1 /* 2 * Copyright (c) 2012, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "gc/shared/barrierSet.hpp" 26 #include "gc/shared/tlab_globals.hpp" 27 #include "opto/arraycopynode.hpp" 28 #include "oops/objArrayKlass.hpp" 29 #include "opto/convertnode.hpp" 30 #include "opto/vectornode.hpp" 31 #include "opto/graphKit.hpp" 32 #include "opto/macro.hpp" 33 #include "opto/runtime.hpp" 34 #include "opto/castnode.hpp" 35 #include "runtime/stubRoutines.hpp" 36 #include "utilities/align.hpp" 37 #include "utilities/powerOfTwo.hpp" 38 39 void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, int alias_idx, Node* precedent) { 40 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); 41 mb->init_req(TypeFunc::Control, *ctrl); 42 mb->init_req(TypeFunc::Memory, *mem); 43 transform_later(mb); 44 *ctrl = new ProjNode(mb,TypeFunc::Control); 45 transform_later(*ctrl); 46 Node* mem_proj = new ProjNode(mb,TypeFunc::Memory); 47 transform_later(mem_proj); 48 if (alias_idx == Compile::AliasIdxBot) { 49 *mem = mem_proj; 50 } else { 51 MergeMemNode* mm = (*mem)->clone()->as_MergeMem(); 52 mm->set_memory_at(alias_idx, mem_proj); 53 transform_later(mm); 54 *mem = mm; 55 } 56 } 57 58 Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) { 59 uint shift = exact_log2(type2aelembytes(elembt)); 60 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 61 Node* base = basic_plus_adr(ary, header); 62 #ifdef _LP64 63 // see comment in GraphKit::array_element_address 64 int index_max = max_jint - 1; // array size is max_jint, index is one less 65 const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax); 66 idx = transform_later( new ConvI2LNode(idx, lidxtype) ); 67 #endif 68 Node* scale = new LShiftXNode(idx, intcon(shift)); 69 transform_later(scale); 70 return basic_plus_adr(ary, base, scale); 71 } 72 73 Node* PhaseMacroExpand::ConvI2L(Node* offset) { 74 return transform_later(new ConvI2LNode(offset)); 75 } 76 77 Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem, 78 const TypeFunc* call_type, address call_addr, 79 const char* call_name, 80 const TypePtr* adr_type, 81 Node* parm0, Node* parm1, 82 Node* parm2, Node* parm3, 83 Node* parm4, Node* parm5, 84 Node* parm6, Node* parm7) { 85 Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 86 call->init_req(TypeFunc::Control, ctrl); 87 call->init_req(TypeFunc::I_O , top()); 88 call->init_req(TypeFunc::Memory , mem); 89 call->init_req(TypeFunc::ReturnAdr, top()); 90 call->init_req(TypeFunc::FramePtr, top()); 91 92 // Hook each parm in order. Stop looking at the first null. 93 if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0); 94 if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1); 95 if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2); 96 if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3); 97 if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4); 98 if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5); 99 if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6); 100 if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7); 101 /* close each nested if ===> */ } } } } } } } } 102 assert(call->in(call->req()-1) != nullptr, "must initialize all parms"); 103 104 return call; 105 } 106 107 108 //------------------------------generate_guard--------------------------- 109 // Helper function for generating guarded fast-slow graph structures. 110 // The given 'test', if true, guards a slow path. If the test fails 111 // then a fast path can be taken. (We generally hope it fails.) 112 // In all cases, GraphKit::control() is updated to the fast path. 113 // The returned value represents the control for the slow path. 114 // The return value is never 'top'; it is either a valid control 115 // or null if it is obvious that the slow path can never be taken. 116 // Also, if region and the slow control are not null, the slow edge 117 // is appended to the region. 118 Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) { 119 if ((*ctrl)->is_top()) { 120 // Already short circuited. 121 return nullptr; 122 } 123 // Build an if node and its projections. 124 // If test is true we take the slow path, which we assume is uncommon. 125 if (_igvn.type(test) == TypeInt::ZERO) { 126 // The slow branch is never taken. No need to build this guard. 127 return nullptr; 128 } 129 130 IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN); 131 transform_later(iff); 132 133 Node* if_slow = new IfTrueNode(iff); 134 transform_later(if_slow); 135 136 if (region != nullptr) { 137 region->add_req(if_slow); 138 } 139 140 Node* if_fast = new IfFalseNode(iff); 141 transform_later(if_fast); 142 143 *ctrl = if_fast; 144 145 return if_slow; 146 } 147 148 inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) { 149 return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3)); 150 } 151 152 void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) { 153 if ((*ctrl)->is_top()) 154 return; // already stopped 155 if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 156 return; // index is already adequately typed 157 Node* cmp_lt = new CmpINode(index, intcon(0)); 158 transform_later(cmp_lt); 159 Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); 160 transform_later(bol_lt); 161 generate_guard(ctrl, bol_lt, region, PROB_MIN); 162 } 163 164 void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) { 165 if ((*ctrl)->is_top()) 166 return; // already stopped 167 bool zero_offset = _igvn.type(offset) == TypeInt::ZERO; 168 if (zero_offset && subseq_length->eqv_uncast(array_length)) 169 return; // common case of whole-array copy 170 Node* last = subseq_length; 171 if (!zero_offset) { // last += offset 172 last = new AddINode(last, offset); 173 transform_later(last); 174 } 175 Node* cmp_lt = new CmpUNode(array_length, last); 176 transform_later(cmp_lt); 177 Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); 178 transform_later(bol_lt); 179 generate_guard(ctrl, bol_lt, region, PROB_MIN); 180 } 181 182 // 183 // Partial in-lining handling for smaller conjoint/disjoint array copies having 184 // length(in bytes) less than ArrayOperationPartialInlineSize. 185 // if (length <= ArrayOperationPartialInlineSize) { 186 // partial_inlining_block: 187 // mask = Mask_Gen 188 // vload = LoadVectorMasked src , mask 189 // StoreVectorMasked dst, mask, vload 190 // } else { 191 // stub_block: 192 // callstub array_copy 193 // } 194 // exit_block: 195 // Phi = label partial_inlining_block:mem , label stub_block:mem (filled by caller) 196 // mem = MergeMem (Phi) 197 // control = stub_block 198 // 199 // Exit_block and associated phi(memory) are partially initialized for partial_in-lining_block 200 // edges. Remaining edges for exit_block coming from stub_block are connected by the caller 201 // post stub nodes creation. 