1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciFlatArrayKlass.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/collectedHeap.inline.hpp" 28 #include "gc/shared/tlab_globals.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/universe.hpp" 31 #include "opto/addnode.hpp" 32 #include "opto/arraycopynode.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/cfgnode.hpp" 36 #include "opto/compile.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/graphKit.hpp" 39 #include "opto/inlinetypenode.hpp" 40 #include "opto/intrinsicnode.hpp" 41 #include "opto/locknode.hpp" 42 #include "opto/loopnode.hpp" 43 #include "opto/macro.hpp" 44 #include "opto/memnode.hpp" 45 #include "opto/narrowptrnode.hpp" 46 #include "opto/node.hpp" 47 #include "opto/opaquenode.hpp" 48 #include "opto/phaseX.hpp" 49 #include "opto/rootnode.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/subnode.hpp" 52 #include "opto/subtypenode.hpp" 53 #include "opto/type.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "runtime/continuation.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/stubRoutines.hpp" 58 #include "utilities/macros.hpp" 59 #include "utilities/powerOfTwo.hpp" 60 #if INCLUDE_G1GC 61 #include "gc/g1/g1ThreadLocalData.hpp" 62 #endif // INCLUDE_G1GC 63 64 65 // 66 // Replace any references to "oldref" in inputs to "use" with "newref". 67 // Returns the number of replacements made. 68 // 69 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { 70 int nreplacements = 0; 71 uint req = use->req(); 72 for (uint j = 0; j < use->len(); j++) { 73 Node *uin = use->in(j); 74 if (uin == oldref) { 75 if (j < req) 76 use->set_req(j, newref); 77 else 78 use->set_prec(j, newref); 79 nreplacements++; 80 } else if (j >= req && uin == nullptr) { 81 break; 82 } 83 } 84 return nreplacements; 85 } 86 87 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { 88 Node* cmp; 89 if (mask != 0) { 90 Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); 91 cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); 92 } else { 93 cmp = word; 94 } 95 Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); 96 IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); 97 transform_later(iff); 98 99 // Fast path taken. 100 Node *fast_taken = transform_later(new IfFalseNode(iff)); 101 102 // Fast path not-taken, i.e. slow path 103 Node *slow_taken = transform_later(new IfTrueNode(iff)); 104 105 if (return_fast_path) { 106 region->init_req(edge, slow_taken); // Capture slow-control 107 return fast_taken; 108 } else { 109 region->init_req(edge, fast_taken); // Capture fast-control 110 return slow_taken; 111 } 112 } 113 114 //--------------------copy_predefined_input_for_runtime_call-------------------- 115 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { 116 // Set fixed predefined input arguments 117 call->init_req( TypeFunc::Control, ctrl ); 118 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); 119 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? 120 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); 121 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); 122 } 123 124 //------------------------------make_slow_call--------------------------------- 125 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, 126 address slow_call, const char* leaf_name, Node* slow_path, 127 Node* parm0, Node* parm1, Node* parm2) { 128 129 // Slow-path call 130 CallNode *call = leaf_name 131 ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) 132 : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM ); 133 134 // Slow path call has no side-effects, uses few values 135 copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); 136 if (parm0 != nullptr) call->init_req(TypeFunc::Parms+0, parm0); 137 if (parm1 != nullptr) call->init_req(TypeFunc::Parms+1, parm1); 138 if (parm2 != nullptr) call->init_req(TypeFunc::Parms+2, parm2); 139 call->copy_call_debug_info(&_igvn, oldcall); 140 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 141 _igvn.replace_node(oldcall, call); 142 transform_later(call); 143 144 return call; 145 } 146 147 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) { 148 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 149 bs->eliminate_gc_barrier(&_igvn, p2x); 150 #ifndef PRODUCT 151 if (PrintOptoStatistics) { 152 Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter); 153 } 154 #endif 155 } 156 157 // Search for a memory operation for the specified memory slice. 158 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { 159 Node *orig_mem = mem; 160 Node *alloc_mem = alloc->as_Allocate()->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 161 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 162 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); 163 while (true) { 164 if (mem == alloc_mem || mem == start_mem ) { 165 return mem; // hit one of our sentinels 166 } else if (mem->is_MergeMem()) { 167 mem = mem->as_MergeMem()->memory_at(alias_idx); 168 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { 169 Node *in = mem->in(0); 170 // we can safely skip over safepoints, calls, locks and membars because we 171 // already know that the object is safe to eliminate. 172 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { 173 return in; 174 } else if (in->is_Call()) { 175 CallNode *call = in->as_Call(); 176 if (call->may_modify(tinst, phase)) { 177 assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape"); 178 if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { 179 return in; 180 } 181 } 182 mem = in->in(TypeFunc::Memory); 183 } else if (in->is_MemBar()) { 184 ArrayCopyNode* ac = nullptr; 185 if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) { 186 if (ac != nullptr) { 187 assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone"); 188 return ac; 189 } 190 } 191 mem = in->in(TypeFunc::Memory); 192 } else { 193 #ifdef ASSERT 194 in->dump(); 195 mem->dump(); 196 assert(false, "unexpected projection"); 197 #endif 198 } 199 } else if (mem->is_Store()) { 200 const TypePtr* atype = mem->as_Store()->adr_type(); 201 int adr_idx = phase->C->get_alias_index(atype); 202 if (adr_idx == alias_idx) { 203 assert(atype->isa_oopptr(), "address type must be oopptr"); 204 int adr_offset = atype->flat_offset(); 205 uint adr_iid = atype->is_oopptr()->instance_id(); 206 // Array elements references have the same alias_idx 207 // but different offset and different instance_id. 208 if (adr_offset == offset && adr_iid == alloc->_idx) { 209 return mem; 210 } 211 } else { 212 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); 213 } 214 mem = mem->in(MemNode::Memory); 215 } else if (mem->is_ClearArray()) { 216 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { 217 // Can not bypass initialization of the instance 218 // we are looking. 219 debug_only(intptr_t offset;) 220 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity"); 221 InitializeNode* init = alloc->as_Allocate()->initialization(); 222 // We are looking for stored value, return Initialize node 223 // or memory edge from Allocate node. 224 if (init != nullptr) { 225 return init; 226 } else { 227 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). 228 } 229 } 230 // Otherwise skip it (the call updated 'mem' value). 231 } else if (mem->Opcode() == Op_SCMemProj) { 232 mem = mem->in(0); 233 Node* adr = nullptr; 234 if (mem->is_LoadStore()) { 235 adr = mem->in(MemNode::Address); 236 } else { 237 assert(mem->Opcode() == Op_EncodeISOArray || 238 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 239 adr = mem->in(3); // Destination array 240 } 241 const TypePtr* atype = adr->bottom_type()->is_ptr(); 242 int adr_idx = phase->C->get_alias_index(atype); 243 if (adr_idx == alias_idx) { 244 DEBUG_ONLY(mem->dump();) 245 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 246 return nullptr; 247 } 248 mem = mem->in(MemNode::Memory); 249 } else if (mem->Opcode() == Op_StrInflatedCopy) { 250 Node* adr = mem->in(3); // Destination array 251 const TypePtr* atype = adr->bottom_type()->is_ptr(); 252 int adr_idx = phase->C->get_alias_index(atype); 253 if (adr_idx == alias_idx) { 254 DEBUG_ONLY(mem->dump();) 255 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 256 return nullptr; 257 } 258 mem = mem->in(MemNode::Memory); 259 } else { 260 return mem; 261 } 262 assert(mem != orig_mem, "dead memory loop"); 263 } 264 } 265 266 // Generate loads from source of the arraycopy for fields of 267 // destination needed at a deoptimization point 268 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) { 269 BasicType bt = ft; 270 const Type *type = ftype; 271 if (ft == T_NARROWOOP) { 272 bt = T_OBJECT; 273 type = ftype->make_oopptr(); 274 } 275 Node* res = nullptr; 276 if (ac->is_clonebasic()) { 277 assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination"); 278 Node* base = ac->in(ArrayCopyNode::Src); 279 Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset))); 280 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 281 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 282 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 283 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 284 } else { 285 if (ac->modifies(offset, offset, &_igvn, true)) { 286 assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result"); 287 uint shift = exact_log2(type2aelembytes(bt)); 288 Node* src_pos = ac->in(ArrayCopyNode::SrcPos); 289 Node* dest_pos = ac->in(ArrayCopyNode::DestPos); 290 const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int(); 291 const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int(); 292 293 Node* adr = nullptr; 294 Node* base = ac->in(ArrayCopyNode::Src); 295 const TypeAryPtr* adr_type = _igvn.type(base)->is_aryptr(); 296 if (adr_type->is_flat()) { 297 shift = adr_type->flat_log_elem_size(); 298 } 299 if (src_pos_t->is_con() && dest_pos_t->is_con()) { 300 intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset; 301 adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off))); 302 adr_type = _igvn.type(adr)->is_aryptr(); 303 assert(adr_type == _igvn.type(base)->is_aryptr()->add_field_offset_and_offset(off), "incorrect address type"); 304 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 305 // Don't emit a new load from src if src == dst but try to get the value from memory instead 306 return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type, alloc); 307 } 308 } else { 309 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 310 // Non constant offset in the array: we can't statically 311 // determine the value 312 return nullptr; 313 } 314 Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 315 #ifdef _LP64 316 diff = _igvn.transform(new ConvI2LNode(diff)); 317 #endif 318 diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift))); 319 320 Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff)); 321 adr = _igvn.transform(new AddPNode(base, base, off)); 322 // In the case of a flat inline type array, each field has its 323 // own slice so we need to extract the field being accessed from 324 // the address computation 325 adr_type = adr_type->add_field_offset_and_offset(offset)->add_offset(Type::OffsetBot)->is_aryptr(); 326 adr = _igvn.transform(new CastPPNode(ctl, adr, adr_type)); 327 } 328 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 329 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 330 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 331 } 332 } 333 if (res != nullptr) { 334 if (ftype->isa_narrowoop()) { 335 // PhaseMacroExpand::scalar_replacement adds DecodeN nodes 336 assert(res->isa_DecodeN(), "should be narrow oop"); 337 res = _igvn.transform(new EncodePNode(res, ftype)); 338 } 339 return res; 340 } 341 return nullptr; 342 } 343 344 // 345 // Given a Memory Phi, compute a value Phi containing the values from stores 346 // on the input paths. 347 // Note: this function is recursive, its depth is limited by the "level" argument 348 // Returns the computed Phi, or null if it cannot compute it. 349 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { 350 assert(mem->is_Phi(), "sanity"); 351 int alias_idx = C->get_alias_index(adr_t); 352 int offset = adr_t->flat_offset(); 353 int instance_id = adr_t->instance_id(); 354 355 // Check if an appropriate value phi already exists. 356 Node* region = mem->in(0); 357 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 358 Node* phi = region->fast_out(k); 359 if (phi->is_Phi() && phi != mem && 360 phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) { 361 return phi; 362 } 363 } 364 // Check if an appropriate new value phi already exists. 365 Node* new_phi = value_phis->find(mem->_idx); 366 if (new_phi != nullptr) 367 return new_phi; 368 369 if (level <= 0) { 370 return nullptr; // Give up: phi tree too deep 371 } 372 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 373 Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 374 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 375 376 uint length = mem->req(); 377 GrowableArray <Node *> values(length, length, nullptr); 378 379 // create a new Phi for the value 380 PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset); 381 transform_later(phi); 382 value_phis->push(phi, mem->_idx); 383 384 for (uint j = 1; j < length; j++) { 385 Node *in = mem->in(j); 386 if (in == nullptr || in->is_top()) { 387 values.at_put(j, in); 388 } else { 389 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); 390 if (val == start_mem || val == alloc_mem) { 391 // hit a sentinel, return appropriate 0 value 392 Node* default_value = alloc->in(AllocateNode::DefaultValue); 393 if (default_value != nullptr) { 394 values.at_put(j, default_value); 395 } else { 396 assert(alloc->in(AllocateNode::RawDefaultValue) == nullptr, "default value may not be null"); 397 values.at_put(j, _igvn.zerocon(ft)); 398 } 399 continue; 400 } 401 if (val->is_Initialize()) { 402 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 403 } 404 if (val == nullptr) { 405 return nullptr; // can't find a value on this path 406 } 407 if (val == mem) { 408 values.at_put(j, mem); 409 } else if (val->is_Store()) { 410 Node* n = val->in(MemNode::ValueIn); 411 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 412 n = bs->step_over_gc_barrier(n); 413 if (is_subword_type(ft)) { 414 n = Compile::narrow_value(ft, n, phi_type, &_igvn, true); 415 } 416 values.at_put(j, n); 417 } else if(val->is_Proj() && val->in(0) == alloc) { 418 Node* default_value = alloc->in(AllocateNode::DefaultValue); 419 if (default_value != nullptr) { 420 values.at_put(j, default_value); 421 } else { 422 assert(alloc->in(AllocateNode::RawDefaultValue) == nullptr, "default value may not be null"); 423 values.at_put(j, _igvn.zerocon(ft)); 424 } 425 } else if (val->is_Phi()) { 426 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); 427 if (val == nullptr) { 428 return nullptr; 429 } 430 values.at_put(j, val); 431 } else if (val->Opcode() == Op_SCMemProj) { 432 assert(val->in(0)->is_LoadStore() || 433 val->in(0)->Opcode() == Op_EncodeISOArray || 434 val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity"); 435 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 436 return nullptr; 437 } else if (val->is_ArrayCopy()) { 438 Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc); 439 if (res == nullptr) { 440 return nullptr; 441 } 442 values.at_put(j, res); 443 } else if (val->is_top()) { 444 // This indicates that this path into the phi is dead. Top will eventually also propagate into the Region. 445 // IGVN will clean this up later. 446 values.at_put(j, val); 447 } else { 448 DEBUG_ONLY( val->dump(); ) 449 assert(false, "unknown node on this path"); 450 return nullptr; // unknown node on this path 451 } 452 } 453 } 454 // Set Phi's inputs 455 for (uint j = 1; j < length; j++) { 456 if (values.at(j) == mem) { 457 phi->init_req(j, phi); 458 } else { 459 phi->init_req(j, values.at(j)); 460 } 461 } 462 return phi; 463 } 464 465 // Search the last value stored into the object's field. 