < loop->_body.size(); i++ ) {
3637     Node *def  = loop->_body.at(i);
3638     uint di = def->_idx;
3639     // Check that peel set elements are in peel_list
3640     if (peel.test(di)) {
3641       if (not_peel.test(di)) {
3642         return false;
3643       }
3644       // Must be in peel_list also
3645       bool found = false;
3646       for (uint j = 0; j < peel_list.size(); j++) {
3647         if (peel_list.at(j)->_idx == di) {
3648           found = true;
3649           break;
3650         }
3651       }
3652       if (!found) {
3653         return false;
3654       }
3655     } else if (not_peel.test(di)) {
3656       if (peel.test(di)) {
3657         return false;
3658       }
3659     } else {
3660       return false;
3661     }
3662   }
3663   return true;
3664 }
3665 
3666 //------------------------------ is_valid_clone_loop_exit_use -------------------------------------
3667 // Ensure a use outside of loop is of the right form
3668 bool PhaseIdealLoop::is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx) {
3669   Node *use_c = has_ctrl(use) ? get_ctrl(use) : use;
3670   return (use->is_Phi() &&
3671           use_c->is_Region() && use_c->req() == 3 &&
3672           (use_c->in(exit_idx)->Opcode() == Op_IfTrue ||
3673            use_c->in(exit_idx)->Opcode() == Op_IfFalse ||
3674            use_c->in(exit_idx)->Opcode() == Op_JumpProj) &&
3675           loop->is_member( get_loop( use_c->in(exit_idx)->in(0) ) ) );
3676 }
3677 
3678 //------------------------------ is_valid_clone_loop_form -------------------------------------
3679 // Ensure that all uses outside of loop are of the right form
3680 bool PhaseIdealLoop::is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
3681                                                uint orig_exit_idx, uint clone_exit_idx) {
3682   uint len = peel_list.size();
3683   for (uint i = 0; i < len; i++) {
3684     Node *def = peel_list.at(i);
3685 
3686     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
3687       Node *use = def->fast_out(j);
3688       Node *use_c = has_ctrl(use) ? get_ctrl(use) : use;
3689       if (!loop->is_member(get_loop(use_c))) {
3690         // use is not in the loop, check for correct structure
3691         if (use->in(0) == def) {
3692           // Okay
3693         } else if (!is_valid_clone_loop_exit_use(loop, use, orig_exit_idx)) {
3694           return false;
3695         }
3696       }
3697     }
3698   }
3699   return true;
3700 }
3701 #endif
3702 
3703 //------------------------------ partial_peel -------------------------------------
3704 // Partially peel (aka loop rotation) the top portion of a loop (called
3705 // the peel section below) by cloning it and placing one copy just before
3706 // the new loop head and the other copy at the bottom of the new loop.
3707 //
3708 //    before                       after                where it came from
3709 //
3710 //    stmt1                        stmt1
3711 //  loop:                          stmt2                     clone
3712 //    stmt2                        if condA goto exitA       clone
3713 //    if condA goto exitA        new_loop:                   new
3714 //    stmt3                        stmt3                     clone
3715 //    if !condB goto loop          if condB goto exitB       clone
3716 //  exitB:                         stmt2                     orig
3717 //    stmt4                        if !condA goto new_loop   orig
3718 //  exitA:                         goto exitA
3719 //                               exitB:
3720 //                                 stmt4
3721 //                               exitA:
3722 //
3723 // Step 1: find the cut point: an exit test on probable
3724 //         induction variable.
3725 // Step 2: schedule (with cloning) operations in the peel
3726 //         section that can be executed after the cut into
3727 //         the section that is not peeled.  This may need
3728 //         to clone operations into exit blocks.  For
3729 //         instance, a reference to A[i] in the not-peel
3730 //         section and a reference to B[i] in an exit block
3731 //         may cause a left-shift of i by 2 to be placed
3732 //         in the peel block.  This step will clone the left
3733 //         shift into the exit block and sink the left shift
3734 //         from the peel to the not-peel section.
3735 // Step 3: clone the loop, retarget the control, and insert
3736 //         phis for values that are live across the new loop
3737 //         head.  This is very dependent on the graph structure
3738 //         from clone_loop.  It creates region nodes for
3739 //         exit control and associated phi nodes for values
3740 //         flow out of the loop through that exit.  The region
3741 //         node is dominated by the clone's control projection.
3742 //         So the clone's peel section is placed before the
3743 //         new loop head, and the clone's not-peel section is
3744 //         forms the top part of the new loop.  The original
3745 //         peel section forms the tail of the new loop.
3746 // Step 4: update the dominator tree and recompute the
3747 //         dominator depth.
3748 //
3749 //                   orig
3750 //
3751 //                   stmt1
3752 //                     |
3753 //                     v
3754 //                 predicates
3755 //                     |
3756 //                     v
3757 //                   loop<----+
3758 //                     |      |
3759 //                   stmt2    |
3760 //                     |      |
3761 //                     v      |
3762 //                    ifA     |
3763 //                   / |      |
3764 //                  v  v      |
3765 //               false true   ^  <-- last_peel
3766 //               /     |      |
3767 //              /   ===|==cut |
3768 //             /     stmt3    |  <-- first_not_peel
3769 //            /        |      |
3770 //            |        v      |
3771 //            v       ifB     |
3772 //          exitA:   / \      |
3773 //                  /   \     |
3774 //                 v     v    |
3775 //               false true   |
3776 //               /       \    |
3777 //              /         ----+
3778 //             |
3779 //             v
3780 //           exitB:
3781 //           stmt4
3782 //
3783 //
3784 //            after clone loop
3785 //
3786 //                   stmt1
3787 //                     |
3788 //                     v
3789 //                predicates
3790 //                 /       \
3791 //        clone   /         \   orig
3792 //               /           \
3793 //              /             \
3794 //             v               v
3795 //   +---->loop                loop<----+
3796 //   |      |                    |      |
3797 //   |    stmt2                stmt2    |
3798 //   |      |                    |      |
3799 //   |      v                    v      |
3800 //   |      ifA                 ifA     |
3801 //   |      | \                / |      |
3802 //   |      v  v              v  v      |
3803 //   ^    true  false      false true   ^  <-- last_peel
3804 //   |      |   ^   \       /    |      |
3805 //   | cut==|==  \   \     /  ===|==cut |
3806 //   |    stmt3   \   \   /    stmt3    |  <-- first_not_peel
3807 //   |      |    dom   | |       |      |
3808 //   |      v      \  1v v2      v      |
3809 //   |      ifB     regionA     ifB     |
3810 //   |      / \        |       / \      |
3811 //   |     /   \       v      /   \     |
