1 /* 2 * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "gc/shared/collectedHeap.inline.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "libadt/vectset.hpp" 31 #include "memory/universe.hpp" 32 #include "opto/addnode.hpp" 33 #include "opto/arraycopynode.hpp" 34 #include "opto/callnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/cfgnode.hpp" 37 #include "opto/compile.hpp" 38 #include "opto/convertnode.hpp" 39 #include "opto/graphKit.hpp" 40 #include "opto/inlinetypenode.hpp" 41 #include "opto/intrinsicnode.hpp" 42 #include "opto/locknode.hpp" 43 #include "opto/loopnode.hpp" 44 #include "opto/macro.hpp" 45 #include "opto/memnode.hpp" 46 #include "opto/narrowptrnode.hpp" 47 #include "opto/node.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/phaseX.hpp" 50 #include "opto/rootnode.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/subtypenode.hpp" 54 #include "opto/type.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "runtime/continuation.hpp" 57 #include "runtime/sharedRuntime.hpp" 58 #include "runtime/stubRoutines.hpp" 59 #include "utilities/macros.hpp" 60 #include "utilities/powerOfTwo.hpp" 61 #if INCLUDE_G1GC 62 #include "gc/g1/g1ThreadLocalData.hpp" 63 #endif // INCLUDE_G1GC 64 65 66 // 67 // Replace any references to "oldref" in inputs to "use" with "newref". 68 // Returns the number of replacements made. 69 // 70 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { 71 int nreplacements = 0; 72 uint req = use->req(); 73 for (uint j = 0; j < use->len(); j++) { 74 Node *uin = use->in(j); 75 if (uin == oldref) { 76 if (j < req) 77 use->set_req(j, newref); 78 else 79 use->set_prec(j, newref); 80 nreplacements++; 81 } else if (j >= req && uin == nullptr) { 82 break; 83 } 84 } 85 return nreplacements; 86 } 87 88 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { 89 Node* cmp; 90 if (mask != 0) { 91 Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); 92 cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); 93 } else { 94 cmp = word; 95 } 96 Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); 97 IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); 98 transform_later(iff); 99 100 // Fast path taken. 101 Node *fast_taken = transform_later(new IfFalseNode(iff)); 102 103 // Fast path not-taken, i.e. slow path 104 Node *slow_taken = transform_later(new IfTrueNode(iff)); 105 106 if (return_fast_path) { 107 region->init_req(edge, slow_taken); // Capture slow-control 108 return fast_taken; 109 } else { 110 region->init_req(edge, fast_taken); // Capture fast-control 111 return slow_taken; 112 } 113 } 114 115 //--------------------copy_predefined_input_for_runtime_call-------------------- 116 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { 117 // Set fixed predefined input arguments 118 call->init_req( TypeFunc::Control, ctrl ); 119 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); 120 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? 121 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); 122 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); 123 } 124 125 //------------------------------make_slow_call--------------------------------- 126 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, 127 address slow_call, const char* leaf_name, Node* slow_path, 128 Node* parm0, Node* parm1, Node* parm2) { 129 130 // Slow-path call 131 CallNode *call = leaf_name 132 ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) 133 : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM ); 134 135 // Slow path call has no side-effects, uses few values 136 copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); 137 if (parm0 != nullptr) call->init_req(TypeFunc::Parms+0, parm0); 138 if (parm1 != nullptr) call->init_req(TypeFunc::Parms+1, parm1); 139 if (parm2 != nullptr) call->init_req(TypeFunc::Parms+2, parm2); 140 call->copy_call_debug_info(&_igvn, oldcall); 141 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 142 _igvn.replace_node(oldcall, call); 143 transform_later(call); 144 145 return call; 146 } 147 148 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) { 149 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 150 bs->eliminate_gc_barrier(&_igvn, p2x); 151 #ifndef PRODUCT 152 if (PrintOptoStatistics) { 153 Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter); 154 } 155 #endif 156 } 157 158 // Search for a memory operation for the specified memory slice. 159 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { 160 Node *orig_mem = mem; 161 Node *alloc_mem = alloc->in(TypeFunc::Memory); 162 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); 163 while (true) { 164 if (mem == alloc_mem || mem == start_mem ) { 165 return mem; // hit one of our sentinels 166 } else if (mem->is_MergeMem()) { 167 mem = mem->as_MergeMem()->memory_at(alias_idx); 168 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { 169 Node *in = mem->in(0); 170 // we can safely skip over safepoints, calls, locks and membars because we 171 // already know that the object is safe to eliminate. 172 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { 173 return in; 174 } else if (in->is_Call()) { 175 CallNode *call = in->as_Call(); 176 if (call->may_modify(tinst, phase)) { 177 assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape"); 178 if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { 179 return in; 180 } 181 } 182 mem = in->in(TypeFunc::Memory); 183 } else if (in->is_MemBar()) { 184 ArrayCopyNode* ac = nullptr; 185 if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) { 186 if (ac != nullptr) { 187 assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone"); 188 return ac; 189 } 190 } 191 mem = in->in(TypeFunc::Memory); 192 } else { 193 #ifdef ASSERT 194 in->dump(); 195 mem->dump(); 196 assert(false, "unexpected projection"); 197 #endif 198 } 199 } else if (mem->is_Store()) { 200 const TypePtr* atype = mem->as_Store()->adr_type(); 201 int adr_idx = phase->C->get_alias_index(atype); 202 if (adr_idx == alias_idx) { 203 assert(atype->isa_oopptr(), "address type must be oopptr"); 204 int adr_offset = atype->flat_offset(); 205 uint adr_iid = atype->is_oopptr()->instance_id(); 206 // Array elements references have the same alias_idx 207 // but different offset and different instance_id. 208 if (adr_offset == offset && adr_iid == alloc->_idx) { 209 return mem; 210 } 211 } else { 212 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); 213 } 214 mem = mem->in(MemNode::Memory); 215 } else if (mem->is_ClearArray()) { 216 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { 217 // Can not bypass initialization of the instance 218 // we are looking. 219 debug_only(intptr_t offset;) 220 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity"); 221 InitializeNode* init = alloc->as_Allocate()->initialization(); 222 // We are looking for stored value, return Initialize node 223 // or memory edge from Allocate node. 224 if (init != nullptr) { 225 return init; 226 } else { 227 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). 228 } 229 } 230 // Otherwise skip it (the call updated 'mem' value). 231 } else if (mem->Opcode() == Op_SCMemProj) { 232 mem = mem->in(0); 233 Node* adr = nullptr; 234 if (mem->is_LoadStore()) { 235 adr = mem->in(MemNode::Address); 236 } else { 237 assert(mem->Opcode() == Op_EncodeISOArray || 238 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 239 adr = mem->in(3); // Destination array 240 } 241 const TypePtr* atype = adr->bottom_type()->is_ptr(); 242 int adr_idx = phase->C->get_alias_index(atype); 243 if (adr_idx == alias_idx) { 244 DEBUG_ONLY(mem->dump();) 245 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 246 return nullptr; 247 } 248 mem = mem->in(MemNode::Memory); 249 } else if (mem->Opcode() == Op_StrInflatedCopy) { 250 Node* adr = mem->in(3); // Destination array 251 const TypePtr* atype = adr->bottom_type()->is_ptr(); 252 int adr_idx = phase->C->get_alias_index(atype); 253 if (adr_idx == alias_idx) { 254 DEBUG_ONLY(mem->dump();) 255 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 256 return nullptr; 257 } 258 mem = mem->in(MemNode::Memory); 259 } else { 260 return mem; 261 } 262 assert(mem != orig_mem, "dead memory loop"); 263 } 264 } 265 266 // Generate loads from source of the arraycopy for fields of 267 // destination needed at a deoptimization point 268 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) { 269 BasicType bt = ft; 270 const Type *type = ftype; 271 if (ft == T_NARROWOOP) { 272 bt = T_OBJECT; 273 type = ftype->make_oopptr(); 274 } 275 Node* res = nullptr; 276 if (ac->is_clonebasic()) { 277 assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination"); 278 Node* base = ac->in(ArrayCopyNode::Src); 279 Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset))); 280 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 281 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 282 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 283 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 284 } else { 285 if (ac->modifies(offset, offset, &_igvn, true)) { 286 assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result"); 287 uint shift = exact_log2(type2aelembytes(bt)); 288 Node* src_pos = ac->in(ArrayCopyNode::SrcPos); 289 Node* dest_pos = ac->in(ArrayCopyNode::DestPos); 290 const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int(); 291 const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int(); 292 293 Node* adr = nullptr; 294 Node* base = ac->in(ArrayCopyNode::Src); 295 const TypeAryPtr* adr_type = _igvn.type(base)->is_aryptr(); 296 if (adr_type->is_flat()) { 297 shift = adr_type->flat_log_elem_size(); 298 } 299 if (src_pos_t->is_con() && dest_pos_t->is_con()) { 300 intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset; 301 adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off))); 302 adr_type = _igvn.type(adr)->is_aryptr(); 303 assert(adr_type == _igvn.type(base)->is_aryptr()->add_field_offset_and_offset(off), "incorrect address type"); 304 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 305 // Don't emit a new load from src if src == dst but try to get the value from memory instead 306 return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type, alloc); 307 } 308 } else { 309 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 310 // Non constant offset in the array: we can't statically 311 // determine the value 312 return nullptr; 313 } 314 Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 315 #ifdef _LP64 316 diff = _igvn.transform(new ConvI2LNode(diff)); 317 #endif 318 diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift))); 319 320 Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff)); 321 adr = _igvn.transform(new AddPNode(base, base, off)); 322 // In the case of a flat inline type array, each field has its 323 // own slice so we need to extract the field being accessed from 324 // the address computation 325 adr_type = adr_type->add_field_offset_and_offset(offset)->add_offset(Type::OffsetBot)->is_aryptr(); 326 adr = _igvn.transform(new CastPPNode(adr, adr_type)); 327 } 328 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 329 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 330 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 331 } 332 } 333 if (res != nullptr) { 334 if (ftype->isa_narrowoop()) { 335 // PhaseMacroExpand::scalar_replacement adds DecodeN nodes 336 assert(res->isa_DecodeN(), "should be narrow oop"); 337 res = _igvn.transform(new EncodePNode(res, ftype)); 338 } 339 return res; 340 } 341 return nullptr; 342 } 343 344 // 345 // Given a Memory Phi, compute a value Phi containing the values from stores 346 // on the input paths. 347 // Note: this function is recursive, its depth is limited by the "level" argument 348 // Returns the computed Phi, or null if it cannot compute it. 349 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { 350 assert(mem->is_Phi(), "sanity"); 351 int alias_idx = C->get_alias_index(adr_t); 352 int offset = adr_t->flat_offset(); 353 int instance_id = adr_t->instance_id(); 354 355 // Check if an appropriate value phi already exists. 356 Node* region = mem->in(0); 357 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 358 Node* phi = region->fast_out(k); 359 if (phi->is_Phi() && phi != mem && 360 phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) { 361 return phi; 362 } 363 } 364 // Check if an appropriate new value phi already exists. 365 Node* new_phi = value_phis->find(mem->_idx); 366 if (new_phi != nullptr) 367 return new_phi; 368 369 if (level <= 0) { 370 return nullptr; // Give up: phi tree too deep 371 } 372 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 373 Node *alloc_mem = alloc->in(TypeFunc::Memory); 374 375 uint length = mem->req(); 376 GrowableArray <Node *> values(length, length, nullptr); 377 378 // create a new Phi for the value 379 PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset); 380 transform_later(phi); 381 value_phis->push(phi, mem->_idx); 382 383 for (uint j = 1; j < length; j++) { 384 Node *in = mem->in(j); 385 if (in == nullptr || in->is_top()) { 386 values.at_put(j, in); 387 } else { 388 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); 389 if (val == start_mem || val == alloc_mem) { 390 // hit a sentinel, return appropriate 0 value 391 Node* default_value = alloc->in(AllocateNode::DefaultValue); 392 if (default_value != nullptr) { 393 values.at_put(j, default_value); 394 } else { 395 assert(alloc->in(AllocateNode::RawDefaultValue) == nullptr, "default value may not be null"); 396 values.at_put(j, _igvn.zerocon(ft)); 397 } 398 continue; 399 } 400 if (val->is_Initialize()) { 401 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 402 } 403 if (val == nullptr) { 404 return nullptr; // can't find a value on this path 405 } 406 if (val == mem) { 407 values.at_put(j, mem); 408 } else if (val->is_Store()) { 409 Node* n = val->in(MemNode::ValueIn); 410 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 411 n = bs->step_over_gc_barrier(n); 412 if (is_subword_type(ft)) { 413 n = Compile::narrow_value(ft, n, phi_type, &_igvn, true); 414 } 415 values.at_put(j, n); 416 } else if(val->is_Proj() && val->in(0) == alloc) { 417 Node* default_value = alloc->in(AllocateNode::DefaultValue); 418 if (default_value != nullptr) { 419 values.at_put(j, default_value); 420 } else { 421 assert(alloc->in(AllocateNode::RawDefaultValue) == nullptr, "default value may not be null"); 422 values.at_put(j, _igvn.zerocon(ft)); 423 } 424 } else if (val->is_Phi()) { 425 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); 426 if (val == nullptr) { 427 return nullptr; 428 } 429 values.at_put(j, val); 430 } else if (val->Opcode() == Op_SCMemProj) { 431 assert(val->in(0)->is_LoadStore() || 432 val->in(0)->Opcode() == Op_EncodeISOArray || 433 val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity"); 434 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 435 return nullptr; 436 } else if (val->is_ArrayCopy()) { 437 Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc); 438 if (res == nullptr) { 439 return nullptr; 440 } 441 values.at_put(j, res); 442 } else { 443 DEBUG_ONLY( val->dump(); ) 444 assert(false, "unknown node on this path"); 445 return nullptr; // unknown node on this path 446 } 447 } 448 } 449 // Set Phi's inputs 450 for (uint j = 1; j < length; j++) { 451 if (values.at(j) == mem) { 452 phi->init_req(j, phi); 453 } else { 454 phi->init_req(j, values.at(j)); 455 } 456 } 457 return phi; 458 } 459 460 // Search the last value stored into the object's field. 