1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciFlatArrayKlass.hpp"
  26 #include "ci/ciInstanceKlass.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/collectedHeap.inline.hpp"
  29 #include "gc/shared/tlab_globals.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/universe.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/graphKit.hpp"
  40 #include "opto/inlinetypenode.hpp"
  41 #include "opto/intrinsicnode.hpp"
  42 #include "opto/locknode.hpp"
  43 #include "opto/loopnode.hpp"
  44 #include "opto/macro.hpp"
  45 #include "opto/memnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/node.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/phaseX.hpp"
  50 #include "opto/rootnode.hpp"
  51 #include "opto/runtime.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "opto/subtypenode.hpp"
  54 #include "opto/type.hpp"
  55 #include "prims/jvmtiExport.hpp"
  56 #include "runtime/continuation.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "utilities/globalDefinitions.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/powerOfTwo.hpp"
  62 #if INCLUDE_G1GC
  63 #include "gc/g1/g1ThreadLocalData.hpp"
  64 #endif // INCLUDE_G1GC
  65 
  66 
  67 //
  68 // Replace any references to "oldref" in inputs to "use" with "newref".
  69 // Returns the number of replacements made.
  70 //
  71 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  72   int nreplacements = 0;
  73   uint req = use->req();
  74   for (uint j = 0; j < use->len(); j++) {
  75     Node *uin = use->in(j);
  76     if (uin == oldref) {
  77       if (j < req)
  78         use->set_req(j, newref);
  79       else
  80         use->set_prec(j, newref);
  81       nreplacements++;
  82     } else if (j >= req && uin == nullptr) {
  83       break;
  84     }
  85   }
  86   return nreplacements;
  87 }
  88 
  89 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
  90   Node* cmp;
  91   if (mask != 0) {
  92     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
  93     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
  94   } else {
  95     cmp = word;
  96   }
  97   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
  98   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
  99   transform_later(iff);
 100 
 101   // Fast path taken.
 102   Node *fast_taken = transform_later(new IfFalseNode(iff));
 103 
 104   // Fast path not-taken, i.e. slow path
 105   Node *slow_taken = transform_later(new IfTrueNode(iff));
 106 
 107   if (return_fast_path) {
 108     region->init_req(edge, slow_taken); // Capture slow-control
 109     return fast_taken;
 110   } else {
 111     region->init_req(edge, fast_taken); // Capture fast-control
 112     return slow_taken;
 113   }
 114 }
 115 
 116 //--------------------copy_predefined_input_for_runtime_call--------------------
 117 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 118   // Set fixed predefined input arguments
 119   call->init_req( TypeFunc::Control, ctrl );
 120   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 121   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 122   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 123   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 124 }
 125 
 126 //------------------------------make_slow_call---------------------------------
 127 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 128                                            address slow_call, const char* leaf_name, Node* slow_path,
 129                                            Node* parm0, Node* parm1, Node* parm2) {
 130 
 131   // Slow-path call
 132  CallNode *call = leaf_name
 133    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 134    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM );
 135 
 136   // Slow path call has no side-effects, uses few values
 137   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 138   if (parm0 != nullptr)  call->init_req(TypeFunc::Parms+0, parm0);
 139   if (parm1 != nullptr)  call->init_req(TypeFunc::Parms+1, parm1);
 140   if (parm2 != nullptr)  call->init_req(TypeFunc::Parms+2, parm2);
 141   call->copy_call_debug_info(&_igvn, oldcall);
 142   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 143   _igvn.replace_node(oldcall, call);
 144   transform_later(call);
 145 
 146   return call;
 147 }
 148 
 149 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
 150   BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 151   bs->eliminate_gc_barrier(&_igvn, p2x);
 152 #ifndef PRODUCT
 153   if (PrintOptoStatistics) {
 154     Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter);
 155   }
 156 #endif
 157 }
 158 
 159 // Search for a memory operation for the specified memory slice.
 160 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 161   Node *orig_mem = mem;
 162   Node *alloc_mem = alloc->as_Allocate()->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 163   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 164   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 165   while (true) {
 166     if (mem == alloc_mem || mem == start_mem ) {
 167       return mem;  // hit one of our sentinels
 168     } else if (mem->is_MergeMem()) {
 169       mem = mem->as_MergeMem()->memory_at(alias_idx);
 170     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 171       Node *in = mem->in(0);
 172       // we can safely skip over safepoints, calls, locks and membars because we
 173       // already know that the object is safe to eliminate.
 174       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 175         return in;
 176       } else if (in->is_Call()) {
 177         CallNode *call = in->as_Call();
 178         if (call->may_modify(tinst, phase)) {
 179           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 180           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 181             return in;
 182           }
 183         }
 184         mem = in->in(TypeFunc::Memory);
 185       } else if (in->is_MemBar()) {
 186         ArrayCopyNode* ac = nullptr;
 187         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 188           if (ac != nullptr) {
 189             assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 190             return ac;
 191           }
 192         }
 193         mem = in->in(TypeFunc::Memory);
 194       } else {
 195 #ifdef ASSERT
 196         in->dump();
 197         mem->dump();
 198         assert(false, "unexpected projection");
 199 #endif
 200       }
 201     } else if (mem->is_Store()) {
 202       const TypePtr* atype = mem->as_Store()->adr_type();
 203       int adr_idx = phase->C->get_alias_index(atype);
 204       if (adr_idx == alias_idx) {
 205         assert(atype->isa_oopptr(), "address type must be oopptr");
 206         int adr_offset = atype->flat_offset();
 207         uint adr_iid = atype->is_oopptr()->instance_id();
 208         // Array elements references have the same alias_idx
 209         // but different offset and different instance_id.
 210         if (adr_offset == offset && adr_iid == alloc->_idx) {
 211           return mem;
 212         }
 213       } else {
 214         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 215       }
 216       mem = mem->in(MemNode::Memory);
 217     } else if (mem->is_ClearArray()) {
 218       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 219         // Can not bypass initialization of the instance
 220         // we are looking.
 221         debug_only(intptr_t offset;)
 222         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 223         InitializeNode* init = alloc->as_Allocate()->initialization();
 224         // We are looking for stored value, return Initialize node
 225         // or memory edge from Allocate node.
 226         if (init != nullptr) {
 227           return init;
 228         } else {
 229           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 230         }
 231       }
 232       // Otherwise skip it (the call updated 'mem' value).
 233     } else if (mem->Opcode() == Op_SCMemProj) {
 234       mem = mem->in(0);
 235       Node* adr = nullptr;
 236       if (mem->is_LoadStore()) {
 237         adr = mem->in(MemNode::Address);
 238       } else {
 239         assert(mem->Opcode() == Op_EncodeISOArray ||
 240                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 241         adr = mem->in(3); // Destination array
 242       }
 243       const TypePtr* atype = adr->bottom_type()->is_ptr();
 244       int adr_idx = phase->C->get_alias_index(atype);
 245       if (adr_idx == alias_idx) {
 246         DEBUG_ONLY(mem->dump();)
 247         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 248         return nullptr;
 249       }
 250       mem = mem->in(MemNode::Memory);
 251     } else if (mem->Opcode() == Op_StrInflatedCopy) {
 252       Node* adr = mem->in(3); // Destination array
 253       const TypePtr* atype = adr->bottom_type()->is_ptr();
 254       int adr_idx = phase->C->get_alias_index(atype);
 255       if (adr_idx == alias_idx) {
 256         DEBUG_ONLY(mem->dump();)
 257         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 258         return nullptr;
 259       }
 260       mem = mem->in(MemNode::Memory);
 261     } else {
 262       return mem;
 263     }
 264     assert(mem != orig_mem, "dead memory loop");
 265   }
 266 }
 267 
 268 // Generate loads from source of the arraycopy for fields of
 269 // destination needed at a deoptimization point
 270 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 271   BasicType bt = ft;
 272   const Type *type = ftype;
 273   if (ft == T_NARROWOOP) {
 274     bt = T_OBJECT;
 275     type = ftype->make_oopptr();
 276   }
 277   Node* res = nullptr;
 278   if (ac->is_clonebasic()) {
 279     assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination");
 280     Node* base = ac->in(ArrayCopyNode::Src);
 281     Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset)));
 282     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 283     MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 284     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 285     res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 286   } else {
 287     if (ac->modifies(offset, offset, &_igvn, true)) {
 288       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 289       uint shift = exact_log2(type2aelembytes(bt));
 290       Node* src_pos = ac->in(ArrayCopyNode::SrcPos);
 291       Node* dest_pos = ac->in(ArrayCopyNode::DestPos);
 292       const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int();
 293       const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int();
 294 
 295       Node* adr = nullptr;
 296       Node* base = ac->in(ArrayCopyNode::Src);
 297       const TypeAryPtr* adr_type = _igvn.type(base)->is_aryptr();
 298       if (adr_type->is_flat()) {
 299         shift = adr_type->flat_log_elem_size();
 300       }
 301       if (src_pos_t->is_con() && dest_pos_t->is_con()) {
 302         intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset;
 303         adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off)));
 304         adr_type = _igvn.type(adr)->is_aryptr();
 305         assert(adr_type == _igvn.type(base)->is_aryptr()->add_field_offset_and_offset(off), "incorrect address type");
 306         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 307           // Don't emit a new load from src if src == dst but try to get the value from memory instead
 308           return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type, alloc);
 309         }
 310       } else {
 311         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 312           // Non constant offset in the array: we can't statically
 313           // determine the value
 314           return nullptr;
 315         }
 316         Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 317 #ifdef _LP64
 318         diff = _igvn.transform(new ConvI2LNode(diff));
 319 #endif
 320         diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift)));
 321 
 322         Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff));
 323         adr = _igvn.transform(new AddPNode(base, base, off));
 324         // In the case of a flat inline type array, each field has its
 325         // own slice so we need to extract the field being accessed from
 326         // the address computation
 327         adr_type = adr_type->add_field_offset_and_offset(offset)->add_offset(Type::OffsetBot)->is_aryptr();
 328         adr = _igvn.transform(new CastPPNode(ctl, adr, adr_type));
 329       }
 330       MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 331       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 332       res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 333     }
 334   }
 335   if (res != nullptr) {
 336     if (ftype->isa_narrowoop()) {
 337       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 338       assert(res->isa_DecodeN(), "should be narrow oop");
 339       res = _igvn.transform(new EncodePNode(res, ftype));
 340     }
 341     return res;
 342   }
 343   return nullptr;
 344 }
 345 
 346 //
 347 // Given a Memory Phi, compute a value Phi containing the values from stores
 348 // on the input paths.
 349 // Note: this function is recursive, its depth is limited by the "level" argument
 350 // Returns the computed Phi, or null if it cannot compute it.
 351 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 352   assert(mem->is_Phi(), "sanity");
 353   int alias_idx = C->get_alias_index(adr_t);
 354   int offset = adr_t->flat_offset();
 355   int instance_id = adr_t->instance_id();
 356 
 357   // Check if an appropriate value phi already exists.
 358   Node* region = mem->in(0);
 359   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 360     Node* phi = region->fast_out(k);
 361     if (phi->is_Phi() && phi != mem &&
 362         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 363       return phi;
 364     }
 365   }
 366   // Check if an appropriate new value phi already exists.
 367   Node* new_phi = value_phis->find(mem->_idx);
 368   if (new_phi != nullptr)
 369     return new_phi;
 370 
 371   if (level <= 0) {
 372     return nullptr; // Give up: phi tree too deep
 373   }
 374   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 375   Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 376   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 377 
 378   uint length = mem->req();
 379   GrowableArray <Node *> values(length, length, nullptr);
 380 
 381   // create a new Phi for the value
 382   PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset);
 383   transform_later(phi);
 384   value_phis->push(phi, mem->_idx);
 385 
 386   for (uint j = 1; j < length; j++) {
 387     Node *in = mem->in(j);
 388     if (in == nullptr || in->is_top()) {
 389       values.at_put(j, in);
 390     } else {
 391       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 392       if (val == start_mem || val == alloc_mem) {
 393         // hit a sentinel, return appropriate value
 394         Node* init_value = alloc->in(AllocateNode::InitValue);
 395         if (init_value != nullptr) {
 396           if (val == start_mem) {
 397             // TODO 8350865 Scalar replacement does not work well for flat arrays.
 398             // Somehow we ended up with root mem and therefore walked past the alloc. Fix this. Triggered by TestGenerated::test15
 399             // Don't we need field_value_by_offset?
 400             return nullptr;
 401           }
 402           values.at_put(j, init_value);
 403         } else {
 404           assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null");
 405           values.at_put(j, _igvn.zerocon(ft));
 406         }
 407         continue;
 408       }
 409       if (val->is_Initialize()) {
 410         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 411       }
 412       if (val == nullptr) {
 413         return nullptr;  // can't find a value on this path
 414       }
 415       if (val == mem) {
 416         values.at_put(j, mem);
 417       } else if (val->is_Store()) {
 418         Node* n = val->in(MemNode::ValueIn);
 419         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 420         n = bs->step_over_gc_barrier(n);
 421         if (is_subword_type(ft)) {
 422           n = Compile::narrow_value(ft, n, phi_type, &_igvn, true);
 423         }
 424         values.at_put(j, n);
 425       } else if (val->is_Proj() && val->in(0) == alloc) {
 426         Node* init_value = alloc->in(AllocateNode::InitValue);
 427         if (init_value != nullptr) {
 428           // TODO 8350865 Scalar replacement does not work well for flat arrays.
 429           // Is this correct for non-all-zero init values? Don't we need field_value_by_offset?
 430           values.at_put(j, init_value);
 431         } else {
 432           assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null");
 433           values.at_put(j, _igvn.zerocon(ft));
 434         }
 435       } else if (val->is_Phi()) {
 436         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 437         if (val == nullptr) {
 438           return nullptr;
 439         }
 440         values.at_put(j, val);
 441       } else if (val->Opcode() == Op_SCMemProj) {
 442         assert(val->in(0)->is_LoadStore() ||
 443                val->in(0)->Opcode() == Op_EncodeISOArray ||
 444                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 445         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 446         return nullptr;
 447       } else if (val->is_ArrayCopy()) {
 448         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 449         if (res == nullptr) {
 450           return nullptr;
 451         }
 452         values.at_put(j, res);
 453       } else if (val->is_top()) {
 454         // This indicates that this path into the phi is dead. Top will eventually also propagate into the Region.
 455         // IGVN will clean this up later.
 456         values.at_put(j, val);
 457       } else {
 458         DEBUG_ONLY( val->dump(); )
 459         assert(false, "unknown node on this path");
 460         return nullptr;  // unknown node on this path
 461       }
 462     }
 463   }
 464   // Set Phi's inputs
 465   for (uint j = 1; j < length; j++) {
 466     if (values.at(j) == mem) {
 467       phi->init_req(j, phi);
 468     } else {
 469       phi->init_req(j, values.at(j));
 470     }
 471   }
 472   return phi;
 473 }
 474 
 475 // Search the last value stored into the object's field.
 476 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 477   assert(adr_t->is_known_instance_field(), "instance required");
 478   int instance_id = adr_t->instance_id();
 479   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 480 
 481   int alias_idx = C->get_alias_index(adr_t);
 482   int offset = adr_t->flat_offset();
 483   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 484   Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 485   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 486   VectorSet visited;
 487 
 488   bool done = sfpt_mem == alloc_mem;
 489   Node *mem = sfpt_mem;
 490   while (!done) {
 491     if (visited.test_set(mem->_idx)) {
 492       return nullptr;  // found a loop, give up
 493     }
 494     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 495     if (mem == start_mem || mem == alloc_mem) {
 496       done = true;  // hit a sentinel, return appropriate 0 value
 497     } else if (mem->is_Initialize()) {
 498       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 499       if (mem == nullptr) {
 500         done = true; // Something went wrong.
