1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciFlatArrayKlass.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/collectedHeap.inline.hpp"
  28 #include "gc/shared/tlab_globals.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/universe.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/graphKit.hpp"
  39 #include "opto/inlinetypenode.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/locknode.hpp"
  42 #include "opto/loopnode.hpp"
  43 #include "opto/macro.hpp"
  44 #include "opto/memnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/node.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/phaseX.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subnode.hpp"
  52 #include "opto/subtypenode.hpp"
  53 #include "opto/type.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "runtime/continuation.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "utilities/macros.hpp"
  59 #include "utilities/powerOfTwo.hpp"
  60 #if INCLUDE_G1GC
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #endif // INCLUDE_G1GC
  63 
  64 
  65 //
  66 // Replace any references to "oldref" in inputs to "use" with "newref".
  67 // Returns the number of replacements made.
  68 //
  69 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  70   int nreplacements = 0;
  71   uint req = use->req();
  72   for (uint j = 0; j < use->len(); j++) {
  73     Node *uin = use->in(j);
  74     if (uin == oldref) {
  75       if (j < req)
  76         use->set_req(j, newref);
  77       else
  78         use->set_prec(j, newref);
  79       nreplacements++;
  80     } else if (j >= req && uin == nullptr) {
  81       break;
  82     }
  83   }
  84   return nreplacements;
  85 }
  86 
  87 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
  88   Node* cmp;
  89   if (mask != 0) {
  90     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
  91     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
  92   } else {
  93     cmp = word;
  94   }
  95   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
  96   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
  97   transform_later(iff);
  98 
  99   // Fast path taken.
 100   Node *fast_taken = transform_later(new IfFalseNode(iff));
 101 
 102   // Fast path not-taken, i.e. slow path
 103   Node *slow_taken = transform_later(new IfTrueNode(iff));
 104 
 105   if (return_fast_path) {
 106     region->init_req(edge, slow_taken); // Capture slow-control
 107     return fast_taken;
 108   } else {
 109     region->init_req(edge, fast_taken); // Capture fast-control
 110     return slow_taken;
 111   }
 112 }
 113 
 114 //--------------------copy_predefined_input_for_runtime_call--------------------
 115 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 116   // Set fixed predefined input arguments
 117   call->init_req( TypeFunc::Control, ctrl );
 118   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 119   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 120   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 121   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 122 }
 123 
 124 //------------------------------make_slow_call---------------------------------
 125 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 126                                            address slow_call, const char* leaf_name, Node* slow_path,
 127                                            Node* parm0, Node* parm1, Node* parm2) {
 128 
 129   // Slow-path call
 130  CallNode *call = leaf_name
 131    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 132    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM );
 133 
 134   // Slow path call has no side-effects, uses few values
 135   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 136   if (parm0 != nullptr)  call->init_req(TypeFunc::Parms+0, parm0);
 137   if (parm1 != nullptr)  call->init_req(TypeFunc::Parms+1, parm1);
 138   if (parm2 != nullptr)  call->init_req(TypeFunc::Parms+2, parm2);
 139   call->copy_call_debug_info(&_igvn, oldcall);
 140   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 141   _igvn.replace_node(oldcall, call);
 142   transform_later(call);
 143 
 144   return call;
 145 }
 146 
 147 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
 148   BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 149   bs->eliminate_gc_barrier(&_igvn, p2x);
 150 #ifndef PRODUCT
 151   if (PrintOptoStatistics) {
 152     Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter);
 153   }
 154 #endif
 155 }
 156 
 157 // Search for a memory operation for the specified memory slice.
 158 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 159   Node *orig_mem = mem;
 160   Node *alloc_mem = alloc->as_Allocate()->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 161   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 162   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 163   while (true) {
 164     if (mem == alloc_mem || mem == start_mem ) {
 165       return mem;  // hit one of our sentinels
 166     } else if (mem->is_MergeMem()) {
 167       mem = mem->as_MergeMem()->memory_at(alias_idx);
 168     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 169       Node *in = mem->in(0);
 170       // we can safely skip over safepoints, calls, locks and membars because we
 171       // already know that the object is safe to eliminate.
 172       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 173         return in;
 174       } else if (in->is_Call()) {
 175         CallNode *call = in->as_Call();
 176         if (call->may_modify(tinst, phase)) {
 177           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 178           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 179             return in;
 180           }
 181         }
 182         mem = in->in(TypeFunc::Memory);
 183       } else if (in->is_MemBar()) {
 184         ArrayCopyNode* ac = nullptr;
 185         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 186           if (ac != nullptr) {
 187             assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 188             return ac;
 189           }
 190         }
 191         mem = in->in(TypeFunc::Memory);
 192       } else {
 193 #ifdef ASSERT
 194         in->dump();
 195         mem->dump();
 196         assert(false, "unexpected projection");
 197 #endif
 198       }
 199     } else if (mem->is_Store()) {
 200       const TypePtr* atype = mem->as_Store()->adr_type();
 201       int adr_idx = phase->C->get_alias_index(atype);
 202       if (adr_idx == alias_idx) {
 203         assert(atype->isa_oopptr(), "address type must be oopptr");
 204         int adr_offset = atype->flat_offset();
 205         uint adr_iid = atype->is_oopptr()->instance_id();
 206         // Array elements references have the same alias_idx
 207         // but different offset and different instance_id.
 208         if (adr_offset == offset && adr_iid == alloc->_idx) {
 209           return mem;
 210         }
 211       } else {
 212         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 213       }
 214       mem = mem->in(MemNode::Memory);
 215     } else if (mem->is_ClearArray()) {
 216       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 217         // Can not bypass initialization of the instance
 218         // we are looking.
 219         debug_only(intptr_t offset;)
 220         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 221         InitializeNode* init = alloc->as_Allocate()->initialization();
 222         // We are looking for stored value, return Initialize node
 223         // or memory edge from Allocate node.
 224         if (init != nullptr) {
 225           return init;
 226         } else {
 227           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 228         }
 229       }
 230       // Otherwise skip it (the call updated 'mem' value).
 231     } else if (mem->Opcode() == Op_SCMemProj) {
 232       mem = mem->in(0);
 233       Node* adr = nullptr;
 234       if (mem->is_LoadStore()) {
 235         adr = mem->in(MemNode::Address);
 236       } else {
 237         assert(mem->Opcode() == Op_EncodeISOArray ||
 238                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 239         adr = mem->in(3); // Destination array
 240       }
 241       const TypePtr* atype = adr->bottom_type()->is_ptr();
 242       int adr_idx = phase->C->get_alias_index(atype);
 243       if (adr_idx == alias_idx) {
 244         DEBUG_ONLY(mem->dump();)
 245         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 246         return nullptr;
 247       }
 248       mem = mem->in(MemNode::Memory);
 249     } else if (mem->Opcode() == Op_StrInflatedCopy) {
 250       Node* adr = mem->in(3); // Destination array
 251       const TypePtr* atype = adr->bottom_type()->is_ptr();
 252       int adr_idx = phase->C->get_alias_index(atype);
 253       if (adr_idx == alias_idx) {
 254         DEBUG_ONLY(mem->dump();)
 255         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 256         return nullptr;
 257       }
 258       mem = mem->in(MemNode::Memory);
 259     } else {
 260       return mem;
 261     }
 262     assert(mem != orig_mem, "dead memory loop");
 263   }
 264 }
 265 
 266 // Generate loads from source of the arraycopy for fields of
 267 // destination needed at a deoptimization point
 268 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 269   BasicType bt = ft;
 270   const Type *type = ftype;
 271   if (ft == T_NARROWOOP) {
 272     bt = T_OBJECT;
 273     type = ftype->make_oopptr();
 274   }
 275   Node* res = nullptr;
 276   if (ac->is_clonebasic()) {
 277     assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination");
 278     Node* base = ac->in(ArrayCopyNode::Src);
 279     Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset)));
 280     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 281     MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 282     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 283     res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 284   } else {
 285     if (ac->modifies(offset, offset, &_igvn, true)) {
 286       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 287       uint shift = exact_log2(type2aelembytes(bt));
 288       Node* src_pos = ac->in(ArrayCopyNode::SrcPos);
 289       Node* dest_pos = ac->in(ArrayCopyNode::DestPos);
 290       const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int();
 291       const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int();
 292 
 293       Node* adr = nullptr;
 294       Node* base = ac->in(ArrayCopyNode::Src);
 295       const TypeAryPtr* adr_type = _igvn.type(base)->is_aryptr();
 296       if (adr_type->is_flat()) {
 297         shift = adr_type->flat_log_elem_size();
 298       }
 299       if (src_pos_t->is_con() && dest_pos_t->is_con()) {
 300         intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset;
 301         adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off)));
 302         adr_type = _igvn.type(adr)->is_aryptr();
 303         assert(adr_type == _igvn.type(base)->is_aryptr()->add_field_offset_and_offset(off), "incorrect address type");
 304         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 305           // Don't emit a new load from src if src == dst but try to get the value from memory instead
 306           return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type, alloc);
 307         }
 308       } else {
 309         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 310           // Non constant offset in the array: we can't statically
 311           // determine the value
 312           return nullptr;
 313         }
 314         Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 315 #ifdef _LP64
 316         diff = _igvn.transform(new ConvI2LNode(diff));
 317 #endif
 318         diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift)));
 319 
 320         Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff));
 321         adr = _igvn.transform(new AddPNode(base, base, off));
 322         // In the case of a flat inline type array, each field has its
 323         // own slice so we need to extract the field being accessed from
 324         // the address computation
 325         adr_type = adr_type->add_field_offset_and_offset(offset)->add_offset(Type::OffsetBot)->is_aryptr();
 326         adr = _igvn.transform(new CastPPNode(ctl, adr, adr_type));
 327       }
 328       MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 329       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 330       res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 331     }
 332   }
 333   if (res != nullptr) {
 334     if (ftype->isa_narrowoop()) {
 335       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 336       assert(res->isa_DecodeN(), "should be narrow oop");
 337       res = _igvn.transform(new EncodePNode(res, ftype));
 338     }
 339     return res;
 340   }
 341   return nullptr;
 342 }
 343 
 344 //
 345 // Given a Memory Phi, compute a value Phi containing the values from stores
 346 // on the input paths.
 347 // Note: this function is recursive, its depth is limited by the "level" argument
 348 // Returns the computed Phi, or null if it cannot compute it.
 349 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 350   assert(mem->is_Phi(), "sanity");
 351   int alias_idx = C->get_alias_index(adr_t);
 352   int offset = adr_t->flat_offset();
 353   int instance_id = adr_t->instance_id();
 354 
 355   // Check if an appropriate value phi already exists.
 356   Node* region = mem->in(0);
 357   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 358     Node* phi = region->fast_out(k);
 359     if (phi->is_Phi() && phi != mem &&
 360         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 361       return phi;
 362     }
 363   }
 364   // Check if an appropriate new value phi already exists.
 365   Node* new_phi = value_phis->find(mem->_idx);
 366   if (new_phi != nullptr)
 367     return new_phi;
 368 
 369   if (level <= 0) {
 370     return nullptr; // Give up: phi tree too deep
 371   }
 372   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 373   Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 374   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 375 
 376   uint length = mem->req();
 377   GrowableArray <Node *> values(length, length, nullptr);
 378 
 379   // create a new Phi for the value
 380   PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset);
 381   transform_later(phi);
 382   value_phis->push(phi, mem->_idx);
 383 
 384   for (uint j = 1; j < length; j++) {
 385     Node *in = mem->in(j);
 386     if (in == nullptr || in->is_top()) {
 387       values.at_put(j, in);
 388     } else {
 389       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 390       if (val == start_mem || val == alloc_mem) {
 391         // hit a sentinel, return appropriate value
 392         Node* init_value = alloc->in(AllocateNode::InitValue);
 393         if (init_value != nullptr) {
 394           if (val == start_mem) {
 395             // TODO 8350865 Somehow we ended up with root mem and therefore walked past the alloc. Fix this. Triggered by TestGenerated::test15
 396             // Don't we need field_value_by_offset?
 397             return nullptr;
 398           }
 399           values.at_put(j, init_value);
 400         } else {
 401           assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null");
 402           values.at_put(j, _igvn.zerocon(ft));
 403         }
 404         continue;
 405       }
 406       if (val->is_Initialize()) {
 407         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 408       }
 409       if (val == nullptr) {
 410         return nullptr;  // can't find a value on this path
 411       }
 412       if (val == mem) {
 413         values.at_put(j, mem);
 414       } else if (val->is_Store()) {
 415         Node* n = val->in(MemNode::ValueIn);
 416         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 417         n = bs->step_over_gc_barrier(n);
 418         if (is_subword_type(ft)) {
 419           n = Compile::narrow_value(ft, n, phi_type, &_igvn, true);
 420         }
 421         values.at_put(j, n);
 422       } else if (val->is_Proj() && val->in(0) == alloc) {
 423         Node* init_value = alloc->in(AllocateNode::InitValue);
 424         if (init_value != nullptr) {
 425           // TODO 8350865 Is this correct for non-all-zero init values? Don't we need field_value_by_offset?
 426           values.at_put(j, init_value);
 427         } else {
 428           assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null");
 429           values.at_put(j, _igvn.zerocon(ft));
 430         }
 431       } else if (val->is_Phi()) {
 432         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 433         if (val == nullptr) {
 434           return nullptr;
 435         }
 436         values.at_put(j, val);
 437       } else if (val->Opcode() == Op_SCMemProj) {
 438         assert(val->in(0)->is_LoadStore() ||
 439                val->in(0)->Opcode() == Op_EncodeISOArray ||
 440                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 441         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 442         return nullptr;
 443       } else if (val->is_ArrayCopy()) {
 444         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 445         if (res == nullptr) {
 446           return nullptr;
 447         }
 448         values.at_put(j, res);
 449       } else if (val->is_top()) {
 450         // This indicates that this path into the phi is dead. Top will eventually also propagate into the Region.
 451         // IGVN will clean this up later.
 452         values.at_put(j, val);
 453       } else {
 454         DEBUG_ONLY( val->dump(); )
 455         assert(false, "unknown node on this path");
 456         return nullptr;  // unknown node on this path
 457       }
 458     }
 459   }
 460   // Set Phi's inputs
 461   for (uint j = 1; j < length; j++) {
 462     if (values.at(j) == mem) {
 463       phi->init_req(j, phi);
 464     } else {
 465       phi->init_req(j, values.at(j));
 466     }
 467   }
 468   return phi;
 469 }
 470 
 471 // Search the last value stored into the object's field.
 472 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 473   assert(adr_t->is_known_instance_field(), "instance required");
 474   int instance_id = adr_t->instance_id();
 475   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 476 
 477   int alias_idx = C->get_alias_index(adr_t);
 478   int offset = adr_t->flat_offset();
 479   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 480   Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 481   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 482   VectorSet visited;
 483 
 484   bool done = sfpt_mem == alloc_mem;
 485   Node *mem = sfpt_mem;
 486   while (!done) {
 487     if (visited.test_set(mem->_idx)) {
 488       return nullptr;  // found a loop, give up
 489     }
 490     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 491     if (mem == start_mem || mem == alloc_mem) {
 492       done = true;  // hit a sentinel, return appropriate 0 value
 493     } else if (mem->is_Initialize()) {
 494       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 495       if (mem == nullptr) {
 496         done = true; // Something went wrong.
