1 /* 2 * Copyright (c) 2012, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciFlatArrayKlass.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/tlab_globals.hpp" 28 #include "opto/arraycopynode.hpp" 29 #include "oops/objArrayKlass.hpp" 30 #include "opto/convertnode.hpp" 31 #include "opto/vectornode.hpp" 32 #include "opto/graphKit.hpp" 33 #include "opto/macro.hpp" 34 #include "opto/runtime.hpp" 35 #include "opto/castnode.hpp" 36 #include "runtime/stubRoutines.hpp" 37 #include "utilities/align.hpp" 38 #include "utilities/powerOfTwo.hpp" 39 40 void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) { 41 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 42 mb->init_req(TypeFunc::Control, *ctrl); 43 mb->init_req(TypeFunc::Memory, *mem); 44 transform_later(mb); 45 *ctrl = new ProjNode(mb,TypeFunc::Control); 46 transform_later(*ctrl); 47 Node* mem_proj = new ProjNode(mb,TypeFunc::Memory); 48 transform_later(mem_proj); 49 *mem = mem_proj; 50 } 51 52 Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) { 53 uint shift = exact_log2(type2aelembytes(elembt)); 54 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 55 Node* base = basic_plus_adr(ary, header); 56 #ifdef _LP64 57 // see comment in GraphKit::array_element_address 58 int index_max = max_jint - 1; // array size is max_jint, index is one less 59 const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax); 60 idx = transform_later( new ConvI2LNode(idx, lidxtype) ); 61 #endif 62 Node* scale = new LShiftXNode(idx, intcon(shift)); 63 transform_later(scale); 64 return basic_plus_adr(ary, base, scale); 65 } 66 67 Node* PhaseMacroExpand::ConvI2L(Node* offset) { 68 return transform_later(new ConvI2LNode(offset)); 69 } 70 71 Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem, 72 const TypeFunc* call_type, address call_addr, 73 const char* call_name, 74 const TypePtr* adr_type, 75 Node* parm0, Node* parm1, 76 Node* parm2, Node* parm3, 77 Node* parm4, Node* parm5, 78 Node* parm6, Node* parm7) { 79 Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 80 call->init_req(TypeFunc::Control, ctrl); 81 call->init_req(TypeFunc::I_O , top()); 82 call->init_req(TypeFunc::Memory , mem); 83 call->init_req(TypeFunc::ReturnAdr, top()); 84 call->init_req(TypeFunc::FramePtr, top()); 85 86 // Hook each parm in order. Stop looking at the first null. 87 if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0); 88 if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1); 89 if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2); 90 if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3); 91 if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4); 92 if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5); 93 if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6); 94 if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7); 95 /* close each nested if ===> */ } } } } } } } } 96 assert(call->in(call->req()-1) != nullptr, "must initialize all parms"); 97 98 return call; 99 } 100 101 102 //------------------------------generate_guard--------------------------- 103 // Helper function for generating guarded fast-slow graph structures. 104 // The given 'test', if true, guards a slow path. If the test fails 105 // then a fast path can be taken. (We generally hope it fails.) 106 // In all cases, GraphKit::control() is updated to the fast path. 107 // The returned value represents the control for the slow path. 108 // The return value is never 'top'; it is either a valid control 109 // or null if it is obvious that the slow path can never be taken. 110 // Also, if region and the slow control are not null, the slow edge 111 // is appended to the region. 112 Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) { 113 if ((*ctrl)->is_top()) { 114 // Already short circuited. 115 return nullptr; 116 } 117 // Build an if node and its projections. 118 // If test is true we take the slow path, which we assume is uncommon. 119 if (_igvn.type(test) == TypeInt::ZERO) { 120 // The slow branch is never taken. No need to build this guard. 121 return nullptr; 122 } 123 124 IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN); 125 transform_later(iff); 126 127 Node* if_slow = new IfTrueNode(iff); 128 transform_later(if_slow); 129 130 if (region != nullptr) { 131 region->add_req(if_slow); 132 } 133 134 Node* if_fast = new IfFalseNode(iff); 135 transform_later(if_fast); 136 137 *ctrl = if_fast; 138 139 return if_slow; 140 } 141 142 Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) { 143 return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3)); 144 } 145 146 inline Node* PhaseMacroExpand::generate_fair_guard(Node** ctrl, Node* test, RegionNode* region) { 147 return generate_guard(ctrl, test, region, PROB_FAIR); 148 } 149 150 void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) { 151 if ((*ctrl)->is_top()) 152 return; // already stopped 153 if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 154 return; // index is already adequately typed 155 Node* cmp_lt = new CmpINode(index, intcon(0)); 156 transform_later(cmp_lt); 157 Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); 158 transform_later(bol_lt); 159 generate_guard(ctrl, bol_lt, region, PROB_MIN); 160 } 161 162 void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) { 163 if ((*ctrl)->is_top()) 164 return; // already stopped 165 bool zero_offset = _igvn.type(offset) == TypeInt::ZERO; 166 if (zero_offset && subseq_length->eqv_uncast(array_length)) 167 return; // common case of whole-array copy 168 Node* last = subseq_length; 169 if (!zero_offset) { // last += offset 170 last = new AddINode(last, offset); 171 transform_later(last); 172 } 173 Node* cmp_lt = new CmpUNode(array_length, last); 174 transform_later(cmp_lt); 175 Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); 176 transform_later(bol_lt); 177 generate_guard(ctrl, bol_lt, region, PROB_MIN); 178 } 179 180 // 181 // Partial in-lining handling for smaller conjoint/disjoint array copies having 182 // length(in bytes) less than ArrayOperationPartialInlineSize. 183 // if (length <= ArrayOperationPartialInlineSize) { 184 // partial_inlining_block: 185 // mask = Mask_Gen 186 // vload = LoadVectorMasked src , mask 187 // StoreVectorMasked dst, mask, vload 188 // } else { 189 // stub_block: 190 // callstub array_copy 191 // } 192 // exit_block: 193 // Phi = label partial_inlining_block:mem , label stub_block:mem (filled by caller) 194 // mem = MergeMem (Phi) 195 // control = stub_block 196 // 197 // Exit_block and associated phi(memory) are partially initialized for partial_in-lining_block 198 // edges. Remaining edges for exit_block coming from stub_block are connected by the caller 199 // post stub nodes creation. 200 // 201 202 void PhaseMacroExpand::generate_partial_inlining_block(Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type, 203 RegionNode** exit_block, Node** result_memory, Node* length, 204 Node* src_start, Node* dst_start, BasicType type) { 205 const TypePtr *src_adr_type = _igvn.type(src_start)->isa_ptr(); 206 Node* inline_block = nullptr; 207 Node* stub_block = nullptr; 208 209 int const_len = -1; 210 const TypeInt* lty = nullptr; 211 uint shift = exact_log2(type2aelembytes(type)); 212 if (length->Opcode() == Op_ConvI2L) { 213 lty = _igvn.type(length->in(1))->isa_int(); 214 } else { 215 lty = _igvn.type(length)->isa_int(); 216 } 217 if (lty && lty->is_con()) { 218 const_len = lty->get_con() << shift; 219 } 220 221 // Return if copy length is greater than partial inline size limit or 222 // target does not supports masked load/stores. 