1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "gc/shared/barrierSet.hpp" 26 #include "gc/shared/c2/barrierSetC2.hpp" 27 #include "memory/allocation.inline.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/connode.hpp" 33 #include "opto/divnode.hpp" 34 #include "opto/inlinetypenode.hpp" 35 #include "opto/loopnode.hpp" 36 #include "opto/matcher.hpp" 37 #include "opto/movenode.hpp" 38 #include "opto/mulnode.hpp" 39 #include "opto/opaquenode.hpp" 40 #include "opto/rootnode.hpp" 41 #include "opto/subnode.hpp" 42 #include "opto/subtypenode.hpp" 43 #include "opto/superword.hpp" 44 #include "opto/vectornode.hpp" 45 #include "utilities/checkedCast.hpp" 46 #include "utilities/macros.hpp" 47 48 //============================================================================= 49 //------------------------------split_thru_phi--------------------------------- 50 // Split Node 'n' through merge point if there is enough win. 51 Node* PhaseIdealLoop::split_thru_phi(Node* n, Node* region, int policy) { 52 if ((n->Opcode() == Op_ConvI2L && n->bottom_type() != TypeLong::LONG) || 53 (n->Opcode() == Op_ConvL2I && n->bottom_type() != TypeInt::INT)) { 54 // ConvI2L/ConvL2I may have type information on it which is unsafe to push up 55 // so disable this for now 56 return nullptr; 57 } 58 59 // Splitting range check CastIIs through a loop induction Phi can 60 // cause new Phis to be created that are left unrelated to the loop 61 // induction Phi and prevent optimizations (vectorization) 62 if (n->Opcode() == Op_CastII && region->is_CountedLoop() && 63 n->in(1) == region->as_CountedLoop()->phi()) { 64 return nullptr; 65 } 66 67 // Inline types should not be split through Phis because they cannot be merged 68 // through Phi nodes but each value input needs to be merged individually. 69 if (n->is_InlineType()) { 70 return nullptr; 71 } 72 73 if (cannot_split_division(n, region)) { 74 return nullptr; 75 } 76 77 SplitThruPhiWins wins(region); 78 assert(!n->is_CFG(), ""); 79 assert(region->is_Region(), ""); 80 81 const Type* type = n->bottom_type(); 82 const TypeOopPtr* t_oop = _igvn.type(n)->isa_oopptr(); 83 Node* phi; 84 if (t_oop != nullptr && t_oop->is_known_instance_field()) { 85 int iid = t_oop->instance_id(); 86 int index = C->get_alias_index(t_oop); 87 int offset = t_oop->offset(); 88 phi = new PhiNode(region, type, nullptr, iid, index, offset); 89 } else { 90 phi = PhiNode::make_blank(region, n); 91 } 92 uint old_unique = C->unique(); 93 for (uint i = 1; i < region->req(); i++) { 94 Node* x; 95 Node* the_clone = nullptr; 96 if (region->in(i) == C->top()) { 97 x = C->top(); // Dead path? Use a dead data op 98 } else { 99 x = n->clone(); // Else clone up the data op 100 the_clone = x; // Remember for possible deletion. 101 // Alter data node to use pre-phi inputs 102 if (n->in(0) == region) 103 x->set_req( 0, region->in(i) ); 104 for (uint j = 1; j < n->req(); j++) { 105 Node* in = n->in(j); 106 if (in->is_Phi() && in->in(0) == region) 107 x->set_req(j, in->in(i)); // Use pre-Phi input for the clone 108 } 109 } 110 // Check for a 'win' on some paths 111 const Type* t = x->Value(&_igvn); 112 113 bool singleton = t->singleton(); 114 115 // A TOP singleton indicates that there are no possible values incoming 116 // along a particular edge. In most cases, this is OK, and the Phi will 117 // be eliminated later in an Ideal call. However, we can't allow this to 118 // happen if the singleton occurs on loop entry, as the elimination of 119 // the PhiNode may cause the resulting node to migrate back to a previous 120 // loop iteration. 121 if (singleton && t == Type::TOP) { 122 // Is_Loop() == false does not confirm the absence of a loop (e.g., an 123 // irreducible loop may not be indicated by an affirmative is_Loop()); 124 // therefore, the only top we can split thru a phi is on a backedge of 125 // a loop. 126 singleton &= region->is_Loop() && (i != LoopNode::EntryControl); 127 } 128 129 if (singleton) { 130 wins.add_win(i); 131 x = makecon(t); 132 } else { 133 // We now call Identity to try to simplify the cloned node. 134 // Note that some Identity methods call phase->type(this). 135 // Make sure that the type array is big enough for 136 // our new node, even though we may throw the node away. 137 // (Note: This tweaking with igvn only works because x is a new node.) 138 _igvn.set_type(x, t); 139 // If x is a TypeNode, capture any more-precise type permanently into Node 140 // otherwise it will be not updated during igvn->transform since 141 // igvn->type(x) is set to x->Value() already. 142 x->raise_bottom_type(t); 143 Node* y = x->Identity(&_igvn); 144 if (y != x) { 145 wins.add_win(i); 146 x = y; 147 } else { 148 y = _igvn.hash_find(x); 149 if (y == nullptr) { 150 y = similar_subtype_check(x, region->in(i)); 151 } 152 if (y) { 153 wins.add_win(i); 154 x = y; 155 } else { 156 // Else x is a new node we are keeping 157 // We do not need register_new_node_with_optimizer 158 // because set_type has already been called. 159 _igvn._worklist.push(x); 160 } 161 } 162 } 163 164 phi->set_req( i, x ); 165 166 if (the_clone == nullptr) { 167 continue; 168 } 169 170 if (the_clone != x) { 171 _igvn.remove_dead_node(the_clone); 172 } else if (region->is_Loop() && i == LoopNode::LoopBackControl && 173 n->is_Load() && can_move_to_inner_loop(n, region->as_Loop(), x)) { 174 // it is not a win if 'x' moved from an outer to an inner loop 175 // this edge case can only happen for Load nodes 176 wins.reset(); 177 break; 178 } 179 } 180 // Too few wins? 181 if (!wins.profitable(policy)) { 182 _igvn.remove_dead_node(phi); 183 return nullptr; 184 } 185 186 // Record Phi 187 register_new_node( phi, region ); 188 189 for (uint i2 = 1; i2 < phi->req(); i2++) { 190 Node *x = phi->in(i2); 191 // If we commoned up the cloned 'x' with another existing Node, 192 // the existing Node picks up a new use. We need to make the 193 // existing Node occur higher up so it dominates its uses. 194 Node *old_ctrl; 195 IdealLoopTree *old_loop; 196 197 if (x->is_Con()) { 198 assert(get_ctrl(x) == C->root(), "constant control is not root"); 199 continue; 200 } 201 // The occasional new node 202 if (x->_idx >= old_unique) { // Found a new, unplaced node? 203 old_ctrl = nullptr; 204 old_loop = nullptr; // Not in any prior loop 205 } else { 206 old_ctrl = get_ctrl(x); 207 old_loop = get_loop(old_ctrl); // Get prior loop 208 } 209 // New late point must dominate new use 210 Node *new_ctrl = dom_lca(old_ctrl, region->in(i2)); 211 if (new_ctrl == old_ctrl) // Nothing is changed 212 continue; 213 214 IdealLoopTree *new_loop = get_loop(new_ctrl); 215 216 // Don't move x into a loop if its uses are 217 // outside of loop. Otherwise x will be cloned 218 // for each use outside of this loop. 219 IdealLoopTree *use_loop = get_loop(region); 220 if (!new_loop->is_member(use_loop) && 221 (old_loop == nullptr || !new_loop->is_member(old_loop))) { 222 // Take early control, later control will be recalculated 223 // during next iteration of loop optimizations. 224 new_ctrl = get_early_ctrl(x); 225 new_loop = get_loop(new_ctrl); 226 } 227 // Set new location 228 set_ctrl(x, new_ctrl); 229 // If changing loop bodies, see if we need to collect into new body 230 if (old_loop != new_loop) { 231 if (old_loop && !old_loop->_child) 232 old_loop->_body.yank(x); 233 if (!new_loop->_child) 234 new_loop->_body.push(x); // Collect body info 235 } 236 } 237 238 #ifndef PRODUCT 239 if (TraceLoopOpts) { 240 tty->print_cr("Split %d %s through %d Phi in %d %s", 241 n->_idx, n->Name(), phi->_idx, region->_idx, region->Name()); 242 } 243 #endif // !PRODUCT 244 245 return phi; 246 } 247 248 // Test whether node 'x' can move into an inner loop relative to node 'n'. 249 // Note: The test is not exact. Returns true if 'x' COULD end up in an inner loop, 250 // BUT it can also return true and 'x' is in the outer loop 251 bool PhaseIdealLoop::can_move_to_inner_loop(Node* n, LoopNode* n_loop, Node* x) { 252 IdealLoopTree* n_loop_tree = get_loop(n_loop); 253 IdealLoopTree* x_loop_tree = get_loop(get_early_ctrl(x)); 254 // x_loop_tree should be outer or same loop as n_loop_tree 255 return !x_loop_tree->is_member(n_loop_tree); 256 } 257 258 // Subtype checks that carry profile data don't common so look for a replacement by following edges 259 Node* PhaseIdealLoop::similar_subtype_check(const Node* x, Node* r_in) { 260 if (x->is_SubTypeCheck()) { 261 Node* in1 = x->in(1); 262 for (DUIterator_Fast imax, i = in1->fast_outs(imax); i < imax; i++) { 263 Node* u = in1->fast_out(i); 264 if (u != x && u->is_SubTypeCheck() && u->in(1) == x->in(1) && u->in(2) == x->in(2)) { 265 for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) { 266 Node* bol = u->fast_out(j); 267 for (DUIterator_Fast kmax, k = bol->fast_outs(kmax); k < kmax; k++) { 268 Node* iff = bol->fast_out(k); 269 // Only dominating subtype checks are interesting: otherwise we risk replacing a subtype check by another with 270 // unrelated profile 271 if (iff->is_If() && is_dominator(iff, r_in)) { 272 return u; 273 } 274 } 275 } 276 } 277 } 278 } 279 return nullptr; 280 } 281 282 // Return true if 'n' is a Div or Mod node (without zero check If node which was removed earlier) with a loop phi divisor 283 // of a trip-counted (integer or long) loop with a backedge input that could be zero (include zero in its type range). In 284 // this case, we cannot split the division to the backedge as it could freely float above the loop exit check resulting in 285 // a division by zero. This situation is possible because the type of an increment node of an iv phi (trip-counter) could 286 // include zero while the iv phi does not (see PhiNode::Value() for trip-counted loops where we improve types of iv phis). 287 // We also need to check other loop phis as they could have been created in the same split-if pass when applying 288 // PhaseIdealLoop::split_thru_phi() to split nodes through an iv phi. 289 bool PhaseIdealLoop::cannot_split_division(const Node* n, const Node* region) const { 290 const Type* zero; 291 switch (n->Opcode()) { 292 case Op_DivI: 293 case Op_ModI: 294 case Op_UDivI: 295 case Op_UModI: 296 zero = TypeInt::ZERO; 297 break; 298 case Op_DivL: 299 case Op_ModL: 300 case Op_UDivL: 301 case Op_UModL: 302 zero = TypeLong::ZERO; 303 break; 304 default: 305 return false; 306 } 307 308 if (n->in(0) != nullptr) { 309 // Cannot split through phi if Div or Mod node has a control dependency to a zero check. 310 return true; 311 } 312 313 Node* divisor = n->in(2); 314 return is_divisor_loop_phi(divisor, region) && 315 loop_phi_backedge_type_contains_zero(divisor, zero); 316 } 317 318 bool PhaseIdealLoop::is_divisor_loop_phi(const Node* divisor, const Node* loop) { 319 return loop->is_Loop() && divisor->is_Phi() && divisor->in(0) == loop; 320 } 321 322 bool PhaseIdealLoop::loop_phi_backedge_type_contains_zero(const Node* phi_divisor, const Type* zero) const { 323 return _igvn.type(phi_divisor->in(LoopNode::LoopBackControl))->filter_speculative(zero) != Type::TOP; 324 } 325 326 //------------------------------dominated_by------------------------------------ 327 // Replace the dominated test with an obvious true or false. Place it on the 328 // IGVN worklist for later cleanup. Move control-dependent data Nodes on the 329 // live path up to the dominating control. 330 void PhaseIdealLoop::dominated_by(IfProjNode* prevdom, IfNode* iff, bool flip, bool pin_array_access_nodes) { 331 if (VerifyLoopOptimizations && PrintOpto) { tty->print_cr("dominating test"); } 332 333 // prevdom is the dominating projection of the dominating test. 334 assert(iff->Opcode() == Op_If || 335 iff->Opcode() == Op_CountedLoopEnd || 336 iff->Opcode() == Op_LongCountedLoopEnd || 337 iff->Opcode() == Op_RangeCheck || 338 iff->Opcode() == Op_ParsePredicate, 339 "Check this code when new subtype is added"); 340 341 int pop = prevdom->Opcode(); 342 assert( pop == Op_IfFalse || pop == Op_IfTrue, "" ); 343 if (flip) { 344 if (pop == Op_IfTrue) 345 pop = Op_IfFalse; 346 else 347 pop = Op_IfTrue; 348 } 349 // 'con' is set to true or false to kill the dominated test. 350 Node* con = makecon(pop == Op_IfTrue ? TypeInt::ONE : TypeInt::ZERO); 351 // Hack the dominated test 352 _igvn.replace_input_of(iff, 1, con); 353 354 // If I don't have a reachable TRUE and FALSE path following the IfNode then 355 // I can assume this path reaches an infinite loop. In this case it's not 356 // important to optimize the data Nodes - either the whole compilation will 357 // be tossed or this path (and all data Nodes) will go dead. 358 if (iff->outcnt() != 2) { 359 return; 360 } 361 362 // Make control-dependent data Nodes on the live path (path that will remain 363 // once the dominated IF is removed) become control-dependent on the 364 // dominating projection. 365 Node* dp = iff->proj_out_or_null(pop == Op_IfTrue); 366 367 if (dp == nullptr) { 368 return; 369 } 370 371 rewire_safe_outputs_to_dominator(dp, prevdom, pin_array_access_nodes); 372 } 373 374 void PhaseIdealLoop::rewire_safe_outputs_to_dominator(Node* source, Node* dominator, const bool pin_array_access_nodes) { 375 IdealLoopTree* old_loop = get_loop(source); 376 377 for (DUIterator_Fast imax, i = source->fast_outs(imax); i < imax; i++) { 378 Node* out = source->fast_out(i); // Control-dependent node 379 // Do not rewire Div and Mod nodes which could have a zero divisor to avoid skipping their zero check. 380 if (out->depends_only_on_test() && _igvn.no_dependent_zero_check(out)) { 381 assert(out->in(0) == source, "must be control dependent on source"); 382 _igvn.replace_input_of(out, 0, dominator); 383 if (pin_array_access_nodes) { 384 // Because of Loop Predication, Loads and range check Cast nodes that are control dependent on this range 385 // check (that is about to be removed) now depend on multiple dominating Hoisted Check Predicates. After the 386 // removal of this range check, these control dependent nodes end up at the lowest/nearest dominating predicate 387 // in the graph. To ensure that these Loads/Casts do not float above any of the dominating checks (even when the 388 // lowest dominating check is later replaced by yet another dominating check), we need to pin them at the lowest 389 // dominating check. 390 Node* clone = out->pin_array_access_node(); 391 if (clone != nullptr) { 392 clone = _igvn.register_new_node_with_optimizer(clone, out); 393 _igvn.replace_node(out, clone); 394 out = clone; 395 } 396 } 397 set_early_ctrl(out, false); 398 IdealLoopTree* new_loop = get_loop(get_ctrl(out)); 399 if (old_loop != new_loop) { 400 if (!old_loop->_child) { 401 old_loop->_body.yank(out); 402 } 403 if (!new_loop->_child) { 404 new_loop->_body.push(out); 405 } 406 } 407 --i; 408 --imax; 409 } 410 } 411 } 412 413 //------------------------------has_local_phi_input---------------------------- 414 // Return TRUE if 'n' has Phi inputs from its local block and no other 415 // block-local inputs (all non-local-phi inputs come from earlier blocks) 416 Node *PhaseIdealLoop::has_local_phi_input( Node *n ) { 417 Node *n_ctrl = get_ctrl(n); 418 // See if some inputs come from a Phi in this block, or from before 419 // this block. 420 uint i; 421 for( i = 1; i < n->req(); i++ ) { 422 Node *phi = n->in(i); 423 if( phi->is_Phi() && phi->in(0) == n_ctrl ) 424 break; 425 } 426 if( i >= n->req() ) 427 return nullptr; // No Phi inputs; nowhere to clone thru 428 429 // Check for inputs created between 'n' and the Phi input. These 430 // must split as well; they have already been given the chance 431 // (courtesy of a post-order visit) and since they did not we must 432 // recover the 'cost' of splitting them by being very profitable 433 // when splitting 'n'. Since this is unlikely we simply give up. 434 for( i = 1; i < n->req(); i++ ) { 435 Node *m = n->in(i); 436 if( get_ctrl(m) == n_ctrl && !m->is_Phi() ) { 437 // We allow the special case of AddP's with no local inputs. 438 // This allows us to split-up address expressions. 439 if (m->is_AddP() && 440 get_ctrl(m->in(AddPNode::Base)) != n_ctrl && 441 get_ctrl(m->in(AddPNode::Address)) != n_ctrl && 442 get_ctrl(m->in(AddPNode::Offset)) != n_ctrl) { 443 // Move the AddP up to the dominating point. That's fine because control of m's inputs 444 // must dominate get_ctrl(m) == n_ctrl and we just checked that the input controls are != n_ctrl. 445 Node* c = find_non_split_ctrl(idom(n_ctrl)); 446 if (c->is_OuterStripMinedLoop()) { 447 c->as_Loop()->verify_strip_mined(1); 448 c = c->in(LoopNode::EntryControl); 449 } 450 set_ctrl_and_loop(m, c); 451 continue; 452 } 453 return nullptr; 454 } 455 assert(n->is_Phi() || m->is_Phi() || is_dominator(get_ctrl(m), n_ctrl), "m has strange control"); 456 } 457 458 return n_ctrl; 459 } 460 461 // Replace expressions like ((V+I) << 2) with (V<<2 + I<<2). 462 Node* PhaseIdealLoop::remix_address_expressions_add_left_shift(Node* n, IdealLoopTree* n_loop, Node* n_ctrl, BasicType bt) { 463 assert(bt == T_INT || bt == T_LONG, "only for integers"); 464 int n_op = n->Opcode(); 465 466 if (n_op == Op_LShift(bt)) { 467 // Scale is loop invariant 468 Node* scale = n->in(2); 469 Node* scale_ctrl = get_ctrl(scale); 470 IdealLoopTree* scale_loop = get_loop(scale_ctrl); 471 if (n_loop == scale_loop || !scale_loop->is_member(n_loop)) { 472 return nullptr; 473 } 474 const TypeInt* scale_t = scale->bottom_type()->isa_int(); 475 if (scale_t != nullptr && scale_t->is_con() && scale_t->get_con() >= 16) { 476 return nullptr; // Dont bother with byte/short masking 477 } 478 // Add must vary with loop (else shift would be loop-invariant) 479 Node* add = n->in(1); 480 Node* add_ctrl = get_ctrl(add); 481 IdealLoopTree* add_loop = get_loop(add_ctrl); 482 if (n_loop != add_loop) { 483 return nullptr; // happens w/ evil ZKM loops 484 } 485 486 // Convert I-V into I+ (0-V); same for V-I 487 if (add->Opcode() == Op_Sub(bt) && 488 _igvn.type(add->in(1)) != TypeInteger::zero(bt)) { 489 assert(add->Opcode() == Op_SubI || add->Opcode() == Op_SubL, ""); 490 Node* zero = integercon(0, bt); 491 Node* neg = SubNode::make(zero, add->in(2), bt); 492 register_new_node_with_ctrl_of(neg, add->in(2)); 493 add = AddNode::make(add->in(1), neg, bt); 494 register_new_node(add, add_ctrl); 495 } 496 if (add->Opcode() != Op_Add(bt)) return nullptr; 497 assert(add->Opcode() == Op_AddI || add->Opcode() == Op_AddL, ""); 498 // See if one add input is loop invariant 499 Node* add_var = add->in(1); 500 Node* add_var_ctrl = get_ctrl(add_var); 501 IdealLoopTree* add_var_loop = get_loop(add_var_ctrl); 502 Node* add_invar = add->in(2); 503 Node* add_invar_ctrl = get_ctrl(add_invar); 504 IdealLoopTree* add_invar_loop = get_loop(add_invar_ctrl); 505 if (add_invar_loop == n_loop) { 506 // Swap to find the invariant part 507 add_invar = add_var; 508 add_invar_ctrl = add_var_ctrl; 509 add_invar_loop = add_var_loop; 510 add_var = add->in(2); 511 } else if (add_var_loop != n_loop) { // Else neither input is loop invariant 512 return nullptr; 513 } 514 if (n_loop == add_invar_loop || !add_invar_loop->is_member(n_loop)) { 515 return nullptr; // No invariant part of the add? 516 } 517 518 // Yes! Reshape address expression! 519 Node* inv_scale = LShiftNode::make(add_invar, scale, bt); 520 Node* inv_scale_ctrl = 521 dom_depth(add_invar_ctrl) > dom_depth(scale_ctrl) ? 522 add_invar_ctrl : scale_ctrl; 523 register_new_node(inv_scale, inv_scale_ctrl); 524 Node* var_scale = LShiftNode::make(add_var, scale, bt); 525 register_new_node(var_scale, n_ctrl); 526 Node* var_add = AddNode::make(var_scale, inv_scale, bt); 527 register_new_node(var_add, n_ctrl); 528 _igvn.replace_node(n, var_add); 529 return var_add; 530 } 531 return nullptr; 532 } 533 534 //------------------------------remix_address_expressions---------------------- 535 // Rework addressing expressions to get the most loop-invariant stuff 536 // moved out. We'd like to do all associative operators, but it's especially 537 // important (common) to do address expressions. 538 Node* PhaseIdealLoop::remix_address_expressions(Node* n) { 539 if (!has_ctrl(n)) return nullptr; 540 Node* n_ctrl = get_ctrl(n); 541 IdealLoopTree* n_loop = get_loop(n_ctrl); 542 543 // See if 'n' mixes loop-varying and loop-invariant inputs and 544 // itself is loop-varying. 545 546 // Only interested in binary ops (and AddP) 547 if (n->req() < 3 || n->req() > 4) return nullptr; 548 549 Node* n1_ctrl = get_ctrl(n->in( 1)); 550 Node* n2_ctrl = get_ctrl(n->in( 2)); 551 Node* n3_ctrl = get_ctrl(n->in(n->req() == 3 ? 2 : 3)); 552 IdealLoopTree* n1_loop = get_loop(n1_ctrl); 553 IdealLoopTree* n2_loop = get_loop(n2_ctrl); 554 IdealLoopTree* n3_loop = get_loop(n3_ctrl); 555 556 // Does one of my inputs spin in a tighter loop than self? 557 if ((n_loop->is_member(n1_loop) && n_loop != n1_loop) || 558 (n_loop->is_member(n2_loop) && n_loop != n2_loop) || 559 (n_loop->is_member(n3_loop) && n_loop != n3_loop)) { 560 return nullptr; // Leave well enough alone 561 } 562 563 // Is at least one of my inputs loop-invariant? 564 if (n1_loop == n_loop && 565 n2_loop == n_loop && 566 n3_loop == n_loop) { 567 return nullptr; // No loop-invariant inputs 568 } 569 570 Node* res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_INT); 571 if (res != nullptr) { 572 return res; 573 } 574 res = remix_address_expressions_add_left_shift(n, n_loop, n_ctrl, T_LONG); 575 if (res != nullptr) { 576 return res; 577 } 578 579 int n_op = n->Opcode(); 580 // Replace (I+V) with (V+I) 581 if (n_op == Op_AddI || 582 n_op == Op_AddL || 583 n_op == Op_AddF || 584 n_op == Op_AddD || 585 n_op == Op_MulI || 586 n_op == Op_MulL || 587 n_op == Op_MulF || 588 n_op == Op_MulD) { 589 if (n2_loop == n_loop) { 590 assert(n1_loop != n_loop, ""); 591 n->swap_edges(1, 2); 592 } 593 } 594 595 // Replace ((I1 +p V) +p I2) with ((I1 +p I2) +p V), 596 // but not if I2 is a constant. Skip for irreducible loops. 