461 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { 462 assert(adr_t->is_known_instance_field(), "instance required"); 463 int instance_id = adr_t->instance_id(); 464 assert((uint)instance_id == alloc->_idx, "wrong allocation"); 465 466 int alias_idx = C->get_alias_index(adr_t); 467 int offset = adr_t->flat_offset(); 468 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 469 Node *alloc_mem = alloc->in(TypeFunc::Memory); 470 VectorSet visited; 471 472 bool done = sfpt_mem == alloc_mem; 473 Node *mem = sfpt_mem; 474 while (!done) { 475 if (visited.test_set(mem->_idx)) { 476 return nullptr; // found a loop, give up 477 } 478 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); 479 if (mem == start_mem || mem == alloc_mem) { 480 done = true; // hit a sentinel, return appropriate 0 value 481 } else if (mem->is_Initialize()) { 482 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 483 if (mem == nullptr) { 484 done = true; // Something went wrong. 485 } else if (mem->is_Store()) { 486 const TypePtr* atype = mem->as_Store()->adr_type(); 487 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice"); 488 done = true; 489 } 490 } else if (mem->is_Store()) { 491 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); 492 assert(atype != nullptr, "address type must be oopptr"); 493 assert(C->get_alias_index(atype) == alias_idx && 494 atype->is_known_instance_field() && atype->flat_offset() == offset && 495 atype->instance_id() == instance_id, "store is correct memory slice"); 496 done = true; 497 } else if (mem->is_Phi()) { 498 // try to find a phi's unique input 499 Node *unique_input = nullptr; 500 Node *top = C->top(); 501 for (uint i = 1; i < mem->req(); i++) { 502 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); 503 if (n == nullptr || n == top || n == mem) { 504 continue; 505 } else if (unique_input == nullptr) { 506 unique_input = n; 507 } else if (unique_input != n) { 508 unique_input = top; 509 break; 510 } 511 } 512 if (unique_input != nullptr && unique_input != top) { 513 mem = unique_input; 514 } else { 515 done = true; 516 } 517 } else if (mem->is_ArrayCopy()) { 518 done = true; 519 } else { 520 DEBUG_ONLY( mem->dump(); ) 521 assert(false, "unexpected node"); 522 } 523 } 524 if (mem != nullptr) { 525 if (mem == start_mem || mem == alloc_mem) { 526 // hit a sentinel, return appropriate 0 value 527 Node* default_value = alloc->in(AllocateNode::DefaultValue); 528 if (default_value != nullptr) { 529 return default_value; 530 } 531 assert(alloc->in(AllocateNode::RawDefaultValue) == nullptr, "default value may not be null"); 532 return _igvn.zerocon(ft); 533 } else if (mem->is_Store()) { 534 Node* n = mem->in(MemNode::ValueIn); 535 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 536 n = bs->step_over_gc_barrier(n); 537 return n; 538 } else if (mem->is_Phi()) { 539 // attempt to produce a Phi reflecting the values on the input paths of the Phi 540 Node_Stack value_phis(8); 541 Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); 542 if (phi != nullptr) { 543 return phi; 544 } else { 545 // Kill all new Phis 546 while(value_phis.is_nonempty()) { 547 Node* n = value_phis.node(); 548 _igvn.replace_node(n, C->top()); 549 value_phis.pop(); 550 } 551 } 552 } else if (mem->is_ArrayCopy()) { 553 Node* ctl = mem->in(0); 554 Node* m = mem->in(TypeFunc::Memory); 555 if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) { 556 // pin the loads in the uncommon trap path 557 ctl = sfpt_ctl; 558 m = sfpt_mem; 559 } 560 return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc); 561 } 562 } 563 // Something went wrong. 564 return nullptr; 565 } 566 567 // Search the last value stored into the inline type's fields. 568 Node* PhaseMacroExpand::inline_type_from_mem(Node* mem, Node* ctl, ciInlineKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) { 569 // Subtract the offset of the first field to account for the missing oop header 570 offset -= vk->first_field_offset(); 571 // Create a new InlineTypeNode and retrieve the field values from memory 572 InlineTypeNode* vt = InlineTypeNode::make_uninitialized(_igvn, vk); 573 transform_later(vt); 574 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) { 575 ciType* field_type = vt->field_type(i); 576 int field_offset = offset + vt->field_offset(i); 577 Node* value = nullptr; 578 if (vt->field_is_flat(i)) { 579 value = inline_type_from_mem(mem, ctl, field_type->as_inline_klass(), adr_type, field_offset, alloc); 580 } else { 581 const Type* ft = Type::get_const_type(field_type); 582 BasicType bt = type2field[field_type->basic_type()]; 583 if (UseCompressedOops && !is_java_primitive(bt)) { 584 ft = ft->make_narrowoop(); 585 bt = T_NARROWOOP; 586 } 587 // Each inline type field has its own memory slice 588 adr_type = adr_type->with_field_offset(field_offset); 589 value = value_from_mem(mem, ctl, bt, ft, adr_type, alloc); 590 if (value != nullptr && ft->isa_narrowoop()) { 591 assert(UseCompressedOops, "unexpected narrow oop"); 592 if (value->is_EncodeP()) { 593 value = value->in(1); 594 } else { 595 value = transform_later(new DecodeNNode(value, value->get_ptr_type())); 596 } 597 } 598 } 599 if (value != nullptr) { 600 vt->set_field_value(i, value); 601 } else { 602 // We might have reached the TrackedInitializationLimit 603 return nullptr; 604 } 605 } 606 return vt; 607 } 608 609 // Check the possibility of scalar replacement. 610 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) { 611 // Scan the uses of the allocation to check for anything that would 612 // prevent us from eliminating it. 613 NOT_PRODUCT( const char* fail_eliminate = nullptr; ) 614 DEBUG_ONLY( Node* disq_node = nullptr; ) 615 bool can_eliminate = true; 616 bool reduce_merge_precheck = (safepoints == nullptr); 617 618 Unique_Node_List worklist; 619 Node* res = alloc->result_cast(); 620 const TypeOopPtr* res_type = nullptr; 621 if (res == nullptr) { 622 // All users were eliminated. 623 } else if (!res->is_CheckCastPP()) { 624 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";) 625 can_eliminate = false; 626 } else { 627 worklist.push(res); 628 res_type = igvn->type(res)->isa_oopptr(); 629 if (res_type == nullptr) { 630 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";) 631 can_eliminate = false; 632 } else if (res_type->isa_aryptr()) { 633 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); 634 if (length < 0) { 635 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";) 636 can_eliminate = false; 637 } 638 } 639 } 640 641 while (can_eliminate && worklist.size() > 0) { 642 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 643 res = worklist.pop(); 644 for (DUIterator_Fast jmax, j = res->fast_outs(jmax); j < jmax && can_eliminate; j++) { 645 Node* use = res->fast_out(j); 646 647 if (use->is_AddP()) { 648 const TypePtr* addp_type = igvn->type(use)->is_ptr(); 649 int offset = addp_type->offset(); 650 651 if (offset == Type::OffsetTop || offset == Type::OffsetBot) { 652 NOT_PRODUCT(fail_eliminate = "Undefined field reference";) 653 can_eliminate = false; 654 break; 655 } 656 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); 657 k < kmax && can_eliminate; k++) { 658 Node* n = use->fast_out(k); 659 if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n)) { 660 DEBUG_ONLY(disq_node = n;) 661 if (n->is_Load() || n->is_LoadStore()) { 662 NOT_PRODUCT(fail_eliminate = "Field load";) 663 } else { 664 NOT_PRODUCT(fail_eliminate = "Not store field reference";) 665 } 666 can_eliminate = false; 667 } 668 } 669 } else if (use->is_ArrayCopy() && 670 (use->as_ArrayCopy()->is_clonebasic() || 671 use->as_ArrayCopy()->is_arraycopy_validated() || 672 use->as_ArrayCopy()->is_copyof_validated() || 673 use->as_ArrayCopy()->is_copyofrange_validated()) && 674 use->in(ArrayCopyNode::Dest) == res) { 675 // ok to eliminate 676 } else if (use->is_SafePoint()) { 677 SafePointNode* sfpt = use->as_SafePoint(); 678 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { 679 // Object is passed as argument. 680 DEBUG_ONLY(disq_node = use;) 681 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";) 682 can_eliminate = false; 683 } 684 Node* sfptMem = sfpt->memory(); 685 if (sfptMem == nullptr || sfptMem->is_top()) { 686 DEBUG_ONLY(disq_node = use;) 687 NOT_PRODUCT(fail_eliminate = "null or TOP memory";) 688 can_eliminate = false; 689 } else if (!reduce_merge_precheck) { 690 safepoints->append_if_missing(sfpt); 691 } 692 } else if (use->is_InlineType() && use->as_InlineType()->get_oop() == res) { 693 // Look at uses 694 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 695 Node* u = use->fast_out(k); 696 if (u->is_InlineType()) { 697 // Use in flat field can be eliminated 698 InlineTypeNode* vt = u->as_InlineType(); 699 for (uint i = 0; i < vt->field_count(); ++i) { 700 if (vt->field_value(i) == use && !vt->field_is_flat(i)) { 701 can_eliminate = false; // Use in non-flat field 702 break; 703 } 704 } 705 } else { 706 // Add other uses to the worklist to process individually 707 worklist.push(u); 708 } 709 } 710 } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) { 711 // Store to mark word of inline type larval buffer 712 assert(res_type->is_inlinetypeptr(), "Unexpected store to mark word"); 713 } else if (reduce_merge_precheck && (use->is_Phi() || use->is_EncodeP() || use->Opcode() == Op_MemBarRelease)) { 714 // Nothing to do 715 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark 716 if (use->is_Phi()) { 717 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { 718 NOT_PRODUCT(fail_eliminate = "Object is return value";) 719 } else { 720 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";) 721 } 722 DEBUG_ONLY(disq_node = use;) 723 } else { 724 if (use->Opcode() == Op_Return) { 725 NOT_PRODUCT(fail_eliminate = "Object is return value";) 726 } else { 727 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";) 728 } 729 DEBUG_ONLY(disq_node = use;) 730 } 731 can_eliminate = false; 732 } else { 733 assert(use->Opcode() == Op_CastP2X, "should be"); 734 assert(!use->has_out_with(Op_OrL), "should have been removed because oop is never null"); 735 } 736 } 737 } 738 739 #ifndef PRODUCT 740 if (PrintEliminateAllocations && safepoints != nullptr) { 741 if (can_eliminate) { 742 tty->print("Scalar "); 743 if (res == nullptr) 744 alloc->dump(); 745 else 746 res->dump(); 747 } else { 748 tty->print("NotScalar (%s)", fail_eliminate); 749 if (res == nullptr) 750 alloc->dump(); 751 else 752 res->dump(); 753 #ifdef ASSERT 754 if (disq_node != nullptr) { 755 tty->print(" >>>> "); 756 disq_node->dump(); 757 } 758 #endif /*ASSERT*/ 759 } 760 } 761 #endif 762 return can_eliminate; 763 } 764 765 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) { 766 Node* res = alloc->result_cast(); 767 int nfields = 0; 768 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 769 770 if (res != nullptr) { 771 const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr(); 772 773 if (res_type->isa_instptr()) { 774 // find the fields of the class which will be needed for safepoint debug information 775 ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass(); 776 nfields = iklass->nof_nonstatic_fields(); 777 } else { 778 // find the array's elements which will be needed for safepoint debug information 779 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 780 assert(nfields >= 0, "must be an array klass."); 781 } 782 } 783 784 // rollback processed safepoints 785 while (safepoints_done.length() > 0) { 786 SafePointNode* sfpt_done = safepoints_done.pop(); 787 // remove any extra entries we added to the safepoint 788 uint last = sfpt_done->req() - 1; 789 for (int k = 0; k < nfields; k++) { 790 sfpt_done->del_req(last--); 791 } 792 JVMState *jvms = sfpt_done->jvms(); 793 jvms->set_endoff(sfpt_done->req()); 794 // Now make a pass over the debug information replacing any references 795 // to SafePointScalarObjectNode with the allocated object. 796 int start = jvms->debug_start(); 797 int end = jvms->debug_end(); 798 for (int i = start; i < end; i++) { 799 if (sfpt_done->in(i)->is_SafePointScalarObject()) { 800 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); 801 if (scobj->first_index(jvms) == sfpt_done->req() && 802 scobj->n_fields() == (uint)nfields) { 803 assert(scobj->alloc() == alloc, "sanity"); 804 sfpt_done->set_req(i, res); 805 } 806 } 807 } 808 _igvn._worklist.push(sfpt_done); 809 } 810 } 811 812 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt, 813 Unique_Node_List* value_worklist) { 814 // Fields of scalar objs are referenced only at the end 815 // of regular debuginfo at the last (youngest) JVMS. 816 // Record relative start index. 817 ciInstanceKlass* iklass = nullptr; 818 BasicType basic_elem_type = T_ILLEGAL; 819 const Type* field_type = nullptr; 820 const TypeOopPtr* res_type = nullptr; 821 int nfields = 0; 822 int array_base = 0; 823 int element_size = 0; 824 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 825 Node* res = alloc->result_cast(); 826 827 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 828 assert(sfpt->jvms() != nullptr, "missed JVMS"); 829 830 if (res != nullptr) { // Could be null when there are no users 831 res_type = _igvn.type(res)->isa_oopptr(); 832 833 if (res_type->isa_instptr()) { 834 // find the fields of the class which will be needed for safepoint debug information 835 iklass = res_type->is_instptr()->instance_klass(); 836 nfields = iklass->nof_nonstatic_fields(); 837 } else { 838 // find the array's elements which will be needed for safepoint debug information 839 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 840 assert(nfields >= 0, "must be an array klass."); 841 basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type(); 842 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 843 element_size = type2aelembytes(basic_elem_type); 844 field_type = res_type->is_aryptr()->elem(); 845 if (res_type->is_flat()) { 846 // Flat inline type array 847 element_size = res_type->is_aryptr()->flat_elem_size(); 848 } 849 } 850 } 851 852 SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, nfields); 853 sobj->init_req(0, C->root()); 854 transform_later(sobj); 855 856 // Scan object's fields adding an input to the safepoint for each field. 857 for (int j = 0; j < nfields; j++) { 858 intptr_t offset; 859 ciField* field = nullptr; 860 if (iklass != nullptr) { 861 field = iklass->nonstatic_field_at(j); 862 offset = field->offset_in_bytes(); 863 ciType* elem_type = field->type(); 864 basic_elem_type = field->layout_type(); 865 assert(!field->is_flat(), "flat inline type fields should not have safepoint uses"); 866 867 // The next code is taken from Parse::do_get_xxx(). 868 if (is_reference_type(basic_elem_type)) { 869 if (!elem_type->is_loaded()) { 870 field_type = TypeInstPtr::BOTTOM; 871 } else if (field != nullptr && field->is_static_constant()) { 872 ciObject* con = field->constant_value().as_object(); 873 // Do not "join" in the previous type; it doesn't add value, 874 // and may yield a vacuous result if the field is of interface type. 875 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 876 assert(field_type != nullptr, "field singleton type must be consistent"); 877 } else { 878 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); 879 } 880 if (UseCompressedOops) { 881 field_type = field_type->make_narrowoop(); 882 basic_elem_type = T_NARROWOOP; 883 } 884 } else { 885 field_type = Type::get_const_basic_type(basic_elem_type); 886 } 887 } else { 888 offset = array_base + j * (intptr_t)element_size; 889 } 890 891 Node* field_val = nullptr; 892 const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr(); 893 if (res_type->is_flat()) { 894 ciInlineKlass* vk = res_type->is_aryptr()->elem()->inline_klass(); 895 assert(vk->flat_array(), "must be flat"); 896 field_val = inline_type_from_mem(sfpt->memory(), sfpt->control(), vk, field_addr_type->isa_aryptr(), 0, alloc); 897 } else { 898 field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc); 899 } 900 901 // We weren't able to find a value for this field, 902 // give up on eliminating this allocation. 