1 /*
   2  * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/collectedHeap.inline.hpp"
  28 #include "gc/shared/tlab_globals.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/universe.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/graphKit.hpp"
  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/loopnode.hpp"
  42 #include "opto/macro.hpp"
  43 #include "opto/memnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/node.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/phaseX.hpp"
  48 #include "opto/rootnode.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/subnode.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "opto/type.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "runtime/continuation.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #if INCLUDE_G1GC
  59 #include "gc/g1/g1ThreadLocalData.hpp"
  60 #endif // INCLUDE_G1GC
  61 
  62 
  63 //
  64 // Replace any references to "oldref" in inputs to "use" with "newref".
  65 // Returns the number of replacements made.
  66 //
  67 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  68   int nreplacements = 0;
  69   uint req = use->req();
  70   for (uint j = 0; j < use->len(); j++) {
  71     Node *uin = use->in(j);
  72     if (uin == oldref) {
  73       if (j < req)
  74         use->set_req(j, newref);
  75       else
  76         use->set_prec(j, newref);
  77       nreplacements++;
  78     } else if (j >= req && uin == nullptr) {
  79       break;
  80     }
  81   }
  82   return nreplacements;
  83 }
  84 
  85 void PhaseMacroExpand::migrate_outs(Node *old, Node *target) {
  86   assert(old != nullptr, "sanity");
  87   for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) {
  88     Node* use = old->fast_out(i);
  89     _igvn.rehash_node_delayed(use);
  90     imax -= replace_input(use, old, target);
  91     // back up iterator
  92     --i;
  93   }
  94   assert(old->outcnt() == 0, "all uses must be deleted");
  95 }
  96 
  97 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
  98   Node* cmp;
  99   if (mask != 0) {
 100     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
 101     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
 102   } else {
 103     cmp = word;
 104   }
 105   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
 106   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 107   transform_later(iff);
 108 
 109   // Fast path taken.
 110   Node *fast_taken = transform_later(new IfFalseNode(iff));
 111 
 112   // Fast path not-taken, i.e. slow path
 113   Node *slow_taken = transform_later(new IfTrueNode(iff));
 114 
 115   if (return_fast_path) {
 116     region->init_req(edge, slow_taken); // Capture slow-control
 117     return fast_taken;
 118   } else {
 119     region->init_req(edge, fast_taken); // Capture fast-control
 120     return slow_taken;
 121   }
 122 }
 123 
 124 //--------------------copy_predefined_input_for_runtime_call--------------------
 125 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 126   // Set fixed predefined input arguments
 127   call->init_req( TypeFunc::Control, ctrl );
 128   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 129   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 130   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 131   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 132 }
 133 
 134 //------------------------------make_slow_call---------------------------------
 135 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 136                                            address slow_call, const char* leaf_name, Node* slow_path,
 137                                            Node* parm0, Node* parm1, Node* parm2) {
 138 
 139   // Slow-path call
 140  CallNode *call = leaf_name
 141    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 142    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM );
 143 
 144   // Slow path call has no side-effects, uses few values
 145   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 146   if (parm0 != nullptr)  call->init_req(TypeFunc::Parms+0, parm0);
 147   if (parm1 != nullptr)  call->init_req(TypeFunc::Parms+1, parm1);
 148   if (parm2 != nullptr)  call->init_req(TypeFunc::Parms+2, parm2);
 149   call->copy_call_debug_info(&_igvn, oldcall);
 150   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 151   _igvn.replace_node(oldcall, call);
 152   transform_later(call);
 153 
 154   return call;
 155 }
 156 
 157 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
 158   BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 159   bs->eliminate_gc_barrier(this, p2x);
 160 #ifndef PRODUCT
 161   if (PrintOptoStatistics) {
 162     Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter);
 163   }
 164 #endif
 165 }
 166 
 167 // Search for a memory operation for the specified memory slice.
 168 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 169   Node *orig_mem = mem;
 170   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 171   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 172   while (true) {
 173     if (mem == alloc_mem || mem == start_mem ) {
 174       return mem;  // hit one of our sentinels
 175     } else if (mem->is_MergeMem()) {
 176       mem = mem->as_MergeMem()->memory_at(alias_idx);
 177     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 178       Node *in = mem->in(0);
 179       // we can safely skip over safepoints, calls, locks and membars because we
 180       // already know that the object is safe to eliminate.
 181       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 182         return in;
 183       } else if (in->is_Call()) {
 184         CallNode *call = in->as_Call();
 185         if (call->may_modify(tinst, phase)) {
 186           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 187           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 188             return in;
 189           }
 190         }
 191         mem = in->in(TypeFunc::Memory);
 192       } else if (in->is_MemBar()) {
 193         ArrayCopyNode* ac = nullptr;
 194         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 195           if (ac != nullptr) {
 196             assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 197             return ac;
 198           }
 199         }
 200         mem = in->in(TypeFunc::Memory);
 201       } else {
 202 #ifdef ASSERT
 203         in->dump();
 204         mem->dump();
 205         assert(false, "unexpected projection");
 206 #endif
 207       }
 208     } else if (mem->is_Store()) {
 209       const TypePtr* atype = mem->as_Store()->adr_type();
 210       int adr_idx = phase->C->get_alias_index(atype);
 211       if (adr_idx == alias_idx) {
 212         assert(atype->isa_oopptr(), "address type must be oopptr");
 213         int adr_offset = atype->offset();
 214         uint adr_iid = atype->is_oopptr()->instance_id();
 215         // Array elements references have the same alias_idx
 216         // but different offset and different instance_id.
 217         if (adr_offset == offset && adr_iid == alloc->_idx) {
 218           return mem;
 219         }
 220       } else {
 221         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 222       }
 223       mem = mem->in(MemNode::Memory);
 224     } else if (mem->is_ClearArray()) {
 225       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 226         // Can not bypass initialization of the instance
 227         // we are looking.
 228         debug_only(intptr_t offset;)
 229         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 230         InitializeNode* init = alloc->as_Allocate()->initialization();
 231         // We are looking for stored value, return Initialize node
 232         // or memory edge from Allocate node.
 233         if (init != nullptr) {
 234           return init;
 235         } else {
 236           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 237         }
 238       }
 239       // Otherwise skip it (the call updated 'mem' value).
 240     } else if (mem->Opcode() == Op_SCMemProj) {
 241       mem = mem->in(0);
 242       Node* adr = nullptr;
 243       if (mem->is_LoadStore()) {
 244         adr = mem->in(MemNode::Address);
 245       } else {
 246         assert(mem->Opcode() == Op_EncodeISOArray ||
 247                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 248         adr = mem->in(3); // Destination array
 249       }
 250       const TypePtr* atype = adr->bottom_type()->is_ptr();
 251       int adr_idx = phase->C->get_alias_index(atype);
 252       if (adr_idx == alias_idx) {
 253         DEBUG_ONLY(mem->dump();)
 254         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 255         return nullptr;
 256       }
 257       mem = mem->in(MemNode::Memory);
 258    } else if (mem->Opcode() == Op_StrInflatedCopy) {
 259       Node* adr = mem->in(3); // Destination array
 260       const TypePtr* atype = adr->bottom_type()->is_ptr();
 261       int adr_idx = phase->C->get_alias_index(atype);
 262       if (adr_idx == alias_idx) {
 263         DEBUG_ONLY(mem->dump();)
 264         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 265         return nullptr;
 266       }
 267       mem = mem->in(MemNode::Memory);
 268     } else {
 269       return mem;
 270     }
 271     assert(mem != orig_mem, "dead memory loop");
 272   }
 273 }
 274 
 275 // Generate loads from source of the arraycopy for fields of
 276 // destination needed at a deoptimization point
 277 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 278   BasicType bt = ft;
 279   const Type *type = ftype;
 280   if (ft == T_NARROWOOP) {
 281     bt = T_OBJECT;
 282     type = ftype->make_oopptr();
 283   }
 284   Node* res = nullptr;
 285   if (ac->is_clonebasic()) {
 286     assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination");
 287     Node* base = ac->in(ArrayCopyNode::Src);
 288     Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset)));
 289     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 290     MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 291     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 292     res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 293   } else {
 294     if (ac->modifies(offset, offset, &_igvn, true)) {
 295       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 296       uint shift = exact_log2(type2aelembytes(bt));
 297       Node* src_pos = ac->in(ArrayCopyNode::SrcPos);
 298       Node* dest_pos = ac->in(ArrayCopyNode::DestPos);
 299       const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int();
 300       const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int();
 301 
 302       Node* adr = nullptr;
 303       const TypePtr* adr_type = nullptr;
 304       if (src_pos_t->is_con() && dest_pos_t->is_con()) {
 305         intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset;
 306         Node* base = ac->in(ArrayCopyNode::Src);
 307         adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off)));
 308         adr_type = _igvn.type(base)->is_ptr()->add_offset(off);
 309         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 310           // Don't emit a new load from src if src == dst but try to get the value from memory instead
 311           return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc);
 312         }
 313       } else {
 314         Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 315 #ifdef _LP64
 316         diff = _igvn.transform(new ConvI2LNode(diff));
 317 #endif
 318         diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift)));
 319 
 320         Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff));
 321         Node* base = ac->in(ArrayCopyNode::Src);
 322         adr = _igvn.transform(new AddPNode(base, base, off));
 323         adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot);
 324         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 325           // Non constant offset in the array: we can't statically
 326           // determine the value
 327           return nullptr;
 328         }
 329       }
 330       MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 331       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 332       res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 333     }
 334   }
 335   if (res != nullptr) {
 336     if (ftype->isa_narrowoop()) {
 337       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 338       res = _igvn.transform(new EncodePNode(res, ftype));
 339     }
 340     return res;
 341   }
 342   return nullptr;
 343 }
 344 
 345 //
 346 // Given a Memory Phi, compute a value Phi containing the values from stores
 347 // on the input paths.
 348 // Note: this function is recursive, its depth is limited by the "level" argument
 349 // Returns the computed Phi, or null if it cannot compute it.
 350 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 351   assert(mem->is_Phi(), "sanity");
 352   int alias_idx = C->get_alias_index(adr_t);
 353   int offset = adr_t->offset();
 354   int instance_id = adr_t->instance_id();
 355 
 356   // Check if an appropriate value phi already exists.
 357   Node* region = mem->in(0);
 358   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 359     Node* phi = region->fast_out(k);
 360     if (phi->is_Phi() && phi != mem &&
 361         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 362       return phi;
 363     }
 364   }
 365   // Check if an appropriate new value phi already exists.