466 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { 467 assert(adr_t->is_known_instance_field(), "instance required"); 468 int instance_id = adr_t->instance_id(); 469 assert((uint)instance_id == alloc->_idx, "wrong allocation"); 470 471 int alias_idx = C->get_alias_index(adr_t); 472 int offset = adr_t->flat_offset(); 473 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 474 Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 475 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 476 VectorSet visited; 477 478 bool done = sfpt_mem == alloc_mem; 479 Node *mem = sfpt_mem; 480 while (!done) { 481 if (visited.test_set(mem->_idx)) { 482 return nullptr; // found a loop, give up 483 } 484 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); 485 if (mem == start_mem || mem == alloc_mem) { 486 done = true; // hit a sentinel, return appropriate 0 value 487 } else if (mem->is_Initialize()) { 488 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 489 if (mem == nullptr) { 490 done = true; // Something went wrong. 491 } else if (mem->is_Store()) { 492 const TypePtr* atype = mem->as_Store()->adr_type(); 493 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice"); 494 done = true; 495 } 496 } else if (mem->is_Store()) { 497 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); 498 assert(atype != nullptr, "address type must be oopptr"); 499 assert(C->get_alias_index(atype) == alias_idx && 500 atype->is_known_instance_field() && atype->flat_offset() == offset && 501 atype->instance_id() == instance_id, "store is correct memory slice"); 502 done = true; 503 } else if (mem->is_Phi()) { 504 // try to find a phi's unique input 505 Node *unique_input = nullptr; 506 Node *top = C->top(); 507 for (uint i = 1; i < mem->req(); i++) { 508 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); 509 if (n == nullptr || n == top || n == mem) { 510 continue; 511 } else if (unique_input == nullptr) { 512 unique_input = n; 513 } else if (unique_input != n) { 514 unique_input = top; 515 break; 516 } 517 } 518 if (unique_input != nullptr && unique_input != top) { 519 mem = unique_input; 520 } else { 521 done = true; 522 } 523 } else if (mem->is_ArrayCopy()) { 524 done = true; 525 } else { 526 DEBUG_ONLY( mem->dump(); ) 527 assert(false, "unexpected node"); 528 } 529 } 530 if (mem != nullptr) { 531 if (mem == start_mem || mem == alloc_mem) { 532 // hit a sentinel, return appropriate 0 value 533 Node* default_value = alloc->in(AllocateNode::DefaultValue); 534 if (default_value != nullptr) { 535 return default_value; 536 } 537 assert(alloc->in(AllocateNode::RawDefaultValue) == nullptr, "default value may not be null"); 538 return _igvn.zerocon(ft); 539 } else if (mem->is_Store()) { 540 Node* n = mem->in(MemNode::ValueIn); 541 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 542 n = bs->step_over_gc_barrier(n); 543 return n; 544 } else if (mem->is_Phi()) { 545 // attempt to produce a Phi reflecting the values on the input paths of the Phi 546 Node_Stack value_phis(8); 547 Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); 548 if (phi != nullptr) { 549 return phi; 550 } else { 551 // Kill all new Phis 552 while(value_phis.is_nonempty()) { 553 Node* n = value_phis.node(); 554 _igvn.replace_node(n, C->top()); 555 value_phis.pop(); 556 } 557 } 558 } else if (mem->is_ArrayCopy()) { 559 Node* ctl = mem->in(0); 560 Node* m = mem->in(TypeFunc::Memory); 561 if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) { 562 // pin the loads in the uncommon trap path 563 ctl = sfpt_ctl; 564 m = sfpt_mem; 565 } 566 return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc); 567 } 568 } 569 // Something went wrong. 570 return nullptr; 571 } 572 573 // Search the last value stored into the inline type's fields (for flat arrays). 574 Node* PhaseMacroExpand::inline_type_from_mem(Node* mem, Node* ctl, ciInlineKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) { 575 // Subtract the offset of the first field to account for the missing oop header 576 offset -= vk->payload_offset(); 577 // Create a new InlineTypeNode and retrieve the field values from memory 578 InlineTypeNode* vt = InlineTypeNode::make_uninitialized(_igvn, vk); 579 transform_later(vt); 580 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) { 581 ciType* field_type = vt->field_type(i); 582 int field_offset = offset + vt->field_offset(i); 583 Node* value = nullptr; 584 if (vt->field_is_flat(i)) { 585 // TODO 8350865 Fix this 586 // assert(vt->field_is_null_free(i), "Unexpected nullable flat field"); 587 if (!vt->field_is_null_free(i)) { 588 return nullptr; 589 } 590 value = inline_type_from_mem(mem, ctl, field_type->as_inline_klass(), adr_type, field_offset, alloc); 591 } else { 592 const Type* ft = Type::get_const_type(field_type); 593 BasicType bt = type2field[field_type->basic_type()]; 594 if (UseCompressedOops && !is_java_primitive(bt)) { 595 ft = ft->make_narrowoop(); 596 bt = T_NARROWOOP; 597 } 598 // Each inline type field has its own memory slice 599 adr_type = adr_type->with_field_offset(field_offset); 600 value = value_from_mem(mem, ctl, bt, ft, adr_type, alloc); 601 if (value != nullptr && ft->isa_narrowoop()) { 602 assert(UseCompressedOops, "unexpected narrow oop"); 603 if (value->is_EncodeP()) { 604 value = value->in(1); 605 } else { 606 value = transform_later(new DecodeNNode(value, value->get_ptr_type())); 607 } 608 } 609 } 610 if (value != nullptr) { 611 vt->set_field_value(i, value); 612 } else { 613 // We might have reached the TrackedInitializationLimit 614 return nullptr; 615 } 616 } 617 return vt; 618 } 619 620 // Check the possibility of scalar replacement. 621 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) { 622 // Scan the uses of the allocation to check for anything that would 623 // prevent us from eliminating it. 624 NOT_PRODUCT( const char* fail_eliminate = nullptr; ) 625 DEBUG_ONLY( Node* disq_node = nullptr; ) 626 bool can_eliminate = true; 627 bool reduce_merge_precheck = (safepoints == nullptr); 628 629 Unique_Node_List worklist; 630 Node* res = alloc->result_cast(); 631 const TypeOopPtr* res_type = nullptr; 632 if (res == nullptr) { 633 // All users were eliminated. 634 } else if (!res->is_CheckCastPP()) { 635 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";) 636 can_eliminate = false; 637 } else { 638 worklist.push(res); 639 res_type = igvn->type(res)->isa_oopptr(); 640 if (res_type == nullptr) { 641 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";) 642 can_eliminate = false; 643 } else if (!res_type->klass_is_exact()) { 644 NOT_PRODUCT(fail_eliminate = "Not an exact type.";) 645 can_eliminate = false; 646 } else if (res_type->isa_aryptr()) { 647 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); 648 if (length < 0) { 649 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";) 650 can_eliminate = false; 651 } 652 } 653 } 654 655 while (can_eliminate && worklist.size() > 0) { 656 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 657 res = worklist.pop(); 658 for (DUIterator_Fast jmax, j = res->fast_outs(jmax); j < jmax && can_eliminate; j++) { 659 Node* use = res->fast_out(j); 660 661 if (use->is_AddP()) { 662 const TypePtr* addp_type = igvn->type(use)->is_ptr(); 663 int offset = addp_type->offset(); 664 665 if (offset == Type::OffsetTop || offset == Type::OffsetBot) { 666 NOT_PRODUCT(fail_eliminate = "Undefined field reference";) 667 can_eliminate = false; 668 break; 669 } 670 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); 671 k < kmax && can_eliminate; k++) { 672 Node* n = use->fast_out(k); 673 if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n) && !reduce_merge_precheck) { 674 DEBUG_ONLY(disq_node = n;) 675 if (n->is_Load() || n->is_LoadStore()) { 676 NOT_PRODUCT(fail_eliminate = "Field load";) 677 } else { 678 NOT_PRODUCT(fail_eliminate = "Not store field reference";) 679 } 680 can_eliminate = false; 681 } 682 } 683 } else if (use->is_ArrayCopy() && 684 (use->as_ArrayCopy()->is_clonebasic() || 685 use->as_ArrayCopy()->is_arraycopy_validated() || 686 use->as_ArrayCopy()->is_copyof_validated() || 687 use->as_ArrayCopy()->is_copyofrange_validated()) && 688 use->in(ArrayCopyNode::Dest) == res) { 689 // ok to eliminate 690 } else if (use->is_SafePoint()) { 691 SafePointNode* sfpt = use->as_SafePoint(); 692 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { 693 // Object is passed as argument. 694 DEBUG_ONLY(disq_node = use;) 695 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";) 696 can_eliminate = false; 697 } 698 Node* sfptMem = sfpt->memory(); 699 if (sfptMem == nullptr || sfptMem->is_top()) { 700 DEBUG_ONLY(disq_node = use;) 701 NOT_PRODUCT(fail_eliminate = "null or TOP memory";) 702 can_eliminate = false; 703 } else if (!reduce_merge_precheck) { 704 assert(!res->is_Phi() || !res->as_Phi()->can_be_inline_type(), "Inline type allocations should not have safepoint uses"); 705 safepoints->append_if_missing(sfpt); 706 } 707 } else if (use->is_InlineType() && use->as_InlineType()->get_oop() == res) { 708 // Look at uses 709 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 710 Node* u = use->fast_out(k); 711 if (u->is_InlineType()) { 712 // Use in flat field can be eliminated 713 InlineTypeNode* vt = u->as_InlineType(); 714 for (uint i = 0; i < vt->field_count(); ++i) { 715 if (vt->field_value(i) == use && !vt->field_is_flat(i)) { 716 can_eliminate = false; // Use in non-flat field 717 break; 718 } 719 } 720 } else { 721 // Add other uses to the worklist to process individually 722 worklist.push(use); 723 } 724 } 725 } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) { 726 // Store to mark word of inline type larval buffer 727 assert(res_type->is_inlinetypeptr(), "Unexpected store to mark word"); 728 } else if (res_type->is_inlinetypeptr() && (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore)) { 729 // Inline type buffer allocations are followed by a membar 730 } else if (reduce_merge_precheck && 731 (use->is_Phi() || use->is_EncodeP() || 732 use->Opcode() == Op_MemBarRelease || 733 (UseStoreStoreForCtor && use->Opcode() == Op_MemBarStoreStore))) { 734 // Nothing to do 735 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark 736 if (use->is_Phi()) { 737 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { 738 NOT_PRODUCT(fail_eliminate = "Object is return value";) 739 } else { 740 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";) 741 } 742 DEBUG_ONLY(disq_node = use;) 743 } else { 744 if (use->Opcode() == Op_Return) { 745 NOT_PRODUCT(fail_eliminate = "Object is return value";) 746 } else { 747 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";) 748 } 749 DEBUG_ONLY(disq_node = use;) 750 } 751 can_eliminate = false; 752 } else { 753 assert(use->Opcode() == Op_CastP2X, "should be"); 754 assert(!use->has_out_with(Op_OrL), "should have been removed because oop is never null"); 755 } 756 } 757 } 758 759 #ifndef PRODUCT 760 if (PrintEliminateAllocations && safepoints != nullptr) { 761 if (can_eliminate) { 762 tty->print("Scalar "); 763 if (res == nullptr) 764 alloc->dump(); 765 else 766 res->dump(); 767 } else { 768 tty->print("NotScalar (%s)", fail_eliminate); 769 if (res == nullptr) 770 alloc->dump(); 771 else 772 res->dump(); 773 #ifdef ASSERT 774 if (disq_node != nullptr) { 775 tty->print(" >>>> "); 776 disq_node->dump(); 777 } 778 #endif /*ASSERT*/ 779 } 780 } 781 782 if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) { 783 tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : ""); 784 DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();) 785 } 786 #endif 787 return can_eliminate; 788 } 789 790 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) { 791 Node* res = alloc->result_cast(); 792 int nfields = 0; 793 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 794 795 if (res != nullptr) { 796 const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr(); 797 798 if (res_type->isa_instptr()) { 799 // find the fields of the class which will be needed for safepoint debug information 800 ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass(); 801 nfields = iklass->nof_nonstatic_fields(); 802 } else { 803 // find the array's elements which will be needed for safepoint debug information 804 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 805 assert(nfields >= 0, "must be an array klass."); 806 } 807 } 808 809 // rollback processed safepoints 810 while (safepoints_done.length() > 0) { 811 SafePointNode* sfpt_done = safepoints_done.pop(); 812 // remove any extra entries we added to the safepoint 813 uint last = sfpt_done->req() - 1; 814 for (int k = 0; k < nfields; k++) { 815 sfpt_done->del_req(last--); 816 } 817 JVMState *jvms = sfpt_done->jvms(); 818 jvms->set_endoff(sfpt_done->req()); 819 // Now make a pass over the debug information replacing any references 820 // to SafePointScalarObjectNode with the allocated object. 821 int start = jvms->debug_start(); 822 int end = jvms->debug_end(); 823 for (int i = start; i < end; i++) { 824 if (sfpt_done->in(i)->is_SafePointScalarObject()) { 825 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); 826 if (scobj->first_index(jvms) == sfpt_done->req() && 827 scobj->n_fields() == (uint)nfields) { 828 assert(scobj->alloc() == alloc, "sanity"); 829 sfpt_done->set_req(i, res); 830 } 831 } 832 } 833 _igvn._worklist.push(sfpt_done); 834 } 835 } 836 837 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt, 838 Unique_Node_List* value_worklist) { 839 // Fields of scalar objs are referenced only at the end 840 // of regular debuginfo at the last (youngest) JVMS. 841 // Record relative start index. 842 ciInstanceKlass* iklass = nullptr; 843 BasicType basic_elem_type = T_ILLEGAL; 844 const Type* field_type = nullptr; 845 const TypeOopPtr* res_type = nullptr; 846 int nfields = 0; 847 int array_base = 0; 848 int element_size = 0; 849 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 850 Node* res = alloc->result_cast(); 851 852 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 853 assert(sfpt->jvms() != nullptr, "missed JVMS"); 854 855 if (res != nullptr) { // Could be null when there are no users 856 res_type = _igvn.type(res)->isa_oopptr(); 857 858 if (res_type->isa_instptr()) { 859 // find the fields of the class which will be needed for safepoint debug information 860 iklass = res_type->is_instptr()->instance_klass(); 861 nfields = iklass->nof_nonstatic_fields(); 862 } else { 863 // find the array's elements which will be needed for safepoint debug information 864 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 865 assert(nfields >= 0, "must be an array klass."); 866 basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type(); 867 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 868 element_size = type2aelembytes(basic_elem_type); 869 field_type = res_type->is_aryptr()->elem(); 870 if (res_type->is_flat()) { 871 // Flat inline type array 872 element_size = res_type->is_aryptr()->flat_elem_size(); 873 } 874 } 875 876 if (res->bottom_type()->is_inlinetypeptr()) { 877 // Nullable inline types have an IsInit field which is added to the safepoint when scalarizing them (see 878 // InlineTypeNode::make_scalar_in_safepoint()). When having circular inline types, we stop scalarizing at depth 1 879 // to avoid an endless recursion. Therefore, we do not have a SafePointScalarObjectNode node here, yet. 880 // We are about to create a SafePointScalarObjectNode as if this is a normal object. Add an additional int input 881 // with value 1 which sets IsInit to true to indicate that the object is always non-null. This input is checked 882 // later in PhaseOutput::filLocArray() for inline types. 