903 if (field_val == nullptr) { 904 uint last = sfpt->req() - 1; 905 for (int k = 0; k < j; k++) { 906 sfpt->del_req(last--); 907 } 908 _igvn._worklist.push(sfpt); 909 910 #ifndef PRODUCT 911 if (PrintEliminateAllocations) { 912 if (field != nullptr) { 913 tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx); 914 field->print(); 915 int field_idx = C->get_alias_index(field_addr_type); 916 tty->print(" (alias_idx=%d)", field_idx); 917 } else { // Array's element 918 tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j); 919 } 920 tty->print(", which prevents elimination of: "); 921 if (res == nullptr) 922 alloc->dump(); 923 else 924 res->dump(); 925 } 926 #endif 927 928 return nullptr; 929 } 930 931 if (UseCompressedOops && field_type->isa_narrowoop()) { 932 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation 933 // to be able scalar replace the allocation. 934 if (field_val->is_EncodeP()) { 935 field_val = field_val->in(1); 936 } else if (!field_val->is_InlineType()) { 937 field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); 938 } 939 } 940 if (field_val->is_InlineType()) { 941 // Keep track of inline types to scalarize them later 942 value_worklist->push(field_val); 943 } 944 sfpt->add_req(field_val); 945 } 946 947 sfpt->jvms()->set_endoff(sfpt->req()); 948 949 return sobj; 950 } 951 952 // Do scalar replacement. 953 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 954 GrowableArray <SafePointNode *> safepoints_done; 955 Node* res = alloc->result_cast(); 956 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 957 const TypeOopPtr* res_type = nullptr; 958 if (res != nullptr) { // Could be null when there are no users 959 res_type = _igvn.type(res)->isa_oopptr(); 960 } 961 962 // Process the safepoint uses 963 assert(safepoints.length() == 0 || !res_type->is_inlinetypeptr(), "Inline type allocations should not have safepoint uses"); 964 Unique_Node_List value_worklist; 965 while (safepoints.length() > 0) { 966 SafePointNode* sfpt = safepoints.pop(); 967 SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt, &value_worklist); 968 969 if (sobj == nullptr) { 970 undo_previous_scalarizations(safepoints_done, alloc); 971 return false; 972 } 973 974 // Now make a pass over the debug information replacing any references 975 // to the allocated object with "sobj" 976 JVMState *jvms = sfpt->jvms(); 977 sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn); 978 _igvn._worklist.push(sfpt); 979 980 // keep it for rollback 981 safepoints_done.append_if_missing(sfpt); 982 } 983 // Scalarize inline types that were added to the safepoint. 984 // Don't allow linking a constant oop (if available) for flat array elements 985 // because Deoptimization::reassign_flat_array_elements needs field values. 986 bool allow_oop = (res_type != nullptr) && !res_type->is_flat(); 987 for (uint i = 0; i < value_worklist.size(); ++i) { 988 InlineTypeNode* vt = value_worklist.at(i)->as_InlineType(); 989 vt->make_scalar_in_safepoints(&_igvn, allow_oop); 990 } 991 return true; 992 } 993 994 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) { 995 Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control); 996 Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory); 997 if (ctl_proj != nullptr) { 998 igvn.replace_node(ctl_proj, n->in(0)); 999 } 1000 if (mem_proj != nullptr) { 1001 igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); 1002 } 1003 } 1004 1005 // Process users of eliminated allocation. 1006 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc, bool inline_alloc) { 1007 Unique_Node_List worklist; 1008 Node* res = alloc->result_cast(); 1009 if (res != nullptr) { 1010 worklist.push(res); 1011 } 1012 while (worklist.size() > 0) { 1013 res = worklist.pop(); 1014 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { 1015 Node *use = res->last_out(j); 1016 uint oc1 = res->outcnt(); 1017 1018 if (use->is_AddP()) { 1019 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { 1020 Node *n = use->last_out(k); 1021 uint oc2 = use->outcnt(); 1022 if (n->is_Store()) { 1023 for (DUIterator_Fast pmax, p = n->fast_outs(pmax); p < pmax; p++) { 1024 MemBarNode* mb = n->fast_out(p)->isa_MemBar(); 1025 if (mb != nullptr && mb->req() <= MemBarNode::Precedent && mb->in(MemBarNode::Precedent) == n) { 1026 // MemBarVolatiles should have been removed by MemBarNode::Ideal() for non-inline allocations 1027 assert(inline_alloc, "MemBarVolatile should be eliminated for non-escaping object"); 1028 mb->remove(&_igvn); 1029 } 1030 } 1031 _igvn.replace_node(n, n->in(MemNode::Memory)); 1032 } else { 1033 eliminate_gc_barrier(n); 1034 } 1035 k -= (oc2 - use->outcnt()); 1036 } 1037 _igvn.remove_dead_node(use); 1038 } else if (use->is_ArrayCopy()) { 1039 // Disconnect ArrayCopy node 1040 ArrayCopyNode* ac = use->as_ArrayCopy(); 1041 if (ac->is_clonebasic()) { 1042 Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out(); 1043 disconnect_projections(ac, _igvn); 1044 assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation"); 1045 Node* membar_before = alloc->in(TypeFunc::Memory)->in(0); 1046 disconnect_projections(membar_before->as_MemBar(), _igvn); 1047 if (membar_after->is_MemBar()) { 1048 disconnect_projections(membar_after->as_MemBar(), _igvn); 1049 } 1050 } else { 1051 assert(ac->is_arraycopy_validated() || 1052 ac->is_copyof_validated() || 1053 ac->is_copyofrange_validated(), "unsupported"); 1054 CallProjections* callprojs = ac->extract_projections(true); 1055 1056 _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O)); 1057 _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory)); 1058 _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control)); 1059 1060 // Set control to top. IGVN will remove the remaining projections 1061 ac->set_req(0, top()); 1062 ac->replace_edge(res, top(), &_igvn); 1063 1064 // Disconnect src right away: it can help find new 1065 // opportunities for allocation elimination 1066 Node* src = ac->in(ArrayCopyNode::Src); 1067 ac->replace_edge(src, top(), &_igvn); 1068 // src can be top at this point if src and dest of the 1069 // arraycopy were the same 1070 if (src->outcnt() == 0 && !src->is_top()) { 1071 _igvn.remove_dead_node(src); 1072 } 1073 } 1074 _igvn._worklist.push(ac); 1075 } else if (use->is_InlineType()) { 1076 assert(use->as_InlineType()->get_oop() == res, "unexpected inline type ptr use"); 1077 // Cut off oop input and remove known instance id from type 1078 _igvn.rehash_node_delayed(use); 1079 use->as_InlineType()->set_oop(_igvn.zerocon(T_PRIMITIVE_OBJECT)); 1080 const TypeOopPtr* toop = _igvn.type(use)->is_oopptr()->cast_to_instance_id(TypeOopPtr::InstanceBot); 1081 _igvn.set_type(use, toop); 1082 use->as_InlineType()->set_type(toop); 1083 // Process users 1084 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1085 Node* u = use->fast_out(k); 1086 if (!u->is_InlineType()) { 1087 worklist.push(u); 1088 } 1089 } 1090 } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) { 1091 // Store to mark word of inline type larval buffer 1092 assert(inline_alloc, "Unexpected store to mark word"); 1093 _igvn.replace_node(use, use->in(MemNode::Memory)); 1094 } else { 1095 eliminate_gc_barrier(use); 1096 } 1097 j -= (oc1 - res->outcnt()); 1098 } 1099 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted"); 1100 _igvn.remove_dead_node(res); 1101 } 1102 1103 // 1104 // Process other users of allocation's projections 1105 // 1106 if (_callprojs->resproj[0] != nullptr && _callprojs->resproj[0]->outcnt() != 0) { 1107 // First disconnect stores captured by Initialize node. 1108 // If Initialize node is eliminated first in the following code, 1109 // it will kill such stores and DUIterator_Last will assert. 1110 for (DUIterator_Fast jmax, j = _callprojs->resproj[0]->fast_outs(jmax); j < jmax; j++) { 1111 Node* use = _callprojs->resproj[0]->fast_out(j); 1112 if (use->is_AddP()) { 1113 // raw memory addresses used only by the initialization 1114 _igvn.replace_node(use, C->top()); 1115 --j; --jmax; 1116 } 1117 } 1118 for (DUIterator_Last jmin, j = _callprojs->resproj[0]->last_outs(jmin); j >= jmin; ) { 1119 Node* use = _callprojs->resproj[0]->last_out(j); 1120 uint oc1 = _callprojs->resproj[0]->outcnt(); 1121 if (use->is_Initialize()) { 1122 // Eliminate Initialize node. 1123 InitializeNode *init = use->as_Initialize(); 1124 assert(init->outcnt() <= 2, "only a control and memory projection expected"); 1125 Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control); 1126 if (ctrl_proj != nullptr) { 1127 _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control)); 1128 #ifdef ASSERT 1129 // If the InitializeNode has no memory out, it will die, and tmp will become null 1130 Node* tmp = init->in(TypeFunc::Control); 1131 assert(tmp == nullptr || tmp == _callprojs->fallthrough_catchproj, "allocation control projection"); 1132 #endif 1133 } 1134 Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory); 1135 if (mem_proj != nullptr) { 1136 Node *mem = init->in(TypeFunc::Memory); 1137 #ifdef ASSERT 1138 if (mem->is_MergeMem()) { 1139 assert(mem->in(TypeFunc::Memory) == _callprojs->fallthrough_memproj, "allocation memory projection"); 1140 } else { 1141 assert(mem == _callprojs->fallthrough_memproj, "allocation memory projection"); 1142 } 1143 #endif 1144 _igvn.replace_node(mem_proj, mem); 1145 } 1146 } else if (use->Opcode() == Op_MemBarStoreStore) { 1147 // Inline type buffer allocations are followed by a membar 1148 assert(inline_alloc, "Unexpected MemBarStoreStore"); 1149 use->as_MemBar()->remove(&_igvn); 1150 } else { 1151 assert(false, "only Initialize or AddP expected"); 1152 } 1153 j -= (oc1 - _callprojs->resproj[0]->outcnt()); 1154 } 1155 } 1156 if (_callprojs->fallthrough_catchproj != nullptr) { 1157 _igvn.replace_node(_callprojs->fallthrough_catchproj, alloc->in(TypeFunc::Control)); 1158 } 1159 if (_callprojs->fallthrough_memproj != nullptr) { 1160 _igvn.replace_node(_callprojs->fallthrough_memproj, alloc->in(TypeFunc::Memory)); 1161 } 1162 if (_callprojs->catchall_memproj != nullptr) { 1163 _igvn.replace_node(_callprojs->catchall_memproj, C->top()); 1164 } 1165 if (_callprojs->fallthrough_ioproj != nullptr) { 1166 _igvn.replace_node(_callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 1167 } 1168 if (_callprojs->catchall_ioproj != nullptr) { 1169 _igvn.replace_node(_callprojs->catchall_ioproj, C->top()); 1170 } 1171 if (_callprojs->catchall_catchproj != nullptr) { 1172 _igvn.replace_node(_callprojs->catchall_catchproj, C->top()); 1173 } 1174 } 1175 1176 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { 1177 // If reallocation fails during deoptimization we'll pop all 1178 // interpreter frames for this compiled frame and that won't play 1179 // nice with JVMTI popframe. 1180 // We avoid this issue by eager reallocation when the popframe request 1181 // is received. 1182 if (!EliminateAllocations) { 1183 return false; 1184 } 1185 Node* klass = alloc->in(AllocateNode::KlassNode); 1186 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); 1187 1188 // Attempt to eliminate inline type buffer allocations 1189 // regardless of usage and escape/replaceable status. 1190 bool inline_alloc = tklass->isa_instklassptr() && 1191 tklass->is_instklassptr()->instance_klass()->is_inlinetype(); 1192 if (!alloc->_is_non_escaping && !inline_alloc) { 1193 return false; 1194 } 1195 // Eliminate boxing allocations which are not used 1196 // regardless scalar replaceable status. 1197 Node* res = alloc->result_cast(); 1198 bool boxing_alloc = (res == nullptr) && C->eliminate_boxing() && 1199 tklass->isa_instklassptr() && 1200 tklass->is_instklassptr()->instance_klass()->is_box_klass(); 1201 if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != nullptr))) { 1202 return false; 1203 } 1204 1205 _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1206 1207 GrowableArray <SafePointNode *> safepoints; 1208 if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) { 1209 return false; 1210 } 1211 1212 if (!alloc->_is_scalar_replaceable) { 1213 assert(res == nullptr || inline_alloc, "sanity"); 1214 // We can only eliminate allocation if all debug info references 1215 // are already replaced with SafePointScalarObject because 1216 // we can't search for a fields value without instance_id. 1217 if (safepoints.length() > 0) { 1218 assert(!inline_alloc, "Inline type allocations should not have safepoint uses"); 1219 return false; 1220 } 1221 } 1222 1223 if (!scalar_replacement(alloc, safepoints)) { 1224 return false; 1225 } 1226 1227 CompileLog* log = C->log(); 1228 if (log != nullptr) { 1229 log->head("eliminate_allocation type='%d'", 1230 log->identify(tklass->exact_klass())); 1231 JVMState* p = alloc->jvms(); 1232 while (p != nullptr) { 1233 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1234 p = p->caller(); 1235 } 1236 log->tail("eliminate_allocation"); 1237 } 1238 1239 process_users_of_allocation(alloc, inline_alloc); 1240 1241 #ifndef PRODUCT 1242 if (PrintEliminateAllocations) { 1243 if (alloc->is_AllocateArray()) 1244 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1245 else 1246 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1247 } 1248 #endif 1249 1250 return true; 1251 } 1252 1253 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { 1254 // EA should remove all uses of non-escaping boxing node. 1255 if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) { 1256 return false; 1257 } 1258 1259 assert(boxing->result_cast() == nullptr, "unexpected boxing node result"); 1260 1261 _callprojs = boxing->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1262 1263 const TypeTuple* r = boxing->tf()->range_sig(); 1264 assert(r->cnt() > TypeFunc::Parms, "sanity"); 1265 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); 1266 assert(t != nullptr, "sanity"); 1267 1268 CompileLog* log = C->log(); 1269 if (log != nullptr) { 1270 log->head("eliminate_boxing type='%d'", 1271 log->identify(t->instance_klass())); 1272 JVMState* p = boxing->jvms(); 1273 while (p != nullptr) { 1274 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1275 p = p->caller(); 1276 } 1277 log->tail("eliminate_boxing"); 1278 } 1279 1280 process_users_of_allocation(boxing); 1281 1282 #ifndef PRODUCT 1283 if (PrintEliminateAllocations) { 1284 tty->print("++++ Eliminated: %d ", boxing->_idx); 1285 boxing->method()->print_short_name(tty); 1286 tty->cr(); 1287 } 1288 #endif 1289 1290 return true; 1291 } 1292 1293 1294 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { 1295 Node* adr = basic_plus_adr(base, offset); 1296 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 1297 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); 1298 transform_later(value); 1299 return value; 1300 } 1301 1302 1303 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { 1304 Node* adr = basic_plus_adr(base, offset); 1305 mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered); 1306 transform_later(mem); 1307 return mem; 1308 } 1309 1310 //============================================================================= 1311 // 1312 // A L L O C A T I O N 1313 // 1314 // Allocation attempts to be fast in the case of frequent small objects. 