1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "gc/shared/collectedHeap.hpp" 29 #include "memory/universe.hpp" 30 #include "oops/compressedOops.hpp" 31 #include "opto/machnode.hpp" 32 #include "opto/output.hpp" 33 #include "opto/regalloc.hpp" 34 #include "utilities/vmError.hpp" 35 36 //============================================================================= 37 // Return the value requested 38 // result register lookup, corresponding to int_format 39 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node) const { 40 return (int)ra_->get_encode(node); 41 } 42 // input register lookup, corresponding to ext_format 43 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node, int idx) const { 44 return (int)(ra_->get_encode(node->in(idx))); 45 } 46 intptr_t MachOper::constant() const { return 0x00; } 47 relocInfo::relocType MachOper::constant_reloc() const { return relocInfo::none; } 48 jdouble MachOper::constantD() const { ShouldNotReachHere(); } 49 jfloat MachOper::constantF() const { ShouldNotReachHere(); } 50 jlong MachOper::constantL() const { ShouldNotReachHere(); } 51 TypeOopPtr *MachOper::oop() const { return nullptr; } 52 int MachOper::ccode() const { return 0x00; } 53 // A zero, default, indicates this value is not needed. 54 // May need to lookup the base register, as done in int_ and ext_format 55 int MachOper::base (PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; } 56 int MachOper::index(PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; } 57 int MachOper::scale() const { return 0x00; } 58 int MachOper::disp (PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; } 59 int MachOper::constant_disp() const { return 0; } 60 int MachOper::base_position() const { return -1; } // no base input 61 int MachOper::index_position() const { return -1; } // no index input 62 // Check for PC-Relative displacement 63 relocInfo::relocType MachOper::disp_reloc() const { return relocInfo::none; } 64 // Return the label 65 Label* MachOper::label() const { ShouldNotReachHere(); } 66 intptr_t MachOper::method() const { ShouldNotReachHere(); } 67 68 69 //------------------------------negate----------------------------------------- 70 // Negate conditional branches. Error for non-branch operands 71 void MachOper::negate() { 72 ShouldNotCallThis(); 73 } 74 75 //-----------------------------type-------------------------------------------- 76 const Type *MachOper::type() const { 77 return Type::BOTTOM; 78 } 79 80 //------------------------------in_RegMask------------------------------------- 81 const RegMask *MachOper::in_RegMask(int index) const { 82 ShouldNotReachHere(); 83 } 84 85 //------------------------------dump_spec-------------------------------------- 86 // Print any per-operand special info 87 #ifndef PRODUCT 88 void MachOper::dump_spec(outputStream *st) const { } 89 #endif 90 91 //------------------------------hash------------------------------------------- 92 // Print any per-operand special info 93 uint MachOper::hash() const { 94 ShouldNotCallThis(); 95 } 96 97 //------------------------------cmp-------------------------------------------- 98 // Print any per-operand special info 99 bool MachOper::cmp( const MachOper &oper ) const { 100 ShouldNotCallThis(); 101 } 102 103 //------------------------------hash------------------------------------------- 104 // Print any per-operand special info 105 uint labelOper::hash() const { 106 return _block_num; 107 } 108 109 //------------------------------cmp-------------------------------------------- 110 // Print any per-operand special info 111 bool labelOper::cmp( const MachOper &oper ) const { 112 return (opcode() == oper.opcode()) && (_label == oper.label()); 113 } 114 115 //------------------------------hash------------------------------------------- 116 // Print any per-operand special info 117 uint methodOper::hash() const { 118 return (uint)_method; 119 } 120 121 //------------------------------cmp-------------------------------------------- 122 // Print any per-operand special info 123 bool