1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/compressedOops.hpp"
  31 #include "opto/ad.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/matcher.hpp"
  36 #include "opto/memnode.hpp"
  37 #include "opto/movenode.hpp"
  38 #include "opto/opcodes.hpp"
  39 #include "opto/regmask.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/runtime.hpp"
  42 #include "opto/type.hpp"
  43 #include "opto/vectornode.hpp"
  44 #include "runtime/os.inline.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "utilities/align.hpp"
  47 
  48 OptoReg::Name OptoReg::c_frame_pointer;
  49 
  50 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  51 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  52 RegMask Matcher::caller_save_regmask;
  53 RegMask Matcher::caller_save_regmask_exclude_soe;
  54 RegMask Matcher::mh_caller_save_regmask;
  55 RegMask Matcher::mh_caller_save_regmask_exclude_soe;
  56 RegMask Matcher::STACK_ONLY_mask;
  57 RegMask Matcher::c_frame_ptr_mask;
  58 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  59 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  60 
  61 //---------------------------Matcher-------------------------------------------
  62 Matcher::Matcher()
  63 : PhaseTransform( Phase::Ins_Select ),
  64   _states_arena(Chunk::medium_size, mtCompiler),
  65   _new_nodes(C->comp_arena()),
  66   _visited(&_states_arena),
  67   _shared(&_states_arena),
  68   _dontcare(&_states_arena),
  69   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  70   _swallowed(swallowed),
  71   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  72   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  73   _must_clone(must_clone),
  74   _shared_nodes(C->comp_arena()),
  75 #ifndef PRODUCT
  76   _old2new_map(C->comp_arena()),
  77   _new2old_map(C->comp_arena()),
  78   _reused(C->comp_arena()),
  79 #endif // !PRODUCT
  80   _allocation_started(false),
  81   _ruleName(ruleName),
  82   _register_save_policy(register_save_policy),
  83   _c_reg_save_policy(c_reg_save_policy),
  84   _register_save_type(register_save_type) {
  85   C->set_matcher(this);
  86 
  87   idealreg2spillmask  [Op_RegI] = nullptr;
  88   idealreg2spillmask  [Op_RegN] = nullptr;
  89   idealreg2spillmask  [Op_RegL] = nullptr;
  90   idealreg2spillmask  [Op_RegF] = nullptr;
  91   idealreg2spillmask  [Op_RegD] = nullptr;
  92   idealreg2spillmask  [Op_RegP] = nullptr;
  93   idealreg2spillmask  [Op_VecA] = nullptr;
  94   idealreg2spillmask  [Op_VecS] = nullptr;
  95   idealreg2spillmask  [Op_VecD] = nullptr;
  96   idealreg2spillmask  [Op_VecX] = nullptr;
  97   idealreg2spillmask  [Op_VecY] = nullptr;
  98   idealreg2spillmask  [Op_VecZ] = nullptr;
  99   idealreg2spillmask  [Op_RegFlags] = nullptr;
 100   idealreg2spillmask  [Op_RegVectMask] = nullptr;
 101 
 102   idealreg2debugmask  [Op_RegI] = nullptr;
 103   idealreg2debugmask  [Op_RegN] = nullptr;
 104   idealreg2debugmask  [Op_RegL] = nullptr;
 105   idealreg2debugmask  [Op_RegF] = nullptr;
 106   idealreg2debugmask  [Op_RegD] = nullptr;
 107   idealreg2debugmask  [Op_RegP] = nullptr;
 108   idealreg2debugmask  [Op_VecA] = nullptr;
 109   idealreg2debugmask  [Op_VecS] = nullptr;
 110   idealreg2debugmask  [Op_VecD] = nullptr;
 111   idealreg2debugmask  [Op_VecX] = nullptr;
 112   idealreg2debugmask  [Op_VecY] = nullptr;
 113   idealreg2debugmask  [Op_VecZ] = nullptr;
 114   idealreg2debugmask  [Op_RegFlags] = nullptr;
 115   idealreg2debugmask  [Op_RegVectMask] = nullptr;
 116 
 117   idealreg2mhdebugmask[Op_RegI] = nullptr;
 118   idealreg2mhdebugmask[Op_RegN] = nullptr;
 119   idealreg2mhdebugmask[Op_RegL] = nullptr;
 120   idealreg2mhdebugmask[Op_RegF] = nullptr;
 121   idealreg2mhdebugmask[Op_RegD] = nullptr;
 122   idealreg2mhdebugmask[Op_RegP] = nullptr;
 123   idealreg2mhdebugmask[Op_VecA] = nullptr;
 124   idealreg2mhdebugmask[Op_VecS] = nullptr;
 125   idealreg2mhdebugmask[Op_VecD] = nullptr;
 126   idealreg2mhdebugmask[Op_VecX] = nullptr;
 127   idealreg2mhdebugmask[Op_VecY] = nullptr;
 128   idealreg2mhdebugmask[Op_VecZ] = nullptr;
 129   idealreg2mhdebugmask[Op_RegFlags] = nullptr;
 130   idealreg2mhdebugmask[Op_RegVectMask] = nullptr;
 131 
 132   debug_only(_mem_node = nullptr;)   // Ideal memory node consumed by mach node
 133 }
 134 
 135 //------------------------------warp_incoming_stk_arg------------------------
 136 // This warps a VMReg into an OptoReg::Name
 137 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 138   OptoReg::Name warped;
 139   if( reg->is_stack() ) {  // Stack slot argument?
 140     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 141     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 142     if( warped >= _in_arg_limit )
 143       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 144     if (!RegMask::can_represent_arg(warped)) {
 145       // the compiler cannot represent this method's calling sequence
 146       // Bailout. We do not have space to represent all arguments.