1315 // It breaks down like this: 1316 // 1317 // 1) Size in doublewords is computed. This is a constant for objects and 1318 // variable for most arrays. Doubleword units are used to avoid size 1319 // overflow of huge doubleword arrays. We need doublewords in the end for 1320 // rounding. 1321 // 1322 // 2) Size is checked for being 'too large'. Too-large allocations will go 1323 // the slow path into the VM. The slow path can throw any required 1324 // exceptions, and does all the special checks for very large arrays. The 1325 // size test can constant-fold away for objects. For objects with 1326 // finalizers it constant-folds the otherway: you always go slow with 1327 // finalizers. 1328 // 1329 // 3) If NOT using TLABs, this is the contended loop-back point. 1330 // Load-Locked the heap top. If using TLABs normal-load the heap top. 1331 // 1332 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. 1333 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish 1334 // "size*8" we always enter the VM, where "largish" is a constant picked small 1335 // enough that there's always space between the eden max and 4Gig (old space is 1336 // there so it's quite large) and large enough that the cost of entering the VM 1337 // is dwarfed by the cost to initialize the space. 1338 // 1339 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back 1340 // down. If contended, repeat at step 3. If using TLABs normal-store 1341 // adjusted heap top back down; there is no contention. 1342 // 1343 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark 1344 // fields. 1345 // 1346 // 7) Merge with the slow-path; cast the raw memory pointer to the correct 1347 // oop flavor. 1348 // 1349 //============================================================================= 1350 // FastAllocateSizeLimit value is in DOUBLEWORDS. 1351 // Allocations bigger than this always go the slow route. 1352 // This value must be small enough that allocation attempts that need to 1353 // trigger exceptions go the slow route. Also, it must be small enough so 1354 // that heap_top + size_in_bytes does not wrap around the 4Gig limit. 1355 //=============================================================================j// 1356 // %%% Here is an old comment from parseHelper.cpp; is it outdated? 1357 // The allocator will coalesce int->oop copies away. See comment in 1358 // coalesce.cpp about how this works. It depends critically on the exact 1359 // code shape produced here, so if you are changing this code shape 1360 // make sure the GC info for the heap-top is correct in and around the 1361 // slow-path call. 1362 // 1363 1364 void PhaseMacroExpand::expand_allocate_common( 1365 AllocateNode* alloc, // allocation node to be expanded 1366 Node* length, // array length for an array allocation 1367 const TypeFunc* slow_call_type, // Type of slow call 1368 address slow_call_address, // Address of slow call 1369 Node* valid_length_test // whether length is valid or not 1370 ) 1371 { 1372 Node* ctrl = alloc->in(TypeFunc::Control); 1373 Node* mem = alloc->in(TypeFunc::Memory); 1374 Node* i_o = alloc->in(TypeFunc::I_O); 1375 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); 1376 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1377 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); 1378 assert(ctrl != nullptr, "must have control"); 1379 1380 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. 1381 // they will not be used if "always_slow" is set 1382 enum { slow_result_path = 1, fast_result_path = 2 }; 1383 Node *result_region = nullptr; 1384 Node *result_phi_rawmem = nullptr; 1385 Node *result_phi_rawoop = nullptr; 1386 Node *result_phi_i_o = nullptr; 1387 1388 // The initial slow comparison is a size check, the comparison 1389 // we want to do is a BoolTest::gt 1390 bool expand_fast_path = true; 1391 int tv = _igvn.find_int_con(initial_slow_test, -1); 1392 if (tv >= 0) { 1393 // InitialTest has constant result 1394 // 0 - can fit in TLAB 1395 // 1 - always too big or negative 1396 assert(tv <= 1, "0 or 1 if a constant"); 1397 expand_fast_path = (tv == 0); 1398 initial_slow_test = nullptr; 1399 } else { 1400 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); 1401 } 1402 1403 if (!UseTLAB) { 1404 // Force slow-path allocation 1405 expand_fast_path = false; 1406 initial_slow_test = nullptr; 1407 } 1408 1409 bool allocation_has_use = (alloc->result_cast() != nullptr); 1410 if (!allocation_has_use) { 1411 InitializeNode* init = alloc->initialization(); 1412 if (init != nullptr) { 1413 init->remove(&_igvn); 1414 } 1415 if (expand_fast_path && (initial_slow_test == nullptr)) { 1416 // Remove allocation node and return. 1417 // Size is a non-negative constant -> no initial check needed -> directly to fast path. 1418 // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left. 1419 #ifndef PRODUCT 1420 if (PrintEliminateAllocations) { 1421 tty->print("NotUsed "); 1422 Node* res = alloc->proj_out_or_null(TypeFunc::Parms); 1423 if (res != nullptr) { 1424 res->dump(); 1425 } else { 1426 alloc->dump(); 1427 } 1428 } 1429 #endif 1430 yank_alloc_node(alloc); 1431 return; 1432 } 1433 } 1434 1435 enum { too_big_or_final_path = 1, need_gc_path = 2 }; 1436 Node *slow_region = nullptr; 1437 Node *toobig_false = ctrl; 1438 1439 // generate the initial test if necessary 1440 if (initial_slow_test != nullptr ) { 1441 assert (expand_fast_path, "Only need test if there is a fast path"); 1442 slow_region = new RegionNode(3); 1443 1444 // Now make the initial failure test. Usually a too-big test but 1445 // might be a TRUE for finalizers or a fancy class check for 1446 // newInstance0. 1447 IfNode* toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 1448 transform_later(toobig_iff); 1449 // Plug the failing-too-big test into the slow-path region 1450 Node* toobig_true = new IfTrueNode(toobig_iff); 1451 transform_later(toobig_true); 1452 slow_region ->init_req( too_big_or_final_path, toobig_true ); 1453 toobig_false = new IfFalseNode(toobig_iff); 1454 transform_later(toobig_false); 1455 } else { 1456 // No initial test, just fall into next case 1457 assert(allocation_has_use || !expand_fast_path, "Should already have been handled"); 1458 toobig_false = ctrl; 1459 debug_only(slow_region = NodeSentinel); 1460 } 1461 1462 // If we are here there are several possibilities 1463 // - expand_fast_path is false - then only a slow path is expanded. That's it. 1464 // no_initial_check means a constant allocation. 1465 // - If check always evaluates to false -> expand_fast_path is false (see above) 1466 // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath) 1467 // if !allocation_has_use the fast path is empty 1468 // if !allocation_has_use && no_initial_check 1469 // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all. 1470 // removed by yank_alloc_node above. 1471 1472 Node *slow_mem = mem; // save the current memory state for slow path 1473 // generate the fast allocation code unless we know that the initial test will always go slow 1474 if (expand_fast_path) { 1475 // Fast path modifies only raw memory. 1476 if (mem->is_MergeMem()) { 1477 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1478 } 1479 1480 // allocate the Region and Phi nodes for the result 1481 result_region = new RegionNode(3); 1482 result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1483 result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch 1484 1485 // Grab regular I/O before optional prefetch may change it. 1486 // Slow-path does no I/O so just set it to the original I/O. 1487 result_phi_i_o->init_req(slow_result_path, i_o); 1488 1489 // Name successful fast-path variables 1490 Node* fast_oop_ctrl; 1491 Node* fast_oop_rawmem; 1492 1493 if (allocation_has_use) { 1494 Node* needgc_ctrl = nullptr; 1495 result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); 1496 1497 intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1498 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1499 Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl, 1500 fast_oop_ctrl, fast_oop_rawmem, 1501 prefetch_lines); 1502 1503 if (initial_slow_test != nullptr) { 1504 // This completes all paths into the slow merge point 1505 slow_region->init_req(need_gc_path, needgc_ctrl); 1506 transform_later(slow_region); 1507 } else { 1508 // No initial slow path needed! 1509 // Just fall from the need-GC path straight into the VM call. 1510 slow_region = needgc_ctrl; 1511 } 1512 1513 InitializeNode* init = alloc->initialization(); 1514 fast_oop_rawmem = initialize_object(alloc, 1515 fast_oop_ctrl, fast_oop_rawmem, fast_oop, 1516 klass_node, length, size_in_bytes); 1517 expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem); 1518 expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem); 1519 1520 result_phi_rawoop->init_req(fast_result_path, fast_oop); 1521 } else { 1522 assert (initial_slow_test != nullptr, "sanity"); 1523 fast_oop_ctrl = toobig_false; 1524 fast_oop_rawmem = mem; 1525 transform_later(slow_region); 1526 } 1527 1528 // Plug in the successful fast-path into the result merge point 1529 result_region ->init_req(fast_result_path, fast_oop_ctrl); 1530 result_phi_i_o ->init_req(fast_result_path, i_o); 1531 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); 1532 } else { 1533 slow_region = ctrl; 1534 result_phi_i_o = i_o; // Rename it to use in the following code. 1535 } 1536 1537 // Generate slow-path call 1538 CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, 1539 OptoRuntime::stub_name(slow_call_address), 1540 TypePtr::BOTTOM); 1541 call->init_req(TypeFunc::Control, slow_region); 1542 call->init_req(TypeFunc::I_O, top()); // does no i/o 1543 call->init_req(TypeFunc::Memory, slow_mem); // may gc ptrs 1544 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1545 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1546 1547 call->init_req(TypeFunc::Parms+0, klass_node); 1548 if (length != nullptr) { 1549 call->init_req(TypeFunc::Parms+1, length); 1550 } else { 1551 // Let the runtime know if this is a larval allocation 1552 call->init_req(TypeFunc::Parms+1, _igvn.intcon(alloc->_larval)); 1553 } 1554 1555 // Copy debug information and adjust JVMState information, then replace 1556 // allocate node with the call 1557 call->copy_call_debug_info(&_igvn, alloc); 1558 // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify 1559 // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough 1560 // path dies). 1561 if (valid_length_test != nullptr) { 1562 call->add_req(valid_length_test); 1563 } 1564 if (expand_fast_path) { 1565 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1566 } else { 1567 // Hook i_o projection to avoid its elimination during allocation 1568 // replacement (when only a slow call is generated). 1569 call->set_req(TypeFunc::I_O, result_phi_i_o); 1570 } 1571 _igvn.replace_node(alloc, call); 1572 transform_later(call); 1573 1574 // Identify the output projections from the allocate node and 1575 // adjust any references to them. 1576 // The control and io projections look like: 1577 // 1578 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) 1579 // Allocate Catch 1580 // ^---Proj(io) <-------+ ^---CatchProj(io) 1581 // 1582 // We are interested in the CatchProj nodes. 1583 // 1584 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1585 1586 // An allocate node has separate memory projections for the uses on 1587 // the control and i_o paths. Replace the control memory projection with 1588 // result_phi_rawmem (unless we are only generating a slow call when 1589 // both memory projections are combined) 1590 if (expand_fast_path && _callprojs->fallthrough_memproj != nullptr) { 1591 _igvn.replace_in_uses(_callprojs->fallthrough_memproj, result_phi_rawmem); 1592 } 1593 // Now change uses of catchall_memproj to use fallthrough_memproj and delete 1594 // catchall_memproj so we end up with a call that has only 1 memory projection. 1595 if (_callprojs->catchall_memproj != nullptr) { 1596 if (_callprojs->fallthrough_memproj == nullptr) { 1597 _callprojs->fallthrough_memproj = new ProjNode(call, TypeFunc::Memory); 1598 transform_later(_callprojs->fallthrough_memproj); 1599 } 1600 _igvn.replace_in_uses(_callprojs->catchall_memproj, _callprojs->fallthrough_memproj); 1601 _igvn.remove_dead_node(_callprojs->catchall_memproj); 1602 } 1603 1604 // An allocate node has separate i_o projections for the uses on the control 1605 // and i_o paths. Always replace the control i_o projection with result i_o 1606 // otherwise incoming i_o become dead when only a slow call is generated 1607 // (it is different from memory projections where both projections are 1608 // combined in such case). 1609 if (_callprojs->fallthrough_ioproj != nullptr) { 1610 _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, result_phi_i_o); 1611 } 1612 // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete 1613 // catchall_ioproj so we end up with a call that has only 1 i_o projection. 1614 if (_callprojs->catchall_ioproj != nullptr) { 1615 if (_callprojs->fallthrough_ioproj == nullptr) { 1616 _callprojs->fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O); 1617 transform_later(_callprojs->fallthrough_ioproj); 1618 } 1619 _igvn.replace_in_uses(_callprojs->catchall_ioproj, _callprojs->fallthrough_ioproj); 1620 _igvn.remove_dead_node(_callprojs->catchall_ioproj); 1621 } 1622 1623 // if we generated only a slow call, we are done 1624 if (!expand_fast_path) { 1625 // Now we can unhook i_o. 1626 if (result_phi_i_o->outcnt() > 1) { 1627 call->set_req(TypeFunc::I_O, top()); 1628 } else { 1629 assert(result_phi_i_o->unique_ctrl_out() == call, "sanity"); 1630 // Case of new array with negative size known during compilation. 1631 // AllocateArrayNode::Ideal() optimization disconnect unreachable 1632 // following code since call to runtime will throw exception. 1633 // As result there will be no users of i_o after the call. 1634 // Leave i_o attached to this call to avoid problems in preceding graph. 