methodOper::cmp( const MachOper &oper ) const { 124 return (opcode() == oper.opcode()) && (_method == oper.method()); 125 } 126 127 128 //============================================================================= 129 //------------------------------MachNode--------------------------------------- 130 131 //------------------------------emit------------------------------------------- 132 void MachNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 133 #ifdef ASSERT 134 tty->print("missing MachNode emit function: "); 135 dump(); 136 #endif 137 ShouldNotCallThis(); 138 } 139 140 //---------------------------postalloc_expand---------------------------------- 141 // Expand node after register allocation. 142 void MachNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {} 143 144 //------------------------------size------------------------------------------- 145 // Size of instruction in bytes 146 uint MachNode::size(PhaseRegAlloc *ra_) const { 147 // If a virtual was not defined for this specific instruction, 148 // Call the helper which finds the size by emitting the bits. 149 return MachNode::emit_size(ra_); 150 } 151 152 //------------------------------size------------------------------------------- 153 // Helper function that computes size by emitting code 154 uint MachNode::emit_size(PhaseRegAlloc *ra_) const { 155 // Emit into a trash buffer and count bytes emitted. 156 assert(ra_ == ra_->C->regalloc(), "sanity"); 157 return ra_->C->output()->scratch_emit_size(this); 158 } 159 160 161 162 //------------------------------hash------------------------------------------- 163 uint MachNode::hash() const { 164 uint no = num_opnds(); 165 uint sum = rule(); 166 for( uint i=0; i<no; i++ ) 167 sum += _opnds[i]->hash(); 168 return sum+Node::hash(); 169 } 170 171 //-----------------------------cmp--------------------------------------------- 172 bool MachNode::cmp( const Node &node ) const { 173 MachNode& n = *((Node&)node).as_Mach(); 174 uint no = num_opnds(); 175 if( no != n.num_opnds() ) return false; 176 if( rule() != n.rule() ) return false; 177 for( uint i=0; i<no; i++ ) // All operands must match 178 if( !_opnds[i]->cmp( *n._opnds[i] ) ) 179 return false; // mis-matched operands 180 return true; // match 181 } 182 183 void MachNode::fill_new_machnode(MachNode* node) const { 184 // New node must use same node index 185 node->set_idx(_idx); 186 // Copy machine-independent inputs 187 for (uint j = 0; j < req(); j++) { 188 node->add_req(in(j)); 189 } 190 // Copy my operands, except for cisc position 191 int nopnds = num_opnds(); 192 assert(node->num_opnds() == (uint)nopnds, "Must have same number of operands"); 193 MachOper** to = node->_opnds; 194 for (int i = 0; i < nopnds; i++) { 195 if (i != cisc_operand()) { 196 to[i] = _opnds[i]->clone(); 197 } 198 } 199 // Do not increment node index counter, since node reuses my index 200 Compile* C = Compile::current(); 201 C->set_unique(C->unique() - 1); 202 } 203 204 // Return an equivalent instruction using memory for cisc_operand position 205 MachNode *MachNode::cisc_version(int offset) { 206 ShouldNotCallThis(); 207 } 208 209 void MachNode::use_cisc_RegMask() { 210 ShouldNotReachHere(); 211 } 212 213 214 //-----------------------------in_RegMask-------------------------------------- 215 const RegMask &MachNode::in_RegMask( uint idx ) const { 216 uint numopnds = num_opnds(); // Virtual call for number of operands 217 uint skipped = oper_input_base(); // Sum of leaves skipped so far 218 if( idx < skipped ) { 219 assert( ideal_Opcode() == Op_AddP, "expected base ptr here" ); 220 assert( idx == 1, "expected base ptr here" ); 221 // debug info can be anywhere 222 return *Compile::current()->matcher()->idealreg2spillmask[Op_RegP]; 223 } 224 uint opcnt = 1; // First operand 225 uint num_edges = _opnds[1]->num_edges(); // leaves for first operand 226 while( idx >= skipped+num_edges ) { 227 skipped += num_edges; 228 opcnt++; // Bump operand count 229 assert( opcnt < numopnds, "Accessing non-existent operand" ); 230 num_edges = _opnds[opcnt]->num_edges(); // leaves for next operand 231 } 232 233 const RegMask *rm = cisc_RegMask(); 234 if( rm == nullptr || (int)opcnt != cisc_operand() ) { 235 rm = _opnds[opcnt]->in_RegMask(idx-skipped); 236 } 237 return *rm; 238 } 239 240 //-----------------------------memory_inputs-------------------------------- 241 const MachOper* MachNode::memory_inputs(Node* &base, Node* &index) const { 242 const MachOper* oper = memory_operand(); 243 244 if (oper == (MachOper*)-1) { 245 base = NodeSentinel; 246 index = NodeSentinel; 247 } else { 248 base = nullptr; 249 index = nullptr; 250 if (oper != nullptr) { 251 // It has a unique memory operand. Find its index. 252 int oper_idx = num_opnds(); 253 while (--oper_idx >= 0) { 254 if (_opnds[oper_idx] == oper) break; 255 } 256 int oper_pos = operand_index(oper_idx); 257 int base_pos = oper->base_position(); 258 if (base_pos >= 0) { 259 base = _in[oper_pos+base_pos]; 260 } 261 int index_pos = oper->index_position(); 262 if (index_pos >= 0) { 263 index = _in[oper_pos+index_pos]; 264 } 265 } 266 } 267 268 return oper; 269 } 270 271 //-----------------------------get_base_and_disp---------------------------- 272 const Node* MachNode::get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const { 273 274 // Find the memory inputs using our helper function 275 Node* base; 276 Node* index; 277 const MachOper* oper = memory_inputs(base, index); 278 279 if (oper == nullptr) { 280 // Base has been set to null 281 offset = 0; 282 } else if (oper == (MachOper*)-1) { 283 // Base has been set to NodeSentinel 284 // There is not a unique memory use here. We will fall to AliasIdxBot. 285 offset = Type::OffsetBot; 286 } else { 287 // Base may be null, even if offset turns out to be != 0 288 289 intptr_t disp = oper->constant_disp(); 290 int scale = oper->scale(); 291 // Now we have collected every part of the ADLC MEMORY_INTER. 292 // See if it adds up to a base + offset. 293 if (index != nullptr) { 294 const Type* t_index = index->bottom_type(); 295 if (t_index->isa_narrowoop() || t_index->isa_narrowklass()) { // EncodeN, LoadN, LoadConN, LoadNKlass, 296 // EncodeNKlass, LoadConNklass. 297 // Memory references through narrow oops have a 298 // funny base so grab the type from the index: 299 // [R12 + narrow_oop_reg<<3 + offset] 300 assert(base == nullptr, "Memory references through narrow oops have no base"); 301 offset = disp; 302 adr_type = t_index->make_ptr()->add_offset(offset); 303 return nullptr; 304 } else if (!index->is_Con()) { 305 disp = Type::OffsetBot; 306 } else if (disp != Type::OffsetBot) { 307 const TypeX* ti = t_index->isa_intptr_t(); 308 if (ti == nullptr) { 309 disp = Type::OffsetBot; // a random constant?? 310 } else { 311 disp += ti->get_con() << scale; 312 } 313 } 314 } 315 offset = disp; 316 317 // In x86_32.ad, indOffset32X uses base==RegI and disp==RegP, 318 // this will prevent alias analysis without the following support: 319 // Lookup the TypePtr used by indOffset32X, a compile-time constant oop, 320 // Add the offset determined by the "base", or use Type::OffsetBot. 321 if( adr_type == TYPE_PTR_SENTINAL ) { 322 const TypePtr *t_disp = oper->disp_as_type(); // only not null for indOffset32X 323 if (t_disp != nullptr) { 324 offset = Type::OffsetBot; 325 const Type* t_base = base->bottom_type(); 326 if (t_base->isa_intptr_t()) { 327 const TypeX *t_offset = t_base->is_intptr_t(); 328 if( t_offset->is_con() ) { 329 offset = t_offset->get_con(); 330 } 331 } 332 adr_type = t_disp->add_offset(offset); 333 } else if( base == nullptr && offset != 0 && offset != Type::OffsetBot ) { 334 // Use ideal type if it is oop ptr. 335 const TypePtr *tp = oper->type()->isa_ptr(); 336 if( tp != nullptr) { 337 adr_type = tp; 338 } 339 } 340 } 341 342 } 343 return base; 344 } 345 346 347 //---------------------------------adr_type--------------------------------- 348 const class TypePtr *MachNode::adr_type() const { 349 intptr_t offset = 0; 350 const TypePtr *adr_type = TYPE_PTR_SENTINAL; // attempt computing adr_type 351 const Node *base = get_base_and_disp(offset, adr_type); 352 if( adr_type != TYPE_PTR_SENTINAL ) { 353 return adr_type; // get_base_and_disp has the answer 354 } 355 356 #ifdef ASSERT 357 if (base != nullptr && base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_VerifyVectorAlignment) { 358 // For VerifyVectorAlignment we just pass the type through 359 return base->bottom_type()->is_ptr(); 360 } 361 #endif 362 363 // Direct addressing modes have no base node, simply an indirect 364 // offset, which is always to raw memory. 