1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "memory/allocation.inline.hpp" 29 #include "memory/resourceArea.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/callnode.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/connode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/divnode.hpp" 36 #include "opto/inlinetypenode.hpp" 37 #include "opto/loopnode.hpp" 38 #include "opto/matcher.hpp" 39 #include "opto/mulnode.hpp" 40 #include "opto/movenode.hpp" 41 #include "opto/opaquenode.hpp" 42 #include "opto/rootnode.hpp" 43 #include "opto/subnode.hpp" 44 #include "opto/subtypenode.hpp" 45 #include "opto/superword.hpp" 46 #include "opto/vectornode.hpp" 47 #include "utilities/macros.hpp" 48 49 //============================================================================= 50 //------------------------------split_thru_phi--------------------------------- 51 // Split Node 'n' through merge point if there is enough win. 52 Node* PhaseIdealLoop::split_thru_phi(Node* n, Node* region, int policy) { 53 if ((n->Opcode() == Op_ConvI2L && n->bottom_type() != TypeLong::LONG) || 54 (n->Opcode() == Op_ConvL2I && n->bottom_type() != TypeInt::INT)) { 55 // ConvI2L/ConvL2I may have type information on it which is unsafe to push up 56 // so disable this for now 57 return nullptr; 58 } 59 60 // Splitting range check CastIIs through a loop induction Phi can 61 // cause new Phis to be created that are left unrelated to the loop 62 // induction Phi and prevent optimizations (vectorization) 63 if (n->Opcode() == Op_CastII && region->is_CountedLoop() && 64 n->in(1) == region->as_CountedLoop()->phi()) { 65 return nullptr; 66 } 67 68 // Inline types should not be split through Phis because they cannot be merged 69 // through Phi nodes but each value input needs to be merged individually. 70 if (n->is_InlineType()) { 71 return nullptr; 72 } 73 74 if (cannot_split_division(n, region)) { 75 return nullptr; 76 } 77 78 int wins = 0; 79 assert(!n->is_CFG(), ""); 80 assert(region->is_Region(), ""); 81 82 const Type* type = n->bottom_type(); 83 const TypeOopPtr* t_oop = _igvn.type(n)->isa_oopptr(); 84 Node* phi; 85 if (t_oop != nullptr && t_oop->is_known_instance_field()) { 86 int iid = t_oop->instance_id(); 87 int index = C->get_alias_index(t_oop); 88 int offset = t_oop->offset(); 89 phi = new PhiNode(region, type, nullptr, iid, index, offset); 90 } else { 91 phi = PhiNode::make_blank(region, n); 92 } 93 uint old_unique = C->unique(); 94 for (uint i = 1; i < region->req(); i++) { 95 Node* x; 96 Node* the_clone = nullptr; 97 if (region->in(i) == C->top()) { 98 x = C->top(); // Dead path? Use a dead data op 99 } else { 100 x = n->clone(); // Else clone up the data op 101 the_clone = x; // Remember for possible deletion. 102 // Alter data node to use pre-phi inputs 103 if (n->in(0) == region) 104 x->set_req( 0, region->in(i) ); 105 for (uint j = 1; j < n->req(); j++) { 106 Node* in = n->in(j); 107 if (in->is_Phi() && in->in(0) == region) 108 x->set_req(j, in->in(i)); // Use pre-Phi input for the clone 109 } 110 } 111 // Check for a 'win' on some paths 112 const Type* t = x->Value(&_igvn); 113 114 bool singleton = t->singleton(); 115 116 // A TOP singleton indicates that there are no possible values incoming 117 // along a particular edge. In most cases, this is OK, and the Phi will 118 // be eliminated later in an Ideal call. However, we can't allow this to 119 // happen if the singleton occurs on loop entry, as the elimination of 120 // the PhiNode may cause the resulting node to migrate back to a previous 121 // loop iteration. 122 if (singleton && t == Type::TOP) { 123 // Is_Loop() == false does not confirm the absence of a loop (e.g., an 124 // irreducible loop may not be indicated by an affirmative is_Loop()); 125 // therefore, the only top we can split thru a phi is on a backedge of 126 // a loop. 127 singleton &= region->is_Loop() && (i != LoopNode::EntryControl); 128 } 129 130 if (singleton) { 131 wins++; 132 x = ((PhaseGVN&)_igvn).makecon(t); 133 } else { 134 // We now call Identity to try to simplify the cloned node. 135 // Note that some Identity methods call phase->type(this). 136 // Make sure that the type array is big enough for 137 // our new node, even though we may throw the node away. 138 // (Note: This tweaking with igvn only works because x is a new node.) 139 _igvn.set_type(x, t); 140 // If x is a TypeNode, capture any more-precise type permanently into Node 141 // otherwise it will be not updated during igvn->transform since 142 // igvn->type(x) is set to x->Value() already. 143 x->raise_bottom_type(t); 144 Node* y = x->Identity(&_igvn); 145 if (y != x) { 146 wins++; 147 x = y; 148 } else { 149 y = _igvn.hash_find(x); 150 if (y == nullptr) { 151 y = similar_subtype_check(x, region->in(i)); 152 } 153 if (y) { 154 wins++; 155 x = y; 156 } else { 157 // Else x is a new node we are keeping 158 // We do not need register_new_node_with_optimizer 159 // because set_type has already been called. 160 _igvn._worklist.push(x); 161 } 162 } 163 } 164 165 phi->set_req( i, x ); 166 167 if (the_clone == nullptr) { 168 continue; 169 } 170 171 if (the_clone != x) { 172 _igvn.remove_dead_node(the_clone); 173 } else if (region->is_Loop() && i == LoopNode::LoopBackControl && 174 n->is_Load() && can_move_to_inner_loop(n, region->as_Loop(), x)) { 175 // it is not a win if 'x' moved from an outer to an inner loop 176 // this edge case can only happen for Load nodes 177 wins = 0; 178 break; 179 } 180 } 181 // Too few wins? 182 if (wins <= policy) { 183 _igvn.remove_dead_node(phi); 184 return nullptr; 185 } 186 187 // Record Phi 188 register_new_node( phi, region ); 189 190 for (uint i2 = 1; i2 < phi->req(); i2++) { 191 Node *x = phi->in(i2); 192 // If we commoned up the cloned 'x' with another existing Node, 193 // the existing Node picks up a new use. We need to make the 194 // existing Node occur higher up so it dominates its uses. 195 Node *old_ctrl; 196 IdealLoopTree *old_loop; 197 198 if (x->is_Con()) { 199 // Constant's control is always root. 200 set_ctrl(x, C->root()); 201 continue; 202 } 203 // The occasional new node 204 if (x->_idx >= old_unique) { // Found a new, unplaced node? 205 old_ctrl = nullptr; 206 old_loop = nullptr; // Not in any prior loop 207 } else { 208 old_ctrl = get_ctrl(x); 209 old_loop = get_loop(old_ctrl); // Get prior loop 210 } 211 // New late point must dominate new use 212 Node *new_ctrl = dom_lca(old_ctrl, region->in(i2)); 213 if (new_ctrl == old_ctrl) // Nothing is changed 214 continue; 215 216 IdealLoopTree *new_loop = get_loop(new_ctrl); 217 218 // Don't move x into a loop if its uses are 219 // outside of loop. Otherwise x will be cloned 220 // for each use outside of this loop. 221 IdealLoopTree *use_loop = get_loop(region); 222 if (!new_loop->is_member(use_loop) && 223 (old_loop == nullptr || !new_loop->is_member(old_loop))) { 224 // Take early control, later control will be recalculated 225 // during next iteration of loop optimizations. 226 new_ctrl = get_early_ctrl(x); 227 new_loop = get_loop(new_ctrl); 228 } 229 // Set new location 230 set_ctrl(x, new_ctrl); 231 // If changing loop bodies, see if we need to collect into new body 232 if (old_loop != new_loop) { 233 if (old_loop && !old_loop->_child) 234 old_loop->_body.yank(x); 235 if (!new_loop->_child) 236 new_loop->_body.push(x); // Collect body info 237 } 238 } 239 240 return phi; 241 } 242 243 // Test whether node 'x' can move into an inner loop relative to node 'n'. 244 // Note: The test is not exact. Returns true if 'x' COULD end up in an inner loop, 245 // BUT it can also return true and 'x' is in the outer loop 246 bool PhaseIdealLoop::can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x) { 247 IdealLoopTree* n_loop_tree = get_loop(n_loop); 248 IdealLoopTree* x_loop_tree = get_loop(get_early_ctrl(x)); 249 // x_loop_tree should be outer or same loop as n_loop_tree 250 return !x_loop_tree->is_member(n_loop_tree); 251 } 252 253 // Subtype checks that carry profile data don't common so look for a replacement by following edges 254 Node* PhaseIdealLoop::similar_subtype_check(const Node* x, Node* r_in) { 255 if (x->is_SubTypeCheck()) { 256 Node* in1 = x->in(1); 257 for (DUIterator_Fast imax, i = in1->fast_outs(imax); i < imax; i++) { 258 Node* u = in1->fast_out(i); 259 if (u != x && u->is_SubTypeCheck() && u->in(1) == x->in(1) && u->in(2) == x->in(2)) { 260 for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) { 261 Node* bol = u->fast_out(j); 262 for (DUIterator_Fast kmax, k = bol->fast_outs(kmax); k < kmax; k++) { 263 Node* iff = bol->fast_out(k); 264 // Only dominating subtype checks are interesting: otherwise we risk replacing a subtype check by another with 265 // unrelated profile 266 if (iff->is_If() && is_dominator(iff, r_in)) { 267 return u; 268 } 269 } 270 } 271 } 272 } 273 } 274 return nullptr; 275 } 276 277 // Return true if 'n' is a Div or Mod node (without zero check If node which was removed earlier) with a loop phi divisor 278 // of a trip-counted (integer or long) loop with a backedge input that could be zero (include zero in its type range). In 279 // this case, we cannot split the division to the backedge as it could freely float above the loop exit check resulting in 280 // a division by zero. This situation is possible because the type of an increment node of an iv phi (trip-counter) could 281 // include zero while the iv phi does not (see PhiNode::Value() for trip-counted loops where we improve types of iv phis). 282 // We also need to check other loop phis as they could have been created in the same split-if pass when applying 283 // PhaseIdealLoop::split_thru_phi() to split nodes through an iv phi. 284 bool PhaseIdealLoop::cannot_split_division(const Node* n, const Node* region) const { 285 const Type* zero; 286 switch (n->Opcode()) { 287 case Op_DivI: 288 case Op_ModI: 289 zero = TypeInt::ZERO; 290 break; 291 case Op_DivL: 292 case Op_ModL: 293 zero = TypeLong::ZERO; 294 break; 295 default: 296 return false; 297 } 298 299 if (n->in(0) != nullptr) { 300 // Cannot split through phi if Div or Mod node has a control dependency to a zero check. 301 return true; 302 } 303 304 Node* divisor = n->in(2); 305 return is_divisor_loop_phi(divisor, region) && 306 loop_phi_backedge_type_contains_zero(divisor, zero); 307 } 308 309 bool PhaseIdealLoop::is_divisor_loop_phi(const Node* divisor, const Node* loop) { 310 return loop->is_Loop() && divisor->is_Phi() && divisor->in(0) == loop; 311 } 312 313 bool PhaseIdealLoop::loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const { 314 return _igvn.type(phi_divisor->in(LoopNode::LoopBackControl))->filter_speculative(zero) != Type::TOP; 315 } 316 317 //------------------------------dominated_by------------------------------------ 318 // Replace the dominated test with an obvious true or false. Place it on the 319 // IGVN worklist for later cleanup. Move control-dependent data Nodes on the 320 // live path up to the dominating control. 321 void PhaseIdealLoop::dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip, bool pin_array_access_nodes) { 322 if (VerifyLoopOptimizations && PrintOpto) { tty->print_cr("dominating test"); } 323 324 // prevdom is the dominating projection of the dominating test. 325 assert(iff->Opcode() == Op_If || 326 iff->Opcode() == Op_CountedLoopEnd || 327 iff->Opcode() == Op_LongCountedLoopEnd || 328 iff->Opcode() == Op_RangeCheck || 329 iff->Opcode() == Op_ParsePredicate, 330 "Check this code when new subtype is added"); 331 332 int pop = prevdom->Opcode(); 333 assert( pop == Op_IfFalse || pop == Op_IfTrue, "" ); 334 if (flip) { 335 if (pop == Op_IfTrue) 336 pop = Op_IfFalse; 337 else 338 pop = Op_IfTrue; 339 } 340 // 'con' is set to true or false to kill the dominated test. 341 Node *con = _igvn.makecon(pop == Op_IfTrue ? TypeInt::ONE : TypeInt::ZERO); 342 set_ctrl(con, C->root()); // Constant gets a new use 343 // Hack the dominated test 344 _igvn.replace_input_of(iff, 1, con); 345 346 // If I don't have a reachable TRUE and FALSE path following the IfNode then 347 // I can assume this path reaches an infinite loop. In this case it's not 348 // important to optimize the data Nodes - either the whole compilation will 349 // be tossed or this path (and all data Nodes) will go dead. 350 if (iff->outcnt() != 2) { 351 return; 352 } 353 354 // Make control-dependent data Nodes on the live path (path that will remain 355 // once the dominated IF is removed) become control-dependent on the 356 // dominating projection. 357 Node* dp = iff->proj_out_or_null(pop == Op_IfTrue); 358 359 if (dp == nullptr) { 360 return; 361 } 362 363 rewire_safe_outputs_to_dominator(dp, prevdom, pin_array_access_nodes); 364 } 365 366 void PhaseIdealLoop::rewire_safe_outputs_to_dominator(Node* source, Node* dominator, const bool pin_array_access_nodes) { 367 IdealLoopTree* old_loop = get_loop(source); 368 369 for (DUIterator_Fast imax, i = source->fast_outs(imax); i < imax; i++) { 370 Node* out = source->fast_out(i); // Control-dependent node 371 // Do not rewire Div and Mod nodes which could have a zero divisor to avoid skipping their zero check. 372 if (out->depends_only_on_test() && _igvn.no_dependent_zero_check(out)) { 373 assert(out->in(0) == source, "must be control dependent on source"); 374 _igvn.replace_input_of(out, 0, dominator); 375 if (pin_array_access_nodes) { 376 // Because of Loop Predication, Loads and range check Cast nodes that are control dependent on this range 377 // check (that is about to be removed) now depend on multiple dominating Hoisted Check Predicates. After the 378 // removal of this range check, these control dependent nodes end up at the lowest/nearest dominating predicate 379 // in the graph. To ensure that these Loads/Casts do not float above any of the dominating checks (even when the 380 // lowest dominating check is later replaced by yet another dominating check), we need to pin them at the lowest 381 // dominating check. 382 Node* clone = out->pin_array_access_node(); 383 if (clone != nullptr) { 384 clone = _igvn.register_new_node_with_optimizer(clone, out); 385 _igvn.replace_node(out, clone); 386 out = clone; 387 } 388 } 389 set_early_ctrl(out, false); 390 IdealLoopTree* new_loop = get_loop(get_ctrl(out)); 391 if (old_loop != new_loop) { 392 if (!old_loop->_child) { 393 old_loop->_body.yank(out); 394 } 395 if (!new_loop->_child) { 396 new_loop->_body.push(out); 397 } 398 } 399 --i; 400 --imax; 401 } 402 } 403 } 404 405 //------------------------------has_local_phi_input---------------------------- 406 // Return TRUE if 'n' has Phi inputs from its local block and no other 407 // block-local inputs (all non-local-phi inputs come from earlier blocks) 408 Node *PhaseIdealLoop::has_local_phi_input( Node *n ) { 409 Node *n_ctrl = get_ctrl(n); 410 // See if some inputs come from a Phi in this block, or from before 411 // this block. 412 uint i; 413 for( i = 1; i < n->req(); i++ ) { 414 Node *phi = n->in(i); 415 if( phi->is_Phi() && phi->in(0) == n_ctrl ) 416 break; 417 } 418 if( i >= n->req() ) 419 return nullptr; // No Phi inputs; nowhere to clone thru 420 421 // Check for inputs created between 'n' and the Phi input. These 422 // must split as well; they have already been given the chance 423 // (courtesy of a post-order visit) and since they did not we must 424 // recover the 'cost' of splitting them by being very profitable 425 // when splitting 'n'. Since this is unlikely we simply give up. 426 for( i = 1; i < n->req(); i++ ) { 427 Node *m = n->in(i); 428 if( get_ctrl(m) == n_ctrl && !m->is_Phi() ) { 429 // We allow the special case of AddP's with no local inputs. 430 // This allows us to split-up address expressions. 431 if (m->is_AddP() && 432 get_ctrl(m->in(AddPNode::Base)) != n_ctrl && 433 get_ctrl(m->in(AddPNode::Address)) != n_ctrl && 434 get_ctrl(m->in(AddPNode::Offset)) != n_ctrl) { 435 // Move the AddP up to the dominating point. That's fine because control of m's inputs 436 // must dominate get_ctrl(m) == n_ctrl and we just checked that the input controls are != n_ctrl. 437 Node* c = find_non_split_ctrl(idom(n_ctrl)); 438 if (c->is_OuterStripMinedLoop()) { 439 c->as_Loop()->verify_strip_mined(1); 440 c = c->in(LoopNode::EntryControl); 441 } 442 set_ctrl_and_loop(m, c); 443 continue; 444 } 445 return nullptr; 446 } 447 assert(n->is_Phi() || m->is_Phi() || is_dominator(get_ctrl(m), n_ctrl), "m has strange control"); 448 } 449 450 return n_ctrl; 451 } 452 453 // Replace expressions like ((V+I) << 2) with (V<<2 + I<<2). 454 Node* PhaseIdealLoop::remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt) { 455 assert(bt == T_INT || bt == T_LONG, "only for integers"); 456 int n_op = n->Opcode(); 457 458 if (n_op == Op_LShift(bt)) { 459 // Scale is loop invariant 460 Node* scale = n->in(2); 461 Node* scale_ctrl = get_ctrl(scale); 462 IdealLoopTree* scale_loop = get_loop(scale_ctrl); 463 if (n_loop == scale_loop || !scale_loop->is_member(n_loop)) { 464 return nullptr; 465 } 466 const TypeInt* scale_t = scale->bottom_type()->isa_int(); 467 if (scale_t != nullptr && scale_t->is_con() && scale_t->get_con() >= 16) { 468 return nullptr; // Dont bother with byte/short masking 469 } 470 // Add must vary with loop (else shift would be loop-invariant) 471 Node* add = n->in(1); 472 Node* add_ctrl = get_ctrl(add); 473 IdealLoopTree* add_loop = get_loop(add_ctrl); 474 if (n_loop != add_loop) { 475 return nullptr; // happens w/ evil ZKM loops 476 } 477 478 // Convert I-V into I+ (0-V); same for V-I 479 if (add->Opcode() == Op_Sub(bt) && 480 _igvn.type(add->in(1)) != TypeInteger::zero(bt)) { 481 assert(add->Opcode() == Op_SubI || add->Opcode() == Op_SubL, ""); 482 Node* zero = _igvn.integercon(0, bt); 483 set_ctrl(zero, C->root()); 484 Node* neg = SubNode::make(zero, add->in(2), bt); 485 register_new_node_with_ctrl_of(neg, add->in(2)); 486 add = AddNode::make(add->in(1), neg, bt); 487 register_new_node(add, add_ctrl); 488 } 489 if (add->Opcode() != Op_Add(bt)) return nullptr; 490 assert(add->Opcode() == Op_AddI || add->Opcode() == Op_AddL, ""); 491 // See if one add input is loop invariant 492 Node* add_var = add->in(1); 493 Node* add_var_ctrl = get_ctrl(add_var); 494 IdealLoopTree* add_var_loop = get_loop(add_var_ctrl); 495 Node* add_invar = add->in(2); 496 Node* add_invar_ctrl = get_ctrl(add_invar); 497 IdealLoopTree* add_invar_loop = get_loop(add_invar_ctrl); 498 if (add_invar_loop == n_loop) { 499 // Swap to find the invariant part 500 add_invar = add_var; 501 add_invar_ctrl = add_var_ctrl; 502 add_invar_loop = add_var_loop; 503 add_var = add->in(2); 504 } else if (add_var_loop != n_loop) { // Else neither input is loop invariant 505 return nullptr; 506 } 507 if (n_loop == add_invar_loop || !add_invar_loop->is_member(n_loop)) { 508 return nullptr; // No invariant part of the add? 509 } 510 511 // Yes! Reshape address expression! 512 Node* inv_scale = LShiftNode::make(add_invar, scale, bt); 513 Node* inv_scale_ctrl = 514 dom_depth(add_invar_ctrl) > dom_depth(scale_ctrl) ? 515 add_invar_ctrl : scale_ctrl; 516 register_new_node(inv_scale, inv_scale_ctrl); 517 Node* var_scale = LShiftNode::make(add_var, scale, bt); 518 register_new_node(var_scale, n_ctrl); 519 Node* var_add = AddNode::make(var_scale, inv_scale, bt); 520 register_new_node(var_add, n_ctrl); 521 _igvn.replace_node(n, var_add); 522 return var_add; 523 } 524 return nullptr; 525 } 526 527 //------------------------------remix_address_expressions---------------------- 528 // Rework addressing expressions to get the most loop-invariant stuff 529 // moved out. We'd like to do all associative operators, but it's especially 530 // important (common) to do address expressions. 531 Node* PhaseIdealLoop::remix_address_expressions(Node* n) { 532 if (!has_ctrl(n)) return nullptr; 533 Node* n_ctrl = get_ctrl(n); 534 IdealLoopTree* n_loop = get_loop(n_ctrl); 535 536 // See if 'n' mixes loop-varying and loop-invariant inputs and 537 // itself is loop-varying. 538 539 // Only interested in binary ops (and AddP) 540 if (n->req() < 3 || n->req() > 4) return nullptr; 541 542 Node* n1_ctrl = get_ctrl(n->in( 1)); 543 Node* n2_ctrl = get_ctrl(n->in( 2)); 544 Node* n3_ctrl = get_ctrl(n->in(n->req() == 3 ? 2 : 3)); 545 IdealLoopTree* n1_loop = get_loop(n1_ctrl); 546 IdealLoopTree* n2_loop = get_loop(n2_ctrl); 547 IdealLoopTree* n3_loop = get_loop(n3_ctrl); 548 549 // Does one of my inputs spin in a tighter loop than self? 550 if ((n_loop->is_member(n1_loop) && n_loop != n1_loop) || 551 (n_loop->is_member(n2_loop) && n_loop != n2_loop) || 552 (n_loop->is_member(n3_loop) && n_loop != n3_loop)) { 553 return nullptr; // Leave well enough alone 554 } 555 556 // Is at least one of my inputs loop-invariant? 557 if (n1_loop == n_loop && 558 n2_loop == n_loop && 559 n3_loop == n_loop) { 560 return nullptr; // No loop-invariant inputs 561 } 562 563 Node* res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_INT); 564 if (res != nullptr) { 565 return res; 566 } 567 res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_LONG); 568 if (res != nullptr) { 569 return res; 570 } 571 572 int n_op = n->Opcode(); 573 // Replace (I+V) with (V+I) 574 if (n_op == Op_AddI || 575 n_op == Op_AddL || 576 n_op == Op_AddF || 577 n_op == Op_AddD || 578 n_op == Op_MulI || 579 n_op == Op_MulL || 580 n_op == Op_MulF || 581 n_op == Op_MulD) { 582 if (n2_loop == n_loop) { 583 assert(n1_loop != n_loop, ""); 584 n->swap_edges(1, 2); 585 } 586 } 587 588 // Replace ((I1 +p V) +p I2) with ((I1 +p I2) +p V), 589 // but not if I2 is a constant. Skip for irreducible loops. 