1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shared/c2/barrierSetC2.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/inlinetypenode.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/movenode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/opaquenode.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "opto/subtypenode.hpp"
  43 #include "opto/superword.hpp"
  44 #include "opto/vectornode.hpp"
  45 #include "utilities/checkedCast.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 //=============================================================================
  49 //------------------------------split_thru_phi---------------------------------
  50 // Split Node 'n' through merge point if there is enough win.
  51 Node* PhaseIdealLoop::split_thru_phi(Node* n, Node* region, int policy) {
  52   if ((n->Opcode() == Op_ConvI2L && n->bottom_type() != TypeLong::LONG) ||
  53       (n->Opcode() == Op_ConvL2I && n->bottom_type() != TypeInt::INT)) {
  54     // ConvI2L/ConvL2I may have type information on it which is unsafe to push up
  55     // so disable this for now
  56     return nullptr;
  57   }
  58 
  59   // Splitting range check CastIIs through a loop induction Phi can
  60   // cause new Phis to be created that are left unrelated to the loop
  61   // induction Phi and prevent optimizations (vectorization)
  62   if (n->Opcode() == Op_CastII && region->is_CountedLoop() &&
  63       n->in(1) == region->as_CountedLoop()->phi()) {
  64     return nullptr;
  65   }
  66 
  67   // Inline types should not be split through Phis because they cannot be merged
  68   // through Phi nodes but each value input needs to be merged individually.
  69   if (n->is_InlineType()) {
  70     return nullptr;
  71   }
  72 
  73   if (cannot_split_division(n, region)) {
  74     return nullptr;
  75   }
  76 
  77   SplitThruPhiWins wins(region);
  78   assert(!n->is_CFG(), "");
  79   assert(region->is_Region(), "");
  80 
  81   const Type* type = n->bottom_type();
  82   const TypeOopPtr* t_oop = _igvn.type(n)->isa_oopptr();
  83   Node* phi;
  84   if (t_oop != nullptr && t_oop->is_known_instance_field()) {
  85     int iid    = t_oop->instance_id();
  86     int index  = C->get_alias_index(t_oop);
  87     int offset = t_oop->offset();
  88     phi = new PhiNode(region, type, nullptr, iid, index, offset);
  89   } else {
  90     phi = PhiNode::make_blank(region, n);
  91   }
  92   uint old_unique = C->unique();
  93   for (uint i = 1; i < region->req(); i++) {
  94     Node* x;
  95     Node* the_clone = nullptr;
  96     if (region->in(i) == C->top()) {
  97       x = C->top();             // Dead path?  Use a dead data op
  98     } else {
  99       x = n->clone();           // Else clone up the data op
 100       the_clone = x;            // Remember for possible deletion.
 101       // Alter data node to use pre-phi inputs
 102       if (n->in(0) == region)
 103         x->set_req( 0, region->in(i) );
 104       for (uint j = 1; j < n->req(); j++) {
 105         Node* in = n->in(j);
 106         if (in->is_Phi() && in->in(0) == region)
 107           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
 108       }
 109     }
 110     // Check for a 'win' on some paths
 111     const Type* t = x->Value(&_igvn);
 112 
 113     bool singleton = t->singleton();
 114 
 115     // A TOP singleton indicates that there are no possible values incoming
 116     // along a particular edge. In most cases, this is OK, and the Phi will
 117     // be eliminated later in an Ideal call. However, we can't allow this to
 118     // happen if the singleton occurs on loop entry, as the elimination of
 119     // the PhiNode may cause the resulting node to migrate back to a previous
 120     // loop iteration.
 121     if (singleton && t == Type::TOP) {
 122       // Is_Loop() == false does not confirm the absence of a loop (e.g., an
 123       // irreducible loop may not be indicated by an affirmative is_Loop());
 124       // therefore, the only top we can split thru a phi is on a backedge of
 125       // a loop.
 126       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
 127     }
 128 
 129     if (singleton) {
 130       wins.add_win(i);
 131       x = makecon(t);
 132     } else {
 133       // We now call Identity to try to simplify the cloned node.
 134       // Note that some Identity methods call phase->type(this).
 135       // Make sure that the type array is big enough for
 136       // our new node, even though we may throw the node away.
 137       // (Note: This tweaking with igvn only works because x is a new node.)
 138       _igvn.set_type(x, t);
 139       // If x is a TypeNode, capture any more-precise type permanently into Node
 140       // otherwise it will be not updated during igvn->transform since
 141       // igvn->type(x) is set to x->Value() already.
 142       x->raise_bottom_type(t);
 143       Node* y = x->Identity(&_igvn);
 144       if (y != x) {
 145         wins.add_win(i);
 146         x = y;
 147       } else {
 148         y = _igvn.hash_find(x);
 149         if (y == nullptr) {
 150           y = similar_subtype_check(x, region->in(i));
 151         }
 152         if (y) {
 153           wins.add_win(i);
 154           x = y;
 155         } else {
 156           // Else x is a new node we are keeping
 157           // We do not need register_new_node_with_optimizer
 158           // because set_type has already been called.
 159           _igvn._worklist.push(x);
 160         }
 161       }
 162     }
 163 
 164     phi->set_req( i, x );
 165 
 166     if (the_clone == nullptr) {
 167       continue;
 168     }
 169 
 170     if (the_clone != x) {
 171       _igvn.remove_dead_node(the_clone);
 172     } else if (region->is_Loop() && i == LoopNode::LoopBackControl &&
 173                n->is_Load() && can_move_to_inner_loop(n, region->as_Loop(), x)) {
 174       // it is not a win if 'x' moved from an outer to an inner loop
 175       // this edge case can only happen for Load nodes
 176       wins.reset();
 177       break;
 178     }
 179   }
 180   // Too few wins?
 181   if (!wins.profitable(policy)) {
 182     _igvn.remove_dead_node(phi);
 183     return nullptr;
 184   }
 185 
 186   // Record Phi
 187   register_new_node( phi, region );
 188 
 189   for (uint i2 = 1; i2 < phi->req(); i2++) {
 190     Node *x = phi->in(i2);
 191     // If we commoned up the cloned 'x' with another existing Node,
 192     // the existing Node picks up a new use.  We need to make the
 193     // existing Node occur higher up so it dominates its uses.
 194     Node *old_ctrl;
 195     IdealLoopTree *old_loop;
 196 
 197     if (x->is_Con()) {
 198       assert(get_ctrl(x) == C->root(), "constant control is not root");
 199       continue;
 200     }
 201     // The occasional new node
 202     if (x->_idx >= old_unique) {     // Found a new, unplaced node?
 203       old_ctrl = nullptr;
 204       old_loop = nullptr;               // Not in any prior loop
 205     } else {
 206       old_ctrl = get_ctrl(x);
 207       old_loop = get_loop(old_ctrl); // Get prior loop
 208     }
 209     // New late point must dominate new use
 210     Node *new_ctrl = dom_lca(old_ctrl, region->in(i2));
 211     if (new_ctrl == old_ctrl) // Nothing is changed
 212       continue;
 213 
 214     IdealLoopTree *new_loop = get_loop(new_ctrl);
 215 
 216     // Don't move x into a loop if its uses are
 217     // outside of loop. Otherwise x will be cloned
 218     // for each use outside of this loop.
 219     IdealLoopTree *use_loop = get_loop(region);
 220     if (!new_loop->is_member(use_loop) &&
 221         (old_loop == nullptr || !new_loop->is_member(old_loop))) {
 222       // Take early control, later control will be recalculated
 223       // during next iteration of loop optimizations.
 224       new_ctrl = get_early_ctrl(x);
 225       new_loop = get_loop(new_ctrl);
 226     }
 227     // Set new location
 228     set_ctrl(x, new_ctrl);
 229     // If changing loop bodies, see if we need to collect into new body
 230     if (old_loop != new_loop) {
 231       if (old_loop && !old_loop->_child)
 232         old_loop->_body.yank(x);
 233       if (!new_loop->_child)
 234         new_loop->_body.push(x);  // Collect body info
 235     }
 236   }
 237 
 238 #ifndef PRODUCT
 239   if (TraceLoopOpts) {
 240     tty->print("Split %d %s through %d Phi in %d %s",
 241                n->_idx, n->Name(), phi->_idx, region->_idx, region->Name());
 242   }
 243 #endif // !PRODUCT
 244 
 245   return phi;
 246 }
 247 
 248 // Test whether node 'x' can move into an inner loop relative to node 'n'.
 249 // Note: The test is not exact. Returns true if 'x' COULD end up in an inner loop,
 250 // BUT it can also return true and 'x' is in the outer loop
 251 bool PhaseIdealLoop::can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x) {
 252   IdealLoopTree* n_loop_tree = get_loop(n_loop);
 253   IdealLoopTree* x_loop_tree = get_loop(get_early_ctrl(x));
 254   // x_loop_tree should be outer or same loop as n_loop_tree
 255   return !x_loop_tree->is_member(n_loop_tree);
 256 }
 257 
 258 // Subtype checks that carry profile data don't common so look for a replacement by following edges
 259 Node* PhaseIdealLoop::similar_subtype_check(const Node* x, Node* r_in) {
 260   if (x->is_SubTypeCheck()) {
 261     Node* in1 = x->in(1);
 262     for (DUIterator_Fast imax, i = in1->fast_outs(imax); i < imax; i++) {
 263       Node* u = in1->fast_out(i);
 264       if (u != x && u->is_SubTypeCheck() && u->in(1) == x->in(1) && u->in(2) == x->in(2)) {
 265         for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) {
 266           Node* bol = u->fast_out(j);
 267           for (DUIterator_Fast kmax, k = bol->fast_outs(kmax); k < kmax; k++) {
 268             Node* iff = bol->fast_out(k);
 269             // Only dominating subtype checks are interesting: otherwise we risk replacing a subtype check by another with
 270             // unrelated profile
 271             if (iff->is_If() && is_dominator(iff, r_in)) {
 272               return u;
 273             }
 274           }
 275         }
 276       }
 277     }
 278   }
 279   return nullptr;
 280 }
 281 
 282 // Return true if 'n' is a Div or Mod node (without zero check If node which was removed earlier) with a loop phi divisor
 283 // of a trip-counted (integer or long) loop with a backedge input that could be zero (include zero in its type range). In
 284 // this case, we cannot split the division to the backedge as it could freely float above the loop exit check resulting in
 285 // a division by zero. This situation is possible because the type of an increment node of an iv phi (trip-counter) could
 286 // include zero while the iv phi does not (see PhiNode::Value() for trip-counted loops where we improve types of iv phis).
 287 // We also need to check other loop phis as they could have been created in the same split-if pass when applying
 288 // PhaseIdealLoop::split_thru_phi() to split nodes through an iv phi.
 289 bool PhaseIdealLoop::cannot_split_division(const Node* n, const Node* region) const {
 290   const Type* zero;
 291   switch (n->Opcode()) {
 292     case Op_DivI:
 293     case Op_ModI:
 294     case Op_UDivI:
 295     case Op_UModI:
 296       zero = TypeInt::ZERO;
 297       break;
 298     case Op_DivL:
 299     case Op_ModL:
 300     case Op_UDivL:
 301     case Op_UModL:
 302       zero = TypeLong::ZERO;
 303       break;
 304     default:
 305       return false;
 306   }
 307 
 308   if (n->in(0) != nullptr) {
 309     // Cannot split through phi if Div or Mod node has a control dependency to a zero check.
 310     return true;
 311   }
 312 
 313   Node* divisor = n->in(2);
 314   return is_divisor_loop_phi(divisor, region) &&
 315          loop_phi_backedge_type_contains_zero(divisor, zero);
 316 }
 317 
 318 bool PhaseIdealLoop::is_divisor_loop_phi(const Node* divisor, const Node* loop) {
 319   return loop->is_Loop() && divisor->is_Phi() && divisor->in(0) == loop;
 320 }
 321 
 322 bool PhaseIdealLoop::loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const {
 323     return _igvn.type(phi_divisor->in(LoopNode::LoopBackControl))->filter_speculative(zero) != Type::TOP;
 324 }
 325 
 326 //------------------------------dominated_by------------------------------------
 327 // Replace the dominated test with an obvious true or false.  Place it on the
 328 // IGVN worklist for later cleanup.  Move control-dependent data Nodes on the
 329 // live path up to the dominating control.
 330 void PhaseIdealLoop::dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip, bool pin_array_access_nodes) {
 331   if (VerifyLoopOptimizations && PrintOpto) { tty->print_cr("dominating test"); }
 332 
 333   // prevdom is the dominating projection of the dominating test.
 334   assert(iff->Opcode() == Op_If ||
 335          iff->Opcode() == Op_CountedLoopEnd ||
 336          iff->Opcode() == Op_LongCountedLoopEnd ||
 337          iff->Opcode() == Op_RangeCheck ||
 338          iff->Opcode() == Op_ParsePredicate,
 339         "Check this code when new subtype is added");
 340 
 341   int pop = prevdom->Opcode();
 342   assert( pop == Op_IfFalse || pop == Op_IfTrue, "" );
 343   if (flip) {
 344     if (pop == Op_IfTrue)
 345       pop = Op_IfFalse;
 346     else
 347       pop = Op_IfTrue;
 348   }
 349   // 'con' is set to true or false to kill the dominated test.
 350   Node* con = makecon(pop == Op_IfTrue ? TypeInt::ONE : TypeInt::ZERO);
 351   // Hack the dominated test
 352   _igvn.replace_input_of(iff, 1, con);
 353 
 354   // If I don't have a reachable TRUE and FALSE path following the IfNode then
 355   // I can assume this path reaches an infinite loop.  In this case it's not
 356   // important to optimize the data Nodes - either the whole compilation will
 357   // be tossed or this path (and all data Nodes) will go dead.
 358   if (iff->outcnt() != 2) {
 359     return;
 360   }
 361 
 362   // Make control-dependent data Nodes on the live path (path that will remain
 363   // once the dominated IF is removed) become control-dependent on the
 364   // dominating projection.
 365   Node* dp = iff->proj_out_or_null(pop == Op_IfTrue);
 366 
 367   if (dp == nullptr) {
 368     return;
 369   }
 370 
 371   rewire_safe_outputs_to_dominator(dp, prevdom, pin_array_access_nodes);
 372 }
 373 
 374 void PhaseIdealLoop::rewire_safe_outputs_to_dominator(Node* source, Node* dominator, const bool pin_array_access_nodes) {
 375   IdealLoopTree* old_loop = get_loop(source);
 376 
 377   for (DUIterator_Fast imax, i = source->fast_outs(imax); i < imax; i++) {
 378     Node* out = source->fast_out(i); // Control-dependent node
 379     // Do not rewire Div and Mod nodes which could have a zero divisor to avoid skipping their zero check.
 380     if (out->depends_only_on_test() && _igvn.no_dependent_zero_check(out)) {
 381       assert(out->in(0) == source, "must be control dependent on source");
 382       _igvn.replace_input_of(out, 0, dominator);
 383       if (pin_array_access_nodes) {
 384         // Because of Loop Predication, Loads and range check Cast nodes that are control dependent on this range
 385         // check (that is about to be removed) now depend on multiple dominating Hoisted Check Predicates. After the
 386         // removal of this range check, these control dependent nodes end up at the lowest/nearest dominating predicate
 387         // in the graph. To ensure that these Loads/Casts do not float above any of the dominating checks (even when the
 388         // lowest dominating check is later replaced by yet another dominating check), we need to pin them at the lowest
 389         // dominating check.
 390         Node* clone = out->pin_array_access_node();
 391         if (clone != nullptr) {
 392           clone = _igvn.register_new_node_with_optimizer(clone, out);
 393           _igvn.replace_node(out, clone);
 394           out = clone;
 395         }
 396       }
 397       set_early_ctrl(out, false);
 398       IdealLoopTree* new_loop = get_loop(get_ctrl(out));
 399       if (old_loop != new_loop) {
 400         if (!old_loop->_child) {
 401           old_loop->_body.yank(out);
 402         }
 403         if (!new_loop->_child) {
 404           new_loop->_body.push(out);
 405         }
 406       }
 407       --i;
 408       --imax;
 409     }
 410   }
 411 }
 412 
 413 //------------------------------has_local_phi_input----------------------------
 414 // Return TRUE if 'n' has Phi inputs from its local block and no other
 415 // block-local inputs (all non-local-phi inputs come from earlier blocks)
 416 Node *PhaseIdealLoop::has_local_phi_input( Node *n ) {
 417   Node *n_ctrl = get_ctrl(n);
 418   // See if some inputs come from a Phi in this block, or from before
 419   // this block.
 420   uint i;
 421   for( i = 1; i < n->req(); i++ ) {
 422     Node *phi = n->in(i);
 423     if( phi->is_Phi() && phi->in(0) == n_ctrl )
 424       break;
 425   }
 426   if( i >= n->req() )
 427     return nullptr;                // No Phi inputs; nowhere to clone thru
 428 
 429   // Check for inputs created between 'n' and the Phi input.  These
 430   // must split as well; they have already been given the chance
 431   // (courtesy of a post-order visit) and since they did not we must
 432   // recover the 'cost' of splitting them by being very profitable
 433   // when splitting 'n'.  Since this is unlikely we simply give up.
 434   for( i = 1; i < n->req(); i++ ) {
 435     Node *m = n->in(i);
 436     if( get_ctrl(m) == n_ctrl && !m->is_Phi() ) {
 437       // We allow the special case of AddP's with no local inputs.
 438       // This allows us to split-up address expressions.
 439       if (m->is_AddP() &&
 440           get_ctrl(m->in(AddPNode::Base)) != n_ctrl &&
 441           get_ctrl(m->in(AddPNode::Address)) != n_ctrl &&
 442           get_ctrl(m->in(AddPNode::Offset)) != n_ctrl) {
 443         // Move the AddP up to the dominating point. That's fine because control of m's inputs
 444         // must dominate get_ctrl(m) == n_ctrl and we just checked that the input controls are != n_ctrl.
 445         Node* c = find_non_split_ctrl(idom(n_ctrl));
 446         if (c->is_OuterStripMinedLoop()) {
 447           c->as_Loop()->verify_strip_mined(1);
 448           c = c->in(LoopNode::EntryControl);
 449         }
 450         set_ctrl_and_loop(m, c);
 451         continue;
 452       }
 453       return nullptr;
 454     }
 455     assert(n->is_Phi() || m->is_Phi() || is_dominator(get_ctrl(m), n_ctrl), "m has strange control");
 456   }
 457 
 458   return n_ctrl;
 459 }
 460 
 461 // Replace expressions like ((V+I) << 2) with (V<<2 + I<<2).
 462 Node* PhaseIdealLoop::remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt) {
 463   assert(bt == T_INT || bt == T_LONG, "only for integers");
 464   int n_op = n->Opcode();
 465 
 466   if (n_op == Op_LShift(bt)) {
 467     // Scale is loop invariant
 468     Node* scale = n->in(2);
 469     Node* scale_ctrl = get_ctrl(scale);
 470     IdealLoopTree* scale_loop = get_loop(scale_ctrl);
 471     if (n_loop == scale_loop || !scale_loop->is_member(n_loop)) {
 472       return nullptr;
 473     }
 474     const TypeInt* scale_t = scale->bottom_type()->isa_int();
 475     if (scale_t != nullptr && scale_t->is_con() && scale_t->get_con() >= 16) {
 476       return nullptr;              // Dont bother with byte/short masking
 477     }
 478     // Add must vary with loop (else shift would be loop-invariant)
 479     Node* add = n->in(1);
 480     Node* add_ctrl = get_ctrl(add);
 481     IdealLoopTree* add_loop = get_loop(add_ctrl);
 482     if (n_loop != add_loop) {
 483       return nullptr;  // happens w/ evil ZKM loops
 484     }
 485 
 486     // Convert I-V into I+ (0-V); same for V-I
 487     if (add->Opcode() == Op_Sub(bt) &&
 488         _igvn.type(add->in(1)) != TypeInteger::zero(bt)) {
 489       assert(add->Opcode() == Op_SubI || add->Opcode() == Op_SubL, "");
 490       Node* zero = integercon(0, bt);
 491       Node* neg = SubNode::make(zero, add->in(2), bt);
 492       register_new_node_with_ctrl_of(neg, add->in(2));
 493       add = AddNode::make(add->in(1), neg, bt);
 494       register_new_node(add, add_ctrl);
 495     }
 496     if (add->Opcode() != Op_Add(bt)) return nullptr;
 497     assert(add->Opcode() == Op_AddI || add->Opcode() == Op_AddL, "");
 498     // See if one add input is loop invariant
 499     Node* add_var = add->in(1);
 500     Node* add_var_ctrl = get_ctrl(add_var);
 501     IdealLoopTree* add_var_loop = get_loop(add_var_ctrl);
 502     Node* add_invar = add->in(2);
 503     Node* add_invar_ctrl = get_ctrl(add_invar);
 504     IdealLoopTree* add_invar_loop = get_loop(add_invar_ctrl);
 505     if (add_invar_loop == n_loop) {
 506       // Swap to find the invariant part
 507       add_invar = add_var;
 508       add_invar_ctrl = add_var_ctrl;
 509       add_invar_loop = add_var_loop;
 510       add_var = add->in(2);
 511     } else if (add_var_loop != n_loop) { // Else neither input is loop invariant
 512       return nullptr;
 513     }
 514     if (n_loop == add_invar_loop || !add_invar_loop->is_member(n_loop)) {
 515       return nullptr;              // No invariant part of the add?
 516     }
 517 
 518     // Yes!  Reshape address expression!
 519     Node* inv_scale = LShiftNode::make(add_invar, scale, bt);
 520     Node* inv_scale_ctrl =
 521             dom_depth(add_invar_ctrl) > dom_depth(scale_ctrl) ?
 522             add_invar_ctrl : scale_ctrl;
 523     register_new_node(inv_scale, inv_scale_ctrl);
 524     Node* var_scale = LShiftNode::make(add_var, scale, bt);
 525     register_new_node(var_scale, n_ctrl);
 526     Node* var_add = AddNode::make(var_scale, inv_scale, bt);
 527     register_new_node(var_add, n_ctrl);
 528     _igvn.replace_node(n, var_add);
 529     return var_add;
 530   }
 531   return nullptr;
 532 }
 533 
 534 //------------------------------remix_address_expressions----------------------
 535 // Rework addressing expressions to get the most loop-invariant stuff
 536 // moved out.  We'd like to do all associative operators, but it's especially
 537 // important (common) to do address expressions.
 538 Node* PhaseIdealLoop::remix_address_expressions(Node* n) {
 539   if (!has_ctrl(n))  return nullptr;
 540   Node* n_ctrl = get_ctrl(n);
 541   IdealLoopTree* n_loop = get_loop(n_ctrl);
 542 
 543   // See if 'n' mixes loop-varying and loop-invariant inputs and
 544   // itself is loop-varying.
 545 
 546   // Only interested in binary ops (and AddP)
 547   if (n->req() < 3 || n->req() > 4) return nullptr;
 548 
 549   Node* n1_ctrl = get_ctrl(n->in(                    1));
 550   Node* n2_ctrl = get_ctrl(n->in(                    2));
 551   Node* n3_ctrl = get_ctrl(n->in(n->req() == 3 ? 2 : 3));
 552   IdealLoopTree* n1_loop = get_loop(n1_ctrl);
 553   IdealLoopTree* n2_loop = get_loop(n2_ctrl);
 554   IdealLoopTree* n3_loop = get_loop(n3_ctrl);
 555 
 556   // Does one of my inputs spin in a tighter loop than self?
 557   if ((n_loop->is_member(n1_loop) && n_loop != n1_loop) ||
 558       (n_loop->is_member(n2_loop) && n_loop != n2_loop) ||
 559       (n_loop->is_member(n3_loop) && n_loop != n3_loop)) {
 560     return nullptr;                // Leave well enough alone
 561   }
 562 
 563   // Is at least one of my inputs loop-invariant?
 564   if (n1_loop == n_loop &&
 565       n2_loop == n_loop &&
 566       n3_loop == n_loop) {
 567     return nullptr;                // No loop-invariant inputs
 568   }
 569 
 570   Node* res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_INT);
 571   if (res != nullptr) {
 572     return res;
 573   }
 574   res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_LONG);
 575   if (res != nullptr) {
 576     return res;
 577   }
 578 
 579   int n_op = n->Opcode();
 580   // Replace (I+V) with (V+I)
 581   if (n_op == Op_AddI ||
 582       n_op == Op_AddL ||
 583       n_op == Op_AddF ||
 584       n_op == Op_AddD ||
 585       n_op == Op_MulI ||
 586       n_op == Op_MulL ||
 587       n_op == Op_MulF ||
 588       n_op == Op_MulD) {
 589     if (n2_loop == n_loop) {
 590       assert(n1_loop != n_loop, "");
 591       n->swap_edges(1, 2);
 592     }
 593   }
 594 
 595   // Replace ((I1 +p V) +p I2) with ((I1 +p I2) +p V),
 596   // but not if I2 is a constant. Skip for irreducible loops.
