1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "gc/shared/barrierSet.hpp"
 26 #include "gc/shared/c2/barrierSetC2.hpp"
 27 #include "gc/shared/collectedHeap.hpp"
 28 #include "memory/universe.hpp"
 29 #include "oops/compressedOops.hpp"
 30 #include "opto/machnode.hpp"
 31 #include "opto/output.hpp"
 32 #include "opto/regalloc.hpp"
 33 #include "utilities/vmError.hpp"
 34 
 35 //=============================================================================
 36 // Return the value requested
 37 // result register lookup, corresponding to int_format
 38 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node) const {
 39   return (int)ra_->get_encode(node);
 40 }
 41 // input register lookup, corresponding to ext_format
 42 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {
 43   return (int)(ra_->get_encode(node->in(idx)));
 44 }
 45 intptr_t  MachOper::constant() const { return 0x00; }
 46 relocInfo::relocType MachOper::constant_reloc() const { return relocInfo::none; }
 47 jdouble MachOper::constantD() const { ShouldNotReachHere(); }
 48 jfloat  MachOper::constantF() const { ShouldNotReachHere(); }
 49 jshort  MachOper::constantH() const { ShouldNotReachHere(); }
 50 jlong   MachOper::constantL() const { ShouldNotReachHere(); }
 51 TypeOopPtr *MachOper::oop() const { return nullptr; }
 52 int MachOper::ccode() const { return 0x00; }
 53 // A zero, default, indicates this value is not needed.
 54 // May need to lookup the base register, as done in int_ and ext_format
 55 int MachOper::base (PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
 56 int MachOper::index(PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
 57 int MachOper::scale()  const { return 0x00; }
 58 int MachOper::disp (PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
 59 int MachOper::constant_disp()  const { return 0; }
 60 int MachOper::base_position()  const { return -1; }  // no base input
 61 int MachOper::index_position() const { return -1; }  // no index input
 62 // Check for PC-Relative displacement
 63 relocInfo::relocType MachOper::disp_reloc() const { return relocInfo::none; }
 64 // Return the label
 65 Label*   MachOper::label()  const { ShouldNotReachHere(); }
 66 intptr_t MachOper::method() const { ShouldNotReachHere(); }
 67 
 68 
 69 //------------------------------negate-----------------------------------------
 70 // Negate conditional branches.  Error for non-branch operands
 71 void MachOper::negate() {
 72   ShouldNotCallThis();
 73 }
 74 
 75 //-----------------------------type--------------------------------------------
 76 const Type *MachOper::type() const {
 77   return Type::BOTTOM;
 78 }
 79 
 80 //------------------------------in_RegMask-------------------------------------
 81 const RegMask *MachOper::in_RegMask(int index) const {
 82   ShouldNotReachHere();
 83 }
 84 
 85 //------------------------------dump_spec--------------------------------------
 86 // Print any per-operand special info
 87 #ifndef PRODUCT
 88 void MachOper::dump_spec(outputStream *st) const { }
 89 #endif
 90 
 91 //------------------------------hash-------------------------------------------
 92 // Print any per-operand special info
 93 uint MachOper::hash() const {
 94   ShouldNotCallThis();
 95 }
 96 
 97 //------------------------------cmp--------------------------------------------
 98 // Print any per-operand special info
 99 bool MachOper::cmp( const MachOper &oper ) const {
100   ShouldNotCallThis();
101 }
102 
103 //------------------------------hash-------------------------------------------
104 // Print any per-operand special info
105 uint labelOper::hash() const {
106   return _block_num;
107 }
108 
109 //------------------------------cmp--------------------------------------------
110 // Print any per-operand special info
111 bool labelOper::cmp( const MachOper &oper ) const {
112   return (opcode() == oper.opcode()) && (_label == oper.label());
113 }
114 
115 //------------------------------hash-------------------------------------------
116 // Print any per-operand special info
117 uint methodOper::hash() const {
118   return (uint)_method;
119 }
120 
121 //------------------------------cmp--------------------------------------------
122 // Print any per-operand special info
123 bool methodOper::cmp( const MachOper &oper ) const {
124   return (opcode() == oper.opcode()) && (_method == oper.method());
125 }
126 
127 
128 //=============================================================================
129 //------------------------------MachNode---------------------------------------
130 
131 //------------------------------emit-------------------------------------------
132 void MachNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
133   #ifdef ASSERT
134   tty->print("missing MachNode emit function: ");
135   dump();
136   #endif
137   ShouldNotCallThis();
138 }
139 
140 //---------------------------postalloc_expand----------------------------------
141 // Expand node after register allocation.
