1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shared/c2/barrierSetC2.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/divnode.hpp"
  35 #include "opto/inlinetypenode.hpp"
  36 #include "opto/loopnode.hpp"
  37 #include "opto/matcher.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/movenode.hpp"
  40 #include "opto/opaquenode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "opto/subnode.hpp"
  43 #include "opto/subtypenode.hpp"
  44 #include "opto/superword.hpp"
  45 #include "opto/vectornode.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 //=============================================================================
  49 //------------------------------split_thru_phi---------------------------------
  50 // Split Node 'n' through merge point if there is enough win.
  51 Node* PhaseIdealLoop::split_thru_phi(Node* n, Node* region, int policy) {
  52   if ((n->Opcode() == Op_ConvI2L && n->bottom_type() != TypeLong::LONG) ||
  53       (n->Opcode() == Op_ConvL2I && n->bottom_type() != TypeInt::INT)) {
  54     // ConvI2L/ConvL2I may have type information on it which is unsafe to push up
  55     // so disable this for now
  56     return nullptr;
  57   }
  58 
  59   // Splitting range check CastIIs through a loop induction Phi can
  60   // cause new Phis to be created that are left unrelated to the loop
  61   // induction Phi and prevent optimizations (vectorization)
  62   if (n->Opcode() == Op_CastII && region->is_CountedLoop() &&
  63       n->in(1) == region->as_CountedLoop()->phi()) {
  64     return nullptr;
  65   }
  66 
  67   // Inline types should not be split through Phis because they cannot be merged
  68   // through Phi nodes but each value input needs to be merged individually.
  69   if (n->is_InlineType()) {
  70     return nullptr;
  71   }
  72 
  73   if (cannot_split_division(n, region)) {
  74     return nullptr;
  75   }
  76 
  77   int wins = 0;
  78   assert(!n->is_CFG(), "");
  79   assert(region->is_Region(), "");
  80 
  81   const Type* type = n->bottom_type();
  82   const TypeOopPtr* t_oop = _igvn.type(n)->isa_oopptr();
  83   Node* phi;
  84   if (t_oop != nullptr && t_oop->is_known_instance_field()) {
  85     int iid    = t_oop->instance_id();
  86     int index  = C->get_alias_index(t_oop);
  87     int offset = t_oop->offset();
  88     phi = new PhiNode(region, type, nullptr, iid, index, offset);
  89   } else {
  90     phi = PhiNode::make_blank(region, n);
  91   }
  92   uint old_unique = C->unique();
  93   for (uint i = 1; i < region->req(); i++) {
  94     Node* x;
  95     Node* the_clone = nullptr;
  96     if (region->in(i) == C->top()) {
  97       x = C->top();             // Dead path?  Use a dead data op
  98     } else {
  99       x = n->clone();           // Else clone up the data op
 100       the_clone = x;            // Remember for possible deletion.
 101       // Alter data node to use pre-phi inputs
 102       if (n->in(0) == region)
 103         x->set_req( 0, region->in(i) );
 104       for (uint j = 1; j < n->req(); j++) {
 105         Node* in = n->in(j);
 106         if (in->is_Phi() && in->in(0) == region)
 107           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
 108       }
 109     }
 110     // Check for a 'win' on some paths
 111     const Type* t = x->Value(&_igvn);
 112 
 113     bool singleton = t->singleton();
 114 
 115     // A TOP singleton indicates that there are no possible values incoming
 116     // along a particular edge. In most cases, this is OK, and the Phi will
 117     // be eliminated later in an Ideal call. However, we can't allow this to
 118     // happen if the singleton occurs on loop entry, as the elimination of
 119     // the PhiNode may cause the resulting node to migrate back to a previous
 120     // loop iteration.
 121     if (singleton && t == Type::TOP) {
 122       // Is_Loop() == false does not confirm the absence of a loop (e.g., an
 123       // irreducible loop may not be indicated by an affirmative is_Loop());
 124       // therefore, the only top we can split thru a phi is on a backedge of
 125       // a loop.
 126       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
 127     }
 128 
 129     if (singleton) {
 130       wins++;
 131       x = makecon(t);
 132     } else {
 133       // We now call Identity to try to simplify the cloned node.
 134       // Note that some Identity methods call phase->type(this).
 135       // Make sure that the type array is big enough for
 136       // our new node, even though we may throw the node away.
 137       // (Note: This tweaking with igvn only works because x is a new node.)
 138       _igvn.set_type(x, t);
 139       // If x is a TypeNode, capture any more-precise type permanently into Node
 140       // otherwise it will be not updated during igvn->transform since
 141       // igvn->type(x) is set to x->Value() already.
 142       x->raise_bottom_type(t);
 143       Node* y = x->Identity(&_igvn);
 144       if (y != x) {
 145         wins++;
 146         x = y;
 147       } else {
 148         y = _igvn.hash_find(x);
 149         if (y == nullptr) {
 150           y = similar_subtype_check(x, region->in(i));
 151         }
 152         if (y) {
 153           wins++;
 154           x = y;
 155         } else {
 156           // Else x is a new node we are keeping
 157           // We do not need register_new_node_with_optimizer
 158           // because set_type has already been called.
 159           _igvn._worklist.push(x);
 160         }
 161       }
 162     }
 163 
 164     phi->set_req( i, x );
 165 
 166     if (the_clone == nullptr) {
 167       continue;
 168     }
 169 
 170     if (the_clone != x) {
 171       _igvn.remove_dead_node(the_clone);
 172     } else if (region->is_Loop() && i == LoopNode::LoopBackControl &&
 173                n->is_Load() && can_move_to_inner_loop(n, region->as_Loop(), x)) {
 174       // it is not a win if 'x' moved from an outer to an inner loop
 175       // this edge case can only happen for Load nodes
 176       wins = 0;
 177       break;
 178     }
 179   }
 180   // Too few wins?
 181   if (wins <= policy) {
 182     _igvn.remove_dead_node(phi);
 183     return nullptr;
 184   }
 185 
 186   // Record Phi
 187   register_new_node( phi, region );
 188 
 189   for (uint i2 = 1; i2 < phi->req(); i2++) {
 190     Node *x = phi->in(i2);
 191     // If we commoned up the cloned 'x' with another existing Node,
 192     // the existing Node picks up a new use.  We need to make the
 193     // existing Node occur higher up so it dominates its uses.
 194     Node *old_ctrl;
 195     IdealLoopTree *old_loop;
 196 
 197     if (x->is_Con()) {
 198       assert(get_ctrl(x) == C->root(), "constant control is not root");
 199       continue;
 200     }
 201     // The occasional new node
 202     if (x->_idx >= old_unique) {     // Found a new, unplaced node?
 203       old_ctrl = nullptr;
 204       old_loop = nullptr;               // Not in any prior loop
 205     } else {
 206       old_ctrl = get_ctrl(x);
 207       old_loop = get_loop(old_ctrl); // Get prior loop
 208     }
 209     // New late point must dominate new use
 210     Node *new_ctrl = dom_lca(old_ctrl, region->in(i2));
 211     if (new_ctrl == old_ctrl) // Nothing is changed
 212       continue;
 213 
 214     IdealLoopTree *new_loop = get_loop(new_ctrl);
 215 
 216     // Don't move x into a loop if its uses are
 217     // outside of loop. Otherwise x will be cloned
 218     // for each use outside of this loop.
 219     IdealLoopTree *use_loop = get_loop(region);
 220     if (!new_loop->is_member(use_loop) &&
 221         (old_loop == nullptr || !new_loop->is_member(old_loop))) {
 222       // Take early control, later control will be recalculated
 223       // during next iteration of loop optimizations.
 224       new_ctrl = get_early_ctrl(x);
 225       new_loop = get_loop(new_ctrl);
 226     }
 227     // Set new location
 228     set_ctrl(x, new_ctrl);
 229     // If changing loop bodies, see if we need to collect into new body
 230     if (old_loop != new_loop) {
 231       if (old_loop && !old_loop->_child)
 232         old_loop->_body.yank(x);
 233       if (!new_loop->_child)
 234         new_loop->_body.push(x);  // Collect body info
 235     }
 236   }
 237 
 238   return phi;
 239 }
 240 
 241 // Test whether node 'x' can move into an inner loop relative to node 'n'.
 242 // Note: The test is not exact. Returns true if 'x' COULD end up in an inner loop,
 243 // BUT it can also return true and 'x' is in the outer loop
 244 bool PhaseIdealLoop::can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x) {
 245   IdealLoopTree* n_loop_tree = get_loop(n_loop);
 246   IdealLoopTree* x_loop_tree = get_loop(get_early_ctrl(x));
 247   // x_loop_tree should be outer or same loop as n_loop_tree
 248   return !x_loop_tree->is_member(n_loop_tree);
 249 }
 250 
 251 // Subtype checks that carry profile data don't common so look for a replacement by following edges
 252 Node* PhaseIdealLoop::similar_subtype_check(const Node* x, Node* r_in) {
 253   if (x->is_SubTypeCheck()) {
 254     Node* in1 = x->in(1);
 255     for (DUIterator_Fast imax, i = in1->fast_outs(imax); i < imax; i++) {
 256       Node* u = in1->fast_out(i);
 257       if (u != x && u->is_SubTypeCheck() && u->in(1) == x->in(1) && u->in(2) == x->in(2)) {
 258         for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) {
 259           Node* bol = u->fast_out(j);
 260           for (DUIterator_Fast kmax, k = bol->fast_outs(kmax); k < kmax; k++) {
 261             Node* iff = bol->fast_out(k);
 262             // Only dominating subtype checks are interesting: otherwise we risk replacing a subtype check by another with
 263             // unrelated profile
 264             if (iff->is_If() && is_dominator(iff, r_in)) {
 265               return u;
 266             }
 267           }
 268         }
 269       }
 270     }
 271   }
 272   return nullptr;
 273 }
 274 
 275 // Return true if 'n' is a Div or Mod node (without zero check If node which was removed earlier) with a loop phi divisor
 276 // of a trip-counted (integer or long) loop with a backedge input that could be zero (include zero in its type range). In
 277 // this case, we cannot split the division to the backedge as it could freely float above the loop exit check resulting in
 278 // a division by zero. This situation is possible because the type of an increment node of an iv phi (trip-counter) could
 279 // include zero while the iv phi does not (see PhiNode::Value() for trip-counted loops where we improve types of iv phis).
 280 // We also need to check other loop phis as they could have been created in the same split-if pass when applying
 281 // PhaseIdealLoop::split_thru_phi() to split nodes through an iv phi.
 282 bool PhaseIdealLoop::cannot_split_division(const Node* n, const Node* region) const {
 283   const Type* zero;
 284   switch (n->Opcode()) {
 285     case Op_DivI:
 286     case Op_ModI:
 287     case Op_UDivI:
 288     case Op_UModI:
 289       zero = TypeInt::ZERO;
 290       break;
 291     case Op_DivL:
 292     case Op_ModL:
 293     case Op_UDivL:
 294     case Op_UModL:
 295       zero = TypeLong::ZERO;
 296       break;
 297     default:
 298       return false;
 299   }
 300 
 301   if (n->in(0) != nullptr) {
 302     // Cannot split through phi if Div or Mod node has a control dependency to a zero check.
 303     return true;
 304   }
 305 
 306   Node* divisor = n->in(2);
 307   return is_divisor_loop_phi(divisor, region) &&
 308          loop_phi_backedge_type_contains_zero(divisor, zero);
 309 }
 310 
 311 bool PhaseIdealLoop::is_divisor_loop_phi(const Node* divisor, const Node* loop) {
 312   return loop->is_Loop() && divisor->is_Phi() && divisor->in(0) == loop;
 313 }
 314 
 315 bool PhaseIdealLoop::loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const {
 316     return _igvn.type(phi_divisor->in(LoopNode::LoopBackControl))->filter_speculative(zero) != Type::TOP;
 317 }
 318 
 319 //------------------------------dominated_by------------------------------------
 320 // Replace the dominated test with an obvious true or false.  Place it on the
 321 // IGVN worklist for later cleanup.  Move control-dependent data Nodes on the
 322 // live path up to the dominating control.
 323 void PhaseIdealLoop::dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip, bool pin_array_access_nodes) {
 324   if (VerifyLoopOptimizations && PrintOpto) { tty->print_cr("dominating test"); }
 325 
 326   // prevdom is the dominating projection of the dominating test.
 327   assert(iff->Opcode() == Op_If ||
 328          iff->Opcode() == Op_CountedLoopEnd ||
 329          iff->Opcode() == Op_LongCountedLoopEnd ||
 330          iff->Opcode() == Op_RangeCheck ||
 331          iff->Opcode() == Op_ParsePredicate,
 332         "Check this code when new subtype is added");
 333 
 334   int pop = prevdom->Opcode();
 335   assert( pop == Op_IfFalse || pop == Op_IfTrue, "" );
 336   if (flip) {
 337     if (pop == Op_IfTrue)
 338       pop = Op_IfFalse;
 339     else
 340       pop = Op_IfTrue;
 341   }
 342   // 'con' is set to true or false to kill the dominated test.
 343   Node* con = makecon(pop == Op_IfTrue ? TypeInt::ONE : TypeInt::ZERO);
 344   // Hack the dominated test
 345   _igvn.replace_input_of(iff, 1, con);
 346 
 347   // If I don't have a reachable TRUE and FALSE path following the IfNode then
 348   // I can assume this path reaches an infinite loop.  In this case it's not
 349   // important to optimize the data Nodes - either the whole compilation will
 350   // be tossed or this path (and all data Nodes) will go dead.
 351   if (iff->outcnt() != 2) {
 352     return;
 353   }
 354 
 355   // Make control-dependent data Nodes on the live path (path that will remain
 356   // once the dominated IF is removed) become control-dependent on the
 357   // dominating projection.
 358   Node* dp = iff->proj_out_or_null(pop == Op_IfTrue);
 359 
 360   if (dp == nullptr) {
 361     return;
 362   }
 363 
 364   rewire_safe_outputs_to_dominator(dp, prevdom, pin_array_access_nodes);
 365 }
 366 
 367 void PhaseIdealLoop::rewire_safe_outputs_to_dominator(Node* source, Node* dominator, const bool pin_array_access_nodes) {
 368   IdealLoopTree* old_loop = get_loop(source);
 369 
 370   for (DUIterator_Fast imax, i = source->fast_outs(imax); i < imax; i++) {
 371     Node* out = source->fast_out(i); // Control-dependent node
 372     // Do not rewire Div and Mod nodes which could have a zero divisor to avoid skipping their zero check.
 373     if (out->depends_only_on_test() && _igvn.no_dependent_zero_check(out)) {
 374       assert(out->in(0) == source, "must be control dependent on source");
 375       _igvn.replace_input_of(out, 0, dominator);
 376       if (pin_array_access_nodes) {
 377         // Because of Loop Predication, Loads and range check Cast nodes that are control dependent on this range
 378         // check (that is about to be removed) now depend on multiple dominating Hoisted Check Predicates. After the
 379         // removal of this range check, these control dependent nodes end up at the lowest/nearest dominating predicate
 380         // in the graph. To ensure that these Loads/Casts do not float above any of the dominating checks (even when the
 381         // lowest dominating check is later replaced by yet another dominating check), we need to pin them at the lowest
 382         // dominating check.
 383         Node* clone = out->pin_array_access_node();
 384         if (clone != nullptr) {
 385           clone = _igvn.register_new_node_with_optimizer(clone, out);
 386           _igvn.replace_node(out, clone);
 387           out = clone;
 388         }
 389       }
 390       set_early_ctrl(out, false);
 391       IdealLoopTree* new_loop = get_loop(get_ctrl(out));
 392       if (old_loop != new_loop) {
 393         if (!old_loop->_child) {
 394           old_loop->_body.yank(out);
 395         }
 396         if (!new_loop->_child) {
 397           new_loop->_body.push(out);
 398         }
 399       }
 400       --i;
 401       --imax;
 402     }
 403   }
 404 }
 405 
 406 //------------------------------has_local_phi_input----------------------------
 407 // Return TRUE if 'n' has Phi inputs from its local block and no other
 408 // block-local inputs (all non-local-phi inputs come from earlier blocks)
 409 Node *PhaseIdealLoop::has_local_phi_input( Node *n ) {
 410   Node *n_ctrl = get_ctrl(n);
 411   // See if some inputs come from a Phi in this block, or from before
 412   // this block.
 413   uint i;
 414   for( i = 1; i < n->req(); i++ ) {
 415     Node *phi = n->in(i);
 416     if( phi->is_Phi() && phi->in(0) == n_ctrl )
 417       break;
 418   }
 419   if( i >= n->req() )
 420     return nullptr;                // No Phi inputs; nowhere to clone thru
 421 
 422   // Check for inputs created between 'n' and the Phi input.  These
 423   // must split as well; they have already been given the chance
 424   // (courtesy of a post-order visit) and since they did not we must
 425   // recover the 'cost' of splitting them by being very profitable
 426   // when splitting 'n'.  Since this is unlikely we simply give up.
 427   for( i = 1; i < n->req(); i++ ) {
 428     Node *m = n->in(i);
 429     if( get_ctrl(m) == n_ctrl && !m->is_Phi() ) {
 430       // We allow the special case of AddP's with no local inputs.
 431       // This allows us to split-up address expressions.
 432       if (m->is_AddP() &&
 433           get_ctrl(m->in(AddPNode::Base)) != n_ctrl &&
 434           get_ctrl(m->in(AddPNode::Address)) != n_ctrl &&
 435           get_ctrl(m->in(AddPNode::Offset)) != n_ctrl) {
 436         // Move the AddP up to the dominating point. That's fine because control of m's inputs
 437         // must dominate get_ctrl(m) == n_ctrl and we just checked that the input controls are != n_ctrl.
 438         Node* c = find_non_split_ctrl(idom(n_ctrl));
 439         if (c->is_OuterStripMinedLoop()) {
 440           c->as_Loop()->verify_strip_mined(1);
 441           c = c->in(LoopNode::EntryControl);
 442         }
 443         set_ctrl_and_loop(m, c);
 444         continue;
 445       }
 446       return nullptr;
 447     }
 448     assert(n->is_Phi() || m->is_Phi() || is_dominator(get_ctrl(m), n_ctrl), "m has strange control");
 449   }
 450 
 451   return n_ctrl;
 452 }
 453 
 454 // Replace expressions like ((V+I) << 2) with (V<<2 + I<<2).
 455 Node* PhaseIdealLoop::remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt) {
 456   assert(bt == T_INT || bt == T_LONG, "only for integers");
 457   int n_op = n->Opcode();
 458 
 459   if (n_op == Op_LShift(bt)) {
 460     // Scale is loop invariant
 461     Node* scale = n->in(2);
 462     Node* scale_ctrl = get_ctrl(scale);
 463     IdealLoopTree* scale_loop = get_loop(scale_ctrl);
 464     if (n_loop == scale_loop || !scale_loop->is_member(n_loop)) {
 465       return nullptr;
 466     }
 467     const TypeInt* scale_t = scale->bottom_type()->isa_int();
 468     if (scale_t != nullptr && scale_t->is_con() && scale_t->get_con() >= 16) {
 469       return nullptr;              // Dont bother with byte/short masking
 470     }
 471     // Add must vary with loop (else shift would be loop-invariant)
 472     Node* add = n->in(1);
 473     Node* add_ctrl = get_ctrl(add);
 474     IdealLoopTree* add_loop = get_loop(add_ctrl);
 475     if (n_loop != add_loop) {
 476       return nullptr;  // happens w/ evil ZKM loops
 477     }
 478 
 479     // Convert I-V into I+ (0-V); same for V-I
 480     if (add->Opcode() == Op_Sub(bt) &&
 481         _igvn.type(add->in(1)) != TypeInteger::zero(bt)) {
 482       assert(add->Opcode() == Op_SubI || add->Opcode() == Op_SubL, "");
 483       Node* zero = integercon(0, bt);
 484       Node* neg = SubNode::make(zero, add->in(2), bt);
 485       register_new_node_with_ctrl_of(neg, add->in(2));
 486       add = AddNode::make(add->in(1), neg, bt);
 487       register_new_node(add, add_ctrl);
 488     }
 489     if (add->Opcode() != Op_Add(bt)) return nullptr;
 490     assert(add->Opcode() == Op_AddI || add->Opcode() == Op_AddL, "");
 491     // See if one add input is loop invariant
 492     Node* add_var = add->in(1);
 493     Node* add_var_ctrl = get_ctrl(add_var);
 494     IdealLoopTree* add_var_loop = get_loop(add_var_ctrl);
 495     Node* add_invar = add->in(2);
 496     Node* add_invar_ctrl = get_ctrl(add_invar);
 497     IdealLoopTree* add_invar_loop = get_loop(add_invar_ctrl);
 498     if (add_invar_loop == n_loop) {
 499       // Swap to find the invariant part
 500       add_invar = add_var;
 501       add_invar_ctrl = add_var_ctrl;
 502       add_invar_loop = add_var_loop;
 503       add_var = add->in(2);
 504     } else if (add_var_loop != n_loop) { // Else neither input is loop invariant
 505       return nullptr;
 506     }
 507     if (n_loop == add_invar_loop || !add_invar_loop->is_member(n_loop)) {
 508       return nullptr;              // No invariant part of the add?
 509     }
 510 
 511     // Yes!  Reshape address expression!
 512     Node* inv_scale = LShiftNode::make(add_invar, scale, bt);
 513     Node* inv_scale_ctrl =
 514             dom_depth(add_invar_ctrl) > dom_depth(scale_ctrl) ?
 515             add_invar_ctrl : scale_ctrl;
 516     register_new_node(inv_scale, inv_scale_ctrl);
 517     Node* var_scale = LShiftNode::make(add_var, scale, bt);
 518     register_new_node(var_scale, n_ctrl);
 519     Node* var_add = AddNode::make(var_scale, inv_scale, bt);
 520     register_new_node(var_add, n_ctrl);
 521     _igvn.replace_node(n, var_add);
 522     return var_add;
 523   }
 524   return nullptr;
 525 }
 526 
 527 //------------------------------remix_address_expressions----------------------
 528 // Rework addressing expressions to get the most loop-invariant stuff
 529 // moved out.  We'd like to do all associative operators, but it's especially
 530 // important (common) to do address expressions.
 531 Node* PhaseIdealLoop::remix_address_expressions(Node* n) {
 532   if (!has_ctrl(n))  return nullptr;
 533   Node* n_ctrl = get_ctrl(n);
 534   IdealLoopTree* n_loop = get_loop(n_ctrl);
 535 
 536   // See if 'n' mixes loop-varying and loop-invariant inputs and
 537   // itself is loop-varying.
 538 
 539   // Only interested in binary ops (and AddP)
 540   if (n->req() < 3 || n->req() > 4) return nullptr;
 541 
 542   Node* n1_ctrl = get_ctrl(n->in(                    1));
 543   Node* n2_ctrl = get_ctrl(n->in(                    2));
 544   Node* n3_ctrl = get_ctrl(n->in(n->req() == 3 ? 2 : 3));
 545   IdealLoopTree* n1_loop = get_loop(n1_ctrl);
 546   IdealLoopTree* n2_loop = get_loop(n2_ctrl);
 547   IdealLoopTree* n3_loop = get_loop(n3_ctrl);
 548 
 549   // Does one of my inputs spin in a tighter loop than self?
 550   if ((n_loop->is_member(n1_loop) && n_loop != n1_loop) ||
 551       (n_loop->is_member(n2_loop) && n_loop != n2_loop) ||
 552       (n_loop->is_member(n3_loop) && n_loop != n3_loop)) {
 553     return nullptr;                // Leave well enough alone
 554   }
 555 
 556   // Is at least one of my inputs loop-invariant?
 557   if (n1_loop == n_loop &&
 558       n2_loop == n_loop &&
 559       n3_loop == n_loop) {
 560     return nullptr;                // No loop-invariant inputs
 561   }
 562 
 563   Node* res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_INT);
 564   if (res != nullptr) {
 565     return res;
 566   }
 567   res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_LONG);
 568   if (res != nullptr) {
 569     return res;
 570   }
 571 
 572   int n_op = n->Opcode();
 573   // Replace (I+V) with (V+I)
 574   if (n_op == Op_AddI ||
 575       n_op == Op_AddL ||
 576       n_op == Op_AddF ||
 577       n_op == Op_AddD ||
 578       n_op == Op_MulI ||
 579       n_op == Op_MulL ||
 580       n_op == Op_MulF ||
 581       n_op == Op_MulD) {
 582     if (n2_loop == n_loop) {
 583       assert(n1_loop != n_loop, "");
 584       n->swap_edges(1, 2);
 585     }
 586   }
 587 
 588   // Replace ((I1 +p V) +p I2) with ((I1 +p I2) +p V),
 589   // but not if I2 is a constant. Skip for irreducible loops.
