1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shared/c2/barrierSetC2.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/inlinetypenode.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/movenode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/opaquenode.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "opto/subtypenode.hpp"
  43 #include "opto/superword.hpp"
  44 #include "opto/vectornode.hpp"
  45 #include "utilities/macros.hpp"
  46 
  47 //=============================================================================
  48 //------------------------------split_thru_phi---------------------------------
  49 // Split Node 'n' through merge point if there is enough win.
  50 Node* PhaseIdealLoop::split_thru_phi(Node* n, Node* region, int policy) {
  51   if ((n->Opcode() == Op_ConvI2L && n->bottom_type() != TypeLong::LONG) ||
  52       (n->Opcode() == Op_ConvL2I && n->bottom_type() != TypeInt::INT)) {
  53     // ConvI2L/ConvL2I may have type information on it which is unsafe to push up
  54     // so disable this for now
  55     return nullptr;
  56   }
  57 
  58   // Splitting range check CastIIs through a loop induction Phi can
  59   // cause new Phis to be created that are left unrelated to the loop
  60   // induction Phi and prevent optimizations (vectorization)
  61   if (n->Opcode() == Op_CastII && region->is_CountedLoop() &&
  62       n->in(1) == region->as_CountedLoop()->phi()) {
  63     return nullptr;
  64   }
  65 
  66   // Inline types should not be split through Phis because they cannot be merged
  67   // through Phi nodes but each value input needs to be merged individually.
  68   if (n->is_InlineType()) {
  69     return nullptr;
  70   }
  71 
  72   if (cannot_split_division(n, region)) {
  73     return nullptr;
  74   }
  75 
  76   int wins = 0;
  77   assert(!n->is_CFG(), "");
  78   assert(region->is_Region(), "");
  79 
  80   const Type* type = n->bottom_type();
  81   const TypeOopPtr* t_oop = _igvn.type(n)->isa_oopptr();
  82   Node* phi;
  83   if (t_oop != nullptr && t_oop->is_known_instance_field()) {
  84     int iid    = t_oop->instance_id();
  85     int index  = C->get_alias_index(t_oop);
  86     int offset = t_oop->offset();
  87     phi = new PhiNode(region, type, nullptr, iid, index, offset);
  88   } else {
  89     phi = PhiNode::make_blank(region, n);
  90   }
  91   uint old_unique = C->unique();
  92   for (uint i = 1; i < region->req(); i++) {
  93     Node* x;
  94     Node* the_clone = nullptr;
  95     if (region->in(i) == C->top()) {
  96       x = C->top();             // Dead path?  Use a dead data op
  97     } else {
  98       x = n->clone();           // Else clone up the data op
  99       the_clone = x;            // Remember for possible deletion.
 100       // Alter data node to use pre-phi inputs
 101       if (n->in(0) == region)
 102         x->set_req( 0, region->in(i) );
 103       for (uint j = 1; j < n->req(); j++) {
 104         Node* in = n->in(j);
 105         if (in->is_Phi() && in->in(0) == region)
 106           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
 107       }
 108     }
 109     // Check for a 'win' on some paths
 110     const Type* t = x->Value(&_igvn);
 111 
 112     bool singleton = t->singleton();
 113 
 114     // A TOP singleton indicates that there are no possible values incoming
 115     // along a particular edge. In most cases, this is OK, and the Phi will
 116     // be eliminated later in an Ideal call. However, we can't allow this to
 117     // happen if the singleton occurs on loop entry, as the elimination of
 118     // the PhiNode may cause the resulting node to migrate back to a previous
 119     // loop iteration.
 120     if (singleton && t == Type::TOP) {
 121       // Is_Loop() == false does not confirm the absence of a loop (e.g., an
 122       // irreducible loop may not be indicated by an affirmative is_Loop());
 123       // therefore, the only top we can split thru a phi is on a backedge of
 124       // a loop.
 125       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
 126     }
 127 
 128     if (singleton) {
 129       wins++;
 130       x = makecon(t);
 131     } else {
 132       // We now call Identity to try to simplify the cloned node.
 133       // Note that some Identity methods call phase->type(this).
 134       // Make sure that the type array is big enough for
 135       // our new node, even though we may throw the node away.
 136       // (Note: This tweaking with igvn only works because x is a new node.)
 137       _igvn.set_type(x, t);
 138       // If x is a TypeNode, capture any more-precise type permanently into Node
 139       // otherwise it will be not updated during igvn->transform since
 140       // igvn->type(x) is set to x->Value() already.
 141       x->raise_bottom_type(t);
 142       Node* y = x->Identity(&_igvn);
 143       if (y != x) {
 144         wins++;
 145         x = y;
 146       } else {
 147         y = _igvn.hash_find(x);
 148         if (y == nullptr) {
 149           y = similar_subtype_check(x, region->in(i));
 150         }
 151         if (y) {
 152           wins++;
 153           x = y;
 154         } else {
 155           // Else x is a new node we are keeping
 156           // We do not need register_new_node_with_optimizer
 157           // because set_type has already been called.
 158           _igvn._worklist.push(x);
 159         }
 160       }
 161     }
 162 
 163     phi->set_req( i, x );
 164 
 165     if (the_clone == nullptr) {
 166       continue;
 167     }
 168 
 169     if (the_clone != x) {
 170       _igvn.remove_dead_node(the_clone);
 171     } else if (region->is_Loop() && i == LoopNode::LoopBackControl &&
 172                n->is_Load() && can_move_to_inner_loop(n, region->as_Loop(), x)) {
 173       // it is not a win if 'x' moved from an outer to an inner loop
 174       // this edge case can only happen for Load nodes
 175       wins = 0;
 176       break;
 177     }
 178   }
 179   // Too few wins?
 180   if (wins <= policy) {
 181     _igvn.remove_dead_node(phi);
 182     return nullptr;
 183   }
 184 
 185   // Record Phi
 186   register_new_node( phi, region );
 187 
 188   for (uint i2 = 1; i2 < phi->req(); i2++) {
 189     Node *x = phi->in(i2);
 190     // If we commoned up the cloned 'x' with another existing Node,
 191     // the existing Node picks up a new use.  We need to make the
 192     // existing Node occur higher up so it dominates its uses.
 193     Node *old_ctrl;
 194     IdealLoopTree *old_loop;
 195 
 196     if (x->is_Con()) {
 197       assert(get_ctrl(x) == C->root(), "constant control is not root");
 198       continue;
 199     }
 200     // The occasional new node
 201     if (x->_idx >= old_unique) {     // Found a new, unplaced node?
 202       old_ctrl = nullptr;
 203       old_loop = nullptr;               // Not in any prior loop
 204     } else {
 205       old_ctrl = get_ctrl(x);
 206       old_loop = get_loop(old_ctrl); // Get prior loop
 207     }
 208     // New late point must dominate new use
 209     Node *new_ctrl = dom_lca(old_ctrl, region->in(i2));
 210     if (new_ctrl == old_ctrl) // Nothing is changed
 211       continue;
 212 
 213     IdealLoopTree *new_loop = get_loop(new_ctrl);
 214 
 215     // Don't move x into a loop if its uses are
 216     // outside of loop. Otherwise x will be cloned
 217     // for each use outside of this loop.
 218     IdealLoopTree *use_loop = get_loop(region);
 219     if (!new_loop->is_member(use_loop) &&
 220         (old_loop == nullptr || !new_loop->is_member(old_loop))) {
 221       // Take early control, later control will be recalculated
 222       // during next iteration of loop optimizations.
 223       new_ctrl = get_early_ctrl(x);
 224       new_loop = get_loop(new_ctrl);
 225     }
 226     // Set new location
 227     set_ctrl(x, new_ctrl);
 228     // If changing loop bodies, see if we need to collect into new body
 229     if (old_loop != new_loop) {
 230       if (old_loop && !old_loop->_child)
 231         old_loop->_body.yank(x);
 232       if (!new_loop->_child)
 233         new_loop->_body.push(x);  // Collect body info
 234     }
 235   }
 236 
 237   return phi;
 238 }
 239 
 240 // Test whether node 'x' can move into an inner loop relative to node 'n'.
 241 // Note: The test is not exact. Returns true if 'x' COULD end up in an inner loop,
 242 // BUT it can also return true and 'x' is in the outer loop
 243 bool PhaseIdealLoop::can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x) {
 244   IdealLoopTree* n_loop_tree = get_loop(n_loop);
 245   IdealLoopTree* x_loop_tree = get_loop(get_early_ctrl(x));
 246   // x_loop_tree should be outer or same loop as n_loop_tree
 247   return !x_loop_tree->is_member(n_loop_tree);
 248 }
 249 
 250 // Subtype checks that carry profile data don't common so look for a replacement by following edges
 251 Node* PhaseIdealLoop::similar_subtype_check(const Node* x, Node* r_in) {
 252   if (x->is_SubTypeCheck()) {
 253     Node* in1 = x->in(1);
 254     for (DUIterator_Fast imax, i = in1->fast_outs(imax); i < imax; i++) {
 255       Node* u = in1->fast_out(i);
 256       if (u != x && u->is_SubTypeCheck() && u->in(1) == x->in(1) && u->in(2) == x->in(2)) {
 257         for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) {
 258           Node* bol = u->fast_out(j);
 259           for (DUIterator_Fast kmax, k = bol->fast_outs(kmax); k < kmax; k++) {
 260             Node* iff = bol->fast_out(k);
 261             // Only dominating subtype checks are interesting: otherwise we risk replacing a subtype check by another with
 262             // unrelated profile
 263             if (iff->is_If() && is_dominator(iff, r_in)) {
 264               return u;
 265             }
 266           }
 267         }
 268       }
 269     }
 270   }
 271   return nullptr;
 272 }
 273 
 274 // Return true if 'n' is a Div or Mod node (without zero check If node which was removed earlier) with a loop phi divisor
 275 // of a trip-counted (integer or long) loop with a backedge input that could be zero (include zero in its type range). In
 276 // this case, we cannot split the division to the backedge as it could freely float above the loop exit check resulting in
 277 // a division by zero. This situation is possible because the type of an increment node of an iv phi (trip-counter) could
 278 // include zero while the iv phi does not (see PhiNode::Value() for trip-counted loops where we improve types of iv phis).
 279 // We also need to check other loop phis as they could have been created in the same split-if pass when applying
 280 // PhaseIdealLoop::split_thru_phi() to split nodes through an iv phi.
 281 bool PhaseIdealLoop::cannot_split_division(const Node* n, const Node* region) const {
 282   const Type* zero;
 283   switch (n->Opcode()) {
 284     case Op_DivI:
 285     case Op_ModI:
 286     case Op_UDivI:
 287     case Op_UModI:
 288       zero = TypeInt::ZERO;
 289       break;
 290     case Op_DivL:
 291     case Op_ModL:
 292     case Op_UDivL:
 293     case Op_UModL:
 294       zero = TypeLong::ZERO;
 295       break;
 296     default:
 297       return false;
 298   }
 299 
 300   if (n->in(0) != nullptr) {
 301     // Cannot split through phi if Div or Mod node has a control dependency to a zero check.
 302     return true;
 303   }
 304 
 305   Node* divisor = n->in(2);
 306   return is_divisor_loop_phi(divisor, region) &&
 307          loop_phi_backedge_type_contains_zero(divisor, zero);
 308 }
 309 
 310 bool PhaseIdealLoop::is_divisor_loop_phi(const Node* divisor, const Node* loop) {
 311   return loop->is_Loop() && divisor->is_Phi() && divisor->in(0) == loop;
 312 }
 313 
 314 bool PhaseIdealLoop::loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const {
 315     return _igvn.type(phi_divisor->in(LoopNode::LoopBackControl))->filter_speculative(zero) != Type::TOP;
 316 }
 317 
 318 //------------------------------dominated_by------------------------------------
 319 // Replace the dominated test with an obvious true or false.  Place it on the
 320 // IGVN worklist for later cleanup.  Move control-dependent data Nodes on the
 321 // live path up to the dominating control.
 322 void PhaseIdealLoop::dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip, bool pin_array_access_nodes) {
 323   if (VerifyLoopOptimizations && PrintOpto) { tty->print_cr("dominating test"); }
 324 
 325   // prevdom is the dominating projection of the dominating test.
 326   assert(iff->Opcode() == Op_If ||
 327          iff->Opcode() == Op_CountedLoopEnd ||
 328          iff->Opcode() == Op_LongCountedLoopEnd ||
 329          iff->Opcode() == Op_RangeCheck ||
 330          iff->Opcode() == Op_ParsePredicate,
 331         "Check this code when new subtype is added");
 332 
 333   int pop = prevdom->Opcode();
 334   assert( pop == Op_IfFalse || pop == Op_IfTrue, "" );
 335   if (flip) {
 336     if (pop == Op_IfTrue)
 337       pop = Op_IfFalse;
 338     else
 339       pop = Op_IfTrue;
 340   }
 341   // 'con' is set to true or false to kill the dominated test.
 342   Node* con = makecon(pop == Op_IfTrue ? TypeInt::ONE : TypeInt::ZERO);
 343   // Hack the dominated test
 344   _igvn.replace_input_of(iff, 1, con);
 345 
 346   // If I don't have a reachable TRUE and FALSE path following the IfNode then
 347   // I can assume this path reaches an infinite loop.  In this case it's not
 348   // important to optimize the data Nodes - either the whole compilation will
 349   // be tossed or this path (and all data Nodes) will go dead.
 350   if (iff->outcnt() != 2) {
 351     return;
 352   }
 353 
 354   // Make control-dependent data Nodes on the live path (path that will remain
 355   // once the dominated IF is removed) become control-dependent on the
 356   // dominating projection.
 357   Node* dp = iff->proj_out_or_null(pop == Op_IfTrue);
 358 
 359   if (dp == nullptr) {
 360     return;
 361   }
 362 
 363   rewire_safe_outputs_to_dominator(dp, prevdom, pin_array_access_nodes);
 364 }
 365 
 366 void PhaseIdealLoop::rewire_safe_outputs_to_dominator(Node* source, Node* dominator, const bool pin_array_access_nodes) {
 367   IdealLoopTree* old_loop = get_loop(source);
 368 
 369   for (DUIterator_Fast imax, i = source->fast_outs(imax); i < imax; i++) {
 370     Node* out = source->fast_out(i); // Control-dependent node
 371     // Do not rewire Div and Mod nodes which could have a zero divisor to avoid skipping their zero check.
 372     if (out->depends_only_on_test() && _igvn.no_dependent_zero_check(out)) {
 373       assert(out->in(0) == source, "must be control dependent on source");
 374       _igvn.replace_input_of(out, 0, dominator);
 375       if (pin_array_access_nodes) {
 376         // Because of Loop Predication, Loads and range check Cast nodes that are control dependent on this range
 377         // check (that is about to be removed) now depend on multiple dominating Hoisted Check Predicates. After the
 378         // removal of this range check, these control dependent nodes end up at the lowest/nearest dominating predicate
 379         // in the graph. To ensure that these Loads/Casts do not float above any of the dominating checks (even when the
 380         // lowest dominating check is later replaced by yet another dominating check), we need to pin them at the lowest
 381         // dominating check.
 382         Node* clone = out->pin_array_access_node();
 383         if (clone != nullptr) {
 384           clone = _igvn.register_new_node_with_optimizer(clone, out);
 385           _igvn.replace_node(out, clone);
 386           out = clone;
 387         }
 388       }
 389       set_early_ctrl(out, false);
 390       IdealLoopTree* new_loop = get_loop(get_ctrl(out));
 391       if (old_loop != new_loop) {
 392         if (!old_loop->_child) {
 393           old_loop->_body.yank(out);
 394         }
 395         if (!new_loop->_child) {
 396           new_loop->_body.push(out);
 397         }
 398       }
 399       --i;
 400       --imax;
 401     }
 402   }
 403 }
 404 
 405 //------------------------------has_local_phi_input----------------------------
 406 // Return TRUE if 'n' has Phi inputs from its local block and no other
 407 // block-local inputs (all non-local-phi inputs come from earlier blocks)
 408 Node *PhaseIdealLoop::has_local_phi_input( Node *n ) {
 409   Node *n_ctrl = get_ctrl(n);
 410   // See if some inputs come from a Phi in this block, or from before
 411   // this block.
 412   uint i;
 413   for( i = 1; i < n->req(); i++ ) {
 414     Node *phi = n->in(i);
 415     if( phi->is_Phi() && phi->in(0) == n_ctrl )
 416       break;
 417   }
 418   if( i >= n->req() )
 419     return nullptr;                // No Phi inputs; nowhere to clone thru
 420 
 421   // Check for inputs created between 'n' and the Phi input.  These
 422   // must split as well; they have already been given the chance
 423   // (courtesy of a post-order visit) and since they did not we must
 424   // recover the 'cost' of splitting them by being very profitable
 425   // when splitting 'n'.  Since this is unlikely we simply give up.
 426   for( i = 1; i < n->req(); i++ ) {
 427     Node *m = n->in(i);
 428     if( get_ctrl(m) == n_ctrl && !m->is_Phi() ) {
 429       // We allow the special case of AddP's with no local inputs.
 430       // This allows us to split-up address expressions.
 431       if (m->is_AddP() &&
 432           get_ctrl(m->in(AddPNode::Base)) != n_ctrl &&
 433           get_ctrl(m->in(AddPNode::Address)) != n_ctrl &&
 434           get_ctrl(m->in(AddPNode::Offset)) != n_ctrl) {
 435         // Move the AddP up to the dominating point. That's fine because control of m's inputs
 436         // must dominate get_ctrl(m) == n_ctrl and we just checked that the input controls are != n_ctrl.
 437         Node* c = find_non_split_ctrl(idom(n_ctrl));
 438         if (c->is_OuterStripMinedLoop()) {
 439           c->as_Loop()->verify_strip_mined(1);
 440           c = c->in(LoopNode::EntryControl);
 441         }
 442         set_ctrl_and_loop(m, c);
 443         continue;
 444       }
 445       return nullptr;
 446     }
 447     assert(n->is_Phi() || m->is_Phi() || is_dominator(get_ctrl(m), n_ctrl), "m has strange control");
 448   }
 449 
 450   return n_ctrl;
 451 }
 452 
 453 // Replace expressions like ((V+I) << 2) with (V<<2 + I<<2).
 454 Node* PhaseIdealLoop::remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt) {
 455   assert(bt == T_INT || bt == T_LONG, "only for integers");
 456   int n_op = n->Opcode();
 457 
 458   if (n_op == Op_LShift(bt)) {
 459     // Scale is loop invariant
 460     Node* scale = n->in(2);
 461     Node* scale_ctrl = get_ctrl(scale);
 462     IdealLoopTree* scale_loop = get_loop(scale_ctrl);
 463     if (n_loop == scale_loop || !scale_loop->is_member(n_loop)) {
 464       return nullptr;
 465     }
 466     const TypeInt* scale_t = scale->bottom_type()->isa_int();
 467     if (scale_t != nullptr && scale_t->is_con() && scale_t->get_con() >= 16) {
 468       return nullptr;              // Dont bother with byte/short masking
 469     }
 470     // Add must vary with loop (else shift would be loop-invariant)
 471     Node* add = n->in(1);
 472     Node* add_ctrl = get_ctrl(add);
 473     IdealLoopTree* add_loop = get_loop(add_ctrl);
 474     if (n_loop != add_loop) {
 475       return nullptr;  // happens w/ evil ZKM loops
 476     }
 477 
 478     // Convert I-V into I+ (0-V); same for V-I
 479     if (add->Opcode() == Op_Sub(bt) &&
 480         _igvn.type(add->in(1)) != TypeInteger::zero(bt)) {
 481       assert(add->Opcode() == Op_SubI || add->Opcode() == Op_SubL, "");
 482       Node* zero = integercon(0, bt);
 483       Node* neg = SubNode::make(zero, add->in(2), bt);
 484       register_new_node_with_ctrl_of(neg, add->in(2));
 485       add = AddNode::make(add->in(1), neg, bt);
 486       register_new_node(add, add_ctrl);
 487     }
 488     if (add->Opcode() != Op_Add(bt)) return nullptr;
 489     assert(add->Opcode() == Op_AddI || add->Opcode() == Op_AddL, "");
 490     // See if one add input is loop invariant
 491     Node* add_var = add->in(1);
 492     Node* add_var_ctrl = get_ctrl(add_var);
 493     IdealLoopTree* add_var_loop = get_loop(add_var_ctrl);
 494     Node* add_invar = add->in(2);
 495     Node* add_invar_ctrl = get_ctrl(add_invar);
 496     IdealLoopTree* add_invar_loop = get_loop(add_invar_ctrl);
 497     if (add_invar_loop == n_loop) {
 498       // Swap to find the invariant part
 499       add_invar = add_var;
 500       add_invar_ctrl = add_var_ctrl;
 501       add_invar_loop = add_var_loop;
 502       add_var = add->in(2);
 503     } else if (add_var_loop != n_loop) { // Else neither input is loop invariant
 504       return nullptr;
 505     }
 506     if (n_loop == add_invar_loop || !add_invar_loop->is_member(n_loop)) {
 507       return nullptr;              // No invariant part of the add?
 508     }
 509 
 510     // Yes!  Reshape address expression!
 511     Node* inv_scale = LShiftNode::make(add_invar, scale, bt);
 512     Node* inv_scale_ctrl =
 513             dom_depth(add_invar_ctrl) > dom_depth(scale_ctrl) ?
 514             add_invar_ctrl : scale_ctrl;
 515     register_new_node(inv_scale, inv_scale_ctrl);
 516     Node* var_scale = LShiftNode::make(add_var, scale, bt);
 517     register_new_node(var_scale, n_ctrl);
 518     Node* var_add = AddNode::make(var_scale, inv_scale, bt);
 519     register_new_node(var_add, n_ctrl);
 520     _igvn.replace_node(n, var_add);
 521     return var_add;
 522   }
 523   return nullptr;
 524 }
 525 
 526 //------------------------------remix_address_expressions----------------------
 527 // Rework addressing expressions to get the most loop-invariant stuff
 528 // moved out.  We'd like to do all associative operators, but it's especially
 529 // important (common) to do address expressions.
 530 Node* PhaseIdealLoop::remix_address_expressions(Node* n) {
 531   if (!has_ctrl(n))  return nullptr;
 532   Node* n_ctrl = get_ctrl(n);
 533   IdealLoopTree* n_loop = get_loop(n_ctrl);
 534 
 535   // See if 'n' mixes loop-varying and loop-invariant inputs and
 536   // itself is loop-varying.
 537 
 538   // Only interested in binary ops (and AddP)
 539   if (n->req() < 3 || n->req() > 4) return nullptr;
 540 
 541   Node* n1_ctrl = get_ctrl(n->in(                    1));
 542   Node* n2_ctrl = get_ctrl(n->in(                    2));
 543   Node* n3_ctrl = get_ctrl(n->in(n->req() == 3 ? 2 : 3));
 544   IdealLoopTree* n1_loop = get_loop(n1_ctrl);
 545   IdealLoopTree* n2_loop = get_loop(n2_ctrl);
 546   IdealLoopTree* n3_loop = get_loop(n3_ctrl);
 547 
 548   // Does one of my inputs spin in a tighter loop than self?
 549   if ((n_loop->is_member(n1_loop) && n_loop != n1_loop) ||
 550       (n_loop->is_member(n2_loop) && n_loop != n2_loop) ||
 551       (n_loop->is_member(n3_loop) && n_loop != n3_loop)) {
 552     return nullptr;                // Leave well enough alone
 553   }
 554 
 555   // Is at least one of my inputs loop-invariant?
 556   if (n1_loop == n_loop &&
 557       n2_loop == n_loop &&
 558       n3_loop == n_loop) {
 559     return nullptr;                // No loop-invariant inputs
 560   }
 561 
 562   Node* res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_INT);
 563   if (res != nullptr) {
 564     return res;
 565   }
 566   res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_LONG);
 567   if (res != nullptr) {
 568     return res;
 569   }
 570 
 571   int n_op = n->Opcode();
 572   // Replace (I+V) with (V+I)
 573   if (n_op == Op_AddI ||
 574       n_op == Op_AddL ||
 575       n_op == Op_AddF ||
 576       n_op == Op_AddD ||
 577       n_op == Op_MulI ||
 578       n_op == Op_MulL ||
 579       n_op == Op_MulF ||
 580       n_op == Op_MulD) {
 581     if (n2_loop == n_loop) {
 582       assert(n1_loop != n_loop, "");
 583       n->swap_edges(1, 2);
 584     }
 585   }
 586 
 587   // Replace ((I1 +p V) +p I2) with ((I1 +p I2) +p V),
 588   // but not if I2 is a constant. Skip for irreducible loops.