3812 //   |    v     v    exitA:  v     v    |
3813 //   |    true  false      false true   |
3814 //   |    /     ^   \      /       \    |
3815 //   +----       \   \    /         ----+
3816 //               dom  \  /
3817 //                 \  1v v2
3818 //                  regionB
3819 //                     |
3820 //                     v
3821 //                   exitB:
3822 //                   stmt4
3823 //
3824 //
3825 //           after partial peel
3826 //
3827 //                  stmt1
3828 //                     |
3829 //                     v
3830 //                predicates
3831 //                 /
3832 //        clone   /             orig
3833 //               /          TOP
3834 //              /             \
3835 //             v               v
3836 //    TOP->loop                loop----+
3837 //          |                    |      |
3838 //        stmt2                stmt2    |
3839 //          |                    |      |
3840 //          v                    v      |
3841 //          ifA                 ifA     |
3842 //          | \                / |      |
3843 //          v  v              v  v      |
3844 //        true  false      false true   |     <-- last_peel
3845 //          |   ^   \       /    +------|---+
3846 //  +->newloop   \   \     /  === ==cut |   |
3847 //  |     stmt3   \   \   /     TOP     |   |
3848 //  |       |    dom   | |      stmt3   |   | <-- first_not_peel
3849 //  |       v      \  1v v2      v      |   |
3850 //  |       ifB     regionA     ifB     ^   v
3851 //  |       / \        |       / \      |   |
3852 //  |      /   \       v      /   \     |   |
3853 //  |     v     v    exitA:  v     v    |   |
3854 //  |     true  false      false true   |   |
3855 //  |     /     ^   \      /       \    |   |
3856 //  |    |       \   \    /         v   |   |
3857 //  |    |       dom  \  /         TOP  |   |
3858 //  |    |         \  1v v2             |   |
3859 //  ^    v          regionB             |   |
3860 //  |    |             |                |   |
3861 //  |    |             v                ^   v
3862 //  |    |           exitB:             |   |
3863 //  |    |           stmt4              |   |
3864 //  |    +------------>-----------------+   |
3865 //  |                                       |
3866 //  +-----------------<---------------------+
3867 //
3868 //
3869 //              final graph
3870 //
3871 //                  stmt1
3872 //                    |
3873 //                    v
3874 //                predicates
3875 //                    |
3876 //                    v
3877 //                  stmt2 clone
3878 //                    |
3879 //                    v
3880 //         ........> ifA clone
3881 //         :        / |
3882 //        dom      /  |
3883 //         :      v   v
3884 //         :  false   true
3885 //         :  |       |
3886 //         :  |       v
3887 //         :  |    newloop<-----+
3888 //         :  |        |        |
3889 //         :  |     stmt3 clone |
3890 //         :  |        |        |
3891 //         :  |        v        |
3892 //         :  |       ifB       |
3893 //         :  |      / \        |
3894 //         :  |     v   v       |
3895 //         :  |  false true     |
3896 //         :  |   |     |       |
3897 //         :  |   v    stmt2    |
3898 //         :  | exitB:  |       |
3899 //         :  | stmt4   v       |
3900 //         :  |       ifA orig  |
3901 //         :  |      /  \       |
3902 //         :  |     /    \      |
3903 //         :  |    v     v      |
3904 //         :  |  false  true    |
3905 //         :  |  /        \     |
3906 //         :  v  v         -----+
3907 //          RegionA
3908 //             |
3909 //             v
3910 //           exitA
3911 //
3912 bool PhaseIdealLoop::partial_peel( IdealLoopTree *loop, Node_List &old_new ) {
3913 
3914   assert(!loop->_head->is_CountedLoop(), "Non-counted loop only");
3915   if (!loop->_head->is_Loop()) {
3916     return false;
3917   }
3918   LoopNode *head = loop->_head->as_Loop();
3919 
3920   if (head->is_partial_peel_loop() || head->partial_peel_has_failed()) {
3921     return false;
3922   }
3923 
3924   // Check for complex exit control
3925   for (uint ii = 0; ii < loop->_body.size(); ii++) {
3926     Node *n = loop->_body.at(ii);
3927     int opc = n->Opcode();
3928     if (n->is_Call()        ||
3929         opc == Op_Catch     ||
3930         opc == Op_CatchProj ||
3931         opc == Op_Jump      ||
3932         opc == Op_JumpProj) {
3933 #ifndef PRODUCT
3934       if (TracePartialPeeling) {
3935         tty->print_cr("\nExit control too complex: lp: %d", head->_idx);
3936       }
3937 #endif
3938       return false;
3939     }
3940   }
3941 
3942   int dd = dom_depth(head);
3943 
3944   // Step 1: find cut point
3945 
3946   // Walk up dominators to loop head looking for first loop exit
3947   // which is executed on every path thru loop.
3948   IfNode *peel_if = nullptr;
3949   IfNode *peel_if_cmpu = nullptr;
3950 
3951   Node *iff = loop->tail();
3952   while (iff != head) {
3953     if (iff->is_If()) {
3954       Node *ctrl = get_ctrl(iff->in(1));
3955       if (ctrl->is_top()) return false; // Dead test on live IF.
3956       // If loop-varying exit-test, check for induction variable
3957       if (loop->is_member(get_loop(ctrl)) &&
3958           loop->is_loop_exit(iff) &&
3959           is_possible_iv_test(iff)) {
3960         Node* cmp = iff->in(1)->in(1);
3961         if (cmp->Opcode() == Op_CmpI) {
3962           peel_if = iff->as_If();
3963         } else {
3964           assert(cmp->Opcode() == Op_CmpU, "must be CmpI or CmpU");
3965           peel_if_cmpu = iff->as_If();
3966         }
3967       }
3968     }
3969     iff = idom(iff);
3970   }
3971 
3972   // Prefer signed compare over unsigned compare.
3973   IfNode* new_peel_if = nullptr;
3974   if (peel_if == nullptr) {
3975     if (!PartialPeelAtUnsignedTests || peel_if_cmpu == nullptr) {
3976       return false;   // No peel point found
3977     }
3978     new_peel_if = insert_cmpi_loop_exit(peel_if_cmpu, loop);
3979     if (new_peel_if == nullptr) {
3980       return false;   // No peel point found
3981     }
3982     peel_if = new_peel_if;
3983   }
3984   Node* last_peel        = stay_in_loop(peel_if, loop);
3985   Node* first_not_peeled = stay_in_loop(last_peel, loop);
3986   if (first_not_peeled == nullptr || first_not_peeled == head) {
3987     return false;
3988   }
3989 
3990 #ifndef PRODUCT
3991   if (TraceLoopOpts) {
3992     tty->print("PartialPeel  ");
3993     loop->dump_head();
3994   }
3995 
3996   if (TracePartialPeeling) {
3997     tty->print_cr("before partial peel one iteration");
3998     Node_List wl;
3999     Node* t = head->in(2);
4000     while (true) {
4001       wl.push(t);
4002       if (t == head) break;
4003       t = idom(t);
4004     }
4005     while (wl.size() > 0) {
4006       Node* tt = wl.pop();
4007       tt->dump();
4008       if (tt == last_peel) tty->print_cr("-- cut --");
4009     }
4010   }
4011 #endif
4012 
4013   C->print_method(PHASE_BEFORE_PARTIAL_PEELING, 4, head);
4014 
4015   VectorSet peel;
4016   VectorSet not_peel;
4017   Node_List peel_list;
4018   Node_List worklist;
4019   Node_List sink_list;
4020 
4021   uint estimate = loop->est_loop_clone_sz(1);
4022   if (exceeding_node_budget(estimate)) {
4023     return false;
4024   }
4025 
4026   // Set of cfg nodes to peel are those that are executable from
4027   // the head through last_peel.