 147       C->record_method_not_compilable("unsupported incoming calling sequence");
 148       return OptoReg::Bad;
 149     }
 150     return warped;
 151   }
 152   return OptoReg::as_OptoReg(reg);
 153 }
 154 
 155 //---------------------------compute_old_SP------------------------------------
 156 OptoReg::Name Compile::compute_old_SP() {
 157   int fixed    = fixed_slots();
 158   int preserve = in_preserve_stack_slots();
 159   return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots()));
 160 }
 161 
 162 
 163 
 164 #ifdef ASSERT
 165 void Matcher::verify_new_nodes_only(Node* xroot) {
 166   // Make sure that the new graph only references new nodes
 167   ResourceMark rm;
 168   Unique_Node_List worklist;
 169   VectorSet visited;
 170   worklist.push(xroot);
 171   while (worklist.size() > 0) {
 172     Node* n = worklist.pop();
 173     visited.set(n->_idx);
 174     assert(C->node_arena()->contains(n), "dead node");
 175     for (uint j = 0; j < n->req(); j++) {
 176       Node* in = n->in(j);
 177       if (in != nullptr) {
 178         assert(C->node_arena()->contains(in), "dead node");
 179         if (!visited.test(in->_idx)) {
 180           worklist.push(in);
 181         }
 182       }
 183     }
 184   }
 185 }
 186 #endif
 187 
 188 // Array of RegMask, one per returned values (inline type instances can
 189 // be returned as multiple return values, one per field)
 190 RegMask* Matcher::return_values_mask(const TypeFunc* tf) {
 191   const TypeTuple* range = tf->range_cc();
 192   uint cnt = range->cnt() - TypeFunc::Parms;
 193   if (cnt == 0) {
 194     return nullptr;
 195   }
 196   RegMask* mask = NEW_RESOURCE_ARRAY(RegMask, cnt);
 197   BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, cnt);
 198   VMRegPair* vm_parm_regs = NEW_RESOURCE_ARRAY(VMRegPair, cnt);
 199   for (uint i = 0; i < cnt; i++) {
 200     sig_bt[i] = range->field_at(i+TypeFunc::Parms)->basic_type();
 201   }
 202 
 203   int regs = SharedRuntime::java_return_convention(sig_bt, vm_parm_regs, cnt);
 204   if (regs <= 0) {
 205     // We ran out of registers to store the IsInit information for a nullable inline type return.
 206     // Since it is only set in the 'call_epilog', we can simply put it on the stack.
 207     assert(tf->returns_inline_type_as_fields(), "should have been tested during graph construction");
 208     // TODO 8284443 Can we teach the register allocator to reserve a stack slot instead?
 209     // mask[--cnt] = STACK_ONLY_mask does not work (test with -XX:+StressGCM)
 210     int slot = C->fixed_slots() - 2;
 211     if (C->needs_stack_repair()) {
 212       slot -= 2; // Account for stack increment value
 213     }
 214     mask[--cnt].Clear();
 215     mask[cnt].Insert(OptoReg::stack2reg(slot));
 216   }
 217   for (uint i = 0; i < cnt; i++) {
 218     mask[i].Clear();
 219 
 220     OptoReg::Name reg1 = OptoReg::as_OptoReg(vm_parm_regs[i].first());
 221     if (OptoReg::is_valid(reg1)) {
 222       mask[i].Insert(reg1);
 223     }
 224     OptoReg::Name reg2 = OptoReg::as_OptoReg(vm_parm_regs[i].second());
 225     if (OptoReg::is_valid(reg2)) {
 226       mask[i].Insert(reg2);
 227     }
 228   }
 229 
 230   return mask;
 231 }
 232 
 233 //---------------------------match---------------------------------------------
 234 void Matcher::match( ) {
 235   if( MaxLabelRootDepth < 100 ) { // Too small?
 236     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 237     MaxLabelRootDepth = 100;
 238   }
 239   // One-time initialization of some register masks.
 240   init_spill_mask( C->root()->in(1) );
 241   _return_addr_mask = return_addr();
 242 #ifdef _LP64
 243   // Pointers take 2 slots in 64-bit land
 244   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 245 #endif
 246 
 247   // Map Java-signature return types into return register-value
 248   // machine registers.
 249   _return_values_mask = return_values_mask(C->tf());
 250 
 251   // ---------------
 252   // Frame Layout
 253 
 254   // Need the method signature to determine the incoming argument types,
 255   // because the types determine which registers the incoming arguments are
 256   // in, and this affects the matched code.
 257   const TypeTuple *domain = C->tf()->domain_cc();
 258   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 259   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 260   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 261   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 262   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 263   uint i;
 264   for( i = 0; i<argcnt; i++ ) {
 265     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 266   }
 267 
 268   // Pass array of ideal registers and length to USER code (from the AD file)
 269   // that will convert this to an array of register numbers.
 270   const StartNode *start = C->start();
 271   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 272 #ifdef ASSERT
 273   // Sanity check users' calling convention.  Real handy while trying to
 274   // get the initial port correct.
 275   { for (uint i = 0; i<argcnt; i++) {
 276       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 277         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 278         _parm_regs[i].set_bad();
 279         continue;
 280       }
 281       VMReg parm_reg = vm_parm_regs[i].first();
 282       assert(parm_reg->is_valid(), "invalid arg?");
 283       if (parm_reg->is_reg()) {
 284         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 285         assert(can_be_java_arg(opto_parm_reg) ||
 286                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 287                opto_parm_reg == inline_cache_reg(),
 288                "parameters in register must be preserved by runtime stubs");
 289       }
 290       for (uint j = 0; j < i; j++) {
 291         assert(parm_reg != vm_parm_regs[j].first(),
 292                "calling conv. must produce distinct regs");
 293       }
 294     }
 295   }
 296 #endif
 297 
 298   // Do some initial frame layout.
 299 
 300   // Compute the old incoming SP (may be called FP) as
 301   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 302   _old_SP = C->compute_old_SP();
 303   assert( is_even(_old_SP), "must be even" );
 304 
 305   // Compute highest incoming stack argument as
 306   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 307   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 308   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 309   for( i = 0; i < argcnt; i++ ) {
 310     // Permit args to have no register
 311     _calling_convention_mask[i].Clear();
 312     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 313       _parm_regs[i].set_bad();
 314       continue;
 315     }
 316     // calling_convention returns stack arguments as a count of
 317     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 318     // the allocators point of view, taking into account all the
 319     // preserve area, locks & pad2.
 320 
 321     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 322     if( OptoReg::is_valid(reg1))
 323       _calling_convention_mask[i].Insert(reg1);
 324 
 325     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 326     if( OptoReg::is_valid(reg2))
 327       _calling_convention_mask[i].Insert(reg2);
 328 
 329     // Saved biased stack-slot register number
 330     _parm_regs[i].set_pair(reg2, reg1);
 331   }
 332 
 333   // Finally, make sure the incoming arguments take up an even number of
 334   // words, in case the arguments or locals need to contain doubleword stack
 335   // slots.  The rest of the system assumes that stack slot pairs (in
 336   // particular, in the spill area) which look aligned will in fact be
 337   // aligned relative to the stack pointer in the target machine.  Double
 338   // stack slots will always be allocated aligned.