 589   if (n_op == Op_AddP && n_loop->_head->is_Loop()) {
 590     if (n2_loop == n_loop && n3_loop != n_loop) {
 591       if (n->in(2)->Opcode() == Op_AddP && !n->in(3)->is_Con()) {
 592         Node* n22_ctrl = get_ctrl(n->in(2)->in(2));
 593         Node* n23_ctrl = get_ctrl(n->in(2)->in(3));
 594         IdealLoopTree* n22loop = get_loop(n22_ctrl);
 595         IdealLoopTree* n23_loop = get_loop(n23_ctrl);
 596         if (n22loop != n_loop && n22loop->is_member(n_loop) &&
 597             n23_loop == n_loop) {
 598           Node* add1 = new AddPNode(n->in(1), n->in(2)->in(2), n->in(3));
 599           // Stuff new AddP in the loop preheader
 600           register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl));
 601           Node* add2 = new AddPNode(n->in(1), add1, n->in(2)->in(3));
 602           register_new_node(add2, n_ctrl);
 603           _igvn.replace_node(n, add2);
 604           return add2;
 605         }
 606       }
 607     }
 608 
 609     // Replace (I1 +p (I2 + V)) with ((I1 +p I2) +p V)
 610     if (n2_loop != n_loop && n3_loop == n_loop) {
 611       if (n->in(3)->Opcode() == Op_AddX) {
 612         Node* V = n->in(3)->in(1);
 613         Node* I = n->in(3)->in(2);
 614         if (is_member(n_loop,get_ctrl(V))) {
 615         } else {
 616           Node *tmp = V; V = I; I = tmp;
 617         }
 618         if (!is_member(n_loop,get_ctrl(I))) {
 619           Node* add1 = new AddPNode(n->in(1), n->in(2), I);
 620           // Stuff new AddP in the loop preheader
 621           register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl));
 622           Node* add2 = new AddPNode(n->in(1), add1, V);
 623           register_new_node(add2, n_ctrl);
 624           _igvn.replace_node(n, add2);
 625           return add2;
 626         }
 627       }
 628     }
 629   }
 630 
 631   return nullptr;
 632 }
 633 
 634 // Optimize ((in1[2*i] * in2[2*i]) + (in1[2*i+1] * in2[2*i+1]))
 635 Node *PhaseIdealLoop::convert_add_to_muladd(Node* n) {
 636   assert(n->Opcode() == Op_AddI, "sanity");
 637   Node * nn = nullptr;
 638   Node * in1 = n->in(1);
 639   Node * in2 = n->in(2);
 640   if (in1->Opcode() == Op_MulI && in2->Opcode() == Op_MulI) {
 641     IdealLoopTree* loop_n = get_loop(get_ctrl(n));
 642     if (loop_n->is_counted() &&
 643         loop_n->_head->as_Loop()->is_valid_counted_loop(T_INT) &&
 644         Matcher::match_rule_supported(Op_MulAddVS2VI) &&
 645         Matcher::match_rule_supported(Op_MulAddS2I)) {
 646       Node* mul_in1 = in1->in(1);
 647       Node* mul_in2 = in1->in(2);
 648       Node* mul_in3 = in2->in(1);
 649       Node* mul_in4 = in2->in(2);
 650       if (mul_in1->Opcode() == Op_LoadS &&
 651           mul_in2->Opcode() == Op_LoadS &&
 652           mul_in3->Opcode() == Op_LoadS &&
 653           mul_in4->Opcode() == Op_LoadS) {
 654         IdealLoopTree* loop1 = get_loop(get_ctrl(mul_in1));
 655         IdealLoopTree* loop2 = get_loop(get_ctrl(mul_in2));
 656         IdealLoopTree* loop3 = get_loop(get_ctrl(mul_in3));
 657         IdealLoopTree* loop4 = get_loop(get_ctrl(mul_in4));
 658         IdealLoopTree* loop5 = get_loop(get_ctrl(in1));
 659         IdealLoopTree* loop6 = get_loop(get_ctrl(in2));
 660         // All nodes should be in the same counted loop.
 661         if (loop_n == loop1 && loop_n == loop2 && loop_n == loop3 &&
 662             loop_n == loop4 && loop_n == loop5 && loop_n == loop6) {
 663           Node* adr1 = mul_in1->in(MemNode::Address);
 664           Node* adr2 = mul_in2->in(MemNode::Address);
 665           Node* adr3 = mul_in3->in(MemNode::Address);
 666           Node* adr4 = mul_in4->in(MemNode::Address);
 667           if (adr1->is_AddP() && adr2->is_AddP() && adr3->is_AddP() && adr4->is_AddP()) {
 668             if ((adr1->in(AddPNode::Base) == adr3->in(AddPNode::Base)) &&
 669                 (adr2->in(AddPNode::Base) == adr4->in(AddPNode::Base))) {
 670               nn = new MulAddS2INode(mul_in1, mul_in2, mul_in3, mul_in4);
 671               register_new_node_with_ctrl_of(nn, n);
 672               _igvn.replace_node(n, nn);
 673               return nn;
 674             } else if ((adr1->in(AddPNode::Base) == adr4->in(AddPNode::Base)) &&
 675                        (adr2->in(AddPNode::Base) == adr3->in(AddPNode::Base))) {
 676               nn = new MulAddS2INode(mul_in1, mul_in2, mul_in4, mul_in3);
 677               register_new_node_with_ctrl_of(nn, n);
 678               _igvn.replace_node(n, nn);
 679               return nn;
 680             }
 681           }
 682         }
 683       }
 684     }
 685   }
 686   return nn;
 687 }
 688 
 689 //------------------------------conditional_move-------------------------------
 690 // Attempt to replace a Phi with a conditional move.  We have some pretty
 691 // strict profitability requirements.  All Phis at the merge point must
 692 // be converted, so we can remove the control flow.  We need to limit the
 693 // number of c-moves to a small handful.  All code that was in the side-arms
 694 // of the CFG diamond is now speculatively executed.  This code has to be
 695 // "cheap enough".  We are pretty much limited to CFG diamonds that merge
 696 // 1 or 2 items with a total of 1 or 2 ops executed speculatively.
 697 Node *PhaseIdealLoop::conditional_move( Node *region ) {
 698 
 699   assert(region->is_Region(), "sanity check");
 700   if (region->req() != 3) return nullptr;
 701 
 702   // Check for CFG diamond
 703   Node *lp = region->in(1);
 704   Node *rp = region->in(2);
 705   if (!lp || !rp) return nullptr;
 706   Node *lp_c = lp->in(0);
 707   if (lp_c == nullptr || lp_c != rp->in(0) || !lp_c->is_If()) return nullptr;
 708   IfNode *iff = lp_c->as_If();
 709 
 710   // Check for ops pinned in an arm of the diamond.
 711   // Can't remove the control flow in this case
 712   if (lp->outcnt() > 1) return nullptr;
 713   if (rp->outcnt() > 1) return nullptr;
 714 
 715   IdealLoopTree* r_loop = get_loop(region);
 716   assert(r_loop == get_loop(iff), "sanity");
 717   // Always convert to CMOVE if all results are used only outside this loop.
 718   bool used_inside_loop = (r_loop == _ltree_root);
 719 
 720   // Check profitability
 721   int cost = 0;
 722   int phis = 0;
 723   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 724     Node *out = region->fast_out(i);
 725     if (!out->is_Phi()) continue; // Ignore other control edges, etc
 726     phis++;
 727     PhiNode* phi = out->as_Phi();
 728     BasicType bt = phi->type()->basic_type();
 729     switch (bt) {
 730     case T_DOUBLE:
 731     case T_FLOAT:
 732       if (C->use_cmove()) {
 733         continue; //TODO: maybe we want to add some cost
 734       }
 735       cost += Matcher::float_cmove_cost(); // Could be very expensive
 736       break;
 737     case T_LONG: {
 738       cost += Matcher::long_cmove_cost(); // May encodes as 2 CMOV's
 739     }
 740     case T_INT:                 // These all CMOV fine
 741     case T_ADDRESS: {           // (RawPtr)
 742       cost++;
 743       break;
 744     }
 745     case T_NARROWOOP: // Fall through
 746     case T_OBJECT: {            // Base oops are OK, but not derived oops
 747       const TypeOopPtr *tp = phi->type()->make_ptr()->isa_oopptr();
 748       // Derived pointers are Bad (tm): what's the Base (for GC purposes) of a
 749       // CMOVE'd derived pointer?  It's a CMOVE'd derived base.  Thus
 750       // CMOVE'ing a derived pointer requires we also CMOVE the base.  If we
 751       // have a Phi for the base here that we convert to a CMOVE all is well
 752       // and good.  But if the base is dead, we'll not make a CMOVE.  Later
 753       // the allocator will have to produce a base by creating a CMOVE of the
 754       // relevant bases.  This puts the allocator in the business of
 755       // manufacturing expensive instructions, generally a bad plan.
 756       // Just Say No to Conditionally-Moved Derived Pointers.
 757       if (tp && tp->offset() != 0)
 758         return nullptr;
 759       cost++;
 760       break;
 761     }
 762     default:
 763       return nullptr;              // In particular, can't do memory or I/O
 764     }
 765     // Add in cost any speculative ops
 766     for (uint j = 1; j < region->req(); j++) {
 767       Node *proj = region->in(j);
 768       Node *inp = phi->in(j);
 769       if (inp->isa_InlineType()) {
 770         // TODO 8302217 This prevents PhiNode::push_inline_types_through
 771         return nullptr;
 772       }
 773       if (get_ctrl(inp) == proj) { // Found local op
 774         cost++;
 775         // Check for a chain of dependent ops; these will all become
 776         // speculative in a CMOV.
 777         for (uint k = 1; k < inp->req(); k++)
 778           if (get_ctrl(inp->in(k)) == proj)
 779             cost += ConditionalMoveLimit; // Too much speculative goo
 780       }
 781     }
 782     // See if the Phi is used by a Cmp or Narrow oop Decode/Encode.
 783     // This will likely Split-If, a higher-payoff operation.
 784     for (DUIterator_Fast kmax, k = phi->fast_outs(kmax); k < kmax; k++) {
 785       Node* use = phi->fast_out(k);
 786       if (use->is_Cmp() || use->is_DecodeNarrowPtr() || use->is_EncodeNarrowPtr())
 787         cost += ConditionalMoveLimit;
 788       // Is there a use inside the loop?
 789       // Note: check only basic types since CMoveP is pinned.
 790       if (!used_inside_loop && is_java_primitive(bt)) {
 791         IdealLoopTree* u_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use);
 792         if (r_loop == u_loop || r_loop->is_member(u_loop)) {
 793           used_inside_loop = true;
 794         }
 795       }
 796     }
 797   }//for
 798   Node* bol = iff->in(1);
 799   assert(!bol->is_OpaqueInitializedAssertionPredicate(), "Initialized Assertion Predicates cannot form a diamond with Halt");
 800   if (bol->is_OpaqueTemplateAssertionPredicate()) {
 801     // Ignore Template Assertion Predicates with OpaqueTemplateAssertionPredicate nodes.
 802     return nullptr;
 803   }
 804   if (bol->is_OpaqueMultiversioning()) {
 805     assert(bol->as_OpaqueMultiversioning()->is_useless(), "Must be useless, i.e. fast main loop has already disappeared.");
 806     // Ignore multiversion_if that just lost its loops. The OpaqueMultiversioning is marked useless,
 807     // and will make the multiversion_if constant fold in the next IGVN round.
 808     return nullptr;
 809   }
 810   if (!bol->is_Bool()) {
 811     assert(false, "Expected Bool, but got %s", NodeClassNames[bol->Opcode()]);
 812     return nullptr;
 813   }
 814   int cmp_op = bol->in(1)->Opcode();
 815   if (cmp_op == Op_SubTypeCheck) { // SubTypeCheck expansion expects an IfNode
 816     return nullptr;
 817   }
 818   // It is expensive to generate flags from a float compare.
 819   // Avoid duplicated float compare.
 820   if (phis > 1 && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) return nullptr;
 821 
 822   float infrequent_prob = PROB_UNLIKELY_MAG(3);
 823   // Ignore cost and blocks frequency if CMOVE can be moved outside the loop.
 824   if (used_inside_loop) {
 825     if (cost >= ConditionalMoveLimit) return nullptr; // Too much goo
 826 
 827     // BlockLayoutByFrequency optimization moves infrequent branch
 828     // from hot path. No point in CMOV'ing in such case (110 is used
 829     // instead of 100 to take into account not exactness of float value).
 830     if (BlockLayoutByFrequency) {
 831       infrequent_prob = MAX2(infrequent_prob, (float)BlockLayoutMinDiamondPercentage/110.0f);
 832     }
 833   }
 834   // Check for highly predictable branch.  No point in CMOV'ing if
 835   // we are going to predict accurately all the time.
 836   if (C->use_cmove() && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) {
 837     //keep going
 838   } else if (iff->_prob < infrequent_prob ||
 839       iff->_prob > (1.0f - infrequent_prob))
 840     return nullptr;
 841 
 842   // --------------
 843   // Now replace all Phis with CMOV's
 844   Node *cmov_ctrl = iff->in(0);
 845   uint flip = (lp->Opcode() == Op_IfTrue);
 846   Node_List wq;
 847   while (1) {
 848     PhiNode* phi = nullptr;
 849     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 850       Node *out = region->fast_out(i);
 851       if (out->is_Phi()) {
 852         phi = out->as_Phi();
 853         break;
 854       }
 855     }
 856     if (phi == nullptr || _igvn.type(phi) == Type::TOP || !CMoveNode::supported(_igvn.type(phi))) {
 857       break;
 858     }
 859     // Move speculative ops
 860     wq.push(phi);
 861     while (wq.size() > 0) {
 862       Node *n = wq.pop();
 863       for (uint j = 1; j < n->req(); j++) {
 864         Node* m = n->in(j);
 865         if (m != nullptr && !is_dominator(get_ctrl(m), cmov_ctrl)) {
 866           set_ctrl(m, cmov_ctrl);
 867           wq.push(m);
 868         }
 869       }
 870     }
 871     Node* cmov = CMoveNode::make(iff->in(1), phi->in(1+flip), phi->in(2-flip), _igvn.type(phi));
 872     register_new_node(cmov, cmov_ctrl);
 873     _igvn.replace_node(phi, cmov);
 874 #ifndef PRODUCT
 875     if (TraceLoopOpts) {
 876       tty->print("CMOV  ");
 877       r_loop->dump_head();
 878       if (Verbose) {
 879         bol->in(1)->dump(1);
 880         cmov->dump(1);
 881       }
 882     }
 883     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
 884 #endif
 885   }
 886 
 887   // The useless CFG diamond will fold up later; see the optimization in
 888   // RegionNode::Ideal.
 889   _igvn._worklist.push(region);
 890 
 891   return iff->in(1);
 892 }
 893 
 894 static void enqueue_cfg_uses(Node* m, Unique_Node_List& wq) {
 895   for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
 896     Node* u = m->fast_out(i);
 897     if (u->is_CFG()) {
 898       if (u->is_NeverBranch()) {
 899         u = u->as_NeverBranch()->proj_out(0);
 900         enqueue_cfg_uses(u, wq);
 901       } else {
 902         wq.push(u);
 903       }
 904     }
 905   }
 906 }
 907 
 908 // Try moving a store out of a loop, right before the loop
 909 Node* PhaseIdealLoop::try_move_store_before_loop(Node* n, Node *n_ctrl) {
 910   // Store has to be first in the loop body
 911   IdealLoopTree *n_loop = get_loop(n_ctrl);
 912   if (n->is_Store() && n_loop != _ltree_root &&
 913       n_loop->is_loop() && n_loop->_head->is_Loop() &&
 914       n->in(0) != nullptr) {
 915     Node* address = n->in(MemNode::Address);
 916     Node* value = n->in(MemNode::ValueIn);
 917     Node* mem = n->in(MemNode::Memory);
 918     IdealLoopTree* address_loop = get_loop(get_ctrl(address));
 919     IdealLoopTree* value_loop = get_loop(get_ctrl(value));
 920 
 921     // - address and value must be loop invariant
 922     // - memory must be a memory Phi for the loop
 923     // - Store must be the only store on this memory slice in the
 924     // loop: if there's another store following this one then value
 925     // written at iteration i by the second store could be overwritten
 926     // at iteration i+n by the first store: it's not safe to move the
 927     // first store out of the loop
 928     // - nothing must observe the memory Phi: it guarantees no read
 929     // before the store, we are also guaranteed the store post
 930     // dominates the loop head (ignoring a possible early
 931     // exit). Otherwise there would be extra Phi involved between the
 932     // loop's Phi and the store.
 933     // - there must be no early exit from the loop before the Store
 934     // (such an exit most of the time would be an extra use of the
 935     // memory Phi but sometimes is a bottom memory Phi that takes the
 936     // store as input).
 937 
 938     if (!n_loop->is_member(address_loop) &&
 939         !n_loop->is_member(value_loop) &&
 940         mem->is_Phi() && mem->in(0) == n_loop->_head &&
 941         mem->outcnt() == 1 &&
 942         mem->in(LoopNode::LoopBackControl) == n) {
 943 
 944       assert(n_loop->_tail != nullptr, "need a tail");
 945       assert(is_dominator(n_ctrl, n_loop->_tail), "store control must not be in a branch in the loop");
 946 
 947       // Verify that there's no early exit of the loop before the store.
 948       bool ctrl_ok = false;
 949       {
 950         // Follow control from loop head until n, we exit the loop or
 951         // we reach the tail
 952         ResourceMark rm;
 953         Unique_Node_List wq;
 954         wq.push(n_loop->_head);
 955 
 956         for (uint next = 0; next < wq.size(); ++next) {
 957           Node *m = wq.at(next);
 958           if (m == n->in(0)) {
 959             ctrl_ok = true;
 960             continue;
 961           }
 962           assert(!has_ctrl(m), "should be CFG");
 963           if (!n_loop->is_member(get_loop(m)) || m == n_loop->_tail) {
 964             ctrl_ok = false;
 965             break;
 966           }
 967           enqueue_cfg_uses(m, wq);
 968           if (wq.size() > 10) {
 969             ctrl_ok = false;
 970             break;
 971           }
 972         }
 973       }
 974       if (ctrl_ok) {
 975         // move the Store
 976         _igvn.replace_input_of(mem, LoopNode::LoopBackControl, mem);
 977         _igvn.replace_input_of(n, 0, n_loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl));
 978         _igvn.replace_input_of(n, MemNode::Memory, mem->in(LoopNode::EntryControl));
 979         // Disconnect the phi now. An empty phi can confuse other
 980         // optimizations in this pass of loop opts.
 981         _igvn.replace_node(mem, mem->in(LoopNode::EntryControl));
 982         n_loop->_body.yank(mem);
 983 
 984         set_ctrl_and_loop(n, n->in(0));
 985 
 986         return n;
 987       }
 988     }
 989   }
 990   return nullptr;
 991 }
 992 
 993 // Try moving a store out of a loop, right after the loop
 994 void PhaseIdealLoop::try_move_store_after_loop(Node* n) {
 995   if (n->is_Store() && n->in(0) != nullptr) {
 996     Node *n_ctrl = get_ctrl(n);
 997     IdealLoopTree *n_loop = get_loop(n_ctrl);
 998     // Store must be in a loop
 999     if (n_loop != _ltree_root && !n_loop->_irreducible) {
1000       Node* address = n->in(MemNode::Address);
1001       Node* value = n->in(MemNode::ValueIn);
1002       IdealLoopTree* address_loop = get_loop(get_ctrl(address));
1003       // address must be loop invariant
1004       if (!n_loop->is_member(address_loop)) {
1005         // Store must be last on this memory slice in the loop and
1006         // nothing in the loop must observe it
1007         Node* phi = nullptr;
1008         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1009           Node* u = n->fast_out(i);
1010           if (has_ctrl(u)) { // control use?
1011             IdealLoopTree *u_loop = get_loop(get_ctrl(u));
1012             if (!n_loop->is_member(u_loop)) {
1013               continue;
1014             }
1015             if (u->is_Phi() && u->in(0) == n_loop->_head) {
1016               assert(_igvn.type(u) == Type::MEMORY, "bad phi");
1017               // multiple phis on the same slice are possible
1018               if (phi != nullptr) {
1019                 return;
1020               }
1021               phi = u;
1022               continue;
1023             }
1024           }
1025           return;
1026         }
1027         if (phi != nullptr) {
1028           // Nothing in the loop before the store (next iteration)
1029           // must observe the stored value
1030           bool mem_ok = true;
1031           {
1032             ResourceMark rm;
1033             Unique_Node_List wq;
1034             wq.push(phi);
1035             for (uint next = 0; next < wq.size() && mem_ok; ++next) {
1036               Node *m = wq.at(next);
1037               for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax && mem_ok; i++) {
1038                 Node* u = m->fast_out(i);
1039                 if (u->is_Store() || u->is_Phi()) {
1040                   if (u != n) {
1041                     wq.push(u);
1042                     mem_ok = (wq.size() <= 10);
1043                   }
1044                 } else {
1045                   mem_ok = false;
1046                   break;
1047                 }
1048               }
1049             }
1050           }
1051           if (mem_ok) {
1052             // Move the store out of the loop if the LCA of all
1053             // users (except for the phi) is outside the loop.
1054             Node* hook = new Node(1);
1055             hook->init_req(0, n_ctrl); // Add an input to prevent hook from being dead
1056             _igvn.rehash_node_delayed(phi);
1057             int count = phi->replace_edge(n, hook, &_igvn);
1058             assert(count > 0, "inconsistent phi");
1059 
1060             // Compute latest point this store can go
1061             Node* lca = get_late_ctrl(n, get_ctrl(n));
1062             if (lca->is_OuterStripMinedLoop()) {
1063               lca = lca->in(LoopNode::EntryControl);
1064             }
1065             if (n_loop->is_member(get_loop(lca))) {
1066               // LCA is in the loop - bail out
1067               _igvn.replace_node(hook, n);
1068               return;
1069             }
1070 #ifdef ASSERT
1071             if (n_loop->_head->is_Loop() && n_loop->_head->as_Loop()->is_strip_mined()) {
1072               assert(n_loop->_head->Opcode() == Op_CountedLoop, "outer loop is a strip mined");
1073               n_loop->_head->as_Loop()->verify_strip_mined(1);
1074               Node* outer = n_loop->_head->as_CountedLoop()->outer_loop();
1075               IdealLoopTree* outer_loop = get_loop(outer);
1076               assert(n_loop->_parent == outer_loop, "broken loop tree");
1077               assert(get_loop(lca) == outer_loop, "safepoint in outer loop consume all memory state");
1078             }
1079 #endif
1080             lca = place_outside_loop(lca, n_loop);
1081             assert(!n_loop->is_member(get_loop(lca)), "control must not be back in the loop");
1082             assert(get_loop(lca)->_nest < n_loop->_nest || get_loop(lca)->_head->as_Loop()->is_in_infinite_subgraph(), "must not be moved into inner loop");
1083 
1084             // Move store out of the loop
1085             _igvn.replace_node(hook, n->in(MemNode::Memory));
1086             _igvn.replace_input_of(n, 0, lca);
1087             set_ctrl_and_loop(n, lca);
1088 
1089             // Disconnect the phi now. An empty phi can confuse other
1090             // optimizations in this pass of loop opts..
1091             if (phi->in(LoopNode::LoopBackControl) == phi) {
1092               _igvn.replace_node(phi, phi->in(LoopNode::EntryControl));
1093               n_loop->_body.yank(phi);
1094             }
1095           }
1096         }
1097       }
1098     }
1099   }
1100 }
1101 
1102 // We can't use immutable memory for the flat array check because we are loading the mark word which is
1103 // mutable. Although the bits we are interested in are immutable (we check for markWord::unlocked_value),
1104 // we need to use raw memory to not break anti dependency analysis. Below code will attempt to still move
1105 // flat array checks out of loops, mainly to enable loop unswitching.
1106 void PhaseIdealLoop::move_flat_array_check_out_of_loop(Node* n) {
1107   // Skip checks for more than one array
1108   if (n->req() > 3) {
1109     return;
1110   }
1111   Node* mem = n->in(FlatArrayCheckNode::Memory);
1112   Node* array = n->in(FlatArrayCheckNode::ArrayOrKlass)->uncast();
1113   IdealLoopTree* check_loop = get_loop(get_ctrl(n));
1114   IdealLoopTree* ary_loop = get_loop(get_ctrl(array));
1115 
1116   // Check if array is loop invariant
1117   if (!check_loop->is_member(ary_loop)) {
1118     // Walk up memory graph from the check until we leave the loop
1119     VectorSet wq;
1120     wq.set(mem->_idx);
1121     while (check_loop->is_member(get_loop(ctrl_or_self(mem)))) {
1122       if (mem->is_Phi()) {
1123         mem = mem->in(1);
1124       } else if (mem->is_MergeMem()) {
1125         mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1126       } else if (mem->is_Proj()) {
1127         mem = mem->in(0);
1128       } else if (mem->is_MemBar() || mem->is_SafePoint()) {
1129         mem = mem->in(TypeFunc::Memory);
1130       } else if (mem->is_Store() || mem->is_LoadStore() || mem->is_ClearArray()) {
1131         mem = mem->in(MemNode::Memory);
1132       } else {
1133 #ifdef ASSERT
1134         mem->dump();
1135 #endif
1136         ShouldNotReachHere();
1137       }
1138       if (wq.test_set(mem->_idx)) {
1139         return;
1140       }
1141     }
1142     // Replace memory input and re-compute ctrl to move the check out of the loop
1143     _igvn.replace_input_of(n, 1, mem);
1144     set_ctrl_and_loop(n, get_early_ctrl(n));
1145     Node* bol = n->unique_out();
1146     set_ctrl_and_loop(bol, get_early_ctrl(bol));
1147   }
1148 }
1149 
1150 //------------------------------split_if_with_blocks_pre-----------------------
1151 // Do the real work in a non-recursive function.  Data nodes want to be
1152 // cloned in the pre-order so they can feed each other nicely.
1153 Node *PhaseIdealLoop::split_if_with_blocks_pre( Node *n ) {
1154   // Cloning these guys is unlikely to win
1155   int n_op = n->Opcode();
1156   if (n_op == Op_MergeMem) {
1157     return n;
1158   }
1159   if (n->is_Proj()) {
1160     return n;
1161   }
1162 
1163   if (n->isa_FlatArrayCheck()) {
1164     move_flat_array_check_out_of_loop(n);
1165     return n;
1166   }
1167 
1168   // Do not clone-up CmpFXXX variations, as these are always
1169   // followed by a CmpI
1170   if (n->is_Cmp()) {
1171     return n;
1172   }
1173   // Attempt to use a conditional move instead of a phi/branch
1174   if (ConditionalMoveLimit > 0 && n_op == Op_Region) {
1175     Node *cmov = conditional_move( n );
1176     if (cmov) {
1177       return cmov;
1178     }
1179   }
1180   if (n->is_CFG() || n->is_LoadStore()) {
1181     return n;
1182   }
1183   if (n->is_Opaque1()) { // Opaque nodes cannot be mod'd
1184     if (!C->major_progress()) {   // If chance of no more loop opts...
1185       _igvn._worklist.push(n);  // maybe we'll remove them
1186     }
1187     return n;
1188   }
1189 
1190   if (n->is_Con()) {
1191     return n;   // No cloning for Con nodes
1192   }
1193 
1194   Node *n_ctrl = get_ctrl(n);
1195   if (!n_ctrl) {
1196     return n;       // Dead node
1197   }
1198 
1199   Node* res = try_move_store_before_loop(n, n_ctrl);
1200   if (res != nullptr) {
1201     return n;
1202   }
1203 
1204   // Attempt to remix address expressions for loop invariants
1205   Node *m = remix_address_expressions( n );
1206   if( m ) return m;
1207 
1208   if (n_op == Op_AddI) {
1209     Node *nn = convert_add_to_muladd( n );
1210     if ( nn ) return nn;
1211   }
1212 
1213   if (n->is_ConstraintCast()) {
1214     Node* dom_cast = n->as_ConstraintCast()->dominating_cast(&_igvn, this);
1215     // ConstraintCastNode::dominating_cast() uses node control input to determine domination.