223 int lane_count = ArrayCopyNode::get_partial_inline_vector_lane_count(type, const_len); 224 if ( const_len > ArrayOperationPartialInlineSize || 225 !Matcher::match_rule_supported_vector(Op_LoadVectorMasked, lane_count, type) || 226 !Matcher::match_rule_supported_vector(Op_StoreVectorMasked, lane_count, type) || 227 !Matcher::match_rule_supported_vector(Op_VectorMaskGen, lane_count, type)) { 228 return; 229 } 230 231 int inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(type); 232 Node* casted_length = new CastLLNode(*ctrl, length, TypeLong::make(0, inline_limit, Type::WidenMin)); 233 transform_later(casted_length); 234 Node* copy_bytes = new LShiftXNode(length, intcon(shift)); 235 transform_later(copy_bytes); 236 237 Node* cmp_le = new CmpULNode(copy_bytes, longcon(ArrayOperationPartialInlineSize)); 238 transform_later(cmp_le); 239 Node* bol_le = new BoolNode(cmp_le, BoolTest::le); 240 transform_later(bol_le); 241 inline_block = generate_guard(ctrl, bol_le, nullptr, PROB_FAIR); 242 stub_block = *ctrl; 243 244 Node* mask_gen = VectorMaskGenNode::make(casted_length, type); 245 transform_later(mask_gen); 246 247 unsigned vec_size = lane_count * type2aelembytes(type); 248 if (C->max_vector_size() < vec_size) { 249 C->set_max_vector_size(vec_size); 250 } 251 252 const TypeVect * vt = TypeVect::make(type, lane_count); 253 Node* mm = (*mem)->memory_at(C->get_alias_index(src_adr_type)); 254 Node* masked_load = new LoadVectorMaskedNode(inline_block, mm, src_start, 255 src_adr_type, vt, mask_gen); 256 transform_later(masked_load); 257 258 mm = (*mem)->memory_at(C->get_alias_index(adr_type)); 259 Node* masked_store = new StoreVectorMaskedNode(inline_block, mm, dst_start, 260 masked_load, adr_type, mask_gen); 261 transform_later(masked_store); 262 263 // Convergence region for inline_block and stub_block. 264 *exit_block = new RegionNode(3); 265 transform_later(*exit_block); 266 (*exit_block)->init_req(1, inline_block); 267 *result_memory = new PhiNode(*exit_block, Type::MEMORY, adr_type); 268 transform_later(*result_memory); 269 (*result_memory)->init_req(1, masked_store); 270 271 *ctrl = stub_block; 272 } 273 274 275 Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) { 276 if ((*ctrl)->is_top()) return nullptr; 277 278 if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint] 279 return nullptr; // index is already adequately typed 280 Node* cmp_le = new CmpINode(index, intcon(0)); 281 transform_later(cmp_le); 282 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le); 283 Node* bol_le = new BoolNode(cmp_le, le_or_eq); 284 transform_later(bol_le); 285 Node* is_notp = generate_guard(ctrl, bol_le, nullptr, PROB_MIN); 286 287 return is_notp; 288 } 289 290 Node* PhaseMacroExpand::mark_word_test(Node** ctrl, Node* obj, MergeMemNode* mem, uintptr_t mask_val, RegionNode* region) { 291 // Load markword and check if obj is locked 292 Node* mark = make_load(nullptr, mem->memory_at(Compile::AliasIdxRaw), obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type()); 293 Node* locked_bit = MakeConX(markWord::unlocked_value); 294 locked_bit = transform_later(new AndXNode(locked_bit, mark)); 295 Node* cmp = transform_later(new CmpXNode(locked_bit, MakeConX(0))); 296 Node* is_unlocked = transform_later(new BoolNode(cmp, BoolTest::ne)); 297 IfNode* iff = transform_later(new IfNode(*ctrl, is_unlocked, PROB_MAX, COUNT_UNKNOWN))->as_If(); 298 Node* locked_region = transform_later(new RegionNode(3)); 299 Node* mark_phi = transform_later(new PhiNode(locked_region, TypeX_X)); 300 301 // Unlocked: Use bits from mark word 302 locked_region->init_req(1, transform_later(new IfTrueNode(iff))); 303 mark_phi->init_req(1, mark); 304 305 // Locked: Load prototype header from klass 306 *ctrl = transform_later(new IfFalseNode(iff)); 307 // Make loads control dependent to make sure they are only executed if array is locked 308 Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 309 Node* klass = transform_later(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 310 Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset())); 311 Node* proto = transform_later(LoadNode::make(_igvn, *ctrl, C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 312 313 locked_region->init_req(2, *ctrl); 314 mark_phi->init_req(2, proto); 315 *ctrl = locked_region; 316 317 // Now check if mark word bits are set 318 Node* mask = MakeConX(mask_val); 319 Node* masked = transform_later(new AndXNode(mark_phi, mask)); 320 cmp = transform_later(new CmpXNode(masked, mask)); 321 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 322 return generate_fair_guard(ctrl, bol, region); 323 } 324 325 Node* PhaseMacroExpand::generate_flat_array_guard(Node** ctrl, Node* array, MergeMemNode* mem, RegionNode* region) { 326 return mark_word_test(ctrl, array, mem, markWord::flat_array_bit_in_place, region); 327 } 328 329 Node* PhaseMacroExpand::generate_null_free_array_guard(Node** ctrl, Node* array, MergeMemNode* mem, RegionNode* region) { 330 return mark_word_test(ctrl, array, mem, markWord::null_free_array_bit_in_place, region); 331 } 332 333 void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) { 334 transform_later(call); 335 336 *ctrl = new ProjNode(call,TypeFunc::Control); 337 transform_later(*ctrl); 338 Node* newmem = new ProjNode(call, TypeFunc::Memory); 339 transform_later(newmem); 340 341 uint alias_idx = C->get_alias_index(adr_type); 342 if (alias_idx != Compile::AliasIdxBot) { 343 *mem = MergeMemNode::make(*mem); 344 (*mem)->set_memory_at(alias_idx, newmem); 345 } else { 346 *mem = MergeMemNode::make(newmem); 347 } 348 transform_later(*mem); 349 } 350 351 address PhaseMacroExpand::basictype2arraycopy(BasicType t, 352 Node* src_offset, 353 Node* dest_offset, 354 bool disjoint_bases, 355 const char* &name, 356 bool dest_uninitialized) { 357 const TypeInt* src_offset_inttype = _igvn.find_int_type(src_offset); 358 const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset); 359 360 bool aligned = false; 361 bool disjoint = disjoint_bases; 362 363 // if the offsets are the same, we can treat the memory regions as 364 // disjoint, because either the memory regions are in different arrays, 365 // or they are identical (which we can treat as disjoint.) We can also 366 // treat a copy with a destination index less that the source index 367 // as disjoint since a low->high copy will work correctly in this case. 368 if (src_offset_inttype != nullptr && src_offset_inttype->is_con() && 369 dest_offset_inttype != nullptr && dest_offset_inttype->is_con()) { 370 // both indices are constants 371 int s_offs = src_offset_inttype->get_con(); 372 int d_offs = dest_offset_inttype->get_con(); 373 int element_size = type2aelembytes(t); 374 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 375 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0); 376 if (s_offs >= d_offs) disjoint = true; 377 } else if (src_offset == dest_offset && src_offset != nullptr) { 378 // This can occur if the offsets are identical non-constants. 379 disjoint = true; 380 } 381 382 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized); 383 } 384 385 #define XTOP LP64_ONLY(COMMA top()) 386 387 // Generate an optimized call to arraycopy. 388 // Caller must guard against non-arrays. 389 // Caller must determine a common array basic-type for both arrays. 390 // Caller must validate offsets against array bounds. 391 // The slow_region has already collected guard failure paths 392 // (such as out of bounds length or non-conformable array types). 393 // The generated code has this shape, in general: 394 // 395 // if (length == 0) return // via zero_path 396 // slowval = -1 397 // if (types unknown) { 398 // slowval = call generic copy loop 399 // if (slowval == 0) return // via checked_path 400 // } else if (indexes in bounds) { 401 // if ((is object array) && !(array type check)) { 402 // slowval = call checked copy loop 403 // if (slowval == 0) return // via checked_path 404 // } else { 405 // call bulk copy loop 406 // return // via fast_path 407 // } 408 // } 409 // // adjust params for remaining work: 410 // if (slowval != -1) { 411 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n 412 // } 413 // slow_region: 414 // call slow arraycopy(src, src_offset, dest, dest_offset, length) 415 // return // via slow_call_path 416 // 417 // This routine is used from several intrinsics: System.arraycopy, 418 // Object.clone (the array subcase), and Arrays.copyOf[Range]. 