590 if (n_op == Op_AddP && n_loop->_head->is_Loop()) { 591 if (n2_loop == n_loop && n3_loop != n_loop) { 592 if (n->in(2)->Opcode() == Op_AddP && !n->in(3)->is_Con()) { 593 Node* n22_ctrl = get_ctrl(n->in(2)->in(2)); 594 Node* n23_ctrl = get_ctrl(n->in(2)->in(3)); 595 IdealLoopTree* n22loop = get_loop(n22_ctrl); 596 IdealLoopTree* n23_loop = get_loop(n23_ctrl); 597 if (n22loop != n_loop && n22loop->is_member(n_loop) && 598 n23_loop == n_loop) { 599 Node* add1 = new AddPNode(n->in(1), n->in(2)->in(2), n->in(3)); 600 // Stuff new AddP in the loop preheader 601 register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl)); 602 Node* add2 = new AddPNode(n->in(1), add1, n->in(2)->in(3)); 603 register_new_node(add2, n_ctrl); 604 _igvn.replace_node(n, add2); 605 return add2; 606 } 607 } 608 } 609 610 // Replace (I1 +p (I2 + V)) with ((I1 +p I2) +p V) 611 if (n2_loop != n_loop && n3_loop == n_loop) { 612 if (n->in(3)->Opcode() == Op_AddX) { 613 Node* V = n->in(3)->in(1); 614 Node* I = n->in(3)->in(2); 615 if (is_member(n_loop,get_ctrl(V))) { 616 } else { 617 Node *tmp = V; V = I; I = tmp; 618 } 619 if (!is_member(n_loop,get_ctrl(I))) { 620 Node* add1 = new AddPNode(n->in(1), n->in(2), I); 621 // Stuff new AddP in the loop preheader 622 register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl)); 623 Node* add2 = new AddPNode(n->in(1), add1, V); 624 register_new_node(add2, n_ctrl); 625 _igvn.replace_node(n, add2); 626 return add2; 627 } 628 } 629 } 630 } 631 632 return nullptr; 633 } 634 635 // Optimize ((in1[2*i] * in2[2*i]) + (in1[2*i+1] * in2[2*i+1])) 636 Node *PhaseIdealLoop::convert_add_to_muladd(Node* n) { 637 assert(n->Opcode() == Op_AddI, "sanity"); 638 Node * nn = nullptr; 639 Node * in1 = n->in(1); 640 Node * in2 = n->in(2); 641 if (in1->Opcode() == Op_MulI && in2->Opcode() == Op_MulI) { 642 IdealLoopTree* loop_n = get_loop(get_ctrl(n)); 643 if (loop_n->is_counted() && 644 loop_n->_head->as_Loop()->is_valid_counted_loop(T_INT) && 645 Matcher::match_rule_supported(Op_MulAddVS2VI) && 646 Matcher::match_rule_supported(Op_MulAddS2I)) { 647 Node* mul_in1 = in1->in(1); 648 Node* mul_in2 = in1->in(2); 649 Node* mul_in3 = in2->in(1); 650 Node* mul_in4 = in2->in(2); 651 if (mul_in1->Opcode() == Op_LoadS && 652 mul_in2->Opcode() == Op_LoadS && 653 mul_in3->Opcode() == Op_LoadS && 654 mul_in4->Opcode() == Op_LoadS) { 655 IdealLoopTree* loop1 = get_loop(get_ctrl(mul_in1)); 656 IdealLoopTree* loop2 = get_loop(get_ctrl(mul_in2)); 657 IdealLoopTree* loop3 = get_loop(get_ctrl(mul_in3)); 658 IdealLoopTree* loop4 = get_loop(get_ctrl(mul_in4)); 659 IdealLoopTree* loop5 = get_loop(get_ctrl(in1)); 660 IdealLoopTree* loop6 = get_loop(get_ctrl(in2)); 661 // All nodes should be in the same counted loop. 662 if (loop_n == loop1 && loop_n == loop2 && loop_n == loop3 && 663 loop_n == loop4 && loop_n == loop5 && loop_n == loop6) { 664 Node* adr1 = mul_in1->in(MemNode::Address); 665 Node* adr2 = mul_in2->in(MemNode::Address); 666 Node* adr3 = mul_in3->in(MemNode::Address); 667 Node* adr4 = mul_in4->in(MemNode::Address); 668 if (adr1->is_AddP() && adr2->is_AddP() && adr3->is_AddP() && adr4->is_AddP()) { 669 if ((adr1->in(AddPNode::Base) == adr3->in(AddPNode::Base)) && 670 (adr2->in(AddPNode::Base) == adr4->in(AddPNode::Base))) { 671 nn = new MulAddS2INode(mul_in1, mul_in2, mul_in3, mul_in4); 672 register_new_node_with_ctrl_of(nn, n); 673 _igvn.replace_node(n, nn); 674 return nn; 675 } else if ((adr1->in(AddPNode::Base) == adr4->in(AddPNode::Base)) && 676 (adr2->in(AddPNode::Base) == adr3->in(AddPNode::Base))) { 677 nn = new MulAddS2INode(mul_in1, mul_in2, mul_in4, mul_in3); 678 register_new_node_with_ctrl_of(nn, n); 679 _igvn.replace_node(n, nn); 680 return nn; 681 } 682 } 683 } 684 } 685 } 686 } 687 return nn; 688 } 689 690 //------------------------------conditional_move------------------------------- 691 // Attempt to replace a Phi with a conditional move. We have some pretty 692 // strict profitability requirements. All Phis at the merge point must 693 // be converted, so we can remove the control flow. We need to limit the 694 // number of c-moves to a small handful. All code that was in the side-arms 695 // of the CFG diamond is now speculatively executed. This code has to be 696 // "cheap enough". We are pretty much limited to CFG diamonds that merge 697 // 1 or 2 items with a total of 1 or 2 ops executed speculatively. 698 Node *PhaseIdealLoop::conditional_move( Node *region ) { 699 700 assert(region->is_Region(), "sanity check"); 701 if (region->req() != 3) return nullptr; 702 703 // Check for CFG diamond 704 Node *lp = region->in(1); 705 Node *rp = region->in(2); 706 if (!lp || !rp) return nullptr; 707 Node *lp_c = lp->in(0); 708 if (lp_c == nullptr || lp_c != rp->in(0) || !lp_c->is_If()) return nullptr; 709 IfNode *iff = lp_c->as_If(); 710 711 // Check for ops pinned in an arm of the diamond. 712 // Can't remove the control flow in this case 713 if (lp->outcnt() > 1) return nullptr; 714 if (rp->outcnt() > 1) return nullptr; 715 716 IdealLoopTree* r_loop = get_loop(region); 717 assert(r_loop == get_loop(iff), "sanity"); 718 // Always convert to CMOVE if all results are used only outside this loop. 719 bool used_inside_loop = (r_loop == _ltree_root); 720 721 // Check profitability 722 int cost = 0; 723 int phis = 0; 724 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 725 Node *out = region->fast_out(i); 726 if (!out->is_Phi()) continue; // Ignore other control edges, etc 727 phis++; 728 PhiNode* phi = out->as_Phi(); 729 BasicType bt = phi->type()->basic_type(); 730 switch (bt) { 731 case T_DOUBLE: 732 case T_FLOAT: 733 if (C->use_cmove()) { 734 continue; //TODO: maybe we want to add some cost 735 } 736 cost += Matcher::float_cmove_cost(); // Could be very expensive 737 break; 738 case T_LONG: { 739 cost += Matcher::long_cmove_cost(); // May encodes as 2 CMOV's 740 } 741 case T_INT: // These all CMOV fine 742 case T_ADDRESS: { // (RawPtr) 743 cost++; 744 break; 745 } 746 case T_NARROWOOP: // Fall through 747 case T_OBJECT: { // Base oops are OK, but not derived oops 748 const TypeOopPtr *tp = phi->type()->make_ptr()->isa_oopptr(); 749 // Derived pointers are Bad (tm): what's the Base (for GC purposes) of a 750 // CMOVE'd derived pointer? It's a CMOVE'd derived base. Thus 751 // CMOVE'ing a derived pointer requires we also CMOVE the base. If we 752 // have a Phi for the base here that we convert to a CMOVE all is well 753 // and good. But if the base is dead, we'll not make a CMOVE. Later 754 // the allocator will have to produce a base by creating a CMOVE of the 755 // relevant bases. This puts the allocator in the business of 756 // manufacturing expensive instructions, generally a bad plan. 757 // Just Say No to Conditionally-Moved Derived Pointers. 758 if (tp && tp->offset() != 0) 759 return nullptr; 760 cost++; 761 break; 762 } 763 default: 764 return nullptr; // In particular, can't do memory or I/O 765 } 766 // Add in cost any speculative ops 767 for (uint j = 1; j < region->req(); j++) { 768 Node *proj = region->in(j); 769 Node *inp = phi->in(j); 770 if (inp->isa_InlineType()) { 771 // TODO 8302217 This prevents PhiNode::push_inline_types_through 772 return nullptr; 773 } 774 if (get_ctrl(inp) == proj) { // Found local op 775 cost++; 776 // Check for a chain of dependent ops; these will all become 777 // speculative in a CMOV. 778 for (uint k = 1; k < inp->req(); k++) 779 if (get_ctrl(inp->in(k)) == proj) 780 cost += ConditionalMoveLimit; // Too much speculative goo 781 } 782 } 783 // See if the Phi is used by a Cmp or Narrow oop Decode/Encode. 784 // This will likely Split-If, a higher-payoff operation. 785 for (DUIterator_Fast kmax, k = phi->fast_outs(kmax); k < kmax; k++) { 786 Node* use = phi->fast_out(k); 787 if (use->is_Cmp() || use->is_DecodeNarrowPtr() || use->is_EncodeNarrowPtr()) 788 cost += ConditionalMoveLimit; 789 // Is there a use inside the loop? 790 // Note: check only basic types since CMoveP is pinned. 791 if (!used_inside_loop && is_java_primitive(bt)) { 792 IdealLoopTree* u_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use); 793 if (r_loop == u_loop || r_loop->is_member(u_loop)) { 794 used_inside_loop = true; 795 } 796 } 797 } 798 }//for 799 Node* bol = iff->in(1); 800 assert(!bol->is_OpaqueInitializedAssertionPredicate(), "Initialized Assertion Predicates cannot form a diamond with Halt"); 801 if (bol->is_Opaque4()) { 802 // Ignore Template Assertion Predicates with Opaque4 nodes. 803 assert(assertion_predicate_has_loop_opaque_node(iff), 804 "must be Template Assertion Predicate, non-null-check with Opaque4 cannot form a diamond with Halt"); 805 return nullptr; 806 } 807 assert(bol->Opcode() == Op_Bool, "Unexpected node"); 808 int cmp_op = bol->in(1)->Opcode(); 809 if (cmp_op == Op_SubTypeCheck) { // SubTypeCheck expansion expects an IfNode 810 return nullptr; 811 } 812 // It is expensive to generate flags from a float compare. 813 // Avoid duplicated float compare. 814 if (phis > 1 && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) return nullptr; 815 816 float infrequent_prob = PROB_UNLIKELY_MAG(3); 817 // Ignore cost and blocks frequency if CMOVE can be moved outside the loop. 818 if (used_inside_loop) { 819 if (cost >= ConditionalMoveLimit) return nullptr; // Too much goo 820 821 // BlockLayoutByFrequency optimization moves infrequent branch 822 // from hot path. No point in CMOV'ing in such case (110 is used 823 // instead of 100 to take into account not exactness of float value). 824 if (BlockLayoutByFrequency) { 825 infrequent_prob = MAX2(infrequent_prob, (float)BlockLayoutMinDiamondPercentage/110.0f); 826 } 827 } 828 // Check for highly predictable branch. No point in CMOV'ing if 829 // we are going to predict accurately all the time. 830 if (C->use_cmove() && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) { 831 //keep going 832 } else if (iff->_prob < infrequent_prob || 833 iff->_prob > (1.0f - infrequent_prob)) 834 return nullptr; 835 836 // -------------- 837 // Now replace all Phis with CMOV's 838 Node *cmov_ctrl = iff->in(0); 839 uint flip = (lp->Opcode() == Op_IfTrue); 840 Node_List wq; 841 while (1) { 842 PhiNode* phi = nullptr; 843 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 844 Node *out = region->fast_out(i); 845 if (out->is_Phi()) { 846 phi = out->as_Phi(); 847 break; 848 } 849 } 850 if (phi == nullptr || _igvn.type(phi) == Type::TOP) { 851 break; 852 } 853 if (PrintOpto && VerifyLoopOptimizations) { tty->print_cr("CMOV"); } 854 // Move speculative ops 855 wq.push(phi); 856 while (wq.size() > 0) { 857 Node *n = wq.pop(); 858 for (uint j = 1; j < n->req(); j++) { 859 Node* m = n->in(j); 860 if (m != nullptr && !is_dominator(get_ctrl(m), cmov_ctrl)) { 861 #ifndef PRODUCT 862 if (PrintOpto && VerifyLoopOptimizations) { 863 tty->print(" speculate: "); 864 m->dump(); 865 } 866 #endif 867 set_ctrl(m, cmov_ctrl); 868 wq.push(m); 869 } 870 } 871 } 872 Node *cmov = CMoveNode::make(cmov_ctrl, iff->in(1), phi->in(1+flip), phi->in(2-flip), _igvn.type(phi)); 873 register_new_node( cmov, cmov_ctrl ); 874 _igvn.replace_node( phi, cmov ); 875 #ifndef PRODUCT 876 if (TraceLoopOpts) { 877 tty->print("CMOV "); 878 r_loop->dump_head(); 879 if (Verbose) { 880 bol->in(1)->dump(1); 881 cmov->dump(1); 882 } 883 } 884 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 885 #endif 886 } 887 888 // The useless CFG diamond will fold up later; see the optimization in 889 // RegionNode::Ideal. 890 _igvn._worklist.push(region); 891 892 return iff->in(1); 893 } 894 895 static void enqueue_cfg_uses(Node* m, Unique_Node_List& wq) { 896 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 897 Node* u = m->fast_out(i); 898 if (u->is_CFG()) { 899 if (u->is_NeverBranch()) { 900 u = u->as_NeverBranch()->proj_out(0); 901 enqueue_cfg_uses(u, wq); 902 } else { 903 wq.push(u); 904 } 905 } 906 } 907 } 908 909 // Try moving a store out of a loop, right before the loop 910 Node* PhaseIdealLoop::try_move_store_before_loop(Node* n, Node *n_ctrl) { 911 // Store has to be first in the loop body 912 IdealLoopTree *n_loop = get_loop(n_ctrl); 913 if (n->is_Store() && n_loop != _ltree_root && 914 n_loop->is_loop() && n_loop->_head->is_Loop() && 915 n->in(0) != nullptr) { 916 Node* address = n->in(MemNode::Address); 917 Node* value = n->in(MemNode::ValueIn); 918 Node* mem = n->in(MemNode::Memory); 919 IdealLoopTree* address_loop = get_loop(get_ctrl(address)); 920 IdealLoopTree* value_loop = get_loop(get_ctrl(value)); 921 922 // - address and value must be loop invariant 923 // - memory must be a memory Phi for the loop 924 // - Store must be the only store on this memory slice in the 925 // loop: if there's another store following this one then value 926 // written at iteration i by the second store could be overwritten 927 // at iteration i+n by the first store: it's not safe to move the 928 // first store out of the loop 929 // - nothing must observe the memory Phi: it guarantees no read 930 // before the store, we are also guaranteed the store post 931 // dominates the loop head (ignoring a possible early 932 // exit). Otherwise there would be extra Phi involved between the 933 // loop's Phi and the store. 934 // - there must be no early exit from the loop before the Store 935 // (such an exit most of the time would be an extra use of the 936 // memory Phi but sometimes is a bottom memory Phi that takes the 937 // store as input). 938 939 if (!n_loop->is_member(address_loop) && 940 !n_loop->is_member(value_loop) && 941 mem->is_Phi() && mem->in(0) == n_loop->_head && 942 mem->outcnt() == 1 && 943 mem->in(LoopNode::LoopBackControl) == n) { 944 945 assert(n_loop->_tail != nullptr, "need a tail"); 946 assert(is_dominator(n_ctrl, n_loop->_tail), "store control must not be in a branch in the loop"); 947 948 // Verify that there's no early exit of the loop before the store. 949 bool ctrl_ok = false; 950 { 951 // Follow control from loop head until n, we exit the loop or 952 // we reach the tail 953 ResourceMark rm; 954 Unique_Node_List wq; 955 wq.push(n_loop->_head); 956 957 for (uint next = 0; next < wq.size(); ++next) { 958 Node *m = wq.at(next); 959 if (m == n->in(0)) { 960 ctrl_ok = true; 961 continue; 962 } 963 assert(!has_ctrl(m), "should be CFG"); 964 if (!n_loop->is_member(get_loop(m)) || m == n_loop->_tail) { 965 ctrl_ok = false; 966 break; 967 } 968 enqueue_cfg_uses(m, wq); 969 if (wq.size() > 10) { 970 ctrl_ok = false; 971 break; 972 } 973 } 974 } 975 if (ctrl_ok) { 976 // move the Store 977 _igvn.replace_input_of(mem, LoopNode::LoopBackControl, mem); 978 _igvn.replace_input_of(n, 0, n_loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl)); 979 _igvn.replace_input_of(n, MemNode::Memory, mem->in(LoopNode::EntryControl)); 980 // Disconnect the phi now. An empty phi can confuse other 981 // optimizations in this pass of loop opts. 982 _igvn.replace_node(mem, mem->in(LoopNode::EntryControl)); 983 n_loop->_body.yank(mem); 984 985 set_ctrl_and_loop(n, n->in(0)); 986 987 return n; 988 } 989 } 990 } 991 return nullptr; 992 } 993 994 // Try moving a store out of a loop, right after the loop 995 void PhaseIdealLoop::try_move_store_after_loop(Node* n) { 996 if (n->is_Store() && n->in(0) != nullptr) { 997 Node *n_ctrl = get_ctrl(n); 998 IdealLoopTree *n_loop = get_loop(n_ctrl); 999 // Store must be in a loop 1000 if (n_loop != _ltree_root && !n_loop->_irreducible) { 1001 Node* address = n->in(MemNode::Address); 1002 Node* value = n->in(MemNode::ValueIn); 1003 IdealLoopTree* address_loop = get_loop(get_ctrl(address)); 1004 // address must be loop invariant 1005 if (!n_loop->is_member(address_loop)) { 1006 // Store must be last on this memory slice in the loop and 1007 // nothing in the loop must observe it 1008 Node* phi = nullptr; 1009 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1010 Node* u = n->fast_out(i); 1011 if (has_ctrl(u)) { // control use? 1012 IdealLoopTree *u_loop = get_loop(get_ctrl(u)); 1013 if (!n_loop->is_member(u_loop)) { 1014 continue; 1015 } 1016 if (u->is_Phi() && u->in(0) == n_loop->_head) { 1017 assert(_igvn.type(u) == Type::MEMORY, "bad phi"); 1018 // multiple phis on the same slice are possible 1019 if (phi != nullptr) { 1020 return; 1021 } 1022 phi = u; 1023 continue; 1024 } 1025 } 1026 return; 1027 } 1028 if (phi != nullptr) { 1029 // Nothing in the loop before the store (next iteration) 1030 // must observe the stored value 1031 bool mem_ok = true; 1032 { 1033 ResourceMark rm; 1034 Unique_Node_List wq; 1035 wq.push(phi); 1036 for (uint next = 0; next < wq.size() && mem_ok; ++next) { 1037 Node *m = wq.at(next); 1038 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax && mem_ok; i++) { 1039 Node* u = m->fast_out(i); 1040 if (u->is_Store() || u->is_Phi()) { 1041 if (u != n) { 1042 wq.push(u); 1043 mem_ok = (wq.size() <= 10); 1044 } 1045 } else { 1046 mem_ok = false; 1047 break; 1048 } 1049 } 1050 } 1051 } 1052 if (mem_ok) { 1053 // Move the store out of the loop if the LCA of all 1054 // users (except for the phi) is outside the loop. 1055 Node* hook = new Node(1); 1056 hook->init_req(0, n_ctrl); // Add an input to prevent hook from being dead 1057 _igvn.rehash_node_delayed(phi); 1058 int count = phi->replace_edge(n, hook, &_igvn); 1059 assert(count > 0, "inconsistent phi"); 1060 1061 // Compute latest point this store can go 1062 Node* lca = get_late_ctrl(n, get_ctrl(n)); 1063 if (lca->is_OuterStripMinedLoop()) { 1064 lca = lca->in(LoopNode::EntryControl); 1065 } 1066 if (n_loop->is_member(get_loop(lca))) { 1067 // LCA is in the loop - bail out 1068 _igvn.replace_node(hook, n); 1069 return; 1070 } 1071 #ifdef ASSERT 1072 if (n_loop->_head->is_Loop() && n_loop->_head->as_Loop()->is_strip_mined()) { 1073 assert(n_loop->_head->Opcode() == Op_CountedLoop, "outer loop is a strip mined"); 1074 n_loop->_head->as_Loop()->verify_strip_mined(1); 1075 Node* outer = n_loop->_head->as_CountedLoop()->outer_loop(); 1076 IdealLoopTree* outer_loop = get_loop(outer); 1077 assert(n_loop->_parent == outer_loop, "broken loop tree"); 1078 assert(get_loop(lca) == outer_loop, "safepoint in outer loop consume all memory state"); 1079 } 1080 #endif 1081 lca = place_outside_loop(lca, n_loop); 1082 assert(!n_loop->is_member(get_loop(lca)), "control must not be back in the loop"); 1083 assert(get_loop(lca)->_nest < n_loop->_nest || get_loop(lca)->_head->as_Loop()->is_in_infinite_subgraph(), "must not be moved into inner loop"); 1084 1085 // Move store out of the loop 1086 _igvn.replace_node(hook, n->in(MemNode::Memory)); 1087 _igvn.replace_input_of(n, 0, lca); 1088 set_ctrl_and_loop(n, lca); 1089 1090 // Disconnect the phi now. An empty phi can confuse other 1091 // optimizations in this pass of loop opts.. 1092 if (phi->in(LoopNode::LoopBackControl) == phi) { 1093 _igvn.replace_node(phi, phi->in(LoopNode::EntryControl)); 1094 n_loop->_body.yank(phi); 1095 } 1096 } 1097 } 1098 } 1099 } 1100 } 1101 } 1102 1103 // We can't use immutable memory for the flat array check because we are loading the mark word which is 1104 // mutable. Although the bits we are interested in are immutable (we check for markWord::unlocked_value), 1105 // we need to use raw memory to not break anti dependency analysis. Below code will attempt to still move 1106 // flat array checks out of loops, mainly to enable loop unswitching. 1107 void PhaseIdealLoop::move_flat_array_check_out_of_loop(Node* n) { 1108 // Skip checks for more than one array 1109 if (n->req() > 3) { 1110 return; 1111 } 1112 Node* mem = n->in(FlatArrayCheckNode::Memory); 1113 Node* array = n->in(FlatArrayCheckNode::ArrayOrKlass)->uncast(); 1114 IdealLoopTree* check_loop = get_loop(get_ctrl(n)); 1115 IdealLoopTree* ary_loop = get_loop(get_ctrl(array)); 1116 1117 // Check if array is loop invariant 1118 if (!check_loop->is_member(ary_loop)) { 1119 // Walk up memory graph from the check until we leave the loop 1120 VectorSet wq; 1121 wq.set(mem->_idx); 1122 while (check_loop->is_member(get_loop(ctrl_or_self(mem)))) { 1123 if (mem->is_Phi()) { 1124 mem = mem->in(1); 1125 } else if (mem->is_MergeMem()) { 1126 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1127 } else if (mem->is_Proj()) { 1128 mem = mem->in(0); 1129 } else if (mem->is_MemBar() || mem->is_SafePoint()) { 1130 mem = mem->in(TypeFunc::Memory); 1131 } else if (mem->is_Store() || mem->is_LoadStore() || mem->is_ClearArray()) { 1132 mem = mem->in(MemNode::Memory); 1133 } else { 1134 #ifdef ASSERT 1135 mem->dump(); 1136 #endif 1137 ShouldNotReachHere(); 1138 } 1139 if (wq.test_set(mem->_idx)) { 1140 return; 1141 } 1142 } 1143 // Replace memory input and re-compute ctrl to move the check out of the loop 1144 _igvn.replace_input_of(n, 1, mem); 1145 set_ctrl_and_loop(n, get_early_ctrl(n)); 1146 Node* bol = n->unique_out(); 1147 set_ctrl_and_loop(bol, get_early_ctrl(bol)); 1148 } 1149 } 1150 1151 // Split some nodes that take a counted loop phi as input at a counted 1152 // loop can cause vectorization of some expressions to fail 1153 bool PhaseIdealLoop::split_thru_phi_could_prevent_vectorization(Node* n, Node* n_blk) { 1154 if (!n_blk->is_CountedLoop()) { 1155 return false; 1156 } 1157 1158 int opcode = n->Opcode(); 1159 1160 if (opcode != Op_AndI && 1161 opcode != Op_MulI && 1162 opcode != Op_RotateRight && 1163 opcode != Op_RShiftI) { 1164 return false; 1165 } 1166 1167 return n->in(1) == n_blk->as_BaseCountedLoop()->phi(); 1168 } 1169 1170 //------------------------------split_if_with_blocks_pre----------------------- 1171 // Do the real work in a non-recursive function. Data nodes want to be 1172 // cloned in the pre-order so they can feed each other nicely. 