1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "memory/allocation.inline.hpp" 29 #include "memory/resourceArea.hpp" 30 #include "oops/compressedOops.hpp" 31 #include "opto/ad.hpp" 32 #include "opto/addnode.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/idealGraphPrinter.hpp" 35 #include "opto/matcher.hpp" 36 #include "opto/memnode.hpp" 37 #include "opto/movenode.hpp" 38 #include "opto/opcodes.hpp" 39 #include "opto/regmask.hpp" 40 #include "opto/rootnode.hpp" 41 #include "opto/runtime.hpp" 42 #include "opto/type.hpp" 43 #include "opto/vectornode.hpp" 44 #include "runtime/os.inline.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/align.hpp" 47 48 OptoReg::Name OptoReg::c_frame_pointer; 49 50 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf]; 51 RegMask Matcher::mreg2regmask[_last_Mach_Reg]; 52 RegMask Matcher::caller_save_regmask; 53 RegMask Matcher::caller_save_regmask_exclude_soe; 54 RegMask Matcher::mh_caller_save_regmask; 55 RegMask Matcher::mh_caller_save_regmask_exclude_soe; 56 RegMask Matcher::STACK_ONLY_mask; 57 RegMask Matcher::c_frame_ptr_mask; 58 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE; 59 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; 60 61 //---------------------------Matcher------------------------------------------- 62 Matcher::Matcher() 63 : PhaseTransform( Phase::Ins_Select ), 64 _states_arena(Chunk::medium_size, mtCompiler), 65 _new_nodes(C->comp_arena()), 66 _visited(&_states_arena), 67 _shared(&_states_arena), 68 _dontcare(&_states_arena), 69 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp), 70 _swallowed(swallowed), 71 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), 72 _end_inst_chain_rule(_END_INST_CHAIN_RULE), 73 _must_clone(must_clone), 74 _shared_nodes(C->comp_arena()), 75 #ifndef PRODUCT 76 _old2new_map(C->comp_arena()), 77 _new2old_map(C->comp_arena()), 78 _reused(C->comp_arena()), 79 #endif // !PRODUCT 80 _allocation_started(false), 81 _ruleName(ruleName), 82 _register_save_policy(register_save_policy), 83 _c_reg_save_policy(c_reg_save_policy), 84 _register_save_type(register_save_type) { 85 C->set_matcher(this); 86 87 idealreg2spillmask [Op_RegI] = nullptr; 88 idealreg2spillmask [Op_RegN] = nullptr; 89 idealreg2spillmask [Op_RegL] = nullptr; 90 idealreg2spillmask [Op_RegF] = nullptr; 91 idealreg2spillmask [Op_RegD] = nullptr; 92 idealreg2spillmask [Op_RegP] = nullptr; 93 idealreg2spillmask [Op_VecA] = nullptr; 94 idealreg2spillmask [Op_VecS] = nullptr; 95 idealreg2spillmask [Op_VecD] = nullptr; 96 idealreg2spillmask [Op_VecX] = nullptr; 97 idealreg2spillmask [Op_VecY] = nullptr; 98 idealreg2spillmask [Op_VecZ] = nullptr; 99 idealreg2spillmask [Op_RegFlags] = nullptr; 100 idealreg2spillmask [Op_RegVectMask] = nullptr; 101 102 idealreg2debugmask [Op_RegI] = nullptr; 103 idealreg2debugmask [Op_RegN] = nullptr; 104 idealreg2debugmask [Op_RegL] = nullptr; 105 idealreg2debugmask [Op_RegF] = nullptr; 106 idealreg2debugmask [Op_RegD] = nullptr; 107 idealreg2debugmask [Op_RegP] = nullptr; 108 idealreg2debugmask [Op_VecA] = nullptr; 109 idealreg2debugmask [Op_VecS] = nullptr; 110 idealreg2debugmask [Op_VecD] = nullptr; 111 idealreg2debugmask [Op_VecX] = nullptr; 112 idealreg2debugmask [Op_VecY] = nullptr; 113 idealreg2debugmask [Op_VecZ] = nullptr; 114 idealreg2debugmask [Op_RegFlags] = nullptr; 115 idealreg2debugmask [Op_RegVectMask] = nullptr; 116 117 idealreg2mhdebugmask[Op_RegI] = nullptr; 118 idealreg2mhdebugmask[Op_RegN] = nullptr; 119 idealreg2mhdebugmask[Op_RegL] = nullptr; 120 idealreg2mhdebugmask[Op_RegF] = nullptr; 121 idealreg2mhdebugmask[Op_RegD] = nullptr; 122 idealreg2mhdebugmask[Op_RegP] = nullptr; 123 idealreg2mhdebugmask[Op_VecA] = nullptr; 124 idealreg2mhdebugmask[Op_VecS] = nullptr; 125 idealreg2mhdebugmask[Op_VecD] = nullptr; 126 idealreg2mhdebugmask[Op_VecX] = nullptr; 127 idealreg2mhdebugmask[Op_VecY] = nullptr; 128 idealreg2mhdebugmask[Op_VecZ] = nullptr; 129 idealreg2mhdebugmask[Op_RegFlags] = nullptr; 130 idealreg2mhdebugmask[Op_RegVectMask] = nullptr; 131 132 debug_only(_mem_node = nullptr;) // Ideal memory node consumed by mach node 133 } 134 135 //------------------------------warp_incoming_stk_arg------------------------ 136 // This warps a VMReg into an OptoReg::Name 137 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) { 138 OptoReg::Name warped; 139 if( reg->is_stack() ) { // Stack slot argument? 140 warped = OptoReg::add(_old_SP, reg->reg2stack() ); 141 warped = OptoReg::add(warped, C->out_preserve_stack_slots()); 142 if( warped >= _in_arg_limit ) 143 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen 144 if (!RegMask::can_represent_arg(warped)) { 145 // the compiler cannot represent this method's calling sequence 146 // Bailout. We do not have space to represent all arguments. 147 C->record_method_not_compilable("unsupported incoming calling sequence"); 148 return OptoReg::Bad; 149 } 150 return warped; 151 } 152 return OptoReg::as_OptoReg(reg); 153 } 154 155 //---------------------------compute_old_SP------------------------------------ 156 OptoReg::Name Compile::compute_old_SP() { 157 int fixed = fixed_slots(); 158 int preserve = in_preserve_stack_slots(); 159 return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots())); 160 } 161 162 163 164 #ifdef ASSERT 165 void Matcher::verify_new_nodes_only(Node* xroot) { 166 // Make sure that the new graph only references new nodes 167 ResourceMark rm; 168 Unique_Node_List worklist; 169 VectorSet visited; 170 worklist.push(xroot); 171 while (worklist.size() > 0) { 172 Node* n = worklist.pop(); 173 visited.set(n->_idx); 174 assert(C->node_arena()->contains(n), "dead node"); 175 for (uint j = 0; j < n->req(); j++) { 176 Node* in = n->in(j); 177 if (in != nullptr) { 178 assert(C->node_arena()->contains(in), "dead node"); 179 if (!visited.test(in->_idx)) { 180 worklist.push(in); 181 } 182 } 183 } 184 } 185 } 186 #endif 187 188 189 //---------------------------match--------------------------------------------- 190 void Matcher::match( ) { 191 if( MaxLabelRootDepth < 100 ) { // Too small? 192 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum"); 193 MaxLabelRootDepth = 100; 194 } 195 // One-time initialization of some register masks. 196 init_spill_mask( C->root()->in(1) ); 197 if (C->failing()) { 198 return; 199 } 200 _return_addr_mask = return_addr(); 201 #ifdef _LP64 202 // Pointers take 2 slots in 64-bit land 203 _return_addr_mask.Insert(OptoReg::add(return_addr(),1)); 204 #endif 205 206 // Map a Java-signature return type into return register-value 207 // machine registers for 0, 1 and 2 returned values. 208 const TypeTuple *range = C->tf()->range(); 209 if( range->cnt() > TypeFunc::Parms ) { // If not a void function 210 // Get ideal-register return type 211 uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg(); 212 // Get machine return register 213 uint sop = C->start()->Opcode(); 214 OptoRegPair regs = return_value(ireg); 215 216 // And mask for same 217 _return_value_mask = RegMask(regs.first()); 218 if( OptoReg::is_valid(regs.second()) ) 219 _return_value_mask.Insert(regs.second()); 220 } 221 222 // --------------- 223 // Frame Layout 224 225 // Need the method signature to determine the incoming argument types, 226 // because the types determine which registers the incoming arguments are 227 // in, and this affects the matched code. 228 const TypeTuple *domain = C->tf()->domain(); 229 uint argcnt = domain->cnt() - TypeFunc::Parms; 230 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 231 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 232 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt ); 233 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt ); 234 uint i; 235 for( i = 0; i<argcnt; i++ ) { 236 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 237 } 238 239 // Pass array of ideal registers and length to USER code (from the AD file) 240 // that will convert this to an array of register numbers. 241 const StartNode *start = C->start(); 242 start->calling_convention( sig_bt, vm_parm_regs, argcnt ); 243 #ifdef ASSERT 244 // Sanity check users' calling convention. Real handy while trying to 245 // get the initial port correct. 246 { for (uint i = 0; i<argcnt; i++) { 247 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 248 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" ); 249 _parm_regs[i].set_bad(); 250 continue; 251 } 252 VMReg parm_reg = vm_parm_regs[i].first(); 253 assert(parm_reg->is_valid(), "invalid arg?"); 254 if (parm_reg->is_reg()) { 255 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg); 256 assert(can_be_java_arg(opto_parm_reg) || 257 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) || 258 opto_parm_reg == inline_cache_reg(), 259 "parameters in register must be preserved by runtime stubs"); 260 } 261 for (uint j = 0; j < i; j++) { 262 assert(parm_reg != vm_parm_regs[j].first(), 263 "calling conv. must produce distinct regs"); 264 } 265 } 266 } 267 #endif 268 269 // Do some initial frame layout. 270 271 // Compute the old incoming SP (may be called FP) as 272 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2. 273 _old_SP = C->compute_old_SP(); 274 assert( is_even(_old_SP), "must be even" ); 275 276 // Compute highest incoming stack argument as 277 // _old_SP + out_preserve_stack_slots + incoming argument size. 278 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 279 assert( is_even(_in_arg_limit), "out_preserve must be even" ); 280 for( i = 0; i < argcnt; i++ ) { 281 // Permit args to have no register 282 _calling_convention_mask[i].Clear(); 283 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 284 _parm_regs[i].set_bad(); 285 continue; 286 } 287 // calling_convention returns stack arguments as a count of 288 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to 289 // the allocators point of view, taking into account all the 290 // preserve area, locks & pad2. 291 292 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first()); 293 if (C->failing()) { 294 return; 295 } 296 if( OptoReg::is_valid(reg1)) 297 _calling_convention_mask[i].Insert(reg1); 298 299 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second()); 300 if (C->failing()) { 301 return; 302 } 303 if( OptoReg::is_valid(reg2)) 304 _calling_convention_mask[i].Insert(reg2); 305 306 // Saved biased stack-slot register number 307 _parm_regs[i].set_pair(reg2, reg1); 308 } 309 310 // Finally, make sure the incoming arguments take up an even number of 311 // words, in case the arguments or locals need to contain doubleword stack 312 // slots. The rest of the system assumes that stack slot pairs (in 313 // particular, in the spill area) which look aligned will in fact be 314 // aligned relative to the stack pointer in the target machine. Double 315 // stack slots will always be allocated aligned. 316 _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong)); 317 318 // Compute highest outgoing stack argument as 319 // _new_SP + out_preserve_stack_slots + max(outgoing argument size). 320 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 321 assert( is_even(_out_arg_limit), "out_preserve must be even" ); 322 323 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) { 324 // the compiler cannot represent this method's calling sequence 325 // Bailout. We do not have space to represent all arguments. 326 C->record_method_not_compilable("must be able to represent all call arguments in reg mask"); 327 } 328 329 if (C->failing()) return; // bailed out on incoming arg failure 330 331 // --------------- 332 // Collect roots of matcher trees. Every node for which 333 // _shared[_idx] is cleared is guaranteed to not be shared, and thus 334 // can be a valid interior of some tree. 335 find_shared( C->root() ); 336 find_shared( C->top() ); 337 338 C->print_method(PHASE_BEFORE_MATCHING, 1); 339 340 // Create new ideal node ConP #null even if it does exist in old space 341 // to avoid false sharing if the corresponding mach node is not used. 342 // The corresponding mach node is only used in rare cases for derived 343 // pointers. 344 Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR); 345 346 // Swap out to old-space; emptying new-space 347 Arena* old = C->swap_old_and_new(); 348 349 // Save debug and profile information for nodes in old space: 350 _old_node_note_array = C->node_note_array(); 351 if (_old_node_note_array != nullptr) { 352 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*> 353 (C->comp_arena(), _old_node_note_array->length(), 354 0, nullptr)); 355 } 356 357 // Pre-size the new_node table to avoid the need for range checks. 358 grow_new_node_array(C->unique()); 359 360 // Reset node counter so MachNodes start with _idx at 0 361 int live_nodes = C->live_nodes(); 362 C->set_unique(0); 363 C->reset_dead_node_list(); 364 365 // Recursively match trees from old space into new space. 366 // Correct leaves of new-space Nodes; they point to old-space. 367 _visited.clear(); 368 Node* const n = xform(C->top(), live_nodes); 369 if (C->failing()) return; 370 C->set_cached_top_node(n); 371 if (!C->failing()) { 372 Node* xroot = xform( C->root(), 1 ); 373 if (C->failing()) return; 374 if (xroot == nullptr) { 375 Matcher::soft_match_failure(); // recursive matching process failed 376 assert(false, "instruction match failed"); 377 C->record_method_not_compilable("instruction match failed"); 378 } else { 379 // During matching shared constants were attached to C->root() 380 // because xroot wasn't available yet, so transfer the uses to 381 // the xroot. 382 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) { 383 Node* n = C->root()->fast_out(j); 384 if (C->node_arena()->contains(n)) { 385 assert(n->in(0) == C->root(), "should be control user"); 386 n->set_req(0, xroot); 387 --j; 388 --jmax; 389 } 390 } 391 392 // Generate new mach node for ConP #null 393 assert(new_ideal_null != nullptr, "sanity"); 394 _mach_null = match_tree(new_ideal_null); 395 // Don't set control, it will confuse GCM since there are no uses. 396 // The control will be set when this node is used first time 397 // in find_base_for_derived(). 398 assert(_mach_null != nullptr || C->failure_is_artificial(), ""); // bailouts are handled below. 399 400 C->set_root(xroot->is_Root() ? xroot->as_Root() : nullptr); 401 402 #ifdef ASSERT 403 verify_new_nodes_only(xroot); 404 #endif 405 } 406 } 407 if (C->top() == nullptr || C->root() == nullptr) { 408 // New graph lost. This is due to a compilation failure we encountered earlier. 