883 sfpt->add_req(_igvn.intcon(1)); 884 } 885 } 886 887 SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, sfpt->jvms()->depth(), nfields); 888 sobj->init_req(0, C->root()); 889 transform_later(sobj); 890 891 // Scan object's fields adding an input to the safepoint for each field. 892 for (int j = 0; j < nfields; j++) { 893 intptr_t offset; 894 ciField* field = nullptr; 895 if (iklass != nullptr) { 896 field = iklass->nonstatic_field_at(j); 897 offset = field->offset_in_bytes(); 898 ciType* elem_type = field->type(); 899 basic_elem_type = field->layout_type(); 900 assert(!field->is_flat(), "flat inline type fields should not have safepoint uses"); 901 902 // The next code is taken from Parse::do_get_xxx(). 903 if (is_reference_type(basic_elem_type)) { 904 if (!elem_type->is_loaded()) { 905 field_type = TypeInstPtr::BOTTOM; 906 } else if (field != nullptr && field->is_static_constant()) { 907 ciObject* con = field->constant_value().as_object(); 908 // Do not "join" in the previous type; it doesn't add value, 909 // and may yield a vacuous result if the field is of interface type. 910 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 911 assert(field_type != nullptr, "field singleton type must be consistent"); 912 } else { 913 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); 914 } 915 if (UseCompressedOops) { 916 field_type = field_type->make_narrowoop(); 917 basic_elem_type = T_NARROWOOP; 918 } 919 } else { 920 field_type = Type::get_const_basic_type(basic_elem_type); 921 } 922 } else { 923 offset = array_base + j * (intptr_t)element_size; 924 } 925 926 Node* field_val = nullptr; 927 const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr(); 928 if (res_type->is_flat()) { 929 ciInlineKlass* inline_klass = res_type->is_aryptr()->elem()->inline_klass(); 930 assert(inline_klass->flat_in_array(), "must be flat in array"); 931 field_val = inline_type_from_mem(sfpt->memory(), sfpt->control(), inline_klass, field_addr_type->isa_aryptr(), 0, alloc); 932 } else { 933 field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc); 934 } 935 936 // We weren't able to find a value for this field, 937 // give up on eliminating this allocation. 938 if (field_val == nullptr) { 939 uint last = sfpt->req() - 1; 940 for (int k = 0; k < j; k++) { 941 sfpt->del_req(last--); 942 } 943 _igvn._worklist.push(sfpt); 944 945 #ifndef PRODUCT 946 if (PrintEliminateAllocations) { 947 if (field != nullptr) { 948 tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx); 949 field->print(); 950 int field_idx = C->get_alias_index(field_addr_type); 951 tty->print(" (alias_idx=%d)", field_idx); 952 } else { // Array's element 953 tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j); 954 } 955 tty->print(", which prevents elimination of: "); 956 if (res == nullptr) 957 alloc->dump(); 958 else 959 res->dump(); 960 } 961 #endif 962 963 return nullptr; 964 } 965 966 if (UseCompressedOops && field_type->isa_narrowoop()) { 967 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation 968 // to be able scalar replace the allocation. 969 if (field_val->is_EncodeP()) { 970 field_val = field_val->in(1); 971 } else if (!field_val->is_InlineType()) { 972 field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); 973 } 974 } 975 976 // Keep track of inline types to scalarize them later 977 if (field_val->is_InlineType()) { 978 value_worklist->push(field_val); 979 } else if (field_val->is_Phi()) { 980 PhiNode* phi = field_val->as_Phi(); 981 // Eagerly replace inline type phis now since we could be removing an inline type allocation where we must 982 // scalarize all its fields in safepoints. 983 field_val = phi->try_push_inline_types_down(&_igvn, true); 984 if (field_val->is_InlineType()) { 985 value_worklist->push(field_val); 986 } 987 } 988 sfpt->add_req(field_val); 989 } 990 991 sfpt->jvms()->set_endoff(sfpt->req()); 992 993 return sobj; 994 } 995 996 // Do scalar replacement. 997 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 998 GrowableArray <SafePointNode *> safepoints_done; 999 Node* res = alloc->result_cast(); 1000 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 1001 const TypeOopPtr* res_type = nullptr; 1002 if (res != nullptr) { // Could be null when there are no users 1003 res_type = _igvn.type(res)->isa_oopptr(); 1004 } 1005 1006 // Process the safepoint uses 1007 assert(safepoints.length() == 0 || !res_type->is_inlinetypeptr() || C->has_circular_inline_type(), 1008 "Inline type allocations should have been scalarized earlier"); 1009 Unique_Node_List value_worklist; 1010 while (safepoints.length() > 0) { 1011 SafePointNode* sfpt = safepoints.pop(); 1012 SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt, &value_worklist); 1013 1014 if (sobj == nullptr) { 1015 undo_previous_scalarizations(safepoints_done, alloc); 1016 return false; 1017 } 1018 1019 // Now make a pass over the debug information replacing any references 1020 // to the allocated object with "sobj" 1021 JVMState *jvms = sfpt->jvms(); 1022 sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn); 1023 _igvn._worklist.push(sfpt); 1024 1025 // keep it for rollback 1026 safepoints_done.append_if_missing(sfpt); 1027 } 1028 // Scalarize inline types that were added to the safepoint. 1029 // Don't allow linking a constant oop (if available) for flat array elements 1030 // because Deoptimization::reassign_flat_array_elements needs field values. 1031 bool allow_oop = (res_type != nullptr) && !res_type->is_flat(); 1032 for (uint i = 0; i < value_worklist.size(); ++i) { 1033 InlineTypeNode* vt = value_worklist.at(i)->as_InlineType(); 1034 vt->make_scalar_in_safepoints(&_igvn, allow_oop); 1035 } 1036 return true; 1037 } 1038 1039 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) { 1040 Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control); 1041 Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory); 1042 if (ctl_proj != nullptr) { 1043 igvn.replace_node(ctl_proj, n->in(0)); 1044 } 1045 if (mem_proj != nullptr) { 1046 igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); 1047 } 1048 } 1049 1050 // Process users of eliminated allocation. 1051 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc, bool inline_alloc) { 1052 Unique_Node_List worklist; 1053 Node* res = alloc->result_cast(); 1054 if (res != nullptr) { 1055 worklist.push(res); 1056 } 1057 while (worklist.size() > 0) { 1058 res = worklist.pop(); 1059 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { 1060 Node *use = res->last_out(j); 1061 uint oc1 = res->outcnt(); 1062 1063 if (use->is_AddP()) { 1064 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { 1065 Node *n = use->last_out(k); 1066 uint oc2 = use->outcnt(); 1067 if (n->is_Store()) { 1068 for (DUIterator_Fast pmax, p = n->fast_outs(pmax); p < pmax; p++) { 1069 MemBarNode* mb = n->fast_out(p)->isa_MemBar(); 1070 if (mb != nullptr && mb->req() <= MemBarNode::Precedent && mb->in(MemBarNode::Precedent) == n) { 1071 // MemBarVolatiles should have been removed by MemBarNode::Ideal() for non-inline allocations 1072 assert(inline_alloc, "MemBarVolatile should be eliminated for non-escaping object"); 1073 mb->remove(&_igvn); 1074 } 1075 } 1076 _igvn.replace_node(n, n->in(MemNode::Memory)); 1077 } else { 1078 eliminate_gc_barrier(n); 1079 } 1080 k -= (oc2 - use->outcnt()); 1081 } 1082 _igvn.remove_dead_node(use); 1083 } else if (use->is_ArrayCopy()) { 1084 // Disconnect ArrayCopy node 1085 ArrayCopyNode* ac = use->as_ArrayCopy(); 1086 if (ac->is_clonebasic()) { 1087 Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out(); 1088 disconnect_projections(ac, _igvn); 1089 assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation"); 1090 Node* membar_before = alloc->in(TypeFunc::Memory)->in(0); 1091 disconnect_projections(membar_before->as_MemBar(), _igvn); 1092 if (membar_after->is_MemBar()) { 1093 disconnect_projections(membar_after->as_MemBar(), _igvn); 1094 } 1095 } else { 1096 assert(ac->is_arraycopy_validated() || 1097 ac->is_copyof_validated() || 1098 ac->is_copyofrange_validated(), "unsupported"); 1099 CallProjections* callprojs = ac->extract_projections(true); 1100 1101 _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O)); 1102 _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory)); 1103 _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control)); 1104 1105 // Set control to top. IGVN will remove the remaining projections 1106 ac->set_req(0, top()); 1107 ac->replace_edge(res, top(), &_igvn); 1108 1109 // Disconnect src right away: it can help find new 1110 // opportunities for allocation elimination 1111 Node* src = ac->in(ArrayCopyNode::Src); 1112 ac->replace_edge(src, top(), &_igvn); 1113 // src can be top at this point if src and dest of the 1114 // arraycopy were the same 1115 if (src->outcnt() == 0 && !src->is_top()) { 1116 _igvn.remove_dead_node(src); 1117 } 1118 } 1119 _igvn._worklist.push(ac); 1120 } else if (use->is_InlineType()) { 1121 assert(use->as_InlineType()->get_oop() == res, "unexpected inline type ptr use"); 1122 // Cut off oop input and remove known instance id from type 1123 _igvn.rehash_node_delayed(use); 1124 use->as_InlineType()->set_oop(_igvn, _igvn.zerocon(T_OBJECT)); 1125 const TypeOopPtr* toop = _igvn.type(use)->is_oopptr()->cast_to_instance_id(TypeOopPtr::InstanceBot); 1126 _igvn.set_type(use, toop); 1127 use->as_InlineType()->set_type(toop); 1128 // Process users 1129 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1130 Node* u = use->fast_out(k); 1131 if (!u->is_InlineType()) { 1132 worklist.push(u); 1133 } 1134 } 1135 } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) { 1136 // Store to mark word of inline type larval buffer 1137 assert(inline_alloc, "Unexpected store to mark word"); 1138 _igvn.replace_node(use, use->in(MemNode::Memory)); 1139 } else if (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore) { 1140 // Inline type buffer allocations are followed by a membar 1141 assert(inline_alloc, "Unexpected MemBarRelease"); 1142 use->as_MemBar()->remove(&_igvn); 1143 } else { 1144 eliminate_gc_barrier(use); 1145 } 1146 j -= (oc1 - res->outcnt()); 1147 } 1148 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted"); 1149 _igvn.remove_dead_node(res); 1150 } 1151 1152 // 1153 // Process other users of allocation's projections 1154 // 1155 if (_callprojs->resproj[0] != nullptr && _callprojs->resproj[0]->outcnt() != 0) { 1156 // First disconnect stores captured by Initialize node. 1157 // If Initialize node is eliminated first in the following code, 1158 // it will kill such stores and DUIterator_Last will assert. 1159 for (DUIterator_Fast jmax, j = _callprojs->resproj[0]->fast_outs(jmax); j < jmax; j++) { 1160 Node* use = _callprojs->resproj[0]->fast_out(j); 1161 if (use->is_AddP()) { 1162 // raw memory addresses used only by the initialization 1163 _igvn.replace_node(use, C->top()); 1164 --j; --jmax; 1165 } 1166 } 1167 for (DUIterator_Last jmin, j = _callprojs->resproj[0]->last_outs(jmin); j >= jmin; ) { 1168 Node* use = _callprojs->resproj[0]->last_out(j); 1169 uint oc1 = _callprojs->resproj[0]->outcnt(); 1170 if (use->is_Initialize()) { 1171 // Eliminate Initialize node. 1172 InitializeNode *init = use->as_Initialize(); 1173 assert(init->outcnt() <= 2, "only a control and memory projection expected"); 1174 Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control); 1175 if (ctrl_proj != nullptr) { 1176 _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control)); 1177 #ifdef ASSERT 1178 // If the InitializeNode has no memory out, it will die, and tmp will become null 1179 Node* tmp = init->in(TypeFunc::Control); 1180 assert(tmp == nullptr || tmp == _callprojs->fallthrough_catchproj, "allocation control projection"); 1181 #endif 1182 } 1183 Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory); 1184 if (mem_proj != nullptr) { 1185 Node *mem = init->in(TypeFunc::Memory); 1186 #ifdef ASSERT 1187 if (mem->is_MergeMem()) { 1188 assert(mem->in(TypeFunc::Memory) == _callprojs->fallthrough_memproj, "allocation memory projection"); 1189 } else { 1190 assert(mem == _callprojs->fallthrough_memproj, "allocation memory projection"); 1191 } 1192 #endif 1193 _igvn.replace_node(mem_proj, mem); 1194 } 1195 } else if (use->Opcode() == Op_MemBarStoreStore) { 1196 // Inline type buffer allocations are followed by a membar 1197 assert(inline_alloc, "Unexpected MemBarStoreStore"); 1198 use->as_MemBar()->remove(&_igvn); 1199 } else { 1200 assert(false, "only Initialize or AddP expected"); 1201 } 1202 j -= (oc1 - _callprojs->resproj[0]->outcnt()); 1203 } 1204 } 1205 if (_callprojs->fallthrough_catchproj != nullptr) { 1206 _igvn.replace_node(_callprojs->fallthrough_catchproj, alloc->in(TypeFunc::Control)); 1207 } 1208 if (_callprojs->fallthrough_memproj != nullptr) { 1209 _igvn.replace_node(_callprojs->fallthrough_memproj, alloc->in(TypeFunc::Memory)); 1210 } 1211 if (_callprojs->catchall_memproj != nullptr) { 1212 _igvn.replace_node(_callprojs->catchall_memproj, C->top()); 1213 } 1214 if (_callprojs->fallthrough_ioproj != nullptr) { 1215 _igvn.replace_node(_callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 1216 } 1217 if (_callprojs->catchall_ioproj != nullptr) { 1218 _igvn.replace_node(_callprojs->catchall_ioproj, C->top()); 1219 } 1220 if (_callprojs->catchall_catchproj != nullptr) { 1221 _igvn.replace_node(_callprojs->catchall_catchproj, C->top()); 1222 } 1223 } 1224 1225 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { 1226 // If reallocation fails during deoptimization we'll pop all 1227 // interpreter frames for this compiled frame and that won't play 1228 // nice with JVMTI popframe. 1229 // We avoid this issue by eager reallocation when the popframe request 1230 // is received. 1231 if (!EliminateAllocations) { 1232 return false; 1233 } 1234 Node* klass = alloc->in(AllocateNode::KlassNode); 1235 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); 1236 1237 // Attempt to eliminate inline type buffer allocations 1238 // regardless of usage and escape/replaceable status. 1239 bool inline_alloc = tklass->isa_instklassptr() && 1240 tklass->is_instklassptr()->instance_klass()->is_inlinetype(); 1241 if (!alloc->_is_non_escaping && !inline_alloc) { 1242 return false; 1243 } 1244 // Eliminate boxing allocations which are not used 1245 // regardless scalar replaceable status. 