 501       } else if (mem->is_Store()) {
 502         const TypePtr* atype = mem->as_Store()->adr_type();
 503         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 504         done = true;
 505       }
 506     } else if (mem->is_Store()) {
 507       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 508       assert(atype != nullptr, "address type must be oopptr");
 509       assert(C->get_alias_index(atype) == alias_idx &&
 510              atype->is_known_instance_field() && atype->flat_offset() == offset &&
 511              atype->instance_id() == instance_id, "store is correct memory slice");
 512       done = true;
 513     } else if (mem->is_Phi()) {
 514       // try to find a phi's unique input
 515       Node *unique_input = nullptr;
 516       Node *top = C->top();
 517       for (uint i = 1; i < mem->req(); i++) {
 518         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 519         if (n == nullptr || n == top || n == mem) {
 520           continue;
 521         } else if (unique_input == nullptr) {
 522           unique_input = n;
 523         } else if (unique_input != n) {
 524           unique_input = top;
 525           break;
 526         }
 527       }
 528       if (unique_input != nullptr && unique_input != top) {
 529         mem = unique_input;
 530       } else {
 531         done = true;
 532       }
 533     } else if (mem->is_ArrayCopy()) {
 534       done = true;
 535     } else {
 536       DEBUG_ONLY( mem->dump(); )
 537       assert(false, "unexpected node");
 538     }
 539   }
 540   if (mem != nullptr) {
 541     if (mem == start_mem || mem == alloc_mem) {
 542       // hit a sentinel, return appropriate value
 543       Node* init_value = alloc->in(AllocateNode::InitValue);
 544       if (init_value != nullptr) {
 545         if (adr_t->is_flat()) {
 546           if (init_value->is_EncodeP()) {
 547             init_value = init_value->in(1);
 548           }
 549           assert(adr_t->is_aryptr()->field_offset().get() != Type::OffsetBot, "Unknown offset");
 550           offset = adr_t->is_aryptr()->field_offset().get() + init_value->bottom_type()->inline_klass()->payload_offset();
 551           init_value = init_value->as_InlineType()->field_value_by_offset(offset, true);
 552           if (ft == T_NARROWOOP) {
 553             init_value = transform_later(new EncodePNode(init_value, init_value->bottom_type()->make_ptr()));
 554           }
 555         }
 556         return init_value;
 557       }
 558       assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null");
 559       return _igvn.zerocon(ft);
 560     } else if (mem->is_Store()) {
 561       Node* n = mem->in(MemNode::ValueIn);
 562       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 563       n = bs->step_over_gc_barrier(n);
 564       return n;
 565     } else if (mem->is_Phi()) {
 566       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 567       Node_Stack value_phis(8);
 568       Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 569       if (phi != nullptr) {
 570         return phi;
 571       } else {
 572         // Kill all new Phis
 573         while(value_phis.is_nonempty()) {
 574           Node* n = value_phis.node();
 575           _igvn.replace_node(n, C->top());
 576           value_phis.pop();
 577         }
 578       }
 579     } else if (mem->is_ArrayCopy()) {
 580       Node* ctl = mem->in(0);
 581       Node* m = mem->in(TypeFunc::Memory);
 582       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) {
 583         // pin the loads in the uncommon trap path
 584         ctl = sfpt_ctl;
 585         m = sfpt_mem;
 586       }
 587       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 588     }
 589   }
 590   // Something went wrong.
 591   return nullptr;
 592 }
 593 
 594 // Search the last value stored into the inline type's fields (for flat arrays).
 595 Node* PhaseMacroExpand::inline_type_from_mem(ciInlineKlass* vk, const TypeAryPtr* elem_adr_type, int elem_idx, int offset_in_element, bool null_free, AllocateNode* alloc, SafePointNode* sfpt) {
 596   auto report_failure = [&](int field_offset_in_element) {
 597 #ifndef PRODUCT
 598     if (PrintEliminateAllocations) {
 599       ciInlineKlass* elem_klass = elem_adr_type->elem()->inline_klass();
 600       int offset = field_offset_in_element + elem_klass->payload_offset();
 601       ciField* flattened_field = elem_klass->get_field_by_offset(offset, false);
 602       assert(flattened_field != nullptr, "must have a field of type %s at offset %d", elem_klass->name()->as_utf8(), offset);
 603       tty->print("=== At SafePoint node %d can't find value of field [%s] of array element [%d]", sfpt->_idx, flattened_field->name()->as_utf8(), elem_idx);
 604       tty->print(", which prevents elimination of: ");
 605       alloc->dump();
 606     }
 607 #endif // PRODUCT
 608   };
 609 
 610   // Create a new InlineTypeNode and retrieve the field values from memory
 611   InlineTypeNode* vt = InlineTypeNode::make_uninitialized(_igvn, vk, false);
 612   transform_later(vt);
 613   if (null_free) {
 614     vt->set_null_marker(_igvn);
 615   } else {
 616     int nm_offset_in_element = offset_in_element + vk->null_marker_offset_in_payload();
 617     const TypeAryPtr* nm_adr_type = elem_adr_type->with_field_offset(nm_offset_in_element);
 618     Node* nm_value = value_from_mem(sfpt->memory(), sfpt->control(), T_BOOLEAN, TypeInt::BOOL, nm_adr_type, alloc);
 619     if (nm_value != nullptr) {
 620       vt->set_null_marker(_igvn, nm_value);
 621     } else {
 622       report_failure(nm_offset_in_element);
 623       return nullptr;
 624     }
 625   }
 626 
 627   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) {
 628     ciType* field_type = vt->field_type(i);
 629     int field_offset_in_element = offset_in_element + vt->field_offset(i) - vk->payload_offset();
 630     Node* field_value = nullptr;
 631     if (vt->field_is_flat(i)) {
 632       field_value = inline_type_from_mem(field_type->as_inline_klass(), elem_adr_type, elem_idx, field_offset_in_element, vt->field_is_null_free(i), alloc, sfpt);
 633     } else {
 634       const Type* ft = Type::get_const_type(field_type);
 635       BasicType bt = type2field[field_type->basic_type()];
 636       if (UseCompressedOops && !is_java_primitive(bt)) {
 637         ft = ft->make_narrowoop();
 638         bt = T_NARROWOOP;
 639       }
 640       // Each inline type field has its own memory slice
 641       const TypeAryPtr* field_adr_type = elem_adr_type->with_field_offset(field_offset_in_element);
 642       field_value = value_from_mem(sfpt->memory(), sfpt->control(), bt, ft, field_adr_type, alloc);
 643       if (field_value == nullptr) {
 644         report_failure(field_offset_in_element);
 645       } else if (ft->isa_narrowoop()) {
 646         assert(UseCompressedOops, "unexpected narrow oop");
 647         if (field_value->is_EncodeP()) {
 648           field_value = field_value->in(1);
 649         } else if (!field_value->is_InlineType()) {
 650           field_value = transform_later(new DecodeNNode(field_value, field_value->get_ptr_type()));
 651         }
 652       }
 653     }
 654     if (field_value != nullptr) {
 655       vt->set_field_value(i, field_value);
 656     } else {
 657       return nullptr;
 658     }
 659   }
 660   return vt;
 661 }
 662 
 663 // Check the possibility of scalar replacement.
 664 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) {
 665   //  Scan the uses of the allocation to check for anything that would
 666   //  prevent us from eliminating it.
 667   NOT_PRODUCT( const char* fail_eliminate = nullptr; )
 668   DEBUG_ONLY( Node* disq_node = nullptr; )
 669   bool can_eliminate = true;
 670   bool reduce_merge_precheck = (safepoints == nullptr);
 671 
 672   Unique_Node_List worklist;
 673   Node* res = alloc->result_cast();
 674   const TypeOopPtr* res_type = nullptr;
 675   if (res == nullptr) {
 676     // All users were eliminated.
 677   } else if (!res->is_CheckCastPP()) {
 678     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 679     can_eliminate = false;
 680   } else {
 681     worklist.push(res);
 682     res_type = igvn->type(res)->isa_oopptr();
 683     if (res_type == nullptr) {
 684       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 685       can_eliminate = false;
 686     } else if (!res_type->klass_is_exact()) {
 687       NOT_PRODUCT(fail_eliminate = "Not an exact type.";)
 688       can_eliminate = false;
 689     } else if (res_type->isa_aryptr()) {
 690       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 691       if (length < 0) {
 692         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 693         can_eliminate = false;
 694       }
 695     }
 696   }
 697 
 698   while (can_eliminate && worklist.size() > 0) {
 699     BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 700     res = worklist.pop();
 701     for (DUIterator_Fast jmax, j = res->fast_outs(jmax); j < jmax && can_eliminate; j++) {
 702       Node* use = res->fast_out(j);
 703 
 704       if (use->is_AddP()) {
 705         const TypePtr* addp_type = igvn->type(use)->is_ptr();
 706         int offset = addp_type->offset();
 707 
 708         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 709           NOT_PRODUCT(fail_eliminate = "Undefined field reference";)
 710           can_eliminate = false;
 711           break;
 712         }
 713         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 714                                    k < kmax && can_eliminate; k++) {
 715           Node* n = use->fast_out(k);
 716           if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n) && !reduce_merge_precheck) {
 717             DEBUG_ONLY(disq_node = n;)
 718             if (n->is_Load() || n->is_LoadStore()) {
 719               NOT_PRODUCT(fail_eliminate = "Field load";)
 720             } else {
 721               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 722             }
 723             can_eliminate = false;
 724           }
 725         }
 726       } else if (use->is_ArrayCopy() &&
 727                  (use->as_ArrayCopy()->is_clonebasic() ||
 728                   use->as_ArrayCopy()->is_arraycopy_validated() ||
 729                   use->as_ArrayCopy()->is_copyof_validated() ||
 730                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 731                  use->in(ArrayCopyNode::Dest) == res) {
 732         // ok to eliminate
 733       } else if (use->is_SafePoint()) {
 734         SafePointNode* sfpt = use->as_SafePoint();
 735         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 736           // Object is passed as argument.
 737           DEBUG_ONLY(disq_node = use;)
 738           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 739           can_eliminate = false;
 740         }
 741         Node* sfptMem = sfpt->memory();
 742         if (sfptMem == nullptr || sfptMem->is_top()) {
 743           DEBUG_ONLY(disq_node = use;)
 744           NOT_PRODUCT(fail_eliminate = "null or TOP memory";)
 745           can_eliminate = false;
 746         } else if (!reduce_merge_precheck) {
 747           assert(!res->is_Phi() || !res->as_Phi()->can_be_inline_type(), "Inline type allocations should not have safepoint uses");
 748           safepoints->append_if_missing(sfpt);
 749         }
 750       } else if (use->is_InlineType() && use->as_InlineType()->get_oop() == res) {
 751         // Look at uses
 752         for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
 753           Node* u = use->fast_out(k);
 754           if (u->is_InlineType()) {
 755             // Use in flat field can be eliminated
 756             InlineTypeNode* vt = u->as_InlineType();
 757             for (uint i = 0; i < vt->field_count(); ++i) {
 758               if (vt->field_value(i) == use && !vt->field_is_flat(i)) {
 759                 can_eliminate = false; // Use in non-flat field
 760                 break;
 761               }
 762             }
 763           } else {
 764             // Add other uses to the worklist to process individually
 765             worklist.push(use);
 766           }
 767         }
 768       } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) {
 769         // Store to mark word of inline type larval buffer
 770         assert(res_type->is_inlinetypeptr(), "Unexpected store to mark word");
 771       } else if (res_type->is_inlinetypeptr() && (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore)) {
 772         // Inline type buffer allocations are followed by a membar
 773       } else if (reduce_merge_precheck &&
 774                  (use->is_Phi() || use->is_EncodeP() ||
 775                   use->Opcode() == Op_MemBarRelease ||
 776                   (UseStoreStoreForCtor && use->Opcode() == Op_MemBarStoreStore))) {
 777         // Nothing to do
 778       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 779         if (use->is_Phi()) {
 780           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 781             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 782           } else {
 783             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 784           }
 785           DEBUG_ONLY(disq_node = use;)
 786         } else {
 787           if (use->Opcode() == Op_Return) {
 788             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 789           } else {
 790             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 791           }
 792           DEBUG_ONLY(disq_node = use;)
 793         }
 794         can_eliminate = false;
 795       } else {
 796         assert(use->Opcode() == Op_CastP2X, "should be");
 797         assert(!use->has_out_with(Op_OrL), "should have been removed because oop is never null");
 798       }
 799     }
 800   }
 801 
 802 #ifndef PRODUCT
 803   if (PrintEliminateAllocations && safepoints != nullptr) {
 804     if (can_eliminate) {
 805       tty->print("Scalar ");
 806       if (res == nullptr)
 807         alloc->dump();
 808       else
 809         res->dump();
 810     } else {
 811       tty->print("NotScalar (%s)", fail_eliminate);
 812       if (res == nullptr)
 813         alloc->dump();
 814       else
 815         res->dump();
 816 #ifdef ASSERT
 817       if (disq_node != nullptr) {
 818           tty->print("  >>>> ");
 819           disq_node->dump();
 820       }
 821 #endif /*ASSERT*/
 822     }
 823   }
 824 
 825   if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) {
 826     tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : "");
 827     DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();)
 828   }
 829 #endif
 830   return can_eliminate;
 831 }
 832 
 833 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) {
 834   Node* res = alloc->result_cast();
 835   int nfields = 0;
 836   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 837 
 838   if (res != nullptr) {
 839     const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr();
 840 
 841     if (res_type->isa_instptr()) {
 842       // find the fields of the class which will be needed for safepoint debug information
 843       ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass();
 844       nfields = iklass->nof_nonstatic_fields();
 845     } else {
 846       // find the array's elements which will be needed for safepoint debug information
 847       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 848       assert(nfields >= 0, "must be an array klass.");
 849     }
 850   }
 851 
 852   // rollback processed safepoints
 853   while (safepoints_done.length() > 0) {
 854     SafePointNode* sfpt_done = safepoints_done.pop();
 855     // remove any extra entries we added to the safepoint
 856     uint last = sfpt_done->req() - 1;
 857     for (int k = 0;  k < nfields; k++) {
 858       sfpt_done->del_req(last--);
 859     }
 860     JVMState *jvms = sfpt_done->jvms();
 861     jvms->set_endoff(sfpt_done->req());
 862     // Now make a pass over the debug information replacing any references
 863     // to SafePointScalarObjectNode with the allocated object.
 864     int start = jvms->debug_start();
 865     int end   = jvms->debug_end();
 866     for (int i = start; i < end; i++) {
 867       if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 868         SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 869         if (scobj->first_index(jvms) == sfpt_done->req() &&
 870             scobj->n_fields() == (uint)nfields) {
 871           assert(scobj->alloc() == alloc, "sanity");
 872           sfpt_done->set_req(i, res);
 873         }
 874       }
 875     }
 876     _igvn._worklist.push(sfpt_done);
 877   }
 878 }
 879 
 880 void PhaseMacroExpand::process_field_value_at_safepoint(const Type* field_type, Node* field_val, SafePointNode* sfpt, Unique_Node_List* value_worklist) {
 881   if (UseCompressedOops && field_type->isa_narrowoop()) {
 882     // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 883     // to be able scalar replace the allocation.
 884     if (field_val->is_EncodeP()) {
 885       field_val = field_val->in(1);
 886     } else if (!field_val->is_InlineType()) {
 887       field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
 888     }
 889   }
 890 
 891   // Keep track of inline types to scalarize them later
 892   if (field_val->is_InlineType()) {
 893     value_worklist->push(field_val);
 894   } else if (field_val->is_Phi()) {
 895     PhiNode* phi = field_val->as_Phi();
 896     // Eagerly replace inline type phis now since we could be removing an inline type allocation where we must
 897     // scalarize all its fields in safepoints.