597 if (n_op == Op_AddP && n_loop->_head->is_Loop()) { 598 if (n2_loop == n_loop && n3_loop != n_loop) { 599 if (n->in(2)->Opcode() == Op_AddP && !n->in(3)->is_Con()) { 600 Node* n22_ctrl = get_ctrl(n->in(2)->in(2)); 601 Node* n23_ctrl = get_ctrl(n->in(2)->in(3)); 602 IdealLoopTree* n22loop = get_loop(n22_ctrl); 603 IdealLoopTree* n23_loop = get_loop(n23_ctrl); 604 if (n22loop != n_loop && n22loop->is_member(n_loop) && 605 n23_loop == n_loop) { 606 Node* add1 = new AddPNode(n->in(1), n->in(2)->in(2), n->in(3)); 607 // Stuff new AddP in the loop preheader 608 register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl)); 609 Node* add2 = new AddPNode(n->in(1), add1, n->in(2)->in(3)); 610 register_new_node(add2, n_ctrl); 611 _igvn.replace_node(n, add2); 612 return add2; 613 } 614 } 615 } 616 617 // Replace (I1 +p (I2 + V)) with ((I1 +p I2) +p V) 618 if (n2_loop != n_loop && n3_loop == n_loop) { 619 if (n->in(3)->Opcode() == Op_AddX) { 620 Node* V = n->in(3)->in(1); 621 Node* I = n->in(3)->in(2); 622 if (is_member(n_loop,get_ctrl(V))) { 623 } else { 624 Node *tmp = V; V = I; I = tmp; 625 } 626 if (!is_member(n_loop,get_ctrl(I))) { 627 Node* add1 = new AddPNode(n->in(1), n->in(2), I); 628 // Stuff new AddP in the loop preheader 629 register_new_node(add1, n_loop->_head->as_Loop()->skip_strip_mined(1)->in(LoopNode::EntryControl)); 630 Node* add2 = new AddPNode(n->in(1), add1, V); 631 register_new_node(add2, n_ctrl); 632 _igvn.replace_node(n, add2); 633 return add2; 634 } 635 } 636 } 637 } 638 639 return nullptr; 640 } 641 642 // Optimize ((in1[2*i] * in2[2*i]) + (in1[2*i+1] * in2[2*i+1])) 643 Node *PhaseIdealLoop::convert_add_to_muladd(Node* n) { 644 assert(n->Opcode() == Op_AddI, "sanity"); 645 Node * nn = nullptr; 646 Node * in1 = n->in(1); 647 Node * in2 = n->in(2); 648 if (in1->Opcode() == Op_MulI && in2->Opcode() == Op_MulI) { 649 IdealLoopTree* loop_n = get_loop(get_ctrl(n)); 650 if (loop_n->is_counted() && 651 loop_n->_head->as_Loop()->is_valid_counted_loop(T_INT) && 652 Matcher::match_rule_supported(Op_MulAddVS2VI) && 653 Matcher::match_rule_supported(Op_MulAddS2I)) { 654 Node* mul_in1 = in1->in(1); 655 Node* mul_in2 = in1->in(2); 656 Node* mul_in3 = in2->in(1); 657 Node* mul_in4 = in2->in(2); 658 if (mul_in1->Opcode() == Op_LoadS && 659 mul_in2->Opcode() == Op_LoadS && 660 mul_in3->Opcode() == Op_LoadS && 661 mul_in4->Opcode() == Op_LoadS) { 662 IdealLoopTree* loop1 = get_loop(get_ctrl(mul_in1)); 663 IdealLoopTree* loop2 = get_loop(get_ctrl(mul_in2)); 664 IdealLoopTree* loop3 = get_loop(get_ctrl(mul_in3)); 665 IdealLoopTree* loop4 = get_loop(get_ctrl(mul_in4)); 666 IdealLoopTree* loop5 = get_loop(get_ctrl(in1)); 667 IdealLoopTree* loop6 = get_loop(get_ctrl(in2)); 668 // All nodes should be in the same counted loop. 669 if (loop_n == loop1 && loop_n == loop2 && loop_n == loop3 && 670 loop_n == loop4 && loop_n == loop5 && loop_n == loop6) { 671 Node* adr1 = mul_in1->in(MemNode::Address); 672 Node* adr2 = mul_in2->in(MemNode::Address); 673 Node* adr3 = mul_in3->in(MemNode::Address); 674 Node* adr4 = mul_in4->in(MemNode::Address); 675 if (adr1->is_AddP() && adr2->is_AddP() && adr3->is_AddP() && adr4->is_AddP()) { 676 if ((adr1->in(AddPNode::Base) == adr3->in(AddPNode::Base)) && 677 (adr2->in(AddPNode::Base) == adr4->in(AddPNode::Base))) { 678 nn = new MulAddS2INode(mul_in1, mul_in2, mul_in3, mul_in4); 679 register_new_node_with_ctrl_of(nn, n); 680 _igvn.replace_node(n, nn); 681 return nn; 682 } else if ((adr1->in(AddPNode::Base) == adr4->in(AddPNode::Base)) && 683 (adr2->in(AddPNode::Base) == adr3->in(AddPNode::Base))) { 684 nn = new MulAddS2INode(mul_in1, mul_in2, mul_in4, mul_in3); 685 register_new_node_with_ctrl_of(nn, n); 686 _igvn.replace_node(n, nn); 687 return nn; 688 } 689 } 690 } 691 } 692 } 693 } 694 return nn; 695 } 696 697 //------------------------------conditional_move------------------------------- 698 // Attempt to replace a Phi with a conditional move. We have some pretty 699 // strict profitability requirements. All Phis at the merge point must 700 // be converted, so we can remove the control flow. We need to limit the 701 // number of c-moves to a small handful. All code that was in the side-arms 702 // of the CFG diamond is now speculatively executed. This code has to be 703 // "cheap enough". We are pretty much limited to CFG diamonds that merge 704 // 1 or 2 items with a total of 1 or 2 ops executed speculatively. 705 Node *PhaseIdealLoop::conditional_move( Node *region ) { 706 707 assert(region->is_Region(), "sanity check"); 708 if (region->req() != 3) return nullptr; 709 710 // Check for CFG diamond 711 Node *lp = region->in(1); 712 Node *rp = region->in(2); 713 if (!lp || !rp) return nullptr; 714 Node *lp_c = lp->in(0); 715 if (lp_c == nullptr || lp_c != rp->in(0) || !lp_c->is_If()) return nullptr; 716 IfNode *iff = lp_c->as_If(); 717 718 // Check for ops pinned in an arm of the diamond. 719 // Can't remove the control flow in this case 720 if (lp->outcnt() > 1) return nullptr; 721 if (rp->outcnt() > 1) return nullptr; 722 723 IdealLoopTree* r_loop = get_loop(region); 724 assert(r_loop == get_loop(iff), "sanity"); 725 // Always convert to CMOVE if all results are used only outside this loop. 726 bool used_inside_loop = (r_loop == _ltree_root); 727 728 // Check profitability 729 int cost = 0; 730 int phis = 0; 731 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 732 Node *out = region->fast_out(i); 733 if (!out->is_Phi()) continue; // Ignore other control edges, etc 734 phis++; 735 PhiNode* phi = out->as_Phi(); 736 BasicType bt = phi->type()->basic_type(); 737 switch (bt) { 738 case T_DOUBLE: 739 case T_FLOAT: 740 if (C->use_cmove()) { 741 continue; //TODO: maybe we want to add some cost 742 } 743 cost += Matcher::float_cmove_cost(); // Could be very expensive 744 break; 745 case T_LONG: { 746 cost += Matcher::long_cmove_cost(); // May encodes as 2 CMOV's 747 } 748 case T_INT: // These all CMOV fine 749 case T_ADDRESS: { // (RawPtr) 750 cost++; 751 break; 752 } 753 case T_NARROWOOP: // Fall through 754 case T_OBJECT: { // Base oops are OK, but not derived oops 755 const TypeOopPtr *tp = phi->type()->make_ptr()->isa_oopptr(); 756 // Derived pointers are Bad (tm): what's the Base (for GC purposes) of a 757 // CMOVE'd derived pointer? It's a CMOVE'd derived base. Thus 758 // CMOVE'ing a derived pointer requires we also CMOVE the base. If we 759 // have a Phi for the base here that we convert to a CMOVE all is well 760 // and good. But if the base is dead, we'll not make a CMOVE. Later 761 // the allocator will have to produce a base by creating a CMOVE of the 762 // relevant bases. This puts the allocator in the business of 763 // manufacturing expensive instructions, generally a bad plan. 764 // Just Say No to Conditionally-Moved Derived Pointers. 765 if (tp && tp->offset() != 0) 766 return nullptr; 767 cost++; 768 break; 769 } 770 default: 771 return nullptr; // In particular, can't do memory or I/O 772 } 773 // Add in cost any speculative ops 774 for (uint j = 1; j < region->req(); j++) { 775 Node *proj = region->in(j); 776 Node *inp = phi->in(j); 777 if (inp->isa_InlineType()) { 778 // TODO 8302217 This prevents PhiNode::push_inline_types_through 779 return nullptr; 780 } 781 if (get_ctrl(inp) == proj) { // Found local op 782 cost++; 783 // Check for a chain of dependent ops; these will all become 784 // speculative in a CMOV. 785 for (uint k = 1; k < inp->req(); k++) 786 if (get_ctrl(inp->in(k)) == proj) 787 cost += ConditionalMoveLimit; // Too much speculative goo 788 } 789 } 790 // See if the Phi is used by a Cmp or Narrow oop Decode/Encode. 791 // This will likely Split-If, a higher-payoff operation. 792 for (DUIterator_Fast kmax, k = phi->fast_outs(kmax); k < kmax; k++) { 793 Node* use = phi->fast_out(k); 794 if (use->is_Cmp() || use->is_DecodeNarrowPtr() || use->is_EncodeNarrowPtr()) 795 cost += ConditionalMoveLimit; 796 // Is there a use inside the loop? 797 // Note: check only basic types since CMoveP is pinned. 798 if (!used_inside_loop && is_java_primitive(bt)) { 799 IdealLoopTree* u_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use); 800 if (r_loop == u_loop || r_loop->is_member(u_loop)) { 801 used_inside_loop = true; 802 } 803 } 804 } 805 }//for 806 Node* bol = iff->in(1); 807 assert(!bol->is_OpaqueInitializedAssertionPredicate(), "Initialized Assertion Predicates cannot form a diamond with Halt"); 808 if (bol->is_OpaqueTemplateAssertionPredicate()) { 809 // Ignore Template Assertion Predicates with OpaqueTemplateAssertionPredicate nodes. 810 return nullptr; 811 } 812 if (bol->is_OpaqueMultiversioning()) { 813 assert(bol->as_OpaqueMultiversioning()->is_useless(), "Must be useless, i.e. fast main loop has already disappeared."); 814 // Ignore multiversion_if that just lost its loops. The OpaqueMultiversioning is marked useless, 815 // and will make the multiversion_if constant fold in the next IGVN round. 816 return nullptr; 817 } 818 if (!bol->is_Bool()) { 819 assert(false, "Expected Bool, but got %s", NodeClassNames[bol->Opcode()]); 820 return nullptr; 821 } 822 int cmp_op = bol->in(1)->Opcode(); 823 if (cmp_op == Op_SubTypeCheck) { // SubTypeCheck expansion expects an IfNode 824 return nullptr; 825 } 826 // It is expensive to generate flags from a float compare. 827 // Avoid duplicated float compare. 828 if (phis > 1 && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) return nullptr; 829 830 float infrequent_prob = PROB_UNLIKELY_MAG(3); 831 // Ignore cost and blocks frequency if CMOVE can be moved outside the loop. 832 if (used_inside_loop) { 833 if (cost >= ConditionalMoveLimit) return nullptr; // Too much goo 834 835 // BlockLayoutByFrequency optimization moves infrequent branch 836 // from hot path. No point in CMOV'ing in such case (110 is used 837 // instead of 100 to take into account not exactness of float value). 838 if (BlockLayoutByFrequency) { 839 infrequent_prob = MAX2(infrequent_prob, (float)BlockLayoutMinDiamondPercentage/110.0f); 840 } 841 } 842 // Check for highly predictable branch. No point in CMOV'ing if 843 // we are going to predict accurately all the time. 844 if (C->use_cmove() && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) { 845 //keep going 846 } else if (iff->_prob < infrequent_prob || 847 iff->_prob > (1.0f - infrequent_prob)) 848 return nullptr; 849 850 // -------------- 851 // Now replace all Phis with CMOV's 852 Node *cmov_ctrl = iff->in(0); 853 uint flip = (lp->Opcode() == Op_IfTrue); 854 Node_List wq; 855 while (1) { 856 PhiNode* phi = nullptr; 857 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 858 Node *out = region->fast_out(i); 859 if (out->is_Phi()) { 860 phi = out->as_Phi(); 861 break; 862 } 863 } 864 if (phi == nullptr || _igvn.type(phi) == Type::TOP || !CMoveNode::supported(_igvn.type(phi))) { 865 break; 866 } 867 // Move speculative ops 868 wq.push(phi); 869 while (wq.size() > 0) { 870 Node *n = wq.pop(); 871 for (uint j = 1; j < n->req(); j++) { 872 Node* m = n->in(j); 873 if (m != nullptr && !is_dominator(get_ctrl(m), cmov_ctrl)) { 874 set_ctrl(m, cmov_ctrl); 875 wq.push(m); 876 } 877 } 878 } 879 Node* cmov = CMoveNode::make(iff->in(1), phi->in(1+flip), phi->in(2-flip), _igvn.type(phi)); 880 register_new_node(cmov, cmov_ctrl); 881 _igvn.replace_node(phi, cmov); 882 #ifndef PRODUCT 883 if (TraceLoopOpts) { 884 tty->print("CMOV "); 885 r_loop->dump_head(); 886 if (Verbose) { 887 bol->in(1)->dump(1); 888 cmov->dump(1); 889 } 890 } 891 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 892 #endif 893 } 894 895 // The useless CFG diamond will fold up later; see the optimization in 896 // RegionNode::Ideal. 897 _igvn._worklist.push(region); 898 899 return iff->in(1); 900 } 901 902 static void enqueue_cfg_uses(Node* m, Unique_Node_List& wq) { 903 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 904 Node* u = m->fast_out(i); 905 if (u->is_CFG()) { 906 if (u->is_NeverBranch()) { 907 u = u->as_NeverBranch()->proj_out(0); 908 enqueue_cfg_uses(u, wq); 909 } else { 910 wq.push(u); 911 } 912 } 913 } 914 } 915 916 // Try moving a store out of a loop, right before the loop 917 Node* PhaseIdealLoop::try_move_store_before_loop(Node* n, Node *n_ctrl) { 918 // Store has to be first in the loop body 919 IdealLoopTree *n_loop = get_loop(n_ctrl); 920 if (n->is_Store() && n_loop != _ltree_root && 921 n_loop->is_loop() && n_loop->_head->is_Loop() && 922 n->in(0) != nullptr) { 923 Node* address = n->in(MemNode::Address); 924 Node* value = n->in(MemNode::ValueIn); 925 Node* mem = n->in(MemNode::Memory); 926 IdealLoopTree* address_loop = get_loop(get_ctrl(address)); 927 IdealLoopTree* value_loop = get_loop(get_ctrl(value)); 928 929 // - address and value must be loop invariant 930 // - memory must be a memory Phi for the loop 931 // - Store must be the only store on this memory slice in the 932 // loop: if there's another store following this one then value 933 // written at iteration i by the second store could be overwritten 934 // at iteration i+n by the first store: it's not safe to move the 935 // first store out of the loop 936 // - nothing must observe the memory Phi: it guarantees no read 937 // before the store, we are also guaranteed the store post 938 // dominates the loop head (ignoring a possible early 939 // exit). Otherwise there would be extra Phi involved between the 940 // loop's Phi and the store. 941 // - there must be no early exit from the loop before the Store 942 // (such an exit most of the time would be an extra use of the 943 // memory Phi but sometimes is a bottom memory Phi that takes the 944 // store as input). 945 946 if (!n_loop->is_member(address_loop) && 947 !n_loop->is_member(value_loop) && 948 mem->is_Phi() && mem->in(0) == n_loop->_head && 949 mem->outcnt() == 1 && 950 mem->in(LoopNode::LoopBackControl) == n) { 951 952 assert(n_loop->_tail != nullptr, "need a tail"); 953 assert(is_dominator(n_ctrl, n_loop->_tail), "store control must not be in a branch in the loop"); 954 955 // Verify that there's no early exit of the loop before the store. 956 bool ctrl_ok = false; 957 { 958 // Follow control from loop head until n, we exit the loop or 959 // we reach the tail 960 ResourceMark rm; 961 Unique_Node_List wq; 962 wq.push(n_loop->_head); 963 964 for (uint next = 0; next < wq.size(); ++next) { 965 Node *m = wq.at(next); 966 if (m == n->in(0)) { 967 ctrl_ok = true; 968 continue; 969 } 970 assert(!has_ctrl(m), "should be CFG"); 971 if (!n_loop->is_member(get_loop(m)) || m == n_loop->_tail) { 972 ctrl_ok = false; 973 break; 974 } 975 enqueue_cfg_uses(m, wq); 976 if (wq.size() > 10) { 977 ctrl_ok = false; 978 break; 979 } 980 } 981 } 982 if (ctrl_ok) { 983 // move the Store 984 _igvn.replace_input_of(mem, LoopNode::LoopBackControl, mem); 985 _igvn.replace_input_of(n, 0, n_loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl)); 986 _igvn.replace_input_of(n, MemNode::Memory, mem->in(LoopNode::EntryControl)); 987 // Disconnect the phi now. An empty phi can confuse other 988 // optimizations in this pass of loop opts. 989 _igvn.replace_node(mem, mem->in(LoopNode::EntryControl)); 990 n_loop->_body.yank(mem); 991 992 set_ctrl_and_loop(n, n->in(0)); 993 994 return n; 995 } 996 } 997 } 998 return nullptr; 999 } 1000 1001 // Try moving a store out of a loop, right after the loop 1002 void PhaseIdealLoop::try_move_store_after_loop(Node* n) { 1003 if (n->is_Store() && n->in(0) != nullptr) { 1004 Node *n_ctrl = get_ctrl(n); 1005 IdealLoopTree *n_loop = get_loop(n_ctrl); 1006 // Store must be in a loop 1007 if (n_loop != _ltree_root && !n_loop->_irreducible) { 1008 Node* address = n->in(MemNode::Address); 1009 Node* value = n->in(MemNode::ValueIn); 1010 IdealLoopTree* address_loop = get_loop(get_ctrl(address)); 1011 // address must be loop invariant 1012 if (!n_loop->is_member(address_loop)) { 1013 // Store must be last on this memory slice in the loop and 1014 // nothing in the loop must observe it 1015 Node* phi = nullptr; 1016 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1017 Node* u = n->fast_out(i); 1018 if (has_ctrl(u)) { // control use? 1019 IdealLoopTree *u_loop = get_loop(get_ctrl(u)); 1020 if (!n_loop->is_member(u_loop)) { 1021 continue; 1022 } 1023 if (u->is_Phi() && u->in(0) == n_loop->_head) { 1024 assert(_igvn.type(u) == Type::MEMORY, "bad phi"); 1025 // multiple phis on the same slice are possible 1026 if (phi != nullptr) { 1027 return; 1028 } 1029 phi = u; 1030 continue; 1031 } 1032 } 1033 return; 1034 } 1035 if (phi != nullptr) { 1036 // Nothing in the loop before the store (next iteration) 1037 // must observe the stored value 1038 bool mem_ok = true; 1039 { 1040 ResourceMark rm; 1041 Unique_Node_List wq; 1042 wq.push(phi); 1043 for (uint next = 0; next < wq.size() && mem_ok; ++next) { 1044 Node *m = wq.at(next); 1045 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax && mem_ok; i++) { 1046 Node* u = m->fast_out(i); 1047 if (u->is_Store() || u->is_Phi()) { 1048 if (u != n) { 1049 wq.push(u); 1050 mem_ok = (wq.size() <= 10); 1051 } 1052 } else { 1053 mem_ok = false; 1054 break; 1055 } 1056 } 1057 } 1058 } 1059 if (mem_ok) { 1060 // Move the store out of the loop if the LCA of all 1061 // users (except for the phi) is outside the loop. 1062 Node* hook = new Node(1); 1063 hook->init_req(0, n_ctrl); // Add an input to prevent hook from being dead 1064 _igvn.rehash_node_delayed(phi); 1065 int count = phi->replace_edge(n, hook, &_igvn); 1066 assert(count > 0, "inconsistent phi"); 1067 1068 // Compute latest point this store can go 1069 Node* lca = get_late_ctrl(n, get_ctrl(n)); 1070 if (lca->is_OuterStripMinedLoop()) { 1071 lca = lca->in(LoopNode::EntryControl); 1072 } 1073 if (n_loop->is_member(get_loop(lca))) { 1074 // LCA is in the loop - bail out 1075 _igvn.replace_node(hook, n); 1076 return; 1077 } 1078 #ifdef ASSERT 1079 if (n_loop->_head->is_Loop() && n_loop->_head->as_Loop()->is_strip_mined()) { 1080 assert(n_loop->_head->Opcode() == Op_CountedLoop, "outer loop is a strip mined"); 1081 n_loop->_head->as_Loop()->verify_strip_mined(1); 1082 Node* outer = n_loop->_head->as_CountedLoop()->outer_loop(); 1083 IdealLoopTree* outer_loop = get_loop(outer); 1084 assert(n_loop->_parent == outer_loop, "broken loop tree"); 1085 assert(get_loop(lca) == outer_loop, "safepoint in outer loop consume all memory state"); 1086 } 1087 #endif 1088 lca = place_outside_loop(lca, n_loop); 1089 assert(!n_loop->is_member(get_loop(lca)), "control must not be back in the loop"); 1090 assert(get_loop(lca)->_nest < n_loop->_nest || get_loop(lca)->_head->as_Loop()->is_in_infinite_subgraph(), "must not be moved into inner loop"); 1091 1092 // Move store out of the loop 1093 _igvn.replace_node(hook, n->in(MemNode::Memory)); 1094 _igvn.replace_input_of(n, 0, lca); 1095 set_ctrl_and_loop(n, lca); 1096 1097 // Disconnect the phi now. An empty phi can confuse other 1098 // optimizations in this pass of loop opts.. 1099 if (phi->in(LoopNode::LoopBackControl) == phi) { 1100 _igvn.replace_node(phi, phi->in(LoopNode::EntryControl)); 1101 n_loop->_body.yank(phi); 1102 } 1103 } 1104 } 1105 } 1106 } 1107 } 1108 } 1109 1110 // We can't use immutable memory for the flat array check because we are loading the mark word which is 1111 // mutable. Although the bits we are interested in are immutable (we check for markWord::unlocked_value), 1112 // we need to use raw memory to not break anti dependency analysis. Below code will attempt to still move 1113 // flat array checks out of loops, mainly to enable loop unswitching. 1114 void PhaseIdealLoop::move_flat_array_check_out_of_loop(Node* n) { 1115 // Skip checks for more than one array 1116 if (n->req() > 3) { 1117 return; 1118 } 1119 Node* mem = n->in(FlatArrayCheckNode::Memory); 1120 Node* array = n->in(FlatArrayCheckNode::ArrayOrKlass)->uncast(); 1121 IdealLoopTree* check_loop = get_loop(get_ctrl(n)); 1122 IdealLoopTree* ary_loop = get_loop(get_ctrl(array)); 1123 1124 // Check if array is loop invariant 1125 if (!check_loop->is_member(ary_loop)) { 1126 // Walk up memory graph from the check until we leave the loop 1127 VectorSet wq; 1128 wq.set(mem->_idx); 1129 while (check_loop->is_member(get_loop(ctrl_or_self(mem)))) { 1130 if (mem->is_Phi()) { 1131 mem = mem->in(1); 1132 } else if (mem->is_MergeMem()) { 1133 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1134 } else if (mem->is_Proj()) { 1135 mem = mem->in(0); 1136 } else if (mem->is_MemBar() || mem->is_SafePoint()) { 1137 mem = mem->in(TypeFunc::Memory); 1138 } else if (mem->is_Store() || mem->is_LoadStore() || mem->is_ClearArray()) { 1139 mem = mem->in(MemNode::Memory); 1140 } else { 1141 #ifdef ASSERT 1142 mem->dump(); 1143 #endif 1144 ShouldNotReachHere(); 1145 } 1146 if (wq.test_set(mem->_idx)) { 1147 return; 1148 } 1149 } 1150 // Replace memory input and re-compute ctrl to move the check out of the loop 1151 _igvn.replace_input_of(n, 1, mem); 1152 set_ctrl_and_loop(n, get_early_ctrl(n)); 1153 Node* bol = n->unique_out(); 1154 set_ctrl_and_loop(bol, get_early_ctrl(bol)); 1155 } 1156 } 1157 1158 //------------------------------split_if_with_blocks_pre----------------------- 1159 // Do the real work in a non-recursive function. Data nodes want to be 1160 // cloned in the pre-order so they can feed each other nicely. 1161 Node *PhaseIdealLoop::split_if_with_blocks_pre( Node *n ) { 1162 // Cloning these guys is unlikely to win 1163 int n_op = n->Opcode(); 1164 if (n_op == Op_MergeMem) { 1165 return n; 1166 } 1167 if (n->is_Proj()) { 1168 return n; 1169 } 1170 1171 if (n->isa_FlatArrayCheck()) { 1172 move_flat_array_check_out_of_loop(n); 1173 return n; 1174 } 1175 1176 // Do not clone-up CmpFXXX variations, as these are always 1177 // followed by a CmpI 1178 if (n->is_Cmp()) { 1179 return n; 1180 } 1181 // Attempt to use a conditional move instead of a phi/branch 1182 if (ConditionalMoveLimit > 0 && n_op == Op_Region) { 1183 Node *cmov = conditional_move( n ); 1184 if (cmov) { 1185 return cmov; 1186 } 1187 } 1188 if (n->is_CFG() || n->is_LoadStore()) { 1189 return n; 1190 } 1191 if (n->is_Opaque1()) { // Opaque nodes cannot be mod'd 1192 if (!C->major_progress()) { // If chance of no more loop opts... 1193 _igvn._worklist.push(n); // maybe we'll remove them 1194 } 1195 return n; 1196 } 1197 1198 if (n->is_Con()) { 1199 return n; // No cloning for Con nodes 1200 } 1201 1202 Node *n_ctrl = get_ctrl(n); 1203 if (!n_ctrl) { 1204 return n; // Dead node 1205 } 1206 1207 Node* res = try_move_store_before_loop(n, n_ctrl); 1208 if (res != nullptr) { 1209 return n; 1210 } 1211 1212 // Attempt to remix address expressions for loop invariants 1213 Node *m = remix_address_expressions( n ); 1214 if( m ) return m; 1215 1216 if (n_op == Op_AddI) { 1217 Node *nn = convert_add_to_muladd( n ); 1218 if ( nn ) return nn; 1219 } 1220 1221 if (n->is_ConstraintCast()) { 1222 Node* dom_cast = n->as_ConstraintCast()->dominating_cast(&_igvn, this); 1223 // ConstraintCastNode::dominating_cast() uses node control input to determine domination. 1224 // Node control inputs don't necessarily agree with loop control info (due to 1225 // transformations happened in between), thus additional dominance check is needed 1226 // to keep loop info valid. 