142 void MachNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {}
143 
144 //------------------------------size-------------------------------------------
145 // Size of instruction in bytes
146 uint MachNode::size(PhaseRegAlloc *ra_) const {
147   // If a virtual was not defined for this specific instruction,
148   // Call the helper which finds the size by emitting the bits.
149   return MachNode::emit_size(ra_);
150 }
151 
152 //------------------------------size-------------------------------------------
153 // Helper function that computes size by emitting code
154 uint MachNode::emit_size(PhaseRegAlloc *ra_) const {
155   // Emit into a trash buffer and count bytes emitted.
156   assert(ra_ == ra_->C->regalloc(), "sanity");
157   return ra_->C->output()->scratch_emit_size(this);
158 }
159 
160 
161 
162 //------------------------------hash-------------------------------------------
163 uint MachNode::hash() const {
164   uint no = num_opnds();
165   uint sum = rule();
166   for( uint i=0; i<no; i++ )
167     sum += _opnds[i]->hash();
168   return sum+Node::hash();
169 }
170 
171 //-----------------------------cmp---------------------------------------------
172 bool MachNode::cmp( const Node &node ) const {
173   MachNode& n = *((Node&)node).as_Mach();
174   uint no = num_opnds();
175   if( no != n.num_opnds() ) return false;
176   if( rule() != n.rule() ) return false;
177   for( uint i=0; i<no; i++ )    // All operands must match
178     if( !_opnds[i]->cmp( *n._opnds[i] ) )
179       return false;             // mis-matched operands
180   return true;                  // match
181 }
182 
183 void MachNode::fill_new_machnode(MachNode* node) const {
184   // New node must use same node index
185   node->set_idx(_idx);
186   // Copy machine-independent inputs
187   for (uint j = 0; j < req(); j++) {
188     node->add_req(in(j));
189   }
190   // Copy my operands, except for cisc position
191   int nopnds = num_opnds();
192   assert(node->num_opnds() == (uint)nopnds, "Must have same number of operands");
193   MachOper** to = node->_opnds;
194   for (int i = 0; i < nopnds; i++) {
195     if (i != cisc_operand()) {
196       to[i] = _opnds[i]->clone();
197     }
198   }
199   // Do not increment node index counter, since node reuses my index
200   Compile* C = Compile::current();
201   C->set_unique(C->unique() - 1);
202 }
203 
204 // Return an equivalent instruction using memory for cisc_operand position
205 MachNode *MachNode::cisc_version(int offset) {
206   ShouldNotCallThis();
207 }
208 
209 void MachNode::use_cisc_RegMask() {
210   ShouldNotReachHere();
211 }
212 
213 
214 //-----------------------------in_RegMask--------------------------------------
215 const RegMask &MachNode::in_RegMask( uint idx ) const {
216   uint numopnds = num_opnds();        // Virtual call for number of operands
217   uint skipped   = oper_input_base(); // Sum of leaves skipped so far
218   if( idx < skipped ) {
219     assert( ideal_Opcode() == Op_AddP, "expected base ptr here" );
220     assert( idx == 1, "expected base ptr here" );
221     // debug info can be anywhere
222     return *Compile::current()->matcher()->idealreg2spillmask[Op_RegP];
223   }
224   uint opcnt     = 1;                 // First operand
225   uint num_edges = _opnds[1]->num_edges(); // leaves for first operand
226   while( idx >= skipped+num_edges ) {
227     skipped += num_edges;
228     opcnt++;                          // Bump operand count
229     assert( opcnt < numopnds, "Accessing non-existent operand" );
230     num_edges = _opnds[opcnt]->num_edges(); // leaves for next operand
231   }
232 
233   const RegMask *rm = cisc_RegMask();
234   if( rm == nullptr || (int)opcnt != cisc_operand() ) {
235     rm = _opnds[opcnt]->in_RegMask(idx-skipped);
236   }
237   return *rm;
238 }
239 
240 //-----------------------------memory_inputs--------------------------------
241 const MachOper*  MachNode::memory_inputs(Node* &base, Node* &index) const {
242   const MachOper* oper = memory_operand();
243 
244   if (oper == (MachOper*)-1) {
245     base = NodeSentinel;
246     index = NodeSentinel;
247   } else {
248     base = nullptr;
249     index = nullptr;
250     if (oper != nullptr) {
251       // It has a unique memory operand.  Find its index.