419 // 420 Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc, 421 Node** ctrl, MergeMemNode* mem, Node** io, 422 const TypePtr* adr_type, 423 BasicType basic_elem_type, 424 Node* src, Node* src_offset, 425 Node* dest, Node* dest_offset, 426 Node* copy_length, 427 Node* dest_length, 428 bool disjoint_bases, 429 bool length_never_negative, 430 RegionNode* slow_region) { 431 if (slow_region == nullptr) { 432 slow_region = new RegionNode(1); 433 transform_later(slow_region); 434 } 435 436 Node* original_dest = dest; 437 bool dest_needs_zeroing = false; 438 bool acopy_to_uninitialized = false; 439 Node* init_value = nullptr; 440 Node* raw_init_value = nullptr; 441 442 // See if this is the initialization of a newly-allocated array. 443 // If so, we will take responsibility here for initializing it to zero. 444 // (Note: Because tightly_coupled_allocation performs checks on the 445 // out-edges of the dest, we need to avoid making derived pointers 446 // from it until we have checked its uses.) 447 if (ReduceBulkZeroing 448 && !(UseTLAB && ZeroTLAB) // pointless if already zeroed 449 && basic_elem_type != T_CONFLICT // avoid corner case 450 && !src->eqv_uncast(dest) 451 && alloc != nullptr 452 && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0) { 453 assert(ac->is_alloc_tightly_coupled(), "sanity"); 454 // acopy to uninitialized tightly coupled allocations 455 // needs zeroing outside the copy range 456 // and the acopy itself will be to uninitialized memory 457 acopy_to_uninitialized = true; 458 if (alloc->maybe_set_complete(&_igvn)) { 459 // "You break it, you buy it." 460 InitializeNode* init = alloc->initialization(); 461 assert(init->is_complete(), "we just did this"); 462 init->set_complete_with_arraycopy(); 463 assert(dest->is_CheckCastPP(), "sanity"); 464 assert(dest->in(0)->in(0) == init, "dest pinned"); 465 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory 466 // From this point on, every exit path is responsible for 467 // initializing any non-copied parts of the object to zero. 468 // Also, if this flag is set we make sure that arraycopy interacts properly 469 // with G1, eliding pre-barriers. See CR 6627983. 470 dest_needs_zeroing = true; 471 init_value = alloc->in(AllocateNode::InitValue); 472 raw_init_value = alloc->in(AllocateNode::RawInitValue); 473 } else { 474 // dest_need_zeroing = false; 475 } 476 } else { 477 // No zeroing elimination needed here. 478 alloc = nullptr; 479 acopy_to_uninitialized = false; 480 //original_dest = dest; 481 //dest_needs_zeroing = false; 482 } 483 484 uint alias_idx = C->get_alias_index(adr_type); 485 486 // Results are placed here: 487 enum { fast_path = 1, // normal void-returning assembly stub 488 checked_path = 2, // special assembly stub with cleanup 489 slow_call_path = 3, // something went wrong; call the VM 490 zero_path = 4, // bypass when length of copy is zero 491 bcopy_path = 5, // copy primitive array by 64-bit blocks 492 PATH_LIMIT = 6 493 }; 494 RegionNode* result_region = new RegionNode(PATH_LIMIT); 495 PhiNode* result_i_o = new PhiNode(result_region, Type::ABIO); 496 PhiNode* result_memory = new PhiNode(result_region, Type::MEMORY, adr_type); 497 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice"); 498 transform_later(result_region); 499 transform_later(result_i_o); 500 transform_later(result_memory); 501 502 // The slow_control path: 503 Node* slow_control; 504 Node* slow_i_o = *io; 505 Node* slow_mem = mem->memory_at(alias_idx); 506 DEBUG_ONLY(slow_control = (Node*) badAddress); 507 508 // Checked control path: 509 Node* checked_control = top(); 510 Node* checked_mem = nullptr; 511 Node* checked_i_o = nullptr; 512 Node* checked_value = nullptr; 513 514 if (basic_elem_type == T_CONFLICT) { 515 assert(!dest_needs_zeroing, ""); 516 Node* cv = generate_generic_arraycopy(ctrl, &mem, 517 adr_type, 518 src, src_offset, dest, dest_offset, 519 copy_length, acopy_to_uninitialized); 520 if (cv == nullptr) cv = intcon(-1); // failure (no stub available) 521 checked_control = *ctrl; 522 checked_i_o = *io; 523 checked_mem = mem->memory_at(alias_idx); 524 checked_value = cv; 525 *ctrl = top(); 526 } 527 528 Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative); 529 if (not_pos != nullptr) { 530 Node* local_ctrl = not_pos, *local_io = *io; 531 MergeMemNode* local_mem = MergeMemNode::make(mem); 532 transform_later(local_mem); 533 534 // (6) length must not be negative. 535 if (!length_never_negative) { 536 generate_negative_guard(&local_ctrl, copy_length, slow_region); 537 } 538 539 // copy_length is 0. 540 if (dest_needs_zeroing) { 541 assert(!local_ctrl->is_top(), "no ctrl?"); 542 if (copy_length->eqv_uncast(dest_length) 543 || _igvn.find_int_con(dest_length, 1) <= 0) { 544 // There is no zeroing to do. No need for a secondary raw memory barrier. 545 } else { 546 // Clear the whole thing since there are no source elements to copy. 547 generate_clear_array(local_ctrl, local_mem, 548 adr_type, dest, 549 init_value, raw_init_value, 550 basic_elem_type, 551 intcon(0), nullptr, 552 alloc->in(AllocateNode::AllocSize)); 553 // Use a secondary InitializeNode as raw memory barrier. 554 // Currently it is needed only on this path since other 555 // paths have stub or runtime calls as raw memory barriers. 556 MemBarNode* mb = MemBarNode::make(C, Op_Initialize, 557 Compile::AliasIdxRaw, 558 top()); 559 transform_later(mb); 560 mb->set_req(TypeFunc::Control,local_ctrl); 561 mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw)); 562 local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control)); 563 local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory))); 564 565 InitializeNode* init = mb->as_Initialize(); 566 init->set_complete(&_igvn); // (there is no corresponding AllocateNode) 567 } 568 } 569 570 // Present the results of the fast call. 571 result_region->init_req(zero_path, local_ctrl); 572 result_i_o ->init_req(zero_path, local_io); 573 result_memory->init_req(zero_path, local_mem->memory_at(alias_idx)); 574 } 575 576 if (!(*ctrl)->is_top() && dest_needs_zeroing) { 577 // We have to initialize the *uncopied* part of the array to zero. 578 // The copy destination is the slice dest[off..off+len]. The other slices 579 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length]. 580 Node* dest_size = alloc->in(AllocateNode::AllocSize); 581 Node* dest_tail = transform_later( new AddINode(dest_offset, copy_length)); 582 583 // If there is a head section that needs zeroing, do it now. 584 if (_igvn.find_int_con(dest_offset, -1) != 0) { 585 generate_clear_array(*ctrl, mem, 586 adr_type, dest, 587 init_value, raw_init_value, 588 basic_elem_type, 589 intcon(0), dest_offset, 590 nullptr); 591 } 592 593 // Next, perform a dynamic check on the tail length. 594 // It is often zero, and we can win big if we prove this. 595 // There are two wins: Avoid generating the ClearArray 596 // with its attendant messy index arithmetic, and upgrade 597 // the copy to a more hardware-friendly word size of 64 bits. 598 Node* tail_ctl = nullptr; 599 if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) { 600 Node* cmp_lt = transform_later( new CmpINode(dest_tail, dest_length) ); 601 Node* bol_lt = transform_later( new BoolNode(cmp_lt, BoolTest::lt) ); 602 tail_ctl = generate_slow_guard(ctrl, bol_lt, nullptr); 603 assert(tail_ctl != nullptr || !(*ctrl)->is_top(), "must be an outcome"); 604 } 605 606 // At this point, let's assume there is no tail. 607 if (!