 339   _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong));
 340 
 341   // Compute highest outgoing stack argument as
 342   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 343   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 344   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 345 
 346   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 347     // the compiler cannot represent this method's calling sequence
 348     // Bailout. We do not have space to represent all arguments.
 349     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 350   }
 351 
 352   if (C->failing())  return;  // bailed out on incoming arg failure
 353 
 354   // ---------------
 355   // Collect roots of matcher trees.  Every node for which
 356   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 357   // can be a valid interior of some tree.
 358   find_shared( C->root() );
 359   find_shared( C->top() );
 360 
 361   C->print_method(PHASE_BEFORE_MATCHING, 1);
 362 
 363   // Create new ideal node ConP #null even if it does exist in old space
 364   // to avoid false sharing if the corresponding mach node is not used.
 365   // The corresponding mach node is only used in rare cases for derived
 366   // pointers.
 367   Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
 368 
 369   // Swap out to old-space; emptying new-space
 370   Arena* old = C->swap_old_and_new();
 371 
 372   // Save debug and profile information for nodes in old space:
 373   _old_node_note_array = C->node_note_array();
 374   if (_old_node_note_array != nullptr) {
 375     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 376                            (C->comp_arena(), _old_node_note_array->length(),
 377                             0, nullptr));
 378   }
 379 
 380   // Pre-size the new_node table to avoid the need for range checks.
 381   grow_new_node_array(C->unique());
 382 
 383   // Reset node counter so MachNodes start with _idx at 0
 384   int live_nodes = C->live_nodes();
 385   C->set_unique(0);
 386   C->reset_dead_node_list();
 387 
 388   // Recursively match trees from old space into new space.
 389   // Correct leaves of new-space Nodes; they point to old-space.
 390   _visited.clear();
 391   C->set_cached_top_node(xform( C->top(), live_nodes ));
 392   if (!C->failing()) {
 393     Node* xroot =        xform( C->root(), 1 );
 394     if (xroot == nullptr) {
 395       Matcher::soft_match_failure();  // recursive matching process failed
 396       assert(false, "instruction match failed");
 397       C->record_method_not_compilable("instruction match failed");
 398     } else {
 399       // During matching shared constants were attached to C->root()
 400       // because xroot wasn't available yet, so transfer the uses to
 401       // the xroot.
 402       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 403         Node* n = C->root()->fast_out(j);
 404         if (C->node_arena()->contains(n)) {
 405           assert(n->in(0) == C->root(), "should be control user");
 406           n->set_req(0, xroot);
 407           --j;
 408           --jmax;
 409         }
 410       }
 411 
 412       // Generate new mach node for ConP #null
 413       assert(new_ideal_null != nullptr, "sanity");
 414       _mach_null = match_tree(new_ideal_null);
 415       // Don't set control, it will confuse GCM since there are no uses.
 416       // The control will be set when this node is used first time
 417       // in find_base_for_derived().
 418       assert(_mach_null != nullptr, "");
 419 
 420       C->set_root(xroot->is_Root() ? xroot->as_Root() : nullptr);
 421 
 422 #ifdef ASSERT
 423       verify_new_nodes_only(xroot);
 424 #endif
 425     }
 426   }
 427   if (C->top() == nullptr || C->root() == nullptr) {
 428     // New graph lost. This is due to a compilation failure we encountered earlier.
 429     stringStream ss;
 430     if (C->failure_reason() != nullptr) {
 431       ss.print("graph lost: %s", C->failure_reason());
 432     } else {
 433       assert(C->failure_reason() != nullptr, "graph lost: reason unknown");
 434       ss.print("graph lost: reason unknown");
 435     }
 436     C->record_method_not_compilable(ss.as_string());
 437   }
 438   if (C->failing()) {
 439     // delete old;
 440     old->destruct_contents();
 441     return;
 442   }
 443   assert( C->top(), "" );
 444   assert( C->root(), "" );
 445   validate_null_checks();
 446 
 447   // Now smoke old-space
 448   NOT_DEBUG( old->destruct_contents() );
 449 
 450   // ------------------------
 451   // Set up save-on-entry registers.
 452   Fixup_Save_On_Entry( );
 453 
 454   { // Cleanup mach IR after selection phase is over.
 455     Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]);
 456     do_postselect_cleanup();
 457     if (C->failing())  return;
 458     assert(verify_after_postselect_cleanup(), "");
 459   }
 460 }
 461 
 462 //------------------------------Fixup_Save_On_Entry----------------------------
 463 // The stated purpose of this routine is to take care of save-on-entry
 464 // registers.  However, the overall goal of the Match phase is to convert into
 465 // machine-specific instructions which have RegMasks to guide allocation.
 466 // So what this procedure really does is put a valid RegMask on each input
 467 // to the machine-specific variations of all Return, TailCall and Halt
 468 // instructions.  It also adds edgs to define the save-on-entry values (and of
 469 // course gives them a mask).
 470 
 471 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 472   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 473   // Do all the pre-defined register masks
 474   rms[TypeFunc::Control  ] = RegMask::Empty;
 475   rms[TypeFunc::I_O      ] = RegMask::Empty;
 476   rms[TypeFunc::Memory   ] = RegMask::Empty;
 477   rms[TypeFunc::ReturnAdr] = ret_adr;
 478   rms[TypeFunc::FramePtr ] = fp;
 479   return rms;
 480 }
 481 
 482 int Matcher::scalable_predicate_reg_slots() {
 483   assert(Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector(),
 484         "scalable predicate vector should be supported");
 485   int vector_reg_bit_size = Matcher::scalable_vector_reg_size(T_BYTE) << LogBitsPerByte;
 486   // We assume each predicate register is one-eighth of the size of
 487   // scalable vector register, one mask bit per vector byte.
 488   int predicate_reg_bit_size = vector_reg_bit_size >> 3;
 489   // Compute number of slots which is required when scalable predicate
 490   // register is spilled. E.g. if scalable vector register is 640 bits,
 491   // predicate register is 80 bits, which is 2.5 * slots.
 492   // We will round up the slot number to power of 2, which is required
 493   // by find_first_set().