 898     field_val = phi->try_push_inline_types_down(&_igvn, true);
 899     if (field_val->is_InlineType()) {
 900       value_worklist->push(field_val);
 901     }
 902   }
 903   sfpt->add_req(field_val);
 904 }
 905 
 906 bool PhaseMacroExpand::add_array_elems_to_safepoint(AllocateNode* alloc, const TypeAryPtr* array_type, SafePointNode* sfpt, Unique_Node_List* value_worklist) {
 907   const Type* elem_type = array_type->elem();
 908   BasicType basic_elem_type = elem_type->array_element_basic_type();
 909 
 910   intptr_t elem_size;
 911   if (array_type->is_flat()) {
 912     elem_size = array_type->flat_elem_size();
 913   } else {
 914     elem_size = type2aelembytes(basic_elem_type);
 915   }
 916 
 917   int n_elems = alloc->in(AllocateNode::ALength)->get_int();
 918   for (int elem_idx = 0; elem_idx < n_elems; elem_idx++) {
 919     intptr_t elem_offset = arrayOopDesc::base_offset_in_bytes(basic_elem_type) + elem_idx * elem_size;
 920     const TypeAryPtr* elem_adr_type = array_type->with_offset(elem_offset);
 921     Node* elem_val;
 922     if (array_type->is_flat()) {
 923       ciInlineKlass* elem_klass = elem_type->inline_klass();
 924       assert(elem_klass->maybe_flat_in_array(), "must be flat in array");
 925       elem_val = inline_type_from_mem(elem_klass, elem_adr_type, elem_idx, 0, array_type->is_null_free(), alloc, sfpt);
 926     } else {
 927       elem_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, elem_type, elem_adr_type, alloc);
 928 #ifndef PRODUCT
 929       if (PrintEliminateAllocations && elem_val == nullptr) {
 930         tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, elem_idx);
 931         tty->print(", which prevents elimination of: ");
 932         alloc->dump();
 933       }
 934 #endif // PRODUCT
 935     }
 936     if (elem_val == nullptr) {
 937       return false;
 938     }
 939 
 940     process_field_value_at_safepoint(elem_type, elem_val, sfpt, value_worklist);
 941   }
 942 
 943   return true;
 944 }
 945 
 946 // Recursively adds all flattened fields of a type 'iklass' inside 'base' to 'sfpt'.
 947 // 'offset_minus_header' refers to the offset of the payload of 'iklass' inside 'base' minus the
 948 // payload offset of 'iklass'. If 'base' is of type 'iklass' then 'offset_minus_header' == 0.
 949 bool PhaseMacroExpand::add_inst_fields_to_safepoint(ciInstanceKlass* iklass, AllocateNode* alloc, Node* base, int offset_minus_header, SafePointNode* sfpt, Unique_Node_List* value_worklist) {
 950   const TypeInstPtr* base_type = _igvn.type(base)->is_instptr();
 951   auto report_failure = [&](int offset) {
 952 #ifndef PRODUCT
 953     if (PrintEliminateAllocations) {
 954       ciInstanceKlass* base_klass = base_type->instance_klass();
 955       ciField* flattened_field = base_klass->get_field_by_offset(offset, false);
 956       assert(flattened_field != nullptr, "must have a field of type %s at offset %d", base_klass->name()->as_utf8(), offset);
 957       tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx);
 958       flattened_field->print();
 959       int field_idx = C->alias_type(flattened_field)->index();
 960       tty->print(" (alias_idx=%d)", field_idx);
 961       tty->print(", which prevents elimination of: ");
 962       base->dump();
 963     }
 964 #endif // PRODUCT
 965   };
 966 
 967   for (int i = 0; i < iklass->nof_declared_nonstatic_fields(); i++) {
 968     ciField* field = iklass->declared_nonstatic_field_at(i);
 969     if (field->is_flat()) {
 970       ciInlineKlass* fvk = field->type()->as_inline_klass();
 971       int field_offset_minus_header = offset_minus_header + field->offset_in_bytes() - fvk->payload_offset();
 972       bool success = add_inst_fields_to_safepoint(fvk, alloc, base, field_offset_minus_header, sfpt, value_worklist);
 973       if (!success) {
 974         return false;
 975       }
 976 
 977       // The null marker of a field is added right after we scalarize that field
 978       if (!field->is_null_free()) {
 979         int nm_offset = offset_minus_header + field->null_marker_offset();
 980         Node* null_marker = value_from_mem(sfpt->memory(), sfpt->control(), T_BOOLEAN, TypeInt::BOOL, base_type->with_offset(nm_offset), alloc);
 981         if (null_marker == nullptr) {
 982           report_failure(nm_offset);
 983           return false;
 984         }
 985         process_field_value_at_safepoint(TypeInt::BOOL, null_marker, sfpt, value_worklist);
 986       }
 987 
 988       continue;
 989     }
 990 
 991     int offset = offset_minus_header + field->offset_in_bytes();
 992     ciType* elem_type = field->type();
 993     BasicType basic_elem_type = field->layout_type();
 994 
 995     const Type* field_type;
 996     if (is_reference_type(basic_elem_type)) {
 997       if (!elem_type->is_loaded()) {
 998         field_type = TypeInstPtr::BOTTOM;
 999       } else {
1000         field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
1001       }
1002       if (UseCompressedOops) {
1003         field_type = field_type->make_narrowoop();
1004         basic_elem_type = T_NARROWOOP;
1005       }
1006     } else {
1007       field_type = Type::get_const_basic_type(basic_elem_type);
1008     }
1009 
1010     const TypeInstPtr* field_addr_type = base_type->add_offset(offset)->isa_instptr();
1011     Node* field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc);
1012     if (field_val == nullptr) {
1013       report_failure(offset);
1014       return false;
1015     }
1016     process_field_value_at_safepoint(field_type, field_val, sfpt, value_worklist);
1017   }
1018 
1019   return true;
1020 }
1021 
1022 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode* alloc, SafePointNode* sfpt,
1023                                                                                   Unique_Node_List* value_worklist) {
1024   // Fields of scalar objs are referenced only at the end
1025   // of regular debuginfo at the last (youngest) JVMS.
1026   // Record relative start index.
1027   ciInstanceKlass* iklass    = nullptr;
1028   const TypeOopPtr* res_type = nullptr;
1029   int nfields                = 0;
1030   uint first_ind             = (sfpt->req() - sfpt->jvms()->scloff());
1031   Node* res                  = alloc->result_cast();
1032 
1033   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
1034   assert(sfpt->jvms() != nullptr, "missed JVMS");
1035   uint before_sfpt_req = sfpt->req();
1036 
1037   if (res != nullptr) { // Could be null when there are no users
1038     res_type = _igvn.type(res)->isa_oopptr();
1039 
1040     if (res_type->isa_instptr()) {
1041       // find the fields of the class which will be needed for safepoint debug information
1042       iklass = res_type->is_instptr()->instance_klass();
1043       nfields = iklass->nof_nonstatic_fields();
1044     } else {
1045       // find the array's elements which will be needed for safepoint debug information
1046       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
1047       assert(nfields >= 0, "must be an array klass.");
1048     }
1049 
1050     if (res->bottom_type()->is_inlinetypeptr()) {
1051       // Nullable inline types have a null marker field which is added to the safepoint when scalarizing them (see
1052       // InlineTypeNode::make_scalar_in_safepoint()). When having circular inline types, we stop scalarizing at depth 1
1053       // to avoid an endless recursion. Therefore, we do not have a SafePointScalarObjectNode node here, yet.
1054       // We are about to create a SafePointScalarObjectNode as if this is a normal object. Add an additional int input
1055       // with value 1 which sets the null marker to true to indicate that the object is always non-null. This input is checked
1056       // later in PhaseOutput::filLocArray() for inline types.
1057       sfpt->add_req(_igvn.intcon(1));
1058     }
1059   }
1060 
1061   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, sfpt->jvms()->depth(), nfields);
1062   sobj->init_req(0, C->root());
1063   transform_later(sobj);
1064 
1065   if (res == nullptr) {
1066     sfpt->jvms()->set_endoff(sfpt->req());
1067     return sobj;
1068   }
1069 
1070   bool success;
1071   if (iklass == nullptr) {
1072     success = add_array_elems_to_safepoint(alloc, res_type->is_aryptr(), sfpt, value_worklist);
1073   } else {
1074     success = add_inst_fields_to_safepoint(iklass, alloc, res, 0, sfpt, value_worklist);
1075   }
1076 
1077   // We weren't able to find a value for this field, remove all the fields added to the safepoint
1078   if (!success) {
1079     for (uint i = sfpt->req() - 1; i >= before_sfpt_req; i--) {
1080       sfpt->del_req(i);
1081     }
1082     _igvn._worklist.push(sfpt);
1083     return nullptr;
1084   }
1085 
1086   sfpt->jvms()->set_endoff(sfpt->req());
1087   return sobj;
1088 }
1089 
1090 // Do scalar replacement.
1091 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
1092   GrowableArray <SafePointNode *> safepoints_done;
1093   Node* res = alloc->result_cast();
1094   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
1095   const TypeOopPtr* res_type = nullptr;
1096   if (res != nullptr) { // Could be null when there are no users
1097     res_type = _igvn.type(res)->isa_oopptr();
1098   }
1099 
1100   // Process the safepoint uses
1101   Unique_Node_List value_worklist;
1102   while (safepoints.length() > 0) {
1103     SafePointNode* sfpt = safepoints.pop();
1104     SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt, &value_worklist);
1105 
1106     if (sobj == nullptr) {
1107       undo_previous_scalarizations(safepoints_done, alloc);
1108       return false;
1109     }
1110 
1111     // Now make a pass over the debug information replacing any references
1112     // to the allocated object with "sobj"
1113     JVMState *jvms = sfpt->jvms();
1114     sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn);
1115     _igvn._worklist.push(sfpt);
1116 
1117     // keep it for rollback
1118     safepoints_done.append_if_missing(sfpt);
1119   }
1120   // Scalarize inline types that were added to the safepoint.
1121   // Don't allow linking a constant oop (if available) for flat array elements
1122   // because Deoptimization::reassign_flat_array_elements needs field values.
1123   bool allow_oop = (res_type != nullptr) && !res_type->is_flat();
1124   for (uint i = 0; i < value_worklist.size(); ++i) {
1125     InlineTypeNode* vt = value_worklist.at(i)->as_InlineType();
1126     vt->make_scalar_in_safepoints(&_igvn, allow_oop);
1127   }
1128   return true;
1129 }
1130 
1131 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
1132   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
1133   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
1134   if (ctl_proj != nullptr) {
1135     igvn.replace_node(ctl_proj, n->in(0));
1136   }
1137   if (mem_proj != nullptr) {
1138     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
1139   }
1140 }
1141 
1142 // Process users of eliminated allocation.
1143 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc, bool inline_alloc) {
1144   Unique_Node_List worklist;
1145   Node* res = alloc->result_cast();
1146   if (res != nullptr) {
1147     worklist.push(res);
1148   }
1149   while (worklist.size() > 0) {
1150     res = worklist.pop();
1151     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
1152       Node *use = res->last_out(j);
1153       uint oc1 = res->outcnt();
1154 
1155       if (use->is_AddP()) {
1156         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
1157           Node *n = use->last_out(k);
1158           uint oc2 = use->outcnt();
1159           if (n->is_Store()) {
1160             for (DUIterator_Fast pmax, p = n->fast_outs(pmax); p < pmax; p++) {
1161               MemBarNode* mb = n->fast_out(p)->isa_MemBar();
1162               if (mb != nullptr && mb->req() <= MemBarNode::Precedent && mb->in(MemBarNode::Precedent) == n) {
1163                 // MemBarVolatiles should have been removed by MemBarNode::Ideal() for non-inline allocations
1164                 assert(inline_alloc, "MemBarVolatile should be eliminated for non-escaping object");
1165                 mb->remove(&_igvn);
1166               }
1167             }
1168             _igvn.replace_node(n, n->in(MemNode::Memory));
1169           } else {
1170             eliminate_gc_barrier(n);
1171           }
1172           k -= (oc2 - use->outcnt());
1173         }
1174         _igvn.remove_dead_node(use);
1175       } else if (use->is_ArrayCopy()) {
1176         // Disconnect ArrayCopy node
1177         ArrayCopyNode* ac = use->as_ArrayCopy();
1178         if (ac->is_clonebasic()) {
1179           Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
1180           disconnect_projections(ac, _igvn);
1181           assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
1182           Node* membar_before = alloc->in(TypeFunc::Memory)->in(0);
1183           disconnect_projections(membar_before->as_MemBar(), _igvn);
1184           if (membar_after->is_MemBar()) {
1185             disconnect_projections(membar_after->as_MemBar(), _igvn);
1186           }
1187         } else {
1188           assert(ac->is_arraycopy_validated() ||
1189                  ac->is_copyof_validated() ||
1190                  ac->is_copyofrange_validated(), "unsupported");
1191           CallProjections* callprojs = ac->extract_projections(true);
1192 
1193           _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O));
1194           _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory));
1195           _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control));
1196 
1197           // Set control to top. IGVN will remove the remaining projections
1198           ac->set_req(0, top());
1199           ac->replace_edge(res, top(), &_igvn);
1200 
1201           // Disconnect src right away: it can help find new
1202           // opportunities for allocation elimination
1203           Node* src = ac->in(ArrayCopyNode::Src);
1204           ac->replace_edge(src, top(), &_igvn);
1205           // src can be top at this point if src and dest of the
1206           // arraycopy were the same
1207           if (src->outcnt() == 0 && !src->is_top()) {
1208             _igvn.remove_dead_node(src);
1209           }
1210         }
1211         _igvn._worklist.push(ac);
1212       } else if (use->is_InlineType()) {
1213         assert(use->as_InlineType()->get_oop() == res, "unexpected inline type ptr use");
1214         // Cut off oop input and remove known instance id from type
1215         _igvn.rehash_node_delayed(use);
1216         use->as_InlineType()->set_oop(_igvn, _igvn.zerocon(T_OBJECT));
1217         const TypeOopPtr* toop = _igvn.type(use)->is_oopptr()->cast_to_instance_id(TypeOopPtr::InstanceBot);
1218         _igvn.set_type(use, toop);
1219         use->as_InlineType()->set_type(toop);
1220         // Process users
1221         for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1222           Node* u = use->fast_out(k);
1223           if (!u->is_InlineType()) {
1224             worklist.push(u);
1225           }
1226         }
1227       } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) {
1228         // Store to mark word of inline type larval buffer
1229         assert(inline_alloc, "Unexpected store to mark word");
1230         _igvn.replace_node(use, use->in(MemNode::Memory));
1231       } else if (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore) {
1232         // Inline type buffer allocations are followed by a membar
1233         assert(inline_alloc, "Unexpected MemBarRelease");
1234         use->as_MemBar()->remove(&_igvn);
1235       } else {
1236         eliminate_gc_barrier(use);
1237       }
1238       j -= (oc1 - res->outcnt());
1239     }
1240     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1241     _igvn.remove_dead_node(res);
1242   }
1243 
1244   //
1245   // Process other users of allocation's projections
1246   //
1247   if (_callprojs->resproj[0] != nullptr && _callprojs->resproj[0]->outcnt() != 0) {
1248     // First disconnect stores captured by Initialize node.
1249     // If Initialize node is eliminated first in the following code,
1250     // it will kill such stores and DUIterator_Last will assert.
1251     for (DUIterator_Fast jmax, j = _callprojs->resproj[0]->fast_outs(jmax);  j < jmax; j++) {
1252       Node* use = _callprojs->resproj[0]->fast_out(j);
1253       if (use->is_AddP()) {
1254         // raw memory addresses used only by the initialization
1255         _igvn.replace_node(use, C->top());
1256         --j; --jmax;
1257       }
1258     }
1259     for (DUIterator_Last jmin, j = _callprojs->resproj[0]->last_outs(jmin); j >= jmin; ) {
1260       Node* use = _callprojs->resproj[0]->last_out(j);
1261       uint oc1 = _callprojs->resproj[0]->outcnt();
1262       if (use->is_Initialize()) {
1263         // Eliminate Initialize node.