252       int oper_idx = num_opnds();
253       while (--oper_idx >= 0) {
254         if (_opnds[oper_idx] == oper)  break;
255       }
256       int oper_pos = operand_index(oper_idx);
257       int base_pos = oper->base_position();
258       if (base_pos >= 0) {
259         base = _in[oper_pos+base_pos];
260       }
261       int index_pos = oper->index_position();
262       if (index_pos >= 0) {
263         index = _in[oper_pos+index_pos];
264       }
265     }
266   }
267 
268   return oper;
269 }
270 
271 //-----------------------------get_base_and_disp----------------------------
272 const Node* MachNode::get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const {
273 
274   // Find the memory inputs using our helper function
275   Node* base;
276   Node* index;
277   const MachOper* oper = memory_inputs(base, index);
278 
279   if (oper == nullptr) {
280     // Base has been set to null
281     offset = 0;
282   } else if (oper == (MachOper*)-1) {
283     // Base has been set to NodeSentinel
284     // There is not a unique memory use here.  We will fall to AliasIdxBot.
285     offset = Type::OffsetBot;
286   } else {
287     // Base may be null, even if offset turns out to be != 0
288 
289     intptr_t disp = oper->constant_disp();
290     int scale = oper->scale();
291     // Now we have collected every part of the ADLC MEMORY_INTER.
292     // See if it adds up to a base + offset.
293     if (index != nullptr) {
294       const Type* t_index = index->bottom_type();
295       if (t_index->isa_narrowoop() || t_index->isa_narrowklass()) { // EncodeN, LoadN, LoadConN, LoadNKlass,
296                                                                     // EncodeNKlass, LoadConNklass.
297         // Memory references through narrow oops have a
298         // funny base so grab the type from the index:
299         // [R12 + narrow_oop_reg<<3 + offset]
300         assert(base == nullptr, "Memory references through narrow oops have no base");
301         offset = disp;
302         adr_type = t_index->make_ptr()->add_offset(offset);
303         return nullptr;
304       } else if (!index->is_Con()) {
305         disp = Type::OffsetBot;
306       } else if (disp != Type::OffsetBot) {
307         const TypeX* ti = t_index->isa_intptr_t();
308         if (ti == nullptr) {
309           disp = Type::OffsetBot;  // a random constant??
310         } else {
311           disp += ti->get_con() << scale;
312         }
313       }
314     }
315     offset = disp;
316 
317     // In x86_32.ad, indOffset32X uses base==RegI and disp==RegP,
318     // this will prevent alias analysis without the following support:
319     // Lookup the TypePtr used by indOffset32X, a compile-time constant oop,
320     // Add the offset determined by the "base", or use Type::OffsetBot.
321     if( adr_type == TYPE_PTR_SENTINAL ) {
322       const TypePtr *t_disp = oper->disp_as_type();  // only not null for indOffset32X
323       if (t_disp != nullptr) {
324         offset = Type::OffsetBot;
325         const Type* t_base = base->bottom_type();
326         if (t_base->isa_intptr_t()) {
327           const TypeX *t_offset = t_base->is_intptr_t();
328           if( t_offset->is_con() ) {
329             offset = t_offset->get_con();
330           }
331         }
332         adr_type = t_disp->add_offset(offset);
333       } else if( base == nullptr && offset != 0 && offset != Type::OffsetBot ) {
334         // Use ideal type if it is oop ptr.
335         const TypePtr *tp = oper->type()->isa_ptr();
336         if( tp != nullptr) {
337           adr_type = tp;
338         }
339       }
340     }
341 
342   }
343   return base;
344 }
345 
346 
347 //---------------------------------adr_type---------------------------------
348 const class TypePtr *MachNode::adr_type() const {
349   intptr_t offset = 0;
350   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // attempt computing adr_type
351   const Node *base = get_base_and_disp(offset, adr_type);
352   if( adr_type != TYPE_PTR_SENTINAL ) {
353     return adr_type;      // get_base_and_disp has the answer
354   }
355 
356 #ifdef ASSERT
357   if (base != nullptr && base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_VerifyVectorAlignment) {
358     // For VerifyVectorAlignment we just pass the type through
359     return base->bottom_type()->is_ptr();
360   }
361 #endif
362 
363   // Direct addressing modes have no base node, simply an indirect
364   // offset, which is always to raw memory.