1246 Node* res = alloc->result_cast(); 1247 bool boxing_alloc = (res == nullptr) && C->eliminate_boxing() && 1248 tklass->isa_instklassptr() && 1249 tklass->is_instklassptr()->instance_klass()->is_box_klass(); 1250 if (!alloc->_is_scalar_replaceable && !boxing_alloc && !inline_alloc) { 1251 return false; 1252 } 1253 1254 _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1255 1256 GrowableArray <SafePointNode *> safepoints; 1257 if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) { 1258 return false; 1259 } 1260 1261 if (!alloc->_is_scalar_replaceable) { 1262 assert(res == nullptr || inline_alloc, "sanity"); 1263 // We can only eliminate allocation if all debug info references 1264 // are already replaced with SafePointScalarObject because 1265 // we can't search for a fields value without instance_id. 1266 if (safepoints.length() > 0) { 1267 assert(!inline_alloc || C->has_circular_inline_type(), 1268 "Inline type allocations should have been scalarized earlier"); 1269 return false; 1270 } 1271 } 1272 1273 if (!scalar_replacement(alloc, safepoints)) { 1274 return false; 1275 } 1276 1277 CompileLog* log = C->log(); 1278 if (log != nullptr) { 1279 log->head("eliminate_allocation type='%d'", 1280 log->identify(tklass->exact_klass())); 1281 JVMState* p = alloc->jvms(); 1282 while (p != nullptr) { 1283 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1284 p = p->caller(); 1285 } 1286 log->tail("eliminate_allocation"); 1287 } 1288 1289 process_users_of_allocation(alloc, inline_alloc); 1290 1291 #ifndef PRODUCT 1292 if (PrintEliminateAllocations) { 1293 if (alloc->is_AllocateArray()) 1294 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1295 else 1296 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1297 } 1298 #endif 1299 1300 return true; 1301 } 1302 1303 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { 1304 // EA should remove all uses of non-escaping boxing node. 1305 if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) { 1306 return false; 1307 } 1308 1309 assert(boxing->result_cast() == nullptr, "unexpected boxing node result"); 1310 1311 _callprojs = boxing->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1312 1313 const TypeTuple* r = boxing->tf()->range_sig(); 1314 assert(r->cnt() > TypeFunc::Parms, "sanity"); 1315 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); 1316 assert(t != nullptr, "sanity"); 1317 1318 CompileLog* log = C->log(); 1319 if (log != nullptr) { 1320 log->head("eliminate_boxing type='%d'", 1321 log->identify(t->instance_klass())); 1322 JVMState* p = boxing->jvms(); 1323 while (p != nullptr) { 1324 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1325 p = p->caller(); 1326 } 1327 log->tail("eliminate_boxing"); 1328 } 1329 1330 process_users_of_allocation(boxing); 1331 1332 #ifndef PRODUCT 1333 if (PrintEliminateAllocations) { 1334 tty->print("++++ Eliminated: %d ", boxing->_idx); 1335 boxing->method()->print_short_name(tty); 1336 tty->cr(); 1337 } 1338 #endif 1339 1340 return true; 1341 } 1342 1343 1344 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { 1345 Node* adr = basic_plus_adr(base, offset); 1346 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 1347 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); 1348 transform_later(value); 1349 return value; 1350 } 1351 1352 1353 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { 1354 Node* adr = basic_plus_adr(base, offset); 1355 mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered); 1356 transform_later(mem); 1357 return mem; 1358 } 1359 1360 //============================================================================= 1361 // 1362 // A L L O C A T I O N 1363 // 1364 // Allocation attempts to be fast in the case of frequent small objects. 1365 // It breaks down like this: 1366 // 1367 // 1) Size in doublewords is computed. This is a constant for objects and 1368 // variable for most arrays. Doubleword units are used to avoid size 1369 // overflow of huge doubleword arrays. We need doublewords in the end for 1370 // rounding. 1371 // 1372 // 2) Size is checked for being 'too large'. Too-large allocations will go 1373 // the slow path into the VM. The slow path can throw any required 1374 // exceptions, and does all the special checks for very large arrays. The 1375 // size test can constant-fold away for objects. For objects with 1376 // finalizers it constant-folds the otherway: you always go slow with 1377 // finalizers. 1378 // 1379 // 3) If NOT using TLABs, this is the contended loop-back point. 1380 // Load-Locked the heap top. If using TLABs normal-load the heap top. 1381 // 1382 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. 1383 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish 1384 // "size*8" we always enter the VM, where "largish" is a constant picked small 1385 // enough that there's always space between the eden max and 4Gig (old space is 1386 // there so it's quite large) and large enough that the cost of entering the VM 1387 // is dwarfed by the cost to initialize the space. 1388 // 1389 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back 1390 // down. If contended, repeat at step 3. If using TLABs normal-store 1391 // adjusted heap top back down; there is no contention. 1392 // 1393 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark 1394 // fields. 1395 // 1396 // 7) Merge with the slow-path; cast the raw memory pointer to the correct 1397 // oop flavor. 1398 // 1399 //============================================================================= 1400 // FastAllocateSizeLimit value is in DOUBLEWORDS. 1401 // Allocations bigger than this always go the slow route. 1402 // This value must be small enough that allocation attempts that need to 1403 // trigger exceptions go the slow route. Also, it must be small enough so 1404 // that heap_top + size_in_bytes does not wrap around the 4Gig limit. 1405 //=============================================================================j// 1406 // %%% Here is an old comment from parseHelper.cpp; is it outdated? 1407 // The allocator will coalesce int->oop copies away. See comment in 1408 // coalesce.cpp about how this works. It depends critically on the exact 1409 // code shape produced here, so if you are changing this code shape 1410 // make sure the GC info for the heap-top is correct in and around the 1411 // slow-path call. 1412 // 1413 1414 void PhaseMacroExpand::expand_allocate_common( 1415 AllocateNode* alloc, // allocation node to be expanded 1416 Node* length, // array length for an array allocation 1417 const TypeFunc* slow_call_type, // Type of slow call 1418 address slow_call_address, // Address of slow call 1419 Node* valid_length_test // whether length is valid or not 1420 ) 1421 { 1422 Node* ctrl = alloc->in(TypeFunc::Control); 1423 Node* mem = alloc->in(TypeFunc::Memory); 1424 Node* i_o = alloc->in(TypeFunc::I_O); 1425 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); 1426 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1427 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); 1428 assert(ctrl != nullptr, "must have control"); 1429 1430 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. 1431 // they will not be used if "always_slow" is set 1432 enum { slow_result_path = 1, fast_result_path = 2 }; 1433 Node *result_region = nullptr; 1434 Node *result_phi_rawmem = nullptr; 1435 Node *result_phi_rawoop = nullptr; 1436 Node *result_phi_i_o = nullptr; 1437 1438 // The initial slow comparison is a size check, the comparison 1439 // we want to do is a BoolTest::gt 1440 bool expand_fast_path = true; 1441 int tv = _igvn.find_int_con(initial_slow_test, -1); 1442 if (tv >= 0) { 1443 // InitialTest has constant result 1444 // 0 - can fit in TLAB 1445 // 1 - always too big or negative 1446 assert(tv <= 1, "0 or 1 if a constant"); 1447 expand_fast_path = (tv == 0); 1448 initial_slow_test = nullptr; 1449 } else { 1450 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); 1451 } 1452 1453 if (!UseTLAB) { 1454 // Force slow-path allocation 1455 expand_fast_path = false; 1456 initial_slow_test = nullptr; 1457 } 1458 1459 bool allocation_has_use = (alloc->result_cast() != nullptr); 1460 if (!allocation_has_use) { 1461 InitializeNode* init = alloc->initialization(); 1462 if (init != nullptr) { 1463 init->remove(&_igvn); 1464 } 1465 if (expand_fast_path && (initial_slow_test == nullptr)) { 1466 // Remove allocation node and return. 1467 // Size is a non-negative constant -> no initial check needed -> directly to fast path. 1468 // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left. 1469 #ifndef PRODUCT 1470 if (PrintEliminateAllocations) { 1471 tty->print("NotUsed "); 1472 Node* res = alloc->proj_out_or_null(TypeFunc::Parms); 1473 if (res != nullptr) { 1474 res->dump(); 1475 } else { 1476 alloc->dump(); 1477 } 1478 } 1479 #endif 1480 yank_alloc_node(alloc); 1481 return; 1482 } 1483 } 1484 1485 enum { too_big_or_final_path = 1, need_gc_path = 2 }; 1486 Node *slow_region = nullptr; 1487 Node *toobig_false = ctrl; 1488 1489 // generate the initial test if necessary 1490 if (initial_slow_test != nullptr ) { 1491 assert (expand_fast_path, "Only need test if there is a fast path"); 1492 slow_region = new RegionNode(3); 1493 1494 // Now make the initial failure test. Usually a too-big test but 1495 // might be a TRUE for finalizers. 1496 IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 1497 transform_later(toobig_iff); 1498 // Plug the failing-too-big test into the slow-path region 1499 Node* toobig_true = new IfTrueNode(toobig_iff); 1500 transform_later(toobig_true); 1501 slow_region ->init_req( too_big_or_final_path, toobig_true ); 1502 toobig_false = new IfFalseNode(toobig_iff); 1503 transform_later(toobig_false); 1504 } else { 1505 // No initial test, just fall into next case 1506 assert(allocation_has_use || !expand_fast_path, "Should already have been handled"); 1507 toobig_false = ctrl; 1508 debug_only(slow_region = NodeSentinel); 1509 } 1510 1511 // If we are here there are several possibilities 1512 // - expand_fast_path is false - then only a slow path is expanded. That's it. 1513 // no_initial_check means a constant allocation. 1514 // - If check always evaluates to false -> expand_fast_path is false (see above) 1515 // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath) 1516 // if !allocation_has_use the fast path is empty 1517 // if !allocation_has_use && no_initial_check 1518 // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all. 1519 // removed by yank_alloc_node above. 1520 1521 Node *slow_mem = mem; // save the current memory state for slow path 1522 // generate the fast allocation code unless we know that the initial test will always go slow 1523 if (expand_fast_path) { 1524 // Fast path modifies only raw memory. 1525 if (mem->is_MergeMem()) { 1526 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1527 } 1528 1529 // allocate the Region and Phi nodes for the result 1530 result_region = new RegionNode(3); 1531 result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1532 result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch 1533 1534 // Grab regular I/O before optional prefetch may change it. 1535 // Slow-path does no I/O so just set it to the original I/O. 1536 result_phi_i_o->init_req(slow_result_path, i_o); 1537 1538 // Name successful fast-path variables 1539 Node* fast_oop_ctrl; 1540 Node* fast_oop_rawmem; 1541 1542 if (allocation_has_use) { 1543 Node* needgc_ctrl = nullptr; 1544 result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); 1545 1546 intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1547 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1548 Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl, 1549 fast_oop_ctrl, fast_oop_rawmem, 1550 prefetch_lines); 1551 1552 if (initial_slow_test != nullptr) { 1553 // This completes all paths into the slow merge point 1554 slow_region->init_req(need_gc_path, needgc_ctrl); 1555 transform_later(slow_region); 1556 } else { 1557 // No initial slow path needed! 1558 // Just fall from the need-GC path straight into the VM call. 1559 slow_region = needgc_ctrl; 1560 } 1561 1562 InitializeNode* init = alloc->initialization(); 1563 fast_oop_rawmem = initialize_object(alloc, 1564 fast_oop_ctrl, fast_oop_rawmem, fast_oop, 1565 klass_node, length, size_in_bytes); 1566 expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem); 1567 expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem); 1568 1569 result_phi_rawoop->init_req(fast_result_path, fast_oop); 1570 } else { 1571 assert (initial_slow_test != nullptr, "sanity"); 1572 fast_oop_ctrl = toobig_false; 1573 fast_oop_rawmem = mem; 1574 transform_later(slow_region); 1575 } 1576 1577 // Plug in the successful fast-path into the result merge point 1578 result_region ->init_req(fast_result_path, fast_oop_ctrl); 1579 result_phi_i_o ->init_req(fast_result_path, i_o); 1580 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); 1581 } else { 1582 slow_region = ctrl; 1583 result_phi_i_o = i_o; // Rename it to use in the following code. 1584 } 1585 1586 // Generate slow-path call 1587 CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, 1588 OptoRuntime::stub_name(slow_call_address), 1589 TypePtr::BOTTOM); 1590 call->init_req(TypeFunc::Control, slow_region); 1591 call->init_req(TypeFunc::I_O, top()); // does no i/o 1592 call->init_req(TypeFunc::Memory, slow_mem); // may gc ptrs 1593 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1594 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1595 1596 call->init_req(TypeFunc::Parms+0, klass_node); 1597 if (length != nullptr) { 1598 call->init_req(TypeFunc::Parms+1, length); 1599 } else { 1600 // Let the runtime know if this is a larval allocation 1601 call->init_req(TypeFunc::Parms+1, _igvn.intcon(alloc->_larval)); 1602 } 1603 1604 // Copy debug information and adjust JVMState information, then replace 1605 // allocate node with the call 1606 call->copy_call_debug_info(&_igvn, alloc); 1607 // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify 1608 // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough 1609 // path dies). 1610 if (valid_length_test != nullptr) { 1611 call->add_req(valid_length_test); 1612 } 1613 if (expand_fast_path) { 1614 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1615 } else { 1616 // Hook i_o projection to avoid its elimination during allocation 1617 // replacement (when only a slow call is generated). 1618 call->set_req(TypeFunc::I_O, result_phi_i_o); 1619 } 1620 _igvn.replace_node(alloc, call); 1621 transform_later(call); 1622 1623 // Identify the output projections from the allocate node and 1624 // adjust any references to them. 1625 // The control and io projections look like: 1626 // 1627 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) 1628 // Allocate Catch 1629 // ^---Proj(io) <-------+ ^---CatchProj(io) 1630 // 1631 // We are interested in the CatchProj nodes. 1632 // 1633 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1634 1635 // An allocate node has separate memory projections for the uses on 1636 // the control and i_o paths. Replace the control memory projection with 1637 // result_phi_rawmem (unless we are only generating a slow call when 1638 // both memory projections are combined) 1639 if (expand_fast_path && _callprojs->fallthrough_memproj != nullptr) { 1640 _igvn.replace_in_uses(_callprojs->fallthrough_memproj, result_phi_rawmem); 1641 } 1642 // Now change uses of catchall_memproj to use fallthrough_memproj and delete 1643 // catchall_memproj so we end up with a call that has only 1 memory projection. 1644 if (_callprojs->catchall_memproj != nullptr) { 1645 if (_callprojs->fallthrough_memproj == nullptr) { 1646 _callprojs->fallthrough_memproj = new ProjNode(call, TypeFunc::Memory); 1647 transform_later(_callprojs->fallthrough_memproj); 1648 } 1649 _igvn.replace_in_uses(_callprojs->catchall_memproj, _callprojs->fallthrough_memproj); 1650 _igvn.remove_dead_node(_callprojs->catchall_memproj); 1651 } 1652 1653 // An allocate node has separate i_o projections for the uses on the control 1654 // and i_o paths. Always replace the control i_o projection with result i_o 1655 // otherwise incoming i_o become dead when only a slow call is generated 1656 // (it is different from memory projections where both projections are 1657 // combined in such case). 1658 if (_callprojs->fallthrough_ioproj != nullptr) { 1659 _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, result_phi_i_o); 1660 } 1661 // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete 1662 // catchall_ioproj so we end up with a call that has only 1 i_o projection. 1663 if (_callprojs->catchall_ioproj != nullptr) { 1664 if (_callprojs->fallthrough_ioproj == nullptr) { 1665 _callprojs->fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O); 1666 transform_later(_callprojs->fallthrough_ioproj); 1667 } 1668 _igvn.replace_in_uses(_callprojs->catchall_ioproj, _callprojs->fallthrough_ioproj); 1669 _igvn.remove_dead_node(_callprojs->catchall_ioproj); 1670 } 1671 1672 // if we generated only a slow call, we are done 1673 if (!expand_fast_path) { 1674 // Now we can unhook i_o. 1675 if (result_phi_i_o->outcnt() > 1) { 1676 call->set_req(TypeFunc::I_O, top()); 1677 } else { 1678 assert(result_phi_i_o->unique_ctrl_out() == call, "sanity"); 1679 // Case of new array with negative size known during compilation. 