4028   assert(worklist.size() == 0, "should be empty");
4029   worklist.push(head);
4030   peel.set(head->_idx);
4031   while (worklist.size() > 0) {
4032     Node *n = worklist.pop();
4033     if (n != last_peel) {
4034       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
4035         Node* use = n->fast_out(j);
4036         if (use->is_CFG() &&
4037             loop->is_member(get_loop(use)) &&
4038             !peel.test_set(use->_idx)) {
4039           worklist.push(use);
4040         }
4041       }
4042     }
4043   }
4044 
4045   // Set of non-cfg nodes to peel are those that are control
4046   // dependent on the cfg nodes.
4047   for (uint i = 0; i < loop->_body.size(); i++) {
4048     Node *n = loop->_body.at(i);
4049     Node *n_c = has_ctrl(n) ? get_ctrl(n) : n;
4050     if (peel.test(n_c->_idx)) {
4051       peel.set(n->_idx);
4052     } else {
4053       not_peel.set(n->_idx);
4054     }
4055   }
4056 
4057   // Step 2: move operations from the peeled section down into the
4058   //         not-peeled section
4059 
4060   // Get a post order schedule of nodes in the peel region
4061   // Result in right-most operand.
4062   scheduled_nodelist(loop, peel, peel_list);
4063 
4064   assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition");
4065 
4066   // For future check for too many new phis
4067   uint old_phi_cnt = 0;
4068   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
4069     Node* use = head->fast_out(j);
4070     if (use->is_Phi()) old_phi_cnt++;
4071   }
4072 
4073 #ifndef PRODUCT
4074   if (TracePartialPeeling) {
4075     tty->print_cr("\npeeled list");
4076   }
4077 #endif
4078 
4079   // Evacuate nodes in peel region into the not_peeled region if possible
4080   bool too_many_clones = false;
4081   uint new_phi_cnt = 0;
4082   uint cloned_for_outside_use = 0;
4083   for (uint i = 0; i < peel_list.size();) {
4084     Node* n = peel_list.at(i);
4085 #ifndef PRODUCT
4086   if (TracePartialPeeling) n->dump();
4087 #endif
4088     bool incr = true;
4089     if (!n->is_CFG()) {
4090       if (has_use_in_set(n, not_peel)) {
4091         // If not used internal to the peeled region,
4092         // move "n" from peeled to not_peeled region.
4093         if (!has_use_internal_to_set(n, peel, loop)) {
4094           // if not pinned and not a load (which maybe anti-dependent on a store)
4095           // and not a CMove (Matcher expects only bool->cmove).
4096           if (n->in(0) == nullptr && !n->is_Load() && !n->is_CMove()) {
4097             int new_clones = clone_for_use_outside_loop(loop, n, worklist);
4098             if (C->failing()) return false;
4099             if (new_clones == -1) {
4100               too_many_clones = true;
4101               break;
4102             }
4103             cloned_for_outside_use += new_clones;
4104             sink_list.push(n);
4105             peel.remove(n->_idx);
4106             not_peel.set(n->_idx);
4107             peel_list.remove(i);
4108             incr = false;
4109 #ifndef PRODUCT
4110             if (TracePartialPeeling) {
4111               tty->print_cr("sink to not_peeled region: %d newbb: %d",
4112                             n->_idx, get_ctrl(n)->_idx);
4113             }
4114 #endif
4115           }
4116         } else {
4117           // Otherwise check for special def-use cases that span
4118           // the peel/not_peel boundary such as bool->if
4119           clone_for_special_use_inside_loop(loop, n, not_peel, sink_list, worklist);
4120           new_phi_cnt++;
4121         }
4122       }
4123     }
4124     if (incr) i++;
4125   }
4126 
4127   estimate += cloned_for_outside_use + new_phi_cnt;
4128   bool exceed_node_budget = !may_require_nodes(estimate);
4129   bool exceed_phi_limit = new_phi_cnt > old_phi_cnt + PartialPeelNewPhiDelta;
4130 
4131   if (too_many_clones || exceed_node_budget || exceed_phi_limit) {
4132 #ifndef PRODUCT
4133     if (TracePartialPeeling && exceed_phi_limit) {
4134       tty->print_cr("\nToo many new phis: %d  old %d new cmpi: %c",
4135                     new_phi_cnt, old_phi_cnt, new_peel_if != nullptr?'T':'F');
4136     }
4137 #endif
4138     if (new_peel_if != nullptr) {
4139       remove_cmpi_loop_exit(new_peel_if, loop);
4140     }
4141     // Inhibit more partial peeling on this loop
4142     assert(!head->is_partial_peel_loop(), "not partial peeled");
4143     head->mark_partial_peel_failed();
4144     if (cloned_for_outside_use > 0) {
4145       // Terminate this round of loop opts because
4146       // the graph outside this loop was changed.
4147       C->set_major_progress();
4148       return true;
4149     }
4150     return false;
4151   }
4152 
4153   // Step 3: clone loop, retarget control, and insert new phis
4154 
4155   // Create new loop head for new phis and to hang
4156   // the nodes being moved (sinked) from the peel region.