 497       } else if (mem->is_Store()) {
 498         const TypePtr* atype = mem->as_Store()->adr_type();
 499         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 500         done = true;
 501       }
 502     } else if (mem->is_Store()) {
 503       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 504       assert(atype != nullptr, "address type must be oopptr");
 505       assert(C->get_alias_index(atype) == alias_idx &&
 506              atype->is_known_instance_field() && atype->flat_offset() == offset &&
 507              atype->instance_id() == instance_id, "store is correct memory slice");
 508       done = true;
 509     } else if (mem->is_Phi()) {
 510       // try to find a phi's unique input
 511       Node *unique_input = nullptr;
 512       Node *top = C->top();
 513       for (uint i = 1; i < mem->req(); i++) {
 514         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 515         if (n == nullptr || n == top || n == mem) {
 516           continue;
 517         } else if (unique_input == nullptr) {
 518           unique_input = n;
 519         } else if (unique_input != n) {
 520           unique_input = top;
 521           break;
 522         }
 523       }
 524       if (unique_input != nullptr && unique_input != top) {
 525         mem = unique_input;
 526       } else {
 527         done = true;
 528       }
 529     } else if (mem->is_ArrayCopy()) {
 530       done = true;
 531     } else {
 532       DEBUG_ONLY( mem->dump(); )
 533       assert(false, "unexpected node");
 534     }
 535   }
 536   if (mem != nullptr) {
 537     if (mem == start_mem || mem == alloc_mem) {
 538       // hit a sentinel, return appropriate value
 539       Node* init_value = alloc->in(AllocateNode::InitValue);
 540       if (init_value != nullptr) {
 541         if (adr_t->is_flat()) {
 542           if (init_value->is_EncodeP()) {
 543             init_value = init_value->in(1);
 544           }
 545           assert(adr_t->is_aryptr()->field_offset().get() != Type::OffsetBot, "Unknown offset");
 546           offset = adr_t->is_aryptr()->field_offset().get() + init_value->bottom_type()->inline_klass()->payload_offset();
 547           init_value = init_value->as_InlineType()->field_value_by_offset(offset, true);
 548           if (ft == T_NARROWOOP) {
 549             init_value = transform_later(new EncodePNode(init_value, init_value->bottom_type()->make_ptr()));
 550           }
 551         }
 552         return init_value;
 553       }
 554       assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null");
 555       return _igvn.zerocon(ft);
 556     } else if (mem->is_Store()) {
 557       Node* n = mem->in(MemNode::ValueIn);
 558       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 559       n = bs->step_over_gc_barrier(n);
 560       return n;
 561     } else if (mem->is_Phi()) {
 562       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 563       Node_Stack value_phis(8);
 564       Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 565       if (phi != nullptr) {
 566         return phi;
 567       } else {
 568         // Kill all new Phis
 569         while(value_phis.is_nonempty()) {
 570           Node* n = value_phis.node();
 571           _igvn.replace_node(n, C->top());
 572           value_phis.pop();
 573         }
 574       }
 575     } else if (mem->is_ArrayCopy()) {
 576       Node* ctl = mem->in(0);
 577       Node* m = mem->in(TypeFunc::Memory);
 578       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) {
 579         // pin the loads in the uncommon trap path
 580         ctl = sfpt_ctl;
 581         m = sfpt_mem;
 582       }
 583       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 584     }
 585   }
 586   // Something went wrong.
 587   return nullptr;
 588 }
 589 
 590 // Search the last value stored into the inline type's fields (for flat arrays).
 591 Node* PhaseMacroExpand::inline_type_from_mem(Node* mem, Node* ctl, ciInlineKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) {
 592   // Subtract the offset of the first field to account for the missing oop header
 593   offset -= vk->payload_offset();
 594   // Create a new InlineTypeNode and retrieve the field values from memory
 595   InlineTypeNode* vt = InlineTypeNode::make_uninitialized(_igvn, vk);
 596   transform_later(vt);
 597   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) {
 598     ciType* field_type = vt->field_type(i);
 599     int field_offset = offset + vt->field_offset(i);
 600     Node* value = nullptr;
 601     if (vt->field_is_flat(i)) {
 602       // TODO 8350865 Fix this
 603       // assert(vt->field_is_null_free(i), "Unexpected nullable flat field");
 604       if (!vt->field_is_null_free(i)) {
 605         return nullptr;
 606       }
 607       value = inline_type_from_mem(mem, ctl, field_type->as_inline_klass(), adr_type, field_offset, alloc);
 608     } else {
 609       const Type* ft = Type::get_const_type(field_type);
 610       BasicType bt = type2field[field_type->basic_type()];
 611       if (UseCompressedOops && !is_java_primitive(bt)) {
 612         ft = ft->make_narrowoop();
 613         bt = T_NARROWOOP;
 614       }
 615       // Each inline type field has its own memory slice
 616       adr_type = adr_type->with_field_offset(field_offset);
 617       value = value_from_mem(mem, ctl, bt, ft, adr_type, alloc);
 618       if (value != nullptr && ft->isa_narrowoop()) {
 619         assert(UseCompressedOops, "unexpected narrow oop");
 620         if (value->is_EncodeP()) {
 621           value = value->in(1);
 622         } else if (!value->is_InlineType()) {
 623           value = transform_later(new DecodeNNode(value, value->get_ptr_type()));
 624         }
 625       }
 626     }
 627     if (value != nullptr) {
 628       vt->set_field_value(i, value);
 629     } else {
 630       // We might have reached the TrackedInitializationLimit
 631       return nullptr;
 632     }
 633   }
 634   return vt;
 635 }
 636 
 637 // Check the possibility of scalar replacement.
 638 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) {
 639   //  Scan the uses of the allocation to check for anything that would
 640   //  prevent us from eliminating it.
 641   NOT_PRODUCT( const char* fail_eliminate = nullptr; )
 642   DEBUG_ONLY( Node* disq_node = nullptr; )
 643   bool can_eliminate = true;
 644   bool reduce_merge_precheck = (safepoints == nullptr);
 645 
 646   Unique_Node_List worklist;
 647   Node* res = alloc->result_cast();
 648   const TypeOopPtr* res_type = nullptr;
 649   if (res == nullptr) {
 650     // All users were eliminated.
 651   } else if (!res->is_CheckCastPP()) {
 652     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 653     can_eliminate = false;
 654   } else {
 655     worklist.push(res);
 656     res_type = igvn->type(res)->isa_oopptr();
 657     if (res_type == nullptr) {
 658       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 659       can_eliminate = false;
 660     } else if (!res_type->klass_is_exact()) {
 661       NOT_PRODUCT(fail_eliminate = "Not an exact type.";)
 662       can_eliminate = false;
 663     } else if (res_type->isa_aryptr()) {
 664       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 665       if (length < 0) {
 666         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 667         can_eliminate = false;
 668       }
 669     }
 670   }
 671 
 672   while (can_eliminate && worklist.size() > 0) {
 673     BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 674     res = worklist.pop();
 675     for (DUIterator_Fast jmax, j = res->fast_outs(jmax); j < jmax && can_eliminate; j++) {
 676       Node* use = res->fast_out(j);
 677 
 678       if (use->is_AddP()) {
 679         const TypePtr* addp_type = igvn->type(use)->is_ptr();
 680         int offset = addp_type->offset();
 681 
 682         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 683           NOT_PRODUCT(fail_eliminate = "Undefined field reference";)
 684           can_eliminate = false;
 685           break;
 686         }
 687         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 688                                    k < kmax && can_eliminate; k++) {
 689           Node* n = use->fast_out(k);
 690           if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n) && !reduce_merge_precheck) {
 691             DEBUG_ONLY(disq_node = n;)
 692             if (n->is_Load() || n->is_LoadStore()) {
 693               NOT_PRODUCT(fail_eliminate = "Field load";)
 694             } else {
 695               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 696             }
 697             can_eliminate = false;
 698           }
 699         }
 700       } else if (use->is_ArrayCopy() &&
 701                  (use->as_ArrayCopy()->is_clonebasic() ||
 702                   use->as_ArrayCopy()->is_arraycopy_validated() ||
 703                   use->as_ArrayCopy()->is_copyof_validated() ||
 704                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 705                  use->in(ArrayCopyNode::Dest) == res) {
 706         // ok to eliminate
 707       } else if (use->is_SafePoint()) {
 708         SafePointNode* sfpt = use->as_SafePoint();
 709         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 710           // Object is passed as argument.
 711           DEBUG_ONLY(disq_node = use;)
 712           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 713           can_eliminate = false;
 714         }
 715         Node* sfptMem = sfpt->memory();
 716         if (sfptMem == nullptr || sfptMem->is_top()) {
 717           DEBUG_ONLY(disq_node = use;)
 718           NOT_PRODUCT(fail_eliminate = "null or TOP memory";)
 719           can_eliminate = false;
 720         } else if (!reduce_merge_precheck) {
 721           assert(!res->is_Phi() || !res->as_Phi()->can_be_inline_type(), "Inline type allocations should not have safepoint uses");
 722           safepoints->append_if_missing(sfpt);
 723         }
 724       } else if (use->is_InlineType() && use->as_InlineType()->get_oop() == res) {
 725         // Look at uses
 726         for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
 727           Node* u = use->fast_out(k);
 728           if (u->is_InlineType()) {
 729             // Use in flat field can be eliminated
 730             InlineTypeNode* vt = u->as_InlineType();
 731             for (uint i = 0; i < vt->field_count(); ++i) {
 732               if (vt->field_value(i) == use && !vt->field_is_flat(i)) {
 733                 can_eliminate = false; // Use in non-flat field
 734                 break;
 735               }
 736             }
 737           } else {
 738             // Add other uses to the worklist to process individually
 739             worklist.push(use);
 740           }
 741         }
 742       } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) {
 743         // Store to mark word of inline type larval buffer
 744         assert(res_type->is_inlinetypeptr(), "Unexpected store to mark word");
 745       } else if (res_type->is_inlinetypeptr() && (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore)) {
 746         // Inline type buffer allocations are followed by a membar
 747       } else if (reduce_merge_precheck &&
 748                  (use->is_Phi() || use->is_EncodeP() ||
 749                   use->Opcode() == Op_MemBarRelease ||
 750                   (UseStoreStoreForCtor && use->Opcode() == Op_MemBarStoreStore))) {
 751         // Nothing to do
 752       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 753         if (use->is_Phi()) {
 754           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 755             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 756           } else {
 757             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 758           }
 759           DEBUG_ONLY(disq_node = use;)
 760         } else {
 761           if (use->Opcode() == Op_Return) {
 762             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 763           } else {
 764             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 765           }
 766           DEBUG_ONLY(disq_node = use;)
 767         }
 768         can_eliminate = false;
 769       } else {
 770         assert(use->Opcode() == Op_CastP2X, "should be");
 771         assert(!use->has_out_with(Op_OrL), "should have been removed because oop is never null");
 772       }
 773     }
 774   }
 775 
 776 #ifndef PRODUCT
 777   if (PrintEliminateAllocations && safepoints != nullptr) {
 778     if (can_eliminate) {
 779       tty->print("Scalar ");
 780       if (res == nullptr)
 781         alloc->dump();
 782       else
 783         res->dump();
 784     } else {
 785       tty->print("NotScalar (%s)", fail_eliminate);
 786       if (res == nullptr)
 787         alloc->dump();
 788       else
 789         res->dump();
 790 #ifdef ASSERT
 791       if (disq_node != nullptr) {
 792           tty->print("  >>>> ");
 793           disq_node->dump();
 794       }
 795 #endif /*ASSERT*/
 796     }
 797   }
 798 
 799   if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) {
 800     tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : "");
 801     DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();)
 802   }
 803 #endif
 804   return can_eliminate;
 805 }
 806 
 807 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) {
 808   Node* res = alloc->result_cast();
 809   int nfields = 0;
 810   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 811 
 812   if (res != nullptr) {
 813     const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr();
 814 
 815     if (res_type->isa_instptr()) {
 816       // find the fields of the class which will be needed for safepoint debug information
 817       ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass();
 818       nfields = iklass->nof_nonstatic_fields();
 819     } else {
 820       // find the array's elements which will be needed for safepoint debug information
 821       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 822       assert(nfields >= 0, "must be an array klass.");
 823     }
 824   }
 825 
 826   // rollback processed safepoints
 827   while (safepoints_done.length() > 0) {
 828     SafePointNode* sfpt_done = safepoints_done.pop();
 829     // remove any extra entries we added to the safepoint
 830     uint last = sfpt_done->req() - 1;
 831     for (int k = 0;  k < nfields; k++) {
 832       sfpt_done->del_req(last--);
 833     }
 834     JVMState *jvms = sfpt_done->jvms();
 835     jvms->set_endoff(sfpt_done->req());
 836     // Now make a pass over the debug information replacing any references
 837     // to SafePointScalarObjectNode with the allocated object.
 838     int start = jvms->debug_start();
 839     int end   = jvms->debug_end();
 840     for (int i = start; i < end; i++) {
 841       if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 842         SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 843         if (scobj->first_index(jvms) == sfpt_done->req() &&
 844             scobj->n_fields() == (uint)nfields) {
 845           assert(scobj->alloc() == alloc, "sanity");
 846           sfpt_done->set_req(i, res);
 847         }
 848       }
 849     }
 850     _igvn._worklist.push(sfpt_done);
 851   }
 852 }
 853 
 854 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt,
 855                                                                                   Unique_Node_List* value_worklist) {
 856   // Fields of scalar objs are referenced only at the end
 857   // of regular debuginfo at the last (youngest) JVMS.
 858   // Record relative start index.
 859   ciInstanceKlass* iklass    = nullptr;
 860   BasicType basic_elem_type  = T_ILLEGAL;
 861   const Type* field_type     = nullptr;
 862   const TypeOopPtr* res_type = nullptr;
 863   int nfields                = 0;
 864   int array_base             = 0;
 865   int element_size           = 0;
 866   uint first_ind             = (sfpt->req() - sfpt->jvms()->scloff());
 867   Node* res                  = alloc->result_cast();
 868 
 869   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 870   assert(sfpt->jvms() != nullptr, "missed JVMS");
 871 
 872   if (res != nullptr) { // Could be null when there are no users
 873     res_type = _igvn.type(res)->isa_oopptr();
 874 
 875     if (res_type->isa_instptr()) {
 876       // find the fields of the class which will be needed for safepoint debug information
 877       iklass = res_type->is_instptr()->instance_klass();
 878       nfields = iklass->nof_nonstatic_fields();
 879     } else {
 880       // find the array's elements which will be needed for safepoint debug information
 881       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 882       assert(nfields >= 0, "must be an array klass.");
 883       basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type();
 884       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 885       element_size = type2aelembytes(basic_elem_type);
 886       field_type = res_type->is_aryptr()->elem();
 887       if (res_type->is_flat()) {
 888         // Flat inline type array
 889         element_size = res_type->is_aryptr()->flat_elem_size();
 890       }
 891     }
 892 
 893     if (res->bottom_type()->is_inlinetypeptr()) {
 894       // Nullable inline types have an IsInit field which is added to the safepoint when scalarizing them (see
 895       // InlineTypeNode::make_scalar_in_safepoint()). When having circular inline types, we stop scalarizing at depth 1
 896       // to avoid an endless recursion. Therefore, we do not have a SafePointScalarObjectNode node here, yet.
 897       // We are about to create a SafePointScalarObjectNode as if this is a normal object. Add an additional int input
 898       // with value 1 which sets IsInit to true to indicate that the object is always non-null. This input is checked
 899       // later in PhaseOutput::filLocArray() for inline types.
 900       sfpt->add_req(_igvn.intcon(1));
 901     }
 902   }
 903 
 904   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, sfpt->jvms()->depth(), nfields);
 905   sobj->init_req(0, C->root());
 906   transform_later(sobj);
 907 
 908   // Scan object's fields adding an input to the safepoint for each field.