1680 // AllocateArrayNode::Ideal() optimization disconnect unreachable 1681 // following code since call to runtime will throw exception. 1682 // As result there will be no users of i_o after the call. 1683 // Leave i_o attached to this call to avoid problems in preceding graph. 1684 } 1685 return; 1686 } 1687 1688 if (_callprojs->fallthrough_catchproj != nullptr) { 1689 ctrl = _callprojs->fallthrough_catchproj->clone(); 1690 transform_later(ctrl); 1691 _igvn.replace_node(_callprojs->fallthrough_catchproj, result_region); 1692 } else { 1693 ctrl = top(); 1694 } 1695 Node *slow_result; 1696 if (_callprojs->resproj[0] == nullptr) { 1697 // no uses of the allocation result 1698 slow_result = top(); 1699 } else { 1700 slow_result = _callprojs->resproj[0]->clone(); 1701 transform_later(slow_result); 1702 _igvn.replace_node(_callprojs->resproj[0], result_phi_rawoop); 1703 } 1704 1705 // Plug slow-path into result merge point 1706 result_region->init_req( slow_result_path, ctrl); 1707 transform_later(result_region); 1708 if (allocation_has_use) { 1709 result_phi_rawoop->init_req(slow_result_path, slow_result); 1710 transform_later(result_phi_rawoop); 1711 } 1712 result_phi_rawmem->init_req(slow_result_path, _callprojs->fallthrough_memproj); 1713 transform_later(result_phi_rawmem); 1714 transform_later(result_phi_i_o); 1715 // This completes all paths into the result merge point 1716 } 1717 1718 // Remove alloc node that has no uses. 1719 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) { 1720 Node* ctrl = alloc->in(TypeFunc::Control); 1721 Node* mem = alloc->in(TypeFunc::Memory); 1722 Node* i_o = alloc->in(TypeFunc::I_O); 1723 1724 _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1725 if (_callprojs->resproj[0] != nullptr) { 1726 for (DUIterator_Fast imax, i = _callprojs->resproj[0]->fast_outs(imax); i < imax; i++) { 1727 Node* use = _callprojs->resproj[0]->fast_out(i); 1728 use->isa_MemBar()->remove(&_igvn); 1729 --imax; 1730 --i; // back up iterator 1731 } 1732 assert(_callprojs->resproj[0]->outcnt() == 0, "all uses must be deleted"); 1733 _igvn.remove_dead_node(_callprojs->resproj[0]); 1734 } 1735 if (_callprojs->fallthrough_catchproj != nullptr) { 1736 _igvn.replace_in_uses(_callprojs->fallthrough_catchproj, ctrl); 1737 _igvn.remove_dead_node(_callprojs->fallthrough_catchproj); 1738 } 1739 if (_callprojs->catchall_catchproj != nullptr) { 1740 _igvn.rehash_node_delayed(_callprojs->catchall_catchproj); 1741 _callprojs->catchall_catchproj->set_req(0, top()); 1742 } 1743 if (_callprojs->fallthrough_proj != nullptr) { 1744 Node* catchnode = _callprojs->fallthrough_proj->unique_ctrl_out(); 1745 _igvn.remove_dead_node(catchnode); 1746 _igvn.remove_dead_node(_callprojs->fallthrough_proj); 1747 } 1748 if (_callprojs->fallthrough_memproj != nullptr) { 1749 _igvn.replace_in_uses(_callprojs->fallthrough_memproj, mem); 1750 _igvn.remove_dead_node(_callprojs->fallthrough_memproj); 1751 } 1752 if (_callprojs->fallthrough_ioproj != nullptr) { 1753 _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, i_o); 1754 _igvn.remove_dead_node(_callprojs->fallthrough_ioproj); 1755 } 1756 if (_callprojs->catchall_memproj != nullptr) { 1757 _igvn.rehash_node_delayed(_callprojs->catchall_memproj); 1758 _callprojs->catchall_memproj->set_req(0, top()); 1759 } 1760 if (_callprojs->catchall_ioproj != nullptr) { 1761 _igvn.rehash_node_delayed(_callprojs->catchall_ioproj); 1762 _callprojs->catchall_ioproj->set_req(0, top()); 1763 } 1764 #ifndef PRODUCT 1765 if (PrintEliminateAllocations) { 1766 if (alloc->is_AllocateArray()) { 1767 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1768 } else { 1769 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1770 } 1771 } 1772 #endif 1773 _igvn.remove_dead_node(alloc); 1774 } 1775 1776 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init, 1777 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) { 1778 // If initialization is performed by an array copy, any required 1779 // MemBarStoreStore was already added. If the object does not 1780 // escape no need for a MemBarStoreStore. If the object does not 1781 // escape in its initializer and memory barrier (MemBarStoreStore or 1782 // stronger) is already added at exit of initializer, also no need 1783 // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore 1784 // so that stores that initialize this object can't be reordered 1785 // with a subsequent store that makes this object accessible by 1786 // other threads. 1787 // Other threads include java threads and JVM internal threads 1788 // (for example concurrent GC threads). Current concurrent GC 1789 // implementation: G1 will not scan newly created object, 1790 // so it's safe to skip storestore barrier when allocation does 1791 // not escape. 1792 if (!alloc->does_not_escape_thread() && 1793 !alloc->is_allocation_MemBar_redundant() && 1794 (init == nullptr || !init->is_complete_with_arraycopy())) { 1795 if (init == nullptr || init->req() < InitializeNode::RawStores) { 1796 // No InitializeNode or no stores captured by zeroing 1797 // elimination. Simply add the MemBarStoreStore after object 1798 // initialization. 1799 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1800 transform_later(mb); 1801 1802 mb->init_req(TypeFunc::Memory, fast_oop_rawmem); 1803 mb->init_req(TypeFunc::Control, fast_oop_ctrl); 1804 fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control); 1805 transform_later(fast_oop_ctrl); 1806 fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory); 1807 transform_later(fast_oop_rawmem); 1808 } else { 1809 // Add the MemBarStoreStore after the InitializeNode so that 1810 // all stores performing the initialization that were moved 1811 // before the InitializeNode happen before the storestore 1812 // barrier. 1813 1814 Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control); 1815 Node* init_mem = init->proj_out_or_null(TypeFunc::Memory); 1816 1817 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1818 transform_later(mb); 1819 1820 Node* ctrl = new ProjNode(init, TypeFunc::Control); 1821 transform_later(ctrl); 1822 Node* mem = new ProjNode(init, TypeFunc::Memory); 1823 transform_later(mem); 1824 1825 // The MemBarStoreStore depends on control and memory coming 1826 // from the InitializeNode 1827 mb->init_req(TypeFunc::Memory, mem); 1828 mb->init_req(TypeFunc::Control, ctrl); 1829 1830 ctrl = new ProjNode(mb, TypeFunc::Control); 1831 transform_later(ctrl); 1832 mem = new ProjNode(mb, TypeFunc::Memory); 1833 transform_later(mem); 1834 1835 // All nodes that depended on the InitializeNode for control 1836 // and memory must now depend on the MemBarNode that itself 1837 // depends on the InitializeNode 1838 if (init_ctrl != nullptr) { 1839 _igvn.replace_node(init_ctrl, ctrl); 1840 } 1841 if (init_mem != nullptr) { 1842 _igvn.replace_node(init_mem, mem); 1843 } 1844 } 1845 } 1846 } 1847 1848 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop, 1849 Node*& ctrl, Node*& rawmem) { 1850 if (C->env()->dtrace_alloc_probes()) { 1851 // Slow-path call 1852 int size = TypeFunc::Parms + 2; 1853 CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), 1854 CAST_FROM_FN_PTR(address, 1855 static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)), 1856 "dtrace_object_alloc", 1857 TypeRawPtr::BOTTOM); 1858 1859 // Get base of thread-local storage area 1860 Node* thread = new ThreadLocalNode(); 1861 transform_later(thread); 1862 1863 call->init_req(TypeFunc::Parms + 0, thread); 1864 call->init_req(TypeFunc::Parms + 1, oop); 1865 call->init_req(TypeFunc::Control, ctrl); 1866 call->init_req(TypeFunc::I_O , top()); // does no i/o 1867 call->init_req(TypeFunc::Memory , rawmem); 1868 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1869 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1870 transform_later(call); 1871 ctrl = new ProjNode(call, TypeFunc::Control); 1872 transform_later(ctrl); 1873 rawmem = new ProjNode(call, TypeFunc::Memory); 1874 transform_later(rawmem); 1875 } 1876 } 1877 1878 // Helper for PhaseMacroExpand::expand_allocate_common. 1879 // Initializes the newly-allocated storage. 1880 Node* PhaseMacroExpand::initialize_object(AllocateNode* alloc, 1881 Node* control, Node* rawmem, Node* object, 1882 Node* klass_node, Node* length, 1883 Node* size_in_bytes) { 1884 InitializeNode* init = alloc->initialization(); 1885 // Store the klass & mark bits 1886 Node* mark_node = alloc->make_ideal_mark(&_igvn, control, rawmem); 1887 if (!mark_node->is_Con()) { 1888 transform_later(mark_node); 1889 } 1890 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type()); 1891 1892 if (!UseCompactObjectHeaders) { 1893 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 1894 } 1895 int header_size = alloc->minimum_header_size(); // conservatively small 1896 1897 // Array length 1898 if (length != nullptr) { // Arrays need length field 1899 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); 1900 // conservatively small header size: 1901 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1902 if (_igvn.type(klass_node)->isa_aryklassptr()) { // we know the exact header size in most cases: 1903 BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type(); 1904 if (is_reference_type(elem, true)) { 1905 elem = T_OBJECT; 1906 } 1907 header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem)); 1908 } 1909 } 1910 1911 // Clear the object body, if necessary. 1912 if (init == nullptr) { 1913 // The init has somehow disappeared; be cautious and clear everything. 1914 // 1915 // This can happen if a node is allocated but an uncommon trap occurs 1916 // immediately. In this case, the Initialize gets associated with the 1917 // trap, and may be placed in a different (outer) loop, if the Allocate 1918 // is in a loop. If (this is rare) the inner loop gets unrolled, then 1919 // there can be two Allocates to one Initialize. The answer in all these 1920 // edge cases is safety first. It is always safe to clear immediately 1921 // within an Allocate, and then (maybe or maybe not) clear some more later. 1922 if (!(UseTLAB && ZeroTLAB)) { 1923 rawmem = ClearArrayNode::clear_memory(control, rawmem, object, 1924 alloc->in(AllocateNode::DefaultValue), 1925 alloc->in(AllocateNode::RawDefaultValue), 1926 header_size, size_in_bytes, 1927 &_igvn); 1928 } 1929 } else { 1930 if (!init->is_complete()) { 1931 // Try to win by zeroing only what the init does not store. 1932 // We can also try to do some peephole optimizations, 1933 // such as combining some adjacent subword stores. 1934 rawmem = init->complete_stores(control, rawmem, object, 1935 header_size, size_in_bytes, &_igvn); 1936 } 1937 // We have no more use for this link, since the AllocateNode goes away: 1938 init->set_req(InitializeNode::RawAddress, top()); 1939 // (If we keep the link, it just confuses the register allocator, 1940 // who thinks he sees a real use of the address by the membar.) 1941 } 1942 1943 return rawmem; 1944 } 1945 1946 // Generate prefetch instructions for next allocations. 1947 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 1948 Node*& contended_phi_rawmem, 1949 Node* old_eden_top, Node* new_eden_top, 1950 intx lines) { 1951 enum { fall_in_path = 1, pf_path = 2 }; 1952 if( UseTLAB && AllocatePrefetchStyle == 2 ) { 1953 // Generate prefetch allocation with watermark check. 1954 // As an allocation hits the watermark, we will prefetch starting 1955 // at a "distance" away from watermark. 1956 1957 Node *pf_region = new RegionNode(3); 1958 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 1959 TypeRawPtr::BOTTOM ); 1960 // I/O is used for Prefetch 1961 Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); 1962 1963 Node *thread = new ThreadLocalNode(); 1964 transform_later(thread); 1965 1966 Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, 1967 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); 1968 transform_later(eden_pf_adr); 1969 1970 Node *old_pf_wm = new LoadPNode(needgc_false, 1971 contended_phi_rawmem, eden_pf_adr, 1972 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, 1973 MemNode::unordered); 1974 transform_later(old_pf_wm); 1975 1976 // check against new_eden_top 1977 Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); 1978 transform_later(need_pf_cmp); 1979 Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); 1980 transform_later(need_pf_bol); 1981 IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, 1982 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); 1983 transform_later(need_pf_iff); 1984 1985 // true node, add prefetchdistance 1986 Node *need_pf_true = new IfTrueNode( need_pf_iff ); 1987 transform_later(need_pf_true); 1988 1989 Node *need_pf_false = new IfFalseNode( need_pf_iff ); 1990 transform_later(need_pf_false); 1991 1992 Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, 1993 _igvn.MakeConX(AllocatePrefetchDistance) ); 1994 transform_later(new_pf_wmt ); 1995 new_pf_wmt->set_req(0, need_pf_true); 1996 1997 Node *store_new_wmt = new StorePNode(need_pf_true, 1998 contended_phi_rawmem, eden_pf_adr, 1999 TypeRawPtr::BOTTOM, new_pf_wmt, 2000 MemNode::unordered); 2001 transform_later(store_new_wmt); 2002 2003 // adding prefetches 2004 pf_phi_abio->init_req( fall_in_path, i_o ); 2005 2006 Node *prefetch_adr; 2007 Node *prefetch; 2008 uint step_size = AllocatePrefetchStepSize; 2009 uint distance = 0; 2010 2011 for ( intx i = 0; i < lines; i++ ) { 2012 prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, 2013 _igvn.MakeConX(distance) ); 2014 transform_later(prefetch_adr); 2015 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 2016 transform_later(prefetch); 2017 distance += step_size; 2018 i_o = prefetch; 2019 } 2020 pf_phi_abio->set_req( pf_path, i_o ); 2021 2022 pf_region->init_req( fall_in_path, need_pf_false ); 2023 pf_region->init_req( pf_path, need_pf_true ); 2024 2025 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); 2026 pf_phi_rawmem->init_req( pf_path, store_new_wmt ); 2027 2028 transform_later(pf_region); 2029 transform_later(pf_phi_rawmem); 2030 transform_later(pf_phi_abio); 2031 2032 needgc_false = pf_region; 2033 contended_phi_rawmem = pf_phi_rawmem; 2034 i_o = pf_phi_abio; 2035 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { 2036 // Insert a prefetch instruction for each allocation. 2037 // This code is used to generate 1 prefetch instruction per cache line. 2038 2039 // Generate several prefetch instructions. 2040 uint step_size = AllocatePrefetchStepSize; 2041 uint distance = AllocatePrefetchDistance; 2042 2043 // Next cache address. 2044 Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, 2045 _igvn.MakeConX(step_size + distance)); 2046 transform_later(cache_adr); 2047 cache_adr = new CastP2XNode(needgc_false, cache_adr); 2048 transform_later(cache_adr); 2049 // Address is aligned to execute prefetch to the beginning of cache line size 2050 // (it is important when BIS instruction is used on SPARC as prefetch). 2051 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); 2052 cache_adr = new AndXNode(cache_adr, mask); 2053 transform_later(cache_adr); 2054 cache_adr = new CastX2PNode(cache_adr); 2055 transform_later(cache_adr); 2056 2057 // Prefetch 2058 Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); 2059 prefetch->set_req(0, needgc_false); 2060 transform_later(prefetch); 2061 contended_phi_rawmem = prefetch; 2062 Node *prefetch_adr; 2063 distance = step_size; 2064 for ( intx i = 1; i < lines; i++ ) { 2065 prefetch_adr = new AddPNode( cache_adr, cache_adr, 2066 _igvn.MakeConX(distance) ); 2067 transform_later(prefetch_adr); 2068 prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); 2069 transform_later(prefetch); 2070 distance += step_size; 2071 contended_phi_rawmem = prefetch; 2072 } 2073 } else if( AllocatePrefetchStyle > 0 ) { 2074 // Insert a prefetch for each allocation only on the fast-path 2075 Node *prefetch_adr; 2076 Node *prefetch; 2077 // Generate several prefetch instructions. 