 366   Node* new_phi = value_phis->find(mem->_idx);
 367   if (new_phi != nullptr)
 368     return new_phi;
 369 
 370   if (level <= 0) {
 371     return nullptr; // Give up: phi tree too deep
 372   }
 373   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 374   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 375 
 376   uint length = mem->req();
 377   GrowableArray <Node *> values(length, length, nullptr);
 378 
 379   // create a new Phi for the value
 380   PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset);
 381   transform_later(phi);
 382   value_phis->push(phi, mem->_idx);
 383 
 384   for (uint j = 1; j < length; j++) {
 385     Node *in = mem->in(j);
 386     if (in == nullptr || in->is_top()) {
 387       values.at_put(j, in);
 388     } else  {
 389       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 390       if (val == start_mem || val == alloc_mem) {
 391         // hit a sentinel, return appropriate 0 value
 392         values.at_put(j, _igvn.zerocon(ft));
 393         continue;
 394       }
 395       if (val->is_Initialize()) {
 396         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 397       }
 398       if (val == nullptr) {
 399         return nullptr;  // can't find a value on this path
 400       }
 401       if (val == mem) {
 402         values.at_put(j, mem);
 403       } else if (val->is_Store()) {
 404         Node* n = val->in(MemNode::ValueIn);
 405         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 406         n = bs->step_over_gc_barrier(n);
 407         if (is_subword_type(ft)) {
 408           n = Compile::narrow_value(ft, n, phi_type, &_igvn, true);
 409         }
 410         values.at_put(j, n);
 411       } else if(val->is_Proj() && val->in(0) == alloc) {
 412         values.at_put(j, _igvn.zerocon(ft));
 413       } else if (val->is_Phi()) {
 414         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 415         if (val == nullptr) {
 416           return nullptr;
 417         }
 418         values.at_put(j, val);
 419       } else if (val->Opcode() == Op_SCMemProj) {
 420         assert(val->in(0)->is_LoadStore() ||
 421                val->in(0)->Opcode() == Op_EncodeISOArray ||
 422                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 423         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 424         return nullptr;
 425       } else if (val->is_ArrayCopy()) {
 426         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 427         if (res == nullptr) {
 428           return nullptr;
 429         }
 430         values.at_put(j, res);
 431       } else {
 432         DEBUG_ONLY( val->dump(); )
 433         assert(false, "unknown node on this path");
 434         return nullptr;  // unknown node on this path
 435       }
 436     }
 437   }
 438   // Set Phi's inputs
 439   for (uint j = 1; j < length; j++) {
 440     if (values.at(j) == mem) {
 441       phi->init_req(j, phi);
 442     } else {
 443       phi->init_req(j, values.at(j));
 444     }
 445   }
 446   return phi;
 447 }
 448 
 449 // Search the last value stored into the object's field.
 450 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 451   assert(adr_t->is_known_instance_field(), "instance required");
 452   int instance_id = adr_t->instance_id();
 453   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 454 
 455   int alias_idx = C->get_alias_index(adr_t);
 456   int offset = adr_t->offset();
 457   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 458   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 459   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 460   VectorSet visited;
 461 
 462   bool done = sfpt_mem == alloc_mem;
 463   Node *mem = sfpt_mem;
 464   while (!done) {
 465     if (visited.test_set(mem->_idx)) {
 466       return nullptr;  // found a loop, give up
 467     }
 468     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 469     if (mem == start_mem || mem == alloc_mem) {
 470       done = true;  // hit a sentinel, return appropriate 0 value
 471     } else if (mem->is_Initialize()) {
 472       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 473       if (mem == nullptr) {
 474         done = true; // Something go wrong.
 475       } else if (mem->is_Store()) {
 476         const TypePtr* atype = mem->as_Store()->adr_type();
 477         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 478         done = true;
 479       }
 480     } else if (mem->is_Store()) {
 481       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 482       assert(atype != nullptr, "address type must be oopptr");
 483       assert(C->get_alias_index(atype) == alias_idx &&
 484              atype->is_known_instance_field() && atype->offset() == offset &&
 485              atype->instance_id() == instance_id, "store is correct memory slice");
 486       done = true;
 487     } else if (mem->is_Phi()) {
 488       // try to find a phi's unique input
 489       Node *unique_input = nullptr;
 490       Node *top = C->top();
 491       for (uint i = 1; i < mem->req(); i++) {
 492         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 493         if (n == nullptr || n == top || n == mem) {
 494           continue;
 495         } else if (unique_input == nullptr) {
 496           unique_input = n;
 497         } else if (unique_input != n) {
 498           unique_input = top;
 499           break;
 500         }
 501       }
 502       if (unique_input != nullptr && unique_input != top) {
 503         mem = unique_input;
 504       } else {
 505         done = true;
 506       }
 507     } else if (mem->is_ArrayCopy()) {
 508       done = true;
 509     } else {
 510       DEBUG_ONLY( mem->dump(); )
 511       assert(false, "unexpected node");
 512     }
 513   }
 514   if (mem != nullptr) {
 515     if (mem == start_mem || mem == alloc_mem) {
 516       // hit a sentinel, return appropriate 0 value
 517       return _igvn.zerocon(ft);
 518     } else if (mem->is_Store()) {
 519       Node* n = mem->in(MemNode::ValueIn);
 520       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 521       n = bs->step_over_gc_barrier(n);
 522       return n;
 523     } else if (mem->is_Phi()) {
 524       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 525       Node_Stack value_phis(8);
 526       Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 527       if (phi != nullptr) {
 528         return phi;
 529       } else {
 530         // Kill all new Phis
 531         while(value_phis.is_nonempty()) {
 532           Node* n = value_phis.node();
 533           _igvn.replace_node(n, C->top());
 534           value_phis.pop();
 535         }
 536       }
 537     } else if (mem->is_ArrayCopy()) {
 538       Node* ctl = mem->in(0);
 539       Node* m = mem->in(TypeFunc::Memory);
 540       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) {
 541         // pin the loads in the uncommon trap path
 542         ctl = sfpt_ctl;
 543         m = sfpt_mem;
 544       }
 545       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 546     }
 547   }
 548   // Something go wrong.
 549   return nullptr;
 550 }
 551 
 552 // Check the possibility of scalar replacement.
 553 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) {
 554   //  Scan the uses of the allocation to check for anything that would
 555   //  prevent us from eliminating it.
 556   NOT_PRODUCT( const char* fail_eliminate = nullptr; )
 557   DEBUG_ONLY( Node* disq_node = nullptr; )
 558   bool can_eliminate = true;
 559   bool reduce_merge_precheck = (safepoints == nullptr);
 560 
 561   Node* res = alloc->result_cast();
 562   const TypeOopPtr* res_type = nullptr;
 563   if (res == nullptr) {
 564     // All users were eliminated.
 565   } else if (!res->is_CheckCastPP()) {
 566     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 567     can_eliminate = false;
 568   } else {
 569     res_type = igvn->type(res)->isa_oopptr();
 570     if (res_type == nullptr) {
 571       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 572       can_eliminate = false;
 573     } else if (res_type->isa_aryptr()) {
 574       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 575       if (length < 0) {
 576         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 577         can_eliminate = false;
 578       }
 579     }
 580   }
 581 
 582   if (can_eliminate && res != nullptr) {
 583     BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 584     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 585                                j < jmax && can_eliminate; j++) {
 586       Node* use = res->fast_out(j);
 587 
 588       if (use->is_AddP()) {
 589         const TypePtr* addp_type = igvn->type(use)->is_ptr();
 590         int offset = addp_type->offset();
 591 
 592         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 593           NOT_PRODUCT(fail_eliminate = "Undefined field reference";)
 594           can_eliminate = false;
 595           break;
 596         }
 597         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 598                                    k < kmax && can_eliminate; k++) {
 599           Node* n = use->fast_out(k);
 600           if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n) && !reduce_merge_precheck) {
 601             DEBUG_ONLY(disq_node = n;)
 602             if (n->is_Load() || n->is_LoadStore()) {
 603               NOT_PRODUCT(fail_eliminate = "Field load";)
 604             } else {
 605               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 606             }
 607             can_eliminate = false;
 608           }
 609         }
 610       } else if (use->is_ArrayCopy() &&
 611                  (use->as_ArrayCopy()->is_clonebasic() ||
 612                   use->as_ArrayCopy()->is_arraycopy_validated() ||
 613                   use->as_ArrayCopy()->is_copyof_validated() ||
 614                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 615                  use->in(ArrayCopyNode::Dest) == res) {
 616         // ok to eliminate
 617       } else if (use->is_SafePoint()) {
 618         SafePointNode* sfpt = use->as_SafePoint();
 619         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 620           // Object is passed as argument.
 621           DEBUG_ONLY(disq_node = use;)
 622           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 623           can_eliminate = false;
 624         }
 625         Node* sfptMem = sfpt->memory();
 626         if (sfptMem == nullptr || sfptMem->is_top()) {
 627           DEBUG_ONLY(disq_node = use;)
 628           NOT_PRODUCT(fail_eliminate = "null or TOP memory";)
 629           can_eliminate = false;
 630         } else if (!reduce_merge_precheck) {
 631           safepoints->append_if_missing(sfpt);
 632         }
 633       } else if (reduce_merge_precheck && (use->is_Phi() || use->is_EncodeP() || use->Opcode() == Op_MemBarRelease)) {
 634         // Nothing to do
 635       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 636         if (use->is_Phi()) {
 637           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 638             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 639           } else {
 640             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 641           }
 642           DEBUG_ONLY(disq_node = use;)
 643         } else {
 644           if (use->Opcode() == Op_Return) {
 645             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 646           } else {
 647             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 648           }
 649           DEBUG_ONLY(disq_node = use;)
 650         }
 651         can_eliminate = false;
 652       }
 653     }
 654   }
 655 
 656 #ifndef PRODUCT
 657   if (PrintEliminateAllocations && safepoints != nullptr) {
 658     if (can_eliminate) {
 659       tty->print("Scalar ");
 660       if (res == nullptr)
 661         alloc->dump();
 662       else
 663         res->dump();
 664     } else if (alloc->_is_scalar_replaceable) {
 665       tty->print("NotScalar (%s)", fail_eliminate);
 666       if (res == nullptr)
 667         alloc->dump();
 668       else
 669         res->dump();
 670 #ifdef ASSERT
 671       if (disq_node != nullptr) {
 672           tty->print("  >>>> ");
 673           disq_node->dump();
 674       }
 675 #endif /*ASSERT*/
 676     }
 677   }
 678 
 679   if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) {
 680     tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : "");
 681     DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();)
 682   }
 683 #endif
 684   return can_eliminate;
 685 }
 686 
 687 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) {
 688   Node* res = alloc->result_cast();
 689   int nfields = 0;
 690   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 691 
 692   if (res != nullptr) {
 693     const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr();
 694 
 695     if (res_type->isa_instptr()) {
 696       // find the fields of the class which will be needed for safepoint debug information
 697       ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass();
 698       nfields = iklass->nof_nonstatic_fields();
 699     } else {
 700       // find the array's elements which will be needed for safepoint debug information
 701       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 702       assert(nfields >= 0, "must be an array klass.");
 703     }
 704   }
 705 
 706   // rollback processed safepoints
 707   while (safepoints_done.length() > 0) {
 708     SafePointNode* sfpt_done = safepoints_done.pop();
 709     // remove any extra entries we added to the safepoint
 710     uint last = sfpt_done->req() - 1;
 711     for (int k = 0;  k < nfields; k++) {
 712       sfpt_done->del_req(last--);
 713     }
 714     JVMState *jvms = sfpt_done->jvms();
 715     jvms->set_endoff(sfpt_done->req());
 716     // Now make a pass over the debug information replacing any references
 717     // to SafePointScalarObjectNode with the allocated object.
 718     int start = jvms->debug_start();
 719     int end   = jvms->debug_end();
 720     for (int i = start; i < end; i++) {
 721       if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 722         SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 723         if (scobj->first_index(jvms) == sfpt_done->req() &&
 724             scobj->n_fields() == (uint)nfields) {
 725           assert(scobj->alloc() == alloc, "sanity");
 726           sfpt_done->set_req(i, res);
 727         }
 728       }
 729     }
 730     _igvn._worklist.push(sfpt_done);
 731   }
 732 }
 733 
 734 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt) {
 735   // Fields of scalar objs are referenced only at the end
 736   // of regular debuginfo at the last (youngest) JVMS.
 737   // Record relative start index.
