1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "gc/shared/collectedHeap.inline.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "libadt/vectset.hpp" 31 #include "memory/universe.hpp" 32 #include "opto/addnode.hpp" 33 #include "opto/arraycopynode.hpp" 34 #include "opto/callnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/cfgnode.hpp" 37 #include "opto/compile.hpp" 38 #include "opto/convertnode.hpp" 39 #include "opto/graphKit.hpp" 40 #include "opto/inlinetypenode.hpp" 41 #include "opto/intrinsicnode.hpp" 42 #include "opto/locknode.hpp" 43 #include "opto/loopnode.hpp" 44 #include "opto/macro.hpp" 45 #include "opto/memnode.hpp" 46 #include "opto/narrowptrnode.hpp" 47 #include "opto/node.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/phaseX.hpp" 50 #include "opto/rootnode.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/subtypenode.hpp" 54 #include "opto/type.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "runtime/continuation.hpp" 57 #include "runtime/sharedRuntime.hpp" 58 #include "runtime/stubRoutines.hpp" 59 #include "utilities/macros.hpp" 60 #include "utilities/powerOfTwo.hpp" 61 #if INCLUDE_G1GC 62 #include "gc/g1/g1ThreadLocalData.hpp" 63 #endif // INCLUDE_G1GC 64 65 66 // 67 // Replace any references to "oldref" in inputs to "use" with "newref". 68 // Returns the number of replacements made. 69 // 70 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { 71 int nreplacements = 0; 72 uint req = use->req(); 73 for (uint j = 0; j < use->len(); j++) { 74 Node *uin = use->in(j); 75 if (uin == oldref) { 76 if (j < req) 77 use->set_req(j, newref); 78 else 79 use->set_prec(j, newref); 80 nreplacements++; 81 } else if (j >= req && uin == nullptr) { 82 break; 83 } 84 } 85 return nreplacements; 86 } 87 88 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { 89 Node* cmp; 90 if (mask != 0) { 91 Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); 92 cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); 93 } else { 94 cmp = word; 95 } 96 Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); 97 IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); 98 transform_later(iff); 99 100 // Fast path taken. 101 Node *fast_taken = transform_later(new IfFalseNode(iff)); 102 103 // Fast path not-taken, i.e. slow path 104 Node *slow_taken = transform_later(new IfTrueNode(iff)); 105 106 if (return_fast_path) { 107 region->init_req(edge, slow_taken); // Capture slow-control 108 return fast_taken; 109 } else { 110 region->init_req(edge, fast_taken); // Capture fast-control 111 return slow_taken; 112 } 113 } 114 115 //--------------------copy_predefined_input_for_runtime_call-------------------- 116 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { 117 // Set fixed predefined input arguments 118 call->init_req( TypeFunc::Control, ctrl ); 119 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); 120 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? 121 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); 122 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); 123 } 124 125 //------------------------------make_slow_call--------------------------------- 126 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, 127 address slow_call, const char* leaf_name, Node* slow_path, 128 Node* parm0, Node* parm1, Node* parm2) { 129 130 // Slow-path call 131 CallNode *call = leaf_name 132 ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) 133 : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM ); 134 135 // Slow path call has no side-effects, uses few values 136 copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); 137 if (parm0 != nullptr) call->init_req(TypeFunc::Parms+0, parm0); 138 if (parm1 != nullptr) call->init_req(TypeFunc::Parms+1, parm1); 139 if (parm2 != nullptr) call->init_req(TypeFunc::Parms+2, parm2); 140 call->copy_call_debug_info(&_igvn, oldcall); 141 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 142 _igvn.replace_node(oldcall, call); 143 transform_later(call); 144 145 return call; 146 } 147 148 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) { 149 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 150 bs->eliminate_gc_barrier(&_igvn, p2x); 151 #ifndef PRODUCT 152 if (PrintOptoStatistics) { 153 Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter); 154 } 155 #endif 156 } 157 158 // Search for a memory operation for the specified memory slice. 159 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { 160 Node *orig_mem = mem; 161 Node *alloc_mem = alloc->as_Allocate()->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 162 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 163 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); 164 while (true) { 165 if (mem == alloc_mem || mem == start_mem ) { 166 return mem; // hit one of our sentinels 167 } else if (mem->is_MergeMem()) { 168 mem = mem->as_MergeMem()->memory_at(alias_idx); 169 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { 170 Node *in = mem->in(0); 171 // we can safely skip over safepoints, calls, locks and membars because we 172 // already know that the object is safe to eliminate. 173 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { 174 return in; 175 } else if (in->is_Call()) { 176 CallNode *call = in->as_Call(); 177 if (call->may_modify(tinst, phase)) { 178 assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape"); 179 if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { 180 return in; 181 } 182 } 183 mem = in->in(TypeFunc::Memory); 184 } else if (in->is_MemBar()) { 185 ArrayCopyNode* ac = nullptr; 186 if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) { 187 if (ac != nullptr) { 188 assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone"); 189 return ac; 190 } 191 } 192 mem = in->in(TypeFunc::Memory); 193 } else { 194 #ifdef ASSERT 195 in->dump(); 196 mem->dump(); 197 assert(false, "unexpected projection"); 198 #endif 199 } 200 } else if (mem->is_Store()) { 201 const TypePtr* atype = mem->as_Store()->adr_type(); 202 int adr_idx = phase->C->get_alias_index(atype); 203 if (adr_idx == alias_idx) { 204 assert(atype->isa_oopptr(), "address type must be oopptr"); 205 int adr_offset = atype->flat_offset(); 206 uint adr_iid = atype->is_oopptr()->instance_id(); 207 // Array elements references have the same alias_idx 208 // but different offset and different instance_id. 209 if (adr_offset == offset && adr_iid == alloc->_idx) { 210 return mem; 211 } 212 } else { 213 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); 214 } 215 mem = mem->in(MemNode::Memory); 216 } else if (mem->is_ClearArray()) { 217 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { 218 // Can not bypass initialization of the instance 219 // we are looking. 220 debug_only(intptr_t offset;) 221 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity"); 222 InitializeNode* init = alloc->as_Allocate()->initialization(); 223 // We are looking for stored value, return Initialize node 224 // or memory edge from Allocate node. 225 if (init != nullptr) { 226 return init; 227 } else { 228 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). 229 } 230 } 231 // Otherwise skip it (the call updated 'mem' value). 232 } else if (mem->Opcode() == Op_SCMemProj) { 233 mem = mem->in(0); 234 Node* adr = nullptr; 235 if (mem->is_LoadStore()) { 236 adr = mem->in(MemNode::Address); 237 } else { 238 assert(mem->Opcode() == Op_EncodeISOArray || 239 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 240 adr = mem->in(3); // Destination array 241 } 242 const TypePtr* atype = adr->bottom_type()->is_ptr(); 243 int adr_idx = phase->C->get_alias_index(atype); 244 if (adr_idx == alias_idx) { 245 DEBUG_ONLY(mem->dump();) 246 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 247 return nullptr; 248 } 249 mem = mem->in(MemNode::Memory); 250 } else if (mem->Opcode() == Op_StrInflatedCopy) { 251 Node* adr = mem->in(3); // Destination array 252 const TypePtr* atype = adr->bottom_type()->is_ptr(); 253 int adr_idx = phase->C->get_alias_index(atype); 254 if (adr_idx == alias_idx) { 255 DEBUG_ONLY(mem->dump();) 256 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 257 return nullptr; 258 } 259 mem = mem->in(MemNode::Memory); 260 } else { 261 return mem; 262 } 263 assert(mem != orig_mem, "dead memory loop"); 264 } 265 } 266 267 // Generate loads from source of the arraycopy for fields of 268 // destination needed at a deoptimization point 269 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) { 270 BasicType bt = ft; 271 const Type *type = ftype; 272 if (ft == T_NARROWOOP) { 273 bt = T_OBJECT; 274 type = ftype->make_oopptr(); 275 } 276 Node* res = nullptr; 277 if (ac->is_clonebasic()) { 278 assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination"); 279 Node* base = ac->in(ArrayCopyNode::Src); 280 Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset))); 281 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 282 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 283 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 284 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 285 } else { 286 if (ac->modifies(offset, offset, &_igvn, true)) { 287 assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result"); 288 uint shift = exact_log2(type2aelembytes(bt)); 289 Node* src_pos = ac->in(ArrayCopyNode::SrcPos); 290 Node* dest_pos = ac->in(ArrayCopyNode::DestPos); 291 const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int(); 292 const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int(); 293 294 Node* adr = nullptr; 295 Node* base = ac->in(ArrayCopyNode::Src); 296 const TypeAryPtr* adr_type = _igvn.type(base)->is_aryptr(); 297 if (adr_type->is_flat()) { 298 shift = adr_type->flat_log_elem_size(); 299 } 300 if (src_pos_t->is_con() && dest_pos_t->is_con()) { 301 intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset; 302 adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off))); 303 adr_type = _igvn.type(adr)->is_aryptr(); 304 assert(adr_type == _igvn.type(base)->is_aryptr()->add_field_offset_and_offset(off), "incorrect address type"); 305 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 306 // Don't emit a new load from src if src == dst but try to get the value from memory instead 307 return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type, alloc); 308 } 309 } else { 310 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 311 // Non constant offset in the array: we can't statically 312 // determine the value 313 return nullptr; 314 } 315 Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 316 #ifdef _LP64 317 diff = _igvn.transform(new ConvI2LNode(diff)); 318 #endif 319 diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift))); 320 321 Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff)); 322 adr = _igvn.transform(new AddPNode(base, base, off)); 323 // In the case of a flat inline type array, each field has its 324 // own slice so we need to extract the field being accessed from 325 // the address computation 326 adr_type = adr_type->add_field_offset_and_offset(offset)->add_offset(Type::OffsetBot)->is_aryptr(); 327 adr = _igvn.transform(new CastPPNode(ctl, adr, adr_type)); 328 } 329 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 330 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 331 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 332 } 333 } 334 if (res != nullptr) { 335 if (ftype->isa_narrowoop()) { 336 // PhaseMacroExpand::scalar_replacement adds DecodeN nodes 337 assert(res->isa_DecodeN(), "should be narrow oop"); 338 res = _igvn.transform(new EncodePNode(res, ftype)); 339 } 340 return res; 341 } 342 return nullptr; 343 } 344 345 // 346 // Given a Memory Phi, compute a value Phi containing the values from stores 347 // on the input paths. 348 // Note: this function is recursive, its depth is limited by the "level" argument 349 // Returns the computed Phi, or null if it cannot compute it. 350 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { 351 assert(mem->is_Phi(), "sanity"); 352 int alias_idx = C->get_alias_index(adr_t); 353 int offset = adr_t->flat_offset(); 354 int instance_id = adr_t->instance_id(); 355 356 // Check if an appropriate value phi already exists. 357 Node* region = mem->in(0); 358 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 359 Node* phi = region->fast_out(k); 360 if (phi->is_Phi() && phi != mem && 361 phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) { 362 return phi; 363 } 364 } 365 // Check if an appropriate new value phi already exists. 366 Node* new_phi = value_phis->find(mem->_idx); 367 if (new_phi != nullptr) 368 return new_phi; 369 370 if (level <= 0) { 371 return nullptr; // Give up: phi tree too deep 372 } 373 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 374 Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 375 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 376 377 uint length = mem->req(); 378 GrowableArray <Node *> values(length, length, nullptr); 379 380 // create a new Phi for the value 381 PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset); 382 transform_later(phi); 383 value_phis->push(phi, mem->_idx); 384 385 for (uint j = 1; j < length; j++) { 386 Node *in = mem->in(j); 387 if (in == nullptr || in->is_top()) { 388 values.at_put(j, in); 389 } else { 390 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); 391 if (val == start_mem || val == alloc_mem) { 392 // hit a sentinel, return appropriate 0 value 393 Node* default_value = alloc->in(AllocateNode::DefaultValue); 394 if (default_value != nullptr) { 395 values.at_put(j, default_value); 396 } else { 397 assert(alloc->in(AllocateNode::RawDefaultValue) == nullptr, "default value may not be null"); 398 values.at_put(j, _igvn.zerocon(ft)); 399 } 400 continue; 401 } 402 if (val->is_Initialize()) { 403 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 404 } 405 if (val == nullptr) { 406 return nullptr; // can't find a value on this path 407 } 408 if (val == mem) { 409 values.at_put(j, mem); 410 } else if (val->is_Store()) { 411 Node* n = val->in(MemNode::ValueIn); 412 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 413 n = bs->step_over_gc_barrier(n); 414 if (is_subword_type(ft)) { 415 n = Compile::narrow_value(ft, n, phi_type, &_igvn, true); 416 } 417 values.at_put(j, n); 418 } else if(val->is_Proj() && val->in(0) == alloc) { 419 Node* default_value = alloc->in(AllocateNode::DefaultValue); 420 if (default_value != nullptr) { 421 values.at_put(j, default_value); 422 } else { 423 assert(alloc->in(AllocateNode::RawDefaultValue) == nullptr, "default value may not be null"); 424 values.at_put(j, _igvn.zerocon(ft)); 425 } 426 } else if (val->is_Phi()) { 427 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); 428 if (val == nullptr) { 429 return nullptr; 430 } 431 values.at_put(j, val); 432 } else if (val->Opcode() == Op_SCMemProj) { 433 assert(val->in(0)->is_LoadStore() || 434 val->in(0)->Opcode() == Op_EncodeISOArray || 435 val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity"); 436 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 437 return nullptr; 438 } else if (val->is_ArrayCopy()) { 439 Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc); 440 if (res == nullptr) { 441 return nullptr; 442 } 443 values.at_put(j, res); 444 } else { 445 DEBUG_ONLY( val->dump(); ) 446 assert(false, "unknown node on this path"); 447 return nullptr; // unknown node on this path 448 } 449 } 450 } 451 // Set Phi's inputs 452 for (uint j = 1; j < length; j++) { 453 if (values.at(j) == mem) { 454 phi->init_req(j, phi); 455 } else { 456 phi->init_req(j, values.at(j)); 457 } 458 } 459 return phi; 460 } 461 462 // Search the last value stored into the object's field. 