 590   if (n_op == Op_AddP && n_loop->_head->is_Loop()) {
 591     if (n2_loop == n_loop && n3_loop != n_loop) {
 592       if (n->in(2)->Opcode() == Op_AddP && !n->in(3)->is_Con()) {
 593         Node* n22_ctrl = get_ctrl(n->in(2)->in(2));
 594         Node* n23_ctrl = get_ctrl(n->in(2)->in(3));
 595         IdealLoopTree* n22loop = get_loop(n22_ctrl);
 596         IdealLoopTree* n23_loop = get_loop(n23_ctrl);
 597         if (n22loop != n_loop && n22loop->is_member(n_loop) &&
 598             n23_loop == n_loop) {
 599           Node* add1 = new AddPNode(n->in(1), n->in(2)->in(2), n->in(3));
 600           // Stuff new AddP in the loop preheader
 601           register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl));
 602           Node* add2 = new AddPNode(n->in(1), add1, n->in(2)->in(3));
 603           register_new_node(add2, n_ctrl);
 604           _igvn.replace_node(n, add2);
 605           return add2;
 606         }
 607       }
 608     }
 609 
 610     // Replace (I1 +p (I2 + V)) with ((I1 +p I2) +p V)
 611     if (n2_loop != n_loop && n3_loop == n_loop) {
 612       if (n->in(3)->Opcode() == Op_AddX) {
 613         Node* V = n->in(3)->in(1);
 614         Node* I = n->in(3)->in(2);
 615         if (is_member(n_loop,get_ctrl(V))) {
 616         } else {
 617           Node *tmp = V; V = I; I = tmp;
 618         }
 619         if (!is_member(n_loop,get_ctrl(I))) {
 620           Node* add1 = new AddPNode(n->in(1), n->in(2), I);
 621           // Stuff new AddP in the loop preheader
 622           register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl));
 623           Node* add2 = new AddPNode(n->in(1), add1, V);
 624           register_new_node(add2, n_ctrl);
 625           _igvn.replace_node(n, add2);
 626           return add2;
 627         }
 628       }
 629     }
 630   }
 631 
 632   return nullptr;
 633 }
 634 
 635 // Optimize ((in1[2*i] * in2[2*i]) + (in1[2*i+1] * in2[2*i+1]))
 636 Node *PhaseIdealLoop::convert_add_to_muladd(Node* n) {
 637   assert(n->Opcode() == Op_AddI, "sanity");
 638   Node * nn = nullptr;
 639   Node * in1 = n->in(1);
 640   Node * in2 = n->in(2);
 641   if (in1->Opcode() == Op_MulI && in2->Opcode() == Op_MulI) {
 642     IdealLoopTree* loop_n = get_loop(get_ctrl(n));
 643     if (loop_n->is_counted() &&
 644         loop_n->_head->as_Loop()->is_valid_counted_loop(T_INT) &&
 645         Matcher::match_rule_supported(Op_MulAddVS2VI) &&
 646         Matcher::match_rule_supported(Op_MulAddS2I)) {
 647       Node* mul_in1 = in1->in(1);
 648       Node* mul_in2 = in1->in(2);
 649       Node* mul_in3 = in2->in(1);
 650       Node* mul_in4 = in2->in(2);
 651       if (mul_in1->Opcode() == Op_LoadS &&
 652           mul_in2->Opcode() == Op_LoadS &&
 653           mul_in3->Opcode() == Op_LoadS &&
 654           mul_in4->Opcode() == Op_LoadS) {
 655         IdealLoopTree* loop1 = get_loop(get_ctrl(mul_in1));
 656         IdealLoopTree* loop2 = get_loop(get_ctrl(mul_in2));
 657         IdealLoopTree* loop3 = get_loop(get_ctrl(mul_in3));
 658         IdealLoopTree* loop4 = get_loop(get_ctrl(mul_in4));
 659         IdealLoopTree* loop5 = get_loop(get_ctrl(in1));
 660         IdealLoopTree* loop6 = get_loop(get_ctrl(in2));
 661         // All nodes should be in the same counted loop.
 662         if (loop_n == loop1 && loop_n == loop2 && loop_n == loop3 &&
 663             loop_n == loop4 && loop_n == loop5 && loop_n == loop6) {
 664           Node* adr1 = mul_in1->in(MemNode::Address);
 665           Node* adr2 = mul_in2->in(MemNode::Address);
 666           Node* adr3 = mul_in3->in(MemNode::Address);
 667           Node* adr4 = mul_in4->in(MemNode::Address);
 668           if (adr1->is_AddP() && adr2->is_AddP() && adr3->is_AddP() && adr4->is_AddP()) {
 669             if ((adr1->in(AddPNode::Base) == adr3->in(AddPNode::Base)) &&
 670                 (adr2->in(AddPNode::Base) == adr4->in(AddPNode::Base))) {
 671               nn = new MulAddS2INode(mul_in1, mul_in2, mul_in3, mul_in4);
 672               register_new_node_with_ctrl_of(nn, n);
 673               _igvn.replace_node(n, nn);
 674               return nn;
 675             } else if ((adr1->in(AddPNode::Base) == adr4->in(AddPNode::Base)) &&
 676                        (adr2->in(AddPNode::Base) == adr3->in(AddPNode::Base))) {
 677               nn = new MulAddS2INode(mul_in1, mul_in2, mul_in4, mul_in3);
 678               register_new_node_with_ctrl_of(nn, n);
 679               _igvn.replace_node(n, nn);
 680               return nn;
 681             }
 682           }
 683         }
 684       }
 685     }
 686   }
 687   return nn;
 688 }
 689 
 690 //------------------------------conditional_move-------------------------------
 691 // Attempt to replace a Phi with a conditional move.  We have some pretty
 692 // strict profitability requirements.  All Phis at the merge point must
 693 // be converted, so we can remove the control flow.  We need to limit the
 694 // number of c-moves to a small handful.  All code that was in the side-arms
 695 // of the CFG diamond is now speculatively executed.  This code has to be
 696 // "cheap enough".  We are pretty much limited to CFG diamonds that merge
 697 // 1 or 2 items with a total of 1 or 2 ops executed speculatively.
 698 Node *PhaseIdealLoop::conditional_move( Node *region ) {
 699 
 700   assert(region->is_Region(), "sanity check");
 701   if (region->req() != 3) return nullptr;
 702 
 703   // Check for CFG diamond
 704   Node *lp = region->in(1);
 705   Node *rp = region->in(2);
 706   if (!lp || !rp) return nullptr;
 707   Node *lp_c = lp->in(0);
 708   if (lp_c == nullptr || lp_c != rp->in(0) || !lp_c->is_If()) return nullptr;
 709   IfNode *iff = lp_c->as_If();
 710 
 711   // Check for ops pinned in an arm of the diamond.
 712   // Can't remove the control flow in this case
 713   if (lp->outcnt() > 1) return nullptr;
 714   if (rp->outcnt() > 1) return nullptr;
 715 
 716   IdealLoopTree* r_loop = get_loop(region);
 717   assert(r_loop == get_loop(iff), "sanity");
 718   // Always convert to CMOVE if all results are used only outside this loop.
 719   bool used_inside_loop = (r_loop == _ltree_root);
 720 
 721   // Check profitability
 722   int cost = 0;
 723   int phis = 0;
 724   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 725     Node *out = region->fast_out(i);
 726     if (!out->is_Phi()) continue; // Ignore other control edges, etc
 727     phis++;
 728     PhiNode* phi = out->as_Phi();
 729     BasicType bt = phi->type()->basic_type();
 730     switch (bt) {
 731     case T_DOUBLE:
 732     case T_FLOAT:
 733       if (C->use_cmove()) {
 734         continue; //TODO: maybe we want to add some cost
 735       }
 736       cost += Matcher::float_cmove_cost(); // Could be very expensive
 737       break;
 738     case T_LONG: {
 739       cost += Matcher::long_cmove_cost(); // May encodes as 2 CMOV's
 740     }
 741     case T_INT:                 // These all CMOV fine
 742     case T_ADDRESS: {           // (RawPtr)
 743       cost++;
 744       break;
 745     }
 746     case T_NARROWOOP: // Fall through
 747     case T_OBJECT: {            // Base oops are OK, but not derived oops
 748       const TypeOopPtr *tp = phi->type()->make_ptr()->isa_oopptr();
 749       // Derived pointers are Bad (tm): what's the Base (for GC purposes) of a
 750       // CMOVE'd derived pointer?  It's a CMOVE'd derived base.  Thus
 751       // CMOVE'ing a derived pointer requires we also CMOVE the base.  If we
 752       // have a Phi for the base here that we convert to a CMOVE all is well
 753       // and good.  But if the base is dead, we'll not make a CMOVE.  Later
 754       // the allocator will have to produce a base by creating a CMOVE of the
 755       // relevant bases.  This puts the allocator in the business of
 756       // manufacturing expensive instructions, generally a bad plan.
 757       // Just Say No to Conditionally-Moved Derived Pointers.
 758       if (tp && tp->offset() != 0)
 759         return nullptr;
 760       cost++;
 761       break;
 762     }
 763     default:
 764       return nullptr;              // In particular, can't do memory or I/O
 765     }
 766     // Add in cost any speculative ops
 767     for (uint j = 1; j < region->req(); j++) {
 768       Node *proj = region->in(j);
 769       Node *inp = phi->in(j);
 770       if (inp->isa_InlineType()) {
 771         // TODO 8302217 This prevents PhiNode::push_inline_types_through
 772         return nullptr;
 773       }
 774       if (get_ctrl(inp) == proj) { // Found local op
 775         cost++;
 776         // Check for a chain of dependent ops; these will all become
 777         // speculative in a CMOV.
 778         for (uint k = 1; k < inp->req(); k++)
 779           if (get_ctrl(inp->in(k)) == proj)
 780             cost += ConditionalMoveLimit; // Too much speculative goo
 781       }
 782     }
 783     // See if the Phi is used by a Cmp or Narrow oop Decode/Encode.
 784     // This will likely Split-If, a higher-payoff operation.
 785     for (DUIterator_Fast kmax, k = phi->fast_outs(kmax); k < kmax; k++) {
 786       Node* use = phi->fast_out(k);
 787       if (use->is_Cmp() || use->is_DecodeNarrowPtr() || use->is_EncodeNarrowPtr())
 788         cost += ConditionalMoveLimit;
 789       // Is there a use inside the loop?
 790       // Note: check only basic types since CMoveP is pinned.
 791       if (!used_inside_loop && is_java_primitive(bt)) {
 792         IdealLoopTree* u_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use);
 793         if (r_loop == u_loop || r_loop->is_member(u_loop)) {
 794           used_inside_loop = true;
 795         }
 796       }
 797     }
 798   }//for
 799   Node* bol = iff->in(1);
 800   assert(!bol->is_OpaqueInitializedAssertionPredicate(), "Initialized Assertion Predicates cannot form a diamond with Halt");
 801   if (bol->is_OpaqueTemplateAssertionPredicate()) {
 802     // Ignore Template Assertion Predicates with OpaqueTemplateAssertionPredicate nodes.
 803     return nullptr;
 804   }
 805   if (bol->is_OpaqueMultiversioning()) {
 806     assert(bol->as_OpaqueMultiversioning()->is_useless(), "Must be useless, i.e. fast main loop has already disappeared.");
 807     // Ignore multiversion_if that just lost its loops. The OpaqueMultiversioning is marked useless,
 808     // and will make the multiversion_if constant fold in the next IGVN round.
 809     return nullptr;
 810   }
 811   if (!bol->is_Bool()) {
 812     assert(false, "Expected Bool, but got %s", NodeClassNames[bol->Opcode()]);
 813     return nullptr;
 814   }
 815   int cmp_op = bol->in(1)->Opcode();
 816   if (cmp_op == Op_SubTypeCheck) { // SubTypeCheck expansion expects an IfNode
 817     return nullptr;
 818   }
 819   // It is expensive to generate flags from a float compare.
 820   // Avoid duplicated float compare.
 821   if (phis > 1 && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) return nullptr;
 822 
 823   float infrequent_prob = PROB_UNLIKELY_MAG(3);
 824   // Ignore cost and blocks frequency if CMOVE can be moved outside the loop.
 825   if (used_inside_loop) {
 826     if (cost >= ConditionalMoveLimit) return nullptr; // Too much goo
 827 
 828     // BlockLayoutByFrequency optimization moves infrequent branch
 829     // from hot path. No point in CMOV'ing in such case (110 is used
 830     // instead of 100 to take into account not exactness of float value).
 831     if (BlockLayoutByFrequency) {
 832       infrequent_prob = MAX2(infrequent_prob, (float)BlockLayoutMinDiamondPercentage/110.0f);
 833     }
 834   }
 835   // Check for highly predictable branch.  No point in CMOV'ing if
 836   // we are going to predict accurately all the time.
 837   if (C->use_cmove() && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) {
 838     //keep going
 839   } else if (iff->_prob < infrequent_prob ||
 840       iff->_prob > (1.0f - infrequent_prob))
 841     return nullptr;
 842 
 843   // --------------
 844   // Now replace all Phis with CMOV's
 845   Node *cmov_ctrl = iff->in(0);
 846   uint flip = (lp->Opcode() == Op_IfTrue);
 847   Node_List wq;
 848   while (1) {
 849     PhiNode* phi = nullptr;
 850     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 851       Node *out = region->fast_out(i);
 852       if (out->is_Phi()) {
 853         phi = out->as_Phi();
 854         break;
 855       }
 856     }
 857     if (phi == nullptr || _igvn.type(phi) == Type::TOP || !CMoveNode::supported(_igvn.type(phi))) {
 858       break;
 859     }
 860     // Move speculative ops
 861     wq.push(phi);
 862     while (wq.size() > 0) {
 863       Node *n = wq.pop();
 864       for (uint j = 1; j < n->req(); j++) {
 865         Node* m = n->in(j);
 866         if (m != nullptr && !is_dominator(get_ctrl(m), cmov_ctrl)) {
 867           set_ctrl(m, cmov_ctrl);
 868           wq.push(m);
 869         }
 870       }
 871     }
 872     Node* cmov = CMoveNode::make(iff->in(1), phi->in(1+flip), phi->in(2-flip), _igvn.type(phi));
 873     register_new_node(cmov, cmov_ctrl);
 874     _igvn.replace_node(phi, cmov);
 875 #ifndef PRODUCT
 876     if (TraceLoopOpts) {
 877       tty->print("CMOV  ");
 878       r_loop->dump_head();
 879       if (Verbose) {
 880         bol->in(1)->dump(1);
 881         cmov->dump(1);
 882       }
 883     }
 884     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
 885 #endif
 886   }
 887 
 888   // The useless CFG diamond will fold up later; see the optimization in
 889   // RegionNode::Ideal.
 890   _igvn._worklist.push(region);
 891 
 892   return iff->in(1);
 893 }
 894 
 895 static void enqueue_cfg_uses(Node* m, Unique_Node_List& wq) {
 896   for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
 897     Node* u = m->fast_out(i);
 898     if (u->is_CFG()) {
 899       if (u->is_NeverBranch()) {
 900         u = u->as_NeverBranch()->proj_out(0);
 901         enqueue_cfg_uses(u, wq);
 902       } else {
 903         wq.push(u);
 904       }
 905     }
 906   }
 907 }
 908 
 909 // Try moving a store out of a loop, right before the loop
 910 Node* PhaseIdealLoop::try_move_store_before_loop(Node* n, Node *n_ctrl) {
 911   // Store has to be first in the loop body
 912   IdealLoopTree *n_loop = get_loop(n_ctrl);
 913   if (n->is_Store() && n_loop != _ltree_root &&
 914       n_loop->is_loop() && n_loop->_head->is_Loop() &&
 915       n->in(0) != nullptr) {
 916     Node* address = n->in(MemNode::Address);
 917     Node* value = n->in(MemNode::ValueIn);
 918     Node* mem = n->in(MemNode::Memory);
 919     IdealLoopTree* address_loop = get_loop(get_ctrl(address));
 920     IdealLoopTree* value_loop = get_loop(get_ctrl(value));
 921 
 922     // - address and value must be loop invariant
 923     // - memory must be a memory Phi for the loop
 924     // - Store must be the only store on this memory slice in the
 925     // loop: if there's another store following this one then value
 926     // written at iteration i by the second store could be overwritten
 927     // at iteration i+n by the first store: it's not safe to move the
 928     // first store out of the loop
 929     // - nothing must observe the memory Phi: it guarantees no read
 930     // before the store, we are also guaranteed the store post
 931     // dominates the loop head (ignoring a possible early
 932     // exit). Otherwise there would be extra Phi involved between the
 933     // loop's Phi and the store.
 934     // - there must be no early exit from the loop before the Store
 935     // (such an exit most of the time would be an extra use of the
 936     // memory Phi but sometimes is a bottom memory Phi that takes the
 937     // store as input).
 938 
 939     if (!n_loop->is_member(address_loop) &&
 940         !n_loop->is_member(value_loop) &&
 941         mem->is_Phi() && mem->in(0) == n_loop->_head &&
 942         mem->outcnt() == 1 &&
 943         mem->in(LoopNode::LoopBackControl) == n) {
 944 
 945       assert(n_loop->_tail != nullptr, "need a tail");
 946       assert(is_dominator(n_ctrl, n_loop->_tail), "store control must not be in a branch in the loop");
 947 
 948       // Verify that there's no early exit of the loop before the store.
 949       bool ctrl_ok = false;
 950       {
 951         // Follow control from loop head until n, we exit the loop or
 952         // we reach the tail
 953         ResourceMark rm;
 954         Unique_Node_List wq;
 955         wq.push(n_loop->_head);
 956 
 957         for (uint next = 0; next < wq.size(); ++next) {
 958           Node *m = wq.at(next);
 959           if (m == n->in(0)) {
 960             ctrl_ok = true;
 961             continue;
 962           }
 963           assert(!has_ctrl(m), "should be CFG");
 964           if (!n_loop->is_member(get_loop(m)) || m == n_loop->_tail) {
 965             ctrl_ok = false;
 966             break;
 967           }
 968           enqueue_cfg_uses(m, wq);
 969           if (wq.size() > 10) {
 970             ctrl_ok = false;
 971             break;
 972           }
 973         }
 974       }
 975       if (ctrl_ok) {
 976         // move the Store
 977         _igvn.replace_input_of(mem, LoopNode::LoopBackControl, mem);
 978         _igvn.replace_input_of(n, 0, n_loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl));
 979         _igvn.replace_input_of(n, MemNode::Memory, mem->in(LoopNode::EntryControl));
 980         // Disconnect the phi now. An empty phi can confuse other
 981         // optimizations in this pass of loop opts.
 982         _igvn.replace_node(mem, mem->in(LoopNode::EntryControl));
 983         n_loop->_body.yank(mem);
 984 
 985         set_ctrl_and_loop(n, n->in(0));
 986 
 987         return n;
 988       }
 989     }
 990   }
 991   return nullptr;
 992 }
 993 
 994 // Try moving a store out of a loop, right after the loop
 995 void PhaseIdealLoop::try_move_store_after_loop(Node* n) {
 996   if (n->is_Store() && n->in(0) != nullptr) {
 997     Node *n_ctrl = get_ctrl(n);
 998     IdealLoopTree *n_loop = get_loop(n_ctrl);
 999     // Store must be in a loop
1000     if (n_loop != _ltree_root && !n_loop->_irreducible) {
1001       Node* address = n->in(MemNode::Address);
1002       Node* value = n->in(MemNode::ValueIn);
1003       IdealLoopTree* address_loop = get_loop(get_ctrl(address));
1004       // address must be loop invariant
1005       if (!n_loop->is_member(address_loop)) {
1006         // Store must be last on this memory slice in the loop and
1007         // nothing in the loop must observe it
1008         Node* phi = nullptr;
1009         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1010           Node* u = n->fast_out(i);
1011           if (has_ctrl(u)) { // control use?
1012             IdealLoopTree *u_loop = get_loop(get_ctrl(u));
1013             if (!n_loop->is_member(u_loop)) {
1014               continue;
1015             }
1016             if (u->is_Phi() && u->in(0) == n_loop->_head) {
1017               assert(_igvn.type(u) == Type::MEMORY, "bad phi");
1018               // multiple phis on the same slice are possible
1019               if (phi != nullptr) {
1020                 return;
1021               }
1022               phi = u;
1023               continue;
1024             }
1025           }
1026           return;
1027         }
1028         if (phi != nullptr) {
1029           // Nothing in the loop before the store (next iteration)
1030           // must observe the stored value
1031           bool mem_ok = true;
1032           {
1033             ResourceMark rm;
1034             Unique_Node_List wq;
1035             wq.push(phi);
1036             for (uint next = 0; next < wq.size() && mem_ok; ++next) {
1037               Node *m = wq.at(next);
1038               for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax && mem_ok; i++) {
1039                 Node* u = m->fast_out(i);
1040                 if (u->is_Store() || u->is_Phi()) {
1041                   if (u != n) {
1042                     wq.push(u);
1043                     mem_ok = (wq.size() <= 10);
1044                   }
1045                 } else {
1046                   mem_ok = false;
1047                   break;
1048                 }
1049               }
1050             }
1051           }
1052           if (mem_ok) {
1053             // Move the store out of the loop if the LCA of all
1054             // users (except for the phi) is outside the loop.
1055             Node* hook = new Node(1);
1056             hook->init_req(0, n_ctrl); // Add an input to prevent hook from being dead
1057             _igvn.rehash_node_delayed(phi);
1058             int count = phi->replace_edge(n, hook, &_igvn);
1059             assert(count > 0, "inconsistent phi");
1060 
1061             // Compute latest point this store can go
1062             Node* lca = get_late_ctrl(n, get_ctrl(n));
1063             if (lca->is_OuterStripMinedLoop()) {
1064               lca = lca->in(LoopNode::EntryControl);
1065             }
1066             if (n_loop->is_member(get_loop(lca))) {
1067               // LCA is in the loop - bail out
1068               _igvn.replace_node(hook, n);
1069               return;
1070             }
1071 #ifdef ASSERT
1072             if (n_loop->_head->is_Loop() && n_loop->_head->as_Loop()->is_strip_mined()) {
1073               assert(n_loop->_head->Opcode() == Op_CountedLoop, "outer loop is a strip mined");
1074               n_loop->_head->as_Loop()->verify_strip_mined(1);
1075               Node* outer = n_loop->_head->as_CountedLoop()->outer_loop();
1076               IdealLoopTree* outer_loop = get_loop(outer);
1077               assert(n_loop->_parent == outer_loop, "broken loop tree");
1078               assert(get_loop(lca) == outer_loop, "safepoint in outer loop consume all memory state");
1079             }
1080 #endif
1081             lca = place_outside_loop(lca, n_loop);
1082             assert(!n_loop->is_member(get_loop(lca)), "control must not be back in the loop");
1083             assert(get_loop(lca)->_nest < n_loop->_nest || get_loop(lca)->_head->as_Loop()->is_in_infinite_subgraph(), "must not be moved into inner loop");
1084 
1085             // Move store out of the loop
1086             _igvn.replace_node(hook, n->in(MemNode::Memory));
1087             _igvn.replace_input_of(n, 0, lca);
1088             set_ctrl_and_loop(n, lca);
1089 
1090             // Disconnect the phi now. An empty phi can confuse other
1091             // optimizations in this pass of loop opts..
1092             if (phi->in(LoopNode::LoopBackControl) == phi) {
1093               _igvn.replace_node(phi, phi->in(LoopNode::EntryControl));
1094               n_loop->_body.yank(phi);
1095             }
1096           }
1097         }
1098       }
1099     }
1100   }
1101 }
1102 
1103 // We can't use immutable memory for the flat array check because we are loading the mark word which is
1104 // mutable. Although the bits we are interested in are immutable (we check for markWord::unlocked_value),
1105 // we need to use raw memory to not break anti dependency analysis. Below code will attempt to still move
1106 // flat array checks out of loops, mainly to enable loop unswitching.
1107 void PhaseIdealLoop::move_flat_array_check_out_of_loop(Node* n) {
1108   // Skip checks for more than one array
1109   if (n->req() > 3) {
1110     return;
1111   }
1112   Node* mem = n->in(FlatArrayCheckNode::Memory);
1113   Node* array = n->in(FlatArrayCheckNode::ArrayOrKlass)->uncast();
1114   IdealLoopTree* check_loop = get_loop(get_ctrl(n));
1115   IdealLoopTree* ary_loop = get_loop(get_ctrl(array));
1116 
1117   // Check if array is loop invariant
1118   if (!check_loop->is_member(ary_loop)) {
1119     // Walk up memory graph from the check until we leave the loop
1120     VectorSet wq;
1121     wq.set(mem->_idx);
1122     while (check_loop->is_member(get_loop(ctrl_or_self(mem)))) {
1123       if (mem->is_Phi()) {
1124         mem = mem->in(1);
1125       } else if (mem->is_MergeMem()) {
1126         mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1127       } else if (mem->is_Proj()) {
1128         mem = mem->in(0);
1129       } else if (mem->is_MemBar() || mem->is_SafePoint()) {
1130         mem = mem->in(TypeFunc::Memory);
1131       } else if (mem->is_Store() || mem->is_LoadStore() || mem->is_ClearArray()) {
1132         mem = mem->in(MemNode::Memory);
1133       } else {
1134 #ifdef ASSERT
1135         mem->dump();
1136 #endif
1137         ShouldNotReachHere();
1138       }
1139       if (wq.test_set(mem->_idx)) {
1140         return;
1141       }
1142     }
1143     // Replace memory input and re-compute ctrl to move the check out of the loop
1144     _igvn.replace_input_of(n, 1, mem);
1145     set_ctrl_and_loop(n, get_early_ctrl(n));
1146     Node* bol = n->unique_out();
1147     set_ctrl_and_loop(bol, get_early_ctrl(bol));
1148   }
1149 }
1150 
1151 // Split some nodes that take a counted loop phi as input at a counted
1152 // loop can cause vectorization of some expressions to fail
1153 bool PhaseIdealLoop::split_thru_phi_could_prevent_vectorization(Node* n, Node* n_blk) {
1154   if (!n_blk->is_CountedLoop()) {
1155     return false;
1156   }
1157 
1158   int opcode = n->Opcode();
1159 
1160   if (opcode != Op_AndI &&
1161       opcode != Op_MulI &&
1162       opcode != Op_RotateRight &&
1163       opcode != Op_RShiftI) {
1164     return false;
1165   }
1166 
1167   return n->in(1) == n_blk->as_BaseCountedLoop()->phi();
1168 }
1169 
1170 //------------------------------split_if_with_blocks_pre-----------------------
1171 // Do the real work in a non-recursive function.  Data nodes want to be
1172 // cloned in the pre-order so they can feed each other nicely.
1173 Node *PhaseIdealLoop::split_if_with_blocks_pre( Node *n ) {
1174   // Cloning these guys is unlikely to win
1175   int n_op = n->Opcode();
1176   if (n_op == Op_MergeMem) {
1177     return n;
1178   }
1179   if (n->is_Proj()) {
1180     return n;
1181   }
1182 
1183   if (n->isa_FlatArrayCheck()) {
1184     move_flat_array_check_out_of_loop(n);
1185     return n;
1186   }
1187 
1188   // Do not clone-up CmpFXXX variations, as these are always
1189   // followed by a CmpI
1190   if (n->is_Cmp()) {
1191     return n;
1192   }
1193   // Attempt to use a conditional move instead of a phi/branch
1194   if (ConditionalMoveLimit > 0 && n_op == Op_Region) {
1195     Node *cmov = conditional_move( n );
1196     if (cmov) {
1197       return cmov;
1198     }
1199   }
1200   if (n->is_CFG() || n->is_LoadStore()) {
1201     return n;
1202   }
1203   if (n->is_Opaque1()) { // Opaque nodes cannot be mod'd
1204     if (!C->major_progress()) {   // If chance of no more loop opts...