4157   LoopNode* new_head = new LoopNode(last_peel, last_peel);
4158   new_head->set_unswitch_count(head->unswitch_count()); // Preserve
4159   _igvn.register_new_node_with_optimizer(new_head);
4160   assert(first_not_peeled->in(0) == last_peel, "last_peel <- first_not_peeled");
4161   _igvn.replace_input_of(first_not_peeled, 0, new_head);
4162   set_loop(new_head, loop);
4163   loop->_body.push(new_head);
4164   not_peel.set(new_head->_idx);
4165   set_idom(new_head, last_peel, dom_depth(first_not_peeled));
4166   set_idom(first_not_peeled, new_head, dom_depth(first_not_peeled));
4167 
4168   while (sink_list.size() > 0) {
4169     Node* n = sink_list.pop();
4170     set_ctrl(n, new_head);
4171   }
4172 
4173   assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition");
4174 
4175   clone_loop(loop, old_new, dd, IgnoreStripMined);
4176 
4177   const uint clone_exit_idx = 1;
4178   const uint orig_exit_idx  = 2;
4179   assert(is_valid_clone_loop_form(loop, peel_list, orig_exit_idx, clone_exit_idx), "bad clone loop");
4180 
4181   Node* head_clone             = old_new[head->_idx];
4182   LoopNode* new_head_clone     = old_new[new_head->_idx]->as_Loop();
4183   Node* orig_tail_clone        = head_clone->in(2);
4184 
4185   // Add phi if "def" node is in peel set and "use" is not
4186 
4187   for (uint i = 0; i < peel_list.size(); i++) {
4188     Node *def  = peel_list.at(i);
4189     if (!def->is_CFG()) {
4190       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
4191         Node *use = def->fast_out(j);
4192         if (has_node(use) && use->in(0) != C->top() &&
4193             (!peel.test(use->_idx) ||
4194              (use->is_Phi() && use->in(0) == head)) ) {
4195           worklist.push(use);
4196         }
4197       }
4198       while( worklist.size() ) {
4199         Node *use = worklist.pop();
4200         for (uint j = 1; j < use->req(); j++) {
4201           Node* n = use->in(j);
4202           if (n == def) {
4203 
4204             // "def" is in peel set, "use" is not in peel set
4205             // or "use" is in the entry boundary (a phi) of the peel set
4206 
4207             Node* use_c = has_ctrl(use) ? get_ctrl(use) : use;
4208 
4209             if ( loop->is_member(get_loop( use_c )) ) {
4210               // use is in loop
4211               if (old_new[use->_idx] != nullptr) { // null for dead code
4212                 Node* use_clone = old_new[use->_idx];
4213                 _igvn.replace_input_of(use, j, C->top());
4214                 insert_phi_for_loop( use_clone, j, old_new[def->_idx], def, new_head_clone );
4215               }
4216             } else {
4217               assert(is_valid_clone_loop_exit_use(loop, use, orig_exit_idx), "clone loop format");
4218               // use is not in the loop, check if the live range includes the cut
4219               Node* lp_if = use_c->in(orig_exit_idx)->in(0);
4220               if (not_peel.test(lp_if->_idx)) {
4221                 assert(j == orig_exit_idx, "use from original loop");
4222                 insert_phi_for_loop( use, clone_exit_idx, old_new[def->_idx], def, new_head_clone );
4223               }
4224             }
4225           }
4226         }
4227       }
4228     }
4229   }
4230 
4231   // Step 3b: retarget control
4232 
4233   // Redirect control to the new loop head if a cloned node in
4234   // the not_peeled region has control that points into the peeled region.
4235   // This necessary because the cloned peeled region will be outside
4236   // the loop.
4237   //                            from    to
4238   //          cloned-peeled    <---+
4239   //    new_head_clone:            |    <--+
4240   //          cloned-not_peeled  in(0)    in(0)
4241   //          orig-peeled
4242 
4243   for (uint i = 0; i < loop->_body.size(); i++) {
4244     Node *n = loop->_body.at(i);
4245     if (!n->is_CFG()           && n->in(0) != nullptr        &&
4246         not_peel.test(n->_idx) && peel.test(n->in(0)->_idx)) {
4247       Node* n_clone = old_new[n->_idx];
4248       if (n_clone->depends_only_on_test()) {
4249         // Pin array access nodes: control is updated here to the loop head. If, after some transformations, the
4250         // backedge is removed, an array load could become dependent on a condition that's not a range check for that
4251         // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk
4252         // floating above its range check.
4253         Node* pinned_clone = n_clone->pin_array_access_node();
4254         if (pinned_clone != nullptr) {
4255           register_new_node_with_ctrl_of(pinned_clone, n_clone);
4256           old_new.map(n->_idx, pinned_clone);
4257           _igvn.replace_node(n_clone, pinned_clone);
4258           n_clone = pinned_clone;
4259         }
4260       }
4261       _igvn.replace_input_of(n_clone, 0, new_head_clone);
4262     }
4263   }
4264 
4265   // Backedge of the surviving new_head (the clone) is original last_peel
4266   _igvn.replace_input_of(new_head_clone, LoopNode::LoopBackControl, last_peel);
4267 
4268   // Cut first node in original not_peel set
4269   _igvn.rehash_node_delayed(new_head);                     // Multiple edge updates:
4270   new_head->set_req(LoopNode::EntryControl,    C->top());  //   use rehash_node_delayed / set_req instead of
4271   new_head->set_req(LoopNode::LoopBackControl, C->top());  //   multiple replace_input_of calls
4272 
4273   // Copy head_clone back-branch info to original head
4274   // and remove original head's loop entry and
4275   // clone head's back-branch
4276   _igvn.rehash_node_delayed(head); // Multiple edge updates
4277   head->set_req(LoopNode::EntryControl,    head_clone->in(LoopNode::LoopBackControl));
4278   head->set_req(LoopNode::LoopBackControl, C->top());
4279   _igvn.replace_input_of(head_clone, LoopNode::LoopBackControl, C->top());
4280 
4281   // Similarly modify the phis
4282   for (DUIterator_Fast kmax, k = head->fast_outs(kmax); k < kmax; k++) {
4283     Node* use = head->fast_out(k);
4284     if (use->is_Phi() && use->outcnt() > 0) {
4285       Node* use_clone = old_new[use->_idx];
4286       _igvn.rehash_node_delayed(use); // Multiple edge updates
4287       use->set_req(LoopNode::EntryControl,    use_clone->in(LoopNode::LoopBackControl));
4288       use->set_req(LoopNode::LoopBackControl, C->top());
4289       _igvn.replace_input_of(use_clone, LoopNode::LoopBackControl, C->top());
4290     }
4291   }
4292 
4293   // Step 4: update dominator tree and dominator depth
4294 
4295   set_idom(head, orig_tail_clone, dd);
4296   recompute_dom_depth();
4297 
4298   // Inhibit more partial peeling on this loop
4299   new_head_clone->set_partial_peel_loop();
4300   C->set_major_progress();
4301   loop->record_for_igvn();
4302 
4303 #ifndef PRODUCT
4304   if (TracePartialPeeling) {
4305     tty->print_cr("\nafter partial peel one iteration");
4306     Node_List wl;
4307     Node* t = last_peel;
4308     while (true) {
4309       wl.push(t);
4310       if (t == head_clone) break;
4311       t = idom(t);
4312     }
4313     while (wl.size() > 0) {
4314       Node* tt = wl.pop();
4315       if (tt == head) tty->print_cr("orig head");
4316       else if (tt == new_head_clone) tty->print_cr("new head");
4317       else if (tt == head_clone) tty->print_cr("clone head");
4318       tt->dump();
4319     }
4320   }
4321 #endif
4322 