1264         InitializeNode *init = use->as_Initialize();
1265         assert(init->outcnt() <= 2, "only a control and memory projection expected");
1266         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1267         if (ctrl_proj != nullptr) {
1268           _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control));
1269 #ifdef ASSERT
1270           // If the InitializeNode has no memory out, it will die, and tmp will become null
1271           Node* tmp = init->in(TypeFunc::Control);
1272           assert(tmp == nullptr || tmp == _callprojs->fallthrough_catchproj, "allocation control projection");
1273 #endif
1274         }
1275         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1276         if (mem_proj != nullptr) {
1277           Node *mem = init->in(TypeFunc::Memory);
1278 #ifdef ASSERT
1279           if (mem->is_MergeMem()) {
1280             assert(mem->in(TypeFunc::Memory) == _callprojs->fallthrough_memproj, "allocation memory projection");
1281           } else {
1282             assert(mem == _callprojs->fallthrough_memproj, "allocation memory projection");
1283           }
1284 #endif
1285           _igvn.replace_node(mem_proj, mem);
1286         }
1287       } else if (use->Opcode() == Op_MemBarStoreStore) {
1288         // Inline type buffer allocations are followed by a membar
1289         assert(inline_alloc, "Unexpected MemBarStoreStore");
1290         use->as_MemBar()->remove(&_igvn);
1291       } else  {
1292         assert(false, "only Initialize or AddP expected");
1293       }
1294       j -= (oc1 - _callprojs->resproj[0]->outcnt());
1295     }
1296   }
1297   if (_callprojs->fallthrough_catchproj != nullptr) {
1298     _igvn.replace_node(_callprojs->fallthrough_catchproj, alloc->in(TypeFunc::Control));
1299   }
1300   if (_callprojs->fallthrough_memproj != nullptr) {
1301     _igvn.replace_node(_callprojs->fallthrough_memproj, alloc->in(TypeFunc::Memory));
1302   }
1303   if (_callprojs->catchall_memproj != nullptr) {
1304     _igvn.replace_node(_callprojs->catchall_memproj, C->top());
1305   }
1306   if (_callprojs->fallthrough_ioproj != nullptr) {
1307     _igvn.replace_node(_callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
1308   }
1309   if (_callprojs->catchall_ioproj != nullptr) {
1310     _igvn.replace_node(_callprojs->catchall_ioproj, C->top());
1311   }
1312   if (_callprojs->catchall_catchproj != nullptr) {
1313     _igvn.replace_node(_callprojs->catchall_catchproj, C->top());
1314   }
1315 }
1316 
1317 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1318   // If reallocation fails during deoptimization we'll pop all
1319   // interpreter frames for this compiled frame and that won't play
1320   // nice with JVMTI popframe.
1321   // We avoid this issue by eager reallocation when the popframe request
1322   // is received.
1323   if (!EliminateAllocations) {
1324     return false;
1325   }
1326   Node* klass = alloc->in(AllocateNode::KlassNode);
1327   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1328 
1329   // Attempt to eliminate inline type buffer allocations
1330   // regardless of usage and escape/replaceable status.
1331   bool inline_alloc = tklass->isa_instklassptr() &&
1332                       tklass->is_instklassptr()->instance_klass()->is_inlinetype();
1333   if (!alloc->_is_non_escaping && !inline_alloc) {
1334     return false;
1335   }
1336   // Eliminate boxing allocations which are not used
1337   // regardless scalar replaceable status.
1338   Node* res = alloc->result_cast();
1339   bool boxing_alloc = (res == nullptr) && C->eliminate_boxing() &&
1340                       tklass->isa_instklassptr() &&
1341                       tklass->is_instklassptr()->instance_klass()->is_box_klass();
1342   if (!alloc->_is_scalar_replaceable && !boxing_alloc && !inline_alloc) {
1343     return false;
1344   }
1345 
1346   _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
1347 
1348   GrowableArray <SafePointNode *> safepoints;
1349   if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) {
1350     return false;
1351   }
1352 
1353   if (!alloc->_is_scalar_replaceable) {
1354     assert(res == nullptr || inline_alloc, "sanity");
1355     // We can only eliminate allocation if all debug info references
1356     // are already replaced with SafePointScalarObject because
1357     // we can't search for a fields value without instance_id.
1358     if (safepoints.length() > 0) {
1359       return false;
1360     }
1361   }
1362 
1363   if (!scalar_replacement(alloc, safepoints)) {
1364     return false;
1365   }
1366 
1367   CompileLog* log = C->log();
1368   if (log != nullptr) {
1369     log->head("eliminate_allocation type='%d'",
1370               log->identify(tklass->exact_klass()));
1371     JVMState* p = alloc->jvms();
1372     while (p != nullptr) {
1373       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1374       p = p->caller();
1375     }
1376     log->tail("eliminate_allocation");
1377   }
1378 
1379   process_users_of_allocation(alloc, inline_alloc);
1380 
1381 #ifndef PRODUCT
1382   if (PrintEliminateAllocations) {
1383     if (alloc->is_AllocateArray())
1384       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1385     else
1386       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1387   }
1388 #endif
1389 
1390   return true;
1391 }
1392 
1393 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1394   // EA should remove all uses of non-escaping boxing node.
1395   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) {
1396     return false;
1397   }
1398 
1399   assert(boxing->result_cast() == nullptr, "unexpected boxing node result");
1400 
1401   _callprojs = boxing->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
1402 
1403   const TypeTuple* r = boxing->tf()->range_sig();
1404   assert(r->cnt() > TypeFunc::Parms, "sanity");
1405   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1406   assert(t != nullptr, "sanity");
1407 
1408   CompileLog* log = C->log();
1409   if (log != nullptr) {
1410     log->head("eliminate_boxing type='%d'",
1411               log->identify(t->instance_klass()));
1412     JVMState* p = boxing->jvms();
1413     while (p != nullptr) {
1414       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1415       p = p->caller();
1416     }
1417     log->tail("eliminate_boxing");
1418   }
1419 
1420   process_users_of_allocation(boxing);
1421 
1422 #ifndef PRODUCT
1423   if (PrintEliminateAllocations) {
1424     tty->print("++++ Eliminated: %d ", boxing->_idx);
1425     boxing->method()->print_short_name(tty);
1426     tty->cr();
1427   }
1428 #endif
1429 
1430   return true;
1431 }
1432 
1433 
1434 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1435   Node* adr = basic_plus_adr(base, offset);
1436   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1437   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1438   transform_later(value);
1439   return value;
1440 }
1441 
1442 
1443 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1444   Node* adr = basic_plus_adr(base, offset);
1445   mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered);
1446   transform_later(mem);
1447   return mem;
1448 }
1449 
1450 //=============================================================================
1451 //
1452 //                              A L L O C A T I O N
1453 //
1454 // Allocation attempts to be fast in the case of frequent small objects.
1455 // It breaks down like this:
1456 //
1457 // 1) Size in doublewords is computed.  This is a constant for objects and
1458 // variable for most arrays.  Doubleword units are used to avoid size
1459 // overflow of huge doubleword arrays.  We need doublewords in the end for
1460 // rounding.
1461 //
1462 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1463 // the slow path into the VM.  The slow path can throw any required
1464 // exceptions, and does all the special checks for very large arrays.  The
1465 // size test can constant-fold away for objects.  For objects with
1466 // finalizers it constant-folds the otherway: you always go slow with
1467 // finalizers.
1468 //
1469 // 3) If NOT using TLABs, this is the contended loop-back point.
1470 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1471 //
1472 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1473 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1474 // "size*8" we always enter the VM, where "largish" is a constant picked small
1475 // enough that there's always space between the eden max and 4Gig (old space is
1476 // there so it's quite large) and large enough that the cost of entering the VM
1477 // is dwarfed by the cost to initialize the space.
1478 //
1479 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1480 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1481 // adjusted heap top back down; there is no contention.
1482 //
1483 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1484 // fields.
1485 //
1486 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1487 // oop flavor.
1488 //
1489 //=============================================================================
1490 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1491 // Allocations bigger than this always go the slow route.
1492 // This value must be small enough that allocation attempts that need to
1493 // trigger exceptions go the slow route.  Also, it must be small enough so
1494 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1495 //=============================================================================j//
1496 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1497 // The allocator will coalesce int->oop copies away.  See comment in
1498 // coalesce.cpp about how this works.  It depends critically on the exact
1499 // code shape produced here, so if you are changing this code shape
1500 // make sure the GC info for the heap-top is correct in and around the
1501 // slow-path call.
1502 //
1503 
1504 void PhaseMacroExpand::expand_allocate_common(
1505             AllocateNode* alloc, // allocation node to be expanded
1506             Node* length,  // array length for an array allocation
1507             Node* init_val, // value to initialize the array with
1508             const TypeFunc* slow_call_type, // Type of slow call
1509             address slow_call_address,  // Address of slow call
1510             Node* valid_length_test // whether length is valid or not
1511     )
1512 {
1513   Node* ctrl = alloc->in(TypeFunc::Control);
1514   Node* mem  = alloc->in(TypeFunc::Memory);
1515   Node* i_o  = alloc->in(TypeFunc::I_O);
1516   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1517   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1518   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1519   assert(ctrl != nullptr, "must have control");
1520 
1521   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1522   // they will not be used if "always_slow" is set
1523   enum { slow_result_path = 1, fast_result_path = 2 };
1524   Node *result_region = nullptr;
1525   Node *result_phi_rawmem = nullptr;
1526   Node *result_phi_rawoop = nullptr;
1527   Node *result_phi_i_o = nullptr;
1528 
1529   // The initial slow comparison is a size check, the comparison
1530   // we want to do is a BoolTest::gt
1531   bool expand_fast_path = true;
1532   int tv = _igvn.find_int_con(initial_slow_test, -1);
1533   if (tv >= 0) {
1534     // InitialTest has constant result
1535     //   0 - can fit in TLAB
1536     //   1 - always too big or negative
1537     assert(tv <= 1, "0 or 1 if a constant");
1538     expand_fast_path = (tv == 0);
1539     initial_slow_test = nullptr;
1540   } else {
1541     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1542   }
1543 
1544   if (!UseTLAB) {
1545     // Force slow-path allocation
1546     expand_fast_path = false;
1547     initial_slow_test = nullptr;
1548   }
1549 
1550   bool allocation_has_use = (alloc->result_cast() != nullptr);
1551   if (!allocation_has_use) {
1552     InitializeNode* init = alloc->initialization();
1553     if (init != nullptr) {
1554       init->remove(&_igvn);
1555     }
1556     if (expand_fast_path && (initial_slow_test == nullptr)) {
1557       // Remove allocation node and return.
1558       // Size is a non-negative constant -> no initial check needed -> directly to fast path.
1559       // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left.
1560 #ifndef PRODUCT
1561       if (PrintEliminateAllocations) {
1562         tty->print("NotUsed ");
1563         Node* res = alloc->proj_out_or_null(TypeFunc::Parms);
1564         if (res != nullptr) {
1565           res->dump();
1566         } else {
1567           alloc->dump();
1568         }
1569       }
1570 #endif
1571       yank_alloc_node(alloc);
1572       return;
1573     }
1574   }
1575 
1576   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1577   Node *slow_region = nullptr;
1578   Node *toobig_false = ctrl;
1579 
1580   // generate the initial test if necessary
1581   if (initial_slow_test != nullptr ) {
1582     assert (expand_fast_path, "Only need test if there is a fast path");
1583     slow_region = new RegionNode(3);
1584 
1585     // Now make the initial failure test.  Usually a too-big test but
1586     // might be a TRUE for finalizers.
1587     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1588     transform_later(toobig_iff);
1589     // Plug the failing-too-big test into the slow-path region
1590     Node* toobig_true = new IfTrueNode(toobig_iff);
1591     transform_later(toobig_true);
1592     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1593     toobig_false = new IfFalseNode(toobig_iff);
1594     transform_later(toobig_false);
1595   } else {
1596     // No initial test, just fall into next case
1597     assert(allocation_has_use || !expand_fast_path, "Should already have been handled");
1598     toobig_false = ctrl;
1599     debug_only(slow_region = NodeSentinel);
1600   }
1601 
1602   // If we are here there are several possibilities
1603   // - expand_fast_path is false - then only a slow path is expanded. That's it.
1604   // no_initial_check means a constant allocation.
1605   // - If check always evaluates to false -> expand_fast_path is false (see above)
1606   // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath)
1607   // if !allocation_has_use the fast path is empty
1608   // if !allocation_has_use && no_initial_check
1609   // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all.
1610   //   removed by yank_alloc_node above.
1611 
1612   Node *slow_mem = mem;  // save the current memory state for slow path
1613   // generate the fast allocation code unless we know that the initial test will always go slow
1614   if (expand_fast_path) {
1615     // Fast path modifies only raw memory.
1616     if (mem->is_MergeMem()) {
1617       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1618     }
1619 
1620     // allocate the Region and Phi nodes for the result
1621     result_region = new RegionNode(3);
1622     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1623     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1624 
1625     // Grab regular I/O before optional prefetch may change it.
1626     // Slow-path does no I/O so just set it to the original I/O.
1627     result_phi_i_o->init_req(slow_result_path, i_o);
1628 
1629     // Name successful fast-path variables
1630     Node* fast_oop_ctrl;
1631     Node* fast_oop_rawmem;
1632 
1633     if (allocation_has_use) {
1634       Node* needgc_ctrl = nullptr;
1635       result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1636 
1637       intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1638       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1639       Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
1640                                         fast_oop_ctrl, fast_oop_rawmem,
1641                                         prefetch_lines);
1642 
1643       if (initial_slow_test != nullptr) {
1644         // This completes all paths into the slow merge point
1645         slow_region->init_req(need_gc_path, needgc_ctrl);
1646         transform_later(slow_region);
1647       } else {
1648         // No initial slow path needed!
1649         // Just fall from the need-GC path straight into the VM call.
1650         slow_region = needgc_ctrl;
1651       }
1652 
1653       InitializeNode* init = alloc->initialization();
1654       fast_oop_rawmem = initialize_object(alloc,
1655                                           fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1656                                           klass_node, length, size_in_bytes);
1657       expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem);
1658       expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem);
1659 
1660       result_phi_rawoop->init_req(fast_result_path, fast_oop);
1661     } else {
1662       assert (initial_slow_test != nullptr, "sanity");
1663       fast_oop_ctrl   = toobig_false;
1664       fast_oop_rawmem = mem;
1665       transform_later(slow_region);
1666     }
1667 
1668     // Plug in the successful fast-path into the result merge point
1669     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1670     result_phi_i_o   ->init_req(fast_result_path, i_o);
1671     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1672   } else {
1673     slow_region = ctrl;
1674     result_phi_i_o = i_o; // Rename it to use in the following code.
1675   }
1676 
1677   // Generate slow-path call
1678   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1679                                OptoRuntime::stub_name(slow_call_address),
1680                                TypePtr::BOTTOM);
1681   call->init_req(TypeFunc::Control,   slow_region);
1682   call->init_req(TypeFunc::I_O,       top());    // does no i/o
1683   call->init_req(TypeFunc::Memory,    slow_mem); // may gc ptrs
1684   call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1685   call->init_req(TypeFunc::FramePtr,  alloc->in(TypeFunc::FramePtr));
1686 
1687   call->init_req(TypeFunc::Parms+0, klass_node);
1688   if (length != nullptr) {
1689     call->init_req(TypeFunc::Parms+1, length);
1690     if (init_val != nullptr) {
1691       call->init_req(TypeFunc::Parms+2, init_val);
1692     }
1693   } else {
1694     // Let the runtime know if this is a larval allocation
1695     call->init_req(TypeFunc::Parms+1, _igvn.intcon(alloc->_larval));
1696   }
1697 
1698   // Copy debug information and adjust JVMState information, then replace
1699   // allocate node with the call
1700   call->copy_call_debug_info(&_igvn, alloc);
1701   // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify
1702   // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough
1703   // path dies).
1704   if (valid_length_test != nullptr) {
1705     call->add_req(valid_length_test);
1706   }
1707   if (expand_fast_path) {
1708     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1709   } else {
1710     // Hook i_o projection to avoid its elimination during allocation
1711     // replacement (when only a slow call is generated).
1712     call->set_req(TypeFunc::I_O, result_phi_i_o);
1713   }
1714   _igvn.replace_node(alloc, call);
1715   transform_later(call);
1716 
1717   // Identify the output projections from the allocate node and
1718   // adjust any references to them.
1719   // The control and io projections look like:
1720   //
1721   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1722   //  Allocate                   Catch
1723   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1724   //
1725   //  We are interested in the CatchProj nodes.
1726   //
1727   _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
1728 
1729   // An allocate node has separate memory projections for the uses on
1730   // the control and i_o paths. Replace the control memory projection with
1731   // result_phi_rawmem (unless we are only generating a slow call when
1732   // both memory projections are combined)
1733   if (expand_fast_path && _callprojs->fallthrough_memproj != nullptr) {
1734     _igvn.replace_in_uses(_callprojs->fallthrough_memproj, result_phi_rawmem);
1735   }
1736   // Now change uses of catchall_memproj to use fallthrough_memproj and delete
1737   // catchall_memproj so we end up with a call that has only 1 memory projection.