1216     // Node control inputs don't necessarily agree with loop control info (due to
1217     // transformations happened in between), thus additional dominance check is needed
1218     // to keep loop info valid.
1219     if (dom_cast != nullptr && is_dominator(get_ctrl(dom_cast), get_ctrl(n))) {
1220       _igvn.replace_node(n, dom_cast);
1221       return dom_cast;
1222     }
1223   }
1224 
1225   // Determine if the Node has inputs from some local Phi.
1226   // Returns the block to clone thru.
1227   Node *n_blk = has_local_phi_input( n );
1228   if( !n_blk ) return n;
1229 
1230   // Do not clone the trip counter through on a CountedLoop
1231   // (messes up the canonical shape).
1232   if (((n_blk->is_CountedLoop() || (n_blk->is_Loop() && n_blk->as_Loop()->is_loop_nest_inner_loop())) && n->Opcode() == Op_AddI) ||
1233       (n_blk->is_LongCountedLoop() && n->Opcode() == Op_AddL)) {
1234     return n;
1235   }
1236   // Pushing a shift through the iv Phi can get in the way of addressing optimizations or range check elimination
1237   if (n_blk->is_BaseCountedLoop() && n->Opcode() == Op_LShift(n_blk->as_BaseCountedLoop()->bt()) &&
1238       n->in(1) == n_blk->as_BaseCountedLoop()->phi()) {
1239     return n;
1240   }
1241 
1242   // Check for having no control input; not pinned.  Allow
1243   // dominating control.
1244   if (n->in(0)) {
1245     Node *dom = idom(n_blk);
1246     if (dom_lca(n->in(0), dom) != n->in(0)) {
1247       return n;
1248     }
1249   }
1250   // Policy: when is it profitable.  You must get more wins than
1251   // policy before it is considered profitable.  Policy is usually 0,
1252   // so 1 win is considered profitable.  Big merges will require big
1253   // cloning, so get a larger policy.
1254   int policy = n_blk->req() >> 2;
1255 
1256   // If the loop is a candidate for range check elimination,
1257   // delay splitting through it's phi until a later loop optimization
1258   if (n_blk->is_BaseCountedLoop()) {
1259     IdealLoopTree *lp = get_loop(n_blk);
1260     if (lp && lp->_rce_candidate) {
1261       return n;
1262     }
1263   }
1264 
1265   if (must_throttle_split_if()) return n;
1266 
1267   // Split 'n' through the merge point if it is profitable
1268   Node *phi = split_thru_phi( n, n_blk, policy );
1269   if (!phi) return n;
1270 
1271   // Found a Phi to split thru!
1272   // Replace 'n' with the new phi
1273   _igvn.replace_node( n, phi );
1274   // Moved a load around the loop, 'en-registering' something.
1275   if (n_blk->is_Loop() && n->is_Load() &&
1276       !phi->in(LoopNode::LoopBackControl)->is_Load())
1277     C->set_major_progress();
1278 
1279   return phi;
1280 }
1281 
1282 static bool merge_point_too_heavy(Compile* C, Node* region) {
1283   // Bail out if the region and its phis have too many users.
1284   int weight = 0;
1285   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1286     weight += region->fast_out(i)->outcnt();
1287   }
1288   int nodes_left = C->max_node_limit() - C->live_nodes();
1289   if (weight * 8 > nodes_left) {
1290     if (PrintOpto) {
1291       tty->print_cr("*** Split-if bails out:  %d nodes, region weight %d", C->unique(), weight);
1292     }
1293     return true;
1294   } else {
1295     return false;
1296   }
1297 }
1298 
1299 static bool merge_point_safe(Node* region) {
1300   // 4799512: Stop split_if_with_blocks from splitting a block with a ConvI2LNode
1301   // having a PhiNode input. This sidesteps the dangerous case where the split
1302   // ConvI2LNode may become TOP if the input Value() does not
1303   // overlap the ConvI2L range, leaving a node which may not dominate its
1304   // uses.
1305   // A better fix for this problem can be found in the BugTraq entry, but
1306   // expediency for Mantis demands this hack.
1307 #ifdef _LP64
1308   for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1309     Node* n = region->fast_out(i);
1310     if (n->is_Phi()) {
1311       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1312         Node* m = n->fast_out(j);
1313         if (m->Opcode() == Op_ConvI2L)
1314           return false;
1315         if (m->is_CastII()) {
1316           return false;
1317         }
1318       }
1319     }
1320   }
1321 #endif
1322   return true;
1323 }
1324 
1325 
1326 //------------------------------place_outside_loop---------------------------------
1327 // Place some computation outside of this loop on the path to the use passed as argument
1328 Node* PhaseIdealLoop::place_outside_loop(Node* useblock, IdealLoopTree* loop) const {
1329   Node* head = loop->_head;
1330   assert(!loop->is_member(get_loop(useblock)), "must be outside loop");
1331   if (head->is_Loop() && head->as_Loop()->is_strip_mined()) {
1332     loop = loop->_parent;
1333     assert(loop->_head->is_OuterStripMinedLoop(), "malformed strip mined loop");
1334   }
1335 
1336   // Pick control right outside the loop
1337   for (;;) {
1338     Node* dom = idom(useblock);
1339     if (loop->is_member(get_loop(dom))) {
1340       break;
1341     }
1342     useblock = dom;
1343   }
1344   assert(find_non_split_ctrl(useblock) == useblock, "should be non split control");
1345   return useblock;
1346 }
1347 
1348 
1349 bool PhaseIdealLoop::identical_backtoback_ifs(Node *n) {
1350   if (!n->is_If() || n->is_BaseCountedLoopEnd()) {
1351     return false;
1352   }
1353   if (!n->in(0)->is_Region()) {
1354     return false;
1355   }
1356 
1357   Node* region = n->in(0);
1358   Node* dom = idom(region);
1359   if (!dom->is_If() ||  !n->as_If()->same_condition(dom, &_igvn)) {
1360     return false;
1361   }
1362   IfNode* dom_if = dom->as_If();
1363   Node* proj_true = dom_if->proj_out(1);
1364   Node* proj_false = dom_if->proj_out(0);
1365 
1366   for (uint i = 1; i < region->req(); i++) {
1367     if (is_dominator(proj_true, region->in(i))) {
1368       continue;
1369     }
1370     if (is_dominator(proj_false, region->in(i))) {
1371       continue;
1372     }
1373     return false;
1374   }
1375 
1376   return true;
1377 }
1378 
1379 
1380 bool PhaseIdealLoop::can_split_if(Node* n_ctrl) {
1381   if (must_throttle_split_if()) {
1382     return false;
1383   }
1384 
1385   // Do not do 'split-if' if irreducible loops are present.
1386   if (_has_irreducible_loops) {
1387     return false;
1388   }
1389 
1390   if (merge_point_too_heavy(C, n_ctrl)) {
1391     return false;
1392   }
1393 
1394   // Do not do 'split-if' if some paths are dead.  First do dead code
1395   // elimination and then see if its still profitable.
1396   for (uint i = 1; i < n_ctrl->req(); i++) {
1397     if (n_ctrl->in(i) == C->top()) {
1398       return false;
1399     }
1400   }
1401 
1402   // If trying to do a 'Split-If' at the loop head, it is only
1403   // profitable if the cmp folds up on BOTH paths.  Otherwise we
1404   // risk peeling a loop forever.
1405 
1406   // CNC - Disabled for now.  Requires careful handling of loop
1407   // body selection for the cloned code.  Also, make sure we check
1408   // for any input path not being in the same loop as n_ctrl.  For
1409   // irreducible loops we cannot check for 'n_ctrl->is_Loop()'
1410   // because the alternative loop entry points won't be converted
1411   // into LoopNodes.
1412   IdealLoopTree *n_loop = get_loop(n_ctrl);
1413   for (uint j = 1; j < n_ctrl->req(); j++) {
1414     if (get_loop(n_ctrl->in(j)) != n_loop) {
1415       return false;
1416     }
1417   }
1418 
1419   // Check for safety of the merge point.
1420   if (!merge_point_safe(n_ctrl)) {
1421     return false;
1422   }
1423 
1424   return true;
1425 }
1426 
1427 // Detect if the node is the inner strip-mined loop
1428 // Return: null if it's not the case, or the exit of outer strip-mined loop
1429 static Node* is_inner_of_stripmined_loop(const Node* out) {
1430   Node* out_le = nullptr;
1431 
1432   if (out->is_CountedLoopEnd()) {
1433       const CountedLoopNode* loop = out->as_CountedLoopEnd()->loopnode();
1434 
1435       if (loop != nullptr && loop->is_strip_mined()) {
1436         out_le = loop->in(LoopNode::EntryControl)->as_OuterStripMinedLoop()->outer_loop_exit();
1437       }
1438   }
1439 
1440   return out_le;
1441 }
1442 
1443 bool PhaseIdealLoop::flat_array_element_type_check(Node *n) {
1444   // If the CmpP is a subtype check for a value that has just been
1445   // loaded from an array, the subtype check guarantees the value
1446   // can't be stored in a flat array and the load of the value
1447   // happens with a flat array check then: push the type check
1448   // through the phi of the flat array check. This needs special
1449   // logic because the subtype check's input is not a phi but a
1450   // LoadKlass that must first be cloned through the phi.
1451   if (n->Opcode() != Op_CmpP) {
1452     return false;
1453   }
1454 
1455   Node* klassptr = n->in(1);
1456   Node* klasscon = n->in(2);
1457 
1458   if (klassptr->is_DecodeNarrowPtr()) {
1459     klassptr = klassptr->in(1);
1460   }
1461 
1462   if (klassptr->Opcode() != Op_LoadKlass && klassptr->Opcode() != Op_LoadNKlass) {
1463     return false;
1464   }
1465 
1466   if (!klasscon->is_Con()) {
1467     return false;
1468   }
1469 
1470   Node* addr = klassptr->in(MemNode::Address);
1471 
1472   if (!addr->is_AddP()) {
1473     return false;
1474   }
1475 
1476   intptr_t offset;
1477   Node* obj = AddPNode::Ideal_base_and_offset(addr, &_igvn, offset);
1478 
1479   if (obj == nullptr) {
1480     return false;
1481   }
1482 
1483   assert(obj != nullptr && addr->in(AddPNode::Base) == addr->in(AddPNode::Address), "malformed AddP?");
1484   if (obj->Opcode() == Op_CastPP) {
1485     obj = obj->in(1);
1486   }
1487 
1488   if (!obj->is_Phi()) {
1489     return false;
1490   }
1491 
1492   Node* region = obj->in(0);
1493 
1494   Node* phi = PhiNode::make_blank(region, n->in(1));
1495   for (uint i = 1; i < region->req(); i++) {
1496     Node* in = obj->in(i);
1497     Node* ctrl = region->in(i);
1498     if (addr->in(AddPNode::Base) != obj) {
1499       Node* cast = addr->in(AddPNode::Base);
1500       assert(cast->Opcode() == Op_CastPP && cast->in(0) != nullptr, "inconsistent subgraph");
1501       Node* cast_clone = cast->clone();
1502       cast_clone->set_req(0, ctrl);
1503       cast_clone->set_req(1, in);
1504       register_new_node(cast_clone, ctrl);
1505       const Type* tcast = cast_clone->Value(&_igvn);
1506       _igvn.set_type(cast_clone, tcast);
1507       cast_clone->as_Type()->set_type(tcast);
1508       in = cast_clone;
1509     }
1510     Node* addr_clone = addr->clone();
1511     addr_clone->set_req(AddPNode::Base, in);
1512     addr_clone->set_req(AddPNode::Address, in);
1513     register_new_node(addr_clone, ctrl);
1514     _igvn.set_type(addr_clone, addr_clone->Value(&_igvn));
1515     Node* klassptr_clone = klassptr->clone();
1516     klassptr_clone->set_req(2, addr_clone);
1517     register_new_node(klassptr_clone, ctrl);
1518     _igvn.set_type(klassptr_clone, klassptr_clone->Value(&_igvn));
1519     if (klassptr != n->in(1)) {
1520       Node* decode = n->in(1);
1521       assert(decode->is_DecodeNarrowPtr(), "inconsistent subgraph");
1522       Node* decode_clone = decode->clone();
1523       decode_clone->set_req(1, klassptr_clone);
1524       register_new_node(decode_clone, ctrl);
1525       _igvn.set_type(decode_clone, decode_clone->Value(&_igvn));
1526       klassptr_clone = decode_clone;
1527     }
1528     phi->set_req(i, klassptr_clone);
1529   }
1530   register_new_node(phi, region);
1531   Node* orig = n->in(1);
1532   _igvn.replace_input_of(n, 1, phi);
1533   split_if_with_blocks_post(n);
1534   if (n->outcnt() != 0) {
1535     _igvn.replace_input_of(n, 1, orig);
1536     _igvn.remove_dead_node(phi);
1537   }
1538   return true;
1539 }
1540 
1541 //------------------------------split_if_with_blocks_post----------------------
1542 // Do the real work in a non-recursive function.  CFG hackery wants to be
1543 // in the post-order, so it can dirty the I-DOM info and not use the dirtied
1544 // info.
1545 void PhaseIdealLoop::split_if_with_blocks_post(Node *n) {
1546 
1547   if (flat_array_element_type_check(n)) {
1548     return;
1549   }
1550 
1551   // Cloning Cmp through Phi's involves the split-if transform.
1552   // FastLock is not used by an If
1553   if (n->is_Cmp() && !n->is_FastLock()) {
1554     Node *n_ctrl = get_ctrl(n);
1555     // Determine if the Node has inputs from some local Phi.
1556     // Returns the block to clone thru.
1557     Node *n_blk = has_local_phi_input(n);
1558     if (n_blk != n_ctrl) {
1559       return;
1560     }
1561 
1562     if (!can_split_if(n_ctrl)) {
1563       return;
1564     }
1565 
1566     if (n->outcnt() != 1) {
1567       return; // Multiple bool's from 1 compare?
1568     }
1569     Node *bol = n->unique_out();
1570     assert(bol->is_Bool(), "expect a bool here");
1571     if (bol->outcnt() != 1) {
1572       return;// Multiple branches from 1 compare?
1573     }
1574     Node *iff = bol->unique_out();
1575 
1576     // Check some safety conditions
1577     if (iff->is_If()) {        // Classic split-if?
1578       if (iff->in(0) != n_ctrl) {
1579         return; // Compare must be in same blk as if
1580       }
1581     } else if (iff->is_CMove()) { // Trying to split-up a CMOVE
1582       // Can't split CMove with different control.
1583       if (get_ctrl(iff) != n_ctrl) {
1584         return;
1585       }
1586       if (get_ctrl(iff->in(2)) == n_ctrl ||
1587           get_ctrl(iff->in(3)) == n_ctrl) {
1588         return;                 // Inputs not yet split-up
1589       }
1590       if (get_loop(n_ctrl) != get_loop(get_ctrl(iff))) {
1591         return;                 // Loop-invar test gates loop-varying CMOVE
1592       }
1593     } else {
1594       return;  // some other kind of node, such as an Allocate
1595     }
1596 
1597     // When is split-if profitable?  Every 'win' on means some control flow
1598     // goes dead, so it's almost always a win.
1599     int policy = 0;
1600     // Split compare 'n' through the merge point if it is profitable
1601     Node *phi = split_thru_phi( n, n_ctrl, policy);
1602     if (!phi) {
1603       return;
1604     }
1605 
1606     // Found a Phi to split thru!
1607     // Replace 'n' with the new phi
1608     _igvn.replace_node(n, phi);
1609 
1610     // Now split the bool up thru the phi
1611     Node *bolphi = split_thru_phi(bol, n_ctrl, -1);
1612     guarantee(bolphi != nullptr, "null boolean phi node");
1613 
1614     _igvn.replace_node(bol, bolphi);
1615     assert(iff->in(1) == bolphi, "");
1616 
1617     if (bolphi->Value(&_igvn)->singleton()) {
1618       return;
1619     }
1620 
1621     // Conditional-move?  Must split up now
1622     if (!iff->is_If()) {
1623       Node *cmovphi = split_thru_phi(iff, n_ctrl, -1);
1624       _igvn.replace_node(iff, cmovphi);
1625       return;
1626     }
1627 
1628     // Now split the IF
1629     C->print_method(PHASE_BEFORE_SPLIT_IF, 4, iff);
1630     if (TraceLoopOpts) {
1631       tty->print_cr("Split-If");
1632     }
1633     do_split_if(iff);
1634     C->print_method(PHASE_AFTER_SPLIT_IF, 4, iff);
1635     return;
1636   }
1637 
1638   // Two identical ifs back to back can be merged
1639   if (try_merge_identical_ifs(n)) {
1640     return;
1641   }
1642 
1643   // Check for an IF ready to split; one that has its
1644   // condition codes input coming from a Phi at the block start.
1645   int n_op = n->Opcode();
1646 
1647   // Check for an IF being dominated by another IF same test
1648   if (n_op == Op_If ||
1649       n_op == Op_RangeCheck) {
1650     Node *bol = n->in(1);
1651     uint max = bol->outcnt();
1652     // Check for same test used more than once?
1653     if (bol->is_Bool() && (max > 1 || bol->in(1)->is_SubTypeCheck())) {
1654       // Search up IDOMs to see if this IF is dominated.
1655       Node* cmp = bol->in(1);
1656       Node *cutoff = cmp->is_SubTypeCheck() ? dom_lca(get_ctrl(cmp->in(1)), get_ctrl(cmp->in(2))) : get_ctrl(bol);
1657 
1658       // Now search up IDOMs till cutoff, looking for a dominating test
1659       Node *prevdom = n;
1660       Node *dom = idom(prevdom);
1661       while (dom != cutoff) {
1662         if (dom->req() > 1 && n->as_If()->same_condition(dom, &_igvn) && prevdom->in(0) == dom &&
1663             safe_for_if_replacement(dom)) {
1664           // It's invalid to move control dependent data nodes in the inner
1665           // strip-mined loop, because:
1666           //  1) break validation of LoopNode::verify_strip_mined()
1667           //  2) move code with side-effect in strip-mined loop
1668           // Move to the exit of outer strip-mined loop in that case.
1669           Node* out_le = is_inner_of_stripmined_loop(dom);
1670           if (out_le != nullptr) {
1671             prevdom = out_le;
1672           }
1673           // Replace the dominated test with an obvious true or false.
1674           // Place it on the IGVN worklist for later cleanup.
1675           C->set_major_progress();
1676           // Split if: pin array accesses that are control dependent on a range check and moved to a regular if,
1677           // to prevent an array load from floating above its range check. There are three cases:
1678           // 1. Move from RangeCheck "a" to RangeCheck "b": don't need to pin. If we ever remove b, then we pin
1679           //    all its array accesses at that point.
1680           // 2. We move from RangeCheck "a" to regular if "b": need to pin. If we ever remove b, then its array
1681           //    accesses would start to float, since we don't pin at that point.
1682           // 3. If we move from regular if: don't pin. All array accesses are already assumed to be pinned.
1683           bool pin_array_access_nodes =  n->Opcode() == Op_RangeCheck &&
1684                                          prevdom->in(0)->Opcode() != Op_RangeCheck;
1685           dominated_by(prevdom->as_IfProj(), n->as_If(), false, pin_array_access_nodes);
1686           DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
1687           return;
1688         }
1689         prevdom = dom;
1690         dom = idom(prevdom);
1691       }
1692     }
1693   }
1694 
1695   try_sink_out_of_loop(n);
1696   if (C->failing()) {
1697     return;
1698   }
1699 
1700   try_move_store_after_loop(n);
1701 
1702   // Remove multiple allocations of the same inline type
1703   if (n->is_InlineType()) {
1704     n->as_InlineType()->remove_redundant_allocations(this);
1705   }
1706 }
1707 
1708 // Transform:
1709 //
1710 // if (some_condition) {
1711 //   // body 1
1712 // } else {
1713 //   // body 2
1714 // }
1715 // if (some_condition) {
1716 //   // body 3
1717 // } else {
1718 //   // body 4
1719 // }
1720 //
1721 // into:
1722 //
1723 //
1724 // if (some_condition) {
1725 //   // body 1
1726 //   // body 3
1727 // } else {
1728 //   // body 2
1729 //   // body 4
1730 // }
1731 bool PhaseIdealLoop::try_merge_identical_ifs(Node* n) {
1732   if (identical_backtoback_ifs(n) && can_split_if(n->in(0))) {
1733     Node *n_ctrl = n->in(0);
1734     IfNode* dom_if = idom(n_ctrl)->as_If();
1735     if (n->in(1) != dom_if->in(1)) {
1736       assert(n->in(1)->in(1)->is_SubTypeCheck() &&
1737              (n->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr ||
1738               dom_if->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr), "only for subtype checks with profile data attached");
1739       _igvn.replace_input_of(n, 1, dom_if->in(1));
1740     }
1741     ProjNode* dom_proj_true = dom_if->proj_out(1);
1742     ProjNode* dom_proj_false = dom_if->proj_out(0);
1743 
1744     // Now split the IF
1745     RegionNode* new_false_region;
1746     RegionNode* new_true_region;
1747     do_split_if(n, &new_false_region, &new_true_region);
1748     assert(new_false_region->req() == new_true_region->req(), "");
1749 #ifdef ASSERT
1750     for (uint i = 1; i < new_false_region->req(); ++i) {
1751       assert(new_false_region->in(i)->in(0) == new_true_region->in(i)->in(0), "unexpected shape following split if");
1752       assert(i == new_false_region->req() - 1 || new_false_region->in(i)->in(0)->in(1) == new_false_region->in(i + 1)->in(0)->in(1), "unexpected shape following split if");
1753     }
1754 #endif
1755     assert(new_false_region->in(1)->in(0)->in(1) == dom_if->in(1), "dominating if and dominated if after split must share test");
1756 
1757     // We now have:
1758     // if (some_condition) {
1759     //   // body 1
1760     //   if (some_condition) {
1761     //     body3: // new_true_region
1762     //     // body3
1763     //   } else {
1764     //     goto body4;
1765     //   }
1766     // } else {
1767     //   // body 2
1768     //  if (some_condition) {
1769     //     goto body3;
1770     //   } else {
1771     //     body4:   // new_false_region
1772     //     // body4;
1773     //   }
1774     // }
1775     //
1776 
1777     // clone pinned nodes thru the resulting regions
1778     push_pinned_nodes_thru_region(dom_if, new_true_region);
1779     push_pinned_nodes_thru_region(dom_if, new_false_region);
1780 
1781     // Optimize out the cloned ifs. Because pinned nodes were cloned, this also allows a CastPP that would be dependent
1782     // on a projection of n to have the dom_if as a control dependency. We don't want the CastPP to end up with an
1783     // unrelated control dependency.
1784     for (uint i = 1; i < new_false_region->req(); i++) {
1785       if (is_dominator(dom_proj_true, new_false_region->in(i))) {
1786         dominated_by(dom_proj_true->as_IfProj(), new_false_region->in(i)->in(0)->as_If());
1787       } else {
1788         assert(is_dominator(dom_proj_false, new_false_region->in(i)), "bad if");
1789         dominated_by(dom_proj_false->as_IfProj(), new_false_region->in(i)->in(0)->as_If());
1790       }
1791     }
1792     return true;
1793   }
1794   return false;
1795 }
1796 
1797 void PhaseIdealLoop::push_pinned_nodes_thru_region(IfNode* dom_if, Node* region) {
1798   for (DUIterator i = region->outs(); region->has_out(i); i++) {
1799     Node* u = region->out(i);
1800     if (!has_ctrl(u) || u->is_Phi() || !u->depends_only_on_test() || !_igvn.no_dependent_zero_check(u)) {
1801       continue;
1802     }
1803     assert(u->in(0) == region, "not a control dependent node?");
1804     uint j = 1;
1805     for (; j < u->req(); ++j) {
1806       Node* in = u->in(j);
1807       if (!is_dominator(ctrl_or_self(in), dom_if)) {
1808         break;
1809       }
1810     }
1811     if (j == u->req()) {
1812       Node *phi = PhiNode::make_blank(region, u);
1813       for (uint k = 1; k < region->req(); ++k) {
1814         Node* clone = u->clone();
1815         clone->set_req(0, region->in(k));
1816         register_new_node(clone, region->in(k));
1817         phi->init_req(k, clone);
1818       }
1819       register_new_node(phi, region);
1820       _igvn.replace_node(u, phi);
1821       --i;
1822     }
1823   }
1824 }
1825 
1826 bool PhaseIdealLoop::safe_for_if_replacement(const Node* dom) const {
1827   if (!dom->is_CountedLoopEnd()) {
1828     return true;
1829   }
1830   CountedLoopEndNode* le = dom->as_CountedLoopEnd();
1831   CountedLoopNode* cl = le->loopnode();
1832   if (cl == nullptr) {
1833     return true;
1834   }
1835   if (!cl->is_main_loop()) {
1836     return true;
1837   }
1838   if (cl->is_canonical_loop_entry() == nullptr) {
1839     return true;
1840   }
1841   // Further unrolling is possible so loop exit condition might change
1842   return false;
1843 }
1844 
1845 // See if a shared loop-varying computation has no loop-varying uses.
1846 // Happens if something is only used for JVM state in uncommon trap exits,
1847 // like various versions of induction variable+offset.  Clone the
1848 // computation per usage to allow it to sink out of the loop.
1849 void PhaseIdealLoop::try_sink_out_of_loop(Node* n) {
1850   bool is_raw_to_oop_cast = n->is_ConstraintCast() &&
1851                             n->in(1)->bottom_type()->isa_rawptr() &&
1852                             !n->bottom_type()->isa_rawptr();
1853 
1854   if (has_ctrl(n) &&
1855       !n->is_Phi() &&
1856       !n->is_Bool() &&
1857       !n->is_Proj() &&
1858       !n->is_MergeMem() &&
1859       !n->is_CMove() &&
1860       !n->is_OpaqueNotNull() &&
1861       !n->is_OpaqueInitializedAssertionPredicate() &&
1862       !n->is_OpaqueTemplateAssertionPredicate() &&
1863       !is_raw_to_oop_cast && // don't extend live ranges of raw oops
1864       (KillPathsReachableByDeadTypeNode || !n->is_Type())
1865       ) {
1866     Node *n_ctrl = get_ctrl(n);
1867     IdealLoopTree *n_loop = get_loop(n_ctrl);
1868 
1869     if (n->in(0) != nullptr) {
1870       IdealLoopTree* loop_ctrl = get_loop(n->in(0));
1871       if (n_loop != loop_ctrl && n_loop->is_member(loop_ctrl)) {
1872         // n has a control input inside a loop but get_ctrl() is member of an outer loop. This could happen, for example,
1873         // for Div nodes inside a loop (control input inside loop) without a use except for an UCT (outside the loop).
