1 /* 2 * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/tlab_globals.hpp" 28 #include "opto/arraycopynode.hpp" 29 #include "oops/objArrayKlass.hpp" 30 #include "opto/convertnode.hpp" 31 #include "opto/vectornode.hpp" 32 #include "opto/graphKit.hpp" 33 #include "opto/macro.hpp" 34 #include "opto/runtime.hpp" 35 #include "opto/castnode.hpp" 36 #include "runtime/stubRoutines.hpp" 37 #include "utilities/align.hpp" 38 #include "utilities/powerOfTwo.hpp" 39 40 void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) { 41 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 42 mb->init_req(TypeFunc::Control, *ctrl); 43 mb->init_req(TypeFunc::Memory, *mem); 44 transform_later(mb); 45 *ctrl = new ProjNode(mb,TypeFunc::Control); 46 transform_later(*ctrl); 47 Node* mem_proj = new ProjNode(mb,TypeFunc::Memory); 48 transform_later(mem_proj); 49 *mem = mem_proj; 50 } 51 52 Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) { 53 uint shift = exact_log2(type2aelembytes(elembt)); 54 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 55 Node* base = basic_plus_adr(ary, header); 56 #ifdef _LP64 57 // see comment in GraphKit::array_element_address 58 int index_max = max_jint - 1; // array size is max_jint, index is one less 59 const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax); 60 idx = transform_later( new ConvI2LNode(idx, lidxtype) ); 61 #endif 62 Node* scale = new LShiftXNode(idx, intcon(shift)); 63 transform_later(scale); 64 return basic_plus_adr(ary, base, scale); 65 } 66 67 Node* PhaseMacroExpand::ConvI2L(Node* offset) { 68 return transform_later(new ConvI2LNode(offset)); 69 } 70 71 Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem, 72 const TypeFunc* call_type, address call_addr, 73 const char* call_name, 74 const TypePtr* adr_type, 75 Node* parm0, Node* parm1, 76 Node* parm2, Node* parm3, 77 Node* parm4, Node* parm5, 78 Node* parm6, Node* parm7) { 79 Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 80 call->init_req(TypeFunc::Control, ctrl); 81 call->init_req(TypeFunc::I_O , top()); 82 call->init_req(TypeFunc::Memory , mem); 83 call->init_req(TypeFunc::ReturnAdr, top()); 84 call->init_req(TypeFunc::FramePtr, top()); 85 86 // Hook each parm in order. Stop looking at the first null. 87 if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0); 88 if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1); 89 if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2); 90 if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3); 91 if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4); 92 if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5); 93 if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6); 94 if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7); 95 /* close each nested if ===> */ } } } } } } } } 96 assert(call->in(call->req()-1) != nullptr, "must initialize all parms"); 97 98 return call; 99 } 100 101 102 //------------------------------generate_guard--------------------------- 103 // Helper function for generating guarded fast-slow graph structures. 104 // The given 'test', if true, guards a slow path. If the test fails 105 // then a fast path can be taken. (We generally hope it fails.) 106 // In all cases, GraphKit::control() is updated to the fast path. 107 // The returned value represents the control for the slow path. 108 // The return value is never 'top'; it is either a valid control 109 // or null if it is obvious that the slow path can never be taken. 110 // Also, if region and the slow control are not null, the slow edge 111 // is appended to the region. 112 Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) { 113 if ((*ctrl)->is_top()) { 114 // Already short circuited. 115 return nullptr; 116 } 117 // Build an if node and its projections. 118 // If test is true we take the slow path, which we assume is uncommon. 119 if (_igvn.type(test) == TypeInt::ZERO) { 120 // The slow branch is never taken. No need to build this guard. 121 return nullptr; 122 } 123 124 IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN); 125 transform_later(iff); 126 127 Node* if_slow = new IfTrueNode(iff); 128 transform_later(if_slow); 129 130 if (region != nullptr) { 131 region->add_req(if_slow); 132 } 133 134 Node* if_fast = new IfFalseNode(iff); 135 transform_later(if_fast); 136 137 *ctrl = if_fast; 138 139 return if_slow; 140 } 141 142 inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) { 143 return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3)); 144 } 145 146 void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) { 147 if ((*ctrl)->is_top()) 148 return; // already stopped 149 if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 150 return; // index is already adequately typed 151 Node* cmp_lt = new CmpINode(index, intcon(0)); 152 transform_later(cmp_lt); 153 Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); 154 transform_later(bol_lt); 155 generate_guard(ctrl, bol_lt, region, PROB_MIN); 156 } 157 158 void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) { 159 if ((*ctrl)->is_top()) 160 return; // already stopped 161 bool zero_offset = _igvn.type(offset) == TypeInt::ZERO; 162 if (zero_offset && subseq_length->eqv_uncast(array_length)) 163 return; // common case of whole-array copy 164 Node* last = subseq_length; 165 if (!zero_offset) { // last += offset 166 last = new AddINode(last, offset); 167 transform_later(last); 168 } 169 Node* cmp_lt = new CmpUNode(array_length, last); 170 transform_later(cmp_lt); 171 Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); 172 transform_later(bol_lt); 173 generate_guard(ctrl, bol_lt, region, PROB_MIN); 174 } 175 176 // 177 // Partial in-lining handling for smaller conjoint/disjoint array copies having 178 // length(in bytes) less than ArrayOperationPartialInlineSize. 179 // if (length <= ArrayOperationPartialInlineSize) { 180 // partial_inlining_block: 181 // mask = Mask_Gen 182 // vload = LoadVectorMasked src , mask 183 // StoreVectorMasked dst, mask, vload 184 // } else { 185 // stub_block: 186 // callstub array_copy 187 // } 188 // exit_block: 189 // Phi = label partial_inlining_block:mem , label stub_block:mem (filled by caller) 190 // mem = MergeMem (Phi) 191 // control = stub_block 192 // 193 // Exit_block and associated phi(memory) are partially initialized for partial_in-lining_block 194 // edges. Remaining edges for exit_block coming from stub_block are connected by the caller 195 // post stub nodes creation. 196 // 197 198 void PhaseMacroExpand::generate_partial_inlining_block(Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type, 199 RegionNode** exit_block, Node** result_memory, Node* length, 200 Node* src_start, Node* dst_start, BasicType type) { 201 const TypePtr *src_adr_type = _igvn.type(src_start)->isa_ptr(); 202 Node* inline_block = nullptr; 203 Node* stub_block = nullptr; 204 205 int const_len = -1; 206 const TypeInt* lty = nullptr; 207 uint shift = exact_log2(type2aelembytes(type)); 208 if (length->Opcode() == Op_ConvI2L) { 209 lty = _igvn.type(length->in(1))->isa_int(); 210 } else { 211 lty = _igvn.type(length)->isa_int(); 212 } 213 if (lty && lty->is_con()) { 214 const_len = lty->get_con() << shift; 215 } 216 217 // Return if copy length is greater than partial inline size limit or 218 // target does not supports masked load/stores. 