 738   ciInstanceKlass* iklass    = nullptr;
 739   BasicType basic_elem_type  = T_ILLEGAL;
 740   const Type* field_type     = nullptr;
 741   const TypeOopPtr* res_type = nullptr;
 742   int nfields                = 0;
 743   int array_base             = 0;
 744   int element_size           = 0;
 745   uint first_ind             = (sfpt->req() - sfpt->jvms()->scloff());
 746   Node* res                  = alloc->result_cast();
 747 
 748   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 749   assert(sfpt->jvms() != nullptr, "missed JVMS");
 750 
 751   if (res != nullptr) { // Could be null when there are no users
 752     res_type = _igvn.type(res)->isa_oopptr();
 753 
 754     if (res_type->isa_instptr()) {
 755       // find the fields of the class which will be needed for safepoint debug information
 756       iklass = res_type->is_instptr()->instance_klass();
 757       nfields = iklass->nof_nonstatic_fields();
 758     } else {
 759       // find the array's elements which will be needed for safepoint debug information
 760       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 761       assert(nfields >= 0, "must be an array klass.");
 762       basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type();
 763       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 764       element_size = type2aelembytes(basic_elem_type);
 765       field_type = res_type->is_aryptr()->elem();
 766     }
 767   }
 768 
 769   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, nfields);
 770   sobj->init_req(0, C->root());
 771   transform_later(sobj);
 772 
 773   // Scan object's fields adding an input to the safepoint for each field.
 774   for (int j = 0; j < nfields; j++) {
 775     intptr_t offset;
 776     ciField* field = nullptr;
 777     if (iklass != nullptr) {
 778       field = iklass->nonstatic_field_at(j);
 779       offset = field->offset_in_bytes();
 780       ciType* elem_type = field->type();
 781       basic_elem_type = field->layout_type();
 782 
 783       // The next code is taken from Parse::do_get_xxx().
 784       if (is_reference_type(basic_elem_type)) {
 785         if (!elem_type->is_loaded()) {
 786           field_type = TypeInstPtr::BOTTOM;
 787         } else if (field != nullptr && field->is_static_constant()) {
 788           ciObject* con = field->constant_value().as_object();
 789           // Do not "join" in the previous type; it doesn't add value,
 790           // and may yield a vacuous result if the field is of interface type.
 791           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 792           assert(field_type != nullptr, "field singleton type must be consistent");
 793         } else {
 794           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 795         }
 796         if (UseCompressedOops) {
 797           field_type = field_type->make_narrowoop();
 798           basic_elem_type = T_NARROWOOP;
 799         }
 800       } else {
 801         field_type = Type::get_const_basic_type(basic_elem_type);
 802       }
 803     } else {
 804       offset = array_base + j * (intptr_t)element_size;
 805     }
 806 
 807     const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 808 
 809     Node *field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc);
 810 
 811     // We weren't able to find a value for this field,
 812     // give up on eliminating this allocation.
 813     if (field_val == nullptr) {
 814       uint last = sfpt->req() - 1;
 815       for (int k = 0;  k < j; k++) {
 816         sfpt->del_req(last--);
 817       }
 818       _igvn._worklist.push(sfpt);
 819 
 820 #ifndef PRODUCT
 821       if (PrintEliminateAllocations) {
 822         if (field != nullptr) {
 823           tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx);
 824           field->print();
 825           int field_idx = C->get_alias_index(field_addr_type);
 826           tty->print(" (alias_idx=%d)", field_idx);
 827         } else { // Array's element
 828           tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j);
 829         }
 830         tty->print(", which prevents elimination of: ");
 831         if (res == nullptr)
 832           alloc->dump();
 833         else
 834           res->dump();
 835       }
 836 #endif
 837 
 838       return nullptr;
 839     }
 840 
 841     if (UseCompressedOops && field_type->isa_narrowoop()) {
 842       // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 843       // to be able scalar replace the allocation.
 844       if (field_val->is_EncodeP()) {
 845         field_val = field_val->in(1);
 846       } else {
 847         field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
 848       }
 849     }
 850     sfpt->add_req(field_val);
 851   }
 852 
 853   sfpt->jvms()->set_endoff(sfpt->req());
 854 
 855   return sobj;
 856 }
 857 
 858 // Do scalar replacement.
 859 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 860   GrowableArray <SafePointNode *> safepoints_done;
 861   Node* res = alloc->result_cast();
 862   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 863 
 864   // Process the safepoint uses
 865   while (safepoints.length() > 0) {
 866     SafePointNode* sfpt = safepoints.pop();
 867     SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt);
 868 
 869     if (sobj == nullptr) {
 870       undo_previous_scalarizations(safepoints_done, alloc);
 871       return false;
 872     }
 873 
 874     // Now make a pass over the debug information replacing any references
 875     // to the allocated object with "sobj"
 876     JVMState *jvms = sfpt->jvms();
 877     sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn);
 878     _igvn._worklist.push(sfpt);
 879 
 880     // keep it for rollback
 881     safepoints_done.append_if_missing(sfpt);
 882   }
 883 
 884   return true;
 885 }
 886 
 887 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
 888   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
 889   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
 890   if (ctl_proj != nullptr) {
 891     igvn.replace_node(ctl_proj, n->in(0));
 892   }
 893   if (mem_proj != nullptr) {
 894     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
 895   }
 896 }
 897 
 898 // Process users of eliminated allocation.
 899 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
 900   Node* res = alloc->result_cast();
 901   if (res != nullptr) {
 902     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 903       Node *use = res->last_out(j);
 904       uint oc1 = res->outcnt();
 905 
 906       if (use->is_AddP()) {
 907         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 908           Node *n = use->last_out(k);
 909           uint oc2 = use->outcnt();
 910           if (n->is_Store()) {
 911 #ifdef ASSERT
 912             // Verify that there is no dependent MemBarVolatile nodes,
 913             // they should be removed during IGVN, see MemBarNode::Ideal().
 914             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 915                                        p < pmax; p++) {
 916               Node* mb = n->fast_out(p);
 917               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 918                      mb->req() <= MemBarNode::Precedent ||
 919                      mb->in(MemBarNode::Precedent) != n,
 920                      "MemBarVolatile should be eliminated for non-escaping object");
 921             }
 922 #endif
 923             _igvn.replace_node(n, n->in(MemNode::Memory));
 924           } else {
 925             eliminate_gc_barrier(n);
 926           }
 927           k -= (oc2 - use->outcnt());
 928         }
 929         _igvn.remove_dead_node(use);
 930       } else if (use->is_ArrayCopy()) {
 931         // Disconnect ArrayCopy node
 932         ArrayCopyNode* ac = use->as_ArrayCopy();
 933         if (ac->is_clonebasic()) {
 934           Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
 935           disconnect_projections(ac, _igvn);
 936           assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
 937           Node* membar_before = alloc->in(TypeFunc::Memory)->in(0);
 938           disconnect_projections(membar_before->as_MemBar(), _igvn);
 939           if (membar_after->is_MemBar()) {
 940             disconnect_projections(membar_after->as_MemBar(), _igvn);
 941           }
 942         } else {
 943           assert(ac->is_arraycopy_validated() ||
 944                  ac->is_copyof_validated() ||
 945                  ac->is_copyofrange_validated(), "unsupported");
 946           CallProjections callprojs;
 947           ac->extract_projections(&callprojs, true);
 948 
 949           _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
 950           _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
 951           _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
 952 
 953           // Set control to top. IGVN will remove the remaining projections
 954           ac->set_req(0, top());
 955           ac->replace_edge(res, top(), &_igvn);
 956 
 957           // Disconnect src right away: it can help find new
 958           // opportunities for allocation elimination
 959           Node* src = ac->in(ArrayCopyNode::Src);
 960           ac->replace_edge(src, top(), &_igvn);
 961           // src can be top at this point if src and dest of the
 962           // arraycopy were the same
 963           if (src->outcnt() == 0 && !src->is_top()) {
 964             _igvn.remove_dead_node(src);
 965           }
 966         }
 967         _igvn._worklist.push(ac);
 968       } else {
 969         eliminate_gc_barrier(use);
 970       }
 971       j -= (oc1 - res->outcnt());
 972     }
 973     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 974     _igvn.remove_dead_node(res);
 975   }
 976 
 977   //
 978   // Process other users of allocation's projections
 979   //
 980   if (_callprojs.resproj != nullptr && _callprojs.resproj->outcnt() != 0) {
 981     // First disconnect stores captured by Initialize node.
 982     // If Initialize node is eliminated first in the following code,
 983     // it will kill such stores and DUIterator_Last will assert.
 984     for (DUIterator_Fast jmax, j = _callprojs.resproj->fast_outs(jmax);  j < jmax; j++) {
 985       Node* use = _callprojs.resproj->fast_out(j);
 986       if (use->is_AddP()) {
 987         // raw memory addresses used only by the initialization
 988         _igvn.replace_node(use, C->top());
 989         --j; --jmax;
 990       }
 991     }
 992     for (DUIterator_Last jmin, j = _callprojs.resproj->last_outs(jmin); j >= jmin; ) {
 993       Node* use = _callprojs.resproj->last_out(j);
 994       uint oc1 = _callprojs.resproj->outcnt();
 995       if (use->is_Initialize()) {
 996         // Eliminate Initialize node.
 997         InitializeNode *init = use->as_Initialize();
 998         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 999         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1000         if (ctrl_proj != nullptr) {
1001           _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control));
1002 #ifdef ASSERT
1003           // If the InitializeNode has no memory out, it will die, and tmp will become null
1004           Node* tmp = init->in(TypeFunc::Control);
1005           assert(tmp == nullptr || tmp == _callprojs.fallthrough_catchproj, "allocation control projection");
1006 #endif
1007         }
1008         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1009         if (mem_proj != nullptr) {
1010           Node *mem = init->in(TypeFunc::Memory);
1011 #ifdef ASSERT
1012           if (mem->is_MergeMem()) {
1013             assert(mem->in(TypeFunc::Memory) == _callprojs.fallthrough_memproj, "allocation memory projection");
1014           } else {
1015             assert(mem == _callprojs.fallthrough_memproj, "allocation memory projection");
1016           }
1017 #endif
1018           _igvn.replace_node(mem_proj, mem);
1019         }
1020       } else  {
1021         assert(false, "only Initialize or AddP expected");
1022       }
1023       j -= (oc1 - _callprojs.resproj->outcnt());
1024     }
1025   }
1026   if (_callprojs.fallthrough_catchproj != nullptr) {
1027     _igvn.replace_node(_callprojs.fallthrough_catchproj, alloc->in(TypeFunc::Control));
1028   }
1029   if (_callprojs.fallthrough_memproj != nullptr) {
1030     _igvn.replace_node(_callprojs.fallthrough_memproj, alloc->in(TypeFunc::Memory));
1031   }
1032   if (_callprojs.catchall_memproj != nullptr) {
1033     _igvn.replace_node(_callprojs.catchall_memproj, C->top());
1034   }
1035   if (_callprojs.fallthrough_ioproj != nullptr) {
1036     _igvn.replace_node(_callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
1037   }
1038   if (_callprojs.catchall_ioproj != nullptr) {
1039     _igvn.replace_node(_callprojs.catchall_ioproj, C->top());
1040   }
1041   if (_callprojs.catchall_catchproj != nullptr) {
1042     _igvn.replace_node(_callprojs.catchall_catchproj, C->top());
1043   }
1044 }
1045 
1046 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1047   // If reallocation fails during deoptimization we'll pop all
1048   // interpreter frames for this compiled frame and that won't play
1049   // nice with JVMTI popframe.
1050   // We avoid this issue by eager reallocation when the popframe request
1051   // is received.
1052   if (!EliminateAllocations || !alloc->_is_non_escaping) {
1053     return false;
1054   }
1055   Node* klass = alloc->in(AllocateNode::KlassNode);
1056   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1057   Node* res = alloc->result_cast();
1058   // Eliminate boxing allocations which are not used
1059   // regardless scalar replaceable status.