 597   if (n_op == Op_AddP && n_loop->_head->is_Loop()) {
 598     if (n2_loop == n_loop && n3_loop != n_loop) {
 599       if (n->in(2)->Opcode() == Op_AddP && !n->in(3)->is_Con()) {
 600         Node* n22_ctrl = get_ctrl(n->in(2)->in(2));
 601         Node* n23_ctrl = get_ctrl(n->in(2)->in(3));
 602         IdealLoopTree* n22loop = get_loop(n22_ctrl);
 603         IdealLoopTree* n23_loop = get_loop(n23_ctrl);
 604         if (n22loop != n_loop && n22loop->is_member(n_loop) &&
 605             n23_loop == n_loop) {
 606           Node* add1 = new AddPNode(n->in(1), n->in(2)->in(2), n->in(3));
 607           // Stuff new AddP in the loop preheader
 608           register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl));
 609           Node* add2 = new AddPNode(n->in(1), add1, n->in(2)->in(3));
 610           register_new_node(add2, n_ctrl);
 611           _igvn.replace_node(n, add2);
 612           return add2;
 613         }
 614       }
 615     }
 616 
 617     // Replace (I1 +p (I2 + V)) with ((I1 +p I2) +p V)
 618     if (n2_loop != n_loop && n3_loop == n_loop) {
 619       if (n->in(3)->Opcode() == Op_AddX) {
 620         Node* V = n->in(3)->in(1);
 621         Node* I = n->in(3)->in(2);
 622         if (is_member(n_loop,get_ctrl(V))) {
 623         } else {
 624           Node *tmp = V; V = I; I = tmp;
 625         }
 626         if (!is_member(n_loop,get_ctrl(I))) {
 627           Node* add1 = new AddPNode(n->in(1), n->in(2), I);
 628           // Stuff new AddP in the loop preheader
 629           register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl));
 630           Node* add2 = new AddPNode(n->in(1), add1, V);
 631           register_new_node(add2, n_ctrl);
 632           _igvn.replace_node(n, add2);
 633           return add2;
 634         }
 635       }
 636     }
 637   }
 638 
 639   return nullptr;
 640 }
 641 
 642 // Optimize ((in1[2*i] * in2[2*i]) + (in1[2*i+1] * in2[2*i+1]))
 643 Node *PhaseIdealLoop::convert_add_to_muladd(Node* n) {
 644   assert(n->Opcode() == Op_AddI, "sanity");
 645   Node * nn = nullptr;
 646   Node * in1 = n->in(1);
 647   Node * in2 = n->in(2);
 648   if (in1->Opcode() == Op_MulI && in2->Opcode() == Op_MulI) {
 649     IdealLoopTree* loop_n = get_loop(get_ctrl(n));
 650     if (loop_n->is_counted() &&
 651         loop_n->_head->as_Loop()->is_valid_counted_loop(T_INT) &&
 652         Matcher::match_rule_supported(Op_MulAddVS2VI) &&
 653         Matcher::match_rule_supported(Op_MulAddS2I)) {
 654       Node* mul_in1 = in1->in(1);
 655       Node* mul_in2 = in1->in(2);
 656       Node* mul_in3 = in2->in(1);
 657       Node* mul_in4 = in2->in(2);
 658       if (mul_in1->Opcode() == Op_LoadS &&
 659           mul_in2->Opcode() == Op_LoadS &&
 660           mul_in3->Opcode() == Op_LoadS &&
 661           mul_in4->Opcode() == Op_LoadS) {
 662         IdealLoopTree* loop1 = get_loop(get_ctrl(mul_in1));
 663         IdealLoopTree* loop2 = get_loop(get_ctrl(mul_in2));
 664         IdealLoopTree* loop3 = get_loop(get_ctrl(mul_in3));
 665         IdealLoopTree* loop4 = get_loop(get_ctrl(mul_in4));
 666         IdealLoopTree* loop5 = get_loop(get_ctrl(in1));
 667         IdealLoopTree* loop6 = get_loop(get_ctrl(in2));
 668         // All nodes should be in the same counted loop.
 669         if (loop_n == loop1 && loop_n == loop2 && loop_n == loop3 &&
 670             loop_n == loop4 && loop_n == loop5 && loop_n == loop6) {
 671           Node* adr1 = mul_in1->in(MemNode::Address);
 672           Node* adr2 = mul_in2->in(MemNode::Address);
 673           Node* adr3 = mul_in3->in(MemNode::Address);
 674           Node* adr4 = mul_in4->in(MemNode::Address);
 675           if (adr1->is_AddP() && adr2->is_AddP() && adr3->is_AddP() && adr4->is_AddP()) {
 676             if ((adr1->in(AddPNode::Base) == adr3->in(AddPNode::Base)) &&
 677                 (adr2->in(AddPNode::Base) == adr4->in(AddPNode::Base))) {
 678               nn = new MulAddS2INode(mul_in1, mul_in2, mul_in3, mul_in4);
 679               register_new_node_with_ctrl_of(nn, n);
 680               _igvn.replace_node(n, nn);
 681               return nn;
 682             } else if ((adr1->in(AddPNode::Base) == adr4->in(AddPNode::Base)) &&
 683                        (adr2->in(AddPNode::Base) == adr3->in(AddPNode::Base))) {
 684               nn = new MulAddS2INode(mul_in1, mul_in2, mul_in4, mul_in3);
 685               register_new_node_with_ctrl_of(nn, n);
 686               _igvn.replace_node(n, nn);
 687               return nn;
 688             }
 689           }
 690         }
 691       }
 692     }
 693   }
 694   return nn;
 695 }
 696 
 697 //------------------------------conditional_move-------------------------------
 698 // Attempt to replace a Phi with a conditional move.  We have some pretty
 699 // strict profitability requirements.  All Phis at the merge point must
 700 // be converted, so we can remove the control flow.  We need to limit the
 701 // number of c-moves to a small handful.  All code that was in the side-arms
 702 // of the CFG diamond is now speculatively executed.  This code has to be
 703 // "cheap enough".  We are pretty much limited to CFG diamonds that merge
 704 // 1 or 2 items with a total of 1 or 2 ops executed speculatively.
 705 Node *PhaseIdealLoop::conditional_move( Node *region ) {
 706 
 707   assert(region->is_Region(), "sanity check");
 708   if (region->req() != 3) return nullptr;
 709 
 710   // Check for CFG diamond
 711   Node *lp = region->in(1);
 712   Node *rp = region->in(2);
 713   if (!lp || !rp) return nullptr;
 714   Node *lp_c = lp->in(0);
 715   if (lp_c == nullptr || lp_c != rp->in(0) || !lp_c->is_If()) return nullptr;
 716   IfNode *iff = lp_c->as_If();
 717 
 718   // Check for ops pinned in an arm of the diamond.
 719   // Can't remove the control flow in this case
 720   if (lp->outcnt() > 1) return nullptr;
 721   if (rp->outcnt() > 1) return nullptr;
 722 
 723   IdealLoopTree* r_loop = get_loop(region);
 724   assert(r_loop == get_loop(iff), "sanity");
 725   // Always convert to CMOVE if all results are used only outside this loop.
 726   bool used_inside_loop = (r_loop == _ltree_root);
 727 
 728   // Check profitability
 729   int cost = 0;
 730   int phis = 0;
 731   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 732     Node *out = region->fast_out(i);
 733     if (!out->is_Phi()) continue; // Ignore other control edges, etc
 734     phis++;
 735     PhiNode* phi = out->as_Phi();
 736     BasicType bt = phi->type()->basic_type();
 737     switch (bt) {
 738     case T_DOUBLE:
 739     case T_FLOAT:
 740       if (C->use_cmove()) {
 741         continue; //TODO: maybe we want to add some cost
 742       }
 743       cost += Matcher::float_cmove_cost(); // Could be very expensive
 744       break;
 745     case T_LONG: {
 746       cost += Matcher::long_cmove_cost(); // May encodes as 2 CMOV's
 747     }
 748     case T_INT:                 // These all CMOV fine
 749     case T_ADDRESS: {           // (RawPtr)
 750       cost++;
 751       break;
 752     }
 753     case T_NARROWOOP: // Fall through
 754     case T_OBJECT: {            // Base oops are OK, but not derived oops
 755       const TypeOopPtr *tp = phi->type()->make_ptr()->isa_oopptr();
 756       // Derived pointers are Bad (tm): what's the Base (for GC purposes) of a
 757       // CMOVE'd derived pointer?  It's a CMOVE'd derived base.  Thus
 758       // CMOVE'ing a derived pointer requires we also CMOVE the base.  If we
 759       // have a Phi for the base here that we convert to a CMOVE all is well
 760       // and good.  But if the base is dead, we'll not make a CMOVE.  Later
 761       // the allocator will have to produce a base by creating a CMOVE of the
 762       // relevant bases.  This puts the allocator in the business of
 763       // manufacturing expensive instructions, generally a bad plan.
 764       // Just Say No to Conditionally-Moved Derived Pointers.
 765       if (tp && tp->offset() != 0)
 766         return nullptr;
 767       cost++;
 768       break;
 769     }
 770     default:
 771       return nullptr;              // In particular, can't do memory or I/O
 772     }
 773     // Add in cost any speculative ops
 774     for (uint j = 1; j < region->req(); j++) {
 775       Node *proj = region->in(j);
 776       Node *inp = phi->in(j);
 777       if (inp->isa_InlineType()) {
 778         // TODO 8302217 This prevents PhiNode::push_inline_types_through
 779         return nullptr;
 780       }
 781       if (get_ctrl(inp) == proj) { // Found local op
 782         cost++;
 783         // Check for a chain of dependent ops; these will all become
 784         // speculative in a CMOV.
 785         for (uint k = 1; k < inp->req(); k++)
 786           if (get_ctrl(inp->in(k)) == proj)
 787             cost += ConditionalMoveLimit; // Too much speculative goo
 788       }
 789     }
 790     // See if the Phi is used by a Cmp or Narrow oop Decode/Encode.
 791     // This will likely Split-If, a higher-payoff operation.
 792     for (DUIterator_Fast kmax, k = phi->fast_outs(kmax); k < kmax; k++) {
 793       Node* use = phi->fast_out(k);
 794       if (use->is_Cmp() || use->is_DecodeNarrowPtr() || use->is_EncodeNarrowPtr())
 795         cost += ConditionalMoveLimit;
 796       // Is there a use inside the loop?
 797       // Note: check only basic types since CMoveP is pinned.
 798       if (!used_inside_loop && is_java_primitive(bt)) {
 799         IdealLoopTree* u_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use);
 800         if (r_loop == u_loop || r_loop->is_member(u_loop)) {
 801           used_inside_loop = true;
 802         }
 803       }
 804     }
 805   }//for
 806   Node* bol = iff->in(1);
 807   assert(!bol->is_OpaqueInitializedAssertionPredicate(), "Initialized Assertion Predicates cannot form a diamond with Halt");
 808   if (bol->is_OpaqueTemplateAssertionPredicate()) {
 809     // Ignore Template Assertion Predicates with OpaqueTemplateAssertionPredicate nodes.
 810     return nullptr;
 811   }
 812   if (bol->is_OpaqueMultiversioning()) {
 813     assert(bol->as_OpaqueMultiversioning()->is_useless(), "Must be useless, i.e. fast main loop has already disappeared.");
 814     // Ignore multiversion_if that just lost its loops. The OpaqueMultiversioning is marked useless,
 815     // and will make the multiversion_if constant fold in the next IGVN round.
 816     return nullptr;
 817   }
 818   if (!bol->is_Bool()) {
 819     assert(false, "Expected Bool, but got %s", NodeClassNames[bol->Opcode()]);
 820     return nullptr;
 821   }
 822   int cmp_op = bol->in(1)->Opcode();
 823   if (cmp_op == Op_SubTypeCheck) { // SubTypeCheck expansion expects an IfNode
 824     return nullptr;
 825   }
 826   // It is expensive to generate flags from a float compare.
 827   // Avoid duplicated float compare.
 828   if (phis > 1 && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) return nullptr;
 829 
 830   float infrequent_prob = PROB_UNLIKELY_MAG(3);
 831   // Ignore cost and blocks frequency if CMOVE can be moved outside the loop.
 832   if (used_inside_loop) {
 833     if (cost >= ConditionalMoveLimit) return nullptr; // Too much goo
 834 
 835     // BlockLayoutByFrequency optimization moves infrequent branch
 836     // from hot path. No point in CMOV'ing in such case (110 is used
 837     // instead of 100 to take into account not exactness of float value).
 838     if (BlockLayoutByFrequency) {
 839       infrequent_prob = MAX2(infrequent_prob, (float)BlockLayoutMinDiamondPercentage/110.0f);
 840     }
 841   }
 842   // Check for highly predictable branch.  No point in CMOV'ing if
 843   // we are going to predict accurately all the time.
 844   if (C->use_cmove() && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) {
 845     //keep going
 846   } else if (iff->_prob < infrequent_prob ||
 847       iff->_prob > (1.0f - infrequent_prob))
 848     return nullptr;
 849 
 850   // --------------
 851   // Now replace all Phis with CMOV's
 852   Node *cmov_ctrl = iff->in(0);
 853   uint flip = (lp->Opcode() == Op_IfTrue);
 854   Node_List wq;
 855   while (1) {
 856     PhiNode* phi = nullptr;
 857     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 858       Node *out = region->fast_out(i);
 859       if (out->is_Phi()) {
 860         phi = out->as_Phi();
 861         break;
 862       }
 863     }
 864     if (phi == nullptr || _igvn.type(phi) == Type::TOP || !CMoveNode::supported(_igvn.type(phi))) {
 865       break;
 866     }
 867     // Move speculative ops
 868     wq.push(phi);
 869     while (wq.size() > 0) {
 870       Node *n = wq.pop();
 871       for (uint j = 1; j < n->req(); j++) {
 872         Node* m = n->in(j);
 873         if (m != nullptr && !is_dominator(get_ctrl(m), cmov_ctrl)) {
 874           set_ctrl(m, cmov_ctrl);
 875           wq.push(m);
 876         }
 877       }
 878     }
 879     Node* cmov = CMoveNode::make(iff->in(1), phi->in(1+flip), phi->in(2-flip), _igvn.type(phi));
 880     register_new_node(cmov, cmov_ctrl);
 881     _igvn.replace_node(phi, cmov);
 882 #ifndef PRODUCT
 883     if (TraceLoopOpts) {
 884       tty->print("CMOV  ");
 885       r_loop->dump_head();
 886       if (Verbose) {
 887         bol->in(1)->dump(1);
 888         cmov->dump(1);
 889       }
 890     }
 891     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
 892 #endif
 893   }
 894 
 895   // The useless CFG diamond will fold up later; see the optimization in
 896   // RegionNode::Ideal.
 897   _igvn._worklist.push(region);
 898 
 899   return iff->in(1);
 900 }
 901 
 902 static void enqueue_cfg_uses(Node* m, Unique_Node_List& wq) {
 903   for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
 904     Node* u = m->fast_out(i);
 905     if (u->is_CFG()) {
 906       if (u->is_NeverBranch()) {
 907         u = u->as_NeverBranch()->proj_out(0);
 908         enqueue_cfg_uses(u, wq);
 909       } else {
 910         wq.push(u);
 911       }
 912     }
 913   }
 914 }
 915 
 916 // Try moving a store out of a loop, right before the loop
 917 Node* PhaseIdealLoop::try_move_store_before_loop(Node* n, Node *n_ctrl) {
 918   // Store has to be first in the loop body
 919   IdealLoopTree *n_loop = get_loop(n_ctrl);
 920   if (n->is_Store() && n_loop != _ltree_root &&
 921       n_loop->is_loop() && n_loop->_head->is_Loop() &&
 922       n->in(0) != nullptr) {
 923     Node* address = n->in(MemNode::Address);
 924     Node* value = n->in(MemNode::ValueIn);
 925     Node* mem = n->in(MemNode::Memory);
 926     IdealLoopTree* address_loop = get_loop(get_ctrl(address));
 927     IdealLoopTree* value_loop = get_loop(get_ctrl(value));
 928 
 929     // - address and value must be loop invariant
 930     // - memory must be a memory Phi for the loop
 931     // - Store must be the only store on this memory slice in the
 932     // loop: if there's another store following this one then value
 933     // written at iteration i by the second store could be overwritten
 934     // at iteration i+n by the first store: it's not safe to move the
 935     // first store out of the loop
 936     // - nothing must observe the memory Phi: it guarantees no read
 937     // before the store, we are also guaranteed the store post
 938     // dominates the loop head (ignoring a possible early
 939     // exit). Otherwise there would be extra Phi involved between the
 940     // loop's Phi and the store.
 941     // - there must be no early exit from the loop before the Store
 942     // (such an exit most of the time would be an extra use of the
 943     // memory Phi but sometimes is a bottom memory Phi that takes the
 944     // store as input).
 945 
 946     if (!n_loop->is_member(address_loop) &&
 947         !n_loop->is_member(value_loop) &&
 948         mem->is_Phi() && mem->in(0) == n_loop->_head &&
 949         mem->outcnt() == 1 &&
 950         mem->in(LoopNode::LoopBackControl) == n) {
 951 
 952       assert(n_loop->_tail != nullptr, "need a tail");
 953       assert(is_dominator(n_ctrl, n_loop->_tail), "store control must not be in a branch in the loop");
 954 
 955       // Verify that there's no early exit of the loop before the store.
 956       bool ctrl_ok = false;
 957       {
 958         // Follow control from loop head until n, we exit the loop or
 959         // we reach the tail
 960         ResourceMark rm;
 961         Unique_Node_List wq;
 962         wq.push(n_loop->_head);
 963 
 964         for (uint next = 0; next < wq.size(); ++next) {
 965           Node *m = wq.at(next);
 966           if (m == n->in(0)) {
 967             ctrl_ok = true;
 968             continue;
 969           }
 970           assert(!has_ctrl(m), "should be CFG");
 971           if (!n_loop->is_member(get_loop(m)) || m == n_loop->_tail) {
 972             ctrl_ok = false;
 973             break;
 974           }
 975           enqueue_cfg_uses(m, wq);
 976           if (wq.size() > 10) {
 977             ctrl_ok = false;
 978             break;
 979           }
 980         }
 981       }
 982       if (ctrl_ok) {
 983         // move the Store
 984         _igvn.replace_input_of(mem, LoopNode::LoopBackControl, mem);
 985         _igvn.replace_input_of(n, 0, n_loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl));
 986         _igvn.replace_input_of(n, MemNode::Memory, mem->in(LoopNode::EntryControl));
 987         // Disconnect the phi now. An empty phi can confuse other
 988         // optimizations in this pass of loop opts.
 989         _igvn.replace_node(mem, mem->in(LoopNode::EntryControl));
 990         n_loop->_body.yank(mem);
 991 
 992         set_ctrl_and_loop(n, n->in(0));
 993 
 994         return n;
 995       }
 996     }
 997   }
 998   return nullptr;
 999 }
1000 
1001 // Try moving a store out of a loop, right after the loop
1002 void PhaseIdealLoop::try_move_store_after_loop(Node* n) {
1003   if (n->is_Store() && n->in(0) != nullptr) {
1004     Node *n_ctrl = get_ctrl(n);
1005     IdealLoopTree *n_loop = get_loop(n_ctrl);
1006     // Store must be in a loop
1007     if (n_loop != _ltree_root && !n_loop->_irreducible) {
1008       Node* address = n->in(MemNode::Address);
1009       Node* value = n->in(MemNode::ValueIn);
1010       IdealLoopTree* address_loop = get_loop(get_ctrl(address));
1011       // address must be loop invariant
1012       if (!n_loop->is_member(address_loop)) {
1013         // Store must be last on this memory slice in the loop and
1014         // nothing in the loop must observe it
1015         Node* phi = nullptr;
1016         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1017           Node* u = n->fast_out(i);
1018           if (has_ctrl(u)) { // control use?
1019             IdealLoopTree *u_loop = get_loop(get_ctrl(u));
1020             if (!n_loop->is_member(u_loop)) {
1021               continue;
1022             }
1023             if (u->is_Phi() && u->in(0) == n_loop->_head) {
1024               assert(_igvn.type(u) == Type::MEMORY, "bad phi");
1025               // multiple phis on the same slice are possible
1026               if (phi != nullptr) {
1027                 return;
1028               }
1029               phi = u;
1030               continue;
1031             }
1032           }
1033           return;
1034         }
1035         if (phi != nullptr) {
1036           // Nothing in the loop before the store (next iteration)
1037           // must observe the stored value
1038           bool mem_ok = true;
1039           {
1040             ResourceMark rm;
1041             Unique_Node_List wq;
1042             wq.push(phi);
1043             for (uint next = 0; next < wq.size() && mem_ok; ++next) {
1044               Node *m = wq.at(next);
1045               for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax && mem_ok; i++) {
1046                 Node* u = m->fast_out(i);
1047                 if (u->is_Store() || u->is_Phi()) {
1048                   if (u != n) {
1049                     wq.push(u);
1050                     mem_ok = (wq.size() <= 10);
1051                   }
1052                 } else {
1053                   mem_ok = false;
1054                   break;
1055                 }
1056               }
1057             }
1058           }
1059           if (mem_ok) {
1060             // Move the store out of the loop if the LCA of all
1061             // users (except for the phi) is outside the loop.
1062             Node* hook = new Node(1);
1063             hook->init_req(0, n_ctrl); // Add an input to prevent hook from being dead
1064             _igvn.rehash_node_delayed(phi);
1065             int count = phi->replace_edge(n, hook, &_igvn);
1066             assert(count > 0, "inconsistent phi");
1067 
1068             // Compute latest point this store can go
1069             Node* lca = get_late_ctrl(n, get_ctrl(n));
1070             if (lca->is_OuterStripMinedLoop()) {
1071               lca = lca->in(LoopNode::EntryControl);
1072             }
1073             if (n_loop->is_member(get_loop(lca))) {
1074               // LCA is in the loop - bail out
1075               _igvn.replace_node(hook, n);
1076               return;
1077             }
1078 #ifdef ASSERT
1079             if (n_loop->_head->is_Loop() && n_loop->_head->as_Loop()->is_strip_mined()) {
1080               assert(n_loop->_head->Opcode() == Op_CountedLoop, "outer loop is a strip mined");
1081               n_loop->_head->as_Loop()->verify_strip_mined(1);
1082               Node* outer = n_loop->_head->as_CountedLoop()->outer_loop();
1083               IdealLoopTree* outer_loop = get_loop(outer);
1084               assert(n_loop->_parent == outer_loop, "broken loop tree");
1085               assert(get_loop(lca) == outer_loop, "safepoint in outer loop consume all memory state");
1086             }
1087 #endif
1088             lca = place_outside_loop(lca, n_loop);
1089             assert(!n_loop->is_member(get_loop(lca)), "control must not be back in the loop");
1090             assert(get_loop(lca)->_nest < n_loop->_nest || get_loop(lca)->_head->as_Loop()->is_in_infinite_subgraph(), "must not be moved into inner loop");
1091 
1092             // Move store out of the loop
1093             _igvn.replace_node(hook, n->in(MemNode::Memory));
1094             _igvn.replace_input_of(n, 0, lca);
1095             set_ctrl_and_loop(n, lca);
1096 
1097             // Disconnect the phi now. An empty phi can confuse other
1098             // optimizations in this pass of loop opts..
1099             if (phi->in(LoopNode::LoopBackControl) == phi) {
1100               _igvn.replace_node(phi, phi->in(LoopNode::EntryControl));
1101               n_loop->_body.yank(phi);
1102             }
1103           }
1104         }
1105       }
1106     }
1107   }
1108 }
1109 
1110 // We can't use immutable memory for the flat array check because we are loading the mark word which is
1111 // mutable. Although the bits we are interested in are immutable (we check for markWord::unlocked_value),
1112 // we need to use raw memory to not break anti dependency analysis. Below code will attempt to still move
1113 // flat array checks out of loops, mainly to enable loop unswitching.
1114 void PhaseIdealLoop::move_flat_array_check_out_of_loop(Node* n) {
1115   // Skip checks for more than one array
1116   if (n->req() > 3) {
1117     return;
1118   }
1119   Node* mem = n->in(FlatArrayCheckNode::Memory);
1120   Node* array = n->in(FlatArrayCheckNode::ArrayOrKlass)->uncast();
1121   IdealLoopTree* check_loop = get_loop(get_ctrl(n));
1122   IdealLoopTree* ary_loop = get_loop(get_ctrl(array));
1123 
1124   // Check if array is loop invariant
1125   if (!check_loop->is_member(ary_loop)) {
1126     // Walk up memory graph from the check until we leave the loop
1127     VectorSet wq;
1128     wq.set(mem->_idx);
1129     while (check_loop->is_member(get_loop(ctrl_or_self(mem)))) {
1130       if (mem->is_Phi()) {
1131         mem = mem->in(1);
1132       } else if (mem->is_MergeMem()) {
1133         mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1134       } else if (mem->is_Proj()) {
1135         mem = mem->in(0);
1136       } else if (mem->is_MemBar() || mem->is_SafePoint()) {
1137         mem = mem->in(TypeFunc::Memory);
1138       } else if (mem->is_Store() || mem->is_LoadStore() || mem->is_ClearArray()) {
1139         mem = mem->in(MemNode::Memory);
1140       } else {
1141 #ifdef ASSERT
1142         mem->dump();
1143 #endif
1144         ShouldNotReachHere();
1145       }
1146       if (wq.test_set(mem->_idx)) {
1147         return;
1148       }
1149     }
1150     // Replace memory input and re-compute ctrl to move the check out of the loop
1151     _igvn.replace_input_of(n, 1, mem);
1152     set_ctrl_and_loop(n, get_early_ctrl(n));
1153     Node* bol = n->unique_out();
1154     set_ctrl_and_loop(bol, get_early_ctrl(bol));
1155   }
1156 }
1157 
1158 //------------------------------split_if_with_blocks_pre-----------------------
1159 // Do the real work in a non-recursive function.  Data nodes want to be
1160 // cloned in the pre-order so they can feed each other nicely.
1161 Node *PhaseIdealLoop::split_if_with_blocks_pre( Node *n ) {
1162   // Cloning these guys is unlikely to win
1163   int n_op = n->Opcode();
1164   if (n_op == Op_MergeMem) {
1165     return n;
1166   }
1167   if (n->is_Proj()) {
1168     return n;
1169   }
1170 
1171   if (n->isa_FlatArrayCheck()) {
1172     move_flat_array_check_out_of_loop(n);
1173     return n;
1174   }
1175 
1176   // Do not clone-up CmpFXXX variations, as these are always
1177   // followed by a CmpI
1178   if (n->is_Cmp()) {
1179     return n;
1180   }
1181   // Attempt to use a conditional move instead of a phi/branch
1182   if (ConditionalMoveLimit > 0 && n_op == Op_Region) {
1183     Node *cmov = conditional_move( n );
1184     if (cmov) {
1185       return cmov;
1186     }
1187   }
1188   if (n->is_CFG() || n->is_LoadStore()) {
1189     return n;
1190   }
1191   if (n->is_Opaque1()) { // Opaque nodes cannot be mod'd
1192     if (!C->major_progress()) {   // If chance of no more loop opts...
1193       _igvn._worklist.push(n);  // maybe we'll remove them
1194     }
1195     return n;
1196   }
1197 
1198   if (n->is_Con()) {
1199     return n;   // No cloning for Con nodes
1200   }
1201 
1202   Node *n_ctrl = get_ctrl(n);
1203   if (!n_ctrl) {
1204     return n;       // Dead node
1205   }
1206 
1207   Node* res = try_move_store_before_loop(n, n_ctrl);
1208   if (res != nullptr) {
1209     return n;
1210   }
1211 
1212   // Attempt to remix address expressions for loop invariants
1213   Node *m = remix_address_expressions( n );
1214   if( m ) return m;
1215 
1216   if (n_op == Op_AddI) {
1217     Node *nn = convert_add_to_muladd( n );
1218     if ( nn ) return nn;
1219   }
1220 
1221   if (n->is_ConstraintCast()) {
1222     Node* dom_cast = n->as_ConstraintCast()->dominating_cast(&_igvn, this);
1223     // ConstraintCastNode::dominating_cast() uses node control input to determine domination.