1874         // Rewire control of n to right outside of the loop, regardless if its input(s) are later sunk or not.
1875         Node* maybe_pinned_n = n;
1876         Node* outside_ctrl = place_outside_loop(n_ctrl, loop_ctrl);
1877         if (n->depends_only_on_test()) {
1878           Node* pinned_clone = n->pin_array_access_node();
1879           if (pinned_clone != nullptr) {
1880             // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a
1881             // range check for that access. If that condition is replaced by an identical dominating one, then an
1882             // unpinned load would risk floating above its range check.
1883             register_new_node(pinned_clone, n_ctrl);
1884             maybe_pinned_n = pinned_clone;
1885             _igvn.replace_node(n, pinned_clone);
1886           }
1887         }
1888         _igvn.replace_input_of(maybe_pinned_n, 0, outside_ctrl);
1889       }
1890     }
1891     if (n_loop != _ltree_root && n->outcnt() > 1) {
1892       // Compute early control: needed for anti-dependence analysis. It's also possible that as a result of
1893       // previous transformations in this loop opts round, the node can be hoisted now: early control will tell us.
1894       Node* early_ctrl = compute_early_ctrl(n, n_ctrl);
1895       if (n_loop->is_member(get_loop(early_ctrl)) && // check that this one can't be hoisted now
1896           ctrl_of_all_uses_out_of_loop(n, early_ctrl, n_loop)) { // All uses in outer loops!
1897         if (n->is_Store() || n->is_LoadStore()) {
1898             assert(false, "no node with a side effect");
1899             C->record_failure("no node with a side effect");
1900             return;
1901         }
1902         Node* outer_loop_clone = nullptr;
1903         for (DUIterator_Last jmin, j = n->last_outs(jmin); j >= jmin;) {
1904           Node* u = n->last_out(j); // Clone private computation per use
1905           _igvn.rehash_node_delayed(u);
1906           Node* x = nullptr;
1907           if (n->depends_only_on_test()) {
1908             // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a
1909             // range check for that access. If that condition is replaced by an identical dominating one, then an
1910             // unpinned load would risk floating above its range check.
1911             x = n->pin_array_access_node();
1912           }
1913           if (x == nullptr) {
1914             x = n->clone();
1915           }
1916           Node* x_ctrl = nullptr;
1917           if (u->is_Phi()) {
1918             // Replace all uses of normal nodes.  Replace Phi uses
1919             // individually, so the separate Nodes can sink down
1920             // different paths.
1921             uint k = 1;
1922             while (u->in(k) != n) k++;
1923             u->set_req(k, x);
1924             // x goes next to Phi input path
1925             x_ctrl = u->in(0)->in(k);
1926             // Find control for 'x' next to use but not inside inner loops.
1927             x_ctrl = place_outside_loop(x_ctrl, n_loop);
1928             --j;
1929           } else {              // Normal use
1930             if (has_ctrl(u)) {
1931               x_ctrl = get_ctrl(u);
1932             } else {
1933               x_ctrl = u->in(0);
1934             }
1935             // Find control for 'x' next to use but not inside inner loops.
1936             x_ctrl = place_outside_loop(x_ctrl, n_loop);
1937             // Replace all uses
1938             if (u->is_ConstraintCast() && _igvn.type(n)->higher_equal(u->bottom_type()) && u->in(0) == x_ctrl) {
1939               // If we're sinking a chain of data nodes, we might have inserted a cast to pin the use which is not necessary
1940               // anymore now that we're going to pin n as well
1941               _igvn.replace_node(u, x);
1942               --j;
1943             } else {
1944               int nb = u->replace_edge(n, x, &_igvn);
1945               j -= nb;
1946             }
1947           }
1948 
1949           if (n->is_Load()) {
1950             // For loads, add a control edge to a CFG node outside of the loop
1951             // to force them to not combine and return back inside the loop
1952             // during GVN optimization (4641526).
1953             assert(x_ctrl == get_late_ctrl_with_anti_dep(x->as_Load(), early_ctrl, x_ctrl), "anti-dependences were already checked");
1954 
1955             IdealLoopTree* x_loop = get_loop(x_ctrl);
1956             Node* x_head = x_loop->_head;
1957             if (x_head->is_Loop() && x_head->is_OuterStripMinedLoop()) {
1958               // Do not add duplicate LoadNodes to the outer strip mined loop
1959               if (outer_loop_clone != nullptr) {
1960                 _igvn.replace_node(x, outer_loop_clone);
1961                 continue;
1962               }
1963               outer_loop_clone = x;
1964             }
1965             x->set_req(0, x_ctrl);
1966           } else if (n->in(0) != nullptr){
1967             x->set_req(0, x_ctrl);
1968           }
1969           assert(dom_depth(n_ctrl) <= dom_depth(x_ctrl), "n is later than its clone");
1970           assert(!n_loop->is_member(get_loop(x_ctrl)), "should have moved out of loop");
1971           register_new_node(x, x_ctrl);
1972 
1973           // Chain of AddP nodes: (AddP base (AddP base (AddP base )))
1974           // All AddP nodes must keep the same base after sinking so:
1975           // 1- We don't add a CastPP here until the last one of the chain is sunk: if part of the chain is not sunk,
1976           // their bases remain the same.
1977           // (see 2- below)
1978           assert(!x->is_AddP() || !x->in(AddPNode::Address)->is_AddP() ||
1979                  x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base) ||
1980                  !x->in(AddPNode::Address)->in(AddPNode::Base)->eqv_uncast(x->in(AddPNode::Base)), "unexpected AddP shape");
1981           if (x->in(0) == nullptr && !x->is_DecodeNarrowPtr() &&
1982               !(x->is_AddP() && x->in(AddPNode::Address)->is_AddP() && x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base))) {
1983             assert(!x->is_Load(), "load should be pinned");
1984             // Use a cast node to pin clone out of loop
1985             Node* cast = nullptr;
1986             for (uint k = 0; k < x->req(); k++) {
1987               Node* in = x->in(k);
1988               if (in != nullptr && n_loop->is_member(get_loop(get_ctrl(in)))) {
1989                 const Type* in_t = _igvn.type(in);
1990                 cast = ConstraintCastNode::make_cast_for_type(x_ctrl, in, in_t,
1991                                                               ConstraintCastNode::UnconditionalDependency, nullptr);
1992               }
1993               if (cast != nullptr) {
1994                 Node* prev = _igvn.hash_find_insert(cast);
1995                 if (prev != nullptr && get_ctrl(prev) == x_ctrl) {
1996                   cast->destruct(&_igvn);
1997                   cast = prev;
1998                 } else {
1999                   register_new_node(cast, x_ctrl);
2000                 }
2001                 x->replace_edge(in, cast);
2002                 // Chain of AddP nodes:
2003                 // 2- A CastPP of the base is only added now that all AddP nodes are sunk
2004                 if (x->is_AddP() && k == AddPNode::Base) {
2005                   update_addp_chain_base(x, n->in(AddPNode::Base), cast);
2006                 }
2007                 break;
2008               }
2009             }
2010             assert(cast != nullptr, "must have added a cast to pin the node");
2011           }
2012         }
2013         _igvn.remove_dead_node(n);
2014       }
2015       _dom_lca_tags_round = 0;
2016     }
2017   }
2018 }
2019 
2020 void PhaseIdealLoop::update_addp_chain_base(Node* x, Node* old_base, Node* new_base) {
2021   ResourceMark rm;
2022   Node_List wq;
2023   wq.push(x);
2024   while (wq.size() != 0) {
2025     Node* n = wq.pop();
2026     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2027       Node* u = n->fast_out(i);
2028       if (u->is_AddP() && u->in(AddPNode::Base) == old_base) {
2029         _igvn.replace_input_of(u, AddPNode::Base, new_base);
2030         wq.push(u);
2031       }
2032     }
2033   }
2034 }
2035 
2036 // Compute the early control of a node by following its inputs until we reach
2037 // nodes that are pinned. Then compute the LCA of the control of all pinned nodes.
2038 Node* PhaseIdealLoop::compute_early_ctrl(Node* n, Node* n_ctrl) {
2039   Node* early_ctrl = nullptr;
2040   ResourceMark rm;
2041   Unique_Node_List wq;
2042   wq.push(n);
2043   for (uint i = 0; i < wq.size(); i++) {
2044     Node* m = wq.at(i);
2045     Node* c = nullptr;
2046     if (m->is_CFG()) {
2047       c = m;
2048     } else if (m->pinned()) {
2049       c = m->in(0);
2050     } else {
2051       for (uint j = 0; j < m->req(); j++) {
2052         Node* in = m->in(j);
2053         if (in != nullptr) {
2054           wq.push(in);
2055         }
2056       }
2057     }
2058     if (c != nullptr) {
2059       assert(is_dominator(c, n_ctrl), "control input must dominate current control");
2060       if (early_ctrl == nullptr || is_dominator(early_ctrl, c)) {
2061         early_ctrl = c;
2062       }
2063     }
2064   }
2065   assert(is_dominator(early_ctrl, n_ctrl), "early control must dominate current control");
2066   return early_ctrl;
2067 }
2068 
2069 bool PhaseIdealLoop::ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop) {
2070   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2071     Node* u = n->fast_out(i);
2072     if (u->is_Opaque1()) {
2073       return false;  // Found loop limit, bugfix for 4677003
2074     }
2075     // We can't reuse tags in PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal() so make sure calls to
2076     // get_late_ctrl_with_anti_dep() use their own tag
2077     _dom_lca_tags_round++;
2078     assert(_dom_lca_tags_round != 0, "shouldn't wrap around");
2079 
2080     if (u->is_Phi()) {
2081       for (uint j = 1; j < u->req(); ++j) {
2082         if (u->in(j) == n && !ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, u->in(0)->in(j))) {
2083           return false;
2084         }
2085       }
2086     } else {
2087       Node* ctrl = has_ctrl(u) ? get_ctrl(u) : u->in(0);
2088       if (!ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, ctrl)) {
2089         return false;
2090       }
2091     }
2092   }
2093   return true;
2094 }
2095 
2096 bool PhaseIdealLoop::ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl) {
2097   if (n->is_Load()) {
2098     ctrl = get_late_ctrl_with_anti_dep(n->as_Load(), n_ctrl, ctrl);
2099   }
2100   IdealLoopTree *u_loop = get_loop(ctrl);
2101   if (u_loop == n_loop) {
2102     return false; // Found loop-varying use
2103   }
2104   if (n_loop->is_member(u_loop)) {
2105     return false; // Found use in inner loop
2106   }
2107   // Sinking a node from a pre loop to its main loop pins the node between the pre and main loops. If that node is input
2108   // to a check that's eliminated by range check elimination, it becomes input to an expression that feeds into the exit
2109   // test of the pre loop above the point in the graph where it's pinned.
2110   if (n_loop->_head->is_CountedLoop() && n_loop->_head->as_CountedLoop()->is_pre_loop()) {
2111     CountedLoopNode* pre_loop = n_loop->_head->as_CountedLoop();
2112     if (is_dominator(pre_loop->loopexit(), ctrl)) {
2113       return false;
2114     }
2115   }
2116   return true;
2117 }
2118 
2119 //------------------------------split_if_with_blocks---------------------------
2120 // Check for aggressive application of 'split-if' optimization,
2121 // using basic block level info.
2122 void PhaseIdealLoop::split_if_with_blocks(VectorSet &visited, Node_Stack &nstack) {
2123   Node* root = C->root();
2124   visited.set(root->_idx); // first, mark root as visited
2125   // Do pre-visit work for root
2126   Node* n   = split_if_with_blocks_pre(root);
2127   uint  cnt = n->outcnt();
2128   uint  i   = 0;
2129 
2130   while (true) {
2131     // Visit all children
2132     if (i < cnt) {
2133       Node* use = n->raw_out(i);
2134       ++i;
2135       if (use->outcnt() != 0 && !visited.test_set(use->_idx)) {
2136         // Now do pre-visit work for this use
2137         use = split_if_with_blocks_pre(use);
2138         nstack.push(n, i); // Save parent and next use's index.
2139         n   = use;         // Process all children of current use.
2140         cnt = use->outcnt();
2141         i   = 0;
2142       }
2143     }
2144     else {
2145       // All of n's children have been processed, complete post-processing.
2146       if (cnt != 0 && !n->is_Con()) {
2147         assert(has_node(n), "no dead nodes");
2148         split_if_with_blocks_post(n);
2149         if (C->failing()) {
2150           return;
2151         }
2152       }
2153       if (must_throttle_split_if()) {
2154         nstack.clear();
2155       }
2156       if (nstack.is_empty()) {
2157         // Finished all nodes on stack.
2158         break;
2159       }
2160       // Get saved parent node and next use's index. Visit the rest of uses.
2161       n   = nstack.node();
2162       cnt = n->outcnt();
2163       i   = nstack.index();
2164       nstack.pop();
2165     }
2166   }
2167 }
2168 
2169 
2170 //=============================================================================
2171 //
2172 //                   C L O N E   A   L O O P   B O D Y
2173 //
2174 
2175 //------------------------------clone_iff--------------------------------------
2176 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
2177 // "Nearly" because all Nodes have been cloned from the original in the loop,
2178 // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
2179 // through the Phi recursively, and return a Bool.
2180 Node* PhaseIdealLoop::clone_iff(PhiNode* phi) {
2181 
2182   // Convert this Phi into a Phi merging Bools
2183   uint i;
2184   for (i = 1; i < phi->req(); i++) {
2185     Node* b = phi->in(i);
2186     if (b->is_Phi()) {
2187       _igvn.replace_input_of(phi, i, clone_iff(b->as_Phi()));
2188     } else {
2189       assert(b->is_Bool() || b->is_OpaqueNotNull() || b->is_OpaqueInitializedAssertionPredicate(),
2190              "bool, non-null check with OpaqueNotNull or Initialized Assertion Predicate with its Opaque node");
2191     }
2192   }
2193   Node* n = phi->in(1);
2194   Node* sample_opaque = nullptr;
2195   Node *sample_bool = nullptr;
2196   if (n->is_OpaqueNotNull() || n->is_OpaqueInitializedAssertionPredicate()) {
2197     sample_opaque = n;
2198     sample_bool = n->in(1);
2199     assert(sample_bool->is_Bool(), "wrong type");
2200   } else {
2201     sample_bool = n;
2202   }
2203   Node* sample_cmp = sample_bool->in(1);
2204   const Type* t = Type::TOP;
2205   const TypePtr* at = nullptr;
2206   if (sample_cmp->is_FlatArrayCheck()) {
2207     // Left input of a FlatArrayCheckNode is memory, set the (adr) type of the phi accordingly
2208     assert(sample_cmp->in(1)->bottom_type() == Type::MEMORY, "unexpected input type");
2209     t = Type::MEMORY;
2210     at = TypeRawPtr::BOTTOM;
2211   }
2212 
2213   // Make Phis to merge the Cmp's inputs.
2214   PhiNode *phi1 = new PhiNode(phi->in(0), t, at);
2215   PhiNode *phi2 = new PhiNode(phi->in(0), Type::TOP);
2216   for (i = 1; i < phi->req(); i++) {
2217     Node *n1 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(1) : phi->in(i)->in(1)->in(1)->in(1);
2218     Node *n2 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(2) : phi->in(i)->in(1)->in(1)->in(2);
2219     phi1->set_req(i, n1);
2220     phi2->set_req(i, n2);
2221     phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type()));
2222     phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type()));
2223   }
2224   // See if these Phis have been made before.
2225   // Register with optimizer
2226   Node *hit1 = _igvn.hash_find_insert(phi1);
2227   if (hit1) {                   // Hit, toss just made Phi
2228     _igvn.remove_dead_node(phi1); // Remove new phi
2229     assert(hit1->is_Phi(), "" );
2230     phi1 = (PhiNode*)hit1;      // Use existing phi
2231   } else {                      // Miss
2232     _igvn.register_new_node_with_optimizer(phi1);
2233   }
2234   Node *hit2 = _igvn.hash_find_insert(phi2);
2235   if (hit2) {                   // Hit, toss just made Phi
2236     _igvn.remove_dead_node(phi2); // Remove new phi
2237     assert(hit2->is_Phi(), "" );
2238     phi2 = (PhiNode*)hit2;      // Use existing phi
2239   } else {                      // Miss
2240     _igvn.register_new_node_with_optimizer(phi2);
2241   }
2242   // Register Phis with loop/block info
2243   set_ctrl(phi1, phi->in(0));
2244   set_ctrl(phi2, phi->in(0));
2245   // Make a new Cmp
2246   Node *cmp = sample_cmp->clone();
2247   cmp->set_req(1, phi1);
2248   cmp->set_req(2, phi2);
2249   _igvn.register_new_node_with_optimizer(cmp);
2250   set_ctrl(cmp, phi->in(0));
2251 
2252   // Make a new Bool
2253   Node *b = sample_bool->clone();
2254   b->set_req(1,cmp);
2255   _igvn.register_new_node_with_optimizer(b);
2256   set_ctrl(b, phi->in(0));
2257 
2258   if (sample_opaque != nullptr) {
2259     Node* opaque = sample_opaque->clone();
2260     opaque->set_req(1, b);
2261     _igvn.register_new_node_with_optimizer(opaque);
2262     set_ctrl(opaque, phi->in(0));
2263     return opaque;
2264   }
2265 
2266   assert(b->is_Bool(), "");
2267   return b;
2268 }
2269 
2270 //------------------------------clone_bool-------------------------------------
2271 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
2272 // "Nearly" because all Nodes have been cloned from the original in the loop,
2273 // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
2274 // through the Phi recursively, and return a Bool.
2275 CmpNode*PhaseIdealLoop::clone_bool(PhiNode* phi) {
2276   uint i;
2277   // Convert this Phi into a Phi merging Bools
2278   for( i = 1; i < phi->req(); i++ ) {
2279     Node *b = phi->in(i);
2280     if( b->is_Phi() ) {
2281       _igvn.replace_input_of(phi, i, clone_bool(b->as_Phi()));
2282     } else {
2283       assert( b->is_Cmp() || b->is_top(), "inputs are all Cmp or TOP" );
2284     }
2285   }
2286 
2287   Node *sample_cmp = phi->in(1);
2288 
2289   // Make Phis to merge the Cmp's inputs.
2290   PhiNode *phi1 = new PhiNode( phi->in(0), Type::TOP );
2291   PhiNode *phi2 = new PhiNode( phi->in(0), Type::TOP );
2292   for( uint j = 1; j < phi->req(); j++ ) {
2293     Node *cmp_top = phi->in(j); // Inputs are all Cmp or TOP
2294     Node *n1, *n2;
2295     if( cmp_top->is_Cmp() ) {
2296       n1 = cmp_top->in(1);
2297       n2 = cmp_top->in(2);
2298     } else {
2299       n1 = n2 = cmp_top;
2300     }
2301     phi1->set_req( j, n1 );
2302     phi2->set_req( j, n2 );
2303     phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type()));
2304     phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type()));
2305   }
2306 
2307   // See if these Phis have been made before.
2308   // Register with optimizer
2309   Node *hit1 = _igvn.hash_find_insert(phi1);
2310   if( hit1 ) {                  // Hit, toss just made Phi
2311     _igvn.remove_dead_node(phi1); // Remove new phi
2312     assert( hit1->is_Phi(), "" );
2313     phi1 = (PhiNode*)hit1;      // Use existing phi
2314   } else {                      // Miss
2315     _igvn.register_new_node_with_optimizer(phi1);
2316   }
2317   Node *hit2 = _igvn.hash_find_insert(phi2);
2318   if( hit2 ) {                  // Hit, toss just made Phi
2319     _igvn.remove_dead_node(phi2); // Remove new phi
2320     assert( hit2->is_Phi(), "" );
2321     phi2 = (PhiNode*)hit2;      // Use existing phi
2322   } else {                      // Miss
2323     _igvn.register_new_node_with_optimizer(phi2);
2324   }
2325   // Register Phis with loop/block info
2326   set_ctrl(phi1, phi->in(0));
2327   set_ctrl(phi2, phi->in(0));
2328   // Make a new Cmp
2329   Node *cmp = sample_cmp->clone();
2330   cmp->set_req( 1, phi1 );
2331   cmp->set_req( 2, phi2 );
2332   _igvn.register_new_node_with_optimizer(cmp);
2333   set_ctrl(cmp, phi->in(0));
2334 
2335   assert( cmp->is_Cmp(), "" );
2336   return (CmpNode*)cmp;
2337 }
2338 
2339 void PhaseIdealLoop::clone_loop_handle_data_uses(Node* old, Node_List &old_new,
2340                                                  IdealLoopTree* loop, IdealLoopTree* outer_loop,
2341                                                  Node_List*& split_if_set, Node_List*& split_bool_set,
2342                                                  Node_List*& split_cex_set, Node_List& worklist,
2343                                                  uint new_counter, CloneLoopMode mode) {
2344   Node* nnn = old_new[old->_idx];
2345   // Copy uses to a worklist, so I can munge the def-use info
2346   // with impunity.
2347   for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++)
2348     worklist.push(old->fast_out(j));
2349 
2350   while( worklist.size() ) {
2351     Node *use = worklist.pop();
2352     if (!has_node(use))  continue; // Ignore dead nodes
2353     if (use->in(0) == C->top())  continue;
2354     IdealLoopTree *use_loop = get_loop( has_ctrl(use) ? get_ctrl(use) : use );
2355     // Check for data-use outside of loop - at least one of OLD or USE
2356     // must not be a CFG node.
2357 #ifdef ASSERT
2358     if (loop->_head->as_Loop()->is_strip_mined() && outer_loop->is_member(use_loop) && !loop->is_member(use_loop) && old_new[use->_idx] == nullptr) {
2359       Node* sfpt = loop->_head->as_CountedLoop()->outer_safepoint();
2360       assert(mode != IgnoreStripMined, "incorrect cloning mode");
2361       assert((mode == ControlAroundStripMined && use == sfpt) || !use->is_reachable_from_root(), "missed a node");
2362     }
2363 #endif
2364     if (!loop->is_member(use_loop) && !outer_loop->is_member(use_loop) && (!old->is_CFG() || !use->is_CFG())) {
2365 
2366       // If the Data use is an IF, that means we have an IF outside the
2367       // loop that is switching on a condition that is set inside the
2368       // loop.  Happens if people set a loop-exit flag; then test the flag
2369       // in the loop to break the loop, then test is again outside the
2370       // loop to determine which way the loop exited.
2371       //
2372       // For several uses we need to make sure that there is no phi between,
2373       // the use and the Bool/Cmp. We therefore clone the Bool/Cmp down here
2374       // to avoid such a phi in between.
2375       // For example, it is unexpected that there is a Phi between an
2376       // AllocateArray node and its ValidLengthTest input that could cause
2377       // split if to break.
2378       assert(!use->is_OpaqueTemplateAssertionPredicate(),
2379              "should not clone a Template Assertion Predicate which should be removed once it's useless");
2380       if (use->is_If() || use->is_CMove() || use->is_OpaqueNotNull() || use->is_OpaqueInitializedAssertionPredicate() ||
2381           (use->Opcode() == Op_AllocateArray && use->in(AllocateNode::ValidLengthTest) == old)) {
2382         // Since this code is highly unlikely, we lazily build the worklist
2383         // of such Nodes to go split.
2384         if (!split_if_set) {
2385           split_if_set = new Node_List();
2386         }
2387         split_if_set->push(use);
2388       }
2389       if (use->is_Bool()) {
2390         if (!split_bool_set) {
2391           split_bool_set = new Node_List();
2392         }
2393         split_bool_set->push(use);
2394       }
2395       if (use->Opcode() == Op_CreateEx) {
2396         if (!split_cex_set) {
2397           split_cex_set = new Node_List();
2398         }
2399         split_cex_set->push(use);
2400       }
2401 
2402 
2403       // Get "block" use is in
2404       uint idx = 0;
2405       while( use->in(idx) != old ) idx++;
2406       Node *prev = use->is_CFG() ? use : get_ctrl(use);
2407       assert(!loop->is_member(get_loop(prev)) && !outer_loop->is_member(get_loop(prev)), "" );
2408       Node* cfg = (prev->_idx >= new_counter && prev->is_Region())
2409         ? prev->in(2)
2410         : idom(prev);
2411       if( use->is_Phi() )     // Phi use is in prior block
2412         cfg = prev->in(idx);  // NOT in block of Phi itself
2413       if (cfg->is_top()) {    // Use is dead?
2414         _igvn.replace_input_of(use, idx, C->top());
2415         continue;
2416       }
2417 
2418       // If use is referenced through control edge... (idx == 0)
2419       if (mode == IgnoreStripMined && idx == 0) {
2420         LoopNode *head = loop->_head->as_Loop();
2421         if (head->is_strip_mined() && is_dominator(head->outer_loop_exit(), prev)) {
2422           // That node is outside the inner loop, leave it outside the
2423           // outer loop as well to not confuse verification code.
2424           assert(!loop->_parent->is_member(use_loop), "should be out of the outer loop");
2425           _igvn.replace_input_of(use, 0, head->outer_loop_exit());
2426           continue;
2427         }
2428       }
2429 
2430       while(!outer_loop->is_member(get_loop(cfg))) {
2431         prev = cfg;
2432         cfg = (cfg->_idx >= new_counter && cfg->is_Region()) ? cfg->in(2) : idom(cfg);
2433       }
2434       // If the use occurs after merging several exits from the loop, then
2435       // old value must have dominated all those exits.  Since the same old
2436       // value was used on all those exits we did not need a Phi at this
2437       // merge point.  NOW we do need a Phi here.  Each loop exit value
2438       // is now merged with the peeled body exit; each exit gets its own
2439       // private Phi and those Phis need to be merged here.
2440       Node *phi;
2441       if( prev->is_Region() ) {
2442         if( idx == 0 ) {      // Updating control edge?