 494   int slots = predicate_reg_bit_size & (BitsPerInt - 1)
 495               ? (predicate_reg_bit_size >> LogBitsPerInt) + 1
 496               : predicate_reg_bit_size >> LogBitsPerInt;
 497   return round_up_power_of_2(slots);
 498 }
 499 
 500 #define NOF_STACK_MASKS (3*13)
 501 
 502 // Create the initial stack mask used by values spilling to the stack.
 503 // Disallow any debug info in outgoing argument areas by setting the
 504 // initial mask accordingly.
 505 void Matcher::init_first_stack_mask() {
 506 
 507   // Allocate storage for spill masks as masks for the appropriate load type.
 508   RegMask *rms = (RegMask*)C->comp_arena()->AmallocWords(sizeof(RegMask) * NOF_STACK_MASKS);
 509 
 510   // Initialize empty placeholder masks into the newly allocated arena
 511   for (int i = 0; i < NOF_STACK_MASKS; i++) {
 512     new (rms + i) RegMask();
 513   }
 514 
 515   idealreg2spillmask  [Op_RegN] = &rms[0];
 516   idealreg2spillmask  [Op_RegI] = &rms[1];
 517   idealreg2spillmask  [Op_RegL] = &rms[2];
 518   idealreg2spillmask  [Op_RegF] = &rms[3];
 519   idealreg2spillmask  [Op_RegD] = &rms[4];
 520   idealreg2spillmask  [Op_RegP] = &rms[5];
 521 
 522   idealreg2debugmask  [Op_RegN] = &rms[6];
 523   idealreg2debugmask  [Op_RegI] = &rms[7];
 524   idealreg2debugmask  [Op_RegL] = &rms[8];
 525   idealreg2debugmask  [Op_RegF] = &rms[9];
 526   idealreg2debugmask  [Op_RegD] = &rms[10];
 527   idealreg2debugmask  [Op_RegP] = &rms[11];
 528 
 529   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 530   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 531   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 532   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 533   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 534   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 535 
 536   idealreg2spillmask  [Op_VecA] = &rms[18];
 537   idealreg2spillmask  [Op_VecS] = &rms[19];
 538   idealreg2spillmask  [Op_VecD] = &rms[20];
 539   idealreg2spillmask  [Op_VecX] = &rms[21];
 540   idealreg2spillmask  [Op_VecY] = &rms[22];
 541   idealreg2spillmask  [Op_VecZ] = &rms[23];
 542 
 543   idealreg2debugmask  [Op_VecA] = &rms[24];
 544   idealreg2debugmask  [Op_VecS] = &rms[25];
 545   idealreg2debugmask  [Op_VecD] = &rms[26];
 546   idealreg2debugmask  [Op_VecX] = &rms[27];
 547   idealreg2debugmask  [Op_VecY] = &rms[28];
 548   idealreg2debugmask  [Op_VecZ] = &rms[29];
 549 
 550   idealreg2mhdebugmask[Op_VecA] = &rms[30];
 551   idealreg2mhdebugmask[Op_VecS] = &rms[31];
 552   idealreg2mhdebugmask[Op_VecD] = &rms[32];
 553   idealreg2mhdebugmask[Op_VecX] = &rms[33];
 554   idealreg2mhdebugmask[Op_VecY] = &rms[34];
 555   idealreg2mhdebugmask[Op_VecZ] = &rms[35];
 556 
 557   idealreg2spillmask  [Op_RegVectMask] = &rms[36];
 558   idealreg2debugmask  [Op_RegVectMask] = &rms[37];
 559   idealreg2mhdebugmask[Op_RegVectMask] = &rms[38];
 560 
 561   OptoReg::Name i;
 562 
 563   // At first, start with the empty mask
 564   C->FIRST_STACK_mask().Clear();
 565 
 566   // Add in the incoming argument area
 567   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 568   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 569     C->FIRST_STACK_mask().Insert(i);
 570   }
 571 
 572   // Add in all bits past the outgoing argument area
 573   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 574             "must be able to represent all call arguments in reg mask");
 575   OptoReg::Name init = _out_arg_limit;
 576   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 577     C->FIRST_STACK_mask().Insert(i);
 578   }
 579   // Finally, set the "infinite stack" bit.
 580   C->FIRST_STACK_mask().set_AllStack();
 581 
 582   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 583   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 584   // Keep spill masks aligned.
 585   aligned_stack_mask.clear_to_pairs();
 586   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 587   RegMask scalable_stack_mask = aligned_stack_mask;
 588 
 589   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 590 #ifdef _LP64
 591   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 592    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 593    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 594 #else
 595    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 596 #endif
 597   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 598    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 599   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 600    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 601   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 602    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 603   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 604    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 605 
 606   if (Matcher::has_predicated_vectors()) {
 607     *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask];
 608      idealreg2spillmask[Op_RegVectMask]->OR(aligned_stack_mask);
 609   } else {
 610     *idealreg2spillmask[Op_RegVectMask] = RegMask::Empty;
 611   }
 612 
 613   if (Matcher::vector_size_supported(T_BYTE,4)) {
 614     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 615      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 616   } else {
 617     *idealreg2spillmask[Op_VecS] = RegMask::Empty;
 618   }
 619 
 620   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 621     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 622     // RA guarantees such alignment since it is needed for Double and Long values.
 623     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 624      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 625   } else {
 626     *idealreg2spillmask[Op_VecD] = RegMask::Empty;
 627   }
 628 
 629   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 630     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 631     //
 632     // RA can use input arguments stack slots for spills but until RA
 633     // we don't know frame size and offset of input arg stack slots.
 634     //
 635     // Exclude last input arg stack slots to avoid spilling vectors there
 636     // otherwise vector spills could stomp over stack slots in caller frame.
 637     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 638     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 639       aligned_stack_mask.Remove(in);
 640       in = OptoReg::add(in, -1);
 641     }
 642      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 643      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 644     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 645      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 646   } else {
 647     *idealreg2spillmask[Op_VecX] = RegMask::Empty;
 648   }
 649 
 650   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 651     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 652     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 653     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 654       aligned_stack_mask.Remove(in);
 655       in = OptoReg::add(in, -1);
 656     }
 657      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 658      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 659     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 660      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 661   } else {
 662     *idealreg2spillmask[Op_VecY] = RegMask::Empty;
 663   }
 664 
 665   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 666     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
 667     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 668     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
 669       aligned_stack_mask.Remove(in);
 670       in = OptoReg::add(in, -1);
 671     }
 672      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
 673      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 674     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
 675      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
 676   } else {
 677     *idealreg2spillmask[Op_VecZ] = RegMask::Empty;
 678   }
 679 
 680   if (Matcher::supports_scalable_vector()) {
 681     int k = 1;
 682     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 683     if (Matcher::has_predicated_vectors()) {
 684       // Exclude last input arg stack slots to avoid spilling vector register there,
 685       // otherwise RegVectMask spills could stomp over stack slots in caller frame.