4323   C->print_method(PHASE_AFTER_PARTIAL_PEELING, 4, new_head_clone);
4324 
4325   return true;
4326 }
4327 
4328 // Transform:
4329 //
4330 // loop<-----------------+
4331 //  |                    |
4332 // stmt1 stmt2 .. stmtn  |
4333 //  |     |        |     |
4334 //  \     |       /      |
4335 //    v   v     v        |
4336 //       region          |
4337 //         |             |
4338 //     shared_stmt       |
4339 //         |             |
4340 //         v             |
4341 //         if            |
4342 //         / \           |
4343 //        |   -----------+
4344 //        v
4345 //
4346 // into:
4347 //
4348 //    loop<-------------------+
4349 //     |                      |
4350 //     v                      |
4351 // +->loop                    |
4352 // |   |                      |
4353 // |  stmt1 stmt2 .. stmtn    |
4354 // |   |     |        |       |
4355 // |   |      \       /       |
4356 // |   |       v     v        |
4357 // |   |        region1       |
4358 // |   |           |          |
4359 // |  shared_stmt shared_stmt |
4360 // |   |           |          |
4361 // |   v           v          |
4362 // |   if          if         |
4363 // |   /\          / \        |
4364 // +--   |         |   -------+
4365 //       \         /
4366 //        v       v
4367 //         region2
4368 //
4369 // (region2 is shown to merge mirrored projections of the loop exit
4370 // ifs to make the diagram clearer but they really merge the same
4371 // projection)
4372 //
4373 // Conditions for this transformation to trigger:
4374 // - the path through stmt1 is frequent enough
4375 // - the inner loop will be turned into a counted loop after transformation
4376 bool PhaseIdealLoop::duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new) {
4377   if (!DuplicateBackedge) {
4378     return false;
4379   }
4380   assert(!loop->_head->is_CountedLoop() || StressDuplicateBackedge, "Non-counted loop only");
4381   if (!loop->_head->is_Loop()) {
4382     return false;
4383   }
4384 
4385   uint estimate = loop->est_loop_clone_sz(1);
4386   if (exceeding_node_budget(estimate)) {
4387     return false;
4388   }
4389 
4390   LoopNode *head = loop->_head->as_Loop();
4391 
4392   Node* region = nullptr;
4393   IfNode* exit_test = nullptr;
4394   uint inner;
4395   float f;
4396   if (StressDuplicateBackedge) {
4397     if (head->is_strip_mined()) {
4398       return false;
4399     }
4400     Node* c = head->in(LoopNode::LoopBackControl);
4401 
4402     while (c != head) {
4403       if (c->is_Region()) {
4404         region = c;
4405       }
4406       c = idom(c);
4407     }
4408 
4409     if (region == nullptr) {
4410       return false;
4411     }
4412 
4413     inner = 1;
4414   } else {
4415     // Is the shape of the loop that of a counted loop...
4416     Node* back_control = loop_exit_control(head, loop);
4417     if (back_control == nullptr) {
4418       return false;
4419     }
4420 
4421     BoolTest::mask bt = BoolTest::illegal;
4422     float cl_prob = 0;
4423     Node* incr = nullptr;
4424     Node* limit = nullptr;
4425     Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
4426     if (cmp == nullptr || cmp->Opcode() != Op_CmpI) {
4427       return false;
4428     }
4429 
4430     // With an extra phi for the candidate iv?
4431     // Or the region node is the loop head
4432     if (!incr->is_Phi() || incr->in(0) == head) {
4433       return false;
4434     }
4435 
4436     PathFrequency pf(head, this);
4437     region = incr->in(0);
4438 
4439     // Go over all paths for the extra phi's region and see if that
4440     // path is frequent enough and would match the expected iv shape
4441     // if the extra phi is removed
4442     inner = 0;
4443     for (uint i = 1; i < incr->req(); ++i) {
4444       Node* in = incr->in(i);
4445       Node* trunc1 = nullptr;
4446       Node* trunc2 = nullptr;
4447       const TypeInteger* iv_trunc_t = nullptr;
4448       Node* orig_in = in;
4449       if (!(in = CountedLoopNode::match_incr_with_optional_truncation(in, &trunc1, &trunc2, &iv_trunc_t, T_INT))) {
4450         continue;
4451       }
4452       assert(in->Opcode() == Op_AddI, "wrong increment code");
4453       Node* xphi = nullptr;
4454       Node* stride = loop_iv_stride(in, loop, xphi);
4455 
4456       if (stride == nullptr) {
4457         continue;
4458       }
4459 
4460       PhiNode* phi = loop_iv_phi(xphi, nullptr, head, loop);
4461       if (phi == nullptr ||
4462           (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
4463           (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
4464         return false;
4465       }
4466 
4467       f = pf.to(region->in(i));
4468       if (f > 0.5) {
4469         inner = i;
4470         break;
4471       }
4472     }
4473 
4474     if (inner == 0) {
4475       return false;
4476     }
4477 
4478     exit_test = back_control->in(0)->as_If();
4479   }
4480 
4481   if (idom(region)->is_Catch()) {
4482     return false;
4483   }
4484 
4485   // Collect all control nodes that need to be cloned (shared_stmt in the diagram)
4486   Unique_Node_List wq;
4487   wq.push(head->in(LoopNode::LoopBackControl));
4488   for (uint i = 0; i < wq.size(); i++) {
4489     Node* c = wq.at(i);
4490     assert(get_loop(c) == loop, "not in the right loop?");
4491     if (c->is_Region()) {
4492       if (c != region) {
4493         for (uint j = 1; j < c->req(); ++j) {
4494           wq.push(c->in(j));
4495         }
4496       }
4497     } else {
4498       wq.push(c->in(0));
4499     }
4500     assert(!is_strict_dominator(c, region), "shouldn't go above region");
4501   }
4502 
4503   Node* region_dom = idom(region);
4504 
4505   // Can't do the transformation if this would cause a membar pair to
4506   // be split
4507   for (uint i = 0; i < wq.size(); i++) {
4508     Node* c = wq.at(i);
4509     if (c->is_MemBar() && (c->as_MemBar()->trailing_store() || c->as_MemBar()->trailing_load_store())) {
4510       assert(c->as_MemBar()->leading_membar()->trailing_membar() == c, "bad membar pair");
4511       if (!wq.member(c->as_MemBar()->leading_membar())) {
4512         return false;
4513       }
4514     }
4515   }
4516 
4517   // Collect data nodes that need to be clones as well
4518   int dd = dom_depth(head);
4519 
4520   for (uint i = 0; i < loop->_body.size(); ++i) {
4521     Node* n = loop->_body.at(i);
4522     if (has_ctrl(n)) {
4523       Node* c = get_ctrl(n);
4524       if (wq.member(c)) {
4525         wq.push(n);
4526       }
4527     } else {
4528       set_idom(n, idom(n), dd);
4529     }
4530   }
4531 
4532   // clone shared_stmt
4533   clone_loop_body(wq, old_new, nullptr);
4534 
4535   Node* region_clone = old_new[region->_idx];
4536   region_clone->set_req(inner, C->top());
4537   set_idom(region, region->in(inner), dd);
4538 
4539   // Prepare the outer loop
4540   Node* outer_head = new LoopNode(head->in(LoopNode::EntryControl), old_new[head->in(LoopNode::LoopBackControl)->_idx]);
4541   register_control(outer_head, loop->_parent, outer_head->in(LoopNode::EntryControl));
4542   _igvn.replace_input_of(head, LoopNode::EntryControl, outer_head);
4543   set_idom(head, outer_head, dd);
4544 
4545   fix_body_edges(wq, loop, old_new, dd, loop->_parent, true);
4546 
4547   // Make one of the shared_stmt copies only reachable from stmt1, the
4548   // other only from stmt2..stmtn.