1205       _igvn._worklist.push(n);  // maybe we'll remove them
1206     }
1207     return n;
1208   }
1209 
1210   if (n->is_Con()) {
1211     return n;   // No cloning for Con nodes
1212   }
1213 
1214   Node *n_ctrl = get_ctrl(n);
1215   if (!n_ctrl) {
1216     return n;       // Dead node
1217   }
1218 
1219   Node* res = try_move_store_before_loop(n, n_ctrl);
1220   if (res != nullptr) {
1221     return n;
1222   }
1223 
1224   // Attempt to remix address expressions for loop invariants
1225   Node *m = remix_address_expressions( n );
1226   if( m ) return m;
1227 
1228   if (n_op == Op_AddI) {
1229     Node *nn = convert_add_to_muladd( n );
1230     if ( nn ) return nn;
1231   }
1232 
1233   if (n->is_ConstraintCast()) {
1234     Node* dom_cast = n->as_ConstraintCast()->dominating_cast(&_igvn, this);
1235     // ConstraintCastNode::dominating_cast() uses node control input to determine domination.
1236     // Node control inputs don't necessarily agree with loop control info (due to
1237     // transformations happened in between), thus additional dominance check is needed
1238     // to keep loop info valid.
1239     if (dom_cast != nullptr && is_dominator(get_ctrl(dom_cast), get_ctrl(n))) {
1240       _igvn.replace_node(n, dom_cast);
1241       return dom_cast;
1242     }
1243   }
1244 
1245   // Determine if the Node has inputs from some local Phi.
1246   // Returns the block to clone thru.
1247   Node *n_blk = has_local_phi_input( n );
1248   if( !n_blk ) return n;
1249 
1250   // Do not clone the trip counter through on a CountedLoop
1251   // (messes up the canonical shape).
1252   if (((n_blk->is_CountedLoop() || (n_blk->is_Loop() && n_blk->as_Loop()->is_loop_nest_inner_loop())) && n->Opcode() == Op_AddI) ||
1253       (n_blk->is_LongCountedLoop() && n->Opcode() == Op_AddL)) {
1254     return n;
1255   }
1256   // Pushing a shift through the iv Phi can get in the way of addressing optimizations or range check elimination
1257   if (n_blk->is_BaseCountedLoop() && n->Opcode() == Op_LShift(n_blk->as_BaseCountedLoop()->bt()) &&
1258       n->in(1) == n_blk->as_BaseCountedLoop()->phi()) {
1259     return n;
1260   }
1261 
1262   if (split_thru_phi_could_prevent_vectorization(n, n_blk)) {
1263     return n;
1264   }
1265 
1266   // Check for having no control input; not pinned.  Allow
1267   // dominating control.
1268   if (n->in(0)) {
1269     Node *dom = idom(n_blk);
1270     if (dom_lca(n->in(0), dom) != n->in(0)) {
1271       return n;
1272     }
1273   }
1274   // Policy: when is it profitable.  You must get more wins than
1275   // policy before it is considered profitable.  Policy is usually 0,
1276   // so 1 win is considered profitable.  Big merges will require big
1277   // cloning, so get a larger policy.
1278   int policy = n_blk->req() >> 2;
1279 
1280   // If the loop is a candidate for range check elimination,
1281   // delay splitting through it's phi until a later loop optimization
1282   if (n_blk->is_BaseCountedLoop()) {
1283     IdealLoopTree *lp = get_loop(n_blk);
1284     if (lp && lp->_rce_candidate) {
1285       return n;
1286     }
1287   }
1288 
1289   if (must_throttle_split_if()) return n;
1290 
1291   // Split 'n' through the merge point if it is profitable
1292   Node *phi = split_thru_phi( n, n_blk, policy );
1293   if (!phi) return n;
1294 
1295   // Found a Phi to split thru!
1296   // Replace 'n' with the new phi
1297   _igvn.replace_node( n, phi );
1298   // Moved a load around the loop, 'en-registering' something.
1299   if (n_blk->is_Loop() && n->is_Load() &&
1300       !phi->in(LoopNode::LoopBackControl)->is_Load())
1301     C->set_major_progress();
1302 
1303   return phi;
1304 }
1305 
1306 static bool merge_point_too_heavy(Compile* C, Node* region) {
1307   // Bail out if the region and its phis have too many users.
1308   int weight = 0;
1309   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1310     weight += region->fast_out(i)->outcnt();
1311   }
1312   int nodes_left = C->max_node_limit() - C->live_nodes();
1313   if (weight * 8 > nodes_left) {
1314     if (PrintOpto) {
1315       tty->print_cr("*** Split-if bails out:  %d nodes, region weight %d", C->unique(), weight);
1316     }
1317     return true;
1318   } else {
1319     return false;
1320   }
1321 }
1322 
1323 static bool merge_point_safe(Node* region) {
1324   // 4799512: Stop split_if_with_blocks from splitting a block with a ConvI2LNode
1325   // having a PhiNode input. This sidesteps the dangerous case where the split
1326   // ConvI2LNode may become TOP if the input Value() does not
1327   // overlap the ConvI2L range, leaving a node which may not dominate its
1328   // uses.
1329   // A better fix for this problem can be found in the BugTraq entry, but
1330   // expediency for Mantis demands this hack.
1331 #ifdef _LP64
1332   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1333     Node* n = region->fast_out(i);
1334     if (n->is_Phi()) {
1335       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1336         Node* m = n->fast_out(j);
1337         if (m->Opcode() == Op_ConvI2L)
1338           return false;
1339         if (m->is_CastII()) {
1340           return false;
1341         }
1342       }
1343     }
1344   }
1345 #endif
1346   return true;
1347 }
1348 
1349 
1350 //------------------------------place_outside_loop---------------------------------
1351 // Place some computation outside of this loop on the path to the use passed as argument
1352 Node* PhaseIdealLoop::place_outside_loop(Node* useblock, IdealLoopTree* loop) const {
1353   Node* head = loop->_head;
1354   assert(!loop->is_member(get_loop(useblock)), "must be outside loop");
1355   if (head->is_Loop() && head->as_Loop()->is_strip_mined()) {
1356     loop = loop->_parent;
1357     assert(loop->_head->is_OuterStripMinedLoop(), "malformed strip mined loop");
1358   }
1359 
1360   // Pick control right outside the loop
1361   for (;;) {
1362     Node* dom = idom(useblock);
1363     if (loop->is_member(get_loop(dom))) {
1364       break;
1365     }
1366     useblock = dom;
1367   }
1368   assert(find_non_split_ctrl(useblock) == useblock, "should be non split control");
1369   return useblock;
1370 }
1371 
1372 
1373 bool PhaseIdealLoop::identical_backtoback_ifs(Node *n) {
1374   if (!n->is_If() || n->is_BaseCountedLoopEnd()) {
1375     return false;
1376   }
1377   if (!n->in(0)->is_Region()) {
1378     return false;
1379   }
1380 
1381   Node* region = n->in(0);
1382   Node* dom = idom(region);
1383   if (!dom->is_If() ||  !n->as_If()->same_condition(dom, &_igvn)) {
1384     return false;
1385   }
1386   IfNode* dom_if = dom->as_If();
1387   Node* proj_true = dom_if->proj_out(1);
1388   Node* proj_false = dom_if->proj_out(0);
1389 
1390   for (uint i = 1; i < region->req(); i++) {
1391     if (is_dominator(proj_true, region->in(i))) {
1392       continue;
1393     }
1394     if (is_dominator(proj_false, region->in(i))) {
1395       continue;
1396     }
1397     return false;
1398   }
1399 
1400   return true;
1401 }
1402 
1403 
1404 bool PhaseIdealLoop::can_split_if(Node* n_ctrl) {
1405   if (must_throttle_split_if()) {
1406     return false;
1407   }
1408 
1409   // Do not do 'split-if' if irreducible loops are present.
1410   if (_has_irreducible_loops) {
1411     return false;
1412   }
1413 
1414   if (merge_point_too_heavy(C, n_ctrl)) {
1415     return false;
1416   }
1417 
1418   // Do not do 'split-if' if some paths are dead.  First do dead code
1419   // elimination and then see if its still profitable.
1420   for (uint i = 1; i < n_ctrl->req(); i++) {
1421     if (n_ctrl->in(i) == C->top()) {
1422       return false;
1423     }
1424   }
1425 
1426   // If trying to do a 'Split-If' at the loop head, it is only
1427   // profitable if the cmp folds up on BOTH paths.  Otherwise we
1428   // risk peeling a loop forever.
1429 
1430   // CNC - Disabled for now.  Requires careful handling of loop
1431   // body selection for the cloned code.  Also, make sure we check
1432   // for any input path not being in the same loop as n_ctrl.  For
1433   // irreducible loops we cannot check for 'n_ctrl->is_Loop()'
1434   // because the alternative loop entry points won't be converted
1435   // into LoopNodes.
1436   IdealLoopTree *n_loop = get_loop(n_ctrl);
1437   for (uint j = 1; j < n_ctrl->req(); j++) {
1438     if (get_loop(n_ctrl->in(j)) != n_loop) {
1439       return false;
1440     }
1441   }
1442 
1443   // Check for safety of the merge point.
1444   if (!merge_point_safe(n_ctrl)) {
1445     return false;
1446   }
1447 
1448   return true;
1449 }
1450 
1451 // Detect if the node is the inner strip-mined loop
1452 // Return: null if it's not the case, or the exit of outer strip-mined loop
1453 static Node* is_inner_of_stripmined_loop(const Node* out) {
1454   Node* out_le = nullptr;
1455 
1456   if (out->is_CountedLoopEnd()) {
1457       const CountedLoopNode* loop = out->as_CountedLoopEnd()->loopnode();
1458 
1459       if (loop != nullptr && loop->is_strip_mined()) {
1460         out_le = loop->in(LoopNode::EntryControl)->as_OuterStripMinedLoop()->outer_loop_exit();
1461       }
1462   }
1463 
1464   return out_le;
1465 }
1466 
1467 bool PhaseIdealLoop::flat_array_element_type_check(Node *n) {
1468   // If the CmpP is a subtype check for a value that has just been
1469   // loaded from an array, the subtype check guarantees the value
1470   // can't be stored in a flat array and the load of the value
1471   // happens with a flat array check then: push the type check
1472   // through the phi of the flat array check. This needs special
1473   // logic because the subtype check's input is not a phi but a
1474   // LoadKlass that must first be cloned through the phi.
1475   if (n->Opcode() != Op_CmpP) {
1476     return false;
1477   }
1478 
1479   Node* klassptr = n->in(1);
1480   Node* klasscon = n->in(2);
1481 
1482   if (klassptr->is_DecodeNarrowPtr()) {
1483     klassptr = klassptr->in(1);
1484   }
1485 
1486   if (klassptr->Opcode() != Op_LoadKlass && klassptr->Opcode() != Op_LoadNKlass) {
1487     return false;
1488   }
1489 
1490   if (!klasscon->is_Con()) {
1491     return false;
1492   }
1493 
1494   Node* addr = klassptr->in(MemNode::Address);
1495 
1496   if (!addr->is_AddP()) {
1497     return false;
1498   }
1499 
1500   intptr_t offset;
1501   Node* obj = AddPNode::Ideal_base_and_offset(addr, &_igvn, offset);
1502 
1503   if (obj == nullptr) {
1504     return false;
1505   }
1506 
1507   assert(obj != nullptr && addr->in(AddPNode::Base) == addr->in(AddPNode::Address), "malformed AddP?");
1508   if (obj->Opcode() == Op_CastPP) {
1509     obj = obj->in(1);
1510   }
1511 
1512   if (!obj->is_Phi()) {
1513     return false;
1514   }
1515 
1516   Node* region = obj->in(0);
1517 
1518   Node* phi = PhiNode::make_blank(region, n->in(1));
1519   for (uint i = 1; i < region->req(); i++) {
1520     Node* in = obj->in(i);
1521     Node* ctrl = region->in(i);
1522     if (addr->in(AddPNode::Base) != obj) {
1523       Node* cast = addr->in(AddPNode::Base);
1524       assert(cast->Opcode() == Op_CastPP && cast->in(0) != nullptr, "inconsistent subgraph");
1525       Node* cast_clone = cast->clone();
1526       cast_clone->set_req(0, ctrl);
1527       cast_clone->set_req(1, in);
1528       register_new_node(cast_clone, ctrl);
1529       const Type* tcast = cast_clone->Value(&_igvn);
1530       _igvn.set_type(cast_clone, tcast);
1531       cast_clone->as_Type()->set_type(tcast);
1532       in = cast_clone;
1533     }
1534     Node* addr_clone = addr->clone();
1535     addr_clone->set_req(AddPNode::Base, in);
1536     addr_clone->set_req(AddPNode::Address, in);
1537     register_new_node(addr_clone, ctrl);
1538     _igvn.set_type(addr_clone, addr_clone->Value(&_igvn));
1539     Node* klassptr_clone = klassptr->clone();
1540     klassptr_clone->set_req(2, addr_clone);
1541     register_new_node(klassptr_clone, ctrl);
1542     _igvn.set_type(klassptr_clone, klassptr_clone->Value(&_igvn));
1543     if (klassptr != n->in(1)) {
1544       Node* decode = n->in(1);
1545       assert(decode->is_DecodeNarrowPtr(), "inconsistent subgraph");
1546       Node* decode_clone = decode->clone();
1547       decode_clone->set_req(1, klassptr_clone);
1548       register_new_node(decode_clone, ctrl);
1549       _igvn.set_type(decode_clone, decode_clone->Value(&_igvn));
1550       klassptr_clone = decode_clone;
1551     }
1552     phi->set_req(i, klassptr_clone);
1553   }
1554   register_new_node(phi, region);
1555   Node* orig = n->in(1);
1556   _igvn.replace_input_of(n, 1, phi);
1557   split_if_with_blocks_post(n);
1558   if (n->outcnt() != 0) {
1559     _igvn.replace_input_of(n, 1, orig);
1560     _igvn.remove_dead_node(phi);
1561   }
1562   return true;
1563 }
1564 
1565 //------------------------------split_if_with_blocks_post----------------------
1566 // Do the real work in a non-recursive function.  CFG hackery wants to be
1567 // in the post-order, so it can dirty the I-DOM info and not use the dirtied
1568 // info.
1569 void PhaseIdealLoop::split_if_with_blocks_post(Node *n) {
1570 
1571   if (flat_array_element_type_check(n)) {
1572     return;
1573   }
1574 
1575   // Cloning Cmp through Phi's involves the split-if transform.
1576   // FastLock is not used by an If
1577   if (n->is_Cmp() && !n->is_FastLock()) {
1578     Node *n_ctrl = get_ctrl(n);
1579     // Determine if the Node has inputs from some local Phi.
1580     // Returns the block to clone thru.
1581     Node *n_blk = has_local_phi_input(n);
1582     if (n_blk != n_ctrl) {
1583       return;
1584     }
1585 
1586     if (!can_split_if(n_ctrl)) {
1587       return;
1588     }
1589 
1590     if (n->outcnt() != 1) {
1591       return; // Multiple bool's from 1 compare?
1592     }
1593     Node *bol = n->unique_out();
1594     assert(bol->is_Bool(), "expect a bool here");
1595     if (bol->outcnt() != 1) {
1596       return;// Multiple branches from 1 compare?
1597     }
1598     Node *iff = bol->unique_out();
1599 
1600     // Check some safety conditions
1601     if (iff->is_If()) {        // Classic split-if?
1602       if (iff->in(0) != n_ctrl) {
1603         return; // Compare must be in same blk as if
1604       }
1605     } else if (iff->is_CMove()) { // Trying to split-up a CMOVE
1606       // Can't split CMove with different control.
1607       if (get_ctrl(iff) != n_ctrl) {
1608         return;
1609       }
1610       if (get_ctrl(iff->in(2)) == n_ctrl ||
1611           get_ctrl(iff->in(3)) == n_ctrl) {
1612         return;                 // Inputs not yet split-up
1613       }
1614       if (get_loop(n_ctrl) != get_loop(get_ctrl(iff))) {
1615         return;                 // Loop-invar test gates loop-varying CMOVE
1616       }
1617     } else {
1618       return;  // some other kind of node, such as an Allocate
1619     }
1620 
1621     // When is split-if profitable?  Every 'win' on means some control flow
1622     // goes dead, so it's almost always a win.
1623     int policy = 0;
1624     // Split compare 'n' through the merge point if it is profitable
1625     Node *phi = split_thru_phi( n, n_ctrl, policy);
1626     if (!phi) {
1627       return;
1628     }
1629 
1630     // Found a Phi to split thru!
1631     // Replace 'n' with the new phi
1632     _igvn.replace_node(n, phi);
1633 
1634     // Now split the bool up thru the phi
1635     Node *bolphi = split_thru_phi(bol, n_ctrl, -1);
1636     guarantee(bolphi != nullptr, "null boolean phi node");
1637 
1638     _igvn.replace_node(bol, bolphi);
1639     assert(iff->in(1) == bolphi, "");
1640 
1641     if (bolphi->Value(&_igvn)->singleton()) {
1642       return;
1643     }
1644 
1645     // Conditional-move?  Must split up now
1646     if (!iff->is_If()) {
1647       Node *cmovphi = split_thru_phi(iff, n_ctrl, -1);
1648       _igvn.replace_node(iff, cmovphi);
1649       return;
1650     }
1651 
1652     // Now split the IF
1653     C->print_method(PHASE_BEFORE_SPLIT_IF, 4, iff);
1654     if (TraceLoopOpts) {
1655       tty->print_cr("Split-If");
1656     }
1657     do_split_if(iff);
1658     C->print_method(PHASE_AFTER_SPLIT_IF, 4, iff);
1659     return;
1660   }
1661 
1662   // Two identical ifs back to back can be merged
1663   if (try_merge_identical_ifs(n)) {
1664     return;
1665   }
1666 
1667   // Check for an IF ready to split; one that has its
1668   // condition codes input coming from a Phi at the block start.
1669   int n_op = n->Opcode();
1670 
1671   // Check for an IF being dominated by another IF same test
1672   if (n_op == Op_If ||
1673       n_op == Op_RangeCheck) {
1674     Node *bol = n->in(1);
1675     uint max = bol->outcnt();
1676     // Check for same test used more than once?
1677     if (bol->is_Bool() && (max > 1 || bol->in(1)->is_SubTypeCheck())) {
1678       // Search up IDOMs to see if this IF is dominated.
1679       Node* cmp = bol->in(1);
1680       Node *cutoff = cmp->is_SubTypeCheck() ? dom_lca(get_ctrl(cmp->in(1)), get_ctrl(cmp->in(2))) : get_ctrl(bol);
1681 
1682       // Now search up IDOMs till cutoff, looking for a dominating test
1683       Node *prevdom = n;
1684       Node *dom = idom(prevdom);
1685       while (dom != cutoff) {
1686         if (dom->req() > 1 && n->as_If()->same_condition(dom, &_igvn) && prevdom->in(0) == dom &&
1687             safe_for_if_replacement(dom)) {
1688           // It's invalid to move control dependent data nodes in the inner
1689           // strip-mined loop, because:
1690           //  1) break validation of LoopNode::verify_strip_mined()
1691           //  2) move code with side-effect in strip-mined loop
1692           // Move to the exit of outer strip-mined loop in that case.
1693           Node* out_le = is_inner_of_stripmined_loop(dom);
1694           if (out_le != nullptr) {
1695             prevdom = out_le;
1696           }
1697           // Replace the dominated test with an obvious true or false.
1698           // Place it on the IGVN worklist for later cleanup.
1699           C->set_major_progress();
1700           // Split if: pin array accesses that are control dependent on a range check and moved to a regular if,
1701           // to prevent an array load from floating above its range check. There are three cases:
1702           // 1. Move from RangeCheck "a" to RangeCheck "b": don't need to pin. If we ever remove b, then we pin
1703           //    all its array accesses at that point.
1704           // 2. We move from RangeCheck "a" to regular if "b": need to pin. If we ever remove b, then its array
1705           //    accesses would start to float, since we don't pin at that point.
1706           // 3. If we move from regular if: don't pin. All array accesses are already assumed to be pinned.
1707           bool pin_array_access_nodes =  n->Opcode() == Op_RangeCheck &&
1708                                          prevdom->in(0)->Opcode() != Op_RangeCheck;
1709           dominated_by(prevdom->as_IfProj(), n->as_If(), false, pin_array_access_nodes);
1710           DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
1711           return;
1712         }
1713         prevdom = dom;
1714         dom = idom(prevdom);
1715       }
1716     }
1717   }
1718 
1719   try_sink_out_of_loop(n);
1720   if (C->failing()) {
1721     return;
1722   }
1723 
1724   try_move_store_after_loop(n);
1725 
1726   // Remove multiple allocations of the same inline type
1727   if (n->is_InlineType()) {
1728     n->as_InlineType()->remove_redundant_allocations(this);
1729   }
1730 }
1731 
1732 // Transform:
1733 //
1734 // if (some_condition) {
1735 //   // body 1
1736 // } else {
1737 //   // body 2
1738 // }
1739 // if (some_condition) {
1740 //   // body 3
1741 // } else {
1742 //   // body 4
1743 // }
1744 //
1745 // into:
1746 //
1747 //
1748 // if (some_condition) {
1749 //   // body 1
1750 //   // body 3
1751 // } else {
1752 //   // body 2
1753 //   // body 4
1754 // }
1755 bool PhaseIdealLoop::try_merge_identical_ifs(Node* n) {
1756   if (identical_backtoback_ifs(n) && can_split_if(n->in(0))) {
1757     Node *n_ctrl = n->in(0);
1758     IfNode* dom_if = idom(n_ctrl)->as_If();
1759     if (n->in(1) != dom_if->in(1)) {
1760       assert(n->in(1)->in(1)->is_SubTypeCheck() &&
1761              (n->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr ||
1762               dom_if->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr), "only for subtype checks with profile data attached");
1763       _igvn.replace_input_of(n, 1, dom_if->in(1));
1764     }
1765     ProjNode* dom_proj_true = dom_if->proj_out(1);
1766     ProjNode* dom_proj_false = dom_if->proj_out(0);
1767 
1768     // Now split the IF
1769     RegionNode* new_false_region;
1770     RegionNode* new_true_region;
1771     do_split_if(n, &new_false_region, &new_true_region);
1772     assert(new_false_region->req() == new_true_region->req(), "");
1773 #ifdef ASSERT
1774     for (uint i = 1; i < new_false_region->req(); ++i) {
1775       assert(new_false_region->in(i)->in(0) == new_true_region->in(i)->in(0), "unexpected shape following split if");
1776       assert(i == new_false_region->req() - 1 || new_false_region->in(i)->in(0)->in(1) == new_false_region->in(i + 1)->in(0)->in(1), "unexpected shape following split if");
1777     }
1778 #endif
1779     assert(new_false_region->in(1)->in(0)->in(1) == dom_if->in(1), "dominating if and dominated if after split must share test");
1780 
1781     // We now have:
1782     // if (some_condition) {
1783     //   // body 1
1784     //   if (some_condition) {
1785     //     body3: // new_true_region
1786     //     // body3
1787     //   } else {
1788     //     goto body4;
1789     //   }
1790     // } else {
1791     //   // body 2
1792     //  if (some_condition) {
1793     //     goto body3;
1794     //   } else {
1795     //     body4:   // new_false_region
1796     //     // body4;
1797     //   }
1798     // }
1799     //
1800 
1801     // clone pinned nodes thru the resulting regions
1802     push_pinned_nodes_thru_region(dom_if, new_true_region);
1803     push_pinned_nodes_thru_region(dom_if, new_false_region);
1804 
1805     // Optimize out the cloned ifs. Because pinned nodes were cloned, this also allows a CastPP that would be dependent
1806     // on a projection of n to have the dom_if as a control dependency. We don't want the CastPP to end up with an
1807     // unrelated control dependency.
1808     for (uint i = 1; i < new_false_region->req(); i++) {
1809       if (is_dominator(dom_proj_true, new_false_region->in(i))) {
1810         dominated_by(dom_proj_true->as_IfProj(), new_false_region->in(i)->in(0)->as_If());
1811       } else {
1812         assert(is_dominator(dom_proj_false, new_false_region->in(i)), "bad if");
1813         dominated_by(dom_proj_false->as_IfProj(), new_false_region->in(i)->in(0)->as_If());
1814       }
1815     }
1816     return true;
1817   }
1818   return false;
1819 }
1820 
1821 void PhaseIdealLoop::push_pinned_nodes_thru_region(IfNode* dom_if, Node* region) {
1822   for (DUIterator i = region->outs(); region->has_out(i); i++) {
1823     Node* u = region->out(i);
1824     if (!has_ctrl(u) || u->is_Phi() || !u->depends_only_on_test() || !_igvn.no_dependent_zero_check(u)) {
1825       continue;
1826     }
1827     assert(u->in(0) == region, "not a control dependent node?");
1828     uint j = 1;
1829     for (; j < u->req(); ++j) {
1830       Node* in = u->in(j);
1831       if (!is_dominator(ctrl_or_self(in), dom_if)) {
1832         break;
1833       }
1834     }
1835     if (j == u->req()) {
1836       Node *phi = PhiNode::make_blank(region, u);
1837       for (uint k = 1; k < region->req(); ++k) {
1838         Node* clone = u->clone();
1839         clone->set_req(0, region->in(k));
1840         register_new_node(clone, region->in(k));
1841         phi->init_req(k, clone);
1842       }
1843       register_new_node(phi, region);
1844       _igvn.replace_node(u, phi);
1845       --i;
1846     }
1847   }
1848 }
1849 
1850 bool PhaseIdealLoop::safe_for_if_replacement(const Node* dom) const {
1851   if (!dom->is_CountedLoopEnd()) {
1852     return true;
1853   }
1854   CountedLoopEndNode* le = dom->as_CountedLoopEnd();
1855   CountedLoopNode* cl = le->loopnode();
1856   if (cl == nullptr) {
1857     return true;
1858   }
1859   if (!cl->is_main_loop()) {
1860     return true;
1861   }
1862   if (cl->is_canonical_loop_entry() == nullptr) {
1863     return true;
1864   }
1865   // Further unrolling is possible so loop exit condition might change
1866   return false;
1867 }
1868 
1869 // See if a shared loop-varying computation has no loop-varying uses.
1870 // Happens if something is only used for JVM state in uncommon trap exits,
1871 // like various versions of induction variable+offset.  Clone the
1872 // computation per usage to allow it to sink out of the loop.