1060   bool boxing_alloc = C->eliminate_boxing() &&
1061                       tklass->isa_instklassptr() &&
1062                       tklass->is_instklassptr()->instance_klass()->is_box_klass();
1063   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != nullptr))) {
1064     return false;
1065   }
1066 
1067   alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1068 
1069   GrowableArray <SafePointNode *> safepoints;
1070   if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) {
1071     return false;
1072   }
1073 
1074   if (!alloc->_is_scalar_replaceable) {
1075     assert(res == nullptr, "sanity");
1076     // We can only eliminate allocation if all debug info references
1077     // are already replaced with SafePointScalarObject because
1078     // we can't search for a fields value without instance_id.
1079     if (safepoints.length() > 0) {
1080       return false;
1081     }
1082   }
1083 
1084   if (!scalar_replacement(alloc, safepoints)) {
1085     return false;
1086   }
1087 
1088   CompileLog* log = C->log();
1089   if (log != nullptr) {
1090     log->head("eliminate_allocation type='%d'",
1091               log->identify(tklass->exact_klass()));
1092     JVMState* p = alloc->jvms();
1093     while (p != nullptr) {
1094       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1095       p = p->caller();
1096     }
1097     log->tail("eliminate_allocation");
1098   }
1099 
1100   process_users_of_allocation(alloc);
1101 
1102 #ifndef PRODUCT
1103   if (PrintEliminateAllocations) {
1104     if (alloc->is_AllocateArray())
1105       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1106     else
1107       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1108   }
1109 #endif
1110 
1111   return true;
1112 }
1113 
1114 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1115   // EA should remove all uses of non-escaping boxing node.
1116   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) {
1117     return false;
1118   }
1119 
1120   assert(boxing->result_cast() == nullptr, "unexpected boxing node result");
1121 
1122   boxing->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1123 
1124   const TypeTuple* r = boxing->tf()->range();
1125   assert(r->cnt() > TypeFunc::Parms, "sanity");
1126   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1127   assert(t != nullptr, "sanity");
1128 
1129   CompileLog* log = C->log();
1130   if (log != nullptr) {
1131     log->head("eliminate_boxing type='%d'",
1132               log->identify(t->instance_klass()));
1133     JVMState* p = boxing->jvms();
1134     while (p != nullptr) {
1135       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1136       p = p->caller();
1137     }
1138     log->tail("eliminate_boxing");
1139   }
1140 
1141   process_users_of_allocation(boxing);
1142 
1143 #ifndef PRODUCT
1144   if (PrintEliminateAllocations) {
1145     tty->print("++++ Eliminated: %d ", boxing->_idx);
1146     boxing->method()->print_short_name(tty);
1147     tty->cr();
1148   }
1149 #endif
1150 
1151   return true;
1152 }
1153 
1154 
1155 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1156   Node* adr = basic_plus_adr(base, offset);
1157   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1158   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1159   transform_later(value);
1160   return value;
1161 }
1162 
1163 
1164 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1165   Node* adr = basic_plus_adr(base, offset);
1166   mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered);
1167   transform_later(mem);
1168   return mem;
1169 }
1170 
1171 //=============================================================================
1172 //
1173 //                              A L L O C A T I O N
1174 //
1175 // Allocation attempts to be fast in the case of frequent small objects.
1176 // It breaks down like this:
1177 //
1178 // 1) Size in doublewords is computed.  This is a constant for objects and
1179 // variable for most arrays.  Doubleword units are used to avoid size
1180 // overflow of huge doubleword arrays.  We need doublewords in the end for
1181 // rounding.
1182 //
1183 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1184 // the slow path into the VM.  The slow path can throw any required
1185 // exceptions, and does all the special checks for very large arrays.  The
1186 // size test can constant-fold away for objects.  For objects with
1187 // finalizers it constant-folds the otherway: you always go slow with
1188 // finalizers.
1189 //
1190 // 3) If NOT using TLABs, this is the contended loop-back point.
1191 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1192 //
1193 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1194 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1195 // "size*8" we always enter the VM, where "largish" is a constant picked small
1196 // enough that there's always space between the eden max and 4Gig (old space is
1197 // there so it's quite large) and large enough that the cost of entering the VM
1198 // is dwarfed by the cost to initialize the space.
1199 //
1200 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1201 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1202 // adjusted heap top back down; there is no contention.
1203 //
1204 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1205 // fields.
1206 //
1207 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1208 // oop flavor.
1209 //
1210 //=============================================================================
1211 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1212 // Allocations bigger than this always go the slow route.
1213 // This value must be small enough that allocation attempts that need to
1214 // trigger exceptions go the slow route.  Also, it must be small enough so
1215 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1216 //=============================================================================j//
1217 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1218 // The allocator will coalesce int->oop copies away.  See comment in
1219 // coalesce.cpp about how this works.  It depends critically on the exact
1220 // code shape produced here, so if you are changing this code shape
1221 // make sure the GC info for the heap-top is correct in and around the
1222 // slow-path call.
1223 //
1224 
1225 void PhaseMacroExpand::expand_allocate_common(
1226             AllocateNode* alloc, // allocation node to be expanded
1227             Node* length,  // array length for an array allocation
1228             const TypeFunc* slow_call_type, // Type of slow call
1229             address slow_call_address,  // Address of slow call
1230             Node* valid_length_test // whether length is valid or not
1231     )
1232 {
1233   Node* ctrl = alloc->in(TypeFunc::Control);
1234   Node* mem  = alloc->in(TypeFunc::Memory);
1235   Node* i_o  = alloc->in(TypeFunc::I_O);
1236   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1237   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1238   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1239   assert(ctrl != nullptr, "must have control");
1240 
1241   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1242   // they will not be used if "always_slow" is set
1243   enum { slow_result_path = 1, fast_result_path = 2 };
1244   Node *result_region = nullptr;
1245   Node *result_phi_rawmem = nullptr;
1246   Node *result_phi_rawoop = nullptr;
1247   Node *result_phi_i_o = nullptr;
1248 
1249   // The initial slow comparison is a size check, the comparison
1250   // we want to do is a BoolTest::gt
1251   bool expand_fast_path = true;
1252   int tv = _igvn.find_int_con(initial_slow_test, -1);
1253   if (tv >= 0) {
1254     // InitialTest has constant result
1255     //   0 - can fit in TLAB
1256     //   1 - always too big or negative
1257     assert(tv <= 1, "0 or 1 if a constant");
1258     expand_fast_path = (tv == 0);
1259     initial_slow_test = nullptr;
1260   } else {
1261     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1262   }
1263 
1264   if (!UseTLAB) {
1265     // Force slow-path allocation
1266     expand_fast_path = false;
1267     initial_slow_test = nullptr;
1268   }
1269 
1270   bool allocation_has_use = (alloc->result_cast() != nullptr);
1271   if (!allocation_has_use) {
1272     InitializeNode* init = alloc->initialization();
1273     if (init != nullptr) {
1274       init->remove(&_igvn);
1275     }
1276     if (expand_fast_path && (initial_slow_test == nullptr)) {
1277       // Remove allocation node and return.
1278       // Size is a non-negative constant -> no initial check needed -> directly to fast path.
1279       // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left.
1280 #ifndef PRODUCT
1281       if (PrintEliminateAllocations) {
1282         tty->print("NotUsed ");
1283         Node* res = alloc->proj_out_or_null(TypeFunc::Parms);
1284         if (res != nullptr) {
1285           res->dump();
1286         } else {
1287           alloc->dump();
1288         }
1289       }
1290 #endif
1291       yank_alloc_node(alloc);
1292       return;
1293     }
1294   }
1295 
1296   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1297   Node *slow_region = nullptr;
1298   Node *toobig_false = ctrl;
1299 
1300   // generate the initial test if necessary
1301   if (initial_slow_test != nullptr ) {
1302     assert (expand_fast_path, "Only need test if there is a fast path");
1303     slow_region = new RegionNode(3);
1304 
1305     // Now make the initial failure test.  Usually a too-big test but
1306     // might be a TRUE for finalizers or a fancy class check for
1307     // newInstance0.
1308     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1309     transform_later(toobig_iff);
1310     // Plug the failing-too-big test into the slow-path region
1311     Node *toobig_true = new IfTrueNode( toobig_iff );
1312     transform_later(toobig_true);
1313     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1314     toobig_false = new IfFalseNode( toobig_iff );
1315     transform_later(toobig_false);
1316   } else {
1317     // No initial test, just fall into next case
1318     assert(allocation_has_use || !expand_fast_path, "Should already have been handled");
1319     toobig_false = ctrl;
1320     debug_only(slow_region = NodeSentinel);
1321   }
1322 
1323   // If we are here there are several possibilities
1324   // - expand_fast_path is false - then only a slow path is expanded. That's it.
1325   // no_initial_check means a constant allocation.
1326   // - If check always evaluates to false -> expand_fast_path is false (see above)
1327   // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath)
1328   // if !allocation_has_use the fast path is empty
1329   // if !allocation_has_use && no_initial_check
1330   // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all.
1331   //   removed by yank_alloc_node above.
1332 
1333   Node *slow_mem = mem;  // save the current memory state for slow path
1334   // generate the fast allocation code unless we know that the initial test will always go slow
1335   if (expand_fast_path) {
1336     // Fast path modifies only raw memory.
1337     if (mem->is_MergeMem()) {
1338       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1339     }
1340 
1341     // allocate the Region and Phi nodes for the result
1342     result_region = new RegionNode(3);
1343     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1344     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1345 
1346     // Grab regular I/O before optional prefetch may change it.
1347     // Slow-path does no I/O so just set it to the original I/O.
1348     result_phi_i_o->init_req(slow_result_path, i_o);
1349 
1350     // Name successful fast-path variables
1351     Node* fast_oop_ctrl;
1352     Node* fast_oop_rawmem;
1353     if (allocation_has_use) {
1354       Node* needgc_ctrl = nullptr;
1355       result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1356 
1357       intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1358       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1359       Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
1360                                         fast_oop_ctrl, fast_oop_rawmem,
1361                                         prefetch_lines);
1362 
1363       if (initial_slow_test != nullptr) {
1364         // This completes all paths into the slow merge point
1365         slow_region->init_req(need_gc_path, needgc_ctrl);
1366         transform_later(slow_region);
1367       } else {
1368         // No initial slow path needed!
1369         // Just fall from the need-GC path straight into the VM call.
1370         slow_region = needgc_ctrl;
1371       }
1372 
1373       InitializeNode* init = alloc->initialization();
1374       fast_oop_rawmem = initialize_object(alloc,
1375                                           fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1376                                           klass_node, length, size_in_bytes);
1377       expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem);
1378       expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem);
1379 
1380       result_phi_rawoop->init_req(fast_result_path, fast_oop);
1381     } else {
1382       assert (initial_slow_test != nullptr, "sanity");
1383       fast_oop_ctrl   = toobig_false;
1384       fast_oop_rawmem = mem;
1385       transform_later(slow_region);
1386     }
1387 
1388     // Plug in the successful fast-path into the result merge point
1389     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1390     result_phi_i_o   ->init_req(fast_result_path, i_o);
1391     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1392   } else {
1393     slow_region = ctrl;
1394     result_phi_i_o = i_o; // Rename it to use in the following code.