365 // %%%%% Someday we'd like to allow constant oop offsets which 366 // would let Intel load from static globals in 1 instruction. 367 // Currently Intel requires 2 instructions and a register temp. 368 if (base == nullptr) { 369 // null base, zero offset means no memory at all (a null pointer!) 370 if (offset == 0) { 371 return nullptr; 372 } 373 // null base, any offset means any pointer whatever 374 if (offset == Type::OffsetBot) { 375 return TypePtr::BOTTOM; 376 } 377 // %%% make offset be intptr_t 378 assert(!Universe::heap()->is_in(cast_to_oop(offset)), "must be a raw ptr"); 379 return TypeRawPtr::BOTTOM; 380 } 381 382 // base of -1 with no particular offset means all of memory 383 if (base == NodeSentinel) return TypePtr::BOTTOM; 384 385 const Type* t = base->bottom_type(); 386 if (t->isa_narrowoop() && CompressedOops::shift() == 0) { 387 // 32-bit unscaled narrow oop can be the base of any address expression 388 t = t->make_ptr(); 389 } 390 if (t->isa_narrowklass() && CompressedKlassPointers::shift() == 0) { 391 // 32-bit unscaled narrow oop can be the base of any address expression 392 t = t->make_ptr(); 393 } 394 395 if (t->isa_intptr_t() && 396 #if !defined(AARCH64) 397 // AArch64 supports the addressing mode: 398 // [base, 0], in which [base] is converted from a long value 399 offset != 0 && 400 #endif 401 offset != Type::OffsetBot) { 402 // We cannot assert that the offset does not look oop-ish here. 403 // Depending on the heap layout the cardmark base could land 404 // inside some oopish region. It definitely does for Win2K. 405 // The sum of cardmark-base plus shift-by-9-oop lands outside 406 // the oop-ish area but we can't assert for that statically. 407 return TypeRawPtr::BOTTOM; 408 } 409 410 const TypePtr *tp = t->isa_ptr(); 411 412 // be conservative if we do not recognize the type 413 if (tp == nullptr) { 414 assert(false, "this path may produce not optimal code"); 415 return TypePtr::BOTTOM; 416 } 417 assert(tp->base() != Type::AnyPtr, "not a bare pointer"); 418 419 if (tp->isa_aryptr()) { 420 // In the case of a flat inline type array, each field has its 421 // own slice so we need to extract the field being accessed from 422 // the address computation 423 if (offset == Type::OffsetBot) { 424 Node* base; 425 Node* index; 426 const MachOper* oper = memory_inputs(base, index); 427 if (oper != (MachOper*)-1) { 428 offset = oper->constant_disp(); 429 return tp->is_aryptr()->add_field_offset_and_offset(offset)->add_offset(Type::OffsetBot); 430 } 431 } 432 return tp->is_aryptr()->add_field_offset_and_offset(offset); 433 } 434 435 return tp->add_offset(offset); 436 } 437 438 439 //-----------------------------operand_index--------------------------------- 440 int MachNode::operand_index(uint operand) const { 441 if (operand < 1) return -1; 442 assert(operand < num_opnds(), "oob"); 443 if (_opnds[operand]->num_edges() == 0) return -1; 444 445 uint skipped = oper_input_base(); // Sum of leaves skipped so far 446 for (uint opcnt = 1; opcnt < operand; opcnt++) { 447 uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand 448 skipped += num_edges; 449 } 450 return skipped; 451 } 452 453 int MachNode::operand_index(const MachOper *oper) const { 454 uint skipped = oper_input_base(); // Sum of leaves skipped so far 455 uint opcnt; 456 for (opcnt = 1; opcnt < num_opnds(); opcnt++) { 457 if (_opnds[opcnt] == oper) break; 458 uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand 459 skipped += num_edges; 460 } 461 if (_opnds[opcnt] != oper) return -1; 462 return skipped; 463 } 464 465 int MachNode::operand_index(Node* def) const { 466 uint skipped = oper_input_base(); // Sum of leaves skipped so far 467 for (uint opcnt = 1; opcnt < num_opnds(); opcnt++) { 468 uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand 469 for (uint i = 0; i < num_edges; i++) { 470 if (in(skipped + i) == def) { 471 return opcnt; 472 } 473 } 474 skipped += num_edges; 475 } 476 return -1; 477 } 478 479 //------------------------------peephole--------------------------------------- 480 // Apply peephole rule(s) to this instruction 481 int MachNode::peephole(Block *block, int block_index, PhaseCFG* cfg_, PhaseRegAlloc *ra_) { 482 return -1; 483 } 484 485 //------------------------------add_case_label--------------------------------- 486 // Adds the label for the case 487 void MachNode::add_case_label( int index_num, Label* blockLabel) { 488 ShouldNotCallThis(); 489 } 490 491 //------------------------------method_set------------------------------------- 492 // Set the absolute address of a method 493 void MachNode::method_set( intptr_t addr ) { 494 ShouldNotCallThis(); 495 } 496 497 //------------------------------rematerialize---------------------------------- 498 bool MachNode::rematerialize() const { 499 // Temps are always rematerializable 500 if (is_MachTemp()) return true; 501 502 uint r = rule(); // Match rule 503 if (r < Matcher::_begin_rematerialize || 504 r >= Matcher::_end_rematerialize) { 505 return false; 506 } 507 508 // For 2-address instructions, the input live range is also the output 509 // live range. Remateralizing does not make progress on the that live range. 510 if (two_adr()) return false; 511 512 // Check for rematerializing float constants, or not 513 if (!Matcher::rematerialize_float_constants) { 514 int op = ideal_Opcode(); 515 if (op == Op_ConF || op == Op_ConD) { 516 return false; 517 } 518 } 519 520 // Defining flags - can't spill these! Must remateralize. 521 if (ideal_reg() == Op_RegFlags) { 522 return true; 523 } 524 525 // Stretching lots of inputs - don't do it. 526 // A MachContant has the last input being the constant base 527 if (req() > (is_MachConstant() ? 3U : 2U)) { 528 return false; 529 } 530 531 if (req() >= 2 && in(1) && in(1)->ideal_reg() == Op_RegFlags) { 532 // In(1) will be rematerialized, too. 533 // Stretching lots of inputs - don't do it. 534 if (in(1)->req() > (in(1)->is_MachConstant() ? 3U : 2U)) { 535 return false; 536 } 537 } 538 539 // Don't remateralize somebody with bound inputs - it stretches a 540 // fixed register lifetime. 541 uint idx = oper_input_base(); 542 if (req() > idx) { 543 const RegMask &rm = in_RegMask(idx); 544 if (rm.is_NotEmpty() && rm.is_bound(ideal_reg())) { 545 return false; 546 } 547 } 548 549 return true; 550 } 551 552 #ifndef PRODUCT 553 //------------------------------dump_spec-------------------------------------- 554 // Print any per-operand special info 555 void MachNode::dump_spec(outputStream *st) const { 556 uint cnt = num_opnds(); 557 for( uint i=0; i<cnt; i++ ) { 558 if (_opnds[i] != nullptr) { 559 _opnds[i]->dump_spec(st); 560 } else { 561 st->print(" _"); 562 } 563 } 564 const TypePtr *t = adr_type(); 565 if( t ) { 566 Compile* C = Compile::current(); 567 if( C->alias_type(t)->is_volatile() ) 568 st->print(" Volatile!"); 569 } 570 if (barrier_data() != 0) { 571 st->print(" barrier("); 572 BarrierSet::barrier_set()->barrier_set_c2()->dump_barrier_data(this, st); 573 st->print(") "); 574 } 575 } 576 577 //------------------------------dump_format------------------------------------ 578 // access to virtual 579 void MachNode::dump_format(PhaseRegAlloc *ra, outputStream *st) const { 580 format(ra, st); // access to virtual 581 } 582 #endif 583 584 //============================================================================= 585 #ifndef PRODUCT 586 void MachTypeNode::dump_spec(outputStream *st) const { 587 MachNode::dump_spec(st); 588 if (_bottom_type != nullptr) { 589 _bottom_type->dump_on(st); 590 } else { 591 st->print(" null"); 592 } 593 } 594 #endif 595 596 597 //============================================================================= 598 int MachConstantNode::constant_offset() { 599 // Bind the offset lazily. 