1224     // Node control inputs don't necessarily agree with loop control info (due to
1225     // transformations happened in between), thus additional dominance check is needed
1226     // to keep loop info valid.
1227     if (dom_cast != nullptr && is_dominator(get_ctrl(dom_cast), get_ctrl(n))) {
1228       _igvn.replace_node(n, dom_cast);
1229       return dom_cast;
1230     }
1231   }
1232 
1233   // Determine if the Node has inputs from some local Phi.
1234   // Returns the block to clone thru.
1235   Node *n_blk = has_local_phi_input( n );
1236   if( !n_blk ) return n;
1237 
1238   // Do not clone the trip counter through on a CountedLoop
1239   // (messes up the canonical shape).
1240   if (((n_blk->is_CountedLoop() || (n_blk->is_Loop() && n_blk->as_Loop()->is_loop_nest_inner_loop())) && n->Opcode() == Op_AddI) ||
1241       (n_blk->is_LongCountedLoop() && n->Opcode() == Op_AddL)) {
1242     return n;
1243   }
1244   // Pushing a shift through the iv Phi can get in the way of addressing optimizations or range check elimination
1245   if (n_blk->is_BaseCountedLoop() && n->Opcode() == Op_LShift(n_blk->as_BaseCountedLoop()->bt()) &&
1246       n->in(1) == n_blk->as_BaseCountedLoop()->phi()) {
1247     return n;
1248   }
1249 
1250   // Check for having no control input; not pinned.  Allow
1251   // dominating control.
1252   if (n->in(0)) {
1253     Node *dom = idom(n_blk);
1254     if (dom_lca(n->in(0), dom) != n->in(0)) {
1255       return n;
1256     }
1257   }
1258   // Policy: when is it profitable.  You must get more wins than
1259   // policy before it is considered profitable.  Policy is usually 0,
1260   // so 1 win is considered profitable.  Big merges will require big
1261   // cloning, so get a larger policy.
1262   int policy = n_blk->req() >> 2;
1263 
1264   // If the loop is a candidate for range check elimination,
1265   // delay splitting through it's phi until a later loop optimization
1266   if (n_blk->is_BaseCountedLoop()) {
1267     IdealLoopTree *lp = get_loop(n_blk);
1268     if (lp && lp->_rce_candidate) {
1269       return n;
1270     }
1271   }
1272 
1273   if (must_throttle_split_if()) return n;
1274 
1275   // Split 'n' through the merge point if it is profitable
1276   Node *phi = split_thru_phi( n, n_blk, policy );
1277   if (!phi) return n;
1278 
1279   // Found a Phi to split thru!
1280   // Replace 'n' with the new phi
1281   _igvn.replace_node( n, phi );
1282   // Moved a load around the loop, 'en-registering' something.
1283   if (n_blk->is_Loop() && n->is_Load() &&
1284       !phi->in(LoopNode::LoopBackControl)->is_Load())
1285     C->set_major_progress();
1286 
1287   return phi;
1288 }
1289 
1290 static bool merge_point_too_heavy(Compile* C, Node* region) {
1291   // Bail out if the region and its phis have too many users.
1292   int weight = 0;
1293   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1294     weight += region->fast_out(i)->outcnt();
1295   }
1296   int nodes_left = C->max_node_limit() - C->live_nodes();
1297   if (weight * 8 > nodes_left) {
1298     if (PrintOpto) {
1299       tty->print_cr("*** Split-if bails out:  %d nodes, region weight %d", C->unique(), weight);
1300     }
1301     return true;
1302   } else {
1303     return false;
1304   }
1305 }
1306 
1307 static bool merge_point_safe(Node* region) {
1308   // 4799512: Stop split_if_with_blocks from splitting a block with a ConvI2LNode
1309   // having a PhiNode input. This sidesteps the dangerous case where the split
1310   // ConvI2LNode may become TOP if the input Value() does not
1311   // overlap the ConvI2L range, leaving a node which may not dominate its
1312   // uses.
1313   // A better fix for this problem can be found in the BugTraq entry, but
1314   // expediency for Mantis demands this hack.
1315 #ifdef _LP64
1316   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1317     Node* n = region->fast_out(i);
1318     if (n->is_Phi()) {
1319       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1320         Node* m = n->fast_out(j);
1321         if (m->Opcode() == Op_ConvI2L)
1322           return false;
1323         if (m->is_CastII()) {
1324           return false;
1325         }
1326       }
1327     }
1328   }
1329 #endif
1330   return true;
1331 }
1332 
1333 
1334 //------------------------------place_outside_loop---------------------------------
1335 // Place some computation outside of this loop on the path to the use passed as argument
1336 Node* PhaseIdealLoop::place_outside_loop(Node* useblock, IdealLoopTree* loop) const {
1337   Node* head = loop->_head;
1338   assert(!loop->is_member(get_loop(useblock)), "must be outside loop");
1339   if (head->is_Loop() && head->as_Loop()->is_strip_mined()) {
1340     loop = loop->_parent;
1341     assert(loop->_head->is_OuterStripMinedLoop(), "malformed strip mined loop");
1342   }
1343 
1344   // Pick control right outside the loop
1345   for (;;) {
1346     Node* dom = idom(useblock);
1347     if (loop->is_member(get_loop(dom))) {
1348       break;
1349     }
1350     useblock = dom;
1351   }
1352   assert(find_non_split_ctrl(useblock) == useblock, "should be non split control");
1353   return useblock;
1354 }
1355 
1356 
1357 bool PhaseIdealLoop::identical_backtoback_ifs(Node *n) {
1358   if (!n->is_If() || n->is_BaseCountedLoopEnd()) {
1359     return false;
1360   }
1361   if (!n->in(0)->is_Region()) {
1362     return false;
1363   }
1364 
1365   Node* region = n->in(0);
1366   Node* dom = idom(region);
1367   if (!dom->is_If() ||  !n->as_If()->same_condition(dom, &_igvn)) {
1368     return false;
1369   }
1370   IfNode* dom_if = dom->as_If();
1371   Node* proj_true = dom_if->proj_out(1);
1372   Node* proj_false = dom_if->proj_out(0);
1373 
1374   for (uint i = 1; i < region->req(); i++) {
1375     if (is_dominator(proj_true, region->in(i))) {
1376       continue;
1377     }
1378     if (is_dominator(proj_false, region->in(i))) {
1379       continue;
1380     }
1381     return false;
1382   }
1383 
1384   return true;
1385 }
1386 
1387 
1388 bool PhaseIdealLoop::can_split_if(Node* n_ctrl) {
1389   if (must_throttle_split_if()) {
1390     return false;
1391   }
1392 
1393   // Do not do 'split-if' if irreducible loops are present.
1394   if (_has_irreducible_loops) {
1395     return false;
1396   }
1397 
1398   if (merge_point_too_heavy(C, n_ctrl)) {
1399     return false;
1400   }
1401 
1402   // Do not do 'split-if' if some paths are dead.  First do dead code
1403   // elimination and then see if its still profitable.
1404   for (uint i = 1; i < n_ctrl->req(); i++) {
1405     if (n_ctrl->in(i) == C->top()) {
1406       return false;
1407     }
1408   }
1409 
1410   // If trying to do a 'Split-If' at the loop head, it is only
1411   // profitable if the cmp folds up on BOTH paths.  Otherwise we
1412   // risk peeling a loop forever.
1413 
1414   // CNC - Disabled for now.  Requires careful handling of loop
1415   // body selection for the cloned code.  Also, make sure we check
1416   // for any input path not being in the same loop as n_ctrl.  For
1417   // irreducible loops we cannot check for 'n_ctrl->is_Loop()'
1418   // because the alternative loop entry points won't be converted
1419   // into LoopNodes.
1420   IdealLoopTree *n_loop = get_loop(n_ctrl);
1421   for (uint j = 1; j < n_ctrl->req(); j++) {
1422     if (get_loop(n_ctrl->in(j)) != n_loop) {
1423       return false;
1424     }
1425   }
1426 
1427   // Check for safety of the merge point.
1428   if (!merge_point_safe(n_ctrl)) {
1429     return false;
1430   }
1431 
1432   return true;
1433 }
1434 
1435 // Detect if the node is the inner strip-mined loop
1436 // Return: null if it's not the case, or the exit of outer strip-mined loop
1437 static Node* is_inner_of_stripmined_loop(const Node* out) {
1438   Node* out_le = nullptr;
1439 
1440   if (out->is_CountedLoopEnd()) {
1441       const CountedLoopNode* loop = out->as_CountedLoopEnd()->loopnode();
1442 
1443       if (loop != nullptr && loop->is_strip_mined()) {
1444         out_le = loop->in(LoopNode::EntryControl)->as_OuterStripMinedLoop()->outer_loop_exit();
1445       }
1446   }
1447 
1448   return out_le;
1449 }
1450 
1451 bool PhaseIdealLoop::flat_array_element_type_check(Node *n) {
1452   // If the CmpP is a subtype check for a value that has just been
1453   // loaded from an array, the subtype check guarantees the value
1454   // can't be stored in a flat array and the load of the value
1455   // happens with a flat array check then: push the type check
1456   // through the phi of the flat array check. This needs special
1457   // logic because the subtype check's input is not a phi but a
1458   // LoadKlass that must first be cloned through the phi.
1459   if (n->Opcode() != Op_CmpP) {
1460     return false;
1461   }
1462 
1463   Node* klassptr = n->in(1);
1464   Node* klasscon = n->in(2);
1465 
1466   if (klassptr->is_DecodeNarrowPtr()) {
1467     klassptr = klassptr->in(1);
1468   }
1469 
1470   if (klassptr->Opcode() != Op_LoadKlass && klassptr->Opcode() != Op_LoadNKlass) {
1471     return false;
1472   }
1473 
1474   if (!klasscon->is_Con()) {
1475     return false;
1476   }
1477 
1478   Node* addr = klassptr->in(MemNode::Address);
1479 
1480   if (!addr->is_AddP()) {
1481     return false;
1482   }
1483 
1484   intptr_t offset;
1485   Node* obj = AddPNode::Ideal_base_and_offset(addr, &_igvn, offset);
1486 
1487   if (obj == nullptr) {
1488     return false;
1489   }
1490 
1491   assert(obj != nullptr && addr->in(AddPNode::Base) == addr->in(AddPNode::Address), "malformed AddP?");
1492   if (obj->Opcode() == Op_CastPP) {
1493     obj = obj->in(1);
1494   }
1495 
1496   if (!obj->is_Phi()) {
1497     return false;
1498   }
1499 
1500   Node* region = obj->in(0);
1501 
1502   Node* phi = PhiNode::make_blank(region, n->in(1));
1503   for (uint i = 1; i < region->req(); i++) {
1504     Node* in = obj->in(i);
1505     Node* ctrl = region->in(i);
1506     if (addr->in(AddPNode::Base) != obj) {
1507       Node* cast = addr->in(AddPNode::Base);
1508       assert(cast->Opcode() == Op_CastPP && cast->in(0) != nullptr, "inconsistent subgraph");
1509       Node* cast_clone = cast->clone();
1510       cast_clone->set_req(0, ctrl);
1511       cast_clone->set_req(1, in);
1512       register_new_node(cast_clone, ctrl);
1513       const Type* tcast = cast_clone->Value(&_igvn);
1514       _igvn.set_type(cast_clone, tcast);
1515       cast_clone->as_Type()->set_type(tcast);
1516       in = cast_clone;
1517     }
1518     Node* addr_clone = addr->clone();
1519     addr_clone->set_req(AddPNode::Base, in);
1520     addr_clone->set_req(AddPNode::Address, in);
1521     register_new_node(addr_clone, ctrl);
1522     _igvn.set_type(addr_clone, addr_clone->Value(&_igvn));
1523     Node* klassptr_clone = klassptr->clone();
1524     klassptr_clone->set_req(2, addr_clone);
1525     register_new_node(klassptr_clone, ctrl);
1526     _igvn.set_type(klassptr_clone, klassptr_clone->Value(&_igvn));
1527     if (klassptr != n->in(1)) {
1528       Node* decode = n->in(1);
1529       assert(decode->is_DecodeNarrowPtr(), "inconsistent subgraph");
1530       Node* decode_clone = decode->clone();
1531       decode_clone->set_req(1, klassptr_clone);
1532       register_new_node(decode_clone, ctrl);
1533       _igvn.set_type(decode_clone, decode_clone->Value(&_igvn));
1534       klassptr_clone = decode_clone;
1535     }
1536     phi->set_req(i, klassptr_clone);
1537   }
1538   register_new_node(phi, region);
1539   Node* orig = n->in(1);
1540   _igvn.replace_input_of(n, 1, phi);
1541   split_if_with_blocks_post(n);
1542   if (n->outcnt() != 0) {
1543     _igvn.replace_input_of(n, 1, orig);
1544     _igvn.remove_dead_node(phi);
1545   }
1546   return true;
1547 }
1548 
1549 //------------------------------split_if_with_blocks_post----------------------
1550 // Do the real work in a non-recursive function.  CFG hackery wants to be
1551 // in the post-order, so it can dirty the I-DOM info and not use the dirtied
1552 // info.
1553 void PhaseIdealLoop::split_if_with_blocks_post(Node *n) {
1554 
1555   if (flat_array_element_type_check(n)) {
1556     return;
1557   }
1558 
1559   // Cloning Cmp through Phi's involves the split-if transform.
1560   // FastLock is not used by an If
1561   if (n->is_Cmp() && !n->is_FastLock()) {
1562     Node *n_ctrl = get_ctrl(n);
1563     // Determine if the Node has inputs from some local Phi.
1564     // Returns the block to clone thru.
1565     Node *n_blk = has_local_phi_input(n);
1566     if (n_blk != n_ctrl) {
1567       return;
1568     }
1569 
1570     if (!can_split_if(n_ctrl)) {
1571       return;
1572     }
1573 
1574     if (n->outcnt() != 1) {
1575       return; // Multiple bool's from 1 compare?
1576     }
1577     Node *bol = n->unique_out();
1578     assert(bol->is_Bool(), "expect a bool here");
1579     if (bol->outcnt() != 1) {
1580       return;// Multiple branches from 1 compare?
1581     }
1582     Node *iff = bol->unique_out();
1583 
1584     // Check some safety conditions
1585     if (iff->is_If()) {        // Classic split-if?
1586       if (iff->in(0) != n_ctrl) {
1587         return; // Compare must be in same blk as if
1588       }
1589     } else if (iff->is_CMove()) { // Trying to split-up a CMOVE
1590       // Can't split CMove with different control.
1591       if (get_ctrl(iff) != n_ctrl) {
1592         return;
1593       }
1594       if (get_ctrl(iff->in(2)) == n_ctrl ||
1595           get_ctrl(iff->in(3)) == n_ctrl) {
1596         return;                 // Inputs not yet split-up
1597       }
1598       if (get_loop(n_ctrl) != get_loop(get_ctrl(iff))) {
1599         return;                 // Loop-invar test gates loop-varying CMOVE
1600       }
1601     } else {
1602       return;  // some other kind of node, such as an Allocate
1603     }
1604 
1605     // When is split-if profitable?  Every 'win' on means some control flow
1606     // goes dead, so it's almost always a win.
1607     int policy = 0;
1608     // Split compare 'n' through the merge point if it is profitable
1609     Node *phi = split_thru_phi( n, n_ctrl, policy);
1610     if (!phi) {
1611       return;
1612     }
1613 
1614     // Found a Phi to split thru!
1615     // Replace 'n' with the new phi
1616     _igvn.replace_node(n, phi);
1617 
1618     // Now split the bool up thru the phi
1619     Node *bolphi = split_thru_phi(bol, n_ctrl, -1);
1620     guarantee(bolphi != nullptr, "null boolean phi node");
1621 
1622     _igvn.replace_node(bol, bolphi);
1623     assert(iff->in(1) == bolphi, "");
1624 
1625     if (bolphi->Value(&_igvn)->singleton()) {
1626       return;
1627     }
1628 
1629     // Conditional-move?  Must split up now
1630     if (!iff->is_If()) {
1631       Node *cmovphi = split_thru_phi(iff, n_ctrl, -1);
1632       _igvn.replace_node(iff, cmovphi);
1633       return;
1634     }
1635 
1636     // Now split the IF
1637     C->print_method(PHASE_BEFORE_SPLIT_IF, 4, iff);
1638     if (TraceLoopOpts) {
1639       tty->print_cr("Split-If");
1640     }
1641     do_split_if(iff);
1642     C->print_method(PHASE_AFTER_SPLIT_IF, 4, iff);
1643     return;
1644   }
1645 
1646   // Two identical ifs back to back can be merged
1647   if (try_merge_identical_ifs(n)) {
1648     return;
1649   }
1650 
1651   // Check for an IF ready to split; one that has its
1652   // condition codes input coming from a Phi at the block start.
1653   int n_op = n->Opcode();
1654 
1655   // Check for an IF being dominated by another IF same test
1656   if (n_op == Op_If ||
1657       n_op == Op_RangeCheck) {
1658     Node *bol = n->in(1);
1659     uint max = bol->outcnt();
1660     // Check for same test used more than once?
1661     if (bol->is_Bool() && (max > 1 || bol->in(1)->is_SubTypeCheck())) {
1662       // Search up IDOMs to see if this IF is dominated.
1663       Node* cmp = bol->in(1);
1664       Node *cutoff = cmp->is_SubTypeCheck() ? dom_lca(get_ctrl(cmp->in(1)), get_ctrl(cmp->in(2))) : get_ctrl(bol);
1665 
1666       // Now search up IDOMs till cutoff, looking for a dominating test
1667       Node *prevdom = n;
1668       Node *dom = idom(prevdom);
1669       while (dom != cutoff) {
1670         if (dom->req() > 1 && n->as_If()->same_condition(dom, &_igvn) && prevdom->in(0) == dom &&
1671             safe_for_if_replacement(dom)) {
1672           // It's invalid to move control dependent data nodes in the inner
1673           // strip-mined loop, because:
1674           //  1) break validation of LoopNode::verify_strip_mined()
1675           //  2) move code with side-effect in strip-mined loop
1676           // Move to the exit of outer strip-mined loop in that case.
1677           Node* out_le = is_inner_of_stripmined_loop(dom);
1678           if (out_le != nullptr) {
1679             prevdom = out_le;
1680           }
1681           // Replace the dominated test with an obvious true or false.
1682           // Place it on the IGVN worklist for later cleanup.
1683           C->set_major_progress();
1684           // Split if: pin array accesses that are control dependent on a range check and moved to a regular if,
1685           // to prevent an array load from floating above its range check. There are three cases:
1686           // 1. Move from RangeCheck "a" to RangeCheck "b": don't need to pin. If we ever remove b, then we pin
1687           //    all its array accesses at that point.
1688           // 2. We move from RangeCheck "a" to regular if "b": need to pin. If we ever remove b, then its array
1689           //    accesses would start to float, since we don't pin at that point.
1690           // 3. If we move from regular if: don't pin. All array accesses are already assumed to be pinned.
1691           bool pin_array_access_nodes =  n->Opcode() == Op_RangeCheck &&
1692                                          prevdom->in(0)->Opcode() != Op_RangeCheck;
1693           dominated_by(prevdom->as_IfProj(), n->as_If(), false, pin_array_access_nodes);
1694           DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
1695           return;
1696         }
1697         prevdom = dom;
1698         dom = idom(prevdom);
1699       }
1700     }
1701   }
1702 
1703   try_sink_out_of_loop(n);
1704   if (C->failing()) {
1705     return;
1706   }
1707 
1708   try_move_store_after_loop(n);
1709 
1710   // Remove multiple allocations of the same inline type
1711   if (n->is_InlineType()) {
1712     n->as_InlineType()->remove_redundant_allocations(this);
1713   }
1714 }
1715 
1716 // Transform:
1717 //
1718 // if (some_condition) {
1719 //   // body 1
1720 // } else {
1721 //   // body 2
1722 // }
1723 // if (some_condition) {
1724 //   // body 3
1725 // } else {
1726 //   // body 4
1727 // }
1728 //
1729 // into:
1730 //
1731 //
1732 // if (some_condition) {
1733 //   // body 1
1734 //   // body 3
1735 // } else {
1736 //   // body 2
1737 //   // body 4
1738 // }
1739 bool PhaseIdealLoop::try_merge_identical_ifs(Node* n) {
1740   if (identical_backtoback_ifs(n) && can_split_if(n->in(0))) {
1741     Node *n_ctrl = n->in(0);
1742     IfNode* dom_if = idom(n_ctrl)->as_If();
1743     if (n->in(1) != dom_if->in(1)) {
1744       assert(n->in(1)->in(1)->is_SubTypeCheck() &&
1745              (n->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr ||
1746               dom_if->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr), "only for subtype checks with profile data attached");
1747       _igvn.replace_input_of(n, 1, dom_if->in(1));
1748     }
1749     ProjNode* dom_proj_true = dom_if->proj_out(1);
1750     ProjNode* dom_proj_false = dom_if->proj_out(0);
1751 
1752     // Now split the IF
1753     RegionNode* new_false_region;
1754     RegionNode* new_true_region;
1755     do_split_if(n, &new_false_region, &new_true_region);
1756     assert(new_false_region->req() == new_true_region->req(), "");
1757 #ifdef ASSERT
1758     for (uint i = 1; i < new_false_region->req(); ++i) {
1759       assert(new_false_region->in(i)->in(0) == new_true_region->in(i)->in(0), "unexpected shape following split if");
1760       assert(i == new_false_region->req() - 1 || new_false_region->in(i)->in(0)->in(1) == new_false_region->in(i + 1)->in(0)->in(1), "unexpected shape following split if");
1761     }
1762 #endif
1763     assert(new_false_region->in(1)->in(0)->in(1) == dom_if->in(1), "dominating if and dominated if after split must share test");
1764 
1765     // We now have:
1766     // if (some_condition) {
1767     //   // body 1
1768     //   if (some_condition) {
1769     //     body3: // new_true_region
1770     //     // body3
1771     //   } else {
1772     //     goto body4;
1773     //   }
1774     // } else {
1775     //   // body 2
1776     //  if (some_condition) {
1777     //     goto body3;
1778     //   } else {
1779     //     body4:   // new_false_region
1780     //     // body4;
1781     //   }
1782     // }
1783     //
1784 
1785     // clone pinned nodes thru the resulting regions
1786     push_pinned_nodes_thru_region(dom_if, new_true_region);
1787     push_pinned_nodes_thru_region(dom_if, new_false_region);
1788 
1789     // Optimize out the cloned ifs. Because pinned nodes were cloned, this also allows a CastPP that would be dependent
1790     // on a projection of n to have the dom_if as a control dependency. We don't want the CastPP to end up with an
1791     // unrelated control dependency.
1792     for (uint i = 1; i < new_false_region->req(); i++) {
1793       if (is_dominator(dom_proj_true, new_false_region->in(i))) {
1794         dominated_by(dom_proj_true->as_IfProj(), new_false_region->in(i)->in(0)->as_If());
1795       } else {
1796         assert(is_dominator(dom_proj_false, new_false_region->in(i)), "bad if");
1797         dominated_by(dom_proj_false->as_IfProj(), new_false_region->in(i)->in(0)->as_If());
1798       }
1799     }
1800     return true;
1801   }
1802   return false;
1803 }
1804 
1805 void PhaseIdealLoop::push_pinned_nodes_thru_region(IfNode* dom_if, Node* region) {
1806   for (DUIterator i = region->outs(); region->has_out(i); i++) {
1807     Node* u = region->out(i);
1808     if (!has_ctrl(u) || u->is_Phi() || !u->depends_only_on_test() || !_igvn.no_dependent_zero_check(u)) {
1809       continue;
1810     }
1811     assert(u->in(0) == region, "not a control dependent node?");
1812     uint j = 1;
1813     for (; j < u->req(); ++j) {
1814       Node* in = u->in(j);
1815       if (!is_dominator(ctrl_or_self(in), dom_if)) {
1816         break;
1817       }
1818     }
1819     if (j == u->req()) {
1820       Node *phi = PhiNode::make_blank(region, u);
1821       for (uint k = 1; k < region->req(); ++k) {
1822         Node* clone = u->clone();
1823         clone->set_req(0, region->in(k));
1824         register_new_node(clone, region->in(k));
1825         phi->init_req(k, clone);
1826       }
1827       register_new_node(phi, region);
1828       _igvn.replace_node(u, phi);
1829       --i;
1830     }
1831   }
1832 }
1833 
1834 bool PhaseIdealLoop::safe_for_if_replacement(const Node* dom) const {
1835   if (!dom->is_CountedLoopEnd()) {
1836     return true;
1837   }
1838   CountedLoopEndNode* le = dom->as_CountedLoopEnd();
1839   CountedLoopNode* cl = le->loopnode();
1840   if (cl == nullptr) {
1841     return true;
1842   }
1843   if (!cl->is_main_loop()) {
1844     return true;
1845   }
1846   if (cl->is_canonical_loop_entry() == nullptr) {
1847     return true;
1848   }
1849   // Further unrolling is possible so loop exit condition might change
1850   return false;
1851 }
1852 
1853 // See if a shared loop-varying computation has no loop-varying uses.
1854 // Happens if something is only used for JVM state in uncommon trap exits,
1855 // like various versions of induction variable+offset.  Clone the
1856 // computation per usage to allow it to sink out of the loop.
1857 void PhaseIdealLoop::try_sink_out_of_loop(Node* n) {
1858   bool is_raw_to_oop_cast = n->is_ConstraintCast() &&
1859                             n->in(1)->bottom_type()->isa_rawptr() &&
1860                             !n->bottom_type()->isa_rawptr();
1861 
1862   if (has_ctrl(n) &&
1863       !n->is_Phi() &&
1864       !n->is_Bool() &&
1865       !n->is_Proj() &&
1866       !n->is_MergeMem() &&
1867       !n->is_CMove() &&
1868       !n->is_OpaqueNotNull() &&
1869       !n->is_OpaqueInitializedAssertionPredicate() &&
1870       !n->is_OpaqueTemplateAssertionPredicate() &&
1871       !is_raw_to_oop_cast && // don't extend live ranges of raw oops
1872       (KillPathsReachableByDeadTypeNode || !n->is_Type())
1873       ) {
1874     Node *n_ctrl = get_ctrl(n);
1875     IdealLoopTree *n_loop = get_loop(n_ctrl);
1876 
1877     if (n->in(0) != nullptr) {
1878       IdealLoopTree* loop_ctrl = get_loop(n->in(0));
1879       if (n_loop != loop_ctrl && n_loop->is_member(loop_ctrl)) {
1880         // n has a control input inside a loop but get_ctrl() is member of an outer loop. This could happen, for example,
1881         // for Div nodes inside a loop (control input inside loop) without a use except for an UCT (outside the loop).