365   // %%%%% Someday we'd like to allow constant oop offsets which
366   // would let Intel load from static globals in 1 instruction.
367   // Currently Intel requires 2 instructions and a register temp.
368   if (base == nullptr) {
369     // null base, zero offset means no memory at all (a null pointer!)
370     if (offset == 0) {
371       return nullptr;
372     }
373     // null base, any offset means any pointer whatever
374     if (offset == Type::OffsetBot) {
375       return TypePtr::BOTTOM;
376     }
377     // %%% make offset be intptr_t
378     assert(!Universe::heap()->is_in(cast_to_oop(offset)), "must be a raw ptr");
379     return TypeRawPtr::BOTTOM;
380   }
381 
382   // base of -1 with no particular offset means all of memory
383   if (base == NodeSentinel)  return TypePtr::BOTTOM;
384 
385   const Type* t = base->bottom_type();
386   if (t->isa_narrowoop() && CompressedOops::shift() == 0) {
387     // 32-bit unscaled narrow oop can be the base of any address expression
388     t = t->make_ptr();
389   }
390   if (t->isa_narrowklass() && CompressedKlassPointers::shift() == 0) {
391     // 32-bit unscaled narrow oop can be the base of any address expression
392     t = t->make_ptr();
393   }
394 
395   if (t->isa_intptr_t() &&
396 #if !defined(AARCH64)
397       // AArch64 supports the addressing mode:
398       // [base, 0], in which [base] is converted from a long value
399       offset != 0 &&
400 #endif
401       offset != Type::OffsetBot) {
402     // We cannot assert that the offset does not look oop-ish here.
403     // Depending on the heap layout the cardmark base could land
404     // inside some oopish region.  It definitely does for Win2K.
405     // The sum of cardmark-base plus shift-by-9-oop lands outside
406     // the oop-ish area but we can't assert for that statically.
407     return TypeRawPtr::BOTTOM;
408   }
409 
410   const TypePtr *tp = t->isa_ptr();
411 
412   // be conservative if we do not recognize the type
413   if (tp == nullptr) {
414     assert(false, "this path may produce not optimal code");
415     return TypePtr::BOTTOM;
416   }
417   assert(tp->base() != Type::AnyPtr, "not a bare pointer");
418 
419   if (tp->isa_aryptr()) {
420     // In the case of a flat inline type array, each field has its
421     // own slice so we need to extract the field being accessed from
422     // the address computation
423     if (offset == Type::OffsetBot) {
424       Node* base;
425       Node* index;
426       const MachOper* oper = memory_inputs(base, index);
427       if (oper != (MachOper*)-1) {
428         offset = oper->constant_disp();
429         return tp->is_aryptr()->add_field_offset_and_offset(offset)->add_offset(Type::OffsetBot);
430       }
431     }
432     return tp->is_aryptr()->add_field_offset_and_offset(offset);
433   }
434 
435   return tp->add_offset(offset);
436 }
437 
438 
439 //-----------------------------operand_index---------------------------------
440 int MachNode::operand_index(uint operand) const {
441   if (operand < 1)  return -1;
442   assert(operand < num_opnds(), "oob");
443   if (_opnds[operand]->num_edges() == 0)  return -1;
444 
445   uint skipped   = oper_input_base(); // Sum of leaves skipped so far
446   for (uint opcnt = 1; opcnt < operand; opcnt++) {
447     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
448     skipped += num_edges;
449   }
450   return skipped;
451 }
452 
453 int MachNode::operand_index(const MachOper *oper) const {
454   uint skipped = oper_input_base(); // Sum of leaves skipped so far
455   uint opcnt;
456   for (opcnt = 1; opcnt < num_opnds(); opcnt++) {
457     if (_opnds[opcnt] == oper) break;
458     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
459     skipped += num_edges;
460   }
461   if (_opnds[opcnt] != oper) return -1;
462   return skipped;
463 }
464 
465 int MachNode::operand_index(Node* def) const {
466   uint skipped = oper_input_base(); // Sum of leaves skipped so far
467   for (uint opcnt = 1; opcnt < num_opnds(); opcnt++) {
468     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
469     for (uint i = 0; i < num_edges; i++) {
470       if (in(skipped + i) == def) {
471         return opcnt;
472       }
473     }
474     skipped += num_edges;