1395   }
1396 
1397   // Generate slow-path call
1398   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1399                                OptoRuntime::stub_name(slow_call_address),
1400                                TypePtr::BOTTOM);
1401   call->init_req(TypeFunc::Control,   slow_region);
1402   call->init_req(TypeFunc::I_O,       top());    // does no i/o
1403   call->init_req(TypeFunc::Memory,    slow_mem); // may gc ptrs
1404   call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1405   call->init_req(TypeFunc::FramePtr,  alloc->in(TypeFunc::FramePtr));
1406 
1407   call->init_req(TypeFunc::Parms+0, klass_node);
1408   if (length != nullptr) {
1409     call->init_req(TypeFunc::Parms+1, length);
1410   }
1411 
1412   // Copy debug information and adjust JVMState information, then replace
1413   // allocate node with the call
1414   call->copy_call_debug_info(&_igvn, alloc);
1415   // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify
1416   // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough
1417   // path dies).
1418   if (valid_length_test != nullptr) {
1419     call->add_req(valid_length_test);
1420   }
1421   if (expand_fast_path) {
1422     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1423   } else {
1424     // Hook i_o projection to avoid its elimination during allocation
1425     // replacement (when only a slow call is generated).
1426     call->set_req(TypeFunc::I_O, result_phi_i_o);
1427   }
1428   _igvn.replace_node(alloc, call);
1429   transform_later(call);
1430 
1431   // Identify the output projections from the allocate node and
1432   // adjust any references to them.
1433   // The control and io projections look like:
1434   //
1435   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1436   //  Allocate                   Catch
1437   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1438   //
1439   //  We are interested in the CatchProj nodes.
1440   //
1441   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1442 
1443   // An allocate node has separate memory projections for the uses on
1444   // the control and i_o paths. Replace the control memory projection with
1445   // result_phi_rawmem (unless we are only generating a slow call when
1446   // both memory projections are combined)
1447   if (expand_fast_path && _callprojs.fallthrough_memproj != nullptr) {
1448     migrate_outs(_callprojs.fallthrough_memproj, result_phi_rawmem);
1449   }
1450   // Now change uses of catchall_memproj to use fallthrough_memproj and delete
1451   // catchall_memproj so we end up with a call that has only 1 memory projection.
1452   if (_callprojs.catchall_memproj != nullptr ) {
1453     if (_callprojs.fallthrough_memproj == nullptr) {
1454       _callprojs.fallthrough_memproj = new ProjNode(call, TypeFunc::Memory);
1455       transform_later(_callprojs.fallthrough_memproj);
1456     }
1457     migrate_outs(_callprojs.catchall_memproj, _callprojs.fallthrough_memproj);
1458     _igvn.remove_dead_node(_callprojs.catchall_memproj);
1459   }
1460 
1461   // An allocate node has separate i_o projections for the uses on the control
1462   // and i_o paths. Always replace the control i_o projection with result i_o
1463   // otherwise incoming i_o become dead when only a slow call is generated
1464   // (it is different from memory projections where both projections are
1465   // combined in such case).
1466   if (_callprojs.fallthrough_ioproj != nullptr) {
1467     migrate_outs(_callprojs.fallthrough_ioproj, result_phi_i_o);
1468   }
1469   // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete
1470   // catchall_ioproj so we end up with a call that has only 1 i_o projection.
1471   if (_callprojs.catchall_ioproj != nullptr ) {
1472     if (_callprojs.fallthrough_ioproj == nullptr) {
1473       _callprojs.fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O);
1474       transform_later(_callprojs.fallthrough_ioproj);
1475     }
1476     migrate_outs(_callprojs.catchall_ioproj, _callprojs.fallthrough_ioproj);
1477     _igvn.remove_dead_node(_callprojs.catchall_ioproj);
1478   }
1479 
1480   // if we generated only a slow call, we are done
1481   if (!expand_fast_path) {
1482     // Now we can unhook i_o.
1483     if (result_phi_i_o->outcnt() > 1) {
1484       call->set_req(TypeFunc::I_O, top());
1485     } else {
1486       assert(result_phi_i_o->unique_ctrl_out() == call, "sanity");
1487       // Case of new array with negative size known during compilation.
1488       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1489       // following code since call to runtime will throw exception.
1490       // As result there will be no users of i_o after the call.
1491       // Leave i_o attached to this call to avoid problems in preceding graph.
1492     }
1493     return;
1494   }
1495 
1496   if (_callprojs.fallthrough_catchproj != nullptr) {
1497     ctrl = _callprojs.fallthrough_catchproj->clone();
1498     transform_later(ctrl);
1499     _igvn.replace_node(_callprojs.fallthrough_catchproj, result_region);
1500   } else {
1501     ctrl = top();
1502   }
1503   Node *slow_result;
1504   if (_callprojs.resproj == nullptr) {
1505     // no uses of the allocation result
1506     slow_result = top();
1507   } else {
1508     slow_result = _callprojs.resproj->clone();
1509     transform_later(slow_result);
1510     _igvn.replace_node(_callprojs.resproj, result_phi_rawoop);
1511   }
1512 
1513   // Plug slow-path into result merge point
1514   result_region->init_req( slow_result_path, ctrl);
1515   transform_later(result_region);
1516   if (allocation_has_use) {
1517     result_phi_rawoop->init_req(slow_result_path, slow_result);
1518     transform_later(result_phi_rawoop);
1519   }
1520   result_phi_rawmem->init_req(slow_result_path, _callprojs.fallthrough_memproj);
1521   transform_later(result_phi_rawmem);
1522   transform_later(result_phi_i_o);
1523   // This completes all paths into the result merge point
1524 }
1525 
1526 // Remove alloc node that has no uses.
1527 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) {
1528   Node* ctrl = alloc->in(TypeFunc::Control);
1529   Node* mem  = alloc->in(TypeFunc::Memory);
1530   Node* i_o  = alloc->in(TypeFunc::I_O);
1531 
1532   alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1533   if (_callprojs.resproj != nullptr) {
1534     for (DUIterator_Fast imax, i = _callprojs.resproj->fast_outs(imax); i < imax; i++) {
1535       Node* use = _callprojs.resproj->fast_out(i);
1536       use->isa_MemBar()->remove(&_igvn);
1537       --imax;
1538       --i; // back up iterator
1539     }
1540     assert(_callprojs.resproj->outcnt() == 0, "all uses must be deleted");
1541     _igvn.remove_dead_node(_callprojs.resproj);
1542   }
1543   if (_callprojs.fallthrough_catchproj != nullptr) {
1544     migrate_outs(_callprojs.fallthrough_catchproj, ctrl);
1545     _igvn.remove_dead_node(_callprojs.fallthrough_catchproj);
1546   }
1547   if (_callprojs.catchall_catchproj != nullptr) {
1548     _igvn.rehash_node_delayed(_callprojs.catchall_catchproj);
1549     _callprojs.catchall_catchproj->set_req(0, top());
1550   }
1551   if (_callprojs.fallthrough_proj != nullptr) {
1552     Node* catchnode = _callprojs.fallthrough_proj->unique_ctrl_out();
1553     _igvn.remove_dead_node(catchnode);
1554     _igvn.remove_dead_node(_callprojs.fallthrough_proj);
1555   }
1556   if (_callprojs.fallthrough_memproj != nullptr) {
1557     migrate_outs(_callprojs.fallthrough_memproj, mem);
1558     _igvn.remove_dead_node(_callprojs.fallthrough_memproj);
1559   }
1560   if (_callprojs.fallthrough_ioproj != nullptr) {
1561     migrate_outs(_callprojs.fallthrough_ioproj, i_o);
1562     _igvn.remove_dead_node(_callprojs.fallthrough_ioproj);
1563   }
1564   if (_callprojs.catchall_memproj != nullptr) {
1565     _igvn.rehash_node_delayed(_callprojs.catchall_memproj);
1566     _callprojs.catchall_memproj->set_req(0, top());
1567   }
1568   if (_callprojs.catchall_ioproj != nullptr) {
1569     _igvn.rehash_node_delayed(_callprojs.catchall_ioproj);
1570     _callprojs.catchall_ioproj->set_req(0, top());
1571   }
1572 #ifndef PRODUCT
1573   if (PrintEliminateAllocations) {
1574     if (alloc->is_AllocateArray()) {
1575       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1576     } else {
1577       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1578     }
1579   }
1580 #endif
1581   _igvn.remove_dead_node(alloc);
1582 }
1583 
1584 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init,
1585                                                 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) {
1586   // If initialization is performed by an array copy, any required
1587   // MemBarStoreStore was already added. If the object does not
1588   // escape no need for a MemBarStoreStore. If the object does not
1589   // escape in its initializer and memory barrier (MemBarStoreStore or
1590   // stronger) is already added at exit of initializer, also no need
1591   // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1592   // so that stores that initialize this object can't be reordered
1593   // with a subsequent store that makes this object accessible by
1594   // other threads.
1595   // Other threads include java threads and JVM internal threads
1596   // (for example concurrent GC threads). Current concurrent GC
1597   // implementation: G1 will not scan newly created object,
1598   // so it's safe to skip storestore barrier when allocation does
1599   // not escape.
1600   if (!alloc->does_not_escape_thread() &&
1601     !alloc->is_allocation_MemBar_redundant() &&
1602     (init == nullptr || !init->is_complete_with_arraycopy())) {
1603     if (init == nullptr || init->req() < InitializeNode::RawStores) {
1604       // No InitializeNode or no stores captured by zeroing
1605       // elimination. Simply add the MemBarStoreStore after object
1606       // initialization.
1607       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1608       transform_later(mb);
1609 
1610       mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1611       mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1612       fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control);
1613       transform_later(fast_oop_ctrl);
1614       fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory);
1615       transform_later(fast_oop_rawmem);
1616     } else {
1617       // Add the MemBarStoreStore after the InitializeNode so that
1618       // all stores performing the initialization that were moved
1619       // before the InitializeNode happen before the storestore
1620       // barrier.
1621 
1622       Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1623       Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1624 
1625       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1626       transform_later(mb);
1627 
1628       Node* ctrl = new ProjNode(init, TypeFunc::Control);
1629       transform_later(ctrl);
1630       Node* mem = new ProjNode(init, TypeFunc::Memory);
1631       transform_later(mem);
1632 
1633       // The MemBarStoreStore depends on control and memory coming
1634       // from the InitializeNode
1635       mb->init_req(TypeFunc::Memory, mem);
1636       mb->init_req(TypeFunc::Control, ctrl);
1637 
1638       ctrl = new ProjNode(mb, TypeFunc::Control);
1639       transform_later(ctrl);
1640       mem = new ProjNode(mb, TypeFunc::Memory);
1641       transform_later(mem);
1642 
1643       // All nodes that depended on the InitializeNode for control
1644       // and memory must now depend on the MemBarNode that itself
1645       // depends on the InitializeNode
1646       if (init_ctrl != nullptr) {
1647         _igvn.replace_node(init_ctrl, ctrl);
1648       }
1649       if (init_mem != nullptr) {
1650         _igvn.replace_node(init_mem, mem);
1651       }
1652     }
1653   }
1654 }
1655 
1656 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop,
1657                                                 Node*& ctrl, Node*& rawmem) {
1658   if (C->env()->dtrace_alloc_probes()) {
1659     // Slow-path call
1660     int size = TypeFunc::Parms + 2;
1661     CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1662                                           CAST_FROM_FN_PTR(address,
1663                                           static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)),
1664                                           "dtrace_object_alloc",
1665                                           TypeRawPtr::BOTTOM);
1666 
1667     // Get base of thread-local storage area
1668     Node* thread = new ThreadLocalNode();
1669     transform_later(thread);
1670 
1671     call->init_req(TypeFunc::Parms + 0, thread);
1672     call->init_req(TypeFunc::Parms + 1, oop);
1673     call->init_req(TypeFunc::Control, ctrl);
1674     call->init_req(TypeFunc::I_O    , top()); // does no i/o
1675     call->init_req(TypeFunc::Memory , rawmem);
1676     call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1677     call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1678     transform_later(call);
1679     ctrl = new ProjNode(call, TypeFunc::Control);
1680     transform_later(ctrl);
1681     rawmem = new ProjNode(call, TypeFunc::Memory);
1682     transform_later(rawmem);
1683   }
1684 }
1685 
1686 // Helper for PhaseMacroExpand::expand_allocate_common.