(*ctrl)->is_top() && alloc != nullptr && basic_elem_type != T_OBJECT) { 608 // There is no tail. Try an upgrade to a 64-bit copy. 609 bool didit = false; 610 { 611 Node* local_ctrl = *ctrl, *local_io = *io; 612 MergeMemNode* local_mem = MergeMemNode::make(mem); 613 transform_later(local_mem); 614 615 didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io, 616 adr_type, basic_elem_type, alloc, 617 src, src_offset, dest, dest_offset, 618 dest_size, acopy_to_uninitialized); 619 if (didit) { 620 // Present the results of the block-copying fast call. 621 result_region->init_req(bcopy_path, local_ctrl); 622 result_i_o ->init_req(bcopy_path, local_io); 623 result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx)); 624 } 625 } 626 if (didit) { 627 *ctrl = top(); // no regular fast path 628 } 629 } 630 631 // Clear the tail, if any. 632 if (tail_ctl != nullptr) { 633 Node* notail_ctl = (*ctrl)->is_top() ? nullptr : *ctrl; 634 *ctrl = tail_ctl; 635 if (notail_ctl == nullptr) { 636 generate_clear_array(*ctrl, mem, 637 adr_type, dest, 638 init_value, raw_init_value, 639 basic_elem_type, 640 dest_tail, nullptr, 641 dest_size); 642 } else { 643 // Make a local merge. 644 Node* done_ctl = transform_later(new RegionNode(3)); 645 Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type)); 646 done_ctl->init_req(1, notail_ctl); 647 done_mem->init_req(1, mem->memory_at(alias_idx)); 648 generate_clear_array(*ctrl, mem, 649 adr_type, dest, 650 init_value, raw_init_value, 651 basic_elem_type, 652 dest_tail, nullptr, 653 dest_size); 654 done_ctl->init_req(2, *ctrl); 655 done_mem->init_req(2, mem->memory_at(alias_idx)); 656 *ctrl = done_ctl; 657 mem->set_memory_at(alias_idx, done_mem); 658 } 659 } 660 } 661 662 BasicType copy_type = basic_elem_type; 663 assert(basic_elem_type != T_ARRAY, "caller must fix this"); 664 if (!(*ctrl)->is_top() && copy_type == T_OBJECT) { 665 // If src and dest have compatible element types, we can copy bits. 666 // Types S[] and D[] are compatible if D is a supertype of S. 667 // 668 // If they are not, we will use checked_oop_disjoint_arraycopy, 669 // which performs a fast optimistic per-oop check, and backs off 670 // further to JVM_ArrayCopy on the first per-oop check that fails. 671 // (Actually, we don't move raw bits only; the GC requires card marks.) 672 673 // We don't need a subtype check for validated copies and Object[].clone() 674 bool skip_subtype_check = ac->is_arraycopy_validated() || ac->is_copyof_validated() || 675 ac->is_copyofrange_validated() || ac->is_clone_oop_array(); 676 if (!skip_subtype_check) { 677 // Get the klass* for both src and dest 678 Node* src_klass = ac->in(ArrayCopyNode::SrcKlass); 679 Node* dest_klass = ac->in(ArrayCopyNode::DestKlass); 680 681 assert(src_klass != nullptr && dest_klass != nullptr, "should have klasses"); 682 683 // Generate the subtype check. 684 // This might fold up statically, or then again it might not. 685 // 686 // Non-static example: Copying List<String>.elements to a new String[]. 687 // The backing store for a List<String> is always an Object[], 688 // but its elements are always type String, if the generic types 689 // are correct at the source level. 690 // 691 // Test S[] against D[], not S against D, because (probably) 692 // the secondary supertype cache is less busy for S[] than S. 693 // This usually only matters when D is an interface. 694 Node* not_subtype_ctrl = Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, _igvn, nullptr, -1); 695 // Plug failing path into checked_oop_disjoint_arraycopy 696 if (not_subtype_ctrl != top()) { 697 Node* local_ctrl = not_subtype_ctrl; 698 MergeMemNode* local_mem = MergeMemNode::make(mem); 699 transform_later(local_mem); 700 701 // (At this point we can assume disjoint_bases, since types differ.) 702 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 703 Node* p1 = basic_plus_adr(dest_klass, ek_offset); 704 Node* n1 = LoadKlassNode::make(_igvn, C->immutable_memory(), p1, TypeRawPtr::BOTTOM); 705 Node* dest_elem_klass = transform_later(n1); 706 Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem, 707 adr_type, 708 dest_elem_klass, 709 src, src_offset, dest, dest_offset, 710 ConvI2X(copy_length), acopy_to_uninitialized); 711 if (cv == nullptr) cv = intcon(-1); // failure (no stub available) 712 checked_control = local_ctrl; 713 checked_i_o = *io; 714 checked_mem = local_mem->memory_at(alias_idx); 715 checked_value = cv; 716 } 717 } 718 // At this point we know we do not need type checks on oop stores. 719 720 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 721 if (!bs->array_copy_requires_gc_barriers(alloc != nullptr, copy_type, false, false, BarrierSetC2::Expansion)) { 722 // If we do not need gc barriers, copy using the jint or jlong stub. 723 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT); 724 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type), 725 "sizes agree"); 726 } 727 } 728 729 bool is_partial_array_copy = false; 730 if (!(*ctrl)->is_top()) { 731 // Generate the fast path, if possible. 732 Node* local_ctrl = *ctrl; 733 MergeMemNode* local_mem = MergeMemNode::make(mem); 734 transform_later(local_mem); 735 is_partial_array_copy = generate_unchecked_arraycopy(&local_ctrl, &local_mem, 736 adr_type, copy_type, disjoint_bases, 737 src, src_offset, dest, dest_offset, 738 ConvI2X(copy_length), acopy_to_uninitialized); 739 740 // Present the results of the fast call. 741 result_region->init_req(fast_path, local_ctrl); 742 result_i_o ->init_req(fast_path, *io); 743 result_memory->init_req(fast_path, local_mem->memory_at(alias_idx)); 744 } 745 746 // Here are all the slow paths up to this point, in one bundle: 747 assert(slow_region != nullptr, "allocated on entry"); 748 slow_control = slow_region; 749 DEBUG_ONLY(slow_region = (RegionNode*)badAddress); 750 751 *ctrl = checked_control; 752 if (!(*ctrl)->is_top()) { 753 // Clean up after the checked call. 754 // The returned value is either 0 or -1^K, 755 // where K = number of partially transferred array elements. 756 Node* cmp = new CmpINode(checked_value, intcon(0)); 757 transform_later(cmp); 758 Node* bol = new BoolNode(cmp, BoolTest::eq); 759 transform_later(bol); 760 IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN); 761 transform_later(iff); 762 763 // If it is 0, we are done, so transfer to the end. 764 Node* checks_done = new IfTrueNode(iff); 765 transform_later(checks_done); 766 result_region->init_req(checked_path, checks_done); 767 result_i_o ->init_req(checked_path, checked_i_o); 768 result_memory->init_req(checked_path, checked_mem); 769 770 // If it is not zero, merge into the slow call. 771 *ctrl = new IfFalseNode(iff); 772 transform_later(*ctrl); 773 RegionNode* slow_reg2 = new RegionNode(3); 774 PhiNode* slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO); 775 PhiNode* slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type); 776 transform_later(slow_reg2); 777 transform_later(slow_i_o2); 778 transform_later(slow_mem2); 779 slow_reg2 ->init_req(1, slow_control); 780 slow_i_o2 ->init_req(1, slow_i_o); 781 slow_mem2 ->init_req(1, slow_mem); 782 slow_reg2 ->init_req(2, *ctrl); 783 slow_i_o2 ->init_req(2, checked_i_o); 784 slow_mem2 ->init_req(2, checked_mem); 785 786 slow_control = slow_reg2; 787 slow_i_o = slow_i_o2; 788 slow_mem = slow_mem2; 789 790 if (alloc != nullptr) { 791 // We'll restart from the very beginning, after zeroing the whole thing. 792 // This can cause double writes, but that's OK since dest is brand new. 793 // So we ignore the low 31 bits of the value returned from the stub. 794 } else { 795 // We must continue the copy exactly where it failed, or else 796 // another thread might see the wrong number of writes to dest. 797 Node* checked_offset = new XorINode(checked_value, intcon(-1)); 798 Node* slow_offset = new PhiNode(slow_reg2, TypeInt::INT); 799 transform_later(checked_offset); 800 transform_later(slow_offset); 801 slow_offset->init_req(1, intcon(0)); 802 slow_offset->init_req(2, checked_offset); 803 804 // Adjust the arguments by the conditionally incoming offset. 805 Node* src_off_plus = new AddINode(src_offset, slow_offset); 806 transform_later(src_off_plus); 807 Node* dest_off_plus = new AddINode(dest_offset, slow_offset); 808 transform_later(dest_off_plus); 809 Node* length_minus = new SubINode(copy_length, slow_offset); 810 transform_later(length_minus); 811 812 // Tweak the node variables to adjust the code produced below: 813 src_offset = src_off_plus; 814 dest_offset = dest_off_plus; 815 copy_length = length_minus; 816 } 817 } 818 *ctrl = slow_control; 819 if (!