202 // 203 204 void PhaseMacroExpand::generate_partial_inlining_block(Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type, 205 RegionNode** exit_block, Node** result_memory, Node* length, 206 Node* src_start, Node* dst_start, BasicType type) { 207 const TypePtr *src_adr_type = _igvn.type(src_start)->isa_ptr(); 208 Node* inline_block = nullptr; 209 Node* stub_block = nullptr; 210 211 int const_len = -1; 212 const TypeInt* lty = nullptr; 213 uint shift = exact_log2(type2aelembytes(type)); 214 if (length->Opcode() == Op_ConvI2L) { 215 lty = _igvn.type(length->in(1))->isa_int(); 216 } else { 217 lty = _igvn.type(length)->isa_int(); 218 } 219 if (lty && lty->is_con()) { 220 const_len = lty->get_con() << shift; 221 } 222 223 // Return if copy length is greater than partial inline size limit or 224 // target does not supports masked load/stores. 225 int lane_count = ArrayCopyNode::get_partial_inline_vector_lane_count(type, const_len); 226 if ( const_len > ArrayOperationPartialInlineSize || 227 !Matcher::match_rule_supported_vector(Op_LoadVectorMasked, lane_count, type) || 228 !Matcher::match_rule_supported_vector(Op_StoreVectorMasked, lane_count, type) || 229 !Matcher::match_rule_supported_vector(Op_VectorMaskGen, lane_count, type)) { 230 return; 231 } 232 233 int inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(type); 234 Node* casted_length = new CastLLNode(*ctrl, length, TypeLong::make(0, inline_limit, Type::WidenMin)); 235 transform_later(casted_length); 236 Node* copy_bytes = new LShiftXNode(length, intcon(shift)); 237 transform_later(copy_bytes); 238 239 Node* cmp_le = new CmpULNode(copy_bytes, longcon(ArrayOperationPartialInlineSize)); 240 transform_later(cmp_le); 241 Node* bol_le = new BoolNode(cmp_le, BoolTest::le); 242 transform_later(bol_le); 243 inline_block = generate_guard(ctrl, bol_le, nullptr, PROB_FAIR); 244 stub_block = *ctrl; 245 246 Node* mask_gen = VectorMaskGenNode::make(casted_length, type); 247 transform_later(mask_gen); 248 249 unsigned vec_size = lane_count * type2aelembytes(type); 250 if (C->max_vector_size() < vec_size) { 251 C->set_max_vector_size(vec_size); 252 } 253 254 const TypeVect * vt = TypeVect::make(type, lane_count); 255 Node* mm = (*mem)->memory_at(C->get_alias_index(src_adr_type)); 256 Node* masked_load = new LoadVectorMaskedNode(inline_block, mm, src_start, 257 src_adr_type, vt, mask_gen); 258 transform_later(masked_load); 259 260 mm = (*mem)->memory_at(C->get_alias_index(adr_type)); 261 Node* masked_store = new StoreVectorMaskedNode(inline_block, mm, dst_start, 262 masked_load, adr_type, mask_gen); 263 transform_later(masked_store); 264 265 // Convergence region for inline_block and stub_block. 266 *exit_block = new RegionNode(3); 267 transform_later(*exit_block); 268 (*exit_block)->init_req(1, inline_block); 269 *result_memory = new PhiNode(*exit_block, Type::MEMORY, adr_type); 270 transform_later(*result_memory); 271 (*result_memory)->init_req(1, masked_store); 272 273 *ctrl = stub_block; 274 } 275 276 277 Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) { 278 if ((*ctrl)->is_top()) return nullptr; 279 280 if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint] 281 return nullptr; // index is already adequately typed 282 Node* cmp_le = new CmpINode(index, intcon(0)); 283 transform_later(cmp_le); 284 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le); 285 Node* bol_le = new BoolNode(cmp_le, le_or_eq); 286 transform_later(bol_le); 287 Node* is_notp = generate_guard(ctrl, bol_le, nullptr, PROB_MIN); 288 289 return is_notp; 290 } 291 292 void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) { 293 transform_later(call); 294 295 *ctrl = new ProjNode(call,TypeFunc::Control); 296 transform_later(*ctrl); 297 Node* newmem = new ProjNode(call, TypeFunc::Memory); 298 transform_later(newmem); 299 300 uint alias_idx = C->get_alias_index(adr_type); 301 if (alias_idx != Compile::AliasIdxBot) { 302 *mem = MergeMemNode::make(*mem); 303 (*mem)->set_memory_at(alias_idx, newmem); 304 } else { 305 *mem = MergeMemNode::make(newmem); 306 } 307 transform_later(*mem); 308 } 309 310 address PhaseMacroExpand::basictype2arraycopy(BasicType t, 311 Node* src_offset, 312 Node* dest_offset, 313 bool disjoint_bases, 314 const char* &name, 315 bool dest_uninitialized) { 316 const TypeInt* src_offset_inttype = _igvn.find_int_type(src_offset); 317 const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset); 318 319 bool aligned = false; 320 bool disjoint = disjoint_bases; 321 322 // if the offsets are the same, we can treat the memory regions as 323 // disjoint, because either the memory regions are in different arrays, 324 // or they are identical (which we can treat as disjoint.) We can also 325 // treat a copy with a destination index less that the source index 326 // as disjoint since a low->high copy will work correctly in this case. 327 if (src_offset_inttype != nullptr && src_offset_inttype->is_con() && 328 dest_offset_inttype != nullptr && dest_offset_inttype->is_con()) { 329 // both indices are constants 330 int s_offs = src_offset_inttype->get_con(); 331 int d_offs = dest_offset_inttype->get_con(); 332 int element_size = type2aelembytes(t); 333 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 334 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0); 335 if (s_offs >= d_offs) disjoint = true; 336 } else if (src_offset == dest_offset && src_offset != nullptr) { 337 // This can occur if the offsets are identical non-constants. 338 disjoint = true; 339 } 340 341 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized); 342 } 343 344 #define XTOP LP64_ONLY(COMMA top()) 345 346 // Generate an optimized call to arraycopy. 347 // Caller must guard against non-arrays. 348 // Caller must determine a common array basic-type for both arrays. 349 // Caller must validate offsets against array bounds. 350 // The slow_region has already collected guard failure paths 351 // (such as out of bounds length or non-conformable array types). 352 // The generated code has this shape, in general: 353 // 354 // if (length == 0) return // via zero_path 355 // slowval = -1 356 // if (types unknown) { 357 // slowval = call generic copy loop 358 // if (slowval == 0) return // via checked_path 359 // } else if (indexes in bounds) { 360 // if ((is object array) && !(array type check)) { 361 // slowval = call checked copy loop 362 // if (slowval == 0) return // via checked_path 363 // } else { 364 // call bulk copy loop 365 // return // via fast_path 366 // } 367 // } 368 // // adjust params for remaining work: 369 // if (slowval != -1) { 370 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n 371 // } 372 // slow_region: 373 // call slow arraycopy(src, src_offset, dest, dest_offset, length) 374 // return // via slow_call_path 375 // 376 // This routine is used from several intrinsics: System.arraycopy, 377 // Object.clone (the array subcase), and Arrays.copyOf[Range]. 378 // 379 Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc, 380 Node** ctrl, MergeMemNode* mem, Node** io, 381 const TypePtr* adr_type, 382 BasicType basic_elem_type, 383 Node* src, Node* src_offset, 384 Node* dest, Node* dest_offset, 385 Node* copy_length, 386 bool disjoint_bases, 387 bool length_never_negative, 388 RegionNode* slow_region) { 389 if (slow_region == nullptr) { 390 slow_region = new RegionNode(1); 391 transform_later(slow_region); 392 } 393 394 Node* original_dest = dest; 395 bool dest_needs_zeroing = false; 396 bool acopy_to_uninitialized = false; 397 398 // See if this is the initialization of a newly-allocated array. 