463 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { 464 assert(adr_t->is_known_instance_field(), "instance required"); 465 int instance_id = adr_t->instance_id(); 466 assert((uint)instance_id == alloc->_idx, "wrong allocation"); 467 468 int alias_idx = C->get_alias_index(adr_t); 469 int offset = adr_t->flat_offset(); 470 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 471 Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 472 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 473 VectorSet visited; 474 475 bool done = sfpt_mem == alloc_mem; 476 Node *mem = sfpt_mem; 477 while (!done) { 478 if (visited.test_set(mem->_idx)) { 479 return nullptr; // found a loop, give up 480 } 481 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); 482 if (mem == start_mem || mem == alloc_mem) { 483 done = true; // hit a sentinel, return appropriate 0 value 484 } else if (mem->is_Initialize()) { 485 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 486 if (mem == nullptr) { 487 done = true; // Something went wrong. 488 } else if (mem->is_Store()) { 489 const TypePtr* atype = mem->as_Store()->adr_type(); 490 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice"); 491 done = true; 492 } 493 } else if (mem->is_Store()) { 494 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); 495 assert(atype != nullptr, "address type must be oopptr"); 496 assert(C->get_alias_index(atype) == alias_idx && 497 atype->is_known_instance_field() && atype->flat_offset() == offset && 498 atype->instance_id() == instance_id, "store is correct memory slice"); 499 done = true; 500 } else if (mem->is_Phi()) { 501 // try to find a phi's unique input 502 Node *unique_input = nullptr; 503 Node *top = C->top(); 504 for (uint i = 1; i < mem->req(); i++) { 505 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); 506 if (n == nullptr || n == top || n == mem) { 507 continue; 508 } else if (unique_input == nullptr) { 509 unique_input = n; 510 } else if (unique_input != n) { 511 unique_input = top; 512 break; 513 } 514 } 515 if (unique_input != nullptr && unique_input != top) { 516 mem = unique_input; 517 } else { 518 done = true; 519 } 520 } else if (mem->is_ArrayCopy()) { 521 done = true; 522 } else { 523 DEBUG_ONLY( mem->dump(); ) 524 assert(false, "unexpected node"); 525 } 526 } 527 if (mem != nullptr) { 528 if (mem == start_mem || mem == alloc_mem) { 529 // hit a sentinel, return appropriate 0 value 530 Node* default_value = alloc->in(AllocateNode::DefaultValue); 531 if (default_value != nullptr) { 532 return default_value; 533 } 534 assert(alloc->in(AllocateNode::RawDefaultValue) == nullptr, "default value may not be null"); 535 return _igvn.zerocon(ft); 536 } else if (mem->is_Store()) { 537 Node* n = mem->in(MemNode::ValueIn); 538 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 539 n = bs->step_over_gc_barrier(n); 540 return n; 541 } else if (mem->is_Phi()) { 542 // attempt to produce a Phi reflecting the values on the input paths of the Phi 543 Node_Stack value_phis(8); 544 Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); 545 if (phi != nullptr) { 546 return phi; 547 } else { 548 // Kill all new Phis 549 while(value_phis.is_nonempty()) { 550 Node* n = value_phis.node(); 551 _igvn.replace_node(n, C->top()); 552 value_phis.pop(); 553 } 554 } 555 } else if (mem->is_ArrayCopy()) { 556 Node* ctl = mem->in(0); 557 Node* m = mem->in(TypeFunc::Memory); 558 if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) { 559 // pin the loads in the uncommon trap path 560 ctl = sfpt_ctl; 561 m = sfpt_mem; 562 } 563 return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc); 564 } 565 } 566 // Something went wrong. 567 return nullptr; 568 } 569 570 // Search the last value stored into the inline type's fields. 571 Node* PhaseMacroExpand::inline_type_from_mem(Node* mem, Node* ctl, ciInlineKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) { 572 // Subtract the offset of the first field to account for the missing oop header 573 offset -= vk->first_field_offset(); 574 // Create a new InlineTypeNode and retrieve the field values from memory 575 InlineTypeNode* vt = InlineTypeNode::make_uninitialized(_igvn, vk); 576 transform_later(vt); 577 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) { 578 ciType* field_type = vt->field_type(i); 579 int field_offset = offset + vt->field_offset(i); 580 Node* value = nullptr; 581 if (vt->field_is_flat(i)) { 582 value = inline_type_from_mem(mem, ctl, field_type->as_inline_klass(), adr_type, field_offset, alloc); 583 } else { 584 const Type* ft = Type::get_const_type(field_type); 585 BasicType bt = type2field[field_type->basic_type()]; 586 if (UseCompressedOops && !is_java_primitive(bt)) { 587 ft = ft->make_narrowoop(); 588 bt = T_NARROWOOP; 589 } 590 // Each inline type field has its own memory slice 591 adr_type = adr_type->with_field_offset(field_offset); 592 value = value_from_mem(mem, ctl, bt, ft, adr_type, alloc); 593 if (value != nullptr && ft->isa_narrowoop()) { 594 assert(UseCompressedOops, "unexpected narrow oop"); 595 if (value->is_EncodeP()) { 596 value = value->in(1); 597 } else { 598 value = transform_later(new DecodeNNode(value, value->get_ptr_type())); 599 } 600 } 601 } 602 if (value != nullptr) { 603 vt->set_field_value(i, value); 604 } else { 605 // We might have reached the TrackedInitializationLimit 606 return nullptr; 607 } 608 } 609 return vt; 610 } 611 612 // Check the possibility of scalar replacement. 613 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) { 614 // Scan the uses of the allocation to check for anything that would 615 // prevent us from eliminating it. 616 NOT_PRODUCT( const char* fail_eliminate = nullptr; ) 617 DEBUG_ONLY( Node* disq_node = nullptr; ) 618 bool can_eliminate = true; 619 bool reduce_merge_precheck = (safepoints == nullptr); 620 621 Unique_Node_List worklist; 622 Node* res = alloc->result_cast(); 623 const TypeOopPtr* res_type = nullptr; 624 if (res == nullptr) { 625 // All users were eliminated. 626 } else if (!res->is_CheckCastPP()) { 627 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";) 628 can_eliminate = false; 629 } else { 630 worklist.push(res); 631 res_type = igvn->type(res)->isa_oopptr(); 632 if (res_type == nullptr) { 633 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";) 634 can_eliminate = false; 635 } else if (!res_type->klass_is_exact()) { 636 NOT_PRODUCT(fail_eliminate = "Not an exact type.";) 637 can_eliminate = false; 638 } else if (res_type->isa_aryptr()) { 639 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); 640 if (length < 0) { 641 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";) 642 can_eliminate = false; 643 } 644 } 645 } 646 647 while (can_eliminate && worklist.size() > 0) { 648 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 649 res = worklist.pop(); 650 for (DUIterator_Fast jmax, j = res->fast_outs(jmax); j < jmax && can_eliminate; j++) { 651 Node* use = res->fast_out(j); 652 653 if (use->is_AddP()) { 654 const TypePtr* addp_type = igvn->type(use)->is_ptr(); 655 int offset = addp_type->offset(); 656 657 if (offset == Type::OffsetTop || offset == Type::OffsetBot) { 658 NOT_PRODUCT(fail_eliminate = "Undefined field reference";) 659 can_eliminate = false; 660 break; 661 } 662 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); 663 k < kmax && can_eliminate; k++) { 664 Node* n = use->fast_out(k); 665 if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n) && !reduce_merge_precheck) { 666 DEBUG_ONLY(disq_node = n;) 667 if (n->is_Load() || n->is_LoadStore()) { 668 NOT_PRODUCT(fail_eliminate = "Field load";) 669 } else { 670 NOT_PRODUCT(fail_eliminate = "Not store field reference";) 671 } 672 can_eliminate = false; 673 } 674 } 675 } else if (use->is_ArrayCopy() && 676 (use->as_ArrayCopy()->is_clonebasic() || 677 use->as_ArrayCopy()->is_arraycopy_validated() || 678 use->as_ArrayCopy()->is_copyof_validated() || 679 use->as_ArrayCopy()->is_copyofrange_validated()) && 680 use->in(ArrayCopyNode::Dest) == res) { 681 // ok to eliminate 682 } else if (use->is_SafePoint()) { 683 SafePointNode* sfpt = use->as_SafePoint(); 684 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { 685 // Object is passed as argument. 686 DEBUG_ONLY(disq_node = use;) 687 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";) 688 can_eliminate = false; 689 } 690 Node* sfptMem = sfpt->memory(); 691 if (sfptMem == nullptr || sfptMem->is_top()) { 692 DEBUG_ONLY(disq_node = use;) 693 NOT_PRODUCT(fail_eliminate = "null or TOP memory";) 694 can_eliminate = false; 695 } else if (!reduce_merge_precheck) { 696 assert(!res->is_Phi() || !res->as_Phi()->can_be_inline_type(), "Inline type allocations should not have safepoint uses"); 697 safepoints->append_if_missing(sfpt); 698 } 699 } else if (use->is_InlineType() && use->as_InlineType()->get_oop() == res) { 700 // Look at uses 701 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 702 Node* u = use->fast_out(k); 703 if (u->is_InlineType()) { 704 // Use in flat field can be eliminated 705 InlineTypeNode* vt = u->as_InlineType(); 706 for (uint i = 0; i < vt->field_count(); ++i) { 707 if (vt->field_value(i) == use && !vt->field_is_flat(i)) { 708 can_eliminate = false; // Use in non-flat field 709 break; 710 } 711 } 712 } else { 713 // Add other uses to the worklist to process individually 714 worklist.push(use); 715 } 716 } 717 } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) { 718 // Store to mark word of inline type larval buffer 719 assert(res_type->is_inlinetypeptr(), "Unexpected store to mark word"); 720 } else if (res_type->is_inlinetypeptr() && (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore)) { 721 // Inline type buffer allocations are followed by a membar 722 } else if (reduce_merge_precheck && 723 (use->is_Phi() || use->is_EncodeP() || 724 use->Opcode() == Op_MemBarRelease || 725 (UseStoreStoreForCtor && use->Opcode() == Op_MemBarStoreStore))) { 726 // Nothing to do 727 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark 728 if (use->is_Phi()) { 729 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { 730 NOT_PRODUCT(fail_eliminate = "Object is return value";) 731 } else { 732 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";) 733 } 734 DEBUG_ONLY(disq_node = use;) 735 } else { 736 if (use->Opcode() == Op_Return) { 737 NOT_PRODUCT(fail_eliminate = "Object is return value";) 738 } else { 739 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";) 740 } 741 DEBUG_ONLY(disq_node = use;) 742 } 743 can_eliminate = false; 744 } else { 745 assert(use->Opcode() == Op_CastP2X, "should be"); 746 assert(!use->has_out_with(Op_OrL), "should have been removed because oop is never null"); 747 } 748 } 749 } 750 751 #ifndef PRODUCT 752 if (PrintEliminateAllocations && safepoints != nullptr) { 753 if (can_eliminate) { 754 tty->print("Scalar "); 755 if (res == nullptr) 756 alloc->dump(); 757 else 758 res->dump(); 759 } else { 760 tty->print("NotScalar (%s)", fail_eliminate); 761 if (res == nullptr) 762 alloc->dump(); 763 else 764 res->dump(); 765 #ifdef ASSERT 766 if (disq_node != nullptr) { 767 tty->print(" >>>> "); 768 disq_node->dump(); 769 } 770 #endif /*ASSERT*/ 771 } 772 } 773 774 if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) { 775 tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : ""); 776 DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();) 777 } 778 #endif 779 return can_eliminate; 780 } 781 782 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) { 783 Node* res = alloc->result_cast(); 784 int nfields = 0; 785 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 786 787 if (res != nullptr) { 788 const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr(); 789 790 if (res_type->isa_instptr()) { 791 // find the fields of the class which will be needed for safepoint debug information 792 ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass(); 793 nfields = iklass->nof_nonstatic_fields(); 794 } else { 795 // find the array's elements which will be needed for safepoint debug information 796 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 797 assert(nfields >= 0, "must be an array klass."); 798 } 799 } 800 801 // rollback processed safepoints 802 while (safepoints_done.length() > 0) { 803 SafePointNode* sfpt_done = safepoints_done.pop(); 804 // remove any extra entries we added to the safepoint 805 uint last = sfpt_done->req() - 1; 806 for (int k = 0; k < nfields; k++) { 807 sfpt_done->del_req(last--); 808 } 809 JVMState *jvms = sfpt_done->jvms(); 810 jvms->set_endoff(sfpt_done->req()); 811 // Now make a pass over the debug information replacing any references 812 // to SafePointScalarObjectNode with the allocated object. 813 int start = jvms->debug_start(); 814 int end = jvms->debug_end(); 815 for (int i = start; i < end; i++) { 816 if (sfpt_done->in(i)->is_SafePointScalarObject()) { 817 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); 818 if (scobj->first_index(jvms) == sfpt_done->req() && 819 scobj->n_fields() == (uint)nfields) { 820 assert(scobj->alloc() == alloc, "sanity"); 821 sfpt_done->set_req(i, res); 822 } 823 } 824 } 825 _igvn._worklist.push(sfpt_done); 826 } 827 } 828 829 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt, 830 Unique_Node_List* value_worklist) { 831 // Fields of scalar objs are referenced only at the end 832 // of regular debuginfo at the last (youngest) JVMS. 833 // Record relative start index. 834 ciInstanceKlass* iklass = nullptr; 835 BasicType basic_elem_type = T_ILLEGAL; 836 const Type* field_type = nullptr; 837 const TypeOopPtr* res_type = nullptr; 838 int nfields = 0; 839 int array_base = 0; 840 int element_size = 0; 841 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 842 Node* res = alloc->result_cast(); 843 844 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 845 assert(sfpt->jvms() != nullptr, "missed JVMS"); 846 847 if (res != nullptr) { // Could be null when there are no users 848 res_type = _igvn.type(res)->isa_oopptr(); 849 850 if (res_type->isa_instptr()) { 851 // find the fields of the class which will be needed for safepoint debug information 852 iklass = res_type->is_instptr()->instance_klass(); 853 nfields = iklass->nof_nonstatic_fields(); 854 } else { 855 // find the array's elements which will be needed for safepoint debug information 856 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 857 assert(nfields >= 0, "must be an array klass."); 858 basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type(); 859 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 860 element_size = type2aelembytes(basic_elem_type); 861 field_type = res_type->is_aryptr()->elem(); 862 if (res_type->is_flat()) { 863 // Flat inline type array 864 element_size = res_type->is_aryptr()->flat_elem_size(); 865 } 866 } 867 868 if (res->bottom_type()->is_inlinetypeptr()) { 869 // Nullable inline types have an IsInit field which is added to the safepoint when scalarizing them (see 870 // InlineTypeNode::make_scalar_in_safepoint()). When having circular inline types, we stop scalarizing at depth 1 871 // to avoid an endless recursion. Therefore, we do not have a SafePointScalarObjectNode node here, yet. 872 // We are about to create a SafePointScalarObjectNode as if this is a normal object. Add an additional int input 873 // with value 1 which sets IsInit to true to indicate that the object is always non-null. This input is checked 874 // later in PhaseOutput::filLocArray() for inline types. 