(*ctrl)->is_top()) { 820 Node* local_ctrl = *ctrl, *local_io = slow_i_o; 821 MergeMemNode* local_mem = MergeMemNode::make(mem); 822 transform_later(local_mem); 823 824 // Generate the slow path, if needed. 825 local_mem->set_memory_at(alias_idx, slow_mem); 826 827 if (dest_needs_zeroing) { 828 generate_clear_array(local_ctrl, local_mem, 829 adr_type, dest, 830 init_value, raw_init_value, 831 basic_elem_type, 832 intcon(0), nullptr, 833 alloc->in(AllocateNode::AllocSize)); 834 } 835 836 local_mem = generate_slow_arraycopy(ac, 837 &local_ctrl, local_mem, &local_io, 838 adr_type, 839 src, src_offset, dest, dest_offset, 840 copy_length, /*dest_uninitialized*/false); 841 842 result_region->init_req(slow_call_path, local_ctrl); 843 result_i_o ->init_req(slow_call_path, local_io); 844 result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx)); 845 } else { 846 ShouldNotReachHere(); // no call to generate_slow_arraycopy: 847 // projections were not extracted 848 } 849 850 // Remove unused edges. 851 for (uint i = 1; i < result_region->req(); i++) { 852 if (result_region->in(i) == nullptr) { 853 result_region->init_req(i, top()); 854 } 855 } 856 857 // Finished; return the combined state. 858 *ctrl = result_region; 859 *io = result_i_o; 860 mem->set_memory_at(alias_idx, result_memory); 861 862 // mem no longer guaranteed to stay a MergeMemNode 863 Node* out_mem = mem; 864 DEBUG_ONLY(mem = nullptr); 865 866 // The memory edges above are precise in order to model effects around 867 // array copies accurately to allow value numbering of field loads around 868 // arraycopy. Such field loads, both before and after, are common in Java 869 // collections and similar classes involving header/array data structures. 870 // 871 // But with low number of register or when some registers are used or killed 872 // by arraycopy calls it causes registers spilling on stack. See 6544710. 873 // The next memory barrier is added to avoid it. If the arraycopy can be 874 // optimized away (which it can, sometimes) then we can manually remove 875 // the membar also. 876 // 877 // Do not let reads from the cloned object float above the arraycopy. 878 if (alloc != nullptr && !alloc->initialization()->does_not_escape()) { 879 // Do not let stores that initialize this object be reordered with 880 // a subsequent store that would make this object accessible by 881 // other threads. 882 insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore); 883 } else { 884 insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder); 885 } 886 887 if (is_partial_array_copy) { 888 assert((*ctrl)->is_Proj(), "MemBar control projection"); 889 assert((*ctrl)->in(0)->isa_MemBar(), "MemBar node"); 890 (*ctrl)->in(0)->isa_MemBar()->set_trailing_partial_array_copy(); 891 } 892 893 _igvn.replace_node(_callprojs->fallthrough_memproj, out_mem); 894 if (_callprojs->fallthrough_ioproj != nullptr) { 895 _igvn.replace_node(_callprojs->fallthrough_ioproj, *io); 896 } 897 _igvn.replace_node(_callprojs->fallthrough_catchproj, *ctrl); 898 899 #ifdef ASSERT 900 const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr(); 901 if (dest_t->is_known_instance() && !is_partial_array_copy) { 902 ArrayCopyNode* ac = nullptr; 903 assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost"); 904 assert(ac == nullptr, "no arraycopy anymore"); 905 } 906 #endif 907 908 return out_mem; 909 } 910 911 // Helper for initialization of arrays, creating a ClearArray. 912 // It writes zero bits in [start..end), within the body of an array object. 913 // The memory effects are all chained onto the 'adr_type' alias category. 914 // 915 // Since the object is otherwise uninitialized, we are free 916 // to put a little "slop" around the edges of the cleared area, 917 // as long as it does not go back into the array's header, 918 // or beyond the array end within the heap. 919 // 920 // The lower edge can be rounded down to the nearest jint and the 921 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes. 922 // 923 // Arguments: 924 // adr_type memory slice where writes are generated 925 // dest oop of the destination array 926 // basic_elem_type element type of the destination 927 // slice_idx array index of first element to store 928 // slice_len number of elements to store (or null) 929 // dest_size total size in bytes of the array object 930 // 931 // Exactly one of slice_len or dest_size must be non-null. 932 // If dest_size is non-null, zeroing extends to the end of the object. 933 // If slice_len is non-null, the slice_idx value must be a constant. 934 void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem, 935 const TypePtr* adr_type, 936 Node* dest, 937 Node* val, 938 Node* raw_val, 939 BasicType basic_elem_type, 940 Node* slice_idx, 941 Node* slice_len, 942 Node* dest_size) { 943 // one or the other but not both of slice_len and dest_size: 944 assert((slice_len != nullptr? 1: 0) + (dest_size != nullptr? 1: 0) == 1, ""); 945 if (slice_len == nullptr) slice_len = top(); 946 if (dest_size == nullptr) dest_size = top(); 947 948 uint alias_idx = C->get_alias_index(adr_type); 949 950 // operate on this memory slice: 951 Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on 952 953 // scaling and rounding of indexes: 954 int scale = exact_log2(type2aelembytes(basic_elem_type)); 955 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 956 int clear_low = (-1 << scale) & (BytesPerInt - 1); 957 int bump_bit = (-1 << scale) & BytesPerInt; 958 959 // determine constant starts and ends 960 const intptr_t BIG_NEG = -128; 961 assert(BIG_NEG + 2*abase < 0, "neg enough"); 962 intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG); 963 intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG); 964 if (slice_len_con == 0) { 965 return; // nothing to do here 966 } 967 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low; 968 intptr_t end_con = _igvn.find_intptr_t_con(dest_size, -1); 969 if (slice_idx_con >= 0 && slice_len_con >= 0) { 970 assert(end_con < 0, "not two cons"); 971 end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale), 972 BytesPerLong); 973 } 974 975 if (start_con >= 0 && end_con >= 0) { 976 // Constant start and end. Simple. 977 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, val, raw_val, 978 start_con, end_con, &_igvn); 979 } else if (start_con >= 0 && dest_size != top()) { 980 // Constant start, pre-rounded end after the tail of the array. 981 Node* end = dest_size; 982 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, val, raw_val, 983 start_con, end, &_igvn); 984 } else if (start_con >= 0 && slice_len != top()) { 985 // Constant start, non-constant end. End needs rounding up. 986 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8) 987 intptr_t end_base = abase + (slice_idx_con << scale); 988 int end_round = (-1 << scale) & (BytesPerLong - 1); 989 Node* end = ConvI2X(slice_len); 990 if (scale != 0) 991 end = transform_later(new LShiftXNode(end, intcon(scale) )); 992 end_base += end_round; 993 end = transform_later(new AddXNode(end, MakeConX(end_base)) ); 994 end = transform_later(new AndXNode(end, MakeConX(~end_round)) ); 995 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, val, raw_val, 996 start_con, end, &_igvn); 997 } else if (start_con < 0 && dest_size != top()) { 998 // Non-constant start, pre-rounded end after the tail of the array. 999 // This is almost certainly a "round-to-end" operation. 1000 Node* start = slice_idx; 1001 start = ConvI2X(start); 1002 if (scale != 0) 1003 start = transform_later(new LShiftXNode( start, intcon(scale) )); 1004 start = transform_later(new AddXNode(start, MakeConX(abase)) ); 1005 if ((bump_bit | clear_low) != 0) { 1006 int to_clear = (bump_bit | clear_low); 1007 // Align up mod 8, then store a jint zero unconditionally 1008 // just before the mod-8 boundary. 