399 // If so, we will take responsibility here for initializing it to zero. 400 // (Note: Because tightly_coupled_allocation performs checks on the 401 // out-edges of the dest, we need to avoid making derived pointers 402 // from it until we have checked its uses.) 403 if (ReduceBulkZeroing 404 && !(UseTLAB && ZeroTLAB) // pointless if already zeroed 405 && basic_elem_type != T_CONFLICT // avoid corner case 406 && !src->eqv_uncast(dest) 407 && alloc != nullptr 408 && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0) { 409 assert(ac->is_alloc_tightly_coupled(), "sanity"); 410 // acopy to uninitialized tightly coupled allocations 411 // needs zeroing outside the copy range 412 // and the acopy itself will be to uninitialized memory 413 acopy_to_uninitialized = true; 414 if (alloc->maybe_set_complete(&_igvn)) { 415 // "You break it, you buy it." 416 InitializeNode* init = alloc->initialization(); 417 assert(init->is_complete(), "we just did this"); 418 init->set_complete_with_arraycopy(); 419 assert(dest->is_CheckCastPP(), "sanity"); 420 assert(dest->in(0)->in(0) == init, "dest pinned"); 421 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory 422 // From this point on, every exit path is responsible for 423 // initializing any non-copied parts of the object to zero. 424 // Also, if this flag is set we make sure that arraycopy interacts properly 425 // with G1, eliding pre-barriers. See CR 6627983. 426 dest_needs_zeroing = true; 427 } else { 428 // dest_need_zeroing = false; 429 } 430 } else { 431 // No zeroing elimination needed here. 432 alloc = nullptr; 433 acopy_to_uninitialized = false; 434 //original_dest = dest; 435 //dest_needs_zeroing = false; 436 } 437 438 uint alias_idx = C->get_alias_index(adr_type); 439 440 // Results are placed here: 441 enum { fast_path = 1, // normal void-returning assembly stub 442 checked_path = 2, // special assembly stub with cleanup 443 slow_call_path = 3, // something went wrong; call the VM 444 zero_path = 4, // bypass when length of copy is zero 445 bcopy_path = 5, // copy primitive array by 64-bit blocks 446 PATH_LIMIT = 6 447 }; 448 RegionNode* result_region = new RegionNode(PATH_LIMIT); 449 PhiNode* result_i_o = new PhiNode(result_region, Type::ABIO); 450 PhiNode* result_memory = new PhiNode(result_region, Type::MEMORY, adr_type); 451 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice"); 452 transform_later(result_region); 453 transform_later(result_i_o); 454 transform_later(result_memory); 455 456 // The slow_control path: 457 Node* slow_control; 458 Node* slow_i_o = *io; 459 Node* slow_mem = mem->memory_at(alias_idx); 460 DEBUG_ONLY(slow_control = (Node*) badAddress); 461 462 // Checked control path: 463 Node* checked_control = top(); 464 Node* checked_mem = nullptr; 465 Node* checked_i_o = nullptr; 466 Node* checked_value = nullptr; 467 468 if (basic_elem_type == T_CONFLICT) { 469 assert(!dest_needs_zeroing, ""); 470 Node* cv = generate_generic_arraycopy(ctrl, &mem, 471 adr_type, 472 src, src_offset, dest, dest_offset, 473 copy_length, acopy_to_uninitialized); 474 if (cv == nullptr) cv = intcon(-1); // failure (no stub available) 475 checked_control = *ctrl; 476 checked_i_o = *io; 477 checked_mem = mem->memory_at(alias_idx); 478 checked_value = cv; 479 *ctrl = top(); 480 } 481 482 Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative); 483 if (not_pos != nullptr) { 484 Node* local_ctrl = not_pos, *local_io = *io; 485 MergeMemNode* local_mem = MergeMemNode::make(mem); 486 transform_later(local_mem); 487 488 // (6) length must not be negative. 489 if (!length_never_negative) { 490 generate_negative_guard(&local_ctrl, copy_length, slow_region); 491 } 492 493 // copy_length is 0. 494 if (dest_needs_zeroing) { 495 assert(!local_ctrl->is_top(), "no ctrl?"); 496 Node* dest_length = alloc->in(AllocateNode::ALength); 497 if (copy_length->eqv_uncast(dest_length) 498 || _igvn.find_int_con(dest_length, 1) <= 0) { 499 // There is no zeroing to do. No need for a secondary raw memory barrier. 500 } else { 501 // Clear the whole thing since there are no source elements to copy. 502 generate_clear_array(local_ctrl, local_mem, 503 adr_type, dest, basic_elem_type, 504 intcon(0), nullptr, 505 alloc->in(AllocateNode::AllocSize)); 506 // Use a secondary InitializeNode as raw memory barrier. 507 // Currently it is needed only on this path since other 508 // paths have stub or runtime calls as raw memory barriers. 509 MemBarNode* mb = MemBarNode::make(C, Op_Initialize, 510 Compile::AliasIdxRaw, 511 top()); 512 transform_later(mb); 513 mb->set_req(TypeFunc::Control,local_ctrl); 514 mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw)); 515 local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control)); 516 local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory))); 517 518 InitializeNode* init = mb->as_Initialize(); 519 init->set_complete(&_igvn); // (there is no corresponding AllocateNode) 520 } 521 } 522 523 // Present the results of the fast call. 524 result_region->init_req(zero_path, local_ctrl); 525 result_i_o ->init_req(zero_path, local_io); 526 result_memory->init_req(zero_path, local_mem->memory_at(alias_idx)); 527 } 528 529 if (!(*ctrl)->is_top() && dest_needs_zeroing) { 530 // We have to initialize the *uncopied* part of the array to zero. 531 // The copy destination is the slice dest[off..off+len]. The other slices 532 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length]. 533 Node* dest_size = alloc->in(AllocateNode::AllocSize); 534 Node* dest_length = alloc->in(AllocateNode::ALength); 535 Node* dest_tail = transform_later( new AddINode(dest_offset, copy_length)); 536 537 // If there is a head section that needs zeroing, do it now. 538 if (_igvn.find_int_con(dest_offset, -1) != 0) { 539 generate_clear_array(*ctrl, mem, 540 adr_type, dest, basic_elem_type, 541 intcon(0), dest_offset, 542 nullptr); 543 } 544 545 // Next, perform a dynamic check on the tail length. 546 // It is often zero, and we can win big if we prove this. 547 // There are two wins: Avoid generating the ClearArray 548 // with its attendant messy index arithmetic, and upgrade 549 // the copy to a more hardware-friendly word size of 64 bits. 550 Node* tail_ctl = nullptr; 551 if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) { 552 Node* cmp_lt = transform_later( new CmpINode(dest_tail, dest_length) ); 553 Node* bol_lt = transform_later( new BoolNode(cmp_lt, BoolTest::lt) ); 554 tail_ctl = generate_slow_guard(ctrl, bol_lt, nullptr); 555 assert(tail_ctl != nullptr || !(*ctrl)->is_top(), "must be an outcome"); 556 } 557 558 // At this point, let's assume there is no tail. 559 if (!