875 sfpt->add_req(_igvn.intcon(1)); 876 } 877 } 878 879 SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, sfpt->jvms()->depth(), nfields); 880 sobj->init_req(0, C->root()); 881 transform_later(sobj); 882 883 // Scan object's fields adding an input to the safepoint for each field. 884 for (int j = 0; j < nfields; j++) { 885 intptr_t offset; 886 ciField* field = nullptr; 887 if (iklass != nullptr) { 888 field = iklass->nonstatic_field_at(j); 889 offset = field->offset_in_bytes(); 890 ciType* elem_type = field->type(); 891 basic_elem_type = field->layout_type(); 892 assert(!field->is_flat(), "flat inline type fields should not have safepoint uses"); 893 894 // The next code is taken from Parse::do_get_xxx(). 895 if (is_reference_type(basic_elem_type)) { 896 if (!elem_type->is_loaded()) { 897 field_type = TypeInstPtr::BOTTOM; 898 } else if (field != nullptr && field->is_static_constant()) { 899 ciObject* con = field->constant_value().as_object(); 900 // Do not "join" in the previous type; it doesn't add value, 901 // and may yield a vacuous result if the field is of interface type. 902 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 903 assert(field_type != nullptr, "field singleton type must be consistent"); 904 } else { 905 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); 906 } 907 if (UseCompressedOops) { 908 field_type = field_type->make_narrowoop(); 909 basic_elem_type = T_NARROWOOP; 910 } 911 } else { 912 field_type = Type::get_const_basic_type(basic_elem_type); 913 } 914 } else { 915 offset = array_base + j * (intptr_t)element_size; 916 } 917 918 Node* field_val = nullptr; 919 const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr(); 920 if (res_type->is_flat()) { 921 ciInlineKlass* inline_klass = res_type->is_aryptr()->elem()->inline_klass(); 922 assert(inline_klass->flat_in_array(), "must be flat in array"); 923 field_val = inline_type_from_mem(sfpt->memory(), sfpt->control(), inline_klass, field_addr_type->isa_aryptr(), 0, alloc); 924 } else { 925 field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc); 926 } 927 928 // We weren't able to find a value for this field, 929 // give up on eliminating this allocation. 930 if (field_val == nullptr) { 931 uint last = sfpt->req() - 1; 932 for (int k = 0; k < j; k++) { 933 sfpt->del_req(last--); 934 } 935 _igvn._worklist.push(sfpt); 936 937 #ifndef PRODUCT 938 if (PrintEliminateAllocations) { 939 if (field != nullptr) { 940 tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx); 941 field->print(); 942 int field_idx = C->get_alias_index(field_addr_type); 943 tty->print(" (alias_idx=%d)", field_idx); 944 } else { // Array's element 945 tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j); 946 } 947 tty->print(", which prevents elimination of: "); 948 if (res == nullptr) 949 alloc->dump(); 950 else 951 res->dump(); 952 } 953 #endif 954 955 return nullptr; 956 } 957 958 if (UseCompressedOops && field_type->isa_narrowoop()) { 959 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation 960 // to be able scalar replace the allocation. 961 if (field_val->is_EncodeP()) { 962 field_val = field_val->in(1); 963 } else if (!field_val->is_InlineType()) { 964 field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); 965 } 966 } 967 968 // Keep track of inline types to scalarize them later 969 if (field_val->is_InlineType()) { 970 value_worklist->push(field_val); 971 } else if (field_val->is_Phi()) { 972 PhiNode* phi = field_val->as_Phi(); 973 // Eagerly replace inline type phis now since we could be removing an inline type allocation where we must 974 // scalarize all its fields in safepoints. 975 field_val = phi->try_push_inline_types_down(&_igvn, true); 976 if (field_val->is_InlineType()) { 977 value_worklist->push(field_val); 978 } 979 } 980 sfpt->add_req(field_val); 981 } 982 983 sfpt->jvms()->set_endoff(sfpt->req()); 984 985 return sobj; 986 } 987 988 // Do scalar replacement. 989 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 990 GrowableArray <SafePointNode *> safepoints_done; 991 Node* res = alloc->result_cast(); 992 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 993 const TypeOopPtr* res_type = nullptr; 994 if (res != nullptr) { // Could be null when there are no users 995 res_type = _igvn.type(res)->isa_oopptr(); 996 } 997 998 // Process the safepoint uses 999 assert(safepoints.length() == 0 || !res_type->is_inlinetypeptr() || C->has_circular_inline_type(), 1000 "Inline type allocations should have been scalarized earlier"); 1001 Unique_Node_List value_worklist; 1002 while (safepoints.length() > 0) { 1003 SafePointNode* sfpt = safepoints.pop(); 1004 SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt, &value_worklist); 1005 1006 if (sobj == nullptr) { 1007 undo_previous_scalarizations(safepoints_done, alloc); 1008 return false; 1009 } 1010 1011 // Now make a pass over the debug information replacing any references 1012 // to the allocated object with "sobj" 1013 JVMState *jvms = sfpt->jvms(); 1014 sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn); 1015 _igvn._worklist.push(sfpt); 1016 1017 // keep it for rollback 1018 safepoints_done.append_if_missing(sfpt); 1019 } 1020 // Scalarize inline types that were added to the safepoint. 1021 // Don't allow linking a constant oop (if available) for flat array elements 1022 // because Deoptimization::reassign_flat_array_elements needs field values. 1023 bool allow_oop = (res_type != nullptr) && !res_type->is_flat(); 1024 for (uint i = 0; i < value_worklist.size(); ++i) { 1025 InlineTypeNode* vt = value_worklist.at(i)->as_InlineType(); 1026 vt->make_scalar_in_safepoints(&_igvn, allow_oop); 1027 } 1028 return true; 1029 } 1030 1031 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) { 1032 Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control); 1033 Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory); 1034 if (ctl_proj != nullptr) { 1035 igvn.replace_node(ctl_proj, n->in(0)); 1036 } 1037 if (mem_proj != nullptr) { 1038 igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); 1039 } 1040 } 1041 1042 // Process users of eliminated allocation. 1043 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc, bool inline_alloc) { 1044 Unique_Node_List worklist; 1045 Node* res = alloc->result_cast(); 1046 if (res != nullptr) { 1047 worklist.push(res); 1048 } 1049 while (worklist.size() > 0) { 1050 res = worklist.pop(); 1051 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { 1052 Node *use = res->last_out(j); 1053 uint oc1 = res->outcnt(); 1054 1055 if (use->is_AddP()) { 1056 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { 1057 Node *n = use->last_out(k); 1058 uint oc2 = use->outcnt(); 1059 if (n->is_Store()) { 1060 for (DUIterator_Fast pmax, p = n->fast_outs(pmax); p < pmax; p++) { 1061 MemBarNode* mb = n->fast_out(p)->isa_MemBar(); 1062 if (mb != nullptr && mb->req() <= MemBarNode::Precedent && mb->in(MemBarNode::Precedent) == n) { 1063 // MemBarVolatiles should have been removed by MemBarNode::Ideal() for non-inline allocations 1064 assert(inline_alloc, "MemBarVolatile should be eliminated for non-escaping object"); 1065 mb->remove(&_igvn); 1066 } 1067 } 1068 _igvn.replace_node(n, n->in(MemNode::Memory)); 1069 } else { 1070 eliminate_gc_barrier(n); 1071 } 1072 k -= (oc2 - use->outcnt()); 1073 } 1074 _igvn.remove_dead_node(use); 1075 } else if (use->is_ArrayCopy()) { 1076 // Disconnect ArrayCopy node 1077 ArrayCopyNode* ac = use->as_ArrayCopy(); 1078 if (ac->is_clonebasic()) { 1079 Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out(); 1080 disconnect_projections(ac, _igvn); 1081 assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation"); 1082 Node* membar_before = alloc->in(TypeFunc::Memory)->in(0); 1083 disconnect_projections(membar_before->as_MemBar(), _igvn); 1084 if (membar_after->is_MemBar()) { 1085 disconnect_projections(membar_after->as_MemBar(), _igvn); 1086 } 1087 } else { 1088 assert(ac->is_arraycopy_validated() || 1089 ac->is_copyof_validated() || 1090 ac->is_copyofrange_validated(), "unsupported"); 1091 CallProjections* callprojs = ac->extract_projections(true); 1092 1093 _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O)); 1094 _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory)); 1095 _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control)); 1096 1097 // Set control to top. IGVN will remove the remaining projections 1098 ac->set_req(0, top()); 1099 ac->replace_edge(res, top(), &_igvn); 1100 1101 // Disconnect src right away: it can help find new 1102 // opportunities for allocation elimination 1103 Node* src = ac->in(ArrayCopyNode::Src); 1104 ac->replace_edge(src, top(), &_igvn); 1105 // src can be top at this point if src and dest of the 1106 // arraycopy were the same 1107 if (src->outcnt() == 0 && !src->is_top()) { 1108 _igvn.remove_dead_node(src); 1109 } 1110 } 1111 _igvn._worklist.push(ac); 1112 } else if (use->is_InlineType()) { 1113 assert(use->as_InlineType()->get_oop() == res, "unexpected inline type ptr use"); 1114 // Cut off oop input and remove known instance id from type 1115 _igvn.rehash_node_delayed(use); 1116 use->as_InlineType()->set_oop(_igvn, _igvn.zerocon(T_OBJECT)); 1117 const TypeOopPtr* toop = _igvn.type(use)->is_oopptr()->cast_to_instance_id(TypeOopPtr::InstanceBot); 1118 _igvn.set_type(use, toop); 1119 use->as_InlineType()->set_type(toop); 1120 // Process users 1121 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1122 Node* u = use->fast_out(k); 1123 if (!u->is_InlineType()) { 1124 worklist.push(u); 1125 } 1126 } 1127 } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) { 1128 // Store to mark word of inline type larval buffer 1129 assert(inline_alloc, "Unexpected store to mark word"); 1130 _igvn.replace_node(use, use->in(MemNode::Memory)); 1131 } else if (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore) { 1132 // Inline type buffer allocations are followed by a membar 1133 assert(inline_alloc, "Unexpected MemBarRelease"); 1134 use->as_MemBar()->remove(&_igvn); 1135 } else { 1136 eliminate_gc_barrier(use); 1137 } 1138 j -= (oc1 - res->outcnt()); 1139 } 1140 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted"); 1141 _igvn.remove_dead_node(res); 1142 } 1143 1144 // 1145 // Process other users of allocation's projections 1146 // 1147 if (_callprojs->resproj[0] != nullptr && _callprojs->resproj[0]->outcnt() != 0) { 1148 // First disconnect stores captured by Initialize node. 1149 // If Initialize node is eliminated first in the following code, 1150 // it will kill such stores and DUIterator_Last will assert. 1151 for (DUIterator_Fast jmax, j = _callprojs->resproj[0]->fast_outs(jmax); j < jmax; j++) { 1152 Node* use = _callprojs->resproj[0]->fast_out(j); 1153 if (use->is_AddP()) { 1154 // raw memory addresses used only by the initialization 1155 _igvn.replace_node(use, C->top()); 1156 --j; --jmax; 1157 } 1158 } 1159 for (DUIterator_Last jmin, j = _callprojs->resproj[0]->last_outs(jmin); j >= jmin; ) { 1160 Node* use = _callprojs->resproj[0]->last_out(j); 1161 uint oc1 = _callprojs->resproj[0]->outcnt(); 1162 if (use->is_Initialize()) { 1163 // Eliminate Initialize node. 1164 InitializeNode *init = use->as_Initialize(); 1165 assert(init->outcnt() <= 2, "only a control and memory projection expected"); 1166 Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control); 1167 if (ctrl_proj != nullptr) { 1168 _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control)); 1169 #ifdef ASSERT 1170 // If the InitializeNode has no memory out, it will die, and tmp will become null 1171 Node* tmp = init->in(TypeFunc::Control); 1172 assert(tmp == nullptr || tmp == _callprojs->fallthrough_catchproj, "allocation control projection"); 1173 #endif 1174 } 1175 Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory); 1176 if (mem_proj != nullptr) { 1177 Node *mem = init->in(TypeFunc::Memory); 1178 #ifdef ASSERT 1179 if (mem->is_MergeMem()) { 1180 assert(mem->in(TypeFunc::Memory) == _callprojs->fallthrough_memproj, "allocation memory projection"); 1181 } else { 1182 assert(mem == _callprojs->fallthrough_memproj, "allocation memory projection"); 1183 } 1184 #endif 1185 _igvn.replace_node(mem_proj, mem); 1186 } 1187 } else if (use->Opcode() == Op_MemBarStoreStore) { 1188 // Inline type buffer allocations are followed by a membar 1189 assert(inline_alloc, "Unexpected MemBarStoreStore"); 1190 use->as_MemBar()->remove(&_igvn); 1191 } else { 1192 assert(false, "only Initialize or AddP expected"); 1193 } 1194 j -= (oc1 - _callprojs->resproj[0]->outcnt()); 1195 } 1196 } 1197 if (_callprojs->fallthrough_catchproj != nullptr) { 1198 _igvn.replace_node(_callprojs->fallthrough_catchproj, alloc->in(TypeFunc::Control)); 1199 } 1200 if (_callprojs->fallthrough_memproj != nullptr) { 1201 _igvn.replace_node(_callprojs->fallthrough_memproj, alloc->in(TypeFunc::Memory)); 1202 } 1203 if (_callprojs->catchall_memproj != nullptr) { 1204 _igvn.replace_node(_callprojs->catchall_memproj, C->top()); 1205 } 1206 if (_callprojs->fallthrough_ioproj != nullptr) { 1207 _igvn.replace_node(_callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 1208 } 1209 if (_callprojs->catchall_ioproj != nullptr) { 1210 _igvn.replace_node(_callprojs->catchall_ioproj, C->top()); 1211 } 1212 if (_callprojs->catchall_catchproj != nullptr) { 1213 _igvn.replace_node(_callprojs->catchall_catchproj, C->top()); 1214 } 1215 } 1216 1217 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { 1218 // If reallocation fails during deoptimization we'll pop all 1219 // interpreter frames for this compiled frame and that won't play 1220 // nice with JVMTI popframe. 1221 // We avoid this issue by eager reallocation when the popframe request 1222 // is received. 1223 if (!EliminateAllocations) { 1224 return false; 1225 } 1226 Node* klass = alloc->in(AllocateNode::KlassNode); 1227 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); 1228 1229 // Attempt to eliminate inline type buffer allocations 1230 // regardless of usage and escape/replaceable status. 1231 bool inline_alloc = tklass->isa_instklassptr() && 1232 tklass->is_instklassptr()->instance_klass()->is_inlinetype(); 1233 if (!alloc->_is_non_escaping && !inline_alloc) { 1234 return false; 1235 } 1236 // Eliminate boxing allocations which are not used 1237 // regardless scalar replaceable status. 