 686       for (; (in >= init_in) && (k < scalable_predicate_reg_slots()); k++) {
 687         scalable_stack_mask.Remove(in);
 688         in = OptoReg::add(in, -1);
 689       }
 690 
 691       // For RegVectMask
 692       scalable_stack_mask.clear_to_sets(scalable_predicate_reg_slots());
 693       assert(scalable_stack_mask.is_AllStack(), "should be infinite stack");
 694       *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask];
 695       idealreg2spillmask[Op_RegVectMask]->OR(scalable_stack_mask);
 696     }
 697 
 698     // Exclude last input arg stack slots to avoid spilling vector register there,
 699     // otherwise vector spills could stomp over stack slots in caller frame.
 700     for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) {
 701       scalable_stack_mask.Remove(in);
 702       in = OptoReg::add(in, -1);
 703     }
 704 
 705     // For VecA
 706      scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA);
 707      assert(scalable_stack_mask.is_AllStack(), "should be infinite stack");
 708     *idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA];
 709      idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask);
 710   } else {
 711     *idealreg2spillmask[Op_VecA] = RegMask::Empty;
 712   }
 713 
 714   if (UseFPUForSpilling) {
 715     // This mask logic assumes that the spill operations are
 716     // symmetric and that the registers involved are the same size.
 717     // On sparc for instance we may have to use 64 bit moves will
 718     // kill 2 registers when used with F0-F31.
 719     idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 720     idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 721 #ifdef _LP64
 722     idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 723     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 724     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 725     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 726 #else
 727     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 728 #ifdef ARM
 729     // ARM has support for moving 64bit values between a pair of
 730     // integer registers and a double register
 731     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 732     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 733 #endif
 734 #endif
 735   }
 736 
 737   // Make up debug masks.  Any spill slot plus callee-save (SOE) registers.
 738   // Caller-save (SOC, AS) registers are assumed to be trashable by the various
 739   // inline-cache fixup routines.
 740   *idealreg2debugmask  [Op_RegN] = *idealreg2spillmask[Op_RegN];
 741   *idealreg2debugmask  [Op_RegI] = *idealreg2spillmask[Op_RegI];
 742   *idealreg2debugmask  [Op_RegL] = *idealreg2spillmask[Op_RegL];
 743   *idealreg2debugmask  [Op_RegF] = *idealreg2spillmask[Op_RegF];
 744   *idealreg2debugmask  [Op_RegD] = *idealreg2spillmask[Op_RegD];
 745   *idealreg2debugmask  [Op_RegP] = *idealreg2spillmask[Op_RegP];
 746   *idealreg2debugmask  [Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask];
 747 
 748   *idealreg2debugmask  [Op_VecA] = *idealreg2spillmask[Op_VecA];
 749   *idealreg2debugmask  [Op_VecS] = *idealreg2spillmask[Op_VecS];
 750   *idealreg2debugmask  [Op_VecD] = *idealreg2spillmask[Op_VecD];
 751   *idealreg2debugmask  [Op_VecX] = *idealreg2spillmask[Op_VecX];
 752   *idealreg2debugmask  [Op_VecY] = *idealreg2spillmask[Op_VecY];
 753   *idealreg2debugmask  [Op_VecZ] = *idealreg2spillmask[Op_VecZ];
 754 
 755   *idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN];
 756   *idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI];
 757   *idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL];
 758   *idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF];
 759   *idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD];
 760   *idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP];
 761   *idealreg2mhdebugmask[Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask];
 762 
 763   *idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA];
 764   *idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS];
 765   *idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD];
 766   *idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX];
 767   *idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY];
 768   *idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ];
 769 
 770   // Prevent stub compilations from attempting to reference
 771   // callee-saved (SOE) registers from debug info
 772   bool exclude_soe = !Compile::current()->is_method_compilation();
 773   RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask;
 774   RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask;
 775 
 776   idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask);
 777   idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask);
 778   idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask);
 779   idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask);
 780   idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask);
 781   idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask);
 782   idealreg2debugmask[Op_RegVectMask]->SUBTRACT(*caller_save_mask);
 783 
 784   idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask);
 785   idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask);
 786   idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask);
 787   idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask);
 788   idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask);
 789   idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask);
 790 
 791   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask);
 792   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask);
 793   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask);
 794   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask);
 795   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask);
 796   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask);
 797   idealreg2mhdebugmask[Op_RegVectMask]->SUBTRACT(*mh_caller_save_mask);
 798 
 799   idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask);
 800   idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask);
 801   idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask);
 802   idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask);
 803   idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask);
 804   idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask);
 805 }
 806 
 807 //---------------------------is_save_on_entry----------------------------------
 808 bool Matcher::is_save_on_entry(int reg) {
 809   return
 810     _register_save_policy[reg] == 'E' ||
 811     _register_save_policy[reg] == 'A'; // Save-on-entry register?
 812 }
 813 
 814 //---------------------------Fixup_Save_On_Entry-------------------------------
 815 void Matcher::Fixup_Save_On_Entry( ) {
 816   init_first_stack_mask();
 817 
 818   Node *root = C->root();       // Short name for root
 819   // Count number of save-on-entry registers.
 820   uint soe_cnt = number_of_saved_registers();
 821   uint i;
 822 
 823   // Find the procedure Start Node
 824   StartNode *start = C->start();
 825   assert( start, "Expect a start node" );
 826 
 827   // Input RegMask array shared by all Returns.
 828   // The type for doubles and longs has a count of 2, but
 829   // there is only 1 returned value
 830   uint ret_edge_cnt = C->tf()->range_cc()->cnt();
 831   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 832   for (i = TypeFunc::Parms; i < ret_edge_cnt; i++) {
 833     ret_rms[i] = _return_values_mask[i-TypeFunc::Parms];
 834   }
 835 
 836   // Input RegMask array shared by all Rethrows.