219 int lane_count = ArrayCopyNode::get_partial_inline_vector_lane_count(type, const_len); 220 if ( const_len > ArrayOperationPartialInlineSize || 221 !Matcher::match_rule_supported_vector(Op_LoadVectorMasked, lane_count, type) || 222 !Matcher::match_rule_supported_vector(Op_StoreVectorMasked, lane_count, type) || 223 !Matcher::match_rule_supported_vector(Op_VectorMaskGen, lane_count, type)) { 224 return; 225 } 226 227 int inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(type); 228 Node* casted_length = new CastLLNode(*ctrl, length, TypeLong::make(0, inline_limit, Type::WidenMin)); 229 transform_later(casted_length); 230 Node* copy_bytes = new LShiftXNode(length, intcon(shift)); 231 transform_later(copy_bytes); 232 233 Node* cmp_le = new CmpULNode(copy_bytes, longcon(ArrayOperationPartialInlineSize)); 234 transform_later(cmp_le); 235 Node* bol_le = new BoolNode(cmp_le, BoolTest::le); 236 transform_later(bol_le); 237 inline_block = generate_guard(ctrl, bol_le, nullptr, PROB_FAIR); 238 stub_block = *ctrl; 239 240 Node* mask_gen = VectorMaskGenNode::make(casted_length, type); 241 transform_later(mask_gen); 242 243 unsigned vec_size = lane_count * type2aelembytes(type); 244 if (C->max_vector_size() < vec_size) { 245 C->set_max_vector_size(vec_size); 246 } 247 248 const TypeVect * vt = TypeVect::make(type, lane_count); 249 Node* mm = (*mem)->memory_at(C->get_alias_index(src_adr_type)); 250 Node* masked_load = new LoadVectorMaskedNode(inline_block, mm, src_start, 251 src_adr_type, vt, mask_gen); 252 transform_later(masked_load); 253 254 mm = (*mem)->memory_at(C->get_alias_index(adr_type)); 255 Node* masked_store = new StoreVectorMaskedNode(inline_block, mm, dst_start, 256 masked_load, adr_type, mask_gen); 257 transform_later(masked_store); 258 259 // Convergence region for inline_block and stub_block. 260 *exit_block = new RegionNode(3); 261 transform_later(*exit_block); 262 (*exit_block)->init_req(1, inline_block); 263 *result_memory = new PhiNode(*exit_block, Type::MEMORY, adr_type); 264 transform_later(*result_memory); 265 (*result_memory)->init_req(1, masked_store); 266 267 *ctrl = stub_block; 268 } 269 270 271 Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) { 272 if ((*ctrl)->is_top()) return nullptr; 273 274 if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint] 275 return nullptr; // index is already adequately typed 276 Node* cmp_le = new CmpINode(index, intcon(0)); 277 transform_later(cmp_le); 278 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le); 279 Node* bol_le = new BoolNode(cmp_le, le_or_eq); 280 transform_later(bol_le); 281 Node* is_notp = generate_guard(ctrl, bol_le, nullptr, PROB_MIN); 282 283 return is_notp; 284 } 285 286 void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) { 287 transform_later(call); 288 289 *ctrl = new ProjNode(call,TypeFunc::Control); 290 transform_later(*ctrl); 291 Node* newmem = new ProjNode(call, TypeFunc::Memory); 292 transform_later(newmem); 293 294 uint alias_idx = C->get_alias_index(adr_type); 295 if (alias_idx != Compile::AliasIdxBot) { 296 *mem = MergeMemNode::make(*mem); 297 (*mem)->set_memory_at(alias_idx, newmem); 298 } else { 299 *mem = MergeMemNode::make(newmem); 300 } 301 transform_later(*mem); 302 } 303 304 address PhaseMacroExpand::basictype2arraycopy(BasicType t, 305 Node* src_offset, 306 Node* dest_offset, 307 bool disjoint_bases, 308 const char* &name, 309 bool dest_uninitialized) { 310 const TypeInt* src_offset_inttype = _igvn.find_int_type(src_offset); 311 const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset); 312 313 bool aligned = false; 314 bool disjoint = disjoint_bases; 315 316 // if the offsets are the same, we can treat the memory regions as 317 // disjoint, because either the memory regions are in different arrays, 318 // or they are identical (which we can treat as disjoint.) We can also 319 // treat a copy with a destination index less that the source index 320 // as disjoint since a low->high copy will work correctly in this case. 321 if (src_offset_inttype != nullptr && src_offset_inttype->is_con() && 322 dest_offset_inttype != nullptr && dest_offset_inttype->is_con()) { 323 // both indices are constants 324 int s_offs = src_offset_inttype->get_con(); 325 int d_offs = dest_offset_inttype->get_con(); 326 int element_size = type2aelembytes(t); 327 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 328 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0); 329 if (s_offs >= d_offs) disjoint = true; 330 } else if (src_offset == dest_offset && src_offset != nullptr) { 331 // This can occur if the offsets are identical non-constants. 332 disjoint = true; 333 } 334 335 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized); 336 } 337 338 #define XTOP LP64_ONLY(COMMA top()) 339 340 // Generate an optimized call to arraycopy. 341 // Caller must guard against non-arrays. 342 // Caller must determine a common array basic-type for both arrays. 343 // Caller must validate offsets against array bounds. 344 // The slow_region has already collected guard failure paths 345 // (such as out of bounds length or non-conformable array types). 346 // The generated code has this shape, in general: 347 // 348 // if (length == 0) return // via zero_path 349 // slowval = -1 350 // if (types unknown) { 351 // slowval = call generic copy loop 352 // if (slowval == 0) return // via checked_path 353 // } else if (indexes in bounds) { 354 // if ((is object array) && !(array type check)) { 355 // slowval = call checked copy loop 356 // if (slowval == 0) return // via checked_path 357 // } else { 358 // call bulk copy loop 359 // return // via fast_path 360 // } 361 // } 362 // // adjust params for remaining work: 363 // if (slowval != -1) { 364 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n 365 // } 366 // slow_region: 367 // call slow arraycopy(src, src_offset, dest, dest_offset, length) 368 // return // via slow_call_path 369 // 370 // This routine is used from several intrinsics: System.arraycopy, 371 // Object.clone (the array subcase), and Arrays.copyOf[Range]. 372 // 373 Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc, 374 Node** ctrl, MergeMemNode* mem, Node** io, 375 const TypePtr* adr_type, 376 BasicType basic_elem_type, 377 Node* src, Node* src_offset, 378 Node* dest, Node* dest_offset, 379 Node* copy_length, 380 bool disjoint_bases, 381 bool length_never_negative, 382 RegionNode* slow_region) { 383 if (slow_region == nullptr) { 384 slow_region = new RegionNode(1); 385 transform_later(slow_region); 386 } 387 388 Node* original_dest = dest; 389 bool dest_needs_zeroing = false; 390 bool acopy_to_uninitialized = false; 391 392 // See if this is the initialization of a newly-allocated array. 