1173 Node *PhaseIdealLoop::split_if_with_blocks_pre( Node *n ) { 1174 // Cloning these guys is unlikely to win 1175 int n_op = n->Opcode(); 1176 if (n_op == Op_MergeMem) { 1177 return n; 1178 } 1179 if (n->is_Proj()) { 1180 return n; 1181 } 1182 1183 if (n->isa_FlatArrayCheck()) { 1184 move_flat_array_check_out_of_loop(n); 1185 return n; 1186 } 1187 1188 // Do not clone-up CmpFXXX variations, as these are always 1189 // followed by a CmpI 1190 if (n->is_Cmp()) { 1191 return n; 1192 } 1193 // Attempt to use a conditional move instead of a phi/branch 1194 if (ConditionalMoveLimit > 0 && n_op == Op_Region) { 1195 Node *cmov = conditional_move( n ); 1196 if (cmov) { 1197 return cmov; 1198 } 1199 } 1200 if (n->is_CFG() || n->is_LoadStore()) { 1201 return n; 1202 } 1203 if (n->is_Opaque1()) { // Opaque nodes cannot be mod'd 1204 if (!C->major_progress()) { // If chance of no more loop opts... 1205 _igvn._worklist.push(n); // maybe we'll remove them 1206 } 1207 return n; 1208 } 1209 1210 if (n->is_Con()) { 1211 return n; // No cloning for Con nodes 1212 } 1213 1214 Node *n_ctrl = get_ctrl(n); 1215 if (!n_ctrl) { 1216 return n; // Dead node 1217 } 1218 1219 Node* res = try_move_store_before_loop(n, n_ctrl); 1220 if (res != nullptr) { 1221 return n; 1222 } 1223 1224 // Attempt to remix address expressions for loop invariants 1225 Node *m = remix_address_expressions( n ); 1226 if( m ) return m; 1227 1228 if (n_op == Op_AddI) { 1229 Node *nn = convert_add_to_muladd( n ); 1230 if ( nn ) return nn; 1231 } 1232 1233 if (n->is_ConstraintCast()) { 1234 Node* dom_cast = n->as_ConstraintCast()->dominating_cast(&_igvn, this); 1235 // ConstraintCastNode::dominating_cast() uses node control input to determine domination. 1236 // Node control inputs don't necessarily agree with loop control info (due to 1237 // transformations happened in between), thus additional dominance check is needed 1238 // to keep loop info valid. 1239 if (dom_cast != nullptr && is_dominator(get_ctrl(dom_cast), get_ctrl(n))) { 1240 _igvn.replace_node(n, dom_cast); 1241 return dom_cast; 1242 } 1243 } 1244 1245 // Determine if the Node has inputs from some local Phi. 1246 // Returns the block to clone thru. 1247 Node *n_blk = has_local_phi_input( n ); 1248 if( !n_blk ) return n; 1249 1250 // Do not clone the trip counter through on a CountedLoop 1251 // (messes up the canonical shape). 1252 if (((n_blk->is_CountedLoop() || (n_blk->is_Loop() && n_blk->as_Loop()->is_loop_nest_inner_loop())) && n->Opcode() == Op_AddI) || 1253 (n_blk->is_LongCountedLoop() && n->Opcode() == Op_AddL)) { 1254 return n; 1255 } 1256 // Pushing a shift through the iv Phi can get in the way of addressing optimizations or range check elimination 1257 if (n_blk->is_BaseCountedLoop() && n->Opcode() == Op_LShift(n_blk->as_BaseCountedLoop()->bt()) && 1258 n->in(1) == n_blk->as_BaseCountedLoop()->phi()) { 1259 return n; 1260 } 1261 1262 if (split_thru_phi_could_prevent_vectorization(n, n_blk)) { 1263 return n; 1264 } 1265 1266 // Check for having no control input; not pinned. Allow 1267 // dominating control. 1268 if (n->in(0)) { 1269 Node *dom = idom(n_blk); 1270 if (dom_lca(n->in(0), dom) != n->in(0)) { 1271 return n; 1272 } 1273 } 1274 // Policy: when is it profitable. You must get more wins than 1275 // policy before it is considered profitable. Policy is usually 0, 1276 // so 1 win is considered profitable. Big merges will require big 1277 // cloning, so get a larger policy. 1278 int policy = n_blk->req() >> 2; 1279 1280 // If the loop is a candidate for range check elimination, 1281 // delay splitting through it's phi until a later loop optimization 1282 if (n_blk->is_BaseCountedLoop()) { 1283 IdealLoopTree *lp = get_loop(n_blk); 1284 if (lp && lp->_rce_candidate) { 1285 return n; 1286 } 1287 } 1288 1289 if (must_throttle_split_if()) return n; 1290 1291 // Split 'n' through the merge point if it is profitable 1292 Node *phi = split_thru_phi( n, n_blk, policy ); 1293 if (!phi) return n; 1294 1295 // Found a Phi to split thru! 1296 // Replace 'n' with the new phi 1297 _igvn.replace_node( n, phi ); 1298 // Moved a load around the loop, 'en-registering' something. 1299 if (n_blk->is_Loop() && n->is_Load() && 1300 !phi->in(LoopNode::LoopBackControl)->is_Load()) 1301 C->set_major_progress(); 1302 1303 return phi; 1304 } 1305 1306 static bool merge_point_too_heavy(Compile* C, Node* region) { 1307 // Bail out if the region and its phis have too many users. 1308 int weight = 0; 1309 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1310 weight += region->fast_out(i)->outcnt(); 1311 } 1312 int nodes_left = C->max_node_limit() - C->live_nodes(); 1313 if (weight * 8 > nodes_left) { 1314 if (PrintOpto) { 1315 tty->print_cr("*** Split-if bails out: %d nodes, region weight %d", C->unique(), weight); 1316 } 1317 return true; 1318 } else { 1319 return false; 1320 } 1321 } 1322 1323 static bool merge_point_safe(Node* region) { 1324 // 4799512: Stop split_if_with_blocks from splitting a block with a ConvI2LNode 1325 // having a PhiNode input. This sidesteps the dangerous case where the split 1326 // ConvI2LNode may become TOP if the input Value() does not 1327 // overlap the ConvI2L range, leaving a node which may not dominate its 1328 // uses. 1329 // A better fix for this problem can be found in the BugTraq entry, but 1330 // expediency for Mantis demands this hack. 1331 #ifdef _LP64 1332 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1333 Node* n = region->fast_out(i); 1334 if (n->is_Phi()) { 1335 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 1336 Node* m = n->fast_out(j); 1337 if (m->Opcode() == Op_ConvI2L) 1338 return false; 1339 if (m->is_CastII()) { 1340 return false; 1341 } 1342 } 1343 } 1344 } 1345 #endif 1346 return true; 1347 } 1348 1349 1350 //------------------------------place_outside_loop--------------------------------- 1351 // Place some computation outside of this loop on the path to the use passed as argument 1352 Node* PhaseIdealLoop::place_outside_loop(Node* useblock, IdealLoopTree* loop) const { 1353 Node* head = loop->_head; 1354 assert(!loop->is_member(get_loop(useblock)), "must be outside loop"); 1355 if (head->is_Loop() && head->as_Loop()->is_strip_mined()) { 1356 loop = loop->_parent; 1357 assert(loop->_head->is_OuterStripMinedLoop(), "malformed strip mined loop"); 1358 } 1359 1360 // Pick control right outside the loop 1361 for (;;) { 1362 Node* dom = idom(useblock); 1363 if (loop->is_member(get_loop(dom))) { 1364 break; 1365 } 1366 useblock = dom; 1367 } 1368 assert(find_non_split_ctrl(useblock) == useblock, "should be non split control"); 1369 return useblock; 1370 } 1371 1372 1373 bool PhaseIdealLoop::identical_backtoback_ifs(Node *n) { 1374 if (!n->is_If() || n->is_BaseCountedLoopEnd()) { 1375 return false; 1376 } 1377 if (!n->in(0)->is_Region()) { 1378 return false; 1379 } 1380 1381 Node* region = n->in(0); 1382 Node* dom = idom(region); 1383 if (!dom->is_If() || !n->as_If()->same_condition(dom, &_igvn)) { 1384 return false; 1385 } 1386 IfNode* dom_if = dom->as_If(); 1387 Node* proj_true = dom_if->proj_out(1); 1388 Node* proj_false = dom_if->proj_out(0); 1389 1390 for (uint i = 1; i < region->req(); i++) { 1391 if (is_dominator(proj_true, region->in(i))) { 1392 continue; 1393 } 1394 if (is_dominator(proj_false, region->in(i))) { 1395 continue; 1396 } 1397 return false; 1398 } 1399 1400 return true; 1401 } 1402 1403 1404 bool PhaseIdealLoop::can_split_if(Node* n_ctrl) { 1405 if (must_throttle_split_if()) { 1406 return false; 1407 } 1408 1409 // Do not do 'split-if' if irreducible loops are present. 1410 if (_has_irreducible_loops) { 1411 return false; 1412 } 1413 1414 if (merge_point_too_heavy(C, n_ctrl)) { 1415 return false; 1416 } 1417 1418 // Do not do 'split-if' if some paths are dead. First do dead code 1419 // elimination and then see if its still profitable. 1420 for (uint i = 1; i < n_ctrl->req(); i++) { 1421 if (n_ctrl->in(i) == C->top()) { 1422 return false; 1423 } 1424 } 1425 1426 // If trying to do a 'Split-If' at the loop head, it is only 1427 // profitable if the cmp folds up on BOTH paths. Otherwise we 1428 // risk peeling a loop forever. 1429 1430 // CNC - Disabled for now. Requires careful handling of loop 1431 // body selection for the cloned code. Also, make sure we check 1432 // for any input path not being in the same loop as n_ctrl. For 1433 // irreducible loops we cannot check for 'n_ctrl->is_Loop()' 1434 // because the alternative loop entry points won't be converted 1435 // into LoopNodes. 1436 IdealLoopTree *n_loop = get_loop(n_ctrl); 1437 for (uint j = 1; j < n_ctrl->req(); j++) { 1438 if (get_loop(n_ctrl->in(j)) != n_loop) { 1439 return false; 1440 } 1441 } 1442 1443 // Check for safety of the merge point. 1444 if (!merge_point_safe(n_ctrl)) { 1445 return false; 1446 } 1447 1448 return true; 1449 } 1450 1451 // Detect if the node is the inner strip-mined loop 1452 // Return: null if it's not the case, or the exit of outer strip-mined loop 1453 static Node* is_inner_of_stripmined_loop(const Node* out) { 1454 Node* out_le = nullptr; 1455 1456 if (out->is_CountedLoopEnd()) { 1457 const CountedLoopNode* loop = out->as_CountedLoopEnd()->loopnode(); 1458 1459 if (loop != nullptr && loop->is_strip_mined()) { 1460 out_le = loop->in(LoopNode::EntryControl)->as_OuterStripMinedLoop()->outer_loop_exit(); 1461 } 1462 } 1463 1464 return out_le; 1465 } 1466 1467 bool PhaseIdealLoop::flat_array_element_type_check(Node *n) { 1468 // If the CmpP is a subtype check for a value that has just been 1469 // loaded from an array, the subtype check guarantees the value 1470 // can't be stored in a flat array and the load of the value 1471 // happens with a flat array check then: push the type check 1472 // through the phi of the flat array check. This needs special 1473 // logic because the subtype check's input is not a phi but a 1474 // LoadKlass that must first be cloned through the phi. 1475 if (n->Opcode() != Op_CmpP) { 1476 return false; 1477 } 1478 1479 Node* klassptr = n->in(1); 1480 Node* klasscon = n->in(2); 1481 1482 if (klassptr->is_DecodeNarrowPtr()) { 1483 klassptr = klassptr->in(1); 1484 } 1485 1486 if (klassptr->Opcode() != Op_LoadKlass && klassptr->Opcode() != Op_LoadNKlass) { 1487 return false; 1488 } 1489 1490 if (!klasscon->is_Con()) { 1491 return false; 1492 } 1493 1494 Node* addr = klassptr->in(MemNode::Address); 1495 1496 if (!addr->is_AddP()) { 1497 return false; 1498 } 1499 1500 intptr_t offset; 1501 Node* obj = AddPNode::Ideal_base_and_offset(addr, &_igvn, offset); 1502 1503 if (obj == nullptr) { 1504 return false; 1505 } 1506 1507 assert(obj != nullptr && addr->in(AddPNode::Base) == addr->in(AddPNode::Address), "malformed AddP?"); 1508 if (obj->Opcode() == Op_CastPP) { 1509 obj = obj->in(1); 1510 } 1511 1512 if (!obj->is_Phi()) { 1513 return false; 1514 } 1515 1516 Node* region = obj->in(0); 1517 1518 Node* phi = PhiNode::make_blank(region, n->in(1)); 1519 for (uint i = 1; i < region->req(); i++) { 1520 Node* in = obj->in(i); 1521 Node* ctrl = region->in(i); 1522 if (addr->in(AddPNode::Base) != obj) { 1523 Node* cast = addr->in(AddPNode::Base); 1524 assert(cast->Opcode() == Op_CastPP && cast->in(0) != nullptr, "inconsistent subgraph"); 1525 Node* cast_clone = cast->clone(); 1526 cast_clone->set_req(0, ctrl); 1527 cast_clone->set_req(1, in); 1528 register_new_node(cast_clone, ctrl); 1529 const Type* tcast = cast_clone->Value(&_igvn); 1530 _igvn.set_type(cast_clone, tcast); 1531 cast_clone->as_Type()->set_type(tcast); 1532 in = cast_clone; 1533 } 1534 Node* addr_clone = addr->clone(); 1535 addr_clone->set_req(AddPNode::Base, in); 1536 addr_clone->set_req(AddPNode::Address, in); 1537 register_new_node(addr_clone, ctrl); 1538 _igvn.set_type(addr_clone, addr_clone->Value(&_igvn)); 1539 Node* klassptr_clone = klassptr->clone(); 1540 klassptr_clone->set_req(2, addr_clone); 1541 register_new_node(klassptr_clone, ctrl); 1542 _igvn.set_type(klassptr_clone, klassptr_clone->Value(&_igvn)); 1543 if (klassptr != n->in(1)) { 1544 Node* decode = n->in(1); 1545 assert(decode->is_DecodeNarrowPtr(), "inconsistent subgraph"); 1546 Node* decode_clone = decode->clone(); 1547 decode_clone->set_req(1, klassptr_clone); 1548 register_new_node(decode_clone, ctrl); 1549 _igvn.set_type(decode_clone, decode_clone->Value(&_igvn)); 1550 klassptr_clone = decode_clone; 1551 } 1552 phi->set_req(i, klassptr_clone); 1553 } 1554 register_new_node(phi, region); 1555 Node* orig = n->in(1); 1556 _igvn.replace_input_of(n, 1, phi); 1557 split_if_with_blocks_post(n); 1558 if (n->outcnt() != 0) { 1559 _igvn.replace_input_of(n, 1, orig); 1560 _igvn.remove_dead_node(phi); 1561 } 1562 return true; 1563 } 1564 1565 //------------------------------split_if_with_blocks_post---------------------- 1566 // Do the real work in a non-recursive function. CFG hackery wants to be 1567 // in the post-order, so it can dirty the I-DOM info and not use the dirtied 1568 // info. 1569 void PhaseIdealLoop::split_if_with_blocks_post(Node *n) { 1570 1571 if (flat_array_element_type_check(n)) { 1572 return; 1573 } 1574 1575 // Cloning Cmp through Phi's involves the split-if transform. 1576 // FastLock is not used by an If 1577 if (n->is_Cmp() && !n->is_FastLock()) { 1578 Node *n_ctrl = get_ctrl(n); 1579 // Determine if the Node has inputs from some local Phi. 1580 // Returns the block to clone thru. 1581 Node *n_blk = has_local_phi_input(n); 1582 if (n_blk != n_ctrl) { 1583 return; 1584 } 1585 1586 if (!can_split_if(n_ctrl)) { 1587 return; 1588 } 1589 1590 if (n->outcnt() != 1) { 1591 return; // Multiple bool's from 1 compare? 1592 } 1593 Node *bol = n->unique_out(); 1594 assert(bol->is_Bool(), "expect a bool here"); 1595 if (bol->outcnt() != 1) { 1596 return;// Multiple branches from 1 compare? 1597 } 1598 Node *iff = bol->unique_out(); 1599 1600 // Check some safety conditions 1601 if (iff->is_If()) { // Classic split-if? 1602 if (iff->in(0) != n_ctrl) { 1603 return; // Compare must be in same blk as if 1604 } 1605 } else if (iff->is_CMove()) { // Trying to split-up a CMOVE 1606 // Can't split CMove with different control. 1607 if (get_ctrl(iff) != n_ctrl) { 1608 return; 1609 } 1610 if (get_ctrl(iff->in(2)) == n_ctrl || 1611 get_ctrl(iff->in(3)) == n_ctrl) { 1612 return; // Inputs not yet split-up 1613 } 1614 if (get_loop(n_ctrl) != get_loop(get_ctrl(iff))) { 1615 return; // Loop-invar test gates loop-varying CMOVE 1616 } 1617 } else { 1618 return; // some other kind of node, such as an Allocate 1619 } 1620 1621 // When is split-if profitable? Every 'win' on means some control flow 1622 // goes dead, so it's almost always a win. 1623 int policy = 0; 1624 // Split compare 'n' through the merge point if it is profitable 1625 Node *phi = split_thru_phi( n, n_ctrl, policy); 1626 if (!phi) { 1627 return; 1628 } 1629 1630 // Found a Phi to split thru! 1631 // Replace 'n' with the new phi 1632 _igvn.replace_node(n, phi); 1633 1634 // Now split the bool up thru the phi 1635 Node *bolphi = split_thru_phi(bol, n_ctrl, -1); 1636 guarantee(bolphi != nullptr, "null boolean phi node"); 1637 1638 _igvn.replace_node(bol, bolphi); 1639 assert(iff->in(1) == bolphi, ""); 1640 1641 if (bolphi->Value(&_igvn)->singleton()) { 1642 return; 1643 } 1644 1645 // Conditional-move? Must split up now 1646 if (!iff->is_If()) { 1647 Node *cmovphi = split_thru_phi(iff, n_ctrl, -1); 1648 _igvn.replace_node(iff, cmovphi); 1649 return; 1650 } 1651 1652 // Now split the IF 1653 C->print_method(PHASE_BEFORE_SPLIT_IF, 4, iff); 1654 if ((PrintOpto && VerifyLoopOptimizations) || TraceLoopOpts) { 1655 tty->print_cr("Split-If"); 1656 } 1657 do_split_if(iff); 1658 C->print_method(PHASE_AFTER_SPLIT_IF, 4, iff); 1659 return; 1660 } 1661 1662 // Two identical ifs back to back can be merged 1663 if (try_merge_identical_ifs(n)) { 1664 return; 1665 } 1666 1667 // Check for an IF ready to split; one that has its 1668 // condition codes input coming from a Phi at the block start. 1669 int n_op = n->Opcode(); 1670 1671 // Check for an IF being dominated by another IF same test 1672 if (n_op == Op_If || 1673 n_op == Op_RangeCheck) { 1674 Node *bol = n->in(1); 1675 uint max = bol->outcnt(); 1676 // Check for same test used more than once? 1677 if (bol->is_Bool() && (max > 1 || bol->in(1)->is_SubTypeCheck())) { 1678 // Search up IDOMs to see if this IF is dominated. 1679 Node* cmp = bol->in(1); 1680 Node *cutoff = cmp->is_SubTypeCheck() ? dom_lca(get_ctrl(cmp->in(1)), get_ctrl(cmp->in(2))) : get_ctrl(bol); 1681 1682 // Now search up IDOMs till cutoff, looking for a dominating test 1683 Node *prevdom = n; 1684 Node *dom = idom(prevdom); 1685 while (dom != cutoff) { 1686 if (dom->req() > 1 && n->as_If()->same_condition(dom, &_igvn) && prevdom->in(0) == dom && 1687 safe_for_if_replacement(dom)) { 1688 // It's invalid to move control dependent data nodes in the inner 1689 // strip-mined loop, because: 1690 // 1) break validation of LoopNode::verify_strip_mined() 1691 // 2) move code with side-effect in strip-mined loop 1692 // Move to the exit of outer strip-mined loop in that case. 1693 Node* out_le = is_inner_of_stripmined_loop(dom); 1694 if (out_le != nullptr) { 1695 prevdom = out_le; 1696 } 1697 // Replace the dominated test with an obvious true or false. 1698 // Place it on the IGVN worklist for later cleanup. 1699 C->set_major_progress(); 1700 // Split if: pin array accesses that are control dependent on a range check and moved to a regular if, 1701 // to prevent an array load from floating above its range check. There are three cases: 1702 // 1. Move from RangeCheck "a" to RangeCheck "b": don't need to pin. If we ever remove b, then we pin 1703 // all its array accesses at that point. 1704 // 2. We move from RangeCheck "a" to regular if "b": need to pin. If we ever remove b, then its array 1705 // accesses would start to float, since we don't pin at that point. 1706 // 3. If we move from regular if: don't pin. All array accesses are already assumed to be pinned. 1707 bool pin_array_access_nodes = n->Opcode() == Op_RangeCheck && 1708 prevdom->in(0)->Opcode() != Op_RangeCheck; 1709 dominated_by(prevdom->as_IfProj(), n->as_If(), false, pin_array_access_nodes); 1710 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 1711 return; 1712 } 1713 prevdom = dom; 1714 dom = idom(prevdom); 1715 } 1716 } 1717 } 1718 1719 try_sink_out_of_loop(n); 1720 1721 try_move_store_after_loop(n); 1722 1723 // Remove multiple allocations of the same inline type 1724 if (n->is_InlineType()) { 1725 n->as_InlineType()->remove_redundant_allocations(this); 1726 } 1727 } 1728 1729 // Transform: 1730 // 1731 // if (some_condition) { 1732 // // body 1 1733 // } else { 1734 // // body 2 1735 // } 1736 // if (some_condition) { 1737 // // body 3 1738 // } else { 1739 // // body 4 1740 // } 1741 // 1742 // into: 1743 // 1744 // 1745 // if (some_condition) { 1746 // // body 1 1747 // // body 3 1748 // } else { 1749 // // body 2 1750 // // body 4 1751 // } 1752 bool PhaseIdealLoop::try_merge_identical_ifs(Node* n) { 1753 if (identical_backtoback_ifs(n) && can_split_if(n->in(0))) { 1754 Node *n_ctrl = n->in(0); 1755 IfNode* dom_if = idom(n_ctrl)->as_If(); 1756 if (n->in(1) != dom_if->in(1)) { 1757 assert(n->in(1)->in(1)->is_SubTypeCheck() && 1758 (n->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr || 1759 dom_if->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr), "only for subtype checks with profile data attached"); 1760 _igvn.replace_input_of(n, 1, dom_if->in(1)); 1761 } 1762 ProjNode* dom_proj_true = dom_if->proj_out(1); 1763 ProjNode* dom_proj_false = dom_if->proj_out(0); 1764 1765 // Now split the IF 1766 RegionNode* new_false_region; 1767 RegionNode* new_true_region; 1768 do_split_if(n, &new_false_region, &new_true_region); 1769 assert(new_false_region->req() == new_true_region->req(), ""); 1770 #ifdef ASSERT 1771 for (uint i = 1; i < new_false_region->req(); ++i) { 1772 assert(new_false_region->in(i)->in(0) == new_true_region->in(i)->in(0), "unexpected shape following split if"); 1773 assert(i == new_false_region->req() - 1 || new_false_region->in(i)->in(0)->in(1) == new_false_region->in(i + 1)->in(0)->in(1), "unexpected shape following split if"); 1774 } 1775 #endif 1776 assert(new_false_region->in(1)->in(0)->in(1) == dom_if->in(1), "dominating if and dominated if after split must share test"); 1777 1778 // We now have: 1779 // if (some_condition) { 1780 // // body 1 1781 // if (some_condition) { 1782 // body3: // new_true_region 1783 // // body3 1784 // } else { 1785 // goto body4; 1786 // } 1787 // } else { 1788 // // body 2 1789 // if (some_condition) { 1790 // goto body3; 1791 // } else { 1792 // body4: // new_false_region 1793 // // body4; 1794 // } 1795 // } 1796 // 1797 1798 // clone pinned nodes thru the resulting regions 1799 push_pinned_nodes_thru_region(dom_if, new_true_region); 1800 push_pinned_nodes_thru_region(dom_if, new_false_region); 1801 1802 // Optimize out the cloned ifs. Because pinned nodes were cloned, this also allows a CastPP that would be dependent 1803 // on a projection of n to have the dom_if as a control dependency. We don't want the CastPP to end up with an 1804 // unrelated control dependency. 1805 for (uint i = 1; i < new_false_region->req(); i++) { 1806 if (is_dominator(dom_proj_true, new_false_region->in(i))) { 1807 dominated_by(dom_proj_true->as_IfProj(), new_false_region->in(i)->in(0)->as_If()); 1808 } else { 1809 assert(is_dominator(dom_proj_false, new_false_region->in(i)), "bad if"); 1810 dominated_by(dom_proj_false->as_IfProj(), new_false_region->in(i)->in(0)->as_If()); 1811 } 1812 } 1813 return true; 1814 } 1815 return false; 1816 } 1817 1818 void PhaseIdealLoop::push_pinned_nodes_thru_region(IfNode* dom_if, Node* region) { 1819 for (DUIterator i = region->outs(); region->has_out(i); i++) { 1820 Node* u = region->out(i); 1821 if (!has_ctrl(u) || u->is_Phi() || !u->depends_only_on_test() || !