1635 } 1636 return; 1637 } 1638 1639 if (_callprojs->fallthrough_catchproj != nullptr) { 1640 ctrl = _callprojs->fallthrough_catchproj->clone(); 1641 transform_later(ctrl); 1642 _igvn.replace_node(_callprojs->fallthrough_catchproj, result_region); 1643 } else { 1644 ctrl = top(); 1645 } 1646 Node *slow_result; 1647 if (_callprojs->resproj[0] == nullptr) { 1648 // no uses of the allocation result 1649 slow_result = top(); 1650 } else { 1651 slow_result = _callprojs->resproj[0]->clone(); 1652 transform_later(slow_result); 1653 _igvn.replace_node(_callprojs->resproj[0], result_phi_rawoop); 1654 } 1655 1656 // Plug slow-path into result merge point 1657 result_region->init_req( slow_result_path, ctrl); 1658 transform_later(result_region); 1659 if (allocation_has_use) { 1660 result_phi_rawoop->init_req(slow_result_path, slow_result); 1661 transform_later(result_phi_rawoop); 1662 } 1663 result_phi_rawmem->init_req(slow_result_path, _callprojs->fallthrough_memproj); 1664 transform_later(result_phi_rawmem); 1665 transform_later(result_phi_i_o); 1666 // This completes all paths into the result merge point 1667 } 1668 1669 // Remove alloc node that has no uses. 1670 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) { 1671 Node* ctrl = alloc->in(TypeFunc::Control); 1672 Node* mem = alloc->in(TypeFunc::Memory); 1673 Node* i_o = alloc->in(TypeFunc::I_O); 1674 1675 _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1676 if (_callprojs->resproj[0] != nullptr) { 1677 for (DUIterator_Fast imax, i = _callprojs->resproj[0]->fast_outs(imax); i < imax; i++) { 1678 Node* use = _callprojs->resproj[0]->fast_out(i); 1679 use->isa_MemBar()->remove(&_igvn); 1680 --imax; 1681 --i; // back up iterator 1682 } 1683 assert(_callprojs->resproj[0]->outcnt() == 0, "all uses must be deleted"); 1684 _igvn.remove_dead_node(_callprojs->resproj[0]); 1685 } 1686 if (_callprojs->fallthrough_catchproj != nullptr) { 1687 _igvn.replace_in_uses(_callprojs->fallthrough_catchproj, ctrl); 1688 _igvn.remove_dead_node(_callprojs->fallthrough_catchproj); 1689 } 1690 if (_callprojs->catchall_catchproj != nullptr) { 1691 _igvn.rehash_node_delayed(_callprojs->catchall_catchproj); 1692 _callprojs->catchall_catchproj->set_req(0, top()); 1693 } 1694 if (_callprojs->fallthrough_proj != nullptr) { 1695 Node* catchnode = _callprojs->fallthrough_proj->unique_ctrl_out(); 1696 _igvn.remove_dead_node(catchnode); 1697 _igvn.remove_dead_node(_callprojs->fallthrough_proj); 1698 } 1699 if (_callprojs->fallthrough_memproj != nullptr) { 1700 _igvn.replace_in_uses(_callprojs->fallthrough_memproj, mem); 1701 _igvn.remove_dead_node(_callprojs->fallthrough_memproj); 1702 } 1703 if (_callprojs->fallthrough_ioproj != nullptr) { 1704 _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, i_o); 1705 _igvn.remove_dead_node(_callprojs->fallthrough_ioproj); 1706 } 1707 if (_callprojs->catchall_memproj != nullptr) { 1708 _igvn.rehash_node_delayed(_callprojs->catchall_memproj); 1709 _callprojs->catchall_memproj->set_req(0, top()); 1710 } 1711 if (_callprojs->catchall_ioproj != nullptr) { 1712 _igvn.rehash_node_delayed(_callprojs->catchall_ioproj); 1713 _callprojs->catchall_ioproj->set_req(0, top()); 1714 } 1715 #ifndef PRODUCT 1716 if (PrintEliminateAllocations) { 1717 if (alloc->is_AllocateArray()) { 1718 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1719 } else { 1720 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1721 } 1722 } 1723 #endif 1724 _igvn.remove_dead_node(alloc); 1725 } 1726 1727 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init, 1728 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) { 1729 // If initialization is performed by an array copy, any required 1730 // MemBarStoreStore was already added. If the object does not 1731 // escape no need for a MemBarStoreStore. If the object does not 1732 // escape in its initializer and memory barrier (MemBarStoreStore or 1733 // stronger) is already added at exit of initializer, also no need 1734 // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore 1735 // so that stores that initialize this object can't be reordered 1736 // with a subsequent store that makes this object accessible by 1737 // other threads. 1738 // Other threads include java threads and JVM internal threads 1739 // (for example concurrent GC threads). Current concurrent GC 1740 // implementation: G1 will not scan newly created object, 1741 // so it's safe to skip storestore barrier when allocation does 1742 // not escape. 1743 if (!alloc->does_not_escape_thread() && 1744 !alloc->is_allocation_MemBar_redundant() && 1745 (init == nullptr || !init->is_complete_with_arraycopy())) { 1746 if (init == nullptr || init->req() < InitializeNode::RawStores) { 1747 // No InitializeNode or no stores captured by zeroing 1748 // elimination. Simply add the MemBarStoreStore after object 1749 // initialization. 1750 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1751 transform_later(mb); 1752 1753 mb->init_req(TypeFunc::Memory, fast_oop_rawmem); 1754 mb->init_req(TypeFunc::Control, fast_oop_ctrl); 1755 fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control); 1756 transform_later(fast_oop_ctrl); 1757 fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory); 1758 transform_later(fast_oop_rawmem); 1759 } else { 1760 // Add the MemBarStoreStore after the InitializeNode so that 1761 // all stores performing the initialization that were moved 1762 // before the InitializeNode happen before the storestore 1763 // barrier. 1764 1765 Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control); 1766 Node* init_mem = init->proj_out_or_null(TypeFunc::Memory); 1767 1768 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1769 transform_later(mb); 1770 1771 Node* ctrl = new ProjNode(init, TypeFunc::Control); 1772 transform_later(ctrl); 1773 Node* mem = new ProjNode(init, TypeFunc::Memory); 1774 transform_later(mem); 1775 1776 // The MemBarStoreStore depends on control and memory coming 1777 // from the InitializeNode 1778 mb->init_req(TypeFunc::Memory, mem); 1779 mb->init_req(TypeFunc::Control, ctrl); 1780 1781 ctrl = new ProjNode(mb, TypeFunc::Control); 1782 transform_later(ctrl); 1783 mem = new ProjNode(mb, TypeFunc::Memory); 1784 transform_later(mem); 1785 1786 // All nodes that depended on the InitializeNode for control 1787 // and memory must now depend on the MemBarNode that itself 1788 // depends on the InitializeNode 1789 if (init_ctrl != nullptr) { 1790 _igvn.replace_node(init_ctrl, ctrl); 1791 } 1792 if (init_mem != nullptr) { 1793 _igvn.replace_node(init_mem, mem); 1794 } 1795 } 1796 } 1797 } 1798 1799 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop, 1800 Node*& ctrl, Node*& rawmem) { 1801 if (C->env()->dtrace_alloc_probes()) { 1802 // Slow-path call 1803 int size = TypeFunc::Parms + 2; 1804 CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), 1805 CAST_FROM_FN_PTR(address, 1806 static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)), 1807 "dtrace_object_alloc", 1808 TypeRawPtr::BOTTOM); 1809 1810 // Get base of thread-local storage area 1811 Node* thread = new ThreadLocalNode(); 1812 transform_later(thread); 1813 1814 call->init_req(TypeFunc::Parms + 0, thread); 1815 call->init_req(TypeFunc::Parms + 1, oop); 1816 call->init_req(TypeFunc::Control, ctrl); 1817 call->init_req(TypeFunc::I_O , top()); // does no i/o 1818 call->init_req(TypeFunc::Memory , rawmem); 1819 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1820 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1821 transform_later(call); 1822 ctrl = new ProjNode(call, TypeFunc::Control); 1823 transform_later(ctrl); 1824 rawmem = new ProjNode(call, TypeFunc::Memory); 1825 transform_later(rawmem); 1826 } 1827 } 1828 1829 // Helper for PhaseMacroExpand::expand_allocate_common. 1830 // Initializes the newly-allocated storage. 1831 Node* PhaseMacroExpand::initialize_object(AllocateNode* alloc, 1832 Node* control, Node* rawmem, Node* object, 1833 Node* klass_node, Node* length, 1834 Node* size_in_bytes) { 1835 InitializeNode* init = alloc->initialization(); 1836 // Store the klass & mark bits 1837 Node* mark_node = alloc->make_ideal_mark(&_igvn, control, rawmem); 1838 if (!mark_node->is_Con()) { 1839 transform_later(mark_node); 1840 } 1841 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type()); 1842 1843 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 1844 int header_size = alloc->minimum_header_size(); // conservatively small 1845 1846 // Array length 1847 if (length != nullptr) { // Arrays need length field 1848 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); 1849 // conservatively small header size: 1850 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1851 if (_igvn.type(klass_node)->isa_aryklassptr()) { // we know the exact header size in most cases: 1852 BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type(); 1853 if (is_reference_type(elem, true)) { 1854 elem = T_OBJECT; 1855 } 1856 header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem)); 1857 } 1858 } 1859 1860 // Clear the object body, if necessary. 1861 if (init == nullptr) { 1862 // The init has somehow disappeared; be cautious and clear everything. 1863 // 1864 // This can happen if a node is allocated but an uncommon trap occurs 1865 // immediately. In this case, the Initialize gets associated with the 1866 // trap, and may be placed in a different (outer) loop, if the Allocate 1867 // is in a loop. If (this is rare) the inner loop gets unrolled, then 1868 // there can be two Allocates to one Initialize. The answer in all these 1869 // edge cases is safety first. It is always safe to clear immediately 1870 // within an Allocate, and then (maybe or maybe not) clear some more later. 1871 if (!(UseTLAB && ZeroTLAB)) { 1872 rawmem = ClearArrayNode::clear_memory(control, rawmem, object, 1873 alloc->in(AllocateNode::DefaultValue), 1874 alloc->in(AllocateNode::RawDefaultValue), 1875 header_size, size_in_bytes, 1876 &_igvn); 1877 } 1878 } else { 1879 if (!init->is_complete()) { 1880 // Try to win by zeroing only what the init does not store. 1881 // We can also try to do some peephole optimizations, 1882 // such as combining some adjacent subword stores. 1883 rawmem = init->complete_stores(control, rawmem, object, 1884 header_size, size_in_bytes, &_igvn); 1885 } 1886 // We have no more use for this link, since the AllocateNode goes away: 1887 init->set_req(InitializeNode::RawAddress, top()); 1888 // (If we keep the link, it just confuses the register allocator, 1889 // who thinks he sees a real use of the address by the membar.) 1890 } 1891 1892 return rawmem; 1893 } 1894 1895 // Generate prefetch instructions for next allocations. 1896 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 1897 Node*& contended_phi_rawmem, 1898 Node* old_eden_top, Node* new_eden_top, 1899 intx lines) { 1900 enum { fall_in_path = 1, pf_path = 2 }; 1901 if( UseTLAB && AllocatePrefetchStyle == 2 ) { 1902 // Generate prefetch allocation with watermark check. 1903 // As an allocation hits the watermark, we will prefetch starting 1904 // at a "distance" away from watermark. 1905 1906 Node *pf_region = new RegionNode(3); 1907 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 1908 TypeRawPtr::BOTTOM ); 1909 // I/O is used for Prefetch 1910 Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); 1911 1912 Node *thread = new ThreadLocalNode(); 1913 transform_later(thread); 1914 1915 Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, 1916 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); 1917 transform_later(eden_pf_adr); 1918 1919 Node *old_pf_wm = new LoadPNode(needgc_false, 1920 contended_phi_rawmem, eden_pf_adr, 1921 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, 1922 MemNode::unordered); 1923 transform_later(old_pf_wm); 1924 1925 // check against new_eden_top 1926 Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); 1927 transform_later(need_pf_cmp); 1928 Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); 1929 transform_later(need_pf_bol); 1930 IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, 1931 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); 1932 transform_later(need_pf_iff); 1933 1934 // true node, add prefetchdistance 1935 Node *need_pf_true = new IfTrueNode( need_pf_iff ); 1936 transform_later(need_pf_true); 1937 1938 Node *need_pf_false = new IfFalseNode( need_pf_iff ); 1939 transform_later(need_pf_false); 1940 1941 Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, 1942 _igvn.MakeConX(AllocatePrefetchDistance) ); 1943 transform_later(new_pf_wmt ); 1944 new_pf_wmt->set_req(0, need_pf_true); 1945 1946 Node *store_new_wmt = new StorePNode(need_pf_true, 1947 contended_phi_rawmem, eden_pf_adr, 1948 TypeRawPtr::BOTTOM, new_pf_wmt, 1949 MemNode::unordered); 1950 transform_later(store_new_wmt); 1951 1952 // adding prefetches 1953 pf_phi_abio->init_req( fall_in_path, i_o ); 1954 1955 Node *prefetch_adr; 1956 Node *prefetch; 1957 uint step_size = AllocatePrefetchStepSize; 1958 uint distance = 0; 1959 1960 for ( intx i = 0; i < lines; i++ ) { 1961 prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, 1962 _igvn.MakeConX(distance) ); 1963 transform_later(prefetch_adr); 1964 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 1965 transform_later(prefetch); 1966 distance += step_size; 1967 i_o = prefetch; 1968 } 1969 pf_phi_abio->set_req( pf_path, i_o ); 1970 1971 pf_region->init_req( fall_in_path, need_pf_false ); 1972 pf_region->init_req( pf_path, need_pf_true ); 1973 1974 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); 1975 pf_phi_rawmem->init_req( pf_path, store_new_wmt ); 1976 1977 transform_later(pf_region); 1978 transform_later(pf_phi_rawmem); 1979 transform_later(pf_phi_abio); 1980 1981 needgc_false = pf_region; 1982 contended_phi_rawmem = pf_phi_rawmem; 1983 i_o = pf_phi_abio; 1984 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { 1985 // Insert a prefetch instruction for each allocation. 1986 // This code is used to generate 1 prefetch instruction per cache line. 1987 1988 // Generate several prefetch instructions. 1989 uint step_size = AllocatePrefetchStepSize; 1990 uint distance = AllocatePrefetchDistance; 1991 1992 // Next cache address. 1993 Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, 1994 _igvn.MakeConX(step_size + distance)); 1995 transform_later(cache_adr); 1996 cache_adr = new CastP2XNode(needgc_false, cache_adr); 1997 transform_later(cache_adr); 1998 // Address is aligned to execute prefetch to the beginning of cache line size 1999 // (it is important when BIS instruction is used on SPARC as prefetch). 2000 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); 2001 cache_adr = new AndXNode(cache_adr, mask); 2002 transform_later(cache_adr); 2003 cache_adr = new CastX2PNode(cache_adr); 2004 transform_later(cache_adr); 2005 2006 // Prefetch 2007 Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); 2008 prefetch->set_req(0, needgc_false); 2009 transform_later(prefetch); 2010 contended_phi_rawmem = prefetch; 2011 Node *prefetch_adr; 2012 distance = step_size; 2013 for ( intx i = 1; i < lines; i++ ) { 2014 prefetch_adr = new AddPNode( cache_adr, cache_adr, 2015 _igvn.MakeConX(distance) ); 2016 transform_later(prefetch_adr); 2017 prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); 2018 transform_later(prefetch); 2019 distance += step_size; 2020 contended_phi_rawmem = prefetch; 2021 } 2022 } else if( AllocatePrefetchStyle > 0 ) { 2023 // Insert a prefetch for each allocation only on the fast-path 2024 Node *prefetch_adr; 2025 Node *prefetch; 2026 // Generate several prefetch instructions. 