1009 if (((abase + bump_bit) & ~to_clear) - bump_bit 1010 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) { 1011 bump_bit = 0; 1012 assert((abase & to_clear) == 0, "array base must be long-aligned"); 1013 } else { 1014 // Bump 'start' up to (or past) the next jint boundary: 1015 start = transform_later( new AddXNode(start, MakeConX(bump_bit)) ); 1016 assert((abase & clear_low) == 0, "array base must be int-aligned"); 1017 } 1018 // Round bumped 'start' down to jlong boundary in body of array. 1019 start = transform_later(new AndXNode(start, MakeConX(~to_clear)) ); 1020 if (bump_bit != 0) { 1021 // Store a zero to the immediately preceding jint: 1022 Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) ); 1023 Node* p1 = basic_plus_adr(dest, x1); 1024 if (val == nullptr) { 1025 assert(raw_val == nullptr, "val may not be null"); 1026 mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered); 1027 } else { 1028 assert(_igvn.type(val)->isa_narrowoop(), "should be narrow oop"); 1029 mem = new StoreNNode(ctrl, mem, p1, adr_type, val, MemNode::unordered); 1030 } 1031 mem = transform_later(mem); 1032 } 1033 } 1034 Node* end = dest_size; // pre-rounded 1035 mem = ClearArrayNode::clear_memory(ctrl, mem, dest, raw_val, 1036 start, end, &_igvn); 1037 } else { 1038 // Non-constant start, unrounded non-constant end. 1039 // (Nobody zeroes a random midsection of an array using this routine.) 1040 ShouldNotReachHere(); // fix caller 1041 } 1042 1043 // Done. 1044 merge_mem->set_memory_at(alias_idx, mem); 1045 } 1046 1047 bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io, 1048 const TypePtr* adr_type, 1049 BasicType basic_elem_type, 1050 AllocateNode* alloc, 1051 Node* src, Node* src_offset, 1052 Node* dest, Node* dest_offset, 1053 Node* dest_size, bool dest_uninitialized) { 1054 // See if there is an advantage from block transfer. 1055 int scale = exact_log2(type2aelembytes(basic_elem_type)); 1056 if (scale >= LogBytesPerLong) 1057 return false; // it is already a block transfer 1058 1059 // Look at the alignment of the starting offsets. 1060 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 1061 1062 intptr_t src_off_con = (intptr_t) _igvn.find_int_con(src_offset, -1); 1063 intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1); 1064 if (src_off_con < 0 || dest_off_con < 0) { 1065 // At present, we can only understand constants. 1066 return false; 1067 } 1068 1069 intptr_t src_off = abase + (src_off_con << scale); 1070 intptr_t dest_off = abase + (dest_off_con << scale); 1071 1072 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) { 1073 // Non-aligned; too bad. 1074 // One more chance: Pick off an initial 32-bit word. 1075 // This is a common case, since abase can be odd mod 8. 1076 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt && 1077 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) { 1078 Node* sptr = basic_plus_adr(src, src_off); 1079 Node* dptr = basic_plus_adr(dest, dest_off); 1080 const TypePtr* s_adr_type = _igvn.type(sptr)->is_ptr(); 1081 assert(s_adr_type->isa_aryptr(), "impossible slice"); 1082 uint s_alias_idx = C->get_alias_index(s_adr_type); 1083 uint d_alias_idx = C->get_alias_index(adr_type); 1084 bool is_mismatched = (basic_elem_type != T_INT); 1085 Node* sval = transform_later( 1086 LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(s_alias_idx), sptr, s_adr_type, 1087 TypeInt::INT, T_INT, MemNode::unordered, LoadNode::DependsOnlyOnTest, 1088 false /*require_atomic_access*/, false /*unaligned*/, is_mismatched)); 1089 Node* st = transform_later( 1090 StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(d_alias_idx), dptr, adr_type, 1091 sval, T_INT, MemNode::unordered)); 1092 if (is_mismatched) { 1093 st->as_Store()->set_mismatched_access(); 1094 } 1095 (*mem)->set_memory_at(d_alias_idx, st); 1096 src_off += BytesPerInt; 1097 dest_off += BytesPerInt; 1098 } else { 1099 return false; 1100 } 1101 } 1102 assert(src_off % BytesPerLong == 0, ""); 1103 assert(dest_off % BytesPerLong == 0, ""); 1104 1105 // Do this copy by giant steps. 1106 Node* sptr = basic_plus_adr(src, src_off); 1107 Node* dptr = basic_plus_adr(dest, dest_off); 1108 Node* countx = dest_size; 1109 countx = transform_later(new SubXNode(countx, MakeConX(dest_off))); 1110 countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong))); 1111 1112 bool disjoint_bases = true; // since alloc isn't null 1113 generate_unchecked_arraycopy(ctrl, mem, 1114 adr_type, T_LONG, disjoint_bases, 1115 sptr, nullptr, dptr, nullptr, countx, dest_uninitialized); 1116 1117 return true; 1118 } 1119 1120 // Helper function; generates code for the slow case. 1121 // We make a call to a runtime method which emulates the native method, 1122 // but without the native wrapper overhead. 1123 MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac, 1124 Node** ctrl, Node* mem, Node** io, 1125 const TypePtr* adr_type, 1126 Node* src, Node* src_offset, 1127 Node* dest, Node* dest_offset, 1128 Node* copy_length, bool dest_uninitialized) { 1129 assert(!dest_uninitialized, "Invariant"); 1130 1131 const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type(); 1132 CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(), 1133 "slow_arraycopy", TypePtr::BOTTOM); 1134 1135 call->init_req(TypeFunc::Control, *ctrl); 1136 call->init_req(TypeFunc::I_O , *io); 1137 call->init_req(TypeFunc::Memory , mem); 1138 call->init_req(TypeFunc::ReturnAdr, top()); 1139 call->init_req(TypeFunc::FramePtr, top()); 1140 call->init_req(TypeFunc::Parms+0, src); 1141 call->init_req(TypeFunc::Parms+1, src_offset); 1142 call->init_req(TypeFunc::Parms+2, dest); 1143 call->init_req(TypeFunc::Parms+3, dest_offset); 1144 call->init_req(TypeFunc::Parms+4, copy_length); 1145 call->copy_call_debug_info(&_igvn, ac); 1146 1147 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1148 _igvn.replace_node(ac, call); 1149 transform_later(call); 1150 1151 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1152 *ctrl = _callprojs->fallthrough_catchproj->clone(); 1153 transform_later(*ctrl); 1154 1155 Node* m = _callprojs->fallthrough_memproj->clone(); 1156 transform_later(m); 1157 1158 uint alias_idx = C->get_alias_index(adr_type); 1159 MergeMemNode* out_mem; 1160 if (alias_idx != Compile::AliasIdxBot) { 1161 out_mem = MergeMemNode::make(mem); 1162 out_mem->set_memory_at(alias_idx, m); 1163 } else { 1164 out_mem = MergeMemNode::make(m); 1165 } 1166 transform_later(out_mem); 1167 1168 // When src is negative and arraycopy is before an infinite loop,_callprojs.fallthrough_ioproj 1169 // could be nullptr. Skip clone and update nullptr fallthrough_ioproj. 1170 if (_callprojs->fallthrough_ioproj != nullptr) { 1171 *io = _callprojs->fallthrough_ioproj->clone(); 1172 transform_later(*io); 1173 } else { 1174 *io = nullptr; 1175 } 1176 1177 return out_mem; 1178 } 1179 1180 // Helper function; generates code for cases requiring runtime checks. 1181 Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem, 1182 const TypePtr* adr_type, 1183 Node* dest_elem_klass, 1184 Node* src, Node* src_offset, 1185 Node* dest, Node* dest_offset, 1186 Node* copy_length, bool dest_uninitialized) { 1187 if ((*ctrl)->is_top()) return nullptr; 1188 1189 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized); 1190 if (copyfunc_addr == nullptr) { // Stub was not generated, go slow path. 1191 return nullptr; 1192 } 1193 1194 // Pick out the parameters required to perform a store-check 1195 // for the target array. This is an optimistic check. It will 1196 // look in each non-null element's class, at the desired klass's 1197 // super_check_offset, for the desired klass. 1198 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1199 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset); 1200 Node* n3 = new LoadINode(nullptr, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered); 1201 Node* check_offset = ConvI2X(transform_later(n3)); 1202 Node* check_value = dest_elem_klass; 1203 1204 Node* src_start = array_element_address(src, src_offset, T_OBJECT); 1205 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT); 1206 1207 const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type(); 1208 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type, 1209 src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value); 1210 1211 finish_arraycopy_call(call, ctrl, mem, adr_type); 1212 1213 Node* proj = new ProjNode(call, TypeFunc::Parms); 1214 transform_later(proj); 1215 1216 return proj; 1217 } 1218 1219 // Helper function; generates code for cases requiring runtime checks. 