_igvn.no_dependent_zero_check(u)) { 1822 continue; 1823 } 1824 assert(u->in(0) == region, "not a control dependent node?"); 1825 uint j = 1; 1826 for (; j < u->req(); ++j) { 1827 Node* in = u->in(j); 1828 if (!is_dominator(ctrl_or_self(in), dom_if)) { 1829 break; 1830 } 1831 } 1832 if (j == u->req()) { 1833 Node *phi = PhiNode::make_blank(region, u); 1834 for (uint k = 1; k < region->req(); ++k) { 1835 Node* clone = u->clone(); 1836 clone->set_req(0, region->in(k)); 1837 register_new_node(clone, region->in(k)); 1838 phi->init_req(k, clone); 1839 } 1840 register_new_node(phi, region); 1841 _igvn.replace_node(u, phi); 1842 --i; 1843 } 1844 } 1845 } 1846 1847 bool PhaseIdealLoop::safe_for_if_replacement(const Node* dom) const { 1848 if (!dom->is_CountedLoopEnd()) { 1849 return true; 1850 } 1851 CountedLoopEndNode* le = dom->as_CountedLoopEnd(); 1852 CountedLoopNode* cl = le->loopnode(); 1853 if (cl == nullptr) { 1854 return true; 1855 } 1856 if (!cl->is_main_loop()) { 1857 return true; 1858 } 1859 if (cl->is_canonical_loop_entry() == nullptr) { 1860 return true; 1861 } 1862 // Further unrolling is possible so loop exit condition might change 1863 return false; 1864 } 1865 1866 // See if a shared loop-varying computation has no loop-varying uses. 1867 // Happens if something is only used for JVM state in uncommon trap exits, 1868 // like various versions of induction variable+offset. Clone the 1869 // computation per usage to allow it to sink out of the loop. 1870 void PhaseIdealLoop::try_sink_out_of_loop(Node* n) { 1871 if (has_ctrl(n) && 1872 !n->is_Phi() && 1873 !n->is_Bool() && 1874 !n->is_Proj() && 1875 !n->is_MergeMem() && 1876 !n->is_CMove() && 1877 !n->is_Opaque4() && 1878 !n->is_OpaqueInitializedAssertionPredicate() && 1879 !n->is_Type()) { 1880 Node *n_ctrl = get_ctrl(n); 1881 IdealLoopTree *n_loop = get_loop(n_ctrl); 1882 1883 if (n->in(0) != nullptr) { 1884 IdealLoopTree* loop_ctrl = get_loop(n->in(0)); 1885 if (n_loop != loop_ctrl && n_loop->is_member(loop_ctrl)) { 1886 // n has a control input inside a loop but get_ctrl() is member of an outer loop. This could happen, for example, 1887 // for Div nodes inside a loop (control input inside loop) without a use except for an UCT (outside the loop). 1888 // Rewire control of n to right outside of the loop, regardless if its input(s) are later sunk or not. 1889 Node* maybe_pinned_n = n; 1890 Node* outside_ctrl = place_outside_loop(n_ctrl, loop_ctrl); 1891 if (n->depends_only_on_test()) { 1892 Node* pinned_clone = n->pin_array_access_node(); 1893 if (pinned_clone != nullptr) { 1894 // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a 1895 // range check for that access. If that condition is replaced by an identical dominating one, then an 1896 // unpinned load would risk floating above its range check. 1897 register_new_node(pinned_clone, n_ctrl); 1898 maybe_pinned_n = pinned_clone; 1899 _igvn.replace_node(n, pinned_clone); 1900 } 1901 } 1902 _igvn.replace_input_of(maybe_pinned_n, 0, outside_ctrl); 1903 } 1904 } 1905 if (n_loop != _ltree_root && n->outcnt() > 1) { 1906 // Compute early control: needed for anti-dependence analysis. It's also possible that as a result of 1907 // previous transformations in this loop opts round, the node can be hoisted now: early control will tell us. 1908 Node* early_ctrl = compute_early_ctrl(n, n_ctrl); 1909 if (n_loop->is_member(get_loop(early_ctrl)) && // check that this one can't be hoisted now 1910 ctrl_of_all_uses_out_of_loop(n, early_ctrl, n_loop)) { // All uses in outer loops! 1911 assert(!n->is_Store() && !n->is_LoadStore(), "no node with a side effect"); 1912 Node* outer_loop_clone = nullptr; 1913 for (DUIterator_Last jmin, j = n->last_outs(jmin); j >= jmin;) { 1914 Node* u = n->last_out(j); // Clone private computation per use 1915 _igvn.rehash_node_delayed(u); 1916 Node* x = nullptr; 1917 if (n->depends_only_on_test()) { 1918 // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a 1919 // range check for that access. If that condition is replaced by an identical dominating one, then an 1920 // unpinned load would risk floating above its range check. 1921 x = n->pin_array_access_node(); 1922 } 1923 if (x == nullptr) { 1924 x = n->clone(); 1925 } 1926 Node* x_ctrl = nullptr; 1927 if (u->is_Phi()) { 1928 // Replace all uses of normal nodes. Replace Phi uses 1929 // individually, so the separate Nodes can sink down 1930 // different paths. 1931 uint k = 1; 1932 while (u->in(k) != n) k++; 1933 u->set_req(k, x); 1934 // x goes next to Phi input path 1935 x_ctrl = u->in(0)->in(k); 1936 // Find control for 'x' next to use but not inside inner loops. 1937 x_ctrl = place_outside_loop(x_ctrl, n_loop); 1938 --j; 1939 } else { // Normal use 1940 if (has_ctrl(u)) { 1941 x_ctrl = get_ctrl(u); 1942 } else { 1943 x_ctrl = u->in(0); 1944 } 1945 // Find control for 'x' next to use but not inside inner loops. 1946 x_ctrl = place_outside_loop(x_ctrl, n_loop); 1947 // Replace all uses 1948 if (u->is_ConstraintCast() && _igvn.type(n)->higher_equal(u->bottom_type()) && u->in(0) == x_ctrl) { 1949 // If we're sinking a chain of data nodes, we might have inserted a cast to pin the use which is not necessary 1950 // anymore now that we're going to pin n as well 1951 _igvn.replace_node(u, x); 1952 --j; 1953 } else { 1954 int nb = u->replace_edge(n, x, &_igvn); 1955 j -= nb; 1956 } 1957 } 1958 1959 if (n->is_Load()) { 1960 // For loads, add a control edge to a CFG node outside of the loop 1961 // to force them to not combine and return back inside the loop 1962 // during GVN optimization (4641526). 1963 assert(x_ctrl == get_late_ctrl_with_anti_dep(x->as_Load(), early_ctrl, x_ctrl), "anti-dependences were already checked"); 1964 1965 IdealLoopTree* x_loop = get_loop(x_ctrl); 1966 Node* x_head = x_loop->_head; 1967 if (x_head->is_Loop() && x_head->is_OuterStripMinedLoop()) { 1968 // Do not add duplicate LoadNodes to the outer strip mined loop 1969 if (outer_loop_clone != nullptr) { 1970 _igvn.replace_node(x, outer_loop_clone); 1971 continue; 1972 } 1973 outer_loop_clone = x; 1974 } 1975 x->set_req(0, x_ctrl); 1976 } else if (n->in(0) != nullptr){ 1977 x->set_req(0, x_ctrl); 1978 } 1979 assert(dom_depth(n_ctrl) <= dom_depth(x_ctrl), "n is later than its clone"); 1980 assert(!n_loop->is_member(get_loop(x_ctrl)), "should have moved out of loop"); 1981 register_new_node(x, x_ctrl); 1982 1983 // Chain of AddP nodes: (AddP base (AddP base (AddP base ))) 1984 // All AddP nodes must keep the same base after sinking so: 1985 // 1- We don't add a CastPP here until the last one of the chain is sunk: if part of the chain is not sunk, 1986 // their bases remain the same. 1987 // (see 2- below) 1988 assert(!x->is_AddP() || !x->in(AddPNode::Address)->is_AddP() || 1989 x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base) || 1990 !x->in(AddPNode::Address)->in(AddPNode::Base)->eqv_uncast(x->in(AddPNode::Base)), "unexpected AddP shape"); 1991 if (x->in(0) == nullptr && !x->is_DecodeNarrowPtr() && 1992 !(x->is_AddP() && x->in(AddPNode::Address)->is_AddP() && x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base))) { 1993 assert(!x->is_Load(), "load should be pinned"); 1994 // Use a cast node to pin clone out of loop 1995 Node* cast = nullptr; 1996 for (uint k = 0; k < x->req(); k++) { 1997 Node* in = x->in(k); 1998 if (in != nullptr && n_loop->is_member(get_loop(get_ctrl(in)))) { 1999 const Type* in_t = _igvn.type(in); 2000 cast = ConstraintCastNode::make_cast_for_type(x_ctrl, in, in_t, 2001 ConstraintCastNode::UnconditionalDependency, nullptr); 2002 } 2003 if (cast != nullptr) { 2004 Node* prev = _igvn.hash_find_insert(cast); 2005 if (prev != nullptr && get_ctrl(prev) == x_ctrl) { 2006 cast->destruct(&_igvn); 2007 cast = prev; 2008 } else { 2009 register_new_node(cast, x_ctrl); 2010 } 2011 x->replace_edge(in, cast); 2012 // Chain of AddP nodes: 2013 // 2- A CastPP of the base is only added now that all AddP nodes are sunk 2014 if (x->is_AddP() && k == AddPNode::Base) { 2015 update_addp_chain_base(x, n->in(AddPNode::Base), cast); 2016 } 2017 break; 2018 } 2019 } 2020 assert(cast != nullptr, "must have added a cast to pin the node"); 2021 } 2022 } 2023 _igvn.remove_dead_node(n); 2024 } 2025 _dom_lca_tags_round = 0; 2026 } 2027 } 2028 } 2029 2030 void PhaseIdealLoop::update_addp_chain_base(Node* x, Node* old_base, Node* new_base) { 2031 ResourceMark rm; 2032 Node_List wq; 2033 wq.push(x); 2034 while (wq.size() != 0) { 2035 Node* n = wq.pop(); 2036 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2037 Node* u = n->fast_out(i); 2038 if (u->is_AddP() && u->in(AddPNode::Base) == old_base) { 2039 _igvn.replace_input_of(u, AddPNode::Base, new_base); 2040 wq.push(u); 2041 } 2042 } 2043 } 2044 } 2045 2046 // Compute the early control of a node by following its inputs until we reach 2047 // nodes that are pinned. Then compute the LCA of the control of all pinned nodes. 2048 Node* PhaseIdealLoop::compute_early_ctrl(Node* n, Node* n_ctrl) { 2049 Node* early_ctrl = nullptr; 2050 ResourceMark rm; 2051 Unique_Node_List wq; 2052 wq.push(n); 2053 for (uint i = 0; i < wq.size(); i++) { 2054 Node* m = wq.at(i); 2055 Node* c = nullptr; 2056 if (m->is_CFG()) { 2057 c = m; 2058 } else if (m->pinned()) { 2059 c = m->in(0); 2060 } else { 2061 for (uint j = 0; j < m->req(); j++) { 2062 Node* in = m->in(j); 2063 if (in != nullptr) { 2064 wq.push(in); 2065 } 2066 } 2067 } 2068 if (c != nullptr) { 2069 assert(is_dominator(c, n_ctrl), "control input must dominate current control"); 2070 if (early_ctrl == nullptr || is_dominator(early_ctrl, c)) { 2071 early_ctrl = c; 2072 } 2073 } 2074 } 2075 assert(is_dominator(early_ctrl, n_ctrl), "early control must dominate current control"); 2076 return early_ctrl; 2077 } 2078 2079 bool PhaseIdealLoop::ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop) { 2080 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2081 Node* u = n->fast_out(i); 2082 if (u->is_Opaque1()) { 2083 return false; // Found loop limit, bugfix for 4677003 2084 } 2085 // We can't reuse tags in PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal() so make sure calls to 2086 // get_late_ctrl_with_anti_dep() use their own tag 2087 _dom_lca_tags_round++; 2088 assert(_dom_lca_tags_round != 0, "shouldn't wrap around"); 2089 2090 if (u->is_Phi()) { 2091 for (uint j = 1; j < u->req(); ++j) { 2092 if (u->in(j) == n && !ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, u->in(0)->in(j))) { 2093 return false; 2094 } 2095 } 2096 } else { 2097 Node* ctrl = has_ctrl(u) ? get_ctrl(u) : u->in(0); 2098 if (!ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, ctrl)) { 2099 return false; 2100 } 2101 } 2102 } 2103 return true; 2104 } 2105 2106 bool PhaseIdealLoop::ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl) { 2107 if (n->is_Load()) { 2108 ctrl = get_late_ctrl_with_anti_dep(n->as_Load(), n_ctrl, ctrl); 2109 } 2110 IdealLoopTree *u_loop = get_loop(ctrl); 2111 if (u_loop == n_loop) { 2112 return false; // Found loop-varying use 2113 } 2114 if (n_loop->is_member(u_loop)) { 2115 return false; // Found use in inner loop 2116 } 2117 // Sinking a node from a pre loop to its main loop pins the node between the pre and main loops. If that node is input 2118 // to a check that's eliminated by range check elimination, it becomes input to an expression that feeds into the exit 2119 // test of the pre loop above the point in the graph where it's pinned. 2120 if (n_loop->_head->is_CountedLoop() && n_loop->_head->as_CountedLoop()->is_pre_loop() && 2121 u_loop->_head->is_CountedLoop() && u_loop->_head->as_CountedLoop()->is_main_loop() && 2122 n_loop->_next == get_loop(u_loop->_head->as_CountedLoop()->skip_strip_mined())) { 2123 return false; 2124 } 2125 return true; 2126 } 2127 2128 //------------------------------split_if_with_blocks--------------------------- 2129 // Check for aggressive application of 'split-if' optimization, 2130 // using basic block level info. 2131 void PhaseIdealLoop::split_if_with_blocks(VectorSet &visited, Node_Stack &nstack) { 2132 Node* root = C->root(); 2133 visited.set(root->_idx); // first, mark root as visited 2134 // Do pre-visit work for root 2135 Node* n = split_if_with_blocks_pre(root); 2136 uint cnt = n->outcnt(); 2137 uint i = 0; 2138 2139 while (true) { 2140 // Visit all children 2141 if (i < cnt) { 2142 Node* use = n->raw_out(i); 2143 ++i; 2144 if (use->outcnt() != 0 && !visited.test_set(use->_idx)) { 2145 // Now do pre-visit work for this use 2146 use = split_if_with_blocks_pre(use); 2147 nstack.push(n, i); // Save parent and next use's index. 2148 n = use; // Process all children of current use. 2149 cnt = use->outcnt(); 2150 i = 0; 2151 } 2152 } 2153 else { 2154 // All of n's children have been processed, complete post-processing. 2155 if (cnt != 0 && !n->is_Con()) { 2156 assert(has_node(n), "no dead nodes"); 2157 split_if_with_blocks_post(n); 2158 } 2159 if (must_throttle_split_if()) { 2160 nstack.clear(); 2161 } 2162 if (nstack.is_empty()) { 2163 // Finished all nodes on stack. 2164 break; 2165 } 2166 // Get saved parent node and next use's index. Visit the rest of uses. 2167 n = nstack.node(); 2168 cnt = n->outcnt(); 2169 i = nstack.index(); 2170 nstack.pop(); 2171 } 2172 } 2173 } 2174 2175 2176 //============================================================================= 2177 // 2178 // C L O N E A L O O P B O D Y 2179 // 2180 2181 //------------------------------clone_iff-------------------------------------- 2182 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps. 2183 // "Nearly" because all Nodes have been cloned from the original in the loop, 2184 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs 2185 // through the Phi recursively, and return a Bool. 2186 Node* PhaseIdealLoop::clone_iff(PhiNode* phi) { 2187 2188 // Convert this Phi into a Phi merging Bools 2189 uint i; 2190 for (i = 1; i < phi->req(); i++) { 2191 Node* b = phi->in(i); 2192 if (b->is_Phi()) { 2193 _igvn.replace_input_of(phi, i, clone_iff(b->as_Phi())); 2194 } else { 2195 assert(b->is_Bool() || b->is_Opaque4() || b->is_OpaqueInitializedAssertionPredicate(), 2196 "bool, non-null check with Opaque4 node or Initialized Assertion Predicate with its Opaque node"); 2197 } 2198 } 2199 Node* n = phi->in(1); 2200 Node* sample_opaque = nullptr; 2201 Node *sample_bool = nullptr; 2202 if (n->is_Opaque4() || n->is_OpaqueInitializedAssertionPredicate()) { 2203 sample_opaque = n; 2204 sample_bool = n->in(1); 2205 assert(sample_bool->is_Bool(), "wrong type"); 2206 } else { 2207 sample_bool = n; 2208 } 2209 Node* sample_cmp = sample_bool->in(1); 2210 const Type* t = Type::TOP; 2211 const TypePtr* at = nullptr; 2212 if (sample_cmp->is_FlatArrayCheck()) { 2213 // Left input of a FlatArrayCheckNode is memory, set the (adr) type of the phi accordingly 2214 assert(sample_cmp->in(1)->bottom_type() == Type::MEMORY, "unexpected input type"); 2215 t = Type::MEMORY; 2216 at = TypeRawPtr::BOTTOM; 2217 } 2218 2219 // Make Phis to merge the Cmp's inputs. 2220 PhiNode *phi1 = new PhiNode(phi->in(0), t, at); 2221 PhiNode *phi2 = new PhiNode(phi->in(0), Type::TOP); 2222 for (i = 1; i < phi->req(); i++) { 2223 Node *n1 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(1) : phi->in(i)->in(1)->in(1)->in(1); 2224 Node *n2 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(2) : phi->in(i)->in(1)->in(1)->in(2); 2225 phi1->set_req(i, n1); 2226 phi2->set_req(i, n2); 2227 phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type())); 2228 phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type())); 2229 } 2230 // See if these Phis have been made before. 2231 // Register with optimizer 2232 Node *hit1 = _igvn.hash_find_insert(phi1); 2233 if (hit1) { // Hit, toss just made Phi 2234 _igvn.remove_dead_node(phi1); // Remove new phi 2235 assert(hit1->is_Phi(), "" ); 2236 phi1 = (PhiNode*)hit1; // Use existing phi 2237 } else { // Miss 2238 _igvn.register_new_node_with_optimizer(phi1); 2239 } 2240 Node *hit2 = _igvn.hash_find_insert(phi2); 2241 if (hit2) { // Hit, toss just made Phi 2242 _igvn.remove_dead_node(phi2); // Remove new phi 2243 assert(hit2->is_Phi(), "" ); 2244 phi2 = (PhiNode*)hit2; // Use existing phi 2245 } else { // Miss 2246 _igvn.register_new_node_with_optimizer(phi2); 2247 } 2248 // Register Phis with loop/block info 2249 set_ctrl(phi1, phi->in(0)); 2250 set_ctrl(phi2, phi->in(0)); 2251 // Make a new Cmp 2252 Node *cmp = sample_cmp->clone(); 2253 cmp->set_req(1, phi1); 2254 cmp->set_req(2, phi2); 2255 _igvn.register_new_node_with_optimizer(cmp); 2256 set_ctrl(cmp, phi->in(0)); 2257 2258 // Make a new Bool 2259 Node *b = sample_bool->clone(); 2260 b->set_req(1,cmp); 2261 _igvn.register_new_node_with_optimizer(b); 2262 set_ctrl(b, phi->in(0)); 2263 2264 if (sample_opaque != nullptr) { 2265 Node* opaque = sample_opaque->clone(); 2266 opaque->set_req(1, b); 2267 _igvn.register_new_node_with_optimizer(opaque); 2268 set_ctrl(opaque, phi->in(0)); 2269 return opaque; 2270 } 2271 2272 assert(b->is_Bool(), ""); 2273 return b; 2274 } 2275 2276 //------------------------------clone_bool------------------------------------- 2277 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps. 2278 // "Nearly" because all Nodes have been cloned from the original in the loop, 2279 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs 2280 // through the Phi recursively, and return a Bool. 2281 CmpNode*PhaseIdealLoop::clone_bool(PhiNode* phi) { 2282 uint i; 2283 // Convert this Phi into a Phi merging Bools 2284 for( i = 1; i < phi->req(); i++ ) { 2285 Node *b = phi->in(i); 2286 if( b->is_Phi() ) { 2287 _igvn.replace_input_of(phi, i, clone_bool(b->as_Phi())); 2288 } else { 2289 assert( b->is_Cmp() || b->is_top(), "inputs are all Cmp or TOP" ); 2290 } 2291 } 2292 2293 Node *sample_cmp = phi->in(1); 2294 2295 // Make Phis to merge the Cmp's inputs. 2296 PhiNode *phi1 = new PhiNode( phi->in(0), Type::TOP ); 2297 PhiNode *phi2 = new PhiNode( phi->in(0), Type::TOP ); 2298 for( uint j = 1; j < phi->req(); j++ ) { 2299 Node *cmp_top = phi->in(j); // Inputs are all Cmp or TOP 2300 Node *n1, *n2; 2301 if( cmp_top->is_Cmp() ) { 2302 n1 = cmp_top->in(1); 2303 n2 = cmp_top->in(2); 2304 } else { 2305 n1 = n2 = cmp_top; 2306 } 2307 phi1->set_req( j, n1 ); 2308 phi2->set_req( j, n2 ); 2309 phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type())); 2310 phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type())); 2311 } 2312 2313 // See if these Phis have been made before. 2314 // Register with optimizer 2315 Node *hit1 = _igvn.hash_find_insert(phi1); 2316 if( hit1 ) { // Hit, toss just made Phi 2317 _igvn.remove_dead_node(phi1); // Remove new phi 2318 assert( hit1->is_Phi(), "" ); 2319 phi1 = (PhiNode*)hit1; // Use existing phi 2320 } else { // Miss 2321 _igvn.register_new_node_with_optimizer(phi1); 2322 } 2323 Node *hit2 = _igvn.hash_find_insert(phi2); 2324 if( hit2 ) { // Hit, toss just made Phi 2325 _igvn.remove_dead_node(phi2); // Remove new phi 2326 assert( hit2->is_Phi(), "" ); 2327 phi2 = (PhiNode*)hit2; // Use existing phi 2328 } else { // Miss 2329 _igvn.register_new_node_with_optimizer(phi2); 2330 } 2331 // Register Phis with loop/block info 2332 set_ctrl(phi1, phi->in(0)); 2333 set_ctrl(phi2, phi->in(0)); 2334 // Make a new Cmp 2335 Node *cmp = sample_cmp->clone(); 2336 cmp->set_req( 1, phi1 ); 2337 cmp->set_req( 2, phi2 ); 2338 _igvn.register_new_node_with_optimizer(cmp); 2339 set_ctrl(cmp, phi->in(0)); 2340 2341 assert( cmp->is_Cmp(), "" ); 2342 return (CmpNode*)cmp; 2343 } 2344 2345 void PhaseIdealLoop::clone_loop_handle_data_uses(Node* old, Node_List &old_new, 2346 IdealLoopTree* loop, IdealLoopTree* outer_loop, 2347 Node_List*& split_if_set, Node_List*& split_bool_set, 2348 Node_List*& split_cex_set, Node_List& worklist, 2349 uint new_counter, CloneLoopMode mode) { 2350 Node* nnn = old_new[old->_idx]; 2351 // Copy uses to a worklist, so I can munge the def-use info 2352 // with impunity. 2353 for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++) 2354 worklist.push(old->fast_out(j)); 2355 2356 while( worklist.size() ) { 2357 Node *use = worklist.pop(); 2358 if (!has_node(use)) continue; // Ignore dead nodes 2359 if (use->in(0) == C->top()) continue; 2360 IdealLoopTree *use_loop = get_loop( has_ctrl(use) ? get_ctrl(use) : use ); 2361 // Check for data-use outside of loop - at least one of OLD or USE 2362 // must not be a CFG node. 2363 #ifdef ASSERT 2364 if (loop->_head->as_Loop()->is_strip_mined() && outer_loop->is_member(use_loop) && !loop->is_member(use_loop) && old_new[use->_idx] == nullptr) { 2365 Node* sfpt = loop->_head->as_CountedLoop()->outer_safepoint(); 2366 assert(mode != IgnoreStripMined, "incorrect cloning mode"); 2367 assert((mode == ControlAroundStripMined && use == sfpt) || !use->is_reachable_from_root(), "missed a node"); 2368 } 2369 #endif 2370 if (!loop->is_member(use_loop) && !outer_loop->is_member(use_loop) && (!old->is_CFG() || !use->is_CFG())) { 2371 2372 // If the Data use is an IF, that means we have an IF outside the 2373 // loop that is switching on a condition that is set inside the 2374 // loop. Happens if people set a loop-exit flag; then test the flag 2375 // in the loop to break the loop, then test is again outside the 2376 // loop to determine which way the loop exited. 2377 // 2378 // For several uses we need to make sure that there is no phi between, 2379 // the use and the Bool/Cmp. We therefore clone the Bool/Cmp down here 2380 // to avoid such a phi in between. 2381 // For example, it is unexpected that there is a Phi between an 2382 // AllocateArray node and its ValidLengthTest input that could cause 2383 // split if to break. 2384 if (use->is_If() || use->is_CMove() || use->is_Opaque4() || use->is_OpaqueInitializedAssertionPredicate() || 2385 (use->Opcode() == Op_AllocateArray && use->in(AllocateNode::ValidLengthTest) == old)) { 2386 // Since this code is highly unlikely, we lazily build the worklist 2387 // of such Nodes to go split. 