1227 if (dom_cast != nullptr && is_dominator(get_ctrl(dom_cast), get_ctrl(n))) { 1228 _igvn.replace_node(n, dom_cast); 1229 return dom_cast; 1230 } 1231 } 1232 1233 // Determine if the Node has inputs from some local Phi. 1234 // Returns the block to clone thru. 1235 Node *n_blk = has_local_phi_input( n ); 1236 if( !n_blk ) return n; 1237 1238 // Do not clone the trip counter through on a CountedLoop 1239 // (messes up the canonical shape). 1240 if (((n_blk->is_CountedLoop() || (n_blk->is_Loop() && n_blk->as_Loop()->is_loop_nest_inner_loop())) && n->Opcode() == Op_AddI) || 1241 (n_blk->is_LongCountedLoop() && n->Opcode() == Op_AddL)) { 1242 return n; 1243 } 1244 // Pushing a shift through the iv Phi can get in the way of addressing optimizations or range check elimination 1245 if (n_blk->is_BaseCountedLoop() && n->Opcode() == Op_LShift(n_blk->as_BaseCountedLoop()->bt()) && 1246 n->in(1) == n_blk->as_BaseCountedLoop()->phi()) { 1247 return n; 1248 } 1249 1250 // Check for having no control input; not pinned. Allow 1251 // dominating control. 1252 if (n->in(0)) { 1253 Node *dom = idom(n_blk); 1254 if (dom_lca(n->in(0), dom) != n->in(0)) { 1255 return n; 1256 } 1257 } 1258 // Policy: when is it profitable. You must get more wins than 1259 // policy before it is considered profitable. Policy is usually 0, 1260 // so 1 win is considered profitable. Big merges will require big 1261 // cloning, so get a larger policy. 1262 int policy = n_blk->req() >> 2; 1263 1264 // If the loop is a candidate for range check elimination, 1265 // delay splitting through it's phi until a later loop optimization 1266 if (n_blk->is_BaseCountedLoop()) { 1267 IdealLoopTree *lp = get_loop(n_blk); 1268 if (lp && lp->_rce_candidate) { 1269 return n; 1270 } 1271 } 1272 1273 if (must_throttle_split_if()) return n; 1274 1275 // Split 'n' through the merge point if it is profitable 1276 Node *phi = split_thru_phi( n, n_blk, policy ); 1277 if (!phi) return n; 1278 1279 // Found a Phi to split thru! 1280 // Replace 'n' with the new phi 1281 _igvn.replace_node( n, phi ); 1282 // Moved a load around the loop, 'en-registering' something. 1283 if (n_blk->is_Loop() && n->is_Load() && 1284 !phi->in(LoopNode::LoopBackControl)->is_Load()) 1285 C->set_major_progress(); 1286 1287 return phi; 1288 } 1289 1290 static bool merge_point_too_heavy(Compile* C, Node* region) { 1291 // Bail out if the region and its phis have too many users. 1292 int weight = 0; 1293 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1294 weight += region->fast_out(i)->outcnt(); 1295 } 1296 int nodes_left = C->max_node_limit() - C->live_nodes(); 1297 if (weight * 8 > nodes_left) { 1298 if (PrintOpto) { 1299 tty->print_cr("*** Split-if bails out: %d nodes, region weight %d", C->unique(), weight); 1300 } 1301 return true; 1302 } else { 1303 return false; 1304 } 1305 } 1306 1307 static bool merge_point_safe(Node* region) { 1308 // 4799512: Stop split_if_with_blocks from splitting a block with a ConvI2LNode 1309 // having a PhiNode input. This sidesteps the dangerous case where the split 1310 // ConvI2LNode may become TOP if the input Value() does not 1311 // overlap the ConvI2L range, leaving a node which may not dominate its 1312 // uses. 1313 // A better fix for this problem can be found in the BugTraq entry, but 1314 // expediency for Mantis demands this hack. 1315 #ifdef _LP64 1316 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1317 Node* n = region->fast_out(i); 1318 if (n->is_Phi()) { 1319 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 1320 Node* m = n->fast_out(j); 1321 if (m->Opcode() == Op_ConvI2L) 1322 return false; 1323 if (m->is_CastII()) { 1324 return false; 1325 } 1326 } 1327 } 1328 } 1329 #endif 1330 return true; 1331 } 1332 1333 1334 //------------------------------place_outside_loop--------------------------------- 1335 // Place some computation outside of this loop on the path to the use passed as argument 1336 Node* PhaseIdealLoop::place_outside_loop(Node* useblock, IdealLoopTree* loop) const { 1337 Node* head = loop->_head; 1338 assert(!loop->is_member(get_loop(useblock)), "must be outside loop"); 1339 if (head->is_Loop() && head->as_Loop()->is_strip_mined()) { 1340 loop = loop->_parent; 1341 assert(loop->_head->is_OuterStripMinedLoop(), "malformed strip mined loop"); 1342 } 1343 1344 // Pick control right outside the loop 1345 for (;;) { 1346 Node* dom = idom(useblock); 1347 if (loop->is_member(get_loop(dom))) { 1348 break; 1349 } 1350 useblock = dom; 1351 } 1352 assert(find_non_split_ctrl(useblock) == useblock, "should be non split control"); 1353 return useblock; 1354 } 1355 1356 1357 bool PhaseIdealLoop::identical_backtoback_ifs(Node *n) { 1358 if (!n->is_If() || n->is_BaseCountedLoopEnd()) { 1359 return false; 1360 } 1361 if (!n->in(0)->is_Region()) { 1362 return false; 1363 } 1364 1365 Node* region = n->in(0); 1366 Node* dom = idom(region); 1367 if (!dom->is_If() || !n->as_If()->same_condition(dom, &_igvn)) { 1368 return false; 1369 } 1370 IfNode* dom_if = dom->as_If(); 1371 Node* proj_true = dom_if->proj_out(1); 1372 Node* proj_false = dom_if->proj_out(0); 1373 1374 for (uint i = 1; i < region->req(); i++) { 1375 if (is_dominator(proj_true, region->in(i))) { 1376 continue; 1377 } 1378 if (is_dominator(proj_false, region->in(i))) { 1379 continue; 1380 } 1381 return false; 1382 } 1383 1384 return true; 1385 } 1386 1387 1388 bool PhaseIdealLoop::can_split_if(Node* n_ctrl) { 1389 if (must_throttle_split_if()) { 1390 return false; 1391 } 1392 1393 // Do not do 'split-if' if irreducible loops are present. 1394 if (_has_irreducible_loops) { 1395 return false; 1396 } 1397 1398 if (merge_point_too_heavy(C, n_ctrl)) { 1399 return false; 1400 } 1401 1402 // Do not do 'split-if' if some paths are dead. First do dead code 1403 // elimination and then see if its still profitable. 1404 for (uint i = 1; i < n_ctrl->req(); i++) { 1405 if (n_ctrl->in(i) == C->top()) { 1406 return false; 1407 } 1408 } 1409 1410 // If trying to do a 'Split-If' at the loop head, it is only 1411 // profitable if the cmp folds up on BOTH paths. Otherwise we 1412 // risk peeling a loop forever. 1413 1414 // CNC - Disabled for now. Requires careful handling of loop 1415 // body selection for the cloned code. Also, make sure we check 1416 // for any input path not being in the same loop as n_ctrl. For 1417 // irreducible loops we cannot check for 'n_ctrl->is_Loop()' 1418 // because the alternative loop entry points won't be converted 1419 // into LoopNodes. 1420 IdealLoopTree *n_loop = get_loop(n_ctrl); 1421 for (uint j = 1; j < n_ctrl->req(); j++) { 1422 if (get_loop(n_ctrl->in(j)) != n_loop) { 1423 return false; 1424 } 1425 } 1426 1427 // Check for safety of the merge point. 1428 if (!merge_point_safe(n_ctrl)) { 1429 return false; 1430 } 1431 1432 return true; 1433 } 1434 1435 // Detect if the node is the inner strip-mined loop 1436 // Return: null if it's not the case, or the exit of outer strip-mined loop 1437 static Node* is_inner_of_stripmined_loop(const Node* out) { 1438 Node* out_le = nullptr; 1439 1440 if (out->is_CountedLoopEnd()) { 1441 const CountedLoopNode* loop = out->as_CountedLoopEnd()->loopnode(); 1442 1443 if (loop != nullptr && loop->is_strip_mined()) { 1444 out_le = loop->in(LoopNode::EntryControl)->as_OuterStripMinedLoop()->outer_loop_exit(); 1445 } 1446 } 1447 1448 return out_le; 1449 } 1450 1451 bool PhaseIdealLoop::flat_array_element_type_check(Node *n) { 1452 // If the CmpP is a subtype check for a value that has just been 1453 // loaded from an array, the subtype check guarantees the value 1454 // can't be stored in a flat array and the load of the value 1455 // happens with a flat array check then: push the type check 1456 // through the phi of the flat array check. This needs special 1457 // logic because the subtype check's input is not a phi but a 1458 // LoadKlass that must first be cloned through the phi. 1459 if (n->Opcode() != Op_CmpP) { 1460 return false; 1461 } 1462 1463 Node* klassptr = n->in(1); 1464 Node* klasscon = n->in(2); 1465 1466 if (klassptr->is_DecodeNarrowPtr()) { 1467 klassptr = klassptr->in(1); 1468 } 1469 1470 if (klassptr->Opcode() != Op_LoadKlass && klassptr->Opcode() != Op_LoadNKlass) { 1471 return false; 1472 } 1473 1474 if (!klasscon->is_Con()) { 1475 return false; 1476 } 1477 1478 Node* addr = klassptr->in(MemNode::Address); 1479 1480 if (!addr->is_AddP()) { 1481 return false; 1482 } 1483 1484 intptr_t offset; 1485 Node* obj = AddPNode::Ideal_base_and_offset(addr, &_igvn, offset); 1486 1487 if (obj == nullptr) { 1488 return false; 1489 } 1490 1491 assert(obj != nullptr && addr->in(AddPNode::Base) == addr->in(AddPNode::Address), "malformed AddP?"); 1492 if (obj->Opcode() == Op_CastPP) { 1493 obj = obj->in(1); 1494 } 1495 1496 if (!obj->is_Phi()) { 1497 return false; 1498 } 1499 1500 Node* region = obj->in(0); 1501 1502 Node* phi = PhiNode::make_blank(region, n->in(1)); 1503 for (uint i = 1; i < region->req(); i++) { 1504 Node* in = obj->in(i); 1505 Node* ctrl = region->in(i); 1506 if (addr->in(AddPNode::Base) != obj) { 1507 Node* cast = addr->in(AddPNode::Base); 1508 assert(cast->Opcode() == Op_CastPP && cast->in(0) != nullptr, "inconsistent subgraph"); 1509 Node* cast_clone = cast->clone(); 1510 cast_clone->set_req(0, ctrl); 1511 cast_clone->set_req(1, in); 1512 register_new_node(cast_clone, ctrl); 1513 const Type* tcast = cast_clone->Value(&_igvn); 1514 _igvn.set_type(cast_clone, tcast); 1515 cast_clone->as_Type()->set_type(tcast); 1516 in = cast_clone; 1517 } 1518 Node* addr_clone = addr->clone(); 1519 addr_clone->set_req(AddPNode::Base, in); 1520 addr_clone->set_req(AddPNode::Address, in); 1521 register_new_node(addr_clone, ctrl); 1522 _igvn.set_type(addr_clone, addr_clone->Value(&_igvn)); 1523 Node* klassptr_clone = klassptr->clone(); 1524 klassptr_clone->set_req(2, addr_clone); 1525 register_new_node(klassptr_clone, ctrl); 1526 _igvn.set_type(klassptr_clone, klassptr_clone->Value(&_igvn)); 1527 if (klassptr != n->in(1)) { 1528 Node* decode = n->in(1); 1529 assert(decode->is_DecodeNarrowPtr(), "inconsistent subgraph"); 1530 Node* decode_clone = decode->clone(); 1531 decode_clone->set_req(1, klassptr_clone); 1532 register_new_node(decode_clone, ctrl); 1533 _igvn.set_type(decode_clone, decode_clone->Value(&_igvn)); 1534 klassptr_clone = decode_clone; 1535 } 1536 phi->set_req(i, klassptr_clone); 1537 } 1538 register_new_node(phi, region); 1539 Node* orig = n->in(1); 1540 _igvn.replace_input_of(n, 1, phi); 1541 split_if_with_blocks_post(n); 1542 if (n->outcnt() != 0) { 1543 _igvn.replace_input_of(n, 1, orig); 1544 _igvn.remove_dead_node(phi); 1545 } 1546 return true; 1547 } 1548 1549 //------------------------------split_if_with_blocks_post---------------------- 1550 // Do the real work in a non-recursive function. CFG hackery wants to be 1551 // in the post-order, so it can dirty the I-DOM info and not use the dirtied 1552 // info. 1553 void PhaseIdealLoop::split_if_with_blocks_post(Node *n) { 1554 1555 if (flat_array_element_type_check(n)) { 1556 return; 1557 } 1558 1559 // Cloning Cmp through Phi's involves the split-if transform. 1560 // FastLock is not used by an If 1561 if (n->is_Cmp() && !n->is_FastLock()) { 1562 Node *n_ctrl = get_ctrl(n); 1563 // Determine if the Node has inputs from some local Phi. 1564 // Returns the block to clone thru. 1565 Node *n_blk = has_local_phi_input(n); 1566 if (n_blk != n_ctrl) { 1567 return; 1568 } 1569 1570 if (!can_split_if(n_ctrl)) { 1571 return; 1572 } 1573 1574 if (n->outcnt() != 1) { 1575 return; // Multiple bool's from 1 compare? 1576 } 1577 Node *bol = n->unique_out(); 1578 assert(bol->is_Bool(), "expect a bool here"); 1579 if (bol->outcnt() != 1) { 1580 return;// Multiple branches from 1 compare? 1581 } 1582 Node *iff = bol->unique_out(); 1583 1584 // Check some safety conditions 1585 if (iff->is_If()) { // Classic split-if? 1586 if (iff->in(0) != n_ctrl) { 1587 return; // Compare must be in same blk as if 1588 } 1589 } else if (iff->is_CMove()) { // Trying to split-up a CMOVE 1590 // Can't split CMove with different control. 1591 if (get_ctrl(iff) != n_ctrl) { 1592 return; 1593 } 1594 if (get_ctrl(iff->in(2)) == n_ctrl || 1595 get_ctrl(iff->in(3)) == n_ctrl) { 1596 return; // Inputs not yet split-up 1597 } 1598 if (get_loop(n_ctrl) != get_loop(get_ctrl(iff))) { 1599 return; // Loop-invar test gates loop-varying CMOVE 1600 } 1601 } else { 1602 return; // some other kind of node, such as an Allocate 1603 } 1604 1605 // When is split-if profitable? Every 'win' on means some control flow 1606 // goes dead, so it's almost always a win. 1607 int policy = 0; 1608 // Split compare 'n' through the merge point if it is profitable 1609 Node *phi = split_thru_phi( n, n_ctrl, policy); 1610 if (!phi) { 1611 return; 1612 } 1613 1614 // Found a Phi to split thru! 1615 // Replace 'n' with the new phi 1616 _igvn.replace_node(n, phi); 1617 1618 // Now split the bool up thru the phi 1619 Node *bolphi = split_thru_phi(bol, n_ctrl, -1); 1620 guarantee(bolphi != nullptr, "null boolean phi node"); 1621 1622 _igvn.replace_node(bol, bolphi); 1623 assert(iff->in(1) == bolphi, ""); 1624 1625 if (bolphi->Value(&_igvn)->singleton()) { 1626 return; 1627 } 1628 1629 // Conditional-move? Must split up now 1630 if (!iff->is_If()) { 1631 Node *cmovphi = split_thru_phi(iff, n_ctrl, -1); 1632 _igvn.replace_node(iff, cmovphi); 1633 return; 1634 } 1635 1636 // Now split the IF 1637 C->print_method(PHASE_BEFORE_SPLIT_IF, 4, iff); 1638 if (TraceLoopOpts) { 1639 tty->print_cr("Split-If"); 1640 } 1641 do_split_if(iff); 1642 C->print_method(PHASE_AFTER_SPLIT_IF, 4, iff); 1643 return; 1644 } 1645 1646 // Two identical ifs back to back can be merged 1647 if (try_merge_identical_ifs(n)) { 1648 return; 1649 } 1650 1651 // Check for an IF ready to split; one that has its 1652 // condition codes input coming from a Phi at the block start. 1653 int n_op = n->Opcode(); 1654 1655 // Check for an IF being dominated by another IF same test 1656 if (n_op == Op_If || 1657 n_op == Op_RangeCheck) { 1658 Node *bol = n->in(1); 1659 uint max = bol->outcnt(); 1660 // Check for same test used more than once? 1661 if (bol->is_Bool() && (max > 1 || bol->in(1)->is_SubTypeCheck())) { 1662 // Search up IDOMs to see if this IF is dominated. 1663 Node* cmp = bol->in(1); 1664 Node *cutoff = cmp->is_SubTypeCheck() ? dom_lca(get_ctrl(cmp->in(1)), get_ctrl(cmp->in(2))) : get_ctrl(bol); 1665 1666 // Now search up IDOMs till cutoff, looking for a dominating test 1667 Node *prevdom = n; 1668 Node *dom = idom(prevdom); 1669 while (dom != cutoff) { 1670 if (dom->req() > 1 && n->as_If()->same_condition(dom, &_igvn) && prevdom->in(0) == dom && 1671 safe_for_if_replacement(dom)) { 1672 // It's invalid to move control dependent data nodes in the inner 1673 // strip-mined loop, because: 1674 // 1) break validation of LoopNode::verify_strip_mined() 1675 // 2) move code with side-effect in strip-mined loop 1676 // Move to the exit of outer strip-mined loop in that case. 1677 Node* out_le = is_inner_of_stripmined_loop(dom); 1678 if (out_le != nullptr) { 1679 prevdom = out_le; 1680 } 1681 // Replace the dominated test with an obvious true or false. 1682 // Place it on the IGVN worklist for later cleanup. 1683 C->set_major_progress(); 1684 // Split if: pin array accesses that are control dependent on a range check and moved to a regular if, 1685 // to prevent an array load from floating above its range check. There are three cases: 1686 // 1. Move from RangeCheck "a" to RangeCheck "b": don't need to pin. If we ever remove b, then we pin 1687 // all its array accesses at that point. 1688 // 2. We move from RangeCheck "a" to regular if "b": need to pin. If we ever remove b, then its array 1689 // accesses would start to float, since we don't pin at that point. 1690 // 3. If we move from regular if: don't pin. All array accesses are already assumed to be pinned. 1691 bool pin_array_access_nodes = n->Opcode() == Op_RangeCheck && 1692 prevdom->in(0)->Opcode() != Op_RangeCheck; 1693 dominated_by(prevdom->as_IfProj(), n->as_If(), false, pin_array_access_nodes); 1694 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 1695 return; 1696 } 1697 prevdom = dom; 1698 dom = idom(prevdom); 1699 } 1700 } 1701 } 1702 1703 try_sink_out_of_loop(n); 1704 if (C->failing()) { 1705 return; 1706 } 1707 1708 try_move_store_after_loop(n); 1709 1710 // Remove multiple allocations of the same inline type 1711 if (n->is_InlineType()) { 1712 n->as_InlineType()->remove_redundant_allocations(this); 1713 } 1714 } 1715 1716 // Transform: 1717 // 1718 // if (some_condition) { 1719 // // body 1 1720 // } else { 1721 // // body 2 1722 // } 1723 // if (some_condition) { 1724 // // body 3 1725 // } else { 1726 // // body 4 1727 // } 1728 // 1729 // into: 1730 // 1731 // 1732 // if (some_condition) { 1733 // // body 1 1734 // // body 3 1735 // } else { 1736 // // body 2 1737 // // body 4 1738 // } 1739 bool PhaseIdealLoop::try_merge_identical_ifs(Node* n) { 1740 if (identical_backtoback_ifs(n) && can_split_if(n->in(0))) { 1741 Node *n_ctrl = n->in(0); 1742 IfNode* dom_if = idom(n_ctrl)->as_If(); 1743 if (n->in(1) != dom_if->in(1)) { 1744 assert(n->in(1)->in(1)->is_SubTypeCheck() && 1745 (n->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr || 1746 dom_if->in(1)->in(1)->as_SubTypeCheck()->method() != nullptr), "only for subtype checks with profile data attached"); 1747 _igvn.replace_input_of(n, 1, dom_if->in(1)); 1748 } 1749 ProjNode* dom_proj_true = dom_if->proj_out(1); 1750 ProjNode* dom_proj_false = dom_if->proj_out(0); 1751 1752 // Now split the IF 1753 RegionNode* new_false_region; 1754 RegionNode* new_true_region; 1755 do_split_if(n, &new_false_region, &new_true_region); 1756 assert(new_false_region->req() == new_true_region->req(), ""); 1757 #ifdef ASSERT 1758 for (uint i = 1; i < new_false_region->req(); ++i) { 1759 assert(new_false_region->in(i)->in(0) == new_true_region->in(i)->in(0), "unexpected shape following split if"); 1760 assert(i == new_false_region->req() - 1 || new_false_region->in(i)->in(0)->in(1) == new_false_region->in(i + 1)->in(0)->in(1), "unexpected shape following split if"); 1761 } 1762 #endif 1763 assert(new_false_region->in(1)->in(0)->in(1) == dom_if->in(1), "dominating if and dominated if after split must share test"); 1764 1765 // We now have: 1766 // if (some_condition) { 1767 // // body 1 1768 // if (some_condition) { 1769 // body3: // new_true_region 1770 // // body3 1771 // } else { 1772 // goto body4; 1773 // } 1774 // } else { 1775 // // body 2 1776 // if (some_condition) { 1777 // goto body3; 1778 // } else { 1779 // body4: // new_false_region 1780 // // body4; 1781 // } 1782 // } 1783 // 1784 1785 // clone pinned nodes thru the resulting regions 1786 push_pinned_nodes_thru_region(dom_if, new_true_region); 1787 push_pinned_nodes_thru_region(dom_if, new_false_region); 1788 1789 // Optimize out the cloned ifs. Because pinned nodes were cloned, this also allows a CastPP that would be dependent 1790 // on a projection of n to have the dom_if as a control dependency. We don't want the CastPP to end up with an 1791 // unrelated control dependency. 1792 for (uint i = 1; i < new_false_region->req(); i++) { 1793 if (is_dominator(dom_proj_true, new_false_region->in(i))) { 1794 dominated_by(dom_proj_true->as_IfProj(), new_false_region->in(i)->in(0)->as_If()); 1795 } else { 1796 assert(is_dominator(dom_proj_false, new_false_region->in(i)), "bad if"); 1797 dominated_by(dom_proj_false->as_IfProj(), new_false_region->in(i)->in(0)->as_If()); 1798 } 1799 } 1800 return true; 1801 } 1802 return false; 1803 } 1804 1805 void PhaseIdealLoop::push_pinned_nodes_thru_region(IfNode* dom_if, Node* region) { 1806 for (DUIterator i = region->outs(); region->has_out(i); i++) { 1807 Node* u = region->out(i); 1808 if (!has_ctrl(u) || u->is_Phi() || !u->depends_only_on_test() || !_igvn.no_dependent_zero_check(u)) { 1809 continue; 1810 } 1811 assert(u->in(0) == region, "not a control dependent node?"); 1812 uint j = 1; 1813 for (; j < u->req(); ++j) { 1814 Node* in = u->in(j); 1815 if (!is_dominator(ctrl_or_self(in), dom_if)) { 1816 break; 1817 } 1818 } 1819 if (j == u->req()) { 1820 Node *phi = PhiNode::make_blank(region, u); 1821 for (uint k = 1; k < region->req(); ++k) { 1822 Node* clone = u->clone(); 1823 clone->set_req(0, region->in(k)); 1824 register_new_node(clone, region->in(k)); 1825 phi->init_req(k, clone); 1826 } 1827 register_new_node(phi, region); 1828 _igvn.replace_node(u, phi); 1829 --i; 1830 } 1831 } 1832 } 1833 1834 bool PhaseIdealLoop::safe_for_if_replacement(const Node* dom) const { 1835 if (!dom->is_CountedLoopEnd()) { 1836 return true; 1837 } 1838 CountedLoopEndNode* le = dom->as_CountedLoopEnd(); 1839 CountedLoopNode* cl = le->loopnode(); 1840 if (cl == nullptr) { 1841 return true; 1842 } 1843 if (!cl->is_main_loop()) { 1844 return true; 1845 } 1846 if (cl->is_canonical_loop_entry() == nullptr) { 1847 return true; 1848 } 1849 // Further unrolling is possible so loop exit condition might change 1850 return false; 1851 } 1852 1853 // See if a shared loop-varying computation has no loop-varying uses. 1854 // Happens if something is only used for JVM state in uncommon trap exits, 1855 // like various versions of induction variable+offset. Clone the 1856 // computation per usage to allow it to sink out of the loop. 1857 void PhaseIdealLoop::try_sink_out_of_loop(Node* n) { 1858 bool is_raw_to_oop_cast = n->is_ConstraintCast() && 1859 n->in(1)->bottom_type()->isa_rawptr() && 1860 !n->bottom_type()->isa_rawptr(); 1861 1862 if (has_ctrl(n) && 1863 !n->is_Phi() && 1864 !n->is_Bool() && 1865 !n->is_Proj() && 1866 !n->is_MergeMem() && 1867 !n->is_CMove() && 1868 !n->is_OpaqueNotNull() && 1869 !n->is_OpaqueInitializedAssertionPredicate() && 1870 !n->is_OpaqueTemplateAssertionPredicate() && 1871 !is_raw_to_oop_cast && // don't extend live ranges of raw oops 1872 (KillPathsReachableByDeadTypeNode || !n->is_Type()) 1873 ) { 1874 Node *n_ctrl = get_ctrl(n); 1875 IdealLoopTree *n_loop = get_loop(n_ctrl); 1876 1877 if (n->in(0) != nullptr) { 1878 IdealLoopTree* loop_ctrl = get_loop(n->in(0)); 1879 if (n_loop != loop_ctrl && n_loop->is_member(loop_ctrl)) { 1880 // n has a control input inside a loop but get_ctrl() is member of an outer loop. This could happen, for example, 1881 // for Div nodes inside a loop (control input inside loop) without a use except for an UCT (outside the loop). 