409 stringStream ss; 410 if (C->failure_reason() != nullptr) { 411 ss.print("graph lost: %s", C->failure_reason()); 412 } else { 413 assert(C->failure_reason() != nullptr, "graph lost: reason unknown"); 414 ss.print("graph lost: reason unknown"); 415 } 416 C->record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 417 } 418 if (C->failing()) { 419 // delete old; 420 old->destruct_contents(); 421 return; 422 } 423 assert( C->top(), "" ); 424 assert( C->root(), "" ); 425 validate_null_checks(); 426 427 // Now smoke old-space 428 NOT_DEBUG( old->destruct_contents() ); 429 430 // ------------------------ 431 // Set up save-on-entry registers. 432 Fixup_Save_On_Entry( ); 433 434 { // Cleanup mach IR after selection phase is over. 435 Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]); 436 do_postselect_cleanup(); 437 if (C->failing()) return; 438 assert(verify_after_postselect_cleanup(), ""); 439 } 440 } 441 442 //------------------------------Fixup_Save_On_Entry---------------------------- 443 // The stated purpose of this routine is to take care of save-on-entry 444 // registers. However, the overall goal of the Match phase is to convert into 445 // machine-specific instructions which have RegMasks to guide allocation. 446 // So what this procedure really does is put a valid RegMask on each input 447 // to the machine-specific variations of all Return, TailCall and Halt 448 // instructions. It also adds edgs to define the save-on-entry values (and of 449 // course gives them a mask). 450 451 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) { 452 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size ); 453 // Do all the pre-defined register masks 454 rms[TypeFunc::Control ] = RegMask::Empty; 455 rms[TypeFunc::I_O ] = RegMask::Empty; 456 rms[TypeFunc::Memory ] = RegMask::Empty; 457 rms[TypeFunc::ReturnAdr] = ret_adr; 458 rms[TypeFunc::FramePtr ] = fp; 459 return rms; 460 } 461 462 int Matcher::scalable_predicate_reg_slots() { 463 assert(Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector(), 464 "scalable predicate vector should be supported"); 465 int vector_reg_bit_size = Matcher::scalable_vector_reg_size(T_BYTE) << LogBitsPerByte; 466 // We assume each predicate register is one-eighth of the size of 467 // scalable vector register, one mask bit per vector byte. 468 int predicate_reg_bit_size = vector_reg_bit_size >> 3; 469 // Compute number of slots which is required when scalable predicate 470 // register is spilled. E.g. if scalable vector register is 640 bits, 471 // predicate register is 80 bits, which is 2.5 * slots. 472 // We will round up the slot number to power of 2, which is required 473 // by find_first_set(). 474 int slots = predicate_reg_bit_size & (BitsPerInt - 1) 475 ? (predicate_reg_bit_size >> LogBitsPerInt) + 1 476 : predicate_reg_bit_size >> LogBitsPerInt; 477 return round_up_power_of_2(slots); 478 } 479 480 #define NOF_STACK_MASKS (3*13) 481 482 // Create the initial stack mask used by values spilling to the stack. 483 // Disallow any debug info in outgoing argument areas by setting the 484 // initial mask accordingly. 485 void Matcher::init_first_stack_mask() { 486 487 // Allocate storage for spill masks as masks for the appropriate load type. 488 RegMask *rms = (RegMask*)C->comp_arena()->AmallocWords(sizeof(RegMask) * NOF_STACK_MASKS); 489 490 // Initialize empty placeholder masks into the newly allocated arena 491 for (int i = 0; i < NOF_STACK_MASKS; i++) { 492 new (rms + i) RegMask(); 493 } 494 495 idealreg2spillmask [Op_RegN] = &rms[0]; 496 idealreg2spillmask [Op_RegI] = &rms[1]; 497 idealreg2spillmask [Op_RegL] = &rms[2]; 498 idealreg2spillmask [Op_RegF] = &rms[3]; 499 idealreg2spillmask [Op_RegD] = &rms[4]; 500 idealreg2spillmask [Op_RegP] = &rms[5]; 501 502 idealreg2debugmask [Op_RegN] = &rms[6]; 503 idealreg2debugmask [Op_RegI] = &rms[7]; 504 idealreg2debugmask [Op_RegL] = &rms[8]; 505 idealreg2debugmask [Op_RegF] = &rms[9]; 506 idealreg2debugmask [Op_RegD] = &rms[10]; 507 idealreg2debugmask [Op_RegP] = &rms[11]; 508 509 idealreg2mhdebugmask[Op_RegN] = &rms[12]; 510 idealreg2mhdebugmask[Op_RegI] = &rms[13]; 511 idealreg2mhdebugmask[Op_RegL] = &rms[14]; 512 idealreg2mhdebugmask[Op_RegF] = &rms[15]; 513 idealreg2mhdebugmask[Op_RegD] = &rms[16]; 514 idealreg2mhdebugmask[Op_RegP] = &rms[17]; 515 516 idealreg2spillmask [Op_VecA] = &rms[18]; 517 idealreg2spillmask [Op_VecS] = &rms[19]; 518 idealreg2spillmask [Op_VecD] = &rms[20]; 519 idealreg2spillmask [Op_VecX] = &rms[21]; 520 idealreg2spillmask [Op_VecY] = &rms[22]; 521 idealreg2spillmask [Op_VecZ] = &rms[23]; 522 523 idealreg2debugmask [Op_VecA] = &rms[24]; 524 idealreg2debugmask [Op_VecS] = &rms[25]; 525 idealreg2debugmask [Op_VecD] = &rms[26]; 526 idealreg2debugmask [Op_VecX] = &rms[27]; 527 idealreg2debugmask [Op_VecY] = &rms[28]; 528 idealreg2debugmask [Op_VecZ] = &rms[29]; 529 530 idealreg2mhdebugmask[Op_VecA] = &rms[30]; 531 idealreg2mhdebugmask[Op_VecS] = &rms[31]; 532 idealreg2mhdebugmask[Op_VecD] = &rms[32]; 533 idealreg2mhdebugmask[Op_VecX] = &rms[33]; 534 idealreg2mhdebugmask[Op_VecY] = &rms[34]; 535 idealreg2mhdebugmask[Op_VecZ] = &rms[35]; 536 537 idealreg2spillmask [Op_RegVectMask] = &rms[36]; 538 idealreg2debugmask [Op_RegVectMask] = &rms[37]; 539 idealreg2mhdebugmask[Op_RegVectMask] = &rms[38]; 540 541 OptoReg::Name i; 542 543 // At first, start with the empty mask 544 C->FIRST_STACK_mask().Clear(); 545 546 // Add in the incoming argument area 547 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 548 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) { 549 C->FIRST_STACK_mask().Insert(i); 550 } 551 // Add in all bits past the outgoing argument area 552 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)), 553 "must be able to represent all call arguments in reg mask"); 554 OptoReg::Name init = _out_arg_limit; 555 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) { 556 C->FIRST_STACK_mask().Insert(i); 557 } 558 // Finally, set the "infinite stack" bit. 559 C->FIRST_STACK_mask().set_AllStack(); 560 561 // Make spill masks. Registers for their class, plus FIRST_STACK_mask. 562 RegMask aligned_stack_mask = C->FIRST_STACK_mask(); 563 // Keep spill masks aligned. 564 aligned_stack_mask.clear_to_pairs(); 565 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 566 RegMask scalable_stack_mask = aligned_stack_mask; 567 568 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; 569 #ifdef _LP64 570 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN]; 571 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask()); 572 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask); 573 #else 574 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask()); 575 #endif 576 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI]; 577 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask()); 578 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; 579 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask); 580 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; 581 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask()); 582 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; 583 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask); 584 585 if (Matcher::has_predicated_vectors()) { 586 *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; 587 idealreg2spillmask[Op_RegVectMask]->OR(aligned_stack_mask); 588 } else { 589 *idealreg2spillmask[Op_RegVectMask] = RegMask::Empty; 590 } 591 592 if (Matcher::vector_size_supported(T_BYTE,4)) { 593 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS]; 594 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask()); 595 } else { 596 *idealreg2spillmask[Op_VecS] = RegMask::Empty; 597 } 598 599 if (Matcher::vector_size_supported(T_FLOAT,2)) { 600 // For VecD we need dual alignment and 8 bytes (2 slots) for spills. 601 // RA guarantees such alignment since it is needed for Double and Long values. 602 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD]; 603 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask); 604 } else { 605 *idealreg2spillmask[Op_VecD] = RegMask::Empty; 606 } 607 608 if (Matcher::vector_size_supported(T_FLOAT,4)) { 609 // For VecX we need quadro alignment and 16 bytes (4 slots) for spills. 610 // 611 // RA can use input arguments stack slots for spills but until RA 612 // we don't know frame size and offset of input arg stack slots. 613 // 614 // Exclude last input arg stack slots to avoid spilling vectors there 615 // otherwise vector spills could stomp over stack slots in caller frame. 616 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 617 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) { 618 aligned_stack_mask.Remove(in); 619 in = OptoReg::add(in, -1); 620 } 621 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX); 622 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 623 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX]; 624 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask); 625 } else { 626 *idealreg2spillmask[Op_VecX] = RegMask::Empty; 627 } 628 629 if (Matcher::vector_size_supported(T_FLOAT,8)) { 630 // For VecY we need octo alignment and 32 bytes (8 slots) for spills. 631 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 632 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) { 633 aligned_stack_mask.Remove(in); 634 in = OptoReg::add(in, -1); 635 } 636 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY); 637 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 638 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY]; 639 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask); 640 } else { 641 *idealreg2spillmask[Op_VecY] = RegMask::Empty; 642 } 643 644 if (Matcher::vector_size_supported(T_FLOAT,16)) { 645 // For VecZ we need enough alignment and 64 bytes (16 slots) for spills. 646 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 647 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) { 648 aligned_stack_mask.Remove(in); 649 in = OptoReg::add(in, -1); 650 } 651 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ); 652 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 653 *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ]; 654 idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask); 655 } else { 656 *idealreg2spillmask[Op_VecZ] = RegMask::Empty; 657 } 658 659 if (Matcher::supports_scalable_vector()) { 660 int k = 1; 661 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 662 if (Matcher::has_predicated_vectors()) { 663 // Exclude last input arg stack slots to avoid spilling vector register there, 664 // otherwise RegVectMask spills could stomp over stack slots in caller frame. 665 for (; (in >= init_in) && (k < scalable_predicate_reg_slots()); k++) { 666 scalable_stack_mask.Remove(in); 667 in = OptoReg::add(in, -1); 668 } 669 670 // For RegVectMask 671 scalable_stack_mask.clear_to_sets(scalable_predicate_reg_slots()); 672 assert(scalable_stack_mask.is_AllStack(), "should be infinite stack"); 673 *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; 674 idealreg2spillmask[Op_RegVectMask]->OR(scalable_stack_mask); 675 } 676 677 // Exclude last input arg stack slots to avoid spilling vector register there, 678 // otherwise vector spills could stomp over stack slots in caller frame. 679 for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) { 680 scalable_stack_mask.Remove(in); 681 in = OptoReg::add(in, -1); 682 } 683 684 // For VecA 685 scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA); 686 assert(scalable_stack_mask.is_AllStack(), "should be infinite stack"); 687 *idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA]; 688 idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask); 689 } else { 690 *idealreg2spillmask[Op_VecA] = RegMask::Empty; 691 } 692 693 if (UseFPUForSpilling) { 694 // This mask logic assumes that the spill operations are 695 // symmetric and that the registers involved are the same size. 696 // On sparc for instance we may have to use 64 bit moves will 697 // kill 2 registers when used with F0-F31. 698 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]); 699 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]); 700 #ifdef _LP64 701 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]); 702 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 703 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 704 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]); 705 #else 706 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]); 707 #ifdef ARM 708 // ARM has support for moving 64bit values between a pair of 709 // integer registers and a double register 710 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 711 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 712 #endif 713 #endif 714 } 715 716 // Make up debug masks. Any spill slot plus callee-save (SOE) registers. 717 // Caller-save (SOC, AS) registers are assumed to be trashable by the various 718 // inline-cache fixup routines. 719 *idealreg2debugmask [Op_RegN] = *idealreg2spillmask[Op_RegN]; 720 *idealreg2debugmask [Op_RegI] = *idealreg2spillmask[Op_RegI]; 721 *idealreg2debugmask [Op_RegL] = *idealreg2spillmask[Op_RegL]; 722 *idealreg2debugmask [Op_RegF] = *idealreg2spillmask[Op_RegF]; 723 *idealreg2debugmask [Op_RegD] = *idealreg2spillmask[Op_RegD]; 724 *idealreg2debugmask [Op_RegP] = *idealreg2spillmask[Op_RegP]; 725 *idealreg2debugmask [Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; 726 727 *idealreg2debugmask [Op_VecA] = *idealreg2spillmask[Op_VecA]; 728 *idealreg2debugmask [Op_VecS] = *idealreg2spillmask[Op_VecS]; 729 *idealreg2debugmask [Op_VecD] = *idealreg2spillmask[Op_VecD]; 730 *idealreg2debugmask [Op_VecX] = *idealreg2spillmask[Op_VecX]; 731 *idealreg2debugmask [Op_VecY] = *idealreg2spillmask[Op_VecY]; 732 *idealreg2debugmask [Op_VecZ] = *idealreg2spillmask[Op_VecZ]; 733 734 *idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN]; 735 *idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI]; 736 *idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL]; 737 *idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF]; 738 *idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD]; 739 *idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP]; 740 *idealreg2mhdebugmask[Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; 741 742 *idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA]; 743 *idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS]; 744 *idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD]; 745 *idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX]; 746 *idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY]; 747 *idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ]; 748 749 // Prevent stub compilations from attempting to reference 750 // callee-saved (SOE) registers from debug info 751 bool exclude_soe = !Compile::current()->is_method_compilation(); 752 RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask; 753 RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask; 754 755 idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask); 756 idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask); 757 idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask); 758 idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask); 759 idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask); 760 idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask); 761 idealreg2debugmask[Op_RegVectMask]->SUBTRACT(*caller_save_mask); 762 763 idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask); 764 idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask); 765 idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask); 766 idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask); 767 idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask); 768 idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask); 769 770 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask); 771 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask); 772 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask); 773 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask); 774 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask); 775 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask); 776 idealreg2mhdebugmask[Op_RegVectMask]->SUBTRACT(*mh_caller_save_mask); 777 778 idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask); 779 idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask); 780 idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask); 781 idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask); 782 idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask); 783 idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask); 784 } 785 786 //---------------------------is_save_on_entry---------------------------------- 787 bool Matcher::is_save_on_entry(int reg) { 788 return 789 _register_save_policy[reg] == 'E' || 790 _register_save_policy[reg] == 'A'; // Save-on-entry register? 