(*ctrl)->is_top() && alloc != nullptr && basic_elem_type != T_OBJECT) { 560 // There is no tail. Try an upgrade to a 64-bit copy. 561 bool didit = false; 562 { 563 Node* local_ctrl = *ctrl, *local_io = *io; 564 MergeMemNode* local_mem = MergeMemNode::make(mem); 565 transform_later(local_mem); 566 567 didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io, 568 adr_type, basic_elem_type, alloc, 569 src, src_offset, dest, dest_offset, 570 dest_size, acopy_to_uninitialized); 571 if (didit) { 572 // Present the results of the block-copying fast call. 573 result_region->init_req(bcopy_path, local_ctrl); 574 result_i_o ->init_req(bcopy_path, local_io); 575 result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx)); 576 } 577 } 578 if (didit) { 579 *ctrl = top(); // no regular fast path 580 } 581 } 582 583 // Clear the tail, if any. 584 if (tail_ctl != nullptr) { 585 Node* notail_ctl = (*ctrl)->is_top() ? nullptr : *ctrl; 586 *ctrl = tail_ctl; 587 if (notail_ctl == nullptr) { 588 generate_clear_array(*ctrl, mem, 589 adr_type, dest, basic_elem_type, 590 dest_tail, nullptr, 591 dest_size); 592 } else { 593 // Make a local merge. 594 Node* done_ctl = transform_later(new RegionNode(3)); 595 Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type)); 596 done_ctl->init_req(1, notail_ctl); 597 done_mem->init_req(1, mem->memory_at(alias_idx)); 598 generate_clear_array(*ctrl, mem, 599 adr_type, dest, basic_elem_type, 600 dest_tail, nullptr, 601 dest_size); 602 done_ctl->init_req(2, *ctrl); 603 done_mem->init_req(2, mem->memory_at(alias_idx)); 604 *ctrl = done_ctl; 605 mem->set_memory_at(alias_idx, done_mem); 606 } 607 } 608 } 609 610 BasicType copy_type = basic_elem_type; 611 assert(basic_elem_type != T_ARRAY, "caller must fix this"); 612 if (!(*ctrl)->is_top() && copy_type == T_OBJECT) { 613 // If src and dest have compatible element types, we can copy bits. 614 // Types S[] and D[] are compatible if D is a supertype of S. 615 // 616 // If they are not, we will use checked_oop_disjoint_arraycopy, 617 // which performs a fast optimistic per-oop check, and backs off 618 // further to JVM_ArrayCopy on the first per-oop check that fails. 619 // (Actually, we don't move raw bits only; the GC requires card marks.) 620 621 // We don't need a subtype check for validated copies and Object[].clone() 622 bool skip_subtype_check = ac->is_arraycopy_validated() || ac->is_copyof_validated() || 623 ac->is_copyofrange_validated() || ac->is_clone_oop_array(); 624 if (!skip_subtype_check) { 625 // Get the klass* for both src and dest 626 Node* src_klass = ac->in(ArrayCopyNode::SrcKlass); 627 Node* dest_klass = ac->in(ArrayCopyNode::DestKlass); 628 629 assert(src_klass != nullptr && dest_klass != nullptr, "should have klasses"); 630 631 // Generate the subtype check. 632 // This might fold up statically, or then again it might not. 633 // 634 // Non-static example: Copying List<String>.elements to a new String[]. 635 // The backing store for a List<String> is always an Object[], 636 // but its elements are always type String, if the generic types 637 // are correct at the source level. 638 // 639 // Test S[] against D[], not S against D, because (probably) 640 // the secondary supertype cache is less busy for S[] than S. 641 // This usually only matters when D is an interface. 642 Node* not_subtype_ctrl = Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, _igvn, nullptr, -1); 643 // Plug failing path into checked_oop_disjoint_arraycopy 644 if (not_subtype_ctrl != top()) { 645 Node* local_ctrl = not_subtype_ctrl; 646 MergeMemNode* local_mem = MergeMemNode::make(mem); 647 transform_later(local_mem); 648 649 // (At this point we can assume disjoint_bases, since types differ.) 650 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 651 Node* p1 = basic_plus_adr(dest_klass, ek_offset); 652 Node* n1 = LoadKlassNode::make(_igvn, C->immutable_memory(), p1, TypeRawPtr::BOTTOM); 653 Node* dest_elem_klass = transform_later(n1); 654 Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem, 655 adr_type, 656 dest_elem_klass, 657 src, src_offset, dest, dest_offset, 658 ConvI2X(copy_length), acopy_to_uninitialized); 659 if (cv == nullptr) cv = intcon(-1); // failure (no stub available) 660 checked_control = local_ctrl; 661 checked_i_o = *io; 662 checked_mem = local_mem->memory_at(alias_idx); 663 checked_value = cv; 664 } 665 } 666 // At this point we know we do not need type checks on oop stores. 667 668 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 669 if (!bs->array_copy_requires_gc_barriers(alloc != nullptr, copy_type, false, false, BarrierSetC2::Expansion)) { 670 // If we do not need gc barriers, copy using the jint or jlong stub. 671 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT); 672 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type), 673 "sizes agree"); 674 } 675 } 676 677 if (!(*ctrl)->is_top()) { 678 // Generate the fast path, if possible. 679 Node* local_ctrl = *ctrl; 680 MergeMemNode* local_mem = MergeMemNode::make(mem); 681 transform_later(local_mem); 682 generate_unchecked_arraycopy(&local_ctrl, &local_mem, 683 adr_type, copy_type, disjoint_bases, 684 src, src_offset, dest, dest_offset, 685 ConvI2X(copy_length), acopy_to_uninitialized); 686 687 // Present the results of the fast call. 688 result_region->init_req(fast_path, local_ctrl); 689 result_i_o ->init_req(fast_path, *io); 690 result_memory->init_req(fast_path, local_mem->memory_at(alias_idx)); 691 } 692 693 // Here are all the slow paths up to this point, in one bundle: 694 assert(slow_region != nullptr, "allocated on entry"); 695 slow_control = slow_region; 696 DEBUG_ONLY(slow_region = (RegionNode*)badAddress); 697 698 *ctrl = checked_control; 699 if (!(*ctrl)->is_top()) { 700 // Clean up after the checked call. 701 // The returned value is either 0 or -1^K, 702 // where K = number of partially transferred array elements. 703 Node* cmp = new CmpINode(checked_value, intcon(0)); 704 transform_later(cmp); 705 Node* bol = new BoolNode(cmp, BoolTest::eq); 706 transform_later(bol); 707 IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN); 708 transform_later(iff); 709 710 // If it is 0, we are done, so transfer to the end. 711 Node* checks_done = new IfTrueNode(iff); 712 transform_later(checks_done); 713 result_region->init_req(checked_path, checks_done); 714 result_i_o ->init_req(checked_path, checked_i_o); 715 result_memory->init_req(checked_path, checked_mem); 716 717 // If it is not zero, merge into the slow call. 718 *ctrl = new IfFalseNode(iff); 719 transform_later(*ctrl); 720 RegionNode* slow_reg2 = new RegionNode(3); 721 PhiNode* slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO); 722 PhiNode* slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type); 723 transform_later(slow_reg2); 724 transform_later(slow_i_o2); 725 transform_later(slow_mem2); 726 slow_reg2 ->init_req(1, slow_control); 727 slow_i_o2 ->init_req(1, slow_i_o); 728 slow_mem2 ->init_req(1, slow_mem); 729 slow_reg2 ->init_req(2, *ctrl); 730 slow_i_o2 ->init_req(2, checked_i_o); 731 slow_mem2 ->init_req(2, checked_mem); 732 733 slow_control = slow_reg2; 734 slow_i_o = slow_i_o2; 735 slow_mem = slow_mem2; 736 737 if (alloc != nullptr) { 738 // We'll restart from the very beginning, after zeroing the whole thing. 