1882 // Rewire control of n to right outside of the loop, regardless if its input(s) are later sunk or not. 1883 Node* maybe_pinned_n = n; 1884 Node* outside_ctrl = place_outside_loop(n_ctrl, loop_ctrl); 1885 if (!would_sink_below_pre_loop_exit(loop_ctrl, outside_ctrl)) { 1886 if (n->depends_only_on_test()) { 1887 Node* pinned_clone = n->pin_array_access_node(); 1888 if (pinned_clone != nullptr) { 1889 // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a 1890 // range check for that access. If that condition is replaced by an identical dominating one, then an 1891 // unpinned load would risk floating above its range check. 1892 register_new_node(pinned_clone, n_ctrl); 1893 maybe_pinned_n = pinned_clone; 1894 _igvn.replace_node(n, pinned_clone); 1895 } 1896 } 1897 _igvn.replace_input_of(maybe_pinned_n, 0, outside_ctrl); 1898 } 1899 } 1900 } 1901 if (n_loop != _ltree_root && n->outcnt() > 1) { 1902 // Compute early control: needed for anti-dependence analysis. It's also possible that as a result of 1903 // previous transformations in this loop opts round, the node can be hoisted now: early control will tell us. 1904 Node* early_ctrl = compute_early_ctrl(n, n_ctrl); 1905 if (n_loop->is_member(get_loop(early_ctrl)) && // check that this one can't be hoisted now 1906 ctrl_of_all_uses_out_of_loop(n, early_ctrl, n_loop)) { // All uses in outer loops! 1907 if (n->is_Store() || n->is_LoadStore()) { 1908 assert(false, "no node with a side effect"); 1909 C->record_failure("no node with a side effect"); 1910 return; 1911 } 1912 Node* outer_loop_clone = nullptr; 1913 for (DUIterator_Last jmin, j = n->last_outs(jmin); j >= jmin;) { 1914 Node* u = n->last_out(j); // Clone private computation per use 1915 _igvn.rehash_node_delayed(u); 1916 Node* x = nullptr; 1917 if (n->depends_only_on_test()) { 1918 // Pin array access nodes: if this is an array load, it's going to be dependent on a condition that's not a 1919 // range check for that access. If that condition is replaced by an identical dominating one, then an 1920 // unpinned load would risk floating above its range check. 1921 x = n->pin_array_access_node(); 1922 } 1923 if (x == nullptr) { 1924 x = n->clone(); 1925 } 1926 Node* x_ctrl = nullptr; 1927 if (u->is_Phi()) { 1928 // Replace all uses of normal nodes. Replace Phi uses 1929 // individually, so the separate Nodes can sink down 1930 // different paths. 1931 uint k = 1; 1932 while (u->in(k) != n) k++; 1933 u->set_req(k, x); 1934 // x goes next to Phi input path 1935 x_ctrl = u->in(0)->in(k); 1936 // Find control for 'x' next to use but not inside inner loops. 1937 x_ctrl = place_outside_loop(x_ctrl, n_loop); 1938 --j; 1939 } else { // Normal use 1940 if (has_ctrl(u)) { 1941 x_ctrl = get_ctrl(u); 1942 } else { 1943 x_ctrl = u->in(0); 1944 } 1945 // Find control for 'x' next to use but not inside inner loops. 1946 x_ctrl = place_outside_loop(x_ctrl, n_loop); 1947 // Replace all uses 1948 if (u->is_ConstraintCast() && _igvn.type(n)->higher_equal(u->bottom_type()) && u->in(0) == x_ctrl) { 1949 // If we're sinking a chain of data nodes, we might have inserted a cast to pin the use which is not necessary 1950 // anymore now that we're going to pin n as well 1951 _igvn.replace_node(u, x); 1952 --j; 1953 } else { 1954 int nb = u->replace_edge(n, x, &_igvn); 1955 j -= nb; 1956 } 1957 } 1958 1959 if (n->is_Load()) { 1960 // For loads, add a control edge to a CFG node outside of the loop 1961 // to force them to not combine and return back inside the loop 1962 // during GVN optimization (4641526). 1963 assert(x_ctrl == get_late_ctrl_with_anti_dep(x->as_Load(), early_ctrl, x_ctrl), "anti-dependences were already checked"); 1964 1965 IdealLoopTree* x_loop = get_loop(x_ctrl); 1966 Node* x_head = x_loop->_head; 1967 if (x_head->is_Loop() && x_head->is_OuterStripMinedLoop()) { 1968 // Do not add duplicate LoadNodes to the outer strip mined loop 1969 if (outer_loop_clone != nullptr) { 1970 _igvn.replace_node(x, outer_loop_clone); 1971 continue; 1972 } 1973 outer_loop_clone = x; 1974 } 1975 x->set_req(0, x_ctrl); 1976 } else if (n->in(0) != nullptr){ 1977 x->set_req(0, x_ctrl); 1978 } 1979 assert(dom_depth(n_ctrl) <= dom_depth(x_ctrl), "n is later than its clone"); 1980 assert(!n_loop->is_member(get_loop(x_ctrl)), "should have moved out of loop"); 1981 register_new_node(x, x_ctrl); 1982 1983 // Chain of AddP nodes: (AddP base (AddP base (AddP base ))) 1984 // All AddP nodes must keep the same base after sinking so: 1985 // 1- We don't add a CastPP here until the last one of the chain is sunk: if part of the chain is not sunk, 1986 // their bases remain the same. 1987 // (see 2- below) 1988 assert(!x->is_AddP() || !x->in(AddPNode::Address)->is_AddP() || 1989 x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base) || 1990 !x->in(AddPNode::Address)->in(AddPNode::Base)->eqv_uncast(x->in(AddPNode::Base)), "unexpected AddP shape"); 1991 if (x->in(0) == nullptr && !x->is_DecodeNarrowPtr() && 1992 !(x->is_AddP() && x->in(AddPNode::Address)->is_AddP() && x->in(AddPNode::Address)->in(AddPNode::Base) == x->in(AddPNode::Base))) { 1993 assert(!x->is_Load(), "load should be pinned"); 1994 // Use a cast node to pin clone out of loop 1995 Node* cast = nullptr; 1996 for (uint k = 0; k < x->req(); k++) { 1997 Node* in = x->in(k); 1998 if (in != nullptr && n_loop->is_member(get_loop(get_ctrl(in)))) { 1999 const Type* in_t = _igvn.type(in); 2000 cast = ConstraintCastNode::make_cast_for_type(x_ctrl, in, in_t, 2001 ConstraintCastNode::UnconditionalDependency, nullptr); 2002 } 2003 if (cast != nullptr) { 2004 Node* prev = _igvn.hash_find_insert(cast); 2005 if (prev != nullptr && get_ctrl(prev) == x_ctrl) { 2006 cast->destruct(&_igvn); 2007 cast = prev; 2008 } else { 2009 register_new_node(cast, x_ctrl); 2010 } 2011 x->replace_edge(in, cast); 2012 // Chain of AddP nodes: 2013 // 2- A CastPP of the base is only added now that all AddP nodes are sunk 2014 if (x->is_AddP() && k == AddPNode::Base) { 2015 update_addp_chain_base(x, n->in(AddPNode::Base), cast); 2016 } 2017 break; 2018 } 2019 } 2020 assert(cast != nullptr, "must have added a cast to pin the node"); 2021 } 2022 } 2023 _igvn.remove_dead_node(n); 2024 } 2025 _dom_lca_tags_round = 0; 2026 } 2027 } 2028 } 2029 2030 void PhaseIdealLoop::update_addp_chain_base(Node* x, Node* old_base, Node* new_base) { 2031 ResourceMark rm; 2032 Node_List wq; 2033 wq.push(x); 2034 while (wq.size() != 0) { 2035 Node* n = wq.pop(); 2036 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2037 Node* u = n->fast_out(i); 2038 if (u->is_AddP() && u->in(AddPNode::Base) == old_base) { 2039 _igvn.replace_input_of(u, AddPNode::Base, new_base); 2040 wq.push(u); 2041 } 2042 } 2043 } 2044 } 2045 2046 // Compute the early control of a node by following its inputs until we reach 2047 // nodes that are pinned. Then compute the LCA of the control of all pinned nodes. 2048 Node* PhaseIdealLoop::compute_early_ctrl(Node* n, Node* n_ctrl) { 2049 Node* early_ctrl = nullptr; 2050 ResourceMark rm; 2051 Unique_Node_List wq; 2052 wq.push(n); 2053 for (uint i = 0; i < wq.size(); i++) { 2054 Node* m = wq.at(i); 2055 Node* c = nullptr; 2056 if (m->is_CFG()) { 2057 c = m; 2058 } else if (m->pinned()) { 2059 c = m->in(0); 2060 } else { 2061 for (uint j = 0; j < m->req(); j++) { 2062 Node* in = m->in(j); 2063 if (in != nullptr) { 2064 wq.push(in); 2065 } 2066 } 2067 } 2068 if (c != nullptr) { 2069 assert(is_dominator(c, n_ctrl), "control input must dominate current control"); 2070 if (early_ctrl == nullptr || is_dominator(early_ctrl, c)) { 2071 early_ctrl = c; 2072 } 2073 } 2074 } 2075 assert(is_dominator(early_ctrl, n_ctrl), "early control must dominate current control"); 2076 return early_ctrl; 2077 } 2078 2079 bool PhaseIdealLoop::ctrl_of_all_uses_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop) { 2080 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2081 Node* u = n->fast_out(i); 2082 if (u->is_Opaque1()) { 2083 return false; // Found loop limit, bugfix for 4677003 2084 } 2085 // We can't reuse tags in PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal() so make sure calls to 2086 // get_late_ctrl_with_anti_dep() use their own tag 2087 _dom_lca_tags_round++; 2088 assert(_dom_lca_tags_round != 0, "shouldn't wrap around"); 2089 2090 if (u->is_Phi()) { 2091 for (uint j = 1; j < u->req(); ++j) { 2092 if (u->in(j) == n && !ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, u->in(0)->in(j))) { 2093 return false; 2094 } 2095 } 2096 } else { 2097 Node* ctrl = has_ctrl(u) ? get_ctrl(u) : u->in(0); 2098 if (!ctrl_of_use_out_of_loop(n, n_ctrl, n_loop, ctrl)) { 2099 return false; 2100 } 2101 } 2102 } 2103 return true; 2104 } 2105 2106 // Sinking a node from a pre loop to its main loop pins the node between the pre and main loops. If that node is input 2107 // to a check that's eliminated by range check elimination, it becomes input to an expression that feeds into the exit 2108 // test of the pre loop above the point in the graph where it's pinned. This results in a broken graph. One way to avoid 2109 // it would be to not eliminate the check in the main loop. Instead, we prevent sinking of the node here so better code 2110 // is generated for the main loop. 2111 bool PhaseIdealLoop::would_sink_below_pre_loop_exit(IdealLoopTree* n_loop, Node* ctrl) { 2112 if (n_loop->_head->is_CountedLoop() && n_loop->_head->as_CountedLoop()->is_pre_loop()) { 2113 CountedLoopNode* pre_loop = n_loop->_head->as_CountedLoop(); 2114 if (is_dominator(pre_loop->loopexit(), ctrl)) { 2115 return true; 2116 } 2117 } 2118 return false; 2119 } 2120 2121 bool PhaseIdealLoop::ctrl_of_use_out_of_loop(const Node* n, Node* n_ctrl, IdealLoopTree* n_loop, Node* ctrl) { 2122 if (n->is_Load()) { 2123 ctrl = get_late_ctrl_with_anti_dep(n->as_Load(), n_ctrl, ctrl); 2124 } 2125 IdealLoopTree *u_loop = get_loop(ctrl); 2126 if (u_loop == n_loop) { 2127 return false; // Found loop-varying use 2128 } 2129 if (n_loop->is_member(u_loop)) { 2130 return false; // Found use in inner loop 2131 } 2132 if (would_sink_below_pre_loop_exit(n_loop, ctrl)) { 2133 return false; 2134 } 2135 return true; 2136 } 2137 2138 //------------------------------split_if_with_blocks--------------------------- 2139 // Check for aggressive application of 'split-if' optimization, 2140 // using basic block level info. 2141 void PhaseIdealLoop::split_if_with_blocks(VectorSet &visited, Node_Stack &nstack) { 2142 Node* root = C->root(); 2143 visited.set(root->_idx); // first, mark root as visited 2144 // Do pre-visit work for root 2145 Node* n = split_if_with_blocks_pre(root); 2146 uint cnt = n->outcnt(); 2147 uint i = 0; 2148 2149 while (true) { 2150 // Visit all children 2151 if (i < cnt) { 2152 Node* use = n->raw_out(i); 2153 ++i; 2154 if (use->outcnt() != 0 && !visited.test_set(use->_idx)) { 2155 // Now do pre-visit work for this use 2156 use = split_if_with_blocks_pre(use); 2157 nstack.push(n, i); // Save parent and next use's index. 2158 n = use; // Process all children of current use. 2159 cnt = use->outcnt(); 2160 i = 0; 2161 } 2162 } 2163 else { 2164 // All of n's children have been processed, complete post-processing. 2165 if (cnt != 0 && !n->is_Con()) { 2166 assert(has_node(n), "no dead nodes"); 2167 split_if_with_blocks_post(n); 2168 if (C->failing()) { 2169 return; 2170 } 2171 } 2172 if (must_throttle_split_if()) { 2173 nstack.clear(); 2174 } 2175 if (nstack.is_empty()) { 2176 // Finished all nodes on stack. 2177 break; 2178 } 2179 // Get saved parent node and next use's index. Visit the rest of uses. 2180 n = nstack.node(); 2181 cnt = n->outcnt(); 2182 i = nstack.index(); 2183 nstack.pop(); 2184 } 2185 } 2186 } 2187 2188 2189 //============================================================================= 2190 // 2191 // C L O N E A L O O P B O D Y 2192 // 2193 2194 //------------------------------clone_iff-------------------------------------- 2195 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps. 2196 // "Nearly" because all Nodes have been cloned from the original in the loop, 2197 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs 2198 // through the Phi recursively, and return a Bool. 2199 Node* PhaseIdealLoop::clone_iff(PhiNode* phi) { 2200 2201 // Convert this Phi into a Phi merging Bools 2202 uint i; 2203 for (i = 1; i < phi->req(); i++) { 2204 Node* b = phi->in(i); 2205 if (b->is_Phi()) { 2206 _igvn.replace_input_of(phi, i, clone_iff(b->as_Phi())); 2207 } else { 2208 assert(b->is_Bool() || b->is_OpaqueNotNull() || b->is_OpaqueInitializedAssertionPredicate(), 2209 "bool, non-null check with OpaqueNotNull or Initialized Assertion Predicate with its Opaque node"); 2210 } 2211 } 2212 Node* n = phi->in(1); 2213 Node* sample_opaque = nullptr; 2214 Node *sample_bool = nullptr; 2215 if (n->is_OpaqueNotNull() || n->is_OpaqueInitializedAssertionPredicate()) { 2216 sample_opaque = n; 2217 sample_bool = n->in(1); 2218 assert(sample_bool->is_Bool(), "wrong type"); 2219 } else { 2220 sample_bool = n; 2221 } 2222 Node* sample_cmp = sample_bool->in(1); 2223 const Type* t = Type::TOP; 2224 const TypePtr* at = nullptr; 2225 if (sample_cmp->is_FlatArrayCheck()) { 2226 // Left input of a FlatArrayCheckNode is memory, set the (adr) type of the phi accordingly 2227 assert(sample_cmp->in(1)->bottom_type() == Type::MEMORY, "unexpected input type"); 2228 t = Type::MEMORY; 2229 at = TypeRawPtr::BOTTOM; 2230 } 2231 2232 // Make Phis to merge the Cmp's inputs. 2233 PhiNode *phi1 = new PhiNode(phi->in(0), t, at); 2234 PhiNode *phi2 = new PhiNode(phi->in(0), Type::TOP); 2235 for (i = 1; i < phi->req(); i++) { 2236 Node *n1 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(1) : phi->in(i)->in(1)->in(1)->in(1); 2237 Node *n2 = sample_opaque == nullptr ? phi->in(i)->in(1)->in(2) : phi->in(i)->in(1)->in(1)->in(2); 2238 phi1->set_req(i, n1); 2239 phi2->set_req(i, n2); 2240 phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type())); 2241 phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type())); 2242 } 2243 // See if these Phis have been made before. 2244 // Register with optimizer 2245 Node *hit1 = _igvn.hash_find_insert(phi1); 2246 if (hit1) { // Hit, toss just made Phi 2247 _igvn.remove_dead_node(phi1); // Remove new phi 2248 assert(hit1->is_Phi(), "" ); 2249 phi1 = (PhiNode*)hit1; // Use existing phi 2250 } else { // Miss 2251 _igvn.register_new_node_with_optimizer(phi1); 2252 } 2253 Node *hit2 = _igvn.hash_find_insert(phi2); 2254 if (hit2) { // Hit, toss just made Phi 2255 _igvn.remove_dead_node(phi2); // Remove new phi 2256 assert(hit2->is_Phi(), "" ); 2257 phi2 = (PhiNode*)hit2; // Use existing phi 2258 } else { // Miss 2259 _igvn.register_new_node_with_optimizer(phi2); 2260 } 2261 // Register Phis with loop/block info 2262 set_ctrl(phi1, phi->in(0)); 2263 set_ctrl(phi2, phi->in(0)); 2264 // Make a new Cmp 2265 Node *cmp = sample_cmp->clone(); 2266 cmp->set_req(1, phi1); 2267 cmp->set_req(2, phi2); 2268 _igvn.register_new_node_with_optimizer(cmp); 2269 set_ctrl(cmp, phi->in(0)); 2270 2271 // Make a new Bool 2272 Node *b = sample_bool->clone(); 2273 b->set_req(1,cmp); 2274 _igvn.register_new_node_with_optimizer(b); 2275 set_ctrl(b, phi->in(0)); 2276 2277 if (sample_opaque != nullptr) { 2278 Node* opaque = sample_opaque->clone(); 2279 opaque->set_req(1, b); 2280 _igvn.register_new_node_with_optimizer(opaque); 2281 set_ctrl(opaque, phi->in(0)); 2282 return opaque; 2283 } 2284 2285 assert(b->is_Bool(), ""); 2286 return b; 2287 } 2288 2289 //------------------------------clone_bool------------------------------------- 2290 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps. 2291 // "Nearly" because all Nodes have been cloned from the original in the loop, 2292 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs 2293 // through the Phi recursively, and return a Bool. 2294 CmpNode*PhaseIdealLoop::clone_bool(PhiNode* phi) { 2295 uint i; 2296 // Convert this Phi into a Phi merging Bools 2297 for( i = 1; i < phi->req(); i++ ) { 2298 Node *b = phi->in(i); 2299 if( b->is_Phi() ) { 2300 _igvn.replace_input_of(phi, i, clone_bool(b->as_Phi())); 2301 } else { 2302 assert( b->is_Cmp() || b->is_top(), "inputs are all Cmp or TOP" ); 2303 } 2304 } 2305 2306 Node *sample_cmp = phi->in(1); 2307 2308 // Make Phis to merge the Cmp's inputs. 2309 PhiNode *phi1 = new PhiNode( phi->in(0), Type::TOP ); 2310 PhiNode *phi2 = new PhiNode( phi->in(0), Type::TOP ); 2311 for( uint j = 1; j < phi->req(); j++ ) { 2312 Node *cmp_top = phi->in(j); // Inputs are all Cmp or TOP 2313 Node *n1, *n2; 2314 if( cmp_top->is_Cmp() ) { 2315 n1 = cmp_top->in(1); 2316 n2 = cmp_top->in(2); 2317 } else { 2318 n1 = n2 = cmp_top; 2319 } 2320 phi1->set_req( j, n1 ); 2321 phi2->set_req( j, n2 ); 2322 phi1->set_type(phi1->type()->meet_speculative(n1->bottom_type())); 2323 phi2->set_type(phi2->type()->meet_speculative(n2->bottom_type())); 2324 } 2325 2326 // See if these Phis have been made before. 2327 // Register with optimizer 2328 Node *hit1 = _igvn.hash_find_insert(phi1); 2329 if( hit1 ) { // Hit, toss just made Phi 2330 _igvn.remove_dead_node(phi1); // Remove new phi 2331 assert( hit1->is_Phi(), "" ); 2332 phi1 = (PhiNode*)hit1; // Use existing phi 2333 } else { // Miss 2334 _igvn.register_new_node_with_optimizer(phi1); 2335 } 2336 Node *hit2 = _igvn.hash_find_insert(phi2); 2337 if( hit2 ) { // Hit, toss just made Phi 2338 _igvn.remove_dead_node(phi2); // Remove new phi 2339 assert( hit2->is_Phi(), "" ); 2340 phi2 = (PhiNode*)hit2; // Use existing phi 2341 } else { // Miss 2342 _igvn.register_new_node_with_optimizer(phi2); 2343 } 2344 // Register Phis with loop/block info 2345 set_ctrl(phi1, phi->in(0)); 2346 set_ctrl(phi2, phi->in(0)); 2347 // Make a new Cmp 2348 Node *cmp = sample_cmp->clone(); 2349 cmp->set_req( 1, phi1 ); 2350 cmp->set_req( 2, phi2 ); 2351 _igvn.register_new_node_with_optimizer(cmp); 2352 set_ctrl(cmp, phi->in(0)); 2353 2354 assert( cmp->is_Cmp(), "" ); 2355 return (CmpNode*)cmp; 2356 } 2357 2358 void PhaseIdealLoop::clone_loop_handle_data_uses(Node* old, Node_List &old_new, 2359 IdealLoopTree* loop, IdealLoopTree* outer_loop, 2360 Node_List*& split_if_set, Node_List*& split_bool_set, 2361 Node_List*& split_cex_set, Node_List& worklist, 2362 uint new_counter, CloneLoopMode mode) { 2363 Node* nnn = old_new[old->_idx]; 2364 // Copy uses to a worklist, so I can munge the def-use info 2365 // with impunity. 2366 for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++) 2367 worklist.push(old->fast_out(j)); 2368 2369 while( worklist.size() ) { 2370 Node *use = worklist.pop(); 2371 if (!has_node(use)) continue; // Ignore dead nodes 2372 if (use->in(0) == C->top()) continue; 2373 IdealLoopTree *use_loop = get_loop( has_ctrl(use) ? get_ctrl(use) : use ); 2374 // Check for data-use outside of loop - at least one of OLD or USE 2375 // must not be a CFG node. 2376 #ifdef ASSERT 2377 if (loop->_head->as_Loop()->is_strip_mined() && outer_loop->is_member(use_loop) && !loop->is_member(use_loop) && old_new[use->_idx] == nullptr) { 2378 Node* sfpt = loop->_head->as_CountedLoop()->outer_safepoint(); 2379 assert(mode != IgnoreStripMined, "incorrect cloning mode"); 2380 assert((mode == ControlAroundStripMined && use == sfpt) || !use->is_reachable_from_root(), "missed a node"); 2381 } 2382 #endif 2383 if (!loop->is_member(use_loop) && !outer_loop->is_member(use_loop) && (!old->is_CFG() || !use->is_CFG())) { 2384 2385 // If the Data use is an IF, that means we have an IF outside the 2386 // loop that is switching on a condition that is set inside the 2387 // loop. Happens if people set a loop-exit flag; then test the flag 2388 // in the loop to break the loop, then test is again outside the 2389 // loop to determine which way the loop exited. 2390 // 2391 // For several uses we need to make sure that there is no phi between, 2392 // the use and the Bool/Cmp. We therefore clone the Bool/Cmp down here 2393 // to avoid such a phi in between. 2394 // For example, it is unexpected that there is a Phi between an 2395 // AllocateArray node and its ValidLengthTest input that could cause 2396 // split if to break. 2397 assert(!use->is_OpaqueTemplateAssertionPredicate(), 2398 "should not clone a Template Assertion Predicate which should be removed once it's useless"); 2399 if (use->is_If() || use->is_CMove() || use->is_OpaqueNotNull() || use->is_OpaqueInitializedAssertionPredicate() || 2400 (use->Opcode() == Op_AllocateArray && use->in(AllocateNode::ValidLengthTest) == old)) { 2401 // Since this code is highly unlikely, we lazily build the worklist 2402 // of such Nodes to go split. 