 909   for (int j = 0; j < nfields; j++) {
 910     intptr_t offset;
 911     ciField* field = nullptr;
 912     if (iklass != nullptr) {
 913       field = iklass->nonstatic_field_at(j);
 914       offset = field->offset_in_bytes();
 915       ciType* elem_type = field->type();
 916       basic_elem_type = field->layout_type();
 917       assert(!field->is_flat(), "flat inline type fields should not have safepoint uses");
 918 
 919       ciField* flat_field = iklass->get_non_flat_field_by_offset(offset);
 920       if (flat_field != nullptr && flat_field->is_flat() && !flat_field->is_null_free()) {
 921         // TODO 8353432 Add support for nullable, flat fields in non-value class holders
 922         // Below code only iterates over the flat representation and therefore misses to
 923         // add null markers like we do in InlineTypeNode::add_fields_to_safepoint for value
 924         // class holders.
 925         return nullptr;
 926       }
 927 
 928       // The next code is taken from Parse::do_get_xxx().
 929       if (is_reference_type(basic_elem_type)) {
 930         if (!elem_type->is_loaded()) {
 931           field_type = TypeInstPtr::BOTTOM;
 932         } else if (field != nullptr && field->is_static_constant()) {
 933           ciObject* con = field->constant_value().as_object();
 934           // Do not "join" in the previous type; it doesn't add value,
 935           // and may yield a vacuous result if the field is of interface type.
 936           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 937           assert(field_type != nullptr, "field singleton type must be consistent");
 938         } else {
 939           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 940         }
 941         if (UseCompressedOops) {
 942           field_type = field_type->make_narrowoop();
 943           basic_elem_type = T_NARROWOOP;
 944         }
 945       } else {
 946         field_type = Type::get_const_basic_type(basic_elem_type);
 947       }
 948     } else {
 949       offset = array_base + j * (intptr_t)element_size;
 950     }
 951 
 952     Node* field_val = nullptr;
 953     const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 954     if (res_type->is_flat()) {
 955       ciInlineKlass* inline_klass = res_type->is_aryptr()->elem()->inline_klass();
 956       assert(inline_klass->flat_in_array(), "must be flat in array");
 957       field_val = inline_type_from_mem(sfpt->memory(), sfpt->control(), inline_klass, field_addr_type->isa_aryptr(), 0, alloc);
 958     } else {
 959       field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc);
 960     }
 961 
 962     // We weren't able to find a value for this field,
 963     // give up on eliminating this allocation.
 964     if (field_val == nullptr) {
 965       uint last = sfpt->req() - 1;
 966       for (int k = 0;  k < j; k++) {
 967         sfpt->del_req(last--);
 968       }
 969       _igvn._worklist.push(sfpt);
 970 
 971 #ifndef PRODUCT
 972       if (PrintEliminateAllocations) {
 973         if (field != nullptr) {
 974           tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx);
 975           field->print();
 976           int field_idx = C->get_alias_index(field_addr_type);
 977           tty->print(" (alias_idx=%d)", field_idx);
 978         } else { // Array's element
 979           tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j);
 980         }
 981         tty->print(", which prevents elimination of: ");
 982         if (res == nullptr)
 983           alloc->dump();
 984         else
 985           res->dump();
 986       }
 987 #endif
 988 
 989       return nullptr;
 990     }
 991 
 992     if (UseCompressedOops && field_type->isa_narrowoop()) {
 993       // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 994       // to be able scalar replace the allocation.
 995       if (field_val->is_EncodeP()) {
 996         field_val = field_val->in(1);
 997       } else if (!field_val->is_InlineType()) {
 998         field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
 999       }
1000     }
1001 
1002     // Keep track of inline types to scalarize them later
1003     if (field_val->is_InlineType()) {
1004       value_worklist->push(field_val);
1005     } else if (field_val->is_Phi()) {
1006       PhiNode* phi = field_val->as_Phi();
1007       // Eagerly replace inline type phis now since we could be removing an inline type allocation where we must
1008       // scalarize all its fields in safepoints.
1009       field_val = phi->try_push_inline_types_down(&_igvn, true);
1010       if (field_val->is_InlineType()) {
1011         value_worklist->push(field_val);
1012       }
1013     }
1014     sfpt->add_req(field_val);
1015   }
1016 
1017   sfpt->jvms()->set_endoff(sfpt->req());
1018 
1019   return sobj;
1020 }
1021 
1022 // Do scalar replacement.
1023 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
1024   GrowableArray <SafePointNode *> safepoints_done;
1025   Node* res = alloc->result_cast();
1026   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
1027   const TypeOopPtr* res_type = nullptr;
1028   if (res != nullptr) { // Could be null when there are no users
1029     res_type = _igvn.type(res)->isa_oopptr();
1030   }
1031 
1032   // Process the safepoint uses
1033   assert(safepoints.length() == 0 || !res_type->is_inlinetypeptr() || C->has_circular_inline_type(),
1034          "Inline type allocations should have been scalarized earlier");
1035   Unique_Node_List value_worklist;
1036   while (safepoints.length() > 0) {
1037     SafePointNode* sfpt = safepoints.pop();
1038     SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt, &value_worklist);
1039 
1040     if (sobj == nullptr) {
1041       undo_previous_scalarizations(safepoints_done, alloc);
1042       return false;
1043     }
1044 
1045     // Now make a pass over the debug information replacing any references
1046     // to the allocated object with "sobj"
1047     JVMState *jvms = sfpt->jvms();
1048     sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn);
1049     _igvn._worklist.push(sfpt);
1050 
1051     // keep it for rollback
1052     safepoints_done.append_if_missing(sfpt);
1053   }
1054   // Scalarize inline types that were added to the safepoint.
1055   // Don't allow linking a constant oop (if available) for flat array elements
1056   // because Deoptimization::reassign_flat_array_elements needs field values.
1057   bool allow_oop = (res_type != nullptr) && !res_type->is_flat();
1058   for (uint i = 0; i < value_worklist.size(); ++i) {
1059     InlineTypeNode* vt = value_worklist.at(i)->as_InlineType();
1060     vt->make_scalar_in_safepoints(&_igvn, allow_oop);
1061   }
1062   return true;
1063 }
1064 
1065 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
1066   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
1067   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
1068   if (ctl_proj != nullptr) {
1069     igvn.replace_node(ctl_proj, n->in(0));
1070   }
1071   if (mem_proj != nullptr) {
1072     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
1073   }
1074 }
1075 
1076 // Process users of eliminated allocation.
1077 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc, bool inline_alloc) {
1078   Unique_Node_List worklist;
1079   Node* res = alloc->result_cast();
1080   if (res != nullptr) {
1081     worklist.push(res);
1082   }
1083   while (worklist.size() > 0) {
1084     res = worklist.pop();
1085     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
1086       Node *use = res->last_out(j);
1087       uint oc1 = res->outcnt();
1088 
1089       if (use->is_AddP()) {
1090         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
1091           Node *n = use->last_out(k);
1092           uint oc2 = use->outcnt();
1093           if (n->is_Store()) {
1094             for (DUIterator_Fast pmax, p = n->fast_outs(pmax); p < pmax; p++) {
1095               MemBarNode* mb = n->fast_out(p)->isa_MemBar();
1096               if (mb != nullptr && mb->req() <= MemBarNode::Precedent && mb->in(MemBarNode::Precedent) == n) {
1097                 // MemBarVolatiles should have been removed by MemBarNode::Ideal() for non-inline allocations
1098                 assert(inline_alloc, "MemBarVolatile should be eliminated for non-escaping object");
1099                 mb->remove(&_igvn);
1100               }
1101             }
1102             _igvn.replace_node(n, n->in(MemNode::Memory));
1103           } else {
1104             eliminate_gc_barrier(n);
1105           }
1106           k -= (oc2 - use->outcnt());
1107         }
1108         _igvn.remove_dead_node(use);
1109       } else if (use->is_ArrayCopy()) {
1110         // Disconnect ArrayCopy node
1111         ArrayCopyNode* ac = use->as_ArrayCopy();
1112         if (ac->is_clonebasic()) {
1113           Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
1114           disconnect_projections(ac, _igvn);
1115           assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
1116           Node* membar_before = alloc->in(TypeFunc::Memory)->in(0);
1117           disconnect_projections(membar_before->as_MemBar(), _igvn);
1118           if (membar_after->is_MemBar()) {
1119             disconnect_projections(membar_after->as_MemBar(), _igvn);
1120           }
1121         } else {
1122           assert(ac->is_arraycopy_validated() ||
1123                  ac->is_copyof_validated() ||
1124                  ac->is_copyofrange_validated(), "unsupported");
1125           CallProjections* callprojs = ac->extract_projections(true);
1126 
1127           _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O));
1128           _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory));
1129           _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control));
1130 
1131           // Set control to top. IGVN will remove the remaining projections
1132           ac->set_req(0, top());
1133           ac->replace_edge(res, top(), &_igvn);
1134 
1135           // Disconnect src right away: it can help find new
1136           // opportunities for allocation elimination
1137           Node* src = ac->in(ArrayCopyNode::Src);
1138           ac->replace_edge(src, top(), &_igvn);
1139           // src can be top at this point if src and dest of the
1140           // arraycopy were the same
1141           if (src->outcnt() == 0 && !src->is_top()) {
1142             _igvn.remove_dead_node(src);
1143           }
1144         }
1145         _igvn._worklist.push(ac);
1146       } else if (use->is_InlineType()) {
1147         assert(use->as_InlineType()->get_oop() == res, "unexpected inline type ptr use");
1148         // Cut off oop input and remove known instance id from type
1149         _igvn.rehash_node_delayed(use);
1150         use->as_InlineType()->set_oop(_igvn, _igvn.zerocon(T_OBJECT));
1151         const TypeOopPtr* toop = _igvn.type(use)->is_oopptr()->cast_to_instance_id(TypeOopPtr::InstanceBot);
1152         _igvn.set_type(use, toop);
1153         use->as_InlineType()->set_type(toop);
1154         // Process users
1155         for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1156           Node* u = use->fast_out(k);
1157           if (!u->is_InlineType()) {
1158             worklist.push(u);
1159           }
1160         }
1161       } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) {
1162         // Store to mark word of inline type larval buffer
1163         assert(inline_alloc, "Unexpected store to mark word");
1164         _igvn.replace_node(use, use->in(MemNode::Memory));
1165       } else if (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore) {
1166         // Inline type buffer allocations are followed by a membar
1167         assert(inline_alloc, "Unexpected MemBarRelease");
1168         use->as_MemBar()->remove(&_igvn);
1169       } else {
1170         eliminate_gc_barrier(use);
1171       }
1172       j -= (oc1 - res->outcnt());
1173     }
1174     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1175     _igvn.remove_dead_node(res);
1176   }
1177 
1178   //
1179   // Process other users of allocation's projections
1180   //
1181   if (_callprojs->resproj[0] != nullptr && _callprojs->resproj[0]->outcnt() != 0) {
1182     // First disconnect stores captured by Initialize node.
1183     // If Initialize node is eliminated first in the following code,
1184     // it will kill such stores and DUIterator_Last will assert.
1185     for (DUIterator_Fast jmax, j = _callprojs->resproj[0]->fast_outs(jmax);  j < jmax; j++) {
1186       Node* use = _callprojs->resproj[0]->fast_out(j);
1187       if (use->is_AddP()) {
1188         // raw memory addresses used only by the initialization
1189         _igvn.replace_node(use, C->top());
1190         --j; --jmax;
1191       }
1192     }
1193     for (DUIterator_Last jmin, j = _callprojs->resproj[0]->last_outs(jmin); j >= jmin; ) {
1194       Node* use = _callprojs->resproj[0]->last_out(j);
1195       uint oc1 = _callprojs->resproj[0]->outcnt();
1196       if (use->is_Initialize()) {
1197         // Eliminate Initialize node.
1198         InitializeNode *init = use->as_Initialize();
1199         assert(init->outcnt() <= 2, "only a control and memory projection expected");
1200         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1201         if (ctrl_proj != nullptr) {
1202           _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control));
1203 #ifdef ASSERT
1204           // If the InitializeNode has no memory out, it will die, and tmp will become null
1205           Node* tmp = init->in(TypeFunc::Control);
1206           assert(tmp == nullptr || tmp == _callprojs->fallthrough_catchproj, "allocation control projection");
1207 #endif
1208         }
1209         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1210         if (mem_proj != nullptr) {
1211           Node *mem = init->in(TypeFunc::Memory);
1212 #ifdef ASSERT
1213           if (mem->is_MergeMem()) {
1214             assert(mem->in(TypeFunc::Memory) == _callprojs->fallthrough_memproj, "allocation memory projection");
1215           } else {
1216             assert(mem == _callprojs->fallthrough_memproj, "allocation memory projection");
1217           }
1218 #endif
1219           _igvn.replace_node(mem_proj, mem);
1220         }
1221       } else if (use->Opcode() == Op_MemBarStoreStore) {
1222         // Inline type buffer allocations are followed by a membar
1223         assert(inline_alloc, "Unexpected MemBarStoreStore");
1224         use->as_MemBar()->remove(&_igvn);
1225       } else  {
1226         assert(false, "only Initialize or AddP expected");
1227       }
1228       j -= (oc1 - _callprojs->resproj[0]->outcnt());
1229     }
1230   }
1231   if (_callprojs->fallthrough_catchproj != nullptr) {
1232     _igvn.replace_node(_callprojs->fallthrough_catchproj, alloc->in(TypeFunc::Control));
1233   }
1234   if (_callprojs->fallthrough_memproj != nullptr) {
1235     _igvn.replace_node(_callprojs->fallthrough_memproj, alloc->in(TypeFunc::Memory));
1236   }
1237   if (_callprojs->catchall_memproj != nullptr) {
1238     _igvn.replace_node(_callprojs->catchall_memproj, C->top());
1239   }
1240   if (_callprojs->fallthrough_ioproj != nullptr) {
1241     _igvn.replace_node(_callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
1242   }
1243   if (_callprojs->catchall_ioproj != nullptr) {
1244     _igvn.replace_node(_callprojs->catchall_ioproj, C->top());
1245   }
1246   if (_callprojs->catchall_catchproj != nullptr) {
1247     _igvn.replace_node(_callprojs->catchall_catchproj, C->top());
1248   }
1249 }
1250 
1251 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1252   // If reallocation fails during deoptimization we'll pop all
1253   // interpreter frames for this compiled frame and that won't play
1254   // nice with JVMTI popframe.
1255   // We avoid this issue by eager reallocation when the popframe request
1256   // is received.
1257   if (!EliminateAllocations) {
1258     return false;
1259   }
1260   Node* klass = alloc->in(AllocateNode::KlassNode);
1261   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1262 
1263   // Attempt to eliminate inline type buffer allocations
1264   // regardless of usage and escape/replaceable status.
1265   bool inline_alloc = tklass->isa_instklassptr() &&
1266                       tklass->is_instklassptr()->instance_klass()->is_inlinetype();
1267   if (!alloc->_is_non_escaping && !inline_alloc) {
1268     return false;
1269   }
1270   // Eliminate boxing allocations which are not used
1271   // regardless scalar replaceable status.
1272   Node* res = alloc->result_cast();
1273   bool boxing_alloc = (res == nullptr) && C->eliminate_boxing() &&
1274                       tklass->isa_instklassptr() &&
1275                       tklass->is_instklassptr()->instance_klass()->is_box_klass();
1276   if (!alloc->_is_scalar_replaceable && !boxing_alloc && !inline_alloc) {
1277     return false;
1278   }
1279 
1280   _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
1281 
1282   GrowableArray <SafePointNode *> safepoints;
1283   if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) {
1284     return false;
1285   }
1286 
1287   if (!alloc->_is_scalar_replaceable) {
1288     assert(res == nullptr || inline_alloc, "sanity");
1289     // We can only eliminate allocation if all debug info references
1290     // are already replaced with SafePointScalarObject because
1291     // we can't search for a fields value without instance_id.