1882         // Rewire control of n to right outside of the loop, regardless if its input(s) are later sunk or not.
1883         Node* maybe_pinned_n = n;
1884         Node* outside_ctrl = place_outside_loop(n_ctrl, loop_ctrl);
1885         if (n->depends_only_on_test()) {
1886           Node* pinned_clone = n->pin_array_access_node();
1887           if (pinned_clone != nullptr) {
1888             // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a
1889             // range check for that access. If that condition is replaced by an identical dominating one, then an
1890             // unpinned load would risk floating above its range check.
1891             register_new_node(pinned_clone, n_ctrl);
1892             maybe_pinned_n = pinned_clone;
1893             _igvn.replace_node(n, pinned_clone);
1894           }
1895         }
1896         _igvn.replace_input_of(maybe_pinned_n, 0, outside_ctrl);
1897       }
1898     }
1899     if (n_loop != _ltree_root && n->outcnt() > 1) {
1900       // Compute early control: needed for anti-dependence analysis. It's also possible that as a result of
1901       // previous transformations in this loop opts round, the node can be hoisted now: early control will tell us.
1902       Node* early_ctrl = compute_early_ctrl(n, n_ctrl);
1903       if (n_loop->is_member(get_loop(early_ctrl)) && // check that this one can't be hoisted now
1904           ctrl_of_all_uses_out_of_loop(n, early_ctrl, n_loop)) { // All uses in outer loops!
1905         if (n->is_Store() || n->is_LoadStore()) {
1906             assert(false, "no node with a side effect");
1907             C->record_failure("no node with a side effect");
1908             return;
1909         }
1910         Node* outer_loop_clone = nullptr;
1911         for (DUIterator_Last jmin, j = n->last_outs(jmin); j >= jmin;) {
1912           Node* u = n->last_out(j); // Clone private computation per use
1913           _igvn.rehash_node_delayed(u);
1914           Node* x = nullptr;
1915           if (n->depends_only_on_test()) {
1916             // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a
1917             // range check for that access. If that condition is replaced by an identical dominating one, then an
1918             // unpinned load would risk floating above its range check.
1919             x = n->pin_array_access_node();
1920           }
1921           if (x == nullptr) {
1922             x = n->clone();
1923           }
1924           Node* x_ctrl = nullptr;
1925           if (u->is_Phi()) {
1926             // Replace all uses of normal nodes.  Replace Phi uses
1927             // individually, so the separate Nodes can sink down
1928             // different paths.
1929             uint k = 1;
1930             while (u->in(k) != n) k++;
1931             u->set_req(k, x);
1932             // x goes next to Phi input path
1933             x_ctrl = u->in(0)->in(k);
1934             // Find control for 'x' next to use but not inside inner loops.
1935             x_ctrl = place_outside_loop(x_ctrl, n_loop);
1936             --j;
1937           } else {              // Normal use
1938             if (has_ctrl(u)) {
1939               x_ctrl = get_ctrl(u);
1940             } else {
1941               x_ctrl = u->in(0);
1942             }
1943             // Find control for 'x' next to use but not inside inner loops.
1944             x_ctrl = place_outside_loop(x_ctrl, n_loop);
1945             // Replace all uses
1946             if (u->is_ConstraintCast() && _igvn.type(n)->higher_equal(u->bottom_type()) && u->in(0) == x_ctrl) {
1947               // If we're sinking a chain of data nodes, we might have inserted a cast to pin the use which is not necessary
1948               // anymore now that we're going to pin n as well
1949               _igvn.replace_node(u, x);
1950               --j;
1951             } else {
1952               int nb = u->replace_edge(n, x, &_igvn);
1953               j -= nb;
1954             }
1955           }
1956 
1957           if (n->is_Load()) {
1958             // For loads, add a control edge to a CFG node outside of the loop
1959             // to force them to not combine and return back inside the loop
1960             // during GVN optimization (4641526).
1961             assert(x_ctrl == get_late_ctrl_with_anti_dep(x->as_Load(), early_ctrl, x_ctrl), "anti-dependences were already checked");
1962 
1963             IdealLoopTree* x_loop = get_loop(x_ctrl);
1964             Node* x_head = x_loop->_head;
1965             if (x_head->is_Loop() && x_head->is_OuterStripMinedLoop()) {
1966               // Do not add duplicate LoadNodes to the outer strip mined loop
1967               if (outer_loop_clone != nullptr) {
1968                 _igvn.replace_node(x, outer_loop_clone);
1969                 continue;
1970               }
1971               outer_loop_clone = x;
1972             }
1973             x->set_req(0, x_ctrl);
1974           } else if (n->in(0) != nullptr){
1975             x->set_req(0, x_ctrl);
1976           }
1977           assert(dom_depth(n_ctrl) <= dom_depth(x_ctrl), "n is later than its clone");
1978           assert(!n_loop->is_member(get_loop(x_ctrl)), "should have moved out of loop");
1979           register_new_node(x, x_ctrl);
1980 
1981           // Chain of AddP nodes: (AddP base (AddP base (AddP base )))
1982           // All AddP nodes must keep the same base after sinking so:
1983           // 1- We don't add a CastPP here until the last one of the chain is sunk: if part of the chain is not sunk,
1984           // their bases remain the same.
1985           // (see 2- below)
1986           assert(!x->is_AddP() || !x->in(AddPNode::Address)->is_AddP() ||
1987                  x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base) ||
1988                  !x->in(AddPNode::Address)->in(AddPNode::Base)->eqv_uncast(x->in(AddPNode::Base)), "unexpected AddP shape");
1989           if (x->in(0) == nullptr && !x->is_DecodeNarrowPtr() &&
1990               !(x->is_AddP() && x->in(AddPNode::Address)->is_AddP() && x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base))) {
1991             assert(!x->is_Load(), "load should be pinned");
1992             // Use a cast node to pin clone out of loop
1993             Node* cast = nullptr;
1994             for (uint k = 0; k < x->req(); k++) {
1995               Node* in = x->in(k);
1996               if (in != nullptr && n_loop->is_member(get_loop(get_ctrl(in)))) {
1997                 const Type* in_t = _igvn.type(in);
1998                 cast = ConstraintCastNode::make_cast_for_type(x_ctrl, in, in_t,
1999                                                               ConstraintCastNode::UnconditionalDependency, nullptr);
2000               }
2001               if (cast != nullptr) {
2002                 Node* prev = _igvn.hash_find_insert(cast);
2003                 if (prev != nullptr && get_ctrl(prev) == x_ctrl) {
2004                   cast->destruct(&_igvn);
2005                   cast = prev;
2006                 } else {
2007                   register_new_node(cast, x_ctrl);
2008                 }
2009                 x->replace_edge(in, cast);
2010                 // Chain of AddP nodes:
2011                 // 2- A CastPP of the base is only added now that all AddP nodes are sunk
2012                 if (x->is_AddP() && k == AddPNode::Base) {
2013                   update_addp_chain_base(x, n->in(AddPNode::Base), cast);
2014                 }
2015                 break;
2016               }
2017             }
2018             assert(cast != nullptr, "must have added a cast to pin the node");
2019           }
2020         }
2021         _igvn.remove_dead_node(n);
2022       }
2023       _dom_lca_tags_round = 0;
2024     }
2025   }
2026 }
2027 
2028 void PhaseIdealLoop::update_addp_chain_base(Node* x, Node* old_base, Node* new_base) {
2029   ResourceMark rm;
2030   Node_List wq;
2031   wq.push(x);
2032   while (wq.size() != 0) {
2033     Node* n = wq.pop();
2034     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2035       Node* u = n->fast_out(i);
2036       if (u->is_AddP() && u->in(AddPNode::Base) == old_base) {
2037         _igvn.replace_input_of(u, AddPNode::Base, new_base);
2038         wq.push(u);
2039       }
2040     }
2041   }
2042 }
2043 
2044 // Compute the early control of a node by following its inputs until we reach
2045 // nodes that are pinned. Then compute the LCA of the control of all pinned nodes.
2046 Node* PhaseIdealLoop::compute_early_ctrl(Node* n, Node* n_ctrl) {
2047   Node* early_ctrl = nullptr;
2048   ResourceMark rm;
2049   Unique_Node_List wq;
2050   wq.push(n);
2051   for (uint i = 0; i < wq.size(); i++) {
2052     Node* m = wq.at(i);
2053     Node* c = nullptr;
2054     if (m->is_CFG()) {
2055       c = m;
2056     } else if (m->pinned()) {
2057       c = m->in(0);
2058     } else {
2059       for (uint j = 0; j < m->req(); j++) {
2060         Node* in = m->in(j);
2061         if (in != nullptr) {
2062           wq.push(in);
2063         }
2064       }
2065     }
2066     if (c != nullptr) {
2067       assert(is_dominator(c, n_ctrl), "control input must dominate current control");
2068       if (early_ctrl == nullptr || is_dominator(early_ctrl, c)) {
2069         early_ctrl = c;
2070       }
2071     }
2072   }
2073   assert(is_dominator(early_ctrl, n_ctrl), "early control must dominate current control");
2074   return early_ctrl;
2075 }
2076 
2077 bool PhaseIdealLoop::ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop) {
2078   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2079     Node* u = n->fast_out(i);
2080     if (u->is_Opaque1()) {
2081       return false;  // Found loop limit, bugfix for 4677003
2082     }
2083     // We can't reuse tags in PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal() so make sure calls to
2084     // get_late_ctrl_with_anti_dep() use their own tag
2085     _dom_lca_tags_round++;
2086     assert(_dom_lca_tags_round != 0, "shouldn't wrap around");
2087 
2088     if (u->is_Phi()) {
2089       for (uint j = 1; j < u->req(); ++j) {
2090         if (u->in(j) == n && !ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, u->in(0)->in(j))) {
2091           return false;
2092         }
2093       }
2094     } else {
2095       Node* ctrl = has_ctrl(u) ? get_ctrl(u) : u->in(0);
2096       if (!ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, ctrl)) {
2097         return false;
2098       }
2099     }
2100   }
2101   return true;
2102 }
2103 
2104 bool PhaseIdealLoop::ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl) {
2105   if (n->is_Load()) {
2106     ctrl = get_late_ctrl_with_anti_dep(n->as_Load(), n_ctrl, ctrl);
2107   }
2108   IdealLoopTree *u_loop = get_loop(ctrl);
2109   if (u_loop == n_loop) {
2110     return false; // Found loop-varying use
2111   }
2112   if (n_loop->is_member(u_loop)) {
2113     return false; // Found use in inner loop
2114   }
2115   // Sinking a node from a pre loop to its main loop pins the node between the pre and main loops. If that node is input
2116   // to a check that's eliminated by range check elimination, it becomes input to an expression that feeds into the exit
2117   // test of the pre loop above the point in the graph where it's pinned.
2118   if (n_loop->_head->is_CountedLoop() && n_loop->_head->as_CountedLoop()->is_pre_loop()) {
2119     CountedLoopNode* pre_loop = n_loop->_head->as_CountedLoop();
2120     if (is_dominator(pre_loop->loopexit(), ctrl)) {
2121       return false;
2122     }
2123   }
2124   return true;
2125 }
2126 
2127 //------------------------------split_if_with_blocks---------------------------
2128 // Check for aggressive application of 'split-if' optimization,
2129 // using basic block level info.
2130 void PhaseIdealLoop::split_if_with_blocks(VectorSet &visited, Node_Stack &nstack) {
2131   Node* root = C->root();
2132   visited.set(root->_idx); // first, mark root as visited
2133   // Do pre-visit work for root
2134   Node* n   = split_if_with_blocks_pre(root);
2135   uint  cnt = n->outcnt();
2136   uint  i   = 0;
2137 
2138   while (true) {
2139     // Visit all children
2140     if (i < cnt) {
2141       Node* use = n->raw_out(i);
2142       ++i;
2143       if (use->outcnt() != 0 && !visited.test_set(use->_idx)) {
2144         // Now do pre-visit work for this use
2145         use = split_if_with_blocks_pre(use);
2146         nstack.push(n, i); // Save parent and next use's index.
2147         n   = use;         // Process all children of current use.
2148         cnt = use->outcnt();
2149         i   = 0;
2150       }
2151     }
2152     else {
2153       // All of n's children have been processed, complete post-processing.
2154       if (cnt != 0 && !n->is_Con()) {
2155         assert(has_node(n), "no dead nodes");
2156         split_if_with_blocks_post(n);
2157         if (C->failing()) {
2158           return;
2159         }
2160       }
2161       if (must_throttle_split_if()) {
2162         nstack.clear();
2163       }
2164       if (nstack.is_empty()) {
2165         // Finished all nodes on stack.
2166         break;
2167       }
2168       // Get saved parent node and next use's index. Visit the rest of uses.
2169       n   = nstack.node();
2170       cnt = n->outcnt();
2171       i   = nstack.index();
2172       nstack.pop();
2173     }
2174   }
2175 }
2176 
2177 
2178 //=============================================================================
2179 //
2180 //                   C L O N E   A   L O O P   B O D Y
2181 //
2182 
2183 //------------------------------clone_iff--------------------------------------
2184 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
2185 // "Nearly" because all Nodes have been cloned from the original in the loop,
2186 // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
2187 // through the Phi recursively, and return a Bool.
2188 Node* PhaseIdealLoop::clone_iff(PhiNode* phi) {
2189 
2190   // Convert this Phi into a Phi merging Bools
2191   uint i;
2192   for (i = 1; i < phi->req(); i++) {
2193     Node* b = phi->in(i);
2194     if (b->is_Phi()) {
2195       _igvn.replace_input_of(phi, i, clone_iff(b->as_Phi()));
2196     } else {
2197       assert(b->is_Bool() || b->is_OpaqueNotNull() || b->is_OpaqueInitializedAssertionPredicate(),
2198              "bool, non-null check with OpaqueNotNull or Initialized Assertion Predicate with its Opaque node");
2199     }
2200   }
2201   Node* n = phi->in(1);
2202   Node* sample_opaque = nullptr;
2203   Node *sample_bool = nullptr;
2204   if (n->is_OpaqueNotNull() || n->is_OpaqueInitializedAssertionPredicate()) {
2205     sample_opaque = n;
2206     sample_bool = n->in(1);
2207     assert(sample_bool->is_Bool(), "wrong type");
2208   } else {
2209     sample_bool = n;
2210   }
2211   Node* sample_cmp = sample_bool->in(1);
2212   const Type* t = Type::TOP;
2213   const TypePtr* at = nullptr;
2214   if (sample_cmp->is_FlatArrayCheck()) {
2215     // Left input of a FlatArrayCheckNode is memory, set the (adr) type of the phi accordingly
2216     assert(sample_cmp->in(1)->bottom_type() == Type::MEMORY, "unexpected input type");
2217     t = Type::MEMORY;
2218     at = TypeRawPtr::BOTTOM;
2219   }
2220 
2221   // Make Phis to merge the Cmp's inputs.
2222   PhiNode *phi1 = new PhiNode(phi->in(0), t, at);
2223   PhiNode *phi2 = new PhiNode(phi->in(0), Type::TOP);
2224   for (i = 1; i < phi->req(); i++) {
2225     Node *n1 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(1) : phi->in(i)->in(1)->in(1)->in(1);
2226     Node *n2 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(2) : phi->in(i)->in(1)->in(1)->in(2);
2227     phi1->set_req(i, n1);
2228     phi2->set_req(i, n2);
2229     phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type()));
2230     phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type()));
2231   }
2232   // See if these Phis have been made before.
2233   // Register with optimizer
2234   Node *hit1 = _igvn.hash_find_insert(phi1);
2235   if (hit1) {                   // Hit, toss just made Phi
2236     _igvn.remove_dead_node(phi1); // Remove new phi
2237     assert(hit1->is_Phi(), "" );
2238     phi1 = (PhiNode*)hit1;      // Use existing phi
2239   } else {                      // Miss
2240     _igvn.register_new_node_with_optimizer(phi1);
2241   }
2242   Node *hit2 = _igvn.hash_find_insert(phi2);
2243   if (hit2) {                   // Hit, toss just made Phi
2244     _igvn.remove_dead_node(phi2); // Remove new phi
2245     assert(hit2->is_Phi(), "" );
2246     phi2 = (PhiNode*)hit2;      // Use existing phi
2247   } else {                      // Miss
2248     _igvn.register_new_node_with_optimizer(phi2);
2249   }
2250   // Register Phis with loop/block info
2251   set_ctrl(phi1, phi->in(0));
2252   set_ctrl(phi2, phi->in(0));
2253   // Make a new Cmp
2254   Node *cmp = sample_cmp->clone();
2255   cmp->set_req(1, phi1);
2256   cmp->set_req(2, phi2);
2257   _igvn.register_new_node_with_optimizer(cmp);
2258   set_ctrl(cmp, phi->in(0));
2259 
2260   // Make a new Bool
2261   Node *b = sample_bool->clone();
2262   b->set_req(1,cmp);
2263   _igvn.register_new_node_with_optimizer(b);
2264   set_ctrl(b, phi->in(0));
2265 
2266   if (sample_opaque != nullptr) {
2267     Node* opaque = sample_opaque->clone();
2268     opaque->set_req(1, b);
2269     _igvn.register_new_node_with_optimizer(opaque);
2270     set_ctrl(opaque, phi->in(0));
2271     return opaque;
2272   }
2273 
2274   assert(b->is_Bool(), "");
2275   return b;
2276 }
2277 
2278 //------------------------------clone_bool-------------------------------------
2279 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
2280 // "Nearly" because all Nodes have been cloned from the original in the loop,
2281 // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
2282 // through the Phi recursively, and return a Bool.
2283 CmpNode*PhaseIdealLoop::clone_bool(PhiNode* phi) {
2284   uint i;
2285   // Convert this Phi into a Phi merging Bools
2286   for( i = 1; i < phi->req(); i++ ) {
2287     Node *b = phi->in(i);
2288     if( b->is_Phi() ) {
2289       _igvn.replace_input_of(phi, i, clone_bool(b->as_Phi()));
2290     } else {
2291       assert( b->is_Cmp() || b->is_top(), "inputs are all Cmp or TOP" );
2292     }
2293   }
2294 
2295   Node *sample_cmp = phi->in(1);
2296 
2297   // Make Phis to merge the Cmp's inputs.
2298   PhiNode *phi1 = new PhiNode( phi->in(0), Type::TOP );
2299   PhiNode *phi2 = new PhiNode( phi->in(0), Type::TOP );
2300   for( uint j = 1; j < phi->req(); j++ ) {
2301     Node *cmp_top = phi->in(j); // Inputs are all Cmp or TOP
2302     Node *n1, *n2;
2303     if( cmp_top->is_Cmp() ) {
2304       n1 = cmp_top->in(1);
2305       n2 = cmp_top->in(2);
2306     } else {
2307       n1 = n2 = cmp_top;
2308     }
2309     phi1->set_req( j, n1 );
2310     phi2->set_req( j, n2 );
2311     phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type()));
2312     phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type()));
2313   }
2314 
2315   // See if these Phis have been made before.
2316   // Register with optimizer
2317   Node *hit1 = _igvn.hash_find_insert(phi1);
2318   if( hit1 ) {                  // Hit, toss just made Phi
2319     _igvn.remove_dead_node(phi1); // Remove new phi
2320     assert( hit1->is_Phi(), "" );
2321     phi1 = (PhiNode*)hit1;      // Use existing phi
2322   } else {                      // Miss
2323     _igvn.register_new_node_with_optimizer(phi1);
2324   }
2325   Node *hit2 = _igvn.hash_find_insert(phi2);
2326   if( hit2 ) {                  // Hit, toss just made Phi
2327     _igvn.remove_dead_node(phi2); // Remove new phi
2328     assert( hit2->is_Phi(), "" );
2329     phi2 = (PhiNode*)hit2;      // Use existing phi
2330   } else {                      // Miss
2331     _igvn.register_new_node_with_optimizer(phi2);
2332   }
2333   // Register Phis with loop/block info
2334   set_ctrl(phi1, phi->in(0));
2335   set_ctrl(phi2, phi->in(0));
2336   // Make a new Cmp
2337   Node *cmp = sample_cmp->clone();
2338   cmp->set_req( 1, phi1 );
2339   cmp->set_req( 2, phi2 );
2340   _igvn.register_new_node_with_optimizer(cmp);
2341   set_ctrl(cmp, phi->in(0));
2342 
2343   assert( cmp->is_Cmp(), "" );
2344   return (CmpNode*)cmp;
2345 }
2346 
2347 void PhaseIdealLoop::clone_loop_handle_data_uses(Node* old, Node_List &old_new,
2348                                                  IdealLoopTree* loop, IdealLoopTree* outer_loop,
2349                                                  Node_List*& split_if_set, Node_List*& split_bool_set,
2350                                                  Node_List*& split_cex_set, Node_List& worklist,
2351                                                  uint new_counter, CloneLoopMode mode) {
2352   Node* nnn = old_new[old->_idx];
2353   // Copy uses to a worklist, so I can munge the def-use info
2354   // with impunity.
2355   for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++)
2356     worklist.push(old->fast_out(j));
2357 
2358   while( worklist.size() ) {
2359     Node *use = worklist.pop();
2360     if (!has_node(use))  continue; // Ignore dead nodes
2361     if (use->in(0) == C->top())  continue;
2362     IdealLoopTree *use_loop = get_loop( has_ctrl(use) ? get_ctrl(use) : use );
2363     // Check for data-use outside of loop - at least one of OLD or USE
2364     // must not be a CFG node.
2365 #ifdef ASSERT
2366     if (loop->_head->as_Loop()->is_strip_mined() && outer_loop->is_member(use_loop) && !loop->is_member(use_loop) && old_new[use->_idx] == nullptr) {
2367       Node* sfpt = loop->_head->as_CountedLoop()->outer_safepoint();
2368       assert(mode != IgnoreStripMined, "incorrect cloning mode");
2369       assert((mode == ControlAroundStripMined && use == sfpt) || !use->is_reachable_from_root(), "missed a node");
2370     }
2371 #endif
2372     if (!loop->is_member(use_loop) && !outer_loop->is_member(use_loop) && (!old->is_CFG() || !use->is_CFG())) {
2373 
2374       // If the Data use is an IF, that means we have an IF outside the
2375       // loop that is switching on a condition that is set inside the
2376       // loop.  Happens if people set a loop-exit flag; then test the flag
2377       // in the loop to break the loop, then test is again outside the
2378       // loop to determine which way the loop exited.
2379       //
2380       // For several uses we need to make sure that there is no phi between,
2381       // the use and the Bool/Cmp. We therefore clone the Bool/Cmp down here
2382       // to avoid such a phi in between.
2383       // For example, it is unexpected that there is a Phi between an
2384       // AllocateArray node and its ValidLengthTest input that could cause
2385       // split if to break.
2386       assert(!use->is_OpaqueTemplateAssertionPredicate(),
2387              "should not clone a Template Assertion Predicate which should be removed once it's useless");
2388       if (use->is_If() || use->is_CMove() || use->is_OpaqueNotNull() || use->is_OpaqueInitializedAssertionPredicate() ||
2389           (use->Opcode() == Op_AllocateArray && use->in(AllocateNode::ValidLengthTest) == old)) {
2390         // Since this code is highly unlikely, we lazily build the worklist
2391         // of such Nodes to go split.
2392         if (!split_if_set) {
2393           split_if_set = new Node_List();
2394         }
2395         split_if_set->push(use);
2396       }
2397       if (use->is_Bool()) {
2398         if (!split_bool_set) {
2399           split_bool_set = new Node_List();
2400         }
2401         split_bool_set->push(use);
2402       }
2403       if (use->Opcode() == Op_CreateEx) {
2404         if (!split_cex_set) {
2405           split_cex_set = new Node_List();
2406         }
2407         split_cex_set->push(use);
2408       }
2409 
2410 
2411       // Get "block" use is in
2412       uint idx = 0;
2413       while( use->in(idx) != old ) idx++;
2414       Node *prev = use->is_CFG() ? use : get_ctrl(use);
2415       assert(!loop->is_member(get_loop(prev)) && !outer_loop->is_member(get_loop(prev)), "" );
2416       Node* cfg = (prev->_idx >= new_counter && prev->is_Region())
2417         ? prev->in(2)
2418         : idom(prev);
2419       if( use->is_Phi() )     // Phi use is in prior block
2420         cfg = prev->in(idx);  // NOT in block of Phi itself
2421       if (cfg->is_top()) {    // Use is dead?
2422         _igvn.replace_input_of(use, idx, C->top());
2423         continue;
2424       }
2425 
2426       // If use is referenced through control edge... (idx == 0)
2427       if (mode == IgnoreStripMined && idx == 0) {
2428         LoopNode *head = loop->_head->as_Loop();
2429         if (head->is_strip_mined() && is_dominator(head->outer_loop_exit(), prev)) {
2430           // That node is outside the inner loop, leave it outside the
2431           // outer loop as well to not confuse verification code.
2432           assert(!loop->_parent->is_member(use_loop), "should be out of the outer loop");
2433           _igvn.replace_input_of(use, 0, head->outer_loop_exit());
2434           continue;
2435         }
2436       }
2437 
2438       while(!outer_loop->is_member(get_loop(cfg))) {
2439         prev = cfg;
2440         cfg = (cfg->_idx >= new_counter && cfg->is_Region()) ? cfg->in(2) : idom(cfg);
2441       }
2442       // If the use occurs after merging several exits from the loop, then
2443       // old value must have dominated all those exits.  Since the same old
2444       // value was used on all those exits we did not need a Phi at this
2445       // merge point.  NOW we do need a Phi here.  Each loop exit value
2446       // is now merged with the peeled body exit; each exit gets its own
2447       // private Phi and those Phis need to be merged here.