2078 uint step_size = AllocatePrefetchStepSize; 2079 uint distance = AllocatePrefetchDistance; 2080 for ( intx i = 0; i < lines; i++ ) { 2081 prefetch_adr = new AddPNode( old_eden_top, new_eden_top, 2082 _igvn.MakeConX(distance) ); 2083 transform_later(prefetch_adr); 2084 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 2085 // Do not let it float too high, since if eden_top == eden_end, 2086 // both might be null. 2087 if( i == 0 ) { // Set control for first prefetch, next follows it 2088 prefetch->init_req(0, needgc_false); 2089 } 2090 transform_later(prefetch); 2091 distance += step_size; 2092 i_o = prefetch; 2093 } 2094 } 2095 return i_o; 2096 } 2097 2098 2099 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { 2100 expand_allocate_common(alloc, nullptr, 2101 OptoRuntime::new_instance_Type(), 2102 OptoRuntime::new_instance_Java(), nullptr); 2103 } 2104 2105 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { 2106 Node* length = alloc->in(AllocateNode::ALength); 2107 Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest); 2108 InitializeNode* init = alloc->initialization(); 2109 Node* klass_node = alloc->in(AllocateNode::KlassNode); 2110 const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr(); 2111 address slow_call_address; // Address of slow call 2112 if (init != nullptr && init->is_complete_with_arraycopy() && 2113 ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) { 2114 // Don't zero type array during slow allocation in VM since 2115 // it will be initialized later by arraycopy in compiled code. 2116 slow_call_address = OptoRuntime::new_array_nozero_Java(); 2117 } else { 2118 slow_call_address = OptoRuntime::new_array_Java(); 2119 } 2120 expand_allocate_common(alloc, length, 2121 OptoRuntime::new_array_Type(), 2122 slow_call_address, valid_length_test); 2123 } 2124 2125 //-------------------mark_eliminated_box---------------------------------- 2126 // 2127 // During EA obj may point to several objects but after few ideal graph 2128 // transformations (CCP) it may point to only one non escaping object 2129 // (but still using phi), corresponding locks and unlocks will be marked 2130 // for elimination. Later obj could be replaced with a new node (new phi) 2131 // and which does not have escape information. And later after some graph 2132 // reshape other locks and unlocks (which were not marked for elimination 2133 // before) are connected to this new obj (phi) but they still will not be 2134 // marked for elimination since new obj has no escape information. 2135 // Mark all associated (same box and obj) lock and unlock nodes for 2136 // elimination if some of them marked already. 2137 void PhaseMacroExpand::mark_eliminated_box(Node* box, Node* obj) { 2138 BoxLockNode* oldbox = box->as_BoxLock(); 2139 if (oldbox->is_eliminated()) { 2140 return; // This BoxLock node was processed already. 2141 } 2142 assert(!oldbox->is_unbalanced(), "this should not be called for unbalanced region"); 2143 // New implementation (EliminateNestedLocks) has separate BoxLock 2144 // node for each locked region so mark all associated locks/unlocks as 2145 // eliminated even if different objects are referenced in one locked region 2146 // (for example, OSR compilation of nested loop inside locked scope). 2147 if (EliminateNestedLocks || 2148 oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) { 2149 // Box is used only in one lock region. Mark this box as eliminated. 2150 oldbox->set_local(); // This verifies correct state of BoxLock 2151 _igvn.hash_delete(oldbox); 2152 oldbox->set_eliminated(); // This changes box's hash value 2153 _igvn.hash_insert(oldbox); 2154 2155 for (uint i = 0; i < oldbox->outcnt(); i++) { 2156 Node* u = oldbox->raw_out(i); 2157 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { 2158 AbstractLockNode* alock = u->as_AbstractLock(); 2159 // Check lock's box since box could be referenced by Lock's debug info. 2160 if (alock->box_node() == oldbox) { 2161 // Mark eliminated all related locks and unlocks. 2162 #ifdef ASSERT 2163 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4"); 2164 #endif 2165 alock->set_non_esc_obj(); 2166 } 2167 } 2168 } 2169 return; 2170 } 2171 2172 // Create new "eliminated" BoxLock node and use it in monitor debug info 2173 // instead of oldbox for the same object. 2174 BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); 2175 2176 // Note: BoxLock node is marked eliminated only here and it is used 2177 // to indicate that all associated lock and unlock nodes are marked 2178 // for elimination. 2179 newbox->set_local(); // This verifies correct state of BoxLock 2180 newbox->set_eliminated(); 2181 transform_later(newbox); 2182 2183 // Replace old box node with new box for all users of the same object. 2184 for (uint i = 0; i < oldbox->outcnt();) { 2185 bool next_edge = true; 2186 2187 Node* u = oldbox->raw_out(i); 2188 if (u->is_AbstractLock()) { 2189 AbstractLockNode* alock = u->as_AbstractLock(); 2190 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { 2191 // Replace Box and mark eliminated all related locks and unlocks. 2192 #ifdef ASSERT 2193 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5"); 2194 #endif 2195 alock->set_non_esc_obj(); 2196 _igvn.rehash_node_delayed(alock); 2197 alock->set_box_node(newbox); 2198 next_edge = false; 2199 } 2200 } 2201 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { 2202 FastLockNode* flock = u->as_FastLock(); 2203 assert(flock->box_node() == oldbox, "sanity"); 2204 _igvn.rehash_node_delayed(flock); 2205 flock->set_box_node(newbox); 2206 next_edge = false; 2207 } 2208 2209 // Replace old box in monitor debug info. 2210 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { 2211 SafePointNode* sfn = u->as_SafePoint(); 2212 JVMState* youngest_jvms = sfn->jvms(); 2213 int max_depth = youngest_jvms->depth(); 2214 for (int depth = 1; depth <= max_depth; depth++) { 2215 JVMState* jvms = youngest_jvms->of_depth(depth); 2216 int num_mon = jvms->nof_monitors(); 2217 // Loop over monitors 2218 for (int idx = 0; idx < num_mon; idx++) { 2219 Node* obj_node = sfn->monitor_obj(jvms, idx); 2220 Node* box_node = sfn->monitor_box(jvms, idx); 2221 if (box_node == oldbox && obj_node->eqv_uncast(obj)) { 2222 int j = jvms->monitor_box_offset(idx); 2223 _igvn.replace_input_of(u, j, newbox); 2224 next_edge = false; 2225 } 2226 } 2227 } 2228 } 2229 if (next_edge) i++; 2230 } 2231 } 2232 2233 //-----------------------mark_eliminated_locking_nodes----------------------- 2234 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { 2235 if (!alock->is_balanced()) { 2236 return; // Can't do any more elimination for this locking region 2237 } 2238 if (EliminateNestedLocks) { 2239 if (alock->is_nested()) { 2240 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity"); 2241 return; 2242 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened 2243 // Only Lock node has JVMState needed here. 2244 // Not that preceding claim is documented anywhere else. 2245 if (alock->jvms() != nullptr) { 2246 if (alock->as_Lock()->is_nested_lock_region()) { 2247 // Mark eliminated related nested locks and unlocks. 2248 Node* obj = alock->obj_node(); 2249 BoxLockNode* box_node = alock->box_node()->as_BoxLock(); 2250 assert(!box_node->is_eliminated(), "should not be marked yet"); 2251 // Note: BoxLock node is marked eliminated only here 2252 // and it is used to indicate that all associated lock 2253 // and unlock nodes are marked for elimination. 2254 box_node->set_eliminated(); // Box's hash is always NO_HASH here 2255 for (uint i = 0; i < box_node->outcnt(); i++) { 2256 Node* u = box_node->raw_out(i); 2257 if (u->is_AbstractLock()) { 2258 alock = u->as_AbstractLock(); 2259 if (alock->box_node() == box_node) { 2260 // Verify that this Box is referenced only by related locks. 2261 assert(alock->obj_node()->eqv_uncast(obj), ""); 2262 // Mark all related locks and unlocks. 2263 #ifdef ASSERT 2264 alock->log_lock_optimization(C, "eliminate_lock_set_nested"); 2265 #endif 2266 alock->set_nested(); 2267 } 2268 } 2269 } 2270 } else { 2271 #ifdef ASSERT 2272 alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region"); 2273 if (C->log() != nullptr) 2274 alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output 2275 #endif 2276 } 2277 } 2278 return; 2279 } 2280 // Process locks for non escaping object 2281 assert(alock->is_non_esc_obj(), ""); 2282 } // EliminateNestedLocks 2283 2284 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object 2285 // Look for all locks of this object and mark them and 2286 // corresponding BoxLock nodes as eliminated. 2287 Node* obj = alock->obj_node(); 2288 for (uint j = 0; j < obj->outcnt(); j++) { 2289 Node* o = obj->raw_out(j); 2290 if (o->is_AbstractLock() && 2291 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2292 alock = o->as_AbstractLock(); 2293 Node* box = alock->box_node(); 2294 // Replace old box node with new eliminated box for all users 2295 // of the same object and mark related locks as eliminated. 2296 mark_eliminated_box(box, obj); 2297 } 2298 } 2299 } 2300 } 2301 2302 // we have determined that this lock/unlock can be eliminated, we simply 2303 // eliminate the node without expanding it. 2304 // 2305 // Note: The membar's associated with the lock/unlock are currently not 2306 // eliminated. This should be investigated as a future enhancement. 2307 // 2308 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { 2309 2310 if (!alock->is_eliminated()) { 2311 return false; 2312 } 2313 #ifdef ASSERT 2314 if (!alock->is_coarsened()) { 2315 // Check that new "eliminated" BoxLock node is created. 2316 BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); 2317 assert(oldbox->is_eliminated(), "should be done already"); 2318 } 2319 #endif 2320 2321 alock->log_lock_optimization(C, "eliminate_lock"); 2322 2323 #ifndef PRODUCT 2324 if (PrintEliminateLocks) { 2325 tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string()); 2326 } 2327 #endif 2328 2329 Node* mem = alock->in(TypeFunc::Memory); 2330 Node* ctrl = alock->in(TypeFunc::Control); 2331 guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null"); 2332 2333 _callprojs = alock->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2334 // There are 2 projections from the lock. The lock node will 2335 // be deleted when its last use is subsumed below. 2336 assert(alock->outcnt() == 2 && 2337 _callprojs->fallthrough_proj != nullptr && 2338 _callprojs->fallthrough_memproj != nullptr, 2339 "Unexpected projections from Lock/Unlock"); 2340 2341 Node* fallthroughproj = _callprojs->fallthrough_proj; 2342 Node* memproj_fallthrough = _callprojs->fallthrough_memproj; 2343 2344 // The memory projection from a lock/unlock is RawMem 2345 // The input to a Lock is merged memory, so extract its RawMem input 2346 // (unless the MergeMem has been optimized away.) 2347 if (alock->is_Lock()) { 2348 // Search for MemBarAcquireLock node and delete it also. 2349 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); 2350 assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, ""); 2351 Node* ctrlproj = membar->proj_out(TypeFunc::Control); 2352 Node* memproj = membar->proj_out(TypeFunc::Memory); 2353 _igvn.replace_node(ctrlproj, fallthroughproj); 2354 _igvn.replace_node(memproj, memproj_fallthrough); 2355 2356 // Delete FastLock node also if this Lock node is unique user 2357 // (a loop peeling may clone a Lock node). 2358 Node* flock = alock->as_Lock()->fastlock_node(); 2359 if (flock->outcnt() == 1) { 2360 assert(flock->unique_out() == alock, "sanity"); 2361 _igvn.replace_node(flock, top()); 2362 } 2363 } 2364 2365 // Search for MemBarReleaseLock node and delete it also. 2366 if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) { 2367 MemBarNode* membar = ctrl->in(0)->as_MemBar(); 2368 assert(membar->Opcode() == Op_MemBarReleaseLock && 2369 mem->is_Proj() && membar == mem->in(0), ""); 2370 _igvn.replace_node(fallthroughproj, ctrl); 2371 _igvn.replace_node(memproj_fallthrough, mem); 2372 fallthroughproj = ctrl; 2373 memproj_fallthrough = mem; 2374 ctrl = membar->in(TypeFunc::Control); 2375 mem = membar->in(TypeFunc::Memory); 2376 } 2377 2378 _igvn.replace_node(fallthroughproj, ctrl); 2379 _igvn.replace_node(memproj_fallthrough, mem); 2380 return true; 2381 } 2382 2383 2384 //------------------------------expand_lock_node---------------------- 2385 void PhaseMacroExpand::expand_lock_node(LockNode *lock) { 2386 2387 Node* ctrl = lock->in(TypeFunc::Control); 2388 Node* mem = lock->in(TypeFunc::Memory); 2389 Node* obj = lock->obj_node(); 2390 Node* box = lock->box_node(); 2391 Node* flock = lock->fastlock_node(); 2392 2393 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2394 2395 // Make the merge point 2396 Node *region; 2397 Node *mem_phi; 2398 Node *slow_path; 2399 2400 region = new RegionNode(3); 2401 // create a Phi for the memory state 2402 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2403 2404 // Optimize test; set region slot 2 2405 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); 2406 mem_phi->init_req(2, mem); 2407 2408 // Make slow path call 2409 CallNode* call = make_slow_call(lock, OptoRuntime::complete_monitor_enter_Type(), 2410 OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path, 2411 obj, box, nullptr); 2412 2413 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2414 2415 // Slow path can only throw asynchronous exceptions, which are always 2416 // de-opted. So the compiler thinks the slow-call can never throw an 2417 // exception. If it DOES throw an exception we would need the debug 2418 // info removed first (since if it throws there is no monitor). 