475   }
476   return -1;
477 }
478 
479 //------------------------------peephole---------------------------------------
480 // Apply peephole rule(s) to this instruction
481 int MachNode::peephole(Block *block, int block_index, PhaseCFG* cfg_, PhaseRegAlloc *ra_) {
482   return -1;
483 }
484 
485 //------------------------------add_case_label---------------------------------
486 // Adds the label for the case
487 void MachNode::add_case_label( int index_num, Label* blockLabel) {
488   ShouldNotCallThis();
489 }
490 
491 //------------------------------method_set-------------------------------------
492 // Set the absolute address of a method
493 void MachNode::method_set( intptr_t addr ) {
494   ShouldNotCallThis();
495 }
496 
497 //------------------------------rematerialize----------------------------------
498 bool MachNode::rematerialize() const {
499   // Never rematerialize CastI2N because it might "hide" narrow oops from a safepoint
500   if (ideal_Opcode() == Op_CastI2N) {
501     return false;
502   }
503 
504   // Temps are always rematerializable
505   if (is_MachTemp()) return true;
506 
507   uint r = rule();              // Match rule
508   if (r <  Matcher::_begin_rematerialize ||
509       r >= Matcher::_end_rematerialize) {
510     return false;
511   }
512 
513   // For 2-address instructions, the input live range is also the output
514   // live range. Remateralizing does not make progress on the that live range.
515   if (two_adr()) return false;
516 
517   // Check for rematerializing float constants, or not
518   if (!Matcher::rematerialize_float_constants) {
519     int op = ideal_Opcode();
520     if (op == Op_ConF || op == Op_ConD) {
521       return false;
522     }
523   }
524 
525   // Defining flags - can't spill these! Must remateralize.
526   if (ideal_reg() == Op_RegFlags) {
527     return true;
528   }
529 
530   // Stretching lots of inputs - don't do it.
531   // A MachContant has the last input being the constant base
532   if (req() > (is_MachConstant() ? 3U : 2U)) {
533     return false;
534   }
535 
536   if (req() >= 2 && in(1) && in(1)->ideal_reg() == Op_RegFlags) {
537     // In(1) will be rematerialized, too.
538     // Stretching lots of inputs - don't do it.
539     if (in(1)->req() > (in(1)->is_MachConstant() ? 3U : 2U)) {
540       return false;
541     }
542   }
543 
544   // Don't remateralize somebody with bound inputs - it stretches a
545   // fixed register lifetime.
546   uint idx = oper_input_base();
547   if (req() > idx) {
548     const RegMask &rm = in_RegMask(idx);
549     if (rm.is_NotEmpty() && rm.is_bound(ideal_reg())) {
550       return false;
551     }
552   }
553 
554   return true;
555 }
556 
557 #ifndef PRODUCT
558 //------------------------------dump_spec--------------------------------------
559 // Print any per-operand special info
560 void MachNode::dump_spec(outputStream *st) const {
561   uint cnt = num_opnds();
562   for( uint i=0; i<cnt; i++ ) {
563     if (_opnds[i] != nullptr) {
564       _opnds[i]->dump_spec(st);
565     } else {
566       st->print(" _");
567     }
568   }
569   const TypePtr *t = adr_type();
570   if( t ) {
571     Compile* C = Compile::current();
572     if( C->alias_type(t)->is_volatile() )
573       st->print(" Volatile!");
574   }
575   if (barrier_data() != 0) {
576     st->print(" barrier(");
577     BarrierSet::barrier_set()->barrier_set_c2()->dump_barrier_data(this, st);
578     st->print(") ");
579   }
580 }
581 
582 //------------------------------dump_format------------------------------------
583 // access to virtual
584 void MachNode::dump_format(PhaseRegAlloc *ra, outputStream *st) const {
585   format(ra, st); // access to virtual
586 }
587 #endif
588 
589 //=============================================================================
590 #ifndef PRODUCT
591 void MachTypeNode::dump_spec(outputStream *st) const {
592   MachNode::dump_spec(st);
593   if (_bottom_type != nullptr) {
594     _bottom_type->dump_on(st);
595   } else {
596     st->print(" null");
597   }
598 }
599 #endif
600 
601 
602 //=============================================================================
603 int MachConstantNode::constant_offset() {
604   // Bind the offset lazily.