791 } 792 793 //---------------------------Fixup_Save_On_Entry------------------------------- 794 void Matcher::Fixup_Save_On_Entry( ) { 795 init_first_stack_mask(); 796 797 Node *root = C->root(); // Short name for root 798 // Count number of save-on-entry registers. 799 uint soe_cnt = number_of_saved_registers(); 800 uint i; 801 802 // Find the procedure Start Node 803 StartNode *start = C->start(); 804 assert( start, "Expect a start node" ); 805 806 // Input RegMask array shared by all Returns. 807 // The type for doubles and longs has a count of 2, but 808 // there is only 1 returned value 809 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1); 810 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 811 // Returns have 0 or 1 returned values depending on call signature. 812 // Return register is specified by return_value in the AD file. 813 if (ret_edge_cnt > TypeFunc::Parms) 814 ret_rms[TypeFunc::Parms+0] = _return_value_mask; 815 816 // Input RegMask array shared by all ForwardExceptions 817 uint forw_exc_edge_cnt = TypeFunc::Parms; 818 RegMask* forw_exc_rms = init_input_masks( forw_exc_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 819 820 // Input RegMask array shared by all Rethrows. 821 uint reth_edge_cnt = TypeFunc::Parms+1; 822 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 823 // Rethrow takes exception oop only, but in the argument 0 slot. 824 OptoReg::Name reg = find_receiver(); 825 if (reg >= 0) { 826 reth_rms[TypeFunc::Parms] = mreg2regmask[reg]; 827 #ifdef _LP64 828 // Need two slots for ptrs in 64-bit land 829 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1)); 830 #endif 831 } 832 833 // Input RegMask array shared by all TailCalls 834 uint tail_call_edge_cnt = TypeFunc::Parms+2; 835 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 836 837 // Input RegMask array shared by all TailJumps 838 uint tail_jump_edge_cnt = TypeFunc::Parms+2; 839 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 840 841 // TailCalls have 2 returned values (target & moop), whose masks come 842 // from the usual MachNode/MachOper mechanism. Find a sample 843 // TailCall to extract these masks and put the correct masks into 844 // the tail_call_rms array. 845 for( i=1; i < root->req(); i++ ) { 846 MachReturnNode *m = root->in(i)->as_MachReturn(); 847 if( m->ideal_Opcode() == Op_TailCall ) { 848 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 849 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 850 break; 851 } 852 } 853 854 // TailJumps have 2 returned values (target & ex_oop), whose masks come 855 // from the usual MachNode/MachOper mechanism. Find a sample 856 // TailJump to extract these masks and put the correct masks into 857 // the tail_jump_rms array. 858 for( i=1; i < root->req(); i++ ) { 859 MachReturnNode *m = root->in(i)->as_MachReturn(); 860 if( m->ideal_Opcode() == Op_TailJump ) { 861 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 862 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 863 break; 864 } 865 } 866 867 // Input RegMask array shared by all Halts 868 uint halt_edge_cnt = TypeFunc::Parms; 869 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 870 871 // Capture the return input masks into each exit flavor 872 for( i=1; i < root->req(); i++ ) { 873 MachReturnNode *exit = root->in(i)->as_MachReturn(); 874 switch( exit->ideal_Opcode() ) { 875 case Op_Return : exit->_in_rms = ret_rms; break; 876 case Op_Rethrow : exit->_in_rms = reth_rms; break; 877 case Op_TailCall : exit->_in_rms = tail_call_rms; break; 878 case Op_TailJump : exit->_in_rms = tail_jump_rms; break; 879 case Op_ForwardException: exit->_in_rms = forw_exc_rms; break; 880 case Op_Halt : exit->_in_rms = halt_rms; break; 881 default : ShouldNotReachHere(); 882 } 883 } 884 885 // Next unused projection number from Start. 886 int proj_cnt = C->tf()->domain()->cnt(); 887 888 // Do all the save-on-entry registers. Make projections from Start for 889 // them, and give them a use at the exit points. To the allocator, they 890 // look like incoming register arguments. 891 for( i = 0; i < _last_Mach_Reg; i++ ) { 892 if( is_save_on_entry(i) ) { 893 894 // Add the save-on-entry to the mask array 895 ret_rms [ ret_edge_cnt] = mreg2regmask[i]; 896 reth_rms [ reth_edge_cnt] = mreg2regmask[i]; 897 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i]; 898 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i]; 899 forw_exc_rms [ forw_exc_edge_cnt] = mreg2regmask[i]; 900 // Halts need the SOE registers, but only in the stack as debug info. 901 // A just-prior uncommon-trap or deoptimization will use the SOE regs. 902 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]]; 903 904 Node *mproj; 905 906 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's 907 // into a single RegD. 908 if( (i&1) == 0 && 909 _register_save_type[i ] == Op_RegF && 910 _register_save_type[i+1] == Op_RegF && 911 is_save_on_entry(i+1) ) { 912 // Add other bit for double 913 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 914 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 915 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 916 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 917 forw_exc_rms [ forw_exc_edge_cnt].Insert(OptoReg::Name(i+1)); 918 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 919 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD ); 920 proj_cnt += 2; // Skip 2 for doubles 921 } 922 else if( (i&1) == 1 && // Else check for high half of double 923 _register_save_type[i-1] == Op_RegF && 924 _register_save_type[i ] == Op_RegF && 925 is_save_on_entry(i-1) ) { 926 ret_rms [ ret_edge_cnt] = RegMask::Empty; 927 reth_rms [ reth_edge_cnt] = RegMask::Empty; 928 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 929 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 930 forw_exc_rms [ forw_exc_edge_cnt] = RegMask::Empty; 931 halt_rms [ halt_edge_cnt] = RegMask::Empty; 932 mproj = C->top(); 933 } 934 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's 935 // into a single RegL. 936 else if( (i&1) == 0 && 937 _register_save_type[i ] == Op_RegI && 938 _register_save_type[i+1] == Op_RegI && 939 is_save_on_entry(i+1) ) { 940 // Add other bit for long 941 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 942 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 943 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 944 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 945 forw_exc_rms [ forw_exc_edge_cnt].Insert(OptoReg::Name(i+1)); 946 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 947 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL ); 948 proj_cnt += 2; // Skip 2 for longs 949 } 950 else if( (i&1) == 1 && // Else check for high half of long 951 _register_save_type[i-1] == Op_RegI && 952 _register_save_type[i ] == Op_RegI && 953 is_save_on_entry(i-1) ) { 954 ret_rms [ ret_edge_cnt] = RegMask::Empty; 955 reth_rms [ reth_edge_cnt] = RegMask::Empty; 956 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 957 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 958 forw_exc_rms [ forw_exc_edge_cnt] = RegMask::Empty; 959 halt_rms [ halt_edge_cnt] = RegMask::Empty; 960 mproj = C->top(); 961 } else { 962 // Make a projection for it off the Start 963 mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] ); 964 } 965 966 ret_edge_cnt ++; 967 reth_edge_cnt ++; 968 tail_call_edge_cnt ++; 969 tail_jump_edge_cnt ++; 970 forw_exc_edge_cnt++; 971 halt_edge_cnt ++; 972 973 // Add a use of the SOE register to all exit paths 974 for (uint j=1; j < root->req(); j++) { 975 root->in(j)->add_req(mproj); 976 } 977 } // End of if a save-on-entry register 978 } // End of for all machine registers 979 } 980 981 //------------------------------init_spill_mask-------------------------------- 982 void Matcher::init_spill_mask( Node *ret ) { 983 if( idealreg2regmask[Op_RegI] ) return; // One time only init 984 985 OptoReg::c_frame_pointer = c_frame_pointer(); 986 c_frame_ptr_mask = c_frame_pointer(); 987 #ifdef _LP64 988 // pointers are twice as big 989 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1)); 990 #endif 991 992 // Start at OptoReg::stack0() 993 STACK_ONLY_mask.Clear(); 994 OptoReg::Name init = OptoReg::stack2reg(0); 995 // STACK_ONLY_mask is all stack bits 996 OptoReg::Name i; 997 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) 998 STACK_ONLY_mask.Insert(i); 999 // Also set the "infinite stack" bit. 1000 STACK_ONLY_mask.set_AllStack(); 1001 1002 for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) { 1003 // Copy the register names over into the shared world. 1004 // SharedInfo::regName[i] = regName[i]; 1005 // Handy RegMasks per machine register 1006 mreg2regmask[i].Insert(i); 1007 1008 // Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks. 1009 if (_register_save_policy[i] == 'C' || 1010 _register_save_policy[i] == 'A') { 1011 caller_save_regmask.Insert(i); 1012 mh_caller_save_regmask.Insert(i); 1013 } 1014 // Exclude save-on-entry registers from debug masks for stub compilations. 1015 if (_register_save_policy[i] == 'C' || 1016 _register_save_policy[i] == 'A' || 1017 _register_save_policy[i] == 'E') { 1018 caller_save_regmask_exclude_soe.Insert(i); 1019 mh_caller_save_regmask_exclude_soe.Insert(i); 1020 } 1021 } 1022 1023 // Also exclude the register we use to save the SP for MethodHandle 1024 // invokes to from the corresponding MH debug masks 1025 const RegMask sp_save_mask = method_handle_invoke_SP_save_mask(); 1026 mh_caller_save_regmask.OR(sp_save_mask); 1027 mh_caller_save_regmask_exclude_soe.OR(sp_save_mask); 1028 1029 // Grab the Frame Pointer 1030 Node *fp = ret->in(TypeFunc::FramePtr); 1031 // Share frame pointer while making spill ops 1032 set_shared(fp); 1033 1034 // Get the ADLC notion of the right regmask, for each basic type. 1035 #ifdef _LP64 1036 idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret); 1037 #endif 1038 idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret); 1039 idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret); 1040 idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret); 1041 idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret); 1042 idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret); 1043 idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret); 1044 idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret); 1045 idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret); 1046 idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret); 1047 idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret); 1048 idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret); 1049 idealreg2regmask[Op_RegVectMask] = regmask_for_ideal_register(Op_RegVectMask, ret); 1050 } 1051 1052 #ifdef ASSERT 1053 static void match_alias_type(Compile* C, Node* n, Node* m) { 1054 if (!VerifyAliases) return; // do not go looking for trouble by default 1055 const TypePtr* nat = n->adr_type(); 1056 const TypePtr* mat = m->adr_type(); 1057 int nidx = C->get_alias_index(nat); 1058 int midx = C->get_alias_index(mat); 1059 // Detune the assert for cases like (AndI 0xFF (LoadB p)). 1060 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) { 1061 for (uint i = 1; i < n->req(); i++) { 1062 Node* n1 = n->in(i); 1063 const TypePtr* n1at = n1->adr_type(); 1064 if (n1at != nullptr) { 1065 nat = n1at; 1066 nidx = C->get_alias_index(n1at); 1067 } 1068 } 1069 } 1070 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases: 1071 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) { 1072 switch (n->Opcode()) { 1073 case Op_PrefetchAllocation: 1074 nidx = Compile::AliasIdxRaw; 1075 nat = TypeRawPtr::BOTTOM; 1076 break; 1077 } 1078 } 1079 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) { 1080 switch (n->Opcode()) { 1081 case Op_ClearArray: 1082 midx = Compile::AliasIdxRaw; 1083 mat = TypeRawPtr::BOTTOM; 1084 break; 1085 } 1086 } 1087 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) { 1088 switch (n->Opcode()) { 1089 case Op_Return: 1090 case Op_Rethrow: 1091 case Op_Halt: 1092 case Op_TailCall: 1093 case Op_TailJump: 1094 case Op_ForwardException: 1095 nidx = Compile::AliasIdxBot; 1096 nat = TypePtr::BOTTOM; 1097 break; 1098 } 1099 } 1100 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) { 1101 switch (n->Opcode()) { 1102 case Op_StrComp: 1103 case Op_StrEquals: 1104 case Op_StrIndexOf: 1105 case Op_StrIndexOfChar: 1106 case Op_AryEq: 1107 case Op_VectorizedHashCode: 1108 case Op_CountPositives: 1109 case Op_MemBarVolatile: 1110 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type? 1111 case Op_StrInflatedCopy: 1112 case Op_StrCompressedCopy: 1113 case Op_OnSpinWait: 1114 case Op_EncodeISOArray: 1115 nidx = Compile::AliasIdxTop; 1116 nat = nullptr; 1117 break; 1118 } 1119 } 1120 if (nidx != midx) { 1121 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) { 1122 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx); 1123 n->dump(); 1124 m->dump(); 1125 } 1126 assert(C->subsume_loads() && C->must_alias(nat, midx), 1127 "must not lose alias info when matching"); 1128 } 1129 } 1130 #endif 1131 1132 //------------------------------xform------------------------------------------ 1133 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine 1134 // Node in new-space. Given a new-space Node, recursively walk his children. 