1738   if (_callprojs->catchall_memproj != nullptr) {
1739     if (_callprojs->fallthrough_memproj == nullptr) {
1740       _callprojs->fallthrough_memproj = new ProjNode(call, TypeFunc::Memory);
1741       transform_later(_callprojs->fallthrough_memproj);
1742     }
1743     _igvn.replace_in_uses(_callprojs->catchall_memproj, _callprojs->fallthrough_memproj);
1744     _igvn.remove_dead_node(_callprojs->catchall_memproj);
1745   }
1746 
1747   // An allocate node has separate i_o projections for the uses on the control
1748   // and i_o paths. Always replace the control i_o projection with result i_o
1749   // otherwise incoming i_o become dead when only a slow call is generated
1750   // (it is different from memory projections where both projections are
1751   // combined in such case).
1752   if (_callprojs->fallthrough_ioproj != nullptr) {
1753     _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, result_phi_i_o);
1754   }
1755   // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete
1756   // catchall_ioproj so we end up with a call that has only 1 i_o projection.
1757   if (_callprojs->catchall_ioproj != nullptr) {
1758     if (_callprojs->fallthrough_ioproj == nullptr) {
1759       _callprojs->fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O);
1760       transform_later(_callprojs->fallthrough_ioproj);
1761     }
1762     _igvn.replace_in_uses(_callprojs->catchall_ioproj, _callprojs->fallthrough_ioproj);
1763     _igvn.remove_dead_node(_callprojs->catchall_ioproj);
1764   }
1765 
1766   // if we generated only a slow call, we are done
1767   if (!expand_fast_path) {
1768     // Now we can unhook i_o.
1769     if (result_phi_i_o->outcnt() > 1) {
1770       call->set_req(TypeFunc::I_O, top());
1771     } else {
1772       assert(result_phi_i_o->unique_ctrl_out() == call, "sanity");
1773       // Case of new array with negative size known during compilation.
1774       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1775       // following code since call to runtime will throw exception.
1776       // As result there will be no users of i_o after the call.
1777       // Leave i_o attached to this call to avoid problems in preceding graph.
1778     }
1779     return;
1780   }
1781 
1782   if (_callprojs->fallthrough_catchproj != nullptr) {
1783     ctrl = _callprojs->fallthrough_catchproj->clone();
1784     transform_later(ctrl);
1785     _igvn.replace_node(_callprojs->fallthrough_catchproj, result_region);
1786   } else {
1787     ctrl = top();
1788   }
1789   Node *slow_result;
1790   if (_callprojs->resproj[0] == nullptr) {
1791     // no uses of the allocation result
1792     slow_result = top();
1793   } else {
1794     slow_result = _callprojs->resproj[0]->clone();
1795     transform_later(slow_result);
1796     _igvn.replace_node(_callprojs->resproj[0], result_phi_rawoop);
1797   }
1798 
1799   // Plug slow-path into result merge point
1800   result_region->init_req( slow_result_path, ctrl);
1801   transform_later(result_region);
1802   if (allocation_has_use) {
1803     result_phi_rawoop->init_req(slow_result_path, slow_result);
1804     transform_later(result_phi_rawoop);
1805   }
1806   result_phi_rawmem->init_req(slow_result_path, _callprojs->fallthrough_memproj);
1807   transform_later(result_phi_rawmem);
1808   transform_later(result_phi_i_o);
1809   // This completes all paths into the result merge point
1810 }
1811 
1812 // Remove alloc node that has no uses.
1813 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) {
1814   Node* ctrl = alloc->in(TypeFunc::Control);
1815   Node* mem  = alloc->in(TypeFunc::Memory);
1816   Node* i_o  = alloc->in(TypeFunc::I_O);
1817 
1818   _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
1819   if (_callprojs->resproj[0] != nullptr) {
1820     for (DUIterator_Fast imax, i = _callprojs->resproj[0]->fast_outs(imax); i < imax; i++) {
1821       Node* use = _callprojs->resproj[0]->fast_out(i);
1822       use->isa_MemBar()->remove(&_igvn);
1823       --imax;
1824       --i; // back up iterator
1825     }
1826     assert(_callprojs->resproj[0]->outcnt() == 0, "all uses must be deleted");
1827     _igvn.remove_dead_node(_callprojs->resproj[0]);
1828   }
1829   if (_callprojs->fallthrough_catchproj != nullptr) {
1830     _igvn.replace_in_uses(_callprojs->fallthrough_catchproj, ctrl);
1831     _igvn.remove_dead_node(_callprojs->fallthrough_catchproj);
1832   }
1833   if (_callprojs->catchall_catchproj != nullptr) {
1834     _igvn.rehash_node_delayed(_callprojs->catchall_catchproj);
1835     _callprojs->catchall_catchproj->set_req(0, top());
1836   }
1837   if (_callprojs->fallthrough_proj != nullptr) {
1838     Node* catchnode = _callprojs->fallthrough_proj->unique_ctrl_out();
1839     _igvn.remove_dead_node(catchnode);
1840     _igvn.remove_dead_node(_callprojs->fallthrough_proj);
1841   }
1842   if (_callprojs->fallthrough_memproj != nullptr) {
1843     _igvn.replace_in_uses(_callprojs->fallthrough_memproj, mem);
1844     _igvn.remove_dead_node(_callprojs->fallthrough_memproj);
1845   }
1846   if (_callprojs->fallthrough_ioproj != nullptr) {
1847     _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, i_o);
1848     _igvn.remove_dead_node(_callprojs->fallthrough_ioproj);
1849   }
1850   if (_callprojs->catchall_memproj != nullptr) {
1851     _igvn.rehash_node_delayed(_callprojs->catchall_memproj);
1852     _callprojs->catchall_memproj->set_req(0, top());
1853   }
1854   if (_callprojs->catchall_ioproj != nullptr) {
1855     _igvn.rehash_node_delayed(_callprojs->catchall_ioproj);
1856     _callprojs->catchall_ioproj->set_req(0, top());
1857   }
1858 #ifndef PRODUCT
1859   if (PrintEliminateAllocations) {
1860     if (alloc->is_AllocateArray()) {
1861       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1862     } else {
1863       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1864     }
1865   }
1866 #endif
1867   _igvn.remove_dead_node(alloc);
1868 }
1869 
1870 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init,
1871                                                 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) {
1872   // If initialization is performed by an array copy, any required
1873   // MemBarStoreStore was already added. If the object does not
1874   // escape no need for a MemBarStoreStore. If the object does not
1875   // escape in its initializer and memory barrier (MemBarStoreStore or
1876   // stronger) is already added at exit of initializer, also no need
1877   // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1878   // so that stores that initialize this object can't be reordered
1879   // with a subsequent store that makes this object accessible by
1880   // other threads.
1881   // Other threads include java threads and JVM internal threads
1882   // (for example concurrent GC threads). Current concurrent GC
1883   // implementation: G1 will not scan newly created object,
1884   // so it's safe to skip storestore barrier when allocation does
1885   // not escape.
1886   if (!alloc->does_not_escape_thread() &&
1887     !alloc->is_allocation_MemBar_redundant() &&
1888     (init == nullptr || !init->is_complete_with_arraycopy())) {
1889     if (init == nullptr || init->req() < InitializeNode::RawStores) {
1890       // No InitializeNode or no stores captured by zeroing
1891       // elimination. Simply add the MemBarStoreStore after object
1892       // initialization.
1893       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1894       transform_later(mb);
1895 
1896       mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1897       mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1898       fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control);
1899       transform_later(fast_oop_ctrl);
1900       fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory);
1901       transform_later(fast_oop_rawmem);
1902     } else {
1903       // Add the MemBarStoreStore after the InitializeNode so that
1904       // all stores performing the initialization that were moved
1905       // before the InitializeNode happen before the storestore
1906       // barrier.
1907 
1908       Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1909       Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1910 
1911       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1912       transform_later(mb);
1913 
1914       Node* ctrl = new ProjNode(init, TypeFunc::Control);
1915       transform_later(ctrl);
1916       Node* mem = new ProjNode(init, TypeFunc::Memory);
1917       transform_later(mem);
1918 
1919       // The MemBarStoreStore depends on control and memory coming
1920       // from the InitializeNode
1921       mb->init_req(TypeFunc::Memory, mem);
1922       mb->init_req(TypeFunc::Control, ctrl);
1923 
1924       ctrl = new ProjNode(mb, TypeFunc::Control);
1925       transform_later(ctrl);
1926       mem = new ProjNode(mb, TypeFunc::Memory);
1927       transform_later(mem);
1928 
1929       // All nodes that depended on the InitializeNode for control
1930       // and memory must now depend on the MemBarNode that itself
1931       // depends on the InitializeNode
1932       if (init_ctrl != nullptr) {
1933         _igvn.replace_node(init_ctrl, ctrl);
1934       }
1935       if (init_mem != nullptr) {
1936         _igvn.replace_node(init_mem, mem);
1937       }
1938     }
1939   }
1940 }
1941 
1942 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop,
1943                                                 Node*& ctrl, Node*& rawmem) {
1944   if (C->env()->dtrace_alloc_probes()) {
1945     // Slow-path call
1946     int size = TypeFunc::Parms + 2;
1947     CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1948                                           CAST_FROM_FN_PTR(address,
1949                                           static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)),
1950                                           "dtrace_object_alloc",
1951                                           TypeRawPtr::BOTTOM);
1952 
1953     // Get base of thread-local storage area
1954     Node* thread = new ThreadLocalNode();
1955     transform_later(thread);
1956 
1957     call->init_req(TypeFunc::Parms + 0, thread);
1958     call->init_req(TypeFunc::Parms + 1, oop);
1959     call->init_req(TypeFunc::Control, ctrl);
1960     call->init_req(TypeFunc::I_O    , top()); // does no i/o
1961     call->init_req(TypeFunc::Memory , rawmem);
1962     call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1963     call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1964     transform_later(call);
1965     ctrl = new ProjNode(call, TypeFunc::Control);
1966     transform_later(ctrl);
1967     rawmem = new ProjNode(call, TypeFunc::Memory);
1968     transform_later(rawmem);
1969   }
1970 }
1971 
1972 // Helper for PhaseMacroExpand::expand_allocate_common.
1973 // Initializes the newly-allocated storage.
1974 Node* PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1975                                           Node* control, Node* rawmem, Node* object,
1976                                           Node* klass_node, Node* length,
1977                                           Node* size_in_bytes) {
1978   InitializeNode* init = alloc->initialization();
1979   // Store the klass & mark bits
1980   Node* mark_node = alloc->make_ideal_mark(&_igvn, control, rawmem);
1981   if (!mark_node->is_Con()) {
1982     transform_later(mark_node);
1983   }
1984   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type());
1985 
1986   if (!UseCompactObjectHeaders) {
1987     rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1988   }
1989   int header_size = alloc->minimum_header_size();  // conservatively small
1990 
1991   // Array length
1992   if (length != nullptr) {         // Arrays need length field
1993     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1994     // conservatively small header size:
1995     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1996     if (_igvn.type(klass_node)->isa_aryklassptr()) {   // we know the exact header size in most cases:
1997       BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();
1998       if (is_reference_type(elem, true)) {
1999         elem = T_OBJECT;
2000       }
2001       header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem));
2002     }
2003   }
2004 
2005   // Clear the object body, if necessary.
2006   if (init == nullptr) {
2007     // The init has somehow disappeared; be cautious and clear everything.
2008     //
2009     // This can happen if a node is allocated but an uncommon trap occurs
2010     // immediately.  In this case, the Initialize gets associated with the
2011     // trap, and may be placed in a different (outer) loop, if the Allocate
2012     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
2013     // there can be two Allocates to one Initialize.  The answer in all these
2014     // edge cases is safety first.  It is always safe to clear immediately
2015     // within an Allocate, and then (maybe or maybe not) clear some more later.
2016     if (!(UseTLAB && ZeroTLAB)) {
2017       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
2018                                             alloc->in(AllocateNode::InitValue),
2019                                             alloc->in(AllocateNode::RawInitValue),
2020                                             header_size, size_in_bytes,
2021                                             &_igvn);
2022     }
2023   } else {
2024     if (!init->is_complete()) {
2025       // Try to win by zeroing only what the init does not store.
2026       // We can also try to do some peephole optimizations,
2027       // such as combining some adjacent subword stores.
2028       rawmem = init->complete_stores(control, rawmem, object,
2029                                      header_size, size_in_bytes, &_igvn);
2030     }
2031     // We have no more use for this link, since the AllocateNode goes away:
2032     init->set_req(InitializeNode::RawAddress, top());
2033     // (If we keep the link, it just confuses the register allocator,
2034     // who thinks he sees a real use of the address by the membar.)
2035   }
2036 
2037   return rawmem;
2038 }
2039 
2040 // Generate prefetch instructions for next allocations.
2041 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
2042                                         Node*& contended_phi_rawmem,
2043                                         Node* old_eden_top, Node* new_eden_top,
2044                                         intx lines) {
2045    enum { fall_in_path = 1, pf_path = 2 };
2046    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
2047       // Generate prefetch allocation with watermark check.
2048       // As an allocation hits the watermark, we will prefetch starting
2049       // at a "distance" away from watermark.
2050 
2051       Node *pf_region = new RegionNode(3);
2052       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
2053                                                 TypeRawPtr::BOTTOM );
2054       // I/O is used for Prefetch
2055       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
2056 
2057       Node *thread = new ThreadLocalNode();
2058       transform_later(thread);
2059 
2060       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
2061                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
2062       transform_later(eden_pf_adr);
2063 
2064       Node *old_pf_wm = new LoadPNode(needgc_false,
2065                                    contended_phi_rawmem, eden_pf_adr,
2066                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
2067                                    MemNode::unordered);
2068       transform_later(old_pf_wm);
2069 
2070       // check against new_eden_top
2071       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
2072       transform_later(need_pf_cmp);
2073       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
2074       transform_later(need_pf_bol);
2075       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
2076                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
2077       transform_later(need_pf_iff);
2078 
2079       // true node, add prefetchdistance
2080       Node *need_pf_true = new IfTrueNode( need_pf_iff );
2081       transform_later(need_pf_true);
2082 
2083       Node *need_pf_false = new IfFalseNode( need_pf_iff );
2084       transform_later(need_pf_false);
2085 
2086       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
2087                                     _igvn.MakeConX(AllocatePrefetchDistance) );
2088       transform_later(new_pf_wmt );
2089       new_pf_wmt->set_req(0, need_pf_true);
2090 
2091       Node *store_new_wmt = new StorePNode(need_pf_true,
2092                                        contended_phi_rawmem, eden_pf_adr,
2093                                        TypeRawPtr::BOTTOM, new_pf_wmt,
2094                                        MemNode::unordered);
2095       transform_later(store_new_wmt);
2096 
2097       // adding prefetches
2098       pf_phi_abio->init_req( fall_in_path, i_o );
2099 
2100       Node *prefetch_adr;
2101       Node *prefetch;
2102       uint step_size = AllocatePrefetchStepSize;
2103       uint distance = 0;
2104 
2105       for ( intx i = 0; i < lines; i++ ) {
2106         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
2107                                             _igvn.MakeConX(distance) );
2108         transform_later(prefetch_adr);
2109         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
2110         transform_later(prefetch);
2111         distance += step_size;
2112         i_o = prefetch;
2113       }
2114       pf_phi_abio->set_req( pf_path, i_o );
2115 
2116       pf_region->init_req( fall_in_path, need_pf_false );
2117       pf_region->init_req( pf_path, need_pf_true );
2118 
2119       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
2120       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
2121 
2122       transform_later(pf_region);
2123       transform_later(pf_phi_rawmem);
2124       transform_later(pf_phi_abio);
2125 
2126       needgc_false = pf_region;
2127       contended_phi_rawmem = pf_phi_rawmem;
2128       i_o = pf_phi_abio;
2129    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
2130       // Insert a prefetch instruction for each allocation.
2131       // This code is used to generate 1 prefetch instruction per cache line.
2132 
2133       // Generate several prefetch instructions.
2134       uint step_size = AllocatePrefetchStepSize;
2135       uint distance = AllocatePrefetchDistance;
2136 
2137       // Next cache address.
2138       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
2139                                      _igvn.MakeConX(step_size + distance));
2140       transform_later(cache_adr);
2141       cache_adr = new CastP2XNode(needgc_false, cache_adr);
2142       transform_later(cache_adr);
2143       // Address is aligned to execute prefetch to the beginning of cache line size
2144       // (it is important when BIS instruction is used on SPARC as prefetch).