605   if (_constant.offset() == -1) {
606     ConstantTable& constant_table = Compile::current()->output()->constant_table();
607     int offset = constant_table.find_offset(_constant);
608     // If called from Compile::scratch_emit_size return the
609     // pre-calculated offset.
610     // NOTE: If the AD file does some table base offset optimizations
611     // later the AD file needs to take care of this fact.
612     if (Compile::current()->output()->in_scratch_emit_size()) {
613       return constant_table.calculate_table_base_offset() + offset;
614     }
615     _constant.set_offset(constant_table.table_base_offset() + offset);
616   }
617   return _constant.offset();
618 }
619 
620 int MachConstantNode::constant_offset_unchecked() const {
621   return _constant.offset();
622 }
623 
624 //=============================================================================
625 #ifndef PRODUCT
626 void MachNullCheckNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
627   int reg = ra_->get_reg_first(in(1)->in(_vidx));
628   st->print("%s %s", Name(), Matcher::regName[reg]);
629 }
630 #endif
631 
632 void MachNullCheckNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
633   // only emits entries in the null-pointer exception handler table
634 }
635 void MachNullCheckNode::label_set(Label* label, uint block_num) {
636   // Nothing to emit
637 }
638 void MachNullCheckNode::save_label( Label** label, uint* block_num ) {
639   // Nothing to emit
640 }
641 
642 const RegMask &MachNullCheckNode::in_RegMask( uint idx ) const {
643   if( idx == 0 ) return RegMask::Empty;
644   else return in(1)->as_Mach()->out_RegMask();
645 }
646 
647 //=============================================================================
648 const Type *MachProjNode::bottom_type() const {
649   if( _ideal_reg == fat_proj ) return Type::BOTTOM;
650   // Try the normal mechanism first
651   const Type *t = in(0)->bottom_type();
652   if( t->base() == Type::Tuple ) {
653     const TypeTuple *tt = t->is_tuple();
654     if (_con < tt->cnt())
655       return tt->field_at(_con);
656   }
657   // Else use generic type from ideal register set
658   assert((uint)_ideal_reg < (uint)_last_machine_leaf && Type::mreg2type[_ideal_reg], "in bounds");
659   return Type::mreg2type[_ideal_reg];
660 }
661 
662 const TypePtr *MachProjNode::adr_type() const {
663   if (bottom_type() == Type::MEMORY) {
664     // in(0) might be a narrow MemBar; otherwise we will report TypePtr::BOTTOM
665     Node* ctrl = in(0);
666     if (ctrl == nullptr)  return nullptr; // node is dead
667     const TypePtr* adr_type = ctrl->adr_type();
668     #ifdef ASSERT
669     if (!VMError::is_error_reported() && !Node::in_dump())
670       assert(adr_type != nullptr, "source must have adr_type");
671     #endif
672     return adr_type;
673   }
674   assert(bottom_type()->base() != Type::Memory, "no other memories?");
675   return nullptr;
676 }
677 
678 #ifndef PRODUCT
679 void MachProjNode::dump_spec(outputStream *st) const {
680   ProjNode::dump_spec(st);
681   switch (_ideal_reg) {
682   case unmatched_proj:  st->print("/unmatched");                           break;
683   case fat_proj:        st->print("/fat"); if (WizardMode) _rout.dump(st); break;
684   }
685 }
686 #endif
687 
688 //=============================================================================
689 #ifndef PRODUCT
690 void MachIfNode::dump_spec(outputStream *st) const {
691   st->print("P=%f, C=%f",_prob, _fcnt);
692 }
693 #endif
694 
695 //=============================================================================
696 uint MachReturnNode::size_of() const { return sizeof(*this); }
697 
698 //------------------------------Registers--------------------------------------
699 const RegMask &MachReturnNode::in_RegMask( uint idx ) const {
700   return _in_rms[idx];
701 }
702 
703 const TypePtr *MachReturnNode::adr_type() const {
704   // most returns and calls are assumed to consume & modify all of memory
705   // the matcher will copy non-wide adr_types from ideal originals
706   return _adr_type;
707 }
708 
709 //=============================================================================
710 const Type *MachSafePointNode::bottom_type() const {  return TypeTuple::MEMBAR; }
711 
712 //------------------------------Registers--------------------------------------
713 const RegMask &MachSafePointNode::in_RegMask( uint idx ) const {
714   // Values in the domain use the users calling convention, embodied in the
715   // _in_rms array of RegMasks.