1135 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; } 1136 Node *Matcher::xform( Node *n, int max_stack ) { 1137 // Use one stack to keep both: child's node/state and parent's node/index 1138 MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2 1139 mstack.push(n, Visit, nullptr, -1); // set null as parent to indicate root 1140 while (mstack.is_nonempty()) { 1141 C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions"); 1142 if (C->failing()) return nullptr; 1143 n = mstack.node(); // Leave node on stack 1144 Node_State nstate = mstack.state(); 1145 if (nstate == Visit) { 1146 mstack.set_state(Post_Visit); 1147 Node *oldn = n; 1148 // Old-space or new-space check 1149 if (!C->node_arena()->contains(n)) { 1150 // Old space! 1151 Node* m; 1152 if (has_new_node(n)) { // Not yet Label/Reduced 1153 m = new_node(n); 1154 } else { 1155 if (!is_dontcare(n)) { // Matcher can match this guy 1156 // Calls match special. They match alone with no children. 1157 // Their children, the incoming arguments, match normally. 1158 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n); 1159 if (C->failing()) return nullptr; 1160 if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; } 1161 if (n->is_MemBar()) { 1162 m->as_MachMemBar()->set_adr_type(n->adr_type()); 1163 } 1164 } else { // Nothing the matcher cares about 1165 if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) { // Projections? 1166 // Convert to machine-dependent projection 1167 m = n->in(0)->as_Multi()->match( n->as_Proj(), this ); 1168 NOT_PRODUCT(record_new2old(m, n);) 1169 if (m->in(0) != nullptr) // m might be top 1170 collect_null_checks(m, n); 1171 } else { // Else just a regular 'ol guy 1172 m = n->clone(); // So just clone into new-space 1173 NOT_PRODUCT(record_new2old(m, n);) 1174 // Def-Use edges will be added incrementally as Uses 1175 // of this node are matched. 1176 assert(m->outcnt() == 0, "no Uses of this clone yet"); 1177 } 1178 } 1179 1180 set_new_node(n, m); // Map old to new 1181 if (_old_node_note_array != nullptr) { 1182 Node_Notes* nn = C->locate_node_notes(_old_node_note_array, 1183 n->_idx); 1184 C->set_node_notes_at(m->_idx, nn); 1185 } 1186 debug_only(match_alias_type(C, n, m)); 1187 } 1188 n = m; // n is now a new-space node 1189 mstack.set_node(n); 1190 } 1191 1192 // New space! 1193 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty()) 1194 1195 int i; 1196 // Put precedence edges on stack first (match them last). 1197 for (i = oldn->req(); (uint)i < oldn->len(); i++) { 1198 Node *m = oldn->in(i); 1199 if (m == nullptr) break; 1200 // set -1 to call add_prec() instead of set_req() during Step1 1201 mstack.push(m, Visit, n, -1); 1202 } 1203 1204 // Handle precedence edges for interior nodes 1205 for (i = n->len()-1; (uint)i >= n->req(); i--) { 1206 Node *m = n->in(i); 1207 if (m == nullptr || C->node_arena()->contains(m)) continue; 1208 n->rm_prec(i); 1209 // set -1 to call add_prec() instead of set_req() during Step1 1210 mstack.push(m, Visit, n, -1); 1211 } 1212 1213 // For constant debug info, I'd rather have unmatched constants. 1214 int cnt = n->req(); 1215 JVMState* jvms = n->jvms(); 1216 int debug_cnt = jvms ? jvms->debug_start() : cnt; 1217 1218 // Now do only debug info. Clone constants rather than matching. 1219 // Constants are represented directly in the debug info without 1220 // the need for executable machine instructions. 1221 // Monitor boxes are also represented directly. 1222 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do 1223 Node *m = n->in(i); // Get input 1224 int op = m->Opcode(); 1225 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites"); 1226 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass || 1227 op == Op_ConF || op == Op_ConD || op == Op_ConL 1228 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp 1229 ) { 1230 m = m->clone(); 1231 NOT_PRODUCT(record_new2old(m, n)); 1232 mstack.push(m, Post_Visit, n, i); // Don't need to visit 1233 mstack.push(m->in(0), Visit, m, 0); 1234 } else { 1235 mstack.push(m, Visit, n, i); 1236 } 1237 } 1238 1239 // And now walk his children, and convert his inputs to new-space. 1240 for( ; i >= 0; --i ) { // For all normal inputs do 1241 Node *m = n->in(i); // Get input 1242 if(m != nullptr) 1243 mstack.push(m, Visit, n, i); 1244 } 1245 1246 } 1247 else if (nstate == Post_Visit) { 1248 // Set xformed input 1249 Node *p = mstack.parent(); 1250 if (p != nullptr) { // root doesn't have parent 1251 int i = (int)mstack.index(); 1252 if (i >= 0) 1253 p->set_req(i, n); // required input 1254 else if (i == -1) 1255 p->add_prec(n); // precedence input 1256 else 1257 ShouldNotReachHere(); 1258 } 1259 mstack.pop(); // remove processed node from stack 1260 } 1261 else { 1262 ShouldNotReachHere(); 1263 } 1264 } // while (mstack.is_nonempty()) 1265 return n; // Return new-space Node 1266 } 1267 1268 //------------------------------warp_outgoing_stk_arg------------------------ 1269 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) { 1270 // Convert outgoing argument location to a pre-biased stack offset 1271 if (reg->is_stack()) { 1272 OptoReg::Name warped = reg->reg2stack(); 1273 // Adjust the stack slot offset to be the register number used 1274 // by the allocator. 1275 warped = OptoReg::add(begin_out_arg_area, warped); 1276 // Keep track of the largest numbered stack slot used for an arg. 1277 // Largest used slot per call-site indicates the amount of stack 1278 // that is killed by the call. 1279 if( warped >= out_arg_limit_per_call ) 1280 out_arg_limit_per_call = OptoReg::add(warped,1); 1281 if (!RegMask::can_represent_arg(warped)) { 1282 // Bailout. For example not enough space on stack for all arguments. Happens for methods with too many arguments. 1283 C->record_method_not_compilable("unsupported calling sequence"); 1284 return OptoReg::Bad; 1285 } 1286 return warped; 1287 } 1288 return OptoReg::as_OptoReg(reg); 1289 } 1290 1291 1292 //------------------------------match_sfpt------------------------------------- 1293 // Helper function to match call instructions. Calls match special. 1294 // They match alone with no children. Their children, the incoming 1295 // arguments, match normally. 1296 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) { 1297 MachSafePointNode *msfpt = nullptr; 1298 MachCallNode *mcall = nullptr; 1299 uint cnt; 1300 // Split out case for SafePoint vs Call 1301 CallNode *call; 1302 const TypeTuple *domain; 1303 ciMethod* method = nullptr; 1304 bool is_method_handle_invoke = false; // for special kill effects 1305 if( sfpt->is_Call() ) { 1306 call = sfpt->as_Call(); 1307 domain = call->tf()->domain(); 1308 cnt = domain->cnt(); 1309 1310 // Match just the call, nothing else 1311 MachNode *m = match_tree(call); 1312 if (C->failing()) return nullptr; 1313 if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; } 1314 1315 // Copy data from the Ideal SafePoint to the machine version 1316 mcall = m->as_MachCall(); 1317 1318 mcall->set_tf( call->tf()); 1319 mcall->set_entry_point( call->entry_point()); 1320 mcall->set_cnt( call->cnt()); 1321 mcall->set_guaranteed_safepoint(call->guaranteed_safepoint()); 1322 1323 if( mcall->is_MachCallJava() ) { 1324 MachCallJavaNode *mcall_java = mcall->as_MachCallJava(); 1325 const CallJavaNode *call_java = call->as_CallJava(); 1326 assert(call_java->validate_symbolic_info(), "inconsistent info"); 1327 method = call_java->method(); 1328 mcall_java->_method = method; 1329 mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); 1330 is_method_handle_invoke = call_java->is_method_handle_invoke(); 1331 mcall_java->_method_handle_invoke = is_method_handle_invoke; 1332 mcall_java->_override_symbolic_info = call_java->override_symbolic_info(); 1333 mcall_java->_arg_escape = call_java->arg_escape(); 1334 if (is_method_handle_invoke) { 1335 C->set_has_method_handle_invokes(true); 1336 } 1337 if( mcall_java->is_MachCallStaticJava() ) 1338 mcall_java->as_MachCallStaticJava()->_name = 1339 call_java->as_CallStaticJava()->_name; 1340 if( mcall_java->is_MachCallDynamicJava() ) 1341 mcall_java->as_MachCallDynamicJava()->_vtable_index = 1342 call_java->as_CallDynamicJava()->_vtable_index; 1343 } 1344 else if( mcall->is_MachCallRuntime() ) { 1345 MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime(); 1346 mach_call_rt->_name = call->as_CallRuntime()->_name; 1347 mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP(); 1348 } 1349 msfpt = mcall; 1350 } 1351 // This is a non-call safepoint 1352 else { 1353 call = nullptr; 1354 domain = nullptr; 1355 MachNode *mn = match_tree(sfpt); 1356 if (C->failing()) return nullptr; 1357 msfpt = mn->as_MachSafePoint(); 1358 cnt = TypeFunc::Parms; 1359 } 1360 msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope(); 1361 1362 // Advertise the correct memory effects (for anti-dependence computation). 1363 msfpt->set_adr_type(sfpt->adr_type()); 1364 1365 // Allocate a private array of RegMasks. These RegMasks are not shared. 1366 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt ); 1367 // Empty them all. 1368 for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask(); 1369 1370 // Do all the pre-defined non-Empty register masks 1371 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask; 1372 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask; 1373 1374 // Place first outgoing argument can possibly be put. 1375 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 1376 assert( is_even(begin_out_arg_area), "" ); 1377 // Compute max outgoing register number per call site. 1378 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area; 1379 // Calls to C may hammer extra stack slots above and beyond any arguments. 1380 // These are usually backing store for register arguments for varargs. 1381 if( call != nullptr && call->is_CallRuntime() ) 1382 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed()); 1383 1384 1385 // Do the normal argument list (parameters) register masks 1386 int argcnt = cnt - TypeFunc::Parms; 1387 if( argcnt > 0 ) { // Skip it all if we have no args 1388 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 1389 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 1390 int i; 1391 for( i = 0; i < argcnt; i++ ) { 1392 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 1393 } 1394 // V-call to pick proper calling convention 1395 call->calling_convention( sig_bt, parm_regs, argcnt ); 1396 1397 #ifdef ASSERT 1398 // Sanity check users' calling convention. Really handy during 1399 // the initial porting effort. Fairly expensive otherwise. 1400 { for (int i = 0; i<argcnt; i++) { 1401 if( !parm_regs[i].first()->is_valid() && 1402 !parm_regs[i].second()->is_valid() ) continue; 1403 VMReg reg1 = parm_regs[i].first(); 1404 VMReg reg2 = parm_regs[i].second(); 1405 for (int j = 0; j < i; j++) { 1406 if( !parm_regs[j].first()->is_valid() && 1407 !parm_regs[j].second()->is_valid() ) continue; 1408 VMReg reg3 = parm_regs[j].first(); 1409 VMReg reg4 = parm_regs[j].second(); 1410 if( !reg1->is_valid() ) { 1411 assert( !reg2->is_valid(), "valid halvsies" ); 1412 } else if( !reg3->is_valid() ) { 1413 assert( !reg4->is_valid(), "valid halvsies" ); 1414 } else { 1415 assert( reg1 != reg2, "calling conv. must produce distinct regs"); 1416 assert( reg1 != reg3, "calling conv. must produce distinct regs"); 1417 assert( reg1 != reg4, "calling conv. must produce distinct regs"); 1418 assert( reg2 != reg3, "calling conv. must produce distinct regs"); 1419 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs"); 1420 assert( reg3 != reg4, "calling conv. must produce distinct regs"); 1421 } 1422 } 1423 } 1424 } 1425 #endif 1426 1427 // Visit each argument. Compute its outgoing register mask. 1428 // Return results now can have 2 bits returned. 1429 // Compute max over all outgoing arguments both per call-site 1430 // and over the entire method. 1431 for( i = 0; i < argcnt; i++ ) { 1432 // Address of incoming argument mask to fill in 1433 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms]; 1434 VMReg first = parm_regs[i].first(); 1435 VMReg second = parm_regs[i].second(); 1436 if(!first->is_valid() && 1437 !second->is_valid()) { 1438 continue; // Avoid Halves 1439 } 1440 // Handle case where arguments are in vector registers. 1441 if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) { 1442 OptoReg::Name reg_fst = OptoReg::as_OptoReg(first); 1443 OptoReg::Name reg_snd = OptoReg::as_OptoReg(second); 1444 assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd); 1445 for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) { 1446 rm->Insert(r); 1447 } 1448 } 1449 // Grab first register, adjust stack slots and insert in mask. 1450 OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call ); 1451 if (C->failing()) { 1452 return nullptr; 1453 } 1454 if (OptoReg::is_valid(reg1)) 1455 rm->Insert( reg1 ); 1456 // Grab second register (if any), adjust stack slots and insert in mask. 1457 OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call ); 1458 if (C->failing()) { 1459 return nullptr; 1460 } 1461 if (OptoReg::is_valid(reg2)) 1462 rm->Insert( reg2 ); 1463 } // End of for all arguments 1464 } 1465 1466 // Compute the max stack slot killed by any call. These will not be 1467 // available for debug info, and will be used to adjust FIRST_STACK_mask 1468 // after all call sites have been visited. 1469 if( _out_arg_limit < out_arg_limit_per_call) 1470 _out_arg_limit = out_arg_limit_per_call; 1471 1472 if (mcall) { 1473 // Kill the outgoing argument area, including any non-argument holes and 1474 // any legacy C-killed slots. Use Fat-Projections to do the killing. 1475 // Since the max-per-method covers the max-per-call-site and debug info 1476 // is excluded on the max-per-method basis, debug info cannot land in 1477 // this killed area. 1478 uint r_cnt = mcall->tf()->range()->cnt(); 1479 MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj ); 1480 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) { 1481 // Bailout. We do not have space to represent all arguments. 