1873 void PhaseIdealLoop::try_sink_out_of_loop(Node* n) {
1874   if (has_ctrl(n) &&
1875       !n->is_Phi() &&
1876       !n->is_Bool() &&
1877       !n->is_Proj() &&
1878       !n->is_MergeMem() &&
1879       !n->is_CMove() &&
1880       !n->is_OpaqueNotNull() &&
1881       !n->is_OpaqueInitializedAssertionPredicate() &&
1882       !n->is_OpaqueTemplateAssertionPredicate() &&
1883       !n->is_Type()) {
1884     Node *n_ctrl = get_ctrl(n);
1885     IdealLoopTree *n_loop = get_loop(n_ctrl);
1886 
1887     if (n->in(0) != nullptr) {
1888       IdealLoopTree* loop_ctrl = get_loop(n->in(0));
1889       if (n_loop != loop_ctrl && n_loop->is_member(loop_ctrl)) {
1890         // n has a control input inside a loop but get_ctrl() is member of an outer loop. This could happen, for example,
1891         // for Div nodes inside a loop (control input inside loop) without a use except for an UCT (outside the loop).
1892         // Rewire control of n to right outside of the loop, regardless if its input(s) are later sunk or not.
1893         Node* maybe_pinned_n = n;
1894         Node* outside_ctrl = place_outside_loop(n_ctrl, loop_ctrl);
1895         if (n->depends_only_on_test()) {
1896           Node* pinned_clone = n->pin_array_access_node();
1897           if (pinned_clone != nullptr) {
1898             // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a
1899             // range check for that access. If that condition is replaced by an identical dominating one, then an
1900             // unpinned load would risk floating above its range check.
1901             register_new_node(pinned_clone, n_ctrl);
1902             maybe_pinned_n = pinned_clone;
1903             _igvn.replace_node(n, pinned_clone);
1904           }
1905         }
1906         _igvn.replace_input_of(maybe_pinned_n, 0, outside_ctrl);
1907       }
1908     }
1909     if (n_loop != _ltree_root && n->outcnt() > 1) {
1910       // Compute early control: needed for anti-dependence analysis. It's also possible that as a result of
1911       // previous transformations in this loop opts round, the node can be hoisted now: early control will tell us.
1912       Node* early_ctrl = compute_early_ctrl(n, n_ctrl);
1913       if (n_loop->is_member(get_loop(early_ctrl)) && // check that this one can't be hoisted now
1914           ctrl_of_all_uses_out_of_loop(n, early_ctrl, n_loop)) { // All uses in outer loops!
1915         if (n->is_Store() || n->is_LoadStore()) {
1916             assert(false, "no node with a side effect");
1917             C->record_failure("no node with a side effect");
1918             return;
1919         }
1920         Node* outer_loop_clone = nullptr;
1921         for (DUIterator_Last jmin, j = n->last_outs(jmin); j >= jmin;) {
1922           Node* u = n->last_out(j); // Clone private computation per use
1923           _igvn.rehash_node_delayed(u);
1924           Node* x = nullptr;
1925           if (n->depends_only_on_test()) {
1926             // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a
1927             // range check for that access. If that condition is replaced by an identical dominating one, then an
1928             // unpinned load would risk floating above its range check.
1929             x = n->pin_array_access_node();
1930           }
1931           if (x == nullptr) {
1932             x = n->clone();
1933           }
1934           Node* x_ctrl = nullptr;
1935           if (u->is_Phi()) {
1936             // Replace all uses of normal nodes.  Replace Phi uses
1937             // individually, so the separate Nodes can sink down
1938             // different paths.
1939             uint k = 1;
1940             while (u->in(k) != n) k++;
1941             u->set_req(k, x);
1942             // x goes next to Phi input path
1943             x_ctrl = u->in(0)->in(k);
1944             // Find control for 'x' next to use but not inside inner loops.
1945             x_ctrl = place_outside_loop(x_ctrl, n_loop);
1946             --j;
1947           } else {              // Normal use
1948             if (has_ctrl(u)) {
1949               x_ctrl = get_ctrl(u);
1950             } else {
1951               x_ctrl = u->in(0);
1952             }
1953             // Find control for 'x' next to use but not inside inner loops.
1954             x_ctrl = place_outside_loop(x_ctrl, n_loop);
1955             // Replace all uses
1956             if (u->is_ConstraintCast() && _igvn.type(n)->higher_equal(u->bottom_type()) && u->in(0) == x_ctrl) {
1957               // If we're sinking a chain of data nodes, we might have inserted a cast to pin the use which is not necessary
1958               // anymore now that we're going to pin n as well
1959               _igvn.replace_node(u, x);
1960               --j;
1961             } else {
1962               int nb = u->replace_edge(n, x, &_igvn);
1963               j -= nb;
1964             }
1965           }
1966 
1967           if (n->is_Load()) {
1968             // For loads, add a control edge to a CFG node outside of the loop
1969             // to force them to not combine and return back inside the loop
1970             // during GVN optimization (4641526).
1971             assert(x_ctrl == get_late_ctrl_with_anti_dep(x->as_Load(), early_ctrl, x_ctrl), "anti-dependences were already checked");
1972 
1973             IdealLoopTree* x_loop = get_loop(x_ctrl);
1974             Node* x_head = x_loop->_head;
1975             if (x_head->is_Loop() && x_head->is_OuterStripMinedLoop()) {
1976               // Do not add duplicate LoadNodes to the outer strip mined loop
1977               if (outer_loop_clone != nullptr) {
1978                 _igvn.replace_node(x, outer_loop_clone);
1979                 continue;
1980               }
1981               outer_loop_clone = x;
1982             }
1983             x->set_req(0, x_ctrl);
1984           } else if (n->in(0) != nullptr){
1985             x->set_req(0, x_ctrl);
1986           }
1987           assert(dom_depth(n_ctrl) <= dom_depth(x_ctrl), "n is later than its clone");
1988           assert(!n_loop->is_member(get_loop(x_ctrl)), "should have moved out of loop");
1989           register_new_node(x, x_ctrl);
1990 
1991           // Chain of AddP nodes: (AddP base (AddP base (AddP base )))
1992           // All AddP nodes must keep the same base after sinking so:
1993           // 1- We don't add a CastPP here until the last one of the chain is sunk: if part of the chain is not sunk,
1994           // their bases remain the same.
1995           // (see 2- below)
1996           assert(!x->is_AddP() || !x->in(AddPNode::Address)->is_AddP() ||
1997                  x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base) ||
1998                  !x->in(AddPNode::Address)->in(AddPNode::Base)->eqv_uncast(x->in(AddPNode::Base)), "unexpected AddP shape");
1999           if (x->in(0) == nullptr && !x->is_DecodeNarrowPtr() &&
2000               !(x->is_AddP() && x->in(AddPNode::Address)->is_AddP() && x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base))) {
2001             assert(!x->is_Load(), "load should be pinned");
2002             // Use a cast node to pin clone out of loop
2003             Node* cast = nullptr;
2004             for (uint k = 0; k < x->req(); k++) {
2005               Node* in = x->in(k);
2006               if (in != nullptr && n_loop->is_member(get_loop(get_ctrl(in)))) {
2007                 const Type* in_t = _igvn.type(in);
2008                 cast = ConstraintCastNode::make_cast_for_type(x_ctrl, in, in_t,
2009                                                               ConstraintCastNode::UnconditionalDependency, nullptr);
2010               }
2011               if (cast != nullptr) {
2012                 Node* prev = _igvn.hash_find_insert(cast);
2013                 if (prev != nullptr && get_ctrl(prev) == x_ctrl) {
2014                   cast->destruct(&_igvn);
2015                   cast = prev;
2016                 } else {
2017                   register_new_node(cast, x_ctrl);
2018                 }
2019                 x->replace_edge(in, cast);
2020                 // Chain of AddP nodes:
2021                 // 2- A CastPP of the base is only added now that all AddP nodes are sunk
2022                 if (x->is_AddP() && k == AddPNode::Base) {
2023                   update_addp_chain_base(x, n->in(AddPNode::Base), cast);
2024                 }
2025                 break;
2026               }
2027             }
2028             assert(cast != nullptr, "must have added a cast to pin the node");
2029           }
2030         }
2031         _igvn.remove_dead_node(n);
2032       }
2033       _dom_lca_tags_round = 0;
2034     }
2035   }
2036 }
2037 
2038 void PhaseIdealLoop::update_addp_chain_base(Node* x, Node* old_base, Node* new_base) {
2039   ResourceMark rm;
2040   Node_List wq;
2041   wq.push(x);
2042   while (wq.size() != 0) {
2043     Node* n = wq.pop();
2044     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2045       Node* u = n->fast_out(i);
2046       if (u->is_AddP() && u->in(AddPNode::Base) == old_base) {
2047         _igvn.replace_input_of(u, AddPNode::Base, new_base);
2048         wq.push(u);
2049       }
2050     }
2051   }
2052 }
2053 
2054 // Compute the early control of a node by following its inputs until we reach
2055 // nodes that are pinned. Then compute the LCA of the control of all pinned nodes.
2056 Node* PhaseIdealLoop::compute_early_ctrl(Node* n, Node* n_ctrl) {
2057   Node* early_ctrl = nullptr;
2058   ResourceMark rm;
2059   Unique_Node_List wq;
2060   wq.push(n);
2061   for (uint i = 0; i < wq.size(); i++) {
2062     Node* m = wq.at(i);
2063     Node* c = nullptr;
2064     if (m->is_CFG()) {
2065       c = m;
2066     } else if (m->pinned()) {
2067       c = m->in(0);
2068     } else {
2069       for (uint j = 0; j < m->req(); j++) {
2070         Node* in = m->in(j);
2071         if (in != nullptr) {
2072           wq.push(in);
2073         }
2074       }
2075     }
2076     if (c != nullptr) {
2077       assert(is_dominator(c, n_ctrl), "control input must dominate current control");
2078       if (early_ctrl == nullptr || is_dominator(early_ctrl, c)) {
2079         early_ctrl = c;
2080       }
2081     }
2082   }
2083   assert(is_dominator(early_ctrl, n_ctrl), "early control must dominate current control");
2084   return early_ctrl;
2085 }
2086 
2087 bool PhaseIdealLoop::ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop) {
2088   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2089     Node* u = n->fast_out(i);
2090     if (u->is_Opaque1()) {
2091       return false;  // Found loop limit, bugfix for 4677003
2092     }
2093     // We can't reuse tags in PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal() so make sure calls to
2094     // get_late_ctrl_with_anti_dep() use their own tag
2095     _dom_lca_tags_round++;
2096     assert(_dom_lca_tags_round != 0, "shouldn't wrap around");
2097 
2098     if (u->is_Phi()) {
2099       for (uint j = 1; j < u->req(); ++j) {
2100         if (u->in(j) == n && !ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, u->in(0)->in(j))) {
2101           return false;
2102         }
2103       }
2104     } else {
2105       Node* ctrl = has_ctrl(u) ? get_ctrl(u) : u->in(0);
2106       if (!ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, ctrl)) {
2107         return false;
2108       }
2109     }
2110   }
2111   return true;
2112 }
2113 
2114 bool PhaseIdealLoop::ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl) {
2115   if (n->is_Load()) {
2116     ctrl = get_late_ctrl_with_anti_dep(n->as_Load(), n_ctrl, ctrl);
2117   }
2118   IdealLoopTree *u_loop = get_loop(ctrl);
2119   if (u_loop == n_loop) {
2120     return false; // Found loop-varying use
2121   }
2122   if (n_loop->is_member(u_loop)) {
2123     return false; // Found use in inner loop
2124   }
2125   // Sinking a node from a pre loop to its main loop pins the node between the pre and main loops. If that node is input
2126   // to a check that's eliminated by range check elimination, it becomes input to an expression that feeds into the exit
2127   // test of the pre loop above the point in the graph where it's pinned.
2128   if (n_loop->_head->is_CountedLoop() && n_loop->_head->as_CountedLoop()->is_pre_loop()) {
2129     CountedLoopNode* pre_loop = n_loop->_head->as_CountedLoop();
2130     if (is_dominator(pre_loop->loopexit(), ctrl)) {
2131       return false;
2132     }
2133   }
2134   return true;
2135 }
2136 
2137 //------------------------------split_if_with_blocks---------------------------
2138 // Check for aggressive application of 'split-if' optimization,
2139 // using basic block level info.
2140 void PhaseIdealLoop::split_if_with_blocks(VectorSet &visited, Node_Stack &nstack) {
2141   Node* root = C->root();
2142   visited.set(root->_idx); // first, mark root as visited
2143   // Do pre-visit work for root
2144   Node* n   = split_if_with_blocks_pre(root);
2145   uint  cnt = n->outcnt();
2146   uint  i   = 0;
2147 
2148   while (true) {
2149     // Visit all children
2150     if (i < cnt) {
2151       Node* use = n->raw_out(i);
2152       ++i;
2153       if (use->outcnt() != 0 && !visited.test_set(use->_idx)) {
2154         // Now do pre-visit work for this use
2155         use = split_if_with_blocks_pre(use);
2156         nstack.push(n, i); // Save parent and next use's index.
2157         n   = use;         // Process all children of current use.
2158         cnt = use->outcnt();
2159         i   = 0;
2160       }
2161     }
2162     else {
2163       // All of n's children have been processed, complete post-processing.
2164       if (cnt != 0 && !n->is_Con()) {
2165         assert(has_node(n), "no dead nodes");
2166         split_if_with_blocks_post(n);
2167         if (C->failing()) {
2168           return;
2169         }
2170       }
2171       if (must_throttle_split_if()) {
2172         nstack.clear();
2173       }
2174       if (nstack.is_empty()) {
2175         // Finished all nodes on stack.
2176         break;
2177       }
2178       // Get saved parent node and next use's index. Visit the rest of uses.
2179       n   = nstack.node();
2180       cnt = n->outcnt();
2181       i   = nstack.index();
2182       nstack.pop();
2183     }
2184   }
2185 }
2186 
2187 
2188 //=============================================================================
2189 //
2190 //                   C L O N E   A   L O O P   B O D Y
2191 //
2192 
2193 //------------------------------clone_iff--------------------------------------
2194 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
2195 // "Nearly" because all Nodes have been cloned from the original in the loop,
2196 // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
2197 // through the Phi recursively, and return a Bool.
2198 Node* PhaseIdealLoop::clone_iff(PhiNode* phi) {
2199 
2200   // Convert this Phi into a Phi merging Bools
2201   uint i;
2202   for (i = 1; i < phi->req(); i++) {
2203     Node* b = phi->in(i);
2204     if (b->is_Phi()) {
2205       _igvn.replace_input_of(phi, i, clone_iff(b->as_Phi()));
2206     } else {
2207       assert(b->is_Bool() || b->is_OpaqueNotNull() || b->is_OpaqueInitializedAssertionPredicate(),
2208              "bool, non-null check with OpaqueNotNull or Initialized Assertion Predicate with its Opaque node");
2209     }
2210   }
2211   Node* n = phi->in(1);
2212   Node* sample_opaque = nullptr;
2213   Node *sample_bool = nullptr;
2214   if (n->is_OpaqueNotNull() || n->is_OpaqueInitializedAssertionPredicate()) {
2215     sample_opaque = n;
2216     sample_bool = n->in(1);
2217     assert(sample_bool->is_Bool(), "wrong type");
2218   } else {
2219     sample_bool = n;
2220   }
2221   Node* sample_cmp = sample_bool->in(1);
2222   const Type* t = Type::TOP;
2223   const TypePtr* at = nullptr;
2224   if (sample_cmp->is_FlatArrayCheck()) {
2225     // Left input of a FlatArrayCheckNode is memory, set the (adr) type of the phi accordingly
2226     assert(sample_cmp->in(1)->bottom_type() == Type::MEMORY, "unexpected input type");
2227     t = Type::MEMORY;
2228     at = TypeRawPtr::BOTTOM;
2229   }
2230 
2231   // Make Phis to merge the Cmp's inputs.
2232   PhiNode *phi1 = new PhiNode(phi->in(0), t, at);
2233   PhiNode *phi2 = new PhiNode(phi->in(0), Type::TOP);
2234   for (i = 1; i < phi->req(); i++) {
2235     Node *n1 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(1) : phi->in(i)->in(1)->in(1)->in(1);
2236     Node *n2 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(2) : phi->in(i)->in(1)->in(1)->in(2);
2237     phi1->set_req(i, n1);
2238     phi2->set_req(i, n2);
2239     phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type()));
2240     phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type()));
2241   }
2242   // See if these Phis have been made before.
2243   // Register with optimizer
2244   Node *hit1 = _igvn.hash_find_insert(phi1);
2245   if (hit1) {                   // Hit, toss just made Phi
2246     _igvn.remove_dead_node(phi1); // Remove new phi
2247     assert(hit1->is_Phi(), "" );
2248     phi1 = (PhiNode*)hit1;      // Use existing phi
2249   } else {                      // Miss
2250     _igvn.register_new_node_with_optimizer(phi1);
2251   }
2252   Node *hit2 = _igvn.hash_find_insert(phi2);
2253   if (hit2) {                   // Hit, toss just made Phi
2254     _igvn.remove_dead_node(phi2); // Remove new phi
2255     assert(hit2->is_Phi(), "" );
2256     phi2 = (PhiNode*)hit2;      // Use existing phi
2257   } else {                      // Miss
2258     _igvn.register_new_node_with_optimizer(phi2);
2259   }
2260   // Register Phis with loop/block info
2261   set_ctrl(phi1, phi->in(0));
2262   set_ctrl(phi2, phi->in(0));
2263   // Make a new Cmp
2264   Node *cmp = sample_cmp->clone();
2265   cmp->set_req(1, phi1);
2266   cmp->set_req(2, phi2);
2267   _igvn.register_new_node_with_optimizer(cmp);
2268   set_ctrl(cmp, phi->in(0));
2269 
2270   // Make a new Bool
2271   Node *b = sample_bool->clone();
2272   b->set_req(1,cmp);
2273   _igvn.register_new_node_with_optimizer(b);
2274   set_ctrl(b, phi->in(0));
2275 
2276   if (sample_opaque != nullptr) {
2277     Node* opaque = sample_opaque->clone();
2278     opaque->set_req(1, b);
2279     _igvn.register_new_node_with_optimizer(opaque);
2280     set_ctrl(opaque, phi->in(0));
2281     return opaque;
2282   }
2283 
2284   assert(b->is_Bool(), "");
2285   return b;
2286 }
2287 
2288 //------------------------------clone_bool-------------------------------------
2289 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
2290 // "Nearly" because all Nodes have been cloned from the original in the loop,
2291 // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
2292 // through the Phi recursively, and return a Bool.
2293 CmpNode*PhaseIdealLoop::clone_bool(PhiNode* phi) {
2294   uint i;
2295   // Convert this Phi into a Phi merging Bools
2296   for( i = 1; i < phi->req(); i++ ) {
2297     Node *b = phi->in(i);
2298     if( b->is_Phi() ) {
2299       _igvn.replace_input_of(phi, i, clone_bool(b->as_Phi()));
2300     } else {
2301       assert( b->is_Cmp() || b->is_top(), "inputs are all Cmp or TOP" );
2302     }
2303   }
2304 
2305   Node *sample_cmp = phi->in(1);
2306 
2307   // Make Phis to merge the Cmp's inputs.
2308   PhiNode *phi1 = new PhiNode( phi->in(0), Type::TOP );
2309   PhiNode *phi2 = new PhiNode( phi->in(0), Type::TOP );
2310   for( uint j = 1; j < phi->req(); j++ ) {
2311     Node *cmp_top = phi->in(j); // Inputs are all Cmp or TOP
2312     Node *n1, *n2;
2313     if( cmp_top->is_Cmp() ) {
2314       n1 = cmp_top->in(1);
2315       n2 = cmp_top->in(2);
2316     } else {
2317       n1 = n2 = cmp_top;
2318     }
2319     phi1->set_req( j, n1 );
2320     phi2->set_req( j, n2 );
2321     phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type()));
2322     phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type()));
2323   }
2324 
2325   // See if these Phis have been made before.
2326   // Register with optimizer
2327   Node *hit1 = _igvn.hash_find_insert(phi1);
2328   if( hit1 ) {                  // Hit, toss just made Phi
2329     _igvn.remove_dead_node(phi1); // Remove new phi
2330     assert( hit1->is_Phi(), "" );
2331     phi1 = (PhiNode*)hit1;      // Use existing phi
2332   } else {                      // Miss
2333     _igvn.register_new_node_with_optimizer(phi1);
2334   }
2335   Node *hit2 = _igvn.hash_find_insert(phi2);
2336   if( hit2 ) {                  // Hit, toss just made Phi
2337     _igvn.remove_dead_node(phi2); // Remove new phi
2338     assert( hit2->is_Phi(), "" );
2339     phi2 = (PhiNode*)hit2;      // Use existing phi
2340   } else {                      // Miss
2341     _igvn.register_new_node_with_optimizer(phi2);
2342   }
2343   // Register Phis with loop/block info
2344   set_ctrl(phi1, phi->in(0));
2345   set_ctrl(phi2, phi->in(0));
2346   // Make a new Cmp
2347   Node *cmp = sample_cmp->clone();
2348   cmp->set_req( 1, phi1 );
2349   cmp->set_req( 2, phi2 );
2350   _igvn.register_new_node_with_optimizer(cmp);
2351   set_ctrl(cmp, phi->in(0));
2352 
2353   assert( cmp->is_Cmp(), "" );
2354   return (CmpNode*)cmp;
2355 }
2356 
2357 void PhaseIdealLoop::clone_loop_handle_data_uses(Node* old, Node_List &old_new,
2358                                                  IdealLoopTree* loop, IdealLoopTree* outer_loop,
2359                                                  Node_List*& split_if_set, Node_List*& split_bool_set,
2360                                                  Node_List*& split_cex_set, Node_List& worklist,
2361                                                  uint new_counter, CloneLoopMode mode) {
2362   Node* nnn = old_new[old->_idx];
2363   // Copy uses to a worklist, so I can munge the def-use info
2364   // with impunity.
2365   for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++)
2366     worklist.push(old->fast_out(j));
2367 
2368   while( worklist.size() ) {
2369     Node *use = worklist.pop();
2370     if (!has_node(use))  continue; // Ignore dead nodes
2371     if (use->in(0) == C->top())  continue;
2372     IdealLoopTree *use_loop = get_loop( has_ctrl(use) ? get_ctrl(use) : use );
2373     // Check for data-use outside of loop - at least one of OLD or USE
2374     // must not be a CFG node.
2375 #ifdef ASSERT
2376     if (loop->_head->as_Loop()->is_strip_mined() && outer_loop->is_member(use_loop) && !loop->is_member(use_loop) && old_new[use->_idx] == nullptr) {
2377       Node* sfpt = loop->_head->as_CountedLoop()->outer_safepoint();
2378       assert(mode != IgnoreStripMined, "incorrect cloning mode");
2379       assert((mode == ControlAroundStripMined && use == sfpt) || !use->is_reachable_from_root(), "missed a node");
2380     }
2381 #endif
2382     if (!loop->is_member(use_loop) && !outer_loop->is_member(use_loop) && (!old->is_CFG() || !use->is_CFG())) {
2383 
2384       // If the Data use is an IF, that means we have an IF outside the
2385       // loop that is switching on a condition that is set inside the
2386       // loop.  Happens if people set a loop-exit flag; then test the flag
2387       // in the loop to break the loop, then test is again outside the
2388       // loop to determine which way the loop exited.
2389       //
2390       // For several uses we need to make sure that there is no phi between,
2391       // the use and the Bool/Cmp. We therefore clone the Bool/Cmp down here
2392       // to avoid such a phi in between.
2393       // For example, it is unexpected that there is a Phi between an
2394       // AllocateArray node and its ValidLengthTest input that could cause
2395       // split if to break.
2396       assert(!use->is_OpaqueTemplateAssertionPredicate(),
2397              "should not clone a Template Assertion Predicate which should be removed once it's useless");
2398       if (use->is_If() || use->is_CMove() || use->is_OpaqueNotNull() || use->is_OpaqueInitializedAssertionPredicate() ||
2399           (use->Opcode() == Op_AllocateArray && use->in(AllocateNode::ValidLengthTest) == old)) {
2400         // Since this code is highly unlikely, we lazily build the worklist
2401         // of such Nodes to go split.
2402         if (!split_if_set) {
2403           split_if_set = new Node_List();
2404         }
2405         split_if_set->push(use);
2406       }
2407       if (use->is_Bool()) {
2408         if (!split_bool_set) {
2409           split_bool_set = new Node_List();
2410         }
2411         split_bool_set->push(use);
2412       }
2413       if (use->Opcode() == Op_CreateEx) {
2414         if (!split_cex_set) {
2415           split_cex_set = new Node_List();
2416         }
2417         split_cex_set->push(use);
2418       }
2419 
2420 
2421       // Get "block" use is in
2422       uint idx = 0;
2423       while( use->in(idx) != old ) idx++;
2424       Node *prev = use->is_CFG() ? use : get_ctrl(use);
2425       assert(!loop->is_member(get_loop(prev)) && !outer_loop->is_member(get_loop(prev)), "" );
2426       Node* cfg = (prev->_idx >= new_counter && prev->is_Region())
2427         ? prev->in(2)
2428         : idom(prev);
2429       if( use->is_Phi() )     // Phi use is in prior block
2430         cfg = prev->in(idx);  // NOT in block of Phi itself
2431       if (cfg->is_top()) {    // Use is dead?
2432         _igvn.replace_input_of(use, idx, C->top());
2433         continue;
2434       }
2435 
2436       // If use is referenced through control edge... (idx == 0)
2437       if (mode == IgnoreStripMined && idx == 0) {
2438         LoopNode *head = loop->_head->as_Loop();
2439         if (head->is_strip_mined() && is_dominator(head->outer_loop_exit(), prev)) {
2440           // That node is outside the inner loop, leave it outside the
2441           // outer loop as well to not confuse verification code.
2442           assert(!loop->_parent->is_member(use_loop), "should be out of the outer loop");
2443           _igvn.replace_input_of(use, 0, head->outer_loop_exit());
2444           continue;
2445         }
2446       }
2447 
2448       while(!outer_loop->is_member(get_loop(cfg))) {
2449         prev = cfg;
2450         cfg = (cfg->_idx >= new_counter && cfg->is_Region()) ? cfg->in(2) : idom(cfg);
2451       }
2452       // If the use occurs after merging several exits from the loop, then
2453       // old value must have dominated all those exits.  Since the same old
2454       // value was used on all those exits we did not need a Phi at this
2455       // merge point.  NOW we do need a Phi here.  Each loop exit value
2456       // is now merged with the peeled body exit; each exit gets its own
2457       // private Phi and those Phis need to be merged here.