2448       Node *phi;
2449       if( prev->is_Region() ) {
2450         if( idx == 0 ) {      // Updating control edge?
2451           phi = prev;         // Just use existing control
2452         } else {              // Else need a new Phi
2453           phi = PhiNode::make( prev, old );
2454           // Now recursively fix up the new uses of old!
2455           for( uint i = 1; i < prev->req(); i++ ) {
2456             worklist.push(phi); // Onto worklist once for each 'old' input
2457           }
2458         }
2459       } else {
2460         // Get new RegionNode merging old and new loop exits
2461         prev = old_new[prev->_idx];
2462         assert( prev, "just made this in step 7" );
2463         if( idx == 0) {      // Updating control edge?
2464           phi = prev;         // Just use existing control
2465         } else {              // Else need a new Phi
2466           // Make a new Phi merging data values properly
2467           phi = PhiNode::make( prev, old );
2468           phi->set_req( 1, nnn );
2469         }
2470       }
2471       // If inserting a new Phi, check for prior hits
2472       if( idx != 0 ) {
2473         Node *hit = _igvn.hash_find_insert(phi);
2474         if( hit == nullptr ) {
2475           _igvn.register_new_node_with_optimizer(phi); // Register new phi
2476         } else {                                      // or
2477           // Remove the new phi from the graph and use the hit
2478           _igvn.remove_dead_node(phi);
2479           phi = hit;                                  // Use existing phi
2480         }
2481         set_ctrl(phi, prev);
2482       }
2483       // Make 'use' use the Phi instead of the old loop body exit value
2484       assert(use->in(idx) == old, "old is still input of use");
2485       // We notify all uses of old, including use, and the indirect uses,
2486       // that may now be optimized because we have replaced old with phi.
2487       _igvn.add_users_to_worklist(old);
2488       if (idx == 0 &&
2489           use->depends_only_on_test()) {
2490         Node* pinned_clone = use->pin_array_access_node();
2491         if (pinned_clone != nullptr) {
2492           // Pin array access nodes: control is updated here to a region. If, after some transformations, only one path
2493           // into the region is left, an array load could become dependent on a condition that's not a range check for
2494           // that access. If that condition is replaced by an identical dominating one, then an unpinned load would risk
2495           // floating above its range check.
2496           pinned_clone->set_req(0, phi);
2497           register_new_node_with_ctrl_of(pinned_clone, use);
2498           _igvn.replace_node(use, pinned_clone);
2499           continue;
2500         }
2501       }
2502       _igvn.replace_input_of(use, idx, phi);
2503       if( use->_idx >= new_counter ) { // If updating new phis
2504         // Not needed for correctness, but prevents a weak assert
2505         // in AddPNode from tripping (when we end up with different
2506         // base & derived Phis that will become the same after
2507         // IGVN does CSE).
2508         Node *hit = _igvn.hash_find_insert(use);
2509         if( hit )             // Go ahead and re-hash for hits.
2510           _igvn.replace_node( use, hit );
2511       }
2512     }
2513   }
2514 }
2515 
2516 static void collect_nodes_in_outer_loop_not_reachable_from_sfpt(Node* n, const IdealLoopTree *loop, const IdealLoopTree* outer_loop,
2517                                                                 const Node_List &old_new, Unique_Node_List& wq, PhaseIdealLoop* phase,
2518                                                                 bool check_old_new) {
2519   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2520     Node* u = n->fast_out(j);
2521     assert(check_old_new || old_new[u->_idx] == nullptr, "shouldn't have been cloned");
2522     if (!u->is_CFG() && (!check_old_new || old_new[u->_idx] == nullptr)) {
2523       Node* c = phase->get_ctrl(u);
2524       IdealLoopTree* u_loop = phase->get_loop(c);
2525       assert(!loop->is_member(u_loop) || !loop->_body.contains(u), "can be in outer loop or out of both loops only");
2526       if (!loop->is_member(u_loop)) {
2527         if (outer_loop->is_member(u_loop)) {
2528           wq.push(u);
2529         } else {
2530           // nodes pinned with control in the outer loop but not referenced from the safepoint must be moved out of
2531           // the outer loop too
2532           Node* u_c = u->in(0);
2533           if (u_c != nullptr) {
2534             IdealLoopTree* u_c_loop = phase->get_loop(u_c);
2535             if (outer_loop->is_member(u_c_loop) && !loop->is_member(u_c_loop)) {
2536               wq.push(u);
2537             }
2538           }
2539         }
2540       }
2541     }
2542   }
2543 }
2544 
2545 void PhaseIdealLoop::clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
2546                                       IdealLoopTree* outer_loop, int dd, Node_List &old_new,
2547                                       Node_List& extra_data_nodes) {
2548   if (head->is_strip_mined() && mode != IgnoreStripMined) {
2549     CountedLoopNode* cl = head->as_CountedLoop();
2550     Node* l = cl->outer_loop();
2551     Node* tail = cl->outer_loop_tail();
2552     IfNode* le = cl->outer_loop_end();
2553     Node* sfpt = cl->outer_safepoint();
2554     CountedLoopEndNode* cle = cl->loopexit();
2555     CountedLoopNode* new_cl = old_new[cl->_idx]->as_CountedLoop();
2556     CountedLoopEndNode* new_cle = new_cl->as_CountedLoop()->loopexit_or_null();
2557     Node* cle_out = cle->proj_out(false);
2558 
2559     Node* new_sfpt = nullptr;
2560     Node* new_cle_out = cle_out->clone();
2561     old_new.map(cle_out->_idx, new_cle_out);
2562     if (mode == CloneIncludesStripMined) {
2563       // clone outer loop body
2564       Node* new_l = l->clone();
2565       Node* new_tail = tail->clone();
2566       IfNode* new_le = le->clone()->as_If();
2567       new_sfpt = sfpt->clone();
2568 
2569       set_loop(new_l, outer_loop->_parent);
2570       set_idom(new_l, new_l->in(LoopNode::EntryControl), dd);
2571       set_loop(new_cle_out, outer_loop->_parent);
2572       set_idom(new_cle_out, new_cle, dd);
2573       set_loop(new_sfpt, outer_loop->_parent);
2574       set_idom(new_sfpt, new_cle_out, dd);
2575       set_loop(new_le, outer_loop->_parent);
2576       set_idom(new_le, new_sfpt, dd);
2577       set_loop(new_tail, outer_loop->_parent);
2578       set_idom(new_tail, new_le, dd);
2579       set_idom(new_cl, new_l, dd);
2580 
2581       old_new.map(l->_idx, new_l);
2582       old_new.map(tail->_idx, new_tail);
2583       old_new.map(le->_idx, new_le);
2584       old_new.map(sfpt->_idx, new_sfpt);
2585 
2586       new_l->set_req(LoopNode::LoopBackControl, new_tail);
2587       new_l->set_req(0, new_l);
2588       new_tail->set_req(0, new_le);
2589       new_le->set_req(0, new_sfpt);
2590       new_sfpt->set_req(0, new_cle_out);
2591       new_cle_out->set_req(0, new_cle);
2592       new_cl->set_req(LoopNode::EntryControl, new_l);
2593 
2594       _igvn.register_new_node_with_optimizer(new_l);
2595       _igvn.register_new_node_with_optimizer(new_tail);
2596       _igvn.register_new_node_with_optimizer(new_le);
2597     } else {
2598       Node *newhead = old_new[loop->_head->_idx];
2599       newhead->as_Loop()->clear_strip_mined();
2600       _igvn.replace_input_of(newhead, LoopNode::EntryControl, newhead->in(LoopNode::EntryControl)->in(LoopNode::EntryControl));
2601       set_idom(newhead, newhead->in(LoopNode::EntryControl), dd);
2602     }
2603     // Look at data node that were assigned a control in the outer
2604     // loop: they are kept in the outer loop by the safepoint so start
2605     // from the safepoint node's inputs.
2606     IdealLoopTree* outer_loop = get_loop(l);
2607     Node_Stack stack(2);
2608     stack.push(sfpt, 1);
2609     uint new_counter = C->unique();
2610     while (stack.size() > 0) {
2611       Node* n = stack.node();
2612       uint i = stack.index();
2613       while (i < n->req() &&
2614              (n->in(i) == nullptr ||
2615               !has_ctrl(n->in(i)) ||
2616               get_loop(get_ctrl(n->in(i))) != outer_loop ||
2617               (old_new[n->in(i)->_idx] != nullptr && old_new[n->in(i)->_idx]->_idx >= new_counter))) {
2618         i++;
2619       }
2620       if (i < n->req()) {
2621         stack.set_index(i+1);
2622         stack.push(n->in(i), 0);
2623       } else {
2624         assert(old_new[n->_idx] == nullptr || n == sfpt || old_new[n->_idx]->_idx < new_counter, "no clone yet");
2625         Node* m = n == sfpt ? new_sfpt : n->clone();
2626         if (m != nullptr) {
2627           for (uint i = 0; i < n->req(); i++) {
2628             if (m->in(i) != nullptr && old_new[m->in(i)->_idx] != nullptr) {
2629               m->set_req(i, old_new[m->in(i)->_idx]);
2630             }
2631           }
2632         } else {
2633           assert(n == sfpt && mode != CloneIncludesStripMined, "where's the safepoint clone?");
2634         }
2635         if (n != sfpt) {
2636           extra_data_nodes.push(n);
2637           _igvn.register_new_node_with_optimizer(m);
2638           assert(get_ctrl(n) == cle_out, "what other control?");
2639           set_ctrl(m, new_cle_out);
2640           old_new.map(n->_idx, m);
2641         }
2642         stack.pop();
2643       }
2644     }
2645     if (mode == CloneIncludesStripMined) {
2646       _igvn.register_new_node_with_optimizer(new_sfpt);
2647       _igvn.register_new_node_with_optimizer(new_cle_out);
2648     }
2649     // Some other transformation may have pessimistically assigned some
2650     // data nodes to the outer loop. Set their control so they are out
2651     // of the outer loop.
2652     ResourceMark rm;
2653     Unique_Node_List wq;
2654     for (uint i = 0; i < extra_data_nodes.size(); i++) {
2655       Node* old = extra_data_nodes.at(i);
2656       collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true);
2657     }
2658 
2659     for (uint i = 0; i < loop->_body.size(); i++) {
2660       Node* old = loop->_body.at(i);
2661       collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true);
2662     }
2663 
2664     Node* inner_out = sfpt->in(0);
2665     if (inner_out->outcnt() > 1) {
2666       collect_nodes_in_outer_loop_not_reachable_from_sfpt(inner_out, loop, outer_loop, old_new, wq, this, true);
2667     }
2668 
2669     Node* new_ctrl = cl->outer_loop_exit();
2670     assert(get_loop(new_ctrl) != outer_loop, "must be out of the loop nest");
2671     for (uint i = 0; i < wq.size(); i++) {
2672       Node* n = wq.at(i);
2673       set_ctrl(n, new_ctrl);
2674       if (n->in(0) != nullptr) {
2675         _igvn.replace_input_of(n, 0, new_ctrl);
2676       }
2677       collect_nodes_in_outer_loop_not_reachable_from_sfpt(n, loop, outer_loop, old_new, wq, this, false);
2678     }
2679   } else {
2680     Node *newhead = old_new[loop->_head->_idx];
2681     set_idom(newhead, newhead->in(LoopNode::EntryControl), dd);
2682   }
2683 }
2684 
2685 //------------------------------clone_loop-------------------------------------
2686 //
2687 //                   C L O N E   A   L O O P   B O D Y
2688 //
2689 // This is the basic building block of the loop optimizations.  It clones an
2690 // entire loop body.  It makes an old_new loop body mapping; with this mapping
2691 // you can find the new-loop equivalent to an old-loop node.  All new-loop
2692 // nodes are exactly equal to their old-loop counterparts, all edges are the
2693 // same.  All exits from the old-loop now have a RegionNode that merges the
2694 // equivalent new-loop path.  This is true even for the normal "loop-exit"
2695 // condition.  All uses of loop-invariant old-loop values now come from (one
2696 // or more) Phis that merge their new-loop equivalents.
2697 //
2698 // This operation leaves the graph in an illegal state: there are two valid
2699 // control edges coming from the loop pre-header to both loop bodies.  I'll
2700 // definitely have to hack the graph after running this transform.
2701 //
2702 // From this building block I will further edit edges to perform loop peeling
2703 // or loop unrolling or iteration splitting (Range-Check-Elimination), etc.
2704 //
2705 // Parameter side_by_size_idom:
2706 //   When side_by_size_idom is null, the dominator tree is constructed for
2707 //      the clone loop to dominate the original.  Used in construction of
2708 //      pre-main-post loop sequence.
2709 //   When nonnull, the clone and original are side-by-side, both are
2710 //      dominated by the side_by_side_idom node.  Used in construction of
2711 //      unswitched loops.
2712 void PhaseIdealLoop::clone_loop( IdealLoopTree *loop, Node_List &old_new, int dd,
2713                                 CloneLoopMode mode, Node* side_by_side_idom) {
2714 
2715   LoopNode* head = loop->_head->as_Loop();
2716   head->verify_strip_mined(1);
2717 
2718   if (C->do_vector_loop() && PrintOpto) {
2719     const char* mname = C->method()->name()->as_quoted_ascii();
2720     if (mname != nullptr) {
2721       tty->print("PhaseIdealLoop::clone_loop: for vectorize method %s\n", mname);
2722     }
2723   }
2724 
2725   CloneMap& cm = C->clone_map();
2726   if (C->do_vector_loop()) {
2727     cm.set_clone_idx(cm.max_gen()+1);
2728 #ifndef PRODUCT
2729     if (PrintOpto) {
2730       tty->print_cr("PhaseIdealLoop::clone_loop: _clone_idx %d", cm.clone_idx());
2731       loop->dump_head();
2732     }
2733 #endif
2734   }
2735 
2736   // Step 1: Clone the loop body.  Make the old->new mapping.
2737   clone_loop_body(loop->_body, old_new, &cm);
2738 
2739   IdealLoopTree* outer_loop = (head->is_strip_mined() && mode != IgnoreStripMined) ? get_loop(head->as_CountedLoop()->outer_loop()) : loop;
2740 
2741   // Step 2: Fix the edges in the new body.  If the old input is outside the
2742   // loop use it.  If the old input is INside the loop, use the corresponding
2743   // new node instead.
2744   fix_body_edges(loop->_body, loop, old_new, dd, outer_loop->_parent, false);
2745 
2746   Node_List extra_data_nodes; // data nodes in the outer strip mined loop
2747   clone_outer_loop(head, mode, loop, outer_loop, dd, old_new, extra_data_nodes);
2748 
2749   // Step 3: Now fix control uses.  Loop varying control uses have already
2750   // been fixed up (as part of all input edges in Step 2).  Loop invariant
2751   // control uses must be either an IfFalse or an IfTrue.  Make a merge
2752   // point to merge the old and new IfFalse/IfTrue nodes; make the use
2753   // refer to this.
2754   Node_List worklist;
2755   uint new_counter = C->unique();
2756   fix_ctrl_uses(loop->_body, loop, old_new, mode, side_by_side_idom, &cm, worklist);
2757 
2758   // Step 4: If loop-invariant use is not control, it must be dominated by a
2759   // loop exit IfFalse/IfTrue.  Find "proper" loop exit.  Make a Region
2760   // there if needed.  Make a Phi there merging old and new used values.
2761   Node_List *split_if_set = nullptr;
2762   Node_List *split_bool_set = nullptr;
2763   Node_List *split_cex_set = nullptr;
2764   fix_data_uses(loop->_body, loop, mode, outer_loop, new_counter, old_new, worklist, split_if_set, split_bool_set, split_cex_set);
2765 
2766   for (uint i = 0; i < extra_data_nodes.size(); i++) {
2767     Node* old = extra_data_nodes.at(i);
2768     clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set,
2769                                 split_bool_set, split_cex_set, worklist, new_counter,
2770                                 mode);
2771   }
2772 
2773   // Check for IFs that need splitting/cloning.  Happens if an IF outside of
2774   // the loop uses a condition set in the loop.  The original IF probably
2775   // takes control from one or more OLD Regions (which in turn get from NEW
2776   // Regions).  In any case, there will be a set of Phis for each merge point
2777   // from the IF up to where the original BOOL def exists the loop.
2778   finish_clone_loop(split_if_set, split_bool_set, split_cex_set);
2779 
2780 }
2781 
2782 void PhaseIdealLoop::finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set) {
2783   if (split_if_set) {
2784     while (split_if_set->size()) {
2785       Node *iff = split_if_set->pop();
2786       uint input = iff->Opcode() == Op_AllocateArray ? AllocateNode::ValidLengthTest : 1;
2787       if (iff->in(input)->is_Phi()) {
2788         Node *b = clone_iff(iff->in(input)->as_Phi());
2789         _igvn.replace_input_of(iff, input, b);
2790       }
2791     }
2792   }
2793   if (split_bool_set) {
2794     while (split_bool_set->size()) {
2795       Node *b = split_bool_set->pop();
2796       Node *phi = b->in(1);
2797       assert(phi->is_Phi(), "");
2798       CmpNode *cmp = clone_bool((PhiNode*) phi);
2799       _igvn.replace_input_of(b, 1, cmp);
2800     }
2801   }
2802   if (split_cex_set) {
2803     while (split_cex_set->size()) {
2804       Node *b = split_cex_set->pop();
2805       assert(b->in(0)->is_Region(), "");
2806       assert(b->in(1)->is_Phi(), "");
2807       assert(b->in(0)->in(0) == b->in(1)->in(0), "");
2808       split_up(b, b->in(0), nullptr);
2809     }
2810   }
2811 }
2812 
2813 void PhaseIdealLoop::fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
2814                                    uint new_counter, Node_List &old_new, Node_List &worklist, Node_List*& split_if_set,
2815                                    Node_List*& split_bool_set, Node_List*& split_cex_set) {
2816   for(uint i = 0; i < body.size(); i++ ) {
2817     Node* old = body.at(i);
2818     clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set,
2819                                 split_bool_set, split_cex_set, worklist, new_counter,
2820                                 mode);
2821   }
2822 }
2823 
2824 void PhaseIdealLoop::fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
2825                                    Node* side_by_side_idom, CloneMap* cm, Node_List &worklist) {
2826   LoopNode* head = loop->_head->as_Loop();
2827   for(uint i = 0; i < body.size(); i++ ) {
2828     Node* old = body.at(i);
2829     if( !old->is_CFG() ) continue;
2830 
2831     // Copy uses to a worklist, so I can munge the def-use info
2832     // with impunity.
2833     for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++) {
2834       worklist.push(old->fast_out(j));
2835     }
2836 
2837     while (worklist.size()) {  // Visit all uses
2838       Node *use = worklist.pop();
2839       if (!has_node(use))  continue; // Ignore dead nodes
2840       IdealLoopTree *use_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use );
2841       if (!loop->is_member(use_loop) && use->is_CFG()) {
2842         // Both OLD and USE are CFG nodes here.
2843         assert(use->is_Proj(), "" );
2844         Node* nnn = old_new[old->_idx];
2845 
2846         Node* newuse = nullptr;
2847         if (head->is_strip_mined() && mode != IgnoreStripMined) {
2848           CountedLoopNode* cl = head->as_CountedLoop();
2849           CountedLoopEndNode* cle = cl->loopexit();
2850           Node* cle_out = cle->proj_out_or_null(false);
2851           if (use == cle_out) {
2852             IfNode* le = cl->outer_loop_end();
2853             use = le->proj_out(false);
2854             use_loop = get_loop(use);
2855             if (mode == CloneIncludesStripMined) {
2856               nnn = old_new[le->_idx];
2857             } else {
2858               newuse = old_new[cle_out->_idx];
2859             }
2860           }
2861         }
2862         if (newuse == nullptr) {
2863           newuse = use->clone();
2864         }
2865 
2866         // Clone the loop exit control projection
2867         if (C->do_vector_loop() && cm != nullptr) {
2868           cm->verify_insert_and_clone(use, newuse, cm->clone_idx());
2869         }
2870         newuse->set_req(0,nnn);
2871         _igvn.register_new_node_with_optimizer(newuse);
2872         set_loop(newuse, use_loop);
2873         set_idom(newuse, nnn, dom_depth(nnn) + 1 );
2874 
2875         // We need a Region to merge the exit from the peeled body and the
2876         // exit from the old loop body.
2877         RegionNode *r = new RegionNode(3);
2878         uint dd_r = MIN2(dom_depth(newuse), dom_depth(use));
2879         assert(dd_r >= dom_depth(dom_lca(newuse, use)), "" );
2880 
2881         // The original user of 'use' uses 'r' instead.
2882         for (DUIterator_Last lmin, l = use->last_outs(lmin); l >= lmin;) {
2883           Node* useuse = use->last_out(l);
2884           _igvn.rehash_node_delayed(useuse);
2885           uint uses_found = 0;
2886           if (useuse->in(0) == use) {
2887             useuse->set_req(0, r);
2888             uses_found++;
2889             if (useuse->is_CFG()) {
2890               // This is not a dom_depth > dd_r because when new
2891               // control flow is constructed by a loop opt, a node and
2892               // its dominator can end up at the same dom_depth
2893               assert(dom_depth(useuse) >= dd_r, "");
2894               set_idom(useuse, r, dom_depth(useuse));
2895             }
2896           }
2897           for (uint k = 1; k < useuse->req(); k++) {
2898             if( useuse->in(k) == use ) {
2899               useuse->set_req(k, r);
2900               uses_found++;
2901               if (useuse->is_Loop() && k == LoopNode::EntryControl) {
2902                 // This is not a dom_depth > dd_r because when new
2903                 // control flow is constructed by a loop opt, a node
2904                 // and its dominator can end up at the same dom_depth
2905                 assert(dom_depth(useuse) >= dd_r , "");
2906                 set_idom(useuse, r, dom_depth(useuse));
2907               }
2908             }
2909           }
2910           l -= uses_found;    // we deleted 1 or more copies of this edge
2911         }
2912 
2913         assert(use->is_Proj(), "loop exit should be projection");
2914         // lazy_replace() below moves all nodes that are:
2915         // - control dependent on the loop exit or
2916         // - have control set to the loop exit
2917         // below the post-loop merge point. lazy_replace() takes a dead control as first input. To make it
2918         // possible to use it, the loop exit projection is cloned and becomes the new exit projection. The initial one
2919         // becomes dead and is "replaced" by the region.
2920         Node* use_clone = use->clone();
2921         register_control(use_clone, use_loop, idom(use), dom_depth(use));
2922         // Now finish up 'r'
2923         r->set_req(1, newuse);
2924         r->set_req(2, use_clone);
2925         _igvn.register_new_node_with_optimizer(r);
2926         set_loop(r, use_loop);
2927         set_idom(r, (side_by_side_idom == nullptr) ? newuse->in(0) : side_by_side_idom, dd_r);
2928         lazy_replace(use, r);
2929         // Map the (cloned) old use to the new merge point
2930         old_new.map(use_clone->_idx, r);
2931       } // End of if a loop-exit test
2932     }
2933   }
2934 }
2935 
2936 void PhaseIdealLoop::fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
2937                                     IdealLoopTree* parent, bool partial) {
2938   for(uint i = 0; i < body.size(); i++ ) {
2939     Node *old = body.at(i);
2940     Node *nnn = old_new[old->_idx];
2941     // Fix CFG/Loop controlling the new node
2942     if (has_ctrl(old)) {
2943       set_ctrl(nnn, old_new[get_ctrl(old)->_idx]);
2944     } else {
2945       set_loop(nnn, parent);
2946       if (old->outcnt() > 0) {
2947         Node* dom = idom(old);
2948         if (old_new[dom->_idx] != nullptr) {
2949           dom = old_new[dom->_idx];
2950           set_idom(nnn, dom, dd );
2951         }
2952       }
2953     }
2954     // Correct edges to the new node
2955     for (uint j = 0; j < nnn->req(); j++) {
2956         Node *n = nnn->in(j);
2957         if (n != nullptr) {
2958           IdealLoopTree *old_in_loop = get_loop(has_ctrl(n) ? get_ctrl(n) : n);
2959           if (loop->is_member(old_in_loop)) {
2960             if (old_new[n->_idx] != nullptr) {
2961               nnn->set_req(j, old_new[n->_idx]);
2962             } else {
2963               assert(!body.contains(n), "");
2964               assert(partial, "node not cloned");
2965             }
2966           }
2967         }
2968     }
2969     _igvn.hash_find_insert(nnn);
2970   }
2971 }
2972 
2973 void PhaseIdealLoop::clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm) {
2974   for (uint i = 0; i < body.size(); i++) {
2975     Node* old = body.at(i);
2976     Node* nnn = old->clone();
2977     old_new.map(old->_idx, nnn);
2978     if (C->do_vector_loop() && cm != nullptr) {
2979       cm->verify_insert_and_clone(old, nnn, cm->clone_idx());
2980     }
2981     _igvn.register_new_node_with_optimizer(nnn);
2982   }
2983 }
2984 
2985 
2986 //---------------------- stride_of_possible_iv -------------------------------------
2987 // Looks for an iff/bool/comp with one operand of the compare
2988 // being a cycle involving an add and a phi,
2989 // with an optional truncation (left-shift followed by a right-shift)
2990 // of the add. Returns zero if not an iv.