1238 Node* res = alloc->result_cast(); 1239 bool boxing_alloc = (res == nullptr) && C->eliminate_boxing() && 1240 tklass->isa_instklassptr() && 1241 tklass->is_instklassptr()->instance_klass()->is_box_klass(); 1242 if (!alloc->_is_scalar_replaceable && !boxing_alloc && !inline_alloc) { 1243 return false; 1244 } 1245 1246 _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1247 1248 GrowableArray <SafePointNode *> safepoints; 1249 if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) { 1250 return false; 1251 } 1252 1253 if (!alloc->_is_scalar_replaceable) { 1254 assert(res == nullptr || inline_alloc, "sanity"); 1255 // We can only eliminate allocation if all debug info references 1256 // are already replaced with SafePointScalarObject because 1257 // we can't search for a fields value without instance_id. 1258 if (safepoints.length() > 0) { 1259 assert(!inline_alloc || C->has_circular_inline_type(), 1260 "Inline type allocations should have been scalarized earlier"); 1261 return false; 1262 } 1263 } 1264 1265 if (!scalar_replacement(alloc, safepoints)) { 1266 return false; 1267 } 1268 1269 CompileLog* log = C->log(); 1270 if (log != nullptr) { 1271 log->head("eliminate_allocation type='%d'", 1272 log->identify(tklass->exact_klass())); 1273 JVMState* p = alloc->jvms(); 1274 while (p != nullptr) { 1275 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1276 p = p->caller(); 1277 } 1278 log->tail("eliminate_allocation"); 1279 } 1280 1281 process_users_of_allocation(alloc, inline_alloc); 1282 1283 #ifndef PRODUCT 1284 if (PrintEliminateAllocations) { 1285 if (alloc->is_AllocateArray()) 1286 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1287 else 1288 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1289 } 1290 #endif 1291 1292 return true; 1293 } 1294 1295 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { 1296 // EA should remove all uses of non-escaping boxing node. 1297 if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) { 1298 return false; 1299 } 1300 1301 assert(boxing->result_cast() == nullptr, "unexpected boxing node result"); 1302 1303 _callprojs = boxing->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1304 1305 const TypeTuple* r = boxing->tf()->range_sig(); 1306 assert(r->cnt() > TypeFunc::Parms, "sanity"); 1307 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); 1308 assert(t != nullptr, "sanity"); 1309 1310 CompileLog* log = C->log(); 1311 if (log != nullptr) { 1312 log->head("eliminate_boxing type='%d'", 1313 log->identify(t->instance_klass())); 1314 JVMState* p = boxing->jvms(); 1315 while (p != nullptr) { 1316 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1317 p = p->caller(); 1318 } 1319 log->tail("eliminate_boxing"); 1320 } 1321 1322 process_users_of_allocation(boxing); 1323 1324 #ifndef PRODUCT 1325 if (PrintEliminateAllocations) { 1326 tty->print("++++ Eliminated: %d ", boxing->_idx); 1327 boxing->method()->print_short_name(tty); 1328 tty->cr(); 1329 } 1330 #endif 1331 1332 return true; 1333 } 1334 1335 1336 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { 1337 Node* adr = basic_plus_adr(base, offset); 1338 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 1339 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); 1340 transform_later(value); 1341 return value; 1342 } 1343 1344 1345 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { 1346 Node* adr = basic_plus_adr(base, offset); 1347 mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered); 1348 transform_later(mem); 1349 return mem; 1350 } 1351 1352 //============================================================================= 1353 // 1354 // A L L O C A T I O N 1355 // 1356 // Allocation attempts to be fast in the case of frequent small objects. 1357 // It breaks down like this: 1358 // 1359 // 1) Size in doublewords is computed. This is a constant for objects and 1360 // variable for most arrays. Doubleword units are used to avoid size 1361 // overflow of huge doubleword arrays. We need doublewords in the end for 1362 // rounding. 1363 // 1364 // 2) Size is checked for being 'too large'. Too-large allocations will go 1365 // the slow path into the VM. The slow path can throw any required 1366 // exceptions, and does all the special checks for very large arrays. The 1367 // size test can constant-fold away for objects. For objects with 1368 // finalizers it constant-folds the otherway: you always go slow with 1369 // finalizers. 1370 // 1371 // 3) If NOT using TLABs, this is the contended loop-back point. 1372 // Load-Locked the heap top. If using TLABs normal-load the heap top. 1373 // 1374 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. 1375 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish 1376 // "size*8" we always enter the VM, where "largish" is a constant picked small 1377 // enough that there's always space between the eden max and 4Gig (old space is 1378 // there so it's quite large) and large enough that the cost of entering the VM 1379 // is dwarfed by the cost to initialize the space. 1380 // 1381 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back 1382 // down. If contended, repeat at step 3. If using TLABs normal-store 1383 // adjusted heap top back down; there is no contention. 1384 // 1385 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark 1386 // fields. 1387 // 1388 // 7) Merge with the slow-path; cast the raw memory pointer to the correct 1389 // oop flavor. 1390 // 1391 //============================================================================= 1392 // FastAllocateSizeLimit value is in DOUBLEWORDS. 1393 // Allocations bigger than this always go the slow route. 1394 // This value must be small enough that allocation attempts that need to 1395 // trigger exceptions go the slow route. Also, it must be small enough so 1396 // that heap_top + size_in_bytes does not wrap around the 4Gig limit. 1397 //=============================================================================j// 1398 // %%% Here is an old comment from parseHelper.cpp; is it outdated? 1399 // The allocator will coalesce int->oop copies away. See comment in 1400 // coalesce.cpp about how this works. It depends critically on the exact 1401 // code shape produced here, so if you are changing this code shape 1402 // make sure the GC info for the heap-top is correct in and around the 1403 // slow-path call. 1404 // 1405 1406 void PhaseMacroExpand::expand_allocate_common( 1407 AllocateNode* alloc, // allocation node to be expanded 1408 Node* length, // array length for an array allocation 1409 const TypeFunc* slow_call_type, // Type of slow call 1410 address slow_call_address, // Address of slow call 1411 Node* valid_length_test // whether length is valid or not 1412 ) 1413 { 1414 Node* ctrl = alloc->in(TypeFunc::Control); 1415 Node* mem = alloc->in(TypeFunc::Memory); 1416 Node* i_o = alloc->in(TypeFunc::I_O); 1417 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); 1418 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1419 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); 1420 assert(ctrl != nullptr, "must have control"); 1421 1422 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. 1423 // they will not be used if "always_slow" is set 1424 enum { slow_result_path = 1, fast_result_path = 2 }; 1425 Node *result_region = nullptr; 1426 Node *result_phi_rawmem = nullptr; 1427 Node *result_phi_rawoop = nullptr; 1428 Node *result_phi_i_o = nullptr; 1429 1430 // The initial slow comparison is a size check, the comparison 1431 // we want to do is a BoolTest::gt 1432 bool expand_fast_path = true; 1433 int tv = _igvn.find_int_con(initial_slow_test, -1); 1434 if (tv >= 0) { 1435 // InitialTest has constant result 1436 // 0 - can fit in TLAB 1437 // 1 - always too big or negative 1438 assert(tv <= 1, "0 or 1 if a constant"); 1439 expand_fast_path = (tv == 0); 1440 initial_slow_test = nullptr; 1441 } else { 1442 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); 1443 } 1444 1445 if (!UseTLAB) { 1446 // Force slow-path allocation 1447 expand_fast_path = false; 1448 initial_slow_test = nullptr; 1449 } 1450 1451 bool allocation_has_use = (alloc->result_cast() != nullptr); 1452 if (!allocation_has_use) { 1453 InitializeNode* init = alloc->initialization(); 1454 if (init != nullptr) { 1455 init->remove(&_igvn); 1456 } 1457 if (expand_fast_path && (initial_slow_test == nullptr)) { 1458 // Remove allocation node and return. 1459 // Size is a non-negative constant -> no initial check needed -> directly to fast path. 1460 // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left. 1461 #ifndef PRODUCT 1462 if (PrintEliminateAllocations) { 1463 tty->print("NotUsed "); 1464 Node* res = alloc->proj_out_or_null(TypeFunc::Parms); 1465 if (res != nullptr) { 1466 res->dump(); 1467 } else { 1468 alloc->dump(); 1469 } 1470 } 1471 #endif 1472 yank_alloc_node(alloc); 1473 return; 1474 } 1475 } 1476 1477 enum { too_big_or_final_path = 1, need_gc_path = 2 }; 1478 Node *slow_region = nullptr; 1479 Node *toobig_false = ctrl; 1480 1481 // generate the initial test if necessary 1482 if (initial_slow_test != nullptr ) { 1483 assert (expand_fast_path, "Only need test if there is a fast path"); 1484 slow_region = new RegionNode(3); 1485 1486 // Now make the initial failure test. Usually a too-big test but 1487 // might be a TRUE for finalizers. 1488 IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 1489 transform_later(toobig_iff); 1490 // Plug the failing-too-big test into the slow-path region 1491 Node* toobig_true = new IfTrueNode(toobig_iff); 1492 transform_later(toobig_true); 1493 slow_region ->init_req( too_big_or_final_path, toobig_true ); 1494 toobig_false = new IfFalseNode(toobig_iff); 1495 transform_later(toobig_false); 1496 } else { 1497 // No initial test, just fall into next case 1498 assert(allocation_has_use || !expand_fast_path, "Should already have been handled"); 1499 toobig_false = ctrl; 1500 debug_only(slow_region = NodeSentinel); 1501 } 1502 1503 // If we are here there are several possibilities 1504 // - expand_fast_path is false - then only a slow path is expanded. That's it. 1505 // no_initial_check means a constant allocation. 1506 // - If check always evaluates to false -> expand_fast_path is false (see above) 1507 // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath) 1508 // if !allocation_has_use the fast path is empty 1509 // if !allocation_has_use && no_initial_check 1510 // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all. 1511 // removed by yank_alloc_node above. 1512 1513 Node *slow_mem = mem; // save the current memory state for slow path 1514 // generate the fast allocation code unless we know that the initial test will always go slow 1515 if (expand_fast_path) { 1516 // Fast path modifies only raw memory. 1517 if (mem->is_MergeMem()) { 1518 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1519 } 1520 1521 // allocate the Region and Phi nodes for the result 1522 result_region = new RegionNode(3); 1523 result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1524 result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch 1525 1526 // Grab regular I/O before optional prefetch may change it. 1527 // Slow-path does no I/O so just set it to the original I/O. 1528 result_phi_i_o->init_req(slow_result_path, i_o); 1529 1530 // Name successful fast-path variables 1531 Node* fast_oop_ctrl; 1532 Node* fast_oop_rawmem; 1533 1534 if (allocation_has_use) { 1535 Node* needgc_ctrl = nullptr; 1536 result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); 1537 1538 intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1539 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1540 Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl, 1541 fast_oop_ctrl, fast_oop_rawmem, 1542 prefetch_lines); 1543 1544 if (initial_slow_test != nullptr) { 1545 // This completes all paths into the slow merge point 1546 slow_region->init_req(need_gc_path, needgc_ctrl); 1547 transform_later(slow_region); 1548 } else { 1549 // No initial slow path needed! 1550 // Just fall from the need-GC path straight into the VM call. 1551 slow_region = needgc_ctrl; 1552 } 1553 1554 InitializeNode* init = alloc->initialization(); 1555 fast_oop_rawmem = initialize_object(alloc, 1556 fast_oop_ctrl, fast_oop_rawmem, fast_oop, 1557 klass_node, length, size_in_bytes); 1558 expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem); 1559 expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem); 1560 1561 result_phi_rawoop->init_req(fast_result_path, fast_oop); 1562 } else { 1563 assert (initial_slow_test != nullptr, "sanity"); 1564 fast_oop_ctrl = toobig_false; 1565 fast_oop_rawmem = mem; 1566 transform_later(slow_region); 1567 } 1568 1569 // Plug in the successful fast-path into the result merge point 1570 result_region ->init_req(fast_result_path, fast_oop_ctrl); 1571 result_phi_i_o ->init_req(fast_result_path, i_o); 1572 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); 1573 } else { 1574 slow_region = ctrl; 1575 result_phi_i_o = i_o; // Rename it to use in the following code. 1576 } 1577 1578 // Generate slow-path call 1579 CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, 1580 OptoRuntime::stub_name(slow_call_address), 1581 TypePtr::BOTTOM); 1582 call->init_req(TypeFunc::Control, slow_region); 1583 call->init_req(TypeFunc::I_O, top()); // does no i/o 1584 call->init_req(TypeFunc::Memory, slow_mem); // may gc ptrs 1585 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1586 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1587 1588 call->init_req(TypeFunc::Parms+0, klass_node); 1589 if (length != nullptr) { 1590 call->init_req(TypeFunc::Parms+1, length); 1591 } else { 1592 // Let the runtime know if this is a larval allocation 1593 call->init_req(TypeFunc::Parms+1, _igvn.intcon(alloc->_larval)); 1594 } 1595 1596 // Copy debug information and adjust JVMState information, then replace 1597 // allocate node with the call 1598 call->copy_call_debug_info(&_igvn, alloc); 1599 // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify 1600 // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough 1601 // path dies). 1602 if (valid_length_test != nullptr) { 1603 call->add_req(valid_length_test); 1604 } 1605 if (expand_fast_path) { 1606 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1607 } else { 1608 // Hook i_o projection to avoid its elimination during allocation 1609 // replacement (when only a slow call is generated). 1610 call->set_req(TypeFunc::I_O, result_phi_i_o); 1611 } 1612 _igvn.replace_node(alloc, call); 1613 transform_later(call); 1614 1615 // Identify the output projections from the allocate node and 1616 // adjust any references to them. 1617 // The control and io projections look like: 1618 // 1619 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) 1620 // Allocate Catch 1621 // ^---Proj(io) <-------+ ^---CatchProj(io) 1622 // 1623 // We are interested in the CatchProj nodes. 1624 // 1625 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1626 1627 // An allocate node has separate memory projections for the uses on 1628 // the control and i_o paths. Replace the control memory projection with 1629 // result_phi_rawmem (unless we are only generating a slow call when 1630 // both memory projections are combined) 1631 if (expand_fast_path && _callprojs->fallthrough_memproj != nullptr) { 1632 _igvn.replace_in_uses(_callprojs->fallthrough_memproj, result_phi_rawmem); 1633 } 1634 // Now change uses of catchall_memproj to use fallthrough_memproj and delete 1635 // catchall_memproj so we end up with a call that has only 1 memory projection. 1636 if (_callprojs->catchall_memproj != nullptr) { 1637 if (_callprojs->fallthrough_memproj == nullptr) { 1638 _callprojs->fallthrough_memproj = new ProjNode(call, TypeFunc::Memory); 1639 transform_later(_callprojs->fallthrough_memproj); 1640 } 1641 _igvn.replace_in_uses(_callprojs->catchall_memproj, _callprojs->fallthrough_memproj); 1642 _igvn.remove_dead_node(_callprojs->catchall_memproj); 1643 } 1644 1645 // An allocate node has separate i_o projections for the uses on the control 1646 // and i_o paths. Always replace the control i_o projection with result i_o 1647 // otherwise incoming i_o become dead when only a slow call is generated 1648 // (it is different from memory projections where both projections are 1649 // combined in such case). 1650 if (_callprojs->fallthrough_ioproj != nullptr) { 1651 _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, result_phi_i_o); 1652 } 1653 // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete 1654 // catchall_ioproj so we end up with a call that has only 1 i_o projection. 1655 if (_callprojs->catchall_ioproj != nullptr) { 1656 if (_callprojs->fallthrough_ioproj == nullptr) { 1657 _callprojs->fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O); 1658 transform_later(_callprojs->fallthrough_ioproj); 1659 } 1660 _igvn.replace_in_uses(_callprojs->catchall_ioproj, _callprojs->fallthrough_ioproj); 1661 _igvn.remove_dead_node(_callprojs->catchall_ioproj); 1662 } 1663 1664 // if we generated only a slow call, we are done 1665 if (!expand_fast_path) { 1666 // Now we can unhook i_o. 1667 if (result_phi_i_o->outcnt() > 1) { 1668 call->set_req(TypeFunc::I_O, top()); 1669 } else { 1670 assert(result_phi_i_o->unique_ctrl_out() == call, "sanity"); 1671 // Case of new array with negative size known during compilation. 