1482 C->record_method_not_compilable("unsupported outgoing calling sequence"); 1483 } else { 1484 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) 1485 proj->_rout.Insert(OptoReg::Name(i)); 1486 } 1487 if (proj->_rout.is_NotEmpty()) { 1488 push_projection(proj); 1489 } 1490 } 1491 // Transfer the safepoint information from the call to the mcall 1492 // Move the JVMState list 1493 msfpt->set_jvms(sfpt->jvms()); 1494 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) { 1495 jvms->set_map(sfpt); 1496 } 1497 1498 // Debug inputs begin just after the last incoming parameter 1499 assert((mcall == nullptr) || (mcall->jvms() == nullptr) || 1500 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), ""); 1501 1502 // Add additional edges. 1503 if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) { 1504 // For these calls we can not add MachConstantBase in expand(), as the 1505 // ins are not complete then. 1506 msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node()); 1507 if (msfpt->jvms() && 1508 msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) { 1509 // We added an edge before jvms, so we must adapt the position of the ins. 1510 msfpt->jvms()->adapt_position(+1); 1511 } 1512 } 1513 1514 // Registers killed by the call are set in the local scheduling pass 1515 // of Global Code Motion. 1516 return msfpt; 1517 } 1518 1519 //---------------------------match_tree---------------------------------------- 1520 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part 1521 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for 1522 // making GotoNodes while building the CFG and in init_spill_mask() to identify 1523 // a Load's result RegMask for memoization in idealreg2regmask[] 1524 MachNode *Matcher::match_tree( const Node *n ) { 1525 assert( n->Opcode() != Op_Phi, "cannot match" ); 1526 assert( !n->is_block_start(), "cannot match" ); 1527 // Set the mark for all locally allocated State objects. 1528 // When this call returns, the _states_arena arena will be reset 1529 // freeing all State objects. 1530 ResourceMark rm( &_states_arena ); 1531 1532 LabelRootDepth = 0; 1533 1534 // StoreNodes require their Memory input to match any LoadNodes 1535 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ; 1536 #ifdef ASSERT 1537 Node* save_mem_node = _mem_node; 1538 _mem_node = n->is_Store() ? (Node*)n : nullptr; 1539 #endif 1540 // State object for root node of match tree 1541 // Allocate it on _states_arena - stack allocation can cause stack overflow. 1542 State *s = new (&_states_arena) State; 1543 s->_kids[0] = nullptr; 1544 s->_kids[1] = nullptr; 1545 s->_leaf = (Node*)n; 1546 // Label the input tree, allocating labels from top-level arena 1547 Node* root_mem = mem; 1548 Label_Root(n, s, n->in(0), root_mem); 1549 if (C->failing()) return nullptr; 1550 1551 // The minimum cost match for the whole tree is found at the root State 1552 uint mincost = max_juint; 1553 uint cost = max_juint; 1554 uint i; 1555 for (i = 0; i < NUM_OPERANDS; i++) { 1556 if (s->valid(i) && // valid entry and 1557 s->cost(i) < cost && // low cost and 1558 s->rule(i) >= NUM_OPERANDS) {// not an operand 1559 mincost = i; 1560 cost = s->cost(i); 1561 } 1562 } 1563 if (mincost == max_juint) { 1564 #ifndef PRODUCT 1565 tty->print("No matching rule for:"); 1566 s->dump(); 1567 #endif 1568 Matcher::soft_match_failure(); 1569 return nullptr; 1570 } 1571 // Reduce input tree based upon the state labels to machine Nodes 1572 MachNode *m = ReduceInst(s, s->rule(mincost), mem); 1573 // New-to-old mapping is done in ReduceInst, to cover complex instructions. 1574 NOT_PRODUCT(_old2new_map.map(n->_idx, m);) 1575 1576 // Add any Matcher-ignored edges 1577 uint cnt = n->req(); 1578 uint start = 1; 1579 if( mem != (Node*)1 ) start = MemNode::Memory+1; 1580 if( n->is_AddP() ) { 1581 assert( mem == (Node*)1, "" ); 1582 start = AddPNode::Base+1; 1583 } 1584 for( i = start; i < cnt; i++ ) { 1585 if( !n->match_edge(i) ) { 1586 if( i < m->req() ) 1587 m->ins_req( i, n->in(i) ); 1588 else 1589 m->add_req( n->in(i) ); 1590 } 1591 } 1592 1593 debug_only( _mem_node = save_mem_node; ) 1594 return m; 1595 } 1596 1597 1598 //------------------------------match_into_reg--------------------------------- 1599 // Choose to either match this Node in a register or part of the current 1600 // match tree. Return true for requiring a register and false for matching 1601 // as part of the current match tree. 1602 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) { 1603 1604 const Type *t = m->bottom_type(); 1605 1606 if (t->singleton()) { 1607 // Never force constants into registers. Allow them to match as 1608 // constants or registers. Copies of the same value will share 1609 // the same register. See find_shared_node. 1610 return false; 1611 } else { // Not a constant 1612 if (!shared && Matcher::is_encode_and_store_pattern(n, m)) { 1613 // Make it possible to match "encode and store" patterns with non-shared 1614 // encode operations that are pinned to a control node (e.g. by CastPP 1615 // node removal in final graph reshaping). The matched instruction cannot 1616 // float above the encode's control node because it is pinned to the 1617 // store's control node. 1618 return false; 1619 } 1620 // Stop recursion if they have different Controls. 1621 Node* m_control = m->in(0); 1622 // Control of load's memory can post-dominates load's control. 1623 // So use it since load can't float above its memory. 1624 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : nullptr; 1625 if (control && m_control && control != m_control && control != mem_control) { 1626 1627 // Actually, we can live with the most conservative control we 1628 // find, if it post-dominates the others. This allows us to 1629 // pick up load/op/store trees where the load can float a little 1630 // above the store. 1631 Node *x = control; 1632 const uint max_scan = 6; // Arbitrary scan cutoff 1633 uint j; 1634 for (j=0; j<max_scan; j++) { 1635 if (x->is_Region()) // Bail out at merge points 1636 return true; 1637 x = x->in(0); 1638 if (x == m_control) // Does 'control' post-dominate 1639 break; // m->in(0)? If so, we can use it 1640 if (x == mem_control) // Does 'control' post-dominate 1641 break; // mem_control? If so, we can use it 1642 } 1643 if (j == max_scan) // No post-domination before scan end? 1644 return true; // Then break the match tree up 1645 } 1646 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) || 1647 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) { 1648 // These are commonly used in address expressions and can 1649 // efficiently fold into them on X64 in some cases. 1650 return false; 1651 } 1652 } 1653 1654 // Not forceable cloning. If shared, put it into a register. 1655 return shared; 1656 } 1657 1658 1659 //------------------------------Instruction Selection-------------------------- 1660 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match 1661 // ideal nodes to machine instructions. Trees are delimited by shared Nodes, 1662 // things the Matcher does not match (e.g., Memory), and things with different 1663 // Controls (hence forced into different blocks). We pass in the Control 1664 // selected for this entire State tree. 1665 1666 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the 1667 // Store and the Load must have identical Memories (as well as identical 1668 // pointers). Since the Matcher does not have anything for Memory (and 1669 // does not handle DAGs), I have to match the Memory input myself. If the 1670 // Tree root is a Store or if there are multiple Loads in the tree, I require 1671 // all Loads to have the identical memory. 1672 Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) { 1673 // Since Label_Root is a recursive function, its possible that we might run 1674 // out of stack space. See bugs 6272980 & 6227033 for more info. 1675 LabelRootDepth++; 1676 if (LabelRootDepth > MaxLabelRootDepth) { 1677 // Bailout. Can for example be hit with a deep chain of operations. 1678 C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth"); 1679 return nullptr; 1680 } 1681 uint care = 0; // Edges matcher cares about 1682 uint cnt = n->req(); 1683 uint i = 0; 1684 1685 // Examine children for memory state 1686 // Can only subsume a child into your match-tree if that child's memory state 1687 // is not modified along the path to another input. 1688 // It is unsafe even if the other inputs are separate roots. 1689 Node *input_mem = nullptr; 1690 for( i = 1; i < cnt; i++ ) { 1691 if( !n->match_edge(i) ) continue; 1692 Node *m = n->in(i); // Get ith input 1693 assert( m, "expect non-null children" ); 1694 if( m->is_Load() ) { 1695 if( input_mem == nullptr ) { 1696 input_mem = m->in(MemNode::Memory); 1697 if (mem == (Node*)1) { 1698 // Save this memory to bail out if there's another memory access 1699 // to a different memory location in the same tree. 1700 mem = input_mem; 1701 } 1702 } else if( input_mem != m->in(MemNode::Memory) ) { 1703 input_mem = NodeSentinel; 1704 } 1705 } 1706 } 1707 1708 for( i = 1; i < cnt; i++ ){// For my children 1709 if( !n->match_edge(i) ) continue; 1710 Node *m = n->in(i); // Get ith input 1711 // Allocate states out of a private arena 1712 State *s = new (&_states_arena) State; 1713 svec->_kids[care++] = s; 1714 assert( care <= 2, "binary only for now" ); 1715 1716 // Recursively label the State tree. 1717 s->_kids[0] = nullptr; 1718 s->_kids[1] = nullptr; 1719 s->_leaf = m; 1720 1721 // Check for leaves of the State Tree; things that cannot be a part of 1722 // the current tree. If it finds any, that value is matched as a 1723 // register operand. If not, then the normal matching is used. 1724 if( match_into_reg(n, m, control, i, is_shared(m)) || 1725 // Stop recursion if this is a LoadNode and there is another memory access 1726 // to a different memory location in the same tree (for example, a StoreNode 1727 // at the root of this tree or another LoadNode in one of the children). 1728 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) || 1729 // Can NOT include the match of a subtree when its memory state 1730 // is used by any of the other subtrees 1731 (input_mem == NodeSentinel) ) { 1732 // Print when we exclude matching due to different memory states at input-loads 1733 if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel) 1734 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) { 1735 tty->print_cr("invalid input_mem"); 1736 } 1737 // Switch to a register-only opcode; this value must be in a register 1738 // and cannot be subsumed as part of a larger instruction. 1739 s->DFA( m->ideal_reg(), m ); 1740 1741 } else { 1742 // If match tree has no control and we do, adopt it for entire tree 1743 if( control == nullptr && m->in(0) != nullptr && m->req() > 1 ) 1744 control = m->in(0); // Pick up control 1745 // Else match as a normal part of the match tree. 1746 control = Label_Root(m, s, control, mem); 1747 if (C->failing()) return nullptr; 1748 } 1749 } 1750 1751 // Call DFA to match this node, and return 1752 svec->DFA( n->Opcode(), n ); 1753 1754 #ifdef ASSERT 1755 uint x; 1756 for( x = 0; x < _LAST_MACH_OPER; x++ ) 1757 if( svec->valid(x) ) 1758 break; 1759 1760 if (x >= _LAST_MACH_OPER) { 1761 n->dump(); 1762 svec->dump(); 1763 assert( false, "bad AD file" ); 1764 } 1765 #endif 1766 return control; 1767 } 1768 1769 1770 // Con nodes reduced using the same rule can share their MachNode 1771 // which reduces the number of copies of a constant in the final 1772 // program. The register allocator is free to split uses later to 1773 // split live ranges. 1774 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) { 1775 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return nullptr; 1776 1777 // See if this Con has already been reduced using this rule. 1778 if (_shared_nodes.max() <= leaf->_idx) return nullptr; 1779 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx); 1780 if (last != nullptr && rule == last->rule()) { 1781 // Don't expect control change for DecodeN 1782 if (leaf->is_DecodeNarrowPtr()) 1783 return last; 1784 // Get the new space root. 1785 Node* xroot = new_node(C->root()); 1786 if (xroot == nullptr) { 1787 // This shouldn't happen give the order of matching. 1788 return nullptr; 1789 } 1790 1791 // Shared constants need to have their control be root so they 1792 // can be scheduled properly. 1793 Node* control = last->in(0); 1794 if (control != xroot) { 1795 if (control == nullptr || control == C->root()) { 1796 last->set_req(0, xroot); 1797 } else { 1798 assert(false, "unexpected control"); 1799 return nullptr; 1800 } 1801 } 1802 return last; 1803 } 1804 return nullptr; 1805 } 1806 1807 1808 //------------------------------ReduceInst------------------------------------- 1809 // Reduce a State tree (with given Control) into a tree of MachNodes. 1810 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into 1811 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes. 1812 // Each MachNode has a number of complicated MachOper operands; each 1813 // MachOper also covers a further tree of Ideal Nodes. 1814 1815 // The root of the Ideal match tree is always an instruction, so we enter 1816 // the recursion here. After building the MachNode, we need to recurse 1817 // the tree checking for these cases: 1818 // (1) Child is an instruction - 1819 // Build the instruction (recursively), add it as an edge. 1820 // Build a simple operand (register) to hold the result of the instruction. 1821 // (2) Child is an interior part of an instruction - 1822 // Skip over it (do nothing) 1823 // (3) Child is the start of a operand - 1824 // Build the operand, place it inside the instruction 1825 // Call ReduceOper. 