 837   uint reth_edge_cnt = TypeFunc::Parms+1;
 838   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 839   // Rethrow takes exception oop only, but in the argument 0 slot.
 840   OptoReg::Name reg = find_receiver();
 841   if (reg >= 0) {
 842     reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
 843 #ifdef _LP64
 844     // Need two slots for ptrs in 64-bit land
 845     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
 846 #endif
 847   }
 848 
 849   // Input RegMask array shared by all TailCalls
 850   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 851   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 852 
 853   // Input RegMask array shared by all TailJumps
 854   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 855   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 856 
 857   // TailCalls have 2 returned values (target & moop), whose masks come
 858   // from the usual MachNode/MachOper mechanism.  Find a sample
 859   // TailCall to extract these masks and put the correct masks into
 860   // the tail_call_rms array.
 861   for( i=1; i < root->req(); i++ ) {
 862     MachReturnNode *m = root->in(i)->as_MachReturn();
 863     if( m->ideal_Opcode() == Op_TailCall ) {
 864       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 865       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 866       break;
 867     }
 868   }
 869 
 870   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 871   // from the usual MachNode/MachOper mechanism.  Find a sample
 872   // TailJump to extract these masks and put the correct masks into
 873   // the tail_jump_rms array.
 874   for( i=1; i < root->req(); i++ ) {
 875     MachReturnNode *m = root->in(i)->as_MachReturn();
 876     if( m->ideal_Opcode() == Op_TailJump ) {
 877       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 878       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 879       break;
 880     }
 881   }
 882 
 883   // Input RegMask array shared by all Halts
 884   uint halt_edge_cnt = TypeFunc::Parms;
 885   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 886 
 887   // Capture the return input masks into each exit flavor
 888   for( i=1; i < root->req(); i++ ) {
 889     MachReturnNode *exit = root->in(i)->as_MachReturn();
 890     switch( exit->ideal_Opcode() ) {
 891       case Op_Return   : exit->_in_rms = ret_rms;  break;
 892       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 893       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 894       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 895       case Op_Halt     : exit->_in_rms = halt_rms; break;
 896       default          : ShouldNotReachHere();
 897     }
 898   }
 899 
 900   // Next unused projection number from Start.
 901   int proj_cnt = C->tf()->domain_cc()->cnt();
 902 
 903   // Do all the save-on-entry registers.  Make projections from Start for
 904   // them, and give them a use at the exit points.  To the allocator, they
 905   // look like incoming register arguments.
 906   for( i = 0; i < _last_Mach_Reg; i++ ) {
 907     if( is_save_on_entry(i) ) {
 908 
 909       // Add the save-on-entry to the mask array
 910       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 911       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 912       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 913       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 914       // Halts need the SOE registers, but only in the stack as debug info.
 915       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 916       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 917 
 918       Node *mproj;
 919 
 920       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 921       // into a single RegD.
 922       if( (i&1) == 0 &&
 923           _register_save_type[i  ] == Op_RegF &&
 924           _register_save_type[i+1] == Op_RegF &&
 925           is_save_on_entry(i+1) ) {
 926         // Add other bit for double
 927         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 928         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 929         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 930         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 931         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 932         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 933         proj_cnt += 2;          // Skip 2 for doubles
 934       }
 935       else if( (i&1) == 1 &&    // Else check for high half of double
 936                _register_save_type[i-1] == Op_RegF &&
 937                _register_save_type[i  ] == Op_RegF &&
 938                is_save_on_entry(i-1) ) {
 939         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 940         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 941         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 942         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 943         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 944         mproj = C->top();
 945       }
 946       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 947       // into a single RegL.
 948       else if( (i&1) == 0 &&
 949           _register_save_type[i  ] == Op_RegI &&
 950           _register_save_type[i+1] == Op_RegI &&
 951         is_save_on_entry(i+1) ) {
 952         // Add other bit for long
 953         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 954         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 955         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 956         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 957         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 958         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 959         proj_cnt += 2;          // Skip 2 for longs
 960       }
 961       else if( (i&1) == 1 &&    // Else check for high half of long
 962                _register_save_type[i-1] == Op_RegI &&
 963                _register_save_type[i  ] == Op_RegI &&
 964                is_save_on_entry(i-1) ) {
 965         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 966         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 967         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 968         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 969         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 970         mproj = C->top();
 971       } else {
 972         // Make a projection for it off the Start
 973         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 974       }
 975 
 976       ret_edge_cnt ++;
 977       reth_edge_cnt ++;
 978       tail_call_edge_cnt ++;
 979       tail_jump_edge_cnt ++;
 980       halt_edge_cnt ++;
 981 
 982       // Add a use of the SOE register to all exit paths
 983       for( uint j=1; j < root->req(); j++ )
 984         root->in(j)->add_req(mproj);
 985     } // End of if a save-on-entry register
 986   } // End of for all machine registers
 987 }
 988 
 989 //------------------------------init_spill_mask--------------------------------
 990 void Matcher::init_spill_mask( Node *ret ) {
 991   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 992 
 993   OptoReg::c_frame_pointer = c_frame_pointer();
 994   c_frame_ptr_mask = c_frame_pointer();
 995 #ifdef _LP64
 996   // pointers are twice as big
 997   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 998 #endif
 999 
1000   // Start at OptoReg::stack0()
1001   STACK_ONLY_mask.Clear();
1002   OptoReg::Name init = OptoReg::stack2reg(0);
1003   // STACK_ONLY_mask is all stack bits
1004   OptoReg::Name i;
1005   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
1006     STACK_ONLY_mask.Insert(i);
1007   // Also set the "infinite stack" bit.
1008   STACK_ONLY_mask.set_AllStack();
1009 
1010   for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) {
1011     // Copy the register names over into the shared world.
1012     // SharedInfo::regName[i] = regName[i];
1013     // Handy RegMasks per machine register
1014     mreg2regmask[i].Insert(i);
1015 
1016     // Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks.
1017     if (_register_save_policy[i] == 'C' ||
1018         _register_save_policy[i] == 'A') {
1019       caller_save_regmask.Insert(i);
1020       mh_caller_save_regmask.Insert(i);
1021     }
1022     // Exclude save-on-entry registers from debug masks for stub compilations.