2991 int PhaseIdealLoop::stride_of_possible_iv(Node* iff) {
2992   Node* trunc1 = nullptr;
2993   Node* trunc2 = nullptr;
2994   const TypeInteger* ttype = nullptr;
2995   if (!iff->is_If() || iff->in(1) == nullptr || !iff->in(1)->is_Bool()) {
2996     return 0;
2997   }
2998   BoolNode* bl = iff->in(1)->as_Bool();
2999   Node* cmp = bl->in(1);
3000   if (!cmp || (cmp->Opcode() != Op_CmpI && cmp->Opcode() != Op_CmpU)) {
3001     return 0;
3002   }
3003   // Must have an invariant operand
3004   if (is_member(get_loop(iff), get_ctrl(cmp->in(2)))) {
3005     return 0;
3006   }
3007   Node* add2 = nullptr;
3008   Node* cmp1 = cmp->in(1);
3009   if (cmp1->is_Phi()) {
3010     // (If (Bool (CmpX phi:(Phi ...(Optional-trunc(AddI phi add2))) )))
3011     Node* phi = cmp1;
3012     for (uint i = 1; i < phi->req(); i++) {
3013       Node* in = phi->in(i);
3014       Node* add = CountedLoopNode::match_incr_with_optional_truncation(in,
3015                                 &trunc1, &trunc2, &ttype, T_INT);
3016       if (add && add->in(1) == phi) {
3017         add2 = add->in(2);
3018         break;
3019       }
3020     }
3021   } else {
3022     // (If (Bool (CmpX addtrunc:(Optional-trunc((AddI (Phi ...addtrunc...) add2)) )))
3023     Node* addtrunc = cmp1;
3024     Node* add = CountedLoopNode::match_incr_with_optional_truncation(addtrunc,
3025                                 &trunc1, &trunc2, &ttype, T_INT);
3026     if (add && add->in(1)->is_Phi()) {
3027       Node* phi = add->in(1);
3028       for (uint i = 1; i < phi->req(); i++) {
3029         if (phi->in(i) == addtrunc) {
3030           add2 = add->in(2);
3031           break;
3032         }
3033       }
3034     }
3035   }
3036   if (add2 != nullptr) {
3037     const TypeInt* add2t = _igvn.type(add2)->is_int();
3038     if (add2t->is_con()) {
3039       return add2t->get_con();
3040     }
3041   }
3042   return 0;
3043 }
3044 
3045 
3046 //---------------------- stay_in_loop -------------------------------------
3047 // Return the (unique) control output node that's in the loop (if it exists.)
3048 Node* PhaseIdealLoop::stay_in_loop( Node* n, IdealLoopTree *loop) {
3049   Node* unique = nullptr;
3050   if (!n) return nullptr;
3051   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3052     Node* use = n->fast_out(i);
3053     if (!has_ctrl(use) && loop->is_member(get_loop(use))) {
3054       if (unique != nullptr) {
3055         return nullptr;
3056       }
3057       unique = use;
3058     }
3059   }
3060   return unique;
3061 }
3062 
3063 //------------------------------ register_node -------------------------------------
3064 // Utility to register node "n" with PhaseIdealLoop
3065 void PhaseIdealLoop::register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth) {
3066   _igvn.register_new_node_with_optimizer(n);
3067   loop->_body.push(n);
3068   if (n->is_CFG()) {
3069     set_loop(n, loop);
3070     set_idom(n, pred, ddepth);
3071   } else {
3072     set_ctrl(n, pred);
3073   }
3074 }
3075 
3076 //------------------------------ proj_clone -------------------------------------
3077 // Utility to create an if-projection
3078 ProjNode* PhaseIdealLoop::proj_clone(ProjNode* p, IfNode* iff) {
3079   ProjNode* c = p->clone()->as_Proj();
3080   c->set_req(0, iff);
3081   return c;
3082 }
3083 
3084 //------------------------------ short_circuit_if -------------------------------------
3085 // Force the iff control output to be the live_proj
3086 Node* PhaseIdealLoop::short_circuit_if(IfNode* iff, ProjNode* live_proj) {
3087   guarantee(live_proj != nullptr, "null projection");
3088   int proj_con = live_proj->_con;
3089   assert(proj_con == 0 || proj_con == 1, "false or true projection");
3090   Node* con = intcon(proj_con);
3091   if (iff) {
3092     iff->set_req(1, con);
3093   }
3094   return con;
3095 }
3096 
3097 //------------------------------ insert_if_before_proj -------------------------------------
3098 // Insert a new if before an if projection (* - new node)
3099 //
3100 // before
3101 //           if(test)
3102 //           /     \
3103 //          v       v
3104 //    other-proj   proj (arg)
3105 //
3106 // after
3107 //           if(test)
3108 //           /     \
3109 //          /       v
3110 //         |      * proj-clone
3111 //         v          |
3112 //    other-proj      v
3113 //                * new_if(relop(cmp[IU](left,right)))
3114 //                  /  \
3115 //                 v    v
3116 //         * new-proj  proj
3117 //         (returned)
3118 //
3119 ProjNode* PhaseIdealLoop::insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj) {
3120   IfNode* iff = proj->in(0)->as_If();
3121   IdealLoopTree *loop = get_loop(proj);
3122   ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj();
3123   uint ddepth = dom_depth(proj);
3124 
3125   _igvn.rehash_node_delayed(iff);
3126   _igvn.rehash_node_delayed(proj);
3127 
3128   proj->set_req(0, nullptr);  // temporary disconnect
3129   ProjNode* proj2 = proj_clone(proj, iff);
3130   register_node(proj2, loop, iff, ddepth);
3131 
3132   Node* cmp = Signed ? (Node*) new CmpINode(left, right) : (Node*) new CmpUNode(left, right);
3133   register_node(cmp, loop, proj2, ddepth);
3134 
3135   BoolNode* bol = new BoolNode(cmp, relop);
3136   register_node(bol, loop, proj2, ddepth);
3137 
3138   int opcode = iff->Opcode();
3139   assert(opcode == Op_If || opcode == Op_RangeCheck, "unexpected opcode");
3140   IfNode* new_if = IfNode::make_with_same_profile(iff, proj2, bol);
3141   register_node(new_if, loop, proj2, ddepth);
3142 
3143   proj->set_req(0, new_if); // reattach
3144   set_idom(proj, new_if, ddepth);
3145 
3146   ProjNode* new_exit = proj_clone(other_proj, new_if)->as_Proj();
3147   guarantee(new_exit != nullptr, "null exit node");
3148   register_node(new_exit, get_loop(other_proj), new_if, ddepth);
3149 
3150   return new_exit;
3151 }
3152 
3153 //------------------------------ insert_region_before_proj -------------------------------------
3154 // Insert a region before an if projection (* - new node)
3155 //
3156 // before
3157 //           if(test)
3158 //          /      |
3159 //         v       |
3160 //       proj      v
3161 //               other-proj
3162 //
3163 // after
3164 //           if(test)
3165 //          /      |
3166 //         v       |
3167 // * proj-clone    v
3168 //         |     other-proj
3169 //         v
3170 // * new-region
3171 //         |
3172 //         v
3173 // *      dum_if
3174 //       /     \
3175 //      v       \
3176 // * dum-proj    v
3177 //              proj
3178 //
3179 RegionNode* PhaseIdealLoop::insert_region_before_proj(ProjNode* proj) {
3180   IfNode* iff = proj->in(0)->as_If();
3181   IdealLoopTree *loop = get_loop(proj);
3182   ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj();
3183   uint ddepth = dom_depth(proj);
3184 
3185   _igvn.rehash_node_delayed(iff);
3186   _igvn.rehash_node_delayed(proj);
3187 
3188   proj->set_req(0, nullptr);  // temporary disconnect
3189   ProjNode* proj2 = proj_clone(proj, iff);
3190   register_node(proj2, loop, iff, ddepth);
3191 
3192   RegionNode* reg = new RegionNode(2);
3193   reg->set_req(1, proj2);
3194   register_node(reg, loop, iff, ddepth);
3195 
3196   IfNode* dum_if = new IfNode(reg, short_circuit_if(nullptr, proj), iff->_prob, iff->_fcnt);
3197   register_node(dum_if, loop, reg, ddepth);
3198 
3199   proj->set_req(0, dum_if); // reattach
3200   set_idom(proj, dum_if, ddepth);
3201 
3202   ProjNode* dum_proj = proj_clone(other_proj, dum_if);
3203   register_node(dum_proj, loop, dum_if, ddepth);
3204 
3205   return reg;
3206 }
3207 
3208 // Idea
3209 // ----
3210 // Partial Peeling tries to rotate the loop in such a way that it can later be turned into a counted loop. Counted loops
3211 // require a signed loop exit test. When calling this method, we've only found a suitable unsigned test to partial peel
3212 // with. Therefore, we try to split off a signed loop exit test from the unsigned test such that it can be used as new
3213 // loop exit while keeping the unsigned test unchanged and preserving the same behavior as if we've used the unsigned
3214 // test alone instead:
3215 //
3216 // Before Partial Peeling:
3217 //   Loop:
3218 //     <peeled section>
3219 //     Split off signed loop exit test
3220 //     <-- CUT HERE -->
3221 //     Unchanged unsigned loop exit test
3222 //     <rest of unpeeled section>
3223 //     goto Loop
3224 //
3225 // After Partial Peeling:
3226 //   <cloned peeled section>
3227 //   Cloned split off signed loop exit test
3228 //   Loop:
3229 //     Unchanged unsigned loop exit test
3230 //     <rest of unpeeled section>
3231 //     <peeled section>
3232 //     Split off signed loop exit test
3233 //     goto Loop
3234 //
3235 // Details
3236 // -------
3237 // Before:
3238 //          if (i <u limit)    Unsigned loop exit condition
3239 //         /       |
3240 //        v        v
3241 //   exit-proj   stay-in-loop-proj
3242 //
3243 // Split off a signed loop exit test (i.e. with CmpI) from an unsigned loop exit test (i.e. with CmpU) and insert it
3244 // before the CmpU on the stay-in-loop path and keep both tests:
3245 //
3246 //          if (i <u limit)    Signed loop exit test
3247 //        /        |
3248 //       /  if (i <u limit)    Unsigned loop exit test
3249 //      /  /       |
3250 //     v  v        v
3251 //  exit-region  stay-in-loop-proj
3252 //
3253 // Implementation
3254 // --------------
3255 // We need to make sure that the new signed loop exit test is properly inserted into the graph such that the unsigned
3256 // loop exit test still dominates the same set of control nodes, the ctrl() relation from data nodes to both loop
3257 // exit tests is preserved, and their loop nesting is correct.
3258 //
3259 // To achieve that, we clone the unsigned loop exit test completely (leave it unchanged), insert the signed loop exit
3260 // test above it and kill the original unsigned loop exit test by setting it's condition to a constant
3261 // (i.e. stay-in-loop-const in graph below) such that IGVN can fold it later:
3262 //
3263 //           if (stay-in-loop-const)  Killed original unsigned loop exit test
3264 //          /       |
3265 //         /        v
3266 //        /  if (i <  limit)          Split off signed loop exit test
3267 //       /  /       |
3268 //      /  /        v
3269 //     /  /  if (i <u limit)          Cloned unsigned loop exit test
3270 //    /  /   /      |
3271 //   v  v  v        |
3272 //  exit-region     |
3273 //        |         |
3274 //    dummy-if      |
3275 //     /  |         |
3276 // dead   |         |
3277 //        v         v
3278 //   exit-proj   stay-in-loop-proj
3279 //
3280 // Note: The dummy-if is inserted to create a region to merge the loop exits between the original to be killed unsigned
3281 //       loop exit test and its exit projection while keeping the exit projection (also see insert_region_before_proj()).
3282 //
3283 // Requirements
3284 // ------------
3285 // Note that we can only split off a signed loop exit test from the unsigned loop exit test when the behavior is exactly
3286 // the same as before with only a single unsigned test. This is only possible if certain requirements are met.
3287 // Otherwise, we need to bail out (see comments in the code below).
3288 IfNode* PhaseIdealLoop::insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree* loop) {
3289   const bool Signed   = true;
3290   const bool Unsigned = false;
3291 
3292   BoolNode* bol = if_cmpu->in(1)->as_Bool();
3293   if (bol->_test._test != BoolTest::lt) {
3294     return nullptr;
3295   }
3296   CmpNode* cmpu = bol->in(1)->as_Cmp();
3297   assert(cmpu->Opcode() == Op_CmpU, "must be unsigned comparison");
3298 
3299   int stride = stride_of_possible_iv(if_cmpu);
3300   if (stride == 0) {
3301     return nullptr;
3302   }
3303 
3304   Node* lp_proj = stay_in_loop(if_cmpu, loop);
3305   guarantee(lp_proj != nullptr, "null loop node");
3306 
3307   ProjNode* lp_continue = lp_proj->as_Proj();
3308   ProjNode* lp_exit     = if_cmpu->proj_out(!lp_continue->is_IfTrue())->as_Proj();
3309   if (!lp_exit->is_IfFalse()) {
3310     // The loop exit condition is (i <u limit) ==> (i >= 0 && i < limit).
3311     // We therefore can't add a single exit condition.
3312     return nullptr;
3313   }
3314   // The unsigned loop exit condition is
3315   //   !(i <u  limit)
3316   // =   i >=u limit
3317   //
3318   // First, we note that for any x for which
3319   //   0 <= x <= INT_MAX
3320   // we can convert x to an unsigned int and still get the same guarantee:
3321   //   0 <=  (uint) x <=  INT_MAX = (uint) INT_MAX
3322   //   0 <=u (uint) x <=u INT_MAX = (uint) INT_MAX   (LEMMA)
3323   //
3324   // With that in mind, if
3325   //   limit >= 0             (COND)
3326   // then the unsigned loop exit condition
3327   //   i >=u limit            (ULE)
3328   // is equivalent to
3329   //   i < 0 || i >= limit    (SLE-full)
3330   // because either i is negative and therefore always greater than MAX_INT when converting to unsigned
3331   //   (uint) i >=u MAX_INT >= limit >= 0
3332   // or otherwise
3333   //   i >= limit >= 0
3334   // holds due to (LEMMA).
3335   //
3336   // For completeness, a counterexample with limit < 0:
3337   // Assume i = -3 and limit = -2:
3338   //   i  < 0
3339   //   -2 < 0
3340   // is true and thus also "i < 0 || i >= limit". But
3341   //   i  >=u limit
3342   //   -3 >=u -2
3343   // is false.
3344   Node* limit = cmpu->in(2);
3345   const TypeInt* type_limit = _igvn.type(limit)->is_int();
3346   if (type_limit->_lo < 0) {
3347     return nullptr;
3348   }
3349 
3350   // We prove below that we can extract a single signed loop exit condition from (SLE-full), depending on the stride:
3351   //   stride < 0:
3352   //     i < 0        (SLE = SLE-negative)
3353   //   stride > 0:
3354   //     i >= limit   (SLE = SLE-positive)
3355   // such that we have the following graph before Partial Peeling with stride > 0 (similar for stride < 0):
3356   //
3357   // Loop:
3358   //   <peeled section>
3359   //   i >= limit    (SLE-positive)
3360   //   <-- CUT HERE -->
3361   //   i >=u limit   (ULE)
3362   //   <rest of unpeeled section>
3363   //   goto Loop
3364   //
3365   // We exit the loop if:
3366   //   (SLE) is true OR (ULE) is true
3367   // However, if (SLE) is true then (ULE) also needs to be true to ensure the exact same behavior. Otherwise, we wrongly
3368   // exit a loop that should not have been exited if we did not apply Partial Peeling. More formally, we need to ensure:
3369   //   (SLE) IMPLIES (ULE)
3370   // This indeed holds when (COND) is given:
3371   // - stride > 0:
3372   //       i >=  limit             // (SLE = SLE-positive)
3373   //       i >=  limit >= 0        // (COND)
3374   //       i >=u limit >= 0        // (LEMMA)
3375   //     which is the unsigned loop exit condition (ULE).
3376   // - stride < 0:
3377   //       i        <  0           // (SLE = SLE-negative)
3378   //       (uint) i >u MAX_INT     // (NEG) all negative values are greater than MAX_INT when converted to unsigned
3379   //       MAX_INT >= limit >= 0   // (COND)
3380   //       MAX_INT >=u limit >= 0  // (LEMMA)
3381   //     and thus from (NEG) and (LEMMA):
3382   //       i >=u limit
3383   //     which is the unsigned loop exit condition (ULE).
3384   //
3385   //
3386   // After Partial Peeling, we have the following structure for stride > 0 (similar for stride < 0):
3387   //   <cloned peeled section>
3388   //   i >= limit (SLE-positive)
3389   //   Loop:
3390   //     i >=u limit (ULE)
3391   //     <rest of unpeeled section>
3392   //     <peeled section>
3393   //     i >= limit (SLE-positive)
3394   //     goto Loop
3395   Node* rhs_cmpi;
3396   if (stride > 0) {
3397     rhs_cmpi = limit; // For i >= limit
3398   } else {
3399     rhs_cmpi = makecon(TypeInt::ZERO); // For i < 0
3400   }
3401   // Create a new region on the exit path
3402   RegionNode* reg = insert_region_before_proj(lp_exit);
3403   guarantee(reg != nullptr, "null region node");
3404 
3405   // Clone the if-cmpu-true-false using a signed compare
3406   BoolTest::mask rel_i = stride > 0 ? bol->_test._test : BoolTest::ge;
3407   ProjNode* cmpi_exit = insert_if_before_proj(cmpu->in(1), Signed, rel_i, rhs_cmpi, lp_continue);
3408   reg->add_req(cmpi_exit);
3409 
3410   // Clone the if-cmpu-true-false
3411   BoolTest::mask rel_u = bol->_test._test;
3412   ProjNode* cmpu_exit = insert_if_before_proj(cmpu->in(1), Unsigned, rel_u, cmpu->in(2), lp_continue);
3413   reg->add_req(cmpu_exit);
3414 
3415   // Force original if to stay in loop.
3416   short_circuit_if(if_cmpu, lp_continue);
3417 
3418   return cmpi_exit->in(0)->as_If();
3419 }
3420 
3421 //------------------------------ remove_cmpi_loop_exit -------------------------------------
3422 // Remove a previously inserted signed compare loop exit.
3423 void PhaseIdealLoop::remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop) {
3424   Node* lp_proj = stay_in_loop(if_cmp, loop);
3425   assert(if_cmp->in(1)->in(1)->Opcode() == Op_CmpI &&
3426          stay_in_loop(lp_proj, loop)->is_If() &&
3427          stay_in_loop(lp_proj, loop)->in(1)->in(1)->Opcode() == Op_CmpU, "inserted cmpi before cmpu");
3428   Node* con = makecon(lp_proj->is_IfTrue() ? TypeInt::ONE : TypeInt::ZERO);
3429   if_cmp->set_req(1, con);
3430 }
3431 
3432 //------------------------------ scheduled_nodelist -------------------------------------
3433 // Create a post order schedule of nodes that are in the
3434 // "member" set.  The list is returned in "sched".
3435 // The first node in "sched" is the loop head, followed by
3436 // nodes which have no inputs in the "member" set, and then
3437 // followed by the nodes that have an immediate input dependence
3438 // on a node in "sched".
3439 void PhaseIdealLoop::scheduled_nodelist( IdealLoopTree *loop, VectorSet& member, Node_List &sched ) {
3440 
3441   assert(member.test(loop->_head->_idx), "loop head must be in member set");
3442   VectorSet visited;
3443   Node_Stack nstack(loop->_body.size());
3444 
3445   Node* n  = loop->_head;  // top of stack is cached in "n"
3446   uint idx = 0;
3447   visited.set(n->_idx);
3448 
3449   // Initially push all with no inputs from within member set
3450   for(uint i = 0; i < loop->_body.size(); i++ ) {
3451     Node *elt = loop->_body.at(i);
3452     if (member.test(elt->_idx)) {
3453       bool found = false;
3454       for (uint j = 0; j < elt->req(); j++) {
3455         Node* def = elt->in(j);
3456         if (def && member.test(def->_idx) && def != elt) {
3457           found = true;
3458           break;
3459         }
3460       }
3461       if (!found && elt != loop->_head) {
3462         nstack.push(n, idx);
3463         n = elt;
3464         assert(!visited.test(n->_idx), "not seen yet");
3465         visited.set(n->_idx);
3466       }
3467     }
3468   }
3469 
3470   // traverse out's that are in the member set
3471   while (true) {
3472     if (idx < n->outcnt()) {
3473       Node* use = n->raw_out(idx);
3474       idx++;
3475       if (!visited.test_set(use->_idx)) {
3476         if (member.test(use->_idx)) {
3477           nstack.push(n, idx);
3478           n = use;
3479           idx = 0;
3480         }
3481       }
3482     } else {
3483       // All outputs processed
3484       sched.push(n);
3485       if (nstack.is_empty()) break;
3486       n   = nstack.node();
3487       idx = nstack.index();
3488       nstack.pop();
3489     }
3490   }
3491 }
3492 
3493 
3494 //------------------------------ has_use_in_set -------------------------------------
3495 // Has a use in the vector set
3496 bool PhaseIdealLoop::has_use_in_set( Node* n, VectorSet& vset ) {
3497   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3498     Node* use = n->fast_out(j);
3499     if (vset.test(use->_idx)) {
3500       return true;
3501     }
3502   }
3503   return false;
3504 }
3505 
3506 
3507 //------------------------------ has_use_internal_to_set -------------------------------------
3508 // Has use internal to the vector set (ie. not in a phi at the loop head)
3509 bool PhaseIdealLoop::has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ) {
3510   Node* head  = loop->_head;
3511   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3512     Node* use = n->fast_out(j);
3513     if (vset.test(use->_idx) && !(use->is_Phi() && use->in(0) == head)) {
3514       return true;
3515     }
3516   }
3517   return false;
3518 }
3519 
3520 
3521 //------------------------------ clone_for_use_outside_loop -------------------------------------
3522 // clone "n" for uses that are outside of loop
3523 int PhaseIdealLoop::clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ) {
3524   int cloned = 0;
3525   assert(worklist.size() == 0, "should be empty");
3526   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3527     Node* use = n->fast_out(j);
3528     if( !loop->is_member(get_loop(has_ctrl(use) ? get_ctrl(use) : use)) ) {
3529       worklist.push(use);
3530     }
3531   }
3532 
3533   if (C->check_node_count(worklist.size() + NodeLimitFudgeFactor,
3534                           "Too many clones required in clone_for_use_outside_loop in partial peeling")) {
3535     return -1;
3536   }
3537 
3538   while( worklist.size() ) {
3539     Node *use = worklist.pop();
3540     if (!has_node(use) || use->in(0) == C->top()) continue;
3541     uint j;
3542     for (j = 0; j < use->req(); j++) {
3543       if (use->in(j) == n) break;
3544     }
3545     assert(j < use->req(), "must be there");
3546 
3547     // clone "n" and insert it between the inputs of "n" and the use outside the loop
3548     Node* n_clone = n->clone();
3549     _igvn.replace_input_of(use, j, n_clone);
3550     cloned++;
3551     Node* use_c;
3552     if (!use->is_Phi()) {
3553       use_c = has_ctrl(use) ? get_ctrl(use) : use->in(0);
3554     } else {
3555       // Use in a phi is considered a use in the associated predecessor block
3556       use_c = use->in(0)->in(j);
3557     }
3558     set_ctrl(n_clone, use_c);
3559     assert(!loop->is_member(get_loop(use_c)), "should be outside loop");
3560     get_loop(use_c)->_body.push(n_clone);
3561     _igvn.register_new_node_with_optimizer(n_clone);
3562 #ifndef PRODUCT
3563     if (TracePartialPeeling) {
3564       tty->print_cr("loop exit cloning old: %d new: %d newbb: %d", n->_idx, n_clone->_idx, get_ctrl(n_clone)->_idx);
3565     }
3566 #endif
3567   }
3568   return cloned;
3569 }
3570 
3571 
3572 //------------------------------ clone_for_special_use_inside_loop -------------------------------------
3573 // clone "n" for special uses that are in the not_peeled region.
3574 // If these def-uses occur in separate blocks, the code generator
3575 // marks the method as not compilable.  For example, if a "BoolNode"
3576 // is in a different basic block than the "IfNode" that uses it, then
3577 // the compilation is aborted in the code generator.
3578 void PhaseIdealLoop::clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
3579                                                         VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ) {
3580   if (n->is_Phi() || n->is_Load()) {
3581     return;
3582   }
3583   assert(worklist.size() == 0, "should be empty");
3584   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3585     Node* use = n->fast_out(j);
3586     if ( not_peel.test(use->_idx) &&
3587          (use->is_If() || use->is_CMove() || use->is_Bool() || use->is_OpaqueInitializedAssertionPredicate()) &&
3588          use->in(1) == n)  {
3589       worklist.push(use);
3590     }
3591   }
3592   if (worklist.size() > 0) {
3593     // clone "n" and insert it between inputs of "n" and the use
3594     Node* n_clone = n->clone();
3595     loop->_body.push(n_clone);
3596     _igvn.register_new_node_with_optimizer(n_clone);
3597     set_ctrl(n_clone, get_ctrl(n));
3598     sink_list.push(n_clone);
3599     not_peel.set(n_clone->_idx);
3600 #ifndef PRODUCT
3601     if (TracePartialPeeling) {
3602       tty->print_cr("special not_peeled cloning old: %d new: %d", n->_idx, n_clone->_idx);
3603     }
3604 #endif
3605     while( worklist.size() ) {
3606       Node *use = worklist.pop();
3607       _igvn.rehash_node_delayed(use);
3608       for (uint j = 1; j < use->req(); j++) {
3609         if (use->in(j) == n) {
3610           use->set_req(j, n_clone);
3611         }
3612       }
3613     }
3614   }
3615 }
3616 
3617 
3618 //------------------------------ insert_phi_for_loop -------------------------------------
3619 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
3620 void PhaseIdealLoop::insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ) {
3621   Node *phi = PhiNode::make(lp, back_edge_val);
3622   phi->set_req(LoopNode::EntryControl, lp_entry_val);
3623   // Use existing phi if it already exists
3624   Node *hit = _igvn.hash_find_insert(phi);
3625   if( hit == nullptr ) {
3626     _igvn.register_new_node_with_optimizer(phi);
3627     set_ctrl(phi, lp);
3628   } else {
3629     // Remove the new phi from the graph and use the hit
3630     _igvn.remove_dead_node(phi);
3631     phi = hit;
3632   }
3633   _igvn.replace_input_of(use, idx, phi);
3634 }
3635 
3636 #ifdef ASSERT
3637 //------------------------------ is_valid_loop_partition -------------------------------------
3638 // Validate the loop partition sets: peel and not_peel
3639 bool PhaseIdealLoop::is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list,
3640                                               VectorSet& not_peel ) {
3641   uint i;
3642   // Check that peel_list entries are in the peel set
3643   for (i = 0; i < peel_list.size(); i++) {
3644     if (!peel.test(peel_list.at(i)->_idx)) {
3645       return false;
3646     }
3647   }
3648   // Check at loop members are in one of peel set or not_peel set
3649   for (i = 0; i < loop->_body.size(); i++ ) {
3650     Node *def  = loop->_body.at(i);
3651     uint di = def->_idx;
3652     // Check that peel set elements are in peel_list
3653     if (peel.test(di)) {
3654       if (not_peel.test(di)) {
3655         return false;
3656       }
3657       // Must be in peel_list also
3658       bool found = false;
3659       for (uint j = 0; j < peel_list.size(); j++) {
3660         if (peel_list.at(j)->_idx == di) {
3661           found = true;
3662           break;
3663         }
3664       }
3665       if (!found) {
3666         return false;
3667       }
3668     } else if (not_peel.test(di)) {
3669       if (peel.test(di)) {
3670         return false;
3671       }
3672     } else {
3673       return false;
3674     }
3675   }
3676   return true;
3677 }
3678 
3679 //------------------------------ is_valid_clone_loop_exit_use -------------------------------------
3680 // Ensure a use outside of loop is of the right form
3681 bool PhaseIdealLoop::is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx) {
3682   Node *use_c = has_ctrl(use) ? get_ctrl(use) : use;
3683   return (use->is_Phi() &&
3684           use_c->is_Region() && use_c->req() == 3 &&
3685           (use_c->in(exit_idx)->Opcode() == Op_IfTrue ||
3686            use_c->in(exit_idx)->Opcode() == Op_IfFalse ||
3687            use_c->in(exit_idx)->Opcode() == Op_JumpProj) &&
3688           loop->is_member( get_loop( use_c->in(exit_idx)->in(0) ) ) );
3689 }
3690 
3691 //------------------------------ is_valid_clone_loop_form -------------------------------------
3692 // Ensure that all uses outside of loop are of the right form
3693 bool PhaseIdealLoop::is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
3694                                                uint orig_exit_idx, uint clone_exit_idx) {
3695   uint len = peel_list.size();
3696   for (uint i = 0; i < len; i++) {
3697     Node *def = peel_list.at(i);
3698 
3699     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
3700       Node *use = def->fast_out(j);
3701       Node *use_c = has_ctrl(use) ? get_ctrl(use) : use;
3702       if (!loop->is_member(get_loop(use_c))) {
3703         // use is not in the loop, check for correct structure
3704         if (use->in(0) == def) {
3705           // Okay
3706         } else if (!is_valid_clone_loop_exit_use(loop, use, orig_exit_idx)) {
3707           return false;
3708         }
3709       }
3710     }
3711   }
3712   return true;
3713 }
3714 #endif
3715 
3716 //------------------------------ partial_peel -------------------------------------
3717 // Partially peel (aka loop rotation) the top portion of a loop (called
3718 // the peel section below) by cloning it and placing one copy just before
3719 // the new loop head and the other copy at the bottom of the new loop.