2443           phi = prev;         // Just use existing control
2444         } else {              // Else need a new Phi
2445           phi = PhiNode::make( prev, old );
2446           // Now recursively fix up the new uses of old!
2447           for( uint i = 1; i < prev->req(); i++ ) {
2448             worklist.push(phi); // Onto worklist once for each 'old' input
2449           }
2450         }
2451       } else {
2452         // Get new RegionNode merging old and new loop exits
2453         prev = old_new[prev->_idx];
2454         assert( prev, "just made this in step 7" );
2455         if( idx == 0) {      // Updating control edge?
2456           phi = prev;         // Just use existing control
2457         } else {              // Else need a new Phi
2458           // Make a new Phi merging data values properly
2459           phi = PhiNode::make( prev, old );
2460           phi->set_req( 1, nnn );
2461         }
2462       }
2463       // If inserting a new Phi, check for prior hits
2464       if( idx != 0 ) {
2465         Node *hit = _igvn.hash_find_insert(phi);
2466         if( hit == nullptr ) {
2467           _igvn.register_new_node_with_optimizer(phi); // Register new phi
2468         } else {                                      // or
2469           // Remove the new phi from the graph and use the hit
2470           _igvn.remove_dead_node(phi);
2471           phi = hit;                                  // Use existing phi
2472         }
2473         set_ctrl(phi, prev);
2474       }
2475       // Make 'use' use the Phi instead of the old loop body exit value
2476       assert(use->in(idx) == old, "old is still input of use");
2477       // We notify all uses of old, including use, and the indirect uses,
2478       // that may now be optimized because we have replaced old with phi.
2479       _igvn.add_users_to_worklist(old);
2480       if (idx == 0 &&
2481           use->depends_only_on_test()) {
2482         Node* pinned_clone = use->pin_array_access_node();
2483         if (pinned_clone != nullptr) {
2484           // Pin array access nodes: control is updated here to a region. If, after some transformations, only one path
2485           // into the region is left, an array load could become dependent on a condition that's not a range check for
2486           // that access. If that condition is replaced by an identical dominating one, then an unpinned load would risk
2487           // floating above its range check.
2488           pinned_clone->set_req(0, phi);
2489           register_new_node_with_ctrl_of(pinned_clone, use);
2490           _igvn.replace_node(use, pinned_clone);
2491           continue;
2492         }
2493       }
2494       _igvn.replace_input_of(use, idx, phi);
2495       if( use->_idx >= new_counter ) { // If updating new phis
2496         // Not needed for correctness, but prevents a weak assert
2497         // in AddPNode from tripping (when we end up with different
2498         // base & derived Phis that will become the same after
2499         // IGVN does CSE).
2500         Node *hit = _igvn.hash_find_insert(use);
2501         if( hit )             // Go ahead and re-hash for hits.
2502           _igvn.replace_node( use, hit );
2503       }
2504     }
2505   }
2506 }
2507 
2508 static void collect_nodes_in_outer_loop_not_reachable_from_sfpt(Node* n, const IdealLoopTree *loop, const IdealLoopTree* outer_loop,
2509                                                                 const Node_List &old_new, Unique_Node_List& wq, PhaseIdealLoop* phase,
2510                                                                 bool check_old_new) {
2511   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2512     Node* u = n->fast_out(j);
2513     assert(check_old_new || old_new[u->_idx] == nullptr, "shouldn't have been cloned");
2514     if (!u->is_CFG() && (!check_old_new || old_new[u->_idx] == nullptr)) {
2515       Node* c = phase->get_ctrl(u);
2516       IdealLoopTree* u_loop = phase->get_loop(c);
2517       assert(!loop->is_member(u_loop) || !loop->_body.contains(u), "can be in outer loop or out of both loops only");
2518       if (!loop->is_member(u_loop)) {
2519         if (outer_loop->is_member(u_loop)) {
2520           wq.push(u);
2521         } else {
2522           // nodes pinned with control in the outer loop but not referenced from the safepoint must be moved out of
2523           // the outer loop too
2524           Node* u_c = u->in(0);
2525           if (u_c != nullptr) {
2526             IdealLoopTree* u_c_loop = phase->get_loop(u_c);
2527             if (outer_loop->is_member(u_c_loop) && !loop->is_member(u_c_loop)) {
2528               wq.push(u);
2529             }
2530           }
2531         }
2532       }
2533     }
2534   }
2535 }
2536 
2537 void PhaseIdealLoop::clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
2538                                       IdealLoopTree* outer_loop, int dd, Node_List &old_new,
2539                                       Node_List& extra_data_nodes) {
2540   if (head->is_strip_mined() && mode != IgnoreStripMined) {
2541     CountedLoopNode* cl = head->as_CountedLoop();
2542     Node* l = cl->outer_loop();
2543     Node* tail = cl->outer_loop_tail();
2544     IfNode* le = cl->outer_loop_end();
2545     Node* sfpt = cl->outer_safepoint();
2546     CountedLoopEndNode* cle = cl->loopexit();
2547     CountedLoopNode* new_cl = old_new[cl->_idx]->as_CountedLoop();
2548     CountedLoopEndNode* new_cle = new_cl->as_CountedLoop()->loopexit_or_null();
2549     Node* cle_out = cle->proj_out(false);
2550 
2551     Node* new_sfpt = nullptr;
2552     Node* new_cle_out = cle_out->clone();
2553     old_new.map(cle_out->_idx, new_cle_out);
2554     if (mode == CloneIncludesStripMined) {
2555       // clone outer loop body
2556       Node* new_l = l->clone();
2557       Node* new_tail = tail->clone();
2558       IfNode* new_le = le->clone()->as_If();
2559       new_sfpt = sfpt->clone();
2560 
2561       set_loop(new_l, outer_loop->_parent);
2562       set_idom(new_l, new_l->in(LoopNode::EntryControl), dd);
2563       set_loop(new_cle_out, outer_loop->_parent);
2564       set_idom(new_cle_out, new_cle, dd);
2565       set_loop(new_sfpt, outer_loop->_parent);
2566       set_idom(new_sfpt, new_cle_out, dd);
2567       set_loop(new_le, outer_loop->_parent);
2568       set_idom(new_le, new_sfpt, dd);
2569       set_loop(new_tail, outer_loop->_parent);
2570       set_idom(new_tail, new_le, dd);
2571       set_idom(new_cl, new_l, dd);
2572 
2573       old_new.map(l->_idx, new_l);
2574       old_new.map(tail->_idx, new_tail);
2575       old_new.map(le->_idx, new_le);
2576       old_new.map(sfpt->_idx, new_sfpt);
2577 
2578       new_l->set_req(LoopNode::LoopBackControl, new_tail);
2579       new_l->set_req(0, new_l);
2580       new_tail->set_req(0, new_le);
2581       new_le->set_req(0, new_sfpt);
2582       new_sfpt->set_req(0, new_cle_out);
2583       new_cle_out->set_req(0, new_cle);
2584       new_cl->set_req(LoopNode::EntryControl, new_l);
2585 
2586       _igvn.register_new_node_with_optimizer(new_l);
2587       _igvn.register_new_node_with_optimizer(new_tail);
2588       _igvn.register_new_node_with_optimizer(new_le);
2589     } else {
2590       Node *newhead = old_new[loop->_head->_idx];
2591       newhead->as_Loop()->clear_strip_mined();
2592       _igvn.replace_input_of(newhead, LoopNode::EntryControl, newhead->in(LoopNode::EntryControl)->in(LoopNode::EntryControl));
2593       set_idom(newhead, newhead->in(LoopNode::EntryControl), dd);
2594     }
2595     // Look at data node that were assigned a control in the outer
2596     // loop: they are kept in the outer loop by the safepoint so start
2597     // from the safepoint node's inputs.
2598     IdealLoopTree* outer_loop = get_loop(l);
2599     Node_Stack stack(2);
2600     stack.push(sfpt, 1);
2601     uint new_counter = C->unique();
2602     while (stack.size() > 0) {
2603       Node* n = stack.node();
2604       uint i = stack.index();
2605       while (i < n->req() &&
2606              (n->in(i) == nullptr ||
2607               !has_ctrl(n->in(i)) ||
2608               get_loop(get_ctrl(n->in(i))) != outer_loop ||
2609               (old_new[n->in(i)->_idx] != nullptr && old_new[n->in(i)->_idx]->_idx >= new_counter))) {
2610         i++;
2611       }
2612       if (i < n->req()) {
2613         stack.set_index(i+1);
2614         stack.push(n->in(i), 0);
2615       } else {
2616         assert(old_new[n->_idx] == nullptr || n == sfpt || old_new[n->_idx]->_idx < new_counter, "no clone yet");
2617         Node* m = n == sfpt ? new_sfpt : n->clone();
2618         if (m != nullptr) {
2619           for (uint i = 0; i < n->req(); i++) {
2620             if (m->in(i) != nullptr && old_new[m->in(i)->_idx] != nullptr) {
2621               m->set_req(i, old_new[m->in(i)->_idx]);
2622             }
2623           }
2624         } else {
2625           assert(n == sfpt && mode != CloneIncludesStripMined, "where's the safepoint clone?");
2626         }
2627         if (n != sfpt) {
2628           extra_data_nodes.push(n);
2629           _igvn.register_new_node_with_optimizer(m);
2630           assert(get_ctrl(n) == cle_out, "what other control?");
2631           set_ctrl(m, new_cle_out);
2632           old_new.map(n->_idx, m);
2633         }
2634         stack.pop();
2635       }
2636     }
2637     if (mode == CloneIncludesStripMined) {
2638       _igvn.register_new_node_with_optimizer(new_sfpt);
2639       _igvn.register_new_node_with_optimizer(new_cle_out);
2640     }
2641     // Some other transformation may have pessimistically assigned some
2642     // data nodes to the outer loop. Set their control so they are out
2643     // of the outer loop.
2644     ResourceMark rm;
2645     Unique_Node_List wq;
2646     for (uint i = 0; i < extra_data_nodes.size(); i++) {
2647       Node* old = extra_data_nodes.at(i);
2648       collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true);
2649     }
2650 
2651     for (uint i = 0; i < loop->_body.size(); i++) {
2652       Node* old = loop->_body.at(i);
2653       collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true);
2654     }
2655 
2656     Node* inner_out = sfpt->in(0);
2657     if (inner_out->outcnt() > 1) {
2658       collect_nodes_in_outer_loop_not_reachable_from_sfpt(inner_out, loop, outer_loop, old_new, wq, this, true);
2659     }
2660 
2661     Node* new_ctrl = cl->outer_loop_exit();
2662     assert(get_loop(new_ctrl) != outer_loop, "must be out of the loop nest");
2663     for (uint i = 0; i < wq.size(); i++) {
2664       Node* n = wq.at(i);
2665       set_ctrl(n, new_ctrl);
2666       if (n->in(0) != nullptr) {
2667         _igvn.replace_input_of(n, 0, new_ctrl);
2668       }
2669       collect_nodes_in_outer_loop_not_reachable_from_sfpt(n, loop, outer_loop, old_new, wq, this, false);
2670     }
2671   } else {
2672     Node *newhead = old_new[loop->_head->_idx];
2673     set_idom(newhead, newhead->in(LoopNode::EntryControl), dd);
2674   }
2675 }
2676 
2677 //------------------------------clone_loop-------------------------------------
2678 //
2679 //                   C L O N E   A   L O O P   B O D Y
2680 //
2681 // This is the basic building block of the loop optimizations.  It clones an
2682 // entire loop body.  It makes an old_new loop body mapping; with this mapping
2683 // you can find the new-loop equivalent to an old-loop node.  All new-loop
2684 // nodes are exactly equal to their old-loop counterparts, all edges are the
2685 // same.  All exits from the old-loop now have a RegionNode that merges the
2686 // equivalent new-loop path.  This is true even for the normal "loop-exit"
2687 // condition.  All uses of loop-invariant old-loop values now come from (one
2688 // or more) Phis that merge their new-loop equivalents.
2689 //
2690 // This operation leaves the graph in an illegal state: there are two valid
2691 // control edges coming from the loop pre-header to both loop bodies.  I'll
2692 // definitely have to hack the graph after running this transform.
2693 //
2694 // From this building block I will further edit edges to perform loop peeling
2695 // or loop unrolling or iteration splitting (Range-Check-Elimination), etc.
2696 //
2697 // Parameter side_by_size_idom:
2698 //   When side_by_size_idom is null, the dominator tree is constructed for
2699 //      the clone loop to dominate the original.  Used in construction of
2700 //      pre-main-post loop sequence.
2701 //   When nonnull, the clone and original are side-by-side, both are
2702 //      dominated by the side_by_side_idom node.  Used in construction of
2703 //      unswitched loops.
2704 void PhaseIdealLoop::clone_loop( IdealLoopTree *loop, Node_List &old_new, int dd,
2705                                 CloneLoopMode mode, Node* side_by_side_idom) {
2706 
2707   LoopNode* head = loop->_head->as_Loop();
2708   head->verify_strip_mined(1);
2709 
2710   if (C->do_vector_loop() && PrintOpto) {
2711     const char* mname = C->method()->name()->as_quoted_ascii();
2712     if (mname != nullptr) {
2713       tty->print("PhaseIdealLoop::clone_loop: for vectorize method %s\n", mname);
2714     }
2715   }
2716 
2717   CloneMap& cm = C->clone_map();
2718   if (C->do_vector_loop()) {
2719     cm.set_clone_idx(cm.max_gen()+1);
2720 #ifndef PRODUCT
2721     if (PrintOpto) {
2722       tty->print_cr("PhaseIdealLoop::clone_loop: _clone_idx %d", cm.clone_idx());
2723       loop->dump_head();
2724     }
2725 #endif
2726   }
2727 
2728   // Step 1: Clone the loop body.  Make the old->new mapping.
2729   clone_loop_body(loop->_body, old_new, &cm);
2730 
2731   IdealLoopTree* outer_loop = (head->is_strip_mined() && mode != IgnoreStripMined) ? get_loop(head->as_CountedLoop()->outer_loop()) : loop;
2732 
2733   // Step 2: Fix the edges in the new body.  If the old input is outside the
2734   // loop use it.  If the old input is INside the loop, use the corresponding
2735   // new node instead.
2736   fix_body_edges(loop->_body, loop, old_new, dd, outer_loop->_parent, false);
2737 
2738   Node_List extra_data_nodes; // data nodes in the outer strip mined loop
2739   clone_outer_loop(head, mode, loop, outer_loop, dd, old_new, extra_data_nodes);
2740 
2741   // Step 3: Now fix control uses.  Loop varying control uses have already
2742   // been fixed up (as part of all input edges in Step 2).  Loop invariant
2743   // control uses must be either an IfFalse or an IfTrue.  Make a merge
2744   // point to merge the old and new IfFalse/IfTrue nodes; make the use
2745   // refer to this.
2746   Node_List worklist;
2747   uint new_counter = C->unique();
2748   fix_ctrl_uses(loop->_body, loop, old_new, mode, side_by_side_idom, &cm, worklist);
2749 
2750   // Step 4: If loop-invariant use is not control, it must be dominated by a
2751   // loop exit IfFalse/IfTrue.  Find "proper" loop exit.  Make a Region
2752   // there if needed.  Make a Phi there merging old and new used values.
2753   Node_List *split_if_set = nullptr;
2754   Node_List *split_bool_set = nullptr;
2755   Node_List *split_cex_set = nullptr;
2756   fix_data_uses(loop->_body, loop, mode, outer_loop, new_counter, old_new, worklist, split_if_set, split_bool_set, split_cex_set);
2757 
2758   for (uint i = 0; i < extra_data_nodes.size(); i++) {
2759     Node* old = extra_data_nodes.at(i);
2760     clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set,
2761                                 split_bool_set, split_cex_set, worklist, new_counter,
2762                                 mode);
2763   }
2764 
2765   // Check for IFs that need splitting/cloning.  Happens if an IF outside of
2766   // the loop uses a condition set in the loop.  The original IF probably
2767   // takes control from one or more OLD Regions (which in turn get from NEW
2768   // Regions).  In any case, there will be a set of Phis for each merge point
2769   // from the IF up to where the original BOOL def exists the loop.
2770   finish_clone_loop(split_if_set, split_bool_set, split_cex_set);
2771 
2772 }
2773 
2774 void PhaseIdealLoop::finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set) {
2775   if (split_if_set) {
2776     while (split_if_set->size()) {
2777       Node *iff = split_if_set->pop();
2778       uint input = iff->Opcode() == Op_AllocateArray ? AllocateNode::ValidLengthTest : 1;
2779       if (iff->in(input)->is_Phi()) {
2780         Node *b = clone_iff(iff->in(input)->as_Phi());
2781         _igvn.replace_input_of(iff, input, b);
2782       }
2783     }
2784   }
2785   if (split_bool_set) {
2786     while (split_bool_set->size()) {
2787       Node *b = split_bool_set->pop();
2788       Node *phi = b->in(1);
2789       assert(phi->is_Phi(), "");
2790       CmpNode *cmp = clone_bool((PhiNode*) phi);
2791       _igvn.replace_input_of(b, 1, cmp);
2792     }
2793   }
2794   if (split_cex_set) {
2795     while (split_cex_set->size()) {
2796       Node *b = split_cex_set->pop();
2797       assert(b->in(0)->is_Region(), "");
2798       assert(b->in(1)->is_Phi(), "");
2799       assert(b->in(0)->in(0) == b->in(1)->in(0), "");
2800       split_up(b, b->in(0), nullptr);
2801     }
2802   }
2803 }
2804 
2805 void PhaseIdealLoop::fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop,
2806                                    uint new_counter, Node_List &old_new, Node_List &worklist, Node_List*& split_if_set,
2807                                    Node_List*& split_bool_set, Node_List*& split_cex_set) {
2808   for(uint i = 0; i < body.size(); i++ ) {
2809     Node* old = body.at(i);
2810     clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set,
2811                                 split_bool_set, split_cex_set, worklist, new_counter,
2812                                 mode);
2813   }
2814 }
2815 
2816 void PhaseIdealLoop::fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode,
2817                                    Node* side_by_side_idom, CloneMap* cm, Node_List &worklist) {
2818   LoopNode* head = loop->_head->as_Loop();
2819   for(uint i = 0; i < body.size(); i++ ) {
2820     Node* old = body.at(i);
2821     if( !old->is_CFG() ) continue;
2822 
2823     // Copy uses to a worklist, so I can munge the def-use info
2824     // with impunity.
2825     for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++) {
2826       worklist.push(old->fast_out(j));
2827     }
2828 
2829     while (worklist.size()) {  // Visit all uses
2830       Node *use = worklist.pop();
2831       if (!has_node(use))  continue; // Ignore dead nodes
2832       IdealLoopTree *use_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use );
2833       if (!loop->is_member(use_loop) && use->is_CFG()) {
2834         // Both OLD and USE are CFG nodes here.
2835         assert(use->is_Proj(), "" );
2836         Node* nnn = old_new[old->_idx];
2837 
2838         Node* newuse = nullptr;
2839         if (head->is_strip_mined() && mode != IgnoreStripMined) {
2840           CountedLoopNode* cl = head->as_CountedLoop();
2841           CountedLoopEndNode* cle = cl->loopexit();
2842           Node* cle_out = cle->proj_out_or_null(false);
2843           if (use == cle_out) {
2844             IfNode* le = cl->outer_loop_end();
2845             use = le->proj_out(false);
2846             use_loop = get_loop(use);
2847             if (mode == CloneIncludesStripMined) {
2848               nnn = old_new[le->_idx];
2849             } else {
2850               newuse = old_new[cle_out->_idx];
2851             }
2852           }
2853         }
2854         if (newuse == nullptr) {
2855           newuse = use->clone();
2856         }
2857 
2858         // Clone the loop exit control projection
2859         if (C->do_vector_loop() && cm != nullptr) {
2860           cm->verify_insert_and_clone(use, newuse, cm->clone_idx());
2861         }
2862         newuse->set_req(0,nnn);
2863         _igvn.register_new_node_with_optimizer(newuse);
2864         set_loop(newuse, use_loop);
2865         set_idom(newuse, nnn, dom_depth(nnn) + 1 );
2866 
2867         // We need a Region to merge the exit from the peeled body and the
2868         // exit from the old loop body.
2869         RegionNode *r = new RegionNode(3);
2870         uint dd_r = MIN2(dom_depth(newuse), dom_depth(use));
2871         assert(dd_r >= dom_depth(dom_lca(newuse, use)), "" );
2872 
2873         // The original user of 'use' uses 'r' instead.
2874         for (DUIterator_Last lmin, l = use->last_outs(lmin); l >= lmin;) {
2875           Node* useuse = use->last_out(l);
2876           _igvn.rehash_node_delayed(useuse);
2877           uint uses_found = 0;
2878           if (useuse->in(0) == use) {
2879             useuse->set_req(0, r);
2880             uses_found++;
2881             if (useuse->is_CFG()) {
2882               // This is not a dom_depth > dd_r because when new
2883               // control flow is constructed by a loop opt, a node and
2884               // its dominator can end up at the same dom_depth
2885               assert(dom_depth(useuse) >= dd_r, "");
2886               set_idom(useuse, r, dom_depth(useuse));
2887             }
2888           }
2889           for (uint k = 1; k < useuse->req(); k++) {
2890             if( useuse->in(k) == use ) {
2891               useuse->set_req(k, r);
2892               uses_found++;
2893               if (useuse->is_Loop() && k == LoopNode::EntryControl) {
2894                 // This is not a dom_depth > dd_r because when new
2895                 // control flow is constructed by a loop opt, a node
2896                 // and its dominator can end up at the same dom_depth
2897                 assert(dom_depth(useuse) >= dd_r , "");
2898                 set_idom(useuse, r, dom_depth(useuse));
2899               }
2900             }
2901           }
2902           l -= uses_found;    // we deleted 1 or more copies of this edge
2903         }
2904 
2905         assert(use->is_Proj(), "loop exit should be projection");
2906         // lazy_replace() below moves all nodes that are:
2907         // - control dependent on the loop exit or
2908         // - have control set to the loop exit
2909         // below the post-loop merge point. lazy_replace() takes a dead control as first input. To make it
2910         // possible to use it, the loop exit projection is cloned and becomes the new exit projection. The initial one
2911         // becomes dead and is "replaced" by the region.
2912         Node* use_clone = use->clone();
2913         register_control(use_clone, use_loop, idom(use), dom_depth(use));
2914         // Now finish up 'r'
2915         r->set_req(1, newuse);
2916         r->set_req(2, use_clone);
2917         _igvn.register_new_node_with_optimizer(r);
2918         set_loop(r, use_loop);
2919         set_idom(r, (side_by_side_idom == nullptr) ? newuse->in(0) : side_by_side_idom, dd_r);
2920         lazy_replace(use, r);
2921         // Map the (cloned) old use to the new merge point
2922         old_new.map(use_clone->_idx, r);
2923       } // End of if a loop-exit test
2924     }
2925   }
2926 }
2927 
2928 void PhaseIdealLoop::fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd,
2929                                     IdealLoopTree* parent, bool partial) {
2930   for(uint i = 0; i < body.size(); i++ ) {
2931     Node *old = body.at(i);
2932     Node *nnn = old_new[old->_idx];
2933     // Fix CFG/Loop controlling the new node
2934     if (has_ctrl(old)) {
2935       set_ctrl(nnn, old_new[get_ctrl(old)->_idx]);
2936     } else {
2937       set_loop(nnn, parent);
2938       if (old->outcnt() > 0) {
2939         Node* dom = idom(old);
2940         if (old_new[dom->_idx] != nullptr) {
2941           dom = old_new[dom->_idx];
2942           set_idom(nnn, dom, dd );
2943         }
2944       }
2945     }
2946     // Correct edges to the new node
2947     for (uint j = 0; j < nnn->req(); j++) {
2948         Node *n = nnn->in(j);
2949         if (n != nullptr) {
2950           IdealLoopTree *old_in_loop = get_loop(has_ctrl(n) ? get_ctrl(n) : n);
2951           if (loop->is_member(old_in_loop)) {
2952             if (old_new[n->_idx] != nullptr) {
2953               nnn->set_req(j, old_new[n->_idx]);
2954             } else {
2955               assert(!body.contains(n), "");
2956               assert(partial, "node not cloned");
2957             }
2958           }
2959         }
2960     }
2961     _igvn.hash_find_insert(nnn);
2962   }
2963 }
2964 
2965 void PhaseIdealLoop::clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm) {
2966   for (uint i = 0; i < body.size(); i++) {
2967     Node* old = body.at(i);
2968     Node* nnn = old->clone();
2969     old_new.map(old->_idx, nnn);
2970     if (C->do_vector_loop() && cm != nullptr) {
2971       cm->verify_insert_and_clone(old, nnn, cm->clone_idx());
2972     }
2973     _igvn.register_new_node_with_optimizer(nnn);
2974   }
2975 }
2976 
2977 
2978 //---------------------- stride_of_possible_iv -------------------------------------
2979 // Looks for an iff/bool/comp with one operand of the compare
2980 // being a cycle involving an add and a phi,
2981 // with an optional truncation (left-shift followed by a right-shift)
2982 // of the add. Returns zero if not an iv.