2388 if (!split_if_set) { 2389 split_if_set = new Node_List(); 2390 } 2391 split_if_set->push(use); 2392 } 2393 if (use->is_Bool()) { 2394 if (!split_bool_set) { 2395 split_bool_set = new Node_List(); 2396 } 2397 split_bool_set->push(use); 2398 } 2399 if (use->Opcode() == Op_CreateEx) { 2400 if (!split_cex_set) { 2401 split_cex_set = new Node_List(); 2402 } 2403 split_cex_set->push(use); 2404 } 2405 2406 2407 // Get "block" use is in 2408 uint idx = 0; 2409 while( use->in(idx) != old ) idx++; 2410 Node *prev = use->is_CFG() ? use : get_ctrl(use); 2411 assert(!loop->is_member(get_loop(prev)) && !outer_loop->is_member(get_loop(prev)), "" ); 2412 Node* cfg = (prev->_idx >= new_counter && prev->is_Region()) 2413 ? prev->in(2) 2414 : idom(prev); 2415 if( use->is_Phi() ) // Phi use is in prior block 2416 cfg = prev->in(idx); // NOT in block of Phi itself 2417 if (cfg->is_top()) { // Use is dead? 2418 _igvn.replace_input_of(use, idx, C->top()); 2419 continue; 2420 } 2421 2422 // If use is referenced through control edge... (idx == 0) 2423 if (mode == IgnoreStripMined && idx == 0) { 2424 LoopNode *head = loop->_head->as_Loop(); 2425 if (head->is_strip_mined() && is_dominator(head->outer_loop_exit(), prev)) { 2426 // That node is outside the inner loop, leave it outside the 2427 // outer loop as well to not confuse verification code. 2428 assert(!loop->_parent->is_member(use_loop), "should be out of the outer loop"); 2429 _igvn.replace_input_of(use, 0, head->outer_loop_exit()); 2430 continue; 2431 } 2432 } 2433 2434 while(!outer_loop->is_member(get_loop(cfg))) { 2435 prev = cfg; 2436 cfg = (cfg->_idx >= new_counter && cfg->is_Region()) ? cfg->in(2) : idom(cfg); 2437 } 2438 // If the use occurs after merging several exits from the loop, then 2439 // old value must have dominated all those exits. Since the same old 2440 // value was used on all those exits we did not need a Phi at this 2441 // merge point. NOW we do need a Phi here. Each loop exit value 2442 // is now merged with the peeled body exit; each exit gets its own 2443 // private Phi and those Phis need to be merged here. 2444 Node *phi; 2445 if( prev->is_Region() ) { 2446 if( idx == 0 ) { // Updating control edge? 2447 phi = prev; // Just use existing control 2448 } else { // Else need a new Phi 2449 phi = PhiNode::make( prev, old ); 2450 // Now recursively fix up the new uses of old! 2451 for( uint i = 1; i < prev->req(); i++ ) { 2452 worklist.push(phi); // Onto worklist once for each 'old' input 2453 } 2454 } 2455 } else { 2456 // Get new RegionNode merging old and new loop exits 2457 prev = old_new[prev->_idx]; 2458 assert( prev, "just made this in step 7" ); 2459 if( idx == 0) { // Updating control edge? 2460 phi = prev; // Just use existing control 2461 } else { // Else need a new Phi 2462 // Make a new Phi merging data values properly 2463 phi = PhiNode::make( prev, old ); 2464 phi->set_req( 1, nnn ); 2465 } 2466 } 2467 // If inserting a new Phi, check for prior hits 2468 if( idx != 0 ) { 2469 Node *hit = _igvn.hash_find_insert(phi); 2470 if( hit == nullptr ) { 2471 _igvn.register_new_node_with_optimizer(phi); // Register new phi 2472 } else { // or 2473 // Remove the new phi from the graph and use the hit 2474 _igvn.remove_dead_node(phi); 2475 phi = hit; // Use existing phi 2476 } 2477 set_ctrl(phi, prev); 2478 } 2479 // Make 'use' use the Phi instead of the old loop body exit value 2480 assert(use->in(idx) == old, "old is still input of use"); 2481 // We notify all uses of old, including use, and the indirect uses, 2482 // that may now be optimized because we have replaced old with phi. 2483 _igvn.add_users_to_worklist(old); 2484 if (idx == 0 && 2485 use->depends_only_on_test()) { 2486 Node* pinned_clone = use->pin_array_access_node(); 2487 if (pinned_clone != nullptr) { 2488 // Pin array access nodes: control is updated here to a region. If, after some transformations, only one path 2489 // into the region is left, an array load could become dependent on a condition that's not a range check for 2490 // that access. If that condition is replaced by an identical dominating one, then an unpinned load would risk 2491 // floating above its range check. 2492 pinned_clone->set_req(0, phi); 2493 register_new_node_with_ctrl_of(pinned_clone, use); 2494 _igvn.replace_node(use, pinned_clone); 2495 continue; 2496 } 2497 } 2498 _igvn.replace_input_of(use, idx, phi); 2499 if( use->_idx >= new_counter ) { // If updating new phis 2500 // Not needed for correctness, but prevents a weak assert 2501 // in AddPNode from tripping (when we end up with different 2502 // base & derived Phis that will become the same after 2503 // IGVN does CSE). 2504 Node *hit = _igvn.hash_find_insert(use); 2505 if( hit ) // Go ahead and re-hash for hits. 2506 _igvn.replace_node( use, hit ); 2507 } 2508 } 2509 } 2510 } 2511 2512 static void collect_nodes_in_outer_loop_not_reachable_from_sfpt(Node* n, const IdealLoopTree *loop, const IdealLoopTree* outer_loop, 2513 const Node_List &old_new, Unique_Node_List& wq, PhaseIdealLoop* phase, 2514 bool check_old_new) { 2515 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2516 Node* u = n->fast_out(j); 2517 assert(check_old_new || old_new[u->_idx] == nullptr, "shouldn't have been cloned"); 2518 if (!u->is_CFG() && (!check_old_new || old_new[u->_idx] == nullptr)) { 2519 Node* c = phase->get_ctrl(u); 2520 IdealLoopTree* u_loop = phase->get_loop(c); 2521 assert(!loop->is_member(u_loop) || !loop->_body.contains(u), "can be in outer loop or out of both loops only"); 2522 if (!loop->is_member(u_loop)) { 2523 if (outer_loop->is_member(u_loop)) { 2524 wq.push(u); 2525 } else { 2526 // nodes pinned with control in the outer loop but not referenced from the safepoint must be moved out of 2527 // the outer loop too 2528 Node* u_c = u->in(0); 2529 if (u_c != nullptr) { 2530 IdealLoopTree* u_c_loop = phase->get_loop(u_c); 2531 if (outer_loop->is_member(u_c_loop) && !loop->is_member(u_c_loop)) { 2532 wq.push(u); 2533 } 2534 } 2535 } 2536 } 2537 } 2538 } 2539 } 2540 2541 void PhaseIdealLoop::clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop, 2542 IdealLoopTree* outer_loop, int dd, Node_List &old_new, 2543 Node_List& extra_data_nodes) { 2544 if (head->is_strip_mined() && mode != IgnoreStripMined) { 2545 CountedLoopNode* cl = head->as_CountedLoop(); 2546 Node* l = cl->outer_loop(); 2547 Node* tail = cl->outer_loop_tail(); 2548 IfNode* le = cl->outer_loop_end(); 2549 Node* sfpt = cl->outer_safepoint(); 2550 CountedLoopEndNode* cle = cl->loopexit(); 2551 CountedLoopNode* new_cl = old_new[cl->_idx]->as_CountedLoop(); 2552 CountedLoopEndNode* new_cle = new_cl->as_CountedLoop()->loopexit_or_null(); 2553 Node* cle_out = cle->proj_out(false); 2554 2555 Node* new_sfpt = nullptr; 2556 Node* new_cle_out = cle_out->clone(); 2557 old_new.map(cle_out->_idx, new_cle_out); 2558 if (mode == CloneIncludesStripMined) { 2559 // clone outer loop body 2560 Node* new_l = l->clone(); 2561 Node* new_tail = tail->clone(); 2562 IfNode* new_le = le->clone()->as_If(); 2563 new_sfpt = sfpt->clone(); 2564 2565 set_loop(new_l, outer_loop->_parent); 2566 set_idom(new_l, new_l->in(LoopNode::EntryControl), dd); 2567 set_loop(new_cle_out, outer_loop->_parent); 2568 set_idom(new_cle_out, new_cle, dd); 2569 set_loop(new_sfpt, outer_loop->_parent); 2570 set_idom(new_sfpt, new_cle_out, dd); 2571 set_loop(new_le, outer_loop->_parent); 2572 set_idom(new_le, new_sfpt, dd); 2573 set_loop(new_tail, outer_loop->_parent); 2574 set_idom(new_tail, new_le, dd); 2575 set_idom(new_cl, new_l, dd); 2576 2577 old_new.map(l->_idx, new_l); 2578 old_new.map(tail->_idx, new_tail); 2579 old_new.map(le->_idx, new_le); 2580 old_new.map(sfpt->_idx, new_sfpt); 2581 2582 new_l->set_req(LoopNode::LoopBackControl, new_tail); 2583 new_l->set_req(0, new_l); 2584 new_tail->set_req(0, new_le); 2585 new_le->set_req(0, new_sfpt); 2586 new_sfpt->set_req(0, new_cle_out); 2587 new_cle_out->set_req(0, new_cle); 2588 new_cl->set_req(LoopNode::EntryControl, new_l); 2589 2590 _igvn.register_new_node_with_optimizer(new_l); 2591 _igvn.register_new_node_with_optimizer(new_tail); 2592 _igvn.register_new_node_with_optimizer(new_le); 2593 } else { 2594 Node *newhead = old_new[loop->_head->_idx]; 2595 newhead->as_Loop()->clear_strip_mined(); 2596 _igvn.replace_input_of(newhead, LoopNode::EntryControl, newhead->in(LoopNode::EntryControl)->in(LoopNode::EntryControl)); 2597 set_idom(newhead, newhead->in(LoopNode::EntryControl), dd); 2598 } 2599 // Look at data node that were assigned a control in the outer 2600 // loop: they are kept in the outer loop by the safepoint so start 2601 // from the safepoint node's inputs. 2602 IdealLoopTree* outer_loop = get_loop(l); 2603 Node_Stack stack(2); 2604 stack.push(sfpt, 1); 2605 uint new_counter = C->unique(); 2606 while (stack.size() > 0) { 2607 Node* n = stack.node(); 2608 uint i = stack.index(); 2609 while (i < n->req() && 2610 (n->in(i) == nullptr || 2611 !has_ctrl(n->in(i)) || 2612 get_loop(get_ctrl(n->in(i))) != outer_loop || 2613 (old_new[n->in(i)->_idx] != nullptr && old_new[n->in(i)->_idx]->_idx >= new_counter))) { 2614 i++; 2615 } 2616 if (i < n->req()) { 2617 stack.set_index(i+1); 2618 stack.push(n->in(i), 0); 2619 } else { 2620 assert(old_new[n->_idx] == nullptr || n == sfpt || old_new[n->_idx]->_idx < new_counter, "no clone yet"); 2621 Node* m = n == sfpt ? new_sfpt : n->clone(); 2622 if (m != nullptr) { 2623 for (uint i = 0; i < n->req(); i++) { 2624 if (m->in(i) != nullptr && old_new[m->in(i)->_idx] != nullptr) { 2625 m->set_req(i, old_new[m->in(i)->_idx]); 2626 } 2627 } 2628 } else { 2629 assert(n == sfpt && mode != CloneIncludesStripMined, "where's the safepoint clone?"); 2630 } 2631 if (n != sfpt) { 2632 extra_data_nodes.push(n); 2633 _igvn.register_new_node_with_optimizer(m); 2634 assert(get_ctrl(n) == cle_out, "what other control?"); 2635 set_ctrl(m, new_cle_out); 2636 old_new.map(n->_idx, m); 2637 } 2638 stack.pop(); 2639 } 2640 } 2641 if (mode == CloneIncludesStripMined) { 2642 _igvn.register_new_node_with_optimizer(new_sfpt); 2643 _igvn.register_new_node_with_optimizer(new_cle_out); 2644 } 2645 // Some other transformation may have pessimistically assigned some 2646 // data nodes to the outer loop. Set their control so they are out 2647 // of the outer loop. 2648 ResourceMark rm; 2649 Unique_Node_List wq; 2650 for (uint i = 0; i < extra_data_nodes.size(); i++) { 2651 Node* old = extra_data_nodes.at(i); 2652 collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true); 2653 } 2654 2655 for (uint i = 0; i < loop->_body.size(); i++) { 2656 Node* old = loop->_body.at(i); 2657 collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true); 2658 } 2659 2660 Node* inner_out = sfpt->in(0); 2661 if (inner_out->outcnt() > 1) { 2662 collect_nodes_in_outer_loop_not_reachable_from_sfpt(inner_out, loop, outer_loop, old_new, wq, this, true); 2663 } 2664 2665 Node* new_ctrl = cl->outer_loop_exit(); 2666 assert(get_loop(new_ctrl) != outer_loop, "must be out of the loop nest"); 2667 for (uint i = 0; i < wq.size(); i++) { 2668 Node* n = wq.at(i); 2669 set_ctrl(n, new_ctrl); 2670 if (n->in(0) != nullptr) { 2671 _igvn.replace_input_of(n, 0, new_ctrl); 2672 } 2673 collect_nodes_in_outer_loop_not_reachable_from_sfpt(n, loop, outer_loop, old_new, wq, this, false); 2674 } 2675 } else { 2676 Node *newhead = old_new[loop->_head->_idx]; 2677 set_idom(newhead, newhead->in(LoopNode::EntryControl), dd); 2678 } 2679 } 2680 2681 //------------------------------clone_loop------------------------------------- 2682 // 2683 // C L O N E A L O O P B O D Y 2684 // 2685 // This is the basic building block of the loop optimizations. It clones an 2686 // entire loop body. It makes an old_new loop body mapping; with this mapping 2687 // you can find the new-loop equivalent to an old-loop node. All new-loop 2688 // nodes are exactly equal to their old-loop counterparts, all edges are the 2689 // same. All exits from the old-loop now have a RegionNode that merges the 2690 // equivalent new-loop path. This is true even for the normal "loop-exit" 2691 // condition. All uses of loop-invariant old-loop values now come from (one 2692 // or more) Phis that merge their new-loop equivalents. 2693 // 2694 // This operation leaves the graph in an illegal state: there are two valid 2695 // control edges coming from the loop pre-header to both loop bodies. I'll 2696 // definitely have to hack the graph after running this transform. 2697 // 2698 // From this building block I will further edit edges to perform loop peeling 2699 // or loop unrolling or iteration splitting (Range-Check-Elimination), etc. 2700 // 2701 // Parameter side_by_size_idom: 2702 // When side_by_size_idom is null, the dominator tree is constructed for 2703 // the clone loop to dominate the original. Used in construction of 2704 // pre-main-post loop sequence. 2705 // When nonnull, the clone and original are side-by-side, both are 2706 // dominated by the side_by_side_idom node. Used in construction of 2707 // unswitched loops. 2708 void PhaseIdealLoop::clone_loop( IdealLoopTree *loop, Node_List &old_new, int dd, 2709 CloneLoopMode mode, Node* side_by_side_idom) { 2710 2711 LoopNode* head = loop->_head->as_Loop(); 2712 head->verify_strip_mined(1); 2713 2714 if (C->do_vector_loop() && PrintOpto) { 2715 const char* mname = C->method()->name()->as_quoted_ascii(); 2716 if (mname != nullptr) { 2717 tty->print("PhaseIdealLoop::clone_loop: for vectorize method %s\n", mname); 2718 } 2719 } 2720 2721 CloneMap& cm = C->clone_map(); 2722 if (C->do_vector_loop()) { 2723 cm.set_clone_idx(cm.max_gen()+1); 2724 #ifndef PRODUCT 2725 if (PrintOpto) { 2726 tty->print_cr("PhaseIdealLoop::clone_loop: _clone_idx %d", cm.clone_idx()); 2727 loop->dump_head(); 2728 } 2729 #endif 2730 } 2731 2732 // Step 1: Clone the loop body. Make the old->new mapping. 2733 clone_loop_body(loop->_body, old_new, &cm); 2734 2735 IdealLoopTree* outer_loop = (head->is_strip_mined() && mode != IgnoreStripMined) ? get_loop(head->as_CountedLoop()->outer_loop()) : loop; 2736 2737 // Step 2: Fix the edges in the new body. If the old input is outside the 2738 // loop use it. If the old input is INside the loop, use the corresponding 2739 // new node instead. 2740 fix_body_edges(loop->_body, loop, old_new, dd, outer_loop->_parent, false); 2741 2742 Node_List extra_data_nodes; // data nodes in the outer strip mined loop 2743 clone_outer_loop(head, mode, loop, outer_loop, dd, old_new, extra_data_nodes); 2744 2745 // Step 3: Now fix control uses. Loop varying control uses have already 2746 // been fixed up (as part of all input edges in Step 2). Loop invariant 2747 // control uses must be either an IfFalse or an IfTrue. Make a merge 2748 // point to merge the old and new IfFalse/IfTrue nodes; make the use 2749 // refer to this. 2750 Node_List worklist; 2751 uint new_counter = C->unique(); 2752 fix_ctrl_uses(loop->_body, loop, old_new, mode, side_by_side_idom, &cm, worklist); 2753 2754 // Step 4: If loop-invariant use is not control, it must be dominated by a 2755 // loop exit IfFalse/IfTrue. Find "proper" loop exit. Make a Region 2756 // there if needed. Make a Phi there merging old and new used values. 2757 Node_List *split_if_set = nullptr; 2758 Node_List *split_bool_set = nullptr; 2759 Node_List *split_cex_set = nullptr; 2760 fix_data_uses(loop->_body, loop, mode, outer_loop, new_counter, old_new, worklist, split_if_set, split_bool_set, split_cex_set); 2761 2762 for (uint i = 0; i < extra_data_nodes.size(); i++) { 2763 Node* old = extra_data_nodes.at(i); 2764 clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set, 2765 split_bool_set, split_cex_set, worklist, new_counter, 2766 mode); 2767 } 2768 2769 // Check for IFs that need splitting/cloning. Happens if an IF outside of 2770 // the loop uses a condition set in the loop. The original IF probably 2771 // takes control from one or more OLD Regions (which in turn get from NEW 2772 // Regions). In any case, there will be a set of Phis for each merge point 2773 // from the IF up to where the original BOOL def exists the loop. 2774 finish_clone_loop(split_if_set, split_bool_set, split_cex_set); 2775 2776 } 2777 2778 void PhaseIdealLoop::finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set) { 2779 if (split_if_set) { 2780 while (split_if_set->size()) { 2781 Node *iff = split_if_set->pop(); 2782 uint input = iff->Opcode() == Op_AllocateArray ? AllocateNode::ValidLengthTest : 1; 2783 if (iff->in(input)->is_Phi()) { 2784 Node *b = clone_iff(iff->in(input)->as_Phi()); 2785 _igvn.replace_input_of(iff, input, b); 2786 } 2787 } 2788 } 2789 if (split_bool_set) { 2790 while (split_bool_set->size()) { 2791 Node *b = split_bool_set->pop(); 2792 Node *phi = b->in(1); 2793 assert(phi->is_Phi(), ""); 2794 CmpNode *cmp = clone_bool((PhiNode*) phi); 2795 _igvn.replace_input_of(b, 1, cmp); 2796 } 2797 } 2798 if (split_cex_set) { 2799 while (split_cex_set->size()) { 2800 Node *b = split_cex_set->pop(); 2801 assert(b->in(0)->is_Region(), ""); 2802 assert(b->in(1)->is_Phi(), ""); 2803 assert(b->in(0)->in(0) == b->in(1)->in(0), ""); 2804 split_up(b, b->in(0), nullptr); 2805 } 2806 } 2807 } 2808 2809 void PhaseIdealLoop::fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop, 2810 uint new_counter, Node_List &old_new, Node_List &worklist, Node_List*& split_if_set, 2811 Node_List*& split_bool_set, Node_List*& split_cex_set) { 2812 for(uint i = 0; i < body.size(); i++ ) { 2813 Node* old = body.at(i); 2814 clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set, 2815 split_bool_set, split_cex_set, worklist, new_counter, 2816 mode); 2817 } 2818 } 2819 2820 void PhaseIdealLoop::fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode, 2821 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist) { 2822 LoopNode* head = loop->_head->as_Loop(); 2823 for(uint i = 0; i < body.size(); i++ ) { 2824 Node* old = body.at(i); 2825 if( !old->is_CFG() ) continue; 2826 2827 // Copy uses to a worklist, so I can munge the def-use info 2828 // with impunity. 2829 for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++) { 2830 worklist.push(old->fast_out(j)); 2831 } 2832 2833 while (worklist.size()) { // Visit all uses 2834 Node *use = worklist.pop(); 2835 if (!has_node(use)) continue; // Ignore dead nodes 2836 IdealLoopTree *use_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use ); 2837 if (!loop->is_member(use_loop) && use->is_CFG()) { 2838 // Both OLD and USE are CFG nodes here. 2839 assert(use->is_Proj(), "" ); 2840 Node* nnn = old_new[old->_idx]; 2841 2842 Node* newuse = nullptr; 2843 if (head->is_strip_mined() && mode != IgnoreStripMined) { 2844 CountedLoopNode* cl = head->as_CountedLoop(); 2845 CountedLoopEndNode* cle = cl->loopexit(); 2846 Node* cle_out = cle->proj_out_or_null(false); 2847 if (use == cle_out) { 2848 IfNode* le = cl->outer_loop_end(); 2849 use = le->proj_out(false); 2850 use_loop = get_loop(use); 2851 if (mode == CloneIncludesStripMined) { 2852 nnn = old_new[le->_idx]; 2853 } else { 2854 newuse = old_new[cle_out->_idx]; 2855 } 2856 } 2857 } 2858 if (newuse == nullptr) { 2859 newuse = use->clone(); 2860 } 2861 2862 // Clone the loop exit control projection 2863 if (C->do_vector_loop() && cm != nullptr) { 2864 cm->verify_insert_and_clone(use, newuse, cm->clone_idx()); 2865 } 2866 newuse->set_req(0,nnn); 2867 _igvn.register_new_node_with_optimizer(newuse); 2868 set_loop(newuse, use_loop); 2869 set_idom(newuse, nnn, dom_depth(nnn) + 1 ); 2870 2871 // We need a Region to merge the exit from the peeled body and the 2872 // exit from the old loop body. 2873 RegionNode *r = new RegionNode(3); 2874 uint dd_r = MIN2(dom_depth(newuse), dom_depth(use)); 2875 assert(dd_r >= dom_depth(dom_lca(newuse, use)), "" ); 2876 2877 // The original user of 'use' uses 'r' instead. 2878 for (DUIterator_Last lmin, l = use->last_outs(lmin); l >= lmin;) { 2879 Node* useuse = use->last_out(l); 2880 _igvn.rehash_node_delayed(useuse); 2881 uint uses_found = 0; 2882 if (useuse->in(0) == use) { 2883 useuse->set_req(0, r); 2884 uses_found++; 2885 if (useuse->is_CFG()) { 2886 // This is not a dom_depth > dd_r because when new 2887 // control flow is constructed by a loop opt, a node and 2888 // its dominator can end up at the same dom_depth 2889 assert(dom_depth(useuse) >= dd_r, ""); 2890 set_idom(useuse, r, dom_depth(useuse)); 2891 } 2892 } 2893 for (uint k = 1; k < useuse->req(); k++) { 2894 if( useuse->in(k) == use ) { 2895 useuse->set_req(k, r); 2896 uses_found++; 2897 if (useuse->is_Loop() && k == LoopNode::EntryControl) { 2898 // This is not a dom_depth > dd_r because when new 2899 // control flow is constructed by a loop opt, a node 2900 // and its dominator can end up at the same dom_depth 2901 assert(dom_depth(useuse) >= dd_r , ""); 2902 set_idom(useuse, r, dom_depth(useuse)); 2903 } 2904 } 2905 } 2906 l -= uses_found; // we deleted 1 or more copies of this edge 2907 } 2908 2909 assert(use->is_Proj(), "loop exit should be projection"); 2910 // lazy_replace() below moves all nodes that are: 2911 // - control dependent on the loop exit or 2912 // - have control set to the loop exit 2913 // below the post-loop merge point. lazy_replace() takes a dead control as first input. To make it 2914 // possible to use it, the loop exit projection is cloned and becomes the new exit projection. The initial one 2915 // becomes dead and is "replaced" by the region. 