1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciFlatArrayKlass.hpp" 26 #include "ci/ciInstanceKlass.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "gc/shared/collectedHeap.inline.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "libadt/vectset.hpp" 31 #include "memory/universe.hpp" 32 #include "opto/addnode.hpp" 33 #include "opto/arraycopynode.hpp" 34 #include "opto/callnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/cfgnode.hpp" 37 #include "opto/compile.hpp" 38 #include "opto/convertnode.hpp" 39 #include "opto/graphKit.hpp" 40 #include "opto/inlinetypenode.hpp" 41 #include "opto/intrinsicnode.hpp" 42 #include "opto/locknode.hpp" 43 #include "opto/loopnode.hpp" 44 #include "opto/macro.hpp" 45 #include "opto/memnode.hpp" 46 #include "opto/narrowptrnode.hpp" 47 #include "opto/node.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/phaseX.hpp" 50 #include "opto/rootnode.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/subtypenode.hpp" 54 #include "opto/type.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "runtime/continuation.hpp" 57 #include "runtime/sharedRuntime.hpp" 58 #include "runtime/stubRoutines.hpp" 59 #include "utilities/globalDefinitions.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 #if INCLUDE_G1GC 63 #include "gc/g1/g1ThreadLocalData.hpp" 64 #endif // INCLUDE_G1GC 65 66 67 // 68 // Replace any references to "oldref" in inputs to "use" with "newref". 69 // Returns the number of replacements made. 70 // 71 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { 72 int nreplacements = 0; 73 uint req = use->req(); 74 for (uint j = 0; j < use->len(); j++) { 75 Node *uin = use->in(j); 76 if (uin == oldref) { 77 if (j < req) 78 use->set_req(j, newref); 79 else 80 use->set_prec(j, newref); 81 nreplacements++; 82 } else if (j >= req && uin == nullptr) { 83 break; 84 } 85 } 86 return nreplacements; 87 } 88 89 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { 90 Node* cmp; 91 if (mask != 0) { 92 Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); 93 cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); 94 } else { 95 cmp = word; 96 } 97 Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); 98 IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); 99 transform_later(iff); 100 101 // Fast path taken. 102 Node *fast_taken = transform_later(new IfFalseNode(iff)); 103 104 // Fast path not-taken, i.e. slow path 105 Node *slow_taken = transform_later(new IfTrueNode(iff)); 106 107 if (return_fast_path) { 108 region->init_req(edge, slow_taken); // Capture slow-control 109 return fast_taken; 110 } else { 111 region->init_req(edge, fast_taken); // Capture fast-control 112 return slow_taken; 113 } 114 } 115 116 //--------------------copy_predefined_input_for_runtime_call-------------------- 117 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { 118 // Set fixed predefined input arguments 119 call->init_req( TypeFunc::Control, ctrl ); 120 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); 121 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? 122 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); 123 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); 124 } 125 126 //------------------------------make_slow_call--------------------------------- 127 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, 128 address slow_call, const char* leaf_name, Node* slow_path, 129 Node* parm0, Node* parm1, Node* parm2) { 130 131 // Slow-path call 132 CallNode *call = leaf_name 133 ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) 134 : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM ); 135 136 // Slow path call has no side-effects, uses few values 137 copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); 138 if (parm0 != nullptr) call->init_req(TypeFunc::Parms+0, parm0); 139 if (parm1 != nullptr) call->init_req(TypeFunc::Parms+1, parm1); 140 if (parm2 != nullptr) call->init_req(TypeFunc::Parms+2, parm2); 141 call->copy_call_debug_info(&_igvn, oldcall); 142 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 143 _igvn.replace_node(oldcall, call); 144 transform_later(call); 145 146 return call; 147 } 148 149 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) { 150 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 151 bs->eliminate_gc_barrier(&_igvn, p2x); 152 #ifndef PRODUCT 153 if (PrintOptoStatistics) { 154 Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter); 155 } 156 #endif 157 } 158 159 // Search for a memory operation for the specified memory slice. 160 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { 161 Node *orig_mem = mem; 162 Node *alloc_mem = alloc->as_Allocate()->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 163 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 164 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); 165 while (true) { 166 if (mem == alloc_mem || mem == start_mem ) { 167 return mem; // hit one of our sentinels 168 } else if (mem->is_MergeMem()) { 169 mem = mem->as_MergeMem()->memory_at(alias_idx); 170 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { 171 Node *in = mem->in(0); 172 // we can safely skip over safepoints, calls, locks and membars because we 173 // already know that the object is safe to eliminate. 174 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { 175 return in; 176 } else if (in->is_Call()) { 177 CallNode *call = in->as_Call(); 178 if (call->may_modify(tinst, phase)) { 179 assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape"); 180 if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { 181 return in; 182 } 183 } 184 mem = in->in(TypeFunc::Memory); 185 } else if (in->is_MemBar()) { 186 ArrayCopyNode* ac = nullptr; 187 if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) { 188 if (ac != nullptr) { 189 assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone"); 190 return ac; 191 } 192 } 193 mem = in->in(TypeFunc::Memory); 194 } else { 195 #ifdef ASSERT 196 in->dump(); 197 mem->dump(); 198 assert(false, "unexpected projection"); 199 #endif 200 } 201 } else if (mem->is_Store()) { 202 const TypePtr* atype = mem->as_Store()->adr_type(); 203 int adr_idx = phase->C->get_alias_index(atype); 204 if (adr_idx == alias_idx) { 205 assert(atype->isa_oopptr(), "address type must be oopptr"); 206 int adr_offset = atype->flat_offset(); 207 uint adr_iid = atype->is_oopptr()->instance_id(); 208 // Array elements references have the same alias_idx 209 // but different offset and different instance_id. 210 if (adr_offset == offset && adr_iid == alloc->_idx) { 211 return mem; 212 } 213 } else { 214 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); 215 } 216 mem = mem->in(MemNode::Memory); 217 } else if (mem->is_ClearArray()) { 218 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { 219 // Can not bypass initialization of the instance 220 // we are looking. 221 debug_only(intptr_t offset;) 222 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity"); 223 InitializeNode* init = alloc->as_Allocate()->initialization(); 224 // We are looking for stored value, return Initialize node 225 // or memory edge from Allocate node. 226 if (init != nullptr) { 227 return init; 228 } else { 229 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). 230 } 231 } 232 // Otherwise skip it (the call updated 'mem' value). 233 } else if (mem->Opcode() == Op_SCMemProj) { 234 mem = mem->in(0); 235 Node* adr = nullptr; 236 if (mem->is_LoadStore()) { 237 adr = mem->in(MemNode::Address); 238 } else { 239 assert(mem->Opcode() == Op_EncodeISOArray || 240 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 241 adr = mem->in(3); // Destination array 242 } 243 const TypePtr* atype = adr->bottom_type()->is_ptr(); 244 int adr_idx = phase->C->get_alias_index(atype); 245 if (adr_idx == alias_idx) { 246 DEBUG_ONLY(mem->dump();) 247 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 248 return nullptr; 249 } 250 mem = mem->in(MemNode::Memory); 251 } else if (mem->Opcode() == Op_StrInflatedCopy) { 252 Node* adr = mem->in(3); // Destination array 253 const TypePtr* atype = adr->bottom_type()->is_ptr(); 254 int adr_idx = phase->C->get_alias_index(atype); 255 if (adr_idx == alias_idx) { 256 DEBUG_ONLY(mem->dump();) 257 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 258 return nullptr; 259 } 260 mem = mem->in(MemNode::Memory); 261 } else { 262 return mem; 263 } 264 assert(mem != orig_mem, "dead memory loop"); 265 } 266 } 267 268 // Generate loads from source of the arraycopy for fields of 269 // destination needed at a deoptimization point 270 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) { 271 BasicType bt = ft; 272 const Type *type = ftype; 273 if (ft == T_NARROWOOP) { 274 bt = T_OBJECT; 275 type = ftype->make_oopptr(); 276 } 277 Node* res = nullptr; 278 if (ac->is_clonebasic()) { 279 assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination"); 280 Node* base = ac->in(ArrayCopyNode::Src); 281 Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset))); 282 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 283 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 284 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 285 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 286 } else { 287 if (ac->modifies(offset, offset, &_igvn, true)) { 288 assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result"); 289 uint shift = exact_log2(type2aelembytes(bt)); 290 Node* src_pos = ac->in(ArrayCopyNode::SrcPos); 291 Node* dest_pos = ac->in(ArrayCopyNode::DestPos); 292 const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int(); 293 const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int(); 294 295 Node* adr = nullptr; 296 Node* base = ac->in(ArrayCopyNode::Src); 297 const TypeAryPtr* adr_type = _igvn.type(base)->is_aryptr(); 298 if (adr_type->is_flat()) { 299 shift = adr_type->flat_log_elem_size(); 300 } 301 if (src_pos_t->is_con() && dest_pos_t->is_con()) { 302 intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset; 303 adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off))); 304 adr_type = _igvn.type(adr)->is_aryptr(); 305 assert(adr_type == _igvn.type(base)->is_aryptr()->add_field_offset_and_offset(off), "incorrect address type"); 306 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 307 // Don't emit a new load from src if src == dst but try to get the value from memory instead 308 return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type, alloc); 309 } 310 } else { 311 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 312 // Non constant offset in the array: we can't statically 313 // determine the value 314 return nullptr; 315 } 316 Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 317 #ifdef _LP64 318 diff = _igvn.transform(new ConvI2LNode(diff)); 319 #endif 320 diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift))); 321 322 Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff)); 323 adr = _igvn.transform(new AddPNode(base, base, off)); 324 // In the case of a flat inline type array, each field has its 325 // own slice so we need to extract the field being accessed from 326 // the address computation 327 adr_type = adr_type->add_field_offset_and_offset(offset)->add_offset(Type::OffsetBot)->is_aryptr(); 328 adr = _igvn.transform(new CastPPNode(ctl, adr, adr_type)); 329 } 330 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 331 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 332 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 333 } 334 } 335 if (res != nullptr) { 336 if (ftype->isa_narrowoop()) { 337 // PhaseMacroExpand::scalar_replacement adds DecodeN nodes 338 assert(res->isa_DecodeN(), "should be narrow oop"); 339 res = _igvn.transform(new EncodePNode(res, ftype)); 340 } 341 return res; 342 } 343 return nullptr; 344 } 345 346 // 347 // Given a Memory Phi, compute a value Phi containing the values from stores 348 // on the input paths. 349 // Note: this function is recursive, its depth is limited by the "level" argument 350 // Returns the computed Phi, or null if it cannot compute it. 351 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { 352 assert(mem->is_Phi(), "sanity"); 353 int alias_idx = C->get_alias_index(adr_t); 354 int offset = adr_t->flat_offset(); 355 int instance_id = adr_t->instance_id(); 356 357 // Check if an appropriate value phi already exists. 358 Node* region = mem->in(0); 359 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 360 Node* phi = region->fast_out(k); 361 if (phi->is_Phi() && phi != mem && 362 phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) { 363 return phi; 364 } 365 } 366 // Check if an appropriate new value phi already exists. 367 Node* new_phi = value_phis->find(mem->_idx); 368 if (new_phi != nullptr) 369 return new_phi; 370 371 if (level <= 0) { 372 return nullptr; // Give up: phi tree too deep 373 } 374 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 375 Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 376 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 377 378 uint length = mem->req(); 379 GrowableArray <Node *> values(length, length, nullptr); 380 381 // create a new Phi for the value 382 PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset); 383 transform_later(phi); 384 value_phis->push(phi, mem->_idx); 385 386 for (uint j = 1; j < length; j++) { 387 Node *in = mem->in(j); 388 if (in == nullptr || in->is_top()) { 389 values.at_put(j, in); 390 } else { 391 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); 392 if (val == start_mem || val == alloc_mem) { 393 // hit a sentinel, return appropriate value 394 Node* init_value = alloc->in(AllocateNode::InitValue); 395 if (init_value != nullptr) { 396 if (val == start_mem) { 397 // TODO 8350865 Somehow we ended up with root mem and therefore walked past the alloc. Fix this. Triggered by TestGenerated::test15 398 // Don't we need field_value_by_offset? 399 return nullptr; 400 } 401 values.at_put(j, init_value); 402 } else { 403 assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null"); 404 values.at_put(j, _igvn.zerocon(ft)); 405 } 406 continue; 407 } 408 if (val->is_Initialize()) { 409 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 410 } 411 if (val == nullptr) { 412 return nullptr; // can't find a value on this path 413 } 414 if (val == mem) { 415 values.at_put(j, mem); 416 } else if (val->is_Store()) { 417 Node* n = val->in(MemNode::ValueIn); 418 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 419 n = bs->step_over_gc_barrier(n); 420 if (is_subword_type(ft)) { 421 n = Compile::narrow_value(ft, n, phi_type, &_igvn, true); 422 } 423 values.at_put(j, n); 424 } else if (val->is_Proj() && val->in(0) == alloc) { 425 Node* init_value = alloc->in(AllocateNode::InitValue); 426 if (init_value != nullptr) { 427 // TODO 8350865 Is this correct for non-all-zero init values? Don't we need field_value_by_offset? 428 values.at_put(j, init_value); 429 } else { 430 assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null"); 431 values.at_put(j, _igvn.zerocon(ft)); 432 } 433 } else if (val->is_Phi()) { 434 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); 435 if (val == nullptr) { 436 return nullptr; 437 } 438 values.at_put(j, val); 439 } else if (val->Opcode() == Op_SCMemProj) { 440 assert(val->in(0)->is_LoadStore() || 441 val->in(0)->Opcode() == Op_EncodeISOArray || 442 val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity"); 443 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 444 return nullptr; 445 } else if (val->is_ArrayCopy()) { 446 Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc); 447 if (res == nullptr) { 448 return nullptr; 449 } 450 values.at_put(j, res); 451 } else if (val->is_top()) { 452 // This indicates that this path into the phi is dead. Top will eventually also propagate into the Region. 453 // IGVN will clean this up later. 454 values.at_put(j, val); 455 } else { 456 DEBUG_ONLY( val->dump(); ) 457 assert(false, "unknown node on this path"); 458 return nullptr; // unknown node on this path 459 } 460 } 461 } 462 // Set Phi's inputs 463 for (uint j = 1; j < length; j++) { 464 if (values.at(j) == mem) { 465 phi->init_req(j, phi); 466 } else { 467 phi->init_req(j, values.at(j)); 468 } 469 } 470 return phi; 471 } 472 473 // Search the last value stored into the object's field. 