1220 Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem, 1221 const TypePtr* adr_type, 1222 Node* src, Node* src_offset, 1223 Node* dest, Node* dest_offset, 1224 Node* copy_length, bool dest_uninitialized) { 1225 if ((*ctrl)->is_top()) return nullptr; 1226 assert(!dest_uninitialized, "Invariant"); 1227 1228 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1229 if (copyfunc_addr == nullptr) { // Stub was not generated, go slow path. 1230 return nullptr; 1231 } 1232 1233 const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type(); 1234 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type, 1235 src, src_offset, dest, dest_offset, copy_length); 1236 1237 finish_arraycopy_call(call, ctrl, mem, adr_type); 1238 1239 Node* proj = new ProjNode(call, TypeFunc::Parms); 1240 transform_later(proj); 1241 1242 return proj; 1243 } 1244 1245 // Helper function; generates the fast out-of-line call to an arraycopy stub. 1246 bool PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem, 1247 const TypePtr* adr_type, 1248 BasicType basic_elem_type, 1249 bool disjoint_bases, 1250 Node* src, Node* src_offset, 1251 Node* dest, Node* dest_offset, 1252 Node* copy_length, bool dest_uninitialized) { 1253 if ((*ctrl)->is_top()) return false; 1254 1255 Node* src_start = src; 1256 Node* dest_start = dest; 1257 if (src_offset != nullptr || dest_offset != nullptr) { 1258 src_start = array_element_address(src, src_offset, basic_elem_type); 1259 dest_start = array_element_address(dest, dest_offset, basic_elem_type); 1260 } 1261 1262 // Figure out which arraycopy runtime method to call. 1263 const char* copyfunc_name = "arraycopy"; 1264 address copyfunc_addr = 1265 basictype2arraycopy(basic_elem_type, src_offset, dest_offset, 1266 disjoint_bases, copyfunc_name, dest_uninitialized); 1267 1268 Node* result_memory = nullptr; 1269 RegionNode* exit_block = nullptr; 1270 if (ArrayOperationPartialInlineSize > 0 && is_subword_type(basic_elem_type) && 1271 Matcher::vector_width_in_bytes(basic_elem_type) >= 16) { 1272 generate_partial_inlining_block(ctrl, mem, adr_type, &exit_block, &result_memory, 1273 copy_length, src_start, dest_start, basic_elem_type); 1274 } 1275 1276 const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type(); 1277 Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type, 1278 src_start, dest_start, copy_length XTOP); 1279 1280 finish_arraycopy_call(call, ctrl, mem, adr_type); 1281 1282 // Connecting remaining edges for exit_block coming from stub_block. 1283 if (exit_block) { 1284 exit_block->init_req(2, *ctrl); 1285 1286 // Memory edge corresponding to stub_region. 1287 result_memory->init_req(2, *mem); 1288 1289 uint alias_idx = C->get_alias_index(adr_type); 1290 if (alias_idx != Compile::AliasIdxBot) { 1291 *mem = MergeMemNode::make(*mem); 1292 (*mem)->set_memory_at(alias_idx, result_memory); 1293 } else { 1294 *mem = MergeMemNode::make(result_memory); 1295 } 1296 transform_later(*mem); 1297 *ctrl = exit_block; 1298 return true; 1299 } 1300 return false; 1301 } 1302 1303 const TypePtr* PhaseMacroExpand::adjust_for_flat_array(const TypeAryPtr* top_dest, Node*& src_offset, 1304 Node*& dest_offset, Node*& length, BasicType& dest_elem, 1305 Node*& dest_length) { 1306 #ifdef ASSERT 1307 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1308 bool needs_barriers = top_dest->elem()->inline_klass()->contains_oops() && 1309 bs->array_copy_requires_gc_barriers(dest_length != nullptr, T_OBJECT, false, false, BarrierSetC2::Optimization); 1310 assert(!needs_barriers || StressReflectiveCode, "Flat arracopy would require GC barriers"); 1311 #endif 1312 int elem_size = top_dest->flat_elem_size(); 1313 if (elem_size >= 8) { 1314 if (elem_size > 8) { 1315 // treat as array of long but scale length, src offset and dest offset 1316 assert((elem_size % 8) == 0, "not a power of 2?"); 1317 int factor = elem_size / 8; 1318 length = transform_later(new MulINode(length, intcon(factor))); 1319 src_offset = transform_later(new MulINode(src_offset, intcon(factor))); 1320 dest_offset = transform_later(new MulINode(dest_offset, intcon(factor))); 1321 if (dest_length != nullptr) { 1322 dest_length = transform_later(new MulINode(dest_length, intcon(factor))); 1323 } 1324 elem_size = 8; 1325 } 1326 dest_elem = T_LONG; 1327 } else if (elem_size == 4) { 1328 dest_elem = T_INT; 1329 } else if (elem_size == 2) { 1330 dest_elem = T_CHAR; 1331 } else if (elem_size == 1) { 1332 dest_elem = T_BYTE; 1333 } else { 1334 ShouldNotReachHere(); 1335 } 1336 return TypeRawPtr::BOTTOM; 1337 } 1338 1339 #undef XTOP 1340 1341 void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) { 1342 Node* ctrl = ac->in(TypeFunc::Control); 1343 Node* io = ac->in(TypeFunc::I_O); 1344 Node* src = ac->in(ArrayCopyNode::Src); 1345 Node* src_offset = ac->in(ArrayCopyNode::SrcPos); 1346 Node* dest = ac->in(ArrayCopyNode::Dest); 1347 Node* dest_offset = ac->in(ArrayCopyNode::DestPos); 1348 Node* length = ac->in(ArrayCopyNode::Length); 1349 MergeMemNode* merge_mem = nullptr; 1350 1351 if (ac->is_clonebasic()) { 1352 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1353 bs->clone_at_expansion(this, ac); 1354 return; 1355 } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_clone_oop_array()) { 1356 const Type* src_type = _igvn.type(src); 1357 const Type* dest_type = _igvn.type(dest); 1358 const TypeAryPtr* top_src = src_type->isa_aryptr(); 1359 // Note: The destination could have type Object (i.e. non-array) when directly invoking the protected method 1360 // Object::clone() with reflection on a declared Object that is an array at runtime. top_dest is then null. 1361 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 1362 BasicType dest_elem = T_OBJECT; 1363 if (top_dest != nullptr && top_dest->elem() != Type::BOTTOM) { 1364 dest_elem = top_dest->elem()->array_element_basic_type(); 1365 } 1366 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 1367 1368 if (top_src != nullptr && top_src->is_flat()) { 1369 // If src is flat, dest is guaranteed to be flat as well 1370 top_dest = top_src; 1371 } 1372 1373 AllocateArrayNode* alloc = nullptr; 1374 Node* dest_length = nullptr; 1375 if (ac->is_alloc_tightly_coupled()) { 1376 alloc = AllocateArrayNode::Ideal_array_allocation(dest); 1377 assert(alloc != nullptr, "expect alloc"); 1378 dest_length = alloc->in(AllocateNode::ALength); 1379 } 1380 1381 Node* mem = ac->in(TypeFunc::Memory); 1382 const TypePtr* adr_type = nullptr; 1383 if (top_dest != nullptr && top_dest->is_flat()) { 1384 assert(dest_length != nullptr || StressReflectiveCode, "must be tightly coupled"); 1385 // Copy to a flat array modifies multiple memory slices. Conservatively insert a barrier 1386 // on all slices to prevent writes into the source from floating below the arraycopy. 1387 insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder); 1388 adr_type = adjust_for_flat_array(top_dest, src_offset, dest_offset, length, dest_elem, dest_length); 1389 } else { 1390 adr_type = dest_type->is_oopptr()->add_offset(Type::OffsetBot); 1391 if (ac->_dest_type != TypeOopPtr::BOTTOM) { 1392 adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr(); 1393 } 1394 if (ac->_src_type != ac->_dest_type) { 1395 adr_type = TypeRawPtr::BOTTOM; 1396 } 1397 } 1398 merge_mem = MergeMemNode::make(mem); 1399 transform_later(merge_mem); 1400 1401 generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, 1402 adr_type, dest_elem, 1403 src, src_offset, dest, dest_offset, length, 1404 dest_length, 1405 true, ac->has_negative_length_guard()); 1406 1407 return; 1408 } 1409 1410 AllocateArrayNode* alloc = nullptr; 1411 if (ac->is_alloc_tightly_coupled()) { 1412 alloc = AllocateArrayNode::Ideal_array_allocation(dest); 1413 assert(alloc != nullptr, "expect alloc"); 1414 } 1415 1416 assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy"); 1417 1418 // Compile time checks. If any of these checks cannot be verified at compile time, 1419 // we do not make a fast path for this call. Instead, we let the call remain as it 1420 // is. The checks we choose to mandate at compile time are: 1421 // 1422 // (1) src and dest are arrays. 