1292     if (safepoints.length() > 0) {
1293       assert(!inline_alloc || C->has_circular_inline_type(),
1294              "Inline type allocations should have been scalarized earlier");
1295       return false;
1296     }
1297   }
1298 
1299   if (!scalar_replacement(alloc, safepoints)) {
1300     return false;
1301   }
1302 
1303   CompileLog* log = C->log();
1304   if (log != nullptr) {
1305     log->head("eliminate_allocation type='%d'",
1306               log->identify(tklass->exact_klass()));
1307     JVMState* p = alloc->jvms();
1308     while (p != nullptr) {
1309       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1310       p = p->caller();
1311     }
1312     log->tail("eliminate_allocation");
1313   }
1314 
1315   process_users_of_allocation(alloc, inline_alloc);
1316 
1317 #ifndef PRODUCT
1318   if (PrintEliminateAllocations) {
1319     if (alloc->is_AllocateArray())
1320       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1321     else
1322       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1323   }
1324 #endif
1325 
1326   return true;
1327 }
1328 
1329 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1330   // EA should remove all uses of non-escaping boxing node.
1331   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) {
1332     return false;
1333   }
1334 
1335   assert(boxing->result_cast() == nullptr, "unexpected boxing node result");
1336 
1337   _callprojs = boxing->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
1338 
1339   const TypeTuple* r = boxing->tf()->range_sig();
1340   assert(r->cnt() > TypeFunc::Parms, "sanity");
1341   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1342   assert(t != nullptr, "sanity");
1343 
1344   CompileLog* log = C->log();
1345   if (log != nullptr) {
1346     log->head("eliminate_boxing type='%d'",
1347               log->identify(t->instance_klass()));
1348     JVMState* p = boxing->jvms();
1349     while (p != nullptr) {
1350       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1351       p = p->caller();
1352     }
1353     log->tail("eliminate_boxing");
1354   }
1355 
1356   process_users_of_allocation(boxing);
1357 
1358 #ifndef PRODUCT
1359   if (PrintEliminateAllocations) {
1360     tty->print("++++ Eliminated: %d ", boxing->_idx);
1361     boxing->method()->print_short_name(tty);
1362     tty->cr();
1363   }
1364 #endif
1365 
1366   return true;
1367 }
1368 
1369 
1370 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1371   Node* adr = basic_plus_adr(base, offset);
1372   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1373   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1374   transform_later(value);
1375   return value;
1376 }
1377 
1378 
1379 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1380   Node* adr = basic_plus_adr(base, offset);
1381   mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered);
1382   transform_later(mem);
1383   return mem;
1384 }
1385 
1386 //=============================================================================
1387 //
1388 //                              A L L O C A T I O N
1389 //
1390 // Allocation attempts to be fast in the case of frequent small objects.
1391 // It breaks down like this:
1392 //
1393 // 1) Size in doublewords is computed.  This is a constant for objects and
1394 // variable for most arrays.  Doubleword units are used to avoid size
1395 // overflow of huge doubleword arrays.  We need doublewords in the end for
1396 // rounding.
1397 //
1398 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1399 // the slow path into the VM.  The slow path can throw any required
1400 // exceptions, and does all the special checks for very large arrays.  The
1401 // size test can constant-fold away for objects.  For objects with
1402 // finalizers it constant-folds the otherway: you always go slow with
1403 // finalizers.
1404 //
1405 // 3) If NOT using TLABs, this is the contended loop-back point.
1406 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1407 //
1408 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1409 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1410 // "size*8" we always enter the VM, where "largish" is a constant picked small
1411 // enough that there's always space between the eden max and 4Gig (old space is
1412 // there so it's quite large) and large enough that the cost of entering the VM
1413 // is dwarfed by the cost to initialize the space.
1414 //
1415 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1416 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1417 // adjusted heap top back down; there is no contention.
1418 //
1419 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1420 // fields.
1421 //
1422 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1423 // oop flavor.
1424 //
1425 //=============================================================================
1426 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1427 // Allocations bigger than this always go the slow route.
1428 // This value must be small enough that allocation attempts that need to
1429 // trigger exceptions go the slow route.  Also, it must be small enough so
1430 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1431 //=============================================================================j//
1432 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1433 // The allocator will coalesce int->oop copies away.  See comment in
1434 // coalesce.cpp about how this works.  It depends critically on the exact
1435 // code shape produced here, so if you are changing this code shape
1436 // make sure the GC info for the heap-top is correct in and around the
1437 // slow-path call.
1438 //
1439 
1440 void PhaseMacroExpand::expand_allocate_common(
1441             AllocateNode* alloc, // allocation node to be expanded
1442             Node* length,  // array length for an array allocation
1443             Node* init_val, // value to initialize the array with
1444             const TypeFunc* slow_call_type, // Type of slow call
1445             address slow_call_address,  // Address of slow call
1446             Node* valid_length_test // whether length is valid or not
1447     )
1448 {
1449   Node* ctrl = alloc->in(TypeFunc::Control);
1450   Node* mem  = alloc->in(TypeFunc::Memory);
1451   Node* i_o  = alloc->in(TypeFunc::I_O);
1452   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1453   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1454   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1455   assert(ctrl != nullptr, "must have control");
1456 
1457   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1458   // they will not be used if "always_slow" is set
1459   enum { slow_result_path = 1, fast_result_path = 2 };
1460   Node *result_region = nullptr;
1461   Node *result_phi_rawmem = nullptr;
1462   Node *result_phi_rawoop = nullptr;
1463   Node *result_phi_i_o = nullptr;
1464 
1465   // The initial slow comparison is a size check, the comparison
1466   // we want to do is a BoolTest::gt
1467   bool expand_fast_path = true;
1468   int tv = _igvn.find_int_con(initial_slow_test, -1);
1469   if (tv >= 0) {
1470     // InitialTest has constant result
1471     //   0 - can fit in TLAB
1472     //   1 - always too big or negative
1473     assert(tv <= 1, "0 or 1 if a constant");
1474     expand_fast_path = (tv == 0);
1475     initial_slow_test = nullptr;
1476   } else {
1477     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1478   }
1479 
1480   if (!UseTLAB) {
1481     // Force slow-path allocation
1482     expand_fast_path = false;
1483     initial_slow_test = nullptr;
1484   }
1485 
1486   bool allocation_has_use = (alloc->result_cast() != nullptr);
1487   if (!allocation_has_use) {
1488     InitializeNode* init = alloc->initialization();
1489     if (init != nullptr) {
1490       init->remove(&_igvn);
1491     }
1492     if (expand_fast_path && (initial_slow_test == nullptr)) {
1493       // Remove allocation node and return.
1494       // Size is a non-negative constant -> no initial check needed -> directly to fast path.
1495       // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left.
1496 #ifndef PRODUCT
1497       if (PrintEliminateAllocations) {
1498         tty->print("NotUsed ");
1499         Node* res = alloc->proj_out_or_null(TypeFunc::Parms);
1500         if (res != nullptr) {
1501           res->dump();
1502         } else {
1503           alloc->dump();
1504         }
1505       }
1506 #endif
1507       yank_alloc_node(alloc);
1508       return;
1509     }
1510   }
1511 
1512   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1513   Node *slow_region = nullptr;
1514   Node *toobig_false = ctrl;
1515 
1516   // generate the initial test if necessary
1517   if (initial_slow_test != nullptr ) {
1518     assert (expand_fast_path, "Only need test if there is a fast path");
1519     slow_region = new RegionNode(3);
1520 
1521     // Now make the initial failure test.  Usually a too-big test but
1522     // might be a TRUE for finalizers.
1523     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1524     transform_later(toobig_iff);
1525     // Plug the failing-too-big test into the slow-path region
1526     Node* toobig_true = new IfTrueNode(toobig_iff);
1527     transform_later(toobig_true);
1528     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1529     toobig_false = new IfFalseNode(toobig_iff);
1530     transform_later(toobig_false);
1531   } else {
1532     // No initial test, just fall into next case
1533     assert(allocation_has_use || !expand_fast_path, "Should already have been handled");
1534     toobig_false = ctrl;
1535     debug_only(slow_region = NodeSentinel);
1536   }
1537 
1538   // If we are here there are several possibilities
1539   // - expand_fast_path is false - then only a slow path is expanded. That's it.
1540   // no_initial_check means a constant allocation.
1541   // - If check always evaluates to false -> expand_fast_path is false (see above)
1542   // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath)
1543   // if !allocation_has_use the fast path is empty
1544   // if !allocation_has_use && no_initial_check
1545   // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all.
1546   //   removed by yank_alloc_node above.
1547 
1548   Node *slow_mem = mem;  // save the current memory state for slow path
1549   // generate the fast allocation code unless we know that the initial test will always go slow
1550   if (expand_fast_path) {
1551     // Fast path modifies only raw memory.
1552     if (mem->is_MergeMem()) {
1553       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1554     }
1555 
1556     // allocate the Region and Phi nodes for the result
1557     result_region = new RegionNode(3);
1558     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1559     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1560 
1561     // Grab regular I/O before optional prefetch may change it.
1562     // Slow-path does no I/O so just set it to the original I/O.
1563     result_phi_i_o->init_req(slow_result_path, i_o);
1564 
1565     // Name successful fast-path variables
1566     Node* fast_oop_ctrl;
1567     Node* fast_oop_rawmem;
1568 
1569     if (allocation_has_use) {
1570       Node* needgc_ctrl = nullptr;
1571       result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1572 
1573       intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1574       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1575       Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
1576                                         fast_oop_ctrl, fast_oop_rawmem,
1577                                         prefetch_lines);
1578 
1579       if (initial_slow_test != nullptr) {
1580         // This completes all paths into the slow merge point
1581         slow_region->init_req(need_gc_path, needgc_ctrl);
1582         transform_later(slow_region);
1583       } else {
1584         // No initial slow path needed!
1585         // Just fall from the need-GC path straight into the VM call.
1586         slow_region = needgc_ctrl;
1587       }
1588 
1589       InitializeNode* init = alloc->initialization();
1590       fast_oop_rawmem = initialize_object(alloc,
1591                                           fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1592                                           klass_node, length, size_in_bytes);
1593       expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem);
1594       expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem);
1595 
1596       result_phi_rawoop->init_req(fast_result_path, fast_oop);
1597     } else {
1598       assert (initial_slow_test != nullptr, "sanity");
1599       fast_oop_ctrl   = toobig_false;
1600       fast_oop_rawmem = mem;
1601       transform_later(slow_region);
1602     }
1603 
1604     // Plug in the successful fast-path into the result merge point
1605     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1606     result_phi_i_o   ->init_req(fast_result_path, i_o);
1607     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1608   } else {
1609     slow_region = ctrl;
1610     result_phi_i_o = i_o; // Rename it to use in the following code.
1611   }
1612 
1613   // Generate slow-path call
1614   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1615                                OptoRuntime::stub_name(slow_call_address),
1616                                TypePtr::BOTTOM);
1617   call->init_req(TypeFunc::Control,   slow_region);
1618   call->init_req(TypeFunc::I_O,       top());    // does no i/o
1619   call->init_req(TypeFunc::Memory,    slow_mem); // may gc ptrs
1620   call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1621   call->init_req(TypeFunc::FramePtr,  alloc->in(TypeFunc::FramePtr));
1622 
1623   call->init_req(TypeFunc::Parms+0, klass_node);
1624   if (length != nullptr) {
1625     call->init_req(TypeFunc::Parms+1, length);
1626     if (init_val != nullptr) {
1627       call->init_req(TypeFunc::Parms+2, init_val);
1628     }
1629   } else {
1630     // Let the runtime know if this is a larval allocation
1631     call->init_req(TypeFunc::Parms+1, _igvn.intcon(alloc->_larval));
1632   }
1633 
1634   // Copy debug information and adjust JVMState information, then replace
1635   // allocate node with the call
1636   call->copy_call_debug_info(&_igvn, alloc);
1637   // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify
1638   // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough
1639   // path dies).
1640   if (valid_length_test != nullptr) {
1641     call->add_req(valid_length_test);
1642   }
1643   if (expand_fast_path) {
1644     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1645   } else {
1646     // Hook i_o projection to avoid its elimination during allocation
1647     // replacement (when only a slow call is generated).
1648     call->set_req(TypeFunc::I_O, result_phi_i_o);
1649   }
1650   _igvn.replace_node(alloc, call);
1651   transform_later(call);
1652 
1653   // Identify the output projections from the allocate node and
1654   // adjust any references to them.
1655   // The control and io projections look like:
1656   //
1657   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1658   //  Allocate                   Catch
1659   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1660   //
1661   //  We are interested in the CatchProj nodes.
1662   //
1663   _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
1664 
1665   // An allocate node has separate memory projections for the uses on
1666   // the control and i_o paths. Replace the control memory projection with
1667   // result_phi_rawmem (unless we are only generating a slow call when
1668   // both memory projections are combined)
1669   if (expand_fast_path && _callprojs->fallthrough_memproj != nullptr) {
1670     _igvn.replace_in_uses(_callprojs->fallthrough_memproj, result_phi_rawmem);
1671   }
1672   // Now change uses of catchall_memproj to use fallthrough_memproj and delete
1673   // catchall_memproj so we end up with a call that has only 1 memory projection.
1674   if (_callprojs->catchall_memproj != nullptr) {
1675     if (_callprojs->fallthrough_memproj == nullptr) {
1676       _callprojs->fallthrough_memproj = new ProjNode(call, TypeFunc::Memory);
1677       transform_later(_callprojs->fallthrough_memproj);
1678     }
1679     _igvn.replace_in_uses(_callprojs->catchall_memproj, _callprojs->fallthrough_memproj);
1680     _igvn.remove_dead_node(_callprojs->catchall_memproj);
1681   }
1682 
1683   // An allocate node has separate i_o projections for the uses on the control
1684   // and i_o paths. Always replace the control i_o projection with result i_o
1685   // otherwise incoming i_o become dead when only a slow call is generated
1686   // (it is different from memory projections where both projections are
1687   // combined in such case).
1688   if (_callprojs->fallthrough_ioproj != nullptr) {
1689     _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, result_phi_i_o);
1690   }
1691   // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete
1692   // catchall_ioproj so we end up with a call that has only 1 i_o projection.
1693   if (_callprojs->catchall_ioproj != nullptr) {
1694     if (_callprojs->fallthrough_ioproj == nullptr) {
1695       _callprojs->fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O);
1696       transform_later(_callprojs->fallthrough_ioproj);
1697     }
1698     _igvn.replace_in_uses(_callprojs->catchall_ioproj, _callprojs->fallthrough_ioproj);
1699     _igvn.remove_dead_node(_callprojs->catchall_ioproj);
1700   }
1701 
1702   // if we generated only a slow call, we are done
1703   if (!expand_fast_path) {
1704     // Now we can unhook i_o.
1705     if (result_phi_i_o->outcnt() > 1) {
1706       call->set_req(TypeFunc::I_O, top());
1707     } else {
1708       assert(result_phi_i_o->unique_ctrl_out() == call, "sanity");
1709       // Case of new array with negative size known during compilation.
1710       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1711       // following code since call to runtime will throw exception.
1712       // As result there will be no users of i_o after the call.
1713       // Leave i_o attached to this call to avoid problems in preceding graph.