2458       Node *phi;
2459       if( prev->is_Region() ) {
2460         if( idx == 0 ) {      // Updating control edge?
2461           phi = prev;         // Just use existing control
2462         } else {              // Else need a new Phi
2463           phi = PhiNode::make( prev, old );
2464           // Now recursively fix up the new uses of old!
2465           for( uint i = 1; i < prev->req(); i++ ) {
2466             worklist.push(phi); // Onto worklist once for each 'old' input
2467           }
2468         }
2469       } else {
2470         // Get new RegionNode merging old and new loop exits
2471         prev = old_new[prev->_idx];
2472         assert( prev, "just made this in step 7" );
2473         if( idx == 0) {      // Updating control edge?
2474           phi = prev;         // Just use existing control
2475         } else {              // Else need a new Phi
2476           // Make a new Phi merging data values properly
2477           phi = PhiNode::make( prev, old );
2478           phi->set_req( 1, nnn );
2479         }
2480       }
2481       // If inserting a new Phi, check for prior hits
2482       if( idx != 0 ) {
2483         Node *hit = _igvn.hash_find_insert(phi);
2484         if( hit == nullptr ) {
2485           _igvn.register_new_node_with_optimizer(phi); // Register new phi
2486         } else {                                      // or
2487           // Remove the new phi from the graph and use the hit
2488           _igvn.remove_dead_node(phi);
2489           phi = hit;                                  // Use existing phi
2490         }
2491         set_ctrl(phi, prev);
2492       }
2493       // Make 'use' use the Phi instead of the old loop body exit value
2494       assert(use->in(idx) == old, "old is still input of use");
2495       // We notify all uses of old, including use, and the indirect uses,
2496       // that may now be optimized because we have replaced old with phi.
2497       _igvn.add_users_to_worklist(old);
2498       if (idx == 0 &&
2499           use->depends_only_on_test()) {
2500         Node* pinned_clone = use->pin_array_access_node();
2501         if (pinned_clone != nullptr) {
2502           // Pin array access nodes: control is updated here to a region. If, after some transformations, only one path
2503           // into the region is left, an array load could become dependent on a condition that's not a range check for
2504           // that access. If that condition is replaced by an identical dominating one, then an unpinned load would risk
2505           // floating above its range check.
2506           pinned_clone->set_req(0, phi);
2507           register_new_node_with_ctrl_of(pinned_clone, use);
2508           _igvn.replace_node(use, pinned_clone);
2509           continue;
2510         }
2511       }
2512       _igvn.replace_input_of(use, idx, phi);
2513       if( use->_idx >= new_counter ) { // If updating new phis
2514         // Not needed for correctness, but prevents a weak assert
2515         // in AddPNode from tripping (when we end up with different
2516         // base & derived Phis that will become the same after
2517         // IGVN does CSE).
2518         Node *hit = _igvn.hash_find_insert(use);
2519         if( hit )             // Go ahead and re-hash for hits.
2520           _igvn.replace_node( use, hit );
2521       }
2522     }
2523   }
2524 }
2525 
2526 static void collect_nodes_in_outer_loop_not_reachable_from_sfpt(Node* n, const IdealLoopTree *loop, const IdealLoopTree* outer_loop,
2527                                                                 const Node_List &old_new, Unique_Node_List& wq, PhaseIdealLoop* phase,
2528                                                                 bool check_old_new) {
2529   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2530     Node* u = n->fast_out(j);
2531     assert(check_old_new || old_new[u->_idx] == nullptr, "shouldn't have been cloned");
2532     if (!u->is_CFG() && (!check_old_new || old_new[u->_idx] == nullptr)) {
2533       Node* c = phase->get_ctrl(u);
2534       IdealLoopTree* u_loop = phase->get_loop(c);
2535       assert(!loop->is_member(u_loop) || !loop->_body.contains(u), "can be in outer loop or out of both loops only");
2536       if (!loop->is_member(u_loop)) {
2537         if (outer_loop->is_member(u_loop)) {
2538           wq.push(u);
2539         } else {
2540           // nodes pinned with control in the outer loop but not referenced from the safepoint must be moved out of
2541           // the outer loop too
2542           Node* u_c = u->in(0);
2543           if (u_c != nullptr) {
2544             IdealLoopTree* u_c_loop = phase->get_loop(u_c);
2545             if (outer_loop->is_member(u_c_loop) && !loop->is_member(u_c_loop)) {
2546               wq.push(u);
2547             }
2548           }
2549         }
2550       }
2551     }
2552   }
2553 }
2554 
2555 void PhaseIdealLoop::clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
2556                                       IdealLoopTree* outer_loop, int dd, Node_List &old_new,
2557                                       Node_List& extra_data_nodes) {
2558   if (head->is_strip_mined() && mode != IgnoreStripMined) {
2559     CountedLoopNode* cl = head->as_CountedLoop();
2560     Node* l = cl->outer_loop();
2561     Node* tail = cl->outer_loop_tail();
2562     IfNode* le = cl->outer_loop_end();
2563     Node* sfpt = cl->outer_safepoint();
2564     CountedLoopEndNode* cle = cl->loopexit();
2565     CountedLoopNode* new_cl = old_new[cl->_idx]->as_CountedLoop();
2566     CountedLoopEndNode* new_cle = new_cl->as_CountedLoop()->loopexit_or_null();
2567     Node* cle_out = cle->proj_out(false);
2568 
2569     Node* new_sfpt = nullptr;
2570     Node* new_cle_out = cle_out->clone();
2571     old_new.map(cle_out->_idx, new_cle_out);
2572     if (mode == CloneIncludesStripMined) {
2573       // clone outer loop body
2574       Node* new_l = l->clone();
2575       Node* new_tail = tail->clone();
2576       IfNode* new_le = le->clone()->as_If();
2577       new_sfpt = sfpt->clone();
2578 
2579       set_loop(new_l, outer_loop->_parent);
2580       set_idom(new_l, new_l->in(LoopNode::EntryControl), dd);
2581       set_loop(new_cle_out, outer_loop->_parent);
2582       set_idom(new_cle_out, new_cle, dd);
2583       set_loop(new_sfpt, outer_loop->_parent);
2584       set_idom(new_sfpt, new_cle_out, dd);
2585       set_loop(new_le, outer_loop->_parent);
2586       set_idom(new_le, new_sfpt, dd);
2587       set_loop(new_tail, outer_loop->_parent);
2588       set_idom(new_tail, new_le, dd);
2589       set_idom(new_cl, new_l, dd);
2590 
2591       old_new.map(l->_idx, new_l);
2592       old_new.map(tail->_idx, new_tail);
2593       old_new.map(le->_idx, new_le);
2594       old_new.map(sfpt->_idx, new_sfpt);
2595 
2596       new_l->set_req(LoopNode::LoopBackControl, new_tail);
2597       new_l->set_req(0, new_l);
2598       new_tail->set_req(0, new_le);
2599       new_le->set_req(0, new_sfpt);
2600       new_sfpt->set_req(0, new_cle_out);
2601       new_cle_out->set_req(0, new_cle);
2602       new_cl->set_req(LoopNode::EntryControl, new_l);
2603 
2604       _igvn.register_new_node_with_optimizer(new_l);
2605       _igvn.register_new_node_with_optimizer(new_tail);
2606       _igvn.register_new_node_with_optimizer(new_le);
2607     } else {
2608       Node *newhead = old_new[loop->_head->_idx];
2609       newhead->as_Loop()->clear_strip_mined();
2610       _igvn.replace_input_of(newhead, LoopNode::EntryControl, newhead->in(LoopNode::EntryControl)->in(LoopNode::EntryControl));
2611       set_idom(newhead, newhead->in(LoopNode::EntryControl), dd);
2612     }
2613     // Look at data node that were assigned a control in the outer
2614     // loop: they are kept in the outer loop by the safepoint so start
2615     // from the safepoint node's inputs.
2616     IdealLoopTree* outer_loop = get_loop(l);
2617     Node_Stack stack(2);
2618     stack.push(sfpt, 1);
2619     uint new_counter = C->unique();
2620     while (stack.size() > 0) {
2621       Node* n = stack.node();
2622       uint i = stack.index();
2623       while (i < n->req() &&
2624              (n->in(i) == nullptr ||
2625               !has_ctrl(n->in(i)) ||
2626               get_loop(get_ctrl(n->in(i))) != outer_loop ||
2627               (old_new[n->in(i)->_idx] != nullptr && old_new[n->in(i)->_idx]->_idx >= new_counter))) {
2628         i++;
2629       }
2630       if (i < n->req()) {
2631         stack.set_index(i+1);
2632         stack.push(n->in(i), 0);
2633       } else {
2634         assert(old_new[n->_idx] == nullptr || n == sfpt || old_new[n->_idx]->_idx < new_counter, "no clone yet");
2635         Node* m = n == sfpt ? new_sfpt : n->clone();
2636         if (m != nullptr) {
2637           for (uint i = 0; i < n->req(); i++) {
2638             if (m->in(i) != nullptr && old_new[m->in(i)->_idx] != nullptr) {
2639               m->set_req(i, old_new[m->in(i)->_idx]);
2640             }
2641           }
2642         } else {
2643           assert(n == sfpt && mode != CloneIncludesStripMined, "where's the safepoint clone?");
2644         }
2645         if (n != sfpt) {
2646           extra_data_nodes.push(n);
2647           _igvn.register_new_node_with_optimizer(m);
2648           assert(get_ctrl(n) == cle_out, "what other control?");
2649           set_ctrl(m, new_cle_out);
2650           old_new.map(n->_idx, m);
2651         }
2652         stack.pop();
2653       }
2654     }
2655     if (mode == CloneIncludesStripMined) {
2656       _igvn.register_new_node_with_optimizer(new_sfpt);
2657       _igvn.register_new_node_with_optimizer(new_cle_out);
2658     }
2659     // Some other transformation may have pessimistically assigned some
2660     // data nodes to the outer loop. Set their control so they are out
2661     // of the outer loop.
2662     ResourceMark rm;
2663     Unique_Node_List wq;
2664     for (uint i = 0; i < extra_data_nodes.size(); i++) {
2665       Node* old = extra_data_nodes.at(i);
2666       collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true);
2667     }
2668 
2669     for (uint i = 0; i < loop->_body.size(); i++) {
2670       Node* old = loop->_body.at(i);
2671       collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true);
2672     }
2673 
2674     Node* inner_out = sfpt->in(0);
2675     if (inner_out->outcnt() > 1) {
2676       collect_nodes_in_outer_loop_not_reachable_from_sfpt(inner_out, loop, outer_loop, old_new, wq, this, true);
2677     }
2678 
2679     Node* new_ctrl = cl->outer_loop_exit();
2680     assert(get_loop(new_ctrl) != outer_loop, "must be out of the loop nest");
2681     for (uint i = 0; i < wq.size(); i++) {
2682       Node* n = wq.at(i);
2683       set_ctrl(n, new_ctrl);
2684       if (n->in(0) != nullptr) {
2685         _igvn.replace_input_of(n, 0, new_ctrl);
2686       }
2687       collect_nodes_in_outer_loop_not_reachable_from_sfpt(n, loop, outer_loop, old_new, wq, this, false);
2688     }
2689   } else {
2690     Node *newhead = old_new[loop->_head->_idx];
2691     set_idom(newhead, newhead->in(LoopNode::EntryControl), dd);
2692   }
2693 }
2694 
2695 //------------------------------clone_loop-------------------------------------
2696 //
2697 //                   C L O N E   A   L O O P   B O D Y
2698 //
2699 // This is the basic building block of the loop optimizations.  It clones an
2700 // entire loop body.  It makes an old_new loop body mapping; with this mapping
2701 // you can find the new-loop equivalent to an old-loop node.  All new-loop
2702 // nodes are exactly equal to their old-loop counterparts, all edges are the
2703 // same.  All exits from the old-loop now have a RegionNode that merges the
2704 // equivalent new-loop path.  This is true even for the normal "loop-exit"
2705 // condition.  All uses of loop-invariant old-loop values now come from (one
2706 // or more) Phis that merge their new-loop equivalents.
2707 //
2708 // This operation leaves the graph in an illegal state: there are two valid
2709 // control edges coming from the loop pre-header to both loop bodies.  I'll
2710 // definitely have to hack the graph after running this transform.
2711 //
2712 // From this building block I will further edit edges to perform loop peeling
2713 // or loop unrolling or iteration splitting (Range-Check-Elimination), etc.
2714 //
2715 // Parameter side_by_size_idom:
2716 //   When side_by_size_idom is null, the dominator tree is constructed for
2717 //      the clone loop to dominate the original.  Used in construction of
2718 //      pre-main-post loop sequence.
2719 //   When nonnull, the clone and original are side-by-side, both are
2720 //      dominated by the side_by_side_idom node.  Used in construction of
2721 //      unswitched loops.
2722 void PhaseIdealLoop::clone_loop( IdealLoopTree *loop, Node_List &old_new, int dd,
2723                                 CloneLoopMode mode, Node* side_by_side_idom) {
2724 
2725   LoopNode* head = loop->_head->as_Loop();
2726   head->verify_strip_mined(1);
2727 
2728   if (C->do_vector_loop() && PrintOpto) {
2729     const char* mname = C->method()->name()->as_quoted_ascii();
2730     if (mname != nullptr) {
2731       tty->print("PhaseIdealLoop::clone_loop: for vectorize method %s\n", mname);
2732     }
2733   }
2734 
2735   CloneMap& cm = C->clone_map();
2736   if (C->do_vector_loop()) {
2737     cm.set_clone_idx(cm.max_gen()+1);
2738 #ifndef PRODUCT
2739     if (PrintOpto) {
2740       tty->print_cr("PhaseIdealLoop::clone_loop: _clone_idx %d", cm.clone_idx());
2741       loop->dump_head();
2742     }
2743 #endif
2744   }
2745 
2746   // Step 1: Clone the loop body.  Make the old->new mapping.
2747   clone_loop_body(loop->_body, old_new, &cm);
2748 
2749   IdealLoopTree* outer_loop = (head->is_strip_mined() && mode != IgnoreStripMined) ? get_loop(head->as_CountedLoop()->outer_loop()) : loop;
2750 
2751   // Step 2: Fix the edges in the new body.  If the old input is outside the
2752   // loop use it.  If the old input is INside the loop, use the corresponding
2753   // new node instead.
2754   fix_body_edges(loop->_body, loop, old_new, dd, outer_loop->_parent, false);
2755 
2756   Node_List extra_data_nodes; // data nodes in the outer strip mined loop
2757   clone_outer_loop(head, mode, loop, outer_loop, dd, old_new, extra_data_nodes);
2758 
2759   // Step 3: Now fix control uses.  Loop varying control uses have already
2760   // been fixed up (as part of all input edges in Step 2).  Loop invariant
2761   // control uses must be either an IfFalse or an IfTrue.  Make a merge
2762   // point to merge the old and new IfFalse/IfTrue nodes; make the use
2763   // refer to this.
2764   Node_List worklist;
2765   uint new_counter = C->unique();
2766   fix_ctrl_uses(loop->_body, loop, old_new, mode, side_by_side_idom, &cm, worklist);
2767 
2768   // Step 4: If loop-invariant use is not control, it must be dominated by a
2769   // loop exit IfFalse/IfTrue.  Find "proper" loop exit.  Make a Region
2770   // there if needed.  Make a Phi there merging old and new used values.
2771   Node_List *split_if_set = nullptr;
2772   Node_List *split_bool_set = nullptr;
2773   Node_List *split_cex_set = nullptr;
2774   fix_data_uses(loop->_body, loop, mode, outer_loop, new_counter, old_new, worklist, split_if_set, split_bool_set, split_cex_set);
2775 
2776   for (uint i = 0; i < extra_data_nodes.size(); i++) {
2777     Node* old = extra_data_nodes.at(i);
2778     clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set,
2779                                 split_bool_set, split_cex_set, worklist, new_counter,
2780                                 mode);
2781   }
2782 
2783   // Check for IFs that need splitting/cloning.  Happens if an IF outside of
2784   // the loop uses a condition set in the loop.  The original IF probably
2785   // takes control from one or more OLD Regions (which in turn get from NEW
2786   // Regions).  In any case, there will be a set of Phis for each merge point
2787   // from the IF up to where the original BOOL def exists the loop.
2788   finish_clone_loop(split_if_set, split_bool_set, split_cex_set);
2789 
2790 }
2791 
2792 void PhaseIdealLoop::finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set) {
2793   if (split_if_set) {
2794     while (split_if_set->size()) {
2795       Node *iff = split_if_set->pop();
2796       uint input = iff->Opcode() == Op_AllocateArray ? AllocateNode::ValidLengthTest : 1;
2797       if (iff->in(input)->is_Phi()) {
2798         Node *b = clone_iff(iff->in(input)->as_Phi());
2799         _igvn.replace_input_of(iff, input, b);
2800       }
2801     }
2802   }
2803   if (split_bool_set) {
2804     while (split_bool_set->size()) {
2805       Node *b = split_bool_set->pop();
2806       Node *phi = b->in(1);
2807       assert(phi->is_Phi(), "");
2808       CmpNode *cmp = clone_bool((PhiNode*) phi);
2809       _igvn.replace_input_of(b, 1, cmp);
2810     }
2811   }
2812   if (split_cex_set) {
2813     while (split_cex_set->size()) {
2814       Node *b = split_cex_set->pop();
2815       assert(b->in(0)->is_Region(), "");
2816       assert(b->in(1)->is_Phi(), "");
2817       assert(b->in(0)->in(0) == b->in(1)->in(0), "");
2818       split_up(b, b->in(0), nullptr);
2819     }
2820   }
2821 }
2822 
2823 void PhaseIdealLoop::fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
2824                                    uint new_counter, Node_List &old_new, Node_List &worklist, Node_List*& split_if_set,
2825                                    Node_List*& split_bool_set, Node_List*& split_cex_set) {
2826   for(uint i = 0; i < body.size(); i++ ) {
2827     Node* old = body.at(i);
2828     clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set,
2829                                 split_bool_set, split_cex_set, worklist, new_counter,
2830                                 mode);
2831   }
2832 }
2833 
2834 void PhaseIdealLoop::fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
2835                                    Node* side_by_side_idom, CloneMap* cm, Node_List &worklist) {
2836   LoopNode* head = loop->_head->as_Loop();
2837   for(uint i = 0; i < body.size(); i++ ) {
2838     Node* old = body.at(i);
2839     if( !old->is_CFG() ) continue;
2840 
2841     // Copy uses to a worklist, so I can munge the def-use info
2842     // with impunity.
2843     for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++) {
2844       worklist.push(old->fast_out(j));
2845     }
2846 
2847     while (worklist.size()) {  // Visit all uses
2848       Node *use = worklist.pop();
2849       if (!has_node(use))  continue; // Ignore dead nodes
2850       IdealLoopTree *use_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use );
2851       if (!loop->is_member(use_loop) && use->is_CFG()) {
2852         // Both OLD and USE are CFG nodes here.
2853         assert(use->is_Proj(), "" );
2854         Node* nnn = old_new[old->_idx];
2855 
2856         Node* newuse = nullptr;
2857         if (head->is_strip_mined() && mode != IgnoreStripMined) {
2858           CountedLoopNode* cl = head->as_CountedLoop();
2859           CountedLoopEndNode* cle = cl->loopexit();
2860           Node* cle_out = cle->proj_out_or_null(false);
2861           if (use == cle_out) {
2862             IfNode* le = cl->outer_loop_end();
2863             use = le->proj_out(false);
2864             use_loop = get_loop(use);
2865             if (mode == CloneIncludesStripMined) {
2866               nnn = old_new[le->_idx];
2867             } else {
2868               newuse = old_new[cle_out->_idx];
2869             }
2870           }
2871         }
2872         if (newuse == nullptr) {
2873           newuse = use->clone();
2874         }
2875 
2876         // Clone the loop exit control projection
2877         if (C->do_vector_loop() && cm != nullptr) {
2878           cm->verify_insert_and_clone(use, newuse, cm->clone_idx());
2879         }
2880         newuse->set_req(0,nnn);
2881         _igvn.register_new_node_with_optimizer(newuse);
2882         set_loop(newuse, use_loop);
2883         set_idom(newuse, nnn, dom_depth(nnn) + 1 );
2884 
2885         // We need a Region to merge the exit from the peeled body and the
2886         // exit from the old loop body.
2887         RegionNode *r = new RegionNode(3);
2888         uint dd_r = MIN2(dom_depth(newuse), dom_depth(use));
2889         assert(dd_r >= dom_depth(dom_lca(newuse, use)), "" );
2890 
2891         // The original user of 'use' uses 'r' instead.
2892         for (DUIterator_Last lmin, l = use->last_outs(lmin); l >= lmin;) {
2893           Node* useuse = use->last_out(l);
2894           _igvn.rehash_node_delayed(useuse);
2895           uint uses_found = 0;
2896           if (useuse->in(0) == use) {
2897             useuse->set_req(0, r);
2898             uses_found++;
2899             if (useuse->is_CFG()) {
2900               // This is not a dom_depth > dd_r because when new
2901               // control flow is constructed by a loop opt, a node and
2902               // its dominator can end up at the same dom_depth
2903               assert(dom_depth(useuse) >= dd_r, "");
2904               set_idom(useuse, r, dom_depth(useuse));
2905             }
2906           }
2907           for (uint k = 1; k < useuse->req(); k++) {
2908             if( useuse->in(k) == use ) {
2909               useuse->set_req(k, r);
2910               uses_found++;
2911               if (useuse->is_Loop() && k == LoopNode::EntryControl) {
2912                 // This is not a dom_depth > dd_r because when new
2913                 // control flow is constructed by a loop opt, a node
2914                 // and its dominator can end up at the same dom_depth
2915                 assert(dom_depth(useuse) >= dd_r , "");
2916                 set_idom(useuse, r, dom_depth(useuse));
2917               }
2918             }
2919           }
2920           l -= uses_found;    // we deleted 1 or more copies of this edge
2921         }
2922 
2923         assert(use->is_Proj(), "loop exit should be projection");
2924         // lazy_replace() below moves all nodes that are:
2925         // - control dependent on the loop exit or
2926         // - have control set to the loop exit
2927         // below the post-loop merge point. lazy_replace() takes a dead control as first input. To make it
2928         // possible to use it, the loop exit projection is cloned and becomes the new exit projection. The initial one
2929         // becomes dead and is "replaced" by the region.
2930         Node* use_clone = use->clone();
2931         register_control(use_clone, use_loop, idom(use), dom_depth(use));
2932         // Now finish up 'r'
2933         r->set_req(1, newuse);
2934         r->set_req(2, use_clone);
2935         _igvn.register_new_node_with_optimizer(r);
2936         set_loop(r, use_loop);
2937         set_idom(r, (side_by_side_idom == nullptr) ? newuse->in(0) : side_by_side_idom, dd_r);
2938         lazy_replace(use, r);
2939         // Map the (cloned) old use to the new merge point
2940         old_new.map(use_clone->_idx, r);
2941       } // End of if a loop-exit test
2942     }
2943   }
2944 }
2945 
2946 void PhaseIdealLoop::fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
2947                                     IdealLoopTree* parent, bool partial) {
2948   for(uint i = 0; i < body.size(); i++ ) {
2949     Node *old = body.at(i);
2950     Node *nnn = old_new[old->_idx];
2951     // Fix CFG/Loop controlling the new node
2952     if (has_ctrl(old)) {
2953       set_ctrl(nnn, old_new[get_ctrl(old)->_idx]);
2954     } else {
2955       set_loop(nnn, parent);
2956       if (old->outcnt() > 0) {
2957         Node* dom = idom(old);
2958         if (old_new[dom->_idx] != nullptr) {
2959           dom = old_new[dom->_idx];
2960           set_idom(nnn, dom, dd );
2961         }
2962       }
2963     }
2964     // Correct edges to the new node
2965     for (uint j = 0; j < nnn->req(); j++) {
2966         Node *n = nnn->in(j);
2967         if (n != nullptr) {
2968           IdealLoopTree *old_in_loop = get_loop(has_ctrl(n) ? get_ctrl(n) : n);
2969           if (loop->is_member(old_in_loop)) {
2970             if (old_new[n->_idx] != nullptr) {
2971               nnn->set_req(j, old_new[n->_idx]);
2972             } else {
2973               assert(!body.contains(n), "");
2974               assert(partial, "node not cloned");
2975             }
2976           }
2977         }
2978     }
2979     _igvn.hash_find_insert(nnn);
2980   }
2981 }
2982 
2983 void PhaseIdealLoop::clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm) {
2984   for (uint i = 0; i < body.size(); i++) {
2985     Node* old = body.at(i);
2986     Node* nnn = old->clone();
2987     old_new.map(old->_idx, nnn);
2988     if (C->do_vector_loop() && cm != nullptr) {
2989       cm->verify_insert_and_clone(old, nnn, cm->clone_idx());
2990     }
2991     _igvn.register_new_node_with_optimizer(nnn);
2992   }
2993 }
2994 
2995 
2996 //---------------------- stride_of_possible_iv -------------------------------------
2997 // Looks for an iff/bool/comp with one operand of the compare
2998 // being a cycle involving an add and a phi,
2999 // with an optional truncation (left-shift followed by a right-shift)
3000 // of the add. Returns zero if not an iv.