3720 //
3721 //    before                       after                where it came from
3722 //
3723 //    stmt1                        stmt1
3724 //  loop:                          stmt2                     clone
3725 //    stmt2                        if condA goto exitA       clone
3726 //    if condA goto exitA        new_loop:                   new
3727 //    stmt3                        stmt3                     clone
3728 //    if !condB goto loop          if condB goto exitB       clone
3729 //  exitB:                         stmt2                     orig
3730 //    stmt4                        if !condA goto new_loop   orig
3731 //  exitA:                         goto exitA
3732 //                               exitB:
3733 //                                 stmt4
3734 //                               exitA:
3735 //
3736 // Step 1: find the cut point: an exit test on probable
3737 //         induction variable.
3738 // Step 2: schedule (with cloning) operations in the peel
3739 //         section that can be executed after the cut into
3740 //         the section that is not peeled.  This may need
3741 //         to clone operations into exit blocks.  For
3742 //         instance, a reference to A[i] in the not-peel
3743 //         section and a reference to B[i] in an exit block
3744 //         may cause a left-shift of i by 2 to be placed
3745 //         in the peel block.  This step will clone the left
3746 //         shift into the exit block and sink the left shift
3747 //         from the peel to the not-peel section.
3748 // Step 3: clone the loop, retarget the control, and insert
3749 //         phis for values that are live across the new loop
3750 //         head.  This is very dependent on the graph structure
3751 //         from clone_loop.  It creates region nodes for
3752 //         exit control and associated phi nodes for values
3753 //         flow out of the loop through that exit.  The region
3754 //         node is dominated by the clone's control projection.
3755 //         So the clone's peel section is placed before the
3756 //         new loop head, and the clone's not-peel section is
3757 //         forms the top part of the new loop.  The original
3758 //         peel section forms the tail of the new loop.
3759 // Step 4: update the dominator tree and recompute the
3760 //         dominator depth.
3761 //
3762 //                   orig
3763 //
3764 //                   stmt1
3765 //                     |
3766 //                     v
3767 //                 predicates
3768 //                     |
3769 //                     v
3770 //                   loop<----+
3771 //                     |      |
3772 //                   stmt2    |
3773 //                     |      |
3774 //                     v      |
3775 //                    ifA     |
3776 //                   / |      |
3777 //                  v  v      |
3778 //               false true   ^  <-- last_peel
3779 //               /     |      |
3780 //              /   ===|==cut |
3781 //             /     stmt3    |  <-- first_not_peel
3782 //            /        |      |
3783 //            |        v      |
3784 //            v       ifB     |
3785 //          exitA:   / \      |
3786 //                  /   \     |
3787 //                 v     v    |
3788 //               false true   |
3789 //               /       \    |
3790 //              /         ----+
3791 //             |
3792 //             v
3793 //           exitB:
3794 //           stmt4
3795 //
3796 //
3797 //            after clone loop
3798 //
3799 //                   stmt1
3800 //                     |
3801 //                     v
3802 //                predicates
3803 //                 /       \
3804 //        clone   /         \   orig
3805 //               /           \
3806 //              /             \
3807 //             v               v
3808 //   +---->loop                loop<----+
3809 //   |      |                    |      |
3810 //   |    stmt2                stmt2    |
3811 //   |      |                    |      |
3812 //   |      v                    v      |
3813 //   |      ifA                 ifA     |
3814 //   |      | \                / |      |
3815 //   |      v  v              v  v      |
3816 //   ^    true  false      false true   ^  <-- last_peel
3817 //   |      |   ^   \       /    |      |
3818 //   | cut==|==  \   \     /  ===|==cut |
3819 //   |    stmt3   \   \   /    stmt3    |  <-- first_not_peel
3820 //   |      |    dom   | |       |      |
3821 //   |      v      \  1v v2      v      |
3822 //   |      ifB     regionA     ifB     |
3823 //   |      / \        |       / \      |
3824 //   |     /   \       v      /   \     |
3825 //   |    v     v    exitA:  v     v    |
3826 //   |    true  false      false true   |
3827 //   |    /     ^   \      /       \    |
3828 //   +----       \   \    /         ----+
3829 //               dom  \  /
3830 //                 \  1v v2
3831 //                  regionB
3832 //                     |
3833 //                     v
3834 //                   exitB:
3835 //                   stmt4
3836 //
3837 //
3838 //           after partial peel
3839 //
3840 //                  stmt1
3841 //                     |
3842 //                     v
3843 //                predicates
3844 //                 /
3845 //        clone   /             orig
3846 //               /          TOP
3847 //              /             \
3848 //             v               v
3849 //    TOP->loop                loop----+
3850 //          |                    |      |
3851 //        stmt2                stmt2    |
3852 //          |                    |      |
3853 //          v                    v      |
3854 //          ifA                 ifA     |
3855 //          | \                / |      |
3856 //          v  v              v  v      |
3857 //        true  false      false true   |     <-- last_peel
3858 //          |   ^   \       /    +------|---+
3859 //  +->newloop   \   \     /  === ==cut |   |
3860 //  |     stmt3   \   \   /     TOP     |   |
3861 //  |       |    dom   | |      stmt3   |   | <-- first_not_peel
3862 //  |       v      \  1v v2      v      |   |
3863 //  |       ifB     regionA     ifB     ^   v
3864 //  |       / \        |       / \      |   |
3865 //  |      /   \       v      /   \     |   |
3866 //  |     v     v    exitA:  v     v    |   |
3867 //  |     true  false      false true   |   |
3868 //  |     /     ^   \      /       \    |   |
3869 //  |    |       \   \    /         v   |   |
3870 //  |    |       dom  \  /         TOP  |   |
3871 //  |    |         \  1v v2             |   |
3872 //  ^    v          regionB             |   |
3873 //  |    |             |                |   |
3874 //  |    |             v                ^   v
3875 //  |    |           exitB:             |   |
3876 //  |    |           stmt4              |   |
3877 //  |    +------------>-----------------+   |
3878 //  |                                       |
3879 //  +-----------------<---------------------+
3880 //
3881 //
3882 //              final graph
3883 //
3884 //                  stmt1
3885 //                    |
3886 //                    v
3887 //                predicates
3888 //                    |
3889 //                    v
3890 //                  stmt2 clone
3891 //                    |
3892 //                    v
3893 //         ........> ifA clone
3894 //         :        / |
3895 //        dom      /  |
3896 //         :      v   v
3897 //         :  false   true
3898 //         :  |       |
3899 //         :  |       v
3900 //         :  |    newloop<-----+
3901 //         :  |        |        |
3902 //         :  |     stmt3 clone |
3903 //         :  |        |        |
3904 //         :  |        v        |
3905 //         :  |       ifB       |
3906 //         :  |      / \        |
3907 //         :  |     v   v       |
3908 //         :  |  false true     |
3909 //         :  |   |     |       |
3910 //         :  |   v    stmt2    |
3911 //         :  | exitB:  |       |
3912 //         :  | stmt4   v       |
3913 //         :  |       ifA orig  |
3914 //         :  |      /  \       |
3915 //         :  |     /    \      |
3916 //         :  |    v     v      |
3917 //         :  |  false  true    |
3918 //         :  |  /        \     |
3919 //         :  v  v         -----+
3920 //          RegionA
3921 //             |
3922 //             v
3923 //           exitA
3924 //
3925 bool PhaseIdealLoop::partial_peel( IdealLoopTree *loop, Node_List &old_new ) {
3926 
3927   assert(!loop->_head->is_CountedLoop(), "Non-counted loop only");
3928   if (!loop->_head->is_Loop()) {
3929     return false;
3930   }
3931   LoopNode *head = loop->_head->as_Loop();
3932 
3933   if (head->is_partial_peel_loop() || head->partial_peel_has_failed()) {
3934     return false;
3935   }
3936 
3937   // Check for complex exit control
3938   for (uint ii = 0; ii < loop->_body.size(); ii++) {
3939     Node *n = loop->_body.at(ii);
3940     int opc = n->Opcode();
3941     if (n->is_Call()        ||
3942         opc == Op_Catch     ||
3943         opc == Op_CatchProj ||
3944         opc == Op_Jump      ||
3945         opc == Op_JumpProj) {
3946 #ifndef PRODUCT
3947       if (TracePartialPeeling) {
3948         tty->print_cr("\nExit control too complex: lp: %d", head->_idx);
3949       }
3950 #endif
3951       return false;
3952     }
3953   }
3954 
3955   int dd = dom_depth(head);
3956 
3957   // Step 1: find cut point
3958 
3959   // Walk up dominators to loop head looking for first loop exit
3960   // which is executed on every path thru loop.
3961   IfNode *peel_if = nullptr;
3962   IfNode *peel_if_cmpu = nullptr;
3963 
3964   Node *iff = loop->tail();
3965   while (iff != head) {
3966     if (iff->is_If()) {
3967       Node *ctrl = get_ctrl(iff->in(1));
3968       if (ctrl->is_top()) return false; // Dead test on live IF.
3969       // If loop-varying exit-test, check for induction variable
3970       if (loop->is_member(get_loop(ctrl)) &&
3971           loop->is_loop_exit(iff) &&
3972           is_possible_iv_test(iff)) {
3973         Node* cmp = iff->in(1)->in(1);
3974         if (cmp->Opcode() == Op_CmpI) {
3975           peel_if = iff->as_If();
3976         } else {
3977           assert(cmp->Opcode() == Op_CmpU, "must be CmpI or CmpU");
3978           peel_if_cmpu = iff->as_If();
3979         }
3980       }
3981     }
3982     iff = idom(iff);
3983   }
3984 
3985   // Prefer signed compare over unsigned compare.
3986   IfNode* new_peel_if = nullptr;
3987   if (peel_if == nullptr) {
3988     if (!PartialPeelAtUnsignedTests || peel_if_cmpu == nullptr) {
3989       return false;   // No peel point found
3990     }
3991     new_peel_if = insert_cmpi_loop_exit(peel_if_cmpu, loop);
3992     if (new_peel_if == nullptr) {
3993       return false;   // No peel point found
3994     }
3995     peel_if = new_peel_if;
3996   }
3997   Node* last_peel        = stay_in_loop(peel_if, loop);
3998   Node* first_not_peeled = stay_in_loop(last_peel, loop);
3999   if (first_not_peeled == nullptr || first_not_peeled == head) {
4000     return false;
4001   }
4002 
4003 #ifndef PRODUCT
4004   if (TraceLoopOpts) {
4005     tty->print("PartialPeel  ");
4006     loop->dump_head();
4007   }
4008 
4009   if (TracePartialPeeling) {
4010     tty->print_cr("before partial peel one iteration");
4011     Node_List wl;
4012     Node* t = head->in(2);
4013     while (true) {
4014       wl.push(t);
4015       if (t == head) break;
4016       t = idom(t);
4017     }
4018     while (wl.size() > 0) {
4019       Node* tt = wl.pop();
4020       tt->dump();
4021       if (tt == last_peel) tty->print_cr("-- cut --");
4022     }
4023   }
4024 #endif
4025 
4026   C->print_method(PHASE_BEFORE_PARTIAL_PEELING, 4, head);
4027 
4028   VectorSet peel;
4029   VectorSet not_peel;
4030   Node_List peel_list;
4031   Node_List worklist;
4032   Node_List sink_list;
4033 
4034   uint estimate = loop->est_loop_clone_sz(1);
4035   if (exceeding_node_budget(estimate)) {
4036     return false;
4037   }
4038 
4039   // Set of cfg nodes to peel are those that are executable from
4040   // the head through last_peel.
4041   assert(worklist.size() == 0, "should be empty");
4042   worklist.push(head);
4043   peel.set(head->_idx);
4044   while (worklist.size() > 0) {
4045     Node *n = worklist.pop();
4046     if (n != last_peel) {
4047       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
4048         Node* use = n->fast_out(j);
4049         if (use->is_CFG() &&
4050             loop->is_member(get_loop(use)) &&
4051             !peel.test_set(use->_idx)) {
4052           worklist.push(use);
4053         }
4054       }
4055     }
4056   }
4057 
4058   // Set of non-cfg nodes to peel are those that are control
4059   // dependent on the cfg nodes.
4060   for (uint i = 0; i < loop->_body.size(); i++) {
4061     Node *n = loop->_body.at(i);
4062     Node *n_c = has_ctrl(n) ? get_ctrl(n) : n;
4063     if (peel.test(n_c->_idx)) {
4064       peel.set(n->_idx);
4065     } else {
4066       not_peel.set(n->_idx);
4067     }
4068   }
4069 
4070   // Step 2: move operations from the peeled section down into the
4071   //         not-peeled section
4072 
4073   // Get a post order schedule of nodes in the peel region
4074   // Result in right-most operand.
4075   scheduled_nodelist(loop, peel, peel_list);
4076 
4077   assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition");
4078 
4079   // For future check for too many new phis
4080   uint old_phi_cnt = 0;
4081   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
4082     Node* use = head->fast_out(j);
4083     if (use->is_Phi()) old_phi_cnt++;
4084   }
4085 
4086 #ifndef PRODUCT
4087   if (TracePartialPeeling) {
4088     tty->print_cr("\npeeled list");
4089   }
4090 #endif
4091 
4092   // Evacuate nodes in peel region into the not_peeled region if possible
4093   bool too_many_clones = false;
4094   uint new_phi_cnt = 0;
4095   uint cloned_for_outside_use = 0;
4096   for (uint i = 0; i < peel_list.size();) {
4097     Node* n = peel_list.at(i);
4098 #ifndef PRODUCT
4099   if (TracePartialPeeling) n->dump();
4100 #endif
4101     bool incr = true;
4102     if (!n->is_CFG()) {
4103       if (has_use_in_set(n, not_peel)) {
4104         // If not used internal to the peeled region,
4105         // move "n" from peeled to not_peeled region.
4106         if (!has_use_internal_to_set(n, peel, loop)) {
4107           // if not pinned and not a load (which maybe anti-dependent on a store)
4108           // and not a CMove (Matcher expects only bool->cmove).
4109           if (n->in(0) == nullptr && !n->is_Load() && !n->is_CMove()) {
4110             int new_clones = clone_for_use_outside_loop(loop, n, worklist);
4111             if (C->failing()) return false;
4112             if (new_clones == -1) {
4113               too_many_clones = true;
4114               break;
4115             }
4116             cloned_for_outside_use += new_clones;
4117             sink_list.push(n);
4118             peel.remove(n->_idx);
4119             not_peel.set(n->_idx);
4120             peel_list.remove(i);
4121             incr = false;
4122 #ifndef PRODUCT
4123             if (TracePartialPeeling) {
4124               tty->print_cr("sink to not_peeled region: %d newbb: %d",
4125                             n->_idx, get_ctrl(n)->_idx);
4126             }
4127 #endif
4128           }
4129         } else {
4130           // Otherwise check for special def-use cases that span
4131           // the peel/not_peel boundary such as bool->if
4132           clone_for_special_use_inside_loop(loop, n, not_peel, sink_list, worklist);
4133           new_phi_cnt++;
4134         }
4135       }
4136     }
4137     if (incr) i++;
4138   }
4139 
4140   estimate += cloned_for_outside_use + new_phi_cnt;
4141   bool exceed_node_budget = !may_require_nodes(estimate);
4142   bool exceed_phi_limit = new_phi_cnt > old_phi_cnt + PartialPeelNewPhiDelta;
4143 
4144   if (too_many_clones || exceed_node_budget || exceed_phi_limit) {
4145 #ifndef PRODUCT
4146     if (TracePartialPeeling && exceed_phi_limit) {
4147       tty->print_cr("\nToo many new phis: %d  old %d new cmpi: %c",
4148                     new_phi_cnt, old_phi_cnt, new_peel_if != nullptr?'T':'F');
4149     }
4150 #endif
4151     if (new_peel_if != nullptr) {
4152       remove_cmpi_loop_exit(new_peel_if, loop);
4153     }
4154     // Inhibit more partial peeling on this loop
4155     assert(!head->is_partial_peel_loop(), "not partial peeled");
4156     head->mark_partial_peel_failed();
4157     if (cloned_for_outside_use > 0) {
4158       // Terminate this round of loop opts because
4159       // the graph outside this loop was changed.
4160       C->set_major_progress();
4161       return true;
4162     }
4163     return false;
4164   }
4165 
4166   // Step 3: clone loop, retarget control, and insert new phis
4167 
4168   // Create new loop head for new phis and to hang
4169   // the nodes being moved (sinked) from the peel region.
4170   LoopNode* new_head = new LoopNode(last_peel, last_peel);
4171   new_head->set_unswitch_count(head->unswitch_count()); // Preserve
4172   _igvn.register_new_node_with_optimizer(new_head);
4173   assert(first_not_peeled->in(0) == last_peel, "last_peel <- first_not_peeled");
4174   _igvn.replace_input_of(first_not_peeled, 0, new_head);
4175   set_loop(new_head, loop);
4176   loop->_body.push(new_head);
4177   not_peel.set(new_head->_idx);
4178   set_idom(new_head, last_peel, dom_depth(first_not_peeled));
4179   set_idom(first_not_peeled, new_head, dom_depth(first_not_peeled));
4180 
4181   while (sink_list.size() > 0) {
4182     Node* n = sink_list.pop();
4183     set_ctrl(n, new_head);
4184   }
4185 
4186   assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition");
4187 
4188   clone_loop(loop, old_new, dd, IgnoreStripMined);
4189 
4190   const uint clone_exit_idx = 1;
4191   const uint orig_exit_idx  = 2;
4192   assert(is_valid_clone_loop_form(loop, peel_list, orig_exit_idx, clone_exit_idx), "bad clone loop");
4193 
4194   Node* head_clone             = old_new[head->_idx];
4195   LoopNode* new_head_clone     = old_new[new_head->_idx]->as_Loop();
4196   Node* orig_tail_clone        = head_clone->in(2);
4197 
4198   // Add phi if "def" node is in peel set and "use" is not
4199 
4200   for (uint i = 0; i < peel_list.size(); i++) {
4201     Node *def  = peel_list.at(i);
4202     if (!def->is_CFG()) {
4203       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
4204         Node *use = def->fast_out(j);
4205         if (has_node(use) && use->in(0) != C->top() &&
4206             (!peel.test(use->_idx) ||
4207              (use->is_Phi() && use->in(0) == head)) ) {
4208           worklist.push(use);
4209         }
4210       }
4211       while( worklist.size() ) {
4212         Node *use = worklist.pop();
4213         for (uint j = 1; j < use->req(); j++) {
4214           Node* n = use->in(j);
4215           if (n == def) {
4216 
4217             // "def" is in peel set, "use" is not in peel set
4218             // or "use" is in the entry boundary (a phi) of the peel set
4219 
4220             Node* use_c = has_ctrl(use) ? get_ctrl(use) : use;
4221 
4222             if ( loop->is_member(get_loop( use_c )) ) {
4223               // use is in loop
4224               if (old_new[use->_idx] != nullptr) { // null for dead code
4225                 Node* use_clone = old_new[use->_idx];
4226                 _igvn.replace_input_of(use, j, C->top());
4227                 insert_phi_for_loop( use_clone, j, old_new[def->_idx], def, new_head_clone );
4228               }
4229             } else {
4230               assert(is_valid_clone_loop_exit_use(loop, use, orig_exit_idx), "clone loop format");
4231               // use is not in the loop, check if the live range includes the cut
4232               Node* lp_if = use_c->in(orig_exit_idx)->in(0);
4233               if (not_peel.test(lp_if->_idx)) {
4234                 assert(j == orig_exit_idx, "use from original loop");
4235                 insert_phi_for_loop( use, clone_exit_idx, old_new[def->_idx], def, new_head_clone );
4236               }
4237             }
4238           }
4239         }
4240       }
4241     }
4242   }
4243 
4244   // Step 3b: retarget control
4245 
4246   // Redirect control to the new loop head if a cloned node in
4247   // the not_peeled region has control that points into the peeled region.
4248   // This necessary because the cloned peeled region will be outside
4249   // the loop.
4250   //                            from    to
4251   //          cloned-peeled    <---+
4252   //    new_head_clone:            |    <--+
4253   //          cloned-not_peeled  in(0)    in(0)
4254   //          orig-peeled
4255 
4256   for (uint i = 0; i < loop->_body.size(); i++) {
4257     Node *n = loop->_body.at(i);
4258     if (!n->is_CFG()           && n->in(0) != nullptr        &&
4259         not_peel.test(n->_idx) && peel.test(n->in(0)->_idx)) {
4260       Node* n_clone = old_new[n->_idx];
4261       if (n_clone->depends_only_on_test()) {
4262         // Pin array access nodes: control is updated here to the loop head. If, after some transformations, the
4263         // backedge is removed, an array load could become dependent on a condition that's not a range check for that
4264         // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk
4265         // floating above its range check.
4266         Node* pinned_clone = n_clone->pin_array_access_node();
4267         if (pinned_clone != nullptr) {
4268           register_new_node_with_ctrl_of(pinned_clone, n_clone);
4269           old_new.map(n->_idx, pinned_clone);
4270           _igvn.replace_node(n_clone, pinned_clone);
4271           n_clone = pinned_clone;
4272         }
4273       }
4274       _igvn.replace_input_of(n_clone, 0, new_head_clone);
4275     }
4276   }
4277 
4278   // Backedge of the surviving new_head (the clone) is original last_peel
4279   _igvn.replace_input_of(new_head_clone, LoopNode::LoopBackControl, last_peel);
4280 
4281   // Cut first node in original not_peel set
4282   _igvn.rehash_node_delayed(new_head);                     // Multiple edge updates:
4283   new_head->set_req(LoopNode::EntryControl,    C->top());  //   use rehash_node_delayed / set_req instead of
4284   new_head->set_req(LoopNode::LoopBackControl, C->top());  //   multiple replace_input_of calls
4285 
4286   // Copy head_clone back-branch info to original head
4287   // and remove original head's loop entry and
4288   // clone head's back-branch
4289   _igvn.rehash_node_delayed(head); // Multiple edge updates
4290   head->set_req(LoopNode::EntryControl,    head_clone->in(LoopNode::LoopBackControl));
4291   head->set_req(LoopNode::LoopBackControl, C->top());
4292   _igvn.replace_input_of(head_clone, LoopNode::LoopBackControl, C->top());
4293 
4294   // Similarly modify the phis
4295   for (DUIterator_Fast kmax, k = head->fast_outs(kmax); k < kmax; k++) {
4296     Node* use = head->fast_out(k);
4297     if (use->is_Phi() && use->outcnt() > 0) {
4298       Node* use_clone = old_new[use->_idx];
4299       _igvn.rehash_node_delayed(use); // Multiple edge updates
4300       use->set_req(LoopNode::EntryControl,    use_clone->in(LoopNode::LoopBackControl));
4301       use->set_req(LoopNode::LoopBackControl, C->top());
4302       _igvn.replace_input_of(use_clone, LoopNode::LoopBackControl, C->top());
4303     }
4304   }
4305 
4306   // Step 4: update dominator tree and dominator depth
4307 
4308   set_idom(head, orig_tail_clone, dd);
4309   recompute_dom_depth();
4310 
4311   // Inhibit more partial peeling on this loop
4312   new_head_clone->set_partial_peel_loop();
4313   C->set_major_progress();
4314   loop->record_for_igvn();
4315 
4316 #ifndef PRODUCT
4317   if (TracePartialPeeling) {
4318     tty->print_cr("\nafter partial peel one iteration");
4319     Node_List wl;
4320     Node* t = last_peel;
4321     while (true) {
4322       wl.push(t);
4323       if (t == head_clone) break;
4324       t = idom(t);
4325     }
4326     while (wl.size() > 0) {
4327       Node* tt = wl.pop();
4328       if (tt == head) tty->print_cr("orig head");
4329       else if (tt == new_head_clone) tty->print_cr("new head");
4330       else if (tt == head_clone) tty->print_cr("clone head");
4331       tt->dump();
4332     }
4333   }
4334 #endif
4335 
4336   C->print_method(PHASE_AFTER_PARTIAL_PEELING, 4, new_head_clone);
4337 
4338   return true;
4339 }
4340 
4341 // Transform:
4342 //
4343 // loop<-----------------+
4344 //  |                    |
4345 // stmt1 stmt2 .. stmtn  |
4346 //  |     |        |     |
4347 //  \     |       /      |
4348 //    v   v     v        |
4349 //       region          |
4350 //         |             |
4351 //     shared_stmt       |
4352 //         |             |
4353 //         v             |
4354 //         if            |
4355 //         / \           |
4356 //        |   -----------+
4357 //        v
4358 //
4359 // into:
4360 //
4361 //    loop<-------------------+
4362 //     |                      |
4363 //     v                      |
4364 // +->loop                    |
4365 // |   |                      |
4366 // |  stmt1 stmt2 .. stmtn    |
4367 // |   |     |        |       |
4368 // |   |      \       /       |
4369 // |   |       v     v        |
4370 // |   |        region1       |
4371 // |   |           |          |
4372 // |  shared_stmt shared_stmt |
4373 // |   |           |          |
4374 // |   v           v          |
4375 // |   if          if         |
4376 // |   /\          / \        |
4377 // +--   |         |   -------+
4378 //       \         /
4379 //        v       v
4380 //         region2
4381 //
4382 // (region2 is shown to merge mirrored projections of the loop exit
4383 // ifs to make the diagram clearer but they really merge the same
4384 // projection)
4385 //
4386 // Conditions for this transformation to trigger:
4387 // - the path through stmt1 is frequent enough
4388 // - the inner loop will be turned into a counted loop after transformation
4389 bool PhaseIdealLoop::duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new) {
4390   if (!DuplicateBackedge) {
4391     return false;
4392   }
4393   assert(!loop->_head->is_CountedLoop() || StressDuplicateBackedge, "Non-counted loop only");
4394   if (!loop->_head->is_Loop()) {
4395     return false;
4396   }
4397 
4398   uint estimate = loop->est_loop_clone_sz(1);
4399   if (exceeding_node_budget(estimate)) {
4400     return false;
4401   }
4402 
4403   LoopNode *head = loop->_head->as_Loop();
4404 
4405   Node* region = nullptr;
4406   IfNode* exit_test = nullptr;
4407   uint inner;
4408   float f;
4409   if (StressDuplicateBackedge) {
4410     if (head->is_strip_mined()) {
4411       return false;
4412     }
4413     Node* c = head->in(LoopNode::LoopBackControl);
4414 
4415     while (c != head) {
4416       if (c->is_Region()) {
4417         region = c;
4418       }
4419       c = idom(c);
4420     }
4421 
4422     if (region == nullptr) {
4423       return false;
4424     }
4425 
4426     inner = 1;
4427   } else {
4428     // Is the shape of the loop that of a counted loop...