1714     }
1715     return;
1716   }
1717 
1718   if (_callprojs->fallthrough_catchproj != nullptr) {
1719     ctrl = _callprojs->fallthrough_catchproj->clone();
1720     transform_later(ctrl);
1721     _igvn.replace_node(_callprojs->fallthrough_catchproj, result_region);
1722   } else {
1723     ctrl = top();
1724   }
1725   Node *slow_result;
1726   if (_callprojs->resproj[0] == nullptr) {
1727     // no uses of the allocation result
1728     slow_result = top();
1729   } else {
1730     slow_result = _callprojs->resproj[0]->clone();
1731     transform_later(slow_result);
1732     _igvn.replace_node(_callprojs->resproj[0], result_phi_rawoop);
1733   }
1734 
1735   // Plug slow-path into result merge point
1736   result_region->init_req( slow_result_path, ctrl);
1737   transform_later(result_region);
1738   if (allocation_has_use) {
1739     result_phi_rawoop->init_req(slow_result_path, slow_result);
1740     transform_later(result_phi_rawoop);
1741   }
1742   result_phi_rawmem->init_req(slow_result_path, _callprojs->fallthrough_memproj);
1743   transform_later(result_phi_rawmem);
1744   transform_later(result_phi_i_o);
1745   // This completes all paths into the result merge point
1746 }
1747 
1748 // Remove alloc node that has no uses.
1749 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) {
1750   Node* ctrl = alloc->in(TypeFunc::Control);
1751   Node* mem  = alloc->in(TypeFunc::Memory);
1752   Node* i_o  = alloc->in(TypeFunc::I_O);
1753 
1754   _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
1755   if (_callprojs->resproj[0] != nullptr) {
1756     for (DUIterator_Fast imax, i = _callprojs->resproj[0]->fast_outs(imax); i < imax; i++) {
1757       Node* use = _callprojs->resproj[0]->fast_out(i);
1758       use->isa_MemBar()->remove(&_igvn);
1759       --imax;
1760       --i; // back up iterator
1761     }
1762     assert(_callprojs->resproj[0]->outcnt() == 0, "all uses must be deleted");
1763     _igvn.remove_dead_node(_callprojs->resproj[0]);
1764   }
1765   if (_callprojs->fallthrough_catchproj != nullptr) {
1766     _igvn.replace_in_uses(_callprojs->fallthrough_catchproj, ctrl);
1767     _igvn.remove_dead_node(_callprojs->fallthrough_catchproj);
1768   }
1769   if (_callprojs->catchall_catchproj != nullptr) {
1770     _igvn.rehash_node_delayed(_callprojs->catchall_catchproj);
1771     _callprojs->catchall_catchproj->set_req(0, top());
1772   }
1773   if (_callprojs->fallthrough_proj != nullptr) {
1774     Node* catchnode = _callprojs->fallthrough_proj->unique_ctrl_out();
1775     _igvn.remove_dead_node(catchnode);
1776     _igvn.remove_dead_node(_callprojs->fallthrough_proj);
1777   }
1778   if (_callprojs->fallthrough_memproj != nullptr) {
1779     _igvn.replace_in_uses(_callprojs->fallthrough_memproj, mem);
1780     _igvn.remove_dead_node(_callprojs->fallthrough_memproj);
1781   }
1782   if (_callprojs->fallthrough_ioproj != nullptr) {
1783     _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, i_o);
1784     _igvn.remove_dead_node(_callprojs->fallthrough_ioproj);
1785   }
1786   if (_callprojs->catchall_memproj != nullptr) {
1787     _igvn.rehash_node_delayed(_callprojs->catchall_memproj);
1788     _callprojs->catchall_memproj->set_req(0, top());
1789   }
1790   if (_callprojs->catchall_ioproj != nullptr) {
1791     _igvn.rehash_node_delayed(_callprojs->catchall_ioproj);
1792     _callprojs->catchall_ioproj->set_req(0, top());
1793   }
1794 #ifndef PRODUCT
1795   if (PrintEliminateAllocations) {
1796     if (alloc->is_AllocateArray()) {
1797       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1798     } else {
1799       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1800     }
1801   }
1802 #endif
1803   _igvn.remove_dead_node(alloc);
1804 }
1805 
1806 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init,
1807                                                 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) {
1808   // If initialization is performed by an array copy, any required
1809   // MemBarStoreStore was already added. If the object does not
1810   // escape no need for a MemBarStoreStore. If the object does not
1811   // escape in its initializer and memory barrier (MemBarStoreStore or
1812   // stronger) is already added at exit of initializer, also no need
1813   // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1814   // so that stores that initialize this object can't be reordered
1815   // with a subsequent store that makes this object accessible by
1816   // other threads.
1817   // Other threads include java threads and JVM internal threads
1818   // (for example concurrent GC threads). Current concurrent GC
1819   // implementation: G1 will not scan newly created object,
1820   // so it's safe to skip storestore barrier when allocation does
1821   // not escape.
1822   if (!alloc->does_not_escape_thread() &&
1823     !alloc->is_allocation_MemBar_redundant() &&
1824     (init == nullptr || !init->is_complete_with_arraycopy())) {
1825     if (init == nullptr || init->req() < InitializeNode::RawStores) {
1826       // No InitializeNode or no stores captured by zeroing
1827       // elimination. Simply add the MemBarStoreStore after object
1828       // initialization.
1829       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1830       transform_later(mb);
1831 
1832       mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1833       mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1834       fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control);
1835       transform_later(fast_oop_ctrl);
1836       fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory);
1837       transform_later(fast_oop_rawmem);
1838     } else {
1839       // Add the MemBarStoreStore after the InitializeNode so that
1840       // all stores performing the initialization that were moved
1841       // before the InitializeNode happen before the storestore
1842       // barrier.
1843 
1844       Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1845       Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1846 
1847       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1848       transform_later(mb);
1849 
1850       Node* ctrl = new ProjNode(init, TypeFunc::Control);
1851       transform_later(ctrl);
1852       Node* mem = new ProjNode(init, TypeFunc::Memory);
1853       transform_later(mem);
1854 
1855       // The MemBarStoreStore depends on control and memory coming
1856       // from the InitializeNode
1857       mb->init_req(TypeFunc::Memory, mem);
1858       mb->init_req(TypeFunc::Control, ctrl);
1859 
1860       ctrl = new ProjNode(mb, TypeFunc::Control);
1861       transform_later(ctrl);
1862       mem = new ProjNode(mb, TypeFunc::Memory);
1863       transform_later(mem);
1864 
1865       // All nodes that depended on the InitializeNode for control
1866       // and memory must now depend on the MemBarNode that itself
1867       // depends on the InitializeNode
1868       if (init_ctrl != nullptr) {
1869         _igvn.replace_node(init_ctrl, ctrl);
1870       }
1871       if (init_mem != nullptr) {
1872         _igvn.replace_node(init_mem, mem);
1873       }
1874     }
1875   }
1876 }
1877 
1878 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop,
1879                                                 Node*& ctrl, Node*& rawmem) {
1880   if (C->env()->dtrace_alloc_probes()) {
1881     // Slow-path call
1882     int size = TypeFunc::Parms + 2;
1883     CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1884                                           CAST_FROM_FN_PTR(address,
1885                                           static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)),
1886                                           "dtrace_object_alloc",
1887                                           TypeRawPtr::BOTTOM);
1888 
1889     // Get base of thread-local storage area
1890     Node* thread = new ThreadLocalNode();
1891     transform_later(thread);
1892 
1893     call->init_req(TypeFunc::Parms + 0, thread);
1894     call->init_req(TypeFunc::Parms + 1, oop);
1895     call->init_req(TypeFunc::Control, ctrl);
1896     call->init_req(TypeFunc::I_O    , top()); // does no i/o
1897     call->init_req(TypeFunc::Memory , rawmem);
1898     call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1899     call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1900     transform_later(call);
1901     ctrl = new ProjNode(call, TypeFunc::Control);
1902     transform_later(ctrl);
1903     rawmem = new ProjNode(call, TypeFunc::Memory);
1904     transform_later(rawmem);
1905   }
1906 }
1907 
1908 // Helper for PhaseMacroExpand::expand_allocate_common.
1909 // Initializes the newly-allocated storage.
1910 Node* PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1911                                           Node* control, Node* rawmem, Node* object,
1912                                           Node* klass_node, Node* length,
1913                                           Node* size_in_bytes) {
1914   InitializeNode* init = alloc->initialization();
1915   // Store the klass & mark bits
1916   Node* mark_node = alloc->make_ideal_mark(&_igvn, control, rawmem);
1917   if (!mark_node->is_Con()) {
1918     transform_later(mark_node);
1919   }
1920   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type());
1921 
1922   if (!UseCompactObjectHeaders) {
1923     rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1924   }
1925   int header_size = alloc->minimum_header_size();  // conservatively small
1926 
1927   // Array length
1928   if (length != nullptr) {         // Arrays need length field
1929     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1930     // conservatively small header size:
1931     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1932     if (_igvn.type(klass_node)->isa_aryklassptr()) {   // we know the exact header size in most cases:
1933       BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();
1934       if (is_reference_type(elem, true)) {
1935         elem = T_OBJECT;
1936       }
1937       header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem));
1938     }
1939   }
1940 
1941   // Clear the object body, if necessary.
1942   if (init == nullptr) {
1943     // The init has somehow disappeared; be cautious and clear everything.
1944     //
1945     // This can happen if a node is allocated but an uncommon trap occurs
1946     // immediately.  In this case, the Initialize gets associated with the
1947     // trap, and may be placed in a different (outer) loop, if the Allocate
1948     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1949     // there can be two Allocates to one Initialize.  The answer in all these
1950     // edge cases is safety first.  It is always safe to clear immediately
1951     // within an Allocate, and then (maybe or maybe not) clear some more later.
1952     if (!(UseTLAB && ZeroTLAB)) {
1953       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1954                                             alloc->in(AllocateNode::InitValue),
1955                                             alloc->in(AllocateNode::RawInitValue),
1956                                             header_size, size_in_bytes,
1957                                             &_igvn);
1958     }
1959   } else {
1960     if (!init->is_complete()) {
1961       // Try to win by zeroing only what the init does not store.
1962       // We can also try to do some peephole optimizations,
1963       // such as combining some adjacent subword stores.
1964       rawmem = init->complete_stores(control, rawmem, object,
1965                                      header_size, size_in_bytes, &_igvn);
1966     }
1967     // We have no more use for this link, since the AllocateNode goes away:
1968     init->set_req(InitializeNode::RawAddress, top());
1969     // (If we keep the link, it just confuses the register allocator,
1970     // who thinks he sees a real use of the address by the membar.)
1971   }
1972 
1973   return rawmem;
1974 }
1975 
1976 // Generate prefetch instructions for next allocations.
1977 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1978                                         Node*& contended_phi_rawmem,
1979                                         Node* old_eden_top, Node* new_eden_top,
1980                                         intx lines) {
1981    enum { fall_in_path = 1, pf_path = 2 };
1982    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1983       // Generate prefetch allocation with watermark check.
1984       // As an allocation hits the watermark, we will prefetch starting
1985       // at a "distance" away from watermark.
1986 
1987       Node *pf_region = new RegionNode(3);
1988       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1989                                                 TypeRawPtr::BOTTOM );
1990       // I/O is used for Prefetch
1991       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1992 
1993       Node *thread = new ThreadLocalNode();
1994       transform_later(thread);
1995 
1996       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1997                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1998       transform_later(eden_pf_adr);
1999 
2000       Node *old_pf_wm = new LoadPNode(needgc_false,
2001                                    contended_phi_rawmem, eden_pf_adr,
2002                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
2003                                    MemNode::unordered);
2004       transform_later(old_pf_wm);
2005 
2006       // check against new_eden_top
2007       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
2008       transform_later(need_pf_cmp);
2009       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
2010       transform_later(need_pf_bol);
2011       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
2012                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
2013       transform_later(need_pf_iff);
2014 
2015       // true node, add prefetchdistance
2016       Node *need_pf_true = new IfTrueNode( need_pf_iff );
2017       transform_later(need_pf_true);
2018 
2019       Node *need_pf_false = new IfFalseNode( need_pf_iff );
2020       transform_later(need_pf_false);
2021 
2022       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
2023                                     _igvn.MakeConX(AllocatePrefetchDistance) );
2024       transform_later(new_pf_wmt );
2025       new_pf_wmt->set_req(0, need_pf_true);
2026 
2027       Node *store_new_wmt = new StorePNode(need_pf_true,
2028                                        contended_phi_rawmem, eden_pf_adr,
2029                                        TypeRawPtr::BOTTOM, new_pf_wmt,
2030                                        MemNode::unordered);
2031       transform_later(store_new_wmt);
2032 
2033       // adding prefetches
2034       pf_phi_abio->init_req( fall_in_path, i_o );
2035 
2036       Node *prefetch_adr;
2037       Node *prefetch;
2038       uint step_size = AllocatePrefetchStepSize;
2039       uint distance = 0;
2040 
2041       for ( intx i = 0; i < lines; i++ ) {
2042         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
2043                                             _igvn.MakeConX(distance) );
2044         transform_later(prefetch_adr);
2045         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
2046         transform_later(prefetch);
2047         distance += step_size;
2048         i_o = prefetch;
2049       }
2050       pf_phi_abio->set_req( pf_path, i_o );
2051 
2052       pf_region->init_req( fall_in_path, need_pf_false );
2053       pf_region->init_req( pf_path, need_pf_true );
2054 
2055       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
2056       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
2057 
2058       transform_later(pf_region);
2059       transform_later(pf_phi_rawmem);
2060       transform_later(pf_phi_abio);
2061 
2062       needgc_false = pf_region;
2063       contended_phi_rawmem = pf_phi_rawmem;
2064       i_o = pf_phi_abio;
2065    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
2066       // Insert a prefetch instruction for each allocation.
2067       // This code is used to generate 1 prefetch instruction per cache line.
2068 
2069       // Generate several prefetch instructions.
2070       uint step_size = AllocatePrefetchStepSize;
2071       uint distance = AllocatePrefetchDistance;
2072 
2073       // Next cache address.
2074       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
2075                                      _igvn.MakeConX(step_size + distance));
2076       transform_later(cache_adr);
2077       cache_adr = new CastP2XNode(needgc_false, cache_adr);
2078       transform_later(cache_adr);
2079       // Address is aligned to execute prefetch to the beginning of cache line size
2080       // (it is important when BIS instruction is used on SPARC as prefetch).
2081       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
2082       cache_adr = new AndXNode(cache_adr, mask);
2083       transform_later(cache_adr);
2084       cache_adr = new CastX2PNode(cache_adr);
2085       transform_later(cache_adr);
2086 
2087       // Prefetch
2088       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
2089       prefetch->set_req(0, needgc_false);
2090       transform_later(prefetch);
2091       contended_phi_rawmem = prefetch;
2092       Node *prefetch_adr;
2093       distance = step_size;
2094       for ( intx i = 1; i < lines; i++ ) {
2095         prefetch_adr = new AddPNode( cache_adr, cache_adr,
2096                                             _igvn.MakeConX(distance) );
2097         transform_later(prefetch_adr);
2098         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
2099         transform_later(prefetch);
2100         distance += step_size;
2101         contended_phi_rawmem = prefetch;
2102       }
2103    } else if( AllocatePrefetchStyle > 0 ) {
2104       // Insert a prefetch for each allocation only on the fast-path
2105       Node *prefetch_adr;
2106       Node *prefetch;
2107       // Generate several prefetch instructions.
2108       uint step_size = AllocatePrefetchStepSize;
2109       uint distance = AllocatePrefetchDistance;
2110       for ( intx i = 0; i < lines; i++ ) {
2111         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
2112                                             _igvn.MakeConX(distance) );
2113         transform_later(prefetch_adr);
2114         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
2115         // Do not let it float too high, since if eden_top == eden_end,
2116         // both might be null.