474 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { 475 assert(adr_t->is_known_instance_field(), "instance required"); 476 int instance_id = adr_t->instance_id(); 477 assert((uint)instance_id == alloc->_idx, "wrong allocation"); 478 479 int alias_idx = C->get_alias_index(adr_t); 480 int offset = adr_t->flat_offset(); 481 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 482 Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 483 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 484 VectorSet visited; 485 486 bool done = sfpt_mem == alloc_mem; 487 Node *mem = sfpt_mem; 488 while (!done) { 489 if (visited.test_set(mem->_idx)) { 490 return nullptr; // found a loop, give up 491 } 492 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); 493 if (mem == start_mem || mem == alloc_mem) { 494 done = true; // hit a sentinel, return appropriate 0 value 495 } else if (mem->is_Initialize()) { 496 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 497 if (mem == nullptr) { 498 done = true; // Something went wrong. 499 } else if (mem->is_Store()) { 500 const TypePtr* atype = mem->as_Store()->adr_type(); 501 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice"); 502 done = true; 503 } 504 } else if (mem->is_Store()) { 505 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); 506 assert(atype != nullptr, "address type must be oopptr"); 507 assert(C->get_alias_index(atype) == alias_idx && 508 atype->is_known_instance_field() && atype->flat_offset() == offset && 509 atype->instance_id() == instance_id, "store is correct memory slice"); 510 done = true; 511 } else if (mem->is_Phi()) { 512 // try to find a phi's unique input 513 Node *unique_input = nullptr; 514 Node *top = C->top(); 515 for (uint i = 1; i < mem->req(); i++) { 516 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); 517 if (n == nullptr || n == top || n == mem) { 518 continue; 519 } else if (unique_input == nullptr) { 520 unique_input = n; 521 } else if (unique_input != n) { 522 unique_input = top; 523 break; 524 } 525 } 526 if (unique_input != nullptr && unique_input != top) { 527 mem = unique_input; 528 } else { 529 done = true; 530 } 531 } else if (mem->is_ArrayCopy()) { 532 done = true; 533 } else { 534 DEBUG_ONLY( mem->dump(); ) 535 assert(false, "unexpected node"); 536 } 537 } 538 if (mem != nullptr) { 539 if (mem == start_mem || mem == alloc_mem) { 540 // hit a sentinel, return appropriate value 541 Node* init_value = alloc->in(AllocateNode::InitValue); 542 if (init_value != nullptr) { 543 if (adr_t->is_flat()) { 544 if (init_value->is_EncodeP()) { 545 init_value = init_value->in(1); 546 } 547 assert(adr_t->is_aryptr()->field_offset().get() != Type::OffsetBot, "Unknown offset"); 548 offset = adr_t->is_aryptr()->field_offset().get() + init_value->bottom_type()->inline_klass()->payload_offset(); 549 init_value = init_value->as_InlineType()->field_value_by_offset(offset, true); 550 if (ft == T_NARROWOOP) { 551 init_value = transform_later(new EncodePNode(init_value, init_value->bottom_type()->make_ptr())); 552 } 553 } 554 return init_value; 555 } 556 assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null"); 557 return _igvn.zerocon(ft); 558 } else if (mem->is_Store()) { 559 Node* n = mem->in(MemNode::ValueIn); 560 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 561 n = bs->step_over_gc_barrier(n); 562 return n; 563 } else if (mem->is_Phi()) { 564 // attempt to produce a Phi reflecting the values on the input paths of the Phi 565 Node_Stack value_phis(8); 566 Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); 567 if (phi != nullptr) { 568 return phi; 569 } else { 570 // Kill all new Phis 571 while(value_phis.is_nonempty()) { 572 Node* n = value_phis.node(); 573 _igvn.replace_node(n, C->top()); 574 value_phis.pop(); 575 } 576 } 577 } else if (mem->is_ArrayCopy()) { 578 Node* ctl = mem->in(0); 579 Node* m = mem->in(TypeFunc::Memory); 580 if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) { 581 // pin the loads in the uncommon trap path 582 ctl = sfpt_ctl; 583 m = sfpt_mem; 584 } 585 return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc); 586 } 587 } 588 // Something went wrong. 589 return nullptr; 590 } 591 592 // Search the last value stored into the inline type's fields (for flat arrays). 593 Node* PhaseMacroExpand::inline_type_from_mem(ciInlineKlass* vk, const TypeAryPtr* elem_adr_type, int elem_idx, int offset_in_element, bool null_free, AllocateNode* alloc, SafePointNode* sfpt) { 594 auto report_failure = [&](int field_offset_in_element) { 595 #ifndef PRODUCT 596 if (PrintEliminateAllocations) { 597 ciInlineKlass* elem_klass = elem_adr_type->elem()->inline_klass(); 598 int offset = field_offset_in_element + elem_klass->payload_offset(); 599 ciField* flattened_field = elem_klass->get_field_by_offset(offset, false); 600 assert(flattened_field != nullptr, "must have a field of type %s at offset %d", elem_klass->name()->as_utf8(), offset); 601 tty->print("=== At SafePoint node %d can't find value of field [%s] of array element [%d]", sfpt->_idx, flattened_field->name()->as_utf8(), elem_idx); 602 tty->print(", which prevents elimination of: "); 603 alloc->dump(); 604 } 605 #endif // PRODUCT 606 }; 607 608 // Create a new InlineTypeNode and retrieve the field values from memory 609 InlineTypeNode* vt = InlineTypeNode::make_uninitialized(_igvn, vk, false); 610 transform_later(vt); 611 if (null_free) { 612 vt->set_is_init(_igvn); 613 } else { 614 int nm_offset_in_element = offset_in_element + vk->null_marker_offset_in_payload(); 615 const TypeAryPtr* nm_adr_type = elem_adr_type->with_field_offset(nm_offset_in_element); 616 Node* nm_value = value_from_mem(sfpt->memory(), sfpt->control(), T_BOOLEAN, TypeInt::BOOL, nm_adr_type, alloc); 617 if (nm_value != nullptr) { 618 vt->set_is_init(_igvn, nm_value); 619 } else { 620 report_failure(nm_offset_in_element); 621 return nullptr; 622 } 623 } 624 625 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) { 626 ciType* field_type = vt->field_type(i); 627 int field_offset_in_element = offset_in_element + vt->field_offset(i) - vk->payload_offset(); 628 Node* field_value = nullptr; 629 if (vt->field_is_flat(i)) { 630 field_value = inline_type_from_mem(field_type->as_inline_klass(), elem_adr_type, elem_idx, field_offset_in_element, vt->field_is_null_free(i), alloc, sfpt); 631 } else { 632 const Type* ft = Type::get_const_type(field_type); 633 BasicType bt = type2field[field_type->basic_type()]; 634 if (UseCompressedOops && !is_java_primitive(bt)) { 635 ft = ft->make_narrowoop(); 636 bt = T_NARROWOOP; 637 } 638 // Each inline type field has its own memory slice 639 const TypeAryPtr* field_adr_type = elem_adr_type->with_field_offset(field_offset_in_element); 640 field_value = value_from_mem(sfpt->memory(), sfpt->control(), bt, ft, field_adr_type, alloc); 641 if (field_value == nullptr) { 642 report_failure(field_offset_in_element); 643 } else if (ft->isa_narrowoop()) { 644 assert(UseCompressedOops, "unexpected narrow oop"); 645 if (field_value->is_EncodeP()) { 646 field_value = field_value->in(1); 647 } else if (!field_value->is_InlineType()) { 648 field_value = transform_later(new DecodeNNode(field_value, field_value->get_ptr_type())); 649 } 650 } 651 } 652 if (field_value != nullptr) { 653 vt->set_field_value(i, field_value); 654 } else { 655 return nullptr; 656 } 657 } 658 return vt; 659 } 660 661 // Check the possibility of scalar replacement. 662 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) { 663 // Scan the uses of the allocation to check for anything that would 664 // prevent us from eliminating it. 665 NOT_PRODUCT( const char* fail_eliminate = nullptr; ) 666 DEBUG_ONLY( Node* disq_node = nullptr; ) 667 bool can_eliminate = true; 668 bool reduce_merge_precheck = (safepoints == nullptr); 669 670 Unique_Node_List worklist; 671 Node* res = alloc->result_cast(); 672 const TypeOopPtr* res_type = nullptr; 673 if (res == nullptr) { 674 // All users were eliminated. 675 } else if (!res->is_CheckCastPP()) { 676 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";) 677 can_eliminate = false; 678 } else { 679 worklist.push(res); 680 res_type = igvn->type(res)->isa_oopptr(); 681 if (res_type == nullptr) { 682 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";) 683 can_eliminate = false; 684 } else if (!res_type->klass_is_exact()) { 685 NOT_PRODUCT(fail_eliminate = "Not an exact type.";) 686 can_eliminate = false; 687 } else if (res_type->isa_aryptr()) { 688 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); 689 if (length < 0) { 690 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";) 691 can_eliminate = false; 692 } 693 } 694 } 695 696 while (can_eliminate && worklist.size() > 0) { 697 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 698 res = worklist.pop(); 699 for (DUIterator_Fast jmax, j = res->fast_outs(jmax); j < jmax && can_eliminate; j++) { 700 Node* use = res->fast_out(j); 701 702 if (use->is_AddP()) { 703 const TypePtr* addp_type = igvn->type(use)->is_ptr(); 704 int offset = addp_type->offset(); 705 706 if (offset == Type::OffsetTop || offset == Type::OffsetBot) { 707 NOT_PRODUCT(fail_eliminate = "Undefined field reference";) 708 can_eliminate = false; 709 break; 710 } 711 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); 712 k < kmax && can_eliminate; k++) { 713 Node* n = use->fast_out(k); 714 if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n) && !reduce_merge_precheck) { 715 DEBUG_ONLY(disq_node = n;) 716 if (n->is_Load() || n->is_LoadStore()) { 717 NOT_PRODUCT(fail_eliminate = "Field load";) 718 } else { 719 NOT_PRODUCT(fail_eliminate = "Not store field reference";) 720 } 721 can_eliminate = false; 722 } 723 } 724 } else if (use->is_ArrayCopy() && 725 (use->as_ArrayCopy()->is_clonebasic() || 726 use->as_ArrayCopy()->is_arraycopy_validated() || 727 use->as_ArrayCopy()->is_copyof_validated() || 728 use->as_ArrayCopy()->is_copyofrange_validated()) && 729 use->in(ArrayCopyNode::Dest) == res) { 730 // ok to eliminate 731 } else if (use->is_SafePoint()) { 732 SafePointNode* sfpt = use->as_SafePoint(); 733 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { 734 // Object is passed as argument. 735 DEBUG_ONLY(disq_node = use;) 736 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";) 737 can_eliminate = false; 738 } 739 Node* sfptMem = sfpt->memory(); 740 if (sfptMem == nullptr || sfptMem->is_top()) { 741 DEBUG_ONLY(disq_node = use;) 742 NOT_PRODUCT(fail_eliminate = "null or TOP memory";) 743 can_eliminate = false; 744 } else if (!reduce_merge_precheck) { 745 assert(!res->is_Phi() || !res->as_Phi()->can_be_inline_type(), "Inline type allocations should not have safepoint uses"); 746 safepoints->append_if_missing(sfpt); 747 } 748 } else if (use->is_InlineType() && use->as_InlineType()->get_oop() == res) { 749 // Look at uses 750 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 751 Node* u = use->fast_out(k); 752 if (u->is_InlineType()) { 753 // Use in flat field can be eliminated 754 InlineTypeNode* vt = u->as_InlineType(); 755 for (uint i = 0; i < vt->field_count(); ++i) { 756 if (vt->field_value(i) == use && !vt->field_is_flat(i)) { 757 can_eliminate = false; // Use in non-flat field 758 break; 759 } 760 } 761 } else { 762 // Add other uses to the worklist to process individually 763 worklist.push(use); 764 } 765 } 766 } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) { 767 // Store to mark word of inline type larval buffer 768 assert(res_type->is_inlinetypeptr(), "Unexpected store to mark word"); 769 } else if (res_type->is_inlinetypeptr() && (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore)) { 770 // Inline type buffer allocations are followed by a membar 771 } else if (reduce_merge_precheck && 772 (use->is_Phi() || use->is_EncodeP() || 773 use->Opcode() == Op_MemBarRelease || 774 (UseStoreStoreForCtor && use->Opcode() == Op_MemBarStoreStore))) { 775 // Nothing to do 776 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark 777 if (use->is_Phi()) { 778 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { 779 NOT_PRODUCT(fail_eliminate = "Object is return value";) 780 } else { 781 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";) 782 } 783 DEBUG_ONLY(disq_node = use;) 784 } else { 785 if (use->Opcode() == Op_Return) { 786 NOT_PRODUCT(fail_eliminate = "Object is return value";) 787 } else { 788 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";) 789 } 790 DEBUG_ONLY(disq_node = use;) 791 } 792 can_eliminate = false; 793 } else { 794 assert(use->Opcode() == Op_CastP2X, "should be"); 795 assert(!use->has_out_with(Op_OrL), "should have been removed because oop is never null"); 796 } 797 } 798 } 799 800 #ifndef PRODUCT 801 if (PrintEliminateAllocations && safepoints != nullptr) { 802 if (can_eliminate) { 803 tty->print("Scalar "); 804 if (res == nullptr) 805 alloc->dump(); 806 else 807 res->dump(); 808 } else { 809 tty->print("NotScalar (%s)", fail_eliminate); 810 if (res == nullptr) 811 alloc->dump(); 812 else 813 res->dump(); 814 #ifdef ASSERT 815 if (disq_node != nullptr) { 816 tty->print(" >>>> "); 817 disq_node->dump(); 818 } 819 #endif /*ASSERT*/ 820 } 821 } 822 823 if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) { 824 tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : ""); 825 DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();) 826 } 827 #endif 828 return can_eliminate; 829 } 830 831 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) { 832 Node* res = alloc->result_cast(); 833 int nfields = 0; 834 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 835 836 if (res != nullptr) { 837 const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr(); 838 839 if (res_type->isa_instptr()) { 840 // find the fields of the class which will be needed for safepoint debug information 841 ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass(); 842 nfields = iklass->nof_nonstatic_fields(); 843 } else { 844 // find the array's elements which will be needed for safepoint debug information 845 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 846 assert(nfields >= 0, "must be an array klass."); 847 } 848 } 849 850 // rollback processed safepoints 851 while (safepoints_done.length() > 0) { 852 SafePointNode* sfpt_done = safepoints_done.pop(); 853 // remove any extra entries we added to the safepoint 854 uint last = sfpt_done->req() - 1; 855 for (int k = 0; k < nfields; k++) { 856 sfpt_done->del_req(last--); 857 } 858 JVMState *jvms = sfpt_done->jvms(); 859 jvms->set_endoff(sfpt_done->req()); 860 // Now make a pass over the debug information replacing any references 861 // to SafePointScalarObjectNode with the allocated object. 862 int start = jvms->debug_start(); 863 int end = jvms->debug_end(); 864 for (int i = start; i < end; i++) { 865 if (sfpt_done->in(i)->is_SafePointScalarObject()) { 866 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); 867 if (scobj->first_index(jvms) == sfpt_done->req() && 868 scobj->n_fields() == (uint)nfields) { 869 assert(scobj->alloc() == alloc, "sanity"); 870 sfpt_done->set_req(i, res); 871 } 872 } 873 } 874 _igvn._worklist.push(sfpt_done); 875 } 876 } 877 878 void PhaseMacroExpand::process_field_value_at_safepoint(const Type* field_type, Node* field_val, SafePointNode* sfpt, Unique_Node_List* value_worklist) { 879 if (UseCompressedOops && field_type->isa_narrowoop()) { 880 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation 881 // to be able scalar replace the allocation. 882 if (field_val->is_EncodeP()) { 883 field_val = field_val->in(1); 884 } else if (!field_val->is_InlineType()) { 885 field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); 886 } 887 } 888 889 // Keep track of inline types to scalarize them later 890 if (field_val->is_InlineType()) { 891 value_worklist->push(field_val); 892 } else if (field_val->is_Phi()) { 893 PhiNode* phi = field_val->as_Phi(); 894 // Eagerly replace inline type phis now since we could be removing an inline type allocation where we must 895 // scalarize all its fields in safepoints. 