2916 Node* use_clone = use->clone(); 2917 register_control(use_clone, use_loop, idom(use), dom_depth(use)); 2918 // Now finish up 'r' 2919 r->set_req(1, newuse); 2920 r->set_req(2, use_clone); 2921 _igvn.register_new_node_with_optimizer(r); 2922 set_loop(r, use_loop); 2923 set_idom(r, (side_by_side_idom == nullptr) ? newuse->in(0) : side_by_side_idom, dd_r); 2924 lazy_replace(use, r); 2925 // Map the (cloned) old use to the new merge point 2926 old_new.map(use_clone->_idx, r); 2927 } // End of if a loop-exit test 2928 } 2929 } 2930 } 2931 2932 void PhaseIdealLoop::fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd, 2933 IdealLoopTree* parent, bool partial) { 2934 for(uint i = 0; i < body.size(); i++ ) { 2935 Node *old = body.at(i); 2936 Node *nnn = old_new[old->_idx]; 2937 // Fix CFG/Loop controlling the new node 2938 if (has_ctrl(old)) { 2939 set_ctrl(nnn, old_new[get_ctrl(old)->_idx]); 2940 } else { 2941 set_loop(nnn, parent); 2942 if (old->outcnt() > 0) { 2943 Node* dom = idom(old); 2944 if (old_new[dom->_idx] != nullptr) { 2945 dom = old_new[dom->_idx]; 2946 set_idom(nnn, dom, dd ); 2947 } 2948 } 2949 } 2950 // Correct edges to the new node 2951 for (uint j = 0; j < nnn->req(); j++) { 2952 Node *n = nnn->in(j); 2953 if (n != nullptr) { 2954 IdealLoopTree *old_in_loop = get_loop(has_ctrl(n) ? get_ctrl(n) : n); 2955 if (loop->is_member(old_in_loop)) { 2956 if (old_new[n->_idx] != nullptr) { 2957 nnn->set_req(j, old_new[n->_idx]); 2958 } else { 2959 assert(!body.contains(n), ""); 2960 assert(partial, "node not cloned"); 2961 } 2962 } 2963 } 2964 } 2965 _igvn.hash_find_insert(nnn); 2966 } 2967 } 2968 2969 void PhaseIdealLoop::clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm) { 2970 for (uint i = 0; i < body.size(); i++) { 2971 Node* old = body.at(i); 2972 Node* nnn = old->clone(); 2973 old_new.map(old->_idx, nnn); 2974 if (C->do_vector_loop() && cm != nullptr) { 2975 cm->verify_insert_and_clone(old, nnn, cm->clone_idx()); 2976 } 2977 _igvn.register_new_node_with_optimizer(nnn); 2978 } 2979 } 2980 2981 2982 //---------------------- stride_of_possible_iv ------------------------------------- 2983 // Looks for an iff/bool/comp with one operand of the compare 2984 // being a cycle involving an add and a phi, 2985 // with an optional truncation (left-shift followed by a right-shift) 2986 // of the add. Returns zero if not an iv. 2987 int PhaseIdealLoop::stride_of_possible_iv(Node* iff) { 2988 Node* trunc1 = nullptr; 2989 Node* trunc2 = nullptr; 2990 const TypeInteger* ttype = nullptr; 2991 if (!iff->is_If() || iff->in(1) == nullptr || !iff->in(1)->is_Bool()) { 2992 return 0; 2993 } 2994 BoolNode* bl = iff->in(1)->as_Bool(); 2995 Node* cmp = bl->in(1); 2996 if (!cmp || (cmp->Opcode() != Op_CmpI && cmp->Opcode() != Op_CmpU)) { 2997 return 0; 2998 } 2999 // Must have an invariant operand 3000 if (is_member(get_loop(iff), get_ctrl(cmp->in(2)))) { 3001 return 0; 3002 } 3003 Node* add2 = nullptr; 3004 Node* cmp1 = cmp->in(1); 3005 if (cmp1->is_Phi()) { 3006 // (If (Bool (CmpX phi:(Phi ...(Optional-trunc(AddI phi add2))) ))) 3007 Node* phi = cmp1; 3008 for (uint i = 1; i < phi->req(); i++) { 3009 Node* in = phi->in(i); 3010 Node* add = CountedLoopNode::match_incr_with_optional_truncation(in, 3011 &trunc1, &trunc2, &ttype, T_INT); 3012 if (add && add->in(1) == phi) { 3013 add2 = add->in(2); 3014 break; 3015 } 3016 } 3017 } else { 3018 // (If (Bool (CmpX addtrunc:(Optional-trunc((AddI (Phi ...addtrunc...) add2)) ))) 3019 Node* addtrunc = cmp1; 3020 Node* add = CountedLoopNode::match_incr_with_optional_truncation(addtrunc, 3021 &trunc1, &trunc2, &ttype, T_INT); 3022 if (add && add->in(1)->is_Phi()) { 3023 Node* phi = add->in(1); 3024 for (uint i = 1; i < phi->req(); i++) { 3025 if (phi->in(i) == addtrunc) { 3026 add2 = add->in(2); 3027 break; 3028 } 3029 } 3030 } 3031 } 3032 if (add2 != nullptr) { 3033 const TypeInt* add2t = _igvn.type(add2)->is_int(); 3034 if (add2t->is_con()) { 3035 return add2t->get_con(); 3036 } 3037 } 3038 return 0; 3039 } 3040 3041 3042 //---------------------- stay_in_loop ------------------------------------- 3043 // Return the (unique) control output node that's in the loop (if it exists.) 3044 Node* PhaseIdealLoop::stay_in_loop( Node* n, IdealLoopTree *loop) { 3045 Node* unique = nullptr; 3046 if (!n) return nullptr; 3047 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3048 Node* use = n->fast_out(i); 3049 if (!has_ctrl(use) && loop->is_member(get_loop(use))) { 3050 if (unique != nullptr) { 3051 return nullptr; 3052 } 3053 unique = use; 3054 } 3055 } 3056 return unique; 3057 } 3058 3059 //------------------------------ register_node ------------------------------------- 3060 // Utility to register node "n" with PhaseIdealLoop 3061 void PhaseIdealLoop::register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth) { 3062 _igvn.register_new_node_with_optimizer(n); 3063 loop->_body.push(n); 3064 if (n->is_CFG()) { 3065 set_loop(n, loop); 3066 set_idom(n, pred, ddepth); 3067 } else { 3068 set_ctrl(n, pred); 3069 } 3070 } 3071 3072 //------------------------------ proj_clone ------------------------------------- 3073 // Utility to create an if-projection 3074 ProjNode* PhaseIdealLoop::proj_clone(ProjNode* p, IfNode* iff) { 3075 ProjNode* c = p->clone()->as_Proj(); 3076 c->set_req(0, iff); 3077 return c; 3078 } 3079 3080 //------------------------------ short_circuit_if ------------------------------------- 3081 // Force the iff control output to be the live_proj 3082 Node* PhaseIdealLoop::short_circuit_if(IfNode* iff, ProjNode* live_proj) { 3083 guarantee(live_proj != nullptr, "null projection"); 3084 int proj_con = live_proj->_con; 3085 assert(proj_con == 0 || proj_con == 1, "false or true projection"); 3086 Node *con = _igvn.intcon(proj_con); 3087 set_ctrl(con, C->root()); 3088 if (iff) { 3089 iff->set_req(1, con); 3090 } 3091 return con; 3092 } 3093 3094 //------------------------------ insert_if_before_proj ------------------------------------- 3095 // Insert a new if before an if projection (* - new node) 3096 // 3097 // before 3098 // if(test) 3099 // / \ 3100 // v v 3101 // other-proj proj (arg) 3102 // 3103 // after 3104 // if(test) 3105 // / \ 3106 // / v 3107 // | * proj-clone 3108 // v | 3109 // other-proj v 3110 // * new_if(relop(cmp[IU](left,right))) 3111 // / \ 3112 // v v 3113 // * new-proj proj 3114 // (returned) 3115 // 3116 ProjNode* PhaseIdealLoop::insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj) { 3117 IfNode* iff = proj->in(0)->as_If(); 3118 IdealLoopTree *loop = get_loop(proj); 3119 ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj(); 3120 uint ddepth = dom_depth(proj); 3121 3122 _igvn.rehash_node_delayed(iff); 3123 _igvn.rehash_node_delayed(proj); 3124 3125 proj->set_req(0, nullptr); // temporary disconnect 3126 ProjNode* proj2 = proj_clone(proj, iff); 3127 register_node(proj2, loop, iff, ddepth); 3128 3129 Node* cmp = Signed ? (Node*) new CmpINode(left, right) : (Node*) new CmpUNode(left, right); 3130 register_node(cmp, loop, proj2, ddepth); 3131 3132 BoolNode* bol = new BoolNode(cmp, relop); 3133 register_node(bol, loop, proj2, ddepth); 3134 3135 int opcode = iff->Opcode(); 3136 assert(opcode == Op_If || opcode == Op_RangeCheck, "unexpected opcode"); 3137 IfNode* new_if = IfNode::make_with_same_profile(iff, proj2, bol); 3138 register_node(new_if, loop, proj2, ddepth); 3139 3140 proj->set_req(0, new_if); // reattach 3141 set_idom(proj, new_if, ddepth); 3142 3143 ProjNode* new_exit = proj_clone(other_proj, new_if)->as_Proj(); 3144 guarantee(new_exit != nullptr, "null exit node"); 3145 register_node(new_exit, get_loop(other_proj), new_if, ddepth); 3146 3147 return new_exit; 3148 } 3149 3150 //------------------------------ insert_region_before_proj ------------------------------------- 3151 // Insert a region before an if projection (* - new node) 3152 // 3153 // before 3154 // if(test) 3155 // / | 3156 // v | 3157 // proj v 3158 // other-proj 3159 // 3160 // after 3161 // if(test) 3162 // / | 3163 // v | 3164 // * proj-clone v 3165 // | other-proj 3166 // v 3167 // * new-region 3168 // | 3169 // v 3170 // * dum_if 3171 // / \ 3172 // v \ 3173 // * dum-proj v 3174 // proj 3175 // 3176 RegionNode* PhaseIdealLoop::insert_region_before_proj(ProjNode* proj) { 3177 IfNode* iff = proj->in(0)->as_If(); 3178 IdealLoopTree *loop = get_loop(proj); 3179 ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj(); 3180 uint ddepth = dom_depth(proj); 3181 3182 _igvn.rehash_node_delayed(iff); 3183 _igvn.rehash_node_delayed(proj); 3184 3185 proj->set_req(0, nullptr); // temporary disconnect 3186 ProjNode* proj2 = proj_clone(proj, iff); 3187 register_node(proj2, loop, iff, ddepth); 3188 3189 RegionNode* reg = new RegionNode(2); 3190 reg->set_req(1, proj2); 3191 register_node(reg, loop, iff, ddepth); 3192 3193 IfNode* dum_if = new IfNode(reg, short_circuit_if(nullptr, proj), iff->_prob, iff->_fcnt); 3194 register_node(dum_if, loop, reg, ddepth); 3195 3196 proj->set_req(0, dum_if); // reattach 3197 set_idom(proj, dum_if, ddepth); 3198 3199 ProjNode* dum_proj = proj_clone(other_proj, dum_if); 3200 register_node(dum_proj, loop, dum_if, ddepth); 3201 3202 return reg; 3203 } 3204 3205 // Idea 3206 // ---- 3207 // Partial Peeling tries to rotate the loop in such a way that it can later be turned into a counted loop. Counted loops 3208 // require a signed loop exit test. When calling this method, we've only found a suitable unsigned test to partial peel 3209 // with. Therefore, we try to split off a signed loop exit test from the unsigned test such that it can be used as new 3210 // loop exit while keeping the unsigned test unchanged and preserving the same behavior as if we've used the unsigned 3211 // test alone instead: 3212 // 3213 // Before Partial Peeling: 3214 // Loop: 3215 // <peeled section> 3216 // Split off signed loop exit test 3217 // <-- CUT HERE --> 3218 // Unchanged unsigned loop exit test 3219 // <rest of unpeeled section> 3220 // goto Loop 3221 // 3222 // After Partial Peeling: 3223 // <cloned peeled section> 3224 // Cloned split off signed loop exit test 3225 // Loop: 3226 // Unchanged unsigned loop exit test 3227 // <rest of unpeeled section> 3228 // <peeled section> 3229 // Split off signed loop exit test 3230 // goto Loop 3231 // 3232 // Details 3233 // ------- 3234 // Before: 3235 // if (i <u limit) Unsigned loop exit condition 3236 // / | 3237 // v v 3238 // exit-proj stay-in-loop-proj 3239 // 3240 // Split off a signed loop exit test (i.e. with CmpI) from an unsigned loop exit test (i.e. with CmpU) and insert it 3241 // before the CmpU on the stay-in-loop path and keep both tests: 3242 // 3243 // if (i <u limit) Signed loop exit test 3244 // / | 3245 // / if (i <u limit) Unsigned loop exit test 3246 // / / | 3247 // v v v 3248 // exit-region stay-in-loop-proj 3249 // 3250 // Implementation 3251 // -------------- 3252 // We need to make sure that the new signed loop exit test is properly inserted into the graph such that the unsigned 3253 // loop exit test still dominates the same set of control nodes, the ctrl() relation from data nodes to both loop 3254 // exit tests is preserved, and their loop nesting is correct. 3255 // 3256 // To achieve that, we clone the unsigned loop exit test completely (leave it unchanged), insert the signed loop exit 3257 // test above it and kill the original unsigned loop exit test by setting it's condition to a constant 3258 // (i.e. stay-in-loop-const in graph below) such that IGVN can fold it later: 3259 // 3260 // if (stay-in-loop-const) Killed original unsigned loop exit test 3261 // / | 3262 // / v 3263 // / if (i < limit) Split off signed loop exit test 3264 // / / | 3265 // / / v 3266 // / / if (i <u limit) Cloned unsigned loop exit test 3267 // / / / | 3268 // v v v | 3269 // exit-region | 3270 // | | 3271 // dummy-if | 3272 // / | | 3273 // dead | | 3274 // v v 3275 // exit-proj stay-in-loop-proj 3276 // 3277 // Note: The dummy-if is inserted to create a region to merge the loop exits between the original to be killed unsigned 3278 // loop exit test and its exit projection while keeping the exit projection (also see insert_region_before_proj()). 3279 // 3280 // Requirements 3281 // ------------ 3282 // Note that we can only split off a signed loop exit test from the unsigned loop exit test when the behavior is exactly 3283 // the same as before with only a single unsigned test. This is only possible if certain requirements are met. 3284 // Otherwise, we need to bail out (see comments in the code below). 3285 IfNode* PhaseIdealLoop::insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree* loop) { 3286 const bool Signed = true; 3287 const bool Unsigned = false; 3288 3289 BoolNode* bol = if_cmpu->in(1)->as_Bool(); 3290 if (bol->_test._test != BoolTest::lt) { 3291 return nullptr; 3292 } 3293 CmpNode* cmpu = bol->in(1)->as_Cmp(); 3294 assert(cmpu->Opcode() == Op_CmpU, "must be unsigned comparison"); 3295 3296 int stride = stride_of_possible_iv(if_cmpu); 3297 if (stride == 0) { 3298 return nullptr; 3299 } 3300 3301 Node* lp_proj = stay_in_loop(if_cmpu, loop); 3302 guarantee(lp_proj != nullptr, "null loop node"); 3303 3304 ProjNode* lp_continue = lp_proj->as_Proj(); 3305 ProjNode* lp_exit = if_cmpu->proj_out(!lp_continue->is_IfTrue())->as_Proj(); 3306 if (!lp_exit->is_IfFalse()) { 3307 // The loop exit condition is (i <u limit) ==> (i >= 0 && i < limit). 3308 // We therefore can't add a single exit condition. 3309 return nullptr; 3310 } 3311 // The unsigned loop exit condition is 3312 // !(i <u limit) 3313 // = i >=u limit 3314 // 3315 // First, we note that for any x for which 3316 // 0 <= x <= INT_MAX 3317 // we can convert x to an unsigned int and still get the same guarantee: 3318 // 0 <= (uint) x <= INT_MAX = (uint) INT_MAX 3319 // 0 <=u (uint) x <=u INT_MAX = (uint) INT_MAX (LEMMA) 3320 // 3321 // With that in mind, if 3322 // limit >= 0 (COND) 3323 // then the unsigned loop exit condition 3324 // i >=u limit (ULE) 3325 // is equivalent to 3326 // i < 0 || i >= limit (SLE-full) 3327 // because either i is negative and therefore always greater than MAX_INT when converting to unsigned 3328 // (uint) i >=u MAX_INT >= limit >= 0 3329 // or otherwise 3330 // i >= limit >= 0 3331 // holds due to (LEMMA). 3332 // 3333 // For completeness, a counterexample with limit < 0: 3334 // Assume i = -3 and limit = -2: 3335 // i < 0 3336 // -2 < 0 3337 // is true and thus also "i < 0 || i >= limit". But 3338 // i >=u limit 3339 // -3 >=u -2 3340 // is false. 3341 Node* limit = cmpu->in(2); 3342 const TypeInt* type_limit = _igvn.type(limit)->is_int(); 3343 if (type_limit->_lo < 0) { 3344 return nullptr; 3345 } 3346 3347 // We prove below that we can extract a single signed loop exit condition from (SLE-full), depending on the stride: 3348 // stride < 0: 3349 // i < 0 (SLE = SLE-negative) 3350 // stride > 0: 3351 // i >= limit (SLE = SLE-positive) 3352 // such that we have the following graph before Partial Peeling with stride > 0 (similar for stride < 0): 3353 // 3354 // Loop: 3355 // <peeled section> 3356 // i >= limit (SLE-positive) 3357 // <-- CUT HERE --> 3358 // i >=u limit (ULE) 3359 // <rest of unpeeled section> 3360 // goto Loop 3361 // 3362 // We exit the loop if: 3363 // (SLE) is true OR (ULE) is true 3364 // However, if (SLE) is true then (ULE) also needs to be true to ensure the exact same behavior. Otherwise, we wrongly 3365 // exit a loop that should not have been exited if we did not apply Partial Peeling. More formally, we need to ensure: 3366 // (SLE) IMPLIES (ULE) 3367 // This indeed holds when (COND) is given: 3368 // - stride > 0: 3369 // i >= limit // (SLE = SLE-positive) 3370 // i >= limit >= 0 // (COND) 3371 // i >=u limit >= 0 // (LEMMA) 3372 // which is the unsigned loop exit condition (ULE). 3373 // - stride < 0: 3374 // i < 0 // (SLE = SLE-negative) 3375 // (uint) i >u MAX_INT // (NEG) all negative values are greater than MAX_INT when converted to unsigned 3376 // MAX_INT >= limit >= 0 // (COND) 3377 // MAX_INT >=u limit >= 0 // (LEMMA) 3378 // and thus from (NEG) and (LEMMA): 3379 // i >=u limit 3380 // which is the unsigned loop exit condition (ULE). 3381 // 3382 // 3383 // After Partial Peeling, we have the following structure for stride > 0 (similar for stride < 0): 3384 // <cloned peeled section> 3385 // i >= limit (SLE-positive) 3386 // Loop: 3387 // i >=u limit (ULE) 3388 // <rest of unpeeled section> 3389 // <peeled section> 3390 // i >= limit (SLE-positive) 3391 // goto Loop 3392 Node* rhs_cmpi; 3393 if (stride > 0) { 3394 rhs_cmpi = limit; // For i >= limit 3395 } else { 3396 rhs_cmpi = _igvn.makecon(TypeInt::ZERO); // For i < 0 3397 set_ctrl(rhs_cmpi, C->root()); 3398 } 3399 // Create a new region on the exit path 3400 RegionNode* reg = insert_region_before_proj(lp_exit); 3401 guarantee(reg != nullptr, "null region node"); 3402 3403 // Clone the if-cmpu-true-false using a signed compare 3404 BoolTest::mask rel_i = stride > 0 ? bol->_test._test : BoolTest::ge; 3405 ProjNode* cmpi_exit = insert_if_before_proj(cmpu->in(1), Signed, rel_i, rhs_cmpi, lp_continue); 3406 reg->add_req(cmpi_exit); 3407 3408 // Clone the if-cmpu-true-false 3409 BoolTest::mask rel_u = bol->_test._test; 3410 ProjNode* cmpu_exit = insert_if_before_proj(cmpu->in(1), Unsigned, rel_u, cmpu->in(2), lp_continue); 3411 reg->add_req(cmpu_exit); 3412 3413 // Force original if to stay in loop. 3414 short_circuit_if(if_cmpu, lp_continue); 3415 3416 return cmpi_exit->in(0)->as_If(); 3417 } 3418 3419 //------------------------------ remove_cmpi_loop_exit ------------------------------------- 3420 // Remove a previously inserted signed compare loop exit. 3421 void PhaseIdealLoop::remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop) { 3422 Node* lp_proj = stay_in_loop(if_cmp, loop); 3423 assert(if_cmp->in(1)->in(1)->Opcode() == Op_CmpI && 3424 stay_in_loop(lp_proj, loop)->is_If() && 3425 stay_in_loop(lp_proj, loop)->in(1)->in(1)->Opcode() == Op_CmpU, "inserted cmpi before cmpu"); 3426 Node *con = _igvn.makecon(lp_proj->is_IfTrue() ? TypeInt::ONE : TypeInt::ZERO); 3427 set_ctrl(con, C->root()); 3428 if_cmp->set_req(1, con); 3429 } 3430 3431 //------------------------------ scheduled_nodelist ------------------------------------- 3432 // Create a post order schedule of nodes that are in the 3433 // "member" set. The list is returned in "sched". 3434 // The first node in "sched" is the loop head, followed by 3435 // nodes which have no inputs in the "member" set, and then 3436 // followed by the nodes that have an immediate input dependence 3437 // on a node in "sched". 3438 void PhaseIdealLoop::scheduled_nodelist( IdealLoopTree *loop, VectorSet& member, Node_List &sched ) { 3439 3440 assert(member.test(loop->_head->_idx), "loop head must be in member set"); 3441 VectorSet visited; 3442 Node_Stack nstack(loop->_body.size()); 3443 3444 Node* n = loop->_head; // top of stack is cached in "n" 3445 uint idx = 0; 3446 visited.set(n->_idx); 3447 3448 // Initially push all with no inputs from within member set 3449 for(uint i = 0; i < loop->_body.size(); i++ ) { 3450 Node *elt = loop->_body.at(i); 3451 if (member.test(elt->_idx)) { 3452 bool found = false; 3453 for (uint j = 0; j < elt->req(); j++) { 3454 Node* def = elt->in(j); 3455 if (def && member.test(def->_idx) && def != elt) { 3456 found = true; 3457 break; 3458 } 3459 } 3460 if (!found && elt != loop->_head) { 3461 nstack.push(n, idx); 3462 n = elt; 3463 assert(!visited.test(n->_idx), "not seen yet"); 3464 visited.set(n->_idx); 3465 } 3466 } 3467 } 3468 3469 // traverse out's that are in the member set 3470 while (true) { 3471 if (idx < n->outcnt()) { 3472 Node* use = n->raw_out(idx); 3473 idx++; 3474 if (!visited.test_set(use->_idx)) { 3475 if (member.test(use->_idx)) { 3476 nstack.push(n, idx); 3477 n = use; 3478 idx = 0; 3479 } 3480 } 3481 } else { 3482 // All outputs processed 3483 sched.push(n); 3484 if (nstack.is_empty()) break; 3485 n = nstack.node(); 3486 idx = nstack.index(); 3487 nstack.pop(); 3488 } 3489 } 3490 } 3491 3492 3493 //------------------------------ has_use_in_set ------------------------------------- 3494 // Has a use in the vector set 3495 bool PhaseIdealLoop::has_use_in_set( Node* n, VectorSet& vset ) { 3496 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 3497 Node* use = n->fast_out(j); 3498 if (vset.test(use->_idx)) { 3499 return true; 3500 } 3501 } 3502 return false; 3503 } 3504 3505 3506 //------------------------------ has_use_internal_to_set ------------------------------------- 3507 // Has use internal to the vector set (ie. not in a phi at the loop head) 3508 bool PhaseIdealLoop::has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ) { 3509 Node* head = loop->_head; 3510 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 3511 Node* use = n->fast_out(j); 3512 if (vset.test(use->_idx) && !(use->is_Phi() && use->in(0) == head)) { 3513 return true; 3514 } 3515 } 3516 return false; 3517 } 3518 3519 3520 //------------------------------ clone_for_use_outside_loop ------------------------------------- 3521 // clone "n" for uses that are outside of loop 3522 int PhaseIdealLoop::clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ) { 3523 int cloned = 0; 3524 assert(worklist.size() == 0, "should be empty"); 3525 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 3526 Node* use = n->fast_out(j); 3527 if( !loop->is_member(get_loop(has_ctrl(use) ? get_ctrl(use) : use)) ) { 3528 worklist.push(use); 3529 } 3530 } 3531 3532 if (C->check_node_count(worklist.size() + NodeLimitFudgeFactor, 3533 "Too many clones required in clone_for_use_outside_loop in partial peeling")) { 3534 return -1; 3535 } 3536 3537 while( worklist.size() ) { 3538 Node *use = worklist.pop(); 3539 if (!has_node(use) || use->in(0) == C->top()) continue; 3540 uint j; 3541 for (j = 0; j < use->req(); j++) { 3542 if (use->in(j) == n) break; 3543 } 3544 assert(j < use->req(), "must be there"); 3545 3546 // clone "n" and insert it between the inputs of "n" and the use outside the loop 3547 Node* n_clone = n->clone(); 3548 _igvn.replace_input_of(use, j, n_clone); 3549 cloned++; 3550 Node* use_c; 3551 if (!use->is_Phi()) { 3552 use_c = has_ctrl(use) ? get_ctrl(use) : use->in(0); 3553 } else { 3554 // Use in a phi is considered a use in the associated predecessor block 3555 use_c = use->in(0)->in(j); 3556 } 3557 set_ctrl(n_clone, use_c); 3558 assert(!loop->is_member(get_loop(use_c)), "should be outside loop"); 3559 get_loop(use_c)->_body.push(n_clone); 3560 _igvn.register_new_node_with_optimizer(n_clone); 3561 #ifndef PRODUCT 3562 if (TracePartialPeeling) { 3563 tty->print_cr("loop exit cloning old: %d new: %d newbb: %d", n->_idx, n_clone->_idx, get_ctrl(n_clone)->_idx); 3564 } 3565 #endif 3566 } 3567 return cloned; 3568 } 3569 3570 3571 //------------------------------ clone_for_special_use_inside_loop ------------------------------------- 3572 // clone "n" for special uses that are in the not_peeled region. 3573 // If these def-uses occur in separate blocks, the code generator 3574 // marks the method as not compilable. For example, if a "BoolNode" 3575 // is in a different basic block than the "IfNode" that uses it, then 3576 // the compilation is aborted in the code generator. 