4429     Node* back_control = loop_exit_control(head, loop);
4430     if (back_control == nullptr) {
4431       return false;
4432     }
4433 
4434     BoolTest::mask bt = BoolTest::illegal;
4435     float cl_prob = 0;
4436     Node* incr = nullptr;
4437     Node* limit = nullptr;
4438     Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
4439     if (cmp == nullptr || cmp->Opcode() != Op_CmpI) {
4440       return false;
4441     }
4442 
4443     // With an extra phi for the candidate iv?
4444     // Or the region node is the loop head
4445     if (!incr->is_Phi() || incr->in(0) == head) {
4446       return false;
4447     }
4448 
4449     PathFrequency pf(head, this);
4450     region = incr->in(0);
4451 
4452     // Go over all paths for the extra phi's region and see if that
4453     // path is frequent enough and would match the expected iv shape
4454     // if the extra phi is removed
4455     inner = 0;
4456     for (uint i = 1; i < incr->req(); ++i) {
4457       Node* in = incr->in(i);
4458       Node* trunc1 = nullptr;
4459       Node* trunc2 = nullptr;
4460       const TypeInteger* iv_trunc_t = nullptr;
4461       Node* orig_in = in;
4462       if (!(in = CountedLoopNode::match_incr_with_optional_truncation(in, &trunc1, &trunc2, &iv_trunc_t, T_INT))) {
4463         continue;
4464       }
4465       assert(in->Opcode() == Op_AddI, "wrong increment code");
4466       Node* xphi = nullptr;
4467       Node* stride = loop_iv_stride(in, xphi);
4468 
4469       if (stride == nullptr) {
4470         continue;
4471       }
4472 
4473       PhiNode* phi = loop_iv_phi(xphi, nullptr, head);
4474       if (phi == nullptr ||
4475           (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
4476           (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
4477         return false;
4478       }
4479 
4480       f = pf.to(region->in(i));
4481       if (f > 0.5) {
4482         inner = i;
4483         break;
4484       }
4485     }
4486 
4487     if (inner == 0) {
4488       return false;
4489     }
4490 
4491     exit_test = back_control->in(0)->as_If();
4492   }
4493 
4494   if (idom(region)->is_Catch()) {
4495     return false;
4496   }
4497 
4498   // Collect all control nodes that need to be cloned (shared_stmt in the diagram)
4499   Unique_Node_List wq;
4500   wq.push(head->in(LoopNode::LoopBackControl));
4501   for (uint i = 0; i < wq.size(); i++) {
4502     Node* c = wq.at(i);
4503     assert(get_loop(c) == loop, "not in the right loop?");
4504     if (c->is_Region()) {
4505       if (c != region) {
4506         for (uint j = 1; j < c->req(); ++j) {
4507           wq.push(c->in(j));
4508         }
4509       }
4510     } else {
4511       wq.push(c->in(0));
4512     }
4513     assert(!is_strict_dominator(c, region), "shouldn't go above region");
4514   }
4515 
4516   Node* region_dom = idom(region);
4517 
4518   // Can't do the transformation if this would cause a membar pair to
4519   // be split
4520   for (uint i = 0; i < wq.size(); i++) {
4521     Node* c = wq.at(i);
4522     if (c->is_MemBar() && (c->as_MemBar()->trailing_store() || c->as_MemBar()->trailing_load_store())) {
4523       assert(c->as_MemBar()->leading_membar()->trailing_membar() == c, "bad membar pair");
4524       if (!wq.member(c->as_MemBar()->leading_membar())) {
4525         return false;
4526       }
4527     }
4528   }
4529   C->print_method(PHASE_BEFORE_DUPLICATE_LOOP_BACKEDGE, 4, head);
4530 
4531   // Collect data nodes that need to be clones as well
4532   int dd = dom_depth(head);
4533 
4534   for (uint i = 0; i < loop->_body.size(); ++i) {
4535     Node* n = loop->_body.at(i);
4536     if (has_ctrl(n)) {
4537       Node* c = get_ctrl(n);
4538       if (wq.member(c)) {
4539         wq.push(n);
4540       }
4541     } else {
4542       set_idom(n, idom(n), dd);
4543     }
4544   }
4545 
4546   // clone shared_stmt
4547   clone_loop_body(wq, old_new, nullptr);
4548 
4549   Node* region_clone = old_new[region->_idx];
4550   region_clone->set_req(inner, C->top());
4551   set_idom(region, region->in(inner), dd);
4552 
4553   // Prepare the outer loop
4554   Node* outer_head = new LoopNode(head->in(LoopNode::EntryControl), old_new[head->in(LoopNode::LoopBackControl)->_idx]);
4555   register_control(outer_head, loop->_parent, outer_head->in(LoopNode::EntryControl));
4556   _igvn.replace_input_of(head, LoopNode::EntryControl, outer_head);
4557   set_idom(head, outer_head, dd);
4558 
4559   fix_body_edges(wq, loop, old_new, dd, loop->_parent, true);
4560 
4561   // Make one of the shared_stmt copies only reachable from stmt1, the
4562   // other only from stmt2..stmtn.
4563   Node* dom = nullptr;
4564   for (uint i = 1; i < region->req(); ++i) {
4565     if (i != inner) {
4566       _igvn.replace_input_of(region, i, C->top());
4567     }
4568     Node* in = region_clone->in(i);
4569     if (in->is_top()) {
4570       continue;
4571     }
4572     if (dom == nullptr) {
4573       dom = in;
4574     } else {
4575       dom = dom_lca(dom, in);
4576     }
4577   }
4578 
4579   set_idom(region_clone, dom, dd);
4580 
4581   // Set up the outer loop
4582   for (uint i = 0; i < head->outcnt(); i++) {
4583     Node* u = head->raw_out(i);
4584     if (u->is_Phi()) {
4585       Node* outer_phi = u->clone();
4586       outer_phi->set_req(0, outer_head);
4587       Node* backedge = old_new[u->in(LoopNode::LoopBackControl)->_idx];
4588       if (backedge == nullptr) {
4589         backedge = u->in(LoopNode::LoopBackControl);
4590       }
4591       outer_phi->set_req(LoopNode::LoopBackControl, backedge);
4592       register_new_node(outer_phi, outer_head);
4593       _igvn.replace_input_of(u, LoopNode::EntryControl, outer_phi);
4594     }
4595   }
4596 
4597   // create control and data nodes for out of loop uses (including region2)
4598   Node_List worklist;
4599   uint new_counter = C->unique();
4600   fix_ctrl_uses(wq, loop, old_new, ControlAroundStripMined, outer_head, nullptr, worklist);
4601 
4602   Node_List *split_if_set = nullptr;
4603   Node_List *split_bool_set = nullptr;
4604   Node_List *split_cex_set = nullptr;
4605   fix_data_uses(wq, loop, ControlAroundStripMined, loop->skip_strip_mined(), new_counter, old_new, worklist,
4606                 split_if_set, split_bool_set, split_cex_set);
4607 
4608   finish_clone_loop(split_if_set, split_bool_set, split_cex_set);
4609 
4610   if (exit_test != nullptr) {
4611     float cnt = exit_test->_fcnt;
4612     if (cnt != COUNT_UNKNOWN) {
4613       exit_test->_fcnt = cnt * f;
4614       old_new[exit_test->_idx]->as_If()->_fcnt = cnt * (1 - f);
4615     }
4616   }
4617 
4618   C->set_major_progress();
4619 
4620   C->print_method(PHASE_AFTER_DUPLICATE_LOOP_BACKEDGE, 4, outer_head);
4621 
4622   return true;
4623 }
4624 
4625 // AutoVectorize the loop: replace scalar ops with vector ops.
4626 PhaseIdealLoop::AutoVectorizeStatus
4627 PhaseIdealLoop::auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared) {
4628   // Counted loop only
4629   if (!lpt->is_counted()) {
4630     return AutoVectorizeStatus::Impossible;
4631   }
4632 
4633   // Main-loop only
4634   CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4635   if (!cl->is_main_loop()) {
4636     return AutoVectorizeStatus::Impossible;
4637   }
4638 
4639   VLoop vloop(lpt, false);
4640   if (!vloop.check_preconditions()) {
4641     return AutoVectorizeStatus::TriedAndFailed;
4642   }
4643 
4644   // Ensure the shared data is cleared before each use
4645   vshared.clear();
4646 
4647   const VLoopAnalyzer vloop_analyzer(vloop, vshared);
4648   if (!vloop_analyzer.success()) {
4649     return AutoVectorizeStatus::TriedAndFailed;
4650   }
4651 
4652   SuperWord sw(vloop_analyzer);
4653   if (!sw.transform_loop()) {
4654     return AutoVectorizeStatus::TriedAndFailed;
4655   }
4656 
4657   return AutoVectorizeStatus::Success;
4658 }
4659 
4660 // Just before insert_pre_post_loops, we can multiversion the loop:
4661 //
4662 //              multiversion_if
4663 //               |       |
4664 //         fast_loop   slow_loop
4665 //
4666 // In the fast_loop we can make speculative assumptions, and put the
4667 // conditions into the multiversion_if. If the conditions hold at runtime,
4668 // we enter the fast_loop, if the conditions fail, we take the slow_loop
4669 // instead which does not make any of the speculative assumptions.
4670 //
4671 // Note: we only multiversion the loop if the loop does not have any
4672 //       auto vectorization check Predicate. If we have that predicate,
4673 //       then we can simply add the speculative assumption checks to
4674 //       that Predicate. This means we do not need to duplicate the
4675 //       loop - we have a smaller graph and save compile time. Should
4676 //       the conditions ever fail, then we deopt / trap at the Predicate
4677 //       and recompile without that Predicate. At that point we will
4678 //       multiversion the loop, so that we can still have speculative
4679 //       runtime checks.
4680 //
4681 // We perform the multiversioning when the loop is still in its single
4682 // iteration form, even before we insert pre and post loops. This makes
4683 // the cloning much simpler. However, this means that both the fast
4684 // and the slow loop have to be optimized independently (adding pre
4685 // and post loops, unrolling the main loop, auto-vectorize etc.). And
4686 // we may end up not needing any speculative assumptions in the fast_loop
4687 // and then rejecting the slow_loop by constant folding the multiversion_if.
4688 //
4689 // Therefore, we "delay" the optimization of the slow_loop until we add
4690 // at least one speculative assumption for the fast_loop. If we never
4691 // add such a speculative runtime check, the OpaqueMultiversioningNode
4692 // of the multiversion_if constant folds to true after loop opts, and the
4693 // multiversion_if folds away the "delayed" slow_loop. If we add any
4694 // speculative assumption, then we notify the OpaqueMultiversioningNode
4695 // with "notify_slow_loop_that_it_can_resume_optimizations".
4696 //
4697 // Note: new runtime checks can be added to the multiversion_if with
4698 //       PhaseIdealLoop::create_new_if_for_multiversion
4699 void PhaseIdealLoop::maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new) {
4700   CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4701   LoopNode* outer_loop = cl->skip_strip_mined();
4702   Node* entry = outer_loop->in(LoopNode::EntryControl);
4703 
4704   // Check we have multiversioning enabled, and are not already multiversioned.
4705   if (!LoopMultiversioning || cl->is_multiversion()) { return; }
4706 
4707   // Check that we do not have a parse-predicate where we can add the runtime checks
4708   // during auto-vectorization.
4709   const Predicates predicates(entry);
4710   const PredicateBlock* predicate_block = predicates.auto_vectorization_check_block();
4711   if (predicate_block->has_parse_predicate()) { return; }
4712 
4713   // Check node budget.
4714   uint estimate = lpt->est_loop_clone_sz(2);
4715   if (!may_require_nodes(estimate)) { return; }
4716 
4717   do_multiversioning(lpt, old_new);
4718 }
4719 
4720 // Returns true if the Reduction node is unordered.
4721 static bool is_unordered_reduction(Node* n) {
4722   return n->is_Reduction() && !n->as_Reduction()->requires_strict_order();
4723 }
4724 
4725 // Having ReductionNodes in the loop is expensive. They need to recursively
4726 // fold together the vector values, for every vectorized loop iteration. If
4727 // we encounter the following pattern, we can vector accumulate the values
4728 // inside the loop, and only have a single UnorderedReduction after the loop.
4729 //
4730 // Note: UnorderedReduction represents a ReductionNode which does not require
4731 // calculating in strict order.
4732 //
4733 // CountedLoop     init
4734 //          |        |
4735 //          +------+ | +-----------------------+
4736 //                 | | |                       |
4737 //                PhiNode (s)                  |
4738 //                  |                          |
4739 //                  |          Vector          |
4740 //                  |            |             |
4741 //               UnorderedReduction (first_ur) |
4742 //                  |                          |
4743 //                 ...         Vector          |
4744 //                  |            |             |
4745 //               UnorderedReduction (last_ur)  |
4746 //                       |                     |
4747 //                       +---------------------+
4748 //
4749 // We patch the graph to look like this:
4750 //
4751 // CountedLoop   identity_vector
4752 //         |         |
4753 //         +-------+ | +---------------+
4754 //                 | | |               |
4755 //                PhiNode (v)          |
4756 //                   |                 |
4757 //                   |         Vector  |
4758 //                   |           |     |
4759 //                 VectorAccumulator   |
4760 //                   |                 |
4761 //                  ...        Vector  |
4762 //                   |           |     |
4763 //      init       VectorAccumulator   |
4764 //        |          |     |           |
4765 //     UnorderedReduction  +-----------+
4766 //
4767 // We turned the scalar (s) Phi into a vectorized one (v). In the loop, we
4768 // use vector_accumulators, which do the same reductions, but only element
4769 // wise. This is a single operation per vector_accumulator, rather than many
4770 // for a UnorderedReduction. We can then reduce the last vector_accumulator
4771 // after the loop, and also reduce the init value into it.
4772 //
4773 // We can not do this with all reductions. Some reductions do not allow the
4774 // reordering of operations (for example float addition/multiplication require
4775 // strict order).
4776 void PhaseIdealLoop::move_unordered_reduction_out_of_loop(IdealLoopTree* loop) {
4777   assert(!C->major_progress() && loop->is_counted() && loop->is_innermost(), "sanity");
4778 
4779   // Find all Phi nodes with an unordered Reduction on backedge.
4780   CountedLoopNode* cl = loop->_head->as_CountedLoop();
4781   for (DUIterator_Fast jmax, j = cl->fast_outs(jmax); j < jmax; j++) {
4782     Node* phi = cl->fast_out(j);
4783     // We have a phi with a single use, and an unordered Reduction on the backedge.
4784     if (!phi->is_Phi() || phi->outcnt() != 1 || !is_unordered_reduction(phi->in(2))) {
4785       continue;
4786     }
4787 
4788     ReductionNode* last_ur = phi->in(2)->as_Reduction();
4789     assert(!last_ur->requires_strict_order(), "must be");
4790 
4791     // Determine types
4792     const TypeVect* vec_t = last_ur->vect_type();
4793     uint vector_length    = vec_t->length();
4794     BasicType bt          = vec_t->element_basic_type();
4795 
4796     // Convert opcode from vector-reduction -> scalar -> normal-vector-op
4797     const int sopc        = VectorNode::scalar_opcode(last_ur->Opcode(), bt);
4798     const int vopc        = VectorNode::opcode(sopc, bt);
4799     if (!Matcher::match_rule_supported_vector(vopc, vector_length, bt)) {
4800         DEBUG_ONLY( last_ur->dump(); )
4801         assert(false, "do not have normal vector op for this reduction");
4802         continue; // not implemented -> fails
4803     }
4804 
4805     // Traverse up the chain of unordered Reductions, checking that it loops back to
4806     // the phi. Check that all unordered Reductions only have a single use, except for
4807     // the last (last_ur), which only has phi as a use in the loop, and all other uses
4808     // are outside the loop.
4809     ReductionNode* current = last_ur;
4810     ReductionNode* first_ur = nullptr;
4811     while (true) {
4812       assert(!current->requires_strict_order(), "sanity");
4813 
4814       // Expect no ctrl and a vector_input from within the loop.
4815       Node* ctrl = current->in(0);
4816       Node* vector_input = current->in(2);
4817       if (ctrl != nullptr || get_ctrl(vector_input) != cl) {
4818         DEBUG_ONLY( current->dump(1); )
4819         assert(false, "reduction has ctrl or bad vector_input");
4820         break; // Chain traversal fails.
4821       }
4822 
4823       assert(current->vect_type() != nullptr, "must have vector type");
4824       if (current->vect_type() != last_ur->vect_type()) {
4825         // Reductions do not have the same vector type (length and element type).
4826         break; // Chain traversal fails.
4827       }
4828 
4829       // Expect single use of an unordered Reduction, except for last_ur.
4830       if (current == last_ur) {
4831         // Expect all uses to be outside the loop, except phi.
4832         for (DUIterator_Fast kmax, k = current->fast_outs(kmax); k < kmax; k++) {
4833           Node* use = current->fast_out(k);
4834           if (use != phi && ctrl_or_self(use) == cl) {
4835             DEBUG_ONLY( current->dump(-1); )
4836             assert(false, "reduction has use inside loop");
4837             // Should not be allowed by SuperWord::mark_reductions
4838             return; // bail out of optimization
4839           }
4840         }
4841       } else {
4842         if (current->outcnt() != 1) {
4843           break; // Chain traversal fails.
4844         }
4845       }
4846 
4847       // Expect another unordered Reduction or phi as the scalar input.
4848       Node* scalar_input = current->in(1);
4849       if (is_unordered_reduction(scalar_input) &&
4850           scalar_input->Opcode() == current->Opcode()) {
4851         // Move up the unordered Reduction chain.
4852         current = scalar_input->as_Reduction();
4853         assert(!current->requires_strict_order(), "must be");
4854       } else if (scalar_input == phi) {
4855         // Chain terminates at phi.
4856         first_ur = current;
4857         current = nullptr;
4858         break; // Success.
4859       } else {
4860         // scalar_input is neither phi nor a matching reduction
4861         // Can for example be scalar reduction when we have
4862         // partial vectorization.
4863         break; // Chain traversal fails.
4864       }
4865     }
4866     if (current != nullptr) {
4867       // Chain traversal was not successful.
4868       continue;
4869     }
4870     assert(first_ur != nullptr, "must have successfully terminated chain traversal");
4871 
4872     Node* identity_scalar = ReductionNode::make_identity_con_scalar(_igvn, sopc, bt);
4873     set_root_as_ctrl(identity_scalar);
4874     VectorNode* identity_vector = VectorNode::scalar2vector(identity_scalar, vector_length, bt);
4875     register_new_node(identity_vector, C->root());
4876     assert(vec_t == identity_vector->vect_type(), "matching vector type");
4877     VectorNode::trace_new_vector(identity_vector, "Unordered Reduction");
4878 
4879     // Turn the scalar phi into a vector phi.
4880     _igvn.rehash_node_delayed(phi);
4881     Node* init = phi->in(1); // Remember init before replacing it.
4882     phi->set_req_X(1, identity_vector, &_igvn);
4883     phi->as_Type()->set_type(vec_t);
4884     _igvn.set_type(phi, vec_t);
4885 
4886     // Traverse down the chain of unordered Reductions, and replace them with vector_accumulators.
4887     current = first_ur;
4888     while (true) {
4889       // Create vector_accumulator to replace current.
4890       Node* last_vector_accumulator = current->in(1);
4891       Node* vector_input            = current->in(2);
4892       VectorNode* vector_accumulator = VectorNode::make(vopc, last_vector_accumulator, vector_input, vec_t);
4893       register_new_node(vector_accumulator, cl);
4894       _igvn.replace_node(current, vector_accumulator);
4895       VectorNode::trace_new_vector(vector_accumulator, "Unordered Reduction");
4896       if (current == last_ur) {
4897         break;
4898       }
4899       current = vector_accumulator->unique_out()->as_Reduction();
4900       assert(!current->requires_strict_order(), "must be");
4901     }
4902 
4903     // Create post-loop reduction.
4904     Node* last_accumulator = phi->in(2);
4905     Node* post_loop_reduction = ReductionNode::make(sopc, nullptr, init, last_accumulator, bt);
4906 
4907     // Take over uses of last_accumulator that are not in the loop.
4908     for (DUIterator i = last_accumulator->outs(); last_accumulator->has_out(i); i++) {
4909       Node* use = last_accumulator->out(i);
4910       if (use != phi && use != post_loop_reduction) {
4911         assert(ctrl_or_self(use) != cl, "use must be outside loop");
4912         use->replace_edge(last_accumulator, post_loop_reduction,  &_igvn);
4913         --i;
4914       }
4915     }
4916     register_new_node(post_loop_reduction, get_late_ctrl(post_loop_reduction, cl));
4917     VectorNode::trace_new_vector(post_loop_reduction, "Unordered Reduction");
4918 
4919     assert(last_accumulator->outcnt() == 2, "last_accumulator has 2 uses: phi and post_loop_reduction");
4920     assert(post_loop_reduction->outcnt() > 0, "should have taken over all non loop uses of last_accumulator");
4921     assert(phi->outcnt() == 1, "accumulator is the only use of phi");
4922   }
4923 }
4924 
4925 void DataNodeGraph::clone_data_nodes(Node* new_ctrl) {
4926   for (uint i = 0; i < _data_nodes.size(); i++) {
4927     clone(_data_nodes[i], new_ctrl);
4928   }
4929 }
4930 
4931 // Clone the given node and set it up properly. Set 'new_ctrl' as ctrl.
4932 void DataNodeGraph::clone(Node* node, Node* new_ctrl) {
4933   Node* clone = node->clone();
4934   _phase->igvn().register_new_node_with_optimizer(clone);
4935   _orig_to_new.put(node, clone);
4936   _phase->set_ctrl(clone, new_ctrl);
4937   if (node->is_CastII()) {
4938     clone->set_req(0, new_ctrl);
4939   }
4940 }
4941 
4942 // Rewire the data inputs of all (unprocessed) cloned nodes, whose inputs are still pointing to the same inputs as their
4943 // corresponding orig nodes, to the newly cloned inputs to create a separate cloned graph.
4944 void DataNodeGraph::rewire_clones_to_cloned_inputs() {
4945   _orig_to_new.iterate_all([&](Node* node, Node* clone) {
4946     for (uint i = 1; i < node->req(); i++) {
4947       Node** cloned_input = _orig_to_new.get(node->in(i));
4948       if (cloned_input != nullptr) {
4949         // Input was also cloned -> rewire clone to the cloned input.
4950         _phase->igvn().replace_input_of(clone, i, *cloned_input);
4951       }
4952     }
4953   });
4954 }
4955 
4956 // Clone all non-OpaqueLoop* nodes and apply the provided transformation strategy for OpaqueLoop* nodes.
4957 // Set 'new_ctrl' as ctrl for all cloned non-OpaqueLoop* nodes.
4958 void DataNodeGraph::clone_data_nodes_and_transform_opaque_loop_nodes(
4959     const TransformStrategyForOpaqueLoopNodes& transform_strategy,
4960     Node* new_ctrl) {
4961   for (uint i = 0; i < _data_nodes.size(); i++) {
4962     Node* data_node = _data_nodes[i];
4963     if (data_node->is_Opaque1()) {
4964       transform_opaque_node(transform_strategy, data_node);
4965     } else {
4966       clone(data_node, new_ctrl);
4967     }
4968   }
4969 }
4970 
4971 void DataNodeGraph::transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node) {
4972   Node* transformed_node;
4973   if (node->is_OpaqueLoopInit()) {
4974     transformed_node = transform_strategy.transform_opaque_init(node->as_OpaqueLoopInit());
4975   } else {
4976     assert(node->is_OpaqueLoopStride(), "must be OpaqueLoopStrideNode");
4977     transformed_node = transform_strategy.transform_opaque_stride(node->as_OpaqueLoopStride());
4978   }
4979   // Add an orig->new mapping to correctly update the inputs of the copied graph in rewire_clones_to_cloned_inputs().
4980   _orig_to_new.put(node, transformed_node);
4981 }