2027 uint step_size = AllocatePrefetchStepSize; 2028 uint distance = AllocatePrefetchDistance; 2029 for ( intx i = 0; i < lines; i++ ) { 2030 prefetch_adr = new AddPNode( old_eden_top, new_eden_top, 2031 _igvn.MakeConX(distance) ); 2032 transform_later(prefetch_adr); 2033 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 2034 // Do not let it float too high, since if eden_top == eden_end, 2035 // both might be null. 2036 if( i == 0 ) { // Set control for first prefetch, next follows it 2037 prefetch->init_req(0, needgc_false); 2038 } 2039 transform_later(prefetch); 2040 distance += step_size; 2041 i_o = prefetch; 2042 } 2043 } 2044 return i_o; 2045 } 2046 2047 2048 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { 2049 expand_allocate_common(alloc, nullptr, 2050 OptoRuntime::new_instance_Type(), 2051 OptoRuntime::new_instance_Java(), nullptr); 2052 } 2053 2054 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { 2055 Node* length = alloc->in(AllocateNode::ALength); 2056 Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest); 2057 InitializeNode* init = alloc->initialization(); 2058 Node* klass_node = alloc->in(AllocateNode::KlassNode); 2059 const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr(); 2060 address slow_call_address; // Address of slow call 2061 if (init != nullptr && init->is_complete_with_arraycopy() && 2062 ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) { 2063 // Don't zero type array during slow allocation in VM since 2064 // it will be initialized later by arraycopy in compiled code. 2065 slow_call_address = OptoRuntime::new_array_nozero_Java(); 2066 } else { 2067 slow_call_address = OptoRuntime::new_array_Java(); 2068 } 2069 expand_allocate_common(alloc, length, 2070 OptoRuntime::new_array_Type(), 2071 slow_call_address, valid_length_test); 2072 } 2073 2074 //-------------------mark_eliminated_box---------------------------------- 2075 // 2076 // During EA obj may point to several objects but after few ideal graph 2077 // transformations (CCP) it may point to only one non escaping object 2078 // (but still using phi), corresponding locks and unlocks will be marked 2079 // for elimination. Later obj could be replaced with a new node (new phi) 2080 // and which does not have escape information. And later after some graph 2081 // reshape other locks and unlocks (which were not marked for elimination 2082 // before) are connected to this new obj (phi) but they still will not be 2083 // marked for elimination since new obj has no escape information. 2084 // Mark all associated (same box and obj) lock and unlock nodes for 2085 // elimination if some of them marked already. 2086 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) { 2087 if (oldbox->as_BoxLock()->is_eliminated()) { 2088 return; // This BoxLock node was processed already. 2089 } 2090 // New implementation (EliminateNestedLocks) has separate BoxLock 2091 // node for each locked region so mark all associated locks/unlocks as 2092 // eliminated even if different objects are referenced in one locked region 2093 // (for example, OSR compilation of nested loop inside locked scope). 2094 if (EliminateNestedLocks || 2095 oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) { 2096 // Box is used only in one lock region. Mark this box as eliminated. 2097 _igvn.hash_delete(oldbox); 2098 oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value 2099 _igvn.hash_insert(oldbox); 2100 2101 for (uint i = 0; i < oldbox->outcnt(); i++) { 2102 Node* u = oldbox->raw_out(i); 2103 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { 2104 AbstractLockNode* alock = u->as_AbstractLock(); 2105 // Check lock's box since box could be referenced by Lock's debug info. 2106 if (alock->box_node() == oldbox) { 2107 // Mark eliminated all related locks and unlocks. 2108 #ifdef ASSERT 2109 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4"); 2110 #endif 2111 alock->set_non_esc_obj(); 2112 } 2113 } 2114 } 2115 return; 2116 } 2117 2118 // Create new "eliminated" BoxLock node and use it in monitor debug info 2119 // instead of oldbox for the same object. 2120 BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); 2121 2122 // Note: BoxLock node is marked eliminated only here and it is used 2123 // to indicate that all associated lock and unlock nodes are marked 2124 // for elimination. 2125 newbox->set_eliminated(); 2126 transform_later(newbox); 2127 2128 // Replace old box node with new box for all users of the same object. 2129 for (uint i = 0; i < oldbox->outcnt();) { 2130 bool next_edge = true; 2131 2132 Node* u = oldbox->raw_out(i); 2133 if (u->is_AbstractLock()) { 2134 AbstractLockNode* alock = u->as_AbstractLock(); 2135 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { 2136 // Replace Box and mark eliminated all related locks and unlocks. 2137 #ifdef ASSERT 2138 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5"); 2139 #endif 2140 alock->set_non_esc_obj(); 2141 _igvn.rehash_node_delayed(alock); 2142 alock->set_box_node(newbox); 2143 next_edge = false; 2144 } 2145 } 2146 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { 2147 FastLockNode* flock = u->as_FastLock(); 2148 assert(flock->box_node() == oldbox, "sanity"); 2149 _igvn.rehash_node_delayed(flock); 2150 flock->set_box_node(newbox); 2151 next_edge = false; 2152 } 2153 2154 // Replace old box in monitor debug info. 2155 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { 2156 SafePointNode* sfn = u->as_SafePoint(); 2157 JVMState* youngest_jvms = sfn->jvms(); 2158 int max_depth = youngest_jvms->depth(); 2159 for (int depth = 1; depth <= max_depth; depth++) { 2160 JVMState* jvms = youngest_jvms->of_depth(depth); 2161 int num_mon = jvms->nof_monitors(); 2162 // Loop over monitors 2163 for (int idx = 0; idx < num_mon; idx++) { 2164 Node* obj_node = sfn->monitor_obj(jvms, idx); 2165 Node* box_node = sfn->monitor_box(jvms, idx); 2166 if (box_node == oldbox && obj_node->eqv_uncast(obj)) { 2167 int j = jvms->monitor_box_offset(idx); 2168 _igvn.replace_input_of(u, j, newbox); 2169 next_edge = false; 2170 } 2171 } 2172 } 2173 } 2174 if (next_edge) i++; 2175 } 2176 } 2177 2178 //-----------------------mark_eliminated_locking_nodes----------------------- 2179 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { 2180 if (EliminateNestedLocks) { 2181 if (alock->is_nested()) { 2182 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity"); 2183 return; 2184 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened 2185 // Only Lock node has JVMState needed here. 2186 // Not that preceding claim is documented anywhere else. 2187 if (alock->jvms() != nullptr) { 2188 if (alock->as_Lock()->is_nested_lock_region()) { 2189 // Mark eliminated related nested locks and unlocks. 2190 Node* obj = alock->obj_node(); 2191 BoxLockNode* box_node = alock->box_node()->as_BoxLock(); 2192 assert(!box_node->is_eliminated(), "should not be marked yet"); 2193 // Note: BoxLock node is marked eliminated only here 2194 // and it is used to indicate that all associated lock 2195 // and unlock nodes are marked for elimination. 2196 box_node->set_eliminated(); // Box's hash is always NO_HASH here 2197 for (uint i = 0; i < box_node->outcnt(); i++) { 2198 Node* u = box_node->raw_out(i); 2199 if (u->is_AbstractLock()) { 2200 alock = u->as_AbstractLock(); 2201 if (alock->box_node() == box_node) { 2202 // Verify that this Box is referenced only by related locks. 2203 assert(alock->obj_node()->eqv_uncast(obj), ""); 2204 // Mark all related locks and unlocks. 2205 #ifdef ASSERT 2206 alock->log_lock_optimization(C, "eliminate_lock_set_nested"); 2207 #endif 2208 alock->set_nested(); 2209 } 2210 } 2211 } 2212 } else { 2213 #ifdef ASSERT 2214 alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region"); 2215 if (C->log() != nullptr) 2216 alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output 2217 #endif 2218 } 2219 } 2220 return; 2221 } 2222 // Process locks for non escaping object 2223 assert(alock->is_non_esc_obj(), ""); 2224 } // EliminateNestedLocks 2225 2226 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object 2227 // Look for all locks of this object and mark them and 2228 // corresponding BoxLock nodes as eliminated. 2229 Node* obj = alock->obj_node(); 2230 for (uint j = 0; j < obj->outcnt(); j++) { 2231 Node* o = obj->raw_out(j); 2232 if (o->is_AbstractLock() && 2233 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2234 alock = o->as_AbstractLock(); 2235 Node* box = alock->box_node(); 2236 // Replace old box node with new eliminated box for all users 2237 // of the same object and mark related locks as eliminated. 2238 mark_eliminated_box(box, obj); 2239 } 2240 } 2241 } 2242 } 2243 2244 void PhaseMacroExpand::inline_type_guard(Node** ctrl, LockNode* lock) { 2245 Node* obj = lock->obj_node(); 2246 const TypePtr* obj_type = _igvn.type(obj)->make_ptr(); 2247 if (!obj_type->can_be_inline_type()) { 2248 return; 2249 } 2250 Node* mark = make_load(*ctrl, lock->memory(), obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type()); 2251 Node* value_mask = _igvn.MakeConX(markWord::inline_type_pattern); 2252 Node* is_value = _igvn.transform(new AndXNode(mark, value_mask)); 2253 Node* cmp = _igvn.transform(new CmpXNode(is_value, value_mask)); 2254 Node* bol = _igvn.transform(new BoolNode(cmp, BoolTest::eq)); 2255 Node* unc_ctrl = generate_slow_guard(ctrl, bol, nullptr); 2256 2257 int trap_request = Deoptimization::make_trap_request(Deoptimization::Reason_class_check, Deoptimization::Action_none); 2258 address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point(); 2259 const TypePtr* no_memory_effects = nullptr; 2260 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", 2261 no_memory_effects); 2262 unc->init_req(TypeFunc::Control, unc_ctrl); 2263 unc->init_req(TypeFunc::I_O, lock->i_o()); 2264 unc->init_req(TypeFunc::Memory, lock->memory()); 2265 unc->init_req(TypeFunc::FramePtr, lock->in(TypeFunc::FramePtr)); 2266 unc->init_req(TypeFunc::ReturnAdr, lock->in(TypeFunc::ReturnAdr)); 2267 unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request)); 2268 unc->set_cnt(PROB_UNLIKELY_MAG(4)); 2269 unc->copy_call_debug_info(&_igvn, lock); 2270 2271 assert(unc->peek_monitor_box() == lock->box_node(), "wrong monitor"); 2272 assert((obj_type->is_inlinetypeptr() && unc->peek_monitor_obj()->is_SafePointScalarObject()) || 2273 (obj->is_InlineType() && obj->in(1) == unc->peek_monitor_obj()) || 2274 (obj == unc->peek_monitor_obj()), "wrong monitor"); 2275 2276 // pop monitor and push obj back on stack: we trap before the monitorenter 2277 unc->pop_monitor(); 2278 unc->grow_stack(unc->jvms(), 1); 2279 unc->set_stack(unc->jvms(), unc->jvms()->stk_size()-1, obj); 2280 _igvn.register_new_node_with_optimizer(unc); 2281 2282 unc_ctrl = _igvn.transform(new ProjNode(unc, TypeFunc::Control)); 2283 Node* halt = _igvn.transform(new HaltNode(unc_ctrl, lock->in(TypeFunc::FramePtr), "monitor enter on inline type")); 2284 _igvn.add_input_to(C->root(), halt); 2285 } 2286 2287 // we have determined that this lock/unlock can be eliminated, we simply 2288 // eliminate the node without expanding it. 2289 // 2290 // Note: The membar's associated with the lock/unlock are currently not 2291 // eliminated. This should be investigated as a future enhancement. 2292 // 2293 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { 2294 2295 if (!alock->is_eliminated()) { 2296 return false; 2297 } 2298 #ifdef ASSERT 2299 if (!alock->is_coarsened()) { 2300 // Check that new "eliminated" BoxLock node is created. 2301 BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); 2302 assert(oldbox->is_eliminated(), "should be done already"); 2303 } 2304 #endif 2305 2306 alock->log_lock_optimization(C, "eliminate_lock"); 2307 2308 #ifndef PRODUCT 2309 if (PrintEliminateLocks) { 2310 tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string()); 2311 } 2312 #endif 2313 2314 Node* mem = alock->in(TypeFunc::Memory); 2315 Node* ctrl = alock->in(TypeFunc::Control); 2316 guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null"); 2317 2318 _callprojs = alock->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2319 // There are 2 projections from the lock. The lock node will 2320 // be deleted when its last use is subsumed below. 2321 assert(alock->outcnt() == 2 && 2322 _callprojs->fallthrough_proj != nullptr && 2323 _callprojs->fallthrough_memproj != nullptr, 2324 "Unexpected projections from Lock/Unlock"); 2325 2326 Node* fallthroughproj = _callprojs->fallthrough_proj; 2327 Node* memproj_fallthrough = _callprojs->fallthrough_memproj; 2328 2329 // The memory projection from a lock/unlock is RawMem 2330 // The input to a Lock is merged memory, so extract its RawMem input 2331 // (unless the MergeMem has been optimized away.) 2332 if (alock->is_Lock()) { 2333 // Deoptimize and re-execute if object is an inline type 2334 inline_type_guard(&ctrl, alock->as_Lock()); 2335 2336 // Search for MemBarAcquireLock node and delete it also. 2337 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); 2338 assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, ""); 2339 Node* ctrlproj = membar->proj_out(TypeFunc::Control); 2340 Node* memproj = membar->proj_out(TypeFunc::Memory); 2341 _igvn.replace_node(ctrlproj, fallthroughproj); 2342 _igvn.replace_node(memproj, memproj_fallthrough); 2343 2344 // Delete FastLock node also if this Lock node is unique user 2345 // (a loop peeling may clone a Lock node). 2346 Node* flock = alock->as_Lock()->fastlock_node(); 2347 if (flock->outcnt() == 1) { 2348 assert(flock->unique_out() == alock, "sanity"); 2349 _igvn.replace_node(flock, top()); 2350 } 2351 } 2352 2353 // Search for MemBarReleaseLock node and delete it also. 2354 if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) { 2355 MemBarNode* membar = ctrl->in(0)->as_MemBar(); 2356 assert(membar->Opcode() == Op_MemBarReleaseLock && 2357 mem->is_Proj() && membar == mem->in(0), ""); 2358 _igvn.replace_node(fallthroughproj, ctrl); 2359 _igvn.replace_node(memproj_fallthrough, mem); 2360 fallthroughproj = ctrl; 2361 memproj_fallthrough = mem; 2362 ctrl = membar->in(TypeFunc::Control); 2363 mem = membar->in(TypeFunc::Memory); 2364 } 2365 2366 _igvn.replace_node(fallthroughproj, ctrl); 2367 _igvn.replace_node(memproj_fallthrough, mem); 2368 return true; 2369 } 2370 2371 2372 //------------------------------expand_lock_node---------------------- 2373 void PhaseMacroExpand::expand_lock_node(LockNode *lock) { 2374 2375 Node* ctrl = lock->in(TypeFunc::Control); 2376 Node* mem = lock->in(TypeFunc::Memory); 2377 Node* obj = lock->obj_node(); 2378 Node* box = lock->box_node(); 2379 Node* flock = lock->fastlock_node(); 2380 2381 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2382 2383 // Make the merge point 2384 Node *region; 2385 Node *mem_phi; 2386 Node *slow_path; 2387 2388 region = new RegionNode(3); 2389 // create a Phi for the memory state 2390 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2391 2392 // Optimize test; set region slot 2 2393 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); 2394 mem_phi->init_req(2, mem); 2395 2396 // Deoptimize and re-execute if object is an inline type 2397 inline_type_guard(&slow_path, lock); 2398 2399 // Make slow path call 2400 CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), 2401 OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path, 2402 obj, box, nullptr); 2403 2404 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2405 2406 // Slow path can only throw asynchronous exceptions, which are always 2407 // de-opted. So the compiler thinks the slow-call can never throw an 2408 // exception. If it DOES throw an exception we would need the debug 2409 // info removed first (since if it throws there is no monitor). 