3577 void PhaseIdealLoop::clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n, 3578 VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ) { 3579 if (n->is_Phi() || n->is_Load()) { 3580 return; 3581 } 3582 assert(worklist.size() == 0, "should be empty"); 3583 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 3584 Node* use = n->fast_out(j); 3585 if ( not_peel.test(use->_idx) && 3586 (use->is_If() || use->is_CMove() || use->is_Bool()) && 3587 use->in(1) == n) { 3588 worklist.push(use); 3589 } 3590 } 3591 if (worklist.size() > 0) { 3592 // clone "n" and insert it between inputs of "n" and the use 3593 Node* n_clone = n->clone(); 3594 loop->_body.push(n_clone); 3595 _igvn.register_new_node_with_optimizer(n_clone); 3596 set_ctrl(n_clone, get_ctrl(n)); 3597 sink_list.push(n_clone); 3598 not_peel.set(n_clone->_idx); 3599 #ifndef PRODUCT 3600 if (TracePartialPeeling) { 3601 tty->print_cr("special not_peeled cloning old: %d new: %d", n->_idx, n_clone->_idx); 3602 } 3603 #endif 3604 while( worklist.size() ) { 3605 Node *use = worklist.pop(); 3606 _igvn.rehash_node_delayed(use); 3607 for (uint j = 1; j < use->req(); j++) { 3608 if (use->in(j) == n) { 3609 use->set_req(j, n_clone); 3610 } 3611 } 3612 } 3613 } 3614 } 3615 3616 3617 //------------------------------ insert_phi_for_loop ------------------------------------- 3618 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist 3619 void PhaseIdealLoop::insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ) { 3620 Node *phi = PhiNode::make(lp, back_edge_val); 3621 phi->set_req(LoopNode::EntryControl, lp_entry_val); 3622 // Use existing phi if it already exists 3623 Node *hit = _igvn.hash_find_insert(phi); 3624 if( hit == nullptr ) { 3625 _igvn.register_new_node_with_optimizer(phi); 3626 set_ctrl(phi, lp); 3627 } else { 3628 // Remove the new phi from the graph and use the hit 3629 _igvn.remove_dead_node(phi); 3630 phi = hit; 3631 } 3632 _igvn.replace_input_of(use, idx, phi); 3633 } 3634 3635 #ifdef ASSERT 3636 //------------------------------ is_valid_loop_partition ------------------------------------- 3637 // Validate the loop partition sets: peel and not_peel 3638 bool PhaseIdealLoop::is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, 3639 VectorSet& not_peel ) { 3640 uint i; 3641 // Check that peel_list entries are in the peel set 3642 for (i = 0; i < peel_list.size(); i++) { 3643 if (!peel.test(peel_list.at(i)->_idx)) { 3644 return false; 3645 } 3646 } 3647 // Check at loop members are in one of peel set or not_peel set 3648 for (i = 0; i < loop->_body.size(); i++ ) { 3649 Node *def = loop->_body.at(i); 3650 uint di = def->_idx; 3651 // Check that peel set elements are in peel_list 3652 if (peel.test(di)) { 3653 if (not_peel.test(di)) { 3654 return false; 3655 } 3656 // Must be in peel_list also 3657 bool found = false; 3658 for (uint j = 0; j < peel_list.size(); j++) { 3659 if (peel_list.at(j)->_idx == di) { 3660 found = true; 3661 break; 3662 } 3663 } 3664 if (!found) { 3665 return false; 3666 } 3667 } else if (not_peel.test(di)) { 3668 if (peel.test(di)) { 3669 return false; 3670 } 3671 } else { 3672 return false; 3673 } 3674 } 3675 return true; 3676 } 3677 3678 //------------------------------ is_valid_clone_loop_exit_use ------------------------------------- 3679 // Ensure a use outside of loop is of the right form 3680 bool PhaseIdealLoop::is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx) { 3681 Node *use_c = has_ctrl(use) ? get_ctrl(use) : use; 3682 return (use->is_Phi() && 3683 use_c->is_Region() && use_c->req() == 3 && 3684 (use_c->in(exit_idx)->Opcode() == Op_IfTrue || 3685 use_c->in(exit_idx)->Opcode() == Op_IfFalse || 3686 use_c->in(exit_idx)->Opcode() == Op_JumpProj) && 3687 loop->is_member( get_loop( use_c->in(exit_idx)->in(0) ) ) ); 3688 } 3689 3690 //------------------------------ is_valid_clone_loop_form ------------------------------------- 3691 // Ensure that all uses outside of loop are of the right form 3692 bool PhaseIdealLoop::is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list, 3693 uint orig_exit_idx, uint clone_exit_idx) { 3694 uint len = peel_list.size(); 3695 for (uint i = 0; i < len; i++) { 3696 Node *def = peel_list.at(i); 3697 3698 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { 3699 Node *use = def->fast_out(j); 3700 Node *use_c = has_ctrl(use) ? get_ctrl(use) : use; 3701 if (!loop->is_member(get_loop(use_c))) { 3702 // use is not in the loop, check for correct structure 3703 if (use->in(0) == def) { 3704 // Okay 3705 } else if (!is_valid_clone_loop_exit_use(loop, use, orig_exit_idx)) { 3706 return false; 3707 } 3708 } 3709 } 3710 } 3711 return true; 3712 } 3713 #endif 3714 3715 //------------------------------ partial_peel ------------------------------------- 3716 // Partially peel (aka loop rotation) the top portion of a loop (called 3717 // the peel section below) by cloning it and placing one copy just before 3718 // the new loop head and the other copy at the bottom of the new loop. 3719 // 3720 // before after where it came from 3721 // 3722 // stmt1 stmt1 3723 // loop: stmt2 clone 3724 // stmt2 if condA goto exitA clone 3725 // if condA goto exitA new_loop: new 3726 // stmt3 stmt3 clone 3727 // if !condB goto loop if condB goto exitB clone 3728 // exitB: stmt2 orig 3729 // stmt4 if !condA goto new_loop orig 3730 // exitA: goto exitA 3731 // exitB: 3732 // stmt4 3733 // exitA: 3734 // 3735 // Step 1: find the cut point: an exit test on probable 3736 // induction variable. 3737 // Step 2: schedule (with cloning) operations in the peel 3738 // section that can be executed after the cut into 3739 // the section that is not peeled. This may need 3740 // to clone operations into exit blocks. For 3741 // instance, a reference to A[i] in the not-peel 3742 // section and a reference to B[i] in an exit block 3743 // may cause a left-shift of i by 2 to be placed 3744 // in the peel block. This step will clone the left 3745 // shift into the exit block and sink the left shift 3746 // from the peel to the not-peel section. 3747 // Step 3: clone the loop, retarget the control, and insert 3748 // phis for values that are live across the new loop 3749 // head. This is very dependent on the graph structure 3750 // from clone_loop. It creates region nodes for 3751 // exit control and associated phi nodes for values 3752 // flow out of the loop through that exit. The region 3753 // node is dominated by the clone's control projection. 3754 // So the clone's peel section is placed before the 3755 // new loop head, and the clone's not-peel section is 3756 // forms the top part of the new loop. The original 3757 // peel section forms the tail of the new loop. 3758 // Step 4: update the dominator tree and recompute the 3759 // dominator depth. 3760 // 3761 // orig 3762 // 3763 // stmt1 3764 // | 3765 // v 3766 // predicates 3767 // | 3768 // v 3769 // loop<----+ 3770 // | | 3771 // stmt2 | 3772 // | | 3773 // v | 3774 // ifA | 3775 // / | | 3776 // v v | 3777 // false true ^ <-- last_peel 3778 // / | | 3779 // / ===|==cut | 3780 // / stmt3 | <-- first_not_peel 3781 // / | | 3782 // | v | 3783 // v ifB | 3784 // exitA: / \ | 3785 // / \ | 3786 // v v | 3787 // false true | 3788 // / \ | 3789 // / ----+ 3790 // | 3791 // v 3792 // exitB: 3793 // stmt4 3794 // 3795 // 3796 // after clone loop 3797 // 3798 // stmt1 3799 // | 3800 // v 3801 // predicates 3802 // / \ 3803 // clone / \ orig 3804 // / \ 3805 // / \ 3806 // v v 3807 // +---->loop loop<----+ 3808 // | | | | 3809 // | stmt2 stmt2 | 3810 // | | | | 3811 // | v v | 3812 // | ifA ifA | 3813 // | | \ / | | 3814 // | v v v v | 3815 // ^ true false false true ^ <-- last_peel 3816 // | | ^ \ / | | 3817 // | cut==|== \ \ / ===|==cut | 3818 // | stmt3 \ \ / stmt3 | <-- first_not_peel 3819 // | | dom | | | | 3820 // | v \ 1v v2 v | 3821 // | ifB regionA ifB | 3822 // | / \ | / \ | 3823 // | / \ v / \ | 3824 // | v v exitA: v v | 3825 // | true false false true | 3826 // | / ^ \ / \ | 3827 // +---- \ \ / ----+ 3828 // dom \ / 3829 // \ 1v v2 3830 // regionB 3831 // | 3832 // v 3833 // exitB: 3834 // stmt4 3835 // 3836 // 3837 // after partial peel 3838 // 3839 // stmt1 3840 // | 3841 // v 3842 // predicates 3843 // / 3844 // clone / orig 3845 // / TOP 3846 // / \ 3847 // v v 3848 // TOP->loop loop----+ 3849 // | | | 3850 // stmt2 stmt2 | 3851 // | | | 3852 // v v | 3853 // ifA ifA | 3854 // | \ / | | 3855 // v v v v | 3856 // true false false true | <-- last_peel 3857 // | ^ \ / +------|---+ 3858 // +->newloop \ \ / === ==cut | | 3859 // | stmt3 \ \ / TOP | | 3860 // | | dom | | stmt3 | | <-- first_not_peel 3861 // | v \ 1v v2 v | | 3862 // | ifB regionA ifB ^ v 3863 // | / \ | / \ | | 3864 // | / \ v / \ | | 3865 // | v v exitA: v v | | 3866 // | true false false true | | 3867 // | / ^ \ / \ | | 3868 // | | \ \ / v | | 3869 // | | dom \ / TOP | | 3870 // | | \ 1v v2 | | 3871 // ^ v regionB | | 3872 // | | | | | 3873 // | | v ^ v 3874 // | | exitB: | | 3875 // | | stmt4 | | 3876 // | +------------>-----------------+ | 3877 // | | 3878 // +-----------------<---------------------+ 3879 // 3880 // 3881 // final graph 3882 // 3883 // stmt1 3884 // | 3885 // v 3886 // predicates 3887 // | 3888 // v 3889 // stmt2 clone 3890 // | 3891 // v 3892 // ........> ifA clone 3893 // : / | 3894 // dom / | 3895 // : v v 3896 // : false true 3897 // : | | 3898 // : | v 3899 // : | newloop<-----+ 3900 // : | | | 3901 // : | stmt3 clone | 3902 // : | | | 3903 // : | v | 3904 // : | ifB | 3905 // : | / \ | 3906 // : | v v | 3907 // : | false true | 3908 // : | | | | 3909 // : | v stmt2 | 3910 // : | exitB: | | 3911 // : | stmt4 v | 3912 // : | ifA orig | 3913 // : | / \ | 3914 // : | / \ | 3915 // : | v v | 3916 // : | false true | 3917 // : | / \ | 3918 // : v v -----+ 3919 // RegionA 3920 // | 3921 // v 3922 // exitA 3923 // 3924 bool PhaseIdealLoop::partial_peel( IdealLoopTree *loop, Node_List &old_new ) { 3925 3926 assert(!loop->_head->is_CountedLoop(), "Non-counted loop only"); 3927 if (!loop->_head->is_Loop()) { 3928 return false; 3929 } 3930 LoopNode *head = loop->_head->as_Loop(); 3931 3932 if (head->is_partial_peel_loop() || head->partial_peel_has_failed()) { 3933 return false; 3934 } 3935 3936 // Check for complex exit control 3937 for (uint ii = 0; ii < loop->_body.size(); ii++) { 3938 Node *n = loop->_body.at(ii); 3939 int opc = n->Opcode(); 3940 if (n->is_Call() || 3941 opc == Op_Catch || 3942 opc == Op_CatchProj || 3943 opc == Op_Jump || 3944 opc == Op_JumpProj) { 3945 #ifndef PRODUCT 3946 if (TracePartialPeeling) { 3947 tty->print_cr("\nExit control too complex: lp: %d", head->_idx); 3948 } 3949 #endif 3950 return false; 3951 } 3952 } 3953 3954 int dd = dom_depth(head); 3955 3956 // Step 1: find cut point 3957 3958 // Walk up dominators to loop head looking for first loop exit 3959 // which is executed on every path thru loop. 3960 IfNode *peel_if = nullptr; 3961 IfNode *peel_if_cmpu = nullptr; 3962 3963 Node *iff = loop->tail(); 3964 while (iff != head) { 3965 if (iff->is_If()) { 3966 Node *ctrl = get_ctrl(iff->in(1)); 3967 if (ctrl->is_top()) return false; // Dead test on live IF. 3968 // If loop-varying exit-test, check for induction variable 3969 if (loop->is_member(get_loop(ctrl)) && 3970 loop->is_loop_exit(iff) && 3971 is_possible_iv_test(iff)) { 3972 Node* cmp = iff->in(1)->in(1); 3973 if (cmp->Opcode() == Op_CmpI) { 3974 peel_if = iff->as_If(); 3975 } else { 3976 assert(cmp->Opcode() == Op_CmpU, "must be CmpI or CmpU"); 3977 peel_if_cmpu = iff->as_If(); 3978 } 3979 } 3980 } 3981 iff = idom(iff); 3982 } 3983 3984 // Prefer signed compare over unsigned compare. 3985 IfNode* new_peel_if = nullptr; 3986 if (peel_if == nullptr) { 3987 if (!PartialPeelAtUnsignedTests || peel_if_cmpu == nullptr) { 3988 return false; // No peel point found 3989 } 3990 new_peel_if = insert_cmpi_loop_exit(peel_if_cmpu, loop); 3991 if (new_peel_if == nullptr) { 3992 return false; // No peel point found 3993 } 3994 peel_if = new_peel_if; 3995 } 3996 Node* last_peel = stay_in_loop(peel_if, loop); 3997 Node* first_not_peeled = stay_in_loop(last_peel, loop); 3998 if (first_not_peeled == nullptr || first_not_peeled == head) { 3999 return false; 4000 } 4001 4002 #ifndef PRODUCT 4003 if (TraceLoopOpts) { 4004 tty->print("PartialPeel "); 4005 loop->dump_head(); 4006 } 4007 4008 if (TracePartialPeeling) { 4009 tty->print_cr("before partial peel one iteration"); 4010 Node_List wl; 4011 Node* t = head->in(2); 4012 while (true) { 4013 wl.push(t); 4014 if (t == head) break; 4015 t = idom(t); 4016 } 4017 while (wl.size() > 0) { 4018 Node* tt = wl.pop(); 4019 tt->dump(); 4020 if (tt == last_peel) tty->print_cr("-- cut --"); 4021 } 4022 } 4023 #endif 4024 4025 C->print_method(PHASE_BEFORE_PARTIAL_PEELING, 4, head); 4026 4027 VectorSet peel; 4028 VectorSet not_peel; 4029 Node_List peel_list; 4030 Node_List worklist; 4031 Node_List sink_list; 4032 4033 uint estimate = loop->est_loop_clone_sz(1); 4034 if (exceeding_node_budget(estimate)) { 4035 return false; 4036 } 4037 4038 // Set of cfg nodes to peel are those that are executable from 4039 // the head through last_peel. 4040 assert(worklist.size() == 0, "should be empty"); 4041 worklist.push(head); 4042 peel.set(head->_idx); 4043 while (worklist.size() > 0) { 4044 Node *n = worklist.pop(); 4045 if (n != last_peel) { 4046 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 4047 Node* use = n->fast_out(j); 4048 if (use->is_CFG() && 4049 loop->is_member(get_loop(use)) && 4050 !peel.test_set(use->_idx)) { 4051 worklist.push(use); 4052 } 4053 } 4054 } 4055 } 4056 4057 // Set of non-cfg nodes to peel are those that are control 4058 // dependent on the cfg nodes. 4059 for (uint i = 0; i < loop->_body.size(); i++) { 4060 Node *n = loop->_body.at(i); 4061 Node *n_c = has_ctrl(n) ? get_ctrl(n) : n; 4062 if (peel.test(n_c->_idx)) { 4063 peel.set(n->_idx); 4064 } else { 4065 not_peel.set(n->_idx); 4066 } 4067 } 4068 4069 // Step 2: move operations from the peeled section down into the 4070 // not-peeled section 4071 4072 // Get a post order schedule of nodes in the peel region 4073 // Result in right-most operand. 4074 scheduled_nodelist(loop, peel, peel_list); 4075 4076 assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition"); 4077 4078 // For future check for too many new phis 4079 uint old_phi_cnt = 0; 4080 for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) { 4081 Node* use = head->fast_out(j); 4082 if (use->is_Phi()) old_phi_cnt++; 4083 } 4084 4085 #ifndef PRODUCT 4086 if (TracePartialPeeling) { 4087 tty->print_cr("\npeeled list"); 4088 } 4089 #endif 4090 4091 // Evacuate nodes in peel region into the not_peeled region if possible 4092 bool too_many_clones = false; 4093 uint new_phi_cnt = 0; 4094 uint cloned_for_outside_use = 0; 4095 for (uint i = 0; i < peel_list.size();) { 4096 Node* n = peel_list.at(i); 4097 #ifndef PRODUCT 4098 if (TracePartialPeeling) n->dump(); 4099 #endif 4100 bool incr = true; 4101 if (!n->is_CFG()) { 4102 if (has_use_in_set(n, not_peel)) { 4103 // If not used internal to the peeled region, 4104 // move "n" from peeled to not_peeled region. 4105 if (!has_use_internal_to_set(n, peel, loop)) { 4106 // if not pinned and not a load (which maybe anti-dependent on a store) 4107 // and not a CMove (Matcher expects only bool->cmove). 4108 if (n->in(0) == nullptr && !n->is_Load() && !n->is_CMove()) { 4109 int new_clones = clone_for_use_outside_loop(loop, n, worklist); 4110 if (C->failing()) return false; 4111 if (new_clones == -1) { 4112 too_many_clones = true; 4113 break; 4114 } 4115 cloned_for_outside_use += new_clones; 4116 sink_list.push(n); 4117 peel.remove(n->_idx); 4118 not_peel.set(n->_idx); 4119 peel_list.remove(i); 4120 incr = false; 4121 #ifndef PRODUCT 4122 if (TracePartialPeeling) { 4123 tty->print_cr("sink to not_peeled region: %d newbb: %d", 4124 n->_idx, get_ctrl(n)->_idx); 4125 } 4126 #endif 4127 } 4128 } else { 4129 // Otherwise check for special def-use cases that span 4130 // the peel/not_peel boundary such as bool->if 4131 clone_for_special_use_inside_loop(loop, n, not_peel, sink_list, worklist); 4132 new_phi_cnt++; 4133 } 4134 } 4135 } 4136 if (incr) i++; 4137 } 4138 4139 estimate += cloned_for_outside_use + new_phi_cnt; 4140 bool exceed_node_budget = !may_require_nodes(estimate); 4141 bool exceed_phi_limit = new_phi_cnt > old_phi_cnt + PartialPeelNewPhiDelta; 4142 4143 if (too_many_clones || exceed_node_budget || exceed_phi_limit) { 4144 #ifndef PRODUCT 4145 if (TracePartialPeeling && exceed_phi_limit) { 4146 tty->print_cr("\nToo many new phis: %d old %d new cmpi: %c", 4147 new_phi_cnt, old_phi_cnt, new_peel_if != nullptr?'T':'F'); 4148 } 4149 #endif 4150 if (new_peel_if != nullptr) { 4151 remove_cmpi_loop_exit(new_peel_if, loop); 4152 } 4153 // Inhibit more partial peeling on this loop 4154 assert(!head->is_partial_peel_loop(), "not partial peeled"); 4155 head->mark_partial_peel_failed(); 4156 if (cloned_for_outside_use > 0) { 4157 // Terminate this round of loop opts because 4158 // the graph outside this loop was changed. 4159 C->set_major_progress(); 4160 return true; 4161 } 4162 return false; 4163 } 4164 4165 // Step 3: clone loop, retarget control, and insert new phis 4166 4167 // Create new loop head for new phis and to hang 4168 // the nodes being moved (sinked) from the peel region. 4169 LoopNode* new_head = new LoopNode(last_peel, last_peel); 4170 new_head->set_unswitch_count(head->unswitch_count()); // Preserve 4171 _igvn.register_new_node_with_optimizer(new_head); 4172 assert(first_not_peeled->in(0) == last_peel, "last_peel <- first_not_peeled"); 4173 _igvn.replace_input_of(first_not_peeled, 0, new_head); 4174 set_loop(new_head, loop); 4175 loop->_body.push(new_head); 4176 not_peel.set(new_head->_idx); 4177 set_idom(new_head, last_peel, dom_depth(first_not_peeled)); 4178 set_idom(first_not_peeled, new_head, dom_depth(first_not_peeled)); 4179 4180 while (sink_list.size() > 0) { 4181 Node* n = sink_list.pop(); 4182 set_ctrl(n, new_head); 4183 } 4184 4185 assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition"); 4186 4187 clone_loop(loop, old_new, dd, IgnoreStripMined); 4188 4189 const uint clone_exit_idx = 1; 4190 const uint orig_exit_idx = 2; 4191 assert(is_valid_clone_loop_form(loop, peel_list, orig_exit_idx, clone_exit_idx), "bad clone loop"); 4192 4193 Node* head_clone = old_new[head->_idx]; 4194 LoopNode* new_head_clone = old_new[new_head->_idx]->as_Loop(); 4195 Node* orig_tail_clone = head_clone->in(2); 4196 4197 // Add phi if "def" node is in peel set and "use" is not 4198 4199 for (uint i = 0; i < peel_list.size(); i++) { 4200 Node *def = peel_list.at(i); 4201 if (!def->is_CFG()) { 4202 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { 4203 Node *use = def->fast_out(j); 4204 if (has_node(use) && use->in(0) != C->top() && 4205 (!peel.test(use->_idx) || 4206 (use->is_Phi() && use->in(0) == head)) ) { 4207 worklist.push(use); 4208 } 4209 } 4210 while( worklist.size() ) { 4211 Node *use = worklist.pop(); 4212 for (uint j = 1; j < use->req(); j++) { 4213 Node* n = use->in(j); 4214 if (n == def) { 4215 4216 // "def" is in peel set, "use" is not in peel set 4217 // or "use" is in the entry boundary (a phi) of the peel set 4218 4219 Node* use_c = has_ctrl(use) ? get_ctrl(use) : use; 4220 4221 if ( loop->is_member(get_loop( use_c )) ) { 4222 // use is in loop 4223 if (old_new[use->_idx] != nullptr) { // null for dead code 4224 Node* use_clone = old_new[use->_idx]; 4225 _igvn.replace_input_of(use, j, C->top()); 4226 insert_phi_for_loop( use_clone, j, old_new[def->_idx], def, new_head_clone ); 4227 } 4228 } else { 4229 assert(is_valid_clone_loop_exit_use(loop, use, orig_exit_idx), "clone loop format"); 4230 // use is not in the loop, check if the live range includes the cut 4231 Node* lp_if = use_c->in(orig_exit_idx)->in(0); 4232 if (not_peel.test(lp_if->_idx)) { 4233 assert(j == orig_exit_idx, "use from original loop"); 4234 insert_phi_for_loop( use, clone_exit_idx, old_new[def->_idx], def, new_head_clone ); 4235 } 4236 } 4237 } 4238 } 4239 } 4240 } 4241 } 4242 4243 // Step 3b: retarget control 4244 4245 // Redirect control to the new loop head if a cloned node in 4246 // the not_peeled region has control that points into the peeled region. 4247 // This necessary because the cloned peeled region will be outside 4248 // the loop. 4249 // from to 4250 // cloned-peeled <---+ 4251 // new_head_clone: | <--+ 4252 // cloned-not_peeled in(0) in(0) 4253 // orig-peeled 4254 4255 for (uint i = 0; i < loop->_body.size(); i++) { 4256 Node *n = loop->_body.at(i); 4257 if (!n->is_CFG() && n->in(0) != nullptr && 4258 not_peel.test(n->_idx) && peel.test(n->in(0)->_idx)) { 4259 Node* n_clone = old_new[n->_idx]; 4260 if (n_clone->depends_only_on_test()) { 4261 // Pin array access nodes: control is updated here to the loop head. If, after some transformations, the 4262 // backedge is removed, an array load could become dependent on a condition that's not a range check for that 4263 // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk 4264 // floating above its range check. 