739 // This can cause double writes, but that's OK since dest is brand new. 740 // So we ignore the low 31 bits of the value returned from the stub. 741 } else { 742 // We must continue the copy exactly where it failed, or else 743 // another thread might see the wrong number of writes to dest. 744 Node* checked_offset = new XorINode(checked_value, intcon(-1)); 745 Node* slow_offset = new PhiNode(slow_reg2, TypeInt::INT); 746 transform_later(checked_offset); 747 transform_later(slow_offset); 748 slow_offset->init_req(1, intcon(0)); 749 slow_offset->init_req(2, checked_offset); 750 751 // Adjust the arguments by the conditionally incoming offset. 752 Node* src_off_plus = new AddINode(src_offset, slow_offset); 753 transform_later(src_off_plus); 754 Node* dest_off_plus = new AddINode(dest_offset, slow_offset); 755 transform_later(dest_off_plus); 756 Node* length_minus = new SubINode(copy_length, slow_offset); 757 transform_later(length_minus); 758 759 // Tweak the node variables to adjust the code produced below: 760 src_offset = src_off_plus; 761 dest_offset = dest_off_plus; 762 copy_length = length_minus; 763 } 764 } 765 *ctrl = slow_control; 766 if (!(*ctrl)->is_top()) { 767 Node* local_ctrl = *ctrl, *local_io = slow_i_o; 768 MergeMemNode* local_mem = MergeMemNode::make(mem); 769 transform_later(local_mem); 770 771 // Generate the slow path, if needed. 772 local_mem->set_memory_at(alias_idx, slow_mem); 773 774 if (dest_needs_zeroing) { 775 generate_clear_array(local_ctrl, local_mem, 776 adr_type, dest, basic_elem_type, 777 intcon(0), nullptr, 778 alloc->in(AllocateNode::AllocSize)); 779 } 780 781 local_mem = generate_slow_arraycopy(ac, 782 &local_ctrl, local_mem, &local_io, 783 adr_type, 784 src, src_offset, dest, dest_offset, 785 copy_length, /*dest_uninitialized*/false); 786 787 result_region->init_req(slow_call_path, local_ctrl); 788 result_i_o ->init_req(slow_call_path, local_io); 789 result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx)); 790 } else { 791 ShouldNotReachHere(); // no call to generate_slow_arraycopy: 792 // projections were not extracted 793 } 794 795 // Remove unused edges. 796 for (uint i = 1; i < result_region->req(); i++) { 797 if (result_region->in(i) == nullptr) { 798 result_region->init_req(i, top()); 799 } 800 } 801 802 // Finished; return the combined state. 803 *ctrl = result_region; 804 *io = result_i_o; 805 mem->set_memory_at(alias_idx, result_memory); 806 807 // mem no longer guaranteed to stay a MergeMemNode 808 Node* out_mem = mem; 809 DEBUG_ONLY(mem = nullptr); 810 811 // The memory edges above are precise in order to model effects around 812 // array copies accurately to allow value numbering of field loads around 813 // arraycopy. Such field loads, both before and after, are common in Java 814 // collections and similar classes involving header/array data structures. 815 // 816 // But with low number of register or when some registers are used or killed 817 // by arraycopy calls it causes registers spilling on stack. See 6544710. 818 // The next memory barrier is added to avoid it. If the arraycopy can be 819 // optimized away (which it can, sometimes) then we can manually remove 820 // the membar also. 821 // 822 // Do not let reads from the cloned object float above the arraycopy. 823 if (alloc != nullptr && !alloc->initialization()->does_not_escape()) { 824 // Do not let stores that initialize this object be reordered with 825 // a subsequent store that would make this object accessible by 826 // other threads. 827 assert(ac->_dest_type == TypeOopPtr::BOTTOM, "non escaping destination shouldn't have narrow slice"); 828 insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore, Compile::AliasIdxBot); 829 } else { 830 int mem_bar_alias_idx = Compile::AliasIdxBot; 831 if (ac->_dest_type != TypeOopPtr::BOTTOM) { 832 // The graph was transformed under the assumption the ArrayCopy node only had an effect on a narrow slice. We can't 833 // insert a wide membar now that it's being expanded: a load that uses the input memory state of the ArrayCopy 834 // could then become anti dependent on the membar when it was not anti dependent on the ArrayCopy leading to a 835 // broken graph. 836 mem_bar_alias_idx = C->get_alias_index(ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr()); 837 } 838 insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder, mem_bar_alias_idx); 839 } 840 841 assert((*ctrl)->is_Proj(), "MemBar control projection"); 842 assert((*ctrl)->in(0)->isa_MemBar(), "MemBar node"); 843 (*ctrl)->in(0)->isa_MemBar()->set_trailing_expanded_array_copy(); 844 845 _igvn.replace_node(_callprojs.fallthrough_memproj, out_mem); 846 if (_callprojs.fallthrough_ioproj != nullptr) { 847 _igvn.replace_node(_callprojs.fallthrough_ioproj, *io); 848 } 849 _igvn.replace_node(_callprojs.fallthrough_catchproj, *ctrl); 850 851 #ifdef ASSERT 852 const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr(); 853 if (dest_t->is_known_instance()) { 854 ArrayCopyNode* ac = nullptr; 855 assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost"); 856 assert(ac == nullptr, "no arraycopy anymore"); 857 } 858 #endif 859 860 return out_mem; 861 } 862 863 // Helper for initialization of arrays, creating a ClearArray. 864 // It writes zero bits in [start..end), within the body of an array object. 865 // The memory effects are all chained onto the 'adr_type' alias category. 866 // 867 // Since the object is otherwise uninitialized, we are free 868 // to put a little "slop" around the edges of the cleared area, 869 // as long as it does not go back into the array's header, 870 // or beyond the array end within the heap. 871 // 872 // The lower edge can be rounded down to the nearest jint and the 873 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes. 874 // 875 // Arguments: 876 // adr_type memory slice where writes are generated 877 // dest oop of the destination array 878 // basic_elem_type element type of the destination 879 // slice_idx array index of first element to store 880 // slice_len number of elements to store (or null) 881 // dest_size total size in bytes of the array object 882 // 883 // Exactly one of slice_len or dest_size must be non-null. 884 // If dest_size is non-null, zeroing extends to the end of the object. 885 // If slice_len is non-null, the slice_idx value must be a constant. 886 void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem, 887 const TypePtr* adr_type, 888 Node* dest, 889 BasicType basic_elem_type, 890 Node* slice_idx, 891 Node* slice_len, 892 Node* dest_size) { 893 // one or the other but not both of slice_len and dest_size: 894 assert((slice_len != nullptr? 1: 0) + (dest_size != nullptr? 