896 field_val = phi->try_push_inline_types_down(&_igvn, true); 897 if (field_val->is_InlineType()) { 898 value_worklist->push(field_val); 899 } 900 } 901 sfpt->add_req(field_val); 902 } 903 904 bool PhaseMacroExpand::add_array_elems_to_safepoint(AllocateNode* alloc, const TypeAryPtr* array_type, SafePointNode* sfpt, Unique_Node_List* value_worklist) { 905 const Type* elem_type = array_type->elem(); 906 BasicType basic_elem_type = elem_type->array_element_basic_type(); 907 908 intptr_t elem_size; 909 if (array_type->is_flat()) { 910 elem_size = array_type->flat_elem_size(); 911 } else { 912 elem_size = type2aelembytes(basic_elem_type); 913 } 914 915 int n_elems = alloc->in(AllocateNode::ALength)->get_int(); 916 for (int elem_idx = 0; elem_idx < n_elems; elem_idx++) { 917 intptr_t elem_offset = arrayOopDesc::base_offset_in_bytes(basic_elem_type) + elem_idx * elem_size; 918 const TypeAryPtr* elem_adr_type = array_type->with_offset(elem_offset); 919 Node* elem_val; 920 if (array_type->is_flat()) { 921 ciInlineKlass* elem_klass = elem_type->inline_klass(); 922 assert(elem_klass->maybe_flat_in_array(), "must be flat in array"); 923 elem_val = inline_type_from_mem(elem_klass, elem_adr_type, elem_idx, 0, array_type->is_null_free(), alloc, sfpt); 924 } else { 925 elem_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, elem_type, elem_adr_type, alloc); 926 #ifndef PRODUCT 927 if (PrintEliminateAllocations && elem_val == nullptr) { 928 tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, elem_idx); 929 tty->print(", which prevents elimination of: "); 930 alloc->dump(); 931 } 932 #endif // PRODUCT 933 } 934 if (elem_val == nullptr) { 935 return false; 936 } 937 938 process_field_value_at_safepoint(elem_type, elem_val, sfpt, value_worklist); 939 } 940 941 return true; 942 } 943 944 // Recursively adds all flattened fields of a type 'iklass' inside 'base' to 'sfpt'. 945 // 'offset_minus_header' refers to the offset of the payload of 'iklass' inside 'base' minus the 946 // payload offset of 'iklass'. If 'base' is of type 'iklass' then 'offset_minus_header' == 0. 947 bool PhaseMacroExpand::add_inst_fields_to_safepoint(ciInstanceKlass* iklass, AllocateNode* alloc, Node* base, int offset_minus_header, SafePointNode* sfpt, Unique_Node_List* value_worklist) { 948 const TypeInstPtr* base_type = _igvn.type(base)->is_instptr(); 949 auto report_failure = [&](int offset) { 950 #ifndef PRODUCT 951 if (PrintEliminateAllocations) { 952 ciInstanceKlass* base_klass = base_type->instance_klass(); 953 ciField* flattened_field = base_klass->get_field_by_offset(offset, false); 954 assert(flattened_field != nullptr, "must have a field of type %s at offset %d", base_klass->name()->as_utf8(), offset); 955 tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx); 956 flattened_field->print(); 957 int field_idx = C->alias_type(flattened_field)->index(); 958 tty->print(" (alias_idx=%d)", field_idx); 959 tty->print(", which prevents elimination of: "); 960 base->dump(); 961 } 962 #endif // PRODUCT 963 }; 964 965 for (int i = 0; i < iklass->nof_declared_nonstatic_fields(); i++) { 966 ciField* field = iklass->declared_nonstatic_field_at(i); 967 if (field->is_flat()) { 968 ciInlineKlass* fvk = field->type()->as_inline_klass(); 969 int field_offset_minus_header = offset_minus_header + field->offset_in_bytes() - fvk->payload_offset(); 970 bool success = add_inst_fields_to_safepoint(fvk, alloc, base, field_offset_minus_header, sfpt, value_worklist); 971 if (!success) { 972 return false; 973 } 974 975 // The null marker of a field is added right after we scalarize that field 976 if (!field->is_null_free()) { 977 int nm_offset = offset_minus_header + field->null_marker_offset(); 978 Node* null_marker = value_from_mem(sfpt->memory(), sfpt->control(), T_BOOLEAN, TypeInt::BOOL, base_type->with_offset(nm_offset), alloc); 979 if (null_marker == nullptr) { 980 report_failure(nm_offset); 981 return false; 982 } 983 process_field_value_at_safepoint(TypeInt::BOOL, null_marker, sfpt, value_worklist); 984 } 985 986 continue; 987 } 988 989 int offset = offset_minus_header + field->offset_in_bytes(); 990 ciType* elem_type = field->type(); 991 BasicType basic_elem_type = field->layout_type(); 992 993 const Type* field_type; 994 if (is_reference_type(basic_elem_type)) { 995 if (!elem_type->is_loaded()) { 996 field_type = TypeInstPtr::BOTTOM; 997 } else { 998 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); 999 } 1000 if (UseCompressedOops) { 1001 field_type = field_type->make_narrowoop(); 1002 basic_elem_type = T_NARROWOOP; 1003 } 1004 } else { 1005 field_type = Type::get_const_basic_type(basic_elem_type); 1006 } 1007 1008 const TypeInstPtr* field_addr_type = base_type->add_offset(offset)->isa_instptr(); 1009 Node* field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc); 1010 if (field_val == nullptr) { 1011 report_failure(offset); 1012 return false; 1013 } 1014 process_field_value_at_safepoint(field_type, field_val, sfpt, value_worklist); 1015 } 1016 1017 return true; 1018 } 1019 1020 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode* alloc, SafePointNode* sfpt, 1021 Unique_Node_List* value_worklist) { 1022 // Fields of scalar objs are referenced only at the end 1023 // of regular debuginfo at the last (youngest) JVMS. 1024 // Record relative start index. 1025 ciInstanceKlass* iklass = nullptr; 1026 const TypeOopPtr* res_type = nullptr; 1027 int nfields = 0; 1028 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 1029 Node* res = alloc->result_cast(); 1030 1031 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 1032 assert(sfpt->jvms() != nullptr, "missed JVMS"); 1033 uint before_sfpt_req = sfpt->req(); 1034 1035 if (res != nullptr) { // Could be null when there are no users 1036 res_type = _igvn.type(res)->isa_oopptr(); 1037 1038 if (res_type->isa_instptr()) { 1039 // find the fields of the class which will be needed for safepoint debug information 1040 iklass = res_type->is_instptr()->instance_klass(); 1041 nfields = iklass->nof_nonstatic_fields(); 1042 } else { 1043 // find the array's elements which will be needed for safepoint debug information 1044 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 1045 assert(nfields >= 0, "must be an array klass."); 1046 } 1047 1048 if (res->bottom_type()->is_inlinetypeptr()) { 1049 // Nullable inline types have an IsInit field which is added to the safepoint when scalarizing them (see 1050 // InlineTypeNode::make_scalar_in_safepoint()). When having circular inline types, we stop scalarizing at depth 1 1051 // to avoid an endless recursion. Therefore, we do not have a SafePointScalarObjectNode node here, yet. 1052 // We are about to create a SafePointScalarObjectNode as if this is a normal object. Add an additional int input 1053 // with value 1 which sets IsInit to true to indicate that the object is always non-null. This input is checked 1054 // later in PhaseOutput::filLocArray() for inline types. 1055 sfpt->add_req(_igvn.intcon(1)); 1056 } 1057 } 1058 1059 SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, sfpt->jvms()->depth(), nfields); 1060 sobj->init_req(0, C->root()); 1061 transform_later(sobj); 1062 1063 if (res == nullptr) { 1064 sfpt->jvms()->set_endoff(sfpt->req()); 1065 return sobj; 1066 } 1067 1068 bool success; 1069 if (iklass == nullptr) { 1070 success = add_array_elems_to_safepoint(alloc, res_type->is_aryptr(), sfpt, value_worklist); 1071 } else { 1072 success = add_inst_fields_to_safepoint(iklass, alloc, res, 0, sfpt, value_worklist); 1073 } 1074 1075 // We weren't able to find a value for this field, remove all the fields added to the safepoint 1076 if (!success) { 1077 for (uint i = sfpt->req() - 1; i >= before_sfpt_req; i--) { 1078 sfpt->del_req(i); 1079 } 1080 _igvn._worklist.push(sfpt); 1081 return nullptr; 1082 } 1083 1084 sfpt->jvms()->set_endoff(sfpt->req()); 1085 return sobj; 1086 } 1087 1088 // Do scalar replacement. 1089 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 1090 GrowableArray <SafePointNode *> safepoints_done; 1091 Node* res = alloc->result_cast(); 1092 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 1093 const TypeOopPtr* res_type = nullptr; 1094 if (res != nullptr) { // Could be null when there are no users 1095 res_type = _igvn.type(res)->isa_oopptr(); 1096 } 1097 1098 // Process the safepoint uses 1099 Unique_Node_List value_worklist; 1100 while (safepoints.length() > 0) { 1101 SafePointNode* sfpt = safepoints.pop(); 1102 SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt, &value_worklist); 1103 1104 if (sobj == nullptr) { 1105 undo_previous_scalarizations(safepoints_done, alloc); 1106 return false; 1107 } 1108 1109 // Now make a pass over the debug information replacing any references 1110 // to the allocated object with "sobj" 1111 JVMState *jvms = sfpt->jvms(); 1112 sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn); 1113 _igvn._worklist.push(sfpt); 1114 1115 // keep it for rollback 1116 safepoints_done.append_if_missing(sfpt); 1117 } 1118 // Scalarize inline types that were added to the safepoint. 1119 // Don't allow linking a constant oop (if available) for flat array elements 1120 // because Deoptimization::reassign_flat_array_elements needs field values. 1121 bool allow_oop = (res_type != nullptr) && !res_type->is_flat(); 1122 for (uint i = 0; i < value_worklist.size(); ++i) { 1123 InlineTypeNode* vt = value_worklist.at(i)->as_InlineType(); 1124 vt->make_scalar_in_safepoints(&_igvn, allow_oop); 1125 } 1126 return true; 1127 } 1128 1129 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) { 1130 Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control); 1131 Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory); 1132 if (ctl_proj != nullptr) { 1133 igvn.replace_node(ctl_proj, n->in(0)); 1134 } 1135 if (mem_proj != nullptr) { 1136 igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); 1137 } 1138 } 1139 1140 // Process users of eliminated allocation. 1141 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc, bool inline_alloc) { 1142 Unique_Node_List worklist; 1143 Node* res = alloc->result_cast(); 1144 if (res != nullptr) { 1145 worklist.push(res); 1146 } 1147 while (worklist.size() > 0) { 1148 res = worklist.pop(); 1149 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { 1150 Node *use = res->last_out(j); 1151 uint oc1 = res->outcnt(); 1152 1153 if (use->is_AddP()) { 1154 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { 1155 Node *n = use->last_out(k); 1156 uint oc2 = use->outcnt(); 1157 if (n->is_Store()) { 1158 for (DUIterator_Fast pmax, p = n->fast_outs(pmax); p < pmax; p++) { 1159 MemBarNode* mb = n->fast_out(p)->isa_MemBar(); 1160 if (mb != nullptr && mb->req() <= MemBarNode::Precedent && mb->in(MemBarNode::Precedent) == n) { 1161 // MemBarVolatiles should have been removed by MemBarNode::Ideal() for non-inline allocations 1162 assert(inline_alloc, "MemBarVolatile should be eliminated for non-escaping object"); 1163 mb->remove(&_igvn); 1164 } 1165 } 1166 _igvn.replace_node(n, n->in(MemNode::Memory)); 1167 } else { 1168 eliminate_gc_barrier(n); 1169 } 1170 k -= (oc2 - use->outcnt()); 1171 } 1172 _igvn.remove_dead_node(use); 1173 } else if (use->is_ArrayCopy()) { 1174 // Disconnect ArrayCopy node 1175 ArrayCopyNode* ac = use->as_ArrayCopy(); 1176 if (ac->is_clonebasic()) { 1177 Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out(); 1178 disconnect_projections(ac, _igvn); 1179 assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation"); 1180 Node* membar_before = alloc->in(TypeFunc::Memory)->in(0); 1181 disconnect_projections(membar_before->as_MemBar(), _igvn); 1182 if (membar_after->is_MemBar()) { 1183 disconnect_projections(membar_after->as_MemBar(), _igvn); 1184 } 1185 } else { 1186 assert(ac->is_arraycopy_validated() || 1187 ac->is_copyof_validated() || 1188 ac->is_copyofrange_validated(), "unsupported"); 1189 CallProjections* callprojs = ac->extract_projections(true); 1190 1191 _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O)); 1192 _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory)); 1193 _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control)); 1194 1195 // Set control to top. IGVN will remove the remaining projections 1196 ac->set_req(0, top()); 1197 ac->replace_edge(res, top(), &_igvn); 1198 1199 // Disconnect src right away: it can help find new 1200 // opportunities for allocation elimination 1201 Node* src = ac->in(ArrayCopyNode::Src); 1202 ac->replace_edge(src, top(), &_igvn); 1203 // src can be top at this point if src and dest of the 1204 // arraycopy were the same 1205 if (src->outcnt() == 0 && !src->is_top()) { 1206 _igvn.remove_dead_node(src); 1207 } 1208 } 1209 _igvn._worklist.push(ac); 1210 } else if (use->is_InlineType()) { 1211 assert(use->as_InlineType()->get_oop() == res, "unexpected inline type ptr use"); 1212 // Cut off oop input and remove known instance id from type 1213 _igvn.rehash_node_delayed(use); 1214 use->as_InlineType()->set_oop(_igvn, _igvn.zerocon(T_OBJECT)); 1215 const TypeOopPtr* toop = _igvn.type(use)->is_oopptr()->cast_to_instance_id(TypeOopPtr::InstanceBot); 1216 _igvn.set_type(use, toop); 1217 use->as_InlineType()->set_type(toop); 1218 // Process users 1219 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1220 Node* u = use->fast_out(k); 1221 if (!u->is_InlineType()) { 1222 worklist.push(u); 1223 } 1224 } 1225 } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) { 1226 // Store to mark word of inline type larval buffer 1227 assert(inline_alloc, "Unexpected store to mark word"); 1228 _igvn.replace_node(use, use->in(MemNode::Memory)); 1229 } else if (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore) { 1230 // Inline type buffer allocations are followed by a membar 1231 assert(inline_alloc, "Unexpected MemBarRelease"); 1232 use->as_MemBar()->remove(&_igvn); 1233 } else { 1234 eliminate_gc_barrier(use); 1235 } 1236 j -= (oc1 - res->outcnt()); 1237 } 1238 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted"); 1239 _igvn.remove_dead_node(res); 1240 } 1241 1242 // 1243 // Process other users of allocation's projections 1244 // 1245 if (_callprojs->resproj[0] != nullptr && _callprojs->resproj[0]->outcnt() != 0) { 1246 // First disconnect stores captured by Initialize node. 1247 // If Initialize node is eliminated first in the following code, 1248 // it will kill such stores and DUIterator_Last will assert. 1249 for (DUIterator_Fast jmax, j = _callprojs->resproj[0]->fast_outs(jmax); j < jmax; j++) { 1250 Node* use = _callprojs->resproj[0]->fast_out(j); 1251 if (use->is_AddP()) { 1252 // raw memory addresses used only by the initialization 1253 _igvn.replace_node(use, C->top()); 1254 --j; --jmax; 1255 } 1256 } 1257 for (DUIterator_Last jmin, j = _callprojs->resproj[0]->last_outs(jmin); j >= jmin; ) { 1258 Node* use = _callprojs->resproj[0]->last_out(j); 1259 uint oc1 = _callprojs->resproj[0]->outcnt(); 1260 if (use->is_Initialize()) { 1261 // Eliminate Initialize node. 1262 InitializeNode *init = use->as_Initialize(); 1263 assert(init->outcnt() <= 2, "only a control and memory projection expected"); 1264 Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control); 1265 if (ctrl_proj != nullptr) { 1266 _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control)); 1267 #ifdef ASSERT 1268 // If the InitializeNode has no memory out, it will die, and tmp will become null 1269 Node* tmp = init->in(TypeFunc::Control); 1270 assert(tmp == nullptr || tmp == _callprojs->fallthrough_catchproj, "allocation control projection"); 1271 #endif 1272 } 1273 Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory); 1274 if (mem_proj != nullptr) { 1275 Node *mem = init->in(TypeFunc::Memory); 1276 #ifdef ASSERT 1277 if (mem->is_MergeMem()) { 1278 assert(mem->in(TypeFunc::Memory) == _callprojs->fallthrough_memproj, "allocation memory projection"); 1279 } else { 1280 assert(mem == _callprojs->fallthrough_memproj, "allocation memory projection"); 1281 } 1282 #endif 1283 _igvn.replace_node(mem_proj, mem); 1284 } 1285 } else if (use->Opcode() == Op_MemBarStoreStore) { 1286 // Inline type buffer allocations are followed by a membar 1287 assert(inline_alloc, "Unexpected MemBarStoreStore"); 1288 use->as_MemBar()->remove(&_igvn); 1289 } else { 1290 assert(false, "only Initialize or AddP expected"); 1291 } 1292 j -= (oc1 - _callprojs->resproj[0]->outcnt()); 1293 } 1294 } 1295 if (_callprojs->fallthrough_catchproj != nullptr) { 1296 _igvn.replace_node(_callprojs->fallthrough_catchproj, alloc->in(TypeFunc::Control)); 1297 } 1298 if (_callprojs->fallthrough_memproj != nullptr) { 1299 _igvn.replace_node(_callprojs->fallthrough_memproj, alloc->in(TypeFunc::Memory)); 1300 } 1301 if (_callprojs->catchall_memproj != nullptr) { 1302 _igvn.replace_node(_callprojs->catchall_memproj, C->top()); 1303 } 1304 if (_callprojs->fallthrough_ioproj != nullptr) { 1305 _igvn.replace_node(_callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 1306 } 1307 if (_callprojs->catchall_ioproj != nullptr) { 1308 _igvn.replace_node(_callprojs->catchall_ioproj, C->top()); 1309 } 1310 if (_callprojs->catchall_catchproj != nullptr) { 1311 _igvn.replace_node(_callprojs->catchall_catchproj, C->top()); 1312 } 1313 } 1314 1315 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { 1316 // If reallocation fails during deoptimization we'll pop all 1317 // interpreter frames for this compiled frame and that won't play 1318 // nice with JVMTI popframe. 