3001 int PhaseIdealLoop::stride_of_possible_iv(Node* iff) {
3002   Node* trunc1 = nullptr;
3003   Node* trunc2 = nullptr;
3004   const TypeInteger* ttype = nullptr;
3005   if (!iff->is_If() || iff->in(1) == nullptr || !iff->in(1)->is_Bool()) {
3006     return 0;
3007   }
3008   BoolNode* bl = iff->in(1)->as_Bool();
3009   Node* cmp = bl->in(1);
3010   if (!cmp || (cmp->Opcode() != Op_CmpI && cmp->Opcode() != Op_CmpU)) {
3011     return 0;
3012   }
3013   // Must have an invariant operand
3014   if (is_member(get_loop(iff), get_ctrl(cmp->in(2)))) {
3015     return 0;
3016   }
3017   Node* add2 = nullptr;
3018   Node* cmp1 = cmp->in(1);
3019   if (cmp1->is_Phi()) {
3020     // (If (Bool (CmpX phi:(Phi ...(Optional-trunc(AddI phi add2))) )))
3021     Node* phi = cmp1;
3022     for (uint i = 1; i < phi->req(); i++) {
3023       Node* in = phi->in(i);
3024       Node* add = CountedLoopNode::match_incr_with_optional_truncation(in,
3025                                 &trunc1, &trunc2, &ttype, T_INT);
3026       if (add && add->in(1) == phi) {
3027         add2 = add->in(2);
3028         break;
3029       }
3030     }
3031   } else {
3032     // (If (Bool (CmpX addtrunc:(Optional-trunc((AddI (Phi ...addtrunc...) add2)) )))
3033     Node* addtrunc = cmp1;
3034     Node* add = CountedLoopNode::match_incr_with_optional_truncation(addtrunc,
3035                                 &trunc1, &trunc2, &ttype, T_INT);
3036     if (add && add->in(1)->is_Phi()) {
3037       Node* phi = add->in(1);
3038       for (uint i = 1; i < phi->req(); i++) {
3039         if (phi->in(i) == addtrunc) {
3040           add2 = add->in(2);
3041           break;
3042         }
3043       }
3044     }
3045   }
3046   if (add2 != nullptr) {
3047     const TypeInt* add2t = _igvn.type(add2)->is_int();
3048     if (add2t->is_con()) {
3049       return add2t->get_con();
3050     }
3051   }
3052   return 0;
3053 }
3054 
3055 
3056 //---------------------- stay_in_loop -------------------------------------
3057 // Return the (unique) control output node that's in the loop (if it exists.)
3058 Node* PhaseIdealLoop::stay_in_loop( Node* n, IdealLoopTree *loop) {
3059   Node* unique = nullptr;
3060   if (!n) return nullptr;
3061   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3062     Node* use = n->fast_out(i);
3063     if (!has_ctrl(use) && loop->is_member(get_loop(use))) {
3064       if (unique != nullptr) {
3065         return nullptr;
3066       }
3067       unique = use;
3068     }
3069   }
3070   return unique;
3071 }
3072 
3073 //------------------------------ register_node -------------------------------------
3074 // Utility to register node "n" with PhaseIdealLoop
3075 void PhaseIdealLoop::register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth) {
3076   _igvn.register_new_node_with_optimizer(n);
3077   loop->_body.push(n);
3078   if (n->is_CFG()) {
3079     set_loop(n, loop);
3080     set_idom(n, pred, ddepth);
3081   } else {
3082     set_ctrl(n, pred);
3083   }
3084 }
3085 
3086 //------------------------------ proj_clone -------------------------------------
3087 // Utility to create an if-projection
3088 ProjNode* PhaseIdealLoop::proj_clone(ProjNode* p, IfNode* iff) {
3089   ProjNode* c = p->clone()->as_Proj();
3090   c->set_req(0, iff);
3091   return c;
3092 }
3093 
3094 //------------------------------ short_circuit_if -------------------------------------
3095 // Force the iff control output to be the live_proj
3096 Node* PhaseIdealLoop::short_circuit_if(IfNode* iff, ProjNode* live_proj) {
3097   guarantee(live_proj != nullptr, "null projection");
3098   int proj_con = live_proj->_con;
3099   assert(proj_con == 0 || proj_con == 1, "false or true projection");
3100   Node* con = intcon(proj_con);
3101   if (iff) {
3102     iff->set_req(1, con);
3103   }
3104   return con;
3105 }
3106 
3107 //------------------------------ insert_if_before_proj -------------------------------------
3108 // Insert a new if before an if projection (* - new node)
3109 //
3110 // before
3111 //           if(test)
3112 //           /     \
3113 //          v       v
3114 //    other-proj   proj (arg)
3115 //
3116 // after
3117 //           if(test)
3118 //           /     \
3119 //          /       v
3120 //         |      * proj-clone
3121 //         v          |
3122 //    other-proj      v
3123 //                * new_if(relop(cmp[IU](left,right)))
3124 //                  /  \
3125 //                 v    v
3126 //         * new-proj  proj
3127 //         (returned)
3128 //
3129 ProjNode* PhaseIdealLoop::insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj) {
3130   IfNode* iff = proj->in(0)->as_If();
3131   IdealLoopTree *loop = get_loop(proj);
3132   ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj();
3133   uint ddepth = dom_depth(proj);
3134 
3135   _igvn.rehash_node_delayed(iff);
3136   _igvn.rehash_node_delayed(proj);
3137 
3138   proj->set_req(0, nullptr);  // temporary disconnect
3139   ProjNode* proj2 = proj_clone(proj, iff);
3140   register_node(proj2, loop, iff, ddepth);
3141 
3142   Node* cmp = Signed ? (Node*) new CmpINode(left, right) : (Node*) new CmpUNode(left, right);
3143   register_node(cmp, loop, proj2, ddepth);
3144 
3145   BoolNode* bol = new BoolNode(cmp, relop);
3146   register_node(bol, loop, proj2, ddepth);
3147 
3148   int opcode = iff->Opcode();
3149   assert(opcode == Op_If || opcode == Op_RangeCheck, "unexpected opcode");
3150   IfNode* new_if = IfNode::make_with_same_profile(iff, proj2, bol);
3151   register_node(new_if, loop, proj2, ddepth);
3152 
3153   proj->set_req(0, new_if); // reattach
3154   set_idom(proj, new_if, ddepth);
3155 
3156   ProjNode* new_exit = proj_clone(other_proj, new_if)->as_Proj();
3157   guarantee(new_exit != nullptr, "null exit node");
3158   register_node(new_exit, get_loop(other_proj), new_if, ddepth);
3159 
3160   return new_exit;
3161 }
3162 
3163 //------------------------------ insert_region_before_proj -------------------------------------
3164 // Insert a region before an if projection (* - new node)
3165 //
3166 // before
3167 //           if(test)
3168 //          /      |
3169 //         v       |
3170 //       proj      v
3171 //               other-proj
3172 //
3173 // after
3174 //           if(test)
3175 //          /      |
3176 //         v       |
3177 // * proj-clone    v
3178 //         |     other-proj
3179 //         v
3180 // * new-region
3181 //         |
3182 //         v
3183 // *      dum_if
3184 //       /     \
3185 //      v       \
3186 // * dum-proj    v
3187 //              proj
3188 //
3189 RegionNode* PhaseIdealLoop::insert_region_before_proj(ProjNode* proj) {
3190   IfNode* iff = proj->in(0)->as_If();
3191   IdealLoopTree *loop = get_loop(proj);
3192   ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj();
3193   uint ddepth = dom_depth(proj);
3194 
3195   _igvn.rehash_node_delayed(iff);
3196   _igvn.rehash_node_delayed(proj);
3197 
3198   proj->set_req(0, nullptr);  // temporary disconnect
3199   ProjNode* proj2 = proj_clone(proj, iff);
3200   register_node(proj2, loop, iff, ddepth);
3201 
3202   RegionNode* reg = new RegionNode(2);
3203   reg->set_req(1, proj2);
3204   register_node(reg, loop, iff, ddepth);
3205 
3206   IfNode* dum_if = new IfNode(reg, short_circuit_if(nullptr, proj), iff->_prob, iff->_fcnt);
3207   register_node(dum_if, loop, reg, ddepth);
3208 
3209   proj->set_req(0, dum_if); // reattach
3210   set_idom(proj, dum_if, ddepth);
3211 
3212   ProjNode* dum_proj = proj_clone(other_proj, dum_if);
3213   register_node(dum_proj, loop, dum_if, ddepth);
3214 
3215   return reg;
3216 }
3217 
3218 // Idea
3219 // ----
3220 // Partial Peeling tries to rotate the loop in such a way that it can later be turned into a counted loop. Counted loops
3221 // require a signed loop exit test. When calling this method, we've only found a suitable unsigned test to partial peel
3222 // with. Therefore, we try to split off a signed loop exit test from the unsigned test such that it can be used as new
3223 // loop exit while keeping the unsigned test unchanged and preserving the same behavior as if we've used the unsigned
3224 // test alone instead:
3225 //
3226 // Before Partial Peeling:
3227 //   Loop:
3228 //     <peeled section>
3229 //     Split off signed loop exit test
3230 //     <-- CUT HERE -->
3231 //     Unchanged unsigned loop exit test
3232 //     <rest of unpeeled section>
3233 //     goto Loop
3234 //
3235 // After Partial Peeling:
3236 //   <cloned peeled section>
3237 //   Cloned split off signed loop exit test
3238 //   Loop:
3239 //     Unchanged unsigned loop exit test
3240 //     <rest of unpeeled section>
3241 //     <peeled section>
3242 //     Split off signed loop exit test
3243 //     goto Loop
3244 //
3245 // Details
3246 // -------
3247 // Before:
3248 //          if (i <u limit)    Unsigned loop exit condition
3249 //         /       |
3250 //        v        v
3251 //   exit-proj   stay-in-loop-proj
3252 //
3253 // Split off a signed loop exit test (i.e. with CmpI) from an unsigned loop exit test (i.e. with CmpU) and insert it
3254 // before the CmpU on the stay-in-loop path and keep both tests:
3255 //
3256 //          if (i <u limit)    Signed loop exit test
3257 //        /        |
3258 //       /  if (i <u limit)    Unsigned loop exit test
3259 //      /  /       |
3260 //     v  v        v
3261 //  exit-region  stay-in-loop-proj
3262 //
3263 // Implementation
3264 // --------------
3265 // We need to make sure that the new signed loop exit test is properly inserted into the graph such that the unsigned
3266 // loop exit test still dominates the same set of control nodes, the ctrl() relation from data nodes to both loop
3267 // exit tests is preserved, and their loop nesting is correct.
3268 //
3269 // To achieve that, we clone the unsigned loop exit test completely (leave it unchanged), insert the signed loop exit
3270 // test above it and kill the original unsigned loop exit test by setting it's condition to a constant
3271 // (i.e. stay-in-loop-const in graph below) such that IGVN can fold it later:
3272 //
3273 //           if (stay-in-loop-const)  Killed original unsigned loop exit test
3274 //          /       |
3275 //         /        v
3276 //        /  if (i <  limit)          Split off signed loop exit test
3277 //       /  /       |
3278 //      /  /        v
3279 //     /  /  if (i <u limit)          Cloned unsigned loop exit test
3280 //    /  /   /      |
3281 //   v  v  v        |
3282 //  exit-region     |
3283 //        |         |
3284 //    dummy-if      |
3285 //     /  |         |
3286 // dead   |         |
3287 //        v         v
3288 //   exit-proj   stay-in-loop-proj
3289 //
3290 // Note: The dummy-if is inserted to create a region to merge the loop exits between the original to be killed unsigned
3291 //       loop exit test and its exit projection while keeping the exit projection (also see insert_region_before_proj()).
3292 //
3293 // Requirements
3294 // ------------
3295 // Note that we can only split off a signed loop exit test from the unsigned loop exit test when the behavior is exactly
3296 // the same as before with only a single unsigned test. This is only possible if certain requirements are met.
3297 // Otherwise, we need to bail out (see comments in the code below).
3298 IfNode* PhaseIdealLoop::insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree* loop) {
3299   const bool Signed   = true;
3300   const bool Unsigned = false;
3301 
3302   BoolNode* bol = if_cmpu->in(1)->as_Bool();
3303   if (bol->_test._test != BoolTest::lt) {
3304     return nullptr;
3305   }
3306   CmpNode* cmpu = bol->in(1)->as_Cmp();
3307   assert(cmpu->Opcode() == Op_CmpU, "must be unsigned comparison");
3308 
3309   int stride = stride_of_possible_iv(if_cmpu);
3310   if (stride == 0) {
3311     return nullptr;
3312   }
3313 
3314   Node* lp_proj = stay_in_loop(if_cmpu, loop);
3315   guarantee(lp_proj != nullptr, "null loop node");
3316 
3317   ProjNode* lp_continue = lp_proj->as_Proj();
3318   ProjNode* lp_exit     = if_cmpu->proj_out(!lp_continue->is_IfTrue())->as_Proj();
3319   if (!lp_exit->is_IfFalse()) {
3320     // The loop exit condition is (i <u limit) ==> (i >= 0 && i < limit).
3321     // We therefore can't add a single exit condition.
3322     return nullptr;
3323   }
3324   // The unsigned loop exit condition is
3325   //   !(i <u  limit)
3326   // =   i >=u limit
3327   //
3328   // First, we note that for any x for which
3329   //   0 <= x <= INT_MAX
3330   // we can convert x to an unsigned int and still get the same guarantee:
3331   //   0 <=  (uint) x <=  INT_MAX = (uint) INT_MAX
3332   //   0 <=u (uint) x <=u INT_MAX = (uint) INT_MAX   (LEMMA)
3333   //
3334   // With that in mind, if
3335   //   limit >= 0             (COND)
3336   // then the unsigned loop exit condition
3337   //   i >=u limit            (ULE)
3338   // is equivalent to
3339   //   i < 0 || i >= limit    (SLE-full)
3340   // because either i is negative and therefore always greater than MAX_INT when converting to unsigned
3341   //   (uint) i >=u MAX_INT >= limit >= 0
3342   // or otherwise
3343   //   i >= limit >= 0
3344   // holds due to (LEMMA).
3345   //
3346   // For completeness, a counterexample with limit < 0:
3347   // Assume i = -3 and limit = -2:
3348   //   i  < 0
3349   //   -2 < 0
3350   // is true and thus also "i < 0 || i >= limit". But
3351   //   i  >=u limit
3352   //   -3 >=u -2
3353   // is false.
3354   Node* limit = cmpu->in(2);
3355   const TypeInt* type_limit = _igvn.type(limit)->is_int();
3356   if (type_limit->_lo < 0) {
3357     return nullptr;
3358   }
3359 
3360   // We prove below that we can extract a single signed loop exit condition from (SLE-full), depending on the stride:
3361   //   stride < 0:
3362   //     i < 0        (SLE = SLE-negative)
3363   //   stride > 0:
3364   //     i >= limit   (SLE = SLE-positive)
3365   // such that we have the following graph before Partial Peeling with stride > 0 (similar for stride < 0):
3366   //
3367   // Loop:
3368   //   <peeled section>
3369   //   i >= limit    (SLE-positive)
3370   //   <-- CUT HERE -->
3371   //   i >=u limit   (ULE)
3372   //   <rest of unpeeled section>
3373   //   goto Loop
3374   //
3375   // We exit the loop if:
3376   //   (SLE) is true OR (ULE) is true
3377   // However, if (SLE) is true then (ULE) also needs to be true to ensure the exact same behavior. Otherwise, we wrongly
3378   // exit a loop that should not have been exited if we did not apply Partial Peeling. More formally, we need to ensure:
3379   //   (SLE) IMPLIES (ULE)
3380   // This indeed holds when (COND) is given:
3381   // - stride > 0:
3382   //       i >=  limit             // (SLE = SLE-positive)
3383   //       i >=  limit >= 0        // (COND)
3384   //       i >=u limit >= 0        // (LEMMA)
3385   //     which is the unsigned loop exit condition (ULE).
3386   // - stride < 0:
3387   //       i        <  0           // (SLE = SLE-negative)
3388   //       (uint) i >u MAX_INT     // (NEG) all negative values are greater than MAX_INT when converted to unsigned
3389   //       MAX_INT >= limit >= 0   // (COND)
3390   //       MAX_INT >=u limit >= 0  // (LEMMA)
3391   //     and thus from (NEG) and (LEMMA):
3392   //       i >=u limit
3393   //     which is the unsigned loop exit condition (ULE).
3394   //
3395   //
3396   // After Partial Peeling, we have the following structure for stride > 0 (similar for stride < 0):
3397   //   <cloned peeled section>
3398   //   i >= limit (SLE-positive)
3399   //   Loop:
3400   //     i >=u limit (ULE)
3401   //     <rest of unpeeled section>
3402   //     <peeled section>
3403   //     i >= limit (SLE-positive)
3404   //     goto Loop
3405   Node* rhs_cmpi;
3406   if (stride > 0) {
3407     rhs_cmpi = limit; // For i >= limit
3408   } else {
3409     rhs_cmpi = makecon(TypeInt::ZERO); // For i < 0
3410   }
3411   // Create a new region on the exit path
3412   RegionNode* reg = insert_region_before_proj(lp_exit);
3413   guarantee(reg != nullptr, "null region node");
3414 
3415   // Clone the if-cmpu-true-false using a signed compare
3416   BoolTest::mask rel_i = stride > 0 ? bol->_test._test : BoolTest::ge;
3417   ProjNode* cmpi_exit = insert_if_before_proj(cmpu->in(1), Signed, rel_i, rhs_cmpi, lp_continue);
3418   reg->add_req(cmpi_exit);
3419 
3420   // Clone the if-cmpu-true-false
3421   BoolTest::mask rel_u = bol->_test._test;
3422   ProjNode* cmpu_exit = insert_if_before_proj(cmpu->in(1), Unsigned, rel_u, cmpu->in(2), lp_continue);
3423   reg->add_req(cmpu_exit);
3424 
3425   // Force original if to stay in loop.
3426   short_circuit_if(if_cmpu, lp_continue);
3427 
3428   return cmpi_exit->in(0)->as_If();
3429 }
3430 
3431 //------------------------------ remove_cmpi_loop_exit -------------------------------------
3432 // Remove a previously inserted signed compare loop exit.
3433 void PhaseIdealLoop::remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop) {
3434   Node* lp_proj = stay_in_loop(if_cmp, loop);
3435   assert(if_cmp->in(1)->in(1)->Opcode() == Op_CmpI &&
3436          stay_in_loop(lp_proj, loop)->is_If() &&
3437          stay_in_loop(lp_proj, loop)->in(1)->in(1)->Opcode() == Op_CmpU, "inserted cmpi before cmpu");
3438   Node* con = makecon(lp_proj->is_IfTrue() ? TypeInt::ONE : TypeInt::ZERO);
3439   if_cmp->set_req(1, con);
3440 }
3441 
3442 //------------------------------ scheduled_nodelist -------------------------------------
3443 // Create a post order schedule of nodes that are in the
3444 // "member" set.  The list is returned in "sched".
3445 // The first node in "sched" is the loop head, followed by
3446 // nodes which have no inputs in the "member" set, and then
3447 // followed by the nodes that have an immediate input dependence
3448 // on a node in "sched".
3449 void PhaseIdealLoop::scheduled_nodelist( IdealLoopTree *loop, VectorSet& member, Node_List &sched ) {
3450 
3451   assert(member.test(loop->_head->_idx), "loop head must be in member set");
3452   VectorSet visited;
3453   Node_Stack nstack(loop->_body.size());
3454 
3455   Node* n  = loop->_head;  // top of stack is cached in "n"
3456   uint idx = 0;
3457   visited.set(n->_idx);
3458 
3459   // Initially push all with no inputs from within member set
3460   for(uint i = 0; i < loop->_body.size(); i++ ) {
3461     Node *elt = loop->_body.at(i);
3462     if (member.test(elt->_idx)) {
3463       bool found = false;
3464       for (uint j = 0; j < elt->req(); j++) {
3465         Node* def = elt->in(j);
3466         if (def && member.test(def->_idx) && def != elt) {
3467           found = true;
3468           break;
3469         }
3470       }
3471       if (!found && elt != loop->_head) {
3472         nstack.push(n, idx);
3473         n = elt;
3474         assert(!visited.test(n->_idx), "not seen yet");
3475         visited.set(n->_idx);
3476       }
3477     }
3478   }
3479 
3480   // traverse out's that are in the member set
3481   while (true) {
3482     if (idx < n->outcnt()) {
3483       Node* use = n->raw_out(idx);
3484       idx++;
3485       if (!visited.test_set(use->_idx)) {
3486         if (member.test(use->_idx)) {
3487           nstack.push(n, idx);
3488           n = use;
3489           idx = 0;
3490         }
3491       }
3492     } else {
3493       // All outputs processed
3494       sched.push(n);
3495       if (nstack.is_empty()) break;
3496       n   = nstack.node();
3497       idx = nstack.index();
3498       nstack.pop();
3499     }
3500   }
3501 }
3502 
3503 
3504 //------------------------------ has_use_in_set -------------------------------------
3505 // Has a use in the vector set
3506 bool PhaseIdealLoop::has_use_in_set( Node* n, VectorSet& vset ) {
3507   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3508     Node* use = n->fast_out(j);
3509     if (vset.test(use->_idx)) {
3510       return true;
3511     }
3512   }
3513   return false;
3514 }
3515 
3516 
3517 //------------------------------ has_use_internal_to_set -------------------------------------
3518 // Has use internal to the vector set (ie. not in a phi at the loop head)
3519 bool PhaseIdealLoop::has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ) {
3520   Node* head  = loop->_head;
3521   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3522     Node* use = n->fast_out(j);
3523     if (vset.test(use->_idx) && !(use->is_Phi() && use->in(0) == head)) {
3524       return true;
3525     }
3526   }
3527   return false;
3528 }
3529 
3530 
3531 //------------------------------ clone_for_use_outside_loop -------------------------------------
3532 // clone "n" for uses that are outside of loop
3533 int PhaseIdealLoop::clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ) {
3534   int cloned = 0;
3535   assert(worklist.size() == 0, "should be empty");
3536   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3537     Node* use = n->fast_out(j);
3538     if( !loop->is_member(get_loop(has_ctrl(use) ? get_ctrl(use) : use)) ) {
3539       worklist.push(use);
3540     }
3541   }
3542 
3543   if (C->check_node_count(worklist.size() + NodeLimitFudgeFactor,
3544                           "Too many clones required in clone_for_use_outside_loop in partial peeling")) {
3545     return -1;
3546   }
3547 
3548   while( worklist.size() ) {
3549     Node *use = worklist.pop();
3550     if (!has_node(use) || use->in(0) == C->top()) continue;
3551     uint j;
3552     for (j = 0; j < use->req(); j++) {
3553       if (use->in(j) == n) break;
3554     }
3555     assert(j < use->req(), "must be there");
3556 
3557     // clone "n" and insert it between the inputs of "n" and the use outside the loop
3558     Node* n_clone = n->clone();
3559     _igvn.replace_input_of(use, j, n_clone);
3560     cloned++;
3561     Node* use_c;
3562     if (!use->is_Phi()) {
3563       use_c = has_ctrl(use) ? get_ctrl(use) : use->in(0);
3564     } else {
3565       // Use in a phi is considered a use in the associated predecessor block
3566       use_c = use->in(0)->in(j);
3567     }
3568     set_ctrl(n_clone, use_c);
3569     assert(!loop->is_member(get_loop(use_c)), "should be outside loop");
3570     get_loop(use_c)->_body.push(n_clone);
3571     _igvn.register_new_node_with_optimizer(n_clone);
3572 #ifndef PRODUCT
3573     if (TracePartialPeeling) {
3574       tty->print_cr("loop exit cloning old: %d new: %d newbb: %d", n->_idx, n_clone->_idx, get_ctrl(n_clone)->_idx);
3575     }
3576 #endif
3577   }
3578   return cloned;
3579 }
3580 
3581 
3582 //------------------------------ clone_for_special_use_inside_loop -------------------------------------
3583 // clone "n" for special uses that are in the not_peeled region.
3584 // If these def-uses occur in separate blocks, the code generator
3585 // marks the method as not compilable.  For example, if a "BoolNode"
3586 // is in a different basic block than the "IfNode" that uses it, then
3587 // the compilation is aborted in the code generator.
3588 void PhaseIdealLoop::clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
3589                                                         VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ) {
3590   if (n->is_Phi() || n->is_Load()) {
3591     return;
3592   }
3593   assert(worklist.size() == 0, "should be empty");
3594   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3595     Node* use = n->fast_out(j);
3596     if ( not_peel.test(use->_idx) &&
3597          (use->is_If() || use->is_CMove() || use->is_Bool()) &&
3598          use->in(1) == n)  {
3599       worklist.push(use);
3600     }
3601   }
3602   if (worklist.size() > 0) {
3603     // clone "n" and insert it between inputs of "n" and the use
3604     Node* n_clone = n->clone();
3605     loop->_body.push(n_clone);
3606     _igvn.register_new_node_with_optimizer(n_clone);
3607     set_ctrl(n_clone, get_ctrl(n));
3608     sink_list.push(n_clone);
3609     not_peel.set(n_clone->_idx);
3610 #ifndef PRODUCT
3611     if (TracePartialPeeling) {
3612       tty->print_cr("special not_peeled cloning old: %d new: %d", n->_idx, n_clone->_idx);
3613     }
3614 #endif
3615     while( worklist.size() ) {
3616       Node *use = worklist.pop();
3617       _igvn.rehash_node_delayed(use);
3618       for (uint j = 1; j < use->req(); j++) {
3619         if (use->in(j) == n) {
3620           use->set_req(j, n_clone);
3621         }
3622       }
3623     }
3624   }
3625 }
3626 
3627 
3628 //------------------------------ insert_phi_for_loop -------------------------------------
3629 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
3630 void PhaseIdealLoop::insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ) {
3631   Node *phi = PhiNode::make(lp, back_edge_val);
3632   phi->set_req(LoopNode::EntryControl, lp_entry_val);
3633   // Use existing phi if it already exists
3634   Node *hit = _igvn.hash_find_insert(phi);
3635   if( hit == nullptr ) {
3636     _igvn.register_new_node_with_optimizer(phi);
3637     set_ctrl(phi, lp);
3638   } else {
3639     // Remove the new phi from the graph and use the hit
3640     _igvn.remove_dead_node(phi);
3641     phi = hit;
3642   }
3643   _igvn.replace_input_of(use, idx, phi);
3644 }
3645 
3646 #ifdef ASSERT
3647 //------------------------------ is_valid_loop_partition -------------------------------------
3648 // Validate the loop partition sets: peel and not_peel
3649 bool PhaseIdealLoop::is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list,
3650                                               VectorSet& not_peel ) {
3651   uint i;
3652   // Check that peel_list entries are in the peel set
3653   for (i = 0; i < peel_list.size(); i++) {
3654     if (!peel.test(peel_list.at(i)->_idx)) {
3655       return false;
3656     }
3657   }
3658   // Check at loop members are in one of peel set or not_peel set
3659   for (i = 0; i < loop->_body.size(); i++ ) {
3660     Node *def  = loop->_body.at(i);
3661     uint di = def->_idx;
3662     // Check that peel set elements are in peel_list
3663     if (peel.test(di)) {
3664       if (not_peel.test(di)) {
3665         return false;
3666       }
3667       // Must be in peel_list also
3668       bool found = false;
3669       for (uint j = 0; j < peel_list.size(); j++) {
3670         if (peel_list.at(j)->_idx == di) {
3671           found = true;
3672           break;
3673         }
3674       }
3675       if (!found) {
3676         return false;
3677       }
3678     } else if (not_peel.test(di)) {
3679       if (peel.test(di)) {
3680         return false;
3681       }
3682     } else {
3683       return false;
3684     }
3685   }
3686   return true;
3687 }
3688 
3689 //------------------------------ is_valid_clone_loop_exit_use -------------------------------------
3690 // Ensure a use outside of loop is of the right form
3691 bool PhaseIdealLoop::is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx) {
3692   Node *use_c = has_ctrl(use) ? get_ctrl(use) : use;
3693   return (use->is_Phi() &&
3694           use_c->is_Region() && use_c->req() == 3 &&
3695           (use_c->in(exit_idx)->Opcode() == Op_IfTrue ||
3696            use_c->in(exit_idx)->Opcode() == Op_IfFalse ||
3697            use_c->in(exit_idx)->Opcode() == Op_JumpProj) &&
3698           loop->is_member( get_loop( use_c->in(exit_idx)->in(0) ) ) );
3699 }
3700 
3701 //------------------------------ is_valid_clone_loop_form -------------------------------------
3702 // Ensure that all uses outside of loop are of the right form
3703 bool PhaseIdealLoop::is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
3704                                                uint orig_exit_idx, uint clone_exit_idx) {
3705   uint len = peel_list.size();
3706   for (uint i = 0; i < len; i++) {
3707     Node *def = peel_list.at(i);
3708 
3709     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
3710       Node *use = def->fast_out(j);
3711       Node *use_c = has_ctrl(use) ? get_ctrl(use) : use;
3712       if (!loop->is_member(get_loop(use_c))) {
3713         // use is not in the loop, check for correct structure
3714         if (use->in(0) == def) {
3715           // Okay
3716         } else if (!is_valid_clone_loop_exit_use(loop, use, orig_exit_idx)) {
3717           return false;
3718         }
3719       }
3720     }
3721   }
3722   return true;
3723 }
3724 #endif
3725 
3726 //------------------------------ partial_peel -------------------------------------
3727 // Partially peel (aka loop rotation) the top portion of a loop (called
3728 // the peel section below) by cloning it and placing one copy just before
3729 // the new loop head and the other copy at the bottom of the new loop.