2983 int PhaseIdealLoop::stride_of_possible_iv(Node* iff) {
2984   Node* trunc1 = nullptr;
2985   Node* trunc2 = nullptr;
2986   const TypeInteger* ttype = nullptr;
2987   if (!iff->is_If() || iff->in(1) == nullptr || !iff->in(1)->is_Bool()) {
2988     return 0;
2989   }
2990   BoolNode* bl = iff->in(1)->as_Bool();
2991   Node* cmp = bl->in(1);
2992   if (!cmp || (cmp->Opcode() != Op_CmpI && cmp->Opcode() != Op_CmpU)) {
2993     return 0;
2994   }
2995   // Must have an invariant operand
2996   if (is_member(get_loop(iff), get_ctrl(cmp->in(2)))) {
2997     return 0;
2998   }
2999   Node* add2 = nullptr;
3000   Node* cmp1 = cmp->in(1);
3001   if (cmp1->is_Phi()) {
3002     // (If (Bool (CmpX phi:(Phi ...(Optional-trunc(AddI phi add2))) )))
3003     Node* phi = cmp1;
3004     for (uint i = 1; i < phi->req(); i++) {
3005       Node* in = phi->in(i);
3006       Node* add = CountedLoopNode::match_incr_with_optional_truncation(in,
3007                                 &trunc1, &trunc2, &ttype, T_INT);
3008       if (add && add->in(1) == phi) {
3009         add2 = add->in(2);
3010         break;
3011       }
3012     }
3013   } else {
3014     // (If (Bool (CmpX addtrunc:(Optional-trunc((AddI (Phi ...addtrunc...) add2)) )))
3015     Node* addtrunc = cmp1;
3016     Node* add = CountedLoopNode::match_incr_with_optional_truncation(addtrunc,
3017                                 &trunc1, &trunc2, &ttype, T_INT);
3018     if (add && add->in(1)->is_Phi()) {
3019       Node* phi = add->in(1);
3020       for (uint i = 1; i < phi->req(); i++) {
3021         if (phi->in(i) == addtrunc) {
3022           add2 = add->in(2);
3023           break;
3024         }
3025       }
3026     }
3027   }
3028   if (add2 != nullptr) {
3029     const TypeInt* add2t = _igvn.type(add2)->is_int();
3030     if (add2t->is_con()) {
3031       return add2t->get_con();
3032     }
3033   }
3034   return 0;
3035 }
3036 
3037 
3038 //---------------------- stay_in_loop -------------------------------------
3039 // Return the (unique) control output node that's in the loop (if it exists.)
3040 Node* PhaseIdealLoop::stay_in_loop( Node* n, IdealLoopTree *loop) {
3041   Node* unique = nullptr;
3042   if (!n) return nullptr;
3043   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3044     Node* use = n->fast_out(i);
3045     if (!has_ctrl(use) && loop->is_member(get_loop(use))) {
3046       if (unique != nullptr) {
3047         return nullptr;
3048       }
3049       unique = use;
3050     }
3051   }
3052   return unique;
3053 }
3054 
3055 //------------------------------ register_node -------------------------------------
3056 // Utility to register node "n" with PhaseIdealLoop
3057 void PhaseIdealLoop::register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth) {
3058   _igvn.register_new_node_with_optimizer(n);
3059   loop->_body.push(n);
3060   if (n->is_CFG()) {
3061     set_loop(n, loop);
3062     set_idom(n, pred, ddepth);
3063   } else {
3064     set_ctrl(n, pred);
3065   }
3066 }
3067 
3068 //------------------------------ proj_clone -------------------------------------
3069 // Utility to create an if-projection
3070 ProjNode* PhaseIdealLoop::proj_clone(ProjNode* p, IfNode* iff) {
3071   ProjNode* c = p->clone()->as_Proj();
3072   c->set_req(0, iff);
3073   return c;
3074 }
3075 
3076 //------------------------------ short_circuit_if -------------------------------------
3077 // Force the iff control output to be the live_proj
3078 Node* PhaseIdealLoop::short_circuit_if(IfNode* iff, ProjNode* live_proj) {
3079   guarantee(live_proj != nullptr, "null projection");
3080   int proj_con = live_proj->_con;
3081   assert(proj_con == 0 || proj_con == 1, "false or true projection");
3082   Node* con = intcon(proj_con);
3083   if (iff) {
3084     iff->set_req(1, con);
3085   }
3086   return con;
3087 }
3088 
3089 //------------------------------ insert_if_before_proj -------------------------------------
3090 // Insert a new if before an if projection (* - new node)
3091 //
3092 // before
3093 //           if(test)
3094 //           /     \
3095 //          v       v
3096 //    other-proj   proj (arg)
3097 //
3098 // after
3099 //           if(test)
3100 //           /     \
3101 //          /       v
3102 //         |      * proj-clone
3103 //         v          |
3104 //    other-proj      v
3105 //                * new_if(relop(cmp[IU](left,right)))
3106 //                  /  \
3107 //                 v    v
3108 //         * new-proj  proj
3109 //         (returned)
3110 //
3111 ProjNode* PhaseIdealLoop::insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj) {
3112   IfNode* iff = proj->in(0)->as_If();
3113   IdealLoopTree *loop = get_loop(proj);
3114   ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj();
3115   uint ddepth = dom_depth(proj);
3116 
3117   _igvn.rehash_node_delayed(iff);
3118   _igvn.rehash_node_delayed(proj);
3119 
3120   proj->set_req(0, nullptr);  // temporary disconnect
3121   ProjNode* proj2 = proj_clone(proj, iff);
3122   register_node(proj2, loop, iff, ddepth);
3123 
3124   Node* cmp = Signed ? (Node*) new CmpINode(left, right) : (Node*) new CmpUNode(left, right);
3125   register_node(cmp, loop, proj2, ddepth);
3126 
3127   BoolNode* bol = new BoolNode(cmp, relop);
3128   register_node(bol, loop, proj2, ddepth);
3129 
3130   int opcode = iff->Opcode();
3131   assert(opcode == Op_If || opcode == Op_RangeCheck, "unexpected opcode");
3132   IfNode* new_if = IfNode::make_with_same_profile(iff, proj2, bol);
3133   register_node(new_if, loop, proj2, ddepth);
3134 
3135   proj->set_req(0, new_if); // reattach
3136   set_idom(proj, new_if, ddepth);
3137 
3138   ProjNode* new_exit = proj_clone(other_proj, new_if)->as_Proj();
3139   guarantee(new_exit != nullptr, "null exit node");
3140   register_node(new_exit, get_loop(other_proj), new_if, ddepth);
3141 
3142   return new_exit;
3143 }
3144 
3145 //------------------------------ insert_region_before_proj -------------------------------------
3146 // Insert a region before an if projection (* - new node)
3147 //
3148 // before
3149 //           if(test)
3150 //          /      |
3151 //         v       |
3152 //       proj      v
3153 //               other-proj
3154 //
3155 // after
3156 //           if(test)
3157 //          /      |
3158 //         v       |
3159 // * proj-clone    v
3160 //         |     other-proj
3161 //         v
3162 // * new-region
3163 //         |
3164 //         v
3165 // *      dum_if
3166 //       /     \
3167 //      v       \
3168 // * dum-proj    v
3169 //              proj
3170 //
3171 RegionNode* PhaseIdealLoop::insert_region_before_proj(ProjNode* proj) {
3172   IfNode* iff = proj->in(0)->as_If();
3173   IdealLoopTree *loop = get_loop(proj);
3174   ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj();
3175   uint ddepth = dom_depth(proj);
3176 
3177   _igvn.rehash_node_delayed(iff);
3178   _igvn.rehash_node_delayed(proj);
3179 
3180   proj->set_req(0, nullptr);  // temporary disconnect
3181   ProjNode* proj2 = proj_clone(proj, iff);
3182   register_node(proj2, loop, iff, ddepth);
3183 
3184   RegionNode* reg = new RegionNode(2);
3185   reg->set_req(1, proj2);
3186   register_node(reg, loop, iff, ddepth);
3187 
3188   IfNode* dum_if = new IfNode(reg, short_circuit_if(nullptr, proj), iff->_prob, iff->_fcnt);
3189   register_node(dum_if, loop, reg, ddepth);
3190 
3191   proj->set_req(0, dum_if); // reattach
3192   set_idom(proj, dum_if, ddepth);
3193 
3194   ProjNode* dum_proj = proj_clone(other_proj, dum_if);
3195   register_node(dum_proj, loop, dum_if, ddepth);
3196 
3197   return reg;
3198 }
3199 
3200 // Idea
3201 // ----
3202 // Partial Peeling tries to rotate the loop in such a way that it can later be turned into a counted loop. Counted loops
3203 // require a signed loop exit test. When calling this method, we've only found a suitable unsigned test to partial peel
3204 // with. Therefore, we try to split off a signed loop exit test from the unsigned test such that it can be used as new
3205 // loop exit while keeping the unsigned test unchanged and preserving the same behavior as if we've used the unsigned
3206 // test alone instead:
3207 //
3208 // Before Partial Peeling:
3209 //   Loop:
3210 //     <peeled section>
3211 //     Split off signed loop exit test
3212 //     <-- CUT HERE -->
3213 //     Unchanged unsigned loop exit test
3214 //     <rest of unpeeled section>
3215 //     goto Loop
3216 //
3217 // After Partial Peeling:
3218 //   <cloned peeled section>
3219 //   Cloned split off signed loop exit test
3220 //   Loop:
3221 //     Unchanged unsigned loop exit test
3222 //     <rest of unpeeled section>
3223 //     <peeled section>
3224 //     Split off signed loop exit test
3225 //     goto Loop
3226 //
3227 // Details
3228 // -------
3229 // Before:
3230 //          if (i <u limit)    Unsigned loop exit condition
3231 //         /       |
3232 //        v        v
3233 //   exit-proj   stay-in-loop-proj
3234 //
3235 // Split off a signed loop exit test (i.e. with CmpI) from an unsigned loop exit test (i.e. with CmpU) and insert it
3236 // before the CmpU on the stay-in-loop path and keep both tests:
3237 //
3238 //          if (i <u limit)    Signed loop exit test
3239 //        /        |
3240 //       /  if (i <u limit)    Unsigned loop exit test
3241 //      /  /       |
3242 //     v  v        v
3243 //  exit-region  stay-in-loop-proj
3244 //
3245 // Implementation
3246 // --------------
3247 // We need to make sure that the new signed loop exit test is properly inserted into the graph such that the unsigned
3248 // loop exit test still dominates the same set of control nodes, the ctrl() relation from data nodes to both loop
3249 // exit tests is preserved, and their loop nesting is correct.
3250 //
3251 // To achieve that, we clone the unsigned loop exit test completely (leave it unchanged), insert the signed loop exit
3252 // test above it and kill the original unsigned loop exit test by setting it's condition to a constant
3253 // (i.e. stay-in-loop-const in graph below) such that IGVN can fold it later:
3254 //
3255 //           if (stay-in-loop-const)  Killed original unsigned loop exit test
3256 //          /       |
3257 //         /        v
3258 //        /  if (i <  limit)          Split off signed loop exit test
3259 //       /  /       |
3260 //      /  /        v
3261 //     /  /  if (i <u limit)          Cloned unsigned loop exit test
3262 //    /  /   /      |
3263 //   v  v  v        |
3264 //  exit-region     |
3265 //        |         |
3266 //    dummy-if      |
3267 //     /  |         |
3268 // dead   |         |
3269 //        v         v
3270 //   exit-proj   stay-in-loop-proj
3271 //
3272 // Note: The dummy-if is inserted to create a region to merge the loop exits between the original to be killed unsigned
3273 //       loop exit test and its exit projection while keeping the exit projection (also see insert_region_before_proj()).
3274 //
3275 // Requirements
3276 // ------------
3277 // Note that we can only split off a signed loop exit test from the unsigned loop exit test when the behavior is exactly
3278 // the same as before with only a single unsigned test. This is only possible if certain requirements are met.
3279 // Otherwise, we need to bail out (see comments in the code below).
3280 IfNode* PhaseIdealLoop::insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree* loop) {
3281   const bool Signed   = true;
3282   const bool Unsigned = false;
3283 
3284   BoolNode* bol = if_cmpu->in(1)->as_Bool();
3285   if (bol->_test._test != BoolTest::lt) {
3286     return nullptr;
3287   }
3288   CmpNode* cmpu = bol->in(1)->as_Cmp();
3289   assert(cmpu->Opcode() == Op_CmpU, "must be unsigned comparison");
3290 
3291   int stride = stride_of_possible_iv(if_cmpu);
3292   if (stride == 0) {
3293     return nullptr;
3294   }
3295 
3296   Node* lp_proj = stay_in_loop(if_cmpu, loop);
3297   guarantee(lp_proj != nullptr, "null loop node");
3298 
3299   ProjNode* lp_continue = lp_proj->as_Proj();
3300   ProjNode* lp_exit     = if_cmpu->proj_out(!lp_continue->is_IfTrue())->as_Proj();
3301   if (!lp_exit->is_IfFalse()) {
3302     // The loop exit condition is (i <u limit) ==> (i >= 0 && i < limit).
3303     // We therefore can't add a single exit condition.
3304     return nullptr;
3305   }
3306   // The unsigned loop exit condition is
3307   //   !(i <u  limit)
3308   // =   i >=u limit
3309   //
3310   // First, we note that for any x for which
3311   //   0 <= x <= INT_MAX
3312   // we can convert x to an unsigned int and still get the same guarantee:
3313   //   0 <=  (uint) x <=  INT_MAX = (uint) INT_MAX
3314   //   0 <=u (uint) x <=u INT_MAX = (uint) INT_MAX   (LEMMA)
3315   //
3316   // With that in mind, if
3317   //   limit >= 0             (COND)
3318   // then the unsigned loop exit condition
3319   //   i >=u limit            (ULE)
3320   // is equivalent to
3321   //   i < 0 || i >= limit    (SLE-full)
3322   // because either i is negative and therefore always greater than MAX_INT when converting to unsigned
3323   //   (uint) i >=u MAX_INT >= limit >= 0
3324   // or otherwise
3325   //   i >= limit >= 0
3326   // holds due to (LEMMA).
3327   //
3328   // For completeness, a counterexample with limit < 0:
3329   // Assume i = -3 and limit = -2:
3330   //   i  < 0
3331   //   -2 < 0
3332   // is true and thus also "i < 0 || i >= limit". But
3333   //   i  >=u limit
3334   //   -3 >=u -2
3335   // is false.
3336   Node* limit = cmpu->in(2);
3337   const TypeInt* type_limit = _igvn.type(limit)->is_int();
3338   if (type_limit->_lo < 0) {
3339     return nullptr;
3340   }
3341 
3342   // We prove below that we can extract a single signed loop exit condition from (SLE-full), depending on the stride:
3343   //   stride < 0:
3344   //     i < 0        (SLE = SLE-negative)
3345   //   stride > 0:
3346   //     i >= limit   (SLE = SLE-positive)
3347   // such that we have the following graph before Partial Peeling with stride > 0 (similar for stride < 0):
3348   //
3349   // Loop:
3350   //   <peeled section>
3351   //   i >= limit    (SLE-positive)
3352   //   <-- CUT HERE -->
3353   //   i >=u limit   (ULE)
3354   //   <rest of unpeeled section>
3355   //   goto Loop
3356   //
3357   // We exit the loop if:
3358   //   (SLE) is true OR (ULE) is true
3359   // However, if (SLE) is true then (ULE) also needs to be true to ensure the exact same behavior. Otherwise, we wrongly
3360   // exit a loop that should not have been exited if we did not apply Partial Peeling. More formally, we need to ensure:
3361   //   (SLE) IMPLIES (ULE)
3362   // This indeed holds when (COND) is given:
3363   // - stride > 0:
3364   //       i >=  limit             // (SLE = SLE-positive)
3365   //       i >=  limit >= 0        // (COND)
3366   //       i >=u limit >= 0        // (LEMMA)
3367   //     which is the unsigned loop exit condition (ULE).
3368   // - stride < 0:
3369   //       i        <  0           // (SLE = SLE-negative)
3370   //       (uint) i >u MAX_INT     // (NEG) all negative values are greater than MAX_INT when converted to unsigned
3371   //       MAX_INT >= limit >= 0   // (COND)
3372   //       MAX_INT >=u limit >= 0  // (LEMMA)
3373   //     and thus from (NEG) and (LEMMA):
3374   //       i >=u limit
3375   //     which is the unsigned loop exit condition (ULE).
3376   //
3377   //
3378   // After Partial Peeling, we have the following structure for stride > 0 (similar for stride < 0):
3379   //   <cloned peeled section>
3380   //   i >= limit (SLE-positive)
3381   //   Loop:
3382   //     i >=u limit (ULE)
3383   //     <rest of unpeeled section>
3384   //     <peeled section>
3385   //     i >= limit (SLE-positive)
3386   //     goto Loop
3387   Node* rhs_cmpi;
3388   if (stride > 0) {
3389     rhs_cmpi = limit; // For i >= limit
3390   } else {
3391     rhs_cmpi = makecon(TypeInt::ZERO); // For i < 0
3392   }
3393   // Create a new region on the exit path
3394   RegionNode* reg = insert_region_before_proj(lp_exit);
3395   guarantee(reg != nullptr, "null region node");
3396 
3397   // Clone the if-cmpu-true-false using a signed compare
3398   BoolTest::mask rel_i = stride > 0 ? bol->_test._test : BoolTest::ge;
3399   ProjNode* cmpi_exit = insert_if_before_proj(cmpu->in(1), Signed, rel_i, rhs_cmpi, lp_continue);
3400   reg->add_req(cmpi_exit);
3401 
3402   // Clone the if-cmpu-true-false
3403   BoolTest::mask rel_u = bol->_test._test;
3404   ProjNode* cmpu_exit = insert_if_before_proj(cmpu->in(1), Unsigned, rel_u, cmpu->in(2), lp_continue);
3405   reg->add_req(cmpu_exit);
3406 
3407   // Force original if to stay in loop.
3408   short_circuit_if(if_cmpu, lp_continue);
3409 
3410   return cmpi_exit->in(0)->as_If();
3411 }
3412 
3413 //------------------------------ remove_cmpi_loop_exit -------------------------------------
3414 // Remove a previously inserted signed compare loop exit.
3415 void PhaseIdealLoop::remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop) {
3416   Node* lp_proj = stay_in_loop(if_cmp, loop);
3417   assert(if_cmp->in(1)->in(1)->Opcode() == Op_CmpI &&
3418          stay_in_loop(lp_proj, loop)->is_If() &&
3419          stay_in_loop(lp_proj, loop)->in(1)->in(1)->Opcode() == Op_CmpU, "inserted cmpi before cmpu");
3420   Node* con = makecon(lp_proj->is_IfTrue() ? TypeInt::ONE : TypeInt::ZERO);
3421   if_cmp->set_req(1, con);
3422 }
3423 
3424 //------------------------------ scheduled_nodelist -------------------------------------
3425 // Create a post order schedule of nodes that are in the
3426 // "member" set.  The list is returned in "sched".
3427 // The first node in "sched" is the loop head, followed by
3428 // nodes which have no inputs in the "member" set, and then
3429 // followed by the nodes that have an immediate input dependence
3430 // on a node in "sched".
3431 void PhaseIdealLoop::scheduled_nodelist( IdealLoopTree *loop, VectorSet& member, Node_List &sched ) {
3432 
3433   assert(member.test(loop->_head->_idx), "loop head must be in member set");
3434   VectorSet visited;
3435   Node_Stack nstack(loop->_body.size());
3436 
3437   Node* n  = loop->_head;  // top of stack is cached in "n"
3438   uint idx = 0;
3439   visited.set(n->_idx);
3440 
3441   // Initially push all with no inputs from within member set
3442   for(uint i = 0; i < loop->_body.size(); i++ ) {
3443     Node *elt = loop->_body.at(i);
3444     if (member.test(elt->_idx)) {
3445       bool found = false;
3446       for (uint j = 0; j < elt->req(); j++) {
3447         Node* def = elt->in(j);
3448         if (def && member.test(def->_idx) && def != elt) {
3449           found = true;
3450           break;
3451         }
3452       }
3453       if (!found && elt != loop->_head) {
3454         nstack.push(n, idx);
3455         n = elt;
3456         assert(!visited.test(n->_idx), "not seen yet");
3457         visited.set(n->_idx);
3458       }
3459     }
3460   }
3461 
3462   // traverse out's that are in the member set
3463   while (true) {
3464     if (idx < n->outcnt()) {
3465       Node* use = n->raw_out(idx);
3466       idx++;
3467       if (!visited.test_set(use->_idx)) {
3468         if (member.test(use->_idx)) {
3469           nstack.push(n, idx);
3470           n = use;
3471           idx = 0;
3472         }
3473       }
3474     } else {
3475       // All outputs processed
3476       sched.push(n);
3477       if (nstack.is_empty()) break;
3478       n   = nstack.node();
3479       idx = nstack.index();
3480       nstack.pop();
3481     }
3482   }
3483 }
3484 
3485 
3486 //------------------------------ has_use_in_set -------------------------------------
3487 // Has a use in the vector set
3488 bool PhaseIdealLoop::has_use_in_set( Node* n, VectorSet& vset ) {
3489   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3490     Node* use = n->fast_out(j);
3491     if (vset.test(use->_idx)) {
3492       return true;
3493     }
3494   }
3495   return false;
3496 }
3497 
3498 
3499 //------------------------------ has_use_internal_to_set -------------------------------------
3500 // Has use internal to the vector set (ie. not in a phi at the loop head)
3501 bool PhaseIdealLoop::has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ) {
3502   Node* head  = loop->_head;
3503   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3504     Node* use = n->fast_out(j);
3505     if (vset.test(use->_idx) && !(use->is_Phi() && use->in(0) == head)) {
3506       return true;
3507     }
3508   }
3509   return false;
3510 }
3511 
3512 
3513 //------------------------------ clone_for_use_outside_loop -------------------------------------
3514 // clone "n" for uses that are outside of loop
3515 int PhaseIdealLoop::clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ) {
3516   int cloned = 0;
3517   assert(worklist.size() == 0, "should be empty");
3518   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3519     Node* use = n->fast_out(j);
3520     if( !loop->is_member(get_loop(has_ctrl(use) ? get_ctrl(use) : use)) ) {
3521       worklist.push(use);
3522     }
3523   }
3524 
3525   if (C->check_node_count(worklist.size() + NodeLimitFudgeFactor,
3526                           "Too many clones required in clone_for_use_outside_loop in partial peeling")) {
3527     return -1;
3528   }
3529 
3530   while( worklist.size() ) {
3531     Node *use = worklist.pop();
3532     if (!has_node(use) || use->in(0) == C->top()) continue;
3533     uint j;
3534     for (j = 0; j < use->req(); j++) {
3535       if (use->in(j) == n) break;
3536     }
3537     assert(j < use->req(), "must be there");
3538 
3539     // clone "n" and insert it between the inputs of "n" and the use outside the loop
3540     Node* n_clone = n->clone();
3541     _igvn.replace_input_of(use, j, n_clone);
3542     cloned++;
3543     Node* use_c;
3544     if (!use->is_Phi()) {
3545       use_c = has_ctrl(use) ? get_ctrl(use) : use->in(0);
3546     } else {
3547       // Use in a phi is considered a use in the associated predecessor block
3548       use_c = use->in(0)->in(j);
3549     }
3550     set_ctrl(n_clone, use_c);
3551     assert(!loop->is_member(get_loop(use_c)), "should be outside loop");
3552     get_loop(use_c)->_body.push(n_clone);
3553     _igvn.register_new_node_with_optimizer(n_clone);
3554 #ifndef PRODUCT
3555     if (TracePartialPeeling) {
3556       tty->print_cr("loop exit cloning old: %d new: %d newbb: %d", n->_idx, n_clone->_idx, get_ctrl(n_clone)->_idx);
3557     }
3558 #endif
3559   }
3560   return cloned;
3561 }
3562 
3563 
3564 //------------------------------ clone_for_special_use_inside_loop -------------------------------------
3565 // clone "n" for special uses that are in the not_peeled region.
3566 // If these def-uses occur in separate blocks, the code generator
3567 // marks the method as not compilable.  For example, if a "BoolNode"
3568 // is in a different basic block than the "IfNode" that uses it, then
3569 // the compilation is aborted in the code generator.
3570 void PhaseIdealLoop::clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
3571                                                         VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ) {
3572   if (n->is_Phi() || n->is_Load()) {
3573     return;
3574   }
3575   assert(worklist.size() == 0, "should be empty");
3576   for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
3577     Node* use = n->fast_out(j);
3578     if ( not_peel.test(use->_idx) &&
3579          (use->is_If() || use->is_CMove() || use->is_Bool() || use->is_OpaqueInitializedAssertionPredicate()) &&
3580          use->in(1) == n)  {
3581       worklist.push(use);
3582     }
3583   }
3584   if (worklist.size() > 0) {
3585     // clone "n" and insert it between inputs of "n" and the use
3586     Node* n_clone = n->clone();
3587     loop->_body.push(n_clone);
3588     _igvn.register_new_node_with_optimizer(n_clone);
3589     set_ctrl(n_clone, get_ctrl(n));
3590     sink_list.push(n_clone);
3591     not_peel.set(n_clone->_idx);
3592 #ifndef PRODUCT
3593     if (TracePartialPeeling) {
3594       tty->print_cr("special not_peeled cloning old: %d new: %d", n->_idx, n_clone->_idx);
3595     }
3596 #endif
3597     while( worklist.size() ) {
3598       Node *use = worklist.pop();
3599       _igvn.rehash_node_delayed(use);
3600       for (uint j = 1; j < use->req(); j++) {
3601         if (use->in(j) == n) {
3602           use->set_req(j, n_clone);
3603         }
3604       }
3605     }
3606   }
3607 }
3608 
3609 
3610 //------------------------------ insert_phi_for_loop -------------------------------------
3611 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
3612 void PhaseIdealLoop::insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ) {
3613   Node *phi = PhiNode::make(lp, back_edge_val);
3614   phi->set_req(LoopNode::EntryControl, lp_entry_val);
3615   // Use existing phi if it already exists
3616   Node *hit = _igvn.hash_find_insert(phi);
3617   if( hit == nullptr ) {
3618     _igvn.register_new_node_with_optimizer(phi);
3619     set_ctrl(phi, lp);
3620   } else {
3621     // Remove the new phi from the graph and use the hit
3622     _igvn.remove_dead_node(phi);
3623     phi = hit;
3624   }
3625   _igvn.replace_input_of(use, idx, phi);
3626 }
3627 
3628 #ifdef ASSERT
3629 //------------------------------ is_valid_loop_partition -------------------------------------
3630 // Validate the loop partition sets: peel and not_peel
3631 bool PhaseIdealLoop::is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list,
3632                                               VectorSet& not_peel ) {
3633   uint i;
3634   // Check that peel_list entries are in the peel set
3635   for (i = 0; i < peel_list.size(); i++) {
3636     if (!peel.test(peel_list.at(i)->_idx)) {
3637       return false;
3638     }
3639   }
3640   // Check at loop members are in one of peel set or not_peel set
3641   for (i = 0; i < loop->_body.size(); i++ ) {
3642     Node *def  = loop->_body.at(i);
3643     uint di = def->_idx;
3644     // Check that peel set elements are in peel_list
3645     if (peel.test(di)) {
3646       if (not_peel.test(di)) {
3647         return false;
3648       }
3649       // Must be in peel_list also
3650       bool found = false;
3651       for (uint j = 0; j < peel_list.size(); j++) {
3652         if (peel_list.at(j)->_idx == di) {
3653           found = true;
3654           break;
3655         }
3656       }
3657       if (!found) {
3658         return false;
3659       }
3660     } else if (not_peel.test(di)) {
3661       if (peel.test(di)) {
3662         return false;
3663       }
3664     } else {
3665       return false;
3666     }
3667   }
3668   return true;
3669 }
3670 
3671 //------------------------------ is_valid_clone_loop_exit_use -------------------------------------
3672 // Ensure a use outside of loop is of the right form
3673 bool PhaseIdealLoop::is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx) {
3674   Node *use_c = has_ctrl(use) ? get_ctrl(use) : use;
3675   return (use->is_Phi() &&
3676           use_c->is_Region() && use_c->req() == 3 &&
3677           (use_c->in(exit_idx)->Opcode() == Op_IfTrue ||
3678            use_c->in(exit_idx)->Opcode() == Op_IfFalse ||
3679            use_c->in(exit_idx)->Opcode() == Op_JumpProj) &&
3680           loop->is_member( get_loop( use_c->in(exit_idx)->in(0) ) ) );
3681 }
3682 
3683 //------------------------------ is_valid_clone_loop_form -------------------------------------
3684 // Ensure that all uses outside of loop are of the right form
3685 bool PhaseIdealLoop::is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
3686                                                uint orig_exit_idx, uint clone_exit_idx) {
3687   uint len = peel_list.size();
3688   for (uint i = 0; i < len; i++) {
3689     Node *def = peel_list.at(i);
3690 
3691     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
3692       Node *use = def->fast_out(j);
3693       Node *use_c = has_ctrl(use) ? get_ctrl(use) : use;
3694       if (!loop->is_member(get_loop(use_c))) {
3695         // use is not in the loop, check for correct structure
3696         if (use->in(0) == def) {
3697           // Okay
3698         } else if (!is_valid_clone_loop_exit_use(loop, use, orig_exit_idx)) {
3699           return false;
3700         }
3701       }
3702     }
3703   }
3704   return true;
3705 }
3706 #endif
3707 
3708 //------------------------------ partial_peel -------------------------------------
3709 // Partially peel (aka loop rotation) the top portion of a loop (called
3710 // the peel section below) by cloning it and placing one copy just before
3711 // the new loop head and the other copy at the bottom of the new loop.