4549   Node* dom = nullptr;
4550   for (uint i = 1; i < region->req(); ++i) {
4551     if (i != inner) {
4552       _igvn.replace_input_of(region, i, C->top());
4553     }
4554     Node* in = region_clone->in(i);
4555     if (in->is_top()) {
4556       continue;
4557     }
4558     if (dom == nullptr) {
4559       dom = in;
4560     } else {
4561       dom = dom_lca(dom, in);
4562     }
4563   }
4564 
4565   set_idom(region_clone, dom, dd);
4566 
4567   // Set up the outer loop
4568   for (uint i = 0; i < head->outcnt(); i++) {
4569     Node* u = head->raw_out(i);
4570     if (u->is_Phi()) {
4571       Node* outer_phi = u->clone();
4572       outer_phi->set_req(0, outer_head);
4573       Node* backedge = old_new[u->in(LoopNode::LoopBackControl)->_idx];
4574       if (backedge == nullptr) {
4575         backedge = u->in(LoopNode::LoopBackControl);
4576       }
4577       outer_phi->set_req(LoopNode::LoopBackControl, backedge);
4578       register_new_node(outer_phi, outer_head);
4579       _igvn.replace_input_of(u, LoopNode::EntryControl, outer_phi);
4580     }
4581   }
4582 
4583   // create control and data nodes for out of loop uses (including region2)
4584   Node_List worklist;
4585   uint new_counter = C->unique();
4586   fix_ctrl_uses(wq, loop, old_new, ControlAroundStripMined, outer_head, nullptr, worklist);
4587 
4588   Node_List *split_if_set = nullptr;
4589   Node_List *split_bool_set = nullptr;
4590   Node_List *split_cex_set = nullptr;
4591   fix_data_uses(wq, loop, ControlAroundStripMined, loop->skip_strip_mined(), new_counter, old_new, worklist,
4592                 split_if_set, split_bool_set, split_cex_set);
4593 
4594   finish_clone_loop(split_if_set, split_bool_set, split_cex_set);
4595 
4596   if (exit_test != nullptr) {
4597     float cnt = exit_test->_fcnt;
4598     if (cnt != COUNT_UNKNOWN) {
4599       exit_test->_fcnt = cnt * f;
4600       old_new[exit_test->_idx]->as_If()->_fcnt = cnt * (1 - f);
4601     }
4602   }
4603 
4604   C->set_major_progress();
4605 
4606   return true;
4607 }
4608 
4609 // AutoVectorize the loop: replace scalar ops with vector ops.
4610 PhaseIdealLoop::AutoVectorizeStatus
4611 PhaseIdealLoop::auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared) {
4612   // Counted loop only
4613   if (!lpt->is_counted()) {
4614     return AutoVectorizeStatus::Impossible;
4615   }
4616 
4617   // Main-loop only
4618   CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4619   if (!cl->is_main_loop()) {
4620     return AutoVectorizeStatus::Impossible;
4621   }
4622 
4623   VLoop vloop(lpt, false);
4624   if (!vloop.check_preconditions()) {
4625     return AutoVectorizeStatus::TriedAndFailed;
4626   }
4627 
4628   // Ensure the shared data is cleared before each use
4629   vshared.clear();
4630 
4631   const VLoopAnalyzer vloop_analyzer(vloop, vshared);
4632   if (!vloop_analyzer.success()) {
4633     return AutoVectorizeStatus::TriedAndFailed;
4634   }
4635 
4636   SuperWord sw(vloop_analyzer);
4637   if (!sw.transform_loop()) {
4638     return AutoVectorizeStatus::TriedAndFailed;
4639   }
4640 
4641   return AutoVectorizeStatus::Success;
4642 }
4643 
4644 // Just before insert_pre_post_loops, we can multiversion the loop:
4645 //
4646 //              multiversion_if
4647 //               |       |
4648 //         fast_loop   slow_loop
4649 //
4650 // In the fast_loop we can make speculative assumptions, and put the
4651 // conditions into the multiversion_if. If the conditions hold at runtime,
4652 // we enter the fast_loop, if the conditions fail, we take the slow_loop
4653 // instead which does not make any of the speculative assumptions.
4654 //
4655 // Note: we only multiversion the loop if the loop does not have any
4656 //       auto vectorization check Predicate. If we have that predicate,
4657 //       then we can simply add the speculative assumption checks to
4658 //       that Predicate. This means we do not need to duplicate the
4659 //       loop - we have a smaller graph and save compile time. Should
4660 //       the conditions ever fail, then we deopt / trap at the Predicate
4661 //       and recompile without that Predicate. At that point we will
4662 //       multiversion the loop, so that we can still have speculative
4663 //       runtime checks.
4664 //
4665 // We perform the multiversioning when the loop is still in its single
4666 // iteration form, even before we insert pre and post loops. This makes
4667 // the cloning much simpler. However, this means that both the fast
4668 // and the slow loop have to be optimized independently (adding pre
4669 // and post loops, unrolling the main loop, auto-vectorize etc.). And
4670 // we may end up not needing any speculative assumptions in the fast_loop
4671 // and then rejecting the slow_loop by constant folding the multiversion_if.
4672 //
4673 // Therefore, we "delay" the optimization of the slow_loop until we add
4674 // at least one speculative assumption for the fast_loop. If we never
4675 // add such a speculative runtime check, the OpaqueMultiversioningNode
4676 // of the multiversion_if constant folds to true after loop opts, and the
4677 // multiversion_if folds away the "delayed" slow_loop. If we add any
4678 // speculative assumption, then we notify the OpaqueMultiversioningNode
4679 // with "notify_slow_loop_that_it_can_resume_optimizations".