3730 //
3731 //    before                       after                where it came from
3732 //
3733 //    stmt1                        stmt1
3734 //  loop:                          stmt2                     clone
3735 //    stmt2                        if condA goto exitA       clone
3736 //    if condA goto exitA        new_loop:                   new
3737 //    stmt3                        stmt3                     clone
3738 //    if !condB goto loop          if condB goto exitB       clone
3739 //  exitB:                         stmt2                     orig
3740 //    stmt4                        if !condA goto new_loop   orig
3741 //  exitA:                         goto exitA
3742 //                               exitB:
3743 //                                 stmt4
3744 //                               exitA:
3745 //
3746 // Step 1: find the cut point: an exit test on probable
3747 //         induction variable.
3748 // Step 2: schedule (with cloning) operations in the peel
3749 //         section that can be executed after the cut into
3750 //         the section that is not peeled.  This may need
3751 //         to clone operations into exit blocks.  For
3752 //         instance, a reference to A[i] in the not-peel
3753 //         section and a reference to B[i] in an exit block
3754 //         may cause a left-shift of i by 2 to be placed
3755 //         in the peel block.  This step will clone the left
3756 //         shift into the exit block and sink the left shift
3757 //         from the peel to the not-peel section.
3758 // Step 3: clone the loop, retarget the control, and insert
3759 //         phis for values that are live across the new loop
3760 //         head.  This is very dependent on the graph structure
3761 //         from clone_loop.  It creates region nodes for
3762 //         exit control and associated phi nodes for values
3763 //         flow out of the loop through that exit.  The region
3764 //         node is dominated by the clone's control projection.
3765 //         So the clone's peel section is placed before the
3766 //         new loop head, and the clone's not-peel section is
3767 //         forms the top part of the new loop.  The original
3768 //         peel section forms the tail of the new loop.
3769 // Step 4: update the dominator tree and recompute the
3770 //         dominator depth.
3771 //
3772 //                   orig
3773 //
3774 //                   stmt1
3775 //                     |
3776 //                     v
3777 //                 predicates
3778 //                     |
3779 //                     v
3780 //                   loop<----+
3781 //                     |      |
3782 //                   stmt2    |
3783 //                     |      |
3784 //                     v      |
3785 //                    ifA     |
3786 //                   / |      |
3787 //                  v  v      |
3788 //               false true   ^  <-- last_peel
3789 //               /     |      |
3790 //              /   ===|==cut |
3791 //             /     stmt3    |  <-- first_not_peel
3792 //            /        |      |
3793 //            |        v      |
3794 //            v       ifB     |
3795 //          exitA:   / \      |
3796 //                  /   \     |
3797 //                 v     v    |
3798 //               false true   |
3799 //               /       \    |
3800 //              /         ----+
3801 //             |
3802 //             v
3803 //           exitB:
3804 //           stmt4
3805 //
3806 //
3807 //            after clone loop
3808 //
3809 //                   stmt1
3810 //                     |
3811 //                     v
3812 //                predicates
3813 //                 /       \
3814 //        clone   /         \   orig
3815 //               /           \
3816 //              /             \
3817 //             v               v
3818 //   +---->loop                loop<----+
3819 //   |      |                    |      |
3820 //   |    stmt2                stmt2    |
3821 //   |      |                    |      |
3822 //   |      v                    v      |
3823 //   |      ifA                 ifA     |
3824 //   |      | \                / |      |
3825 //   |      v  v              v  v      |
3826 //   ^    true  false      false true   ^  <-- last_peel
3827 //   |      |   ^   \       /    |      |
3828 //   | cut==|==  \   \     /  ===|==cut |
3829 //   |    stmt3   \   \   /    stmt3    |  <-- first_not_peel
3830 //   |      |    dom   | |       |      |
3831 //   |      v      \  1v v2      v      |
3832 //   |      ifB     regionA     ifB     |
3833 //   |      / \        |       / \      |
3834 //   |     /   \       v      /   \     |
3835 //   |    v     v    exitA:  v     v    |
3836 //   |    true  false      false true   |
3837 //   |    /     ^   \      /       \    |
3838 //   +----       \   \    /         ----+
3839 //               dom  \  /
3840 //                 \  1v v2
3841 //                  regionB
3842 //                     |
3843 //                     v
3844 //                   exitB:
3845 //                   stmt4
3846 //
3847 //
3848 //           after partial peel
3849 //
3850 //                  stmt1
3851 //                     |
3852 //                     v
3853 //                predicates
3854 //                 /
3855 //        clone   /             orig
3856 //               /          TOP
3857 //              /             \
3858 //             v               v
3859 //    TOP->loop                loop----+
3860 //          |                    |      |
3861 //        stmt2                stmt2    |
3862 //          |                    |      |
3863 //          v                    v      |
3864 //          ifA                 ifA     |
3865 //          | \                / |      |
3866 //          v  v              v  v      |
3867 //        true  false      false true   |     <-- last_peel
3868 //          |   ^   \       /    +------|---+
3869 //  +->newloop   \   \     /  === ==cut |   |
3870 //  |     stmt3   \   \   /     TOP     |   |
3871 //  |       |    dom   | |      stmt3   |   | <-- first_not_peel
3872 //  |       v      \  1v v2      v      |   |
3873 //  |       ifB     regionA     ifB     ^   v
3874 //  |       / \        |       / \      |   |
3875 //  |      /   \       v      /   \     |   |
3876 //  |     v     v    exitA:  v     v    |   |
3877 //  |     true  false      false true   |   |
3878 //  |     /     ^   \      /       \    |   |
3879 //  |    |       \   \    /         v   |   |
3880 //  |    |       dom  \  /         TOP  |   |
3881 //  |    |         \  1v v2             |   |
3882 //  ^    v          regionB             |   |
3883 //  |    |             |                |   |
3884 //  |    |             v                ^   v
3885 //  |    |           exitB:             |   |
3886 //  |    |           stmt4              |   |
3887 //  |    +------------>-----------------+   |
3888 //  |                                       |
3889 //  +-----------------<---------------------+
3890 //
3891 //
3892 //              final graph
3893 //
3894 //                  stmt1
3895 //                    |
3896 //                    v
3897 //                predicates
3898 //                    |
3899 //                    v
3900 //                  stmt2 clone
3901 //                    |
3902 //                    v
3903 //         ........> ifA clone
3904 //         :        / |
3905 //        dom      /  |
3906 //         :      v   v
3907 //         :  false   true
3908 //         :  |       |
3909 //         :  |       v
3910 //         :  |    newloop<-----+
3911 //         :  |        |        |
3912 //         :  |     stmt3 clone |
3913 //         :  |        |        |
3914 //         :  |        v        |
3915 //         :  |       ifB       |
3916 //         :  |      / \        |
3917 //         :  |     v   v       |
3918 //         :  |  false true     |
3919 //         :  |   |     |       |
3920 //         :  |   v    stmt2    |
3921 //         :  | exitB:  |       |
3922 //         :  | stmt4   v       |
3923 //         :  |       ifA orig  |
3924 //         :  |      /  \       |
3925 //         :  |     /    \      |
3926 //         :  |    v     v      |
3927 //         :  |  false  true    |
3928 //         :  |  /        \     |
3929 //         :  v  v         -----+
3930 //          RegionA
3931 //             |
3932 //             v
3933 //           exitA
3934 //
3935 bool PhaseIdealLoop::partial_peel( IdealLoopTree *loop, Node_List &old_new ) {
3936 
3937   assert(!loop->_head->is_CountedLoop(), "Non-counted loop only");
3938   if (!loop->_head->is_Loop()) {
3939     return false;
3940   }
3941   LoopNode *head = loop->_head->as_Loop();
3942 
3943   if (head->is_partial_peel_loop() || head->partial_peel_has_failed()) {
3944     return false;
3945   }
3946 
3947   // Check for complex exit control
3948   for (uint ii = 0; ii < loop->_body.size(); ii++) {
3949     Node *n = loop->_body.at(ii);
3950     int opc = n->Opcode();
3951     if (n->is_Call()        ||
3952         opc == Op_Catch     ||
3953         opc == Op_CatchProj ||
3954         opc == Op_Jump      ||
3955         opc == Op_JumpProj) {
3956 #ifndef PRODUCT
3957       if (TracePartialPeeling) {
3958         tty->print_cr("\nExit control too complex: lp: %d", head->_idx);
3959       }
3960 #endif
3961       return false;
3962     }
3963   }
3964 
3965   int dd = dom_depth(head);
3966 
3967   // Step 1: find cut point
3968 
3969   // Walk up dominators to loop head looking for first loop exit
3970   // which is executed on every path thru loop.
3971   IfNode *peel_if = nullptr;
3972   IfNode *peel_if_cmpu = nullptr;
3973 
3974   Node *iff = loop->tail();
3975   while (iff != head) {
3976     if (iff->is_If()) {
3977       Node *ctrl = get_ctrl(iff->in(1));
3978       if (ctrl->is_top()) return false; // Dead test on live IF.
3979       // If loop-varying exit-test, check for induction variable
3980       if (loop->is_member(get_loop(ctrl)) &&
3981           loop->is_loop_exit(iff) &&
3982           is_possible_iv_test(iff)) {
3983         Node* cmp = iff->in(1)->in(1);
3984         if (cmp->Opcode() == Op_CmpI) {
3985           peel_if = iff->as_If();
3986         } else {
3987           assert(cmp->Opcode() == Op_CmpU, "must be CmpI or CmpU");
3988           peel_if_cmpu = iff->as_If();
3989         }
3990       }
3991     }
3992     iff = idom(iff);
3993   }
3994 
3995   // Prefer signed compare over unsigned compare.
3996   IfNode* new_peel_if = nullptr;
3997   if (peel_if == nullptr) {
3998     if (!PartialPeelAtUnsignedTests || peel_if_cmpu == nullptr) {
3999       return false;   // No peel point found
4000     }
4001     new_peel_if = insert_cmpi_loop_exit(peel_if_cmpu, loop);
4002     if (new_peel_if == nullptr) {
4003       return false;   // No peel point found
4004     }
4005     peel_if = new_peel_if;
4006   }
4007   Node* last_peel        = stay_in_loop(peel_if, loop);
4008   Node* first_not_peeled = stay_in_loop(last_peel, loop);
4009   if (first_not_peeled == nullptr || first_not_peeled == head) {
4010     return false;
4011   }
4012 
4013 #ifndef PRODUCT
4014   if (TraceLoopOpts) {
4015     tty->print("PartialPeel  ");
4016     loop->dump_head();
4017   }
4018 
4019   if (TracePartialPeeling) {
4020     tty->print_cr("before partial peel one iteration");
4021     Node_List wl;
4022     Node* t = head->in(2);
4023     while (true) {
4024       wl.push(t);
4025       if (t == head) break;
4026       t = idom(t);
4027     }
4028     while (wl.size() > 0) {
4029       Node* tt = wl.pop();
4030       tt->dump();
4031       if (tt == last_peel) tty->print_cr("-- cut --");
4032     }
4033   }
4034 #endif
4035 
4036   C->print_method(PHASE_BEFORE_PARTIAL_PEELING, 4, head);
4037 
4038   VectorSet peel;
4039   VectorSet not_peel;
4040   Node_List peel_list;
4041   Node_List worklist;
4042   Node_List sink_list;
4043 
4044   uint estimate = loop->est_loop_clone_sz(1);
4045   if (exceeding_node_budget(estimate)) {
4046     return false;
4047   }
4048 
4049   // Set of cfg nodes to peel are those that are executable from
4050   // the head through last_peel.
4051   assert(worklist.size() == 0, "should be empty");
4052   worklist.push(head);
4053   peel.set(head->_idx);
4054   while (worklist.size() > 0) {
4055     Node *n = worklist.pop();
4056     if (n != last_peel) {
4057       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
4058         Node* use = n->fast_out(j);
4059         if (use->is_CFG() &&
4060             loop->is_member(get_loop(use)) &&
4061             !peel.test_set(use->_idx)) {
4062           worklist.push(use);
4063         }
4064       }
4065     }
4066   }
4067 
4068   // Set of non-cfg nodes to peel are those that are control
4069   // dependent on the cfg nodes.
4070   for (uint i = 0; i < loop->_body.size(); i++) {
4071     Node *n = loop->_body.at(i);
4072     Node *n_c = has_ctrl(n) ? get_ctrl(n) : n;
4073     if (peel.test(n_c->_idx)) {
4074       peel.set(n->_idx);
4075     } else {
4076       not_peel.set(n->_idx);
4077     }
4078   }
4079 
4080   // Step 2: move operations from the peeled section down into the
4081   //         not-peeled section
4082 
4083   // Get a post order schedule of nodes in the peel region
4084   // Result in right-most operand.
4085   scheduled_nodelist(loop, peel, peel_list);
4086 
4087   assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition");
4088 
4089   // For future check for too many new phis
4090   uint old_phi_cnt = 0;
4091   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
4092     Node* use = head->fast_out(j);
4093     if (use->is_Phi()) old_phi_cnt++;
4094   }
4095 
4096 #ifndef PRODUCT
4097   if (TracePartialPeeling) {
4098     tty->print_cr("\npeeled list");
4099   }
4100 #endif
4101 
4102   // Evacuate nodes in peel region into the not_peeled region if possible
4103   bool too_many_clones = false;
4104   uint new_phi_cnt = 0;
4105   uint cloned_for_outside_use = 0;
4106   for (uint i = 0; i < peel_list.size();) {
4107     Node* n = peel_list.at(i);
4108 #ifndef PRODUCT
4109   if (TracePartialPeeling) n->dump();
4110 #endif
4111     bool incr = true;
4112     if (!n->is_CFG()) {
4113       if (has_use_in_set(n, not_peel)) {
4114         // If not used internal to the peeled region,
4115         // move "n" from peeled to not_peeled region.
4116         if (!has_use_internal_to_set(n, peel, loop)) {
4117           // if not pinned and not a load (which maybe anti-dependent on a store)
4118           // and not a CMove (Matcher expects only bool->cmove).
4119           if (n->in(0) == nullptr && !n->is_Load() && !n->is_CMove()) {
4120             int new_clones = clone_for_use_outside_loop(loop, n, worklist);
4121             if (C->failing()) return false;
4122             if (new_clones == -1) {
4123               too_many_clones = true;
4124               break;
4125             }
4126             cloned_for_outside_use += new_clones;
4127             sink_list.push(n);
4128             peel.remove(n->_idx);
4129             not_peel.set(n->_idx);
4130             peel_list.remove(i);
4131             incr = false;
4132 #ifndef PRODUCT
4133             if (TracePartialPeeling) {
4134               tty->print_cr("sink to not_peeled region: %d newbb: %d",
4135                             n->_idx, get_ctrl(n)->_idx);
4136             }
4137 #endif
4138           }
4139         } else {
4140           // Otherwise check for special def-use cases that span
4141           // the peel/not_peel boundary such as bool->if
4142           clone_for_special_use_inside_loop(loop, n, not_peel, sink_list, worklist);
4143           new_phi_cnt++;
4144         }
4145       }
4146     }
4147     if (incr) i++;
4148   }
4149 
4150   estimate += cloned_for_outside_use + new_phi_cnt;
4151   bool exceed_node_budget = !may_require_nodes(estimate);
4152   bool exceed_phi_limit = new_phi_cnt > old_phi_cnt + PartialPeelNewPhiDelta;
4153 
4154   if (too_many_clones || exceed_node_budget || exceed_phi_limit) {
4155 #ifndef PRODUCT
4156     if (TracePartialPeeling && exceed_phi_limit) {
4157       tty->print_cr("\nToo many new phis: %d  old %d new cmpi: %c",
4158                     new_phi_cnt, old_phi_cnt, new_peel_if != nullptr?'T':'F');
4159     }
4160 #endif
4161     if (new_peel_if != nullptr) {
4162       remove_cmpi_loop_exit(new_peel_if, loop);
4163     }
4164     // Inhibit more partial peeling on this loop
4165     assert(!head->is_partial_peel_loop(), "not partial peeled");
4166     head->mark_partial_peel_failed();
4167     if (cloned_for_outside_use > 0) {
4168       // Terminate this round of loop opts because
4169       // the graph outside this loop was changed.
4170       C->set_major_progress();
4171       return true;
4172     }
4173     return false;
4174   }
4175 
4176   // Step 3: clone loop, retarget control, and insert new phis
4177 
4178   // Create new loop head for new phis and to hang
4179   // the nodes being moved (sinked) from the peel region.
4180   LoopNode* new_head = new LoopNode(last_peel, last_peel);
4181   new_head->set_unswitch_count(head->unswitch_count()); // Preserve
4182   _igvn.register_new_node_with_optimizer(new_head);
4183   assert(first_not_peeled->in(0) == last_peel, "last_peel <- first_not_peeled");
4184   _igvn.replace_input_of(first_not_peeled, 0, new_head);
4185   set_loop(new_head, loop);
4186   loop->_body.push(new_head);
4187   not_peel.set(new_head->_idx);
4188   set_idom(new_head, last_peel, dom_depth(first_not_peeled));
4189   set_idom(first_not_peeled, new_head, dom_depth(first_not_peeled));
4190 
4191   while (sink_list.size() > 0) {
4192     Node* n = sink_list.pop();
4193     set_ctrl(n, new_head);
4194   }
4195 
4196   assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition");
4197 
4198   clone_loop(loop, old_new, dd, IgnoreStripMined);
4199 
4200   const uint clone_exit_idx = 1;
4201   const uint orig_exit_idx  = 2;
4202   assert(is_valid_clone_loop_form(loop, peel_list, orig_exit_idx, clone_exit_idx), "bad clone loop");
4203 
4204   Node* head_clone             = old_new[head->_idx];
4205   LoopNode* new_head_clone     = old_new[new_head->_idx]->as_Loop();
4206   Node* orig_tail_clone        = head_clone->in(2);
4207 
4208   // Add phi if "def" node is in peel set and "use" is not
4209 
4210   for (uint i = 0; i < peel_list.size(); i++) {
4211     Node *def  = peel_list.at(i);
4212     if (!def->is_CFG()) {
4213       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
4214         Node *use = def->fast_out(j);
4215         if (has_node(use) && use->in(0) != C->top() &&
4216             (!peel.test(use->_idx) ||
4217              (use->is_Phi() && use->in(0) == head)) ) {
4218           worklist.push(use);
4219         }
4220       }
4221       while( worklist.size() ) {
4222         Node *use = worklist.pop();
4223         for (uint j = 1; j < use->req(); j++) {
4224           Node* n = use->in(j);
4225           if (n == def) {
4226 
4227             // "def" is in peel set, "use" is not in peel set
4228             // or "use" is in the entry boundary (a phi) of the peel set
4229 
4230             Node* use_c = has_ctrl(use) ? get_ctrl(use) : use;
4231 
4232             if ( loop->is_member(get_loop( use_c )) ) {
4233               // use is in loop
4234               if (old_new[use->_idx] != nullptr) { // null for dead code
4235                 Node* use_clone = old_new[use->_idx];
4236                 _igvn.replace_input_of(use, j, C->top());
4237                 insert_phi_for_loop( use_clone, j, old_new[def->_idx], def, new_head_clone );
4238               }
4239             } else {
4240               assert(is_valid_clone_loop_exit_use(loop, use, orig_exit_idx), "clone loop format");
4241               // use is not in the loop, check if the live range includes the cut
4242               Node* lp_if = use_c->in(orig_exit_idx)->in(0);
4243               if (not_peel.test(lp_if->_idx)) {
4244                 assert(j == orig_exit_idx, "use from original loop");
4245                 insert_phi_for_loop( use, clone_exit_idx, old_new[def->_idx], def, new_head_clone );
4246               }
4247             }
4248           }
4249         }
4250       }
4251     }
4252   }
4253 
4254   // Step 3b: retarget control
4255 
4256   // Redirect control to the new loop head if a cloned node in
4257   // the not_peeled region has control that points into the peeled region.
4258   // This necessary because the cloned peeled region will be outside
4259   // the loop.
4260   //                            from    to
4261   //          cloned-peeled    <---+
4262   //    new_head_clone:            |    <--+
4263   //          cloned-not_peeled  in(0)    in(0)
4264   //          orig-peeled
4265 
4266   for (uint i = 0; i < loop->_body.size(); i++) {
4267     Node *n = loop->_body.at(i);
4268     if (!n->is_CFG()           && n->in(0) != nullptr        &&
4269         not_peel.test(n->_idx) && peel.test(n->in(0)->_idx)) {
4270       Node* n_clone = old_new[n->_idx];
4271       if (n_clone->depends_only_on_test()) {
4272         // Pin array access nodes: control is updated here to the loop head. If, after some transformations, the
4273         // backedge is removed, an array load could become dependent on a condition that's not a range check for that
4274         // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk
4275         // floating above its range check.
4276         Node* pinned_clone = n_clone->pin_array_access_node();
4277         if (pinned_clone != nullptr) {
4278           register_new_node_with_ctrl_of(pinned_clone, n_clone);
4279           old_new.map(n->_idx, pinned_clone);
4280           _igvn.replace_node(n_clone, pinned_clone);
4281           n_clone = pinned_clone;
4282         }
4283       }
4284       _igvn.replace_input_of(n_clone, 0, new_head_clone);
4285     }
4286   }
4287 
4288   // Backedge of the surviving new_head (the clone) is original last_peel
4289   _igvn.replace_input_of(new_head_clone, LoopNode::LoopBackControl, last_peel);
4290 
4291   // Cut first node in original not_peel set
4292   _igvn.rehash_node_delayed(new_head);                     // Multiple edge updates:
4293   new_head->set_req(LoopNode::EntryControl,    C->top());  //   use rehash_node_delayed / set_req instead of
4294   new_head->set_req(LoopNode::LoopBackControl, C->top());  //   multiple replace_input_of calls
4295 
4296   // Copy head_clone back-branch info to original head
4297   // and remove original head's loop entry and
4298   // clone head's back-branch
4299   _igvn.rehash_node_delayed(head); // Multiple edge updates
4300   head->set_req(LoopNode::EntryControl,    head_clone->in(LoopNode::LoopBackControl));
4301   head->set_req(LoopNode::LoopBackControl, C->top());
4302   _igvn.replace_input_of(head_clone, LoopNode::LoopBackControl, C->top());
4303 
4304   // Similarly modify the phis
4305   for (DUIterator_Fast kmax, k = head->fast_outs(kmax); k < kmax; k++) {
4306     Node* use = head->fast_out(k);
4307     if (use->is_Phi() && use->outcnt() > 0) {
4308       Node* use_clone = old_new[use->_idx];
4309       _igvn.rehash_node_delayed(use); // Multiple edge updates
4310       use->set_req(LoopNode::EntryControl,    use_clone->in(LoopNode::LoopBackControl));
4311       use->set_req(LoopNode::LoopBackControl, C->top());
4312       _igvn.replace_input_of(use_clone, LoopNode::LoopBackControl, C->top());
4313     }
4314   }
4315 
4316   // Step 4: update dominator tree and dominator depth
4317 
4318   set_idom(head, orig_tail_clone, dd);
4319   recompute_dom_depth();
4320 
4321   // Inhibit more partial peeling on this loop
4322   new_head_clone->set_partial_peel_loop();
4323   C->set_major_progress();
4324   loop->record_for_igvn();
4325 
4326 #ifndef PRODUCT
4327   if (TracePartialPeeling) {
4328     tty->print_cr("\nafter partial peel one iteration");
4329     Node_List wl;
4330     Node* t = last_peel;
4331     while (true) {
4332       wl.push(t);
4333       if (t == head_clone) break;
4334       t = idom(t);
4335     }
4336     while (wl.size() > 0) {
4337       Node* tt = wl.pop();
4338       if (tt == head) tty->print_cr("orig head");
4339       else if (tt == new_head_clone) tty->print_cr("new head");
4340       else if (tt == head_clone) tty->print_cr("clone head");
4341       tt->dump();
4342     }
4343   }
4344 #endif
4345 
4346   C->print_method(PHASE_AFTER_PARTIAL_PEELING, 4, new_head_clone);
4347 
4348   return true;
4349 }
4350 
4351 // Transform:
4352 //
4353 // loop<-----------------+
4354 //  |                    |
4355 // stmt1 stmt2 .. stmtn  |
4356 //  |     |        |     |
4357 //  \     |       /      |
4358 //    v   v     v        |
4359 //       region          |
4360 //         |             |
4361 //     shared_stmt       |
4362 //         |             |
4363 //         v             |
4364 //         if            |
4365 //         / \           |
4366 //        |   -----------+
4367 //        v
4368 //
4369 // into:
4370 //
4371 //    loop<-------------------+
4372 //     |                      |
4373 //     v                      |
4374 // +->loop                    |
4375 // |   |                      |
4376 // |  stmt1 stmt2 .. stmtn    |
4377 // |   |     |        |       |
4378 // |   |      \       /       |
4379 // |   |       v     v        |
4380 // |   |        region1       |
4381 // |   |           |          |
4382 // |  shared_stmt shared_stmt |
4383 // |   |           |          |
4384 // |   v           v          |
4385 // |   if          if         |
4386 // |   /\          / \        |
4387 // +--   |         |   -------+
4388 //       \         /
4389 //        v       v
4390 //         region2
4391 //
4392 // (region2 is shown to merge mirrored projections of the loop exit
4393 // ifs to make the diagram clearer but they really merge the same
4394 // projection)
4395 //
4396 // Conditions for this transformation to trigger:
4397 // - the path through stmt1 is frequent enough
4398 // - the inner loop will be turned into a counted loop after transformation
4399 bool PhaseIdealLoop::duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new) {
4400   if (!DuplicateBackedge) {
4401     return false;
4402   }
4403   assert(!loop->_head->is_CountedLoop() || StressDuplicateBackedge, "Non-counted loop only");
4404   if (!loop->_head->is_Loop()) {
4405     return false;
4406   }
4407 
4408   uint estimate = loop->est_loop_clone_sz(1);
4409   if (exceeding_node_budget(estimate)) {
4410     return false;
4411   }
4412 
4413   LoopNode *head = loop->_head->as_Loop();
4414 
4415   Node* region = nullptr;
4416   IfNode* exit_test = nullptr;
4417   uint inner;
4418   float f;
4419   if (StressDuplicateBackedge) {
4420     if (head->is_strip_mined()) {
4421       return false;
4422     }
4423     Node* c = head->in(LoopNode::LoopBackControl);
4424 
4425     while (c != head) {
4426       if (c->is_Region()) {
4427         region = c;
4428       }
4429       c = idom(c);
4430     }
4431 
4432     if (region == nullptr) {
4433       return false;
4434     }
4435 
4436     inner = 1;
4437   } else {
4438     // Is the shape of the loop that of a counted loop...