1: 0) == 1, ""); 895 if (slice_len == nullptr) slice_len = top(); 896 if (dest_size == nullptr) dest_size = top(); 897 898 uint alias_idx = C->get_alias_index(adr_type); 899 900 // operate on this memory slice: 901 Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on 902 903 // scaling and rounding of indexes: 904 int scale = exact_log2(type2aelembytes(basic_elem_type)); 905 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 906 int clear_low = (-1 << scale) & (BytesPerInt - 1); 907 int bump_bit = (-1 << scale) & BytesPerInt; 908 909 // determine constant starts and ends 910 const intptr_t BIG_NEG = -128; 911 assert(BIG_NEG + 2*abase < 0, "neg enough"); 912 intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG); 913 intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG); 914 if (slice_len_con == 0) { 915 return; // nothing to do here 916 } 917 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low; 918 intptr_t end_con = _igvn.find_intptr_t_con(dest_size, -1); 919 if (slice_idx_con >= 0 && slice_len_con >= 0) { 920 assert(end_con < 0, "not two cons"); 921 end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale), 922 BytesPerLong); 923 } 924 925 if (start_con >= 0 && end_con >= 0) { 926 // Constant start and end. Simple. 927 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, 928 start_con, end_con, &_igvn); 929 } else if (start_con >= 0 && dest_size != top()) { 930 // Constant start, pre-rounded end after the tail of the array. 931 Node* end = dest_size; 932 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, 933 start_con, end, &_igvn); 934 } else if (start_con >= 0 && slice_len != top()) { 935 // Constant start, non-constant end. End needs rounding up. 936 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8) 937 intptr_t end_base = abase + (slice_idx_con << scale); 938 int end_round = (-1 << scale) & (BytesPerLong - 1); 939 Node* end = ConvI2X(slice_len); 940 if (scale != 0) 941 end = transform_later(new LShiftXNode(end, intcon(scale) )); 942 end_base += end_round; 943 end = transform_later(new AddXNode(end, MakeConX(end_base)) ); 944 end = transform_later(new AndXNode(end, MakeConX(~end_round)) ); 945 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, 946 start_con, end, &_igvn); 947 } else if (start_con < 0 && dest_size != top()) { 948 // Non-constant start, pre-rounded end after the tail of the array. 949 // This is almost certainly a "round-to-end" operation. 950 Node* start = slice_idx; 951 start = ConvI2X(start); 952 if (scale != 0) 953 start = transform_later(new LShiftXNode( start, intcon(scale) )); 954 start = transform_later(new AddXNode(start, MakeConX(abase)) ); 955 if ((bump_bit | clear_low) != 0) { 956 int to_clear = (bump_bit | clear_low); 957 // Align up mod 8, then store a jint zero unconditionally 958 // just before the mod-8 boundary. 959 if (((abase + bump_bit) & ~to_clear) - bump_bit 960 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) { 961 bump_bit = 0; 962 assert((abase & to_clear) == 0, "array base must be long-aligned"); 963 } else { 964 // Bump 'start' up to (or past) the next jint boundary: 965 start = transform_later( new AddXNode(start, MakeConX(bump_bit)) ); 966 assert((abase & clear_low) == 0, "array base must be int-aligned"); 967 } 968 // Round bumped 'start' down to jlong boundary in body of array. 969 start = transform_later(new AndXNode(start, MakeConX(~to_clear)) ); 970 if (bump_bit != 0) { 971 // Store a zero to the immediately preceding jint: 972 Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) ); 973 Node* p1 = basic_plus_adr(dest, x1); 974 mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered); 975 mem = transform_later(mem); 976 } 977 } 978 Node* end = dest_size; // pre-rounded 979 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, 980 start, end, &_igvn); 981 } else { 982 // Non-constant start, unrounded non-constant end. 983 // (Nobody zeroes a random midsection of an array using this routine.) 984 ShouldNotReachHere(); // fix caller 985 } 986 987 // Done. 988 merge_mem->set_memory_at(alias_idx, mem); 989 } 990 991 bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io, 992 const TypePtr* adr_type, 993 BasicType basic_elem_type, 994 AllocateNode* alloc, 995 Node* src, Node* src_offset, 996 Node* dest, Node* dest_offset, 997 Node* dest_size, bool dest_uninitialized) { 998 // See if there is an advantage from block transfer. 999 int scale = exact_log2(type2aelembytes(basic_elem_type)); 1000 if (scale >= LogBytesPerLong) 1001 return false; // it is already a block transfer 1002 1003 // Look at the alignment of the starting offsets. 1004 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 1005 1006 intptr_t src_off_con = (intptr_t) _igvn.find_int_con(src_offset, -1); 1007 intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1); 1008 if (src_off_con < 0 || dest_off_con < 0) { 1009 // At present, we can only understand constants. 1010 return false; 1011 } 1012 1013 intptr_t src_off = abase + (src_off_con << scale); 1014 intptr_t dest_off = abase + (dest_off_con << scale); 1015 1016 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) { 1017 // Non-aligned; too bad. 1018 // One more chance: Pick off an initial 32-bit word. 1019 // This is a common case, since abase can be odd mod 8. 1020 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt && 1021 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) { 1022 Node* sptr = basic_plus_adr(src, src_off); 1023 Node* dptr = basic_plus_adr(dest, dest_off); 1024 const TypePtr* s_adr_type = _igvn.type(sptr)->is_ptr(); 1025 assert(s_adr_type->isa_aryptr(), "impossible slice"); 1026 uint s_alias_idx = C->get_alias_index(s_adr_type); 1027 uint d_alias_idx = C->get_alias_index(adr_type); 1028 bool is_mismatched = (basic_elem_type != T_INT); 1029 Node* sval = transform_later( 1030 LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(s_alias_idx), sptr, s_adr_type, 1031 TypeInt::INT, T_INT, MemNode::unordered, LoadNode::DependsOnlyOnTest, 1032 false /*require_atomic_access*/, false /*unaligned*/, is_mismatched)); 1033 Node* st = transform_later( 1034 StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(d_alias_idx), dptr, adr_type, 1035 sval, T_INT, MemNode::unordered)); 1036 if (is_mismatched) { 1037 st->as_Store()->set_mismatched_access(); 1038 } 1039 (*mem)->set_memory_at(d_alias_idx, st); 1040 src_off += BytesPerInt; 1041 dest_off += BytesPerInt; 1042 } else { 1043 return false; 1044 } 1045 } 1046 assert(src_off % BytesPerLong == 0, ""); 1047 assert(dest_off % BytesPerLong == 0, ""); 1048 1049 // Do this copy by giant steps. 1050 Node* sptr = basic_plus_adr(src, src_off); 1051 Node* dptr = basic_plus_adr(dest, dest_off); 1052 Node* countx = dest_size; 1053 countx = transform_later(new SubXNode(countx, MakeConX(dest_off))); 1054 countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong))); 1055 1056 bool disjoint_bases = true; // since alloc isn't null 1057 generate_unchecked_arraycopy(ctrl, mem, 1058 adr_type, T_LONG, disjoint_bases, 1059 sptr, nullptr, dptr, nullptr, countx, dest_uninitialized); 1060 1061 return true; 1062 } 1063 1064 // Helper function; generates code for the slow case. 1065 // We make a call to a runtime method which emulates the native method, 1066 // but without the native wrapper overhead. 