1687 // Initializes the newly-allocated storage.
1688 Node*
1689 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1690                                     Node* control, Node* rawmem, Node* object,
1691                                     Node* klass_node, Node* length,
1692                                     Node* size_in_bytes) {
1693   InitializeNode* init = alloc->initialization();
1694   // Store the klass & mark bits
1695   Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem);
1696   if (!mark_node->is_Con()) {
1697     transform_later(mark_node);
1698   }
1699   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type());
1700 
1701   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1702   int header_size = alloc->minimum_header_size();  // conservatively small
1703 
1704   // Array length
1705   if (length != nullptr) {         // Arrays need length field
1706     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1707     // conservatively small header size:
1708     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1709     if (_igvn.type(klass_node)->isa_aryklassptr()) {   // we know the exact header size in most cases:
1710       BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();
1711       if (is_reference_type(elem, true)) {
1712         elem = T_OBJECT;
1713       }
1714       header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem));
1715     }
1716   }
1717 
1718   // Clear the object body, if necessary.
1719   if (init == nullptr) {
1720     // The init has somehow disappeared; be cautious and clear everything.
1721     //
1722     // This can happen if a node is allocated but an uncommon trap occurs
1723     // immediately.  In this case, the Initialize gets associated with the
1724     // trap, and may be placed in a different (outer) loop, if the Allocate
1725     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1726     // there can be two Allocates to one Initialize.  The answer in all these
1727     // edge cases is safety first.  It is always safe to clear immediately
1728     // within an Allocate, and then (maybe or maybe not) clear some more later.
1729     if (!(UseTLAB && ZeroTLAB)) {
1730       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1731                                             header_size, size_in_bytes,
1732                                             &_igvn);
1733     }
1734   } else {
1735     if (!init->is_complete()) {
1736       // Try to win by zeroing only what the init does not store.
1737       // We can also try to do some peephole optimizations,
1738       // such as combining some adjacent subword stores.
1739       rawmem = init->complete_stores(control, rawmem, object,
1740                                      header_size, size_in_bytes, &_igvn);
1741     }
1742     // We have no more use for this link, since the AllocateNode goes away:
1743     init->set_req(InitializeNode::RawAddress, top());
1744     // (If we keep the link, it just confuses the register allocator,
1745     // who thinks he sees a real use of the address by the membar.)
1746   }
1747 
1748   return rawmem;
1749 }
1750 
1751 // Generate prefetch instructions for next allocations.
1752 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1753                                         Node*& contended_phi_rawmem,
1754                                         Node* old_eden_top, Node* new_eden_top,
1755                                         intx lines) {
1756    enum { fall_in_path = 1, pf_path = 2 };
1757    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1758       // Generate prefetch allocation with watermark check.
1759       // As an allocation hits the watermark, we will prefetch starting
1760       // at a "distance" away from watermark.
1761 
1762       Node *pf_region = new RegionNode(3);
1763       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1764                                                 TypeRawPtr::BOTTOM );
1765       // I/O is used for Prefetch
1766       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1767 
1768       Node *thread = new ThreadLocalNode();
1769       transform_later(thread);
1770 
1771       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1772                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1773       transform_later(eden_pf_adr);
1774 
1775       Node *old_pf_wm = new LoadPNode(needgc_false,
1776                                    contended_phi_rawmem, eden_pf_adr,
1777                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1778                                    MemNode::unordered);
1779       transform_later(old_pf_wm);
1780 
1781       // check against new_eden_top
1782       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1783       transform_later(need_pf_cmp);
1784       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1785       transform_later(need_pf_bol);
1786       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1787                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1788       transform_later(need_pf_iff);
1789 
1790       // true node, add prefetchdistance
1791       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1792       transform_later(need_pf_true);
1793 
1794       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1795       transform_later(need_pf_false);
1796 
1797       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1798                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1799       transform_later(new_pf_wmt );
1800       new_pf_wmt->set_req(0, need_pf_true);
1801 
1802       Node *store_new_wmt = new StorePNode(need_pf_true,
1803                                        contended_phi_rawmem, eden_pf_adr,
1804                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1805                                        MemNode::unordered);
1806       transform_later(store_new_wmt);
1807 
1808       // adding prefetches
1809       pf_phi_abio->init_req( fall_in_path, i_o );
1810 
1811       Node *prefetch_adr;
1812       Node *prefetch;
1813       uint step_size = AllocatePrefetchStepSize;
1814       uint distance = 0;
1815 
1816       for ( intx i = 0; i < lines; i++ ) {
1817         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1818                                             _igvn.MakeConX(distance) );
1819         transform_later(prefetch_adr);
1820         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1821         transform_later(prefetch);
1822         distance += step_size;
1823         i_o = prefetch;
1824       }
1825       pf_phi_abio->set_req( pf_path, i_o );
1826 
1827       pf_region->init_req( fall_in_path, need_pf_false );
1828       pf_region->init_req( pf_path, need_pf_true );
1829 
1830       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1831       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1832 
1833       transform_later(pf_region);
1834       transform_later(pf_phi_rawmem);
1835       transform_later(pf_phi_abio);
1836 
1837       needgc_false = pf_region;
1838       contended_phi_rawmem = pf_phi_rawmem;
1839       i_o = pf_phi_abio;
1840    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1841       // Insert a prefetch instruction for each allocation.
1842       // This code is used to generate 1 prefetch instruction per cache line.
1843 
1844       // Generate several prefetch instructions.
1845       uint step_size = AllocatePrefetchStepSize;
1846       uint distance = AllocatePrefetchDistance;
1847 
1848       // Next cache address.
1849       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1850                                      _igvn.MakeConX(step_size + distance));
1851       transform_later(cache_adr);
1852       cache_adr = new CastP2XNode(needgc_false, cache_adr);
1853       transform_later(cache_adr);
1854       // Address is aligned to execute prefetch to the beginning of cache line size
1855       // (it is important when BIS instruction is used on SPARC as prefetch).
1856       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1857       cache_adr = new AndXNode(cache_adr, mask);
1858       transform_later(cache_adr);
1859       cache_adr = new CastX2PNode(cache_adr);
1860       transform_later(cache_adr);
1861 
1862       // Prefetch
1863       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1864       prefetch->set_req(0, needgc_false);
1865       transform_later(prefetch);
1866       contended_phi_rawmem = prefetch;
1867       Node *prefetch_adr;
1868       distance = step_size;
1869       for ( intx i = 1; i < lines; i++ ) {
1870         prefetch_adr = new AddPNode( cache_adr, cache_adr,
1871                                             _igvn.MakeConX(distance) );
1872         transform_later(prefetch_adr);
1873         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1874         transform_later(prefetch);
1875         distance += step_size;
1876         contended_phi_rawmem = prefetch;
1877       }
1878    } else if( AllocatePrefetchStyle > 0 ) {
1879       // Insert a prefetch for each allocation only on the fast-path
1880       Node *prefetch_adr;
1881       Node *prefetch;
1882       // Generate several prefetch instructions.
1883       uint step_size = AllocatePrefetchStepSize;
1884       uint distance = AllocatePrefetchDistance;
1885       for ( intx i = 0; i < lines; i++ ) {
1886         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
1887                                             _igvn.MakeConX(distance) );
1888         transform_later(prefetch_adr);
1889         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1890         // Do not let it float too high, since if eden_top == eden_end,
1891         // both might be null.
1892         if( i == 0 ) { // Set control for first prefetch, next follows it
1893           prefetch->init_req(0, needgc_false);
1894         }
1895         transform_later(prefetch);
1896         distance += step_size;
1897         i_o = prefetch;
1898       }
1899    }
1900    return i_o;
1901 }
1902 
1903 
1904 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1905   expand_allocate_common(alloc, nullptr,
1906                          OptoRuntime::new_instance_Type(),
1907                          OptoRuntime::new_instance_Java(), nullptr);
1908 }
1909 
1910 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1911   Node* length = alloc->in(AllocateNode::ALength);
1912   Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest);
1913   InitializeNode* init = alloc->initialization();
1914   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1915   const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr();
1916   address slow_call_address;  // Address of slow call
1917   if (init != nullptr && init->is_complete_with_arraycopy() &&
1918       ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) {
1919     // Don't zero type array during slow allocation in VM since
1920     // it will be initialized later by arraycopy in compiled code.
1921     slow_call_address = OptoRuntime::new_array_nozero_Java();
1922   } else {
1923     slow_call_address = OptoRuntime::new_array_Java();
1924   }
1925   expand_allocate_common(alloc, length,
1926                          OptoRuntime::new_array_Type(),
1927                          slow_call_address, valid_length_test);
1928 }
1929 
1930 //-------------------mark_eliminated_box----------------------------------
1931 //
1932 // During EA obj may point to several objects but after few ideal graph
1933 // transformations (CCP) it may point to only one non escaping object
1934 // (but still using phi), corresponding locks and unlocks will be marked
1935 // for elimination. Later obj could be replaced with a new node (new phi)
1936 // and which does not have escape information. And later after some graph
1937 // reshape other locks and unlocks (which were not marked for elimination
1938 // before) are connected to this new obj (phi) but they still will not be
1939 // marked for elimination since new obj has no escape information.
1940 // Mark all associated (same box and obj) lock and unlock nodes for
1941 // elimination if some of them marked already.
1942 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
1943   if (oldbox->as_BoxLock()->is_eliminated()) {
1944     return; // This BoxLock node was processed already.
1945   }
1946   // New implementation (EliminateNestedLocks) has separate BoxLock
1947   // node for each locked region so mark all associated locks/unlocks as
1948   // eliminated even if different objects are referenced in one locked region
1949   // (for example, OSR compilation of nested loop inside locked scope).
1950   if (EliminateNestedLocks ||
1951       oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) {
1952     // Box is used only in one lock region. Mark this box as eliminated.
1953     _igvn.hash_delete(oldbox);
1954     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
1955      _igvn.hash_insert(oldbox);
1956 
1957     for (uint i = 0; i < oldbox->outcnt(); i++) {
1958       Node* u = oldbox->raw_out(i);
1959       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
1960         AbstractLockNode* alock = u->as_AbstractLock();
1961         // Check lock's box since box could be referenced by Lock's debug info.
1962         if (alock->box_node() == oldbox) {
1963           // Mark eliminated all related locks and unlocks.
1964 #ifdef ASSERT
1965           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
1966 #endif
1967           alock->set_non_esc_obj();
1968         }
1969       }
1970     }
1971     return;
1972   }
1973 
1974   // Create new "eliminated" BoxLock node and use it in monitor debug info
1975   // instead of oldbox for the same object.
1976   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1977 
1978   // Note: BoxLock node is marked eliminated only here and it is used
1979   // to indicate that all associated lock and unlock nodes are marked
1980   // for elimination.
1981   newbox->set_eliminated();
1982   transform_later(newbox);
1983 
1984   // Replace old box node with new box for all users of the same object.
1985   for (uint i = 0; i < oldbox->outcnt();) {
1986     bool next_edge = true;
1987 
1988     Node* u = oldbox->raw_out(i);
1989     if (u->is_AbstractLock()) {
1990       AbstractLockNode* alock = u->as_AbstractLock();
1991       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
1992         // Replace Box and mark eliminated all related locks and unlocks.