393 // If so, we will take responsibility here for initializing it to zero. 394 // (Note: Because tightly_coupled_allocation performs checks on the 395 // out-edges of the dest, we need to avoid making derived pointers 396 // from it until we have checked its uses.) 397 if (ReduceBulkZeroing 398 && !(UseTLAB && ZeroTLAB) // pointless if already zeroed 399 && basic_elem_type != T_CONFLICT // avoid corner case 400 && !src->eqv_uncast(dest) 401 && alloc != nullptr 402 && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0) { 403 assert(ac->is_alloc_tightly_coupled(), "sanity"); 404 // acopy to uninitialized tightly coupled allocations 405 // needs zeroing outside the copy range 406 // and the acopy itself will be to uninitialized memory 407 acopy_to_uninitialized = true; 408 if (alloc->maybe_set_complete(&_igvn)) { 409 // "You break it, you buy it." 410 InitializeNode* init = alloc->initialization(); 411 assert(init->is_complete(), "we just did this"); 412 init->set_complete_with_arraycopy(); 413 assert(dest->is_CheckCastPP(), "sanity"); 414 assert(dest->in(0)->in(0) == init, "dest pinned"); 415 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory 416 // From this point on, every exit path is responsible for 417 // initializing any non-copied parts of the object to zero. 418 // Also, if this flag is set we make sure that arraycopy interacts properly 419 // with G1, eliding pre-barriers. See CR 6627983. 420 dest_needs_zeroing = true; 421 } else { 422 // dest_need_zeroing = false; 423 } 424 } else { 425 // No zeroing elimination needed here. 426 alloc = nullptr; 427 acopy_to_uninitialized = false; 428 //original_dest = dest; 429 //dest_needs_zeroing = false; 430 } 431 432 uint alias_idx = C->get_alias_index(adr_type); 433 434 // Results are placed here: 435 enum { fast_path = 1, // normal void-returning assembly stub 436 checked_path = 2, // special assembly stub with cleanup 437 slow_call_path = 3, // something went wrong; call the VM 438 zero_path = 4, // bypass when length of copy is zero 439 bcopy_path = 5, // copy primitive array by 64-bit blocks 440 PATH_LIMIT = 6 441 }; 442 RegionNode* result_region = new RegionNode(PATH_LIMIT); 443 PhiNode* result_i_o = new PhiNode(result_region, Type::ABIO); 444 PhiNode* result_memory = new PhiNode(result_region, Type::MEMORY, adr_type); 445 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice"); 446 transform_later(result_region); 447 transform_later(result_i_o); 448 transform_later(result_memory); 449 450 // The slow_control path: 451 Node* slow_control; 452 Node* slow_i_o = *io; 453 Node* slow_mem = mem->memory_at(alias_idx); 454 DEBUG_ONLY(slow_control = (Node*) badAddress); 455 456 // Checked control path: 457 Node* checked_control = top(); 458 Node* checked_mem = nullptr; 459 Node* checked_i_o = nullptr; 460 Node* checked_value = nullptr; 461 462 if (basic_elem_type == T_CONFLICT) { 463 assert(!dest_needs_zeroing, ""); 464 Node* cv = generate_generic_arraycopy(ctrl, &mem, 465 adr_type, 466 src, src_offset, dest, dest_offset, 467 copy_length, acopy_to_uninitialized); 468 if (cv == nullptr) cv = intcon(-1); // failure (no stub available) 469 checked_control = *ctrl; 470 checked_i_o = *io; 471 checked_mem = mem->memory_at(alias_idx); 472 checked_value = cv; 473 *ctrl = top(); 474 } 475 476 Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative); 477 if (not_pos != nullptr) { 478 Node* local_ctrl = not_pos, *local_io = *io; 479 MergeMemNode* local_mem = MergeMemNode::make(mem); 480 transform_later(local_mem); 481 482 // (6) length must not be negative. 483 if (!length_never_negative) { 484 generate_negative_guard(&local_ctrl, copy_length, slow_region); 485 } 486 487 // copy_length is 0. 488 if (dest_needs_zeroing) { 489 assert(!local_ctrl->is_top(), "no ctrl?"); 490 Node* dest_length = alloc->in(AllocateNode::ALength); 491 if (copy_length->eqv_uncast(dest_length) 492 || _igvn.find_int_con(dest_length, 1) <= 0) { 493 // There is no zeroing to do. No need for a secondary raw memory barrier. 494 } else { 495 // Clear the whole thing since there are no source elements to copy. 496 generate_clear_array(local_ctrl, local_mem, 497 adr_type, dest, basic_elem_type, 498 intcon(0), nullptr, 499 alloc->in(AllocateNode::AllocSize)); 500 // Use a secondary InitializeNode as raw memory barrier. 501 // Currently it is needed only on this path since other 502 // paths have stub or runtime calls as raw memory barriers. 503 MemBarNode* mb = MemBarNode::make(C, Op_Initialize, 504 Compile::AliasIdxRaw, 505 top()); 506 transform_later(mb); 507 mb->set_req(TypeFunc::Control,local_ctrl); 508 mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw)); 509 local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control)); 510 local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory))); 511 512 InitializeNode* init = mb->as_Initialize(); 513 init->set_complete(&_igvn); // (there is no corresponding AllocateNode) 514 } 515 } 516 517 // Present the results of the fast call. 518 result_region->init_req(zero_path, local_ctrl); 519 result_i_o ->init_req(zero_path, local_io); 520 result_memory->init_req(zero_path, local_mem->memory_at(alias_idx)); 521 } 522 523 if (!(*ctrl)->is_top() && dest_needs_zeroing) { 524 // We have to initialize the *uncopied* part of the array to zero. 525 // The copy destination is the slice dest[off..off+len]. The other slices 526 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length]. 527 Node* dest_size = alloc->in(AllocateNode::AllocSize); 528 Node* dest_length = alloc->in(AllocateNode::ALength); 529 Node* dest_tail = transform_later( new AddINode(dest_offset, copy_length)); 530 531 // If there is a head section that needs zeroing, do it now. 532 if (_igvn.find_int_con(dest_offset, -1) != 0) { 533 generate_clear_array(*ctrl, mem, 534 adr_type, dest, basic_elem_type, 535 intcon(0), dest_offset, 536 nullptr); 537 } 538 539 // Next, perform a dynamic check on the tail length. 540 // It is often zero, and we can win big if we prove this. 541 // There are two wins: Avoid generating the ClearArray 542 // with its attendant messy index arithmetic, and upgrade 543 // the copy to a more hardware-friendly word size of 64 bits. 544 Node* tail_ctl = nullptr; 545 if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) { 546 Node* cmp_lt = transform_later( new CmpINode(dest_tail, dest_length) ); 547 Node* bol_lt = transform_later( new BoolNode(cmp_lt, BoolTest::lt) ); 548 tail_ctl = generate_slow_guard(ctrl, bol_lt, nullptr); 549 assert(tail_ctl != nullptr || !(*ctrl)->is_top(), "must be an outcome"); 550 } 551 552 // At this point, let's assume there is no tail. 553 if (!