1067 MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac, 1068 Node** ctrl, Node* mem, Node** io, 1069 const TypePtr* adr_type, 1070 Node* src, Node* src_offset, 1071 Node* dest, Node* dest_offset, 1072 Node* copy_length, bool dest_uninitialized) { 1073 assert(!dest_uninitialized, "Invariant"); 1074 1075 const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type(); 1076 CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(), 1077 "slow_arraycopy", TypePtr::BOTTOM); 1078 1079 call->init_req(TypeFunc::Control, *ctrl); 1080 call->init_req(TypeFunc::I_O , *io); 1081 call->init_req(TypeFunc::Memory , mem); 1082 call->init_req(TypeFunc::ReturnAdr, top()); 1083 call->init_req(TypeFunc::FramePtr, top()); 1084 call->init_req(TypeFunc::Parms+0, src); 1085 call->init_req(TypeFunc::Parms+1, src_offset); 1086 call->init_req(TypeFunc::Parms+2, dest); 1087 call->init_req(TypeFunc::Parms+3, dest_offset); 1088 call->init_req(TypeFunc::Parms+4, copy_length); 1089 call->copy_call_debug_info(&_igvn, ac); 1090 1091 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1092 _igvn.replace_node(ac, call); 1093 transform_later(call); 1094 1095 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1096 *ctrl = _callprojs.fallthrough_catchproj->clone(); 1097 transform_later(*ctrl); 1098 1099 Node* m = _callprojs.fallthrough_memproj->clone(); 1100 transform_later(m); 1101 1102 uint alias_idx = C->get_alias_index(adr_type); 1103 MergeMemNode* out_mem; 1104 if (alias_idx != Compile::AliasIdxBot) { 1105 out_mem = MergeMemNode::make(mem); 1106 out_mem->set_memory_at(alias_idx, m); 1107 } else { 1108 out_mem = MergeMemNode::make(m); 1109 } 1110 transform_later(out_mem); 1111 1112 // When src is negative and arraycopy is before an infinite loop,_callprojs.fallthrough_ioproj 1113 // could be null. Skip clone and update null fallthrough_ioproj. 1114 if (_callprojs.fallthrough_ioproj != nullptr) { 1115 *io = _callprojs.fallthrough_ioproj->clone(); 1116 transform_later(*io); 1117 } else { 1118 *io = nullptr; 1119 } 1120 1121 return out_mem; 1122 } 1123 1124 // Helper function; generates code for cases requiring runtime checks. 1125 Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem, 1126 const TypePtr* adr_type, 1127 Node* dest_elem_klass, 1128 Node* src, Node* src_offset, 1129 Node* dest, Node* dest_offset, 1130 Node* copy_length, bool dest_uninitialized) { 1131 if ((*ctrl)->is_top()) return nullptr; 1132 1133 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized); 1134 if (copyfunc_addr == nullptr) { // Stub was not generated, go slow path. 1135 return nullptr; 1136 } 1137 1138 // Pick out the parameters required to perform a store-check 1139 // for the target array. This is an optimistic check. It will 1140 // look in each non-null element's class, at the desired klass's 1141 // super_check_offset, for the desired klass. 1142 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1143 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset); 1144 Node* n3 = new LoadINode(nullptr, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered); 1145 Node* check_offset = ConvI2X(transform_later(n3)); 1146 Node* check_value = dest_elem_klass; 1147 1148 Node* src_start = array_element_address(src, src_offset, T_OBJECT); 1149 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT); 1150 1151 const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type(); 1152 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type, 1153 src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value); 1154 1155 finish_arraycopy_call(call, ctrl, mem, adr_type); 1156 1157 Node* proj = new ProjNode(call, TypeFunc::Parms); 1158 transform_later(proj); 1159 1160 return proj; 1161 } 1162 1163 // Helper function; generates code for cases requiring runtime checks. 1164 Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem, 1165 const TypePtr* adr_type, 1166 Node* src, Node* src_offset, 1167 Node* dest, Node* dest_offset, 1168 Node* copy_length, bool dest_uninitialized) { 1169 if ((*ctrl)->is_top()) return nullptr; 1170 assert(!dest_uninitialized, "Invariant"); 1171 1172 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1173 if (copyfunc_addr == nullptr) { // Stub was not generated, go slow path. 1174 return nullptr; 1175 } 1176 1177 const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type(); 1178 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type, 1179 src, src_offset, dest, dest_offset, copy_length); 1180 1181 finish_arraycopy_call(call, ctrl, mem, adr_type); 1182 1183 Node* proj = new ProjNode(call, TypeFunc::Parms); 1184 transform_later(proj); 1185 1186 return proj; 1187 } 1188 1189 // Helper function; generates the fast out-of-line call to an arraycopy stub. 1190 void PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem, 1191 const TypePtr* adr_type, 1192 BasicType basic_elem_type, 1193 bool disjoint_bases, 1194 Node* src, Node* src_offset, 1195 Node* dest, Node* dest_offset, 1196 Node* copy_length, bool dest_uninitialized) { 1197 if ((*ctrl)->is_top()) { 1198 return; 1199 } 1200 1201 Node* src_start = src; 1202 Node* dest_start = dest; 1203 if (src_offset != nullptr || dest_offset != nullptr) { 1204 src_start = array_element_address(src, src_offset, basic_elem_type); 1205 dest_start = array_element_address(dest, dest_offset, basic_elem_type); 1206 } 1207 1208 // Figure out which arraycopy runtime method to call. 1209 const char* copyfunc_name = "arraycopy"; 1210 address copyfunc_addr = 1211 basictype2arraycopy(basic_elem_type, src_offset, dest_offset, 1212 disjoint_bases, copyfunc_name, dest_uninitialized); 1213 1214 Node* result_memory = nullptr; 1215 RegionNode* exit_block = nullptr; 1216 if (ArrayOperationPartialInlineSize > 0 && is_subword_type(basic_elem_type) && 1217 Matcher::vector_width_in_bytes(basic_elem_type) >= 16) { 1218 generate_partial_inlining_block(ctrl, mem, adr_type, &exit_block, &result_memory, 1219 copy_length, src_start, dest_start, basic_elem_type); 1220 } 1221 1222 const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type(); 1223 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type, 1224 src_start, dest_start, copy_length XTOP); 1225 1226 finish_arraycopy_call(call, ctrl, mem, adr_type); 1227 1228 // Connecting remaining edges for exit_block coming from stub_block. 1229 if (exit_block) { 1230 exit_block->init_req(2, *ctrl); 1231 1232 // Memory edge corresponding to stub_region. 