1826 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) { 1827 assert( rule >= NUM_OPERANDS, "called with operand rule" ); 1828 1829 MachNode* shared_node = find_shared_node(s->_leaf, rule); 1830 if (shared_node != nullptr) { 1831 return shared_node; 1832 } 1833 1834 // Build the object to represent this state & prepare for recursive calls 1835 MachNode *mach = s->MachNodeGenerator(rule); 1836 guarantee(mach != nullptr, "Missing MachNode"); 1837 mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]); 1838 assert( mach->_opnds[0] != nullptr, "Missing result operand" ); 1839 Node *leaf = s->_leaf; 1840 NOT_PRODUCT(record_new2old(mach, leaf);) 1841 // Check for instruction or instruction chain rule 1842 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) { 1843 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf), 1844 "duplicating node that's already been matched"); 1845 // Instruction 1846 mach->add_req( leaf->in(0) ); // Set initial control 1847 // Reduce interior of complex instruction 1848 ReduceInst_Interior( s, rule, mem, mach, 1 ); 1849 } else { 1850 // Instruction chain rules are data-dependent on their inputs 1851 mach->add_req(nullptr); // Set initial control to none 1852 ReduceInst_Chain_Rule( s, rule, mem, mach ); 1853 } 1854 1855 // If a Memory was used, insert a Memory edge 1856 if( mem != (Node*)1 ) { 1857 mach->ins_req(MemNode::Memory,mem); 1858 #ifdef ASSERT 1859 // Verify adr type after matching memory operation 1860 const MachOper* oper = mach->memory_operand(); 1861 if (oper != nullptr && oper != (MachOper*)-1) { 1862 // It has a unique memory operand. Find corresponding ideal mem node. 1863 Node* m = nullptr; 1864 if (leaf->is_Mem()) { 1865 m = leaf; 1866 } else { 1867 m = _mem_node; 1868 assert(m != nullptr && m->is_Mem(), "expecting memory node"); 1869 } 1870 const Type* mach_at = mach->adr_type(); 1871 // DecodeN node consumed by an address may have different type 1872 // than its input. Don't compare types for such case. 1873 if (m->adr_type() != mach_at && 1874 (m->in(MemNode::Address)->is_DecodeNarrowPtr() || 1875 (m->in(MemNode::Address)->is_AddP() && 1876 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) || 1877 (m->in(MemNode::Address)->is_AddP() && 1878 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() && 1879 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) { 1880 mach_at = m->adr_type(); 1881 } 1882 if (m->adr_type() != mach_at) { 1883 m->dump(); 1884 tty->print_cr("mach:"); 1885 mach->dump(1); 1886 } 1887 assert(m->adr_type() == mach_at, "matcher should not change adr type"); 1888 } 1889 #endif 1890 } 1891 1892 // If the _leaf is an AddP, insert the base edge 1893 if (leaf->is_AddP()) { 1894 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); 1895 } 1896 1897 uint number_of_projections_prior = number_of_projections(); 1898 1899 // Perform any 1-to-many expansions required 1900 MachNode *ex = mach->Expand(s, _projection_list, mem); 1901 if (ex != mach) { 1902 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match"); 1903 if( ex->in(1)->is_Con() ) 1904 ex->in(1)->set_req(0, C->root()); 1905 // Remove old node from the graph 1906 for( uint i=0; i<mach->req(); i++ ) { 1907 mach->set_req(i,nullptr); 1908 } 1909 NOT_PRODUCT(record_new2old(ex, s->_leaf);) 1910 } 1911 1912 // PhaseChaitin::fixup_spills will sometimes generate spill code 1913 // via the matcher. By the time, nodes have been wired into the CFG, 1914 // and any further nodes generated by expand rules will be left hanging 1915 // in space, and will not get emitted as output code. Catch this. 1916 // Also, catch any new register allocation constraints ("projections") 1917 // generated belatedly during spill code generation. 1918 if (_allocation_started) { 1919 guarantee(ex == mach, "no expand rules during spill generation"); 1920 guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation"); 1921 } 1922 1923 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { 1924 // Record the con for sharing 1925 _shared_nodes.map(leaf->_idx, ex); 1926 } 1927 1928 // Have mach nodes inherit GC barrier data 1929 mach->set_barrier_data(MemNode::barrier_data(leaf)); 1930 1931 return ex; 1932 } 1933 1934 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) { 1935 for (uint i = n->req(); i < n->len(); i++) { 1936 if (n->in(i) != nullptr) { 1937 mach->add_prec(n->in(i)); 1938 } 1939 } 1940 } 1941 1942 void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) { 1943 // 'op' is what I am expecting to receive 1944 int op = _leftOp[rule]; 1945 // Operand type to catch childs result 1946 // This is what my child will give me. 1947 unsigned int opnd_class_instance = s->rule(op); 1948 // Choose between operand class or not. 1949 // This is what I will receive. 1950 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op; 1951 // New rule for child. Chase operand classes to get the actual rule. 1952 unsigned int newrule = s->rule(catch_op); 1953 1954 if (newrule < NUM_OPERANDS) { 1955 // Chain from operand or operand class, may be output of shared node 1956 assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand"); 1957 // Insert operand into array of operands for this instruction 1958 mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance); 1959 1960 ReduceOper(s, newrule, mem, mach); 1961 } else { 1962 // Chain from the result of an instruction 1963 assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand"); 1964 mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]); 1965 Node *mem1 = (Node*)1; 1966 debug_only(Node *save_mem_node = _mem_node;) 1967 mach->add_req( ReduceInst(s, newrule, mem1) ); 1968 debug_only(_mem_node = save_mem_node;) 1969 } 1970 return; 1971 } 1972 1973 1974 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) { 1975 handle_precedence_edges(s->_leaf, mach); 1976 1977 if( s->_leaf->is_Load() ) { 1978 Node *mem2 = s->_leaf->in(MemNode::Memory); 1979 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" ); 1980 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;) 1981 mem = mem2; 1982 } 1983 if( s->_leaf->in(0) != nullptr && s->_leaf->req() > 1) { 1984 if( mach->in(0) == nullptr ) 1985 mach->set_req(0, s->_leaf->in(0)); 1986 } 1987 1988 // Now recursively walk the state tree & add operand list. 1989 for( uint i=0; i<2; i++ ) { // binary tree 1990 State *newstate = s->_kids[i]; 1991 if( newstate == nullptr ) break; // Might only have 1 child 1992 // 'op' is what I am expecting to receive 1993 int op; 1994 if( i == 0 ) { 1995 op = _leftOp[rule]; 1996 } else { 1997 op = _rightOp[rule]; 1998 } 1999 // Operand type to catch childs result 2000 // This is what my child will give me. 2001 int opnd_class_instance = newstate->rule(op); 2002 // Choose between operand class or not. 2003 // This is what I will receive. 2004 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op; 2005 // New rule for child. Chase operand classes to get the actual rule. 2006 int newrule = newstate->rule(catch_op); 2007 2008 if (newrule < NUM_OPERANDS) { // Operand/operandClass or internalOp/instruction? 2009 // Operand/operandClass 2010 // Insert operand into array of operands for this instruction 2011 mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance); 2012 ReduceOper(newstate, newrule, mem, mach); 2013 2014 } else { // Child is internal operand or new instruction 2015 if (newrule < _LAST_MACH_OPER) { // internal operand or instruction? 2016 // internal operand --> call ReduceInst_Interior 2017 // Interior of complex instruction. Do nothing but recurse. 2018 num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds); 2019 } else { 2020 // instruction --> call build operand( ) to catch result 2021 // --> ReduceInst( newrule ) 2022 mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]); 2023 Node *mem1 = (Node*)1; 2024 debug_only(Node *save_mem_node = _mem_node;) 2025 mach->add_req( ReduceInst( newstate, newrule, mem1 ) ); 2026 debug_only(_mem_node = save_mem_node;) 2027 } 2028 } 2029 assert( mach->_opnds[num_opnds-1], "" ); 2030 } 2031 return num_opnds; 2032 } 2033 2034 // This routine walks the interior of possible complex operands. 2035 // At each point we check our children in the match tree: 2036 // (1) No children - 2037 // We are a leaf; add _leaf field as an input to the MachNode 2038 // (2) Child is an internal operand - 2039 // Skip over it ( do nothing ) 2040 // (3) Child is an instruction - 2041 // Call ReduceInst recursively and 2042 // and instruction as an input to the MachNode 2043 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) { 2044 assert( rule < _LAST_MACH_OPER, "called with operand rule" ); 2045 State *kid = s->_kids[0]; 2046 assert( kid == nullptr || s->_leaf->in(0) == nullptr, "internal operands have no control" ); 2047 2048 // Leaf? And not subsumed? 2049 if( kid == nullptr && !_swallowed[rule] ) { 2050 mach->add_req( s->_leaf ); // Add leaf pointer 2051 return; // Bail out 2052 } 2053 2054 if( s->_leaf->is_Load() ) { 2055 assert( mem == (Node*)1, "multiple Memories being matched at once?" ); 2056 mem = s->_leaf->in(MemNode::Memory); 2057 debug_only(_mem_node = s->_leaf;) 2058 } 2059 2060 handle_precedence_edges(s->_leaf, mach); 2061 2062 if( s->_leaf->in(0) && s->_leaf->req() > 1) { 2063 if( !mach->in(0) ) 2064 mach->set_req(0,s->_leaf->in(0)); 2065 else { 2066 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" ); 2067 } 2068 } 2069 2070 for (uint i = 0; kid != nullptr && i < 2; kid = s->_kids[1], i++) { // binary tree 2071 int newrule; 2072 if( i == 0) { 2073 newrule = kid->rule(_leftOp[rule]); 2074 } else { 2075 newrule = kid->rule(_rightOp[rule]); 2076 } 2077 2078 if (newrule < _LAST_MACH_OPER) { // Operand or instruction? 2079 // Internal operand; recurse but do nothing else 2080 ReduceOper(kid, newrule, mem, mach); 2081 2082 } else { // Child is a new instruction 2083 // Reduce the instruction, and add a direct pointer from this 2084 // machine instruction to the newly reduced one. 2085 Node *mem1 = (Node*)1; 2086 debug_only(Node *save_mem_node = _mem_node;) 2087 mach->add_req( ReduceInst( kid, newrule, mem1 ) ); 2088 debug_only(_mem_node = save_mem_node;) 2089 } 2090 } 2091 } 2092 2093 2094 // ------------------------------------------------------------------------- 2095 // Java-Java calling convention 2096 // (what you use when Java calls Java) 2097 2098 //------------------------------find_receiver---------------------------------- 2099 // For a given signature, return the OptoReg for parameter 0. 2100 OptoReg::Name Matcher::find_receiver() { 2101 VMRegPair regs; 2102 BasicType sig_bt = T_OBJECT; 2103 SharedRuntime::java_calling_convention(&sig_bt, ®s, 1); 2104 // Return argument 0 register. In the LP64 build pointers 2105 // take 2 registers, but the VM wants only the 'main' name. 2106 return OptoReg::as_OptoReg(regs.first()); 2107 } 2108 2109 bool Matcher::is_vshift_con_pattern(Node* n, Node* m) { 2110 if (n != nullptr && m != nullptr) { 2111 return VectorNode::is_vector_shift(n) && 2112 VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con(); 2113 } 2114 return false; 2115 } 2116 2117 bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) { 2118 // Must clone all producers of flags, or we will not match correctly. 2119 // Suppose a compare setting int-flags is shared (e.g., a switch-tree) 2120 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags 2121 // are also there, so we may match a float-branch to int-flags and 2122 // expect the allocator to haul the flags from the int-side to the 2123 // fp-side. No can do. 2124 if (_must_clone[m->Opcode()]) { 2125 mstack.push(m, Visit); 2126 return true; 2127 } 2128 return pd_clone_node(n, m, mstack); 2129 } 2130 2131 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { 2132 Node *off = m->in(AddPNode::Offset); 2133 if (off->is_Con()) { 2134 address_visited.test_set(m->_idx); // Flag as address_visited 2135 mstack.push(m->in(AddPNode::Address), Pre_Visit); 2136 // Clone X+offset as it also folds into most addressing expressions 2137 mstack.push(off, Visit); 2138 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2139 return true; 2140 } 2141 return false; 2142 } 2143 2144 // A method-klass-holder may be passed in the inline_cache_reg 2145 // and then expanded into the inline_cache_reg and a method_ptr register 2146 // defined in ad_<arch>.cpp 2147 2148 //------------------------------find_shared------------------------------------ 2149 // Set bits if Node is shared or otherwise a root 2150 void Matcher::find_shared(Node* n) { 2151 // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc 2152 MStack mstack(C->live_nodes() * 2); 2153 // Mark nodes as address_visited if they are inputs to an address expression 2154 VectorSet address_visited; 2155 mstack.push(n, Visit); // Don't need to pre-visit root node 2156 while (mstack.is_nonempty()) { 2157 n = mstack.node(); // Leave node on stack 2158 Node_State nstate = mstack.state(); 2159 uint nop = n->Opcode(); 2160 if (nstate == Pre_Visit) { 2161 if (address_visited.test(n->_idx)) { // Visited in address already? 2162 // Flag as visited and shared now. 2163 set_visited(n); 2164 } 2165 if (is_visited(n)) { // Visited already? 2166 // Node is shared and has no reason to clone. Flag it as shared. 2167 // This causes it to match into a register for the sharing. 2168 set_shared(n); // Flag as shared and 2169 if (n->is_DecodeNarrowPtr()) { 2170 // Oop field/array element loads must be shared but since 2171 // they are shared through a DecodeN they may appear to have 2172 // a single use so force sharing here. 2173 set_shared(n->in(1)); 2174 } 2175 mstack.pop(); // remove node from stack 2176 continue; 2177 } 2178 nstate = Visit; // Not already visited; so visit now 2179 } 2180 if (nstate == Visit) { 2181 mstack.set_state(Post_Visit); 2182 set_visited(n); // Flag as visited now 2183 bool mem_op = false; 2184 int mem_addr_idx = MemNode::Address; 2185 if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) { 2186 continue; 2187 } 2188 for (int i = n->req() - 1; i >= 0; --i) { // For my children 2189 Node* m = n->in(i); // Get ith input 2190 if (m == nullptr) { 2191 continue; // Ignore nulls 2192 } 2193 if (clone_node(n, m, mstack)) { 2194 continue; 2195 } 2196 2197 // Clone addressing expressions as they are "free" in memory access instructions 2198 if (mem_op && i == mem_addr_idx && m->is_AddP() && 2199 // When there are other uses besides address expressions 2200 // put it on stack and mark as shared. 2201 !is_visited(m)) { 2202 // Some inputs for address expression are not put on stack 2203 // to avoid marking them as shared and forcing them into register 2204 // if they are used only in address expressions. 2205 // But they should be marked as shared if there are other uses 2206 // besides address expressions. 2207 2208 if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) { 2209 continue; 2210 } 2211 } // if( mem_op && 2212 mstack.push(m, Pre_Visit); 2213 } // for(int i = ...) 2214 } 2215 else if (nstate == Alt_Post_Visit) { 2216 mstack.pop(); // Remove node from stack 2217 // We cannot remove the Cmp input from the Bool here, as the Bool may be 2218 // shared and all users of the Bool need to move the Cmp in parallel. 2219 // This leaves both the Bool and the If pointing at the Cmp. To 2220 // prevent the Matcher from trying to Match the Cmp along both paths 2221 // BoolNode::match_edge always returns a zero. 2222 2223 // We reorder the Op_If in a pre-order manner, so we can visit without 2224 // accidentally sharing the Cmp (the Bool and the If make 2 users). 