2145       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
2146       cache_adr = new AndXNode(cache_adr, mask);
2147       transform_later(cache_adr);
2148       cache_adr = new CastX2PNode(cache_adr);
2149       transform_later(cache_adr);
2150 
2151       // Prefetch
2152       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
2153       prefetch->set_req(0, needgc_false);
2154       transform_later(prefetch);
2155       contended_phi_rawmem = prefetch;
2156       Node *prefetch_adr;
2157       distance = step_size;
2158       for ( intx i = 1; i < lines; i++ ) {
2159         prefetch_adr = new AddPNode( cache_adr, cache_adr,
2160                                             _igvn.MakeConX(distance) );
2161         transform_later(prefetch_adr);
2162         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
2163         transform_later(prefetch);
2164         distance += step_size;
2165         contended_phi_rawmem = prefetch;
2166       }
2167    } else if( AllocatePrefetchStyle > 0 ) {
2168       // Insert a prefetch for each allocation only on the fast-path
2169       Node *prefetch_adr;
2170       Node *prefetch;
2171       // Generate several prefetch instructions.
2172       uint step_size = AllocatePrefetchStepSize;
2173       uint distance = AllocatePrefetchDistance;
2174       for ( intx i = 0; i < lines; i++ ) {
2175         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
2176                                             _igvn.MakeConX(distance) );
2177         transform_later(prefetch_adr);
2178         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
2179         // Do not let it float too high, since if eden_top == eden_end,
2180         // both might be null.
2181         if( i == 0 ) { // Set control for first prefetch, next follows it
2182           prefetch->init_req(0, needgc_false);
2183         }
2184         transform_later(prefetch);
2185         distance += step_size;
2186         i_o = prefetch;
2187       }
2188    }
2189    return i_o;
2190 }
2191 
2192 
2193 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
2194   expand_allocate_common(alloc, nullptr, nullptr,
2195                          OptoRuntime::new_instance_Type(),
2196                          OptoRuntime::new_instance_Java(), nullptr);
2197 }
2198 
2199 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
2200   Node* length = alloc->in(AllocateNode::ALength);
2201   Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest);
2202   InitializeNode* init = alloc->initialization();
2203   Node* klass_node = alloc->in(AllocateNode::KlassNode);
2204   Node* init_value = alloc->in(AllocateNode::InitValue);
2205   const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr();
2206   const TypeFunc* slow_call_type;
2207   address slow_call_address;  // Address of slow call
2208   if (init != nullptr && init->is_complete_with_arraycopy() &&
2209       ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) {
2210     // Don't zero type array during slow allocation in VM since
2211     // it will be initialized later by arraycopy in compiled code.
2212     slow_call_address = OptoRuntime::new_array_nozero_Java();
2213     slow_call_type = OptoRuntime::new_array_nozero_Type();
2214   } else {
2215     slow_call_address = OptoRuntime::new_array_Java();
2216     slow_call_type = OptoRuntime::new_array_Type();
2217 
2218     if (init_value == nullptr) {
2219       init_value = _igvn.zerocon(T_OBJECT);
2220     } else if (UseCompressedOops) {
2221       init_value = transform_later(new DecodeNNode(init_value, init_value->bottom_type()->make_ptr()));
2222     }
2223   }
2224   expand_allocate_common(alloc, length, init_value,
2225                          slow_call_type,
2226                          slow_call_address, valid_length_test);
2227 }
2228 
2229 //-------------------mark_eliminated_box----------------------------------
2230 //
2231 // During EA obj may point to several objects but after few ideal graph
2232 // transformations (CCP) it may point to only one non escaping object
2233 // (but still using phi), corresponding locks and unlocks will be marked
2234 // for elimination. Later obj could be replaced with a new node (new phi)
2235 // and which does not have escape information. And later after some graph
2236 // reshape other locks and unlocks (which were not marked for elimination
2237 // before) are connected to this new obj (phi) but they still will not be
2238 // marked for elimination since new obj has no escape information.
2239 // Mark all associated (same box and obj) lock and unlock nodes for
2240 // elimination if some of them marked already.
2241 void PhaseMacroExpand::mark_eliminated_box(Node* box, Node* obj) {
2242   BoxLockNode* oldbox = box->as_BoxLock();
2243   if (oldbox->is_eliminated()) {
2244     return; // This BoxLock node was processed already.
2245   }
2246   assert(!oldbox->is_unbalanced(), "this should not be called for unbalanced region");
2247   // New implementation (EliminateNestedLocks) has separate BoxLock
2248   // node for each locked region so mark all associated locks/unlocks as
2249   // eliminated even if different objects are referenced in one locked region
2250   // (for example, OSR compilation of nested loop inside locked scope).
2251   if (EliminateNestedLocks ||
2252       oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) {
2253     // Box is used only in one lock region. Mark this box as eliminated.
2254     oldbox->set_local();      // This verifies correct state of BoxLock
2255     _igvn.hash_delete(oldbox);
2256     oldbox->set_eliminated(); // This changes box's hash value
2257      _igvn.hash_insert(oldbox);
2258 
2259     for (uint i = 0; i < oldbox->outcnt(); i++) {
2260       Node* u = oldbox->raw_out(i);
2261       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
2262         AbstractLockNode* alock = u->as_AbstractLock();
2263         // Check lock's box since box could be referenced by Lock's debug info.
2264         if (alock->box_node() == oldbox) {
2265           // Mark eliminated all related locks and unlocks.
2266 #ifdef ASSERT
2267           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
2268 #endif
2269           alock->set_non_esc_obj();
2270         }
2271       }
2272     }
2273     return;
2274   }
2275 
2276   // Create new "eliminated" BoxLock node and use it in monitor debug info
2277   // instead of oldbox for the same object.
2278   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
2279 
2280   // Note: BoxLock node is marked eliminated only here and it is used
2281   // to indicate that all associated lock and unlock nodes are marked
2282   // for elimination.
2283   newbox->set_local(); // This verifies correct state of BoxLock
2284   newbox->set_eliminated();
2285   transform_later(newbox);
2286 
2287   // Replace old box node with new box for all users of the same object.
2288   for (uint i = 0; i < oldbox->outcnt();) {
2289     bool next_edge = true;
2290 
2291     Node* u = oldbox->raw_out(i);
2292     if (u->is_AbstractLock()) {
2293       AbstractLockNode* alock = u->as_AbstractLock();
2294       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2295         // Replace Box and mark eliminated all related locks and unlocks.
2296 #ifdef ASSERT
2297         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2298 #endif
2299         alock->set_non_esc_obj();
2300         _igvn.rehash_node_delayed(alock);
2301         alock->set_box_node(newbox);
2302         next_edge = false;
2303       }
2304     }
2305     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2306       FastLockNode* flock = u->as_FastLock();
2307       assert(flock->box_node() == oldbox, "sanity");
2308       _igvn.rehash_node_delayed(flock);
2309       flock->set_box_node(newbox);
2310       next_edge = false;
2311     }
2312 
2313     // Replace old box in monitor debug info.
2314     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2315       SafePointNode* sfn = u->as_SafePoint();
2316       JVMState* youngest_jvms = sfn->jvms();
2317       int max_depth = youngest_jvms->depth();
2318       for (int depth = 1; depth <= max_depth; depth++) {
2319         JVMState* jvms = youngest_jvms->of_depth(depth);
2320         int num_mon  = jvms->nof_monitors();
2321         // Loop over monitors
2322         for (int idx = 0; idx < num_mon; idx++) {
2323           Node* obj_node = sfn->monitor_obj(jvms, idx);
2324           Node* box_node = sfn->monitor_box(jvms, idx);
2325           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2326             int j = jvms->monitor_box_offset(idx);
2327             _igvn.replace_input_of(u, j, newbox);
2328             next_edge = false;
2329           }
2330         }
2331       }
2332     }
2333     if (next_edge) i++;
2334   }
2335 }
2336 
2337 //-----------------------mark_eliminated_locking_nodes-----------------------
2338 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2339   if (!alock->is_balanced()) {
2340     return; // Can't do any more elimination for this locking region
2341   }
2342   if (EliminateNestedLocks) {
2343     if (alock->is_nested()) {
2344        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2345        return;
2346     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2347       // Only Lock node has JVMState needed here.
2348       // Not that preceding claim is documented anywhere else.
2349       if (alock->jvms() != nullptr) {
2350         if (alock->as_Lock()->is_nested_lock_region()) {
2351           // Mark eliminated related nested locks and unlocks.
2352           Node* obj = alock->obj_node();
2353           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2354           assert(!box_node->is_eliminated(), "should not be marked yet");
2355           // Note: BoxLock node is marked eliminated only here
2356           // and it is used to indicate that all associated lock
2357           // and unlock nodes are marked for elimination.
2358           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2359           for (uint i = 0; i < box_node->outcnt(); i++) {
2360             Node* u = box_node->raw_out(i);
2361             if (u->is_AbstractLock()) {
2362               alock = u->as_AbstractLock();
2363               if (alock->box_node() == box_node) {
2364                 // Verify that this Box is referenced only by related locks.
2365                 assert(alock->obj_node()->eqv_uncast(obj), "");
2366                 // Mark all related locks and unlocks.
2367 #ifdef ASSERT
2368                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2369 #endif
2370                 alock->set_nested();
2371               }
2372             }
2373           }
2374         } else {
2375 #ifdef ASSERT
2376           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2377           if (C->log() != nullptr)
2378             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2379 #endif
2380         }
2381       }
2382       return;
2383     }
2384     // Process locks for non escaping object
2385     assert(alock->is_non_esc_obj(), "");
2386   } // EliminateNestedLocks
2387 
2388   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2389     // Look for all locks of this object and mark them and
2390     // corresponding BoxLock nodes as eliminated.
2391     Node* obj = alock->obj_node();
2392     for (uint j = 0; j < obj->outcnt(); j++) {
2393       Node* o = obj->raw_out(j);
2394       if (o->is_AbstractLock() &&
2395           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2396         alock = o->as_AbstractLock();
2397         Node* box = alock->box_node();
2398         // Replace old box node with new eliminated box for all users
2399         // of the same object and mark related locks as eliminated.
2400         mark_eliminated_box(box, obj);
2401       }
2402     }
2403   }
2404 }
2405 
2406 // we have determined that this lock/unlock can be eliminated, we simply
2407 // eliminate the node without expanding it.
2408 //
2409 // Note:  The membar's associated with the lock/unlock are currently not
2410 //        eliminated.  This should be investigated as a future enhancement.
2411 //
2412 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2413 
2414   if (!alock->is_eliminated()) {
2415     return false;
2416   }
2417 #ifdef ASSERT
2418   if (!alock->is_coarsened()) {
2419     // Check that new "eliminated" BoxLock node is created.
2420     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2421     assert(oldbox->is_eliminated(), "should be done already");
2422   }
2423 #endif
2424 
2425   alock->log_lock_optimization(C, "eliminate_lock");
2426 
2427 #ifndef PRODUCT
2428   if (PrintEliminateLocks) {
2429     tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string());
2430   }
2431 #endif
2432 
2433   Node* mem  = alock->in(TypeFunc::Memory);
2434   Node* ctrl = alock->in(TypeFunc::Control);
2435   guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null");
2436 
2437   _callprojs = alock->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
2438   // There are 2 projections from the lock.  The lock node will
2439   // be deleted when its last use is subsumed below.
2440   assert(alock->outcnt() == 2 &&
2441          _callprojs->fallthrough_proj != nullptr &&
2442          _callprojs->fallthrough_memproj != nullptr,
2443          "Unexpected projections from Lock/Unlock");
2444 
2445   Node* fallthroughproj = _callprojs->fallthrough_proj;
2446   Node* memproj_fallthrough = _callprojs->fallthrough_memproj;
2447 
2448   // The memory projection from a lock/unlock is RawMem
2449   // The input to a Lock is merged memory, so extract its RawMem input
2450   // (unless the MergeMem has been optimized away.)
2451   if (alock->is_Lock()) {
2452     // Search for MemBarAcquireLock node and delete it also.
2453     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2454     assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, "");
2455     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2456     Node* memproj = membar->proj_out(TypeFunc::Memory);
2457     _igvn.replace_node(ctrlproj, fallthroughproj);
2458     _igvn.replace_node(memproj, memproj_fallthrough);
2459 
2460     // Delete FastLock node also if this Lock node is unique user
2461     // (a loop peeling may clone a Lock node).
2462     Node* flock = alock->as_Lock()->fastlock_node();
2463     if (flock->outcnt() == 1) {
2464       assert(flock->unique_out() == alock, "sanity");
2465       _igvn.replace_node(flock, top());
2466     }
2467   }
2468 
2469   // Search for MemBarReleaseLock node and delete it also.
2470   if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
2471     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2472     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2473            mem->is_Proj() && membar == mem->in(0), "");
2474     _igvn.replace_node(fallthroughproj, ctrl);
2475     _igvn.replace_node(memproj_fallthrough, mem);
2476     fallthroughproj = ctrl;
2477     memproj_fallthrough = mem;
2478     ctrl = membar->in(TypeFunc::Control);
2479     mem  = membar->in(TypeFunc::Memory);
2480   }
2481 
2482   _igvn.replace_node(fallthroughproj, ctrl);
2483   _igvn.replace_node(memproj_fallthrough, mem);
2484   return true;
2485 }
2486 
2487 
2488 //------------------------------expand_lock_node----------------------
2489 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2490 
2491   Node* ctrl = lock->in(TypeFunc::Control);
2492   Node* mem = lock->in(TypeFunc::Memory);
2493   Node* obj = lock->obj_node();
2494   Node* box = lock->box_node();
2495   Node* flock = lock->fastlock_node();
2496 
2497   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2498 
2499   // Make the merge point
2500   Node *region;
2501   Node *mem_phi;
2502   Node *slow_path;
2503 
2504   region  = new RegionNode(3);
2505   // create a Phi for the memory state
2506   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2507 
2508   // Optimize test; set region slot 2
2509   slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2510   mem_phi->init_req(2, mem);
2511 
2512   // Make slow path call
2513   CallNode* call = make_slow_call(lock, OptoRuntime::complete_monitor_enter_Type(),
2514                                   OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path,
2515                                   obj, box, nullptr);
2516 
2517   _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
2518 
2519   // Slow path can only throw asynchronous exceptions, which are always
2520   // de-opted.  So the compiler thinks the slow-call can never throw an
2521   // exception.  If it DOES throw an exception we would need the debug
2522   // info removed first (since if it throws there is no monitor).
2523   assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr &&
2524          _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock");
2525 
2526   // Capture slow path
2527   // disconnect fall-through projection from call and create a new one
2528   // hook up users of fall-through projection to region
2529   Node *slow_ctrl = _callprojs->fallthrough_proj->clone();
2530   transform_later(slow_ctrl);
2531   _igvn.hash_delete(_callprojs->fallthrough_proj);
2532   _callprojs->fallthrough_proj->disconnect_inputs(C);
2533   region->init_req(1, slow_ctrl);
2534   // region inputs are now complete
2535   transform_later(region);
2536   _igvn.replace_node(_callprojs->fallthrough_proj, region);
2537 
2538   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2539 
2540   mem_phi->init_req(1, memproj);
2541 
2542   transform_later(mem_phi);
2543 
2544   _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi);
2545 }
2546 
2547 //------------------------------expand_unlock_node----------------------
2548 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2549 
2550   Node* ctrl = unlock->in(TypeFunc::Control);
2551   Node* mem = unlock->in(TypeFunc::Memory);
2552   Node* obj = unlock->obj_node();
2553   Node* box = unlock->box_node();
2554 
2555   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2556 
2557   // No need for a null check on unlock
2558 
2559   // Make the merge point
2560   Node *region;
2561   Node *mem_phi;
2562 
2563   region  = new RegionNode(3);
2564   // create a Phi for the memory state
2565   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2566 
2567   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2568   funlock = transform_later( funlock )->as_FastUnlock();
2569   // Optimize test; set region slot 2
2570   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2571   Node *thread = transform_later(new ThreadLocalNode());
2572 
2573   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2574                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2575                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2576 
2577   _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/);
2578   assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr &&
2579          _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock");
2580 
2581   // No exceptions for unlocking
2582   // Capture slow path
2583   // disconnect fall-through projection from call and create a new one
2584   // hook up users of fall-through projection to region
2585   Node *slow_ctrl = _callprojs->fallthrough_proj->clone();
2586   transform_later(slow_ctrl);
2587   _igvn.hash_delete(_callprojs->fallthrough_proj);
2588   _callprojs->fallthrough_proj->disconnect_inputs(C);
2589   region->init_req(1, slow_ctrl);
2590   // region inputs are now complete
2591   transform_later(region);
2592   _igvn.replace_node(_callprojs->fallthrough_proj, region);
2593 
2594   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2595   mem_phi->init_req(1, memproj );
2596   mem_phi->init_req(2, mem);
2597   transform_later(mem_phi);
2598 
2599   _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi);
2600 }
2601 
2602 // An inline type might be returned from the call but we don't know its
2603 // type. Either we get a buffered inline type (and nothing needs to be done)
2604 // or one of the values being returned is the klass of the inline type
2605 // and we need to allocate an inline type instance of that type and
2606 // initialize it with other values being returned. In that case, we
2607 // first try a fast path allocation and initialize the value with the
2608 // inline klass's pack handler or we fall back to a runtime call.