2117         if( i == 0 ) { // Set control for first prefetch, next follows it
2118           prefetch->init_req(0, needgc_false);
2119         }
2120         transform_later(prefetch);
2121         distance += step_size;
2122         i_o = prefetch;
2123       }
2124    }
2125    return i_o;
2126 }
2127 
2128 
2129 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
2130   expand_allocate_common(alloc, nullptr, nullptr,
2131                          OptoRuntime::new_instance_Type(),
2132                          OptoRuntime::new_instance_Java(), nullptr);
2133 }
2134 
2135 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
2136   Node* length = alloc->in(AllocateNode::ALength);
2137   Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest);
2138   InitializeNode* init = alloc->initialization();
2139   Node* klass_node = alloc->in(AllocateNode::KlassNode);
2140   Node* init_value = alloc->in(AllocateNode::InitValue);
2141   const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr();
2142   const TypeFunc* slow_call_type;
2143   address slow_call_address;  // Address of slow call
2144   if (init != nullptr && init->is_complete_with_arraycopy() &&
2145       ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) {
2146     // Don't zero type array during slow allocation in VM since
2147     // it will be initialized later by arraycopy in compiled code.
2148     slow_call_address = OptoRuntime::new_array_nozero_Java();
2149     slow_call_type = OptoRuntime::new_array_nozero_Type();
2150   } else {
2151     slow_call_address = OptoRuntime::new_array_Java();
2152     slow_call_type = OptoRuntime::new_array_Type();
2153 
2154     if (init_value == nullptr) {
2155       init_value = _igvn.zerocon(T_OBJECT);
2156     } else if (UseCompressedOops) {
2157       init_value = transform_later(new DecodeNNode(init_value, init_value->bottom_type()->make_ptr()));
2158     }
2159   }
2160   expand_allocate_common(alloc, length, init_value,
2161                          slow_call_type,
2162                          slow_call_address, valid_length_test);
2163 }
2164 
2165 //-------------------mark_eliminated_box----------------------------------
2166 //
2167 // During EA obj may point to several objects but after few ideal graph
2168 // transformations (CCP) it may point to only one non escaping object
2169 // (but still using phi), corresponding locks and unlocks will be marked
2170 // for elimination. Later obj could be replaced with a new node (new phi)
2171 // and which does not have escape information. And later after some graph
2172 // reshape other locks and unlocks (which were not marked for elimination
2173 // before) are connected to this new obj (phi) but they still will not be
2174 // marked for elimination since new obj has no escape information.
2175 // Mark all associated (same box and obj) lock and unlock nodes for
2176 // elimination if some of them marked already.
2177 void PhaseMacroExpand::mark_eliminated_box(Node* box, Node* obj) {
2178   BoxLockNode* oldbox = box->as_BoxLock();
2179   if (oldbox->is_eliminated()) {
2180     return; // This BoxLock node was processed already.
2181   }
2182   assert(!oldbox->is_unbalanced(), "this should not be called for unbalanced region");
2183   // New implementation (EliminateNestedLocks) has separate BoxLock
2184   // node for each locked region so mark all associated locks/unlocks as
2185   // eliminated even if different objects are referenced in one locked region
2186   // (for example, OSR compilation of nested loop inside locked scope).
2187   if (EliminateNestedLocks ||
2188       oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) {
2189     // Box is used only in one lock region. Mark this box as eliminated.
2190     oldbox->set_local();      // This verifies correct state of BoxLock
2191     _igvn.hash_delete(oldbox);
2192     oldbox->set_eliminated(); // This changes box's hash value
2193      _igvn.hash_insert(oldbox);
2194 
2195     for (uint i = 0; i < oldbox->outcnt(); i++) {
2196       Node* u = oldbox->raw_out(i);
2197       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
2198         AbstractLockNode* alock = u->as_AbstractLock();
2199         // Check lock's box since box could be referenced by Lock's debug info.
2200         if (alock->box_node() == oldbox) {
2201           // Mark eliminated all related locks and unlocks.
2202 #ifdef ASSERT
2203           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
2204 #endif
2205           alock->set_non_esc_obj();
2206         }
2207       }
2208     }
2209     return;
2210   }
2211 
2212   // Create new "eliminated" BoxLock node and use it in monitor debug info
2213   // instead of oldbox for the same object.
2214   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
2215 
2216   // Note: BoxLock node is marked eliminated only here and it is used
2217   // to indicate that all associated lock and unlock nodes are marked
2218   // for elimination.
2219   newbox->set_local(); // This verifies correct state of BoxLock
2220   newbox->set_eliminated();
2221   transform_later(newbox);
2222 
2223   // Replace old box node with new box for all users of the same object.
2224   for (uint i = 0; i < oldbox->outcnt();) {
2225     bool next_edge = true;
2226 
2227     Node* u = oldbox->raw_out(i);
2228     if (u->is_AbstractLock()) {
2229       AbstractLockNode* alock = u->as_AbstractLock();
2230       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2231         // Replace Box and mark eliminated all related locks and unlocks.
2232 #ifdef ASSERT
2233         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2234 #endif
2235         alock->set_non_esc_obj();
2236         _igvn.rehash_node_delayed(alock);
2237         alock->set_box_node(newbox);
2238         next_edge = false;
2239       }
2240     }
2241     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2242       FastLockNode* flock = u->as_FastLock();
2243       assert(flock->box_node() == oldbox, "sanity");
2244       _igvn.rehash_node_delayed(flock);
2245       flock->set_box_node(newbox);
2246       next_edge = false;
2247     }
2248 
2249     // Replace old box in monitor debug info.
2250     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2251       SafePointNode* sfn = u->as_SafePoint();
2252       JVMState* youngest_jvms = sfn->jvms();
2253       int max_depth = youngest_jvms->depth();
2254       for (int depth = 1; depth <= max_depth; depth++) {
2255         JVMState* jvms = youngest_jvms->of_depth(depth);
2256         int num_mon  = jvms->nof_monitors();
2257         // Loop over monitors
2258         for (int idx = 0; idx < num_mon; idx++) {
2259           Node* obj_node = sfn->monitor_obj(jvms, idx);
2260           Node* box_node = sfn->monitor_box(jvms, idx);
2261           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2262             int j = jvms->monitor_box_offset(idx);
2263             _igvn.replace_input_of(u, j, newbox);
2264             next_edge = false;
2265           }
2266         }
2267       }
2268     }
2269     if (next_edge) i++;
2270   }
2271 }
2272 
2273 //-----------------------mark_eliminated_locking_nodes-----------------------
2274 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2275   if (!alock->is_balanced()) {
2276     return; // Can't do any more elimination for this locking region
2277   }
2278   if (EliminateNestedLocks) {
2279     if (alock->is_nested()) {
2280        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2281        return;
2282     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2283       // Only Lock node has JVMState needed here.
2284       // Not that preceding claim is documented anywhere else.
2285       if (alock->jvms() != nullptr) {
2286         if (alock->as_Lock()->is_nested_lock_region()) {
2287           // Mark eliminated related nested locks and unlocks.
2288           Node* obj = alock->obj_node();
2289           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2290           assert(!box_node->is_eliminated(), "should not be marked yet");
2291           // Note: BoxLock node is marked eliminated only here
2292           // and it is used to indicate that all associated lock
2293           // and unlock nodes are marked for elimination.
2294           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2295           for (uint i = 0; i < box_node->outcnt(); i++) {
2296             Node* u = box_node->raw_out(i);
2297             if (u->is_AbstractLock()) {
2298               alock = u->as_AbstractLock();
2299               if (alock->box_node() == box_node) {
2300                 // Verify that this Box is referenced only by related locks.
2301                 assert(alock->obj_node()->eqv_uncast(obj), "");
2302                 // Mark all related locks and unlocks.
2303 #ifdef ASSERT
2304                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2305 #endif
2306                 alock->set_nested();
2307               }
2308             }
2309           }
2310         } else {
2311 #ifdef ASSERT
2312           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2313           if (C->log() != nullptr)
2314             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2315 #endif
2316         }
2317       }
2318       return;
2319     }
2320     // Process locks for non escaping object
2321     assert(alock->is_non_esc_obj(), "");
2322   } // EliminateNestedLocks
2323 
2324   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2325     // Look for all locks of this object and mark them and
2326     // corresponding BoxLock nodes as eliminated.
2327     Node* obj = alock->obj_node();
2328     for (uint j = 0; j < obj->outcnt(); j++) {
2329       Node* o = obj->raw_out(j);
2330       if (o->is_AbstractLock() &&
2331           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2332         alock = o->as_AbstractLock();
2333         Node* box = alock->box_node();
2334         // Replace old box node with new eliminated box for all users
2335         // of the same object and mark related locks as eliminated.
2336         mark_eliminated_box(box, obj);
2337       }
2338     }
2339   }
2340 }
2341 
2342 // we have determined that this lock/unlock can be eliminated, we simply
2343 // eliminate the node without expanding it.
2344 //
2345 // Note:  The membar's associated with the lock/unlock are currently not
2346 //        eliminated.  This should be investigated as a future enhancement.
2347 //
2348 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2349 
2350   if (!alock->is_eliminated()) {
2351     return false;
2352   }
2353 #ifdef ASSERT
2354   if (!alock->is_coarsened()) {
2355     // Check that new "eliminated" BoxLock node is created.
2356     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2357     assert(oldbox->is_eliminated(), "should be done already");
2358   }
2359 #endif
2360 
2361   alock->log_lock_optimization(C, "eliminate_lock");
2362 
2363 #ifndef PRODUCT
2364   if (PrintEliminateLocks) {
2365     tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string());
2366   }
2367 #endif
2368 
2369   Node* mem  = alock->in(TypeFunc::Memory);
2370   Node* ctrl = alock->in(TypeFunc::Control);
2371   guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null");
2372 
2373   _callprojs = alock->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
2374   // There are 2 projections from the lock.  The lock node will
2375   // be deleted when its last use is subsumed below.
2376   assert(alock->outcnt() == 2 &&
2377          _callprojs->fallthrough_proj != nullptr &&
2378          _callprojs->fallthrough_memproj != nullptr,
2379          "Unexpected projections from Lock/Unlock");
2380 
2381   Node* fallthroughproj = _callprojs->fallthrough_proj;
2382   Node* memproj_fallthrough = _callprojs->fallthrough_memproj;
2383 
2384   // The memory projection from a lock/unlock is RawMem
2385   // The input to a Lock is merged memory, so extract its RawMem input
2386   // (unless the MergeMem has been optimized away.)
2387   if (alock->is_Lock()) {
2388     // Search for MemBarAcquireLock node and delete it also.
2389     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2390     assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, "");
2391     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2392     Node* memproj = membar->proj_out(TypeFunc::Memory);
2393     _igvn.replace_node(ctrlproj, fallthroughproj);
2394     _igvn.replace_node(memproj, memproj_fallthrough);
2395 
2396     // Delete FastLock node also if this Lock node is unique user
2397     // (a loop peeling may clone a Lock node).
2398     Node* flock = alock->as_Lock()->fastlock_node();
2399     if (flock->outcnt() == 1) {
2400       assert(flock->unique_out() == alock, "sanity");
2401       _igvn.replace_node(flock, top());
2402     }
2403   }
2404 
2405   // Search for MemBarReleaseLock node and delete it also.
2406   if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
2407     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2408     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2409            mem->is_Proj() && membar == mem->in(0), "");
2410     _igvn.replace_node(fallthroughproj, ctrl);
2411     _igvn.replace_node(memproj_fallthrough, mem);
2412     fallthroughproj = ctrl;
2413     memproj_fallthrough = mem;
2414     ctrl = membar->in(TypeFunc::Control);
2415     mem  = membar->in(TypeFunc::Memory);
2416   }
2417 
2418   _igvn.replace_node(fallthroughproj, ctrl);
2419   _igvn.replace_node(memproj_fallthrough, mem);
2420   return true;
2421 }
2422 
2423 
2424 //------------------------------expand_lock_node----------------------
2425 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2426 
2427   Node* ctrl = lock->in(TypeFunc::Control);
2428   Node* mem = lock->in(TypeFunc::Memory);
2429   Node* obj = lock->obj_node();
2430   Node* box = lock->box_node();
2431   Node* flock = lock->fastlock_node();
2432 
2433   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2434 
2435   // Make the merge point
2436   Node *region;
2437   Node *mem_phi;
2438   Node *slow_path;
2439 
2440   region  = new RegionNode(3);
2441   // create a Phi for the memory state
2442   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2443 
2444   // Optimize test; set region slot 2
2445   slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2446   mem_phi->init_req(2, mem);
2447 
2448   // Make slow path call
2449   CallNode* call = make_slow_call(lock, OptoRuntime::complete_monitor_enter_Type(),
2450                                   OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path,
2451                                   obj, box, nullptr);
2452 
2453   _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
2454 
2455   // Slow path can only throw asynchronous exceptions, which are always
2456   // de-opted.  So the compiler thinks the slow-call can never throw an
2457   // exception.  If it DOES throw an exception we would need the debug
2458   // info removed first (since if it throws there is no monitor).
2459   assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr &&
2460          _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock");
2461 
2462   // Capture slow path
2463   // disconnect fall-through projection from call and create a new one
2464   // hook up users of fall-through projection to region
2465   Node *slow_ctrl = _callprojs->fallthrough_proj->clone();
2466   transform_later(slow_ctrl);
2467   _igvn.hash_delete(_callprojs->fallthrough_proj);
2468   _callprojs->fallthrough_proj->disconnect_inputs(C);
2469   region->init_req(1, slow_ctrl);
2470   // region inputs are now complete
2471   transform_later(region);
2472   _igvn.replace_node(_callprojs->fallthrough_proj, region);
2473 
2474   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2475 
2476   mem_phi->init_req(1, memproj);
2477 
2478   transform_later(mem_phi);
2479 
2480   _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi);
2481 }
2482 
2483 //------------------------------expand_unlock_node----------------------
2484 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2485 
2486   Node* ctrl = unlock->in(TypeFunc::Control);
2487   Node* mem = unlock->in(TypeFunc::Memory);
2488   Node* obj = unlock->obj_node();
2489   Node* box = unlock->box_node();
2490 
2491   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2492 
2493   // No need for a null check on unlock
2494 
2495   // Make the merge point
2496   Node *region;
2497   Node *mem_phi;
2498 
2499   region  = new RegionNode(3);
2500   // create a Phi for the memory state
2501   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2502 
2503   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2504   funlock = transform_later( funlock )->as_FastUnlock();
2505   // Optimize test; set region slot 2
2506   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2507   Node *thread = transform_later(new ThreadLocalNode());
2508 
2509   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2510                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2511                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2512 
2513   _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
2514   assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr &&
2515          _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock");
2516 
2517   // No exceptions for unlocking
2518   // Capture slow path
2519   // disconnect fall-through projection from call and create a new one
2520   // hook up users of fall-through projection to region
2521   Node *slow_ctrl = _callprojs->fallthrough_proj->clone();
2522   transform_later(slow_ctrl);
2523   _igvn.hash_delete(_callprojs->fallthrough_proj);
2524   _callprojs->fallthrough_proj->disconnect_inputs(C);
2525   region->init_req(1, slow_ctrl);
2526   // region inputs are now complete
2527   transform_later(region);
2528   _igvn.replace_node(_callprojs->fallthrough_proj, region);
2529 
2530   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2531   mem_phi->init_req(1, memproj );
2532   mem_phi->init_req(2, mem);
2533   transform_later(mem_phi);
2534 
2535   _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi);
2536 }
2537 
2538 // An inline type might be returned from the call but we don't know its
2539 // type. Either we get a buffered inline type (and nothing needs to be done)
2540 // or one of the values being returned is the klass of the inline type
2541 // and we need to allocate an inline type instance of that type and
2542 // initialize it with other values being returned. In that case, we
2543 // first try a fast path allocation and initialize the value with the
2544 // inline klass's pack handler or we fall back to a runtime call.