(*ctrl)->is_top() && alloc != nullptr && basic_elem_type != T_OBJECT) { 554 // There is no tail. Try an upgrade to a 64-bit copy. 555 bool didit = false; 556 { 557 Node* local_ctrl = *ctrl, *local_io = *io; 558 MergeMemNode* local_mem = MergeMemNode::make(mem); 559 transform_later(local_mem); 560 561 didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io, 562 adr_type, basic_elem_type, alloc, 563 src, src_offset, dest, dest_offset, 564 dest_size, acopy_to_uninitialized); 565 if (didit) { 566 // Present the results of the block-copying fast call. 567 result_region->init_req(bcopy_path, local_ctrl); 568 result_i_o ->init_req(bcopy_path, local_io); 569 result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx)); 570 } 571 } 572 if (didit) { 573 *ctrl = top(); // no regular fast path 574 } 575 } 576 577 // Clear the tail, if any. 578 if (tail_ctl != nullptr) { 579 Node* notail_ctl = (*ctrl)->is_top() ? nullptr : *ctrl; 580 *ctrl = tail_ctl; 581 if (notail_ctl == nullptr) { 582 generate_clear_array(*ctrl, mem, 583 adr_type, dest, basic_elem_type, 584 dest_tail, nullptr, 585 dest_size); 586 } else { 587 // Make a local merge. 588 Node* done_ctl = transform_later(new RegionNode(3)); 589 Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type)); 590 done_ctl->init_req(1, notail_ctl); 591 done_mem->init_req(1, mem->memory_at(alias_idx)); 592 generate_clear_array(*ctrl, mem, 593 adr_type, dest, basic_elem_type, 594 dest_tail, nullptr, 595 dest_size); 596 done_ctl->init_req(2, *ctrl); 597 done_mem->init_req(2, mem->memory_at(alias_idx)); 598 *ctrl = done_ctl; 599 mem->set_memory_at(alias_idx, done_mem); 600 } 601 } 602 } 603 604 BasicType copy_type = basic_elem_type; 605 assert(basic_elem_type != T_ARRAY, "caller must fix this"); 606 if (!(*ctrl)->is_top() && copy_type == T_OBJECT) { 607 // If src and dest have compatible element types, we can copy bits. 608 // Types S[] and D[] are compatible if D is a supertype of S. 609 // 610 // If they are not, we will use checked_oop_disjoint_arraycopy, 611 // which performs a fast optimistic per-oop check, and backs off 612 // further to JVM_ArrayCopy on the first per-oop check that fails. 613 // (Actually, we don't move raw bits only; the GC requires card marks.) 614 615 // We don't need a subtype check for validated copies and Object[].clone() 616 bool skip_subtype_check = ac->is_arraycopy_validated() || ac->is_copyof_validated() || 617 ac->is_copyofrange_validated() || ac->is_clone_oop_array(); 618 if (!skip_subtype_check) { 619 // Get the klass* for both src and dest 620 Node* src_klass = ac->in(ArrayCopyNode::SrcKlass); 621 Node* dest_klass = ac->in(ArrayCopyNode::DestKlass); 622 623 assert(src_klass != nullptr && dest_klass != nullptr, "should have klasses"); 624 625 // Generate the subtype check. 626 // This might fold up statically, or then again it might not. 627 // 628 // Non-static example: Copying List<String>.elements to a new String[]. 629 // The backing store for a List<String> is always an Object[], 630 // but its elements are always type String, if the generic types 631 // are correct at the source level. 632 // 633 // Test S[] against D[], not S against D, because (probably) 634 // the secondary supertype cache is less busy for S[] than S. 635 // This usually only matters when D is an interface. 636 Node* not_subtype_ctrl = Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, _igvn, nullptr, -1); 637 // Plug failing path into checked_oop_disjoint_arraycopy 638 if (not_subtype_ctrl != top()) { 639 Node* local_ctrl = not_subtype_ctrl; 640 MergeMemNode* local_mem = MergeMemNode::make(mem); 641 transform_later(local_mem); 642 643 // (At this point we can assume disjoint_bases, since types differ.) 644 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 645 Node* p1 = basic_plus_adr(dest_klass, ek_offset); 646 Node* n1 = LoadKlassNode::make(_igvn, nullptr, C->immutable_memory(), p1, TypeRawPtr::BOTTOM); 647 Node* dest_elem_klass = transform_later(n1); 648 Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem, 649 adr_type, 650 dest_elem_klass, 651 src, src_offset, dest, dest_offset, 652 ConvI2X(copy_length), acopy_to_uninitialized); 653 if (cv == nullptr) cv = intcon(-1); // failure (no stub available) 654 checked_control = local_ctrl; 655 checked_i_o = *io; 656 checked_mem = local_mem->memory_at(alias_idx); 657 checked_value = cv; 658 } 659 } 660 // At this point we know we do not need type checks on oop stores. 661 662 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 663 if (!bs->array_copy_requires_gc_barriers(alloc != nullptr, copy_type, false, false, BarrierSetC2::Expansion)) { 664 // If we do not need gc barriers, copy using the jint or jlong stub. 665 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT); 666 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type), 667 "sizes agree"); 668 } 669 } 670 671 bool is_partial_array_copy = false; 672 if (!(*ctrl)->is_top()) { 673 // Generate the fast path, if possible. 674 Node* local_ctrl = *ctrl; 675 MergeMemNode* local_mem = MergeMemNode::make(mem); 676 transform_later(local_mem); 677 is_partial_array_copy = generate_unchecked_arraycopy(&local_ctrl, &local_mem, 678 adr_type, copy_type, disjoint_bases, 679 src, src_offset, dest, dest_offset, 680 ConvI2X(copy_length), acopy_to_uninitialized); 681 682 // Present the results of the fast call. 683 result_region->init_req(fast_path, local_ctrl); 684 result_i_o ->init_req(fast_path, *io); 685 result_memory->init_req(fast_path, local_mem->memory_at(alias_idx)); 686 } 687 688 // Here are all the slow paths up to this point, in one bundle: 689 assert(slow_region != nullptr, "allocated on entry"); 690 slow_control = slow_region; 691 DEBUG_ONLY(slow_region = (RegionNode*)badAddress); 692 693 *ctrl = checked_control; 694 if (!(*ctrl)->is_top()) { 695 // Clean up after the checked call. 696 // The returned value is either 0 or -1^K, 697 // where K = number of partially transferred array elements. 698 Node* cmp = new CmpINode(checked_value, intcon(0)); 699 transform_later(cmp); 700 Node* bol = new BoolNode(cmp, BoolTest::eq); 701 transform_later(bol); 702 IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN); 703 transform_later(iff); 704 705 // If it is 0, we are done, so transfer to the end. 706 Node* checks_done = new IfTrueNode(iff); 707 transform_later(checks_done); 708 result_region->init_req(checked_path, checks_done); 709 result_i_o ->init_req(checked_path, checked_i_o); 710 result_memory->init_req(checked_path, checked_mem); 711 712 // If it is not zero, merge into the slow call. 713 *ctrl = new IfFalseNode(iff); 714 transform_later(*ctrl); 715 RegionNode* slow_reg2 = new RegionNode(3); 716 PhiNode* slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO); 717 PhiNode* slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type); 718 transform_later(slow_reg2); 719 transform_later(slow_i_o2); 720 transform_later(slow_mem2); 721 slow_reg2 ->init_req(1, slow_control); 722 slow_i_o2 ->init_req(1, slow_i_o); 723 slow_mem2 ->init_req(1, slow_mem); 724 slow_reg2 ->init_req(2, *ctrl); 725 slow_i_o2 ->init_req(2, checked_i_o); 726 slow_mem2 ->init_req(2, checked_mem); 727 728 slow_control = slow_reg2; 729 slow_i_o = slow_i_o2; 730 slow_mem = slow_mem2; 731 732 if (alloc != nullptr) { 733 // We'll restart from the very beginning, after zeroing the whole thing. 