1993 #ifdef ASSERT
1994         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
1995 #endif
1996         alock->set_non_esc_obj();
1997         _igvn.rehash_node_delayed(alock);
1998         alock->set_box_node(newbox);
1999         next_edge = false;
2000       }
2001     }
2002     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2003       FastLockNode* flock = u->as_FastLock();
2004       assert(flock->box_node() == oldbox, "sanity");
2005       _igvn.rehash_node_delayed(flock);
2006       flock->set_box_node(newbox);
2007       next_edge = false;
2008     }
2009 
2010     // Replace old box in monitor debug info.
2011     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2012       SafePointNode* sfn = u->as_SafePoint();
2013       JVMState* youngest_jvms = sfn->jvms();
2014       int max_depth = youngest_jvms->depth();
2015       for (int depth = 1; depth <= max_depth; depth++) {
2016         JVMState* jvms = youngest_jvms->of_depth(depth);
2017         int num_mon  = jvms->nof_monitors();
2018         // Loop over monitors
2019         for (int idx = 0; idx < num_mon; idx++) {
2020           Node* obj_node = sfn->monitor_obj(jvms, idx);
2021           Node* box_node = sfn->monitor_box(jvms, idx);
2022           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2023             int j = jvms->monitor_box_offset(idx);
2024             _igvn.replace_input_of(u, j, newbox);
2025             next_edge = false;
2026           }
2027         }
2028       }
2029     }
2030     if (next_edge) i++;
2031   }
2032 }
2033 
2034 //-----------------------mark_eliminated_locking_nodes-----------------------
2035 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2036   if (EliminateNestedLocks) {
2037     if (alock->is_nested()) {
2038        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2039        return;
2040     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2041       // Only Lock node has JVMState needed here.
2042       // Not that preceding claim is documented anywhere else.
2043       if (alock->jvms() != nullptr) {
2044         if (alock->as_Lock()->is_nested_lock_region()) {
2045           // Mark eliminated related nested locks and unlocks.
2046           Node* obj = alock->obj_node();
2047           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2048           assert(!box_node->is_eliminated(), "should not be marked yet");
2049           // Note: BoxLock node is marked eliminated only here
2050           // and it is used to indicate that all associated lock
2051           // and unlock nodes are marked for elimination.
2052           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2053           for (uint i = 0; i < box_node->outcnt(); i++) {
2054             Node* u = box_node->raw_out(i);
2055             if (u->is_AbstractLock()) {
2056               alock = u->as_AbstractLock();
2057               if (alock->box_node() == box_node) {
2058                 // Verify that this Box is referenced only by related locks.
2059                 assert(alock->obj_node()->eqv_uncast(obj), "");
2060                 // Mark all related locks and unlocks.
2061 #ifdef ASSERT
2062                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2063 #endif
2064                 alock->set_nested();
2065               }
2066             }
2067           }
2068         } else {
2069 #ifdef ASSERT
2070           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2071           if (C->log() != nullptr)
2072             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2073 #endif
2074         }
2075       }
2076       return;
2077     }
2078     // Process locks for non escaping object
2079     assert(alock->is_non_esc_obj(), "");
2080   } // EliminateNestedLocks
2081 
2082   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2083     // Look for all locks of this object and mark them and
2084     // corresponding BoxLock nodes as eliminated.
2085     Node* obj = alock->obj_node();
2086     for (uint j = 0; j < obj->outcnt(); j++) {
2087       Node* o = obj->raw_out(j);
2088       if (o->is_AbstractLock() &&
2089           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2090         alock = o->as_AbstractLock();
2091         Node* box = alock->box_node();
2092         // Replace old box node with new eliminated box for all users
2093         // of the same object and mark related locks as eliminated.
2094         mark_eliminated_box(box, obj);
2095       }
2096     }
2097   }
2098 }
2099 
2100 // we have determined that this lock/unlock can be eliminated, we simply
2101 // eliminate the node without expanding it.
2102 //
2103 // Note:  The membar's associated with the lock/unlock are currently not
2104 //        eliminated.  This should be investigated as a future enhancement.
2105 //
2106 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2107 
2108   if (!alock->is_eliminated()) {
2109     return false;
2110   }
2111 #ifdef ASSERT
2112   if (!alock->is_coarsened()) {
2113     // Check that new "eliminated" BoxLock node is created.
2114     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2115     assert(oldbox->is_eliminated(), "should be done already");
2116   }
2117 #endif
2118 
2119   alock->log_lock_optimization(C, "eliminate_lock");
2120 
2121 #ifndef PRODUCT
2122   if (PrintEliminateLocks) {
2123     tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string());
2124   }
2125 #endif
2126 
2127   Node* mem  = alock->in(TypeFunc::Memory);
2128   Node* ctrl = alock->in(TypeFunc::Control);
2129   guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null");
2130 
2131   alock->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2132   // There are 2 projections from the lock.  The lock node will
2133   // be deleted when its last use is subsumed below.
2134   assert(alock->outcnt() == 2 &&
2135          _callprojs.fallthrough_proj != nullptr &&
2136          _callprojs.fallthrough_memproj != nullptr,
2137          "Unexpected projections from Lock/Unlock");
2138 
2139   Node* fallthroughproj = _callprojs.fallthrough_proj;
2140   Node* memproj_fallthrough = _callprojs.fallthrough_memproj;
2141 
2142   // The memory projection from a lock/unlock is RawMem
2143   // The input to a Lock is merged memory, so extract its RawMem input
2144   // (unless the MergeMem has been optimized away.)
2145   if (alock->is_Lock()) {
2146     // Search for MemBarAcquireLock node and delete it also.
2147     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2148     assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, "");
2149     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2150     Node* memproj = membar->proj_out(TypeFunc::Memory);
2151     _igvn.replace_node(ctrlproj, fallthroughproj);
2152     _igvn.replace_node(memproj, memproj_fallthrough);
2153 
2154     // Delete FastLock node also if this Lock node is unique user
2155     // (a loop peeling may clone a Lock node).
2156     Node* flock = alock->as_Lock()->fastlock_node();
2157     if (flock->outcnt() == 1) {
2158       assert(flock->unique_out() == alock, "sanity");
2159       _igvn.replace_node(flock, top());
2160     }
2161   }
2162 
2163   // Search for MemBarReleaseLock node and delete it also.
2164   if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
2165     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2166     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2167            mem->is_Proj() && membar == mem->in(0), "");
2168     _igvn.replace_node(fallthroughproj, ctrl);
2169     _igvn.replace_node(memproj_fallthrough, mem);
2170     fallthroughproj = ctrl;
2171     memproj_fallthrough = mem;
2172     ctrl = membar->in(TypeFunc::Control);
2173     mem  = membar->in(TypeFunc::Memory);
2174   }
2175 
2176   _igvn.replace_node(fallthroughproj, ctrl);
2177   _igvn.replace_node(memproj_fallthrough, mem);
2178   return true;
2179 }
2180 
2181 
2182 //------------------------------expand_lock_node----------------------
2183 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2184 
2185   Node* ctrl = lock->in(TypeFunc::Control);
2186   Node* mem = lock->in(TypeFunc::Memory);
2187   Node* obj = lock->obj_node();
2188   Node* box = lock->box_node();
2189   Node* flock = lock->fastlock_node();
2190 
2191   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2192 
2193   // Make the merge point
2194   Node *region;
2195   Node *mem_phi;
2196   Node *slow_path;
2197 
2198   region  = new RegionNode(3);
2199   // create a Phi for the memory state
2200   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2201 
2202   // Optimize test; set region slot 2
2203   slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2204   mem_phi->init_req(2, mem);
2205 
2206   // Make slow path call
2207   CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2208                                   OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path,
2209                                   obj, box, nullptr);
2210 
2211   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2212 
2213   // Slow path can only throw asynchronous exceptions, which are always
2214   // de-opted.  So the compiler thinks the slow-call can never throw an
2215   // exception.  If it DOES throw an exception we would need the debug
2216   // info removed first (since if it throws there is no monitor).
2217   assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr &&
2218          _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock");
2219 
2220   // Capture slow path
2221   // disconnect fall-through projection from call and create a new one
2222   // hook up users of fall-through projection to region
2223   Node *slow_ctrl = _callprojs.fallthrough_proj->clone();
2224   transform_later(slow_ctrl);
2225   _igvn.hash_delete(_callprojs.fallthrough_proj);
2226   _callprojs.fallthrough_proj->disconnect_inputs(C);
2227   region->init_req(1, slow_ctrl);
2228   // region inputs are now complete
2229   transform_later(region);
2230   _igvn.replace_node(_callprojs.fallthrough_proj, region);
2231 
2232   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2233 
2234   mem_phi->init_req(1, memproj);
2235 
2236   transform_later(mem_phi);
2237 
2238   _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi);
2239 }
2240 
2241 //------------------------------expand_unlock_node----------------------
2242 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2243 
2244   Node* ctrl = unlock->in(TypeFunc::Control);
2245   Node* mem = unlock->in(TypeFunc::Memory);
2246   Node* obj = unlock->obj_node();
2247   Node* box = unlock->box_node();
2248 
2249   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2250 
2251   // No need for a null check on unlock
2252 
2253   // Make the merge point
2254   Node *region;
2255   Node *mem_phi;
2256 
2257   region  = new RegionNode(3);
2258   // create a Phi for the memory state
2259   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2260 
2261   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2262   funlock = transform_later( funlock )->as_FastUnlock();
2263   // Optimize test; set region slot 2
2264   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2265   Node *thread = transform_later(new ThreadLocalNode());
2266 
2267   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2268                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2269                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2270 
2271   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2272   assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr &&
2273          _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock");
2274 
2275   // No exceptions for unlocking
2276   // Capture slow path
2277   // disconnect fall-through projection from call and create a new one
2278   // hook up users of fall-through projection to region
2279   Node *slow_ctrl = _callprojs.fallthrough_proj->clone();
2280   transform_later(slow_ctrl);
2281   _igvn.hash_delete(_callprojs.fallthrough_proj);
2282   _callprojs.fallthrough_proj->disconnect_inputs(C);
2283   region->init_req(1, slow_ctrl);
2284   // region inputs are now complete
2285   transform_later(region);
2286   _igvn.replace_node(_callprojs.fallthrough_proj, region);
2287 
2288   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2289   mem_phi->init_req(1, memproj );
2290   mem_phi->init_req(2, mem);
2291   transform_later(mem_phi);
2292 
2293   _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi);
2294 }
2295 
2296 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) {
2297   assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned");
2298   Node* bol = check->unique_out();
2299   Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass);
2300   Node* superklass = check->in(SubTypeCheckNode::SuperKlass);
2301   assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node");
2302 
2303   for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) {
2304     Node* iff = bol->last_out(i);
2305     assert(iff->is_If(), "where's the if?");
2306 
2307     if (iff->in(0)->is_top()) {
2308       _igvn.replace_input_of(iff, 1, C->top());
2309       continue;
2310     }
2311 
2312     Node* iftrue = iff->as_If()->proj_out(1);
2313     Node* iffalse = iff->as_If()->proj_out(0);
2314     Node* ctrl = iff->in(0);
2315 
2316     Node* subklass = nullptr;
2317     if (_igvn.type(obj_or_subklass)->isa_klassptr()) {
2318       subklass = obj_or_subklass;
2319     } else {
2320       Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes());
2321       subklass = _igvn.transform(LoadKlassNode::make(_igvn, nullptr, C->immutable_memory(), k_adr, TypeInstPtr::KLASS));
2322     }
2323 
2324     Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci());
2325 
2326     _igvn.replace_input_of(iff, 0, C->top());
2327     _igvn.replace_node(iftrue, not_subtype_ctrl);
2328     _igvn.replace_node(iffalse, ctrl);
2329   }
2330   _igvn.replace_node(check, C->top());
2331 }
2332 
2333 //---------------------------eliminate_macro_nodes----------------------
2334 // Eliminate scalar replaced allocations and associated locks.