1672 // AllocateArrayNode::Ideal() optimization disconnect unreachable 1673 // following code since call to runtime will throw exception. 1674 // As result there will be no users of i_o after the call. 1675 // Leave i_o attached to this call to avoid problems in preceding graph. 1676 } 1677 return; 1678 } 1679 1680 if (_callprojs->fallthrough_catchproj != nullptr) { 1681 ctrl = _callprojs->fallthrough_catchproj->clone(); 1682 transform_later(ctrl); 1683 _igvn.replace_node(_callprojs->fallthrough_catchproj, result_region); 1684 } else { 1685 ctrl = top(); 1686 } 1687 Node *slow_result; 1688 if (_callprojs->resproj[0] == nullptr) { 1689 // no uses of the allocation result 1690 slow_result = top(); 1691 } else { 1692 slow_result = _callprojs->resproj[0]->clone(); 1693 transform_later(slow_result); 1694 _igvn.replace_node(_callprojs->resproj[0], result_phi_rawoop); 1695 } 1696 1697 // Plug slow-path into result merge point 1698 result_region->init_req( slow_result_path, ctrl); 1699 transform_later(result_region); 1700 if (allocation_has_use) { 1701 result_phi_rawoop->init_req(slow_result_path, slow_result); 1702 transform_later(result_phi_rawoop); 1703 } 1704 result_phi_rawmem->init_req(slow_result_path, _callprojs->fallthrough_memproj); 1705 transform_later(result_phi_rawmem); 1706 transform_later(result_phi_i_o); 1707 // This completes all paths into the result merge point 1708 } 1709 1710 // Remove alloc node that has no uses. 1711 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) { 1712 Node* ctrl = alloc->in(TypeFunc::Control); 1713 Node* mem = alloc->in(TypeFunc::Memory); 1714 Node* i_o = alloc->in(TypeFunc::I_O); 1715 1716 _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1717 if (_callprojs->resproj[0] != nullptr) { 1718 for (DUIterator_Fast imax, i = _callprojs->resproj[0]->fast_outs(imax); i < imax; i++) { 1719 Node* use = _callprojs->resproj[0]->fast_out(i); 1720 use->isa_MemBar()->remove(&_igvn); 1721 --imax; 1722 --i; // back up iterator 1723 } 1724 assert(_callprojs->resproj[0]->outcnt() == 0, "all uses must be deleted"); 1725 _igvn.remove_dead_node(_callprojs->resproj[0]); 1726 } 1727 if (_callprojs->fallthrough_catchproj != nullptr) { 1728 _igvn.replace_in_uses(_callprojs->fallthrough_catchproj, ctrl); 1729 _igvn.remove_dead_node(_callprojs->fallthrough_catchproj); 1730 } 1731 if (_callprojs->catchall_catchproj != nullptr) { 1732 _igvn.rehash_node_delayed(_callprojs->catchall_catchproj); 1733 _callprojs->catchall_catchproj->set_req(0, top()); 1734 } 1735 if (_callprojs->fallthrough_proj != nullptr) { 1736 Node* catchnode = _callprojs->fallthrough_proj->unique_ctrl_out(); 1737 _igvn.remove_dead_node(catchnode); 1738 _igvn.remove_dead_node(_callprojs->fallthrough_proj); 1739 } 1740 if (_callprojs->fallthrough_memproj != nullptr) { 1741 _igvn.replace_in_uses(_callprojs->fallthrough_memproj, mem); 1742 _igvn.remove_dead_node(_callprojs->fallthrough_memproj); 1743 } 1744 if (_callprojs->fallthrough_ioproj != nullptr) { 1745 _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, i_o); 1746 _igvn.remove_dead_node(_callprojs->fallthrough_ioproj); 1747 } 1748 if (_callprojs->catchall_memproj != nullptr) { 1749 _igvn.rehash_node_delayed(_callprojs->catchall_memproj); 1750 _callprojs->catchall_memproj->set_req(0, top()); 1751 } 1752 if (_callprojs->catchall_ioproj != nullptr) { 1753 _igvn.rehash_node_delayed(_callprojs->catchall_ioproj); 1754 _callprojs->catchall_ioproj->set_req(0, top()); 1755 } 1756 #ifndef PRODUCT 1757 if (PrintEliminateAllocations) { 1758 if (alloc->is_AllocateArray()) { 1759 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1760 } else { 1761 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1762 } 1763 } 1764 #endif 1765 _igvn.remove_dead_node(alloc); 1766 } 1767 1768 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init, 1769 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) { 1770 // If initialization is performed by an array copy, any required 1771 // MemBarStoreStore was already added. If the object does not 1772 // escape no need for a MemBarStoreStore. If the object does not 1773 // escape in its initializer and memory barrier (MemBarStoreStore or 1774 // stronger) is already added at exit of initializer, also no need 1775 // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore 1776 // so that stores that initialize this object can't be reordered 1777 // with a subsequent store that makes this object accessible by 1778 // other threads. 1779 // Other threads include java threads and JVM internal threads 1780 // (for example concurrent GC threads). Current concurrent GC 1781 // implementation: G1 will not scan newly created object, 1782 // so it's safe to skip storestore barrier when allocation does 1783 // not escape. 1784 if (!alloc->does_not_escape_thread() && 1785 !alloc->is_allocation_MemBar_redundant() && 1786 (init == nullptr || !init->is_complete_with_arraycopy())) { 1787 if (init == nullptr || init->req() < InitializeNode::RawStores) { 1788 // No InitializeNode or no stores captured by zeroing 1789 // elimination. Simply add the MemBarStoreStore after object 1790 // initialization. 1791 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1792 transform_later(mb); 1793 1794 mb->init_req(TypeFunc::Memory, fast_oop_rawmem); 1795 mb->init_req(TypeFunc::Control, fast_oop_ctrl); 1796 fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control); 1797 transform_later(fast_oop_ctrl); 1798 fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory); 1799 transform_later(fast_oop_rawmem); 1800 } else { 1801 // Add the MemBarStoreStore after the InitializeNode so that 1802 // all stores performing the initialization that were moved 1803 // before the InitializeNode happen before the storestore 1804 // barrier. 1805 1806 Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control); 1807 Node* init_mem = init->proj_out_or_null(TypeFunc::Memory); 1808 1809 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1810 transform_later(mb); 1811 1812 Node* ctrl = new ProjNode(init, TypeFunc::Control); 1813 transform_later(ctrl); 1814 Node* mem = new ProjNode(init, TypeFunc::Memory); 1815 transform_later(mem); 1816 1817 // The MemBarStoreStore depends on control and memory coming 1818 // from the InitializeNode 1819 mb->init_req(TypeFunc::Memory, mem); 1820 mb->init_req(TypeFunc::Control, ctrl); 1821 1822 ctrl = new ProjNode(mb, TypeFunc::Control); 1823 transform_later(ctrl); 1824 mem = new ProjNode(mb, TypeFunc::Memory); 1825 transform_later(mem); 1826 1827 // All nodes that depended on the InitializeNode for control 1828 // and memory must now depend on the MemBarNode that itself 1829 // depends on the InitializeNode 1830 if (init_ctrl != nullptr) { 1831 _igvn.replace_node(init_ctrl, ctrl); 1832 } 1833 if (init_mem != nullptr) { 1834 _igvn.replace_node(init_mem, mem); 1835 } 1836 } 1837 } 1838 } 1839 1840 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop, 1841 Node*& ctrl, Node*& rawmem) { 1842 if (C->env()->dtrace_alloc_probes()) { 1843 // Slow-path call 1844 int size = TypeFunc::Parms + 2; 1845 CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), 1846 CAST_FROM_FN_PTR(address, 1847 static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)), 1848 "dtrace_object_alloc", 1849 TypeRawPtr::BOTTOM); 1850 1851 // Get base of thread-local storage area 1852 Node* thread = new ThreadLocalNode(); 1853 transform_later(thread); 1854 1855 call->init_req(TypeFunc::Parms + 0, thread); 1856 call->init_req(TypeFunc::Parms + 1, oop); 1857 call->init_req(TypeFunc::Control, ctrl); 1858 call->init_req(TypeFunc::I_O , top()); // does no i/o 1859 call->init_req(TypeFunc::Memory , rawmem); 1860 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1861 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1862 transform_later(call); 1863 ctrl = new ProjNode(call, TypeFunc::Control); 1864 transform_later(ctrl); 1865 rawmem = new ProjNode(call, TypeFunc::Memory); 1866 transform_later(rawmem); 1867 } 1868 } 1869 1870 // Helper for PhaseMacroExpand::expand_allocate_common. 1871 // Initializes the newly-allocated storage. 1872 Node* PhaseMacroExpand::initialize_object(AllocateNode* alloc, 1873 Node* control, Node* rawmem, Node* object, 1874 Node* klass_node, Node* length, 1875 Node* size_in_bytes) { 1876 InitializeNode* init = alloc->initialization(); 1877 // Store the klass & mark bits 1878 Node* mark_node = alloc->make_ideal_mark(&_igvn, control, rawmem); 1879 if (!mark_node->is_Con()) { 1880 transform_later(mark_node); 1881 } 1882 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type()); 1883 1884 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 1885 int header_size = alloc->minimum_header_size(); // conservatively small 1886 1887 // Array length 1888 if (length != nullptr) { // Arrays need length field 1889 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); 1890 // conservatively small header size: 1891 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1892 if (_igvn.type(klass_node)->isa_aryklassptr()) { // we know the exact header size in most cases: 1893 BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type(); 1894 if (is_reference_type(elem, true)) { 1895 elem = T_OBJECT; 1896 } 1897 header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem)); 1898 } 1899 } 1900 1901 // Clear the object body, if necessary. 1902 if (init == nullptr) { 1903 // The init has somehow disappeared; be cautious and clear everything. 1904 // 1905 // This can happen if a node is allocated but an uncommon trap occurs 1906 // immediately. In this case, the Initialize gets associated with the 1907 // trap, and may be placed in a different (outer) loop, if the Allocate 1908 // is in a loop. If (this is rare) the inner loop gets unrolled, then 1909 // there can be two Allocates to one Initialize. The answer in all these 1910 // edge cases is safety first. It is always safe to clear immediately 1911 // within an Allocate, and then (maybe or maybe not) clear some more later. 1912 if (!(UseTLAB && ZeroTLAB)) { 1913 rawmem = ClearArrayNode::clear_memory(control, rawmem, object, 1914 alloc->in(AllocateNode::DefaultValue), 1915 alloc->in(AllocateNode::RawDefaultValue), 1916 header_size, size_in_bytes, 1917 &_igvn); 1918 } 1919 } else { 1920 if (!init->is_complete()) { 1921 // Try to win by zeroing only what the init does not store. 1922 // We can also try to do some peephole optimizations, 1923 // such as combining some adjacent subword stores. 1924 rawmem = init->complete_stores(control, rawmem, object, 1925 header_size, size_in_bytes, &_igvn); 1926 } 1927 // We have no more use for this link, since the AllocateNode goes away: 1928 init->set_req(InitializeNode::RawAddress, top()); 1929 // (If we keep the link, it just confuses the register allocator, 1930 // who thinks he sees a real use of the address by the membar.) 1931 } 1932 1933 return rawmem; 1934 } 1935 1936 // Generate prefetch instructions for next allocations. 1937 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 1938 Node*& contended_phi_rawmem, 1939 Node* old_eden_top, Node* new_eden_top, 1940 intx lines) { 1941 enum { fall_in_path = 1, pf_path = 2 }; 1942 if( UseTLAB && AllocatePrefetchStyle == 2 ) { 1943 // Generate prefetch allocation with watermark check. 1944 // As an allocation hits the watermark, we will prefetch starting 1945 // at a "distance" away from watermark. 1946 1947 Node *pf_region = new RegionNode(3); 1948 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 1949 TypeRawPtr::BOTTOM ); 1950 // I/O is used for Prefetch 1951 Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); 1952 1953 Node *thread = new ThreadLocalNode(); 1954 transform_later(thread); 1955 1956 Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, 1957 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); 1958 transform_later(eden_pf_adr); 1959 1960 Node *old_pf_wm = new LoadPNode(needgc_false, 1961 contended_phi_rawmem, eden_pf_adr, 1962 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, 1963 MemNode::unordered); 1964 transform_later(old_pf_wm); 1965 1966 // check against new_eden_top 1967 Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); 1968 transform_later(need_pf_cmp); 1969 Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); 1970 transform_later(need_pf_bol); 1971 IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, 1972 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); 1973 transform_later(need_pf_iff); 1974 1975 // true node, add prefetchdistance 1976 Node *need_pf_true = new IfTrueNode( need_pf_iff ); 1977 transform_later(need_pf_true); 1978 1979 Node *need_pf_false = new IfFalseNode( need_pf_iff ); 1980 transform_later(need_pf_false); 1981 1982 Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, 1983 _igvn.MakeConX(AllocatePrefetchDistance) ); 1984 transform_later(new_pf_wmt ); 1985 new_pf_wmt->set_req(0, need_pf_true); 1986 1987 Node *store_new_wmt = new StorePNode(need_pf_true, 1988 contended_phi_rawmem, eden_pf_adr, 1989 TypeRawPtr::BOTTOM, new_pf_wmt, 1990 MemNode::unordered); 1991 transform_later(store_new_wmt); 1992 1993 // adding prefetches 1994 pf_phi_abio->init_req( fall_in_path, i_o ); 1995 1996 Node *prefetch_adr; 1997 Node *prefetch; 1998 uint step_size = AllocatePrefetchStepSize; 1999 uint distance = 0; 2000 2001 for ( intx i = 0; i < lines; i++ ) { 2002 prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, 2003 _igvn.MakeConX(distance) ); 2004 transform_later(prefetch_adr); 2005 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 2006 transform_later(prefetch); 2007 distance += step_size; 2008 i_o = prefetch; 2009 } 2010 pf_phi_abio->set_req( pf_path, i_o ); 2011 2012 pf_region->init_req( fall_in_path, need_pf_false ); 2013 pf_region->init_req( pf_path, need_pf_true ); 2014 2015 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); 2016 pf_phi_rawmem->init_req( pf_path, store_new_wmt ); 2017 2018 transform_later(pf_region); 2019 transform_later(pf_phi_rawmem); 2020 transform_later(pf_phi_abio); 2021 2022 needgc_false = pf_region; 2023 contended_phi_rawmem = pf_phi_rawmem; 2024 i_o = pf_phi_abio; 2025 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { 2026 // Insert a prefetch instruction for each allocation. 2027 // This code is used to generate 1 prefetch instruction per cache line. 2028 2029 // Generate several prefetch instructions. 2030 uint step_size = AllocatePrefetchStepSize; 2031 uint distance = AllocatePrefetchDistance; 2032 2033 // Next cache address. 2034 Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, 2035 _igvn.MakeConX(step_size + distance)); 2036 transform_later(cache_adr); 2037 cache_adr = new CastP2XNode(needgc_false, cache_adr); 2038 transform_later(cache_adr); 2039 // Address is aligned to execute prefetch to the beginning of cache line size 2040 // (it is important when BIS instruction is used on SPARC as prefetch). 