2410 assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr && 2411 _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2412 2413 // Capture slow path 2414 // disconnect fall-through projection from call and create a new one 2415 // hook up users of fall-through projection to region 2416 Node *slow_ctrl = _callprojs->fallthrough_proj->clone(); 2417 transform_later(slow_ctrl); 2418 _igvn.hash_delete(_callprojs->fallthrough_proj); 2419 _callprojs->fallthrough_proj->disconnect_inputs(C); 2420 region->init_req(1, slow_ctrl); 2421 // region inputs are now complete 2422 transform_later(region); 2423 _igvn.replace_node(_callprojs->fallthrough_proj, region); 2424 2425 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); 2426 2427 mem_phi->init_req(1, memproj); 2428 2429 transform_later(mem_phi); 2430 2431 _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi); 2432 } 2433 2434 //------------------------------expand_unlock_node---------------------- 2435 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { 2436 2437 Node* ctrl = unlock->in(TypeFunc::Control); 2438 Node* mem = unlock->in(TypeFunc::Memory); 2439 Node* obj = unlock->obj_node(); 2440 Node* box = unlock->box_node(); 2441 2442 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2443 2444 // No need for a null check on unlock 2445 2446 // Make the merge point 2447 Node *region; 2448 Node *mem_phi; 2449 2450 region = new RegionNode(3); 2451 // create a Phi for the memory state 2452 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2453 2454 FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); 2455 funlock = transform_later( funlock )->as_FastUnlock(); 2456 // Optimize test; set region slot 2 2457 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); 2458 Node *thread = transform_later(new ThreadLocalNode()); 2459 2460 CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), 2461 CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2462 "complete_monitor_unlocking_C", slow_path, obj, box, thread); 2463 2464 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2465 assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr && 2466 _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2467 2468 // No exceptions for unlocking 2469 // Capture slow path 2470 // disconnect fall-through projection from call and create a new one 2471 // hook up users of fall-through projection to region 2472 Node *slow_ctrl = _callprojs->fallthrough_proj->clone(); 2473 transform_later(slow_ctrl); 2474 _igvn.hash_delete(_callprojs->fallthrough_proj); 2475 _callprojs->fallthrough_proj->disconnect_inputs(C); 2476 region->init_req(1, slow_ctrl); 2477 // region inputs are now complete 2478 transform_later(region); 2479 _igvn.replace_node(_callprojs->fallthrough_proj, region); 2480 2481 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); 2482 mem_phi->init_req(1, memproj ); 2483 mem_phi->init_req(2, mem); 2484 transform_later(mem_phi); 2485 2486 _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi); 2487 } 2488 2489 // An inline type might be returned from the call but we don't know its 2490 // type. Either we get a buffered inline type (and nothing needs to be done) 2491 // or one of the values being returned is the klass of the inline type 2492 // and we need to allocate an inline type instance of that type and 2493 // initialize it with other values being returned. In that case, we 2494 // first try a fast path allocation and initialize the value with the 2495 // inline klass's pack handler or we fall back to a runtime call. 2496 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) { 2497 assert(call->method()->is_method_handle_intrinsic(), "must be a method handle intrinsic call"); 2498 Node* ret = call->proj_out_or_null(TypeFunc::Parms); 2499 if (ret == nullptr) { 2500 return; 2501 } 2502 const TypeFunc* tf = call->_tf; 2503 const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc(); 2504 const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain); 2505 call->_tf = new_tf; 2506 // Make sure the change of type is applied before projections are processed by igvn 2507 _igvn.set_type(call, call->Value(&_igvn)); 2508 _igvn.set_type(ret, ret->Value(&_igvn)); 2509 2510 // Before any new projection is added: 2511 CallProjections* projs = call->extract_projections(true, true); 2512 2513 // Create temporary hook nodes that will be replaced below. 2514 // Add an input to prevent hook nodes from being dead. 2515 Node* ctl = new Node(call); 2516 Node* mem = new Node(ctl); 2517 Node* io = new Node(ctl); 2518 Node* ex_ctl = new Node(ctl); 2519 Node* ex_mem = new Node(ctl); 2520 Node* ex_io = new Node(ctl); 2521 Node* res = new Node(ctl); 2522 2523 // Allocate a new buffered inline type only if a new one is not returned 2524 Node* cast = transform_later(new CastP2XNode(ctl, res)); 2525 Node* mask = MakeConX(0x1); 2526 Node* masked = transform_later(new AndXNode(cast, mask)); 2527 Node* cmp = transform_later(new CmpXNode(masked, mask)); 2528 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2529 IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN); 2530 transform_later(allocation_iff); 2531 Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff)); 2532 Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff)); 2533 Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeInstPtr::BOTTOM)); 2534 2535 // Try to allocate a new buffered inline instance either from TLAB or eden space 2536 Node* needgc_ctrl = nullptr; // needgc means slowcase, i.e. allocation failed 2537 CallLeafNoFPNode* handler_call; 2538 const bool alloc_in_place = UseTLAB; 2539 if (alloc_in_place) { 2540 Node* fast_oop_ctrl = nullptr; 2541 Node* fast_oop_rawmem = nullptr; 2542 Node* mask2 = MakeConX(-2); 2543 Node* masked2 = transform_later(new AndXNode(cast, mask2)); 2544 Node* rawklassptr = transform_later(new CastX2PNode(masked2)); 2545 Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeInstKlassPtr::OBJECT_OR_NULL)); 2546 Node* layout_val = make_load(nullptr, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT); 2547 Node* size_in_bytes = ConvI2X(layout_val); 2548 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2549 Node* fast_oop = bs->obj_allocate(this, mem, allocation_ctl, size_in_bytes, io, needgc_ctrl, 2550 fast_oop_ctrl, fast_oop_rawmem, 2551 AllocateInstancePrefetchLines); 2552 // Allocation succeed, initialize buffered inline instance header firstly, 2553 // and then initialize its fields with an inline class specific handler 2554 Node* mark_node = makecon(TypeRawPtr::make((address)markWord::inline_type_prototype().value())); 2555 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS); 2556 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 2557 if (UseCompressedClassPointers) { 2558 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT); 2559 } 2560 Node* fixed_block = make_load(fast_oop_ctrl, fast_oop_rawmem, klass_node, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2561 Node* pack_handler = make_load(fast_oop_ctrl, fast_oop_rawmem, fixed_block, in_bytes(InlineKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2562 handler_call = new CallLeafNoFPNode(OptoRuntime::pack_inline_type_Type(), 2563 nullptr, 2564 "pack handler", 2565 TypeRawPtr::BOTTOM); 2566 handler_call->init_req(TypeFunc::Control, fast_oop_ctrl); 2567 handler_call->init_req(TypeFunc::Memory, fast_oop_rawmem); 2568 handler_call->init_req(TypeFunc::I_O, top()); 2569 handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2570 handler_call->init_req(TypeFunc::ReturnAdr, top()); 2571 handler_call->init_req(TypeFunc::Parms, pack_handler); 2572 handler_call->init_req(TypeFunc::Parms+1, fast_oop); 2573 } else { 2574 needgc_ctrl = allocation_ctl; 2575 } 2576 2577 // Allocation failed, fall back to a runtime call 2578 CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_inline_type_fields_Type(), 2579 StubRoutines::store_inline_type_fields_to_buf(), 2580 "store_inline_type_fields", 2581 TypePtr::BOTTOM); 2582 slow_call->init_req(TypeFunc::Control, needgc_ctrl); 2583 slow_call->init_req(TypeFunc::Memory, mem); 2584 slow_call->init_req(TypeFunc::I_O, io); 2585 slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2586 slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr)); 2587 slow_call->init_req(TypeFunc::Parms, res); 2588 2589 Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control)); 2590 Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory)); 2591 Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O)); 2592 Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms)); 2593 Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2)); 2594 Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)); 2595 Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci)); 2596 2597 Node* ex_r = new RegionNode(3); 2598 Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM); 2599 Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO); 2600 ex_r->init_req(1, slow_excp); 2601 ex_mem_phi->init_req(1, slow_mem); 2602 ex_io_phi->init_req(1, slow_io); 2603 ex_r->init_req(2, ex_ctl); 2604 ex_mem_phi->init_req(2, ex_mem); 2605 ex_io_phi->init_req(2, ex_io); 2606 transform_later(ex_r); 2607 transform_later(ex_mem_phi); 2608 transform_later(ex_io_phi); 2609 2610 // We don't know how many values are returned. This assumes the 2611 // worst case, that all available registers are used. 2612 for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) { 2613 if (domain->field_at(i) == Type::HALF) { 2614 slow_call->init_req(i, top()); 2615 if (alloc_in_place) { 2616 handler_call->init_req(i+1, top()); 2617 } 2618 continue; 2619 } 2620 Node* proj = transform_later(new ProjNode(call, i)); 2621 slow_call->init_req(i, proj); 2622 if (alloc_in_place) { 2623 handler_call->init_req(i+1, proj); 2624 } 2625 } 2626 // We can safepoint at that new call 2627 slow_call->copy_call_debug_info(&_igvn, call); 2628 transform_later(slow_call); 2629 if (alloc_in_place) { 2630 transform_later(handler_call); 2631 } 2632 2633 Node* fast_ctl = nullptr; 2634 Node* fast_res = nullptr; 2635 MergeMemNode* fast_mem = nullptr; 2636 if (alloc_in_place) { 2637 fast_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control)); 2638 Node* rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory)); 2639 fast_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms)); 2640 fast_mem = MergeMemNode::make(mem); 2641 fast_mem->set_memory_at(Compile::AliasIdxRaw, rawmem); 2642 transform_later(fast_mem); 2643 } 2644 2645 Node* r = new RegionNode(alloc_in_place ? 4 : 3); 2646 Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2647 Node* io_phi = new PhiNode(r, Type::ABIO); 2648 Node* res_phi = new PhiNode(r, TypeInstPtr::BOTTOM); 2649 r->init_req(1, no_allocation_ctl); 2650 mem_phi->init_req(1, mem); 2651 io_phi->init_req(1, io); 2652 res_phi->init_req(1, no_allocation_res); 2653 r->init_req(2, slow_norm); 2654 mem_phi->init_req(2, slow_mem); 2655 io_phi->init_req(2, slow_io); 2656 res_phi->init_req(2, slow_res); 2657 if (alloc_in_place) { 2658 r->init_req(3, fast_ctl); 2659 mem_phi->init_req(3, fast_mem); 2660 io_phi->init_req(3, io); 2661 res_phi->init_req(3, fast_res); 2662 } 2663 transform_later(r); 2664 transform_later(mem_phi); 2665 transform_later(io_phi); 2666 transform_later(res_phi); 2667 2668 // Do not let stores that initialize this buffer be reordered with a subsequent 2669 // store that would make this buffer accessible by other threads. 2670 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 2671 transform_later(mb); 2672 mb->init_req(TypeFunc::Memory, mem_phi); 2673 mb->init_req(TypeFunc::Control, r); 2674 r = new ProjNode(mb, TypeFunc::Control); 2675 transform_later(r); 2676 mem_phi = new ProjNode(mb, TypeFunc::Memory); 2677 transform_later(mem_phi); 2678 2679 assert(projs->nb_resproj == 1, "unexpected number of results"); 2680 _igvn.replace_in_uses(projs->fallthrough_catchproj, r); 2681 _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi); 2682 _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi); 2683 _igvn.replace_in_uses(projs->resproj[0], res_phi); 2684 _igvn.replace_in_uses(projs->catchall_catchproj, ex_r); 2685 _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi); 2686 _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi); 2687 // The CatchNode should not use the ex_io_phi. Re-connect it to the catchall_ioproj. 2688 Node* cn = projs->fallthrough_catchproj->in(0); 2689 _igvn.replace_input_of(cn, 1, projs->catchall_ioproj); 2690 2691 _igvn.replace_node(ctl, projs->fallthrough_catchproj); 2692 _igvn.replace_node(mem, projs->fallthrough_memproj); 2693 _igvn.replace_node(io, projs->fallthrough_ioproj); 2694 _igvn.replace_node(res, projs->resproj[0]); 2695 _igvn.replace_node(ex_ctl, projs->catchall_catchproj); 2696 _igvn.replace_node(ex_mem, projs->catchall_memproj); 2697 _igvn.replace_node(ex_io, projs->catchall_ioproj); 2698 } 2699 2700 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) { 2701 assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned"); 2702 Node* bol = check->unique_out(); 2703 Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass); 2704 Node* superklass = check->in(SubTypeCheckNode::SuperKlass); 2705 assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node"); 2706 2707 for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) { 2708 Node* iff = bol->last_out(i); 2709 assert(iff->is_If(), "where's the if?"); 2710 2711 if (iff->in(0)->is_top()) { 2712 _igvn.replace_input_of(iff, 1, C->top()); 2713 continue; 2714 } 2715 2716 Node* iftrue = iff->as_If()->proj_out(1); 2717 Node* iffalse = iff->as_If()->proj_out(0); 2718 Node* ctrl = iff->in(0); 2719 2720 Node* subklass = nullptr; 2721 if (_igvn.type(obj_or_subklass)->isa_klassptr()) { 2722 subklass = obj_or_subklass; 2723 } else { 2724 Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes()); 2725 subklass = _igvn.transform(LoadKlassNode::make(_igvn, nullptr, C->immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2726 } 2727 2728 Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn); 2729 2730 _igvn.replace_input_of(iff, 0, C->top()); 2731 _igvn.replace_node(iftrue, not_subtype_ctrl); 2732 _igvn.replace_node(iffalse, ctrl); 2733 } 2734 _igvn.replace_node(check, C->top()); 2735 } 2736 2737 // FlatArrayCheckNode (array1 array2 ...) is expanded into: 2738 // 2739 // long mark = array1.mark | array2.mark | ...; 2740 // long locked_bit = markWord::unlocked_value & array1.mark & array2.mark & ...; 2741 // if (locked_bit == 0) { 2742 // // One array is locked, load prototype header from the klass 2743 // mark = array1.klass.proto | array2.klass.proto | ... 2744 // } 2745 // if ((mark & markWord::flat_array_bit_in_place) == 0) { 2746 // ... 