2545 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) {
2546   assert(call->method()->is_method_handle_intrinsic(), "must be a method handle intrinsic call");
2547   Node* ret = call->proj_out_or_null(TypeFunc::Parms);
2548   if (ret == nullptr) {
2549     return;
2550   }
2551   const TypeFunc* tf = call->_tf;
2552   const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc();
2553   const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2554   call->_tf = new_tf;
2555   // Make sure the change of type is applied before projections are processed by igvn
2556   _igvn.set_type(call, call->Value(&_igvn));
2557   _igvn.set_type(ret, ret->Value(&_igvn));
2558 
2559   // Before any new projection is added:
2560   CallProjections* projs = call->extract_projections(true, true);
2561 
2562   // Create temporary hook nodes that will be replaced below.
2563   // Add an input to prevent hook nodes from being dead.
2564   Node* ctl = new Node(call);
2565   Node* mem = new Node(ctl);
2566   Node* io = new Node(ctl);
2567   Node* ex_ctl = new Node(ctl);
2568   Node* ex_mem = new Node(ctl);
2569   Node* ex_io = new Node(ctl);
2570   Node* res = new Node(ctl);
2571 
2572   // Allocate a new buffered inline type only if a new one is not returned
2573   Node* cast = transform_later(new CastP2XNode(ctl, res));
2574   Node* mask = MakeConX(0x1);
2575   Node* masked = transform_later(new AndXNode(cast, mask));
2576   Node* cmp = transform_later(new CmpXNode(masked, mask));
2577   Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq));
2578   IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN);
2579   transform_later(allocation_iff);
2580   Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff));
2581   Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff));
2582   Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeInstPtr::BOTTOM));
2583 
2584   // Try to allocate a new buffered inline instance either from TLAB or eden space
2585   Node* needgc_ctrl = nullptr; // needgc means slowcase, i.e. allocation failed
2586   CallLeafNoFPNode* handler_call;
2587   const bool alloc_in_place = UseTLAB;
2588   if (alloc_in_place) {
2589     Node* fast_oop_ctrl = nullptr;
2590     Node* fast_oop_rawmem = nullptr;
2591     Node* mask2 = MakeConX(-2);
2592     Node* masked2 = transform_later(new AndXNode(cast, mask2));
2593     Node* rawklassptr = transform_later(new CastX2PNode(masked2));
2594     Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeInstKlassPtr::OBJECT_OR_NULL));
2595     Node* layout_val = make_load(nullptr, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT);
2596     Node* size_in_bytes = ConvI2X(layout_val);
2597     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2598     Node* fast_oop = bs->obj_allocate(this, mem, allocation_ctl, size_in_bytes, io, needgc_ctrl,
2599                                       fast_oop_ctrl, fast_oop_rawmem,
2600                                       AllocateInstancePrefetchLines);
2601     // Allocation succeed, initialize buffered inline instance header firstly,
2602     // and then initialize its fields with an inline class specific handler
2603     Node* mark_node = makecon(TypeRawPtr::make((address)markWord::inline_type_prototype().value()));
2604     fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
2605     fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
2606     if (UseCompressedClassPointers) {
2607       fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT);
2608     }
2609     Node* fixed_block  = make_load(fast_oop_ctrl, fast_oop_rawmem, klass_node, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2610     Node* pack_handler = make_load(fast_oop_ctrl, fast_oop_rawmem, fixed_block, in_bytes(InlineKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2611     handler_call = new CallLeafNoFPNode(OptoRuntime::pack_inline_type_Type(),
2612                                         nullptr,
2613                                         "pack handler",
2614                                         TypeRawPtr::BOTTOM);
2615     handler_call->init_req(TypeFunc::Control, fast_oop_ctrl);
2616     handler_call->init_req(TypeFunc::Memory, fast_oop_rawmem);
2617     handler_call->init_req(TypeFunc::I_O, top());
2618     handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2619     handler_call->init_req(TypeFunc::ReturnAdr, top());
2620     handler_call->init_req(TypeFunc::Parms, pack_handler);
2621     handler_call->init_req(TypeFunc::Parms+1, fast_oop);
2622   } else {
2623     needgc_ctrl = allocation_ctl;
2624   }
2625 
2626   // Allocation failed, fall back to a runtime call
2627   CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_inline_type_fields_Type(),
2628                                                          StubRoutines::store_inline_type_fields_to_buf(),
2629                                                          "store_inline_type_fields",
2630                                                          TypePtr::BOTTOM);
2631   slow_call->init_req(TypeFunc::Control, needgc_ctrl);
2632   slow_call->init_req(TypeFunc::Memory, mem);
2633   slow_call->init_req(TypeFunc::I_O, io);
2634   slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2635   slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
2636   slow_call->init_req(TypeFunc::Parms, res);
2637 
2638   Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control));
2639   Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory));
2640   Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O));
2641   Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms));
2642   Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2));
2643   Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci));
2644   Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci));
2645 
2646   Node* ex_r = new RegionNode(3);
2647   Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM);
2648   Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO);
2649   ex_r->init_req(1, slow_excp);
2650   ex_mem_phi->init_req(1, slow_mem);
2651   ex_io_phi->init_req(1, slow_io);
2652   ex_r->init_req(2, ex_ctl);
2653   ex_mem_phi->init_req(2, ex_mem);
2654   ex_io_phi->init_req(2, ex_io);
2655   transform_later(ex_r);
2656   transform_later(ex_mem_phi);
2657   transform_later(ex_io_phi);
2658 
2659   // We don't know how many values are returned. This assumes the
2660   // worst case, that all available registers are used.
2661   for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2662     if (domain->field_at(i) == Type::HALF) {
2663       slow_call->init_req(i, top());
2664       if (alloc_in_place) {
2665         handler_call->init_req(i+1, top());
2666       }
2667       continue;
2668     }
2669     Node* proj = transform_later(new ProjNode(call, i));
2670     slow_call->init_req(i, proj);
2671     if (alloc_in_place) {
2672       handler_call->init_req(i+1, proj);
2673     }
2674   }
2675   // We can safepoint at that new call
2676   slow_call->copy_call_debug_info(&_igvn, call);
2677   transform_later(slow_call);
2678   if (alloc_in_place) {
2679     transform_later(handler_call);
2680   }
2681 
2682   Node* fast_ctl = nullptr;
2683   Node* fast_res = nullptr;
2684   MergeMemNode* fast_mem = nullptr;
2685   if (alloc_in_place) {
2686     fast_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control));
2687     Node* rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory));
2688     fast_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms));
2689     fast_mem = MergeMemNode::make(mem);
2690     fast_mem->set_memory_at(Compile::AliasIdxRaw, rawmem);
2691     transform_later(fast_mem);
2692   }
2693 
2694   Node* r = new RegionNode(alloc_in_place ? 4 : 3);
2695   Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM);
2696   Node* io_phi = new PhiNode(r, Type::ABIO);
2697   Node* res_phi = new PhiNode(r, TypeInstPtr::BOTTOM);
2698   r->init_req(1, no_allocation_ctl);
2699   mem_phi->init_req(1, mem);
2700   io_phi->init_req(1, io);
2701   res_phi->init_req(1, no_allocation_res);
2702   r->init_req(2, slow_norm);
2703   mem_phi->init_req(2, slow_mem);
2704   io_phi->init_req(2, slow_io);
2705   res_phi->init_req(2, slow_res);
2706   if (alloc_in_place) {
2707     r->init_req(3, fast_ctl);
2708     mem_phi->init_req(3, fast_mem);
2709     io_phi->init_req(3, io);
2710     res_phi->init_req(3, fast_res);
2711   }
2712   transform_later(r);
2713   transform_later(mem_phi);
2714   transform_later(io_phi);
2715   transform_later(res_phi);
2716 
2717   // Do not let stores that initialize this buffer be reordered with a subsequent
2718   // store that would make this buffer accessible by other threads.
2719   MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
2720   transform_later(mb);
2721   mb->init_req(TypeFunc::Memory, mem_phi);
2722   mb->init_req(TypeFunc::Control, r);
2723   r = new ProjNode(mb, TypeFunc::Control);
2724   transform_later(r);
2725   mem_phi = new ProjNode(mb, TypeFunc::Memory);
2726   transform_later(mem_phi);
2727 
2728   assert(projs->nb_resproj == 1, "unexpected number of results");
2729   _igvn.replace_in_uses(projs->fallthrough_catchproj, r);
2730   _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi);
2731   _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi);
2732   _igvn.replace_in_uses(projs->resproj[0], res_phi);
2733   _igvn.replace_in_uses(projs->catchall_catchproj, ex_r);
2734   _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi);
2735   _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi);
2736   // The CatchNode should not use the ex_io_phi. Re-connect it to the catchall_ioproj.
2737   Node* cn = projs->fallthrough_catchproj->in(0);
2738   _igvn.replace_input_of(cn, 1, projs->catchall_ioproj);
2739 
2740   _igvn.replace_node(ctl, projs->fallthrough_catchproj);
2741   _igvn.replace_node(mem, projs->fallthrough_memproj);
2742   _igvn.replace_node(io, projs->fallthrough_ioproj);
2743   _igvn.replace_node(res, projs->resproj[0]);
2744   _igvn.replace_node(ex_ctl, projs->catchall_catchproj);
2745   _igvn.replace_node(ex_mem, projs->catchall_memproj);
2746   _igvn.replace_node(ex_io, projs->catchall_ioproj);
2747  }
2748 
2749 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) {
2750   assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned");
2751   Node* bol = check->unique_out();
2752   Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass);
2753   Node* superklass = check->in(SubTypeCheckNode::SuperKlass);
2754   assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node");
2755 
2756   for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) {
2757     Node* iff = bol->last_out(i);
2758     assert(iff->is_If(), "where's the if?");
2759 
2760     if (iff->in(0)->is_top()) {
2761       _igvn.replace_input_of(iff, 1, C->top());
2762       continue;
2763     }
2764 
2765     Node* iftrue = iff->as_If()->proj_out(1);
2766     Node* iffalse = iff->as_If()->proj_out(0);
2767     Node* ctrl = iff->in(0);
2768 
2769     Node* subklass = nullptr;
2770     if (_igvn.type(obj_or_subklass)->isa_klassptr()) {
2771       subklass = obj_or_subklass;
2772     } else {
2773       Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes());
2774       subklass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
2775     }
2776 
2777     Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci());
2778 
2779     _igvn.replace_input_of(iff, 0, C->top());
2780     _igvn.replace_node(iftrue, not_subtype_ctrl);
2781     _igvn.replace_node(iffalse, ctrl);
2782   }
2783   _igvn.replace_node(check, C->top());
2784 }
2785 
2786 // FlatArrayCheckNode (array1 array2 ...) is expanded into:
2787 //
2788 // long mark = array1.mark | array2.mark | ...;
2789 // long locked_bit = markWord::unlocked_value & array1.mark & array2.mark & ...;
2790 // if (locked_bit == 0) {
2791 //   // One array is locked, load prototype header from the klass
2792 //   mark = array1.klass.proto | array2.klass.proto | ...
2793 // }
2794 // if ((mark & markWord::flat_array_bit_in_place) == 0) {
2795 //    ...
2796 // }
2797 void PhaseMacroExpand::expand_flatarraycheck_node(FlatArrayCheckNode* check) {
2798   bool array_inputs = _igvn.type(check->in(FlatArrayCheckNode::ArrayOrKlass))->isa_oopptr() != nullptr;
2799   if (array_inputs) {
2800     Node* mark = MakeConX(0);
2801     Node* locked_bit = MakeConX(markWord::unlocked_value);
2802     Node* mem = check->in(FlatArrayCheckNode::Memory);
2803     for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) {
2804       Node* ary = check->in(i);
2805       const TypeOopPtr* t = _igvn.type(ary)->isa_oopptr();
2806       assert(t != nullptr, "Mixing array and klass inputs");
2807       assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out");
2808       Node* mark_adr = basic_plus_adr(ary, oopDesc::mark_offset_in_bytes());
2809       Node* mark_load = _igvn.transform(LoadNode::make(_igvn, nullptr, mem, mark_adr, mark_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
2810       mark = _igvn.transform(new OrXNode(mark, mark_load));
2811       locked_bit = _igvn.transform(new AndXNode(locked_bit, mark_load));
2812     }
2813     assert(!mark->is_Con(), "Should have been optimized out");
2814     Node* cmp = _igvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
2815     Node* is_unlocked = _igvn.transform(new BoolNode(cmp, BoolTest::ne));
2816 
2817     // BoolNode might be shared, replace each if user
2818     Node* old_bol = check->unique_out();
2819     assert(old_bol->is_Bool() && old_bol->as_Bool()->_test._test == BoolTest::ne, "unexpected condition");
2820     for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) {
2821       IfNode* old_iff = old_bol->last_out(i)->as_If();
2822       Node* ctrl = old_iff->in(0);
2823       RegionNode* region = new RegionNode(3);
2824       Node* mark_phi = new PhiNode(region, TypeX_X);
2825 
2826       // Check if array is unlocked
2827       IfNode* iff = _igvn.transform(new IfNode(ctrl, is_unlocked, PROB_MAX, COUNT_UNKNOWN))->as_If();
2828 
2829       // Unlocked: Use bits from mark word
2830       region->init_req(1, _igvn.transform(new IfTrueNode(iff)));
2831       mark_phi->init_req(1, mark);
2832 
2833       // Locked: Load prototype header from klass
2834       ctrl = _igvn.transform(new IfFalseNode(iff));
2835       Node* proto = MakeConX(0);
2836       for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) {
2837         Node* ary = check->in(i);
2838         // Make loads control dependent to make sure they are only executed if array is locked
2839         Node* klass_adr = basic_plus_adr(ary, oopDesc::klass_offset_in_bytes());
2840         Node* klass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
2841         Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
2842         Node* proto_load = _igvn.transform(LoadNode::make(_igvn, ctrl, C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
2843         proto = _igvn.transform(new OrXNode(proto, proto_load));
2844       }
2845       region->init_req(2, ctrl);
2846       mark_phi->init_req(2, proto);
2847 
2848       // Check if flat array bits are set
2849       Node* mask = MakeConX(markWord::flat_array_bit_in_place);
2850       Node* masked = _igvn.transform(new AndXNode(_igvn.transform(mark_phi), mask));
2851       cmp = _igvn.transform(new CmpXNode(masked, MakeConX(0)));
2852       Node* is_not_flat = _igvn.transform(new BoolNode(cmp, BoolTest::eq));
2853 
2854       ctrl = _igvn.transform(region);
2855       iff = _igvn.transform(new IfNode(ctrl, is_not_flat, PROB_MAX, COUNT_UNKNOWN))->as_If();
2856       _igvn.replace_node(old_iff, iff);
2857     }
2858     _igvn.replace_node(check, C->top());
2859   } else {
2860     // Fall back to layout helper check
2861     Node* lhs = intcon(0);
2862     for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) {
2863       Node* array_or_klass = check->in(i);
2864       Node* klass = nullptr;
2865       const TypePtr* t = _igvn.type(array_or_klass)->is_ptr();
2866       assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out");
2867       if (t->isa_oopptr() != nullptr) {
2868         Node* klass_adr = basic_plus_adr(array_or_klass, oopDesc::klass_offset_in_bytes());
2869         klass = transform_later(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
2870       } else {
2871         assert(t->isa_klassptr(), "Unexpected input type");
2872         klass = array_or_klass;
2873       }
2874       Node* lh_addr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset()));
2875       Node* lh_val = _igvn.transform(LoadNode::make(_igvn, nullptr, C->immutable_memory(), lh_addr, lh_addr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered));
2876       lhs = _igvn.transform(new OrINode(lhs, lh_val));
2877     }
2878     Node* masked = transform_later(new AndINode(lhs, intcon(Klass::_lh_array_tag_flat_value_bit_inplace)));
2879     Node* cmp = transform_later(new CmpINode(masked, intcon(0)));
2880     Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq));
2881     Node* m2b = transform_later(new Conv2BNode(masked));
2882     // The matcher expects the input to If nodes to be produced by a Bool(CmpI..)