2403 if (!split_if_set) { 2404 split_if_set = new Node_List(); 2405 } 2406 split_if_set->push(use); 2407 } 2408 if (use->is_Bool()) { 2409 if (!split_bool_set) { 2410 split_bool_set = new Node_List(); 2411 } 2412 split_bool_set->push(use); 2413 } 2414 if (use->Opcode() == Op_CreateEx) { 2415 if (!split_cex_set) { 2416 split_cex_set = new Node_List(); 2417 } 2418 split_cex_set->push(use); 2419 } 2420 2421 2422 // Get "block" use is in 2423 uint idx = 0; 2424 while( use->in(idx) != old ) idx++; 2425 Node *prev = use->is_CFG() ? use : get_ctrl(use); 2426 assert(!loop->is_member(get_loop(prev)) && !outer_loop->is_member(get_loop(prev)), "" ); 2427 Node* cfg = (prev->_idx >= new_counter && prev->is_Region()) 2428 ? prev->in(2) 2429 : idom(prev); 2430 if( use->is_Phi() ) // Phi use is in prior block 2431 cfg = prev->in(idx); // NOT in block of Phi itself 2432 if (cfg->is_top()) { // Use is dead? 2433 _igvn.replace_input_of(use, idx, C->top()); 2434 continue; 2435 } 2436 2437 // If use is referenced through control edge... (idx == 0) 2438 if (mode == IgnoreStripMined && idx == 0) { 2439 LoopNode *head = loop->_head->as_Loop(); 2440 if (head->is_strip_mined() && is_dominator(head->outer_loop_exit(), prev)) { 2441 // That node is outside the inner loop, leave it outside the 2442 // outer loop as well to not confuse verification code. 2443 assert(!loop->_parent->is_member(use_loop), "should be out of the outer loop"); 2444 _igvn.replace_input_of(use, 0, head->outer_loop_exit()); 2445 continue; 2446 } 2447 } 2448 2449 while(!outer_loop->is_member(get_loop(cfg))) { 2450 prev = cfg; 2451 cfg = (cfg->_idx >= new_counter && cfg->is_Region()) ? cfg->in(2) : idom(cfg); 2452 } 2453 // If the use occurs after merging several exits from the loop, then 2454 // old value must have dominated all those exits. Since the same old 2455 // value was used on all those exits we did not need a Phi at this 2456 // merge point. NOW we do need a Phi here. Each loop exit value 2457 // is now merged with the peeled body exit; each exit gets its own 2458 // private Phi and those Phis need to be merged here. 2459 Node *phi; 2460 if( prev->is_Region() ) { 2461 if( idx == 0 ) { // Updating control edge? 2462 phi = prev; // Just use existing control 2463 } else { // Else need a new Phi 2464 phi = PhiNode::make( prev, old ); 2465 // Now recursively fix up the new uses of old! 2466 for( uint i = 1; i < prev->req(); i++ ) { 2467 worklist.push(phi); // Onto worklist once for each 'old' input 2468 } 2469 } 2470 } else { 2471 // Get new RegionNode merging old and new loop exits 2472 prev = old_new[prev->_idx]; 2473 assert( prev, "just made this in step 7" ); 2474 if( idx == 0) { // Updating control edge? 2475 phi = prev; // Just use existing control 2476 } else { // Else need a new Phi 2477 // Make a new Phi merging data values properly 2478 phi = PhiNode::make( prev, old ); 2479 phi->set_req( 1, nnn ); 2480 } 2481 } 2482 // If inserting a new Phi, check for prior hits 2483 if( idx != 0 ) { 2484 Node *hit = _igvn.hash_find_insert(phi); 2485 if( hit == nullptr ) { 2486 _igvn.register_new_node_with_optimizer(phi); // Register new phi 2487 } else { // or 2488 // Remove the new phi from the graph and use the hit 2489 _igvn.remove_dead_node(phi); 2490 phi = hit; // Use existing phi 2491 } 2492 set_ctrl(phi, prev); 2493 } 2494 // Make 'use' use the Phi instead of the old loop body exit value 2495 assert(use->in(idx) == old, "old is still input of use"); 2496 // We notify all uses of old, including use, and the indirect uses, 2497 // that may now be optimized because we have replaced old with phi. 2498 _igvn.add_users_to_worklist(old); 2499 if (idx == 0 && 2500 use->depends_only_on_test()) { 2501 Node* pinned_clone = use->pin_array_access_node(); 2502 if (pinned_clone != nullptr) { 2503 // Pin array access nodes: control is updated here to a region. If, after some transformations, only one path 2504 // into the region is left, an array load could become dependent on a condition that's not a range check for 2505 // that access. If that condition is replaced by an identical dominating one, then an unpinned load would risk 2506 // floating above its range check. 2507 pinned_clone->set_req(0, phi); 2508 register_new_node_with_ctrl_of(pinned_clone, use); 2509 _igvn.replace_node(use, pinned_clone); 2510 continue; 2511 } 2512 } 2513 _igvn.replace_input_of(use, idx, phi); 2514 if( use->_idx >= new_counter ) { // If updating new phis 2515 // Not needed for correctness, but prevents a weak assert 2516 // in AddPNode from tripping (when we end up with different 2517 // base & derived Phis that will become the same after 2518 // IGVN does CSE). 2519 Node *hit = _igvn.hash_find_insert(use); 2520 if( hit ) // Go ahead and re-hash for hits. 2521 _igvn.replace_node( use, hit ); 2522 } 2523 } 2524 } 2525 } 2526 2527 static void collect_nodes_in_outer_loop_not_reachable_from_sfpt(Node* n, const IdealLoopTree *loop, const IdealLoopTree* outer_loop, 2528 const Node_List &old_new, Unique_Node_List& wq, PhaseIdealLoop* phase, 2529 bool check_old_new) { 2530 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2531 Node* u = n->fast_out(j); 2532 assert(check_old_new || old_new[u->_idx] == nullptr, "shouldn't have been cloned"); 2533 if (!u->is_CFG() && (!check_old_new || old_new[u->_idx] == nullptr)) { 2534 Node* c = phase->get_ctrl(u); 2535 IdealLoopTree* u_loop = phase->get_loop(c); 2536 assert(!loop->is_member(u_loop) || !loop->_body.contains(u), "can be in outer loop or out of both loops only"); 2537 if (!loop->is_member(u_loop)) { 2538 if (outer_loop->is_member(u_loop)) { 2539 wq.push(u); 2540 } else { 2541 // nodes pinned with control in the outer loop but not referenced from the safepoint must be moved out of 2542 // the outer loop too 2543 Node* u_c = u->in(0); 2544 if (u_c != nullptr) { 2545 IdealLoopTree* u_c_loop = phase->get_loop(u_c); 2546 if (outer_loop->is_member(u_c_loop) && !loop->is_member(u_c_loop)) { 2547 wq.push(u); 2548 } 2549 } 2550 } 2551 } 2552 } 2553 } 2554 } 2555 2556 void PhaseIdealLoop::clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop, 2557 IdealLoopTree* outer_loop, int dd, Node_List &old_new, 2558 Node_List& extra_data_nodes) { 2559 if (head->is_strip_mined() && mode != IgnoreStripMined) { 2560 CountedLoopNode* cl = head->as_CountedLoop(); 2561 Node* l = cl->outer_loop(); 2562 Node* tail = cl->outer_loop_tail(); 2563 IfNode* le = cl->outer_loop_end(); 2564 Node* sfpt = cl->outer_safepoint(); 2565 CountedLoopEndNode* cle = cl->loopexit(); 2566 CountedLoopNode* new_cl = old_new[cl->_idx]->as_CountedLoop(); 2567 CountedLoopEndNode* new_cle = new_cl->as_CountedLoop()->loopexit_or_null(); 2568 Node* cle_out = cle->proj_out(false); 2569 2570 Node* new_sfpt = nullptr; 2571 Node* new_cle_out = cle_out->clone(); 2572 old_new.map(cle_out->_idx, new_cle_out); 2573 if (mode == CloneIncludesStripMined) { 2574 // clone outer loop body 2575 Node* new_l = l->clone(); 2576 Node* new_tail = tail->clone(); 2577 IfNode* new_le = le->clone()->as_If(); 2578 new_sfpt = sfpt->clone(); 2579 2580 set_loop(new_l, outer_loop->_parent); 2581 set_idom(new_l, new_l->in(LoopNode::EntryControl), dd); 2582 set_loop(new_cle_out, outer_loop->_parent); 2583 set_idom(new_cle_out, new_cle, dd); 2584 set_loop(new_sfpt, outer_loop->_parent); 2585 set_idom(new_sfpt, new_cle_out, dd); 2586 set_loop(new_le, outer_loop->_parent); 2587 set_idom(new_le, new_sfpt, dd); 2588 set_loop(new_tail, outer_loop->_parent); 2589 set_idom(new_tail, new_le, dd); 2590 set_idom(new_cl, new_l, dd); 2591 2592 old_new.map(l->_idx, new_l); 2593 old_new.map(tail->_idx, new_tail); 2594 old_new.map(le->_idx, new_le); 2595 old_new.map(sfpt->_idx, new_sfpt); 2596 2597 new_l->set_req(LoopNode::LoopBackControl, new_tail); 2598 new_l->set_req(0, new_l); 2599 new_tail->set_req(0, new_le); 2600 new_le->set_req(0, new_sfpt); 2601 new_sfpt->set_req(0, new_cle_out); 2602 new_cle_out->set_req(0, new_cle); 2603 new_cl->set_req(LoopNode::EntryControl, new_l); 2604 2605 _igvn.register_new_node_with_optimizer(new_l); 2606 _igvn.register_new_node_with_optimizer(new_tail); 2607 _igvn.register_new_node_with_optimizer(new_le); 2608 } else { 2609 Node *newhead = old_new[loop->_head->_idx]; 2610 newhead->as_Loop()->clear_strip_mined(); 2611 _igvn.replace_input_of(newhead, LoopNode::EntryControl, newhead->in(LoopNode::EntryControl)->in(LoopNode::EntryControl)); 2612 set_idom(newhead, newhead->in(LoopNode::EntryControl), dd); 2613 } 2614 // Look at data node that were assigned a control in the outer 2615 // loop: they are kept in the outer loop by the safepoint so start 2616 // from the safepoint node's inputs. 2617 IdealLoopTree* outer_loop = get_loop(l); 2618 Node_Stack stack(2); 2619 stack.push(sfpt, 1); 2620 uint new_counter = C->unique(); 2621 while (stack.size() > 0) { 2622 Node* n = stack.node(); 2623 uint i = stack.index(); 2624 while (i < n->req() && 2625 (n->in(i) == nullptr || 2626 !has_ctrl(n->in(i)) || 2627 get_loop(get_ctrl(n->in(i))) != outer_loop || 2628 (old_new[n->in(i)->_idx] != nullptr && old_new[n->in(i)->_idx]->_idx >= new_counter))) { 2629 i++; 2630 } 2631 if (i < n->req()) { 2632 stack.set_index(i+1); 2633 stack.push(n->in(i), 0); 2634 } else { 2635 assert(old_new[n->_idx] == nullptr || n == sfpt || old_new[n->_idx]->_idx < new_counter, "no clone yet"); 2636 Node* m = n == sfpt ? new_sfpt : n->clone(); 2637 if (m != nullptr) { 2638 for (uint i = 0; i < n->req(); i++) { 2639 if (m->in(i) != nullptr && old_new[m->in(i)->_idx] != nullptr) { 2640 m->set_req(i, old_new[m->in(i)->_idx]); 2641 } 2642 } 2643 } else { 2644 assert(n == sfpt && mode != CloneIncludesStripMined, "where's the safepoint clone?"); 2645 } 2646 if (n != sfpt) { 2647 extra_data_nodes.push(n); 2648 _igvn.register_new_node_with_optimizer(m); 2649 assert(get_ctrl(n) == cle_out, "what other control?"); 2650 set_ctrl(m, new_cle_out); 2651 old_new.map(n->_idx, m); 2652 } 2653 stack.pop(); 2654 } 2655 } 2656 if (mode == CloneIncludesStripMined) { 2657 _igvn.register_new_node_with_optimizer(new_sfpt); 2658 _igvn.register_new_node_with_optimizer(new_cle_out); 2659 } 2660 // Some other transformation may have pessimistically assigned some 2661 // data nodes to the outer loop. Set their control so they are out 2662 // of the outer loop. 2663 ResourceMark rm; 2664 Unique_Node_List wq; 2665 for (uint i = 0; i < extra_data_nodes.size(); i++) { 2666 Node* old = extra_data_nodes.at(i); 2667 collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true); 2668 } 2669 2670 for (uint i = 0; i < loop->_body.size(); i++) { 2671 Node* old = loop->_body.at(i); 2672 collect_nodes_in_outer_loop_not_reachable_from_sfpt(old, loop, outer_loop, old_new, wq, this, true); 2673 } 2674 2675 Node* inner_out = sfpt->in(0); 2676 if (inner_out->outcnt() > 1) { 2677 collect_nodes_in_outer_loop_not_reachable_from_sfpt(inner_out, loop, outer_loop, old_new, wq, this, true); 2678 } 2679 2680 Node* new_ctrl = cl->outer_loop_exit(); 2681 assert(get_loop(new_ctrl) != outer_loop, "must be out of the loop nest"); 2682 for (uint i = 0; i < wq.size(); i++) { 2683 Node* n = wq.at(i); 2684 set_ctrl(n, new_ctrl); 2685 if (n->in(0) != nullptr) { 2686 _igvn.replace_input_of(n, 0, new_ctrl); 2687 } 2688 collect_nodes_in_outer_loop_not_reachable_from_sfpt(n, loop, outer_loop, old_new, wq, this, false); 2689 } 2690 } else { 2691 Node *newhead = old_new[loop->_head->_idx]; 2692 set_idom(newhead, newhead->in(LoopNode::EntryControl), dd); 2693 } 2694 } 2695 2696 //------------------------------clone_loop------------------------------------- 2697 // 2698 // C L O N E A L O O P B O D Y 2699 // 2700 // This is the basic building block of the loop optimizations. It clones an 2701 // entire loop body. It makes an old_new loop body mapping; with this mapping 2702 // you can find the new-loop equivalent to an old-loop node. All new-loop 2703 // nodes are exactly equal to their old-loop counterparts, all edges are the 2704 // same. All exits from the old-loop now have a RegionNode that merges the 2705 // equivalent new-loop path. This is true even for the normal "loop-exit" 2706 // condition. All uses of loop-invariant old-loop values now come from (one 2707 // or more) Phis that merge their new-loop equivalents. 2708 // 2709 // This operation leaves the graph in an illegal state: there are two valid 2710 // control edges coming from the loop pre-header to both loop bodies. I'll 2711 // definitely have to hack the graph after running this transform. 2712 // 2713 // From this building block I will further edit edges to perform loop peeling 2714 // or loop unrolling or iteration splitting (Range-Check-Elimination), etc. 2715 // 2716 // Parameter side_by_size_idom: 2717 // When side_by_size_idom is null, the dominator tree is constructed for 2718 // the clone loop to dominate the original. Used in construction of 2719 // pre-main-post loop sequence. 2720 // When nonnull, the clone and original are side-by-side, both are 2721 // dominated by the side_by_side_idom node. Used in construction of 2722 // unswitched loops. 2723 void PhaseIdealLoop::clone_loop( IdealLoopTree *loop, Node_List &old_new, int dd, 2724 CloneLoopMode mode, Node* side_by_side_idom) { 2725 2726 LoopNode* head = loop->_head->as_Loop(); 2727 head->verify_strip_mined(1); 2728 2729 if (C->do_vector_loop() && PrintOpto) { 2730 const char* mname = C->method()->name()->as_quoted_ascii(); 2731 if (mname != nullptr) { 2732 tty->print("PhaseIdealLoop::clone_loop: for vectorize method %s\n", mname); 2733 } 2734 } 2735 2736 CloneMap& cm = C->clone_map(); 2737 if (C->do_vector_loop()) { 2738 cm.set_clone_idx(cm.max_gen()+1); 2739 #ifndef PRODUCT 2740 if (PrintOpto) { 2741 tty->print_cr("PhaseIdealLoop::clone_loop: _clone_idx %d", cm.clone_idx()); 2742 loop->dump_head(); 2743 } 2744 #endif 2745 } 2746 2747 // Step 1: Clone the loop body. Make the old->new mapping. 2748 clone_loop_body(loop->_body, old_new, &cm); 2749 2750 IdealLoopTree* outer_loop = (head->is_strip_mined() && mode != IgnoreStripMined) ? get_loop(head->as_CountedLoop()->outer_loop()) : loop; 2751 2752 // Step 2: Fix the edges in the new body. If the old input is outside the 2753 // loop use it. If the old input is INside the loop, use the corresponding 2754 // new node instead. 2755 fix_body_edges(loop->_body, loop, old_new, dd, outer_loop->_parent, false); 2756 2757 Node_List extra_data_nodes; // data nodes in the outer strip mined loop 2758 clone_outer_loop(head, mode, loop, outer_loop, dd, old_new, extra_data_nodes); 2759 2760 // Step 3: Now fix control uses. Loop varying control uses have already 2761 // been fixed up (as part of all input edges in Step 2). Loop invariant 2762 // control uses must be either an IfFalse or an IfTrue. Make a merge 2763 // point to merge the old and new IfFalse/IfTrue nodes; make the use 2764 // refer to this. 2765 Node_List worklist; 2766 uint new_counter = C->unique(); 2767 fix_ctrl_uses(loop->_body, loop, old_new, mode, side_by_side_idom, &cm, worklist); 2768 2769 // Step 4: If loop-invariant use is not control, it must be dominated by a 2770 // loop exit IfFalse/IfTrue. Find "proper" loop exit. Make a Region 2771 // there if needed. Make a Phi there merging old and new used values. 2772 Node_List *split_if_set = nullptr; 2773 Node_List *split_bool_set = nullptr; 2774 Node_List *split_cex_set = nullptr; 2775 fix_data_uses(loop->_body, loop, mode, outer_loop, new_counter, old_new, worklist, split_if_set, split_bool_set, split_cex_set); 2776 2777 for (uint i = 0; i < extra_data_nodes.size(); i++) { 2778 Node* old = extra_data_nodes.at(i); 2779 clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set, 2780 split_bool_set, split_cex_set, worklist, new_counter, 2781 mode); 2782 } 2783 2784 // Check for IFs that need splitting/cloning. Happens if an IF outside of 2785 // the loop uses a condition set in the loop. The original IF probably 2786 // takes control from one or more OLD Regions (which in turn get from NEW 2787 // Regions). In any case, there will be a set of Phis for each merge point 2788 // from the IF up to where the original BOOL def exists the loop. 2789 finish_clone_loop(split_if_set, split_bool_set, split_cex_set); 2790 2791 } 2792 2793 void PhaseIdealLoop::finish_clone_loop(Node_List* split_if_set, Node_List* split_bool_set, Node_List* split_cex_set) { 2794 if (split_if_set) { 2795 while (split_if_set->size()) { 2796 Node *iff = split_if_set->pop(); 2797 uint input = iff->Opcode() == Op_AllocateArray ? AllocateNode::ValidLengthTest : 1; 2798 if (iff->in(input)->is_Phi()) { 2799 Node *b = clone_iff(iff->in(input)->as_Phi()); 2800 _igvn.replace_input_of(iff, input, b); 2801 } 2802 } 2803 } 2804 if (split_bool_set) { 2805 while (split_bool_set->size()) { 2806 Node *b = split_bool_set->pop(); 2807 Node *phi = b->in(1); 2808 assert(phi->is_Phi(), ""); 2809 CmpNode *cmp = clone_bool((PhiNode*) phi); 2810 _igvn.replace_input_of(b, 1, cmp); 2811 } 2812 } 2813 if (split_cex_set) { 2814 while (split_cex_set->size()) { 2815 Node *b = split_cex_set->pop(); 2816 assert(b->in(0)->is_Region(), ""); 2817 assert(b->in(1)->is_Phi(), ""); 2818 assert(b->in(0)->in(0) == b->in(1)->in(0), ""); 2819 split_up(b, b->in(0), nullptr); 2820 } 2821 } 2822 } 2823 2824 void PhaseIdealLoop::fix_data_uses(Node_List& body, IdealLoopTree* loop, CloneLoopMode mode, IdealLoopTree* outer_loop, 2825 uint new_counter, Node_List &old_new, Node_List &worklist, Node_List*& split_if_set, 2826 Node_List*& split_bool_set, Node_List*& split_cex_set) { 2827 for(uint i = 0; i < body.size(); i++ ) { 2828 Node* old = body.at(i); 2829 clone_loop_handle_data_uses(old, old_new, loop, outer_loop, split_if_set, 2830 split_bool_set, split_cex_set, worklist, new_counter, 2831 mode); 2832 } 2833 } 2834 2835 void PhaseIdealLoop::fix_ctrl_uses(const Node_List& body, const IdealLoopTree* loop, Node_List &old_new, CloneLoopMode mode, 2836 Node* side_by_side_idom, CloneMap* cm, Node_List &worklist) { 2837 LoopNode* head = loop->_head->as_Loop(); 2838 for(uint i = 0; i < body.size(); i++ ) { 2839 Node* old = body.at(i); 2840 if( !old->is_CFG() ) continue; 2841 2842 // Copy uses to a worklist, so I can munge the def-use info 2843 // with impunity. 2844 for (DUIterator_Fast jmax, j = old->fast_outs(jmax); j < jmax; j++) { 2845 worklist.push(old->fast_out(j)); 2846 } 2847 2848 while (worklist.size()) { // Visit all uses 2849 Node *use = worklist.pop(); 2850 if (!has_node(use)) continue; // Ignore dead nodes 2851 IdealLoopTree *use_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use ); 2852 if (!loop->is_member(use_loop) && use->is_CFG()) { 2853 // Both OLD and USE are CFG nodes here. 2854 assert(use->is_Proj(), "" ); 2855 Node* nnn = old_new[old->_idx]; 2856 2857 Node* newuse = nullptr; 2858 if (head->is_strip_mined() && mode != IgnoreStripMined) { 2859 CountedLoopNode* cl = head->as_CountedLoop(); 2860 CountedLoopEndNode* cle = cl->loopexit(); 2861 Node* cle_out = cle->proj_out_or_null(false); 2862 if (use == cle_out) { 2863 IfNode* le = cl->outer_loop_end(); 2864 use = le->proj_out(false); 2865 use_loop = get_loop(use); 2866 if (mode == CloneIncludesStripMined) { 2867 nnn = old_new[le->_idx]; 2868 } else { 2869 newuse = old_new[cle_out->_idx]; 2870 } 2871 } 2872 } 2873 if (newuse == nullptr) { 2874 newuse = use->clone(); 2875 } 2876 2877 // Clone the loop exit control projection 2878 if (C->do_vector_loop() && cm != nullptr) { 2879 cm->verify_insert_and_clone(use, newuse, cm->clone_idx()); 2880 } 2881 newuse->set_req(0,nnn); 2882 _igvn.register_new_node_with_optimizer(newuse); 2883 set_loop(newuse, use_loop); 2884 set_idom(newuse, nnn, dom_depth(nnn) + 1 ); 2885 2886 // We need a Region to merge the exit from the peeled body and the 2887 // exit from the old loop body. 2888 RegionNode *r = new RegionNode(3); 2889 uint dd_r = MIN2(dom_depth(newuse), dom_depth(use)); 2890 assert(dd_r >= dom_depth(dom_lca(newuse, use)), "" ); 2891 2892 // The original user of 'use' uses 'r' instead. 2893 for (DUIterator_Last lmin, l = use->last_outs(lmin); l >= lmin;) { 2894 Node* useuse = use->last_out(l); 2895 _igvn.rehash_node_delayed(useuse); 2896 uint uses_found = 0; 2897 if (useuse->in(0) == use) { 2898 useuse->set_req(0, r); 2899 uses_found++; 2900 if (useuse->is_CFG()) { 2901 // This is not a dom_depth > dd_r because when new 2902 // control flow is constructed by a loop opt, a node and 2903 // its dominator can end up at the same dom_depth 2904 assert(dom_depth(useuse) >= dd_r, ""); 2905 set_idom(useuse, r, dom_depth(useuse)); 2906 } 2907 } 2908 for (uint k = 1; k < useuse->req(); k++) { 2909 if( useuse->in(k) == use ) { 2910 useuse->set_req(k, r); 2911 uses_found++; 2912 if (useuse->is_Loop() && k == LoopNode::EntryControl) { 2913 // This is not a dom_depth > dd_r because when new 2914 // control flow is constructed by a loop opt, a node 2915 // and its dominator can end up at the same dom_depth 2916 assert(dom_depth(useuse) >= dd_r , ""); 2917 set_idom(useuse, r, dom_depth(useuse)); 2918 } 2919 } 2920 } 2921 l -= uses_found; // we deleted 1 or more copies of this edge 2922 } 2923 2924 assert(use->is_Proj(), "loop exit should be projection"); 2925 // lazy_replace() below moves all nodes that are: 2926 // - control dependent on the loop exit or 2927 // - have control set to the loop exit 2928 // below the post-loop merge point. lazy_replace() takes a dead control as first input. To make it 2929 // possible to use it, the loop exit projection is cloned and becomes the new exit projection. The initial one 2930 // becomes dead and is "replaced" by the region. 2931 Node* use_clone = use->clone(); 2932 register_control(use_clone, use_loop, idom(use), dom_depth(use)); 2933 // Now finish up 'r' 2934 r->set_req(1, newuse); 2935 r->set_req(2, use_clone); 2936 _igvn.register_new_node_with_optimizer(r); 2937 set_loop(r, use_loop); 2938 set_idom(r, (side_by_side_idom == nullptr) ? newuse->in(0) : side_by_side_idom, dd_r); 2939 lazy_replace(use, r); 2940 // Map the (cloned) old use to the new merge point 2941 old_new.map(use_clone->_idx, r); 2942 } // End of if a loop-exit test 2943 } 2944 } 2945 } 2946 2947 void PhaseIdealLoop::fix_body_edges(const Node_List &body, IdealLoopTree* loop, const Node_List &old_new, int dd, 2948 IdealLoopTree* parent, bool partial) { 2949 for(uint i = 0; i < body.size(); i++ ) { 2950 Node *old = body.at(i); 2951 Node *nnn = old_new[old->_idx]; 2952 // Fix CFG/Loop controlling the new node 2953 if (has_ctrl(old)) { 2954 set_ctrl(nnn, old_new[get_ctrl(old)->_idx]); 2955 } else { 2956 set_loop(nnn, parent); 2957 if (old->outcnt() > 0) { 2958 Node* dom = idom(old); 2959 if (old_new[dom->_idx] != nullptr) { 2960 dom = old_new[dom->_idx]; 2961 set_idom(nnn, dom, dd ); 2962 } 2963 } 2964 } 2965 // Correct edges to the new node 2966 for (uint j = 0; j < nnn->req(); j++) { 2967 Node *n = nnn->in(j); 2968 if (n != nullptr) { 2969 IdealLoopTree *old_in_loop = get_loop(has_ctrl(n) ? get_ctrl(n) : n); 2970 if (loop->is_member(old_in_loop)) { 2971 if (old_new[n->_idx] != nullptr) { 2972 nnn->set_req(j, old_new[n->_idx]); 2973 } else { 2974 assert(!body.contains(n), ""); 2975 assert(partial, "node not cloned"); 2976 } 2977 } 2978 } 2979 } 2980 _igvn.hash_find_insert(nnn); 2981 } 2982 } 2983 2984 void PhaseIdealLoop::clone_loop_body(const Node_List& body, Node_List &old_new, CloneMap* cm) { 2985 for (uint i = 0; i < body.size(); i++) { 2986 Node* old = body.at(i); 2987 Node* nnn = old->clone(); 2988 old_new.map(old->_idx, nnn); 2989 if (C->do_vector_loop() && cm != nullptr) { 2990 cm->verify_insert_and_clone(old, nnn, cm->clone_idx()); 2991 } 2992 _igvn.register_new_node_with_optimizer(nnn); 2993 } 2994 } 2995 2996 2997 //---------------------- stride_of_possible_iv ------------------------------------- 2998 // Looks for an iff/bool/comp with one operand of the compare 2999 // being a cycle involving an add and a phi, 3000 // with an optional truncation (left-shift followed by a right-shift) 3001 // of the add. Returns zero if not an iv. 3002 int PhaseIdealLoop::stride_of_possible_iv(Node* iff) { 3003 Node* trunc1 = nullptr; 3004 Node* trunc2 = nullptr; 3005 const TypeInteger* ttype = nullptr; 3006 if (!iff->is_If() || iff->in(1) == nullptr || !iff->in(1)->is_Bool()) { 3007 return 0; 3008 } 3009 BoolNode* bl = iff->in(1)->as_Bool(); 3010 Node* cmp = bl->in(1); 3011 if (!cmp || (cmp->Opcode() != Op_CmpI && cmp->Opcode() != Op_CmpU)) { 3012 return 0; 3013 } 3014 // Must have an invariant operand 3015 if (is_member(get_loop(iff), get_ctrl(cmp->in(2)))) { 3016 return 0; 3017 } 3018 Node* add2 = nullptr; 3019 Node* cmp1 = cmp->in(1); 3020 if (cmp1->is_Phi()) { 3021 // (If (Bool (CmpX phi:(Phi ...