2747 // } 2748 void PhaseMacroExpand::expand_flatarraycheck_node(FlatArrayCheckNode* check) { 2749 bool array_inputs = _igvn.type(check->in(FlatArrayCheckNode::ArrayOrKlass))->isa_oopptr() != nullptr; 2750 if (UseArrayMarkWordCheck && array_inputs) { 2751 Node* mark = MakeConX(0); 2752 Node* locked_bit = MakeConX(markWord::unlocked_value); 2753 Node* mem = check->in(FlatArrayCheckNode::Memory); 2754 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2755 Node* ary = check->in(i); 2756 const TypeOopPtr* t = _igvn.type(ary)->isa_oopptr(); 2757 assert(t != nullptr, "Mixing array and klass inputs"); 2758 assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out"); 2759 Node* mark_adr = basic_plus_adr(ary, oopDesc::mark_offset_in_bytes()); 2760 Node* mark_load = _igvn.transform(LoadNode::make(_igvn, nullptr, mem, mark_adr, mark_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 2761 mark = _igvn.transform(new OrXNode(mark, mark_load)); 2762 locked_bit = _igvn.transform(new AndXNode(locked_bit, mark_load)); 2763 } 2764 assert(!mark->is_Con(), "Should have been optimized out"); 2765 Node* cmp = _igvn.transform(new CmpXNode(locked_bit, MakeConX(0))); 2766 Node* is_unlocked = _igvn.transform(new BoolNode(cmp, BoolTest::ne)); 2767 2768 // BoolNode might be shared, replace each if user 2769 Node* old_bol = check->unique_out(); 2770 assert(old_bol->is_Bool() && old_bol->as_Bool()->_test._test == BoolTest::ne, "unexpected condition"); 2771 for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) { 2772 IfNode* old_iff = old_bol->last_out(i)->as_If(); 2773 Node* ctrl = old_iff->in(0); 2774 RegionNode* region = new RegionNode(3); 2775 Node* mark_phi = new PhiNode(region, TypeX_X); 2776 2777 // Check if array is unlocked 2778 IfNode* iff = _igvn.transform(new IfNode(ctrl, is_unlocked, PROB_MAX, COUNT_UNKNOWN))->as_If(); 2779 2780 // Unlocked: Use bits from mark word 2781 region->init_req(1, _igvn.transform(new IfTrueNode(iff))); 2782 mark_phi->init_req(1, mark); 2783 2784 // Locked: Load prototype header from klass 2785 ctrl = _igvn.transform(new IfFalseNode(iff)); 2786 Node* proto = MakeConX(0); 2787 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2788 Node* ary = check->in(i); 2789 // Make loads control dependent to make sure they are only executed if array is locked 2790 Node* klass_adr = basic_plus_adr(ary, oopDesc::klass_offset_in_bytes()); 2791 Node* klass = _igvn.transform(LoadKlassNode::make(_igvn, ctrl, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2792 Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset())); 2793 Node* proto_load = _igvn.transform(LoadNode::make(_igvn, ctrl, C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 2794 proto = _igvn.transform(new OrXNode(proto, proto_load)); 2795 } 2796 region->init_req(2, ctrl); 2797 mark_phi->init_req(2, proto); 2798 2799 // Check if flat array bits are set 2800 Node* mask = MakeConX(markWord::flat_array_bit_in_place); 2801 Node* masked = _igvn.transform(new AndXNode(_igvn.transform(mark_phi), mask)); 2802 cmp = _igvn.transform(new CmpXNode(masked, MakeConX(0))); 2803 Node* is_not_flat = _igvn.transform(new BoolNode(cmp, BoolTest::eq)); 2804 2805 ctrl = _igvn.transform(region); 2806 iff = _igvn.transform(new IfNode(ctrl, is_not_flat, PROB_MAX, COUNT_UNKNOWN))->as_If(); 2807 _igvn.replace_node(old_iff, iff); 2808 } 2809 _igvn.replace_node(check, C->top()); 2810 } else { 2811 // Fall back to layout helper check 2812 Node* lhs = intcon(0); 2813 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2814 Node* array_or_klass = check->in(i); 2815 Node* klass = nullptr; 2816 const TypePtr* t = _igvn.type(array_or_klass)->is_ptr(); 2817 assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out"); 2818 if (t->isa_oopptr() != nullptr) { 2819 Node* klass_adr = basic_plus_adr(array_or_klass, oopDesc::klass_offset_in_bytes()); 2820 klass = transform_later(LoadKlassNode::make(_igvn, nullptr, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2821 } else { 2822 assert(t->isa_aryklassptr(), "Unexpected input type"); 2823 klass = array_or_klass; 2824 } 2825 Node* lh_addr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset())); 2826 Node* lh_val = _igvn.transform(LoadNode::make(_igvn, nullptr, C->immutable_memory(), lh_addr, lh_addr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered)); 2827 lhs = _igvn.transform(new OrINode(lhs, lh_val)); 2828 } 2829 Node* masked = transform_later(new AndINode(lhs, intcon(Klass::_lh_array_tag_flat_value_bit_inplace))); 2830 Node* cmp = transform_later(new CmpINode(masked, intcon(0))); 2831 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2832 Node* old_bol = check->unique_out(); 2833 _igvn.replace_node(old_bol, bol); 2834 _igvn.replace_node(check, C->top()); 2835 } 2836 } 2837 2838 //---------------------------eliminate_macro_nodes---------------------- 2839 // Eliminate scalar replaced allocations and associated locks. 2840 void PhaseMacroExpand::eliminate_macro_nodes() { 2841 if (C->macro_count() == 0) 2842 return; 2843 NOT_PRODUCT(int membar_before = count_MemBar(C);) 2844 2845 // Before elimination may re-mark (change to Nested or NonEscObj) 2846 // all associated (same box and obj) lock and unlock nodes. 2847 int cnt = C->macro_count(); 2848 for (int i=0; i < cnt; i++) { 2849 Node *n = C->macro_node(i); 2850 if (n->is_AbstractLock()) { // Lock and Unlock nodes 2851 mark_eliminated_locking_nodes(n->as_AbstractLock()); 2852 } 2853 } 2854 // Re-marking may break consistency of Coarsened locks. 2855 if (!C->coarsened_locks_consistent()) { 2856 return; // recompile without Coarsened locks if broken 2857 } 2858 2859 // First, attempt to eliminate locks 2860 bool progress = true; 2861 while (progress) { 2862 progress = false; 2863 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2864 Node* n = C->macro_node(i - 1); 2865 bool success = false; 2866 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2867 if (n->is_AbstractLock()) { 2868 success = eliminate_locking_node(n->as_AbstractLock()); 2869 #ifndef PRODUCT 2870 if (success && PrintOptoStatistics) { 2871 Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter); 2872 } 2873 #endif 2874 } 2875 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2876 progress = progress || success; 2877 } 2878 } 2879 // Next, attempt to eliminate allocations 2880 _has_locks = false; 2881 progress = true; 2882 while (progress) { 2883 progress = false; 2884 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2885 Node* n = C->macro_node(i - 1); 2886 bool success = false; 2887 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2888 switch (n->class_id()) { 2889 case Node::Class_Allocate: 2890 case Node::Class_AllocateArray: 2891 success = eliminate_allocate_node(n->as_Allocate()); 2892 #ifndef PRODUCT 2893 if (success && PrintOptoStatistics) { 2894 Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter); 2895 } 2896 #endif 2897 break; 2898 case Node::Class_CallStaticJava: { 2899 CallStaticJavaNode* call = n->as_CallStaticJava(); 2900 if (!call->method()->is_method_handle_intrinsic()) { 2901 success = eliminate_boxing_node(n->as_CallStaticJava()); 2902 } 2903 break; 2904 } 2905 case Node::Class_Lock: 2906 case Node::Class_Unlock: 2907 assert(!n->as_AbstractLock()->is_eliminated(), "sanity"); 2908 _has_locks = true; 2909 break; 2910 case Node::Class_ArrayCopy: 2911 break; 2912 case Node::Class_OuterStripMinedLoop: 2913 break; 2914 case Node::Class_SubTypeCheck: 2915 break; 2916 case Node::Class_Opaque1: 2917 break; 2918 case Node::Class_FlatArrayCheck: 2919 break; 2920 default: 2921 assert(n->Opcode() == Op_LoopLimit || 2922 n->Opcode() == Op_Opaque3 || 2923 n->Opcode() == Op_Opaque4 || 2924 n->Opcode() == Op_MaxL || 2925 n->Opcode() == Op_MinL || 2926 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n), 2927 "unknown node type in macro list"); 2928 } 2929 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2930 progress = progress || success; 2931 } 2932 } 2933 #ifndef PRODUCT 2934 if (PrintOptoStatistics) { 2935 int membar_after = count_MemBar(C); 2936 Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after); 2937 } 2938 #endif 2939 } 2940 2941 //------------------------------expand_macro_nodes---------------------- 2942 // Returns true if a failure occurred. 2943 bool PhaseMacroExpand::expand_macro_nodes() { 2944 // Last attempt to eliminate macro nodes. 2945 eliminate_macro_nodes(); 2946 if (C->failing()) return true; 2947 2948 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. 2949 bool progress = true; 2950 while (progress) { 2951 progress = false; 2952 for (int i = C->macro_count(); i > 0; i--) { 2953 Node* n = C->macro_node(i-1); 2954 bool success = false; 2955 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2956 if (n->Opcode() == Op_LoopLimit) { 2957 // Remove it from macro list and put on IGVN worklist to optimize. 2958 C->remove_macro_node(n); 2959 _igvn._worklist.push(n); 2960 success = true; 2961 } else if (n->Opcode() == Op_CallStaticJava) { 2962 CallStaticJavaNode* call = n->as_CallStaticJava(); 2963 if (!call->method()->is_method_handle_intrinsic()) { 2964 // Remove it from macro list and put on IGVN worklist to optimize. 2965 C->remove_macro_node(n); 2966 _igvn._worklist.push(n); 2967 success = true; 2968 } 2969 } else if (n->is_Opaque1()) { 2970 _igvn.replace_node(n, n->in(1)); 2971 success = true; 2972 #if INCLUDE_RTM_OPT 2973 } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) { 2974 assert(C->profile_rtm(), "should be used only in rtm deoptimization code"); 2975 assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), ""); 2976 Node* cmp = n->unique_out(); 2977 #ifdef ASSERT 2978 // Validate graph. 2979 assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), ""); 2980 BoolNode* bol = cmp->unique_out()->as_Bool(); 2981 assert((bol->outcnt() == 1) && bol->unique_out()->is_If() && 2982 (bol->_test._test == BoolTest::ne), ""); 2983 IfNode* ifn = bol->unique_out()->as_If(); 2984 assert((ifn->outcnt() == 2) && 2985 ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != nullptr, ""); 2986 #endif 2987 Node* repl = n->in(1); 2988 if (!_has_locks) { 2989 // Remove RTM state check if there are no locks in the code. 2990 // Replace input to compare the same value. 2991 repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1); 2992 } 2993 _igvn.replace_node(n, repl); 2994 success = true; 2995 #endif 2996 } else if (n->Opcode() == Op_Opaque4) { 2997 // With Opaque4 nodes, the expectation is that the test of input 1 2998 // is always equal to the constant value of input 2. So we can 2999 // remove the Opaque4 and replace it by input 2. In debug builds, 3000 // leave the non constant test in instead to sanity check that it 3001 // never fails (if it does, that subgraph was constructed so, at 3002 // runtime, a Halt node is executed). 3003 #ifdef ASSERT 3004 _igvn.replace_node(n, n->in(1)); 3005 #else 3006 _igvn.replace_node(n, n->in(2)); 3007 #endif 3008 success = true; 3009 } else if (n->Opcode() == Op_OuterStripMinedLoop) { 3010 n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn); 3011 C->remove_macro_node(n); 3012 success = true; 3013 } else if (n->Opcode() == Op_MaxL) { 3014 // Since MaxL and MinL are not implemented in the backend, we expand them to 3015 // a CMoveL construct now. At least until here, the type could be computed 3016 // precisely. CMoveL is not so smart, but we can give it at least the best 3017 // type we know abouot n now. 3018 Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn); 3019 _igvn.replace_node(n, repl); 3020 success = true; 3021 } else if (n->Opcode() == Op_MinL) { 3022 Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn); 3023 _igvn.replace_node(n, repl); 3024 success = true; 3025 } 3026 assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list"); 3027 progress = progress || success; 3028 } 3029 } 3030 3031 // Clean up the graph so we're less likely to hit the maximum node 3032 // limit 3033 _igvn.set_delay_transform(false); 3034 _igvn.optimize(); 3035 if (C->failing()) return true; 3036 _igvn.set_delay_transform(true); 3037 3038 3039 // Because we run IGVN after each expansion, some macro nodes may go 3040 // dead and be removed from the list as we iterate over it. Move 3041 // Allocate nodes (processed in a second pass) at the beginning of 3042 // the list and then iterate from the last element of the list until 3043 // an Allocate node is seen. This is robust to random deletion in 3044 // the list due to nodes going dead. 3045 C->sort_macro_nodes(); 3046 3047 // expand arraycopy "macro" nodes first 3048 // For ReduceBulkZeroing, we must first process all arraycopy nodes 3049 // before the allocate nodes are expanded. 3050 while (C->macro_count() > 0) { 3051 int macro_count = C->macro_count(); 3052 Node * n = C->macro_node(macro_count-1); 3053 assert(n->is_macro(), "only macro nodes expected here"); 3054 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 3055 // node is unreachable, so don't try to expand it 3056 C->remove_macro_node(n); 3057 continue; 3058 } 3059 if (n->is_Allocate()) { 3060 break; 3061 } 3062 // Make sure expansion will not cause node limit to be exceeded. 3063 // Worst case is a macro node gets expanded into about 200 nodes. 3064 // Allow 50% more for optimization. 3065 if (C->check_node_count(300, "out of nodes before macro expansion")) { 3066 return true; 3067 } 3068 3069 DEBUG_ONLY(int old_macro_count = C->macro_count();) 3070 switch (n->class_id()) { 3071 case Node::Class_Lock: 3072 expand_lock_node(n->as_Lock()); 3073 break; 3074 case Node::Class_Unlock: 3075 expand_unlock_node(n->as_Unlock()); 3076 break; 3077 case Node::Class_ArrayCopy: 3078 expand_arraycopy_node(n->as_ArrayCopy()); 3079 break; 3080 case Node::Class_SubTypeCheck: 3081 expand_subtypecheck_node(n->as_SubTypeCheck()); 3082 break; 3083 case Node::Class_CallStaticJava: 3084 expand_mh_intrinsic_return(n->as_CallStaticJava()); 3085 C->remove_macro_node(n); 3086 break; 3087 case Node::Class_FlatArrayCheck: 3088 expand_flatarraycheck_node(n->as_FlatArrayCheck()); 3089 break; 3090 default: 3091 assert(false, "unknown node type in macro list"); 3092 } 3093 assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list"); 3094 if (C->failing()) return true; 3095 3096 // Clean up the graph so we're less likely to hit the maximum node 3097 // limit 3098 _igvn.set_delay_transform(false); 3099 _igvn.optimize(); 3100 if (C->failing()) return true; 3101 _igvn.set_delay_transform(true); 3102 } 3103 3104 // All nodes except Allocate nodes are expanded now. There could be 3105 // new optimization opportunities (such as folding newly created 3106 // load from a just allocated object). Run IGVN. 3107 3108 // expand "macro" nodes 3109 // nodes are removed from the macro list as they are processed 3110 while (C->macro_count() > 0) { 3111 int macro_count = C->macro_count(); 3112 Node * n = C->macro_node(macro_count-1); 3113 assert(n->is_macro(), "only macro nodes expected here"); 3114 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 3115 // node is unreachable, so don't try to expand it 3116 C->remove_macro_node(n); 3117 continue; 3118 } 3119 // Make sure expansion will not cause node limit to be exceeded. 3120 // Worst case is a macro node gets expanded into about 200 nodes. 3121 // Allow 50% more for optimization. 3122 if (C->check_node_count(300, "out of nodes before macro expansion")) { 3123 return true; 3124 } 3125 switch (n->class_id()) { 3126 case Node::Class_Allocate: 3127 expand_allocate(n->as_Allocate()); 3128 break; 3129 case Node::Class_AllocateArray: 3130 expand_allocate_array(n->as_AllocateArray()); 3131 break; 3132 default: 3133 assert(false, "unknown node type in macro list"); 3134 } 3135 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 3136 if (C->failing()) return true; 3137 3138 // Clean up the graph so we're less likely to hit the maximum node 3139 // limit 3140 _igvn.set_delay_transform(false); 3141 _igvn.optimize(); 3142 if (C->failing()) return true; 3143 _igvn.set_delay_transform(true); 3144 } 3145 3146 _igvn.set_delay_transform(false); 3147 return false; 3148 } 3149 3150 #ifndef PRODUCT 3151 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0; 3152 int PhaseMacroExpand::_monitor_objects_removed_counter = 0; 3153 int PhaseMacroExpand::_GC_barriers_removed_counter = 0; 3154 int PhaseMacroExpand::_memory_barriers_removed_counter = 0; 3155 3156 void PhaseMacroExpand::print_statistics() { 3157 tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter)); 3158 tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter)); 3159 tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter)); 3160 tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter)); 3161 } 3162 3163 int PhaseMacroExpand::count_MemBar(Compile *C) { 3164 if (!PrintOptoStatistics) { 3165 return 0; 3166 } 3167 Unique_Node_List ideal_nodes; 3168 int total = 0; 3169 ideal_nodes.map(C->live_nodes(), nullptr); 3170 ideal_nodes.push(C->root()); 3171 for (uint next = 0; next < ideal_nodes.size(); ++next) { 3172 Node* n = ideal_nodes.at(next); 3173 if (n->is_MemBar()) { 3174 total++; 3175 } 3176 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3177 Node* m = n->fast_out(i); 3178 ideal_nodes.push(m); 3179 } 3180 } 3181 return total; 3182 } 3183 #endif