4680 //
4681 // Note: new runtime checks can be added to the multiversion_if with
4682 //       PhaseIdealLoop::create_new_if_for_multiversion
4683 void PhaseIdealLoop::maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new) {
4684   CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4685   LoopNode* outer_loop = cl->skip_strip_mined();
4686   Node* entry = outer_loop->in(LoopNode::EntryControl);
4687 
4688   // Check we have multiversioning enabled, and are not already multiversioned.
4689   if (!LoopMultiversioning || cl->is_multiversion()) { return; }
4690 
4691   // Check that we do not have a parse-predicate where we can add the runtime checks
4692   // during auto-vectorization.
4693   const Predicates predicates(entry);
4694   const PredicateBlock* predicate_block = predicates.auto_vectorization_check_block();
4695   if (predicate_block->has_parse_predicate()) { return; }
4696 
4697   // Check node budget.
4698   uint estimate = lpt->est_loop_clone_sz(2);
4699   if (!may_require_nodes(estimate)) { return; }
4700 
4701   do_multiversioning(lpt, old_new);
4702 }
4703 
4704 // Returns true if the Reduction node is unordered.
4705 static bool is_unordered_reduction(Node* n) {
4706   return n->is_Reduction() && !n->as_Reduction()->requires_strict_order();
4707 }
4708 
4709 // Having ReductionNodes in the loop is expensive. They need to recursively
4710 // fold together the vector values, for every vectorized loop iteration. If
4711 // we encounter the following pattern, we can vector accumulate the values
4712 // inside the loop, and only have a single UnorderedReduction after the loop.
4713 //
4714 // Note: UnorderedReduction represents a ReductionNode which does not require
4715 // calculating in strict order.
4716 //
4717 // CountedLoop     init
4718 //          |        |
4719 //          +------+ | +-----------------------+
4720 //                 | | |                       |
4721 //                PhiNode (s)                  |
4722 //                  |                          |
4723 //                  |          Vector          |
4724 //                  |            |             |
4725 //               UnorderedReduction (first_ur) |
4726 //                  |                          |
4727 //                 ...         Vector          |
4728 //                  |            |             |
4729 //               UnorderedReduction (last_ur)  |
4730 //                       |                     |
4731 //                       +---------------------+
4732 //
4733 // We patch the graph to look like this:
4734 //
4735 // CountedLoop   identity_vector
4736 //         |         |
4737 //         +-------+ | +---------------+
4738 //                 | | |               |
4739 //                PhiNode (v)          |
4740 //                   |                 |
4741 //                   |         Vector  |
4742 //                   |           |     |
4743 //                 VectorAccumulator   |
4744 //                   |                 |
4745 //                  ...        Vector  |
4746 //                   |           |     |
4747 //      init       VectorAccumulator   |
4748 //        |          |     |           |
4749 //     UnorderedReduction  +-----------+
4750 //
4751 // We turned the scalar (s) Phi into a vectorized one (v). In the loop, we
4752 // use vector_accumulators, which do the same reductions, but only element
4753 // wise. This is a single operation per vector_accumulator, rather than many
4754 // for a UnorderedReduction. We can then reduce the last vector_accumulator
4755 // after the loop, and also reduce the init value into it.
4756 //
4757 // We can not do this with all reductions. Some reductions do not allow the
4758 // reordering of operations (for example float addition/multiplication require
4759 // strict order).
4760 void PhaseIdealLoop::move_unordered_reduction_out_of_loop(IdealLoopTree* loop) {
4761   assert(!C->major_progress() && loop->is_counted() && loop->is_innermost(), "sanity");
4762 
4763   // Find all Phi nodes with an unordered Reduction on backedge.
4764   CountedLoopNode* cl = loop->_head->as_CountedLoop();
4765   for (DUIterator_Fast jmax, j = cl->fast_outs(jmax); j < jmax; j++) {
4766     Node* phi = cl->fast_out(j);
4767     // We have a phi with a single use, and an unordered Reduction on the backedge.
4768     if (!phi->is_Phi() || phi->outcnt() != 1 || !is_unordered_reduction(phi->in(2))) {
4769       continue;
4770     }
4771 
4772     ReductionNode* last_ur = phi->in(2)->as_Reduction();
4773     assert(!last_ur->requires_strict_order(), "must be");
4774 
4775     // Determine types
4776     const TypeVect* vec_t = last_ur->vect_type();
4777     uint vector_length    = vec_t->length();
4778     BasicType bt          = vec_t->element_basic_type();
4779 
4780     // Convert opcode from vector-reduction -> scalar -> normal-vector-op
4781     const int sopc        = VectorNode::scalar_opcode(last_ur->Opcode(), bt);
4782     const int vopc        = VectorNode::opcode(sopc, bt);
4783     if (!Matcher::match_rule_supported_vector(vopc, vector_length, bt)) {
4784         DEBUG_ONLY( last_ur->dump(); )
4785         assert(false, "do not have normal vector op for this reduction");
4786         continue; // not implemented -> fails
4787     }
4788 
4789     // Traverse up the chain of unordered Reductions, checking that it loops back to
4790     // the phi. Check that all unordered Reductions only have a single use, except for
4791     // the last (last_ur), which only has phi as a use in the loop, and all other uses
4792     // are outside the loop.
4793     ReductionNode* current = last_ur;
4794     ReductionNode* first_ur = nullptr;
4795     while (true) {
4796       assert(!current->requires_strict_order(), "sanity");
4797 
4798       // Expect no ctrl and a vector_input from within the loop.
4799       Node* ctrl = current->in(0);
4800       Node* vector_input = current->in(2);
4801       if (ctrl != nullptr || get_ctrl(vector_input) != cl) {
4802         DEBUG_ONLY( current->dump(1); )
4803         assert(false, "reduction has ctrl or bad vector_input");
4804         break; // Chain traversal fails.
4805       }
4806 
4807       assert(current->vect_type() != nullptr, "must have vector type");
4808       if (current->vect_type() != last_ur->vect_type()) {
4809         // Reductions do not have the same vector type (length and element type).
4810         break; // Chain traversal fails.
4811       }
4812 
4813       // Expect single use of an unordered Reduction, except for last_ur.
4814       if (current == last_ur) {
4815         // Expect all uses to be outside the loop, except phi.
4816         for (DUIterator_Fast kmax, k = current->fast_outs(kmax); k < kmax; k++) {
4817           Node* use = current->fast_out(k);
4818           if (use != phi && ctrl_or_self(use) == cl) {
4819             DEBUG_ONLY( current->dump(-1); )
4820             assert(false, "reduction has use inside loop");
4821             // Should not be allowed by SuperWord::mark_reductions
4822             return; // bail out of optimization
4823           }
4824         }
4825       } else {
4826         if (current->outcnt() != 1) {
4827           break; // Chain traversal fails.
4828         }
4829       }
4830 
4831       // Expect another unordered Reduction or phi as the scalar input.