600 if (_constant.offset() == -1) { 601 ConstantTable& constant_table = Compile::current()->output()->constant_table(); 602 int offset = constant_table.find_offset(_constant); 603 // If called from Compile::scratch_emit_size return the 604 // pre-calculated offset. 605 // NOTE: If the AD file does some table base offset optimizations 606 // later the AD file needs to take care of this fact. 607 if (Compile::current()->output()->in_scratch_emit_size()) { 608 return constant_table.calculate_table_base_offset() + offset; 609 } 610 _constant.set_offset(constant_table.table_base_offset() + offset); 611 } 612 return _constant.offset(); 613 } 614 615 int MachConstantNode::constant_offset_unchecked() const { 616 return _constant.offset(); 617 } 618 619 //============================================================================= 620 #ifndef PRODUCT 621 void MachNullCheckNode::format( PhaseRegAlloc *ra_, outputStream *st ) const { 622 int reg = ra_->get_reg_first(in(1)->in(_vidx)); 623 st->print("%s %s", Name(), Matcher::regName[reg]); 624 } 625 #endif 626 627 void MachNullCheckNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 628 // only emits entries in the null-pointer exception handler table 629 } 630 void MachNullCheckNode::label_set(Label* label, uint block_num) { 631 // Nothing to emit 632 } 633 void MachNullCheckNode::save_label( Label** label, uint* block_num ) { 634 // Nothing to emit 635 } 636 637 const RegMask &MachNullCheckNode::in_RegMask( uint idx ) const { 638 if( idx == 0 ) return RegMask::Empty; 639 else return in(1)->as_Mach()->out_RegMask(); 640 } 641 642 //============================================================================= 643 const Type *MachProjNode::bottom_type() const { 644 if( _ideal_reg == fat_proj ) return Type::BOTTOM; 645 // Try the normal mechanism first 646 const Type *t = in(0)->bottom_type(); 647 if( t->base() == Type::Tuple ) { 648 const TypeTuple *tt = t->is_tuple(); 649 if (_con < tt->cnt()) 650 return tt->field_at(_con); 651 } 652 // Else use generic type from ideal register set 653 assert((uint)_ideal_reg < (uint)_last_machine_leaf && Type::mreg2type[_ideal_reg], "in bounds"); 654 return Type::mreg2type[_ideal_reg]; 655 } 656 657 const TypePtr *MachProjNode::adr_type() const { 658 if (bottom_type() == Type::MEMORY) { 659 // in(0) might be a narrow MemBar; otherwise we will report TypePtr::BOTTOM 660 Node* ctrl = in(0); 661 if (ctrl == nullptr) return nullptr; // node is dead 662 const TypePtr* adr_type = ctrl->adr_type(); 663 #ifdef ASSERT 664 if (!VMError::is_error_reported() && !Node::in_dump()) 665 assert(adr_type != nullptr, "source must have adr_type"); 666 #endif 667 return adr_type; 668 } 669 assert(bottom_type()->base() != Type::Memory, "no other memories?"); 670 return nullptr; 671 } 672 673 #ifndef PRODUCT 674 void MachProjNode::dump_spec(outputStream *st) const { 675 ProjNode::dump_spec(st); 676 switch (_ideal_reg) { 677 case unmatched_proj: st->print("/unmatched"); break; 678 case fat_proj: st->print("/fat"); if (WizardMode) _rout.dump(st); break; 679 } 680 } 681 #endif 682 683 //============================================================================= 684 #ifndef PRODUCT 685 void MachIfNode::dump_spec(outputStream *st) const { 686 st->print("P=%f, C=%f",_prob, _fcnt); 687 } 688 #endif 689 690 //============================================================================= 691 uint MachReturnNode::size_of() const { return sizeof(*this); } 692 693 //------------------------------Registers-------------------------------------- 694 const RegMask &MachReturnNode::in_RegMask( uint idx ) const { 695 return _in_rms[idx]; 696 } 697 698 const TypePtr *MachReturnNode::adr_type() const { 699 // most returns and calls are assumed to consume & modify all of memory 700 // the matcher will copy non-wide adr_types from ideal originals 701 return _adr_type; 702 } 703 704 //============================================================================= 705 const Type *MachSafePointNode::bottom_type() const { return TypeTuple::MEMBAR; } 706 707 //------------------------------Registers-------------------------------------- 708 const RegMask &MachSafePointNode::in_RegMask( uint idx ) const { 709 // Values in the domain use the users calling convention, embodied in the 710 // _in_rms array of RegMasks. 