(Optional-trunc(AddI phi add2))) ))) 3022 Node* phi = cmp1; 3023 for (uint i = 1; i < phi->req(); i++) { 3024 Node* in = phi->in(i); 3025 Node* add = CountedLoopNode::match_incr_with_optional_truncation(in, 3026 &trunc1, &trunc2, &ttype, T_INT); 3027 if (add && add->in(1) == phi) { 3028 add2 = add->in(2); 3029 break; 3030 } 3031 } 3032 } else { 3033 // (If (Bool (CmpX addtrunc:(Optional-trunc((AddI (Phi ...addtrunc...) add2)) ))) 3034 Node* addtrunc = cmp1; 3035 Node* add = CountedLoopNode::match_incr_with_optional_truncation(addtrunc, 3036 &trunc1, &trunc2, &ttype, T_INT); 3037 if (add && add->in(1)->is_Phi()) { 3038 Node* phi = add->in(1); 3039 for (uint i = 1; i < phi->req(); i++) { 3040 if (phi->in(i) == addtrunc) { 3041 add2 = add->in(2); 3042 break; 3043 } 3044 } 3045 } 3046 } 3047 if (add2 != nullptr) { 3048 const TypeInt* add2t = _igvn.type(add2)->is_int(); 3049 if (add2t->is_con()) { 3050 return add2t->get_con(); 3051 } 3052 } 3053 return 0; 3054 } 3055 3056 3057 //---------------------- stay_in_loop ------------------------------------- 3058 // Return the (unique) control output node that's in the loop (if it exists.) 3059 Node* PhaseIdealLoop::stay_in_loop( Node* n, IdealLoopTree *loop) { 3060 Node* unique = nullptr; 3061 if (!n) return nullptr; 3062 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3063 Node* use = n->fast_out(i); 3064 if (!has_ctrl(use) && loop->is_member(get_loop(use))) { 3065 if (unique != nullptr) { 3066 return nullptr; 3067 } 3068 unique = use; 3069 } 3070 } 3071 return unique; 3072 } 3073 3074 //------------------------------ register_node ------------------------------------- 3075 // Utility to register node "n" with PhaseIdealLoop 3076 void PhaseIdealLoop::register_node(Node* n, IdealLoopTree* loop, Node* pred, uint ddepth) { 3077 _igvn.register_new_node_with_optimizer(n); 3078 loop->_body.push(n); 3079 if (n->is_CFG()) { 3080 set_loop(n, loop); 3081 set_idom(n, pred, ddepth); 3082 } else { 3083 set_ctrl(n, pred); 3084 } 3085 } 3086 3087 //------------------------------ proj_clone ------------------------------------- 3088 // Utility to create an if-projection 3089 ProjNode* PhaseIdealLoop::proj_clone(ProjNode* p, IfNode* iff) { 3090 ProjNode* c = p->clone()->as_Proj(); 3091 c->set_req(0, iff); 3092 return c; 3093 } 3094 3095 //------------------------------ short_circuit_if ------------------------------------- 3096 // Force the iff control output to be the live_proj 3097 Node* PhaseIdealLoop::short_circuit_if(IfNode* iff, ProjNode* live_proj) { 3098 guarantee(live_proj != nullptr, "null projection"); 3099 int proj_con = live_proj->_con; 3100 assert(proj_con == 0 || proj_con == 1, "false or true projection"); 3101 Node* con = intcon(proj_con); 3102 if (iff) { 3103 iff->set_req(1, con); 3104 } 3105 return con; 3106 } 3107 3108 //------------------------------ insert_if_before_proj ------------------------------------- 3109 // Insert a new if before an if projection (* - new node) 3110 // 3111 // before 3112 // if(test) 3113 // / \ 3114 // v v 3115 // other-proj proj (arg) 3116 // 3117 // after 3118 // if(test) 3119 // / \ 3120 // / v 3121 // | * proj-clone 3122 // v | 3123 // other-proj v 3124 // * new_if(relop(cmp[IU](left,right))) 3125 // / \ 3126 // v v 3127 // * new-proj proj 3128 // (returned) 3129 // 3130 ProjNode* PhaseIdealLoop::insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj) { 3131 IfNode* iff = proj->in(0)->as_If(); 3132 IdealLoopTree *loop = get_loop(proj); 3133 ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj(); 3134 uint ddepth = dom_depth(proj); 3135 3136 _igvn.rehash_node_delayed(iff); 3137 _igvn.rehash_node_delayed(proj); 3138 3139 proj->set_req(0, nullptr); // temporary disconnect 3140 ProjNode* proj2 = proj_clone(proj, iff); 3141 register_node(proj2, loop, iff, ddepth); 3142 3143 Node* cmp = Signed ? (Node*) new CmpINode(left, right) : (Node*) new CmpUNode(left, right); 3144 register_node(cmp, loop, proj2, ddepth); 3145 3146 BoolNode* bol = new BoolNode(cmp, relop); 3147 register_node(bol, loop, proj2, ddepth); 3148 3149 int opcode = iff->Opcode(); 3150 assert(opcode == Op_If || opcode == Op_RangeCheck, "unexpected opcode"); 3151 IfNode* new_if = IfNode::make_with_same_profile(iff, proj2, bol); 3152 register_node(new_if, loop, proj2, ddepth); 3153 3154 proj->set_req(0, new_if); // reattach 3155 set_idom(proj, new_if, ddepth); 3156 3157 ProjNode* new_exit = proj_clone(other_proj, new_if)->as_Proj(); 3158 guarantee(new_exit != nullptr, "null exit node"); 3159 register_node(new_exit, get_loop(other_proj), new_if, ddepth); 3160 3161 return new_exit; 3162 } 3163 3164 //------------------------------ insert_region_before_proj ------------------------------------- 3165 // Insert a region before an if projection (* - new node) 3166 // 3167 // before 3168 // if(test) 3169 // / | 3170 // v | 3171 // proj v 3172 // other-proj 3173 // 3174 // after 3175 // if(test) 3176 // / | 3177 // v | 3178 // * proj-clone v 3179 // | other-proj 3180 // v 3181 // * new-region 3182 // | 3183 // v 3184 // * dum_if 3185 // / \ 3186 // v \ 3187 // * dum-proj v 3188 // proj 3189 // 3190 RegionNode* PhaseIdealLoop::insert_region_before_proj(ProjNode* proj) { 3191 IfNode* iff = proj->in(0)->as_If(); 3192 IdealLoopTree *loop = get_loop(proj); 3193 ProjNode *other_proj = iff->proj_out(!proj->is_IfTrue())->as_Proj(); 3194 uint ddepth = dom_depth(proj); 3195 3196 _igvn.rehash_node_delayed(iff); 3197 _igvn.rehash_node_delayed(proj); 3198 3199 proj->set_req(0, nullptr); // temporary disconnect 3200 ProjNode* proj2 = proj_clone(proj, iff); 3201 register_node(proj2, loop, iff, ddepth); 3202 3203 RegionNode* reg = new RegionNode(2); 3204 reg->set_req(1, proj2); 3205 register_node(reg, loop, iff, ddepth); 3206 3207 IfNode* dum_if = new IfNode(reg, short_circuit_if(nullptr, proj), iff->_prob, iff->_fcnt); 3208 register_node(dum_if, loop, reg, ddepth); 3209 3210 proj->set_req(0, dum_if); // reattach 3211 set_idom(proj, dum_if, ddepth); 3212 3213 ProjNode* dum_proj = proj_clone(other_proj, dum_if); 3214 register_node(dum_proj, loop, dum_if, ddepth); 3215 3216 return reg; 3217 } 3218 3219 // Idea 3220 // ---- 3221 // Partial Peeling tries to rotate the loop in such a way that it can later be turned into a counted loop. Counted loops 3222 // require a signed loop exit test. When calling this method, we've only found a suitable unsigned test to partial peel 3223 // with. Therefore, we try to split off a signed loop exit test from the unsigned test such that it can be used as new 3224 // loop exit while keeping the unsigned test unchanged and preserving the same behavior as if we've used the unsigned 3225 // test alone instead: 3226 // 3227 // Before Partial Peeling: 3228 // Loop: 3229 // <peeled section> 3230 // Split off signed loop exit test 3231 // <-- CUT HERE --> 3232 // Unchanged unsigned loop exit test 3233 // <rest of unpeeled section> 3234 // goto Loop 3235 // 3236 // After Partial Peeling: 3237 // <cloned peeled section> 3238 // Cloned split off signed loop exit test 3239 // Loop: 3240 // Unchanged unsigned loop exit test 3241 // <rest of unpeeled section> 3242 // <peeled section> 3243 // Split off signed loop exit test 3244 // goto Loop 3245 // 3246 // Details 3247 // ------- 3248 // Before: 3249 // if (i <u limit) Unsigned loop exit condition 3250 // / | 3251 // v v 3252 // exit-proj stay-in-loop-proj 3253 // 3254 // Split off a signed loop exit test (i.e. with CmpI) from an unsigned loop exit test (i.e. with CmpU) and insert it 3255 // before the CmpU on the stay-in-loop path and keep both tests: 3256 // 3257 // if (i <u limit) Signed loop exit test 3258 // / | 3259 // / if (i <u limit) Unsigned loop exit test 3260 // / / | 3261 // v v v 3262 // exit-region stay-in-loop-proj 3263 // 3264 // Implementation 3265 // -------------- 3266 // We need to make sure that the new signed loop exit test is properly inserted into the graph such that the unsigned 3267 // loop exit test still dominates the same set of control nodes, the ctrl() relation from data nodes to both loop 3268 // exit tests is preserved, and their loop nesting is correct. 3269 // 3270 // To achieve that, we clone the unsigned loop exit test completely (leave it unchanged), insert the signed loop exit 3271 // test above it and kill the original unsigned loop exit test by setting it's condition to a constant 3272 // (i.e. stay-in-loop-const in graph below) such that IGVN can fold it later: 3273 // 3274 // if (stay-in-loop-const) Killed original unsigned loop exit test 3275 // / | 3276 // / v 3277 // / if (i < limit) Split off signed loop exit test 3278 // / / | 3279 // / / v 3280 // / / if (i <u limit) Cloned unsigned loop exit test 3281 // / / / | 3282 // v v v | 3283 // exit-region | 3284 // | | 3285 // dummy-if | 3286 // / | | 3287 // dead | | 3288 // v v 3289 // exit-proj stay-in-loop-proj 3290 // 3291 // Note: The dummy-if is inserted to create a region to merge the loop exits between the original to be killed unsigned 3292 // loop exit test and its exit projection while keeping the exit projection (also see insert_region_before_proj()). 3293 // 3294 // Requirements 3295 // ------------ 3296 // Note that we can only split off a signed loop exit test from the unsigned loop exit test when the behavior is exactly 3297 // the same as before with only a single unsigned test. This is only possible if certain requirements are met. 3298 // Otherwise, we need to bail out (see comments in the code below). 3299 IfNode* PhaseIdealLoop::insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree* loop) { 3300 const bool Signed = true; 3301 const bool Unsigned = false; 3302 3303 BoolNode* bol = if_cmpu->in(1)->as_Bool(); 3304 if (bol->_test._test != BoolTest::lt) { 3305 return nullptr; 3306 } 3307 CmpNode* cmpu = bol->in(1)->as_Cmp(); 3308 assert(cmpu->Opcode() == Op_CmpU, "must be unsigned comparison"); 3309 3310 int stride = stride_of_possible_iv(if_cmpu); 3311 if (stride == 0) { 3312 return nullptr; 3313 } 3314 3315 Node* lp_proj = stay_in_loop(if_cmpu, loop); 3316 guarantee(lp_proj != nullptr, "null loop node"); 3317 3318 ProjNode* lp_continue = lp_proj->as_Proj(); 3319 ProjNode* lp_exit = if_cmpu->proj_out(!lp_continue->is_IfTrue())->as_Proj(); 3320 if (!lp_exit->is_IfFalse()) { 3321 // The loop exit condition is (i <u limit) ==> (i >= 0 && i < limit). 3322 // We therefore can't add a single exit condition. 3323 return nullptr; 3324 } 3325 // The unsigned loop exit condition is 3326 // !(i <u limit) 3327 // = i >=u limit 3328 // 3329 // First, we note that for any x for which 3330 // 0 <= x <= INT_MAX 3331 // we can convert x to an unsigned int and still get the same guarantee: 3332 // 0 <= (uint) x <= INT_MAX = (uint) INT_MAX 3333 // 0 <=u (uint) x <=u INT_MAX = (uint) INT_MAX (LEMMA) 3334 // 3335 // With that in mind, if 3336 // limit >= 0 (COND) 3337 // then the unsigned loop exit condition 3338 // i >=u limit (ULE) 3339 // is equivalent to 3340 // i < 0 || i >= limit (SLE-full) 3341 // because either i is negative and therefore always greater than MAX_INT when converting to unsigned 3342 // (uint) i >=u MAX_INT >= limit >= 0 3343 // or otherwise 3344 // i >= limit >= 0 3345 // holds due to (LEMMA). 3346 // 3347 // For completeness, a counterexample with limit < 0: 3348 // Assume i = -3 and limit = -2: 3349 // i < 0 3350 // -2 < 0 3351 // is true and thus also "i < 0 || i >= limit". But 3352 // i >=u limit 3353 // -3 >=u -2 3354 // is false. 3355 Node* limit = cmpu->in(2); 3356 const TypeInt* type_limit = _igvn.type(limit)->is_int(); 3357 if (type_limit->_lo < 0) { 3358 return nullptr; 3359 } 3360 3361 // We prove below that we can extract a single signed loop exit condition from (SLE-full), depending on the stride: 3362 // stride < 0: 3363 // i < 0 (SLE = SLE-negative) 3364 // stride > 0: 3365 // i >= limit (SLE = SLE-positive) 3366 // such that we have the following graph before Partial Peeling with stride > 0 (similar for stride < 0): 3367 // 3368 // Loop: 3369 // <peeled section> 3370 // i >= limit (SLE-positive) 3371 // <-- CUT HERE --> 3372 // i >=u limit (ULE) 3373 // <rest of unpeeled section> 3374 // goto Loop 3375 // 3376 // We exit the loop if: 3377 // (SLE) is true OR (ULE) is true 3378 // However, if (SLE) is true then (ULE) also needs to be true to ensure the exact same behavior. Otherwise, we wrongly 3379 // exit a loop that should not have been exited if we did not apply Partial Peeling. More formally, we need to ensure: 3380 // (SLE) IMPLIES (ULE) 3381 // This indeed holds when (COND) is given: 3382 // - stride > 0: 3383 // i >= limit // (SLE = SLE-positive) 3384 // i >= limit >= 0 // (COND) 3385 // i >=u limit >= 0 // (LEMMA) 3386 // which is the unsigned loop exit condition (ULE). 3387 // - stride < 0: 3388 // i < 0 // (SLE = SLE-negative) 3389 // (uint) i >u MAX_INT // (NEG) all negative values are greater than MAX_INT when converted to unsigned 3390 // MAX_INT >= limit >= 0 // (COND) 3391 // MAX_INT >=u limit >= 0 // (LEMMA) 3392 // and thus from (NEG) and (LEMMA): 3393 // i >=u limit 3394 // which is the unsigned loop exit condition (ULE). 3395 // 3396 // 3397 // After Partial Peeling, we have the following structure for stride > 0 (similar for stride < 0): 3398 // <cloned peeled section> 3399 // i >= limit (SLE-positive) 3400 // Loop: 3401 // i >=u limit (ULE) 3402 // <rest of unpeeled section> 3403 // <peeled section> 3404 // i >= limit (SLE-positive) 3405 // goto Loop 3406 Node* rhs_cmpi; 3407 if (stride > 0) { 3408 rhs_cmpi = limit; // For i >= limit 3409 } else { 3410 rhs_cmpi = makecon(TypeInt::ZERO); // For i < 0 3411 } 3412 // Create a new region on the exit path 3413 RegionNode* reg = insert_region_before_proj(lp_exit); 3414 guarantee(reg != nullptr, "null region node"); 3415 3416 // Clone the if-cmpu-true-false using a signed compare 3417 BoolTest::mask rel_i = stride > 0 ? bol->_test._test : BoolTest::ge; 3418 ProjNode* cmpi_exit = insert_if_before_proj(cmpu->in(1), Signed, rel_i, rhs_cmpi, lp_continue); 3419 reg->add_req(cmpi_exit); 3420 3421 // Clone the if-cmpu-true-false 3422 BoolTest::mask rel_u = bol->_test._test; 3423 ProjNode* cmpu_exit = insert_if_before_proj(cmpu->in(1), Unsigned, rel_u, cmpu->in(2), lp_continue); 3424 reg->add_req(cmpu_exit); 3425 3426 // Force original if to stay in loop. 3427 short_circuit_if(if_cmpu, lp_continue); 3428 3429 return cmpi_exit->in(0)->as_If(); 3430 } 3431 3432 //------------------------------ remove_cmpi_loop_exit ------------------------------------- 3433 // Remove a previously inserted signed compare loop exit. 3434 void PhaseIdealLoop::remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop) { 3435 Node* lp_proj = stay_in_loop(if_cmp, loop); 3436 assert(if_cmp->in(1)->in(1)->Opcode() == Op_CmpI && 3437 stay_in_loop(lp_proj, loop)->is_If() && 3438 stay_in_loop(lp_proj, loop)->in(1)->in(1)->Opcode() == Op_CmpU, "inserted cmpi before cmpu"); 3439 Node* con = makecon(lp_proj->is_IfTrue() ? TypeInt::ONE : TypeInt::ZERO); 3440 if_cmp->set_req(1, con); 3441 } 3442 3443 //------------------------------ scheduled_nodelist ------------------------------------- 3444 // Create a post order schedule of nodes that are in the 3445 // "member" set. The list is returned in "sched". 3446 // The first node in "sched" is the loop head, followed by 3447 // nodes which have no inputs in the "member" set, and then 3448 // followed by the nodes that have an immediate input dependence 3449 // on a node in "sched". 3450 void PhaseIdealLoop::scheduled_nodelist( IdealLoopTree *loop, VectorSet& member, Node_List &sched ) { 3451 3452 assert(member.test(loop->_head->_idx), "loop head must be in member set"); 3453 VectorSet visited; 3454 Node_Stack nstack(loop->_body.size()); 3455 3456 Node* n = loop->_head; // top of stack is cached in "n" 3457 uint idx = 0; 3458 visited.set(n->_idx); 3459 3460 // Initially push all with no inputs from within member set 3461 for(uint i = 0; i < loop->_body.size(); i++ ) { 3462 Node *elt = loop->_body.at(i); 3463 if (member.test(elt->_idx)) { 3464 bool found = false; 3465 for (uint j = 0; j < elt->req(); j++) { 3466 Node* def = elt->in(j); 3467 if (def && member.test(def->_idx) && def != elt) { 3468 found = true; 3469 break; 3470 } 3471 } 3472 if (!found && elt != loop->_head) { 3473 nstack.push(n, idx); 3474 n = elt; 3475 assert(!visited.test(n->_idx), "not seen yet"); 3476 visited.set(n->_idx); 3477 } 3478 } 3479 } 3480 3481 // traverse out's that are in the member set 3482 while (true) { 3483 if (idx < n->outcnt()) { 3484 Node* use = n->raw_out(idx); 3485 idx++; 3486 if (!visited.test_set(use->_idx)) { 3487 if (member.test(use->_idx)) { 3488 nstack.push(n, idx); 3489 n = use; 3490 idx = 0; 3491 } 3492 } 3493 } else { 3494 // All outputs processed 3495 sched.push(n); 3496 if (nstack.is_empty()) break; 3497 n = nstack.node(); 3498 idx = nstack.index(); 3499 nstack.pop(); 3500 } 3501 } 3502 } 3503 3504 3505 //------------------------------ has_use_in_set ------------------------------------- 3506 // Has a use in the vector set 3507 bool PhaseIdealLoop::has_use_in_set( Node* n, VectorSet& vset ) { 3508 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 3509 Node* use = n->fast_out(j); 3510 if (vset.test(use->_idx)) { 3511 return true; 3512 } 3513 } 3514 return false; 3515 } 3516 3517 3518 //------------------------------ has_use_internal_to_set ------------------------------------- 3519 // Has use internal to the vector set (ie. not in a phi at the loop head) 3520 bool PhaseIdealLoop::has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ) { 3521 Node* head = loop->_head; 3522 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 3523 Node* use = n->fast_out(j); 3524 if (vset.test(use->_idx) && !(use->is_Phi() && use->in(0) == head)) { 3525 return true; 3526 } 3527 } 3528 return false; 3529 } 3530 3531 3532 //------------------------------ clone_for_use_outside_loop ------------------------------------- 3533 // clone "n" for uses that are outside of loop 3534 int PhaseIdealLoop::clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ) { 3535 int cloned = 0; 3536 assert(worklist.size() == 0, "should be empty"); 3537 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 3538 Node* use = n->fast_out(j); 3539 if( !loop->is_member(get_loop(has_ctrl(use) ? get_ctrl(use) : use)) ) { 3540 worklist.push(use); 3541 } 3542 } 3543 3544 if (C->check_node_count(worklist.size() + NodeLimitFudgeFactor, 3545 "Too many clones required in clone_for_use_outside_loop in partial peeling")) { 3546 return -1; 3547 } 3548 3549 while( worklist.size() ) { 3550 Node *use = worklist.pop(); 3551 if (!has_node(use) || use->in(0) == C->top()) continue; 3552 uint j; 3553 for (j = 0; j < use->req(); j++) { 3554 if (use->in(j) == n) break; 3555 } 3556 assert(j < use->req(), "must be there"); 3557 3558 // clone "n" and insert it between the inputs of "n" and the use outside the loop 3559 Node* n_clone = n->clone(); 3560 _igvn.replace_input_of(use, j, n_clone); 3561 cloned++; 3562 Node* use_c; 3563 if (!use->is_Phi()) { 3564 use_c = has_ctrl(use) ? get_ctrl(use) : use->in(0); 3565 } else { 3566 // Use in a phi is considered a use in the associated predecessor block 3567 use_c = use->in(0)->in(j); 3568 } 3569 set_ctrl(n_clone, use_c); 3570 assert(!loop->is_member(get_loop(use_c)), "should be outside loop"); 3571 get_loop(use_c)->_body.push(n_clone); 3572 _igvn.register_new_node_with_optimizer(n_clone); 3573 #ifndef PRODUCT 3574 if (TracePartialPeeling) { 3575 tty->print_cr("loop exit cloning old: %d new: %d newbb: %d", n->_idx, n_clone->_idx, get_ctrl(n_clone)->_idx); 3576 } 3577 #endif 3578 } 3579 return cloned; 3580 } 3581 3582 3583 //------------------------------ clone_for_special_use_inside_loop ------------------------------------- 3584 // clone "n" for special uses that are in the not_peeled region. 3585 // If these def-uses occur in separate blocks, the code generator 3586 // marks the method as not compilable. For example, if a "BoolNode" 3587 // is in a different basic block than the "IfNode" that uses it, then 3588 // the compilation is aborted in the code generator. 