2041 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); 2042 cache_adr = new AndXNode(cache_adr, mask); 2043 transform_later(cache_adr); 2044 cache_adr = new CastX2PNode(cache_adr); 2045 transform_later(cache_adr); 2046 2047 // Prefetch 2048 Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); 2049 prefetch->set_req(0, needgc_false); 2050 transform_later(prefetch); 2051 contended_phi_rawmem = prefetch; 2052 Node *prefetch_adr; 2053 distance = step_size; 2054 for ( intx i = 1; i < lines; i++ ) { 2055 prefetch_adr = new AddPNode( cache_adr, cache_adr, 2056 _igvn.MakeConX(distance) ); 2057 transform_later(prefetch_adr); 2058 prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); 2059 transform_later(prefetch); 2060 distance += step_size; 2061 contended_phi_rawmem = prefetch; 2062 } 2063 } else if( AllocatePrefetchStyle > 0 ) { 2064 // Insert a prefetch for each allocation only on the fast-path 2065 Node *prefetch_adr; 2066 Node *prefetch; 2067 // Generate several prefetch instructions. 2068 uint step_size = AllocatePrefetchStepSize; 2069 uint distance = AllocatePrefetchDistance; 2070 for ( intx i = 0; i < lines; i++ ) { 2071 prefetch_adr = new AddPNode( old_eden_top, new_eden_top, 2072 _igvn.MakeConX(distance) ); 2073 transform_later(prefetch_adr); 2074 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 2075 // Do not let it float too high, since if eden_top == eden_end, 2076 // both might be null. 2077 if( i == 0 ) { // Set control for first prefetch, next follows it 2078 prefetch->init_req(0, needgc_false); 2079 } 2080 transform_later(prefetch); 2081 distance += step_size; 2082 i_o = prefetch; 2083 } 2084 } 2085 return i_o; 2086 } 2087 2088 2089 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { 2090 expand_allocate_common(alloc, nullptr, 2091 OptoRuntime::new_instance_Type(), 2092 OptoRuntime::new_instance_Java(), nullptr); 2093 } 2094 2095 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { 2096 Node* length = alloc->in(AllocateNode::ALength); 2097 Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest); 2098 InitializeNode* init = alloc->initialization(); 2099 Node* klass_node = alloc->in(AllocateNode::KlassNode); 2100 const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr(); 2101 address slow_call_address; // Address of slow call 2102 if (init != nullptr && init->is_complete_with_arraycopy() && 2103 ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) { 2104 // Don't zero type array during slow allocation in VM since 2105 // it will be initialized later by arraycopy in compiled code. 2106 slow_call_address = OptoRuntime::new_array_nozero_Java(); 2107 } else { 2108 slow_call_address = OptoRuntime::new_array_Java(); 2109 } 2110 expand_allocate_common(alloc, length, 2111 OptoRuntime::new_array_Type(), 2112 slow_call_address, valid_length_test); 2113 } 2114 2115 //-------------------mark_eliminated_box---------------------------------- 2116 // 2117 // During EA obj may point to several objects but after few ideal graph 2118 // transformations (CCP) it may point to only one non escaping object 2119 // (but still using phi), corresponding locks and unlocks will be marked 2120 // for elimination. Later obj could be replaced with a new node (new phi) 2121 // and which does not have escape information. And later after some graph 2122 // reshape other locks and unlocks (which were not marked for elimination 2123 // before) are connected to this new obj (phi) but they still will not be 2124 // marked for elimination since new obj has no escape information. 2125 // Mark all associated (same box and obj) lock and unlock nodes for 2126 // elimination if some of them marked already. 2127 void PhaseMacroExpand::mark_eliminated_box(Node* box, Node* obj) { 2128 BoxLockNode* oldbox = box->as_BoxLock(); 2129 if (oldbox->is_eliminated()) { 2130 return; // This BoxLock node was processed already. 2131 } 2132 assert(!oldbox->is_unbalanced(), "this should not be called for unbalanced region"); 2133 // New implementation (EliminateNestedLocks) has separate BoxLock 2134 // node for each locked region so mark all associated locks/unlocks as 2135 // eliminated even if different objects are referenced in one locked region 2136 // (for example, OSR compilation of nested loop inside locked scope). 2137 if (EliminateNestedLocks || 2138 oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) { 2139 // Box is used only in one lock region. Mark this box as eliminated. 2140 oldbox->set_local(); // This verifies correct state of BoxLock 2141 _igvn.hash_delete(oldbox); 2142 oldbox->set_eliminated(); // This changes box's hash value 2143 _igvn.hash_insert(oldbox); 2144 2145 for (uint i = 0; i < oldbox->outcnt(); i++) { 2146 Node* u = oldbox->raw_out(i); 2147 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { 2148 AbstractLockNode* alock = u->as_AbstractLock(); 2149 // Check lock's box since box could be referenced by Lock's debug info. 2150 if (alock->box_node() == oldbox) { 2151 // Mark eliminated all related locks and unlocks. 2152 #ifdef ASSERT 2153 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4"); 2154 #endif 2155 alock->set_non_esc_obj(); 2156 } 2157 } 2158 } 2159 return; 2160 } 2161 2162 // Create new "eliminated" BoxLock node and use it in monitor debug info 2163 // instead of oldbox for the same object. 2164 BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); 2165 2166 // Note: BoxLock node is marked eliminated only here and it is used 2167 // to indicate that all associated lock and unlock nodes are marked 2168 // for elimination. 2169 newbox->set_local(); // This verifies correct state of BoxLock 2170 newbox->set_eliminated(); 2171 transform_later(newbox); 2172 2173 // Replace old box node with new box for all users of the same object. 2174 for (uint i = 0; i < oldbox->outcnt();) { 2175 bool next_edge = true; 2176 2177 Node* u = oldbox->raw_out(i); 2178 if (u->is_AbstractLock()) { 2179 AbstractLockNode* alock = u->as_AbstractLock(); 2180 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { 2181 // Replace Box and mark eliminated all related locks and unlocks. 2182 #ifdef ASSERT 2183 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5"); 2184 #endif 2185 alock->set_non_esc_obj(); 2186 _igvn.rehash_node_delayed(alock); 2187 alock->set_box_node(newbox); 2188 next_edge = false; 2189 } 2190 } 2191 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { 2192 FastLockNode* flock = u->as_FastLock(); 2193 assert(flock->box_node() == oldbox, "sanity"); 2194 _igvn.rehash_node_delayed(flock); 2195 flock->set_box_node(newbox); 2196 next_edge = false; 2197 } 2198 2199 // Replace old box in monitor debug info. 2200 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { 2201 SafePointNode* sfn = u->as_SafePoint(); 2202 JVMState* youngest_jvms = sfn->jvms(); 2203 int max_depth = youngest_jvms->depth(); 2204 for (int depth = 1; depth <= max_depth; depth++) { 2205 JVMState* jvms = youngest_jvms->of_depth(depth); 2206 int num_mon = jvms->nof_monitors(); 2207 // Loop over monitors 2208 for (int idx = 0; idx < num_mon; idx++) { 2209 Node* obj_node = sfn->monitor_obj(jvms, idx); 2210 Node* box_node = sfn->monitor_box(jvms, idx); 2211 if (box_node == oldbox && obj_node->eqv_uncast(obj)) { 2212 int j = jvms->monitor_box_offset(idx); 2213 _igvn.replace_input_of(u, j, newbox); 2214 next_edge = false; 2215 } 2216 } 2217 } 2218 } 2219 if (next_edge) i++; 2220 } 2221 } 2222 2223 //-----------------------mark_eliminated_locking_nodes----------------------- 2224 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { 2225 if (!alock->is_balanced()) { 2226 return; // Can't do any more elimination for this locking region 2227 } 2228 if (EliminateNestedLocks) { 2229 if (alock->is_nested()) { 2230 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity"); 2231 return; 2232 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened 2233 // Only Lock node has JVMState needed here. 2234 // Not that preceding claim is documented anywhere else. 2235 if (alock->jvms() != nullptr) { 2236 if (alock->as_Lock()->is_nested_lock_region()) { 2237 // Mark eliminated related nested locks and unlocks. 2238 Node* obj = alock->obj_node(); 2239 BoxLockNode* box_node = alock->box_node()->as_BoxLock(); 2240 assert(!box_node->is_eliminated(), "should not be marked yet"); 2241 // Note: BoxLock node is marked eliminated only here 2242 // and it is used to indicate that all associated lock 2243 // and unlock nodes are marked for elimination. 2244 box_node->set_eliminated(); // Box's hash is always NO_HASH here 2245 for (uint i = 0; i < box_node->outcnt(); i++) { 2246 Node* u = box_node->raw_out(i); 2247 if (u->is_AbstractLock()) { 2248 alock = u->as_AbstractLock(); 2249 if (alock->box_node() == box_node) { 2250 // Verify that this Box is referenced only by related locks. 2251 assert(alock->obj_node()->eqv_uncast(obj), ""); 2252 // Mark all related locks and unlocks. 2253 #ifdef ASSERT 2254 alock->log_lock_optimization(C, "eliminate_lock_set_nested"); 2255 #endif 2256 alock->set_nested(); 2257 } 2258 } 2259 } 2260 } else { 2261 #ifdef ASSERT 2262 alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region"); 2263 if (C->log() != nullptr) 2264 alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output 2265 #endif 2266 } 2267 } 2268 return; 2269 } 2270 // Process locks for non escaping object 2271 assert(alock->is_non_esc_obj(), ""); 2272 } // EliminateNestedLocks 2273 2274 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object 2275 // Look for all locks of this object and mark them and 2276 // corresponding BoxLock nodes as eliminated. 2277 Node* obj = alock->obj_node(); 2278 for (uint j = 0; j < obj->outcnt(); j++) { 2279 Node* o = obj->raw_out(j); 2280 if (o->is_AbstractLock() && 2281 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2282 alock = o->as_AbstractLock(); 2283 Node* box = alock->box_node(); 2284 // Replace old box node with new eliminated box for all users 2285 // of the same object and mark related locks as eliminated. 2286 mark_eliminated_box(box, obj); 2287 } 2288 } 2289 } 2290 } 2291 2292 // we have determined that this lock/unlock can be eliminated, we simply 2293 // eliminate the node without expanding it. 2294 // 2295 // Note: The membar's associated with the lock/unlock are currently not 2296 // eliminated. This should be investigated as a future enhancement. 2297 // 2298 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { 2299 2300 if (!alock->is_eliminated()) { 2301 return false; 2302 } 2303 #ifdef ASSERT 2304 if (!alock->is_coarsened()) { 2305 // Check that new "eliminated" BoxLock node is created. 2306 BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); 2307 assert(oldbox->is_eliminated(), "should be done already"); 2308 } 2309 #endif 2310 2311 alock->log_lock_optimization(C, "eliminate_lock"); 2312 2313 #ifndef PRODUCT 2314 if (PrintEliminateLocks) { 2315 tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string()); 2316 } 2317 #endif 2318 2319 Node* mem = alock->in(TypeFunc::Memory); 2320 Node* ctrl = alock->in(TypeFunc::Control); 2321 guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null"); 2322 2323 _callprojs = alock->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2324 // There are 2 projections from the lock. The lock node will 2325 // be deleted when its last use is subsumed below. 2326 assert(alock->outcnt() == 2 && 2327 _callprojs->fallthrough_proj != nullptr && 2328 _callprojs->fallthrough_memproj != nullptr, 2329 "Unexpected projections from Lock/Unlock"); 2330 2331 Node* fallthroughproj = _callprojs->fallthrough_proj; 2332 Node* memproj_fallthrough = _callprojs->fallthrough_memproj; 2333 2334 // The memory projection from a lock/unlock is RawMem 2335 // The input to a Lock is merged memory, so extract its RawMem input 2336 // (unless the MergeMem has been optimized away.) 2337 if (alock->is_Lock()) { 2338 // Search for MemBarAcquireLock node and delete it also. 2339 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); 2340 assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, ""); 2341 Node* ctrlproj = membar->proj_out(TypeFunc::Control); 2342 Node* memproj = membar->proj_out(TypeFunc::Memory); 2343 _igvn.replace_node(ctrlproj, fallthroughproj); 2344 _igvn.replace_node(memproj, memproj_fallthrough); 2345 2346 // Delete FastLock node also if this Lock node is unique user 2347 // (a loop peeling may clone a Lock node). 2348 Node* flock = alock->as_Lock()->fastlock_node(); 2349 if (flock->outcnt() == 1) { 2350 assert(flock->unique_out() == alock, "sanity"); 2351 _igvn.replace_node(flock, top()); 2352 } 2353 } 2354 2355 // Search for MemBarReleaseLock node and delete it also. 2356 if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) { 2357 MemBarNode* membar = ctrl->in(0)->as_MemBar(); 2358 assert(membar->Opcode() == Op_MemBarReleaseLock && 2359 mem->is_Proj() && membar == mem->in(0), ""); 2360 _igvn.replace_node(fallthroughproj, ctrl); 2361 _igvn.replace_node(memproj_fallthrough, mem); 2362 fallthroughproj = ctrl; 2363 memproj_fallthrough = mem; 2364 ctrl = membar->in(TypeFunc::Control); 2365 mem = membar->in(TypeFunc::Memory); 2366 } 2367 2368 _igvn.replace_node(fallthroughproj, ctrl); 2369 _igvn.replace_node(memproj_fallthrough, mem); 2370 return true; 2371 } 2372 2373 2374 //------------------------------expand_lock_node---------------------- 2375 void PhaseMacroExpand::expand_lock_node(LockNode *lock) { 2376 2377 Node* ctrl = lock->in(TypeFunc::Control); 2378 Node* mem = lock->in(TypeFunc::Memory); 2379 Node* obj = lock->obj_node(); 2380 Node* box = lock->box_node(); 2381 Node* flock = lock->fastlock_node(); 2382 2383 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2384 2385 // Make the merge point 2386 Node *region; 2387 Node *mem_phi; 2388 Node *slow_path; 2389 2390 region = new RegionNode(3); 2391 // create a Phi for the memory state 2392 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2393 2394 // Optimize test; set region slot 2 2395 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); 2396 mem_phi->init_req(2, mem); 2397 2398 // Make slow path call 2399 CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), 2400 OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path, 2401 obj, box, nullptr); 2402 2403 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2404 2405 // Slow path can only throw asynchronous exceptions, which are always 2406 // de-opted. So the compiler thinks the slow-call can never throw an 2407 // exception. If it DOES throw an exception we would need the debug 2408 // info removed first (since if it throws there is no monitor). 