1023     if (_register_save_policy[i] == 'C' ||
1024         _register_save_policy[i] == 'A' ||
1025         _register_save_policy[i] == 'E') {
1026       caller_save_regmask_exclude_soe.Insert(i);
1027       mh_caller_save_regmask_exclude_soe.Insert(i);
1028     }
1029   }
1030 
1031   // Also exclude the register we use to save the SP for MethodHandle
1032   // invokes to from the corresponding MH debug masks
1033   const RegMask sp_save_mask = method_handle_invoke_SP_save_mask();
1034   mh_caller_save_regmask.OR(sp_save_mask);
1035   mh_caller_save_regmask_exclude_soe.OR(sp_save_mask);
1036 
1037   // Grab the Frame Pointer
1038   Node *fp  = ret->in(TypeFunc::FramePtr);
1039   // Share frame pointer while making spill ops
1040   set_shared(fp);
1041 
1042 // Get the ADLC notion of the right regmask, for each basic type.
1043 #ifdef _LP64
1044   idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret);
1045 #endif
1046   idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret);
1047   idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret);
1048   idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret);
1049   idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret);
1050   idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret);
1051   idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret);
1052   idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret);
1053   idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret);
1054   idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret);
1055   idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret);
1056   idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret);
1057   idealreg2regmask[Op_RegVectMask] = regmask_for_ideal_register(Op_RegVectMask, ret);
1058 }
1059 
1060 #ifdef ASSERT
1061 static void match_alias_type(Compile* C, Node* n, Node* m) {
1062   if (!VerifyAliases)  return;  // do not go looking for trouble by default
1063   const TypePtr* nat = n->adr_type();
1064   const TypePtr* mat = m->adr_type();
1065   int nidx = C->get_alias_index(nat);
1066   int midx = C->get_alias_index(mat);
1067   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
1068   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
1069     for (uint i = 1; i < n->req(); i++) {
1070       Node* n1 = n->in(i);
1071       const TypePtr* n1at = n1->adr_type();
1072       if (n1at != nullptr) {
1073         nat = n1at;
1074         nidx = C->get_alias_index(n1at);
1075       }
1076     }
1077   }
1078   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
1079   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
1080     switch (n->Opcode()) {
1081     case Op_PrefetchAllocation:
1082       nidx = Compile::AliasIdxRaw;
1083       nat = TypeRawPtr::BOTTOM;
1084       break;
1085     }
1086   }
1087   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
1088     switch (n->Opcode()) {
1089     case Op_ClearArray:
1090       midx = Compile::AliasIdxRaw;
1091       mat = TypeRawPtr::BOTTOM;
1092       break;
1093     }
1094   }
1095   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
1096     switch (n->Opcode()) {
1097     case Op_Return:
1098     case Op_Rethrow:
1099     case Op_Halt:
1100     case Op_TailCall:
1101     case Op_TailJump:
1102       nidx = Compile::AliasIdxBot;
1103       nat = TypePtr::BOTTOM;
1104       break;
1105     }
1106   }
1107   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
1108     switch (n->Opcode()) {
1109     case Op_StrComp:
1110     case Op_StrEquals:
1111     case Op_StrIndexOf:
1112     case Op_StrIndexOfChar:
1113     case Op_AryEq:
1114     case Op_VectorizedHashCode:
1115     case Op_CountPositives:
1116     case Op_MemBarVolatile:
1117     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
1118     case Op_StrInflatedCopy:
1119     case Op_StrCompressedCopy:
1120     case Op_OnSpinWait:
1121     case Op_EncodeISOArray:
1122       nidx = Compile::AliasIdxTop;
1123       nat = nullptr;
1124       break;
1125     }
1126   }
1127   if (nidx != midx) {
1128     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
1129       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
1130       n->dump();
1131       m->dump();
1132     }
1133     assert(C->subsume_loads() && C->must_alias(nat, midx),
1134            "must not lose alias info when matching");
1135   }
1136 }
1137 #endif
1138 
1139 //------------------------------xform------------------------------------------
1140 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
1141 // Node in new-space.  Given a new-space Node, recursively walk his children.
1142 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
1143 Node *Matcher::xform( Node *n, int max_stack ) {
1144   // Use one stack to keep both: child's node/state and parent's node/index
1145   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
1146   mstack.push(n, Visit, nullptr, -1);  // set null as parent to indicate root
1147   while (mstack.is_nonempty()) {
1148     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
1149     if (C->failing()) return nullptr;
1150     n = mstack.node();          // Leave node on stack
1151     Node_State nstate = mstack.state();
1152     if (nstate == Visit) {
1153       mstack.set_state(Post_Visit);
1154       Node *oldn = n;
1155       // Old-space or new-space check
1156       if (!C->node_arena()->contains(n)) {
1157         // Old space!
1158         Node* m;
1159         if (has_new_node(n)) {  // Not yet Label/Reduced
1160           m = new_node(n);
1161         } else {
1162           if (!is_dontcare(n)) { // Matcher can match this guy
1163             // Calls match special.  They match alone with no children.
1164             // Their children, the incoming arguments, match normally.
1165             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1166             if (C->failing())  return nullptr;
1167             if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; }
1168             if (n->is_MemBar()) {
1169               m->as_MachMemBar()->set_adr_type(n->adr_type());
1170             }
1171           } else {                  // Nothing the matcher cares about
1172             if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) {       // Projections?
1173               // Convert to machine-dependent projection
1174               RegMask* mask = nullptr;
1175               if (n->in(0)->is_Call() && n->in(0)->as_Call()->tf()->returns_inline_type_as_fields()) {
1176                 mask = return_values_mask(n->in(0)->as_Call()->tf());
1177               }
1178               m = n->in(0)->as_Multi()->match(n->as_Proj(), this, mask);
1179               NOT_PRODUCT(record_new2old(m, n);)
1180               if (m->in(0) != nullptr) // m might be top
1181                 collect_null_checks(m, n);
1182             } else {                // Else just a regular 'ol guy
1183               m = n->clone();       // So just clone into new-space
1184               NOT_PRODUCT(record_new2old(m, n);)
1185               // Def-Use edges will be added incrementally as Uses
1186               // of this node are matched.