734 // This can cause double writes, but that's OK since dest is brand new. 735 // So we ignore the low 31 bits of the value returned from the stub. 736 } else { 737 // We must continue the copy exactly where it failed, or else 738 // another thread might see the wrong number of writes to dest. 739 Node* checked_offset = new XorINode(checked_value, intcon(-1)); 740 Node* slow_offset = new PhiNode(slow_reg2, TypeInt::INT); 741 transform_later(checked_offset); 742 transform_later(slow_offset); 743 slow_offset->init_req(1, intcon(0)); 744 slow_offset->init_req(2, checked_offset); 745 746 // Adjust the arguments by the conditionally incoming offset. 747 Node* src_off_plus = new AddINode(src_offset, slow_offset); 748 transform_later(src_off_plus); 749 Node* dest_off_plus = new AddINode(dest_offset, slow_offset); 750 transform_later(dest_off_plus); 751 Node* length_minus = new SubINode(copy_length, slow_offset); 752 transform_later(length_minus); 753 754 // Tweak the node variables to adjust the code produced below: 755 src_offset = src_off_plus; 756 dest_offset = dest_off_plus; 757 copy_length = length_minus; 758 } 759 } 760 *ctrl = slow_control; 761 if (!(*ctrl)->is_top()) { 762 Node* local_ctrl = *ctrl, *local_io = slow_i_o; 763 MergeMemNode* local_mem = MergeMemNode::make(mem); 764 transform_later(local_mem); 765 766 // Generate the slow path, if needed. 767 local_mem->set_memory_at(alias_idx, slow_mem); 768 769 if (dest_needs_zeroing) { 770 generate_clear_array(local_ctrl, local_mem, 771 adr_type, dest, basic_elem_type, 772 intcon(0), nullptr, 773 alloc->in(AllocateNode::AllocSize)); 774 } 775 776 local_mem = generate_slow_arraycopy(ac, 777 &local_ctrl, local_mem, &local_io, 778 adr_type, 779 src, src_offset, dest, dest_offset, 780 copy_length, /*dest_uninitialized*/false); 781 782 result_region->init_req(slow_call_path, local_ctrl); 783 result_i_o ->init_req(slow_call_path, local_io); 784 result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx)); 785 } else { 786 ShouldNotReachHere(); // no call to generate_slow_arraycopy: 787 // projections were not extracted 788 } 789 790 // Remove unused edges. 791 for (uint i = 1; i < result_region->req(); i++) { 792 if (result_region->in(i) == nullptr) { 793 result_region->init_req(i, top()); 794 } 795 } 796 797 // Finished; return the combined state. 798 *ctrl = result_region; 799 *io = result_i_o; 800 mem->set_memory_at(alias_idx, result_memory); 801 802 // mem no longer guaranteed to stay a MergeMemNode 803 Node* out_mem = mem; 804 DEBUG_ONLY(mem = nullptr); 805 806 // The memory edges above are precise in order to model effects around 807 // array copies accurately to allow value numbering of field loads around 808 // arraycopy. Such field loads, both before and after, are common in Java 809 // collections and similar classes involving header/array data structures. 810 // 811 // But with low number of register or when some registers are used or killed 812 // by arraycopy calls it causes registers spilling on stack. See 6544710. 813 // The next memory barrier is added to avoid it. If the arraycopy can be 814 // optimized away (which it can, sometimes) then we can manually remove 815 // the membar also. 816 // 817 // Do not let reads from the cloned object float above the arraycopy. 818 if (alloc != nullptr && !alloc->initialization()->does_not_escape()) { 819 // Do not let stores that initialize this object be reordered with 820 // a subsequent store that would make this object accessible by 821 // other threads. 822 insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore); 823 } else { 824 insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder); 825 } 826 827 if (is_partial_array_copy) { 828 assert((*ctrl)->is_Proj(), "MemBar control projection"); 829 assert((*ctrl)->in(0)->isa_MemBar(), "MemBar node"); 830 (*ctrl)->in(0)->isa_MemBar()->set_trailing_partial_array_copy(); 831 } 832 833 _igvn.replace_node(_callprojs.fallthrough_memproj, out_mem); 834 if (_callprojs.fallthrough_ioproj != nullptr) { 835 _igvn.replace_node(_callprojs.fallthrough_ioproj, *io); 836 } 837 _igvn.replace_node(_callprojs.fallthrough_catchproj, *ctrl); 838 839 #ifdef ASSERT 840 const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr(); 841 if (dest_t->is_known_instance() && !is_partial_array_copy) { 842 ArrayCopyNode* ac = nullptr; 843 assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost"); 844 assert(ac == nullptr, "no arraycopy anymore"); 845 } 846 #endif 847 848 return out_mem; 849 } 850 851 // Helper for initialization of arrays, creating a ClearArray. 852 // It writes zero bits in [start..end), within the body of an array object. 853 // The memory effects are all chained onto the 'adr_type' alias category. 854 // 855 // Since the object is otherwise uninitialized, we are free 856 // to put a little "slop" around the edges of the cleared area, 857 // as long as it does not go back into the array's header, 858 // or beyond the array end within the heap. 859 // 860 // The lower edge can be rounded down to the nearest jint and the 861 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes. 862 // 863 // Arguments: 864 // adr_type memory slice where writes are generated 865 // dest oop of the destination array 866 // basic_elem_type element type of the destination 867 // slice_idx array index of first element to store 868 // slice_len number of elements to store (or null) 869 // dest_size total size in bytes of the array object 870 // 871 // Exactly one of slice_len or dest_size must be non-null. 872 // If dest_size is non-null, zeroing extends to the end of the object. 873 // If slice_len is non-null, the slice_idx value must be a constant. 874 void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem, 875 const TypePtr* adr_type, 876 Node* dest, 877 BasicType basic_elem_type, 878 Node* slice_idx, 879 Node* slice_len, 880 Node* dest_size) { 881 // one or the other but not both of slice_len and dest_size: 882 assert((slice_len != nullptr? 1: 0) + (dest_size != nullptr? 1: 0) == 1, ""); 883 if (slice_len == nullptr) slice_len = top(); 884 if (dest_size == nullptr) dest_size = top(); 885 886 uint alias_idx = C->get_alias_index(adr_type); 887 888 // operate on this memory slice: 889 Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on 890 891 // scaling and rounding of indexes: 892 int scale = exact_log2(type2aelembytes(basic_elem_type)); 893 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 894 int clear_low = (-1 << scale) & (BytesPerInt - 1); 895 int bump_bit = (-1 << scale) & BytesPerInt; 896 897 // determine constant starts and ends 898 const intptr_t BIG_NEG = -128; 899 assert(BIG_NEG + 2*abase < 0, "neg enough"); 900 intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG); 901 intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG); 902 if (slice_len_con == 0) { 903 return; // nothing to do here 904 } 905 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low; 906 intptr_t end_con = _igvn.find_intptr_t_con(dest_size, -1); 907 if (slice_idx_con >= 0 && slice_len_con >= 0) { 908 assert(end_con < 0, "not two cons"); 909 end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale), 910 BytesPerLong); 911 } 912 913 if (start_con >= 0 && end_con >= 0) { 914 // Constant start and end. Simple. 