2225 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool 2226 } 2227 else if (nstate == Post_Visit) { 2228 mstack.pop(); // Remove node from stack 2229 2230 // Now hack a few special opcodes 2231 uint opcode = n->Opcode(); 2232 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode); 2233 if (!gc_handled) { 2234 find_shared_post_visit(n, opcode); 2235 } 2236 } 2237 else { 2238 ShouldNotReachHere(); 2239 } 2240 } // end of while (mstack.is_nonempty()) 2241 } 2242 2243 bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) { 2244 switch(opcode) { // Handle some opcodes special 2245 case Op_Phi: // Treat Phis as shared roots 2246 case Op_Parm: 2247 case Op_Proj: // All handled specially during matching 2248 case Op_SafePointScalarObject: 2249 set_shared(n); 2250 set_dontcare(n); 2251 break; 2252 case Op_If: 2253 case Op_CountedLoopEnd: 2254 mstack.set_state(Alt_Post_Visit); // Alternative way 2255 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps 2256 // with matching cmp/branch in 1 instruction. The Matcher needs the 2257 // Bool and CmpX side-by-side, because it can only get at constants 2258 // that are at the leaves of Match trees, and the Bool's condition acts 2259 // as a constant here. 2260 mstack.push(n->in(1), Visit); // Clone the Bool 2261 mstack.push(n->in(0), Pre_Visit); // Visit control input 2262 return true; // while (mstack.is_nonempty()) 2263 case Op_ConvI2D: // These forms efficiently match with a prior 2264 case Op_ConvI2F: // Load but not a following Store 2265 if( n->in(1)->is_Load() && // Prior load 2266 n->outcnt() == 1 && // Not already shared 2267 n->unique_out()->is_Store() ) // Following store 2268 set_shared(n); // Force it to be a root 2269 break; 2270 case Op_ReverseBytesI: 2271 case Op_ReverseBytesL: 2272 if( n->in(1)->is_Load() && // Prior load 2273 n->outcnt() == 1 ) // Not already shared 2274 set_shared(n); // Force it to be a root 2275 break; 2276 case Op_BoxLock: // Can't match until we get stack-regs in ADLC 2277 case Op_IfFalse: 2278 case Op_IfTrue: 2279 case Op_MachProj: 2280 case Op_MergeMem: 2281 case Op_Catch: 2282 case Op_CatchProj: 2283 case Op_CProj: 2284 case Op_JumpProj: 2285 case Op_JProj: 2286 case Op_NeverBranch: 2287 set_dontcare(n); 2288 break; 2289 case Op_Jump: 2290 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared) 2291 mstack.push(n->in(0), Pre_Visit); // Visit Control input 2292 return true; // while (mstack.is_nonempty()) 2293 case Op_StrComp: 2294 case Op_StrEquals: 2295 case Op_StrIndexOf: 2296 case Op_StrIndexOfChar: 2297 case Op_AryEq: 2298 case Op_VectorizedHashCode: 2299 case Op_CountPositives: 2300 case Op_StrInflatedCopy: 2301 case Op_StrCompressedCopy: 2302 case Op_EncodeISOArray: 2303 case Op_FmaD: 2304 case Op_FmaF: 2305 case Op_FmaVD: 2306 case Op_FmaVF: 2307 case Op_MacroLogicV: 2308 case Op_VectorCmpMasked: 2309 case Op_CompressV: 2310 case Op_CompressM: 2311 case Op_ExpandV: 2312 case Op_VectorLoadMask: 2313 set_shared(n); // Force result into register (it will be anyways) 2314 break; 2315 case Op_ConP: { // Convert pointers above the centerline to NUL 2316 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2317 const TypePtr* tp = tn->type()->is_ptr(); 2318 if (tp->_ptr == TypePtr::AnyNull) { 2319 tn->set_type(TypePtr::NULL_PTR); 2320 } 2321 break; 2322 } 2323 case Op_ConN: { // Convert narrow pointers above the centerline to NUL 2324 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2325 const TypePtr* tp = tn->type()->make_ptr(); 2326 if (tp && tp->_ptr == TypePtr::AnyNull) { 2327 tn->set_type(TypeNarrowOop::NULL_PTR); 2328 } 2329 break; 2330 } 2331 case Op_Binary: // These are introduced in the Post_Visit state. 2332 ShouldNotReachHere(); 2333 break; 2334 case Op_ClearArray: 2335 case Op_SafePoint: 2336 mem_op = true; 2337 break; 2338 default: 2339 if( n->is_Store() ) { 2340 // Do match stores, despite no ideal reg 2341 mem_op = true; 2342 break; 2343 } 2344 if( n->is_Mem() ) { // Loads and LoadStores 2345 mem_op = true; 2346 // Loads must be root of match tree due to prior load conflict 2347 if( C->subsume_loads() == false ) 2348 set_shared(n); 2349 } 2350 // Fall into default case 2351 if( !n->ideal_reg() ) 2352 set_dontcare(n); // Unmatchable Nodes 2353 } // end_switch 2354 return false; 2355 } 2356 2357 void Matcher::find_shared_post_visit(Node* n, uint opcode) { 2358 if (n->is_predicated_vector()) { 2359 // Restructure into binary trees for Matching. 2360 if (n->req() == 4) { 2361 n->set_req(1, new BinaryNode(n->in(1), n->in(2))); 2362 n->set_req(2, n->in(3)); 2363 n->del_req(3); 2364 } else if (n->req() == 5) { 2365 n->set_req(1, new BinaryNode(n->in(1), n->in(2))); 2366 n->set_req(2, new BinaryNode(n->in(3), n->in(4))); 2367 n->del_req(4); 2368 n->del_req(3); 2369 } else if (n->req() == 6) { 2370 Node* b3 = new BinaryNode(n->in(4), n->in(5)); 2371 Node* b2 = new BinaryNode(n->in(3), b3); 2372 Node* b1 = new BinaryNode(n->in(2), b2); 2373 n->set_req(2, b1); 2374 n->del_req(5); 2375 n->del_req(4); 2376 n->del_req(3); 2377 } 2378 return; 2379 } 2380 2381 switch(opcode) { // Handle some opcodes special 2382 case Op_CompareAndExchangeB: 2383 case Op_CompareAndExchangeS: 2384 case Op_CompareAndExchangeI: 2385 case Op_CompareAndExchangeL: 2386 case Op_CompareAndExchangeP: 2387 case Op_CompareAndExchangeN: 2388 case Op_WeakCompareAndSwapB: 2389 case Op_WeakCompareAndSwapS: 2390 case Op_WeakCompareAndSwapI: 2391 case Op_WeakCompareAndSwapL: 2392 case Op_WeakCompareAndSwapP: 2393 case Op_WeakCompareAndSwapN: 2394 case Op_CompareAndSwapB: 2395 case Op_CompareAndSwapS: 2396 case Op_CompareAndSwapI: 2397 case Op_CompareAndSwapL: 2398 case Op_CompareAndSwapP: 2399 case Op_CompareAndSwapN: { // Convert trinary to binary-tree 2400 Node* newval = n->in(MemNode::ValueIn); 2401 Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 2402 Node* pair = new BinaryNode(oldval, newval); 2403 n->set_req(MemNode::ValueIn, pair); 2404 n->del_req(LoadStoreConditionalNode::ExpectedIn); 2405 break; 2406 } 2407 case Op_CMoveD: // Convert trinary to binary-tree 2408 case Op_CMoveF: 2409 case Op_CMoveI: 2410 case Op_CMoveL: 2411 case Op_CMoveN: 2412 case Op_CMoveP: { 2413 // Restructure into a binary tree for Matching. It's possible that 2414 // we could move this code up next to the graph reshaping for IfNodes 2415 // or vice-versa, but I do not want to debug this for Ladybird. 2416 // 10/2/2000 CNC. 2417 Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1)); 2418 n->set_req(1, pair1); 2419 Node* pair2 = new BinaryNode(n->in(2), n->in(3)); 2420 n->set_req(2, pair2); 2421 n->del_req(3); 2422 break; 2423 } 2424 case Op_MacroLogicV: { 2425 Node* pair1 = new BinaryNode(n->in(1), n->in(2)); 2426 Node* pair2 = new BinaryNode(n->in(3), n->in(4)); 2427 n->set_req(1, pair1); 2428 n->set_req(2, pair2); 2429 n->del_req(4); 2430 n->del_req(3); 2431 break; 2432 } 2433 case Op_StoreVectorMasked: { 2434 Node* pair = new BinaryNode(n->in(3), n->in(4)); 2435 n->set_req(3, pair); 2436 n->del_req(4); 2437 break; 2438 } 2439 case Op_SelectFromTwoVector: 2440 case Op_LoopLimit: { 2441 Node* pair1 = new BinaryNode(n->in(1), n->in(2)); 2442 n->set_req(1, pair1); 2443 n->set_req(2, n->in(3)); 2444 n->del_req(3); 2445 break; 2446 } 2447 case Op_StrEquals: 2448 case Op_StrIndexOfChar: { 2449 Node* pair1 = new BinaryNode(n->in(2), n->in(3)); 2450 n->set_req(2, pair1); 2451 n->set_req(3, n->in(4)); 2452 n->del_req(4); 2453 break; 2454 } 2455 case Op_StrComp: 2456 case Op_StrIndexOf: 2457 case Op_VectorizedHashCode: { 2458 Node* pair1 = new BinaryNode(n->in(2), n->in(3)); 2459 n->set_req(2, pair1); 2460 Node* pair2 = new BinaryNode(n->in(4),n->in(5)); 2461 n->set_req(3, pair2); 2462 n->del_req(5); 2463 n->del_req(4); 2464 break; 2465 } 2466 case Op_EncodeISOArray: 2467 case Op_StrCompressedCopy: 2468 case Op_StrInflatedCopy: { 2469 // Restructure into a binary tree for Matching. 2470 Node* pair = new BinaryNode(n->in(3), n->in(4)); 2471 n->set_req(3, pair); 2472 n->del_req(4); 2473 break; 2474 } 2475 case Op_FmaD: 2476 case Op_FmaF: 2477 case Op_FmaVD: 2478 case Op_FmaVF: { 2479 // Restructure into a binary tree for Matching. 2480 Node* pair = new BinaryNode(n->in(1), n->in(2)); 2481 n->set_req(2, pair); 2482 n->set_req(1, n->in(3)); 2483 n->del_req(3); 2484 break; 2485 } 2486 case Op_MulAddS2I: { 2487 Node* pair1 = new BinaryNode(n->in(1), n->in(2)); 2488 Node* pair2 = new BinaryNode(n->in(3), n->in(4)); 2489 n->set_req(1, pair1); 2490 n->set_req(2, pair2); 2491 n->del_req(4); 2492 n->del_req(3); 2493 break; 2494 } 2495 case Op_VectorCmpMasked: 2496 case Op_CopySignD: 2497 case Op_SignumVF: 2498 case Op_SignumVD: 2499 case Op_SignumF: 2500 case Op_SignumD: { 2501 Node* pair = new BinaryNode(n->in(2), n->in(3)); 2502 n->set_req(2, pair); 2503 n->del_req(3); 2504 break; 2505 } 2506 case Op_VectorBlend: 2507 case Op_VectorInsert: { 2508 Node* pair = new BinaryNode(n->in(1), n->in(2)); 2509 n->set_req(1, pair); 2510 n->set_req(2, n->in(3)); 2511 n->del_req(3); 2512 break; 2513 } 2514 case Op_LoadVectorGather: 2515 if (is_subword_type(n->bottom_type()->is_vect()->element_basic_type())) { 2516 Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); 2517 n->set_req(MemNode::ValueIn, pair); 2518 n->del_req(MemNode::ValueIn+1); 2519 } 2520 break; 2521 case Op_LoadVectorGatherMasked: 2522 if (is_subword_type(n->bottom_type()->is_vect()->element_basic_type())) { 2523 Node* pair2 = new BinaryNode(n->in(MemNode::ValueIn + 1), n->in(MemNode::ValueIn + 2)); 2524 Node* pair1 = new BinaryNode(n->in(MemNode::ValueIn), pair2); 2525 n->set_req(MemNode::ValueIn, pair1); 2526 n->del_req(MemNode::ValueIn+2); 2527 n->del_req(MemNode::ValueIn+1); 2528 break; 2529 } // fall-through 2530 case Op_StoreVectorScatter: { 2531 Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); 2532 n->set_req(MemNode::ValueIn, pair); 2533 n->del_req(MemNode::ValueIn+1); 2534 break; 2535 } 2536 case Op_StoreVectorScatterMasked: { 2537 Node* pair = new BinaryNode(n->in(MemNode::ValueIn+1), n->in(MemNode::ValueIn+2)); 2538 n->set_req(MemNode::ValueIn+1, pair); 2539 n->del_req(MemNode::ValueIn+2); 2540 pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); 2541 n->set_req(MemNode::ValueIn, pair); 2542 n->del_req(MemNode::ValueIn+1); 2543 break; 2544 } 2545 case Op_VectorMaskCmp: { 2546 n->set_req(1, new BinaryNode(n->in(1), n->in(2))); 2547 n->set_req(2, n->in(3)); 2548 n->del_req(3); 2549 break; 2550 } 2551 case Op_PartialSubtypeCheck: { 2552 if (UseSecondarySupersTable && n->in(2)->is_Con()) { 2553 // PartialSubtypeCheck uses both constant and register operands for superclass input. 2554 n->set_req(2, new BinaryNode(n->in(2), n->in(2))); 2555 break; 2556 } 2557 break; 2558 } 2559 default: 2560 break; 2561 } 2562 } 2563 2564 #ifndef PRODUCT 2565 void Matcher::record_new2old(Node* newn, Node* old) { 2566 _new2old_map.map(newn->_idx, old); 2567 if (!_reused.test_set(old->_igv_idx)) { 2568 // Reuse the Ideal-level IGV identifier so that the node can be tracked 2569 // across matching. If there are multiple machine nodes expanded from the 2570 // same Ideal node, only one will reuse its IGV identifier. 2571 newn->_igv_idx = old->_igv_idx; 2572 } 2573 } 2574 2575 // machine-independent root to machine-dependent root 2576 void Matcher::dump_old2new_map() { 2577 _old2new_map.dump(); 2578 } 2579 #endif // !PRODUCT 2580 2581 //---------------------------collect_null_checks------------------------------- 2582 // Find null checks in the ideal graph; write a machine-specific node for 2583 // it. Used by later implicit-null-check handling. Actually collects 2584 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal 2585 // value being tested. 2586 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) { 2587 Node *iff = proj->in(0); 2588 if( iff->Opcode() == Op_If ) { 2589 // During matching If's have Bool & Cmp side-by-side 2590 BoolNode *b = iff->in(1)->as_Bool(); 2591 Node *cmp = iff->in(2); 2592 int opc = cmp->Opcode(); 2593 if (opc != Op_CmpP && opc != Op_CmpN) return; 2594 2595 const Type* ct = cmp->in(2)->bottom_type(); 2596 if (ct == TypePtr::NULL_PTR || 2597 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) { 2598 2599 bool push_it = false; 2600 if( proj->Opcode() == Op_IfTrue ) { 2601 #ifndef PRODUCT 2602 extern uint all_null_checks_found; 2603 all_null_checks_found++; 2604 #endif 2605 if( b->_test._test == BoolTest::ne ) { 2606 push_it = true; 2607 } 2608 } else { 2609 assert( proj->Opcode() == Op_IfFalse, "" ); 2610 if( b->_test._test == BoolTest::eq ) { 2611 push_it = true; 2612 } 2613 } 2614 if( push_it ) { 2615 _null_check_tests.push(proj); 2616 Node* val = cmp->in(1); 2617 #ifdef _LP64 2618 if (val->bottom_type()->isa_narrowoop() && 2619 !Matcher::narrow_oop_use_complex_address()) { 2620 // 2621 // Look for DecodeN node which should be pinned to orig_proj. 2622 // On platforms (Sparc) which can not handle 2 adds 2623 // in addressing mode we have to keep a DecodeN node and 2624 // use it to do implicit null check in address. 2625 // 2626 // DecodeN node was pinned to non-null path (orig_proj) during 2627 // CastPP transformation in final_graph_reshaping_impl(). 2628 // 2629 uint cnt = orig_proj->outcnt(); 2630 for (uint i = 0; i < orig_proj->outcnt(); i++) { 2631 Node* d = orig_proj->raw_out(i); 2632 if (d->is_DecodeN() && d->in(1) == val) { 2633 val = d; 2634 val->set_req(0, nullptr); // Unpin now. 2635 // Mark this as special case to distinguish from 2636 // a regular case: CmpP(DecodeN, null). 2637 val = (Node*)(((intptr_t)val) | 1); 2638 break; 2639 } 2640 } 2641 } 2642 #endif 2643 _null_check_tests.push(val); 2644 } 2645 } 2646 } 2647 } 2648 2649 //---------------------------validate_null_checks------------------------------ 2650 // Its possible that the value being null checked is not the root of a match 2651 // tree. If so, I cannot use the value in an implicit null check. 2652 void Matcher::validate_null_checks( ) { 2653 uint cnt = _null_check_tests.size(); 2654 for( uint i=0; i < cnt; i+=2 ) { 2655 Node *test = _null_check_tests[i]; 2656 Node *val = _null_check_tests[i+1]; 2657 bool is_decoden = ((intptr_t)val) & 1; 2658 val = (Node*)(((intptr_t)val) & ~1); 2659 if (has_new_node(val)) { 2660 Node* new_val = new_node(val); 2661 if (is_decoden) { 2662 assert(val->is_DecodeNarrowPtr() && val->in(0) == nullptr, "sanity"); 2663 // Note: new_val may have a control edge if 2664 // the original ideal node DecodeN was matched before 2665 // it was unpinned in Matcher::collect_null_checks(). 2666 // Unpin the mach node and mark it. 2667 new_val->set_req(0, nullptr); 2668 new_val = (Node*)(((intptr_t)new_val) | 1); 2669 } 2670 // Is a match-tree root, so replace with the matched value 2671 _null_check_tests.map(i+1, new_val); 2672 } else { 2673 // Yank from candidate list 2674 _null_check_tests.map(i+1,_null_check_tests[--cnt]); 2675 _null_check_tests.map(i,_null_check_tests[--cnt]); 2676 _null_check_tests.pop(); 2677 _null_check_tests.pop(); 2678 i-=2; 2679 } 2680 } 2681 } 2682 2683 bool Matcher::gen_narrow_oop_implicit_null_checks() { 2684 // Advice matcher to perform null checks on the narrow oop side. 2685 // Implicit checks are not possible on the uncompressed oop side anyway 2686 // (at least not for read accesses). 