2609 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) {
2610   assert(call->method()->is_method_handle_intrinsic(), "must be a method handle intrinsic call");
2611   Node* ret = call->proj_out_or_null(TypeFunc::Parms);
2612   if (ret == nullptr) {
2613     return;
2614   }
2615   const TypeFunc* tf = call->_tf;
2616   const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc();
2617   const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2618   call->_tf = new_tf;
2619   // Make sure the change of type is applied before projections are processed by igvn
2620   _igvn.set_type(call, call->Value(&_igvn));
2621   _igvn.set_type(ret, ret->Value(&_igvn));
2622 
2623   // Before any new projection is added:
2624   CallProjections* projs = call->extract_projections(true, true);
2625 
2626   // Create temporary hook nodes that will be replaced below.
2627   // Add an input to prevent hook nodes from being dead.
2628   Node* ctl = new Node(call);
2629   Node* mem = new Node(ctl);
2630   Node* io = new Node(ctl);
2631   Node* ex_ctl = new Node(ctl);
2632   Node* ex_mem = new Node(ctl);
2633   Node* ex_io = new Node(ctl);
2634   Node* res = new Node(ctl);
2635 
2636   // Allocate a new buffered inline type only if a new one is not returned
2637   Node* cast = transform_later(new CastP2XNode(ctl, res));
2638   Node* mask = MakeConX(0x1);
2639   Node* masked = transform_later(new AndXNode(cast, mask));
2640   Node* cmp = transform_later(new CmpXNode(masked, mask));
2641   Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq));
2642   IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN);
2643   transform_later(allocation_iff);
2644   Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff));
2645   Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff));
2646   Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeInstPtr::BOTTOM));
2647 
2648   // Try to allocate a new buffered inline instance either from TLAB or eden space
2649   Node* needgc_ctrl = nullptr; // needgc means slowcase, i.e. allocation failed
2650   CallLeafNoFPNode* handler_call;
2651   const bool alloc_in_place = UseTLAB;
2652   if (alloc_in_place) {
2653     Node* fast_oop_ctrl = nullptr;
2654     Node* fast_oop_rawmem = nullptr;
2655     Node* mask2 = MakeConX(-2);
2656     Node* masked2 = transform_later(new AndXNode(cast, mask2));
2657     Node* rawklassptr = transform_later(new CastX2PNode(masked2));
2658     Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeInstKlassPtr::OBJECT_OR_NULL));
2659     Node* layout_val = make_load(nullptr, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT);
2660     Node* size_in_bytes = ConvI2X(layout_val);
2661     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2662     Node* fast_oop = bs->obj_allocate(this, mem, allocation_ctl, size_in_bytes, io, needgc_ctrl,
2663                                       fast_oop_ctrl, fast_oop_rawmem,
2664                                       AllocateInstancePrefetchLines);
2665     // Allocation succeed, initialize buffered inline instance header firstly,
2666     // and then initialize its fields with an inline class specific handler
2667     Node* mark_node = makecon(TypeRawPtr::make((address)markWord::inline_type_prototype().value()));
2668     fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
2669     fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
2670     if (UseCompressedClassPointers) {
2671       fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT);
2672     }
2673     Node* fixed_block  = make_load(fast_oop_ctrl, fast_oop_rawmem, klass_node, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2674     Node* pack_handler = make_load(fast_oop_ctrl, fast_oop_rawmem, fixed_block, in_bytes(InlineKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2675     handler_call = new CallLeafNoFPNode(OptoRuntime::pack_inline_type_Type(),
2676                                         nullptr,
2677                                         "pack handler",
2678                                         TypeRawPtr::BOTTOM);
2679     handler_call->init_req(TypeFunc::Control, fast_oop_ctrl);
2680     handler_call->init_req(TypeFunc::Memory, fast_oop_rawmem);
2681     handler_call->init_req(TypeFunc::I_O, top());
2682     handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2683     handler_call->init_req(TypeFunc::ReturnAdr, top());
2684     handler_call->init_req(TypeFunc::Parms, pack_handler);
2685     handler_call->init_req(TypeFunc::Parms+1, fast_oop);
2686   } else {
2687     needgc_ctrl = allocation_ctl;
2688   }
2689 
2690   // Allocation failed, fall back to a runtime call
2691   CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_inline_type_fields_Type(),
2692                                                          StubRoutines::store_inline_type_fields_to_buf(),
2693                                                          "store_inline_type_fields",
2694                                                          TypePtr::BOTTOM);
2695   slow_call->init_req(TypeFunc::Control, needgc_ctrl);
2696   slow_call->init_req(TypeFunc::Memory, mem);
2697   slow_call->init_req(TypeFunc::I_O, io);
2698   slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2699   slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
2700   slow_call->init_req(TypeFunc::Parms, res);
2701 
2702   Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control));
2703   Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory));
2704   Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O));
2705   Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms));
2706   Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2));
2707   Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci));
2708   Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci));
2709 
2710   Node* ex_r = new RegionNode(3);
2711   Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM);
2712   Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO);
2713   ex_r->init_req(1, slow_excp);
2714   ex_mem_phi->init_req(1, slow_mem);
2715   ex_io_phi->init_req(1, slow_io);
2716   ex_r->init_req(2, ex_ctl);
2717   ex_mem_phi->init_req(2, ex_mem);
2718   ex_io_phi->init_req(2, ex_io);
2719   transform_later(ex_r);
2720   transform_later(ex_mem_phi);
2721   transform_later(ex_io_phi);
2722 
2723   // We don't know how many values are returned. This assumes the
2724   // worst case, that all available registers are used.
2725   for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2726     if (domain->field_at(i) == Type::HALF) {
2727       slow_call->init_req(i, top());
2728       if (alloc_in_place) {
2729         handler_call->init_req(i+1, top());
2730       }
2731       continue;
2732     }
2733     Node* proj = transform_later(new ProjNode(call, i));
2734     slow_call->init_req(i, proj);
2735     if (alloc_in_place) {
2736       handler_call->init_req(i+1, proj);
2737     }
2738   }
2739   // We can safepoint at that new call
2740   slow_call->copy_call_debug_info(&_igvn, call);
2741   transform_later(slow_call);
2742   if (alloc_in_place) {
2743     transform_later(handler_call);
2744   }
2745 
2746   Node* fast_ctl = nullptr;
2747   Node* fast_res = nullptr;
2748   MergeMemNode* fast_mem = nullptr;
2749   if (alloc_in_place) {
2750     fast_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control));
2751     Node* rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory));
2752     fast_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms));
2753     fast_mem = MergeMemNode::make(mem);
2754     fast_mem->set_memory_at(Compile::AliasIdxRaw, rawmem);
2755     transform_later(fast_mem);
2756   }
2757 
2758   Node* r = new RegionNode(alloc_in_place ? 4 : 3);
2759   Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM);
2760   Node* io_phi = new PhiNode(r, Type::ABIO);
2761   Node* res_phi = new PhiNode(r, TypeInstPtr::BOTTOM);
2762   r->init_req(1, no_allocation_ctl);
2763   mem_phi->init_req(1, mem);
2764   io_phi->init_req(1, io);
2765   res_phi->init_req(1, no_allocation_res);
2766   r->init_req(2, slow_norm);
2767   mem_phi->init_req(2, slow_mem);
2768   io_phi->init_req(2, slow_io);
2769   res_phi->init_req(2, slow_res);
2770   if (alloc_in_place) {
2771     r->init_req(3, fast_ctl);
2772     mem_phi->init_req(3, fast_mem);
2773     io_phi->init_req(3, io);
2774     res_phi->init_req(3, fast_res);
2775   }
2776   transform_later(r);
2777   transform_later(mem_phi);
2778   transform_later(io_phi);
2779   transform_later(res_phi);
2780 
2781   // Do not let stores that initialize this buffer be reordered with a subsequent
2782   // store that would make this buffer accessible by other threads.
2783   MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
2784   transform_later(mb);
2785   mb->init_req(TypeFunc::Memory, mem_phi);
2786   mb->init_req(TypeFunc::Control, r);
2787   r = new ProjNode(mb, TypeFunc::Control);
2788   transform_later(r);
2789   mem_phi = new ProjNode(mb, TypeFunc::Memory);
2790   transform_later(mem_phi);
2791 
2792   assert(projs->nb_resproj == 1, "unexpected number of results");
2793   _igvn.replace_in_uses(projs->fallthrough_catchproj, r);
2794   _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi);
2795   _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi);
2796   _igvn.replace_in_uses(projs->resproj[0], res_phi);
2797   _igvn.replace_in_uses(projs->catchall_catchproj, ex_r);
2798   _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi);
2799   _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi);
2800   // The CatchNode should not use the ex_io_phi. Re-connect it to the catchall_ioproj.
2801   Node* cn = projs->fallthrough_catchproj->in(0);
2802   _igvn.replace_input_of(cn, 1, projs->catchall_ioproj);
2803 
2804   _igvn.replace_node(ctl, projs->fallthrough_catchproj);
2805   _igvn.replace_node(mem, projs->fallthrough_memproj);
2806   _igvn.replace_node(io, projs->fallthrough_ioproj);
2807   _igvn.replace_node(res, projs->resproj[0]);
2808   _igvn.replace_node(ex_ctl, projs->catchall_catchproj);
2809   _igvn.replace_node(ex_mem, projs->catchall_memproj);
2810   _igvn.replace_node(ex_io, projs->catchall_ioproj);
2811  }
2812 
2813 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) {
2814   assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned");
2815   Node* bol = check->unique_out();
2816   Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass);
2817   Node* superklass = check->in(SubTypeCheckNode::SuperKlass);
2818   assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node");
2819 
2820   for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) {
2821     Node* iff = bol->last_out(i);
2822     assert(iff->is_If(), "where's the if?");
2823 
2824     if (iff->in(0)->is_top()) {
2825       _igvn.replace_input_of(iff, 1, C->top());
2826       continue;
2827     }
2828 
2829     Node* iftrue = iff->as_If()->proj_out(1);
2830     Node* iffalse = iff->as_If()->proj_out(0);
2831     Node* ctrl = iff->in(0);
2832 
2833     Node* subklass = nullptr;
2834     if (_igvn.type(obj_or_subklass)->isa_klassptr()) {
2835       subklass = obj_or_subklass;
2836     } else {
2837       Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes());
2838       subklass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
2839     }
2840 
2841     Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci());
2842 
2843     _igvn.replace_input_of(iff, 0, C->top());
2844     _igvn.replace_node(iftrue, not_subtype_ctrl);
2845     _igvn.replace_node(iffalse, ctrl);
2846   }
2847   _igvn.replace_node(check, C->top());
2848 }
2849 
2850 // FlatArrayCheckNode (array1 array2 ...) is expanded into:
2851 //
2852 // long mark = array1.mark | array2.mark | ...;
2853 // long locked_bit = markWord::unlocked_value & array1.mark & array2.mark & ...;
2854 // if (locked_bit == 0) {
2855 //   // One array is locked, load prototype header from the klass
2856 //   mark = array1.klass.proto | array2.klass.proto | ...
2857 // }
2858 // if ((mark & markWord::flat_array_bit_in_place) == 0) {
2859 //    ...
2860 // }
2861 void PhaseMacroExpand::expand_flatarraycheck_node(FlatArrayCheckNode* check) {
2862   bool array_inputs = _igvn.type(check->in(FlatArrayCheckNode::ArrayOrKlass))->isa_oopptr() != nullptr;
2863   if (array_inputs) {
2864     Node* mark = MakeConX(0);
2865     Node* locked_bit = MakeConX(markWord::unlocked_value);
2866     Node* mem = check->in(FlatArrayCheckNode::Memory);
2867     for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) {
2868       Node* ary = check->in(i);
2869       const TypeOopPtr* t = _igvn.type(ary)->isa_oopptr();
2870       assert(t != nullptr, "Mixing array and klass inputs");
2871       assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out");
2872       Node* mark_adr = basic_plus_adr(ary, oopDesc::mark_offset_in_bytes());
2873       Node* mark_load = _igvn.transform(LoadNode::make(_igvn, nullptr, mem, mark_adr, mark_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
2874       mark = _igvn.transform(new OrXNode(mark, mark_load));
2875       locked_bit = _igvn.transform(new AndXNode(locked_bit, mark_load));
2876     }
2877     assert(!mark->is_Con(), "Should have been optimized out");
2878     Node* cmp = _igvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
2879     Node* is_unlocked = _igvn.transform(new BoolNode(cmp, BoolTest::ne));
2880 
2881     // BoolNode might be shared, replace each if user
2882     Node* old_bol = check->unique_out();
2883     assert(old_bol->is_Bool() && old_bol->as_Bool()->_test._test == BoolTest::ne, "unexpected condition");
2884     for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) {
2885       IfNode* old_iff = old_bol->last_out(i)->as_If();
2886       Node* ctrl = old_iff->in(0);
2887       RegionNode* region = new RegionNode(3);
2888       Node* mark_phi = new PhiNode(region, TypeX_X);
2889 
2890       // Check if array is unlocked
2891       IfNode* iff = _igvn.transform(new IfNode(ctrl, is_unlocked, PROB_MAX, COUNT_UNKNOWN))->as_If();
2892 
2893       // Unlocked: Use bits from mark word
2894       region->init_req(1, _igvn.transform(new IfTrueNode(iff)));
2895       mark_phi->init_req(1, mark);
2896 
2897       // Locked: Load prototype header from klass
2898       ctrl = _igvn.transform(new IfFalseNode(iff));
2899       Node* proto = MakeConX(0);
2900       for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) {
2901         Node* ary = check->in(i);
2902         // Make loads control dependent to make sure they are only executed if array is locked
2903         Node* klass_adr = basic_plus_adr(ary, oopDesc::klass_offset_in_bytes());
2904         Node* klass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
2905         Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
2906         Node* proto_load = _igvn.transform(LoadNode::make(_igvn, ctrl, C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
2907         proto = _igvn.transform(new OrXNode(proto, proto_load));
2908       }
2909       region->init_req(2, ctrl);
2910       mark_phi->init_req(2, proto);
2911 
2912       // Check if flat array bits are set
2913       Node* mask = MakeConX(markWord::flat_array_bit_in_place);
2914       Node* masked = _igvn.transform(new AndXNode(_igvn.transform(mark_phi), mask));
2915       cmp = _igvn.transform(new CmpXNode(masked, MakeConX(0)));
2916       Node* is_not_flat = _igvn.transform(new BoolNode(cmp, BoolTest::eq));
2917 
2918       ctrl = _igvn.transform(region);
2919       iff = _igvn.transform(new IfNode(ctrl, is_not_flat, PROB_MAX, COUNT_UNKNOWN))->as_If();
2920       _igvn.replace_node(old_iff, iff);
2921     }
2922     _igvn.replace_node(check, C->top());
2923   } else {
2924     // Fall back to layout helper check
2925     Node* lhs = intcon(0);
2926     for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) {
2927       Node* array_or_klass = check->in(i);
2928       Node* klass = nullptr;
2929       const TypePtr* t = _igvn.type(array_or_klass)->is_ptr();
2930       assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out");
2931       if (t->isa_oopptr() != nullptr) {
2932         Node* klass_adr = basic_plus_adr(array_or_klass, oopDesc::klass_offset_in_bytes());
2933         klass = transform_later(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
2934       } else {
2935         assert(t->isa_klassptr(), "Unexpected input type");
2936         klass = array_or_klass;
2937       }
2938       Node* lh_addr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset()));
2939       Node* lh_val = _igvn.transform(LoadNode::make(_igvn, nullptr, C->immutable_memory(), lh_addr, lh_addr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered));
2940       lhs = _igvn.transform(new OrINode(lhs, lh_val));
2941     }
2942     Node* masked = transform_later(new AndINode(lhs, intcon(Klass::_lh_array_tag_flat_value_bit_inplace)));
2943     Node* cmp = transform_later(new CmpINode(masked, intcon(0)));
2944     Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq));
2945     Node* m2b = transform_later(new Conv2BNode(masked));
2946     // The matcher expects the input to If nodes to be produced by a Bool(CmpI..)