4265 Node* pinned_clone = n_clone->pin_array_access_node(); 4266 if (pinned_clone != nullptr) { 4267 register_new_node_with_ctrl_of(pinned_clone, n_clone); 4268 old_new.map(n->_idx, pinned_clone); 4269 _igvn.replace_node(n_clone, pinned_clone); 4270 n_clone = pinned_clone; 4271 } 4272 } 4273 _igvn.replace_input_of(n_clone, 0, new_head_clone); 4274 } 4275 } 4276 4277 // Backedge of the surviving new_head (the clone) is original last_peel 4278 _igvn.replace_input_of(new_head_clone, LoopNode::LoopBackControl, last_peel); 4279 4280 // Cut first node in original not_peel set 4281 _igvn.rehash_node_delayed(new_head); // Multiple edge updates: 4282 new_head->set_req(LoopNode::EntryControl, C->top()); // use rehash_node_delayed / set_req instead of 4283 new_head->set_req(LoopNode::LoopBackControl, C->top()); // multiple replace_input_of calls 4284 4285 // Copy head_clone back-branch info to original head 4286 // and remove original head's loop entry and 4287 // clone head's back-branch 4288 _igvn.rehash_node_delayed(head); // Multiple edge updates 4289 head->set_req(LoopNode::EntryControl, head_clone->in(LoopNode::LoopBackControl)); 4290 head->set_req(LoopNode::LoopBackControl, C->top()); 4291 _igvn.replace_input_of(head_clone, LoopNode::LoopBackControl, C->top()); 4292 4293 // Similarly modify the phis 4294 for (DUIterator_Fast kmax, k = head->fast_outs(kmax); k < kmax; k++) { 4295 Node* use = head->fast_out(k); 4296 if (use->is_Phi() && use->outcnt() > 0) { 4297 Node* use_clone = old_new[use->_idx]; 4298 _igvn.rehash_node_delayed(use); // Multiple edge updates 4299 use->set_req(LoopNode::EntryControl, use_clone->in(LoopNode::LoopBackControl)); 4300 use->set_req(LoopNode::LoopBackControl, C->top()); 4301 _igvn.replace_input_of(use_clone, LoopNode::LoopBackControl, C->top()); 4302 } 4303 } 4304 4305 // Step 4: update dominator tree and dominator depth 4306 4307 set_idom(head, orig_tail_clone, dd); 4308 recompute_dom_depth(); 4309 4310 // Inhibit more partial peeling on this loop 4311 new_head_clone->set_partial_peel_loop(); 4312 C->set_major_progress(); 4313 loop->record_for_igvn(); 4314 4315 #ifndef PRODUCT 4316 if (TracePartialPeeling) { 4317 tty->print_cr("\nafter partial peel one iteration"); 4318 Node_List wl; 4319 Node* t = last_peel; 4320 while (true) { 4321 wl.push(t); 4322 if (t == head_clone) break; 4323 t = idom(t); 4324 } 4325 while (wl.size() > 0) { 4326 Node* tt = wl.pop(); 4327 if (tt == head) tty->print_cr("orig head"); 4328 else if (tt == new_head_clone) tty->print_cr("new head"); 4329 else if (tt == head_clone) tty->print_cr("clone head"); 4330 tt->dump(); 4331 } 4332 } 4333 #endif 4334 4335 C->print_method(PHASE_AFTER_PARTIAL_PEELING, 4, new_head_clone); 4336 4337 return true; 4338 } 4339 4340 // Transform: 4341 // 4342 // loop<-----------------+ 4343 // | | 4344 // stmt1 stmt2 .. stmtn | 4345 // | | | | 4346 // \ | / | 4347 // v v v | 4348 // region | 4349 // | | 4350 // shared_stmt | 4351 // | | 4352 // v | 4353 // if | 4354 // / \ | 4355 // | -----------+ 4356 // v 4357 // 4358 // into: 4359 // 4360 // loop<-------------------+ 4361 // | | 4362 // v | 4363 // +->loop | 4364 // | | | 4365 // | stmt1 stmt2 .. stmtn | 4366 // | | | | | 4367 // | | \ / | 4368 // | | v v | 4369 // | | region1 | 4370 // | | | | 4371 // | shared_stmt shared_stmt | 4372 // | | | | 4373 // | v v | 4374 // | if if | 4375 // | /\ / \ | 4376 // +-- | | -------+ 4377 // \ / 4378 // v v 4379 // region2 4380 // 4381 // (region2 is shown to merge mirrored projections of the loop exit 4382 // ifs to make the diagram clearer but they really merge the same 4383 // projection) 4384 // 4385 // Conditions for this transformation to trigger: 4386 // - the path through stmt1 is frequent enough 4387 // - the inner loop will be turned into a counted loop after transformation 4388 bool PhaseIdealLoop::duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new) { 4389 if (!DuplicateBackedge) { 4390 return false; 4391 } 4392 assert(!loop->_head->is_CountedLoop() || StressDuplicateBackedge, "Non-counted loop only"); 4393 if (!loop->_head->is_Loop()) { 4394 return false; 4395 } 4396 4397 uint estimate = loop->est_loop_clone_sz(1); 4398 if (exceeding_node_budget(estimate)) { 4399 return false; 4400 } 4401 4402 LoopNode *head = loop->_head->as_Loop(); 4403 4404 Node* region = nullptr; 4405 IfNode* exit_test = nullptr; 4406 uint inner; 4407 float f; 4408 if (StressDuplicateBackedge) { 4409 if (head->is_strip_mined()) { 4410 return false; 4411 } 4412 Node* c = head->in(LoopNode::LoopBackControl); 4413 4414 while (c != head) { 4415 if (c->is_Region()) { 4416 region = c; 4417 } 4418 c = idom(c); 4419 } 4420 4421 if (region == nullptr) { 4422 return false; 4423 } 4424 4425 inner = 1; 4426 } else { 4427 // Is the shape of the loop that of a counted loop... 4428 Node* back_control = loop_exit_control(head, loop); 4429 if (back_control == nullptr) { 4430 return false; 4431 } 4432 4433 BoolTest::mask bt = BoolTest::illegal; 4434 float cl_prob = 0; 4435 Node* incr = nullptr; 4436 Node* limit = nullptr; 4437 Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob); 4438 if (cmp == nullptr || cmp->Opcode() != Op_CmpI) { 4439 return false; 4440 } 4441 4442 // With an extra phi for the candidate iv? 4443 // Or the region node is the loop head 4444 if (!incr->is_Phi() || incr->in(0) == head) { 4445 return false; 4446 } 4447 4448 PathFrequency pf(head, this); 4449 region = incr->in(0); 4450 4451 // Go over all paths for the extra phi's region and see if that 4452 // path is frequent enough and would match the expected iv shape 4453 // if the extra phi is removed 4454 inner = 0; 4455 for (uint i = 1; i < incr->req(); ++i) { 4456 Node* in = incr->in(i); 4457 Node* trunc1 = nullptr; 4458 Node* trunc2 = nullptr; 4459 const TypeInteger* iv_trunc_t = nullptr; 4460 Node* orig_in = in; 4461 if (!(in = CountedLoopNode::match_incr_with_optional_truncation(in, &trunc1, &trunc2, &iv_trunc_t, T_INT))) { 4462 continue; 4463 } 4464 assert(in->Opcode() == Op_AddI, "wrong increment code"); 4465 Node* xphi = nullptr; 4466 Node* stride = loop_iv_stride(in, loop, xphi); 4467 4468 if (stride == nullptr) { 4469 continue; 4470 } 4471 4472 PhiNode* phi = loop_iv_phi(xphi, nullptr, head, loop); 4473 if (phi == nullptr || 4474 (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) || 4475 (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) { 4476 return false; 4477 } 4478 4479 f = pf.to(region->in(i)); 4480 if (f > 0.5) { 4481 inner = i; 4482 break; 4483 } 4484 } 4485 4486 if (inner == 0) { 4487 return false; 4488 } 4489 4490 exit_test = back_control->in(0)->as_If(); 4491 } 4492 4493 if (idom(region)->is_Catch()) { 4494 return false; 4495 } 4496 4497 // Collect all control nodes that need to be cloned (shared_stmt in the diagram) 4498 Unique_Node_List wq; 4499 wq.push(head->in(LoopNode::LoopBackControl)); 4500 for (uint i = 0; i < wq.size(); i++) { 4501 Node* c = wq.at(i); 4502 assert(get_loop(c) == loop, "not in the right loop?"); 4503 if (c->is_Region()) { 4504 if (c != region) { 4505 for (uint j = 1; j < c->req(); ++j) { 4506 wq.push(c->in(j)); 4507 } 4508 } 4509 } else { 4510 wq.push(c->in(0)); 4511 } 4512 assert(!is_strict_dominator(c, region), "shouldn't go above region"); 4513 } 4514 4515 Node* region_dom = idom(region); 4516 4517 // Can't do the transformation if this would cause a membar pair to 4518 // be split 4519 for (uint i = 0; i < wq.size(); i++) { 4520 Node* c = wq.at(i); 4521 if (c->is_MemBar() && (c->as_MemBar()->trailing_store() || c->as_MemBar()->trailing_load_store())) { 4522 assert(c->as_MemBar()->leading_membar()->trailing_membar() == c, "bad membar pair"); 4523 if (!wq.member(c->as_MemBar()->leading_membar())) { 4524 return false; 4525 } 4526 } 4527 } 4528 4529 // Collect data nodes that need to be clones as well 4530 int dd = dom_depth(head); 4531 4532 for (uint i = 0; i < loop->_body.size(); ++i) { 4533 Node* n = loop->_body.at(i); 4534 if (has_ctrl(n)) { 4535 Node* c = get_ctrl(n); 4536 if (wq.member(c)) { 4537 wq.push(n); 4538 } 4539 } else { 4540 set_idom(n, idom(n), dd); 4541 } 4542 } 4543 4544 // clone shared_stmt 4545 clone_loop_body(wq, old_new, nullptr); 4546 4547 Node* region_clone = old_new[region->_idx]; 4548 region_clone->set_req(inner, C->top()); 4549 set_idom(region, region->in(inner), dd); 4550 4551 // Prepare the outer loop 4552 Node* outer_head = new LoopNode(head->in(LoopNode::EntryControl), old_new[head->in(LoopNode::LoopBackControl)->_idx]); 4553 register_control(outer_head, loop->_parent, outer_head->in(LoopNode::EntryControl)); 4554 _igvn.replace_input_of(head, LoopNode::EntryControl, outer_head); 4555 set_idom(head, outer_head, dd); 4556 4557 fix_body_edges(wq, loop, old_new, dd, loop->_parent, true); 4558 4559 // Make one of the shared_stmt copies only reachable from stmt1, the 4560 // other only from stmt2..stmtn. 4561 Node* dom = nullptr; 4562 for (uint i = 1; i < region->req(); ++i) { 4563 if (i != inner) { 4564 _igvn.replace_input_of(region, i, C->top()); 4565 } 4566 Node* in = region_clone->in(i); 4567 if (in->is_top()) { 4568 continue; 4569 } 4570 if (dom == nullptr) { 4571 dom = in; 4572 } else { 4573 dom = dom_lca(dom, in); 4574 } 4575 } 4576 4577 set_idom(region_clone, dom, dd); 4578 4579 // Set up the outer loop 4580 for (uint i = 0; i < head->outcnt(); i++) { 4581 Node* u = head->raw_out(i); 4582 if (u->is_Phi()) { 4583 Node* outer_phi = u->clone(); 4584 outer_phi->set_req(0, outer_head); 4585 Node* backedge = old_new[u->in(LoopNode::LoopBackControl)->_idx]; 4586 if (backedge == nullptr) { 4587 backedge = u->in(LoopNode::LoopBackControl); 4588 } 4589 outer_phi->set_req(LoopNode::LoopBackControl, backedge); 4590 register_new_node(outer_phi, outer_head); 4591 _igvn.replace_input_of(u, LoopNode::EntryControl, outer_phi); 4592 } 4593 } 4594 4595 // create control and data nodes for out of loop uses (including region2) 4596 Node_List worklist; 4597 uint new_counter = C->unique(); 4598 fix_ctrl_uses(wq, loop, old_new, ControlAroundStripMined, outer_head, nullptr, worklist); 4599 4600 Node_List *split_if_set = nullptr; 4601 Node_List *split_bool_set = nullptr; 4602 Node_List *split_cex_set = nullptr; 4603 fix_data_uses(wq, loop, ControlAroundStripMined, loop->skip_strip_mined(), new_counter, old_new, worklist, 4604 split_if_set, split_bool_set, split_cex_set); 4605 4606 finish_clone_loop(split_if_set, split_bool_set, split_cex_set); 4607 4608 if (exit_test != nullptr) { 4609 float cnt = exit_test->_fcnt; 4610 if (cnt != COUNT_UNKNOWN) { 4611 exit_test->_fcnt = cnt * f; 4612 old_new[exit_test->_idx]->as_If()->_fcnt = cnt * (1 - f); 4613 } 4614 } 4615 4616 C->set_major_progress(); 4617 4618 return true; 4619 } 4620 4621 // AutoVectorize the loop: replace scalar ops with vector ops. 4622 PhaseIdealLoop::AutoVectorizeStatus 4623 PhaseIdealLoop::auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared) { 4624 // Counted loop only 4625 if (!lpt->is_counted()) { 4626 return AutoVectorizeStatus::Impossible; 4627 } 4628 4629 // Main-loop only 4630 CountedLoopNode* cl = lpt->_head->as_CountedLoop(); 4631 if (!cl->is_main_loop()) { 4632 return AutoVectorizeStatus::Impossible; 4633 } 4634 4635 VLoop vloop(lpt, false); 4636 if (!vloop.check_preconditions()) { 4637 return AutoVectorizeStatus::TriedAndFailed; 4638 } 4639 4640 // Ensure the shared data is cleared before each use 4641 vshared.clear(); 4642 4643 const VLoopAnalyzer vloop_analyzer(vloop, vshared); 4644 if (!vloop_analyzer.success()) { 4645 return AutoVectorizeStatus::TriedAndFailed; 4646 } 4647 4648 SuperWord sw(vloop_analyzer); 4649 if (!sw.transform_loop()) { 4650 return AutoVectorizeStatus::TriedAndFailed; 4651 } 4652 4653 return AutoVectorizeStatus::Success; 4654 } 4655 4656 // Returns true if the Reduction node is unordered. 4657 static bool is_unordered_reduction(Node* n) { 4658 return n->is_Reduction() && !n->as_Reduction()->requires_strict_order(); 4659 } 4660 4661 // Having ReductionNodes in the loop is expensive. They need to recursively 4662 // fold together the vector values, for every vectorized loop iteration. If 4663 // we encounter the following pattern, we can vector accumulate the values 4664 // inside the loop, and only have a single UnorderedReduction after the loop. 4665 // 4666 // Note: UnorderedReduction represents a ReductionNode which does not require 4667 // calculating in strict order. 4668 // 4669 // CountedLoop init 4670 // | | 4671 // +------+ | +-----------------------+ 4672 // | | | | 4673 // PhiNode (s) | 4674 // | | 4675 // | Vector | 4676 // | | | 4677 // UnorderedReduction (first_ur) | 4678 // | | 4679 // ... Vector | 4680 // | | | 4681 // UnorderedReduction (last_ur) | 4682 // | | 4683 // +---------------------+ 4684 // 4685 // We patch the graph to look like this: 4686 // 4687 // CountedLoop identity_vector 4688 // | | 4689 // +-------+ | +---------------+ 4690 // | | | | 4691 // PhiNode (v) | 4692 // | | 4693 // | Vector | 4694 // | | | 4695 // VectorAccumulator | 4696 // | | 4697 // ... Vector | 4698 // | | | 4699 // init VectorAccumulator | 4700 // | | | | 4701 // UnorderedReduction +-----------+ 4702 // 4703 // We turned the scalar (s) Phi into a vectorized one (v). In the loop, we 4704 // use vector_accumulators, which do the same reductions, but only element 4705 // wise. This is a single operation per vector_accumulator, rather than many 4706 // for a UnorderedReduction. We can then reduce the last vector_accumulator 4707 // after the loop, and also reduce the init value into it. 4708 // 4709 // We can not do this with all reductions. Some reductions do not allow the 4710 // reordering of operations (for example float addition/multiplication require 4711 // strict order). 4712 void PhaseIdealLoop::move_unordered_reduction_out_of_loop(IdealLoopTree* loop) { 4713 assert(!C->major_progress() && loop->is_counted() && loop->is_innermost(), "sanity"); 4714 4715 // Find all Phi nodes with an unordered Reduction on backedge. 4716 CountedLoopNode* cl = loop->_head->as_CountedLoop(); 4717 for (DUIterator_Fast jmax, j = cl->fast_outs(jmax); j < jmax; j++) { 4718 Node* phi = cl->fast_out(j); 4719 // We have a phi with a single use, and an unordered Reduction on the backedge. 4720 if (!phi->is_Phi() || phi->outcnt() != 1 || !is_unordered_reduction(phi->in(2))) { 4721 continue; 4722 } 4723 4724 ReductionNode* last_ur = phi->in(2)->as_Reduction(); 4725 assert(!last_ur->requires_strict_order(), "must be"); 4726 4727 // Determine types 4728 const TypeVect* vec_t = last_ur->vect_type(); 4729 uint vector_length = vec_t->length(); 4730 BasicType bt = vec_t->element_basic_type(); 4731 4732 // Convert opcode from vector-reduction -> scalar -> normal-vector-op 4733 const int sopc = VectorNode::scalar_opcode(last_ur->Opcode(), bt); 4734 const int vopc = VectorNode::opcode(sopc, bt); 4735 if (!Matcher::match_rule_supported_vector(vopc, vector_length, bt)) { 4736 DEBUG_ONLY( last_ur->dump(); ) 4737 assert(false, "do not have normal vector op for this reduction"); 4738 continue; // not implemented -> fails 4739 } 4740 4741 // Traverse up the chain of unordered Reductions, checking that it loops back to 4742 // the phi. Check that all unordered Reductions only have a single use, except for 4743 // the last (last_ur), which only has phi as a use in the loop, and all other uses 4744 // are outside the loop. 4745 ReductionNode* current = last_ur; 4746 ReductionNode* first_ur = nullptr; 4747 while (true) { 4748 assert(!current->requires_strict_order(), "sanity"); 4749 4750 // Expect no ctrl and a vector_input from within the loop. 4751 Node* ctrl = current->in(0); 4752 Node* vector_input = current->in(2); 4753 if (ctrl != nullptr || get_ctrl(vector_input) != cl) { 4754 DEBUG_ONLY( current->dump(1); ) 4755 assert(false, "reduction has ctrl or bad vector_input"); 4756 break; // Chain traversal fails. 4757 } 4758 4759 assert(current->vect_type() != nullptr, "must have vector type"); 4760 if (current->vect_type() != last_ur->vect_type()) { 4761 // Reductions do not have the same vector type (length and element type). 4762 break; // Chain traversal fails. 4763 } 4764 4765 // Expect single use of an unordered Reduction, except for last_ur. 4766 if (current == last_ur) { 4767 // Expect all uses to be outside the loop, except phi. 4768 for (DUIterator_Fast kmax, k = current->fast_outs(kmax); k < kmax; k++) { 4769 Node* use = current->fast_out(k); 4770 if (use != phi && ctrl_or_self(use) == cl) { 4771 DEBUG_ONLY( current->dump(-1); ) 4772 assert(false, "reduction has use inside loop"); 4773 // Should not be allowed by SuperWord::mark_reductions 4774 return; // bail out of optimization 4775 } 4776 } 4777 } else { 4778 if (current->outcnt() != 1) { 4779 break; // Chain traversal fails. 4780 } 4781 } 4782 4783 // Expect another unordered Reduction or phi as the scalar input. 4784 Node* scalar_input = current->in(1); 4785 if (is_unordered_reduction(scalar_input) && 4786 scalar_input->Opcode() == current->Opcode()) { 4787 // Move up the unordered Reduction chain. 4788 current = scalar_input->as_Reduction(); 4789 assert(!current->requires_strict_order(), "must be"); 4790 } else if (scalar_input == phi) { 4791 // Chain terminates at phi. 4792 first_ur = current; 4793 current = nullptr; 4794 break; // Success. 4795 } else { 4796 // scalar_input is neither phi nor a matching reduction 4797 // Can for example be scalar reduction when we have 4798 // partial vectorization. 4799 break; // Chain traversal fails. 4800 } 4801 } 4802 if (current != nullptr) { 4803 // Chain traversal was not successful. 4804 continue; 4805 } 4806 assert(first_ur != nullptr, "must have successfully terminated chain traversal"); 4807 4808 Node* identity_scalar = ReductionNode::make_identity_con_scalar(_igvn, sopc, bt); 4809 set_ctrl(identity_scalar, C->root()); 4810 VectorNode* identity_vector = VectorNode::scalar2vector(identity_scalar, vector_length, bt); 4811 register_new_node(identity_vector, C->root()); 4812 assert(vec_t == identity_vector->vect_type(), "matching vector type"); 4813 VectorNode::trace_new_vector(identity_vector, "Unordered Reduction"); 4814 4815 // Turn the scalar phi into a vector phi. 4816 _igvn.rehash_node_delayed(phi); 4817 Node* init = phi->in(1); // Remember init before replacing it. 4818 phi->set_req_X(1, identity_vector, &_igvn); 4819 phi->as_Type()->set_type(vec_t); 4820 _igvn.set_type(phi, vec_t); 4821 4822 // Traverse down the chain of unordered Reductions, and replace them with vector_accumulators. 4823 current = first_ur; 4824 while (true) { 4825 // Create vector_accumulator to replace current. 4826 Node* last_vector_accumulator = current->in(1); 4827 Node* vector_input = current->in(2); 4828 VectorNode* vector_accumulator = VectorNode::make(vopc, last_vector_accumulator, vector_input, vec_t); 4829 register_new_node(vector_accumulator, cl); 4830 _igvn.replace_node(current, vector_accumulator); 4831 VectorNode::trace_new_vector(vector_accumulator, "Unordered Reduction"); 4832 if (current == last_ur) { 4833 break; 4834 } 4835 current = vector_accumulator->unique_out()->as_Reduction(); 4836 assert(!current->requires_strict_order(), "must be"); 4837 } 4838 4839 // Create post-loop reduction. 4840 Node* last_accumulator = phi->in(2); 4841 Node* post_loop_reduction = ReductionNode::make(sopc, nullptr, init, last_accumulator, bt); 4842 4843 // Take over uses of last_accumulator that are not in the loop. 4844 for (DUIterator i = last_accumulator->outs(); last_accumulator->has_out(i); i++) { 4845 Node* use = last_accumulator->out(i); 4846 if (use != phi && use != post_loop_reduction) { 4847 assert(ctrl_or_self(use) != cl, "use must be outside loop"); 4848 use->replace_edge(last_accumulator, post_loop_reduction, &_igvn); 4849 --i; 4850 } 4851 } 4852 register_new_node(post_loop_reduction, get_late_ctrl(post_loop_reduction, cl)); 4853 VectorNode::trace_new_vector(post_loop_reduction, "Unordered Reduction"); 4854 4855 assert(last_accumulator->outcnt() == 2, "last_accumulator has 2 uses: phi and post_loop_reduction"); 4856 assert(post_loop_reduction->outcnt() > 0, "should have taken over all non loop uses of last_accumulator"); 4857 assert(phi->outcnt() == 1, "accumulator is the only use of phi"); 4858 } 4859 } 4860 4861 void DataNodeGraph::clone_data_nodes(Node* new_ctrl) { 4862 for (uint i = 0; i < _data_nodes.size(); i++) { 4863 clone(_data_nodes[i], new_ctrl); 4864 } 4865 } 4866 4867 // Clone the given node and set it up properly. Set 'new_ctrl' as ctrl. 4868 void DataNodeGraph::clone(Node* node, Node* new_ctrl) { 4869 Node* clone = node->clone(); 4870 _phase->igvn().register_new_node_with_optimizer(clone); 4871 _orig_to_new.put(node, clone); 4872 _phase->set_ctrl(clone, new_ctrl); 4873 if (node->is_CastII()) { 4874 clone->set_req(0, new_ctrl); 4875 } 4876 } 4877 4878 // Rewire the data inputs of all (unprocessed) cloned nodes, whose inputs are still pointing to the same inputs as their 4879 // corresponding orig nodes, to the newly cloned inputs to create a separate cloned graph. 4880 void DataNodeGraph::rewire_clones_to_cloned_inputs() { 4881 _orig_to_new.iterate_all([&](Node* node, Node* clone) { 4882 for (uint i = 1; i < node->req(); i++) { 4883 Node** cloned_input = _orig_to_new.get(node->in(i)); 4884 if (cloned_input != nullptr) { 4885 // Input was also cloned -> rewire clone to the cloned input. 4886 _phase->igvn().replace_input_of(clone, i, *cloned_input); 4887 } 4888 } 4889 }); 4890 } 4891 4892 // Clone all non-OpaqueLoop* nodes and apply the provided transformation strategy for OpaqueLoop* nodes. 4893 // Set 'new_ctrl' as ctrl for all cloned non-OpaqueLoop* nodes. 4894 void DataNodeGraph::clone_data_nodes_and_transform_opaque_loop_nodes( 4895 const TransformStrategyForOpaqueLoopNodes& transform_strategy, 4896 Node* new_ctrl) { 4897 for (uint i = 0; i < _data_nodes.size(); i++) { 4898 Node* data_node = _data_nodes[i]; 4899 if (data_node->is_Opaque1()) { 4900 transform_opaque_node(transform_strategy, data_node); 4901 } else { 4902 clone(data_node, new_ctrl); 4903 } 4904 } 4905 } 4906 4907 void DataNodeGraph::transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node) { 4908 Node* transformed_node; 4909 if (node->is_OpaqueLoopInit()) { 4910 transformed_node = transform_strategy.transform_opaque_init(node->as_OpaqueLoopInit()); 4911 } else { 4912 assert(node->is_OpaqueLoopStride(), "must be OpaqueLoopStrideNode"); 4913 transformed_node = transform_strategy.transform_opaque_stride(node->as_OpaqueLoopStride()); 4914 } 4915 // Add an orig->new mapping to correctly update the inputs of the copied graph in rewire_clones_to_cloned_inputs(). 4916 _orig_to_new.put(node, transformed_node); 4917 }