2419 assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr && 2420 _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2421 2422 // Capture slow path 2423 // disconnect fall-through projection from call and create a new one 2424 // hook up users of fall-through projection to region 2425 Node *slow_ctrl = _callprojs->fallthrough_proj->clone(); 2426 transform_later(slow_ctrl); 2427 _igvn.hash_delete(_callprojs->fallthrough_proj); 2428 _callprojs->fallthrough_proj->disconnect_inputs(C); 2429 region->init_req(1, slow_ctrl); 2430 // region inputs are now complete 2431 transform_later(region); 2432 _igvn.replace_node(_callprojs->fallthrough_proj, region); 2433 2434 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); 2435 2436 mem_phi->init_req(1, memproj); 2437 2438 transform_later(mem_phi); 2439 2440 _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi); 2441 } 2442 2443 //------------------------------expand_unlock_node---------------------- 2444 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { 2445 2446 Node* ctrl = unlock->in(TypeFunc::Control); 2447 Node* mem = unlock->in(TypeFunc::Memory); 2448 Node* obj = unlock->obj_node(); 2449 Node* box = unlock->box_node(); 2450 2451 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2452 2453 // No need for a null check on unlock 2454 2455 // Make the merge point 2456 Node *region; 2457 Node *mem_phi; 2458 2459 region = new RegionNode(3); 2460 // create a Phi for the memory state 2461 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2462 2463 FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); 2464 funlock = transform_later( funlock )->as_FastUnlock(); 2465 // Optimize test; set region slot 2 2466 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); 2467 Node *thread = transform_later(new ThreadLocalNode()); 2468 2469 CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), 2470 CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2471 "complete_monitor_unlocking_C", slow_path, obj, box, thread); 2472 2473 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2474 assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr && 2475 _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2476 2477 // No exceptions for unlocking 2478 // Capture slow path 2479 // disconnect fall-through projection from call and create a new one 2480 // hook up users of fall-through projection to region 2481 Node *slow_ctrl = _callprojs->fallthrough_proj->clone(); 2482 transform_later(slow_ctrl); 2483 _igvn.hash_delete(_callprojs->fallthrough_proj); 2484 _callprojs->fallthrough_proj->disconnect_inputs(C); 2485 region->init_req(1, slow_ctrl); 2486 // region inputs are now complete 2487 transform_later(region); 2488 _igvn.replace_node(_callprojs->fallthrough_proj, region); 2489 2490 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); 2491 mem_phi->init_req(1, memproj ); 2492 mem_phi->init_req(2, mem); 2493 transform_later(mem_phi); 2494 2495 _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi); 2496 } 2497 2498 // An inline type might be returned from the call but we don't know its 2499 // type. Either we get a buffered inline type (and nothing needs to be done) 2500 // or one of the values being returned is the klass of the inline type 2501 // and we need to allocate an inline type instance of that type and 2502 // initialize it with other values being returned. In that case, we 2503 // first try a fast path allocation and initialize the value with the 2504 // inline klass's pack handler or we fall back to a runtime call. 2505 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) { 2506 assert(call->method()->is_method_handle_intrinsic(), "must be a method handle intrinsic call"); 2507 Node* ret = call->proj_out_or_null(TypeFunc::Parms); 2508 if (ret == nullptr) { 2509 return; 2510 } 2511 const TypeFunc* tf = call->_tf; 2512 const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc(); 2513 const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain); 2514 call->_tf = new_tf; 2515 // Make sure the change of type is applied before projections are processed by igvn 2516 _igvn.set_type(call, call->Value(&_igvn)); 2517 _igvn.set_type(ret, ret->Value(&_igvn)); 2518 2519 // Before any new projection is added: 2520 CallProjections* projs = call->extract_projections(true, true); 2521 2522 // Create temporary hook nodes that will be replaced below. 2523 // Add an input to prevent hook nodes from being dead. 2524 Node* ctl = new Node(call); 2525 Node* mem = new Node(ctl); 2526 Node* io = new Node(ctl); 2527 Node* ex_ctl = new Node(ctl); 2528 Node* ex_mem = new Node(ctl); 2529 Node* ex_io = new Node(ctl); 2530 Node* res = new Node(ctl); 2531 2532 // Allocate a new buffered inline type only if a new one is not returned 2533 Node* cast = transform_later(new CastP2XNode(ctl, res)); 2534 Node* mask = MakeConX(0x1); 2535 Node* masked = transform_later(new AndXNode(cast, mask)); 2536 Node* cmp = transform_later(new CmpXNode(masked, mask)); 2537 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2538 IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN); 2539 transform_later(allocation_iff); 2540 Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff)); 2541 Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff)); 2542 Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeInstPtr::BOTTOM)); 2543 2544 // Try to allocate a new buffered inline instance either from TLAB or eden space 2545 Node* needgc_ctrl = nullptr; // needgc means slowcase, i.e. allocation failed 2546 CallLeafNoFPNode* handler_call; 2547 const bool alloc_in_place = UseTLAB; 2548 if (alloc_in_place) { 2549 Node* fast_oop_ctrl = nullptr; 2550 Node* fast_oop_rawmem = nullptr; 2551 Node* mask2 = MakeConX(-2); 2552 Node* masked2 = transform_later(new AndXNode(cast, mask2)); 2553 Node* rawklassptr = transform_later(new CastX2PNode(masked2)); 2554 Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeInstKlassPtr::OBJECT_OR_NULL)); 2555 Node* layout_val = make_load(nullptr, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT); 2556 Node* size_in_bytes = ConvI2X(layout_val); 2557 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2558 Node* fast_oop = bs->obj_allocate(this, mem, allocation_ctl, size_in_bytes, io, needgc_ctrl, 2559 fast_oop_ctrl, fast_oop_rawmem, 2560 AllocateInstancePrefetchLines); 2561 // Allocation succeed, initialize buffered inline instance header firstly, 2562 // and then initialize its fields with an inline class specific handler 2563 Node* mark_node = makecon(TypeRawPtr::make((address)markWord::inline_type_prototype().value())); 2564 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS); 2565 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 2566 if (UseCompressedClassPointers) { 2567 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT); 2568 } 2569 Node* fixed_block = make_load(fast_oop_ctrl, fast_oop_rawmem, klass_node, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2570 Node* pack_handler = make_load(fast_oop_ctrl, fast_oop_rawmem, fixed_block, in_bytes(InlineKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2571 handler_call = new CallLeafNoFPNode(OptoRuntime::pack_inline_type_Type(), 2572 nullptr, 2573 "pack handler", 2574 TypeRawPtr::BOTTOM); 2575 handler_call->init_req(TypeFunc::Control, fast_oop_ctrl); 2576 handler_call->init_req(TypeFunc::Memory, fast_oop_rawmem); 2577 handler_call->init_req(TypeFunc::I_O, top()); 2578 handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2579 handler_call->init_req(TypeFunc::ReturnAdr, top()); 2580 handler_call->init_req(TypeFunc::Parms, pack_handler); 2581 handler_call->init_req(TypeFunc::Parms+1, fast_oop); 2582 } else { 2583 needgc_ctrl = allocation_ctl; 2584 } 2585 2586 // Allocation failed, fall back to a runtime call 2587 CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_inline_type_fields_Type(), 2588 StubRoutines::store_inline_type_fields_to_buf(), 2589 "store_inline_type_fields", 2590 TypePtr::BOTTOM); 2591 slow_call->init_req(TypeFunc::Control, needgc_ctrl); 2592 slow_call->init_req(TypeFunc::Memory, mem); 2593 slow_call->init_req(TypeFunc::I_O, io); 2594 slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2595 slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr)); 2596 slow_call->init_req(TypeFunc::Parms, res); 2597 2598 Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control)); 2599 Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory)); 2600 Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O)); 2601 Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms)); 2602 Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2)); 2603 Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)); 2604 Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci)); 2605 2606 Node* ex_r = new RegionNode(3); 2607 Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM); 2608 Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO); 2609 ex_r->init_req(1, slow_excp); 2610 ex_mem_phi->init_req(1, slow_mem); 2611 ex_io_phi->init_req(1, slow_io); 2612 ex_r->init_req(2, ex_ctl); 2613 ex_mem_phi->init_req(2, ex_mem); 2614 ex_io_phi->init_req(2, ex_io); 2615 transform_later(ex_r); 2616 transform_later(ex_mem_phi); 2617 transform_later(ex_io_phi); 2618 2619 // We don't know how many values are returned. This assumes the 2620 // worst case, that all available registers are used. 2621 for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) { 2622 if (domain->field_at(i) == Type::HALF) { 2623 slow_call->init_req(i, top()); 2624 if (alloc_in_place) { 2625 handler_call->init_req(i+1, top()); 2626 } 2627 continue; 2628 } 2629 Node* proj = transform_later(new ProjNode(call, i)); 2630 slow_call->init_req(i, proj); 2631 if (alloc_in_place) { 2632 handler_call->init_req(i+1, proj); 2633 } 2634 } 2635 // We can safepoint at that new call 2636 slow_call->copy_call_debug_info(&_igvn, call); 2637 transform_later(slow_call); 2638 if (alloc_in_place) { 2639 transform_later(handler_call); 2640 } 2641 2642 Node* fast_ctl = nullptr; 2643 Node* fast_res = nullptr; 2644 MergeMemNode* fast_mem = nullptr; 2645 if (alloc_in_place) { 2646 fast_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control)); 2647 Node* rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory)); 2648 fast_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms)); 2649 fast_mem = MergeMemNode::make(mem); 2650 fast_mem->set_memory_at(Compile::AliasIdxRaw, rawmem); 2651 transform_later(fast_mem); 2652 } 2653 2654 Node* r = new RegionNode(alloc_in_place ? 4 : 3); 2655 Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2656 Node* io_phi = new PhiNode(r, Type::ABIO); 2657 Node* res_phi = new PhiNode(r, TypeInstPtr::BOTTOM); 2658 r->init_req(1, no_allocation_ctl); 2659 mem_phi->init_req(1, mem); 2660 io_phi->init_req(1, io); 2661 res_phi->init_req(1, no_allocation_res); 2662 r->init_req(2, slow_norm); 2663 mem_phi->init_req(2, slow_mem); 2664 io_phi->init_req(2, slow_io); 2665 res_phi->init_req(2, slow_res); 2666 if (alloc_in_place) { 2667 r->init_req(3, fast_ctl); 2668 mem_phi->init_req(3, fast_mem); 2669 io_phi->init_req(3, io); 2670 res_phi->init_req(3, fast_res); 2671 } 2672 transform_later(r); 2673 transform_later(mem_phi); 2674 transform_later(io_phi); 2675 transform_later(res_phi); 2676 2677 // Do not let stores that initialize this buffer be reordered with a subsequent 2678 // store that would make this buffer accessible by other threads. 2679 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 2680 transform_later(mb); 2681 mb->init_req(TypeFunc::Memory, mem_phi); 2682 mb->init_req(TypeFunc::Control, r); 2683 r = new ProjNode(mb, TypeFunc::Control); 2684 transform_later(r); 2685 mem_phi = new ProjNode(mb, TypeFunc::Memory); 2686 transform_later(mem_phi); 2687 2688 assert(projs->nb_resproj == 1, "unexpected number of results"); 2689 _igvn.replace_in_uses(projs->fallthrough_catchproj, r); 2690 _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi); 2691 _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi); 2692 _igvn.replace_in_uses(projs->resproj[0], res_phi); 2693 _igvn.replace_in_uses(projs->catchall_catchproj, ex_r); 2694 _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi); 2695 _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi); 2696 // The CatchNode should not use the ex_io_phi. Re-connect it to the catchall_ioproj. 2697 Node* cn = projs->fallthrough_catchproj->in(0); 2698 _igvn.replace_input_of(cn, 1, projs->catchall_ioproj); 2699 2700 _igvn.replace_node(ctl, projs->fallthrough_catchproj); 2701 _igvn.replace_node(mem, projs->fallthrough_memproj); 2702 _igvn.replace_node(io, projs->fallthrough_ioproj); 2703 _igvn.replace_node(res, projs->resproj[0]); 2704 _igvn.replace_node(ex_ctl, projs->catchall_catchproj); 2705 _igvn.replace_node(ex_mem, projs->catchall_memproj); 2706 _igvn.replace_node(ex_io, projs->catchall_ioproj); 2707 } 2708 2709 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) { 2710 assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned"); 2711 Node* bol = check->unique_out(); 2712 Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass); 2713 Node* superklass = check->in(SubTypeCheckNode::SuperKlass); 2714 assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node"); 2715 2716 for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) { 2717 Node* iff = bol->last_out(i); 2718 assert(iff->is_If(), "where's the if?"); 2719 2720 if (iff->in(0)->is_top()) { 2721 _igvn.replace_input_of(iff, 1, C->top()); 2722 continue; 2723 } 2724 2725 Node* iftrue = iff->as_If()->proj_out(1); 2726 Node* iffalse = iff->as_If()->proj_out(0); 2727 Node* ctrl = iff->in(0); 2728 2729 Node* subklass = nullptr; 2730 if (_igvn.type(obj_or_subklass)->isa_klassptr()) { 2731 subklass = obj_or_subklass; 2732 } else { 2733 Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes()); 2734 subklass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2735 } 2736 2737 Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci()); 2738 2739 _igvn.replace_input_of(iff, 0, C->top()); 2740 _igvn.replace_node(iftrue, not_subtype_ctrl); 2741 _igvn.replace_node(iffalse, ctrl); 2742 } 2743 _igvn.replace_node(check, C->top()); 2744 } 2745 2746 // FlatArrayCheckNode (array1 array2 ...) is expanded into: 2747 // 2748 // long mark = array1.mark | array2.mark | ...; 2749 // long locked_bit = markWord::unlocked_value & array1.mark & array2.mark & ...; 2750 // if (locked_bit == 0) { 2751 // // One array is locked, load prototype header from the klass 2752 // mark = array1.klass.proto | array2.klass.proto | ... 2753 // } 2754 // if ((mark & markWord::flat_array_bit_in_place) == 0) { 2755 // ... 2756 // } 2757 void PhaseMacroExpand::expand_flatarraycheck_node(FlatArrayCheckNode* check) { 2758 bool array_inputs = _igvn.type(check->in(FlatArrayCheckNode::ArrayOrKlass))->isa_oopptr() != nullptr; 2759 if (array_inputs) { 2760 Node* mark = MakeConX(0); 2761 Node* locked_bit = MakeConX(markWord::unlocked_value); 2762 Node* mem = check->in(FlatArrayCheckNode::Memory); 2763 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2764 Node* ary = check->in(i); 2765 const TypeOopPtr* t = _igvn.type(ary)->isa_oopptr(); 2766 assert(t != nullptr, "Mixing array and klass inputs"); 2767 assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out"); 2768 Node* mark_adr = basic_plus_adr(ary, oopDesc::mark_offset_in_bytes()); 2769 Node* mark_load = _igvn.transform(LoadNode::make(_igvn, nullptr, mem, mark_adr, mark_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 2770 mark = _igvn.transform(new OrXNode(mark, mark_load)); 2771 locked_bit = _igvn.transform(new AndXNode(locked_bit, mark_load)); 2772 } 2773 assert(!mark->is_Con(), "Should have been optimized out"); 2774 Node* cmp = _igvn.transform(new CmpXNode(locked_bit, MakeConX(0))); 2775 Node* is_unlocked = _igvn.transform(new BoolNode(cmp, BoolTest::ne)); 2776 2777 // BoolNode might be shared, replace each if user 2778 Node* old_bol = check->unique_out(); 2779 assert(old_bol->is_Bool() && old_bol->as_Bool()->_test._test == BoolTest::ne, "unexpected condition"); 2780 for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) { 2781 IfNode* old_iff = old_bol->last_out(i)->as_If(); 2782 Node* ctrl = old_iff->in(0); 2783 RegionNode* region = new RegionNode(3); 2784 Node* mark_phi = new PhiNode(region, TypeX_X); 2785 2786 // Check if array is unlocked 2787 IfNode* iff = _igvn.transform(new IfNode(ctrl, is_unlocked, PROB_MAX, COUNT_UNKNOWN))->as_If(); 2788 2789 // Unlocked: Use bits from mark word 2790 region->init_req(1, _igvn.transform(new IfTrueNode(iff))); 2791 mark_phi->init_req(1, mark); 2792 2793 // Locked: Load prototype header from klass 2794 ctrl = _igvn.transform(new IfFalseNode(iff)); 2795 Node* proto = MakeConX(0); 2796 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2797 Node* ary = check->in(i); 2798 // Make loads control dependent to make sure they are only executed if array is locked 2799 Node* klass_adr = basic_plus_adr(ary, oopDesc::klass_offset_in_bytes()); 2800 Node* klass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2801 Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset())); 2802 Node* proto_load = _igvn.transform(LoadNode::make(_igvn, ctrl, C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 2803 proto = _igvn.transform(new OrXNode(proto, proto_load)); 2804 } 2805 region->init_req(2, ctrl); 2806 mark_phi->init_req(2, proto); 2807 2808 // Check if flat array bits are set 2809 Node* mask = MakeConX(markWord::flat_array_bit_in_place); 2810 Node* masked = _igvn.transform(new AndXNode(_igvn.transform(mark_phi), mask)); 2811 cmp = _igvn.transform(new CmpXNode(masked, MakeConX(0))); 2812 Node* is_not_flat = _igvn.transform(new BoolNode(cmp, BoolTest::eq)); 2813 2814 ctrl = _igvn.transform(region); 2815 iff = _igvn.transform(new IfNode(ctrl, is_not_flat, PROB_MAX, COUNT_UNKNOWN))->as_If(); 2816 _igvn.replace_node(old_iff, iff); 2817 } 2818 _igvn.replace_node(check, C->top()); 2819 } else { 2820 // Fall back to layout helper check 2821 Node* lhs = intcon(0); 2822 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2823 Node* array_or_klass = check->in(i); 2824 Node* klass = nullptr; 2825 const TypePtr* t = _igvn.type(array_or_klass)->is_ptr(); 2826 assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out"); 2827 if (t->isa_oopptr() != nullptr) { 2828 Node* klass_adr = basic_plus_adr(array_or_klass, oopDesc::klass_offset_in_bytes()); 2829 klass = transform_later(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2830 } else { 2831 assert(t->isa_klassptr(), "Unexpected input type"); 2832 klass = array_or_klass; 2833 } 2834 Node* lh_addr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset())); 2835 Node* lh_val = _igvn.transform(LoadNode::make(_igvn, nullptr, C->immutable_memory(), lh_addr, lh_addr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered)); 2836 lhs = _igvn.transform(new OrINode(lhs, lh_val)); 2837 } 2838 Node* masked = transform_later(new AndINode(lhs, intcon(Klass::_lh_array_tag_flat_value_bit_inplace))); 2839 Node* cmp = transform_later(new CmpINode(masked, intcon(0))); 2840 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2841 Node* m2b = transform_later(new Conv2BNode(masked)); 2842 // The matcher expects the input to If nodes to be produced by a Bool(CmpI..) 2843 // pattern, but the input to other potential users (e.g. Phi) to be some 2844 // other pattern (e.g. a Conv2B node, possibly idealized as a CMoveI). 