4439     Node* back_control = loop_exit_control(head, loop);
4440     if (back_control == nullptr) {
4441       return false;
4442     }
4443 
4444     BoolTest::mask bt = BoolTest::illegal;
4445     float cl_prob = 0;
4446     Node* incr = nullptr;
4447     Node* limit = nullptr;
4448     Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
4449     if (cmp == nullptr || cmp->Opcode() != Op_CmpI) {
4450       return false;
4451     }
4452 
4453     // With an extra phi for the candidate iv?
4454     // Or the region node is the loop head
4455     if (!incr->is_Phi() || incr->in(0) == head) {
4456       return false;
4457     }
4458 
4459     PathFrequency pf(head, this);
4460     region = incr->in(0);
4461 
4462     // Go over all paths for the extra phi's region and see if that
4463     // path is frequent enough and would match the expected iv shape
4464     // if the extra phi is removed
4465     inner = 0;
4466     for (uint i = 1; i < incr->req(); ++i) {
4467       Node* in = incr->in(i);
4468       Node* trunc1 = nullptr;
4469       Node* trunc2 = nullptr;
4470       const TypeInteger* iv_trunc_t = nullptr;
4471       Node* orig_in = in;
4472       if (!(in = CountedLoopNode::match_incr_with_optional_truncation(in, &trunc1, &trunc2, &iv_trunc_t, T_INT))) {
4473         continue;
4474       }
4475       assert(in->Opcode() == Op_AddI, "wrong increment code");
4476       Node* xphi = nullptr;
4477       Node* stride = loop_iv_stride(in, loop, xphi);
4478 
4479       if (stride == nullptr) {
4480         continue;
4481       }
4482 
4483       PhiNode* phi = loop_iv_phi(xphi, nullptr, head, loop);
4484       if (phi == nullptr ||
4485           (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
4486           (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
4487         return false;
4488       }
4489 
4490       f = pf.to(region->in(i));
4491       if (f > 0.5) {
4492         inner = i;
4493         break;
4494       }
4495     }
4496 
4497     if (inner == 0) {
4498       return false;
4499     }
4500 
4501     exit_test = back_control->in(0)->as_If();
4502   }
4503 
4504   if (idom(region)->is_Catch()) {
4505     return false;
4506   }
4507 
4508   // Collect all control nodes that need to be cloned (shared_stmt in the diagram)
4509   Unique_Node_List wq;
4510   wq.push(head->in(LoopNode::LoopBackControl));
4511   for (uint i = 0; i < wq.size(); i++) {
4512     Node* c = wq.at(i);
4513     assert(get_loop(c) == loop, "not in the right loop?");
4514     if (c->is_Region()) {
4515       if (c != region) {
4516         for (uint j = 1; j < c->req(); ++j) {
4517           wq.push(c->in(j));
4518         }
4519       }
4520     } else {
4521       wq.push(c->in(0));
4522     }
4523     assert(!is_strict_dominator(c, region), "shouldn't go above region");
4524   }
4525 
4526   Node* region_dom = idom(region);
4527 
4528   // Can't do the transformation if this would cause a membar pair to
4529   // be split
4530   for (uint i = 0; i < wq.size(); i++) {
4531     Node* c = wq.at(i);
4532     if (c->is_MemBar() && (c->as_MemBar()->trailing_store() || c->as_MemBar()->trailing_load_store())) {
4533       assert(c->as_MemBar()->leading_membar()->trailing_membar() == c, "bad membar pair");
4534       if (!wq.member(c->as_MemBar()->leading_membar())) {
4535         return false;
4536       }
4537     }
4538   }
4539 
4540   // Collect data nodes that need to be clones as well
4541   int dd = dom_depth(head);
4542 
4543   for (uint i = 0; i < loop->_body.size(); ++i) {
4544     Node* n = loop->_body.at(i);
4545     if (has_ctrl(n)) {
4546       Node* c = get_ctrl(n);
4547       if (wq.member(c)) {
4548         wq.push(n);
4549       }
4550     } else {
4551       set_idom(n, idom(n), dd);
4552     }
4553   }
4554 
4555   // clone shared_stmt
4556   clone_loop_body(wq, old_new, nullptr);
4557 
4558   Node* region_clone = old_new[region->_idx];
4559   region_clone->set_req(inner, C->top());
4560   set_idom(region, region->in(inner), dd);
4561 
4562   // Prepare the outer loop
4563   Node* outer_head = new LoopNode(head->in(LoopNode::EntryControl), old_new[head->in(LoopNode::LoopBackControl)->_idx]);
4564   register_control(outer_head, loop->_parent, outer_head->in(LoopNode::EntryControl));
4565   _igvn.replace_input_of(head, LoopNode::EntryControl, outer_head);
4566   set_idom(head, outer_head, dd);
4567 
4568   fix_body_edges(wq, loop, old_new, dd, loop->_parent, true);
4569 
4570   // Make one of the shared_stmt copies only reachable from stmt1, the
4571   // other only from stmt2..stmtn.
4572   Node* dom = nullptr;
4573   for (uint i = 1; i < region->req(); ++i) {
4574     if (i != inner) {
4575       _igvn.replace_input_of(region, i, C->top());
4576     }
4577     Node* in = region_clone->in(i);
4578     if (in->is_top()) {
4579       continue;
4580     }
4581     if (dom == nullptr) {
4582       dom = in;
4583     } else {
4584       dom = dom_lca(dom, in);
4585     }
4586   }
4587 
4588   set_idom(region_clone, dom, dd);
4589 
4590   // Set up the outer loop
4591   for (uint i = 0; i < head->outcnt(); i++) {
4592     Node* u = head->raw_out(i);
4593     if (u->is_Phi()) {
4594       Node* outer_phi = u->clone();
4595       outer_phi->set_req(0, outer_head);
4596       Node* backedge = old_new[u->in(LoopNode::LoopBackControl)->_idx];
4597       if (backedge == nullptr) {
4598         backedge = u->in(LoopNode::LoopBackControl);
4599       }
4600       outer_phi->set_req(LoopNode::LoopBackControl, backedge);
4601       register_new_node(outer_phi, outer_head);
4602       _igvn.replace_input_of(u, LoopNode::EntryControl, outer_phi);
4603     }
4604   }
4605 
4606   // create control and data nodes for out of loop uses (including region2)
4607   Node_List worklist;
4608   uint new_counter = C->unique();
4609   fix_ctrl_uses(wq, loop, old_new, ControlAroundStripMined, outer_head, nullptr, worklist);
4610 
4611   Node_List *split_if_set = nullptr;
4612   Node_List *split_bool_set = nullptr;
4613   Node_List *split_cex_set = nullptr;
4614   fix_data_uses(wq, loop, ControlAroundStripMined, loop->skip_strip_mined(), new_counter, old_new, worklist,
4615                 split_if_set, split_bool_set, split_cex_set);
4616 
4617   finish_clone_loop(split_if_set, split_bool_set, split_cex_set);
4618 
4619   if (exit_test != nullptr) {
4620     float cnt = exit_test->_fcnt;
4621     if (cnt != COUNT_UNKNOWN) {
4622       exit_test->_fcnt = cnt * f;
4623       old_new[exit_test->_idx]->as_If()->_fcnt = cnt * (1 - f);
4624     }
4625   }
4626 
4627   C->set_major_progress();
4628 
4629   return true;
4630 }
4631 
4632 // AutoVectorize the loop: replace scalar ops with vector ops.
4633 PhaseIdealLoop::AutoVectorizeStatus
4634 PhaseIdealLoop::auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared) {
4635   // Counted loop only
4636   if (!lpt->is_counted()) {
4637     return AutoVectorizeStatus::Impossible;
4638   }
4639 
4640   // Main-loop only
4641   CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4642   if (!cl->is_main_loop()) {
4643     return AutoVectorizeStatus::Impossible;
4644   }
4645 
4646   VLoop vloop(lpt, false);
4647   if (!vloop.check_preconditions()) {
4648     return AutoVectorizeStatus::TriedAndFailed;
4649   }
4650 
4651   // Ensure the shared data is cleared before each use
4652   vshared.clear();
4653 
4654   const VLoopAnalyzer vloop_analyzer(vloop, vshared);
4655   if (!vloop_analyzer.success()) {
4656     return AutoVectorizeStatus::TriedAndFailed;
4657   }
4658 
4659   SuperWord sw(vloop_analyzer);
4660   if (!sw.transform_loop()) {
4661     return AutoVectorizeStatus::TriedAndFailed;
4662   }
4663 
4664   return AutoVectorizeStatus::Success;
4665 }
4666 
4667 // Just before insert_pre_post_loops, we can multiversion the loop:
4668 //
4669 //              multiversion_if
4670 //               |       |
4671 //         fast_loop   slow_loop
4672 //
4673 // In the fast_loop we can make speculative assumptions, and put the
4674 // conditions into the multiversion_if. If the conditions hold at runtime,
4675 // we enter the fast_loop, if the conditions fail, we take the slow_loop
4676 // instead which does not make any of the speculative assumptions.
4677 //
4678 // Note: we only multiversion the loop if the loop does not have any
4679 //       auto vectorization check Predicate. If we have that predicate,
4680 //       then we can simply add the speculative assumption checks to
4681 //       that Predicate. This means we do not need to duplicate the
4682 //       loop - we have a smaller graph and save compile time. Should
4683 //       the conditions ever fail, then we deopt / trap at the Predicate
4684 //       and recompile without that Predicate. At that point we will
4685 //       multiversion the loop, so that we can still have speculative
4686 //       runtime checks.
4687 //
4688 // We perform the multiversioning when the loop is still in its single
4689 // iteration form, even before we insert pre and post loops. This makes
4690 // the cloning much simpler. However, this means that both the fast
4691 // and the slow loop have to be optimized independently (adding pre
4692 // and post loops, unrolling the main loop, auto-vectorize etc.). And
4693 // we may end up not needing any speculative assumptions in the fast_loop
4694 // and then rejecting the slow_loop by constant folding the multiversion_if.
4695 //
4696 // Therefore, we "delay" the optimization of the slow_loop until we add
4697 // at least one speculative assumption for the fast_loop. If we never
4698 // add such a speculative runtime check, the OpaqueMultiversioningNode
4699 // of the multiversion_if constant folds to true after loop opts, and the
4700 // multiversion_if folds away the "delayed" slow_loop. If we add any
4701 // speculative assumption, then we notify the OpaqueMultiversioningNode
4702 // with "notify_slow_loop_that_it_can_resume_optimizations".
4703 //
4704 // Note: new runtime checks can be added to the multiversion_if with
4705 //       PhaseIdealLoop::create_new_if_for_multiversion
4706 void PhaseIdealLoop::maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new) {
4707   CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4708   LoopNode* outer_loop = cl->skip_strip_mined();
4709   Node* entry = outer_loop->in(LoopNode::EntryControl);
4710 
4711   // Check we have multiversioning enabled, and are not already multiversioned.
4712   if (!LoopMultiversioning || cl->is_multiversion()) { return; }
4713 
4714   // Check that we do not have a parse-predicate where we can add the runtime checks
4715   // during auto-vectorization.
4716   const Predicates predicates(entry);
4717   const PredicateBlock* predicate_block = predicates.auto_vectorization_check_block();
4718   if (predicate_block->has_parse_predicate()) { return; }
4719 
4720   // Check node budget.
4721   uint estimate = lpt->est_loop_clone_sz(2);
4722   if (!may_require_nodes(estimate)) { return; }
4723 
4724   do_multiversioning(lpt, old_new);
4725 }
4726 
4727 // Returns true if the Reduction node is unordered.
4728 static bool is_unordered_reduction(Node* n) {
4729   return n->is_Reduction() && !n->as_Reduction()->requires_strict_order();
4730 }
4731 
4732 // Having ReductionNodes in the loop is expensive. They need to recursively
4733 // fold together the vector values, for every vectorized loop iteration. If
4734 // we encounter the following pattern, we can vector accumulate the values
4735 // inside the loop, and only have a single UnorderedReduction after the loop.
4736 //
4737 // Note: UnorderedReduction represents a ReductionNode which does not require
4738 // calculating in strict order.
4739 //
4740 // CountedLoop     init
4741 //          |        |
4742 //          +------+ | +-----------------------+
4743 //                 | | |                       |
4744 //                PhiNode (s)                  |
4745 //                  |                          |
4746 //                  |          Vector          |
4747 //                  |            |             |
4748 //               UnorderedReduction (first_ur) |
4749 //                  |                          |
4750 //                 ...         Vector          |
4751 //                  |            |             |
4752 //               UnorderedReduction (last_ur)  |
4753 //                       |                     |
4754 //                       +---------------------+
4755 //
4756 // We patch the graph to look like this:
4757 //
4758 // CountedLoop   identity_vector
4759 //         |         |
4760 //         +-------+ | +---------------+
4761 //                 | | |               |
4762 //                PhiNode (v)          |
4763 //                   |                 |
4764 //                   |         Vector  |
4765 //                   |           |     |
4766 //                 VectorAccumulator   |
4767 //                   |                 |
4768 //                  ...        Vector  |
4769 //                   |           |     |
4770 //      init       VectorAccumulator   |
4771 //        |          |     |           |
4772 //     UnorderedReduction  +-----------+
4773 //
4774 // We turned the scalar (s) Phi into a vectorized one (v). In the loop, we
4775 // use vector_accumulators, which do the same reductions, but only element
4776 // wise. This is a single operation per vector_accumulator, rather than many
4777 // for a UnorderedReduction. We can then reduce the last vector_accumulator
4778 // after the loop, and also reduce the init value into it.
4779 //
4780 // We can not do this with all reductions. Some reductions do not allow the
4781 // reordering of operations (for example float addition/multiplication require
4782 // strict order).
4783 void PhaseIdealLoop::move_unordered_reduction_out_of_loop(IdealLoopTree* loop) {
4784   assert(!C->major_progress() && loop->is_counted() && loop->is_innermost(), "sanity");
4785 
4786   // Find all Phi nodes with an unordered Reduction on backedge.
4787   CountedLoopNode* cl = loop->_head->as_CountedLoop();
4788   for (DUIterator_Fast jmax, j = cl->fast_outs(jmax); j < jmax; j++) {
4789     Node* phi = cl->fast_out(j);
4790     // We have a phi with a single use, and an unordered Reduction on the backedge.
4791     if (!phi->is_Phi() || phi->outcnt() != 1 || !is_unordered_reduction(phi->in(2))) {
4792       continue;
4793     }
4794 
4795     ReductionNode* last_ur = phi->in(2)->as_Reduction();
4796     assert(!last_ur->requires_strict_order(), "must be");
4797 
4798     // Determine types
4799     const TypeVect* vec_t = last_ur->vect_type();
4800     uint vector_length    = vec_t->length();
4801     BasicType bt          = vec_t->element_basic_type();
4802 
4803     // Convert opcode from vector-reduction -> scalar -> normal-vector-op
4804     const int sopc        = VectorNode::scalar_opcode(last_ur->Opcode(), bt);
4805     const int vopc        = VectorNode::opcode(sopc, bt);
4806     if (!Matcher::match_rule_supported_vector(vopc, vector_length, bt)) {
4807         DEBUG_ONLY( last_ur->dump(); )
4808         assert(false, "do not have normal vector op for this reduction");
4809         continue; // not implemented -> fails
4810     }
4811 
4812     // Traverse up the chain of unordered Reductions, checking that it loops back to
4813     // the phi. Check that all unordered Reductions only have a single use, except for
4814     // the last (last_ur), which only has phi as a use in the loop, and all other uses
4815     // are outside the loop.
4816     ReductionNode* current = last_ur;
4817     ReductionNode* first_ur = nullptr;
4818     while (true) {
4819       assert(!current->requires_strict_order(), "sanity");
4820 
4821       // Expect no ctrl and a vector_input from within the loop.
4822       Node* ctrl = current->in(0);
4823       Node* vector_input = current->in(2);
4824       if (ctrl != nullptr || get_ctrl(vector_input) != cl) {
4825         DEBUG_ONLY( current->dump(1); )
4826         assert(false, "reduction has ctrl or bad vector_input");
4827         break; // Chain traversal fails.
4828       }
4829 
4830       assert(current->vect_type() != nullptr, "must have vector type");
4831       if (current->vect_type() != last_ur->vect_type()) {
4832         // Reductions do not have the same vector type (length and element type).
4833         break; // Chain traversal fails.
4834       }
4835 
4836       // Expect single use of an unordered Reduction, except for last_ur.
4837       if (current == last_ur) {
4838         // Expect all uses to be outside the loop, except phi.
4839         for (DUIterator_Fast kmax, k = current->fast_outs(kmax); k < kmax; k++) {
4840           Node* use = current->fast_out(k);
4841           if (use != phi && ctrl_or_self(use) == cl) {
4842             DEBUG_ONLY( current->dump(-1); )
4843             assert(false, "reduction has use inside loop");
4844             // Should not be allowed by SuperWord::mark_reductions
4845             return; // bail out of optimization
4846           }
4847         }
4848       } else {
4849         if (current->outcnt() != 1) {
4850           break; // Chain traversal fails.
4851         }
4852       }
4853 
4854       // Expect another unordered Reduction or phi as the scalar input.
4855       Node* scalar_input = current->in(1);
4856       if (is_unordered_reduction(scalar_input) &&
4857           scalar_input->Opcode() == current->Opcode()) {
4858         // Move up the unordered Reduction chain.
4859         current = scalar_input->as_Reduction();
4860         assert(!current->requires_strict_order(), "must be");
4861       } else if (scalar_input == phi) {
4862         // Chain terminates at phi.
4863         first_ur = current;
4864         current = nullptr;
4865         break; // Success.
4866       } else {
4867         // scalar_input is neither phi nor a matching reduction
4868         // Can for example be scalar reduction when we have
4869         // partial vectorization.
4870         break; // Chain traversal fails.
4871       }
4872     }
4873     if (current != nullptr) {
4874       // Chain traversal was not successful.
4875       continue;
4876     }
4877     assert(first_ur != nullptr, "must have successfully terminated chain traversal");
4878 
4879     Node* identity_scalar = ReductionNode::make_identity_con_scalar(_igvn, sopc, bt);
4880     set_root_as_ctrl(identity_scalar);
4881     VectorNode* identity_vector = VectorNode::scalar2vector(identity_scalar, vector_length, bt);
4882     register_new_node(identity_vector, C->root());
4883     assert(vec_t == identity_vector->vect_type(), "matching vector type");
4884     VectorNode::trace_new_vector(identity_vector, "Unordered Reduction");
4885 
4886     // Turn the scalar phi into a vector phi.
4887     _igvn.rehash_node_delayed(phi);
4888     Node* init = phi->in(1); // Remember init before replacing it.
4889     phi->set_req_X(1, identity_vector, &_igvn);
4890     phi->as_Type()->set_type(vec_t);
4891     _igvn.set_type(phi, vec_t);
4892 
4893     // Traverse down the chain of unordered Reductions, and replace them with vector_accumulators.
4894     current = first_ur;
4895     while (true) {
4896       // Create vector_accumulator to replace current.
4897       Node* last_vector_accumulator = current->in(1);
4898       Node* vector_input            = current->in(2);
4899       VectorNode* vector_accumulator = VectorNode::make(vopc, last_vector_accumulator, vector_input, vec_t);
4900       register_new_node(vector_accumulator, cl);
4901       _igvn.replace_node(current, vector_accumulator);
4902       VectorNode::trace_new_vector(vector_accumulator, "Unordered Reduction");
4903       if (current == last_ur) {
4904         break;
4905       }
4906       current = vector_accumulator->unique_out()->as_Reduction();
4907       assert(!current->requires_strict_order(), "must be");
4908     }
4909 
4910     // Create post-loop reduction.
4911     Node* last_accumulator = phi->in(2);
4912     Node* post_loop_reduction = ReductionNode::make(sopc, nullptr, init, last_accumulator, bt);
4913 
4914     // Take over uses of last_accumulator that are not in the loop.
4915     for (DUIterator i = last_accumulator->outs(); last_accumulator->has_out(i); i++) {
4916       Node* use = last_accumulator->out(i);
4917       if (use != phi && use != post_loop_reduction) {
4918         assert(ctrl_or_self(use) != cl, "use must be outside loop");
4919         use->replace_edge(last_accumulator, post_loop_reduction,  &_igvn);
4920         --i;
4921       }
4922     }
4923     register_new_node(post_loop_reduction, get_late_ctrl(post_loop_reduction, cl));
4924     VectorNode::trace_new_vector(post_loop_reduction, "Unordered Reduction");
4925 
4926     assert(last_accumulator->outcnt() == 2, "last_accumulator has 2 uses: phi and post_loop_reduction");
4927     assert(post_loop_reduction->outcnt() > 0, "should have taken over all non loop uses of last_accumulator");
4928     assert(phi->outcnt() == 1, "accumulator is the only use of phi");
4929   }
4930 }
4931 
4932 void DataNodeGraph::clone_data_nodes(Node* new_ctrl) {
4933   for (uint i = 0; i < _data_nodes.size(); i++) {
4934     clone(_data_nodes[i], new_ctrl);
4935   }
4936 }
4937 
4938 // Clone the given node and set it up properly. Set 'new_ctrl' as ctrl.
4939 void DataNodeGraph::clone(Node* node, Node* new_ctrl) {
4940   Node* clone = node->clone();
4941   _phase->igvn().register_new_node_with_optimizer(clone);
4942   _orig_to_new.put(node, clone);
4943   _phase->set_ctrl(clone, new_ctrl);
4944   if (node->is_CastII()) {
4945     clone->set_req(0, new_ctrl);
4946   }
4947 }
4948 
4949 // Rewire the data inputs of all (unprocessed) cloned nodes, whose inputs are still pointing to the same inputs as their
4950 // corresponding orig nodes, to the newly cloned inputs to create a separate cloned graph.
4951 void DataNodeGraph::rewire_clones_to_cloned_inputs() {
4952   _orig_to_new.iterate_all([&](Node* node, Node* clone) {
4953     for (uint i = 1; i < node->req(); i++) {
4954       Node** cloned_input = _orig_to_new.get(node->in(i));
4955       if (cloned_input != nullptr) {
4956         // Input was also cloned -> rewire clone to the cloned input.
4957         _phase->igvn().replace_input_of(clone, i, *cloned_input);
4958       }
4959     }
4960   });
4961 }
4962 
4963 // Clone all non-OpaqueLoop* nodes and apply the provided transformation strategy for OpaqueLoop* nodes.
4964 // Set 'new_ctrl' as ctrl for all cloned non-OpaqueLoop* nodes.
4965 void DataNodeGraph::clone_data_nodes_and_transform_opaque_loop_nodes(
4966     const TransformStrategyForOpaqueLoopNodes& transform_strategy,
4967     Node* new_ctrl) {
4968   for (uint i = 0; i < _data_nodes.size(); i++) {
4969     Node* data_node = _data_nodes[i];
4970     if (data_node->is_Opaque1()) {
4971       transform_opaque_node(transform_strategy, data_node);
4972     } else {
4973       clone(data_node, new_ctrl);
4974     }
4975   }
4976 }
4977 
4978 void DataNodeGraph::transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node) {
4979   Node* transformed_node;
4980   if (node->is_OpaqueLoopInit()) {
4981     transformed_node = transform_strategy.transform_opaque_init(node->as_OpaqueLoopInit());
4982   } else {
4983     assert(node->is_OpaqueLoopStride(), "must be OpaqueLoopStrideNode");
4984     transformed_node = transform_strategy.transform_opaque_stride(node->as_OpaqueLoopStride());
4985   }
4986   // Add an orig->new mapping to correctly update the inputs of the copied graph in rewire_clones_to_cloned_inputs().
4987   _orig_to_new.put(node, transformed_node);
4988 }