1319 // We avoid this issue by eager reallocation when the popframe request 1320 // is received. 1321 if (!EliminateAllocations) { 1322 return false; 1323 } 1324 Node* klass = alloc->in(AllocateNode::KlassNode); 1325 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); 1326 1327 // Attempt to eliminate inline type buffer allocations 1328 // regardless of usage and escape/replaceable status. 1329 bool inline_alloc = tklass->isa_instklassptr() && 1330 tklass->is_instklassptr()->instance_klass()->is_inlinetype(); 1331 if (!alloc->_is_non_escaping && !inline_alloc) { 1332 return false; 1333 } 1334 // Eliminate boxing allocations which are not used 1335 // regardless scalar replaceable status. 1336 Node* res = alloc->result_cast(); 1337 bool boxing_alloc = (res == nullptr) && C->eliminate_boxing() && 1338 tklass->isa_instklassptr() && 1339 tklass->is_instklassptr()->instance_klass()->is_box_klass(); 1340 if (!alloc->_is_scalar_replaceable && !boxing_alloc && !inline_alloc) { 1341 return false; 1342 } 1343 1344 _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1345 1346 GrowableArray <SafePointNode *> safepoints; 1347 if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) { 1348 return false; 1349 } 1350 1351 if (!alloc->_is_scalar_replaceable) { 1352 assert(res == nullptr || inline_alloc, "sanity"); 1353 // We can only eliminate allocation if all debug info references 1354 // are already replaced with SafePointScalarObject because 1355 // we can't search for a fields value without instance_id. 1356 if (safepoints.length() > 0) { 1357 return false; 1358 } 1359 } 1360 1361 if (!scalar_replacement(alloc, safepoints)) { 1362 return false; 1363 } 1364 1365 CompileLog* log = C->log(); 1366 if (log != nullptr) { 1367 log->head("eliminate_allocation type='%d'", 1368 log->identify(tklass->exact_klass())); 1369 JVMState* p = alloc->jvms(); 1370 while (p != nullptr) { 1371 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1372 p = p->caller(); 1373 } 1374 log->tail("eliminate_allocation"); 1375 } 1376 1377 process_users_of_allocation(alloc, inline_alloc); 1378 1379 #ifndef PRODUCT 1380 if (PrintEliminateAllocations) { 1381 if (alloc->is_AllocateArray()) 1382 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1383 else 1384 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1385 } 1386 #endif 1387 1388 return true; 1389 } 1390 1391 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { 1392 // EA should remove all uses of non-escaping boxing node. 1393 if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) { 1394 return false; 1395 } 1396 1397 assert(boxing->result_cast() == nullptr, "unexpected boxing node result"); 1398 1399 _callprojs = boxing->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1400 1401 const TypeTuple* r = boxing->tf()->range_sig(); 1402 assert(r->cnt() > TypeFunc::Parms, "sanity"); 1403 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); 1404 assert(t != nullptr, "sanity"); 1405 1406 CompileLog* log = C->log(); 1407 if (log != nullptr) { 1408 log->head("eliminate_boxing type='%d'", 1409 log->identify(t->instance_klass())); 1410 JVMState* p = boxing->jvms(); 1411 while (p != nullptr) { 1412 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1413 p = p->caller(); 1414 } 1415 log->tail("eliminate_boxing"); 1416 } 1417 1418 process_users_of_allocation(boxing); 1419 1420 #ifndef PRODUCT 1421 if (PrintEliminateAllocations) { 1422 tty->print("++++ Eliminated: %d ", boxing->_idx); 1423 boxing->method()->print_short_name(tty); 1424 tty->cr(); 1425 } 1426 #endif 1427 1428 return true; 1429 } 1430 1431 1432 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { 1433 Node* adr = basic_plus_adr(base, offset); 1434 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 1435 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); 1436 transform_later(value); 1437 return value; 1438 } 1439 1440 1441 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { 1442 Node* adr = basic_plus_adr(base, offset); 1443 mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered); 1444 transform_later(mem); 1445 return mem; 1446 } 1447 1448 //============================================================================= 1449 // 1450 // A L L O C A T I O N 1451 // 1452 // Allocation attempts to be fast in the case of frequent small objects. 1453 // It breaks down like this: 1454 // 1455 // 1) Size in doublewords is computed. This is a constant for objects and 1456 // variable for most arrays. Doubleword units are used to avoid size 1457 // overflow of huge doubleword arrays. We need doublewords in the end for 1458 // rounding. 1459 // 1460 // 2) Size is checked for being 'too large'. Too-large allocations will go 1461 // the slow path into the VM. The slow path can throw any required 1462 // exceptions, and does all the special checks for very large arrays. The 1463 // size test can constant-fold away for objects. For objects with 1464 // finalizers it constant-folds the otherway: you always go slow with 1465 // finalizers. 1466 // 1467 // 3) If NOT using TLABs, this is the contended loop-back point. 1468 // Load-Locked the heap top. If using TLABs normal-load the heap top. 1469 // 1470 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. 1471 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish 1472 // "size*8" we always enter the VM, where "largish" is a constant picked small 1473 // enough that there's always space between the eden max and 4Gig (old space is 1474 // there so it's quite large) and large enough that the cost of entering the VM 1475 // is dwarfed by the cost to initialize the space. 1476 // 1477 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back 1478 // down. If contended, repeat at step 3. If using TLABs normal-store 1479 // adjusted heap top back down; there is no contention. 1480 // 1481 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark 1482 // fields. 1483 // 1484 // 7) Merge with the slow-path; cast the raw memory pointer to the correct 1485 // oop flavor. 1486 // 1487 //============================================================================= 1488 // FastAllocateSizeLimit value is in DOUBLEWORDS. 1489 // Allocations bigger than this always go the slow route. 1490 // This value must be small enough that allocation attempts that need to 1491 // trigger exceptions go the slow route. Also, it must be small enough so 1492 // that heap_top + size_in_bytes does not wrap around the 4Gig limit. 1493 //=============================================================================j// 1494 // %%% Here is an old comment from parseHelper.cpp; is it outdated? 1495 // The allocator will coalesce int->oop copies away. See comment in 1496 // coalesce.cpp about how this works. It depends critically on the exact 1497 // code shape produced here, so if you are changing this code shape 1498 // make sure the GC info for the heap-top is correct in and around the 1499 // slow-path call. 1500 // 1501 1502 void PhaseMacroExpand::expand_allocate_common( 1503 AllocateNode* alloc, // allocation node to be expanded 1504 Node* length, // array length for an array allocation 1505 Node* init_val, // value to initialize the array with 1506 const TypeFunc* slow_call_type, // Type of slow call 1507 address slow_call_address, // Address of slow call 1508 Node* valid_length_test // whether length is valid or not 1509 ) 1510 { 1511 Node* ctrl = alloc->in(TypeFunc::Control); 1512 Node* mem = alloc->in(TypeFunc::Memory); 1513 Node* i_o = alloc->in(TypeFunc::I_O); 1514 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); 1515 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1516 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); 1517 assert(ctrl != nullptr, "must have control"); 1518 1519 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. 1520 // they will not be used if "always_slow" is set 1521 enum { slow_result_path = 1, fast_result_path = 2 }; 1522 Node *result_region = nullptr; 1523 Node *result_phi_rawmem = nullptr; 1524 Node *result_phi_rawoop = nullptr; 1525 Node *result_phi_i_o = nullptr; 1526 1527 // The initial slow comparison is a size check, the comparison 1528 // we want to do is a BoolTest::gt 1529 bool expand_fast_path = true; 1530 int tv = _igvn.find_int_con(initial_slow_test, -1); 1531 if (tv >= 0) { 1532 // InitialTest has constant result 1533 // 0 - can fit in TLAB 1534 // 1 - always too big or negative 1535 assert(tv <= 1, "0 or 1 if a constant"); 1536 expand_fast_path = (tv == 0); 1537 initial_slow_test = nullptr; 1538 } else { 1539 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); 1540 } 1541 1542 if (!UseTLAB) { 1543 // Force slow-path allocation 1544 expand_fast_path = false; 1545 initial_slow_test = nullptr; 1546 } 1547 1548 bool allocation_has_use = (alloc->result_cast() != nullptr); 1549 if (!allocation_has_use) { 1550 InitializeNode* init = alloc->initialization(); 1551 if (init != nullptr) { 1552 init->remove(&_igvn); 1553 } 1554 if (expand_fast_path && (initial_slow_test == nullptr)) { 1555 // Remove allocation node and return. 1556 // Size is a non-negative constant -> no initial check needed -> directly to fast path. 1557 // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left. 1558 #ifndef PRODUCT 1559 if (PrintEliminateAllocations) { 1560 tty->print("NotUsed "); 1561 Node* res = alloc->proj_out_or_null(TypeFunc::Parms); 1562 if (res != nullptr) { 1563 res->dump(); 1564 } else { 1565 alloc->dump(); 1566 } 1567 } 1568 #endif 1569 yank_alloc_node(alloc); 1570 return; 1571 } 1572 } 1573 1574 enum { too_big_or_final_path = 1, need_gc_path = 2 }; 1575 Node *slow_region = nullptr; 1576 Node *toobig_false = ctrl; 1577 1578 // generate the initial test if necessary 1579 if (initial_slow_test != nullptr ) { 1580 assert (expand_fast_path, "Only need test if there is a fast path"); 1581 slow_region = new RegionNode(3); 1582 1583 // Now make the initial failure test. Usually a too-big test but 1584 // might be a TRUE for finalizers. 1585 IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 1586 transform_later(toobig_iff); 1587 // Plug the failing-too-big test into the slow-path region 1588 Node* toobig_true = new IfTrueNode(toobig_iff); 1589 transform_later(toobig_true); 1590 slow_region ->init_req( too_big_or_final_path, toobig_true ); 1591 toobig_false = new IfFalseNode(toobig_iff); 1592 transform_later(toobig_false); 1593 } else { 1594 // No initial test, just fall into next case 1595 assert(allocation_has_use || !expand_fast_path, "Should already have been handled"); 1596 toobig_false = ctrl; 1597 debug_only(slow_region = NodeSentinel); 1598 } 1599 1600 // If we are here there are several possibilities 1601 // - expand_fast_path is false - then only a slow path is expanded. That's it. 1602 // no_initial_check means a constant allocation. 1603 // - If check always evaluates to false -> expand_fast_path is false (see above) 1604 // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath) 1605 // if !allocation_has_use the fast path is empty 1606 // if !allocation_has_use && no_initial_check 1607 // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all. 1608 // removed by yank_alloc_node above. 1609 1610 Node *slow_mem = mem; // save the current memory state for slow path 1611 // generate the fast allocation code unless we know that the initial test will always go slow 1612 if (expand_fast_path) { 1613 // Fast path modifies only raw memory. 1614 if (mem->is_MergeMem()) { 1615 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1616 } 1617 1618 // allocate the Region and Phi nodes for the result 1619 result_region = new RegionNode(3); 1620 result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1621 result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch 1622 1623 // Grab regular I/O before optional prefetch may change it. 1624 // Slow-path does no I/O so just set it to the original I/O. 1625 result_phi_i_o->init_req(slow_result_path, i_o); 1626 1627 // Name successful fast-path variables 1628 Node* fast_oop_ctrl; 1629 Node* fast_oop_rawmem; 1630 1631 if (allocation_has_use) { 1632 Node* needgc_ctrl = nullptr; 1633 result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); 1634 1635 intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1636 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1637 Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl, 1638 fast_oop_ctrl, fast_oop_rawmem, 1639 prefetch_lines); 1640 1641 if (initial_slow_test != nullptr) { 1642 // This completes all paths into the slow merge point 1643 slow_region->init_req(need_gc_path, needgc_ctrl); 1644 transform_later(slow_region); 1645 } else { 1646 // No initial slow path needed! 1647 // Just fall from the need-GC path straight into the VM call. 1648 slow_region = needgc_ctrl; 1649 } 1650 1651 InitializeNode* init = alloc->initialization(); 1652 fast_oop_rawmem = initialize_object(alloc, 1653 fast_oop_ctrl, fast_oop_rawmem, fast_oop, 1654 klass_node, length, size_in_bytes); 1655 expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem); 1656 expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem); 1657 1658 result_phi_rawoop->init_req(fast_result_path, fast_oop); 1659 } else { 1660 assert (initial_slow_test != nullptr, "sanity"); 1661 fast_oop_ctrl = toobig_false; 1662 fast_oop_rawmem = mem; 1663 transform_later(slow_region); 1664 } 1665 1666 // Plug in the successful fast-path into the result merge point 1667 result_region ->init_req(fast_result_path, fast_oop_ctrl); 1668 result_phi_i_o ->init_req(fast_result_path, i_o); 1669 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); 1670 } else { 1671 slow_region = ctrl; 1672 result_phi_i_o = i_o; // Rename it to use in the following code. 1673 } 1674 1675 // Generate slow-path call 1676 CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, 1677 OptoRuntime::stub_name(slow_call_address), 1678 TypePtr::BOTTOM); 1679 call->init_req(TypeFunc::Control, slow_region); 1680 call->init_req(TypeFunc::I_O, top()); // does no i/o 1681 call->init_req(TypeFunc::Memory, slow_mem); // may gc ptrs 1682 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1683 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1684 1685 call->init_req(TypeFunc::Parms+0, klass_node); 1686 if (length != nullptr) { 1687 call->init_req(TypeFunc::Parms+1, length); 1688 if (init_val != nullptr) { 1689 call->init_req(TypeFunc::Parms+2, init_val); 1690 } 1691 } else { 1692 // Let the runtime know if this is a larval allocation 1693 call->init_req(TypeFunc::Parms+1, _igvn.intcon(alloc->_larval)); 1694 } 1695 1696 // Copy debug information and adjust JVMState information, then replace 1697 // allocate node with the call 1698 call->copy_call_debug_info(&_igvn, alloc); 1699 // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify 1700 // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough 1701 // path dies). 1702 if (valid_length_test != nullptr) { 1703 call->add_req(valid_length_test); 1704 } 1705 if (expand_fast_path) { 1706 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1707 } else { 1708 // Hook i_o projection to avoid its elimination during allocation 1709 // replacement (when only a slow call is generated). 1710 call->set_req(TypeFunc::I_O, result_phi_i_o); 1711 } 1712 _igvn.replace_node(alloc, call); 1713 transform_later(call); 1714 1715 // Identify the output projections from the allocate node and 1716 // adjust any references to them. 1717 // The control and io projections look like: 1718 // 1719 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) 1720 // Allocate Catch 1721 // ^---Proj(io) <-------+ ^---CatchProj(io) 1722 // 1723 // We are interested in the CatchProj nodes. 1724 // 1725 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1726 1727 // An allocate node has separate memory projections for the uses on 1728 // the control and i_o paths. Replace the control memory projection with 1729 // result_phi_rawmem (unless we are only generating a slow call when 1730 // both memory projections are combined) 1731 if (expand_fast_path && _callprojs->fallthrough_memproj != nullptr) { 1732 _igvn.replace_in_uses(_callprojs->fallthrough_memproj, result_phi_rawmem); 1733 } 1734 // Now change uses of catchall_memproj to use fallthrough_memproj and delete 1735 // catchall_memproj so we end up with a call that has only 1 memory projection. 