3589 void PhaseIdealLoop::clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n, 3590 VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ) { 3591 if (n->is_Phi() || n->is_Load()) { 3592 return; 3593 } 3594 assert(worklist.size() == 0, "should be empty"); 3595 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 3596 Node* use = n->fast_out(j); 3597 if ( not_peel.test(use->_idx) && 3598 (use->is_If() || use->is_CMove() || use->is_Bool() || use->is_OpaqueInitializedAssertionPredicate()) && 3599 use->in(1) == n) { 3600 worklist.push(use); 3601 } 3602 } 3603 if (worklist.size() > 0) { 3604 // clone "n" and insert it between inputs of "n" and the use 3605 Node* n_clone = n->clone(); 3606 loop->_body.push(n_clone); 3607 _igvn.register_new_node_with_optimizer(n_clone); 3608 set_ctrl(n_clone, get_ctrl(n)); 3609 sink_list.push(n_clone); 3610 not_peel.set(n_clone->_idx); 3611 #ifndef PRODUCT 3612 if (TracePartialPeeling) { 3613 tty->print_cr("special not_peeled cloning old: %d new: %d", n->_idx, n_clone->_idx); 3614 } 3615 #endif 3616 while( worklist.size() ) { 3617 Node *use = worklist.pop(); 3618 _igvn.rehash_node_delayed(use); 3619 for (uint j = 1; j < use->req(); j++) { 3620 if (use->in(j) == n) { 3621 use->set_req(j, n_clone); 3622 } 3623 } 3624 } 3625 } 3626 } 3627 3628 3629 //------------------------------ insert_phi_for_loop ------------------------------------- 3630 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist 3631 void PhaseIdealLoop::insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ) { 3632 Node *phi = PhiNode::make(lp, back_edge_val); 3633 phi->set_req(LoopNode::EntryControl, lp_entry_val); 3634 // Use existing phi if it already exists 3635 Node *hit = _igvn.hash_find_insert(phi); 3636 if( hit == nullptr ) { 3637 _igvn.register_new_node_with_optimizer(phi); 3638 set_ctrl(phi, lp); 3639 } else { 3640 // Remove the new phi from the graph and use the hit 3641 _igvn.remove_dead_node(phi); 3642 phi = hit; 3643 } 3644 _igvn.replace_input_of(use, idx, phi); 3645 } 3646 3647 #ifdef ASSERT 3648 //------------------------------ is_valid_loop_partition ------------------------------------- 3649 // Validate the loop partition sets: peel and not_peel 3650 bool PhaseIdealLoop::is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, 3651 VectorSet& not_peel ) { 3652 uint i; 3653 // Check that peel_list entries are in the peel set 3654 for (i = 0; i < peel_list.size(); i++) { 3655 if (!peel.test(peel_list.at(i)->_idx)) { 3656 return false; 3657 } 3658 } 3659 // Check at loop members are in one of peel set or not_peel set 3660 for (i = 0; i < loop->_body.size(); i++ ) { 3661 Node *def = loop->_body.at(i); 3662 uint di = def->_idx; 3663 // Check that peel set elements are in peel_list 3664 if (peel.test(di)) { 3665 if (not_peel.test(di)) { 3666 return false; 3667 } 3668 // Must be in peel_list also 3669 bool found = false; 3670 for (uint j = 0; j < peel_list.size(); j++) { 3671 if (peel_list.at(j)->_idx == di) { 3672 found = true; 3673 break; 3674 } 3675 } 3676 if (!found) { 3677 return false; 3678 } 3679 } else if (not_peel.test(di)) { 3680 if (peel.test(di)) { 3681 return false; 3682 } 3683 } else { 3684 return false; 3685 } 3686 } 3687 return true; 3688 } 3689 3690 //------------------------------ is_valid_clone_loop_exit_use ------------------------------------- 3691 // Ensure a use outside of loop is of the right form 3692 bool PhaseIdealLoop::is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx) { 3693 Node *use_c = has_ctrl(use) ? get_ctrl(use) : use; 3694 return (use->is_Phi() && 3695 use_c->is_Region() && use_c->req() == 3 && 3696 (use_c->in(exit_idx)->Opcode() == Op_IfTrue || 3697 use_c->in(exit_idx)->Opcode() == Op_IfFalse || 3698 use_c->in(exit_idx)->Opcode() == Op_JumpProj) && 3699 loop->is_member( get_loop( use_c->in(exit_idx)->in(0) ) ) ); 3700 } 3701 3702 //------------------------------ is_valid_clone_loop_form ------------------------------------- 3703 // Ensure that all uses outside of loop are of the right form 3704 bool PhaseIdealLoop::is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list, 3705 uint orig_exit_idx, uint clone_exit_idx) { 3706 uint len = peel_list.size(); 3707 for (uint i = 0; i < len; i++) { 3708 Node *def = peel_list.at(i); 3709 3710 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { 3711 Node *use = def->fast_out(j); 3712 Node *use_c = has_ctrl(use) ? get_ctrl(use) : use; 3713 if (!loop->is_member(get_loop(use_c))) { 3714 // use is not in the loop, check for correct structure 3715 if (use->in(0) == def) { 3716 // Okay 3717 } else if (!is_valid_clone_loop_exit_use(loop, use, orig_exit_idx)) { 3718 return false; 3719 } 3720 } 3721 } 3722 } 3723 return true; 3724 } 3725 #endif 3726 3727 //------------------------------ partial_peel ------------------------------------- 3728 // Partially peel (aka loop rotation) the top portion of a loop (called 3729 // the peel section below) by cloning it and placing one copy just before 3730 // the new loop head and the other copy at the bottom of the new loop. 3731 // 3732 // before after where it came from 3733 // 3734 // stmt1 stmt1 3735 // loop: stmt2 clone 3736 // stmt2 if condA goto exitA clone 3737 // if condA goto exitA new_loop: new 3738 // stmt3 stmt3 clone 3739 // if !condB goto loop if condB goto exitB clone 3740 // exitB: stmt2 orig 3741 // stmt4 if !condA goto new_loop orig 3742 // exitA: goto exitA 3743 // exitB: 3744 // stmt4 3745 // exitA: 3746 // 3747 // Step 1: find the cut point: an exit test on probable 3748 // induction variable. 3749 // Step 2: schedule (with cloning) operations in the peel 3750 // section that can be executed after the cut into 3751 // the section that is not peeled. This may need 3752 // to clone operations into exit blocks. For 3753 // instance, a reference to A[i] in the not-peel 3754 // section and a reference to B[i] in an exit block 3755 // may cause a left-shift of i by 2 to be placed 3756 // in the peel block. This step will clone the left 3757 // shift into the exit block and sink the left shift 3758 // from the peel to the not-peel section. 3759 // Step 3: clone the loop, retarget the control, and insert 3760 // phis for values that are live across the new loop 3761 // head. This is very dependent on the graph structure 3762 // from clone_loop. It creates region nodes for 3763 // exit control and associated phi nodes for values 3764 // flow out of the loop through that exit. The region 3765 // node is dominated by the clone's control projection. 3766 // So the clone's peel section is placed before the 3767 // new loop head, and the clone's not-peel section is 3768 // forms the top part of the new loop. The original 3769 // peel section forms the tail of the new loop. 3770 // Step 4: update the dominator tree and recompute the 3771 // dominator depth. 3772 // 3773 // orig 3774 // 3775 // stmt1 3776 // | 3777 // v 3778 // predicates 3779 // | 3780 // v 3781 // loop<----+ 3782 // | | 3783 // stmt2 | 3784 // | | 3785 // v | 3786 // ifA | 3787 // / | | 3788 // v v | 3789 // false true ^ <-- last_peel 3790 // / | | 3791 // / ===|==cut | 3792 // / stmt3 | <-- first_not_peel 3793 // / | | 3794 // | v | 3795 // v ifB | 3796 // exitA: / \ | 3797 // / \ | 3798 // v v | 3799 // false true | 3800 // / \ | 3801 // / ----+ 3802 // | 3803 // v 3804 // exitB: 3805 // stmt4 3806 // 3807 // 3808 // after clone loop 3809 // 3810 // stmt1 3811 // | 3812 // v 3813 // predicates 3814 // / \ 3815 // clone / \ orig 3816 // / \ 3817 // / \ 3818 // v v 3819 // +---->loop loop<----+ 3820 // | | | | 3821 // | stmt2 stmt2 | 3822 // | | | | 3823 // | v v | 3824 // | ifA ifA | 3825 // | | \ / | | 3826 // | v v v v | 3827 // ^ true false false true ^ <-- last_peel 3828 // | | ^ \ / | | 3829 // | cut==|== \ \ / ===|==cut | 3830 // | stmt3 \ \ / stmt3 | <-- first_not_peel 3831 // | | dom | | | | 3832 // | v \ 1v v2 v | 3833 // | ifB regionA ifB | 3834 // | / \ | / \ | 3835 // | / \ v / \ | 3836 // | v v exitA: v v | 3837 // | true false false true | 3838 // | / ^ \ / \ | 3839 // +---- \ \ / ----+ 3840 // dom \ / 3841 // \ 1v v2 3842 // regionB 3843 // | 3844 // v 3845 // exitB: 3846 // stmt4 3847 // 3848 // 3849 // after partial peel 3850 // 3851 // stmt1 3852 // | 3853 // v 3854 // predicates 3855 // / 3856 // clone / orig 3857 // / TOP 3858 // / \ 3859 // v v 3860 // TOP->loop loop----+ 3861 // | | | 3862 // stmt2 stmt2 | 3863 // | | | 3864 // v v | 3865 // ifA ifA | 3866 // | \ / | | 3867 // v v v v | 3868 // true false false true | <-- last_peel 3869 // | ^ \ / +------|---+ 3870 // +->newloop \ \ / === ==cut | | 3871 // | stmt3 \ \ / TOP | | 3872 // | | dom | | stmt3 | | <-- first_not_peel 3873 // | v \ 1v v2 v | | 3874 // | ifB regionA ifB ^ v 3875 // | / \ | / \ | | 3876 // | / \ v / \ | | 3877 // | v v exitA: v v | | 3878 // | true false false true | | 3879 // | / ^ \ / \ | | 3880 // | | \ \ / v | | 3881 // | | dom \ / TOP | | 3882 // | | \ 1v v2 | | 3883 // ^ v regionB | | 3884 // | | | | | 3885 // | | v ^ v 3886 // | | exitB: | | 3887 // | | stmt4 | | 3888 // | +------------>-----------------+ | 3889 // | | 3890 // +-----------------<---------------------+ 3891 // 3892 // 3893 // final graph 3894 // 3895 // stmt1 3896 // | 3897 // v 3898 // predicates 3899 // | 3900 // v 3901 // stmt2 clone 3902 // | 3903 // v 3904 // ........> ifA clone 3905 // : / | 3906 // dom / | 3907 // : v v 3908 // : false true 3909 // : | | 3910 // : | v 3911 // : | newloop<-----+ 3912 // : | | | 3913 // : | stmt3 clone | 3914 // : | | | 3915 // : | v | 3916 // : | ifB | 3917 // : | / \ | 3918 // : | v v | 3919 // : | false true | 3920 // : | | | | 3921 // : | v stmt2 | 3922 // : | exitB: | | 3923 // : | stmt4 v | 3924 // : | ifA orig | 3925 // : | / \ | 3926 // : | / \ | 3927 // : | v v | 3928 // : | false true | 3929 // : | / \ | 3930 // : v v -----+ 3931 // RegionA 3932 // | 3933 // v 3934 // exitA 3935 // 3936 bool PhaseIdealLoop::partial_peel( IdealLoopTree *loop, Node_List &old_new ) { 3937 3938 assert(!loop->_head->is_CountedLoop(), "Non-counted loop only"); 3939 if (!loop->_head->is_Loop()) { 3940 return false; 3941 } 3942 LoopNode *head = loop->_head->as_Loop(); 3943 3944 if (head->is_partial_peel_loop() || head->partial_peel_has_failed()) { 3945 return false; 3946 } 3947 3948 // Check for complex exit control 3949 for (uint ii = 0; ii < loop->_body.size(); ii++) { 3950 Node *n = loop->_body.at(ii); 3951 int opc = n->Opcode(); 3952 if (n->is_Call() || 3953 opc == Op_Catch || 3954 opc == Op_CatchProj || 3955 opc == Op_Jump || 3956 opc == Op_JumpProj) { 3957 #ifndef PRODUCT 3958 if (TracePartialPeeling) { 3959 tty->print_cr("\nExit control too complex: lp: %d", head->_idx); 3960 } 3961 #endif 3962 return false; 3963 } 3964 } 3965 3966 int dd = dom_depth(head); 3967 3968 // Step 1: find cut point 3969 3970 // Walk up dominators to loop head looking for first loop exit 3971 // which is executed on every path thru loop. 3972 IfNode *peel_if = nullptr; 3973 IfNode *peel_if_cmpu = nullptr; 3974 3975 Node *iff = loop->tail(); 3976 while (iff != head) { 3977 if (iff->is_If()) { 3978 Node *ctrl = get_ctrl(iff->in(1)); 3979 if (ctrl->is_top()) return false; // Dead test on live IF. 3980 // If loop-varying exit-test, check for induction variable 3981 if (loop->is_member(get_loop(ctrl)) && 3982 loop->is_loop_exit(iff) && 3983 is_possible_iv_test(iff)) { 3984 Node* cmp = iff->in(1)->in(1); 3985 if (cmp->Opcode() == Op_CmpI) { 3986 peel_if = iff->as_If(); 3987 } else { 3988 assert(cmp->Opcode() == Op_CmpU, "must be CmpI or CmpU"); 3989 peel_if_cmpu = iff->as_If(); 3990 } 3991 } 3992 } 3993 iff = idom(iff); 3994 } 3995 3996 // Prefer signed compare over unsigned compare. 3997 IfNode* new_peel_if = nullptr; 3998 if (peel_if == nullptr) { 3999 if (!PartialPeelAtUnsignedTests || peel_if_cmpu == nullptr) { 4000 return false; // No peel point found 4001 } 4002 new_peel_if = insert_cmpi_loop_exit(peel_if_cmpu, loop); 4003 if (new_peel_if == nullptr) { 4004 return false; // No peel point found 4005 } 4006 peel_if = new_peel_if; 4007 } 4008 Node* last_peel = stay_in_loop(peel_if, loop); 4009 Node* first_not_peeled = stay_in_loop(last_peel, loop); 4010 if (first_not_peeled == nullptr || first_not_peeled == head) { 4011 return false; 4012 } 4013 4014 #ifndef PRODUCT 4015 if (TraceLoopOpts) { 4016 tty->print("PartialPeel "); 4017 loop->dump_head(); 4018 } 4019 4020 if (TracePartialPeeling) { 4021 tty->print_cr("before partial peel one iteration"); 4022 Node_List wl; 4023 Node* t = head->in(2); 4024 while (true) { 4025 wl.push(t); 4026 if (t == head) break; 4027 t = idom(t); 4028 } 4029 while (wl.size() > 0) { 4030 Node* tt = wl.pop(); 4031 tt->dump(); 4032 if (tt == last_peel) tty->print_cr("-- cut --"); 4033 } 4034 } 4035 #endif 4036 4037 C->print_method(PHASE_BEFORE_PARTIAL_PEELING, 4, head); 4038 4039 VectorSet peel; 4040 VectorSet not_peel; 4041 Node_List peel_list; 4042 Node_List worklist; 4043 Node_List sink_list; 4044 4045 uint estimate = loop->est_loop_clone_sz(1); 4046 if (exceeding_node_budget(estimate)) { 4047 return false; 4048 } 4049 4050 // Set of cfg nodes to peel are those that are executable from 4051 // the head through last_peel. 4052 assert(worklist.size() == 0, "should be empty"); 4053 worklist.push(head); 4054 peel.set(head->_idx); 4055 while (worklist.size() > 0) { 4056 Node *n = worklist.pop(); 4057 if (n != last_peel) { 4058 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 4059 Node* use = n->fast_out(j); 4060 if (use->is_CFG() && 4061 loop->is_member(get_loop(use)) && 4062 !peel.test_set(use->_idx)) { 4063 worklist.push(use); 4064 } 4065 } 4066 } 4067 } 4068 4069 // Set of non-cfg nodes to peel are those that are control 4070 // dependent on the cfg nodes. 4071 for (uint i = 0; i < loop->_body.size(); i++) { 4072 Node *n = loop->_body.at(i); 4073 Node *n_c = has_ctrl(n) ? get_ctrl(n) : n; 4074 if (peel.test(n_c->_idx)) { 4075 peel.set(n->_idx); 4076 } else { 4077 not_peel.set(n->_idx); 4078 } 4079 } 4080 4081 // Step 2: move operations from the peeled section down into the 4082 // not-peeled section 4083 4084 // Get a post order schedule of nodes in the peel region 4085 // Result in right-most operand. 4086 scheduled_nodelist(loop, peel, peel_list); 4087 4088 assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition"); 4089 4090 // For future check for too many new phis 4091 uint old_phi_cnt = 0; 4092 for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) { 4093 Node* use = head->fast_out(j); 4094 if (use->is_Phi()) old_phi_cnt++; 4095 } 4096 4097 #ifndef PRODUCT 4098 if (TracePartialPeeling) { 4099 tty->print_cr("\npeeled list"); 4100 } 4101 #endif 4102 4103 // Evacuate nodes in peel region into the not_peeled region if possible 4104 bool too_many_clones = false; 4105 uint new_phi_cnt = 0; 4106 uint cloned_for_outside_use = 0; 4107 for (uint i = 0; i < peel_list.size();) { 4108 Node* n = peel_list.at(i); 4109 #ifndef PRODUCT 4110 if (TracePartialPeeling) n->dump(); 4111 #endif 4112 bool incr = true; 4113 if (!n->is_CFG()) { 4114 if (has_use_in_set(n, not_peel)) { 4115 // If not used internal to the peeled region, 4116 // move "n" from peeled to not_peeled region. 4117 if (!has_use_internal_to_set(n, peel, loop)) { 4118 // if not pinned and not a load (which maybe anti-dependent on a store) 4119 // and not a CMove (Matcher expects only bool->cmove). 4120 if (n->in(0) == nullptr && !n->is_Load() && !n->is_CMove()) { 4121 int new_clones = clone_for_use_outside_loop(loop, n, worklist); 4122 if (C->failing()) return false; 4123 if (new_clones == -1) { 4124 too_many_clones = true; 4125 break; 4126 } 4127 cloned_for_outside_use += new_clones; 4128 sink_list.push(n); 4129 peel.remove(n->_idx); 4130 not_peel.set(n->_idx); 4131 peel_list.remove(i); 4132 incr = false; 4133 #ifndef PRODUCT 4134 if (TracePartialPeeling) { 4135 tty->print_cr("sink to not_peeled region: %d newbb: %d", 4136 n->_idx, get_ctrl(n)->_idx); 4137 } 4138 #endif 4139 } 4140 } else { 4141 // Otherwise check for special def-use cases that span 4142 // the peel/not_peel boundary such as bool->if 4143 clone_for_special_use_inside_loop(loop, n, not_peel, sink_list, worklist); 4144 new_phi_cnt++; 4145 } 4146 } 4147 } 4148 if (incr) i++; 4149 } 4150 4151 estimate += cloned_for_outside_use + new_phi_cnt; 4152 bool exceed_node_budget = !may_require_nodes(estimate); 4153 bool exceed_phi_limit = new_phi_cnt > old_phi_cnt + PartialPeelNewPhiDelta; 4154 4155 if (too_many_clones || exceed_node_budget || exceed_phi_limit) { 4156 #ifndef PRODUCT 4157 if (TracePartialPeeling && exceed_phi_limit) { 4158 tty->print_cr("\nToo many new phis: %d old %d new cmpi: %c", 4159 new_phi_cnt, old_phi_cnt, new_peel_if != nullptr?'T':'F'); 4160 } 4161 #endif 4162 if (new_peel_if != nullptr) { 4163 remove_cmpi_loop_exit(new_peel_if, loop); 4164 } 4165 // Inhibit more partial peeling on this loop 4166 assert(!head->is_partial_peel_loop(), "not partial peeled"); 4167 head->mark_partial_peel_failed(); 4168 if (cloned_for_outside_use > 0) { 4169 // Terminate this round of loop opts because 4170 // the graph outside this loop was changed. 4171 C->set_major_progress(); 4172 return true; 4173 } 4174 return false; 4175 } 4176 4177 // Step 3: clone loop, retarget control, and insert new phis 4178 4179 // Create new loop head for new phis and to hang 4180 // the nodes being moved (sinked) from the peel region. 4181 LoopNode* new_head = new LoopNode(last_peel, last_peel); 4182 new_head->set_unswitch_count(head->unswitch_count()); // Preserve 4183 _igvn.register_new_node_with_optimizer(new_head); 4184 assert(first_not_peeled->in(0) == last_peel, "last_peel <- first_not_peeled"); 4185 _igvn.replace_input_of(first_not_peeled, 0, new_head); 4186 set_loop(new_head, loop); 4187 loop->_body.push(new_head); 4188 not_peel.set(new_head->_idx); 4189 set_idom(new_head, last_peel, dom_depth(first_not_peeled)); 4190 set_idom(first_not_peeled, new_head, dom_depth(first_not_peeled)); 4191 4192 while (sink_list.size() > 0) { 4193 Node* n = sink_list.pop(); 4194 set_ctrl(n, new_head); 4195 } 4196 4197 assert(is_valid_loop_partition(loop, peel, peel_list, not_peel), "bad partition"); 4198 4199 clone_loop(loop, old_new, dd, IgnoreStripMined); 4200 4201 const uint clone_exit_idx = 1; 4202 const uint orig_exit_idx = 2; 4203 assert(is_valid_clone_loop_form(loop, peel_list, orig_exit_idx, clone_exit_idx), "bad clone loop"); 4204 4205 Node* head_clone = old_new[head->_idx]; 4206 LoopNode* new_head_clone = old_new[new_head->_idx]->as_Loop(); 4207 Node* orig_tail_clone = head_clone->in(2); 4208 4209 // Add phi if "def" node is in peel set and "use" is not 4210 4211 for (uint i = 0; i < peel_list.size(); i++) { 4212 Node *def = peel_list.at(i); 4213 if (!def->is_CFG()) { 4214 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { 4215 Node *use = def->fast_out(j); 4216 if (has_node(use) && use->in(0) != C->top() && 4217 (!peel.test(use->_idx) || 4218 (use->is_Phi() && use->in(0) == head)) ) { 4219 worklist.push(use); 4220 } 4221 } 4222 while( worklist.size() ) { 4223 Node *use = worklist.pop(); 4224 for (uint j = 1; j < use->req(); j++) { 4225 Node* n = use->in(j); 4226 if (n == def) { 4227 4228 // "def" is in peel set, "use" is not in peel set 4229 // or "use" is in the entry boundary (a phi) of the peel set 4230 4231 Node* use_c = has_ctrl(use) ? get_ctrl(use) : use; 4232 4233 if ( loop->is_member(get_loop( use_c )) ) { 4234 // use is in loop 4235 if (old_new[use->_idx] != nullptr) { // null for dead code 4236 Node* use_clone = old_new[use->_idx]; 4237 _igvn.replace_input_of(use, j, C->top()); 4238 insert_phi_for_loop( use_clone, j, old_new[def->_idx], def, new_head_clone ); 4239 } 4240 } else { 4241 assert(is_valid_clone_loop_exit_use(loop, use, orig_exit_idx), "clone loop format"); 4242 // use is not in the loop, check if the live range includes the cut 4243 Node* lp_if = use_c->in(orig_exit_idx)->in(0); 4244 if (not_peel.test(lp_if->_idx)) { 4245 assert(j == orig_exit_idx, "use from original loop"); 4246 insert_phi_for_loop( use, clone_exit_idx, old_new[def->_idx], def, new_head_clone ); 4247 } 4248 } 4249 } 4250 } 4251 } 4252 } 4253 } 4254 4255 // Step 3b: retarget control 4256 4257 // Redirect control to the new loop head if a cloned node in 4258 // the not_peeled region has control that points into the peeled region. 4259 // This necessary because the cloned peeled region will be outside 4260 // the loop. 4261 // from to 4262 // cloned-peeled <---+ 4263 // new_head_clone: | <--+ 4264 // cloned-not_peeled in(0) in(0) 4265 // orig-peeled 4266 4267 for (uint i = 0; i < loop->_body.size(); i++) { 4268 Node *n = loop->_body.at(i); 4269 if (!n->is_CFG() && n->in(0) != nullptr && 4270 not_peel.test(n->_idx) && peel.test(n->in(0)->_idx)) { 4271 Node* n_clone = old_new[n->_idx]; 4272 if (n_clone->depends_only_on_test()) { 4273 // Pin array access nodes: control is updated here to the loop head. If, after some transformations, the 4274 // backedge is removed, an array load could become dependent on a condition that's not a range check for that 4275 // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk 4276 // floating above its range check. 4277 Node* pinned_clone = n_clone->pin_array_access_node(); 4278 if (pinned_clone != nullptr) { 4279 register_new_node_with_ctrl_of(pinned_clone, n_clone); 4280 old_new.map(n->_idx, pinned_clone); 4281 _igvn.replace_node(n_clone, pinned_clone); 4282 n_clone = pinned_clone; 4283 } 4284 } 4285 _igvn.replace_input_of(n_clone, 0, new_head_clone); 4286 } 4287 } 4288 4289 // Backedge of the surviving new_head (the clone) is original last_peel 4290 _igvn.replace_input_of(new_head_clone, LoopNode::LoopBackControl, last_peel); 4291 4292 // Cut first node in original not_peel set 4293 _igvn.rehash_node_delayed(new_head); // Multiple edge updates: 4294 new_head->set_req(LoopNode::EntryControl, C->top()); // use rehash_node_delayed / set_req instead of 4295 new_head->set_req(LoopNode::LoopBackControl, C->top()); // multiple replace_input_of calls 4296 4297 // Copy head_clone back-branch info to original head 4298 // and remove original head's loop entry and 4299 // clone head's back-branch 4300 _igvn.rehash_node_delayed(head); // Multiple edge updates 4301 head->set_req(LoopNode::EntryControl, head_clone->in(LoopNode::LoopBackControl)); 4302 head->set_req(LoopNode::LoopBackControl, C->top()); 4303 _igvn.replace_input_of(head_clone, LoopNode::LoopBackControl, C->top()); 4304 4305 // Similarly modify the phis 4306 for (DUIterator_Fast kmax, k = head->fast_outs(kmax); k < kmax; k++) { 4307 Node* use = head->fast_out(k); 4308 if (use->is_Phi() && use->outcnt() > 0) { 4309 Node* use_clone = old_new[use->_idx]; 4310 _igvn.rehash_node_delayed(use); // Multiple edge updates 4311 use->set_req(LoopNode::EntryControl, use_clone->in(LoopNode::LoopBackControl)); 4312 use->set_req(LoopNode::LoopBackControl, C->top()); 4313 _igvn.replace_input_of(use_clone, LoopNode::LoopBackControl, C->top()); 4314 } 4315 } 4316 4317 // Step 4: update dominator tree and dominator depth 4318 4319 set_idom(head, orig_tail_clone, dd); 4320 recompute_dom_depth(); 4321 4322 // Inhibit more partial peeling on this loop 4323 new_head_clone->set_partial_peel_loop(); 4324 C->set_major_progress(); 4325 loop->record_for_igvn(); 4326 4327 #ifndef PRODUCT 4328 if (TracePartialPeeling) { 4329 tty->print_cr("\nafter partial peel one iteration"); 4330 Node_List wl; 4331 Node* t = last_peel; 4332 while (true) { 4333 wl.push(t); 4334 if (t == head_clone) break; 4335 t = idom(t); 4336 } 4337 while (wl.size() > 0) { 4338 Node* tt = wl.pop(); 4339 if (tt == head) tty->print_cr("orig head"); 4340 else if (tt == new_head_clone) tty->print_cr("new head"); 4341 else if (tt == head_clone) tty->print_cr("clone head"); 4342 tt->dump(); 4343 } 4344 } 4345 #endif 4346 4347 C->print_method(PHASE_AFTER_PARTIAL_PEELING, 4, new_head_clone); 4348 4349 return true; 4350 } 4351 4352 // Transform: 4353 // 4354 // loop<-----------------+ 4355 // | | 4356 // stmt1 stmt2 .. stmtn | 4357 // | | | | 4358 // \ | / | 4359 // v v v | 4360 // region | 4361 // | | 4362 // shared_stmt | 4363 // | | 4364 // v | 4365 // if | 4366 // / \ | 4367 // | -----------+ 4368 // v 4369 // 4370 // into: 4371 // 4372 // loop<-------------------+ 4373 // | | 4374 // v | 4375 // +->loop | 4376 // | | | 4377 // | stmt1 stmt2 .. stmtn | 4378 // | | | | | 4379 // | | \ / | 4380 // | | v v | 4381 // | | region1 | 4382 // | | | | 4383 // | shared_stmt shared_stmt | 4384 // | | | | 4385 // | v v | 4386 // | if if | 4387 // | /\ / \ | 4388 // +-- | | -------+ 4389 // \ / 4390 // v v 4391 // region2 4392 // 4393 // (region2 is shown to merge mirrored projections of the loop exit 4394 // ifs to make the diagram clearer but they really merge the same 4395 // projection) 4396 // 4397 // Conditions for this transformation to trigger: 4398 // - the path through stmt1 is frequent enough 4399 // - the inner loop will be turned into a counted loop after transformation 4400 bool PhaseIdealLoop::duplicate_loop_backedge(IdealLoopTree *loop, Node_List &old_new) { 4401 if (!DuplicateBackedge) { 4402 return false; 4403 } 4404 assert(!loop->_head->is_CountedLoop() || StressDuplicateBackedge, "Non-counted loop only"); 4405 if (!loop->_head->is_Loop()) { 4406 return false; 4407 } 4408 4409 uint estimate = loop->est_loop_clone_sz(1); 4410 if (exceeding_node_budget(estimate)) { 4411 return false; 4412 } 4413 4414 LoopNode *head = loop->_head->as_Loop(); 4415 4416 Node* region = nullptr; 4417 IfNode* exit_test = nullptr; 4418 uint inner; 4419 float f; 4420 if (StressDuplicateBackedge) { 4421 if (head->is_strip_mined()) { 4422 return false; 4423 } 4424 Node* c = head->in(LoopNode::LoopBackControl); 4425 4426 while (c != head) { 4427 if (c->is_Region()) { 4428 region = c; 4429 } 4430 c = idom(c); 4431 } 4432 4433 if (region == nullptr) { 4434 return false; 4435 } 4436 4437 inner = 1; 4438 } else { 4439 // Is the shape of the loop that of a counted loop... 4440 Node* back_control = loop_exit_control(head, loop); 4441 if (back_control == nullptr) { 4442 return false; 4443 } 4444 4445 BoolTest::mask bt = BoolTest::illegal; 4446 float cl_prob = 0; 4447 Node* incr = nullptr; 4448 Node* limit = nullptr; 4449 Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob); 4450 if (cmp == nullptr || cmp->Opcode() != Op_CmpI) { 4451 return false; 4452 } 4453 4454 // With an extra phi for the candidate iv? 4455 // Or the region node is the loop head 4456 if (!incr->is_Phi() || incr->in(0) == head) { 4457 return false; 4458 } 4459 4460 PathFrequency pf(head, this); 4461 region = incr->in(0); 4462 4463 // Go over all paths for the extra phi's region and see if that 4464 // path is frequent enough and would match the expected iv shape 4465 // if the extra phi is removed 4466 inner = 0; 4467 for (uint i = 1; i < incr->req(); ++i) { 4468 Node* in = incr->in(i); 4469 Node* trunc1 = nullptr; 4470 Node* trunc2 = nullptr; 4471 const TypeInteger* iv_trunc_t = nullptr; 4472 Node* orig_in = in; 4473 if (!