716   if( idx < TypeFunc::Parms ) return _in_rms[idx];
717 
718   if (idx == TypeFunc::Parms &&
719       ideal_Opcode() == Op_SafePoint) {
720     return MachNode::in_RegMask(idx);
721   }
722 
723   // Values outside the domain represent debug info
724   assert(in(idx)->ideal_reg() != Op_RegFlags, "flags register is not spillable");
725   return *Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()];
726 }
727 
728 
729 //=============================================================================
730 
731 bool MachCallNode::cmp( const Node &n ) const
732 { return _tf == ((MachCallNode&)n)._tf; }
733 const Type *MachCallNode::bottom_type() const { return tf()->range_cc(); }
734 const Type* MachCallNode::Value(PhaseGVN* phase) const { return tf()->range_cc(); }
735 
736 #ifndef PRODUCT
737 void MachCallNode::dump_spec(outputStream *st) const {
738   st->print("# ");
739   if (tf() != nullptr)  tf()->dump_on(st);
740   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
741   if (jvms() != nullptr)  jvms()->dump_spec(st);
742 }
743 #endif
744 
745 bool MachCallNode::return_value_is_used() const {
746   if (tf()->range_sig()->cnt() == TypeFunc::Parms) {
747     // void return
748     return false;
749   }
750 
751   // find the projection corresponding to the return value
752   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
753     Node *use = fast_out(i);
754     if (!use->is_Proj()) continue;
755     if (use->as_Proj()->_con == TypeFunc::Parms) {
756       return true;
757     }
758   }
759   return false;
760 }
761 
762 // Similar to cousin class CallNode::returns_pointer
763 // Because this is used in deoptimization, we want the type info, not the data
764 // flow info; the interpreter will "use" things that are dead to the optimizer.
765 bool MachCallNode::returns_pointer() const {
766   const TypeTuple *r = tf()->range_sig();
767   return (r->cnt() > TypeFunc::Parms &&
768           r->field_at(TypeFunc::Parms)->isa_ptr());
769 }
770 
771 bool MachCallNode::returns_scalarized() const {
772   return tf()->returns_inline_type_as_fields();
773 }
774 
775 //------------------------------Registers--------------------------------------
776 const RegMask &MachCallNode::in_RegMask(uint idx) const {
777   // Values in the domain use the users calling convention, embodied in the
778   // _in_rms array of RegMasks.
779   if (entry_point() == nullptr && idx == TypeFunc::Parms) {
780     // Null entry point is a special cast where the target of the call
781     // is in a register.
782     return MachNode::in_RegMask(idx);
783   }
784   if (idx < tf()->domain_sig()->cnt()) {
785     return _in_rms[idx];
786   }
787   if (idx == mach_constant_base_node_input()) {
788     return MachConstantBaseNode::static_out_RegMask();
789   }
790   // Values outside the domain represent debug info
791   return *Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()];
792 }
793 
794 //=============================================================================
795 uint MachCallJavaNode::size_of() const { return sizeof(*this); }
796 bool MachCallJavaNode::cmp( const Node &n ) const {
797   MachCallJavaNode &call = (MachCallJavaNode&)n;
798   return MachCallNode::cmp(call) && _method->equals(call._method) &&
799          _override_symbolic_info == call._override_symbolic_info;
800 }
801 #ifndef PRODUCT
802 void MachCallJavaNode::dump_spec(outputStream *st) const {
803   if (_method_handle_invoke)
804     st->print("MethodHandle ");
805   if (_method) {
806     _method->print_short_name(st);
807     st->print(" ");
808   }
809   MachCallNode::dump_spec(st);
810 }
811 #endif
812 
813 //------------------------------Registers--------------------------------------
814 const RegMask &MachCallJavaNode::in_RegMask(uint idx) const {
815   // Values in the domain use the users calling convention, embodied in the
816   // _in_rms array of RegMasks.