1423 const Type* src_type = src->Value(&_igvn); 1424 const Type* dest_type = dest->Value(&_igvn); 1425 const TypeAryPtr* top_src = src_type->isa_aryptr(); 1426 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 1427 1428 BasicType src_elem = T_CONFLICT; 1429 BasicType dest_elem = T_CONFLICT; 1430 1431 if (top_src != nullptr && top_src->elem() != Type::BOTTOM) { 1432 src_elem = top_src->elem()->array_element_basic_type(); 1433 } 1434 if (top_dest != nullptr && top_dest->elem() != Type::BOTTOM) { 1435 dest_elem = top_dest->elem()->array_element_basic_type(); 1436 } 1437 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 1438 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 1439 1440 if (ac->is_arraycopy_validated() && dest_elem != T_CONFLICT && src_elem == T_CONFLICT) { 1441 src_elem = dest_elem; 1442 } 1443 1444 if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) { 1445 // Conservatively insert a memory barrier on all memory slices. 1446 // Do not let writes into the source float below the arraycopy. 1447 { 1448 Node* mem = ac->in(TypeFunc::Memory); 1449 insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder); 1450 1451 merge_mem = MergeMemNode::make(mem); 1452 transform_later(merge_mem); 1453 } 1454 1455 // Call StubRoutines::generic_arraycopy stub. 1456 generate_arraycopy(ac, nullptr, &ctrl, merge_mem, &io, 1457 TypeRawPtr::BOTTOM, T_CONFLICT, 1458 src, src_offset, dest, dest_offset, length, 1459 nullptr, 1460 // If a negative length guard was generated for the ArrayCopyNode, 1461 // the length of the array can never be negative. 1462 false, ac->has_negative_length_guard()); 1463 return; 1464 } 1465 1466 assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types"); 1467 1468 // (2) src and dest arrays must have elements of the same BasicType 1469 // Figure out the size and type of the elements we will be copying. 1470 // 1471 // We have no stub to copy flat inline type arrays with oop 1472 // fields if we need to emit write barriers. 1473 // 1474 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1475 if (src_elem != dest_elem || top_src->is_flat() != top_dest->is_flat() || dest_elem == T_VOID || 1476 (top_src->is_flat() && top_dest->elem()->inline_klass()->contains_oops() && 1477 bs->array_copy_requires_gc_barriers(alloc != nullptr, T_OBJECT, false, false, BarrierSetC2::Optimization))) { 1478 // The component types are not the same or are not recognized. Punt. 1479 // (But, avoid the native method wrapper to JVM_ArrayCopy.) 1480 { 1481 Node* mem = ac->in(TypeFunc::Memory); 1482 merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false); 1483 } 1484 1485 _igvn.replace_node(_callprojs->fallthrough_memproj, merge_mem); 1486 if (_callprojs->fallthrough_ioproj != nullptr) { 1487 _igvn.replace_node(_callprojs->fallthrough_ioproj, io); 1488 } 1489 _igvn.replace_node(_callprojs->fallthrough_catchproj, ctrl); 1490 return; 1491 } 1492 1493 //--------------------------------------------------------------------------- 1494 // We will make a fast path for this call to arraycopy. 1495 1496 // We have the following tests left to perform: 1497 // 1498 // (3) src and dest must not be null. 1499 // (4) src_offset must not be negative. 1500 // (5) dest_offset must not be negative. 1501 // (6) length must not be negative. 1502 // (7) src_offset + length must not exceed length of src. 1503 // (8) dest_offset + length must not exceed length of dest. 1504 // (9) each element of an oop array must be assignable 1505 1506 Node* mem = ac->in(TypeFunc::Memory); 1507 if (top_dest->is_flat()) { 1508 // Copy to a flat array modifies multiple memory slices. Conservatively insert a barrier 1509 // on all slices to prevent writes into the source from floating below the arraycopy. 1510 insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder); 1511 } 1512 merge_mem = MergeMemNode::make(mem); 1513 transform_later(merge_mem); 1514 1515 RegionNode* slow_region = new RegionNode(1); 1516 transform_later(slow_region); 1517 1518 if (!ac->is_arraycopy_validated()) { 1519 // (3) operands must not be null 1520 // We currently perform our null checks with the null_check routine. 1521 // This means that the null exceptions will be reported in the caller 1522 // rather than (correctly) reported inside of the native arraycopy call. 1523 // This should be corrected, given time. We do our null check with the 1524 // stack pointer restored. 1525 // null checks done library_call.cpp 1526 1527 // (4) src_offset must not be negative. 1528 generate_negative_guard(&ctrl, src_offset, slow_region); 1529 1530 // (5) dest_offset must not be negative. 1531 generate_negative_guard(&ctrl, dest_offset, slow_region); 1532 1533 // (6) length must not be negative (moved to generate_arraycopy()). 1534 // generate_negative_guard(length, slow_region); 1535 1536 // (7) src_offset + length must not exceed length of src. 1537 Node* alen = ac->in(ArrayCopyNode::SrcLen); 1538 assert(alen != nullptr, "need src len"); 1539 generate_limit_guard(&ctrl, 1540 src_offset, length, 1541 alen, 1542 slow_region); 1543 1544 // (8) dest_offset + length must not exceed length of dest. 1545 alen = ac->in(ArrayCopyNode::DestLen); 1546 assert(alen != nullptr, "need dest len"); 1547 generate_limit_guard(&ctrl, 1548 dest_offset, length, 1549 alen, 1550 slow_region); 1551 1552 // (9) each element of an oop array must be assignable 1553 // The generate_arraycopy subroutine checks this. 1554 1555 // TODO 8350865 Fix below logic. Also handle atomicity. 1556 // We need to be careful here because 'adjust_for_flat_array' will adjust offsets/length etc. which then does not work anymore for the slow call to SharedRuntime::slow_arraycopy_C. 1557 if (!(top_src->is_flat() && top_dest->is_flat())) { 1558 generate_flat_array_guard(&ctrl, src, merge_mem, slow_region); 1559 generate_flat_array_guard(&ctrl, dest, merge_mem, slow_region); 1560 } 1561 1562 // Handle inline type arrays 1563 if (!top_src->is_flat()) { 1564 if (UseArrayFlattening && !top_src->is_not_flat()) { 1565 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 1566 generate_flat_array_guard(&ctrl, src, merge_mem, slow_region); 1567 } 1568 if (EnableValhalla) { 1569 // No validation. The subtype check emitted at macro expansion time will not go to the slow 1570 // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays. 1571 generate_null_free_array_guard(&ctrl, dest, merge_mem, slow_region); 1572 } 1573 } else { 1574 assert(top_dest->is_flat(), "dest array must be flat"); 1575 } 1576 } 1577 1578 // This is where the memory effects are placed: 1579 const TypePtr* adr_type = nullptr; 1580 Node* dest_length = (alloc != nullptr) ? alloc->in(AllocateNode::ALength) : nullptr; 1581 1582 if (top_src->is_flat() && top_dest->is_flat()) { 1583 adr_type = adjust_for_flat_array(top_dest, src_offset, dest_offset, length, dest_elem, dest_length); 1584 } else if (ac->_dest_type != TypeOopPtr::BOTTOM) { 1585 adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr(); 1586 } else { 1587 adr_type = TypeAryPtr::get_array_body_type(dest_elem); 1588 } 1589 1590 generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, 1591 adr_type, dest_elem, 1592 src, src_offset, dest, dest_offset, length, 1593 dest_length, 1594 // If a negative length guard was generated for the ArrayCopyNode, 1595 // the length of the array can never be negative. 1596 false, ac->has_negative_length_guard(), 1597 slow_region); 1598 }