2335 void PhaseMacroExpand::eliminate_macro_nodes() {
2336   if (C->macro_count() == 0)
2337     return;
2338   NOT_PRODUCT(int membar_before = count_MemBar(C);)
2339 
2340   // Before elimination may re-mark (change to Nested or NonEscObj)
2341   // all associated (same box and obj) lock and unlock nodes.
2342   int cnt = C->macro_count();
2343   for (int i=0; i < cnt; i++) {
2344     Node *n = C->macro_node(i);
2345     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2346       mark_eliminated_locking_nodes(n->as_AbstractLock());
2347     }
2348   }
2349   // Re-marking may break consistency of Coarsened locks.
2350   if (!C->coarsened_locks_consistent()) {
2351     return; // recompile without Coarsened locks if broken
2352   }
2353 
2354   // First, attempt to eliminate locks
2355   bool progress = true;
2356   while (progress) {
2357     progress = false;
2358     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2359       Node* n = C->macro_node(i - 1);
2360       bool success = false;
2361       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2362       if (n->is_AbstractLock()) {
2363         success = eliminate_locking_node(n->as_AbstractLock());
2364 #ifndef PRODUCT
2365         if (success && PrintOptoStatistics) {
2366           Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter);
2367         }
2368 #endif
2369       }
2370       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2371       progress = progress || success;
2372     }
2373   }
2374   // Next, attempt to eliminate allocations
2375   _has_locks = false;
2376   progress = true;
2377   while (progress) {
2378     progress = false;
2379     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2380       Node* n = C->macro_node(i - 1);
2381       bool success = false;
2382       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2383       switch (n->class_id()) {
2384       case Node::Class_Allocate:
2385       case Node::Class_AllocateArray:
2386         success = eliminate_allocate_node(n->as_Allocate());
2387 #ifndef PRODUCT
2388         if (success && PrintOptoStatistics) {
2389           Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter);
2390         }
2391 #endif
2392         break;
2393       case Node::Class_CallStaticJava:
2394         success = eliminate_boxing_node(n->as_CallStaticJava());
2395         break;
2396       case Node::Class_Lock:
2397       case Node::Class_Unlock:
2398         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2399         _has_locks = true;
2400         break;
2401       case Node::Class_ArrayCopy:
2402         break;
2403       case Node::Class_OuterStripMinedLoop:
2404         break;
2405       case Node::Class_SubTypeCheck:
2406         break;
2407       case Node::Class_Opaque1:
2408         break;
2409       default:
2410         assert(n->Opcode() == Op_LoopLimit ||
2411                n->Opcode() == Op_Opaque3   ||
2412                n->Opcode() == Op_Opaque4   ||
2413                n->Opcode() == Op_MaxL      ||
2414                n->Opcode() == Op_MinL      ||
2415                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
2416                "unknown node type in macro list");
2417       }
2418       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2419       progress = progress || success;
2420     }
2421   }
2422 #ifndef PRODUCT
2423   if (PrintOptoStatistics) {
2424     int membar_after = count_MemBar(C);
2425     Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after);
2426   }
2427 #endif
2428 }
2429 
2430 //------------------------------expand_macro_nodes----------------------
2431 //  Returns true if a failure occurred.
2432 bool PhaseMacroExpand::expand_macro_nodes() {
2433   // Last attempt to eliminate macro nodes.
2434   eliminate_macro_nodes();
2435   if (C->failing())  return true;
2436 
2437   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2438   bool progress = true;
2439   while (progress) {
2440     progress = false;
2441     for (int i = C->macro_count(); i > 0; i--) {
2442       Node* n = C->macro_node(i-1);
2443       bool success = false;
2444       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2445       if (n->Opcode() == Op_LoopLimit) {
2446         // Remove it from macro list and put on IGVN worklist to optimize.
2447         C->remove_macro_node(n);
2448         _igvn._worklist.push(n);
2449         success = true;
2450       } else if (n->Opcode() == Op_CallStaticJava) {
2451         // Remove it from macro list and put on IGVN worklist to optimize.
2452         C->remove_macro_node(n);
2453         _igvn._worklist.push(n);
2454         success = true;
2455       } else if (n->is_Opaque1()) {
2456         _igvn.replace_node(n, n->in(1));
2457         success = true;
2458 #if INCLUDE_RTM_OPT
2459       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2460         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2461         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2462         Node* cmp = n->unique_out();
2463 #ifdef ASSERT
2464         // Validate graph.
2465         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
2466         BoolNode* bol = cmp->unique_out()->as_Bool();
2467         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
2468                (bol->_test._test == BoolTest::ne), "");
2469         IfNode* ifn = bol->unique_out()->as_If();
2470         assert((ifn->outcnt() == 2) &&
2471                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != nullptr, "");
2472 #endif
2473         Node* repl = n->in(1);
2474         if (!_has_locks) {
2475           // Remove RTM state check if there are no locks in the code.
2476           // Replace input to compare the same value.
2477           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
2478         }
2479         _igvn.replace_node(n, repl);
2480         success = true;
2481 #endif
2482       } else if (n->Opcode() == Op_Opaque4) {
2483         // With Opaque4 nodes, the expectation is that the test of input 1
2484         // is always equal to the constant value of input 2. So we can
2485         // remove the Opaque4 and replace it by input 2. In debug builds,
2486         // leave the non constant test in instead to sanity check that it
2487         // never fails (if it does, that subgraph was constructed so, at
2488         // runtime, a Halt node is executed).
2489 #ifdef ASSERT
2490         _igvn.replace_node(n, n->in(1));
2491 #else
2492         _igvn.replace_node(n, n->in(2));
2493 #endif
2494         success = true;
2495       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
2496         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
2497         C->remove_macro_node(n);
2498         success = true;
2499       } else if (n->Opcode() == Op_MaxL) {
2500         // Since MaxL and MinL are not implemented in the backend, we expand them to
2501         // a CMoveL construct now. At least until here, the type could be computed
2502         // precisely. CMoveL is not so smart, but we can give it at least the best
2503         // type we know abouot n now.
2504         Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn);
2505         _igvn.replace_node(n, repl);
2506         success = true;
2507       } else if (n->Opcode() == Op_MinL) {
2508         Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn);
2509         _igvn.replace_node(n, repl);
2510         success = true;
2511       }
2512       assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list");
2513       progress = progress || success;
2514     }
2515   }
2516 
2517   // Clean up the graph so we're less likely to hit the maximum node
2518   // limit
2519   _igvn.set_delay_transform(false);
2520   _igvn.optimize();
2521   if (C->failing())  return true;
2522   _igvn.set_delay_transform(true);
2523 
2524 
2525   // Because we run IGVN after each expansion, some macro nodes may go
2526   // dead and be removed from the list as we iterate over it. Move
2527   // Allocate nodes (processed in a second pass) at the beginning of
2528   // the list and then iterate from the last element of the list until
2529   // an Allocate node is seen. This is robust to random deletion in
2530   // the list due to nodes going dead.
2531   C->sort_macro_nodes();
2532 
2533   // expand arraycopy "macro" nodes first
2534   // For ReduceBulkZeroing, we must first process all arraycopy nodes
2535   // before the allocate nodes are expanded.
2536   while (C->macro_count() > 0) {
2537     int macro_count = C->macro_count();
2538     Node * n = C->macro_node(macro_count-1);
2539     assert(n->is_macro(), "only macro nodes expected here");
2540     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
2541       // node is unreachable, so don't try to expand it
2542       C->remove_macro_node(n);
2543       continue;
2544     }
2545     if (n->is_Allocate()) {
2546       break;
2547     }
2548     // Make sure expansion will not cause node limit to be exceeded.
2549     // Worst case is a macro node gets expanded into about 200 nodes.
2550     // Allow 50% more for optimization.
2551     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2552       return true;
2553     }
2554 
2555     DEBUG_ONLY(int old_macro_count = C->macro_count();)
2556     switch (n->class_id()) {
2557     case Node::Class_Lock:
2558       expand_lock_node(n->as_Lock());
2559       break;
2560     case Node::Class_Unlock:
2561       expand_unlock_node(n->as_Unlock());
2562       break;
2563     case Node::Class_ArrayCopy:
2564       expand_arraycopy_node(n->as_ArrayCopy());
2565       break;
2566     case Node::Class_SubTypeCheck:
2567       expand_subtypecheck_node(n->as_SubTypeCheck());
2568       break;
2569     default:
2570       assert(false, "unknown node type in macro list");
2571     }
2572     assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
2573     if (C->failing())  return true;
2574 
2575     // Clean up the graph so we're less likely to hit the maximum node
2576     // limit
2577     _igvn.set_delay_transform(false);
2578     _igvn.optimize();
2579     if (C->failing())  return true;
2580     _igvn.set_delay_transform(true);
2581   }
2582 
2583   // All nodes except Allocate nodes are expanded now. There could be
2584   // new optimization opportunities (such as folding newly created
2585   // load from a just allocated object). Run IGVN.
2586 
2587   // expand "macro" nodes
2588   // nodes are removed from the macro list as they are processed
2589   while (C->macro_count() > 0) {
2590     int macro_count = C->macro_count();
2591     Node * n = C->macro_node(macro_count-1);
2592     assert(n->is_macro(), "only macro nodes expected here");
2593     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
2594       // node is unreachable, so don't try to expand it
2595       C->remove_macro_node(n);
2596       continue;
2597     }
2598     // Make sure expansion will not cause node limit to be exceeded.
2599     // Worst case is a macro node gets expanded into about 200 nodes.
2600     // Allow 50% more for optimization.
2601     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2602       return true;
2603     }
2604     switch (n->class_id()) {
2605     case Node::Class_Allocate:
2606       expand_allocate(n->as_Allocate());
2607       break;
2608     case Node::Class_AllocateArray:
2609       expand_allocate_array(n->as_AllocateArray());
2610       break;
2611     default:
2612       assert(false, "unknown node type in macro list");
2613     }
2614     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2615     if (C->failing())  return true;
2616 
2617     // Clean up the graph so we're less likely to hit the maximum node
2618     // limit
2619     _igvn.set_delay_transform(false);
2620     _igvn.optimize();
2621     if (C->failing())  return true;
2622     _igvn.set_delay_transform(true);
2623   }
2624 
2625   _igvn.set_delay_transform(false);
2626   return false;
2627 }
2628 
2629 #ifndef PRODUCT
2630 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0;
2631 int PhaseMacroExpand::_monitor_objects_removed_counter = 0;
2632 int PhaseMacroExpand::_GC_barriers_removed_counter = 0;
2633 int PhaseMacroExpand::_memory_barriers_removed_counter = 0;
2634 
2635 void PhaseMacroExpand::print_statistics() {
2636   tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter));
2637   tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter));
2638   tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter));
2639   tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter));
2640 }
2641 
2642 int PhaseMacroExpand::count_MemBar(Compile *C) {
2643   if (!PrintOptoStatistics) {
2644     return 0;
2645   }
2646   Unique_Node_List ideal_nodes;
2647   int total = 0;
2648   ideal_nodes.map(C->live_nodes(), nullptr);
2649   ideal_nodes.push(C->root());
2650   for (uint next = 0; next < ideal_nodes.size(); ++next) {
2651     Node* n = ideal_nodes.at(next);
2652     if (n->is_MemBar()) {
2653       total++;
2654     }
2655     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2656       Node* m = n->fast_out(i);
2657       ideal_nodes.push(m);
2658     }
2659   }
2660   return total;
2661 }
2662 #endif