3712 //
3713 //    before                       after                where it came from
3714 //
3715 //    stmt1                        stmt1
3716 //  loop:                          stmt2                     clone
3717 //    stmt2                        if condA goto exitA       clone
3718 //    if condA goto exitA        new_loop:                   new
3719 //    stmt3                        stmt3                     clone
3720 //    if !condB goto loop          if condB goto exitB       clone
3721 //  exitB:                         stmt2                     orig
3722 //    stmt4                        if !condA goto new_loop   orig
3723 //  exitA:                         goto exitA
3724 //                               exitB:
3725 //                                 stmt4
3726 //                               exitA:
3727 //
3728 // Step 1: find the cut point: an exit test on probable
3729 //         induction variable.
3730 // Step 2: schedule (with cloning) operations in the peel
3731 //         section that can be executed after the cut into
3732 //         the section that is not peeled.  This may need
3733 //         to clone operations into exit blocks.  For
3734 //         instance, a reference to A[i] in the not-peel
3735 //         section and a reference to B[i] in an exit block
3736 //         may cause a left-shift of i by 2 to be placed
3737 //         in the peel block.  This step will clone the left
3738 //         shift into the exit block and sink the left shift
3739 //         from the peel to the not-peel section.
3740 // Step 3: clone the loop, retarget the control, and insert
3741 //         phis for values that are live across the new loop
3742 //         head.  This is very dependent on the graph structure
3743 //         from clone_loop.  It creates region nodes for
3744 //         exit control and associated phi nodes for values
3745 //         flow out of the loop through that exit.  The region
3746 //         node is dominated by the clone's control projection.
3747 //         So the clone's peel section is placed before the
3748 //         new loop head, and the clone's not-peel section is
3749 //         forms the top part of the new loop.  The original
3750 //         peel section forms the tail of the new loop.
3751 // Step 4: update the dominator tree and recompute the
3752 //         dominator depth.
3753 //
3754 //                   orig
3755 //
3756 //                   stmt1
3757 //                     |
3758 //                     v
3759 //                 predicates
3760 //                     |
3761 //                     v
3762 //                   loop<----+
3763 //                     |      |
3764 //                   stmt2    |
3765 //                     |      |
3766 //                     v      |
3767 //                    ifA     |
3768 //                   / |      |
3769 //                  v  v      |
3770 //               false true   ^  <-- last_peel
3771 //               /     |      |
3772 //              /   ===|==cut |
3773 //             /     stmt3    |  <-- first_not_peel
3774 //            /        |      |
3775 //            |        v      |
3776 //            v       ifB     |
3777 //          exitA:   / \      |
3778 //                  /   \     |
3779 //                 v     v    |
3780 //               false true   |
3781 //               /       \    |
3782 //              /         ----+
3783 //             |
3784 //             v
3785 //           exitB:
3786 //           stmt4
3787 //
3788 //
3789 //            after clone loop
3790 //
3791 //                   stmt1
3792 //                     |
3793 //                     v
3794 //                predicates
3795 //                 /       \
3796 //        clone   /         \   orig
3797 //               /           \
3798 //              /             \
3799 //             v               v
3800 //   +---->loop                loop<----+
3801 //   |      |                    |      |
3802 //   |    stmt2                stmt2    |
3803 //   |      |                    |      |
3804 //   |      v                    v      |
3805 //   |      ifA                 ifA     |
3806 //   |      | \                / |      |
3807 //   |      v  v              v  v      |
3808 //   ^    true  false      false true   ^  <-- last_peel
3809 //   |      |   ^   \       /    |      |
3810 //   | cut==|==  \   \     /  ===|==cut |
3811 //   |    stmt3   \   \   /    stmt3    |  <-- first_not_peel
3812 //   |      |    dom   | |       |      |
3813 //   |      v      \  1v v2      v      |
3814 //   |      ifB     regionA     ifB     |
3815 //   |      / \        |       / \      |
3816 //   |     /   \       v      /   \     |
3817 //   |    v     v    exitA:  v     v    |
3818 //   |    true  false      false true   |
3819 //   |    /     ^   \      /       \    |
3820 //   +----       \   \    /         ----+
3821 //               dom  \  /
3822 //                 \  1v v2
3823 //                  regionB
3824 //                     |
3825 //                     v
3826 //                   exitB:
3827 //                   stmt4
3828 //
3829 //
3830 //           after partial peel
3831 //
3832 //                  stmt1
3833 //                     |
3834 //                     v
3835 //                predicates
3836 //                 /
3837 //        clone   /             orig
3838 //               /          TOP
3839 //              /             \
3840 //             v               v
3841 //    TOP->loop                loop----+
3842 //          |                    |      |
3843 //        stmt2                stmt2    |
3844 //          |                    |      |
3845 //          v                    v      |
3846 //          ifA                 ifA     |
3847 //          | \                / |      |
3848 //          v  v              v  v      |
3849 //        true  false      false true   |     <-- last_peel
3850 //          |   ^   \       /    +------|---+
3851 //  +->newloop   \   \     /  === ==cut |   |
3852 //  |     stmt3   \   \   /     TOP     |   |
3853 //  |       |    dom   | |      stmt3   |   | <-- first_not_peel
3854 //  |       v      \  1v v2      v      |   |
3855 //  |       ifB     regionA     ifB     ^   v
3856 //  |       / \        |       / \      |   |
3857 //  |      /   \       v      /   \     |   |
3858 //  |     v     v    exitA:  v     v    |   |
3859 //  |     true  false      false true   |   |
3860 //  |     /     ^   \      /       \    |   |
3861 //  |    |       \   \    /         v   |   |
3862 //  |    |       dom  \  /         TOP  |   |
3863 //  |    |         \  1v v2             |   |
3864 //  ^    v          regionB             |   |
3865 //  |    |             |                |   |
3866 //  |    |             v                ^   v
3867 //  |    |           exitB:             |   |
3868 //  |    |           stmt4              |   |
3869 //  |    +------------>-----------------+   |
3870 //  |                                       |
3871 //  +-----------------<---------------------+
3872 //
3873 //
3874 //              final graph
3875 //
3876 //                  stmt1
3877 //                    |
3878 //                    v
3879 //                predicates
3880 //                    |
3881 //                    v
3882 //                  stmt2 clone
3883 //                    |
3884 //                    v
3885 //         ........> ifA clone
3886 //         :        / |
3887 //        dom      /  |
3888 //         :      v   v
3889 //         :  false   true
3890 //         :  |       |
3891 //         :  |       v
3892 //         :  |    newloop<-----+
3893 //         :  |        |        |
3894 //         :  |     stmt3 clone |
3895 //         :  |        |        |
3896 //         :  |        v        |
3897 //         :  |       ifB       |
3898 //         :  |      / \        |
3899 //         :  |     v   v       |
3900 //         :  |  false true     |
3901 //         :  |   |     |       |
3902 //         :  |   v    stmt2    |
3903 //         :  | exitB:  |       |
3904 //         :  | stmt4   v       |
3905 //         :  |       ifA orig  |
3906 //         :  |      /  \       |
3907 //         :  |     /    \      |
3908 //         :  |    v     v      |
3909 //         :  |  false  true    |
3910 //         :  |  /        \     |
3911 //         :  v  v         -----+
3912 //          RegionA
3913 //             |
3914 //             v
3915 //           exitA
3916 //
3917 bool PhaseIdealLoop::partial_peel( IdealLoopTree *loop, Node_List &old_new ) {
3918 
3919   assert(!loop->_head->is_CountedLoop(), "Non-counted loop only");
3920   if (!loop->_head->is_Loop()) {
3921     return false;
3922   }
3923   LoopNode *head = loop->_head->as_Loop();
3924 
3925   if (head->is_partial_peel_loop() || head->partial_peel_has_failed()) {
3926     return false;
3927   }
3928 
3929   // Check for complex exit control
3930   for (uint ii = 0; ii < loop->_body.size(); ii++) {
3931     Node *n = loop->_body.at(ii);
3932     int opc = n->Opcode();
3933     if (n->is_Call()        ||
3934         opc == Op_Catch     ||
3935         opc == Op_CatchProj ||
3936         opc == Op_Jump      ||
3937         opc == Op_JumpProj) {
3938 #ifndef PRODUCT
3939       if (TracePartialPeeling) {
3940         tty->print_cr("\nExit control too complex: lp: %d", head->_idx);
3941       }
3942 #endif
3943       return false;
3944     }
3945   }
3946 
3947   int dd = dom_depth(head);
3948 
3949   // Step 1: find cut point
3950 
3951   // Walk up dominators to loop head looking for first loop exit
3952   // which is executed on every path thru loop.
3953   IfNode *peel_if = nullptr;
3954   IfNode *peel_if_cmpu = nullptr;
3955 
3956   Node *iff = loop->tail();
3957   while (iff != head) {
3958     if (iff->is_If()) {
3959       Node *ctrl = get_ctrl(iff->in(1));
3960       if (ctrl->is_top()) return false; // Dead test on live IF.
3961       // If loop-varying exit-test, check for induction variable
3962       if (loop->is_member(get_loop(ctrl)) &&
3963           loop->is_loop_exit(iff) &&
3964           is_possible_iv_test(iff)) {
3965         Node* cmp = iff->in(1)->in(1);
3966         if (cmp->Opcode() == Op_CmpI) {
3967           peel_if = iff->as_If();
3968         } else {
3969           assert(cmp->Opcode() == Op_CmpU, "must be CmpI or CmpU");
3970           peel_if_cmpu = iff->as_If();
3971         }
3972       }
3973     }
3974     iff = idom(iff);
3975   }
3976 
3977   // Prefer signed compare over unsigned compare.
3978   IfNode* new_peel_if = nullptr;
3979   if (peel_if == nullptr) {
3980     if (!PartialPeelAtUnsignedTests || peel_if_cmpu == nullptr) {
3981       return false;   // No peel point found
3982     }
3983     new_peel_if = insert_cmpi_loop_exit(peel_if_cmpu, loop);
3984     if (new_peel_if == nullptr) {
3985       return false;   // No peel point found
3986     }
3987     peel_if = new_peel_if;
3988   }
3989   Node* last_peel        = stay_in_loop(peel_if, loop);
3990   Node* first_not_peeled = stay_in_loop(last_peel, loop);
3991   if (first_not_peeled == nullptr || first_not_peeled == head) {
3992     return false;
3993   }
3994 
3995 #ifndef PRODUCT
3996   if (TraceLoopOpts) {
3997     tty->print("PartialPeel  ");
3998     loop->dump_head();
3999   }
4000 
4001   if (TracePartialPeeling) {
4002     tty->print_cr("before partial peel one iteration");
4003     Node_List wl;
4004     Node* t = head->in(2);
4005     while (true) {
4006       wl.push(t);
4007       if (t == head) break;
4008       t = idom(t);
4009     }
4010     while (wl.size() > 0) {
4011       Node* tt = wl.pop();
4012       tt->dump();
4013       if (tt == last_peel) tty->print_cr("-- cut --");
4014     }
4015   }
4016 #endif
4017 
4018   C->print_method(PHASE_BEFORE_PARTIAL_PEELING, 4, head);
4019 
4020   VectorSet peel;
4021   VectorSet not_peel;
4022   Node_List peel_list;
4023   Node_List worklist;
4024   Node_List sink_list;
4025 
4026   uint estimate = loop->est_loop_clone_sz(1);
4027   if (exceeding_node_budget(estimate)) {
4028     return false;
4029   }
4030 
4031   // Set of cfg nodes to peel are those that are executable from
4032   // the head through last_peel.
4033   assert(worklist.size() == 0, "should be empty");
4034   worklist.push(head);
4035   peel.set(head->_idx);
4036   while (worklist.size() > 0) {
4037     Node *n = worklist.pop();
4038     if (n != last_peel) {
4039       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
4040         Node* use = n->fast_out(j);
4041         if (use->is_CFG() &&
4042             loop->is_member(get_loop(use)) &&
4043             !peel.test_set(use->_idx)) {
4044           worklist.push(use);
4045         }
4046       }
4047     }
4048   }
4049 
4050   // Set of non-cfg nodes to peel are those that are control
4051   // dependent on the cfg nodes.
4052   for (uint i = 0; i < loop->_body.size(); i++) {
4053     Node *n = loop->_body.at(i);
4054     Node *n_c = has_ctrl(n) ? get_ctrl(n) : n;
4055     if (peel.test(n_c->_idx)) {
4056       peel.set(n->_idx);
4057     } else {
4058       not_peel.set(n->_idx);
4059     }
4060   }
4061 
4062   // Step 2: move operations from the peeled section down into the
4063   //         not-peeled section
4064 
4065   // Get a post order schedule of nodes in the peel region
4066   // Result in right-most operand.
4067   scheduled_nodelist(loop, peel, peel_list);
4068 
4069   assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition");
4070 
4071   // For future check for too many new phis
4072   uint old_phi_cnt = 0;
4073   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
4074     Node* use = head->fast_out(j);
4075     if (use->is_Phi()) old_phi_cnt++;
4076   }
4077 
4078 #ifndef PRODUCT
4079   if (TracePartialPeeling) {
4080     tty->print_cr("\npeeled list");
4081   }
4082 #endif
4083 
4084   // Evacuate nodes in peel region into the not_peeled region if possible
4085   bool too_many_clones = false;
4086   uint new_phi_cnt = 0;
4087   uint cloned_for_outside_use = 0;
4088   for (uint i = 0; i < peel_list.size();) {
4089     Node* n = peel_list.at(i);
4090 #ifndef PRODUCT
4091   if (TracePartialPeeling) n->dump();
4092 #endif
4093     bool incr = true;
4094     if (!n->is_CFG()) {
4095       if (has_use_in_set(n, not_peel)) {
4096         // If not used internal to the peeled region,
4097         // move "n" from peeled to not_peeled region.
4098         if (!has_use_internal_to_set(n, peel, loop)) {
4099           // if not pinned and not a load (which maybe anti-dependent on a store)
4100           // and not a CMove (Matcher expects only bool->cmove).
4101           if (n->in(0) == nullptr && !n->is_Load() && !n->is_CMove()) {
4102             int new_clones = clone_for_use_outside_loop(loop, n, worklist);
4103             if (C->failing()) return false;
4104             if (new_clones == -1) {
4105               too_many_clones = true;
4106               break;
4107             }
4108             cloned_for_outside_use += new_clones;
4109             sink_list.push(n);
4110             peel.remove(n->_idx);
4111             not_peel.set(n->_idx);
4112             peel_list.remove(i);
4113             incr = false;
4114 #ifndef PRODUCT
4115             if (TracePartialPeeling) {
4116               tty->print_cr("sink to not_peeled region: %d newbb: %d",
4117                             n->_idx, get_ctrl(n)->_idx);
4118             }
4119 #endif
4120           }
4121         } else {
4122           // Otherwise check for special def-use cases that span
4123           // the peel/not_peel boundary such as bool->if
4124           clone_for_special_use_inside_loop(loop, n, not_peel, sink_list, worklist);
4125           new_phi_cnt++;
4126         }
4127       }
4128     }
4129     if (incr) i++;
4130   }
4131 
4132   estimate += cloned_for_outside_use + new_phi_cnt;
4133   bool exceed_node_budget = !may_require_nodes(estimate);
4134   bool exceed_phi_limit = new_phi_cnt > old_phi_cnt + PartialPeelNewPhiDelta;
4135 
4136   if (too_many_clones || exceed_node_budget || exceed_phi_limit) {
4137 #ifndef PRODUCT
4138     if (TracePartialPeeling && exceed_phi_limit) {
4139       tty->print_cr("\nToo many new phis: %d  old %d new cmpi: %c",
4140                     new_phi_cnt, old_phi_cnt, new_peel_if != nullptr?'T':'F');
4141     }
4142 #endif
4143     if (new_peel_if != nullptr) {
4144       remove_cmpi_loop_exit(new_peel_if, loop);
4145     }
4146     // Inhibit more partial peeling on this loop
4147     assert(!head->is_partial_peel_loop(), "not partial peeled");
4148     head->mark_partial_peel_failed();
4149     if (cloned_for_outside_use > 0) {
4150       // Terminate this round of loop opts because
4151       // the graph outside this loop was changed.
4152       C->set_major_progress();
4153       return true;
4154     }
4155     return false;
4156   }
4157 
4158   // Step 3: clone loop, retarget control, and insert new phis
4159 
4160   // Create new loop head for new phis and to hang
4161   // the nodes being moved (sinked) from the peel region.
4162   LoopNode* new_head = new LoopNode(last_peel, last_peel);
4163   new_head->set_unswitch_count(head->unswitch_count()); // Preserve
4164   _igvn.register_new_node_with_optimizer(new_head);
4165   assert(first_not_peeled->in(0) == last_peel, "last_peel <- first_not_peeled");
4166   _igvn.replace_input_of(first_not_peeled, 0, new_head);
4167   set_loop(new_head, loop);
4168   loop->_body.push(new_head);
4169   not_peel.set(new_head->_idx);
4170   set_idom(new_head, last_peel, dom_depth(first_not_peeled));
4171   set_idom(first_not_peeled, new_head, dom_depth(first_not_peeled));
4172 
4173   while (sink_list.size() > 0) {
4174     Node* n = sink_list.pop();
4175     set_ctrl(n, new_head);
4176   }
4177 
4178   assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition");
4179 
4180   clone_loop(loop, old_new, dd, IgnoreStripMined);
4181 
4182   const uint clone_exit_idx = 1;
4183   const uint orig_exit_idx  = 2;
4184   assert(is_valid_clone_loop_form(loop, peel_list, orig_exit_idx, clone_exit_idx), "bad clone loop");
4185 
4186   Node* head_clone             = old_new[head->_idx];
4187   LoopNode* new_head_clone     = old_new[new_head->_idx]->as_Loop();
4188   Node* orig_tail_clone        = head_clone->in(2);
4189 
4190   // Add phi if "def" node is in peel set and "use" is not
4191 
4192   for (uint i = 0; i < peel_list.size(); i++) {
4193     Node *def  = peel_list.at(i);
4194     if (!def->is_CFG()) {
4195       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
4196         Node *use = def->fast_out(j);
4197         if (has_node(use) && use->in(0) != C->top() &&
4198             (!peel.test(use->_idx) ||
4199              (use->is_Phi() && use->in(0) == head)) ) {
4200           worklist.push(use);
4201         }
4202       }
4203       while( worklist.size() ) {
4204         Node *use = worklist.pop();
4205         for (uint j = 1; j < use->req(); j++) {
4206           Node* n = use->in(j);
4207           if (n == def) {
4208 
4209             // "def" is in peel set, "use" is not in peel set
4210             // or "use" is in the entry boundary (a phi) of the peel set
4211 
4212             Node* use_c = has_ctrl(use) ? get_ctrl(use) : use;
4213 
4214             if ( loop->is_member(get_loop( use_c )) ) {
4215               // use is in loop
4216               if (old_new[use->_idx] != nullptr) { // null for dead code
4217                 Node* use_clone = old_new[use->_idx];
4218                 _igvn.replace_input_of(use, j, C->top());
4219                 insert_phi_for_loop( use_clone, j, old_new[def->_idx], def, new_head_clone );
4220               }
4221             } else {
4222               assert(is_valid_clone_loop_exit_use(loop, use, orig_exit_idx), "clone loop format");
4223               // use is not in the loop, check if the live range includes the cut
4224               Node* lp_if = use_c->in(orig_exit_idx)->in(0);
4225               if (not_peel.test(lp_if->_idx)) {
4226                 assert(j == orig_exit_idx, "use from original loop");
4227                 insert_phi_for_loop( use, clone_exit_idx, old_new[def->_idx], def, new_head_clone );
4228               }
4229             }
4230           }
4231         }
4232       }
4233     }
4234   }
4235 
4236   // Step 3b: retarget control
4237 
4238   // Redirect control to the new loop head if a cloned node in
4239   // the not_peeled region has control that points into the peeled region.
4240   // This necessary because the cloned peeled region will be outside
4241   // the loop.
4242   //                            from    to
4243   //          cloned-peeled    <---+
4244   //    new_head_clone:            |    <--+
4245   //          cloned-not_peeled  in(0)    in(0)
4246   //          orig-peeled
4247 
4248   for (uint i = 0; i < loop->_body.size(); i++) {
4249     Node *n = loop->_body.at(i);
4250     if (!n->is_CFG()           && n->in(0) != nullptr        &&
4251         not_peel.test(n->_idx) && peel.test(n->in(0)->_idx)) {
4252       Node* n_clone = old_new[n->_idx];
4253       if (n_clone->depends_only_on_test()) {
4254         // Pin array access nodes: control is updated here to the loop head. If, after some transformations, the
4255         // backedge is removed, an array load could become dependent on a condition that's not a range check for that
4256         // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk
4257         // floating above its range check.
4258         Node* pinned_clone = n_clone->pin_array_access_node();
4259         if (pinned_clone != nullptr) {
4260           register_new_node_with_ctrl_of(pinned_clone, n_clone);
4261           old_new.map(n->_idx, pinned_clone);
4262           _igvn.replace_node(n_clone, pinned_clone);
4263           n_clone = pinned_clone;
4264         }
4265       }
4266       _igvn.replace_input_of(n_clone, 0, new_head_clone);
4267     }
4268   }
4269 
4270   // Backedge of the surviving new_head (the clone) is original last_peel
4271   _igvn.replace_input_of(new_head_clone, LoopNode::LoopBackControl, last_peel);
4272 
4273   // Cut first node in original not_peel set
4274   _igvn.rehash_node_delayed(new_head);                     // Multiple edge updates:
4275   new_head->set_req(LoopNode::EntryControl,    C->top());  //   use rehash_node_delayed / set_req instead of
4276   new_head->set_req(LoopNode::LoopBackControl, C->top());  //   multiple replace_input_of calls
4277 
4278   // Copy head_clone back-branch info to original head
4279   // and remove original head's loop entry and
4280   // clone head's back-branch
4281   _igvn.rehash_node_delayed(head); // Multiple edge updates
4282   head->set_req(LoopNode::EntryControl,    head_clone->in(LoopNode::LoopBackControl));
4283   head->set_req(LoopNode::LoopBackControl, C->top());
4284   _igvn.replace_input_of(head_clone, LoopNode::LoopBackControl, C->top());
4285 
4286   // Similarly modify the phis
4287   for (DUIterator_Fast kmax, k = head->fast_outs(kmax); k < kmax; k++) {
4288     Node* use = head->fast_out(k);
4289     if (use->is_Phi() && use->outcnt() > 0) {
4290       Node* use_clone = old_new[use->_idx];
4291       _igvn.rehash_node_delayed(use); // Multiple edge updates
4292       use->set_req(LoopNode::EntryControl,    use_clone->in(LoopNode::LoopBackControl));
4293       use->set_req(LoopNode::LoopBackControl, C->top());
4294       _igvn.replace_input_of(use_clone, LoopNode::LoopBackControl, C->top());
4295     }
4296   }
4297 
4298   // Step 4: update dominator tree and dominator depth
4299 
4300   set_idom(head, orig_tail_clone, dd);
4301   recompute_dom_depth();
4302 
4303   // Inhibit more partial peeling on this loop
4304   new_head_clone->set_partial_peel_loop();
4305   C->set_major_progress();
4306   loop->record_for_igvn();
4307 
4308 #ifndef PRODUCT
4309   if (TracePartialPeeling) {
4310     tty->print_cr("\nafter partial peel one iteration");
4311     Node_List wl;
4312     Node* t = last_peel;
4313     while (true) {
4314       wl.push(t);
4315       if (t == head_clone) break;
4316       t = idom(t);
4317     }
4318     while (wl.size() > 0) {
4319       Node* tt = wl.pop();
4320       if (tt == head) tty->print_cr("orig head");
4321       else if (tt == new_head_clone) tty->print_cr("new head");
4322       else if (tt == head_clone) tty->print_cr("clone head");
4323       tt->dump();
4324     }
4325   }
4326 #endif
4327 
4328   C->print_method(PHASE_AFTER_PARTIAL_PEELING, 4, new_head_clone);
4329 
4330   return true;
4331 }
4332 
4333 // Transform:
4334 //
4335 // loop<-----------------+
4336 //  |                    |
4337 // stmt1 stmt2 .. stmtn  |
4338 //  |     |        |     |
4339 //  \     |       /      |
4340 //    v   v     v        |
4341 //       region          |
4342 //         |             |
4343 //     shared_stmt       |
4344 //         |             |
4345 //         v             |
4346 //         if            |
4347 //         / \           |
4348 //        |   -----------+
4349 //        v
4350 //
4351 // into:
4352 //
4353 //    loop<-------------------+
4354 //     |                      |
4355 //     v                      |
4356 // +->loop                    |
4357 // |   |                      |
4358 // |  stmt1 stmt2 .. stmtn    |
4359 // |   |     |        |       |
4360 // |   |      \       /       |
4361 // |   |       v     v        |
4362 // |   |        region1       |
4363 // |   |           |          |
4364 // |  shared_stmt shared_stmt |
4365 // |   |           |          |
4366 // |   v           v          |
4367 // |   if          if         |
4368 // |   /\          / \        |
4369 // +--   |         |   -------+
4370 //       \         /
4371 //        v       v
4372 //         region2
4373 //
4374 // (region2 is shown to merge mirrored projections of the loop exit
4375 // ifs to make the diagram clearer but they really merge the same
4376 // projection)
4377 //
4378 // Conditions for this transformation to trigger:
4379 // - the path through stmt1 is frequent enough
4380 // - the inner loop will be turned into a counted loop after transformation
4381 bool PhaseIdealLoop::duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new) {
4382   if (!DuplicateBackedge) {
4383     return false;
4384   }
4385   assert(!loop->_head->is_CountedLoop() || StressDuplicateBackedge, "Non-counted loop only");
4386   if (!loop->_head->is_Loop()) {
4387     return false;
4388   }
4389 
4390   uint estimate = loop->est_loop_clone_sz(1);
4391   if (exceeding_node_budget(estimate)) {
4392     return false;
4393   }
4394 
4395   LoopNode *head = loop->_head->as_Loop();
4396 
4397   Node* region = nullptr;
4398   IfNode* exit_test = nullptr;
4399   uint inner;
4400   float f;
4401   if (StressDuplicateBackedge) {
4402     if (head->is_strip_mined()) {
4403       return false;
4404     }
4405     Node* c = head->in(LoopNode::LoopBackControl);
4406 
4407     while (c != head) {
4408       if (c->is_Region()) {
4409         region = c;
4410       }
4411       c = idom(c);
4412     }
4413 
4414     if (region == nullptr) {
4415       return false;
4416     }
4417 
4418     inner = 1;
4419   } else {
4420     // Is the shape of the loop that of a counted loop...