711 if( idx < TypeFunc::Parms ) return _in_rms[idx]; 712 713 if (idx == TypeFunc::Parms && 714 ideal_Opcode() == Op_SafePoint) { 715 return MachNode::in_RegMask(idx); 716 } 717 718 // Values outside the domain represent debug info 719 assert(in(idx)->ideal_reg() != Op_RegFlags, "flags register is not spillable"); 720 return *Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]; 721 } 722 723 724 //============================================================================= 725 726 bool MachCallNode::cmp( const Node &n ) const 727 { return _tf == ((MachCallNode&)n)._tf; } 728 const Type *MachCallNode::bottom_type() const { return tf()->range_cc(); } 729 const Type* MachCallNode::Value(PhaseGVN* phase) const { return tf()->range_cc(); } 730 731 #ifndef PRODUCT 732 void MachCallNode::dump_spec(outputStream *st) const { 733 st->print("# "); 734 if (tf() != nullptr) tf()->dump_on(st); 735 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt); 736 if (jvms() != nullptr) jvms()->dump_spec(st); 737 } 738 #endif 739 740 bool MachCallNode::return_value_is_used() const { 741 if (tf()->range_sig()->cnt() == TypeFunc::Parms) { 742 // void return 743 return false; 744 } 745 746 // find the projection corresponding to the return value 747 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 748 Node *use = fast_out(i); 749 if (!use->is_Proj()) continue; 750 if (use->as_Proj()->_con == TypeFunc::Parms) { 751 return true; 752 } 753 } 754 return false; 755 } 756 757 // Similar to cousin class CallNode::returns_pointer 758 // Because this is used in deoptimization, we want the type info, not the data 759 // flow info; the interpreter will "use" things that are dead to the optimizer. 760 bool MachCallNode::returns_pointer() const { 761 const TypeTuple *r = tf()->range_sig(); 762 return (r->cnt() > TypeFunc::Parms && 763 r->field_at(TypeFunc::Parms)->isa_ptr()); 764 } 765 766 bool MachCallNode::returns_scalarized() const { 767 return tf()->returns_inline_type_as_fields(); 768 } 769 770 //------------------------------Registers-------------------------------------- 771 const RegMask &MachCallNode::in_RegMask(uint idx) const { 772 // Values in the domain use the users calling convention, embodied in the 773 // _in_rms array of RegMasks. 774 if (entry_point() == nullptr && idx == TypeFunc::Parms) { 775 // Null entry point is a special cast where the target of the call 776 // is in a register. 777 return MachNode::in_RegMask(idx); 778 } 779 if (idx < tf()->domain_sig()->cnt()) { 780 return _in_rms[idx]; 781 } 782 if (idx == mach_constant_base_node_input()) { 783 return MachConstantBaseNode::static_out_RegMask(); 784 } 785 // Values outside the domain represent debug info 786 return *Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]; 787 } 788 789 //============================================================================= 790 uint MachCallJavaNode::size_of() const { return sizeof(*this); } 791 bool MachCallJavaNode::cmp( const Node &n ) const { 792 MachCallJavaNode &call = (MachCallJavaNode&)n; 793 return MachCallNode::cmp(call) && _method->equals(call._method) && 794 _override_symbolic_info == call._override_symbolic_info; 795 } 796 #ifndef PRODUCT 797 void MachCallJavaNode::dump_spec(outputStream *st) const { 798 if (_method_handle_invoke) 799 st->print("MethodHandle "); 800 if (_method) { 801 _method->print_short_name(st); 802 st->print(" "); 803 } 804 MachCallNode::dump_spec(st); 805 } 806 #endif 807 808 //------------------------------Registers-------------------------------------- 809 const RegMask &MachCallJavaNode::in_RegMask(uint idx) const { 810 // Values in the domain use the users calling convention, embodied in the 811 // _in_rms array of RegMasks. 