(in = CountedLoopNode::match_incr_with_optional_truncation(in, &trunc1, &trunc2, &iv_trunc_t, T_INT))) { 4474 continue; 4475 } 4476 assert(in->Opcode() == Op_AddI, "wrong increment code"); 4477 Node* xphi = nullptr; 4478 Node* stride = loop_iv_stride(in, xphi); 4479 4480 if (stride == nullptr) { 4481 continue; 4482 } 4483 4484 PhiNode* phi = loop_iv_phi(xphi, nullptr, head); 4485 if (phi == nullptr || 4486 (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) || 4487 (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) { 4488 return false; 4489 } 4490 4491 f = pf.to(region->in(i)); 4492 if (f > 0.5) { 4493 inner = i; 4494 break; 4495 } 4496 } 4497 4498 if (inner == 0) { 4499 return false; 4500 } 4501 4502 exit_test = back_control->in(0)->as_If(); 4503 } 4504 4505 if (idom(region)->is_Catch()) { 4506 return false; 4507 } 4508 4509 // Collect all control nodes that need to be cloned (shared_stmt in the diagram) 4510 Unique_Node_List wq; 4511 wq.push(head->in(LoopNode::LoopBackControl)); 4512 for (uint i = 0; i < wq.size(); i++) { 4513 Node* c = wq.at(i); 4514 assert(get_loop(c) == loop, "not in the right loop?"); 4515 if (c->is_Region()) { 4516 if (c != region) { 4517 for (uint j = 1; j < c->req(); ++j) { 4518 wq.push(c->in(j)); 4519 } 4520 } 4521 } else { 4522 wq.push(c->in(0)); 4523 } 4524 assert(!is_strict_dominator(c, region), "shouldn't go above region"); 4525 } 4526 4527 Node* region_dom = idom(region); 4528 4529 // Can't do the transformation if this would cause a membar pair to 4530 // be split 4531 for (uint i = 0; i < wq.size(); i++) { 4532 Node* c = wq.at(i); 4533 if (c->is_MemBar() && (c->as_MemBar()->trailing_store() || c->as_MemBar()->trailing_load_store())) { 4534 assert(c->as_MemBar()->leading_membar()->trailing_membar() == c, "bad membar pair"); 4535 if (!wq.member(c->as_MemBar()->leading_membar())) { 4536 return false; 4537 } 4538 } 4539 } 4540 C->print_method(PHASE_BEFORE_DUPLICATE_LOOP_BACKEDGE, 4, head); 4541 4542 // Collect data nodes that need to be clones as well 4543 int dd = dom_depth(head); 4544 4545 for (uint i = 0; i < loop->_body.size(); ++i) { 4546 Node* n = loop->_body.at(i); 4547 if (has_ctrl(n)) { 4548 Node* c = get_ctrl(n); 4549 if (wq.member(c)) { 4550 wq.push(n); 4551 } 4552 } else { 4553 set_idom(n, idom(n), dd); 4554 } 4555 } 4556 4557 // clone shared_stmt 4558 clone_loop_body(wq, old_new, nullptr); 4559 4560 Node* region_clone = old_new[region->_idx]; 4561 region_clone->set_req(inner, C->top()); 4562 set_idom(region, region->in(inner), dd); 4563 4564 // Prepare the outer loop 4565 Node* outer_head = new LoopNode(head->in(LoopNode::EntryControl), old_new[head->in(LoopNode::LoopBackControl)->_idx]); 4566 register_control(outer_head, loop->_parent, outer_head->in(LoopNode::EntryControl)); 4567 _igvn.replace_input_of(head, LoopNode::EntryControl, outer_head); 4568 set_idom(head, outer_head, dd); 4569 4570 fix_body_edges(wq, loop, old_new, dd, loop->_parent, true); 4571 4572 // Make one of the shared_stmt copies only reachable from stmt1, the 4573 // other only from stmt2..stmtn. 4574 Node* dom = nullptr; 4575 for (uint i = 1; i < region->req(); ++i) { 4576 if (i != inner) { 4577 _igvn.replace_input_of(region, i, C->top()); 4578 } 4579 Node* in = region_clone->in(i); 4580 if (in->is_top()) { 4581 continue; 4582 } 4583 if (dom == nullptr) { 4584 dom = in; 4585 } else { 4586 dom = dom_lca(dom, in); 4587 } 4588 } 4589 4590 set_idom(region_clone, dom, dd); 4591 4592 // Set up the outer loop 4593 for (uint i = 0; i < head->outcnt(); i++) { 4594 Node* u = head->raw_out(i); 4595 if (u->is_Phi()) { 4596 Node* outer_phi = u->clone(); 4597 outer_phi->set_req(0, outer_head); 4598 Node* backedge = old_new[u->in(LoopNode::LoopBackControl)->_idx]; 4599 if (backedge == nullptr) { 4600 backedge = u->in(LoopNode::LoopBackControl); 4601 } 4602 outer_phi->set_req(LoopNode::LoopBackControl, backedge); 4603 register_new_node(outer_phi, outer_head); 4604 _igvn.replace_input_of(u, LoopNode::EntryControl, outer_phi); 4605 } 4606 } 4607 4608 // create control and data nodes for out of loop uses (including region2) 4609 Node_List worklist; 4610 uint new_counter = C->unique(); 4611 fix_ctrl_uses(wq, loop, old_new, ControlAroundStripMined, outer_head, nullptr, worklist); 4612 4613 Node_List *split_if_set = nullptr; 4614 Node_List *split_bool_set = nullptr; 4615 Node_List *split_cex_set = nullptr; 4616 fix_data_uses(wq, loop, ControlAroundStripMined, loop->skip_strip_mined(), new_counter, old_new, worklist, 4617 split_if_set, split_bool_set, split_cex_set); 4618 4619 finish_clone_loop(split_if_set, split_bool_set, split_cex_set); 4620 4621 if (exit_test != nullptr) { 4622 float cnt = exit_test->_fcnt; 4623 if (cnt != COUNT_UNKNOWN) { 4624 exit_test->_fcnt = cnt * f; 4625 old_new[exit_test->_idx]->as_If()->_fcnt = cnt * (1 - f); 4626 } 4627 } 4628 4629 C->set_major_progress(); 4630 4631 C->print_method(PHASE_AFTER_DUPLICATE_LOOP_BACKEDGE, 4, outer_head); 4632 4633 return true; 4634 } 4635 4636 // AutoVectorize the loop: replace scalar ops with vector ops. 4637 PhaseIdealLoop::AutoVectorizeStatus 4638 PhaseIdealLoop::auto_vectorize(IdealLoopTree* lpt, VSharedData &vshared) { 4639 // Counted loop only 4640 if (!lpt->is_counted()) { 4641 return AutoVectorizeStatus::Impossible; 4642 } 4643 4644 // Main-loop only 4645 CountedLoopNode* cl = lpt->_head->as_CountedLoop(); 4646 if (!cl->is_main_loop()) { 4647 return AutoVectorizeStatus::Impossible; 4648 } 4649 4650 VLoop vloop(lpt, false); 4651 if (!vloop.check_preconditions()) { 4652 return AutoVectorizeStatus::TriedAndFailed; 4653 } 4654 4655 // Ensure the shared data is cleared before each use 4656 vshared.clear(); 4657 4658 const VLoopAnalyzer vloop_analyzer(vloop, vshared); 4659 if (!vloop_analyzer.success()) { 4660 return AutoVectorizeStatus::TriedAndFailed; 4661 } 4662 4663 SuperWord sw(vloop_analyzer); 4664 if (!sw.transform_loop()) { 4665 return AutoVectorizeStatus::TriedAndFailed; 4666 } 4667 4668 return AutoVectorizeStatus::Success; 4669 } 4670 4671 // Just before insert_pre_post_loops, we can multiversion the loop: 4672 // 4673 // multiversion_if 4674 // | | 4675 // fast_loop slow_loop 4676 // 4677 // In the fast_loop we can make speculative assumptions, and put the 4678 // conditions into the multiversion_if. If the conditions hold at runtime, 4679 // we enter the fast_loop, if the conditions fail, we take the slow_loop 4680 // instead which does not make any of the speculative assumptions. 4681 // 4682 // Note: we only multiversion the loop if the loop does not have any 4683 // auto vectorization check Predicate. If we have that predicate, 4684 // then we can simply add the speculative assumption checks to 4685 // that Predicate. This means we do not need to duplicate the 4686 // loop - we have a smaller graph and save compile time. Should 4687 // the conditions ever fail, then we deopt / trap at the Predicate 4688 // and recompile without that Predicate. At that point we will 4689 // multiversion the loop, so that we can still have speculative 4690 // runtime checks. 4691 // 4692 // We perform the multiversioning when the loop is still in its single 4693 // iteration form, even before we insert pre and post loops. This makes 4694 // the cloning much simpler. However, this means that both the fast 4695 // and the slow loop have to be optimized independently (adding pre 4696 // and post loops, unrolling the main loop, auto-vectorize etc.). And 4697 // we may end up not needing any speculative assumptions in the fast_loop 4698 // and then rejecting the slow_loop by constant folding the multiversion_if. 4699 // 4700 // Therefore, we "delay" the optimization of the slow_loop until we add 4701 // at least one speculative assumption for the fast_loop. If we never 4702 // add such a speculative runtime check, the OpaqueMultiversioningNode 4703 // of the multiversion_if constant folds to true after loop opts, and the 4704 // multiversion_if folds away the "delayed" slow_loop. If we add any 4705 // speculative assumption, then we notify the OpaqueMultiversioningNode 4706 // with "notify_slow_loop_that_it_can_resume_optimizations". 4707 // 4708 // Note: new runtime checks can be added to the multiversion_if with 4709 // PhaseIdealLoop::create_new_if_for_multiversion 4710 void PhaseIdealLoop::maybe_multiversion_for_auto_vectorization_runtime_checks(IdealLoopTree* lpt, Node_List& old_new) { 4711 CountedLoopNode* cl = lpt->_head->as_CountedLoop(); 4712 LoopNode* outer_loop = cl->skip_strip_mined(); 4713 Node* entry = outer_loop->in(LoopNode::EntryControl); 4714 4715 // Check we have multiversioning enabled, and are not already multiversioned. 4716 if (!LoopMultiversioning || cl->is_multiversion()) { return; } 4717 4718 // Check that we do not have a parse-predicate where we can add the runtime checks 4719 // during auto-vectorization. 4720 const Predicates predicates(entry); 4721 const PredicateBlock* predicate_block = predicates.auto_vectorization_check_block(); 4722 if (predicate_block->has_parse_predicate()) { return; } 4723 4724 // Check node budget. 4725 uint estimate = lpt->est_loop_clone_sz(2); 4726 if (!may_require_nodes(estimate)) { return; } 4727 4728 do_multiversioning(lpt, old_new); 4729 } 4730 4731 // Returns true if the Reduction node is unordered. 4732 static bool is_unordered_reduction(Node* n) { 4733 return n->is_Reduction() && !n->as_Reduction()->requires_strict_order(); 4734 } 4735 4736 // Having ReductionNodes in the loop is expensive. They need to recursively 4737 // fold together the vector values, for every vectorized loop iteration. If 4738 // we encounter the following pattern, we can vector accumulate the values 4739 // inside the loop, and only have a single UnorderedReduction after the loop. 4740 // 4741 // Note: UnorderedReduction represents a ReductionNode which does not require 4742 // calculating in strict order. 4743 // 4744 // CountedLoop init 4745 // | | 4746 // +------+ | +-----------------------+ 4747 // | | | | 4748 // PhiNode (s) | 4749 // | | 4750 // | Vector | 4751 // | | | 4752 // UnorderedReduction (first_ur) | 4753 // | | 4754 // ... Vector | 4755 // | | | 4756 // UnorderedReduction (last_ur) | 4757 // | | 4758 // +---------------------+ 4759 // 4760 // We patch the graph to look like this: 4761 // 4762 // CountedLoop identity_vector 4763 // | | 4764 // +-------+ | +---------------+ 4765 // | | | | 4766 // PhiNode (v) | 4767 // | | 4768 // | Vector | 4769 // | | | 4770 // VectorAccumulator | 4771 // | | 4772 // ... Vector | 4773 // | | | 4774 // init VectorAccumulator | 4775 // | | | | 4776 // UnorderedReduction +-----------+ 4777 // 4778 // We turned the scalar (s) Phi into a vectorized one (v). In the loop, we 4779 // use vector_accumulators, which do the same reductions, but only element 4780 // wise. This is a single operation per vector_accumulator, rather than many 4781 // for a UnorderedReduction. We can then reduce the last vector_accumulator 4782 // after the loop, and also reduce the init value into it. 4783 // 4784 // We can not do this with all reductions. Some reductions do not allow the 4785 // reordering of operations (for example float addition/multiplication require 4786 // strict order). 4787 void PhaseIdealLoop::move_unordered_reduction_out_of_loop(IdealLoopTree* loop) { 4788 assert(!C->major_progress() && loop->is_counted() && loop->is_innermost(), "sanity"); 4789 4790 // Find all Phi nodes with an unordered Reduction on backedge. 4791 CountedLoopNode* cl = loop->_head->as_CountedLoop(); 4792 for (DUIterator_Fast jmax, j = cl->fast_outs(jmax); j < jmax; j++) { 4793 Node* phi = cl->fast_out(j); 4794 // We have a phi with a single use, and an unordered Reduction on the backedge. 4795 if (!phi->is_Phi() || phi->outcnt() != 1 || !is_unordered_reduction(phi->in(2))) { 4796 continue; 4797 } 4798 4799 ReductionNode* last_ur = phi->in(2)->as_Reduction(); 4800 assert(!last_ur->requires_strict_order(), "must be"); 4801 4802 // Determine types 4803 const TypeVect* vec_t = last_ur->vect_type(); 4804 uint vector_length = vec_t->length(); 4805 BasicType bt = vec_t->element_basic_type(); 4806 4807 // Convert opcode from vector-reduction -> scalar -> normal-vector-op 4808 const int sopc = VectorNode::scalar_opcode(last_ur->Opcode(), bt); 4809 const int vopc = VectorNode::opcode(sopc, bt); 4810 if (!Matcher::match_rule_supported_vector(vopc, vector_length, bt)) { 4811 DEBUG_ONLY( last_ur->dump(); ) 4812 assert(false, "do not have normal vector op for this reduction"); 4813 continue; // not implemented -> fails 4814 } 4815 4816 // Traverse up the chain of unordered Reductions, checking that it loops back to 4817 // the phi. Check that all unordered Reductions only have a single use, except for 4818 // the last (last_ur), which only has phi as a use in the loop, and all other uses 4819 // are outside the loop. 4820 ReductionNode* current = last_ur; 4821 ReductionNode* first_ur = nullptr; 4822 while (true) { 4823 assert(!current->requires_strict_order(), "sanity"); 4824 4825 // Expect no ctrl and a vector_input from within the loop. 4826 Node* ctrl = current->in(0); 4827 Node* vector_input = current->in(2); 4828 if (ctrl != nullptr || get_ctrl(vector_input) != cl) { 4829 DEBUG_ONLY( current->dump(1); ) 4830 assert(false, "reduction has ctrl or bad vector_input"); 4831 break; // Chain traversal fails. 4832 } 4833 4834 assert(current->vect_type() != nullptr, "must have vector type"); 4835 if (current->vect_type() != last_ur->vect_type()) { 4836 // Reductions do not have the same vector type (length and element type). 4837 break; // Chain traversal fails. 4838 } 4839 4840 // Expect single use of an unordered Reduction, except for last_ur. 4841 if (current == last_ur) { 4842 // Expect all uses to be outside the loop, except phi. 4843 for (DUIterator_Fast kmax, k = current->fast_outs(kmax); k < kmax; k++) { 4844 Node* use = current->fast_out(k); 4845 if (use != phi && ctrl_or_self(use) == cl) { 4846 DEBUG_ONLY( current->dump(-1); ) 4847 assert(false, "reduction has use inside loop"); 4848 // Should not be allowed by SuperWord::mark_reductions 4849 return; // bail out of optimization 4850 } 4851 } 4852 } else { 4853 if (current->outcnt() != 1) { 4854 break; // Chain traversal fails. 4855 } 4856 } 4857 4858 // Expect another unordered Reduction or phi as the scalar input. 4859 Node* scalar_input = current->in(1); 4860 if (is_unordered_reduction(scalar_input) && 4861 scalar_input->Opcode() == current->Opcode()) { 4862 // Move up the unordered Reduction chain. 4863 current = scalar_input->as_Reduction(); 4864 assert(!current->requires_strict_order(), "must be"); 4865 } else if (scalar_input == phi) { 4866 // Chain terminates at phi. 4867 first_ur = current; 4868 current = nullptr; 4869 break; // Success. 4870 } else { 4871 // scalar_input is neither phi nor a matching reduction 4872 // Can for example be scalar reduction when we have 4873 // partial vectorization. 4874 break; // Chain traversal fails. 4875 } 4876 } 4877 if (current != nullptr) { 4878 // Chain traversal was not successful. 4879 continue; 4880 } 4881 assert(first_ur != nullptr, "must have successfully terminated chain traversal"); 4882 4883 Node* identity_scalar = ReductionNode::make_identity_con_scalar(_igvn, sopc, bt); 4884 set_root_as_ctrl(identity_scalar); 4885 VectorNode* identity_vector = VectorNode::scalar2vector(identity_scalar, vector_length, bt); 4886 register_new_node(identity_vector, C->root()); 4887 assert(vec_t == identity_vector->vect_type(), "matching vector type"); 4888 VectorNode::trace_new_vector(identity_vector, "Unordered Reduction"); 4889 4890 // Turn the scalar phi into a vector phi. 4891 _igvn.rehash_node_delayed(phi); 4892 Node* init = phi->in(1); // Remember init before replacing it. 4893 phi->set_req_X(1, identity_vector, &_igvn); 4894 phi->as_Type()->set_type(vec_t); 4895 _igvn.set_type(phi, vec_t); 4896 4897 // Traverse down the chain of unordered Reductions, and replace them with vector_accumulators. 4898 current = first_ur; 4899 while (true) { 4900 // Create vector_accumulator to replace current. 4901 Node* last_vector_accumulator = current->in(1); 4902 Node* vector_input = current->in(2); 4903 VectorNode* vector_accumulator = VectorNode::make(vopc, last_vector_accumulator, vector_input, vec_t); 4904 register_new_node(vector_accumulator, cl); 4905 _igvn.replace_node(current, vector_accumulator); 4906 VectorNode::trace_new_vector(vector_accumulator, "Unordered Reduction"); 4907 if (current == last_ur) { 4908 break; 4909 } 4910 current = vector_accumulator->unique_out()->as_Reduction(); 4911 assert(!current->requires_strict_order(), "must be"); 4912 } 4913 4914 // Create post-loop reduction. 4915 Node* last_accumulator = phi->in(2); 4916 Node* post_loop_reduction = ReductionNode::make(sopc, nullptr, init, last_accumulator, bt); 4917 4918 // Take over uses of last_accumulator that are not in the loop. 4919 for (DUIterator i = last_accumulator->outs(); last_accumulator->has_out(i); i++) { 4920 Node* use = last_accumulator->out(i); 4921 if (use != phi && use != post_loop_reduction) { 4922 assert(ctrl_or_self(use) != cl, "use must be outside loop"); 4923 use->replace_edge(last_accumulator, post_loop_reduction, &_igvn); 4924 --i; 4925 } 4926 } 4927 register_new_node(post_loop_reduction, get_late_ctrl(post_loop_reduction, cl)); 4928 VectorNode::trace_new_vector(post_loop_reduction, "Unordered Reduction"); 4929 4930 assert(last_accumulator->outcnt() == 2, "last_accumulator has 2 uses: phi and post_loop_reduction"); 4931 assert(post_loop_reduction->outcnt() > 0, "should have taken over all non loop uses of last_accumulator"); 4932 assert(phi->outcnt() == 1, "accumulator is the only use of phi"); 4933 } 4934 } 4935 4936 void DataNodeGraph::clone_data_nodes(Node* new_ctrl) { 4937 for (uint i = 0; i < _data_nodes.size(); i++) { 4938 clone(_data_nodes[i], new_ctrl); 4939 } 4940 } 4941 4942 // Clone the given node and set it up properly. Set 'new_ctrl' as ctrl. 4943 void DataNodeGraph::clone(Node* node, Node* new_ctrl) { 4944 Node* clone = node->clone(); 4945 _phase->igvn().register_new_node_with_optimizer(clone); 4946 _orig_to_new.put(node, clone); 4947 _phase->set_ctrl(clone, new_ctrl); 4948 if (node->is_CastII()) { 4949 clone->set_req(0, new_ctrl); 4950 } 4951 } 4952 4953 // Rewire the data inputs of all (unprocessed) cloned nodes, whose inputs are still pointing to the same inputs as their 4954 // corresponding orig nodes, to the newly cloned inputs to create a separate cloned graph. 4955 void DataNodeGraph::rewire_clones_to_cloned_inputs() { 4956 _orig_to_new.iterate_all([&](Node* node, Node* clone) { 4957 for (uint i = 1; i < node->req(); i++) { 4958 Node** cloned_input = _orig_to_new.get(node->in(i)); 4959 if (cloned_input != nullptr) { 4960 // Input was also cloned -> rewire clone to the cloned input. 4961 _phase->igvn().replace_input_of(clone, i, *cloned_input); 4962 } 4963 } 4964 }); 4965 } 4966 4967 // Clone all non-OpaqueLoop* nodes and apply the provided transformation strategy for OpaqueLoop* nodes. 4968 // Set 'new_ctrl' as ctrl for all cloned non-OpaqueLoop* nodes. 4969 void DataNodeGraph::clone_data_nodes_and_transform_opaque_loop_nodes( 4970 const TransformStrategyForOpaqueLoopNodes& transform_strategy, 4971 Node* new_ctrl) { 4972 for (uint i = 0; i < _data_nodes.size(); i++) { 4973 Node* data_node = _data_nodes[i]; 4974 if (data_node->is_Opaque1()) { 4975 transform_opaque_node(transform_strategy, data_node); 4976 } else { 4977 clone(data_node, new_ctrl); 4978 } 4979 } 4980 } 4981 4982 void DataNodeGraph::transform_opaque_node(const TransformStrategyForOpaqueLoopNodes& transform_strategy, Node* node) { 4983 Node* transformed_node; 4984 if (node->is_OpaqueLoopInit()) { 4985 transformed_node = transform_strategy.transform_opaque_init(node->as_OpaqueLoopInit()); 4986 } else { 4987 assert(node->is_OpaqueLoopStride(), "must be OpaqueLoopStrideNode"); 4988 transformed_node = transform_strategy.transform_opaque_stride(node->as_OpaqueLoopStride()); 4989 } 4990 // Add an orig->new mapping to correctly update the inputs of the copied graph in rewire_clones_to_cloned_inputs(). 4991 _orig_to_new.put(node, transformed_node); 4992 } --- EOF ---