915 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, 916 start_con, end_con, &_igvn); 917 } else if (start_con >= 0 && dest_size != top()) { 918 // Constant start, pre-rounded end after the tail of the array. 919 Node* end = dest_size; 920 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, 921 start_con, end, &_igvn); 922 } else if (start_con >= 0 && slice_len != top()) { 923 // Constant start, non-constant end. End needs rounding up. 924 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8) 925 intptr_t end_base = abase + (slice_idx_con << scale); 926 int end_round = (-1 << scale) & (BytesPerLong - 1); 927 Node* end = ConvI2X(slice_len); 928 if (scale != 0) 929 end = transform_later(new LShiftXNode(end, intcon(scale) )); 930 end_base += end_round; 931 end = transform_later(new AddXNode(end, MakeConX(end_base)) ); 932 end = transform_later(new AndXNode(end, MakeConX(~end_round)) ); 933 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, 934 start_con, end, &_igvn); 935 } else if (start_con < 0 && dest_size != top()) { 936 // Non-constant start, pre-rounded end after the tail of the array. 937 // This is almost certainly a "round-to-end" operation. 938 Node* start = slice_idx; 939 start = ConvI2X(start); 940 if (scale != 0) 941 start = transform_later(new LShiftXNode( start, intcon(scale) )); 942 start = transform_later(new AddXNode(start, MakeConX(abase)) ); 943 if ((bump_bit | clear_low) != 0) { 944 int to_clear = (bump_bit | clear_low); 945 // Align up mod 8, then store a jint zero unconditionally 946 // just before the mod-8 boundary. 947 if (((abase + bump_bit) & ~to_clear) - bump_bit 948 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) { 949 bump_bit = 0; 950 assert((abase & to_clear) == 0, "array base must be long-aligned"); 951 } else { 952 // Bump 'start' up to (or past) the next jint boundary: 953 start = transform_later( new AddXNode(start, MakeConX(bump_bit)) ); 954 assert((abase & clear_low) == 0, "array base must be int-aligned"); 955 } 956 // Round bumped 'start' down to jlong boundary in body of array. 957 start = transform_later(new AndXNode(start, MakeConX(~to_clear)) ); 958 if (bump_bit != 0) { 959 // Store a zero to the immediately preceding jint: 960 Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) ); 961 Node* p1 = basic_plus_adr(dest, x1); 962 mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered); 963 mem = transform_later(mem); 964 } 965 } 966 Node* end = dest_size; // pre-rounded 967 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, 968 start, end, &_igvn); 969 } else { 970 // Non-constant start, unrounded non-constant end. 971 // (Nobody zeroes a random midsection of an array using this routine.) 972 ShouldNotReachHere(); // fix caller 973 } 974 975 // Done. 976 merge_mem->set_memory_at(alias_idx, mem); 977 } 978 979 bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io, 980 const TypePtr* adr_type, 981 BasicType basic_elem_type, 982 AllocateNode* alloc, 983 Node* src, Node* src_offset, 984 Node* dest, Node* dest_offset, 985 Node* dest_size, bool dest_uninitialized) { 986 // See if there is an advantage from block transfer. 987 int scale = exact_log2(type2aelembytes(basic_elem_type)); 988 if (scale >= LogBytesPerLong) 989 return false; // it is already a block transfer 990 991 // Look at the alignment of the starting offsets. 992 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 993 994 intptr_t src_off_con = (intptr_t) _igvn.find_int_con(src_offset, -1); 995 intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1); 996 if (src_off_con < 0 || dest_off_con < 0) { 997 // At present, we can only understand constants. 998 return false; 999 } 1000 1001 intptr_t src_off = abase + (src_off_con << scale); 1002 intptr_t dest_off = abase + (dest_off_con << scale); 1003 1004 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) { 1005 // Non-aligned; too bad. 1006 // One more chance: Pick off an initial 32-bit word. 1007 // This is a common case, since abase can be odd mod 8. 1008 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt && 1009 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) { 1010 Node* sptr = basic_plus_adr(src, src_off); 1011 Node* dptr = basic_plus_adr(dest, dest_off); 1012 const TypePtr* s_adr_type = _igvn.type(sptr)->is_ptr(); 1013 assert(s_adr_type->isa_aryptr(), "impossible slice"); 1014 uint s_alias_idx = C->get_alias_index(s_adr_type); 1015 uint d_alias_idx = C->get_alias_index(adr_type); 1016 bool is_mismatched = (basic_elem_type != T_INT); 1017 Node* sval = transform_later( 1018 LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(s_alias_idx), sptr, s_adr_type, 1019 TypeInt::INT, T_INT, MemNode::unordered, LoadNode::DependsOnlyOnTest, 1020 false /*require_atomic_access*/, false /*unaligned*/, is_mismatched)); 1021 Node* st = transform_later( 1022 StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(d_alias_idx), dptr, adr_type, 1023 sval, T_INT, MemNode::unordered)); 1024 if (is_mismatched) { 1025 st->as_Store()->set_mismatched_access(); 1026 } 1027 (*mem)->set_memory_at(d_alias_idx, st); 1028 src_off += BytesPerInt; 1029 dest_off += BytesPerInt; 1030 } else { 1031 return false; 1032 } 1033 } 1034 assert(src_off % BytesPerLong == 0, ""); 1035 assert(dest_off % BytesPerLong == 0, ""); 1036 1037 // Do this copy by giant steps. 1038 Node* sptr = basic_plus_adr(src, src_off); 1039 Node* dptr = basic_plus_adr(dest, dest_off); 1040 Node* countx = dest_size; 1041 countx = transform_later(new SubXNode(countx, MakeConX(dest_off))); 1042 countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong))); 1043 1044 bool disjoint_bases = true; // since alloc isn't null 1045 generate_unchecked_arraycopy(ctrl, mem, 1046 adr_type, T_LONG, disjoint_bases, 1047 sptr, nullptr, dptr, nullptr, countx, dest_uninitialized); 1048 1049 return true; 1050 } 1051 1052 // Helper function; generates code for the slow case. 1053 // We make a call to a runtime method which emulates the native method, 1054 // but without the native wrapper overhead. 