1736 if (_callprojs->catchall_memproj != nullptr) { 1737 if (_callprojs->fallthrough_memproj == nullptr) { 1738 _callprojs->fallthrough_memproj = new ProjNode(call, TypeFunc::Memory); 1739 transform_later(_callprojs->fallthrough_memproj); 1740 } 1741 _igvn.replace_in_uses(_callprojs->catchall_memproj, _callprojs->fallthrough_memproj); 1742 _igvn.remove_dead_node(_callprojs->catchall_memproj); 1743 } 1744 1745 // An allocate node has separate i_o projections for the uses on the control 1746 // and i_o paths. Always replace the control i_o projection with result i_o 1747 // otherwise incoming i_o become dead when only a slow call is generated 1748 // (it is different from memory projections where both projections are 1749 // combined in such case). 1750 if (_callprojs->fallthrough_ioproj != nullptr) { 1751 _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, result_phi_i_o); 1752 } 1753 // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete 1754 // catchall_ioproj so we end up with a call that has only 1 i_o projection. 1755 if (_callprojs->catchall_ioproj != nullptr) { 1756 if (_callprojs->fallthrough_ioproj == nullptr) { 1757 _callprojs->fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O); 1758 transform_later(_callprojs->fallthrough_ioproj); 1759 } 1760 _igvn.replace_in_uses(_callprojs->catchall_ioproj, _callprojs->fallthrough_ioproj); 1761 _igvn.remove_dead_node(_callprojs->catchall_ioproj); 1762 } 1763 1764 // if we generated only a slow call, we are done 1765 if (!expand_fast_path) { 1766 // Now we can unhook i_o. 1767 if (result_phi_i_o->outcnt() > 1) { 1768 call->set_req(TypeFunc::I_O, top()); 1769 } else { 1770 assert(result_phi_i_o->unique_ctrl_out() == call, "sanity"); 1771 // Case of new array with negative size known during compilation. 1772 // AllocateArrayNode::Ideal() optimization disconnect unreachable 1773 // following code since call to runtime will throw exception. 1774 // As result there will be no users of i_o after the call. 1775 // Leave i_o attached to this call to avoid problems in preceding graph. 1776 } 1777 return; 1778 } 1779 1780 if (_callprojs->fallthrough_catchproj != nullptr) { 1781 ctrl = _callprojs->fallthrough_catchproj->clone(); 1782 transform_later(ctrl); 1783 _igvn.replace_node(_callprojs->fallthrough_catchproj, result_region); 1784 } else { 1785 ctrl = top(); 1786 } 1787 Node *slow_result; 1788 if (_callprojs->resproj[0] == nullptr) { 1789 // no uses of the allocation result 1790 slow_result = top(); 1791 } else { 1792 slow_result = _callprojs->resproj[0]->clone(); 1793 transform_later(slow_result); 1794 _igvn.replace_node(_callprojs->resproj[0], result_phi_rawoop); 1795 } 1796 1797 // Plug slow-path into result merge point 1798 result_region->init_req( slow_result_path, ctrl); 1799 transform_later(result_region); 1800 if (allocation_has_use) { 1801 result_phi_rawoop->init_req(slow_result_path, slow_result); 1802 transform_later(result_phi_rawoop); 1803 } 1804 result_phi_rawmem->init_req(slow_result_path, _callprojs->fallthrough_memproj); 1805 transform_later(result_phi_rawmem); 1806 transform_later(result_phi_i_o); 1807 // This completes all paths into the result merge point 1808 } 1809 1810 // Remove alloc node that has no uses. 1811 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) { 1812 Node* ctrl = alloc->in(TypeFunc::Control); 1813 Node* mem = alloc->in(TypeFunc::Memory); 1814 Node* i_o = alloc->in(TypeFunc::I_O); 1815 1816 _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1817 if (_callprojs->resproj[0] != nullptr) { 1818 for (DUIterator_Fast imax, i = _callprojs->resproj[0]->fast_outs(imax); i < imax; i++) { 1819 Node* use = _callprojs->resproj[0]->fast_out(i); 1820 use->isa_MemBar()->remove(&_igvn); 1821 --imax; 1822 --i; // back up iterator 1823 } 1824 assert(_callprojs->resproj[0]->outcnt() == 0, "all uses must be deleted"); 1825 _igvn.remove_dead_node(_callprojs->resproj[0]); 1826 } 1827 if (_callprojs->fallthrough_catchproj != nullptr) { 1828 _igvn.replace_in_uses(_callprojs->fallthrough_catchproj, ctrl); 1829 _igvn.remove_dead_node(_callprojs->fallthrough_catchproj); 1830 } 1831 if (_callprojs->catchall_catchproj != nullptr) { 1832 _igvn.rehash_node_delayed(_callprojs->catchall_catchproj); 1833 _callprojs->catchall_catchproj->set_req(0, top()); 1834 } 1835 if (_callprojs->fallthrough_proj != nullptr) { 1836 Node* catchnode = _callprojs->fallthrough_proj->unique_ctrl_out(); 1837 _igvn.remove_dead_node(catchnode); 1838 _igvn.remove_dead_node(_callprojs->fallthrough_proj); 1839 } 1840 if (_callprojs->fallthrough_memproj != nullptr) { 1841 _igvn.replace_in_uses(_callprojs->fallthrough_memproj, mem); 1842 _igvn.remove_dead_node(_callprojs->fallthrough_memproj); 1843 } 1844 if (_callprojs->fallthrough_ioproj != nullptr) { 1845 _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, i_o); 1846 _igvn.remove_dead_node(_callprojs->fallthrough_ioproj); 1847 } 1848 if (_callprojs->catchall_memproj != nullptr) { 1849 _igvn.rehash_node_delayed(_callprojs->catchall_memproj); 1850 _callprojs->catchall_memproj->set_req(0, top()); 1851 } 1852 if (_callprojs->catchall_ioproj != nullptr) { 1853 _igvn.rehash_node_delayed(_callprojs->catchall_ioproj); 1854 _callprojs->catchall_ioproj->set_req(0, top()); 1855 } 1856 #ifndef PRODUCT 1857 if (PrintEliminateAllocations) { 1858 if (alloc->is_AllocateArray()) { 1859 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1860 } else { 1861 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1862 } 1863 } 1864 #endif 1865 _igvn.remove_dead_node(alloc); 1866 } 1867 1868 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init, 1869 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) { 1870 // If initialization is performed by an array copy, any required 1871 // MemBarStoreStore was already added. If the object does not 1872 // escape no need for a MemBarStoreStore. If the object does not 1873 // escape in its initializer and memory barrier (MemBarStoreStore or 1874 // stronger) is already added at exit of initializer, also no need 1875 // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore 1876 // so that stores that initialize this object can't be reordered 1877 // with a subsequent store that makes this object accessible by 1878 // other threads. 1879 // Other threads include java threads and JVM internal threads 1880 // (for example concurrent GC threads). Current concurrent GC 1881 // implementation: G1 will not scan newly created object, 1882 // so it's safe to skip storestore barrier when allocation does 1883 // not escape. 1884 if (!alloc->does_not_escape_thread() && 1885 !alloc->is_allocation_MemBar_redundant() && 1886 (init == nullptr || !init->is_complete_with_arraycopy())) { 1887 if (init == nullptr || init->req() < InitializeNode::RawStores) { 1888 // No InitializeNode or no stores captured by zeroing 1889 // elimination. Simply add the MemBarStoreStore after object 1890 // initialization. 1891 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1892 transform_later(mb); 1893 1894 mb->init_req(TypeFunc::Memory, fast_oop_rawmem); 1895 mb->init_req(TypeFunc::Control, fast_oop_ctrl); 1896 fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control); 1897 transform_later(fast_oop_ctrl); 1898 fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory); 1899 transform_later(fast_oop_rawmem); 1900 } else { 1901 // Add the MemBarStoreStore after the InitializeNode so that 1902 // all stores performing the initialization that were moved 1903 // before the InitializeNode happen before the storestore 1904 // barrier. 1905 1906 Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control); 1907 Node* init_mem = init->proj_out_or_null(TypeFunc::Memory); 1908 1909 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1910 transform_later(mb); 1911 1912 Node* ctrl = new ProjNode(init, TypeFunc::Control); 1913 transform_later(ctrl); 1914 Node* mem = new ProjNode(init, TypeFunc::Memory); 1915 transform_later(mem); 1916 1917 // The MemBarStoreStore depends on control and memory coming 1918 // from the InitializeNode 1919 mb->init_req(TypeFunc::Memory, mem); 1920 mb->init_req(TypeFunc::Control, ctrl); 1921 1922 ctrl = new ProjNode(mb, TypeFunc::Control); 1923 transform_later(ctrl); 1924 mem = new ProjNode(mb, TypeFunc::Memory); 1925 transform_later(mem); 1926 1927 // All nodes that depended on the InitializeNode for control 1928 // and memory must now depend on the MemBarNode that itself 1929 // depends on the InitializeNode 1930 if (init_ctrl != nullptr) { 1931 _igvn.replace_node(init_ctrl, ctrl); 1932 } 1933 if (init_mem != nullptr) { 1934 _igvn.replace_node(init_mem, mem); 1935 } 1936 } 1937 } 1938 } 1939 1940 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop, 1941 Node*& ctrl, Node*& rawmem) { 1942 if (C->env()->dtrace_alloc_probes()) { 1943 // Slow-path call 1944 int size = TypeFunc::Parms + 2; 1945 CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), 1946 CAST_FROM_FN_PTR(address, 1947 static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)), 1948 "dtrace_object_alloc", 1949 TypeRawPtr::BOTTOM); 1950 1951 // Get base of thread-local storage area 1952 Node* thread = new ThreadLocalNode(); 1953 transform_later(thread); 1954 1955 call->init_req(TypeFunc::Parms + 0, thread); 1956 call->init_req(TypeFunc::Parms + 1, oop); 1957 call->init_req(TypeFunc::Control, ctrl); 1958 call->init_req(TypeFunc::I_O , top()); // does no i/o 1959 call->init_req(TypeFunc::Memory , rawmem); 1960 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1961 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1962 transform_later(call); 1963 ctrl = new ProjNode(call, TypeFunc::Control); 1964 transform_later(ctrl); 1965 rawmem = new ProjNode(call, TypeFunc::Memory); 1966 transform_later(rawmem); 1967 } 1968 } 1969 1970 // Helper for PhaseMacroExpand::expand_allocate_common. 1971 // Initializes the newly-allocated storage. 1972 Node* PhaseMacroExpand::initialize_object(AllocateNode* alloc, 1973 Node* control, Node* rawmem, Node* object, 1974 Node* klass_node, Node* length, 1975 Node* size_in_bytes) { 1976 InitializeNode* init = alloc->initialization(); 1977 // Store the klass & mark bits 1978 Node* mark_node = alloc->make_ideal_mark(&_igvn, control, rawmem); 1979 if (!mark_node->is_Con()) { 1980 transform_later(mark_node); 1981 } 1982 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type()); 1983 1984 if (!UseCompactObjectHeaders) { 1985 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 1986 } 1987 int header_size = alloc->minimum_header_size(); // conservatively small 1988 1989 // Array length 1990 if (length != nullptr) { // Arrays need length field 1991 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); 1992 // conservatively small header size: 1993 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1994 if (_igvn.type(klass_node)->isa_aryklassptr()) { // we know the exact header size in most cases: 1995 BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type(); 1996 if (is_reference_type(elem, true)) { 1997 elem = T_OBJECT; 1998 } 1999 header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem)); 2000 } 2001 } 2002 2003 // Clear the object body, if necessary. 2004 if (init == nullptr) { 2005 // The init has somehow disappeared; be cautious and clear everything. 2006 // 2007 // This can happen if a node is allocated but an uncommon trap occurs 2008 // immediately. In this case, the Initialize gets associated with the 2009 // trap, and may be placed in a different (outer) loop, if the Allocate 2010 // is in a loop. If (this is rare) the inner loop gets unrolled, then 2011 // there can be two Allocates to one Initialize. The answer in all these 2012 // edge cases is safety first. It is always safe to clear immediately 2013 // within an Allocate, and then (maybe or maybe not) clear some more later. 2014 if (!(UseTLAB && ZeroTLAB)) { 2015 rawmem = ClearArrayNode::clear_memory(control, rawmem, object, 2016 alloc->in(AllocateNode::InitValue), 2017 alloc->in(AllocateNode::RawInitValue), 2018 header_size, size_in_bytes, 2019 &_igvn); 2020 } 2021 } else { 2022 if (!init->is_complete()) { 2023 // Try to win by zeroing only what the init does not store. 2024 // We can also try to do some peephole optimizations, 2025 // such as combining some adjacent subword stores. 2026 rawmem = init->complete_stores(control, rawmem, object, 2027 header_size, size_in_bytes, &_igvn); 2028 } 2029 // We have no more use for this link, since the AllocateNode goes away: 2030 init->set_req(InitializeNode::RawAddress, top()); 2031 // (If we keep the link, it just confuses the register allocator, 2032 // who thinks he sees a real use of the address by the membar.) 2033 } 2034 2035 return rawmem; 2036 } 2037 2038 // Generate prefetch instructions for next allocations. 2039 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 2040 Node*& contended_phi_rawmem, 2041 Node* old_eden_top, Node* new_eden_top, 2042 intx lines) { 2043 enum { fall_in_path = 1, pf_path = 2 }; 2044 if( UseTLAB && AllocatePrefetchStyle == 2 ) { 2045 // Generate prefetch allocation with watermark check. 2046 // As an allocation hits the watermark, we will prefetch starting 2047 // at a "distance" away from watermark. 2048 2049 Node *pf_region = new RegionNode(3); 2050 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 2051 TypeRawPtr::BOTTOM ); 2052 // I/O is used for Prefetch 2053 Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); 2054 2055 Node *thread = new ThreadLocalNode(); 2056 transform_later(thread); 2057 2058 Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, 2059 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); 2060 transform_later(eden_pf_adr); 2061 2062 Node *old_pf_wm = new LoadPNode(needgc_false, 2063 contended_phi_rawmem, eden_pf_adr, 2064 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, 2065 MemNode::unordered); 2066 transform_later(old_pf_wm); 2067 2068 // check against new_eden_top 2069 Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); 2070 transform_later(need_pf_cmp); 2071 Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); 2072 transform_later(need_pf_bol); 2073 IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, 2074 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); 2075 transform_later(need_pf_iff); 2076 2077 // true node, add prefetchdistance 2078 Node *need_pf_true = new IfTrueNode( need_pf_iff ); 2079 transform_later(need_pf_true); 2080 2081 Node *need_pf_false = new IfFalseNode( need_pf_iff ); 2082 transform_later(need_pf_false); 2083 2084 Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, 2085 _igvn.MakeConX(AllocatePrefetchDistance) ); 2086 transform_later(new_pf_wmt ); 2087 new_pf_wmt->set_req(0, need_pf_true); 2088 2089 Node *store_new_wmt = new StorePNode(need_pf_true, 2090 contended_phi_rawmem, eden_pf_adr, 2091 TypeRawPtr::BOTTOM, new_pf_wmt, 2092 MemNode::unordered); 2093 transform_later(store_new_wmt); 2094 2095 // adding prefetches 2096 pf_phi_abio->init_req( fall_in_path, i_o ); 2097 2098 Node *prefetch_adr; 2099 Node *prefetch; 2100 uint step_size = AllocatePrefetchStepSize; 2101 uint distance = 0; 2102 2103 for ( intx i = 0; i < lines; i++ ) { 2104 prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, 2105 _igvn.MakeConX(distance) ); 2106 transform_later(prefetch_adr); 2107 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 2108 transform_later(prefetch); 2109 distance += step_size; 2110 i_o = prefetch; 2111 } 2112 pf_phi_abio->set_req( pf_path, i_o ); 2113 2114 pf_region->init_req( fall_in_path, need_pf_false ); 2115 pf_region->init_req( pf_path, need_pf_true ); 2116 2117 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); 2118 pf_phi_rawmem->init_req( pf_path, store_new_wmt ); 2119 2120 transform_later(pf_region); 2121 transform_later(pf_phi_rawmem); 2122 transform_later(pf_phi_abio); 2123 2124 needgc_false = pf_region; 2125 contended_phi_rawmem = pf_phi_rawmem; 2126 i_o = pf_phi_abio; 2127 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { 2128 // Insert a prefetch instruction for each allocation. 