2947     // pattern, but the input to other potential users (e.g. Phi) to be some
2948     // other pattern (e.g. a Conv2B node, possibly idealized as a CMoveI).
2949     Node* old_bol = check->unique_out();
2950     for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) {
2951       Node* user = old_bol->last_out(i);
2952       for (uint j = 0; j < user->req(); j++) {
2953         Node* n = user->in(j);
2954         if (n == old_bol) {
2955           _igvn.replace_input_of(user, j, user->is_If() ? bol : m2b);
2956         }
2957       }
2958     }
2959     _igvn.replace_node(check, C->top());
2960   }
2961 }
2962 
2963 //---------------------------eliminate_macro_nodes----------------------
2964 // Eliminate scalar replaced allocations and associated locks.
2965 void PhaseMacroExpand::eliminate_macro_nodes() {
2966   if (C->macro_count() == 0) {
2967     return;
2968   }
2969   NOT_PRODUCT(int membar_before = count_MemBar(C);)
2970 
2971   int iteration = 0;
2972   while (C->macro_count() > 0) {
2973     if (iteration++ > 100) {
2974       assert(false, "Too slow convergence of macro elimination");
2975       break;
2976     }
2977 
2978     // Before elimination may re-mark (change to Nested or NonEscObj)
2979     // all associated (same box and obj) lock and unlock nodes.
2980     int cnt = C->macro_count();
2981     for (int i=0; i < cnt; i++) {
2982       Node *n = C->macro_node(i);
2983       if (n->is_AbstractLock()) { // Lock and Unlock nodes
2984         mark_eliminated_locking_nodes(n->as_AbstractLock());
2985       }
2986     }
2987     // Re-marking may break consistency of Coarsened locks.
2988     if (!C->coarsened_locks_consistent()) {
2989       return; // recompile without Coarsened locks if broken
2990     } else {
2991       // After coarsened locks are eliminated locking regions
2992       // become unbalanced. We should not execute any more
2993       // locks elimination optimizations on them.
2994       C->mark_unbalanced_boxes();
2995     }
2996 
2997     bool progress = false;
2998     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2999       Node* n = C->macro_node(i - 1);
3000       bool success = false;
3001       DEBUG_ONLY(int old_macro_count = C->macro_count();)
3002       switch (n->class_id()) {
3003       case Node::Class_Allocate:
3004       case Node::Class_AllocateArray:
3005         success = eliminate_allocate_node(n->as_Allocate());
3006 #ifndef PRODUCT
3007         if (success && PrintOptoStatistics) {
3008           Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter);
3009         }
3010 #endif
3011         break;
3012       case Node::Class_CallStaticJava: {
3013         CallStaticJavaNode* call = n->as_CallStaticJava();
3014         if (!call->method()->is_method_handle_intrinsic()) {
3015           success = eliminate_boxing_node(n->as_CallStaticJava());
3016         }
3017         break;
3018       }
3019       case Node::Class_Lock:
3020       case Node::Class_Unlock:
3021         success = eliminate_locking_node(n->as_AbstractLock());
3022 #ifndef PRODUCT
3023         if (success && PrintOptoStatistics) {
3024           Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter);
3025         }
3026 #endif
3027         break;
3028       case Node::Class_ArrayCopy:
3029         break;
3030       case Node::Class_OuterStripMinedLoop:
3031         break;
3032       case Node::Class_SubTypeCheck:
3033         break;
3034       case Node::Class_Opaque1:
3035         break;
3036       case Node::Class_FlatArrayCheck:
3037         break;
3038       default:
3039         assert(n->Opcode() == Op_LoopLimit ||
3040                n->Opcode() == Op_ModD ||
3041                n->Opcode() == Op_ModF ||
3042                n->is_OpaqueNotNull()       ||
3043                n->is_OpaqueInitializedAssertionPredicate() ||
3044                n->Opcode() == Op_MaxL      ||
3045                n->Opcode() == Op_MinL      ||
3046                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
3047                "unknown node type in macro list");
3048       }
3049       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
3050       progress = progress || success;
3051     }
3052 
3053     // Ensure the graph after PhaseMacroExpand::eliminate_macro_nodes is canonical (no igvn
3054     // transformation is pending). If an allocation is used only in safepoints, elimination of
3055     // other macro nodes can remove all these safepoints, allowing the allocation to be removed.
3056     // Hence after igvn we retry removing macro nodes if some progress that has been made in this
3057     // iteration.
3058     _igvn.set_delay_transform(false);
3059     _igvn.optimize();
3060     if (C->failing()) {
3061       return;
3062     }
3063     _igvn.set_delay_transform(true);
3064 
3065     if (!progress) {
3066       break;
3067     }
3068   }
3069 #ifndef PRODUCT
3070   if (PrintOptoStatistics) {
3071     int membar_after = count_MemBar(C);
3072     Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after);
3073   }
3074 #endif
3075 }
3076 
3077 //------------------------------expand_macro_nodes----------------------
3078 //  Returns true if a failure occurred.
3079 bool PhaseMacroExpand::expand_macro_nodes() {
3080   // Do not allow new macro nodes once we started to expand
3081   C->reset_allow_macro_nodes();
3082   if (StressMacroExpansion) {
3083     C->shuffle_macro_nodes();
3084   }
3085 
3086   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
3087   bool progress = true;
3088   while (progress) {
3089     progress = false;
3090     for (int i = C->macro_count(); i > 0; i--) {
3091       Node* n = C->macro_node(i-1);
3092       bool success = false;
3093       DEBUG_ONLY(int old_macro_count = C->macro_count();)
3094       if (n->Opcode() == Op_LoopLimit) {
3095         // Remove it from macro list and put on IGVN worklist to optimize.
3096         C->remove_macro_node(n);
3097         _igvn._worklist.push(n);
3098         success = true;
3099       } else if (n->Opcode() == Op_CallStaticJava) {
3100         CallStaticJavaNode* call = n->as_CallStaticJava();
3101         if (!call->method()->is_method_handle_intrinsic()) {
3102           // Remove it from macro list and put on IGVN worklist to optimize.
3103           C->remove_macro_node(n);
3104           _igvn._worklist.push(n);
3105           success = true;
3106         }
3107       } else if (n->is_Opaque1()) {
3108         _igvn.replace_node(n, n->in(1));
3109         success = true;
3110       } else if (n->is_OpaqueNotNull()) {
3111         // Tests with OpaqueNotNull nodes are implicitly known to be true. Replace the node with true. In debug builds,
3112         // we leave the test in the graph to have an additional sanity check at runtime. If the test fails (i.e. a bug),
3113         // we will execute a Halt node.
3114 #ifdef ASSERT
3115         _igvn.replace_node(n, n->in(1));
3116 #else
3117         _igvn.replace_node(n, _igvn.intcon(1));
3118 #endif
3119         success = true;
3120       } else if (n->is_OpaqueInitializedAssertionPredicate()) {
3121           // Initialized Assertion Predicates must always evaluate to true. Therefore, we get rid of them in product
3122           // builds as they are useless. In debug builds we keep them as additional verification code. Even though
3123           // loop opts are already over, we want to keep Initialized Assertion Predicates alive as long as possible to
3124           // enable folding of dead control paths within which cast nodes become top after due to impossible types -
3125           // even after loop opts are over. Therefore, we delay the removal of these opaque nodes until now.
3126 #ifdef ASSERT
3127         _igvn.replace_node(n, n->in(1));
3128 #else
3129         _igvn.replace_node(n, _igvn.intcon(1));
3130 #endif // ASSERT
3131       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
3132         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
3133         C->remove_macro_node(n);
3134         success = true;
3135       } else if (n->Opcode() == Op_MaxL) {
3136         // Since MaxL and MinL are not implemented in the backend, we expand them to
3137         // a CMoveL construct now. At least until here, the type could be computed
3138         // precisely. CMoveL is not so smart, but we can give it at least the best
3139         // type we know abouot n now.
3140         Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn);
3141         _igvn.replace_node(n, repl);
3142         success = true;
3143       } else if (n->Opcode() == Op_MinL) {
3144         Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn);
3145         _igvn.replace_node(n, repl);
3146         success = true;
3147       }
3148       assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list");
3149       progress = progress || success;
3150       if (success) {
3151         C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
3152       }
3153     }
3154   }
3155 
3156   // Clean up the graph so we're less likely to hit the maximum node
3157   // limit
3158   _igvn.set_delay_transform(false);
3159   _igvn.optimize();
3160   if (C->failing())  return true;
3161   _igvn.set_delay_transform(true);
3162 
3163 
3164   // Because we run IGVN after each expansion, some macro nodes may go
3165   // dead and be removed from the list as we iterate over it. Move
3166   // Allocate nodes (processed in a second pass) at the beginning of
3167   // the list and then iterate from the last element of the list until
3168   // an Allocate node is seen. This is robust to random deletion in
3169   // the list due to nodes going dead.
3170   C->sort_macro_nodes();
3171 
3172   // expand arraycopy "macro" nodes first
3173   // For ReduceBulkZeroing, we must first process all arraycopy nodes
3174   // before the allocate nodes are expanded.
3175   while (C->macro_count() > 0) {
3176     int macro_count = C->macro_count();
3177     Node * n = C->macro_node(macro_count-1);
3178     assert(n->is_macro(), "only macro nodes expected here");
3179     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
3180       // node is unreachable, so don't try to expand it
3181       C->remove_macro_node(n);
3182       continue;
3183     }
3184     if (n->is_Allocate()) {
3185       break;
3186     }
3187     // Make sure expansion will not cause node limit to be exceeded.
3188     // Worst case is a macro node gets expanded into about 200 nodes.
3189     // Allow 50% more for optimization.
3190     if (C->check_node_count(300, "out of nodes before macro expansion")) {
3191       return true;
3192     }
3193 
3194     DEBUG_ONLY(int old_macro_count = C->macro_count();)
3195     switch (n->class_id()) {
3196     case Node::Class_Lock:
3197       expand_lock_node(n->as_Lock());
3198       break;
3199     case Node::Class_Unlock:
3200       expand_unlock_node(n->as_Unlock());
3201       break;
3202     case Node::Class_ArrayCopy:
3203       expand_arraycopy_node(n->as_ArrayCopy());
3204       break;
3205     case Node::Class_SubTypeCheck:
3206       expand_subtypecheck_node(n->as_SubTypeCheck());
3207       break;
3208     case Node::Class_CallStaticJava:
3209       expand_mh_intrinsic_return(n->as_CallStaticJava());
3210       C->remove_macro_node(n);
3211       break;
3212     case Node::Class_FlatArrayCheck:
3213       expand_flatarraycheck_node(n->as_FlatArrayCheck());
3214       break;
3215     default:
3216       switch (n->Opcode()) {
3217       case Op_ModD:
3218       case Op_ModF: {
3219         bool is_drem = n->Opcode() == Op_ModD;
3220         CallNode* mod_macro = n->as_Call();
3221         CallNode* call = new CallLeafNode(mod_macro->tf(),
3222                                           is_drem ? CAST_FROM_FN_PTR(address, SharedRuntime::drem)
3223                                                   : CAST_FROM_FN_PTR(address, SharedRuntime::frem),
3224                                           is_drem ? "drem" : "frem", TypeRawPtr::BOTTOM);
3225         call->init_req(TypeFunc::Control, mod_macro->in(TypeFunc::Control));
3226         call->init_req(TypeFunc::I_O, mod_macro->in(TypeFunc::I_O));
3227         call->init_req(TypeFunc::Memory, mod_macro->in(TypeFunc::Memory));
3228         call->init_req(TypeFunc::ReturnAdr, mod_macro->in(TypeFunc::ReturnAdr));
3229         call->init_req(TypeFunc::FramePtr, mod_macro->in(TypeFunc::FramePtr));
3230         for (unsigned int i = 0; i < mod_macro->tf()->domain_cc()->cnt() - TypeFunc::Parms; i++) {
3231           call->init_req(TypeFunc::Parms + i, mod_macro->in(TypeFunc::Parms + i));
3232         }
3233         _igvn.replace_node(mod_macro, call);
3234         transform_later(call);
3235         break;
3236       }
3237       default:
3238         assert(false, "unknown node type in macro list");
3239       }
3240     }
3241     assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
3242     if (C->failing())  return true;
3243     C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
3244 
3245     // Clean up the graph so we're less likely to hit the maximum node
3246     // limit
3247     _igvn.set_delay_transform(false);
3248     _igvn.optimize();
3249     if (C->failing())  return true;
3250     _igvn.set_delay_transform(true);
3251   }
3252 
3253   // All nodes except Allocate nodes are expanded now. There could be
3254   // new optimization opportunities (such as folding newly created
3255   // load from a just allocated object). Run IGVN.
3256 
3257   // expand "macro" nodes
3258   // nodes are removed from the macro list as they are processed
3259   while (C->macro_count() > 0) {
3260     int macro_count = C->macro_count();
3261     Node * n = C->macro_node(macro_count-1);
3262     assert(n->is_macro(), "only macro nodes expected here");
3263     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
3264       // node is unreachable, so don't try to expand it
3265       C->remove_macro_node(n);
3266       continue;
3267     }
3268     // Make sure expansion will not cause node limit to be exceeded.
3269     // Worst case is a macro node gets expanded into about 200 nodes.
3270     // Allow 50% more for optimization.
3271     if (C->check_node_count(300, "out of nodes before macro expansion")) {
3272       return true;
3273     }
3274     switch (n->class_id()) {
3275     case Node::Class_Allocate:
3276       expand_allocate(n->as_Allocate());
3277       break;
3278     case Node::Class_AllocateArray:
3279       expand_allocate_array(n->as_AllocateArray());
3280       break;
3281     default:
3282       assert(false, "unknown node type in macro list");
3283     }
3284     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
3285     if (C->failing())  return true;
3286     C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
3287 
3288     // Clean up the graph so we're less likely to hit the maximum node
3289     // limit
3290     _igvn.set_delay_transform(false);
3291     _igvn.optimize();
3292     if (C->failing())  return true;
3293     _igvn.set_delay_transform(true);
3294   }
3295 
3296   _igvn.set_delay_transform(false);
3297   return false;
3298 }
3299 
3300 #ifndef PRODUCT
3301 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0;
3302 int PhaseMacroExpand::_monitor_objects_removed_counter = 0;
3303 int PhaseMacroExpand::_GC_barriers_removed_counter = 0;
3304 int PhaseMacroExpand::_memory_barriers_removed_counter = 0;
3305 
3306 void PhaseMacroExpand::print_statistics() {
3307   tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter));
3308   tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter));
3309   tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter));
3310   tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter));
3311 }
3312 
3313 int PhaseMacroExpand::count_MemBar(Compile *C) {
3314   if (!PrintOptoStatistics) {
3315     return 0;
3316   }
3317   Unique_Node_List ideal_nodes;
3318   int total = 0;
3319   ideal_nodes.map(C->live_nodes(), nullptr);
3320   ideal_nodes.push(C->root());
3321   for (uint next = 0; next < ideal_nodes.size(); ++next) {
3322     Node* n = ideal_nodes.at(next);
3323     if (n->is_MemBar()) {
3324       total++;
3325     }
3326     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3327       Node* m = n->fast_out(i);
3328       ideal_nodes.push(m);
3329     }
3330   }
3331   return total;
3332 }
3333 #endif