1055 MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac, 1056 Node** ctrl, Node* mem, Node** io, 1057 const TypePtr* adr_type, 1058 Node* src, Node* src_offset, 1059 Node* dest, Node* dest_offset, 1060 Node* copy_length, bool dest_uninitialized) { 1061 assert(!dest_uninitialized, "Invariant"); 1062 1063 const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type(); 1064 CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(), 1065 "slow_arraycopy", TypePtr::BOTTOM); 1066 1067 call->init_req(TypeFunc::Control, *ctrl); 1068 call->init_req(TypeFunc::I_O , *io); 1069 call->init_req(TypeFunc::Memory , mem); 1070 call->init_req(TypeFunc::ReturnAdr, top()); 1071 call->init_req(TypeFunc::FramePtr, top()); 1072 call->init_req(TypeFunc::Parms+0, src); 1073 call->init_req(TypeFunc::Parms+1, src_offset); 1074 call->init_req(TypeFunc::Parms+2, dest); 1075 call->init_req(TypeFunc::Parms+3, dest_offset); 1076 call->init_req(TypeFunc::Parms+4, copy_length); 1077 call->copy_call_debug_info(&_igvn, ac); 1078 1079 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1080 _igvn.replace_node(ac, call); 1081 transform_later(call); 1082 1083 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1084 *ctrl = _callprojs.fallthrough_catchproj->clone(); 1085 transform_later(*ctrl); 1086 1087 Node* m = _callprojs.fallthrough_memproj->clone(); 1088 transform_later(m); 1089 1090 uint alias_idx = C->get_alias_index(adr_type); 1091 MergeMemNode* out_mem; 1092 if (alias_idx != Compile::AliasIdxBot) { 1093 out_mem = MergeMemNode::make(mem); 1094 out_mem->set_memory_at(alias_idx, m); 1095 } else { 1096 out_mem = MergeMemNode::make(m); 1097 } 1098 transform_later(out_mem); 1099 1100 // When src is negative and arraycopy is before an infinite loop,_callprojs.fallthrough_ioproj 1101 // could be null. Skip clone and update null fallthrough_ioproj. 1102 if (_callprojs.fallthrough_ioproj != nullptr) { 1103 *io = _callprojs.fallthrough_ioproj->clone(); 1104 transform_later(*io); 1105 } else { 1106 *io = nullptr; 1107 } 1108 1109 return out_mem; 1110 } 1111 1112 // Helper function; generates code for cases requiring runtime checks. 1113 Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem, 1114 const TypePtr* adr_type, 1115 Node* dest_elem_klass, 1116 Node* src, Node* src_offset, 1117 Node* dest, Node* dest_offset, 1118 Node* copy_length, bool dest_uninitialized) { 1119 if ((*ctrl)->is_top()) return nullptr; 1120 1121 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized); 1122 if (copyfunc_addr == nullptr) { // Stub was not generated, go slow path. 1123 return nullptr; 1124 } 1125 1126 // Pick out the parameters required to perform a store-check 1127 // for the target array. This is an optimistic check. It will 1128 // look in each non-null element's class, at the desired klass's 1129 // super_check_offset, for the desired klass. 1130 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1131 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset); 1132 Node* n3 = new LoadINode(nullptr, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered); 1133 Node* check_offset = ConvI2X(transform_later(n3)); 1134 Node* check_value = dest_elem_klass; 1135 1136 Node* src_start = array_element_address(src, src_offset, T_OBJECT); 1137 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT); 1138 1139 const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type(); 1140 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type, 1141 src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value); 1142 1143 finish_arraycopy_call(call, ctrl, mem, adr_type); 1144 1145 Node* proj = new ProjNode(call, TypeFunc::Parms); 1146 transform_later(proj); 1147 1148 return proj; 1149 } 1150 1151 // Helper function; generates code for cases requiring runtime checks. 1152 Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem, 1153 const TypePtr* adr_type, 1154 Node* src, Node* src_offset, 1155 Node* dest, Node* dest_offset, 1156 Node* copy_length, bool dest_uninitialized) { 1157 if ((*ctrl)->is_top()) return nullptr; 1158 assert(!dest_uninitialized, "Invariant"); 1159 1160 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1161 if (copyfunc_addr == nullptr) { // Stub was not generated, go slow path. 1162 return nullptr; 1163 } 1164 1165 const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type(); 1166 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type, 1167 src, src_offset, dest, dest_offset, copy_length); 1168 1169 finish_arraycopy_call(call, ctrl, mem, adr_type); 1170 1171 Node* proj = new ProjNode(call, TypeFunc::Parms); 1172 transform_later(proj); 1173 1174 return proj; 1175 } 1176 1177 // Helper function; generates the fast out-of-line call to an arraycopy stub. 1178 bool PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem, 1179 const TypePtr* adr_type, 1180 BasicType basic_elem_type, 1181 bool disjoint_bases, 1182 Node* src, Node* src_offset, 1183 Node* dest, Node* dest_offset, 1184 Node* copy_length, bool dest_uninitialized) { 1185 if ((*ctrl)->is_top()) return false; 1186 1187 Node* src_start = src; 1188 Node* dest_start = dest; 1189 if (src_offset != nullptr || dest_offset != nullptr) { 1190 src_start = array_element_address(src, src_offset, basic_elem_type); 1191 dest_start = array_element_address(dest, dest_offset, basic_elem_type); 1192 } 1193 1194 // Figure out which arraycopy runtime method to call. 1195 const char* copyfunc_name = "arraycopy"; 1196 address copyfunc_addr = 1197 basictype2arraycopy(basic_elem_type, src_offset, dest_offset, 1198 disjoint_bases, copyfunc_name, dest_uninitialized); 1199 1200 Node* result_memory = nullptr; 1201 RegionNode* exit_block = nullptr; 1202 if (ArrayOperationPartialInlineSize > 0 && is_subword_type(basic_elem_type) && 1203 Matcher::vector_width_in_bytes(basic_elem_type) >= 16) { 1204 generate_partial_inlining_block(ctrl, mem, adr_type, &exit_block, &result_memory, 1205 copy_length, src_start, dest_start, basic_elem_type); 1206 } 1207 1208 const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type(); 1209 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type, 1210 src_start, dest_start, copy_length XTOP); 1211 1212 finish_arraycopy_call(call, ctrl, mem, adr_type); 1213 1214 // Connecting remaining edges for exit_block coming from stub_block. 1215 if (exit_block) { 1216 exit_block->init_req(2, *ctrl); 1217 1218 // Memory edge corresponding to stub_region. 