2129 // This code is used to generate 1 prefetch instruction per cache line. 2130 2131 // Generate several prefetch instructions. 2132 uint step_size = AllocatePrefetchStepSize; 2133 uint distance = AllocatePrefetchDistance; 2134 2135 // Next cache address. 2136 Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, 2137 _igvn.MakeConX(step_size + distance)); 2138 transform_later(cache_adr); 2139 cache_adr = new CastP2XNode(needgc_false, cache_adr); 2140 transform_later(cache_adr); 2141 // Address is aligned to execute prefetch to the beginning of cache line size 2142 // (it is important when BIS instruction is used on SPARC as prefetch). 2143 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); 2144 cache_adr = new AndXNode(cache_adr, mask); 2145 transform_later(cache_adr); 2146 cache_adr = new CastX2PNode(cache_adr); 2147 transform_later(cache_adr); 2148 2149 // Prefetch 2150 Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); 2151 prefetch->set_req(0, needgc_false); 2152 transform_later(prefetch); 2153 contended_phi_rawmem = prefetch; 2154 Node *prefetch_adr; 2155 distance = step_size; 2156 for ( intx i = 1; i < lines; i++ ) { 2157 prefetch_adr = new AddPNode( cache_adr, cache_adr, 2158 _igvn.MakeConX(distance) ); 2159 transform_later(prefetch_adr); 2160 prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); 2161 transform_later(prefetch); 2162 distance += step_size; 2163 contended_phi_rawmem = prefetch; 2164 } 2165 } else if( AllocatePrefetchStyle > 0 ) { 2166 // Insert a prefetch for each allocation only on the fast-path 2167 Node *prefetch_adr; 2168 Node *prefetch; 2169 // Generate several prefetch instructions. 2170 uint step_size = AllocatePrefetchStepSize; 2171 uint distance = AllocatePrefetchDistance; 2172 for ( intx i = 0; i < lines; i++ ) { 2173 prefetch_adr = new AddPNode( old_eden_top, new_eden_top, 2174 _igvn.MakeConX(distance) ); 2175 transform_later(prefetch_adr); 2176 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 2177 // Do not let it float too high, since if eden_top == eden_end, 2178 // both might be null. 2179 if( i == 0 ) { // Set control for first prefetch, next follows it 2180 prefetch->init_req(0, needgc_false); 2181 } 2182 transform_later(prefetch); 2183 distance += step_size; 2184 i_o = prefetch; 2185 } 2186 } 2187 return i_o; 2188 } 2189 2190 2191 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { 2192 expand_allocate_common(alloc, nullptr, nullptr, 2193 OptoRuntime::new_instance_Type(), 2194 OptoRuntime::new_instance_Java(), nullptr); 2195 } 2196 2197 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { 2198 Node* length = alloc->in(AllocateNode::ALength); 2199 Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest); 2200 InitializeNode* init = alloc->initialization(); 2201 Node* klass_node = alloc->in(AllocateNode::KlassNode); 2202 Node* init_value = alloc->in(AllocateNode::InitValue); 2203 const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr(); 2204 const TypeFunc* slow_call_type; 2205 address slow_call_address; // Address of slow call 2206 if (init != nullptr && init->is_complete_with_arraycopy() && 2207 ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) { 2208 // Don't zero type array during slow allocation in VM since 2209 // it will be initialized later by arraycopy in compiled code. 2210 slow_call_address = OptoRuntime::new_array_nozero_Java(); 2211 slow_call_type = OptoRuntime::new_array_nozero_Type(); 2212 } else { 2213 slow_call_address = OptoRuntime::new_array_Java(); 2214 slow_call_type = OptoRuntime::new_array_Type(); 2215 2216 if (init_value == nullptr) { 2217 init_value = _igvn.zerocon(T_OBJECT); 2218 } else if (UseCompressedOops) { 2219 init_value = transform_later(new DecodeNNode(init_value, init_value->bottom_type()->make_ptr())); 2220 } 2221 } 2222 expand_allocate_common(alloc, length, init_value, 2223 slow_call_type, 2224 slow_call_address, valid_length_test); 2225 } 2226 2227 //-------------------mark_eliminated_box---------------------------------- 2228 // 2229 // During EA obj may point to several objects but after few ideal graph 2230 // transformations (CCP) it may point to only one non escaping object 2231 // (but still using phi), corresponding locks and unlocks will be marked 2232 // for elimination. Later obj could be replaced with a new node (new phi) 2233 // and which does not have escape information. And later after some graph 2234 // reshape other locks and unlocks (which were not marked for elimination 2235 // before) are connected to this new obj (phi) but they still will not be 2236 // marked for elimination since new obj has no escape information. 2237 // Mark all associated (same box and obj) lock and unlock nodes for 2238 // elimination if some of them marked already. 2239 void PhaseMacroExpand::mark_eliminated_box(Node* box, Node* obj) { 2240 BoxLockNode* oldbox = box->as_BoxLock(); 2241 if (oldbox->is_eliminated()) { 2242 return; // This BoxLock node was processed already. 2243 } 2244 assert(!oldbox->is_unbalanced(), "this should not be called for unbalanced region"); 2245 // New implementation (EliminateNestedLocks) has separate BoxLock 2246 // node for each locked region so mark all associated locks/unlocks as 2247 // eliminated even if different objects are referenced in one locked region 2248 // (for example, OSR compilation of nested loop inside locked scope). 2249 if (EliminateNestedLocks || 2250 oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) { 2251 // Box is used only in one lock region. Mark this box as eliminated. 2252 oldbox->set_local(); // This verifies correct state of BoxLock 2253 _igvn.hash_delete(oldbox); 2254 oldbox->set_eliminated(); // This changes box's hash value 2255 _igvn.hash_insert(oldbox); 2256 2257 for (uint i = 0; i < oldbox->outcnt(); i++) { 2258 Node* u = oldbox->raw_out(i); 2259 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { 2260 AbstractLockNode* alock = u->as_AbstractLock(); 2261 // Check lock's box since box could be referenced by Lock's debug info. 2262 if (alock->box_node() == oldbox) { 2263 // Mark eliminated all related locks and unlocks. 2264 #ifdef ASSERT 2265 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4"); 2266 #endif 2267 alock->set_non_esc_obj(); 2268 } 2269 } 2270 } 2271 return; 2272 } 2273 2274 // Create new "eliminated" BoxLock node and use it in monitor debug info 2275 // instead of oldbox for the same object. 2276 BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); 2277 2278 // Note: BoxLock node is marked eliminated only here and it is used 2279 // to indicate that all associated lock and unlock nodes are marked 2280 // for elimination. 2281 newbox->set_local(); // This verifies correct state of BoxLock 2282 newbox->set_eliminated(); 2283 transform_later(newbox); 2284 2285 // Replace old box node with new box for all users of the same object. 2286 for (uint i = 0; i < oldbox->outcnt();) { 2287 bool next_edge = true; 2288 2289 Node* u = oldbox->raw_out(i); 2290 if (u->is_AbstractLock()) { 2291 AbstractLockNode* alock = u->as_AbstractLock(); 2292 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { 2293 // Replace Box and mark eliminated all related locks and unlocks. 2294 #ifdef ASSERT 2295 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5"); 2296 #endif 2297 alock->set_non_esc_obj(); 2298 _igvn.rehash_node_delayed(alock); 2299 alock->set_box_node(newbox); 2300 next_edge = false; 2301 } 2302 } 2303 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { 2304 FastLockNode* flock = u->as_FastLock(); 2305 assert(flock->box_node() == oldbox, "sanity"); 2306 _igvn.rehash_node_delayed(flock); 2307 flock->set_box_node(newbox); 2308 next_edge = false; 2309 } 2310 2311 // Replace old box in monitor debug info. 2312 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { 2313 SafePointNode* sfn = u->as_SafePoint(); 2314 JVMState* youngest_jvms = sfn->jvms(); 2315 int max_depth = youngest_jvms->depth(); 2316 for (int depth = 1; depth <= max_depth; depth++) { 2317 JVMState* jvms = youngest_jvms->of_depth(depth); 2318 int num_mon = jvms->nof_monitors(); 2319 // Loop over monitors 2320 for (int idx = 0; idx < num_mon; idx++) { 2321 Node* obj_node = sfn->monitor_obj(jvms, idx); 2322 Node* box_node = sfn->monitor_box(jvms, idx); 2323 if (box_node == oldbox && obj_node->eqv_uncast(obj)) { 2324 int j = jvms->monitor_box_offset(idx); 2325 _igvn.replace_input_of(u, j, newbox); 2326 next_edge = false; 2327 } 2328 } 2329 } 2330 } 2331 if (next_edge) i++; 2332 } 2333 } 2334 2335 //-----------------------mark_eliminated_locking_nodes----------------------- 2336 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { 2337 if (!alock->is_balanced()) { 2338 return; // Can't do any more elimination for this locking region 2339 } 2340 if (EliminateNestedLocks) { 2341 if (alock->is_nested()) { 2342 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity"); 2343 return; 2344 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened 2345 // Only Lock node has JVMState needed here. 2346 // Not that preceding claim is documented anywhere else. 2347 if (alock->jvms() != nullptr) { 2348 if (alock->as_Lock()->is_nested_lock_region()) { 2349 // Mark eliminated related nested locks and unlocks. 2350 Node* obj = alock->obj_node(); 2351 BoxLockNode* box_node = alock->box_node()->as_BoxLock(); 2352 assert(!box_node->is_eliminated(), "should not be marked yet"); 2353 // Note: BoxLock node is marked eliminated only here 2354 // and it is used to indicate that all associated lock 2355 // and unlock nodes are marked for elimination. 2356 box_node->set_eliminated(); // Box's hash is always NO_HASH here 2357 for (uint i = 0; i < box_node->outcnt(); i++) { 2358 Node* u = box_node->raw_out(i); 2359 if (u->is_AbstractLock()) { 2360 alock = u->as_AbstractLock(); 2361 if (alock->box_node() == box_node) { 2362 // Verify that this Box is referenced only by related locks. 2363 assert(alock->obj_node()->eqv_uncast(obj), ""); 2364 // Mark all related locks and unlocks. 2365 #ifdef ASSERT 2366 alock->log_lock_optimization(C, "eliminate_lock_set_nested"); 2367 #endif 2368 alock->set_nested(); 2369 } 2370 } 2371 } 2372 } else { 2373 #ifdef ASSERT 2374 alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region"); 2375 if (C->log() != nullptr) 2376 alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output 2377 #endif 2378 } 2379 } 2380 return; 2381 } 2382 // Process locks for non escaping object 2383 assert(alock->is_non_esc_obj(), ""); 2384 } // EliminateNestedLocks 2385 2386 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object 2387 // Look for all locks of this object and mark them and 2388 // corresponding BoxLock nodes as eliminated. 2389 Node* obj = alock->obj_node(); 2390 for (uint j = 0; j < obj->outcnt(); j++) { 2391 Node* o = obj->raw_out(j); 2392 if (o->is_AbstractLock() && 2393 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2394 alock = o->as_AbstractLock(); 2395 Node* box = alock->box_node(); 2396 // Replace old box node with new eliminated box for all users 2397 // of the same object and mark related locks as eliminated. 2398 mark_eliminated_box(box, obj); 2399 } 2400 } 2401 } 2402 } 2403 2404 // we have determined that this lock/unlock can be eliminated, we simply 2405 // eliminate the node without expanding it. 2406 // 2407 // Note: The membar's associated with the lock/unlock are currently not 2408 // eliminated. This should be investigated as a future enhancement. 2409 // 2410 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { 2411 2412 if (!alock->is_eliminated()) { 2413 return false; 2414 } 2415 #ifdef ASSERT 2416 if (!alock->is_coarsened()) { 2417 // Check that new "eliminated" BoxLock node is created. 2418 BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); 2419 assert(oldbox->is_eliminated(), "should be done already"); 2420 } 2421 #endif 2422 2423 alock->log_lock_optimization(C, "eliminate_lock"); 2424 2425 #ifndef PRODUCT 2426 if (PrintEliminateLocks) { 2427 tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string()); 2428 } 2429 #endif 2430 2431 Node* mem = alock->in(TypeFunc::Memory); 2432 Node* ctrl = alock->in(TypeFunc::Control); 2433 guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null"); 2434 2435 _callprojs = alock->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2436 // There are 2 projections from the lock. The lock node will 2437 // be deleted when its last use is subsumed below. 2438 assert(alock->outcnt() == 2 && 2439 _callprojs->fallthrough_proj != nullptr && 2440 _callprojs->fallthrough_memproj != nullptr, 2441 "Unexpected projections from Lock/Unlock"); 2442 2443 Node* fallthroughproj = _callprojs->fallthrough_proj; 2444 Node* memproj_fallthrough = _callprojs->fallthrough_memproj; 2445 2446 // The memory projection from a lock/unlock is RawMem 2447 // The input to a Lock is merged memory, so extract its RawMem input 2448 // (unless the MergeMem has been optimized away.) 2449 if (alock->is_Lock()) { 2450 // Search for MemBarAcquireLock node and delete it also. 2451 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); 2452 assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, ""); 2453 Node* ctrlproj = membar->proj_out(TypeFunc::Control); 2454 Node* memproj = membar->proj_out(TypeFunc::Memory); 2455 _igvn.replace_node(ctrlproj, fallthroughproj); 2456 _igvn.replace_node(memproj, memproj_fallthrough); 2457 2458 // Delete FastLock node also if this Lock node is unique user 2459 // (a loop peeling may clone a Lock node). 2460 Node* flock = alock->as_Lock()->fastlock_node(); 2461 if (flock->outcnt() == 1) { 2462 assert(flock->unique_out() == alock, "sanity"); 2463 _igvn.replace_node(flock, top()); 2464 } 2465 } 2466 2467 // Search for MemBarReleaseLock node and delete it also. 2468 if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) { 2469 MemBarNode* membar = ctrl->in(0)->as_MemBar(); 2470 assert(membar->Opcode() == Op_MemBarReleaseLock && 2471 mem->is_Proj() && membar == mem->in(0), ""); 2472 _igvn.replace_node(fallthroughproj, ctrl); 2473 _igvn.replace_node(memproj_fallthrough, mem); 2474 fallthroughproj = ctrl; 2475 memproj_fallthrough = mem; 2476 ctrl = membar->in(TypeFunc::Control); 2477 mem = membar->in(TypeFunc::Memory); 2478 } 2479 2480 _igvn.replace_node(fallthroughproj, ctrl); 2481 _igvn.replace_node(memproj_fallthrough, mem); 2482 return true; 2483 } 2484 2485 2486 //------------------------------expand_lock_node---------------------- 2487 void PhaseMacroExpand::expand_lock_node(LockNode *lock) { 2488 2489 Node* ctrl = lock->in(TypeFunc::Control); 2490 Node* mem = lock->in(TypeFunc::Memory); 2491 Node* obj = lock->obj_node(); 2492 Node* box = lock->box_node(); 2493 Node* flock = lock->fastlock_node(); 2494 2495 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2496 2497 // Make the merge point 2498 Node *region; 2499 Node *mem_phi; 2500 Node *slow_path; 2501 2502 region = new RegionNode(3); 2503 // create a Phi for the memory state 2504 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2505 2506 // Optimize test; set region slot 2 2507 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); 2508 mem_phi->init_req(2, mem); 2509 2510 // Make slow path call 2511 CallNode* call = make_slow_call(lock, OptoRuntime::complete_monitor_enter_Type(), 2512 OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path, 2513 obj, box, nullptr); 2514 2515 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2516 2517 // Slow path can only throw asynchronous exceptions, which are always 2518 // de-opted. So the compiler thinks the slow-call can never throw an 2519 // exception. If it DOES throw an exception we would need the debug 2520 // info removed first (since if it throws there is no monitor). 