2687 // Performs significantly better (especially on Power 6). 2688 if (!os::zero_page_read_protected()) { 2689 return true; 2690 } 2691 return CompressedOops::use_implicit_null_checks() && 2692 (narrow_oop_use_complex_address() || 2693 CompressedOops::base() != nullptr); 2694 } 2695 2696 // Compute RegMask for an ideal register. 2697 const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) { 2698 assert(!C->failing_internal() || C->failure_is_artificial(), "already failing."); 2699 if (C->failing()) { 2700 return nullptr; 2701 } 2702 const Type* t = Type::mreg2type[ideal_reg]; 2703 if (t == nullptr) { 2704 assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg); 2705 return nullptr; // not supported 2706 } 2707 Node* fp = ret->in(TypeFunc::FramePtr); 2708 Node* mem = ret->in(TypeFunc::Memory); 2709 const TypePtr* atp = TypePtr::BOTTOM; 2710 MemNode::MemOrd mo = MemNode::unordered; 2711 2712 Node* spill; 2713 switch (ideal_reg) { 2714 case Op_RegN: spill = new LoadNNode(nullptr, mem, fp, atp, t->is_narrowoop(), mo); break; 2715 case Op_RegI: spill = new LoadINode(nullptr, mem, fp, atp, t->is_int(), mo); break; 2716 case Op_RegP: spill = new LoadPNode(nullptr, mem, fp, atp, t->is_ptr(), mo); break; 2717 case Op_RegF: spill = new LoadFNode(nullptr, mem, fp, atp, t, mo); break; 2718 case Op_RegD: spill = new LoadDNode(nullptr, mem, fp, atp, t, mo); break; 2719 case Op_RegL: spill = new LoadLNode(nullptr, mem, fp, atp, t->is_long(), mo); break; 2720 2721 case Op_VecA: // fall-through 2722 case Op_VecS: // fall-through 2723 case Op_VecD: // fall-through 2724 case Op_VecX: // fall-through 2725 case Op_VecY: // fall-through 2726 case Op_VecZ: spill = new LoadVectorNode(nullptr, mem, fp, atp, t->is_vect()); break; 2727 case Op_RegVectMask: return Matcher::predicate_reg_mask(); 2728 2729 default: ShouldNotReachHere(); 2730 } 2731 MachNode* mspill = match_tree(spill); 2732 assert(mspill != nullptr || C->failure_is_artificial(), "matching failed: %d", ideal_reg); 2733 if (C->failing()) { 2734 return nullptr; 2735 } 2736 // Handle generic vector operand case 2737 if (Matcher::supports_generic_vector_operands && t->isa_vect()) { 2738 specialize_mach_node(mspill); 2739 } 2740 return &mspill->out_RegMask(); 2741 } 2742 2743 // Process Mach IR right after selection phase is over. 2744 void Matcher::do_postselect_cleanup() { 2745 if (supports_generic_vector_operands) { 2746 specialize_generic_vector_operands(); 2747 if (C->failing()) return; 2748 } 2749 } 2750 2751 //---------------------------------------------------------------------- 2752 // Generic machine operands elision. 2753 //---------------------------------------------------------------------- 2754 2755 // Compute concrete vector operand for a generic TEMP vector mach node based on its user info. 2756 void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) { 2757 assert(use->in(idx) == tmp, "not a user"); 2758 assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet"); 2759 2760 if ((uint)idx == use->two_adr()) { // DEF_TEMP case 2761 tmp->_opnds[0] = use->_opnds[0]->clone(); 2762 } else { 2763 uint ideal_vreg = vector_ideal_reg(C->max_vector_size()); 2764 tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/); 2765 } 2766 } 2767 2768 // Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx). 2769 MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) { 2770 assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates"); 2771 Node* def = nullptr; 2772 if (opnd_idx == 0) { // DEF 2773 def = m; // use mach node itself to compute vector operand type 2774 } else { 2775 int base_idx = m->operand_index(opnd_idx); 2776 def = m->in(base_idx); 2777 if (def->is_Mach()) { 2778 if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) { 2779 specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site 2780 } else if (is_reg2reg_move(def->as_Mach())) { 2781 def = def->in(1); // skip over generic reg-to-reg moves 2782 } 2783 } 2784 } 2785 assert(def->bottom_type()->isa_vect(), "not a vector"); 2786 uint ideal_vreg = def->bottom_type()->ideal_reg(); 2787 return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/); 2788 } 2789 2790 void Matcher::specialize_mach_node(MachNode* m) { 2791 assert(!m->is_MachTemp(), "processed along with its user"); 2792 // For generic use operands pull specific register class operands from 2793 // its def instruction's output operand (def operand). 2794 for (uint i = 0; i < m->num_opnds(); i++) { 2795 if (Matcher::is_generic_vector(m->_opnds[i])) { 2796 m->_opnds[i] = specialize_vector_operand(m, i); 2797 } 2798 } 2799 } 2800 2801 // Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph. 2802 void Matcher::specialize_generic_vector_operands() { 2803 assert(supports_generic_vector_operands, "sanity"); 2804 ResourceMark rm; 2805 2806 // Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ]) 2807 // and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec). 2808 Unique_Node_List live_nodes; 2809 C->identify_useful_nodes(live_nodes); 2810 2811 while (live_nodes.size() > 0) { 2812 MachNode* m = live_nodes.pop()->isa_Mach(); 2813 if (m != nullptr) { 2814 if (Matcher::is_reg2reg_move(m)) { 2815 // Register allocator properly handles vec <=> leg moves using register masks. 2816 int opnd_idx = m->operand_index(1); 2817 Node* def = m->in(opnd_idx); 2818 m->subsume_by(def, C); 2819 } else if (m->is_MachTemp()) { 2820 // process MachTemp nodes at use site (see Matcher::specialize_vector_operand) 2821 } else { 2822 specialize_mach_node(m); 2823 } 2824 } 2825 } 2826 } 2827 2828 uint Matcher::vector_length(const Node* n) { 2829 const TypeVect* vt = n->bottom_type()->is_vect(); 2830 return vt->length(); 2831 } 2832 2833 uint Matcher::vector_length(const MachNode* use, const MachOper* opnd) { 2834 int def_idx = use->operand_index(opnd); 2835 Node* def = use->in(def_idx); 2836 return def->bottom_type()->is_vect()->length(); 2837 } 2838 2839 uint Matcher::vector_length_in_bytes(const Node* n) { 2840 const TypeVect* vt = n->bottom_type()->is_vect(); 2841 return vt->length_in_bytes(); 2842 } 2843 2844 uint Matcher::vector_length_in_bytes(const MachNode* use, const MachOper* opnd) { 2845 uint def_idx = use->operand_index(opnd); 2846 Node* def = use->in(def_idx); 2847 return def->bottom_type()->is_vect()->length_in_bytes(); 2848 } 2849 2850 BasicType Matcher::vector_element_basic_type(const Node* n) { 2851 const TypeVect* vt = n->bottom_type()->is_vect(); 2852 return vt->element_basic_type(); 2853 } 2854 2855 BasicType Matcher::vector_element_basic_type(const MachNode* use, const MachOper* opnd) { 2856 int def_idx = use->operand_index(opnd); 2857 Node* def = use->in(def_idx); 2858 return def->bottom_type()->is_vect()->element_basic_type(); 2859 } 2860 2861 bool Matcher::is_non_long_integral_vector(const Node* n) { 2862 BasicType bt = vector_element_basic_type(n); 2863 assert(bt != T_CHAR, "char is not allowed in vector"); 2864 return is_subword_type(bt) || bt == T_INT; 2865 } 2866 2867 bool Matcher::is_encode_and_store_pattern(const Node* n, const Node* m) { 2868 if (n == nullptr || 2869 m == nullptr || 2870 n->Opcode() != Op_StoreN || 2871 !m->is_EncodeP() || 2872 n->as_Store()->barrier_data() == 0) { 2873 return false; 2874 } 2875 assert(m == n->in(MemNode::ValueIn), "m should be input to n"); 2876 return true; 2877 } 2878 2879 #ifdef ASSERT 2880 bool Matcher::verify_after_postselect_cleanup() { 2881 assert(!C->failing_internal() || C->failure_is_artificial(), "sanity"); 2882 if (supports_generic_vector_operands) { 2883 Unique_Node_List useful; 2884 C->identify_useful_nodes(useful); 2885 for (uint i = 0; i < useful.size(); i++) { 2886 MachNode* m = useful.at(i)->isa_Mach(); 2887 if (m != nullptr) { 2888 assert(!Matcher::is_reg2reg_move(m), "no MoveVec nodes allowed"); 2889 for (uint j = 0; j < m->num_opnds(); j++) { 2890 assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed"); 2891 } 2892 } 2893 } 2894 } 2895 return true; 2896 } 2897 #endif // ASSERT 2898 2899 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or 2900 // atomic instruction acting as a store_load barrier without any 2901 // intervening volatile load, and thus we don't need a barrier here. 2902 // We retain the Node to act as a compiler ordering barrier. 2903 bool Matcher::post_store_load_barrier(const Node* vmb) { 2904 Compile* C = Compile::current(); 2905 assert(vmb->is_MemBar(), ""); 2906 assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, ""); 2907 const MemBarNode* membar = vmb->as_MemBar(); 2908 2909 // Get the Ideal Proj node, ctrl, that can be used to iterate forward 2910 Node* ctrl = nullptr; 2911 for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) { 2912 Node* p = membar->fast_out(i); 2913 assert(p->is_Proj(), "only projections here"); 2914 if ((p->as_Proj()->_con == TypeFunc::Control) && 2915 !C->node_arena()->contains(p)) { // Unmatched old-space only 2916 ctrl = p; 2917 break; 2918 } 2919 } 2920 assert((ctrl != nullptr), "missing control projection"); 2921 2922 for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) { 2923 Node *x = ctrl->fast_out(j); 2924 int xop = x->Opcode(); 2925 2926 // We don't need current barrier if we see another or a lock 2927 // before seeing volatile load. 2928 // 2929 // Op_Fastunlock previously appeared in the Op_* list below. 2930 // With the advent of 1-0 lock operations we're no longer guaranteed 2931 // that a monitor exit operation contains a serializing instruction. 2932 2933 if (xop == Op_MemBarVolatile || 2934 xop == Op_CompareAndExchangeB || 2935 xop == Op_CompareAndExchangeS || 2936 xop == Op_CompareAndExchangeI || 2937 xop == Op_CompareAndExchangeL || 2938 xop == Op_CompareAndExchangeP || 2939 xop == Op_CompareAndExchangeN || 2940 xop == Op_WeakCompareAndSwapB || 2941 xop == Op_WeakCompareAndSwapS || 2942 xop == Op_WeakCompareAndSwapL || 2943 xop == Op_WeakCompareAndSwapP || 2944 xop == Op_WeakCompareAndSwapN || 2945 xop == Op_WeakCompareAndSwapI || 2946 xop == Op_CompareAndSwapB || 2947 xop == Op_CompareAndSwapS || 2948 xop == Op_CompareAndSwapL || 2949 xop == Op_CompareAndSwapP || 2950 xop == Op_CompareAndSwapN || 2951 xop == Op_CompareAndSwapI || 2952 BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) { 2953 return true; 2954 } 2955 2956 // Op_FastLock previously appeared in the Op_* list above. 2957 if (xop == Op_FastLock) { 2958 return true; 2959 } 2960 2961 if (x->is_MemBar()) { 2962 // We must retain this membar if there is an upcoming volatile 2963 // load, which will be followed by acquire membar. 2964 if (xop == Op_MemBarAcquire || xop == Op_LoadFence) { 2965 return false; 2966 } else { 2967 // For other kinds of barriers, check by pretending we 2968 // are them, and seeing if we can be removed. 2969 return post_store_load_barrier(x->as_MemBar()); 2970 } 2971 } 2972 2973 // probably not necessary to check for these 2974 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) { 2975 return false; 2976 } 2977 } 2978 return false; 2979 } 2980 2981 // Check whether node n is a branch to an uncommon trap that we could 2982 // optimize as test with very high branch costs in case of going to 2983 // the uncommon trap. The code must be able to be recompiled to use 2984 // a cheaper test. 2985 bool Matcher::branches_to_uncommon_trap(const Node *n) { 2986 // Don't do it for natives, adapters, or runtime stubs 2987 Compile *C = Compile::current(); 2988 if (!C->is_method_compilation()) return false; 2989 2990 assert(n->is_If(), "You should only call this on if nodes."); 2991 IfNode *ifn = n->as_If(); 2992 2993 Node *ifFalse = nullptr; 2994 for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) { 2995 if (ifn->fast_out(i)->is_IfFalse()) { 2996 ifFalse = ifn->fast_out(i); 2997 break; 2998 } 2999 } 3000 assert(ifFalse, "An If should have an ifFalse. Graph is broken."); 3001 3002 Node *reg = ifFalse; 3003 int cnt = 4; // We must protect against cycles. Limit to 4 iterations. 3004 // Alternatively use visited set? Seems too expensive. 3005 while (reg != nullptr && cnt > 0) { 3006 CallNode *call = nullptr; 3007 RegionNode *nxt_reg = nullptr; 3008 for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) { 3009 Node *o = reg->fast_out(i); 3010 if (o->is_Call()) { 3011 call = o->as_Call(); 3012 } 3013 if (o->is_Region()) { 3014 nxt_reg = o->as_Region(); 3015 } 3016 } 3017 3018 if (call && 3019 call->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point()) { 3020 const Type* trtype = call->in(TypeFunc::Parms)->bottom_type(); 3021 if (trtype->isa_int() && trtype->is_int()->is_con()) { 3022 jint tr_con = trtype->is_int()->get_con(); 3023 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); 3024 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); 3025 assert((int)reason < (int)BitsPerInt, "recode bit map"); 3026 3027 if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason) 3028 && action != Deoptimization::Action_none) { 3029 // This uncommon trap is sure to recompile, eventually. 3030 // When that happens, C->too_many_traps will prevent 3031 // this transformation from happening again. 3032 return true; 3033 } 3034 } 3035 } 3036 3037 reg = nxt_reg; 3038 cnt--; 3039 } 3040 3041 return false; 3042 } 3043 3044 //============================================================================= 3045 //---------------------------State--------------------------------------------- 3046 State::State(void) : _rule() { 3047 #ifdef ASSERT 3048 _id = 0; 3049 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 3050 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 3051 #endif 3052 } 3053 3054 #ifdef ASSERT 3055 State::~State() { 3056 _id = 99; 3057 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 3058 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 3059 memset(_cost, -3, sizeof(_cost)); 3060 memset(_rule, -3, sizeof(_rule)); 3061 } 3062 #endif 3063 3064 #ifndef PRODUCT 3065 //---------------------------dump---------------------------------------------- 3066 void State::dump() { 3067 tty->print("\n"); 3068 dump(0); 3069 } 3070 3071 void State::dump(int depth) { 3072 for (int j = 0; j < depth; j++) { 3073 tty->print(" "); 3074 } 3075 tty->print("--N: "); 3076 _leaf->dump(); 3077 uint i; 3078 for (i = 0; i < _LAST_MACH_OPER; i++) { 3079 // Check for valid entry 3080 if (valid(i)) { 3081 for (int j = 0; j < depth; j++) { 3082 tty->print(" "); 3083 } 3084 assert(cost(i) != max_juint, "cost must be a valid value"); 3085 assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule"); 3086 tty->print_cr("%s %d %s", 3087 ruleName[i], cost(i), ruleName[rule(i)] ); 3088 } 3089 } 3090 tty->cr(); 3091 3092 for (i = 0; i < 2; i++) { 3093 if (_kids[i]) { 3094 _kids[i]->dump(depth + 1); 3095 } 3096 } 3097 } 3098 #endif