4421     Node* back_control = loop_exit_control(head, loop);
4422     if (back_control == nullptr) {
4423       return false;
4424     }
4425 
4426     BoolTest::mask bt = BoolTest::illegal;
4427     float cl_prob = 0;
4428     Node* incr = nullptr;
4429     Node* limit = nullptr;
4430     Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
4431     if (cmp == nullptr || cmp->Opcode() != Op_CmpI) {
4432       return false;
4433     }
4434 
4435     // With an extra phi for the candidate iv?
4436     // Or the region node is the loop head
4437     if (!incr->is_Phi() || incr->in(0) == head) {
4438       return false;
4439     }
4440 
4441     PathFrequency pf(head, this);
4442     region = incr->in(0);
4443 
4444     // Go over all paths for the extra phi's region and see if that
4445     // path is frequent enough and would match the expected iv shape
4446     // if the extra phi is removed
4447     inner = 0;
4448     for (uint i = 1; i < incr->req(); ++i) {
4449       Node* in = incr->in(i);
4450       Node* trunc1 = nullptr;
4451       Node* trunc2 = nullptr;
4452       const TypeInteger* iv_trunc_t = nullptr;
4453       Node* orig_in = in;
4454       if (!(in = CountedLoopNode::match_incr_with_optional_truncation(in, &trunc1, &trunc2, &iv_trunc_t, T_INT))) {
4455         continue;
4456       }
4457       assert(in->Opcode() == Op_AddI, "wrong increment code");
4458       Node* xphi = nullptr;
4459       Node* stride = loop_iv_stride(in, xphi);
4460 
4461       if (stride == nullptr) {
4462         continue;
4463       }
4464 
4465       PhiNode* phi = loop_iv_phi(xphi, nullptr, head);
4466       if (phi == nullptr ||
4467           (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
4468           (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
4469         return false;
4470       }
4471 
4472       f = pf.to(region->in(i));
4473       if (f > 0.5) {
4474         inner = i;
4475         break;
4476       }
4477     }
4478 
4479     if (inner == 0) {
4480       return false;
4481     }
4482 
4483     exit_test = back_control->in(0)->as_If();
4484   }
4485 
4486   if (idom(region)->is_Catch()) {
4487     return false;
4488   }
4489 
4490   // Collect all control nodes that need to be cloned (shared_stmt in the diagram)
4491   Unique_Node_List wq;
4492   wq.push(head->in(LoopNode::LoopBackControl));
4493   for (uint i = 0; i < wq.size(); i++) {
4494     Node* c = wq.at(i);
4495     assert(get_loop(c) == loop, "not in the right loop?");
4496     if (c->is_Region()) {
4497       if (c != region) {
4498         for (uint j = 1; j < c->req(); ++j) {
4499           wq.push(c->in(j));
4500         }
4501       }
4502     } else {
4503       wq.push(c->in(0));
4504     }
4505     assert(!is_strict_dominator(c, region), "shouldn't go above region");
4506   }
4507 
4508   Node* region_dom = idom(region);
4509 
4510   // Can't do the transformation if this would cause a membar pair to
4511   // be split
4512   for (uint i = 0; i < wq.size(); i++) {
4513     Node* c = wq.at(i);
4514     if (c->is_MemBar() && (c->as_MemBar()->trailing_store() || c->as_MemBar()->trailing_load_store())) {
4515       assert(c->as_MemBar()->leading_membar()->trailing_membar() == c, "bad membar pair");
4516       if (!wq.member(c->as_MemBar()->leading_membar())) {
4517         return false;
4518       }
4519     }
4520   }
4521 
4522   // Collect data nodes that need to be clones as well
4523   int dd = dom_depth(head);
4524 
4525   for (uint i = 0; i < loop->_body.size(); ++i) {
4526     Node* n = loop->_body.at(i);
4527     if (has_ctrl(n)) {
4528       Node* c = get_ctrl(n);
4529       if (wq.member(c)) {
4530         wq.push(n);
4531       }
4532     } else {
4533       set_idom(n, idom(n), dd);
4534     }
4535   }
4536 
4537   // clone shared_stmt
4538   clone_loop_body(wq, old_new, nullptr);
4539 
4540   Node* region_clone = old_new[region->_idx];
4541   region_clone->set_req(inner, C->top());
4542   set_idom(region, region->in(inner), dd);
4543 
4544   // Prepare the outer loop
4545   Node* outer_head = new LoopNode(head->in(LoopNode::EntryControl), old_new[head->in(LoopNode::LoopBackControl)->_idx]);
4546   register_control(outer_head, loop->_parent, outer_head->in(LoopNode::EntryControl));
4547   _igvn.replace_input_of(head, LoopNode::EntryControl, outer_head);
4548   set_idom(head, outer_head, dd);
4549 
4550   fix_body_edges(wq, loop, old_new, dd, loop->_parent, true);
4551 
4552   // Make one of the shared_stmt copies only reachable from stmt1, the
4553   // other only from stmt2..stmtn.
4554   Node* dom = nullptr;
4555   for (uint i = 1; i < region->req(); ++i) {
4556     if (i != inner) {
4557       _igvn.replace_input_of(region, i, C->top());
4558     }
4559     Node* in = region_clone->in(i);
4560     if (in->is_top()) {
4561       continue;
4562     }
4563     if (dom == nullptr) {
4564       dom = in;
4565     } else {
4566       dom = dom_lca(dom, in);
4567     }
4568   }
4569 
4570   set_idom(region_clone, dom, dd);
4571 
4572   // Set up the outer loop
4573   for (uint i = 0; i < head->outcnt(); i++) {
4574     Node* u = head->raw_out(i);
4575     if (u->is_Phi()) {
4576       Node* outer_phi = u->clone();
4577       outer_phi->set_req(0, outer_head);
4578       Node* backedge = old_new[u->in(LoopNode::LoopBackControl)->_idx];
4579       if (backedge == nullptr) {
4580         backedge = u->in(LoopNode::LoopBackControl);
4581       }
4582       outer_phi->set_req(LoopNode::LoopBackControl, backedge);
4583       register_new_node(outer_phi, outer_head);
4584       _igvn.replace_input_of(u, LoopNode::EntryControl, outer_phi);
4585     }
4586   }
4587 
4588   // create control and data nodes for out of loop uses (including region2)
4589   Node_List worklist;
4590   uint new_counter = C->unique();
4591   fix_ctrl_uses(wq, loop, old_new, ControlAroundStripMined, outer_head, nullptr, worklist);
4592 
4593   Node_List *split_if_set = nullptr;
4594   Node_List *split_bool_set = nullptr;
4595   Node_List *split_cex_set = nullptr;
4596   fix_data_uses(wq, loop, ControlAroundStripMined, loop->skip_strip_mined(), new_counter, old_new, worklist,
4597                 split_if_set, split_bool_set, split_cex_set);
4598 
4599   finish_clone_loop(split_if_set, split_bool_set, split_cex_set);
4600 
4601   if (exit_test != nullptr) {
4602     float cnt = exit_test->_fcnt;
4603     if (cnt != COUNT_UNKNOWN) {
4604       exit_test->_fcnt = cnt * f;
4605       old_new[exit_test->_idx]->as_If()->_fcnt = cnt * (1 - f);
4606     }
4607   }
4608 
4609   C->set_major_progress();
4610 
4611   return true;
4612 }
4613 
4614 // AutoVectorize the loop: replace scalar ops with vector ops.
4615 PhaseIdealLoop::AutoVectorizeStatus
4616 PhaseIdealLoop::auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared) {
4617   // Counted loop only
4618   if (!lpt->is_counted()) {
4619     return AutoVectorizeStatus::Impossible;
4620   }
4621 
4622   // Main-loop only
4623   CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4624   if (!cl->is_main_loop()) {
4625     return AutoVectorizeStatus::Impossible;
4626   }
4627 
4628   VLoop vloop(lpt, false);
4629   if (!vloop.check_preconditions()) {
4630     return AutoVectorizeStatus::TriedAndFailed;
4631   }
4632 
4633   // Ensure the shared data is cleared before each use
4634   vshared.clear();
4635 
4636   const VLoopAnalyzer vloop_analyzer(vloop, vshared);
4637   if (!vloop_analyzer.success()) {
4638     return AutoVectorizeStatus::TriedAndFailed;
4639   }
4640 
4641   SuperWord sw(vloop_analyzer);
4642   if (!sw.transform_loop()) {
4643     return AutoVectorizeStatus::TriedAndFailed;
4644   }
4645 
4646   return AutoVectorizeStatus::Success;
4647 }
4648 
4649 // Just before insert_pre_post_loops, we can multiversion the loop:
4650 //
4651 //              multiversion_if
4652 //               |       |
4653 //         fast_loop   slow_loop
4654 //
4655 // In the fast_loop we can make speculative assumptions, and put the
4656 // conditions into the multiversion_if. If the conditions hold at runtime,
4657 // we enter the fast_loop, if the conditions fail, we take the slow_loop
4658 // instead which does not make any of the speculative assumptions.
4659 //
4660 // Note: we only multiversion the loop if the loop does not have any
4661 //       auto vectorization check Predicate. If we have that predicate,
4662 //       then we can simply add the speculative assumption checks to
4663 //       that Predicate. This means we do not need to duplicate the
4664 //       loop - we have a smaller graph and save compile time. Should
4665 //       the conditions ever fail, then we deopt / trap at the Predicate
4666 //       and recompile without that Predicate. At that point we will
4667 //       multiversion the loop, so that we can still have speculative
4668 //       runtime checks.
4669 //
4670 // We perform the multiversioning when the loop is still in its single
4671 // iteration form, even before we insert pre and post loops. This makes
4672 // the cloning much simpler. However, this means that both the fast
4673 // and the slow loop have to be optimized independently (adding pre
4674 // and post loops, unrolling the main loop, auto-vectorize etc.). And
4675 // we may end up not needing any speculative assumptions in the fast_loop
4676 // and then rejecting the slow_loop by constant folding the multiversion_if.
4677 //
4678 // Therefore, we "delay" the optimization of the slow_loop until we add
4679 // at least one speculative assumption for the fast_loop. If we never
4680 // add such a speculative runtime check, the OpaqueMultiversioningNode
4681 // of the multiversion_if constant folds to true after loop opts, and the
4682 // multiversion_if folds away the "delayed" slow_loop. If we add any
4683 // speculative assumption, then we notify the OpaqueMultiversioningNode
4684 // with "notify_slow_loop_that_it_can_resume_optimizations".
4685 //
4686 // Note: new runtime checks can be added to the multiversion_if with
4687 //       PhaseIdealLoop::create_new_if_for_multiversion
4688 void PhaseIdealLoop::maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new) {
4689   CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4690   LoopNode* outer_loop = cl->skip_strip_mined();
4691   Node* entry = outer_loop->in(LoopNode::EntryControl);
4692 
4693   // Check we have multiversioning enabled, and are not already multiversioned.
4694   if (!LoopMultiversioning || cl->is_multiversion()) { return; }
4695 
4696   // Check that we do not have a parse-predicate where we can add the runtime checks
4697   // during auto-vectorization.
4698   const Predicates predicates(entry);
4699   const PredicateBlock* predicate_block = predicates.auto_vectorization_check_block();
4700   if (predicate_block->has_parse_predicate()) { return; }
4701 
4702   // Check node budget.
4703   uint estimate = lpt->est_loop_clone_sz(2);
4704   if (!may_require_nodes(estimate)) { return; }
4705 
4706   do_multiversioning(lpt, old_new);
4707 }
4708 
4709 // Returns true if the Reduction node is unordered.
4710 static bool is_unordered_reduction(Node* n) {
4711   return n->is_Reduction() && !n->as_Reduction()->requires_strict_order();
4712 }
4713 
4714 // Having ReductionNodes in the loop is expensive. They need to recursively
4715 // fold together the vector values, for every vectorized loop iteration. If
4716 // we encounter the following pattern, we can vector accumulate the values
4717 // inside the loop, and only have a single UnorderedReduction after the loop.
4718 //
4719 // Note: UnorderedReduction represents a ReductionNode which does not require
4720 // calculating in strict order.
4721 //
4722 // CountedLoop     init
4723 //          |        |
4724 //          +------+ | +-----------------------+
4725 //                 | | |                       |
4726 //                PhiNode (s)                  |
4727 //                  |                          |
4728 //                  |          Vector          |
4729 //                  |            |             |
4730 //               UnorderedReduction (first_ur) |
4731 //                  |                          |
4732 //                 ...         Vector          |
4733 //                  |            |             |
4734 //               UnorderedReduction (last_ur)  |
4735 //                       |                     |
4736 //                       +---------------------+
4737 //
4738 // We patch the graph to look like this:
4739 //
4740 // CountedLoop   identity_vector
4741 //         |         |
4742 //         +-------+ | +---------------+
4743 //                 | | |               |
4744 //                PhiNode (v)          |
4745 //                   |                 |
4746 //                   |         Vector  |
4747 //                   |           |     |
4748 //                 VectorAccumulator   |
4749 //                   |                 |
4750 //                  ...        Vector  |
4751 //                   |           |     |
4752 //      init       VectorAccumulator   |
4753 //        |          |     |           |
4754 //     UnorderedReduction  +-----------+
4755 //
4756 // We turned the scalar (s) Phi into a vectorized one (v). In the loop, we
4757 // use vector_accumulators, which do the same reductions, but only element
4758 // wise. This is a single operation per vector_accumulator, rather than many
4759 // for a UnorderedReduction. We can then reduce the last vector_accumulator
4760 // after the loop, and also reduce the init value into it.
4761 //
4762 // We can not do this with all reductions. Some reductions do not allow the
4763 // reordering of operations (for example float addition/multiplication require
4764 // strict order).
4765 void PhaseIdealLoop::move_unordered_reduction_out_of_loop(IdealLoopTree* loop) {
4766   assert(!C->major_progress() && loop->is_counted() && loop->is_innermost(), "sanity");
4767 
4768   // Find all Phi nodes with an unordered Reduction on backedge.
4769   CountedLoopNode* cl = loop->_head->as_CountedLoop();
4770   for (DUIterator_Fast jmax, j = cl->fast_outs(jmax); j < jmax; j++) {
4771     Node* phi = cl->fast_out(j);
4772     // We have a phi with a single use, and an unordered Reduction on the backedge.
4773     if (!phi->is_Phi() || phi->outcnt() != 1 || !is_unordered_reduction(phi->in(2))) {
4774       continue;
4775     }
4776 
4777     ReductionNode* last_ur = phi->in(2)->as_Reduction();
4778     assert(!last_ur->requires_strict_order(), "must be");
4779 
4780     // Determine types
4781     const TypeVect* vec_t = last_ur->vect_type();
4782     uint vector_length    = vec_t->length();
4783     BasicType bt          = vec_t->element_basic_type();
4784 
4785     // Convert opcode from vector-reduction -> scalar -> normal-vector-op
4786     const int sopc        = VectorNode::scalar_opcode(last_ur->Opcode(), bt);
4787     const int vopc        = VectorNode::opcode(sopc, bt);
4788     if (!Matcher::match_rule_supported_vector(vopc, vector_length, bt)) {
4789         DEBUG_ONLY( last_ur->dump(); )
4790         assert(false, "do not have normal vector op for this reduction");
4791         continue; // not implemented -> fails
4792     }
4793 
4794     // Traverse up the chain of unordered Reductions, checking that it loops back to
4795     // the phi. Check that all unordered Reductions only have a single use, except for
4796     // the last (last_ur), which only has phi as a use in the loop, and all other uses
4797     // are outside the loop.
4798     ReductionNode* current = last_ur;
4799     ReductionNode* first_ur = nullptr;
4800     while (true) {
4801       assert(!current->requires_strict_order(), "sanity");
4802 
4803       // Expect no ctrl and a vector_input from within the loop.
4804       Node* ctrl = current->in(0);
4805       Node* vector_input = current->in(2);
4806       if (ctrl != nullptr || get_ctrl(vector_input) != cl) {
4807         DEBUG_ONLY( current->dump(1); )
4808         assert(false, "reduction has ctrl or bad vector_input");
4809         break; // Chain traversal fails.
4810       }
4811 
4812       assert(current->vect_type() != nullptr, "must have vector type");
4813       if (current->vect_type() != last_ur->vect_type()) {
4814         // Reductions do not have the same vector type (length and element type).
4815         break; // Chain traversal fails.
4816       }
4817 
4818       // Expect single use of an unordered Reduction, except for last_ur.
4819       if (current == last_ur) {
4820         // Expect all uses to be outside the loop, except phi.
4821         for (DUIterator_Fast kmax, k = current->fast_outs(kmax); k < kmax; k++) {
4822           Node* use = current->fast_out(k);
4823           if (use != phi && ctrl_or_self(use) == cl) {
4824             DEBUG_ONLY( current->dump(-1); )
4825             assert(false, "reduction has use inside loop");
4826             // Should not be allowed by SuperWord::mark_reductions
4827             return; // bail out of optimization
4828           }
4829         }
4830       } else {
4831         if (current->outcnt() != 1) {
4832           break; // Chain traversal fails.
4833         }
4834       }
4835 
4836       // Expect another unordered Reduction or phi as the scalar input.
4837       Node* scalar_input = current->in(1);
4838       if (is_unordered_reduction(scalar_input) &&
4839           scalar_input->Opcode() == current->Opcode()) {
4840         // Move up the unordered Reduction chain.
4841         current = scalar_input->as_Reduction();
4842         assert(!current->requires_strict_order(), "must be");
4843       } else if (scalar_input == phi) {
4844         // Chain terminates at phi.
4845         first_ur = current;
4846         current = nullptr;
4847         break; // Success.
4848       } else {
4849         // scalar_input is neither phi nor a matching reduction
4850         // Can for example be scalar reduction when we have
4851         // partial vectorization.
4852         break; // Chain traversal fails.
4853       }
4854     }
4855     if (current != nullptr) {
4856       // Chain traversal was not successful.
4857       continue;
4858     }
4859     assert(first_ur != nullptr, "must have successfully terminated chain traversal");
4860 
4861     Node* identity_scalar = ReductionNode::make_identity_con_scalar(_igvn, sopc, bt);
4862     set_root_as_ctrl(identity_scalar);
4863     VectorNode* identity_vector = VectorNode::scalar2vector(identity_scalar, vector_length, bt);
4864     register_new_node(identity_vector, C->root());
4865     assert(vec_t == identity_vector->vect_type(), "matching vector type");
4866     VectorNode::trace_new_vector(identity_vector, "Unordered Reduction");
4867 
4868     // Turn the scalar phi into a vector phi.
4869     _igvn.rehash_node_delayed(phi);
4870     Node* init = phi->in(1); // Remember init before replacing it.
4871     phi->set_req_X(1, identity_vector, &_igvn);
4872     phi->as_Type()->set_type(vec_t);
4873     _igvn.set_type(phi, vec_t);
4874 
4875     // Traverse down the chain of unordered Reductions, and replace them with vector_accumulators.
4876     current = first_ur;
4877     while (true) {
4878       // Create vector_accumulator to replace current.
4879       Node* last_vector_accumulator = current->in(1);
4880       Node* vector_input            = current->in(2);
4881       VectorNode* vector_accumulator = VectorNode::make(vopc, last_vector_accumulator, vector_input, vec_t);
4882       register_new_node(vector_accumulator, cl);
4883       _igvn.replace_node(current, vector_accumulator);
4884       VectorNode::trace_new_vector(vector_accumulator, "Unordered Reduction");
4885       if (current == last_ur) {
4886         break;
4887       }
4888       current = vector_accumulator->unique_out()->as_Reduction();
4889       assert(!current->requires_strict_order(), "must be");
4890     }
4891 
4892     // Create post-loop reduction.
4893     Node* last_accumulator = phi->in(2);
4894     Node* post_loop_reduction = ReductionNode::make(sopc, nullptr, init, last_accumulator, bt);
4895 
4896     // Take over uses of last_accumulator that are not in the loop.
4897     for (DUIterator i = last_accumulator->outs(); last_accumulator->has_out(i); i++) {
4898       Node* use = last_accumulator->out(i);
4899       if (use != phi && use != post_loop_reduction) {
4900         assert(ctrl_or_self(use) != cl, "use must be outside loop");
4901         use->replace_edge(last_accumulator, post_loop_reduction,  &_igvn);
4902         --i;
4903       }
4904     }
4905     register_new_node(post_loop_reduction, get_late_ctrl(post_loop_reduction, cl));
4906     VectorNode::trace_new_vector(post_loop_reduction, "Unordered Reduction");
4907 
4908     assert(last_accumulator->outcnt() == 2, "last_accumulator has 2 uses: phi and post_loop_reduction");
4909     assert(post_loop_reduction->outcnt() > 0, "should have taken over all non loop uses of last_accumulator");
4910     assert(phi->outcnt() == 1, "accumulator is the only use of phi");
4911   }
4912 }
4913 
4914 void DataNodeGraph::clone_data_nodes(Node* new_ctrl) {
4915   for (uint i = 0; i < _data_nodes.size(); i++) {
4916     clone(_data_nodes[i], new_ctrl);
4917   }
4918 }
4919 
4920 // Clone the given node and set it up properly. Set 'new_ctrl' as ctrl.
4921 void DataNodeGraph::clone(Node* node, Node* new_ctrl) {
4922   Node* clone = node->clone();
4923   _phase->igvn().register_new_node_with_optimizer(clone);
4924   _orig_to_new.put(node, clone);
4925   _phase->set_ctrl(clone, new_ctrl);
4926   if (node->is_CastII()) {
4927     clone->set_req(0, new_ctrl);
4928   }
4929 }
4930 
4931 // Rewire the data inputs of all (unprocessed) cloned nodes, whose inputs are still pointing to the same inputs as their
4932 // corresponding orig nodes, to the newly cloned inputs to create a separate cloned graph.
4933 void DataNodeGraph::rewire_clones_to_cloned_inputs() {
4934   _orig_to_new.iterate_all([&](Node* node, Node* clone) {
4935     for (uint i = 1; i < node->req(); i++) {
4936       Node** cloned_input = _orig_to_new.get(node->in(i));
4937       if (cloned_input != nullptr) {
4938         // Input was also cloned -> rewire clone to the cloned input.
4939         _phase->igvn().replace_input_of(clone, i, *cloned_input);
4940       }
4941     }
4942   });
4943 }
4944 
4945 // Clone all non-OpaqueLoop* nodes and apply the provided transformation strategy for OpaqueLoop* nodes.
4946 // Set 'new_ctrl' as ctrl for all cloned non-OpaqueLoop* nodes.
4947 void DataNodeGraph::clone_data_nodes_and_transform_opaque_loop_nodes(
4948     const TransformStrategyForOpaqueLoopNodes& transform_strategy,
4949     Node* new_ctrl) {
4950   for (uint i = 0; i < _data_nodes.size(); i++) {
4951     Node* data_node = _data_nodes[i];
4952     if (data_node->is_Opaque1()) {
4953       transform_opaque_node(transform_strategy, data_node);
4954     } else {
4955       clone(data_node, new_ctrl);
4956     }
4957   }
4958 }
4959 
4960 void DataNodeGraph::transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node) {
4961   Node* transformed_node;
4962   if (node->is_OpaqueLoopInit()) {
4963     transformed_node = transform_strategy.transform_opaque_init(node->as_OpaqueLoopInit());
4964   } else {
4965     assert(node->is_OpaqueLoopStride(), "must be OpaqueLoopStrideNode");
4966     transformed_node = transform_strategy.transform_opaque_stride(node->as_OpaqueLoopStride());
4967   }
4968   // Add an orig->new mapping to correctly update the inputs of the copied graph in rewire_clones_to_cloned_inputs().
4969   _orig_to_new.put(node, transformed_node);
4970 }