1233 result_memory->init_req(2, *mem); 1234 1235 uint alias_idx = C->get_alias_index(adr_type); 1236 if (alias_idx != Compile::AliasIdxBot) { 1237 *mem = MergeMemNode::make(*mem); 1238 (*mem)->set_memory_at(alias_idx, result_memory); 1239 } else { 1240 *mem = MergeMemNode::make(result_memory); 1241 } 1242 transform_later(*mem); 1243 *ctrl = exit_block; 1244 } 1245 } 1246 1247 #undef XTOP 1248 1249 void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) { 1250 Node* ctrl = ac->in(TypeFunc::Control); 1251 Node* io = ac->in(TypeFunc::I_O); 1252 Node* src = ac->in(ArrayCopyNode::Src); 1253 Node* src_offset = ac->in(ArrayCopyNode::SrcPos); 1254 Node* dest = ac->in(ArrayCopyNode::Dest); 1255 Node* dest_offset = ac->in(ArrayCopyNode::DestPos); 1256 Node* length = ac->in(ArrayCopyNode::Length); 1257 MergeMemNode* merge_mem = nullptr; 1258 1259 if (ac->is_clonebasic()) { 1260 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1261 bs->clone_at_expansion(this, ac); 1262 return; 1263 } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_clone_oop_array()) { 1264 Node* mem = ac->in(TypeFunc::Memory); 1265 merge_mem = MergeMemNode::make(mem); 1266 transform_later(merge_mem); 1267 1268 AllocateArrayNode* alloc = nullptr; 1269 if (ac->is_alloc_tightly_coupled()) { 1270 alloc = AllocateArrayNode::Ideal_array_allocation(dest); 1271 assert(alloc != nullptr, "expect alloc"); 1272 } 1273 1274 const TypePtr* adr_type = _igvn.type(dest)->is_oopptr()->add_offset(Type::OffsetBot); 1275 if (ac->_dest_type != TypeOopPtr::BOTTOM) { 1276 adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr(); 1277 } 1278 generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, 1279 adr_type, T_OBJECT, 1280 src, src_offset, dest, dest_offset, length, 1281 true, ac->has_negative_length_guard()); 1282 1283 return; 1284 } 1285 1286 AllocateArrayNode* alloc = nullptr; 1287 if (ac->is_alloc_tightly_coupled()) { 1288 alloc = AllocateArrayNode::Ideal_array_allocation(dest); 1289 assert(alloc != nullptr, "expect alloc"); 1290 } 1291 1292 assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy"); 1293 1294 // Compile time checks. If any of these checks cannot be verified at compile time, 1295 // we do not make a fast path for this call. Instead, we let the call remain as it 1296 // is. The checks we choose to mandate at compile time are: 1297 // 1298 // (1) src and dest are arrays. 1299 const Type* src_type = src->Value(&_igvn); 1300 const Type* dest_type = dest->Value(&_igvn); 1301 const TypeAryPtr* top_src = src_type->isa_aryptr(); 1302 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 1303 1304 BasicType src_elem = T_CONFLICT; 1305 BasicType dest_elem = T_CONFLICT; 1306 1307 if (top_src != nullptr && top_src->elem() != Type::BOTTOM) { 1308 src_elem = top_src->elem()->array_element_basic_type(); 1309 } 1310 if (top_dest != nullptr && top_dest->elem() != Type::BOTTOM) { 1311 dest_elem = top_dest->elem()->array_element_basic_type(); 1312 } 1313 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 1314 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 1315 1316 if (ac->is_arraycopy_validated() && 1317 dest_elem != T_CONFLICT && 1318 src_elem == T_CONFLICT) { 1319 src_elem = dest_elem; 1320 } 1321 1322 if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) { 1323 // Conservatively insert a memory barrier on all memory slices. 1324 // Do not let writes into the source float below the arraycopy. 1325 { 1326 Node* mem = ac->in(TypeFunc::Memory); 1327 insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder, Compile::AliasIdxBot); 1328 1329 merge_mem = MergeMemNode::make(mem); 1330 transform_later(merge_mem); 1331 } 1332 1333 // Call StubRoutines::generic_arraycopy stub. 1334 Node* mem = generate_arraycopy(ac, nullptr, &ctrl, merge_mem, &io, 1335 TypeRawPtr::BOTTOM, T_CONFLICT, 1336 src, src_offset, dest, dest_offset, length, 1337 // If a negative length guard was generated for the ArrayCopyNode, 1338 // the length of the array can never be negative. 1339 false, ac->has_negative_length_guard()); 1340 return; 1341 } 1342 1343 assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types"); 1344 1345 // (2) src and dest arrays must have elements of the same BasicType 1346 // Figure out the size and type of the elements we will be copying. 1347 if (src_elem != dest_elem || dest_elem == T_VOID) { 1348 // The component types are not the same or are not recognized. Punt. 1349 // (But, avoid the native method wrapper to JVM_ArrayCopy.) 1350 { 1351 Node* mem = ac->in(TypeFunc::Memory); 1352 merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false); 1353 } 1354 1355 _igvn.replace_node(_callprojs.fallthrough_memproj, merge_mem); 1356 if (_callprojs.fallthrough_ioproj != nullptr) { 1357 _igvn.replace_node(_callprojs.fallthrough_ioproj, io); 1358 } 1359 _igvn.replace_node(_callprojs.fallthrough_catchproj, ctrl); 1360 return; 1361 } 1362 1363 //--------------------------------------------------------------------------- 1364 // We will make a fast path for this call to arraycopy. 1365 1366 // We have the following tests left to perform: 1367 // 1368 // (3) src and dest must not be null. 1369 // (4) src_offset must not be negative. 1370 // (5) dest_offset must not be negative. 1371 // (6) length must not be negative. 1372 // (7) src_offset + length must not exceed length of src. 1373 // (8) dest_offset + length must not exceed length of dest. 1374 // (9) each element of an oop array must be assignable 1375 1376 { 1377 Node* mem = ac->in(TypeFunc::Memory); 1378 merge_mem = MergeMemNode::make(mem); 1379 transform_later(merge_mem); 1380 } 1381 1382 RegionNode* slow_region = new RegionNode(1); 1383 transform_later(slow_region); 1384 1385 if (!ac->is_arraycopy_validated()) { 1386 // (3) operands must not be null 1387 // We currently perform our null checks with the null_check routine. 1388 // This means that the null exceptions will be reported in the caller 1389 // rather than (correctly) reported inside of the native arraycopy call. 1390 // This should be corrected, given time. We do our null check with the 1391 // stack pointer restored. 1392 // null checks done library_call.cpp 1393 1394 // (4) src_offset must not be negative. 1395 generate_negative_guard(&ctrl, src_offset, slow_region); 1396 1397 // (5) dest_offset must not be negative. 1398 generate_negative_guard(&ctrl, dest_offset, slow_region); 1399 1400 // (6) length must not be negative (moved to generate_arraycopy()). 1401 // generate_negative_guard(length, slow_region); 1402 1403 // (7) src_offset + length must not exceed length of src. 1404 Node* alen = ac->in(ArrayCopyNode::SrcLen); 1405 assert(alen != nullptr, "need src len"); 1406 generate_limit_guard(&ctrl, 1407 src_offset, length, 1408 alen, 1409 slow_region); 1410 1411 // (8) dest_offset + length must not exceed length of dest. 1412 alen = ac->in(ArrayCopyNode::DestLen); 1413 assert(alen != nullptr, "need dest len"); 1414 generate_limit_guard(&ctrl, 1415 dest_offset, length, 1416 alen, 1417 slow_region); 1418 1419 // (9) each element of an oop array must be assignable 1420 // The generate_arraycopy subroutine checks this. 1421 } 1422 // This is where the memory effects are placed: 1423 const TypePtr* adr_type = nullptr; 1424 if (ac->_dest_type != TypeOopPtr::BOTTOM) { 1425 adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr(); 1426 } else { 1427 adr_type = TypeAryPtr::get_array_body_type(dest_elem); 1428 } 1429 1430 generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, 1431 adr_type, dest_elem, 1432 src, src_offset, dest, dest_offset, length, 1433 // If a negative length guard was generated for the ArrayCopyNode, 1434 // the length of the array can never be negative. 1435 false, ac->has_negative_length_guard(), slow_region); 1436 }