2409 assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr && 2410 _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2411 2412 // Capture slow path 2413 // disconnect fall-through projection from call and create a new one 2414 // hook up users of fall-through projection to region 2415 Node *slow_ctrl = _callprojs->fallthrough_proj->clone(); 2416 transform_later(slow_ctrl); 2417 _igvn.hash_delete(_callprojs->fallthrough_proj); 2418 _callprojs->fallthrough_proj->disconnect_inputs(C); 2419 region->init_req(1, slow_ctrl); 2420 // region inputs are now complete 2421 transform_later(region); 2422 _igvn.replace_node(_callprojs->fallthrough_proj, region); 2423 2424 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); 2425 2426 mem_phi->init_req(1, memproj); 2427 2428 transform_later(mem_phi); 2429 2430 _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi); 2431 } 2432 2433 //------------------------------expand_unlock_node---------------------- 2434 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { 2435 2436 Node* ctrl = unlock->in(TypeFunc::Control); 2437 Node* mem = unlock->in(TypeFunc::Memory); 2438 Node* obj = unlock->obj_node(); 2439 Node* box = unlock->box_node(); 2440 2441 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2442 2443 // No need for a null check on unlock 2444 2445 // Make the merge point 2446 Node *region; 2447 Node *mem_phi; 2448 2449 region = new RegionNode(3); 2450 // create a Phi for the memory state 2451 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2452 2453 FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); 2454 funlock = transform_later( funlock )->as_FastUnlock(); 2455 // Optimize test; set region slot 2 2456 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); 2457 Node *thread = transform_later(new ThreadLocalNode()); 2458 2459 CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), 2460 CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2461 "complete_monitor_unlocking_C", slow_path, obj, box, thread); 2462 2463 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2464 assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr && 2465 _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2466 2467 // No exceptions for unlocking 2468 // Capture slow path 2469 // disconnect fall-through projection from call and create a new one 2470 // hook up users of fall-through projection to region 2471 Node *slow_ctrl = _callprojs->fallthrough_proj->clone(); 2472 transform_later(slow_ctrl); 2473 _igvn.hash_delete(_callprojs->fallthrough_proj); 2474 _callprojs->fallthrough_proj->disconnect_inputs(C); 2475 region->init_req(1, slow_ctrl); 2476 // region inputs are now complete 2477 transform_later(region); 2478 _igvn.replace_node(_callprojs->fallthrough_proj, region); 2479 2480 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); 2481 mem_phi->init_req(1, memproj ); 2482 mem_phi->init_req(2, mem); 2483 transform_later(mem_phi); 2484 2485 _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi); 2486 } 2487 2488 // An inline type might be returned from the call but we don't know its 2489 // type. Either we get a buffered inline type (and nothing needs to be done) 2490 // or one of the values being returned is the klass of the inline type 2491 // and we need to allocate an inline type instance of that type and 2492 // initialize it with other values being returned. In that case, we 2493 // first try a fast path allocation and initialize the value with the 2494 // inline klass's pack handler or we fall back to a runtime call. 2495 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) { 2496 assert(call->method()->is_method_handle_intrinsic(), "must be a method handle intrinsic call"); 2497 Node* ret = call->proj_out_or_null(TypeFunc::Parms); 2498 if (ret == nullptr) { 2499 return; 2500 } 2501 const TypeFunc* tf = call->_tf; 2502 const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc(); 2503 const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain); 2504 call->_tf = new_tf; 2505 // Make sure the change of type is applied before projections are processed by igvn 2506 _igvn.set_type(call, call->Value(&_igvn)); 2507 _igvn.set_type(ret, ret->Value(&_igvn)); 2508 2509 // Before any new projection is added: 2510 CallProjections* projs = call->extract_projections(true, true); 2511 2512 // Create temporary hook nodes that will be replaced below. 2513 // Add an input to prevent hook nodes from being dead. 2514 Node* ctl = new Node(call); 2515 Node* mem = new Node(ctl); 2516 Node* io = new Node(ctl); 2517 Node* ex_ctl = new Node(ctl); 2518 Node* ex_mem = new Node(ctl); 2519 Node* ex_io = new Node(ctl); 2520 Node* res = new Node(ctl); 2521 2522 // Allocate a new buffered inline type only if a new one is not returned 2523 Node* cast = transform_later(new CastP2XNode(ctl, res)); 2524 Node* mask = MakeConX(0x1); 2525 Node* masked = transform_later(new AndXNode(cast, mask)); 2526 Node* cmp = transform_later(new CmpXNode(masked, mask)); 2527 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2528 IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN); 2529 transform_later(allocation_iff); 2530 Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff)); 2531 Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff)); 2532 Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeInstPtr::BOTTOM)); 2533 2534 // Try to allocate a new buffered inline instance either from TLAB or eden space 2535 Node* needgc_ctrl = nullptr; // needgc means slowcase, i.e. allocation failed 2536 CallLeafNoFPNode* handler_call; 2537 const bool alloc_in_place = UseTLAB; 2538 if (alloc_in_place) { 2539 Node* fast_oop_ctrl = nullptr; 2540 Node* fast_oop_rawmem = nullptr; 2541 Node* mask2 = MakeConX(-2); 2542 Node* masked2 = transform_later(new AndXNode(cast, mask2)); 2543 Node* rawklassptr = transform_later(new CastX2PNode(masked2)); 2544 Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeInstKlassPtr::OBJECT_OR_NULL)); 2545 Node* layout_val = make_load(nullptr, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT); 2546 Node* size_in_bytes = ConvI2X(layout_val); 2547 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2548 Node* fast_oop = bs->obj_allocate(this, mem, allocation_ctl, size_in_bytes, io, needgc_ctrl, 2549 fast_oop_ctrl, fast_oop_rawmem, 2550 AllocateInstancePrefetchLines); 2551 // Allocation succeed, initialize buffered inline instance header firstly, 2552 // and then initialize its fields with an inline class specific handler 2553 Node* mark_node = makecon(TypeRawPtr::make((address)markWord::inline_type_prototype().value())); 2554 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS); 2555 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 2556 if (UseCompressedClassPointers) { 2557 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT); 2558 } 2559 Node* fixed_block = make_load(fast_oop_ctrl, fast_oop_rawmem, klass_node, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2560 Node* pack_handler = make_load(fast_oop_ctrl, fast_oop_rawmem, fixed_block, in_bytes(InlineKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2561 handler_call = new CallLeafNoFPNode(OptoRuntime::pack_inline_type_Type(), 2562 nullptr, 2563 "pack handler", 2564 TypeRawPtr::BOTTOM); 2565 handler_call->init_req(TypeFunc::Control, fast_oop_ctrl); 2566 handler_call->init_req(TypeFunc::Memory, fast_oop_rawmem); 2567 handler_call->init_req(TypeFunc::I_O, top()); 2568 handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2569 handler_call->init_req(TypeFunc::ReturnAdr, top()); 2570 handler_call->init_req(TypeFunc::Parms, pack_handler); 2571 handler_call->init_req(TypeFunc::Parms+1, fast_oop); 2572 } else { 2573 needgc_ctrl = allocation_ctl; 2574 } 2575 2576 // Allocation failed, fall back to a runtime call 2577 CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_inline_type_fields_Type(), 2578 StubRoutines::store_inline_type_fields_to_buf(), 2579 "store_inline_type_fields", 2580 TypePtr::BOTTOM); 2581 slow_call->init_req(TypeFunc::Control, needgc_ctrl); 2582 slow_call->init_req(TypeFunc::Memory, mem); 2583 slow_call->init_req(TypeFunc::I_O, io); 2584 slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2585 slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr)); 2586 slow_call->init_req(TypeFunc::Parms, res); 2587 2588 Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control)); 2589 Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory)); 2590 Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O)); 2591 Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms)); 2592 Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2)); 2593 Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)); 2594 Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci)); 2595 2596 Node* ex_r = new RegionNode(3); 2597 Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM); 2598 Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO); 2599 ex_r->init_req(1, slow_excp); 2600 ex_mem_phi->init_req(1, slow_mem); 2601 ex_io_phi->init_req(1, slow_io); 2602 ex_r->init_req(2, ex_ctl); 2603 ex_mem_phi->init_req(2, ex_mem); 2604 ex_io_phi->init_req(2, ex_io); 2605 transform_later(ex_r); 2606 transform_later(ex_mem_phi); 2607 transform_later(ex_io_phi); 2608 2609 // We don't know how many values are returned. This assumes the 2610 // worst case, that all available registers are used. 2611 for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) { 2612 if (domain->field_at(i) == Type::HALF) { 2613 slow_call->init_req(i, top()); 2614 if (alloc_in_place) { 2615 handler_call->init_req(i+1, top()); 2616 } 2617 continue; 2618 } 2619 Node* proj = transform_later(new ProjNode(call, i)); 2620 slow_call->init_req(i, proj); 2621 if (alloc_in_place) { 2622 handler_call->init_req(i+1, proj); 2623 } 2624 } 2625 // We can safepoint at that new call 2626 slow_call->copy_call_debug_info(&_igvn, call); 2627 transform_later(slow_call); 2628 if (alloc_in_place) { 2629 transform_later(handler_call); 2630 } 2631 2632 Node* fast_ctl = nullptr; 2633 Node* fast_res = nullptr; 2634 MergeMemNode* fast_mem = nullptr; 2635 if (alloc_in_place) { 2636 fast_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control)); 2637 Node* rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory)); 2638 fast_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms)); 2639 fast_mem = MergeMemNode::make(mem); 2640 fast_mem->set_memory_at(Compile::AliasIdxRaw, rawmem); 2641 transform_later(fast_mem); 2642 } 2643 2644 Node* r = new RegionNode(alloc_in_place ? 4 : 3); 2645 Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2646 Node* io_phi = new PhiNode(r, Type::ABIO); 2647 Node* res_phi = new PhiNode(r, TypeInstPtr::BOTTOM); 2648 r->init_req(1, no_allocation_ctl); 2649 mem_phi->init_req(1, mem); 2650 io_phi->init_req(1, io); 2651 res_phi->init_req(1, no_allocation_res); 2652 r->init_req(2, slow_norm); 2653 mem_phi->init_req(2, slow_mem); 2654 io_phi->init_req(2, slow_io); 2655 res_phi->init_req(2, slow_res); 2656 if (alloc_in_place) { 2657 r->init_req(3, fast_ctl); 2658 mem_phi->init_req(3, fast_mem); 2659 io_phi->init_req(3, io); 2660 res_phi->init_req(3, fast_res); 2661 } 2662 transform_later(r); 2663 transform_later(mem_phi); 2664 transform_later(io_phi); 2665 transform_later(res_phi); 2666 2667 // Do not let stores that initialize this buffer be reordered with a subsequent 2668 // store that would make this buffer accessible by other threads. 2669 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 2670 transform_later(mb); 2671 mb->init_req(TypeFunc::Memory, mem_phi); 2672 mb->init_req(TypeFunc::Control, r); 2673 r = new ProjNode(mb, TypeFunc::Control); 2674 transform_later(r); 2675 mem_phi = new ProjNode(mb, TypeFunc::Memory); 2676 transform_later(mem_phi); 2677 2678 assert(projs->nb_resproj == 1, "unexpected number of results"); 2679 _igvn.replace_in_uses(projs->fallthrough_catchproj, r); 2680 _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi); 2681 _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi); 2682 _igvn.replace_in_uses(projs->resproj[0], res_phi); 2683 _igvn.replace_in_uses(projs->catchall_catchproj, ex_r); 2684 _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi); 2685 _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi); 2686 // The CatchNode should not use the ex_io_phi. Re-connect it to the catchall_ioproj. 2687 Node* cn = projs->fallthrough_catchproj->in(0); 2688 _igvn.replace_input_of(cn, 1, projs->catchall_ioproj); 2689 2690 _igvn.replace_node(ctl, projs->fallthrough_catchproj); 2691 _igvn.replace_node(mem, projs->fallthrough_memproj); 2692 _igvn.replace_node(io, projs->fallthrough_ioproj); 2693 _igvn.replace_node(res, projs->resproj[0]); 2694 _igvn.replace_node(ex_ctl, projs->catchall_catchproj); 2695 _igvn.replace_node(ex_mem, projs->catchall_memproj); 2696 _igvn.replace_node(ex_io, projs->catchall_ioproj); 2697 } 2698 2699 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) { 2700 assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned"); 2701 Node* bol = check->unique_out(); 2702 Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass); 2703 Node* superklass = check->in(SubTypeCheckNode::SuperKlass); 2704 assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node"); 2705 2706 for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) { 2707 Node* iff = bol->last_out(i); 2708 assert(iff->is_If(), "where's the if?"); 2709 2710 if (iff->in(0)->is_top()) { 2711 _igvn.replace_input_of(iff, 1, C->top()); 2712 continue; 2713 } 2714 2715 Node* iftrue = iff->as_If()->proj_out(1); 2716 Node* iffalse = iff->as_If()->proj_out(0); 2717 Node* ctrl = iff->in(0); 2718 2719 Node* subklass = nullptr; 2720 if (_igvn.type(obj_or_subklass)->isa_klassptr()) { 2721 subklass = obj_or_subklass; 2722 } else { 2723 Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes()); 2724 subklass = _igvn.transform(LoadKlassNode::make(_igvn, nullptr, C->immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2725 } 2726 2727 Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci()); 2728 2729 _igvn.replace_input_of(iff, 0, C->top()); 2730 _igvn.replace_node(iftrue, not_subtype_ctrl); 2731 _igvn.replace_node(iffalse, ctrl); 2732 } 2733 _igvn.replace_node(check, C->top()); 2734 } 2735 2736 // FlatArrayCheckNode (array1 array2 ...) is expanded into: 2737 // 2738 // long mark = array1.mark | array2.mark | ...; 2739 // long locked_bit = markWord::unlocked_value & array1.mark & array2.mark & ...; 2740 // if (locked_bit == 0) { 2741 // // One array is locked, load prototype header from the klass 2742 // mark = array1.klass.proto | array2.klass.proto | ... 2743 // } 2744 // if ((mark & markWord::flat_array_bit_in_place) == 0) { 2745 // ... 2746 // } 2747 void PhaseMacroExpand::expand_flatarraycheck_node(FlatArrayCheckNode* check) { 2748 bool array_inputs = _igvn.type(check->in(FlatArrayCheckNode::ArrayOrKlass))->isa_oopptr() != nullptr; 2749 if (array_inputs) { 2750 Node* mark = MakeConX(0); 2751 Node* locked_bit = MakeConX(markWord::unlocked_value); 2752 Node* mem = check->in(FlatArrayCheckNode::Memory); 2753 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2754 Node* ary = check->in(i); 2755 const TypeOopPtr* t = _igvn.type(ary)->isa_oopptr(); 2756 assert(t != nullptr, "Mixing array and klass inputs"); 2757 assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out"); 2758 Node* mark_adr = basic_plus_adr(ary, oopDesc::mark_offset_in_bytes()); 2759 Node* mark_load = _igvn.transform(LoadNode::make(_igvn, nullptr, mem, mark_adr, mark_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 2760 mark = _igvn.transform(new OrXNode(mark, mark_load)); 2761 locked_bit = _igvn.transform(new AndXNode(locked_bit, mark_load)); 2762 } 2763 assert(!mark->is_Con(), "Should have been optimized out"); 2764 Node* cmp = _igvn.transform(new CmpXNode(locked_bit, MakeConX(0))); 2765 Node* is_unlocked = _igvn.transform(new BoolNode(cmp, BoolTest::ne)); 2766 2767 // BoolNode might be shared, replace each if user 2768 Node* old_bol = check->unique_out(); 2769 assert(old_bol->is_Bool() && old_bol->as_Bool()->_test._test == BoolTest::ne, "unexpected condition"); 2770 for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) { 2771 IfNode* old_iff = old_bol->last_out(i)->as_If(); 2772 Node* ctrl = old_iff->in(0); 2773 RegionNode* region = new RegionNode(3); 2774 Node* mark_phi = new PhiNode(region, TypeX_X); 2775 2776 // Check if array is unlocked 2777 IfNode* iff = _igvn.transform(new IfNode(ctrl, is_unlocked, PROB_MAX, COUNT_UNKNOWN))->as_If(); 2778 2779 // Unlocked: Use bits from mark word 2780 region->init_req(1, _igvn.transform(new IfTrueNode(iff))); 2781 mark_phi->init_req(1, mark); 2782 2783 // Locked: Load prototype header from klass 2784 ctrl = _igvn.transform(new IfFalseNode(iff)); 2785 Node* proto = MakeConX(0); 2786 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2787 Node* ary = check->in(i); 2788 // Make loads control dependent to make sure they are only executed if array is locked 2789 Node* klass_adr = basic_plus_adr(ary, oopDesc::klass_offset_in_bytes()); 2790 Node* klass = _igvn.transform(LoadKlassNode::make(_igvn, ctrl, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2791 Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset())); 2792 Node* proto_load = _igvn.transform(LoadNode::make(_igvn, ctrl, C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 2793 proto = _igvn.transform(new OrXNode(proto, proto_load)); 2794 } 2795 region->init_req(2, ctrl); 2796 mark_phi->init_req(2, proto); 2797 2798 // Check if flat array bits are set 2799 Node* mask = MakeConX(markWord::flat_array_bit_in_place); 2800 Node* masked = _igvn.transform(new AndXNode(_igvn.transform(mark_phi), mask)); 2801 cmp = _igvn.transform(new CmpXNode(masked, MakeConX(0))); 2802 Node* is_not_flat = _igvn.transform(new BoolNode(cmp, BoolTest::eq)); 2803 2804 ctrl = _igvn.transform(region); 2805 iff = _igvn.transform(new IfNode(ctrl, is_not_flat, PROB_MAX, COUNT_UNKNOWN))->as_If(); 2806 _igvn.replace_node(old_iff, iff); 2807 } 2808 _igvn.replace_node(check, C->top()); 2809 } else { 2810 // Fall back to layout helper check 2811 Node* lhs = intcon(0); 2812 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2813 Node* array_or_klass = check->in(i); 2814 Node* klass = nullptr; 2815 const TypePtr* t = _igvn.type(array_or_klass)->is_ptr(); 2816 assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out"); 2817 if (t->isa_oopptr() != nullptr) { 2818 Node* klass_adr = basic_plus_adr(array_or_klass, oopDesc::klass_offset_in_bytes()); 2819 klass = transform_later(LoadKlassNode::make(_igvn, nullptr, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2820 } else { 2821 assert(t->isa_klassptr(), "Unexpected input type"); 2822 klass = array_or_klass; 2823 } 2824 Node* lh_addr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset())); 2825 Node* lh_val = _igvn.transform(LoadNode::make(_igvn, nullptr, C->immutable_memory(), lh_addr, lh_addr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered)); 2826 lhs = _igvn.transform(new OrINode(lhs, lh_val)); 2827 } 2828 Node* masked = transform_later(new AndINode(lhs, intcon(Klass::_lh_array_tag_flat_value_bit_inplace))); 2829 Node* cmp = transform_later(new CmpINode(masked, intcon(0))); 2830 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2831 Node* m2b = transform_later(new Conv2BNode(masked)); 2832 // The matcher expects the input to If nodes to be produced by a Bool(CmpI..) 2833 // pattern, but the input to other potential users (e.g. Phi) to be some 2834 // other pattern (e.g. a Conv2B node, possibly idealized as a CMoveI). 2835 Node* old_bol = check->unique_out(); 2836 for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) { 2837 Node* user = old_bol->last_out(i); 2838 for (uint j = 0; j < user->req(); j++) { 2839 Node* n = user->in(j); 2840 if (n == old_bol) { 2841 _igvn.replace_input_of(user, j, user->is_If() ? bol : m2b); 2842 } 2843 } 2844 } 2845 _igvn.replace_node(check, C->top()); 2846 } 2847 } 2848 2849 //---------------------------eliminate_macro_nodes---------------------- 2850 // Eliminate scalar replaced allocations and associated locks. 2851 void PhaseMacroExpand::eliminate_macro_nodes() { 2852 if (C->macro_count() == 0) 2853 return; 2854 NOT_PRODUCT(int membar_before = count_MemBar(C);) 2855 2856 // Before elimination may re-mark (change to Nested or NonEscObj) 2857 // all associated (same box and obj) lock and unlock nodes. 2858 int cnt = C->macro_count(); 2859 for (int i=0; i < cnt; i++) { 2860 Node *n = C->macro_node(i); 2861 if (n->is_AbstractLock()) { // Lock and Unlock nodes 2862 mark_eliminated_locking_nodes(n->as_AbstractLock()); 2863 } 2864 } 2865 // Re-marking may break consistency of Coarsened locks. 2866 if (!C->coarsened_locks_consistent()) { 2867 return; // recompile without Coarsened locks if broken 2868 } else { 2869 // After coarsened locks are eliminated locking regions 2870 // become unbalanced. We should not execute any more 2871 // locks elimination optimizations on them. 2872 C->mark_unbalanced_boxes(); 2873 } 2874 2875 // First, attempt to eliminate locks 2876 bool progress = true; 2877 while (progress) { 2878 progress = false; 2879 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2880 Node* n = C->macro_node(i - 1); 2881 bool success = false; 2882 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2883 if (n->is_AbstractLock()) { 2884 success = eliminate_locking_node(n->as_AbstractLock()); 2885 #ifndef PRODUCT 2886 if (success && PrintOptoStatistics) { 2887 Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter); 2888 } 2889 #endif 2890 } 2891 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2892 progress = progress || success; 2893 } 2894 } 2895 // Next, attempt to eliminate allocations 2896 _has_locks = false; 2897 progress = true; 2898 while (progress) { 2899 progress = false; 2900 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2901 Node* n = C->macro_node(i - 1); 2902 bool success = false; 2903 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2904 switch (n->class_id()) { 2905 case Node::Class_Allocate: 2906 case Node::Class_AllocateArray: 2907 success = eliminate_allocate_node(n->as_Allocate()); 2908 #ifndef PRODUCT 2909 if (success && PrintOptoStatistics) { 2910 Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter); 2911 } 2912 #endif 2913 break; 2914 case Node::Class_CallStaticJava: { 2915 CallStaticJavaNode* call = n->as_CallStaticJava(); 2916 if (!call->method()->is_method_handle_intrinsic()) { 2917 success = eliminate_boxing_node(n->as_CallStaticJava()); 2918 } 2919 break; 2920 } 2921 case Node::Class_Lock: 2922 case Node::Class_Unlock: 2923 assert(!n->as_AbstractLock()->is_eliminated(), "sanity"); 2924 _has_locks = true; 2925 break; 2926 case Node::Class_ArrayCopy: 2927 break; 2928 case Node::Class_OuterStripMinedLoop: 2929 break; 2930 case Node::Class_SubTypeCheck: 2931 break; 2932 case Node::Class_Opaque1: 2933 break; 2934 case Node::Class_FlatArrayCheck: 2935 break; 2936 default: 2937 assert(n->Opcode() == Op_LoopLimit || 2938 n->is_Opaque4() || 2939 n->is_OpaqueInitializedAssertionPredicate() || 2940 n->Opcode() == Op_MaxL || 2941 n->Opcode() == Op_MinL || 2942 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n), 2943 "unknown node type in macro list"); 2944 } 2945 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2946 progress = progress || success; 2947 } 2948 } 2949 #ifndef PRODUCT 2950 if (PrintOptoStatistics) { 2951 int membar_after = count_MemBar(C); 2952 Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after); 2953 } 2954 #endif 2955 } 2956 2957 //------------------------------expand_macro_nodes---------------------- 2958 // Returns true if a failure occurred. 2959 bool PhaseMacroExpand::expand_macro_nodes() { 2960 // Do not allow new macro nodes once we started to expand 2961 C->reset_allow_macro_nodes(); 2962 if (StressMacroExpansion) { 2963 C->shuffle_macro_nodes(); 2964 } 2965 // Last attempt to eliminate macro nodes. 2966 eliminate_macro_nodes(); 2967 if (C->failing()) return true; 2968 2969 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. 2970 bool progress = true; 2971 while (progress) { 2972 progress = false; 2973 for (int i = C->macro_count(); i > 0; i--) { 2974 Node* n = C->macro_node(i-1); 2975 bool success = false; 2976 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2977 if (n->Opcode() == Op_LoopLimit) { 2978 // Remove it from macro list and put on IGVN worklist to optimize. 2979 C->remove_macro_node(n); 2980 _igvn._worklist.push(n); 2981 success = true; 2982 } else if (n->Opcode() == Op_CallStaticJava) { 2983 CallStaticJavaNode* call = n->as_CallStaticJava(); 2984 if (!call->method()->is_method_handle_intrinsic()) { 2985 // Remove it from macro list and put on IGVN worklist to optimize. 2986 C->remove_macro_node(n); 2987 _igvn._worklist.push(n); 2988 success = true; 2989 } 2990 } else if (n->is_Opaque1()) { 2991 _igvn.replace_node(n, n->in(1)); 2992 success = true; 2993 } else if (n->is_Opaque4()) { 2994 // With Opaque4 nodes, the expectation is that the test of input 1 2995 // is always equal to the constant value of input 2. So we can 2996 // remove the Opaque4 and replace it by input 2. In debug builds, 2997 // leave the non constant test in instead to sanity check that it 2998 // never fails (if it does, that subgraph was constructed so, at 2999 // runtime, a Halt node is executed). 3000 #ifdef ASSERT 3001 _igvn.replace_node(n, n->in(1)); 3002 #else 3003 _igvn.replace_node(n, n->in(2)); 3004 #endif 3005 success = true; 3006 } else if (n->is_OpaqueInitializedAssertionPredicate()) { 3007 // Initialized Assertion Predicates must always evaluate to true. Therefore, we get rid of them in product 3008 // builds as they are useless. In debug builds we keep them as additional verification code. Even though 3009 // loop opts are already over, we want to keep Initialized Assertion Predicates alive as long as possible to 3010 // enable folding of dead control paths within which cast nodes become top after due to impossible types - 3011 // even after loop opts are over. Therefore, we delay the removal of these opaque nodes until now. 3012 #ifdef ASSERT 3013 _igvn.replace_node(n, n->in(1)); 3014 #else 3015 _igvn.replace_node(n, _igvn.intcon(1)); 3016 #endif // ASSERT 3017 } else if (n->Opcode() == Op_OuterStripMinedLoop) { 3018 n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn); 3019 C->remove_macro_node(n); 3020 success = true; 3021 } else if (n->Opcode() == Op_MaxL) { 3022 // Since MaxL and MinL are not implemented in the backend, we expand them to 3023 // a CMoveL construct now. At least until here, the type could be computed 3024 // precisely. CMoveL is not so smart, but we can give it at least the best 3025 // type we know abouot n now. 3026 Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn); 3027 _igvn.replace_node(n, repl); 3028 success = true; 3029 } else if (n->Opcode() == Op_MinL) { 3030 Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn); 3031 _igvn.replace_node(n, repl); 3032 success = true; 3033 } 3034 assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list"); 3035 progress = progress || success; 3036 if (success) { 3037 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3038 } 3039 } 3040 } 3041 3042 // Clean up the graph so we're less likely to hit the maximum node 3043 // limit 3044 _igvn.set_delay_transform(false); 3045 _igvn.optimize(); 3046 if (C->failing()) return true; 3047 _igvn.set_delay_transform(true); 3048 3049 3050 // Because we run IGVN after each expansion, some macro nodes may go 3051 // dead and be removed from the list as we iterate over it. Move 3052 // Allocate nodes (processed in a second pass) at the beginning of 3053 // the list and then iterate from the last element of the list until 3054 // an Allocate node is seen. This is robust to random deletion in 3055 // the list due to nodes going dead. 3056 C->sort_macro_nodes(); 3057 3058 // expand arraycopy "macro" nodes first 3059 // For ReduceBulkZeroing, we must first process all arraycopy nodes 3060 // before the allocate nodes are expanded. 3061 while (C->macro_count() > 0) { 3062 int macro_count = C->macro_count(); 3063 Node * n = C->macro_node(macro_count-1); 3064 assert(n->is_macro(), "only macro nodes expected here"); 3065 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 3066 // node is unreachable, so don't try to expand it 3067 C->remove_macro_node(n); 3068 continue; 3069 } 3070 if (n->is_Allocate()) { 3071 break; 3072 } 3073 // Make sure expansion will not cause node limit to be exceeded. 3074 // Worst case is a macro node gets expanded into about 200 nodes. 3075 // Allow 50% more for optimization. 3076 if (C->check_node_count(300, "out of nodes before macro expansion")) { 3077 return true; 3078 } 3079 3080 DEBUG_ONLY(int old_macro_count = C->macro_count();) 3081 switch (n->class_id()) { 3082 case Node::Class_Lock: 3083 expand_lock_node(n->as_Lock()); 3084 break; 3085 case Node::Class_Unlock: 3086 expand_unlock_node(n->as_Unlock()); 3087 break; 3088 case Node::Class_ArrayCopy: 3089 expand_arraycopy_node(n->as_ArrayCopy()); 3090 break; 3091 case Node::Class_SubTypeCheck: 3092 expand_subtypecheck_node(n->as_SubTypeCheck()); 3093 break; 3094 case Node::Class_CallStaticJava: 3095 expand_mh_intrinsic_return(n->as_CallStaticJava()); 3096 C->remove_macro_node(n); 3097 break; 3098 case Node::Class_FlatArrayCheck: 3099 expand_flatarraycheck_node(n->as_FlatArrayCheck()); 3100 break; 3101 default: 3102 assert(false, "unknown node type in macro list"); 3103 } 3104 assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list"); 3105 if (C->failing()) return true; 3106 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3107 3108 // Clean up the graph so we're less likely to hit the maximum node 3109 // limit 3110 _igvn.set_delay_transform(false); 3111 _igvn.optimize(); 3112 if (C->failing()) return true; 3113 _igvn.set_delay_transform(true); 3114 } 3115 3116 // All nodes except Allocate nodes are expanded now. There could be 3117 // new optimization opportunities (such as folding newly created 3118 // load from a just allocated object). Run IGVN. 3119 3120 // expand "macro" nodes 3121 // nodes are removed from the macro list as they are processed 3122 while (C->macro_count() > 0) { 3123 int macro_count = C->macro_count(); 3124 Node * n = C->macro_node(macro_count-1); 3125 assert(n->is_macro(), "only macro nodes expected here"); 3126 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 3127 // node is unreachable, so don't try to expand it 3128 C->remove_macro_node(n); 3129 continue; 3130 } 3131 // Make sure expansion will not cause node limit to be exceeded. 3132 // Worst case is a macro node gets expanded into about 200 nodes. 3133 // Allow 50% more for optimization. 3134 if (C->check_node_count(300, "out of nodes before macro expansion")) { 3135 return true; 3136 } 3137 switch (n->class_id()) { 3138 case Node::Class_Allocate: 3139 expand_allocate(n->as_Allocate()); 3140 break; 3141 case Node::Class_AllocateArray: 3142 expand_allocate_array(n->as_AllocateArray()); 3143 break; 3144 default: 3145 assert(false, "unknown node type in macro list"); 3146 } 3147 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 3148 if (C->failing()) return true; 3149 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3150 3151 // Clean up the graph so we're less likely to hit the maximum node 3152 // limit 3153 _igvn.set_delay_transform(false); 3154 _igvn.optimize(); 3155 if (C->failing()) return true; 3156 _igvn.set_delay_transform(true); 3157 } 3158 3159 _igvn.set_delay_transform(false); 3160 return false; 3161 } 3162 3163 #ifndef PRODUCT 3164 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0; 3165 int PhaseMacroExpand::_monitor_objects_removed_counter = 0; 3166 int PhaseMacroExpand::_GC_barriers_removed_counter = 0; 3167 int PhaseMacroExpand::_memory_barriers_removed_counter = 0; 3168 3169 void PhaseMacroExpand::print_statistics() { 3170 tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter)); 3171 tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter)); 3172 tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter)); 3173 tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter)); 3174 } 3175 3176 int PhaseMacroExpand::count_MemBar(Compile *C) { 3177 if (!PrintOptoStatistics) { 3178 return 0; 3179 } 3180 Unique_Node_List ideal_nodes; 3181 int total = 0; 3182 ideal_nodes.map(C->live_nodes(), nullptr); 3183 ideal_nodes.push(C->root()); 3184 for (uint next = 0; next < ideal_nodes.size(); ++next) { 3185 Node* n = ideal_nodes.at(next); 3186 if (n->is_MemBar()) { 3187 total++; 3188 } 3189 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3190 Node* m = n->fast_out(i); 3191 ideal_nodes.push(m); 3192 } 3193 } 3194 return total; 3195 } 3196 #endif