4832       Node* scalar_input = current->in(1);
4833       if (is_unordered_reduction(scalar_input) &&
4834           scalar_input->Opcode() == current->Opcode()) {
4835         // Move up the unordered Reduction chain.
4836         current = scalar_input->as_Reduction();
4837         assert(!current->requires_strict_order(), "must be");
4838       } else if (scalar_input == phi) {
4839         // Chain terminates at phi.
4840         first_ur = current;
4841         current = nullptr;
4842         break; // Success.
4843       } else {
4844         // scalar_input is neither phi nor a matching reduction
4845         // Can for example be scalar reduction when we have
4846         // partial vectorization.
4847         break; // Chain traversal fails.
4848       }
4849     }
4850     if (current != nullptr) {
4851       // Chain traversal was not successful.
4852       continue;
4853     }
4854     assert(first_ur != nullptr, "must have successfully terminated chain traversal");
4855 
4856     Node* identity_scalar = ReductionNode::make_identity_con_scalar(_igvn, sopc, bt);
4857     set_root_as_ctrl(identity_scalar);
4858     VectorNode* identity_vector = VectorNode::scalar2vector(identity_scalar, vector_length, bt);
4859     register_new_node(identity_vector, C->root());
4860     assert(vec_t == identity_vector->vect_type(), "matching vector type");
4861     VectorNode::trace_new_vector(identity_vector, "Unordered Reduction");
4862 
4863     // Turn the scalar phi into a vector phi.
4864     _igvn.rehash_node_delayed(phi);
4865     Node* init = phi->in(1); // Remember init before replacing it.
4866     phi->set_req_X(1, identity_vector, &_igvn);
4867     phi->as_Type()->set_type(vec_t);
4868     _igvn.set_type(phi, vec_t);
4869 
4870     // Traverse down the chain of unordered Reductions, and replace them with vector_accumulators.
4871     current = first_ur;
4872     while (true) {
4873       // Create vector_accumulator to replace current.
4874       Node* last_vector_accumulator = current->in(1);
4875       Node* vector_input            = current->in(2);
4876       VectorNode* vector_accumulator = VectorNode::make(vopc, last_vector_accumulator, vector_input, vec_t);
4877       register_new_node(vector_accumulator, cl);
4878       _igvn.replace_node(current, vector_accumulator);
4879       VectorNode::trace_new_vector(vector_accumulator, "Unordered Reduction");
4880       if (current == last_ur) {
4881         break;
4882       }
4883       current = vector_accumulator->unique_out()->as_Reduction();
4884       assert(!current->requires_strict_order(), "must be");
4885     }
4886 
4887     // Create post-loop reduction.
4888     Node* last_accumulator = phi->in(2);
4889     Node* post_loop_reduction = ReductionNode::make(sopc, nullptr, init, last_accumulator, bt);
4890 
4891     // Take over uses of last_accumulator that are not in the loop.
4892     for (DUIterator i = last_accumulator->outs(); last_accumulator->has_out(i); i++) {
4893       Node* use = last_accumulator->out(i);
4894       if (use != phi && use != post_loop_reduction) {
4895         assert(ctrl_or_self(use) != cl, "use must be outside loop");
4896         use->replace_edge(last_accumulator, post_loop_reduction,  &_igvn);
4897         --i;
4898       }
4899     }
4900     register_new_node(post_loop_reduction, get_late_ctrl(post_loop_reduction, cl));
4901     VectorNode::trace_new_vector(post_loop_reduction, "Unordered Reduction");
4902 
4903     assert(last_accumulator->outcnt() == 2, "last_accumulator has 2 uses: phi and post_loop_reduction");
4904     assert(post_loop_reduction->outcnt() > 0, "should have taken over all non loop uses of last_accumulator");
4905     assert(phi->outcnt() == 1, "accumulator is the only use of phi");
4906   }
4907 }
4908 
4909 void DataNodeGraph::clone_data_nodes(Node* new_ctrl) {
4910   for (uint i = 0; i < _data_nodes.size(); i++) {
4911     clone(_data_nodes[i], new_ctrl);
4912   }
4913 }
4914 
4915 // Clone the given node and set it up properly. Set 'new_ctrl' as ctrl.
4916 void DataNodeGraph::clone(Node* node, Node* new_ctrl) {
4917   Node* clone = node->clone();
4918   _phase->igvn().register_new_node_with_optimizer(clone);
4919   _orig_to_new.put(node, clone);
4920   _phase->set_ctrl(clone, new_ctrl);
4921   if (node->is_CastII()) {
4922     clone->set_req(0, new_ctrl);
4923   }
4924 }
4925 
4926 // Rewire the data inputs of all (unprocessed) cloned nodes, whose inputs are still pointing to the same inputs as their
4927 // corresponding orig nodes, to the newly cloned inputs to create a separate cloned graph.
4928 void DataNodeGraph::rewire_clones_to_cloned_inputs() {
4929   _orig_to_new.iterate_all([&](Node* node, Node* clone) {
4930     for (uint i = 1; i < node->req(); i++) {
4931       Node** cloned_input = _orig_to_new.get(node->in(i));
4932       if (cloned_input != nullptr) {
4933         // Input was also cloned -> rewire clone to the cloned input.
4934         _phase->igvn().replace_input_of(clone, i, *cloned_input);
4935       }
4936     }
4937   });
4938 }
4939 
4940 // Clone all non-OpaqueLoop* nodes and apply the provided transformation strategy for OpaqueLoop* nodes.
4941 // Set 'new_ctrl' as ctrl for all cloned non-OpaqueLoop* nodes.
4942 void DataNodeGraph::clone_data_nodes_and_transform_opaque_loop_nodes(
4943     const TransformStrategyForOpaqueLoopNodes& transform_strategy,
4944     Node* new_ctrl) {
4945   for (uint i = 0; i < _data_nodes.size(); i++) {
4946     Node* data_node = _data_nodes[i];
4947     if (data_node->is_Opaque1()) {
4948       transform_opaque_node(transform_strategy, data_node);
4949     } else {
4950       clone(data_node, new_ctrl);
4951     }
4952   }
4953 }
4954 
4955 void DataNodeGraph::transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node) {
4956   Node* transformed_node;
4957   if (node->is_OpaqueLoopInit()) {
4958     transformed_node = transform_strategy.transform_opaque_init(node->as_OpaqueLoopInit());
4959   } else {
4960     assert(node->is_OpaqueLoopStride(), "must be OpaqueLoopStrideNode");
4961     transformed_node = transform_strategy.transform_opaque_stride(node->as_OpaqueLoopStride());
4962   }
4963   // Add an orig->new mapping to correctly update the inputs of the copied graph in rewire_clones_to_cloned_inputs().
4964   _orig_to_new.put(node, transformed_node);
4965 }