1219 result_memory->init_req(2, *mem); 1220 1221 uint alias_idx = C->get_alias_index(adr_type); 1222 if (alias_idx != Compile::AliasIdxBot) { 1223 *mem = MergeMemNode::make(*mem); 1224 (*mem)->set_memory_at(alias_idx, result_memory); 1225 } else { 1226 *mem = MergeMemNode::make(result_memory); 1227 } 1228 transform_later(*mem); 1229 *ctrl = exit_block; 1230 return true; 1231 } 1232 return false; 1233 } 1234 1235 #undef XTOP 1236 1237 void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) { 1238 Node* ctrl = ac->in(TypeFunc::Control); 1239 Node* io = ac->in(TypeFunc::I_O); 1240 Node* src = ac->in(ArrayCopyNode::Src); 1241 Node* src_offset = ac->in(ArrayCopyNode::SrcPos); 1242 Node* dest = ac->in(ArrayCopyNode::Dest); 1243 Node* dest_offset = ac->in(ArrayCopyNode::DestPos); 1244 Node* length = ac->in(ArrayCopyNode::Length); 1245 MergeMemNode* merge_mem = nullptr; 1246 1247 if (ac->is_clonebasic()) { 1248 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1249 bs->clone_at_expansion(this, ac); 1250 return; 1251 } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_clone_oop_array()) { 1252 Node* mem = ac->in(TypeFunc::Memory); 1253 merge_mem = MergeMemNode::make(mem); 1254 transform_later(merge_mem); 1255 1256 AllocateArrayNode* alloc = nullptr; 1257 if (ac->is_alloc_tightly_coupled()) { 1258 alloc = AllocateArrayNode::Ideal_array_allocation(dest); 1259 assert(alloc != nullptr, "expect alloc"); 1260 } 1261 1262 const TypePtr* adr_type = _igvn.type(dest)->is_oopptr()->add_offset(Type::OffsetBot); 1263 if (ac->_dest_type != TypeOopPtr::BOTTOM) { 1264 adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr(); 1265 } 1266 generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, 1267 adr_type, T_OBJECT, 1268 src, src_offset, dest, dest_offset, length, 1269 true, ac->has_negative_length_guard()); 1270 1271 return; 1272 } 1273 1274 AllocateArrayNode* alloc = nullptr; 1275 if (ac->is_alloc_tightly_coupled()) { 1276 alloc = AllocateArrayNode::Ideal_array_allocation(dest); 1277 assert(alloc != nullptr, "expect alloc"); 1278 } 1279 1280 assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy"); 1281 1282 // Compile time checks. If any of these checks cannot be verified at compile time, 1283 // we do not make a fast path for this call. Instead, we let the call remain as it 1284 // is. The checks we choose to mandate at compile time are: 1285 // 1286 // (1) src and dest are arrays. 1287 const Type* src_type = src->Value(&_igvn); 1288 const Type* dest_type = dest->Value(&_igvn); 1289 const TypeAryPtr* top_src = src_type->isa_aryptr(); 1290 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 1291 1292 BasicType src_elem = T_CONFLICT; 1293 BasicType dest_elem = T_CONFLICT; 1294 1295 if (top_src != nullptr && top_src->elem() != Type::BOTTOM) { 1296 src_elem = top_src->elem()->array_element_basic_type(); 1297 } 1298 if (top_dest != nullptr && top_dest->elem() != Type::BOTTOM) { 1299 dest_elem = top_dest->elem()->array_element_basic_type(); 1300 } 1301 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 1302 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 1303 1304 if (ac->is_arraycopy_validated() && 1305 dest_elem != T_CONFLICT && 1306 src_elem == T_CONFLICT) { 1307 src_elem = dest_elem; 1308 } 1309 1310 if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) { 1311 // Conservatively insert a memory barrier on all memory slices. 1312 // Do not let writes into the source float below the arraycopy. 1313 { 1314 Node* mem = ac->in(TypeFunc::Memory); 1315 insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder); 1316 1317 merge_mem = MergeMemNode::make(mem); 1318 transform_later(merge_mem); 1319 } 1320 1321 // Call StubRoutines::generic_arraycopy stub. 1322 Node* mem = generate_arraycopy(ac, nullptr, &ctrl, merge_mem, &io, 1323 TypeRawPtr::BOTTOM, T_CONFLICT, 1324 src, src_offset, dest, dest_offset, length, 1325 // If a negative length guard was generated for the ArrayCopyNode, 1326 // the length of the array can never be negative. 1327 false, ac->has_negative_length_guard()); 1328 return; 1329 } 1330 1331 assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types"); 1332 1333 // (2) src and dest arrays must have elements of the same BasicType 1334 // Figure out the size and type of the elements we will be copying. 1335 if (src_elem != dest_elem || dest_elem == T_VOID) { 1336 // The component types are not the same or are not recognized. Punt. 1337 // (But, avoid the native method wrapper to JVM_ArrayCopy.) 1338 { 1339 Node* mem = ac->in(TypeFunc::Memory); 1340 merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false); 1341 } 1342 1343 _igvn.replace_node(_callprojs.fallthrough_memproj, merge_mem); 1344 if (_callprojs.fallthrough_ioproj != nullptr) { 1345 _igvn.replace_node(_callprojs.fallthrough_ioproj, io); 1346 } 1347 _igvn.replace_node(_callprojs.fallthrough_catchproj, ctrl); 1348 return; 1349 } 1350 1351 //--------------------------------------------------------------------------- 1352 // We will make a fast path for this call to arraycopy. 1353 1354 // We have the following tests left to perform: 1355 // 1356 // (3) src and dest must not be null. 1357 // (4) src_offset must not be negative. 1358 // (5) dest_offset must not be negative. 1359 // (6) length must not be negative. 1360 // (7) src_offset + length must not exceed length of src. 1361 // (8) dest_offset + length must not exceed length of dest. 1362 // (9) each element of an oop array must be assignable 1363 1364 { 1365 Node* mem = ac->in(TypeFunc::Memory); 1366 merge_mem = MergeMemNode::make(mem); 1367 transform_later(merge_mem); 1368 } 1369 1370 RegionNode* slow_region = new RegionNode(1); 1371 transform_later(slow_region); 1372 1373 if (!ac->is_arraycopy_validated()) { 1374 // (3) operands must not be null 1375 // We currently perform our null checks with the null_check routine. 1376 // This means that the null exceptions will be reported in the caller 1377 // rather than (correctly) reported inside of the native arraycopy call. 1378 // This should be corrected, given time. We do our null check with the 1379 // stack pointer restored. 1380 // null checks done library_call.cpp 1381 1382 // (4) src_offset must not be negative. 1383 generate_negative_guard(&ctrl, src_offset, slow_region); 1384 1385 // (5) dest_offset must not be negative. 1386 generate_negative_guard(&ctrl, dest_offset, slow_region); 1387 1388 // (6) length must not be negative (moved to generate_arraycopy()). 1389 // generate_negative_guard(length, slow_region); 1390 1391 // (7) src_offset + length must not exceed length of src. 1392 Node* alen = ac->in(ArrayCopyNode::SrcLen); 1393 assert(alen != nullptr, "need src len"); 1394 generate_limit_guard(&ctrl, 1395 src_offset, length, 1396 alen, 1397 slow_region); 1398 1399 // (8) dest_offset + length must not exceed length of dest. 1400 alen = ac->in(ArrayCopyNode::DestLen); 1401 assert(alen != nullptr, "need dest len"); 1402 generate_limit_guard(&ctrl, 1403 dest_offset, length, 1404 alen, 1405 slow_region); 1406 1407 // (9) each element of an oop array must be assignable 1408 // The generate_arraycopy subroutine checks this. 1409 } 1410 // This is where the memory effects are placed: 1411 const TypePtr* adr_type = nullptr; 1412 if (ac->_dest_type != TypeOopPtr::BOTTOM) { 1413 adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr(); 1414 } else { 1415 adr_type = TypeAryPtr::get_array_body_type(dest_elem); 1416 } 1417 1418 generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, 1419 adr_type, dest_elem, 1420 src, src_offset, dest, dest_offset, length, 1421 // If a negative length guard was generated for the ArrayCopyNode, 1422 // the length of the array can never be negative. 1423 false, ac->has_negative_length_guard(), slow_region); 1424 }