2521 assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr && 2522 _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2523 2524 // Capture slow path 2525 // disconnect fall-through projection from call and create a new one 2526 // hook up users of fall-through projection to region 2527 Node *slow_ctrl = _callprojs->fallthrough_proj->clone(); 2528 transform_later(slow_ctrl); 2529 _igvn.hash_delete(_callprojs->fallthrough_proj); 2530 _callprojs->fallthrough_proj->disconnect_inputs(C); 2531 region->init_req(1, slow_ctrl); 2532 // region inputs are now complete 2533 transform_later(region); 2534 _igvn.replace_node(_callprojs->fallthrough_proj, region); 2535 2536 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); 2537 2538 mem_phi->init_req(1, memproj); 2539 2540 transform_later(mem_phi); 2541 2542 _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi); 2543 } 2544 2545 //------------------------------expand_unlock_node---------------------- 2546 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { 2547 2548 Node* ctrl = unlock->in(TypeFunc::Control); 2549 Node* mem = unlock->in(TypeFunc::Memory); 2550 Node* obj = unlock->obj_node(); 2551 Node* box = unlock->box_node(); 2552 2553 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2554 2555 // No need for a null check on unlock 2556 2557 // Make the merge point 2558 Node *region; 2559 Node *mem_phi; 2560 2561 region = new RegionNode(3); 2562 // create a Phi for the memory state 2563 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2564 2565 FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); 2566 funlock = transform_later( funlock )->as_FastUnlock(); 2567 // Optimize test; set region slot 2 2568 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); 2569 Node *thread = transform_later(new ThreadLocalNode()); 2570 2571 CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), 2572 CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2573 "complete_monitor_unlocking_C", slow_path, obj, box, thread); 2574 2575 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2576 assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr && 2577 _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2578 2579 // No exceptions for unlocking 2580 // Capture slow path 2581 // disconnect fall-through projection from call and create a new one 2582 // hook up users of fall-through projection to region 2583 Node *slow_ctrl = _callprojs->fallthrough_proj->clone(); 2584 transform_later(slow_ctrl); 2585 _igvn.hash_delete(_callprojs->fallthrough_proj); 2586 _callprojs->fallthrough_proj->disconnect_inputs(C); 2587 region->init_req(1, slow_ctrl); 2588 // region inputs are now complete 2589 transform_later(region); 2590 _igvn.replace_node(_callprojs->fallthrough_proj, region); 2591 2592 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); 2593 mem_phi->init_req(1, memproj ); 2594 mem_phi->init_req(2, mem); 2595 transform_later(mem_phi); 2596 2597 _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi); 2598 } 2599 2600 // An inline type might be returned from the call but we don't know its 2601 // type. Either we get a buffered inline type (and nothing needs to be done) 2602 // or one of the values being returned is the klass of the inline type 2603 // and we need to allocate an inline type instance of that type and 2604 // initialize it with other values being returned. In that case, we 2605 // first try a fast path allocation and initialize the value with the 2606 // inline klass's pack handler or we fall back to a runtime call. 2607 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) { 2608 assert(call->method()->is_method_handle_intrinsic(), "must be a method handle intrinsic call"); 2609 Node* ret = call->proj_out_or_null(TypeFunc::Parms); 2610 if (ret == nullptr) { 2611 return; 2612 } 2613 const TypeFunc* tf = call->_tf; 2614 const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc(); 2615 const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain); 2616 call->_tf = new_tf; 2617 // Make sure the change of type is applied before projections are processed by igvn 2618 _igvn.set_type(call, call->Value(&_igvn)); 2619 _igvn.set_type(ret, ret->Value(&_igvn)); 2620 2621 // Before any new projection is added: 2622 CallProjections* projs = call->extract_projections(true, true); 2623 2624 // Create temporary hook nodes that will be replaced below. 2625 // Add an input to prevent hook nodes from being dead. 2626 Node* ctl = new Node(call); 2627 Node* mem = new Node(ctl); 2628 Node* io = new Node(ctl); 2629 Node* ex_ctl = new Node(ctl); 2630 Node* ex_mem = new Node(ctl); 2631 Node* ex_io = new Node(ctl); 2632 Node* res = new Node(ctl); 2633 2634 // Allocate a new buffered inline type only if a new one is not returned 2635 Node* cast = transform_later(new CastP2XNode(ctl, res)); 2636 Node* mask = MakeConX(0x1); 2637 Node* masked = transform_later(new AndXNode(cast, mask)); 2638 Node* cmp = transform_later(new CmpXNode(masked, mask)); 2639 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2640 IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN); 2641 transform_later(allocation_iff); 2642 Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff)); 2643 Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff)); 2644 Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeInstPtr::BOTTOM)); 2645 2646 // Try to allocate a new buffered inline instance either from TLAB or eden space 2647 Node* needgc_ctrl = nullptr; // needgc means slowcase, i.e. allocation failed 2648 CallLeafNoFPNode* handler_call; 2649 const bool alloc_in_place = UseTLAB; 2650 if (alloc_in_place) { 2651 Node* fast_oop_ctrl = nullptr; 2652 Node* fast_oop_rawmem = nullptr; 2653 Node* mask2 = MakeConX(-2); 2654 Node* masked2 = transform_later(new AndXNode(cast, mask2)); 2655 Node* rawklassptr = transform_later(new CastX2PNode(masked2)); 2656 Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeInstKlassPtr::OBJECT_OR_NULL)); 2657 Node* layout_val = make_load(nullptr, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT); 2658 Node* size_in_bytes = ConvI2X(layout_val); 2659 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2660 Node* fast_oop = bs->obj_allocate(this, mem, allocation_ctl, size_in_bytes, io, needgc_ctrl, 2661 fast_oop_ctrl, fast_oop_rawmem, 2662 AllocateInstancePrefetchLines); 2663 // Allocation succeed, initialize buffered inline instance header firstly, 2664 // and then initialize its fields with an inline class specific handler 2665 Node* mark_node = makecon(TypeRawPtr::make((address)markWord::inline_type_prototype().value())); 2666 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS); 2667 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 2668 if (UseCompressedClassPointers) { 2669 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT); 2670 } 2671 Node* fixed_block = make_load(fast_oop_ctrl, fast_oop_rawmem, klass_node, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2672 Node* pack_handler = make_load(fast_oop_ctrl, fast_oop_rawmem, fixed_block, in_bytes(InlineKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2673 handler_call = new CallLeafNoFPNode(OptoRuntime::pack_inline_type_Type(), 2674 nullptr, 2675 "pack handler", 2676 TypeRawPtr::BOTTOM); 2677 handler_call->init_req(TypeFunc::Control, fast_oop_ctrl); 2678 handler_call->init_req(TypeFunc::Memory, fast_oop_rawmem); 2679 handler_call->init_req(TypeFunc::I_O, top()); 2680 handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2681 handler_call->init_req(TypeFunc::ReturnAdr, top()); 2682 handler_call->init_req(TypeFunc::Parms, pack_handler); 2683 handler_call->init_req(TypeFunc::Parms+1, fast_oop); 2684 } else { 2685 needgc_ctrl = allocation_ctl; 2686 } 2687 2688 // Allocation failed, fall back to a runtime call 2689 CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_inline_type_fields_Type(), 2690 StubRoutines::store_inline_type_fields_to_buf(), 2691 "store_inline_type_fields", 2692 TypePtr::BOTTOM); 2693 slow_call->init_req(TypeFunc::Control, needgc_ctrl); 2694 slow_call->init_req(TypeFunc::Memory, mem); 2695 slow_call->init_req(TypeFunc::I_O, io); 2696 slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2697 slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr)); 2698 slow_call->init_req(TypeFunc::Parms, res); 2699 2700 Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control)); 2701 Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory)); 2702 Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O)); 2703 Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms)); 2704 Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2)); 2705 Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)); 2706 Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci)); 2707 2708 Node* ex_r = new RegionNode(3); 2709 Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM); 2710 Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO); 2711 ex_r->init_req(1, slow_excp); 2712 ex_mem_phi->init_req(1, slow_mem); 2713 ex_io_phi->init_req(1, slow_io); 2714 ex_r->init_req(2, ex_ctl); 2715 ex_mem_phi->init_req(2, ex_mem); 2716 ex_io_phi->init_req(2, ex_io); 2717 transform_later(ex_r); 2718 transform_later(ex_mem_phi); 2719 transform_later(ex_io_phi); 2720 2721 // We don't know how many values are returned. This assumes the 2722 // worst case, that all available registers are used. 2723 for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) { 2724 if (domain->field_at(i) == Type::HALF) { 2725 slow_call->init_req(i, top()); 2726 if (alloc_in_place) { 2727 handler_call->init_req(i+1, top()); 2728 } 2729 continue; 2730 } 2731 Node* proj = transform_later(new ProjNode(call, i)); 2732 slow_call->init_req(i, proj); 2733 if (alloc_in_place) { 2734 handler_call->init_req(i+1, proj); 2735 } 2736 } 2737 // We can safepoint at that new call 2738 slow_call->copy_call_debug_info(&_igvn, call); 2739 transform_later(slow_call); 2740 if (alloc_in_place) { 2741 transform_later(handler_call); 2742 } 2743 2744 Node* fast_ctl = nullptr; 2745 Node* fast_res = nullptr; 2746 MergeMemNode* fast_mem = nullptr; 2747 if (alloc_in_place) { 2748 fast_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control)); 2749 Node* rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory)); 2750 fast_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms)); 2751 fast_mem = MergeMemNode::make(mem); 2752 fast_mem->set_memory_at(Compile::AliasIdxRaw, rawmem); 2753 transform_later(fast_mem); 2754 } 2755 2756 Node* r = new RegionNode(alloc_in_place ? 4 : 3); 2757 Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2758 Node* io_phi = new PhiNode(r, Type::ABIO); 2759 Node* res_phi = new PhiNode(r, TypeInstPtr::BOTTOM); 2760 r->init_req(1, no_allocation_ctl); 2761 mem_phi->init_req(1, mem); 2762 io_phi->init_req(1, io); 2763 res_phi->init_req(1, no_allocation_res); 2764 r->init_req(2, slow_norm); 2765 mem_phi->init_req(2, slow_mem); 2766 io_phi->init_req(2, slow_io); 2767 res_phi->init_req(2, slow_res); 2768 if (alloc_in_place) { 2769 r->init_req(3, fast_ctl); 2770 mem_phi->init_req(3, fast_mem); 2771 io_phi->init_req(3, io); 2772 res_phi->init_req(3, fast_res); 2773 } 2774 transform_later(r); 2775 transform_later(mem_phi); 2776 transform_later(io_phi); 2777 transform_later(res_phi); 2778 2779 // Do not let stores that initialize this buffer be reordered with a subsequent 2780 // store that would make this buffer accessible by other threads. 2781 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 2782 transform_later(mb); 2783 mb->init_req(TypeFunc::Memory, mem_phi); 2784 mb->init_req(TypeFunc::Control, r); 2785 r = new ProjNode(mb, TypeFunc::Control); 2786 transform_later(r); 2787 mem_phi = new ProjNode(mb, TypeFunc::Memory); 2788 transform_later(mem_phi); 2789 2790 assert(projs->nb_resproj == 1, "unexpected number of results"); 2791 _igvn.replace_in_uses(projs->fallthrough_catchproj, r); 2792 _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi); 2793 _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi); 2794 _igvn.replace_in_uses(projs->resproj[0], res_phi); 2795 _igvn.replace_in_uses(projs->catchall_catchproj, ex_r); 2796 _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi); 2797 _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi); 2798 // The CatchNode should not use the ex_io_phi. Re-connect it to the catchall_ioproj. 2799 Node* cn = projs->fallthrough_catchproj->in(0); 2800 _igvn.replace_input_of(cn, 1, projs->catchall_ioproj); 2801 2802 _igvn.replace_node(ctl, projs->fallthrough_catchproj); 2803 _igvn.replace_node(mem, projs->fallthrough_memproj); 2804 _igvn.replace_node(io, projs->fallthrough_ioproj); 2805 _igvn.replace_node(res, projs->resproj[0]); 2806 _igvn.replace_node(ex_ctl, projs->catchall_catchproj); 2807 _igvn.replace_node(ex_mem, projs->catchall_memproj); 2808 _igvn.replace_node(ex_io, projs->catchall_ioproj); 2809 } 2810 2811 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) { 2812 assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned"); 2813 Node* bol = check->unique_out(); 2814 Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass); 2815 Node* superklass = check->in(SubTypeCheckNode::SuperKlass); 2816 assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node"); 2817 2818 for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) { 2819 Node* iff = bol->last_out(i); 2820 assert(iff->is_If(), "where's the if?"); 2821 2822 if (iff->in(0)->is_top()) { 2823 _igvn.replace_input_of(iff, 1, C->top()); 2824 continue; 2825 } 2826 2827 Node* iftrue = iff->as_If()->proj_out(1); 2828 Node* iffalse = iff->as_If()->proj_out(0); 2829 Node* ctrl = iff->in(0); 2830 2831 Node* subklass = nullptr; 2832 if (_igvn.type(obj_or_subklass)->isa_klassptr()) { 2833 subklass = obj_or_subklass; 2834 } else { 2835 Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes()); 2836 subklass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2837 } 2838 2839 Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci()); 2840 2841 _igvn.replace_input_of(iff, 0, C->top()); 2842 _igvn.replace_node(iftrue, not_subtype_ctrl); 2843 _igvn.replace_node(iffalse, ctrl); 2844 } 2845 _igvn.replace_node(check, C->top()); 2846 } 2847 2848 // FlatArrayCheckNode (array1 array2 ...) is expanded into: 2849 // 2850 // long mark = array1.mark | array2.mark | ...; 2851 // long locked_bit = markWord::unlocked_value & array1.mark & array2.mark & ...; 2852 // if (locked_bit == 0) { 2853 // // One array is locked, load prototype header from the klass 2854 // mark = array1.klass.proto | array2.klass.proto | ... 2855 // } 2856 // if ((mark & markWord::flat_array_bit_in_place) == 0) { 2857 // ... 2858 // } 2859 void PhaseMacroExpand::expand_flatarraycheck_node(FlatArrayCheckNode* check) { 2860 bool array_inputs = _igvn.type(check->in(FlatArrayCheckNode::ArrayOrKlass))->isa_oopptr() != nullptr; 2861 if (array_inputs) { 2862 Node* mark = MakeConX(0); 2863 Node* locked_bit = MakeConX(markWord::unlocked_value); 2864 Node* mem = check->in(FlatArrayCheckNode::Memory); 2865 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2866 Node* ary = check->in(i); 2867 const TypeOopPtr* t = _igvn.type(ary)->isa_oopptr(); 2868 assert(t != nullptr, "Mixing array and klass inputs"); 2869 assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out"); 2870 Node* mark_adr = basic_plus_adr(ary, oopDesc::mark_offset_in_bytes()); 2871 Node* mark_load = _igvn.transform(LoadNode::make(_igvn, nullptr, mem, mark_adr, mark_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 2872 mark = _igvn.transform(new OrXNode(mark, mark_load)); 2873 locked_bit = _igvn.transform(new AndXNode(locked_bit, mark_load)); 2874 } 2875 assert(!mark->is_Con(), "Should have been optimized out"); 2876 Node* cmp = _igvn.transform(new CmpXNode(locked_bit, MakeConX(0))); 2877 Node* is_unlocked = _igvn.transform(new BoolNode(cmp, BoolTest::ne)); 2878 2879 // BoolNode might be shared, replace each if user 2880 Node* old_bol = check->unique_out(); 2881 assert(old_bol->is_Bool() && old_bol->as_Bool()->_test._test == BoolTest::ne, "unexpected condition"); 2882 for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) { 2883 IfNode* old_iff = old_bol->last_out(i)->as_If(); 2884 Node* ctrl = old_iff->in(0); 2885 RegionNode* region = new RegionNode(3); 2886 Node* mark_phi = new PhiNode(region, TypeX_X); 2887 2888 // Check if array is unlocked 2889 IfNode* iff = _igvn.transform(new IfNode(ctrl, is_unlocked, PROB_MAX, COUNT_UNKNOWN))->as_If(); 2890 2891 // Unlocked: Use bits from mark word 2892 region->init_req(1, _igvn.transform(new IfTrueNode(iff))); 2893 mark_phi->init_req(1, mark); 2894 2895 // Locked: Load prototype header from klass 2896 ctrl = _igvn.transform(new IfFalseNode(iff)); 2897 Node* proto = MakeConX(0); 2898 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2899 Node* ary = check->in(i); 2900 // Make loads control dependent to make sure they are only executed if array is locked 2901 Node* klass_adr = basic_plus_adr(ary, oopDesc::klass_offset_in_bytes()); 2902 Node* klass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2903 Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset())); 2904 Node* proto_load = _igvn.transform(LoadNode::make(_igvn, ctrl, C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 2905 proto = _igvn.transform(new OrXNode(proto, proto_load)); 2906 } 2907 region->init_req(2, ctrl); 2908 mark_phi->init_req(2, proto); 2909 2910 // Check if flat array bits are set 2911 Node* mask = MakeConX(markWord::flat_array_bit_in_place); 2912 Node* masked = _igvn.transform(new AndXNode(_igvn.transform(mark_phi), mask)); 2913 cmp = _igvn.transform(new CmpXNode(masked, MakeConX(0))); 2914 Node* is_not_flat = _igvn.transform(new BoolNode(cmp, BoolTest::eq)); 2915 2916 ctrl = _igvn.transform(region); 2917 iff = _igvn.transform(new IfNode(ctrl, is_not_flat, PROB_MAX, COUNT_UNKNOWN))->as_If(); 2918 _igvn.replace_node(old_iff, iff); 2919 } 2920 _igvn.replace_node(check, C->top()); 2921 } else { 2922 // Fall back to layout helper check 2923 Node* lhs = intcon(0); 2924 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2925 Node* array_or_klass = check->in(i); 2926 Node* klass = nullptr; 2927 const TypePtr* t = _igvn.type(array_or_klass)->is_ptr(); 2928 assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out"); 2929 if (t->isa_oopptr() != nullptr) { 2930 Node* klass_adr = basic_plus_adr(array_or_klass, oopDesc::klass_offset_in_bytes()); 2931 klass = transform_later(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2932 } else { 2933 assert(t->isa_klassptr(), "Unexpected input type"); 2934 klass = array_or_klass; 2935 } 2936 Node* lh_addr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset())); 2937 Node* lh_val = _igvn.transform(LoadNode::make(_igvn, nullptr, C->immutable_memory(), lh_addr, lh_addr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered)); 2938 lhs = _igvn.transform(new OrINode(lhs, lh_val)); 2939 } 2940 Node* masked = transform_later(new AndINode(lhs, intcon(Klass::_lh_array_tag_flat_value_bit_inplace))); 2941 Node* cmp = transform_later(new CmpINode(masked, intcon(0))); 2942 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2943 Node* m2b = transform_later(new Conv2BNode(masked)); 2944 // The matcher expects the input to If nodes to be produced by a Bool(CmpI..) 2945 // pattern, but the input to other potential users (e.g. Phi) to be some 2946 // other pattern (e.g. a Conv2B node, possibly idealized as a CMoveI). 