2845 Node* old_bol = check->unique_out(); 2846 for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) { 2847 Node* user = old_bol->last_out(i); 2848 for (uint j = 0; j < user->req(); j++) { 2849 Node* n = user->in(j); 2850 if (n == old_bol) { 2851 _igvn.replace_input_of(user, j, user->is_If() ? bol : m2b); 2852 } 2853 } 2854 } 2855 _igvn.replace_node(check, C->top()); 2856 } 2857 } 2858 2859 //---------------------------eliminate_macro_nodes---------------------- 2860 // Eliminate scalar replaced allocations and associated locks. 2861 void PhaseMacroExpand::eliminate_macro_nodes() { 2862 if (C->macro_count() == 0) 2863 return; 2864 NOT_PRODUCT(int membar_before = count_MemBar(C);) 2865 2866 // Before elimination may re-mark (change to Nested or NonEscObj) 2867 // all associated (same box and obj) lock and unlock nodes. 2868 int cnt = C->macro_count(); 2869 for (int i=0; i < cnt; i++) { 2870 Node *n = C->macro_node(i); 2871 if (n->is_AbstractLock()) { // Lock and Unlock nodes 2872 mark_eliminated_locking_nodes(n->as_AbstractLock()); 2873 } 2874 } 2875 // Re-marking may break consistency of Coarsened locks. 2876 if (!C->coarsened_locks_consistent()) { 2877 return; // recompile without Coarsened locks if broken 2878 } else { 2879 // After coarsened locks are eliminated locking regions 2880 // become unbalanced. We should not execute any more 2881 // locks elimination optimizations on them. 2882 C->mark_unbalanced_boxes(); 2883 } 2884 2885 // First, attempt to eliminate locks 2886 bool progress = true; 2887 while (progress) { 2888 progress = false; 2889 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2890 Node* n = C->macro_node(i - 1); 2891 bool success = false; 2892 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2893 if (n->is_AbstractLock()) { 2894 success = eliminate_locking_node(n->as_AbstractLock()); 2895 #ifndef PRODUCT 2896 if (success && PrintOptoStatistics) { 2897 Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter); 2898 } 2899 #endif 2900 } 2901 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2902 progress = progress || success; 2903 } 2904 } 2905 // Next, attempt to eliminate allocations 2906 _has_locks = false; 2907 progress = true; 2908 while (progress) { 2909 progress = false; 2910 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2911 Node* n = C->macro_node(i - 1); 2912 bool success = false; 2913 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2914 switch (n->class_id()) { 2915 case Node::Class_Allocate: 2916 case Node::Class_AllocateArray: 2917 success = eliminate_allocate_node(n->as_Allocate()); 2918 #ifndef PRODUCT 2919 if (success && PrintOptoStatistics) { 2920 Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter); 2921 } 2922 #endif 2923 break; 2924 case Node::Class_CallStaticJava: { 2925 CallStaticJavaNode* call = n->as_CallStaticJava(); 2926 if (!call->method()->is_method_handle_intrinsic()) { 2927 success = eliminate_boxing_node(n->as_CallStaticJava()); 2928 } 2929 break; 2930 } 2931 case Node::Class_Lock: 2932 case Node::Class_Unlock: 2933 assert(!n->as_AbstractLock()->is_eliminated(), "sanity"); 2934 _has_locks = true; 2935 break; 2936 case Node::Class_ArrayCopy: 2937 break; 2938 case Node::Class_OuterStripMinedLoop: 2939 break; 2940 case Node::Class_SubTypeCheck: 2941 break; 2942 case Node::Class_Opaque1: 2943 break; 2944 case Node::Class_FlatArrayCheck: 2945 break; 2946 default: 2947 assert(n->Opcode() == Op_LoopLimit || 2948 n->Opcode() == Op_ModD || 2949 n->Opcode() == Op_ModF || 2950 n->is_OpaqueNotNull() || 2951 n->is_OpaqueInitializedAssertionPredicate() || 2952 n->Opcode() == Op_MaxL || 2953 n->Opcode() == Op_MinL || 2954 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n), 2955 "unknown node type in macro list"); 2956 } 2957 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2958 progress = progress || success; 2959 } 2960 } 2961 #ifndef PRODUCT 2962 if (PrintOptoStatistics) { 2963 int membar_after = count_MemBar(C); 2964 Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after); 2965 } 2966 #endif 2967 } 2968 2969 //------------------------------expand_macro_nodes---------------------- 2970 // Returns true if a failure occurred. 2971 bool PhaseMacroExpand::expand_macro_nodes() { 2972 // Do not allow new macro nodes once we started to expand 2973 C->reset_allow_macro_nodes(); 2974 if (StressMacroExpansion) { 2975 C->shuffle_macro_nodes(); 2976 } 2977 // Last attempt to eliminate macro nodes. 2978 eliminate_macro_nodes(); 2979 if (C->failing()) return true; 2980 2981 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. 2982 bool progress = true; 2983 while (progress) { 2984 progress = false; 2985 for (int i = C->macro_count(); i > 0; i--) { 2986 Node* n = C->macro_node(i-1); 2987 bool success = false; 2988 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2989 if (n->Opcode() == Op_LoopLimit) { 2990 // Remove it from macro list and put on IGVN worklist to optimize. 2991 C->remove_macro_node(n); 2992 _igvn._worklist.push(n); 2993 success = true; 2994 } else if (n->Opcode() == Op_CallStaticJava) { 2995 CallStaticJavaNode* call = n->as_CallStaticJava(); 2996 if (!call->method()->is_method_handle_intrinsic()) { 2997 // Remove it from macro list and put on IGVN worklist to optimize. 2998 C->remove_macro_node(n); 2999 _igvn._worklist.push(n); 3000 success = true; 3001 } 3002 } else if (n->is_Opaque1()) { 3003 _igvn.replace_node(n, n->in(1)); 3004 success = true; 3005 } else if (n->is_OpaqueNotNull()) { 3006 // Tests with OpaqueNotNull nodes are implicitly known to be true. Replace the node with true. In debug builds, 3007 // we leave the test in the graph to have an additional sanity check at runtime. If the test fails (i.e. a bug), 3008 // we will execute a Halt node. 3009 #ifdef ASSERT 3010 _igvn.replace_node(n, n->in(1)); 3011 #else 3012 _igvn.replace_node(n, _igvn.intcon(1)); 3013 #endif 3014 success = true; 3015 } else if (n->is_OpaqueInitializedAssertionPredicate()) { 3016 // Initialized Assertion Predicates must always evaluate to true. Therefore, we get rid of them in product 3017 // builds as they are useless. In debug builds we keep them as additional verification code. Even though 3018 // loop opts are already over, we want to keep Initialized Assertion Predicates alive as long as possible to 3019 // enable folding of dead control paths within which cast nodes become top after due to impossible types - 3020 // even after loop opts are over. Therefore, we delay the removal of these opaque nodes until now. 3021 #ifdef ASSERT 3022 _igvn.replace_node(n, n->in(1)); 3023 #else 3024 _igvn.replace_node(n, _igvn.intcon(1)); 3025 #endif // ASSERT 3026 } else if (n->Opcode() == Op_OuterStripMinedLoop) { 3027 n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn); 3028 C->remove_macro_node(n); 3029 success = true; 3030 } else if (n->Opcode() == Op_MaxL) { 3031 // Since MaxL and MinL are not implemented in the backend, we expand them to 3032 // a CMoveL construct now. At least until here, the type could be computed 3033 // precisely. CMoveL is not so smart, but we can give it at least the best 3034 // type we know abouot n now. 3035 Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn); 3036 _igvn.replace_node(n, repl); 3037 success = true; 3038 } else if (n->Opcode() == Op_MinL) { 3039 Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn); 3040 _igvn.replace_node(n, repl); 3041 success = true; 3042 } 3043 assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list"); 3044 progress = progress || success; 3045 if (success) { 3046 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3047 } 3048 } 3049 } 3050 3051 // Clean up the graph so we're less likely to hit the maximum node 3052 // limit 3053 _igvn.set_delay_transform(false); 3054 _igvn.optimize(); 3055 if (C->failing()) return true; 3056 _igvn.set_delay_transform(true); 3057 3058 3059 // Because we run IGVN after each expansion, some macro nodes may go 3060 // dead and be removed from the list as we iterate over it. Move 3061 // Allocate nodes (processed in a second pass) at the beginning of 3062 // the list and then iterate from the last element of the list until 3063 // an Allocate node is seen. This is robust to random deletion in 3064 // the list due to nodes going dead. 3065 C->sort_macro_nodes(); 3066 3067 // expand arraycopy "macro" nodes first 3068 // For ReduceBulkZeroing, we must first process all arraycopy nodes 3069 // before the allocate nodes are expanded. 3070 while (C->macro_count() > 0) { 3071 int macro_count = C->macro_count(); 3072 Node * n = C->macro_node(macro_count-1); 3073 assert(n->is_macro(), "only macro nodes expected here"); 3074 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 3075 // node is unreachable, so don't try to expand it 3076 C->remove_macro_node(n); 3077 continue; 3078 } 3079 if (n->is_Allocate()) { 3080 break; 3081 } 3082 // Make sure expansion will not cause node limit to be exceeded. 3083 // Worst case is a macro node gets expanded into about 200 nodes. 3084 // Allow 50% more for optimization. 3085 if (C->check_node_count(300, "out of nodes before macro expansion")) { 3086 return true; 3087 } 3088 3089 DEBUG_ONLY(int old_macro_count = C->macro_count();) 3090 switch (n->class_id()) { 3091 case Node::Class_Lock: 3092 expand_lock_node(n->as_Lock()); 3093 break; 3094 case Node::Class_Unlock: 3095 expand_unlock_node(n->as_Unlock()); 3096 break; 3097 case Node::Class_ArrayCopy: 3098 expand_arraycopy_node(n->as_ArrayCopy()); 3099 break; 3100 case Node::Class_SubTypeCheck: 3101 expand_subtypecheck_node(n->as_SubTypeCheck()); 3102 break; 3103 case Node::Class_CallStaticJava: 3104 expand_mh_intrinsic_return(n->as_CallStaticJava()); 3105 C->remove_macro_node(n); 3106 break; 3107 case Node::Class_FlatArrayCheck: 3108 expand_flatarraycheck_node(n->as_FlatArrayCheck()); 3109 break; 3110 default: 3111 switch (n->Opcode()) { 3112 case Op_ModD: 3113 case Op_ModF: { 3114 bool is_drem = n->Opcode() == Op_ModD; 3115 CallNode* mod_macro = n->as_Call(); 3116 CallNode* call = new CallLeafNode(mod_macro->tf(), 3117 is_drem ? CAST_FROM_FN_PTR(address, SharedRuntime::drem) 3118 : CAST_FROM_FN_PTR(address, SharedRuntime::frem), 3119 is_drem ? "drem" : "frem", TypeRawPtr::BOTTOM); 3120 call->init_req(TypeFunc::Control, mod_macro->in(TypeFunc::Control)); 3121 call->init_req(TypeFunc::I_O, mod_macro->in(TypeFunc::I_O)); 3122 call->init_req(TypeFunc::Memory, mod_macro->in(TypeFunc::Memory)); 3123 call->init_req(TypeFunc::ReturnAdr, mod_macro->in(TypeFunc::ReturnAdr)); 3124 call->init_req(TypeFunc::FramePtr, mod_macro->in(TypeFunc::FramePtr)); 3125 for (unsigned int i = 0; i < mod_macro->tf()->domain_cc()->cnt() - TypeFunc::Parms; i++) { 3126 call->init_req(TypeFunc::Parms + i, mod_macro->in(TypeFunc::Parms + i)); 3127 } 3128 _igvn.replace_node(mod_macro, call); 3129 transform_later(call); 3130 break; 3131 } 3132 default: 3133 assert(false, "unknown node type in macro list"); 3134 } 3135 } 3136 assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list"); 3137 if (C->failing()) return true; 3138 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3139 3140 // Clean up the graph so we're less likely to hit the maximum node 3141 // limit 3142 _igvn.set_delay_transform(false); 3143 _igvn.optimize(); 3144 if (C->failing()) return true; 3145 _igvn.set_delay_transform(true); 3146 } 3147 3148 // All nodes except Allocate nodes are expanded now. There could be 3149 // new optimization opportunities (such as folding newly created 3150 // load from a just allocated object). Run IGVN. 3151 3152 // expand "macro" nodes 3153 // nodes are removed from the macro list as they are processed 3154 while (C->macro_count() > 0) { 3155 int macro_count = C->macro_count(); 3156 Node * n = C->macro_node(macro_count-1); 3157 assert(n->is_macro(), "only macro nodes expected here"); 3158 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 3159 // node is unreachable, so don't try to expand it 3160 C->remove_macro_node(n); 3161 continue; 3162 } 3163 // Make sure expansion will not cause node limit to be exceeded. 3164 // Worst case is a macro node gets expanded into about 200 nodes. 3165 // Allow 50% more for optimization. 3166 if (C->check_node_count(300, "out of nodes before macro expansion")) { 3167 return true; 3168 } 3169 switch (n->class_id()) { 3170 case Node::Class_Allocate: 3171 expand_allocate(n->as_Allocate()); 3172 break; 3173 case Node::Class_AllocateArray: 3174 expand_allocate_array(n->as_AllocateArray()); 3175 break; 3176 default: 3177 assert(false, "unknown node type in macro list"); 3178 } 3179 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 3180 if (C->failing()) return true; 3181 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3182 3183 // Clean up the graph so we're less likely to hit the maximum node 3184 // limit 3185 _igvn.set_delay_transform(false); 3186 _igvn.optimize(); 3187 if (C->failing()) return true; 3188 _igvn.set_delay_transform(true); 3189 } 3190 3191 _igvn.set_delay_transform(false); 3192 return false; 3193 } 3194 3195 #ifndef PRODUCT 3196 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0; 3197 int PhaseMacroExpand::_monitor_objects_removed_counter = 0; 3198 int PhaseMacroExpand::_GC_barriers_removed_counter = 0; 3199 int PhaseMacroExpand::_memory_barriers_removed_counter = 0; 3200 3201 void PhaseMacroExpand::print_statistics() { 3202 tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter)); 3203 tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter)); 3204 tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter)); 3205 tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter)); 3206 } 3207 3208 int PhaseMacroExpand::count_MemBar(Compile *C) { 3209 if (!PrintOptoStatistics) { 3210 return 0; 3211 } 3212 Unique_Node_List ideal_nodes; 3213 int total = 0; 3214 ideal_nodes.map(C->live_nodes(), nullptr); 3215 ideal_nodes.push(C->root()); 3216 for (uint next = 0; next < ideal_nodes.size(); ++next) { 3217 Node* n = ideal_nodes.at(next); 3218 if (n->is_MemBar()) { 3219 total++; 3220 } 3221 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3222 Node* m = n->fast_out(i); 3223 ideal_nodes.push(m); 3224 } 3225 } 3226 return total; 3227 } 3228 #endif