2883     // pattern, but the input to other potential users (e.g. Phi) to be some
2884     // other pattern (e.g. a Conv2B node, possibly idealized as a CMoveI).
2885     Node* old_bol = check->unique_out();
2886     for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) {
2887       Node* user = old_bol->last_out(i);
2888       for (uint j = 0; j < user->req(); j++) {
2889         Node* n = user->in(j);
2890         if (n == old_bol) {
2891           _igvn.replace_input_of(user, j, user->is_If() ? bol : m2b);
2892         }
2893       }
2894     }
2895     _igvn.replace_node(check, C->top());
2896   }
2897 }
2898 
2899 //---------------------------eliminate_macro_nodes----------------------
2900 // Eliminate scalar replaced allocations and associated locks.
2901 void PhaseMacroExpand::eliminate_macro_nodes() {
2902   if (C->macro_count() == 0)
2903     return;
2904   NOT_PRODUCT(int membar_before = count_MemBar(C);)
2905 
2906   // Before elimination may re-mark (change to Nested or NonEscObj)
2907   // all associated (same box and obj) lock and unlock nodes.
2908   int cnt = C->macro_count();
2909   for (int i=0; i < cnt; i++) {
2910     Node *n = C->macro_node(i);
2911     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2912       mark_eliminated_locking_nodes(n->as_AbstractLock());
2913     }
2914   }
2915   // Re-marking may break consistency of Coarsened locks.
2916   if (!C->coarsened_locks_consistent()) {
2917     return; // recompile without Coarsened locks if broken
2918   } else {
2919     // After coarsened locks are eliminated locking regions
2920     // become unbalanced. We should not execute any more
2921     // locks elimination optimizations on them.
2922     C->mark_unbalanced_boxes();
2923   }
2924 
2925   // First, attempt to eliminate locks
2926   bool progress = true;
2927   while (progress) {
2928     progress = false;
2929     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2930       Node* n = C->macro_node(i - 1);
2931       bool success = false;
2932       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2933       if (n->is_AbstractLock()) {
2934         success = eliminate_locking_node(n->as_AbstractLock());
2935 #ifndef PRODUCT
2936         if (success && PrintOptoStatistics) {
2937           Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter);
2938         }
2939 #endif
2940       }
2941       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2942       progress = progress || success;
2943     }
2944   }
2945   // Next, attempt to eliminate allocations
2946   _has_locks = false;
2947   progress = true;
2948   while (progress) {
2949     progress = false;
2950     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2951       Node* n = C->macro_node(i - 1);
2952       bool success = false;
2953       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2954       switch (n->class_id()) {
2955       case Node::Class_Allocate:
2956       case Node::Class_AllocateArray:
2957         success = eliminate_allocate_node(n->as_Allocate());
2958 #ifndef PRODUCT
2959         if (success && PrintOptoStatistics) {
2960           Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter);
2961         }
2962 #endif
2963         break;
2964       case Node::Class_CallStaticJava: {
2965         CallStaticJavaNode* call = n->as_CallStaticJava();
2966         if (!call->method()->is_method_handle_intrinsic()) {
2967           success = eliminate_boxing_node(n->as_CallStaticJava());
2968         }
2969         break;
2970       }
2971       case Node::Class_Lock:
2972       case Node::Class_Unlock:
2973         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2974         _has_locks = true;
2975         break;
2976       case Node::Class_ArrayCopy:
2977         break;
2978       case Node::Class_OuterStripMinedLoop:
2979         break;
2980       case Node::Class_SubTypeCheck:
2981         break;
2982       case Node::Class_Opaque1:
2983         break;
2984       case Node::Class_FlatArrayCheck:
2985         break;
2986       default:
2987         assert(n->Opcode() == Op_LoopLimit ||
2988                n->Opcode() == Op_ModD ||
2989                n->Opcode() == Op_ModF ||
2990                n->is_OpaqueNotNull()       ||
2991                n->is_OpaqueInitializedAssertionPredicate() ||
2992                n->Opcode() == Op_MaxL      ||
2993                n->Opcode() == Op_MinL      ||
2994                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
2995                "unknown node type in macro list");
2996       }
2997       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2998       progress = progress || success;
2999     }
3000   }
3001 #ifndef PRODUCT
3002   if (PrintOptoStatistics) {
3003     int membar_after = count_MemBar(C);
3004     Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after);
3005   }
3006 #endif
3007 }
3008 
3009 //------------------------------expand_macro_nodes----------------------
3010 //  Returns true if a failure occurred.
3011 bool PhaseMacroExpand::expand_macro_nodes() {
3012   // Do not allow new macro nodes once we started to expand
3013   C->reset_allow_macro_nodes();
3014   if (StressMacroExpansion) {
3015     C->shuffle_macro_nodes();
3016   }
3017   // Last attempt to eliminate macro nodes.
3018   eliminate_macro_nodes();
3019   if (C->failing())  return true;
3020 
3021   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
3022   bool progress = true;
3023   while (progress) {
3024     progress = false;
3025     for (int i = C->macro_count(); i > 0; i--) {
3026       Node* n = C->macro_node(i-1);
3027       bool success = false;
3028       DEBUG_ONLY(int old_macro_count = C->macro_count();)
3029       if (n->Opcode() == Op_LoopLimit) {
3030         // Remove it from macro list and put on IGVN worklist to optimize.
3031         C->remove_macro_node(n);
3032         _igvn._worklist.push(n);
3033         success = true;
3034       } else if (n->Opcode() == Op_CallStaticJava) {
3035         CallStaticJavaNode* call = n->as_CallStaticJava();
3036         if (!call->method()->is_method_handle_intrinsic()) {
3037           // Remove it from macro list and put on IGVN worklist to optimize.
3038           C->remove_macro_node(n);
3039           _igvn._worklist.push(n);
3040           success = true;
3041         }
3042       } else if (n->is_Opaque1()) {
3043         _igvn.replace_node(n, n->in(1));
3044         success = true;
3045       } else if (n->is_OpaqueNotNull()) {
3046         // Tests with OpaqueNotNull nodes are implicitly known to be true. Replace the node with true. In debug builds,
3047         // we leave the test in the graph to have an additional sanity check at runtime. If the test fails (i.e. a bug),
3048         // we will execute a Halt node.
3049 #ifdef ASSERT
3050         _igvn.replace_node(n, n->in(1));
3051 #else
3052         _igvn.replace_node(n, _igvn.intcon(1));
3053 #endif
3054         success = true;
3055       } else if (n->is_OpaqueInitializedAssertionPredicate()) {
3056           // Initialized Assertion Predicates must always evaluate to true. Therefore, we get rid of them in product
3057           // builds as they are useless. In debug builds we keep them as additional verification code. Even though
3058           // loop opts are already over, we want to keep Initialized Assertion Predicates alive as long as possible to
3059           // enable folding of dead control paths within which cast nodes become top after due to impossible types -
3060           // even after loop opts are over. Therefore, we delay the removal of these opaque nodes until now.
3061 #ifdef ASSERT
3062         _igvn.replace_node(n, n->in(1));
3063 #else
3064         _igvn.replace_node(n, _igvn.intcon(1));
3065 #endif // ASSERT
3066       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
3067         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
3068         C->remove_macro_node(n);
3069         success = true;
3070       } else if (n->Opcode() == Op_MaxL) {
3071         // Since MaxL and MinL are not implemented in the backend, we expand them to
3072         // a CMoveL construct now. At least until here, the type could be computed
3073         // precisely. CMoveL is not so smart, but we can give it at least the best
3074         // type we know abouot n now.
3075         Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn);
3076         _igvn.replace_node(n, repl);
3077         success = true;
3078       } else if (n->Opcode() == Op_MinL) {
3079         Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn);
3080         _igvn.replace_node(n, repl);
3081         success = true;
3082       }
3083       assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list");
3084       progress = progress || success;
3085       if (success) {
3086         C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
3087       }
3088     }
3089   }
3090 
3091   // Clean up the graph so we're less likely to hit the maximum node
3092   // limit
3093   _igvn.set_delay_transform(false);
3094   _igvn.optimize();
3095   if (C->failing())  return true;
3096   _igvn.set_delay_transform(true);
3097 
3098 
3099   // Because we run IGVN after each expansion, some macro nodes may go
3100   // dead and be removed from the list as we iterate over it. Move
3101   // Allocate nodes (processed in a second pass) at the beginning of
3102   // the list and then iterate from the last element of the list until
3103   // an Allocate node is seen. This is robust to random deletion in
3104   // the list due to nodes going dead.
3105   C->sort_macro_nodes();
3106 
3107   // expand arraycopy "macro" nodes first
3108   // For ReduceBulkZeroing, we must first process all arraycopy nodes
3109   // before the allocate nodes are expanded.
3110   while (C->macro_count() > 0) {
3111     int macro_count = C->macro_count();
3112     Node * n = C->macro_node(macro_count-1);
3113     assert(n->is_macro(), "only macro nodes expected here");
3114     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
3115       // node is unreachable, so don't try to expand it
3116       C->remove_macro_node(n);
3117       continue;
3118     }
3119     if (n->is_Allocate()) {
3120       break;
3121     }
3122     // Make sure expansion will not cause node limit to be exceeded.
3123     // Worst case is a macro node gets expanded into about 200 nodes.
3124     // Allow 50% more for optimization.
3125     if (C->check_node_count(300, "out of nodes before macro expansion")) {
3126       return true;
3127     }
3128 
3129     DEBUG_ONLY(int old_macro_count = C->macro_count();)
3130     switch (n->class_id()) {
3131     case Node::Class_Lock:
3132       expand_lock_node(n->as_Lock());
3133       break;
3134     case Node::Class_Unlock:
3135       expand_unlock_node(n->as_Unlock());
3136       break;
3137     case Node::Class_ArrayCopy:
3138       expand_arraycopy_node(n->as_ArrayCopy());
3139       break;
3140     case Node::Class_SubTypeCheck:
3141       expand_subtypecheck_node(n->as_SubTypeCheck());
3142       break;
3143     case Node::Class_CallStaticJava:
3144       expand_mh_intrinsic_return(n->as_CallStaticJava());
3145       C->remove_macro_node(n);
3146       break;
3147     case Node::Class_FlatArrayCheck:
3148       expand_flatarraycheck_node(n->as_FlatArrayCheck());
3149       break;
3150     default:
3151       switch (n->Opcode()) {
3152       case Op_ModD:
3153       case Op_ModF: {
3154         bool is_drem = n->Opcode() == Op_ModD;
3155         CallNode* mod_macro = n->as_Call();
3156         CallNode* call = new CallLeafNode(mod_macro->tf(),
3157                                           is_drem ? CAST_FROM_FN_PTR(address, SharedRuntime::drem)
3158                                                   : CAST_FROM_FN_PTR(address, SharedRuntime::frem),
3159                                           is_drem ? "drem" : "frem", TypeRawPtr::BOTTOM);
3160         call->init_req(TypeFunc::Control, mod_macro->in(TypeFunc::Control));
3161         call->init_req(TypeFunc::I_O, mod_macro->in(TypeFunc::I_O));
3162         call->init_req(TypeFunc::Memory, mod_macro->in(TypeFunc::Memory));
3163         call->init_req(TypeFunc::ReturnAdr, mod_macro->in(TypeFunc::ReturnAdr));
3164         call->init_req(TypeFunc::FramePtr, mod_macro->in(TypeFunc::FramePtr));
3165         for (unsigned int i = 0; i < mod_macro->tf()->domain_cc()->cnt() - TypeFunc::Parms; i++) {
3166           call->init_req(TypeFunc::Parms + i, mod_macro->in(TypeFunc::Parms + i));
3167         }
3168         _igvn.replace_node(mod_macro, call);
3169         transform_later(call);
3170         break;
3171       }
3172       default:
3173         assert(false, "unknown node type in macro list");
3174       }
3175     }
3176     assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
3177     if (C->failing())  return true;
3178     C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
3179 
3180     // Clean up the graph so we're less likely to hit the maximum node
3181     // limit
3182     _igvn.set_delay_transform(false);
3183     _igvn.optimize();
3184     if (C->failing())  return true;
3185     _igvn.set_delay_transform(true);
3186   }
3187 
3188   // All nodes except Allocate nodes are expanded now. There could be
3189   // new optimization opportunities (such as folding newly created
3190   // load from a just allocated object). Run IGVN.
3191 
3192   // expand "macro" nodes
3193   // nodes are removed from the macro list as they are processed
3194   while (C->macro_count() > 0) {
3195     int macro_count = C->macro_count();
3196     Node * n = C->macro_node(macro_count-1);
3197     assert(n->is_macro(), "only macro nodes expected here");
3198     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
3199       // node is unreachable, so don't try to expand it
3200       C->remove_macro_node(n);
3201       continue;
3202     }
3203     // Make sure expansion will not cause node limit to be exceeded.
3204     // Worst case is a macro node gets expanded into about 200 nodes.
3205     // Allow 50% more for optimization.
3206     if (C->check_node_count(300, "out of nodes before macro expansion")) {
3207       return true;
3208     }
3209     switch (n->class_id()) {
3210     case Node::Class_Allocate:
3211       expand_allocate(n->as_Allocate());
3212       break;
3213     case Node::Class_AllocateArray:
3214       expand_allocate_array(n->as_AllocateArray());
3215       break;
3216     default:
3217       assert(false, "unknown node type in macro list");
3218     }
3219     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
3220     if (C->failing())  return true;
3221     C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
3222 
3223     // Clean up the graph so we're less likely to hit the maximum node
3224     // limit
3225     _igvn.set_delay_transform(false);
3226     _igvn.optimize();
3227     if (C->failing())  return true;
3228     _igvn.set_delay_transform(true);
3229   }
3230 
3231   _igvn.set_delay_transform(false);
3232   return false;
3233 }
3234 
3235 #ifndef PRODUCT
3236 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0;
3237 int PhaseMacroExpand::_monitor_objects_removed_counter = 0;
3238 int PhaseMacroExpand::_GC_barriers_removed_counter = 0;
3239 int PhaseMacroExpand::_memory_barriers_removed_counter = 0;
3240 
3241 void PhaseMacroExpand::print_statistics() {
3242   tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter));
3243   tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter));
3244   tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter));
3245   tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter));
3246 }
3247 
3248 int PhaseMacroExpand::count_MemBar(Compile *C) {
3249   if (!PrintOptoStatistics) {
3250     return 0;
3251   }
3252   Unique_Node_List ideal_nodes;
3253   int total = 0;
3254   ideal_nodes.map(C->live_nodes(), nullptr);
3255   ideal_nodes.push(C->root());
3256   for (uint next = 0; next < ideal_nodes.size(); ++next) {
3257     Node* n = ideal_nodes.at(next);
3258     if (n->is_MemBar()) {
3259       total++;
3260     }
3261     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3262       Node* m = n->fast_out(i);
3263       ideal_nodes.push(m);
3264     }
3265   }
3266   return total;
3267 }
3268 #endif