2947 Node* old_bol = check->unique_out(); 2948 for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) { 2949 Node* user = old_bol->last_out(i); 2950 for (uint j = 0; j < user->req(); j++) { 2951 Node* n = user->in(j); 2952 if (n == old_bol) { 2953 _igvn.replace_input_of(user, j, user->is_If() ? bol : m2b); 2954 } 2955 } 2956 } 2957 _igvn.replace_node(check, C->top()); 2958 } 2959 } 2960 2961 //---------------------------eliminate_macro_nodes---------------------- 2962 // Eliminate scalar replaced allocations and associated locks. 2963 void PhaseMacroExpand::eliminate_macro_nodes() { 2964 if (C->macro_count() == 0) { 2965 return; 2966 } 2967 NOT_PRODUCT(int membar_before = count_MemBar(C);) 2968 2969 int iteration = 0; 2970 while (C->macro_count() > 0) { 2971 if (iteration++ > 100) { 2972 assert(false, "Too slow convergence of macro elimination"); 2973 break; 2974 } 2975 2976 // Before elimination may re-mark (change to Nested or NonEscObj) 2977 // all associated (same box and obj) lock and unlock nodes. 2978 int cnt = C->macro_count(); 2979 for (int i=0; i < cnt; i++) { 2980 Node *n = C->macro_node(i); 2981 if (n->is_AbstractLock()) { // Lock and Unlock nodes 2982 mark_eliminated_locking_nodes(n->as_AbstractLock()); 2983 } 2984 } 2985 // Re-marking may break consistency of Coarsened locks. 2986 if (!C->coarsened_locks_consistent()) { 2987 return; // recompile without Coarsened locks if broken 2988 } else { 2989 // After coarsened locks are eliminated locking regions 2990 // become unbalanced. We should not execute any more 2991 // locks elimination optimizations on them. 2992 C->mark_unbalanced_boxes(); 2993 } 2994 2995 bool progress = false; 2996 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2997 Node* n = C->macro_node(i - 1); 2998 bool success = false; 2999 DEBUG_ONLY(int old_macro_count = C->macro_count();) 3000 switch (n->class_id()) { 3001 case Node::Class_Allocate: 3002 case Node::Class_AllocateArray: 3003 success = eliminate_allocate_node(n->as_Allocate()); 3004 #ifndef PRODUCT 3005 if (success && PrintOptoStatistics) { 3006 Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter); 3007 } 3008 #endif 3009 break; 3010 case Node::Class_CallStaticJava: { 3011 CallStaticJavaNode* call = n->as_CallStaticJava(); 3012 if (!call->method()->is_method_handle_intrinsic()) { 3013 success = eliminate_boxing_node(n->as_CallStaticJava()); 3014 } 3015 break; 3016 } 3017 case Node::Class_Lock: 3018 case Node::Class_Unlock: 3019 success = eliminate_locking_node(n->as_AbstractLock()); 3020 #ifndef PRODUCT 3021 if (success && PrintOptoStatistics) { 3022 Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter); 3023 } 3024 #endif 3025 break; 3026 case Node::Class_ArrayCopy: 3027 break; 3028 case Node::Class_OuterStripMinedLoop: 3029 break; 3030 case Node::Class_SubTypeCheck: 3031 break; 3032 case Node::Class_Opaque1: 3033 break; 3034 case Node::Class_FlatArrayCheck: 3035 break; 3036 default: 3037 assert(n->Opcode() == Op_LoopLimit || 3038 n->Opcode() == Op_ModD || 3039 n->Opcode() == Op_ModF || 3040 n->is_OpaqueNotNull() || 3041 n->is_OpaqueInitializedAssertionPredicate() || 3042 n->Opcode() == Op_MaxL || 3043 n->Opcode() == Op_MinL || 3044 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n), 3045 "unknown node type in macro list"); 3046 } 3047 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 3048 progress = progress || success; 3049 } 3050 3051 // Ensure the graph after PhaseMacroExpand::eliminate_macro_nodes is canonical (no igvn 3052 // transformation is pending). If an allocation is used only in safepoints, elimination of 3053 // other macro nodes can remove all these safepoints, allowing the allocation to be removed. 3054 // Hence after igvn we retry removing macro nodes if some progress that has been made in this 3055 // iteration. 3056 _igvn.set_delay_transform(false); 3057 _igvn.optimize(); 3058 if (C->failing()) { 3059 return; 3060 } 3061 _igvn.set_delay_transform(true); 3062 3063 if (!progress) { 3064 break; 3065 } 3066 } 3067 #ifndef PRODUCT 3068 if (PrintOptoStatistics) { 3069 int membar_after = count_MemBar(C); 3070 Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after); 3071 } 3072 #endif 3073 } 3074 3075 //------------------------------expand_macro_nodes---------------------- 3076 // Returns true if a failure occurred. 3077 bool PhaseMacroExpand::expand_macro_nodes() { 3078 // Do not allow new macro nodes once we started to expand 3079 C->reset_allow_macro_nodes(); 3080 if (StressMacroExpansion) { 3081 C->shuffle_macro_nodes(); 3082 } 3083 3084 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. 3085 bool progress = true; 3086 while (progress) { 3087 progress = false; 3088 for (int i = C->macro_count(); i > 0; i--) { 3089 Node* n = C->macro_node(i-1); 3090 bool success = false; 3091 DEBUG_ONLY(int old_macro_count = C->macro_count();) 3092 if (n->Opcode() == Op_LoopLimit) { 3093 // Remove it from macro list and put on IGVN worklist to optimize. 3094 C->remove_macro_node(n); 3095 _igvn._worklist.push(n); 3096 success = true; 3097 } else if (n->Opcode() == Op_CallStaticJava) { 3098 CallStaticJavaNode* call = n->as_CallStaticJava(); 3099 if (!call->method()->is_method_handle_intrinsic()) { 3100 // Remove it from macro list and put on IGVN worklist to optimize. 3101 C->remove_macro_node(n); 3102 _igvn._worklist.push(n); 3103 success = true; 3104 } 3105 } else if (n->is_Opaque1()) { 3106 _igvn.replace_node(n, n->in(1)); 3107 success = true; 3108 } else if (n->is_OpaqueNotNull()) { 3109 // Tests with OpaqueNotNull nodes are implicitly known to be true. Replace the node with true. In debug builds, 3110 // we leave the test in the graph to have an additional sanity check at runtime. If the test fails (i.e. a bug), 3111 // we will execute a Halt node. 3112 #ifdef ASSERT 3113 _igvn.replace_node(n, n->in(1)); 3114 #else 3115 _igvn.replace_node(n, _igvn.intcon(1)); 3116 #endif 3117 success = true; 3118 } else if (n->is_OpaqueInitializedAssertionPredicate()) { 3119 // Initialized Assertion Predicates must always evaluate to true. Therefore, we get rid of them in product 3120 // builds as they are useless. In debug builds we keep them as additional verification code. Even though 3121 // loop opts are already over, we want to keep Initialized Assertion Predicates alive as long as possible to 3122 // enable folding of dead control paths within which cast nodes become top after due to impossible types - 3123 // even after loop opts are over. Therefore, we delay the removal of these opaque nodes until now. 3124 #ifdef ASSERT 3125 _igvn.replace_node(n, n->in(1)); 3126 #else 3127 _igvn.replace_node(n, _igvn.intcon(1)); 3128 #endif // ASSERT 3129 } else if (n->Opcode() == Op_OuterStripMinedLoop) { 3130 n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn); 3131 C->remove_macro_node(n); 3132 success = true; 3133 } else if (n->Opcode() == Op_MaxL) { 3134 // Since MaxL and MinL are not implemented in the backend, we expand them to 3135 // a CMoveL construct now. At least until here, the type could be computed 3136 // precisely. CMoveL is not so smart, but we can give it at least the best 3137 // type we know abouot n now. 3138 Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn); 3139 _igvn.replace_node(n, repl); 3140 success = true; 3141 } else if (n->Opcode() == Op_MinL) { 3142 Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn); 3143 _igvn.replace_node(n, repl); 3144 success = true; 3145 } 3146 assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list"); 3147 progress = progress || success; 3148 if (success) { 3149 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3150 } 3151 } 3152 } 3153 3154 // Clean up the graph so we're less likely to hit the maximum node 3155 // limit 3156 _igvn.set_delay_transform(false); 3157 _igvn.optimize(); 3158 if (C->failing()) return true; 3159 _igvn.set_delay_transform(true); 3160 3161 3162 // Because we run IGVN after each expansion, some macro nodes may go 3163 // dead and be removed from the list as we iterate over it. Move 3164 // Allocate nodes (processed in a second pass) at the beginning of 3165 // the list and then iterate from the last element of the list until 3166 // an Allocate node is seen. This is robust to random deletion in 3167 // the list due to nodes going dead. 3168 C->sort_macro_nodes(); 3169 3170 // expand arraycopy "macro" nodes first 3171 // For ReduceBulkZeroing, we must first process all arraycopy nodes 3172 // before the allocate nodes are expanded. 3173 while (C->macro_count() > 0) { 3174 int macro_count = C->macro_count(); 3175 Node * n = C->macro_node(macro_count-1); 3176 assert(n->is_macro(), "only macro nodes expected here"); 3177 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 3178 // node is unreachable, so don't try to expand it 3179 C->remove_macro_node(n); 3180 continue; 3181 } 3182 if (n->is_Allocate()) { 3183 break; 3184 } 3185 // Make sure expansion will not cause node limit to be exceeded. 3186 // Worst case is a macro node gets expanded into about 200 nodes. 3187 // Allow 50% more for optimization. 3188 if (C->check_node_count(300, "out of nodes before macro expansion")) { 3189 return true; 3190 } 3191 3192 DEBUG_ONLY(int old_macro_count = C->macro_count();) 3193 switch (n->class_id()) { 3194 case Node::Class_Lock: 3195 expand_lock_node(n->as_Lock()); 3196 break; 3197 case Node::Class_Unlock: 3198 expand_unlock_node(n->as_Unlock()); 3199 break; 3200 case Node::Class_ArrayCopy: 3201 expand_arraycopy_node(n->as_ArrayCopy()); 3202 break; 3203 case Node::Class_SubTypeCheck: 3204 expand_subtypecheck_node(n->as_SubTypeCheck()); 3205 break; 3206 case Node::Class_CallStaticJava: 3207 expand_mh_intrinsic_return(n->as_CallStaticJava()); 3208 C->remove_macro_node(n); 3209 break; 3210 case Node::Class_FlatArrayCheck: 3211 expand_flatarraycheck_node(n->as_FlatArrayCheck()); 3212 break; 3213 default: 3214 switch (n->Opcode()) { 3215 case Op_ModD: 3216 case Op_ModF: { 3217 bool is_drem = n->Opcode() == Op_ModD; 3218 CallNode* mod_macro = n->as_Call(); 3219 CallNode* call = new CallLeafNode(mod_macro->tf(), 3220 is_drem ? CAST_FROM_FN_PTR(address, SharedRuntime::drem) 3221 : CAST_FROM_FN_PTR(address, SharedRuntime::frem), 3222 is_drem ? "drem" : "frem", TypeRawPtr::BOTTOM); 3223 call->init_req(TypeFunc::Control, mod_macro->in(TypeFunc::Control)); 3224 call->init_req(TypeFunc::I_O, mod_macro->in(TypeFunc::I_O)); 3225 call->init_req(TypeFunc::Memory, mod_macro->in(TypeFunc::Memory)); 3226 call->init_req(TypeFunc::ReturnAdr, mod_macro->in(TypeFunc::ReturnAdr)); 3227 call->init_req(TypeFunc::FramePtr, mod_macro->in(TypeFunc::FramePtr)); 3228 for (unsigned int i = 0; i < mod_macro->tf()->domain_cc()->cnt() - TypeFunc::Parms; i++) { 3229 call->init_req(TypeFunc::Parms + i, mod_macro->in(TypeFunc::Parms + i)); 3230 } 3231 _igvn.replace_node(mod_macro, call); 3232 transform_later(call); 3233 break; 3234 } 3235 default: 3236 assert(false, "unknown node type in macro list"); 3237 } 3238 } 3239 assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list"); 3240 if (C->failing()) return true; 3241 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3242 3243 // Clean up the graph so we're less likely to hit the maximum node 3244 // limit 3245 _igvn.set_delay_transform(false); 3246 _igvn.optimize(); 3247 if (C->failing()) return true; 3248 _igvn.set_delay_transform(true); 3249 } 3250 3251 // All nodes except Allocate nodes are expanded now. There could be 3252 // new optimization opportunities (such as folding newly created 3253 // load from a just allocated object). Run IGVN. 3254 3255 // expand "macro" nodes 3256 // nodes are removed from the macro list as they are processed 3257 while (C->macro_count() > 0) { 3258 int macro_count = C->macro_count(); 3259 Node * n = C->macro_node(macro_count-1); 3260 assert(n->is_macro(), "only macro nodes expected here"); 3261 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 3262 // node is unreachable, so don't try to expand it 3263 C->remove_macro_node(n); 3264 continue; 3265 } 3266 // Make sure expansion will not cause node limit to be exceeded. 3267 // Worst case is a macro node gets expanded into about 200 nodes. 3268 // Allow 50% more for optimization. 3269 if (C->check_node_count(300, "out of nodes before macro expansion")) { 3270 return true; 3271 } 3272 switch (n->class_id()) { 3273 case Node::Class_Allocate: 3274 expand_allocate(n->as_Allocate()); 3275 break; 3276 case Node::Class_AllocateArray: 3277 expand_allocate_array(n->as_AllocateArray()); 3278 break; 3279 default: 3280 assert(false, "unknown node type in macro list"); 3281 } 3282 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 3283 if (C->failing()) return true; 3284 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3285 3286 // Clean up the graph so we're less likely to hit the maximum node 3287 // limit 3288 _igvn.set_delay_transform(false); 3289 _igvn.optimize(); 3290 if (C->failing()) return true; 3291 _igvn.set_delay_transform(true); 3292 } 3293 3294 _igvn.set_delay_transform(false); 3295 return false; 3296 } 3297 3298 #ifndef PRODUCT 3299 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0; 3300 int PhaseMacroExpand::_monitor_objects_removed_counter = 0; 3301 int PhaseMacroExpand::_GC_barriers_removed_counter = 0; 3302 int PhaseMacroExpand::_memory_barriers_removed_counter = 0; 3303 3304 void PhaseMacroExpand::print_statistics() { 3305 tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter)); 3306 tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter)); 3307 tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter)); 3308 tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter)); 3309 } 3310 3311 int PhaseMacroExpand::count_MemBar(Compile *C) { 3312 if (!PrintOptoStatistics) { 3313 return 0; 3314 } 3315 Unique_Node_List ideal_nodes; 3316 int total = 0; 3317 ideal_nodes.map(C->live_nodes(), nullptr); 3318 ideal_nodes.push(C->root()); 3319 for (uint next = 0; next < ideal_nodes.size(); ++next) { 3320 Node* n = ideal_nodes.at(next); 3321 if (n->is_MemBar()) { 3322 total++; 3323 } 3324 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3325 Node* m = n->fast_out(i); 3326 ideal_nodes.push(m); 3327 } 3328 } 3329 return total; 3330 } 3331 #endif