812 if (idx < tf()->domain_cc()->cnt()) { 813 return _in_rms[idx]; 814 } 815 if (idx == mach_constant_base_node_input()) { 816 return MachConstantBaseNode::static_out_RegMask(); 817 } 818 // Values outside the domain represent debug info 819 Matcher* m = Compile::current()->matcher(); 820 // If this call is a MethodHandle invoke we have to use a different 821 // debugmask which does not include the register we use to save the 822 // SP over MH invokes. 823 RegMask** debugmask = _method_handle_invoke ? m->idealreg2mhdebugmask : m->idealreg2debugmask; 824 return *debugmask[in(idx)->ideal_reg()]; 825 } 826 827 //============================================================================= 828 uint MachCallStaticJavaNode::size_of() const { return sizeof(*this); } 829 bool MachCallStaticJavaNode::cmp( const Node &n ) const { 830 MachCallStaticJavaNode &call = (MachCallStaticJavaNode&)n; 831 return MachCallJavaNode::cmp(call) && _name == call._name; 832 } 833 834 //----------------------------uncommon_trap_request---------------------------- 835 // If this is an uncommon trap, return the request code, else zero. 836 int MachCallStaticJavaNode::uncommon_trap_request() const { 837 if (_name != nullptr && !strcmp(_name, "uncommon_trap")) { 838 return CallStaticJavaNode::extract_uncommon_trap_request(this); 839 } 840 return 0; 841 } 842 843 #ifndef PRODUCT 844 // Helper for summarizing uncommon_trap arguments. 845 void MachCallStaticJavaNode::dump_trap_args(outputStream *st) const { 846 int trap_req = uncommon_trap_request(); 847 if (trap_req != 0) { 848 char buf[100]; 849 st->print("(%s)", 850 Deoptimization::format_trap_request(buf, sizeof(buf), 851 trap_req)); 852 } 853 } 854 855 void MachCallStaticJavaNode::dump_spec(outputStream *st) const { 856 st->print("Static "); 857 if (_name != nullptr) { 858 st->print("wrapper for: %s", _name ); 859 dump_trap_args(st); 860 st->print(" "); 861 } 862 MachCallJavaNode::dump_spec(st); 863 } 864 #endif 865 866 //============================================================================= 867 #ifndef PRODUCT 868 void MachCallDynamicJavaNode::dump_spec(outputStream *st) const { 869 st->print("Dynamic "); 870 MachCallJavaNode::dump_spec(st); 871 } 872 #endif 873 //============================================================================= 874 uint MachCallRuntimeNode::size_of() const { return sizeof(*this); } 875 bool MachCallRuntimeNode::cmp( const Node &n ) const { 876 MachCallRuntimeNode &call = (MachCallRuntimeNode&)n; 877 return MachCallNode::cmp(call) && !strcmp(_name,call._name); 878 } 879 #ifndef PRODUCT 880 void MachCallRuntimeNode::dump_spec(outputStream *st) const { 881 st->print("%s ",_name); 882 MachCallNode::dump_spec(st); 883 } 884 #endif 885 //============================================================================= 886 // A shared JVMState for all HaltNodes. Indicates the start of debug info 887 // is at TypeFunc::Parms. Only required for SOE register spill handling - 888 // to indicate where the stack-slot-only debug info inputs begin. 889 // There is no other JVM state needed here. 890 JVMState jvms_for_throw(0); 891 JVMState *MachHaltNode::jvms() const { 892 return &jvms_for_throw; 893 } 894 895 uint MachMemBarNode::size_of() const { return sizeof(*this); } 896 897 const TypePtr *MachMemBarNode::adr_type() const { 898 return _adr_type; 899 } 900 901 902 //============================================================================= 903 #ifndef PRODUCT 904 void labelOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const { 905 st->print("B%d", _block_num); 906 } 907 #endif // PRODUCT 908 909 //============================================================================= 910 #ifndef PRODUCT 911 void methodOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const { 912 st->print(INTPTR_FORMAT, _method); 913 } 914 #endif // PRODUCT