817   if (idx < tf()->domain_cc()->cnt()) {
818     return _in_rms[idx];
819   }
820   if (idx == mach_constant_base_node_input()) {
821     return MachConstantBaseNode::static_out_RegMask();
822   }
823   // Values outside the domain represent debug info
824   Matcher* m = Compile::current()->matcher();
825   // If this call is a MethodHandle invoke we have to use a different
826   // debugmask which does not include the register we use to save the
827   // SP over MH invokes.
828   RegMask** debugmask = _method_handle_invoke ? m->idealreg2mhdebugmask : m->idealreg2debugmask;
829   return *debugmask[in(idx)->ideal_reg()];
830 }
831 
832 //=============================================================================
833 uint MachCallStaticJavaNode::size_of() const { return sizeof(*this); }
834 bool MachCallStaticJavaNode::cmp( const Node &n ) const {
835   MachCallStaticJavaNode &call = (MachCallStaticJavaNode&)n;
836   return MachCallJavaNode::cmp(call) && _name == call._name;
837 }
838 
839 //----------------------------uncommon_trap_request----------------------------
840 // If this is an uncommon trap, return the request code, else zero.
841 int MachCallStaticJavaNode::uncommon_trap_request() const {
842   if (_name != nullptr && !strcmp(_name, "uncommon_trap")) {
843     return CallStaticJavaNode::extract_uncommon_trap_request(this);
844   }
845   return 0;
846 }
847 
848 #ifndef PRODUCT
849 // Helper for summarizing uncommon_trap arguments.
850 void MachCallStaticJavaNode::dump_trap_args(outputStream *st) const {
851   int trap_req = uncommon_trap_request();
852   if (trap_req != 0) {
853     char buf[100];
854     st->print("(%s)",
855                Deoptimization::format_trap_request(buf, sizeof(buf),
856                                                    trap_req));
857   }
858 }
859 
860 void MachCallStaticJavaNode::dump_spec(outputStream *st) const {
861   st->print("Static ");
862   if (_name != nullptr) {
863     st->print("wrapper for: %s", _name );
864     dump_trap_args(st);
865     st->print(" ");
866   }
867   MachCallJavaNode::dump_spec(st);
868 }
869 #endif
870 
871 //=============================================================================
872 #ifndef PRODUCT
873 void MachCallDynamicJavaNode::dump_spec(outputStream *st) const {
874   st->print("Dynamic ");
875   MachCallJavaNode::dump_spec(st);
876 }
877 #endif
878 //=============================================================================
879 uint MachCallRuntimeNode::size_of() const { return sizeof(*this); }
880 bool MachCallRuntimeNode::cmp( const Node &n ) const {
881   MachCallRuntimeNode &call = (MachCallRuntimeNode&)n;
882   return MachCallNode::cmp(call) && !strcmp(_name,call._name);
883 }
884 #ifndef PRODUCT
885 void MachCallRuntimeNode::dump_spec(outputStream *st) const {
886   st->print("%s ",_name);
887   MachCallNode::dump_spec(st);
888 }
889 #endif
890 //=============================================================================
891 // A shared JVMState for all HaltNodes.  Indicates the start of debug info
892 // is at TypeFunc::Parms.  Only required for SOE register spill handling -
893 // to indicate where the stack-slot-only debug info inputs begin.
894 // There is no other JVM state needed here.
895 JVMState jvms_for_throw(0);
896 JVMState *MachHaltNode::jvms() const {
897   return &jvms_for_throw;
898 }
899 
900 uint MachMemBarNode::size_of() const { return sizeof(*this); }
901 
902 const TypePtr *MachMemBarNode::adr_type() const {
903   return _adr_type;
904 }
905 
906 
907 //=============================================================================
908 #ifndef PRODUCT
909 void labelOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
910   st->print("B%d", _block_num);
911 }
912 #endif // PRODUCT
913 
914 //=============================================================================
915 #ifndef PRODUCT
916 void methodOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
917   st->print(INTPTR_FORMAT, _method);
918 }
919 #endif // PRODUCT