1187               assert(m->outcnt() == 0, "no Uses of this clone yet");
1188             }
1189           }
1190 
1191           set_new_node(n, m);       // Map old to new
1192           if (_old_node_note_array != nullptr) {
1193             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1194                                                   n->_idx);
1195             C->set_node_notes_at(m->_idx, nn);
1196           }
1197           debug_only(match_alias_type(C, n, m));
1198         }
1199         n = m;    // n is now a new-space node
1200         mstack.set_node(n);
1201       }
1202 
1203       // New space!
1204       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1205 
1206       int i;
1207       // Put precedence edges on stack first (match them last).
1208       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1209         Node *m = oldn->in(i);
1210         if (m == nullptr) break;
1211         // set -1 to call add_prec() instead of set_req() during Step1
1212         mstack.push(m, Visit, n, -1);
1213       }
1214 
1215       // Handle precedence edges for interior nodes
1216       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1217         Node *m = n->in(i);
1218         if (m == nullptr || C->node_arena()->contains(m)) continue;
1219         n->rm_prec(i);
1220         // set -1 to call add_prec() instead of set_req() during Step1
1221         mstack.push(m, Visit, n, -1);
1222       }
1223 
1224       // For constant debug info, I'd rather have unmatched constants.
1225       int cnt = n->req();
1226       JVMState* jvms = n->jvms();
1227       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1228 
1229       // Now do only debug info.  Clone constants rather than matching.
1230       // Constants are represented directly in the debug info without
1231       // the need for executable machine instructions.
1232       // Monitor boxes are also represented directly.
1233       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1234         Node *m = n->in(i);          // Get input
1235         int op = m->Opcode();
1236         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1237         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1238             op == Op_ConF || op == Op_ConD || op == Op_ConL
1239             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1240             ) {
1241           m = m->clone();
1242           NOT_PRODUCT(record_new2old(m, n));
1243           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1244           mstack.push(m->in(0), Visit, m, 0);
1245         } else {
1246           mstack.push(m, Visit, n, i);
1247         }
1248       }
1249 
1250       // And now walk his children, and convert his inputs to new-space.
1251       for( ; i >= 0; --i ) { // For all normal inputs do
1252         Node *m = n->in(i);  // Get input
1253         if(m != nullptr)
1254           mstack.push(m, Visit, n, i);
1255       }
1256 
1257     }
1258     else if (nstate == Post_Visit) {
1259       // Set xformed input
1260       Node *p = mstack.parent();
1261       if (p != nullptr) { // root doesn't have parent
1262         int i = (int)mstack.index();
1263         if (i >= 0)
1264           p->set_req(i, n); // required input
1265         else if (i == -1)
1266           p->add_prec(n);   // precedence input
1267         else
1268           ShouldNotReachHere();
1269       }
1270       mstack.pop(); // remove processed node from stack
1271     }
1272     else {
1273       ShouldNotReachHere();
1274     }
1275   } // while (mstack.is_nonempty())
1276   return n; // Return new-space Node
1277 }
1278 
1279 //------------------------------warp_outgoing_stk_arg------------------------
1280 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1281   // Convert outgoing argument location to a pre-biased stack offset
1282   if (reg->is_stack()) {
1283     OptoReg::Name warped = reg->reg2stack();
1284     // Adjust the stack slot offset to be the register number used
1285     // by the allocator.
1286     warped = OptoReg::add(begin_out_arg_area, warped);
1287     // Keep track of the largest numbered stack slot used for an arg.
1288     // Largest used slot per call-site indicates the amount of stack
1289     // that is killed by the call.
1290     if( warped >= out_arg_limit_per_call )
1291       out_arg_limit_per_call = OptoReg::add(warped,1);
1292     if (!RegMask::can_represent_arg(warped)) {
1293       // Bailout. For example not enough space on stack for all arguments. Happens for methods with too many arguments.
1294       C->record_method_not_compilable("unsupported calling sequence");
1295       return OptoReg::Bad;
1296     }
1297     return warped;
1298   }
1299   return OptoReg::as_OptoReg(reg);
1300 }
1301 
1302 
1303 //------------------------------match_sfpt-------------------------------------
1304 // Helper function to match call instructions.  Calls match special.
1305 // They match alone with no children.  Their children, the incoming
1306 // arguments, match normally.
1307 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1308   MachSafePointNode *msfpt = nullptr;
1309   MachCallNode      *mcall = nullptr;
1310   uint               cnt;
1311   // Split out case for SafePoint vs Call
1312   CallNode *call;
1313   const TypeTuple *domain;
1314   ciMethod*        method = nullptr;
1315   bool             is_method_handle_invoke = false;  // for special kill effects
1316   if( sfpt->is_Call() ) {
1317     call = sfpt->as_Call();
1318     domain = call->tf()->domain_cc();
1319     cnt = domain->cnt();
1320 
1321     // Match just the call, nothing else
1322     MachNode *m = match_tree(call);
1323     if (C->failing())  return nullptr;
1324     if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; }
1325 
1326     // Copy data from the Ideal SafePoint to the machine version
1327     mcall = m->as_MachCall();
1328 
1329     mcall->set_tf(                  call->tf());
1330     mcall->set_entry_point(         call->entry_point());
1331     mcall->set_cnt(                 call->cnt());
1332     mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1333 
1334     if( mcall->is_MachCallJava() ) {
1335       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1336       const CallJavaNode *call_java =  call->as_CallJava();
1337       assert(call_java->validate_symbolic_info(), "inconsistent info");
1338       method = call_java->method();
1339       mcall_java->_method = method;
1340       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1341       is_method_handle_invoke = call_java->is_method_handle_invoke();
1342       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1343       mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1344       mcall_java->_arg_escape = call_java->arg_escape();
1345       if (is_method_handle_invoke) {
1346         C->set_has_method_handle_invokes(true);
1347       }
1348       if( mcall_java->is_MachCallStaticJava() )
1349         mcall_java->as_MachCallStaticJava()->_name =
1350          call_java->as_CallStaticJava()->_name;
1351       if( mcall_java->is_MachCallDynamicJava() )
1352         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1353          call_java->as_CallDynamicJava()->_vtable_index;
1354     }
1355     else if( mcall->is_MachCallRuntime() ) {
1356       MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime();
1357       mach_call_rt->_name = call->as_CallRuntime()->_name;
1358       mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP();
1359     }
1360     msfpt = mcall;
1361   }
1362   // This is a non-call safepoint
1363   else {
1364     call = nullptr;
1365     domain = nullptr;
1366     MachNode *mn = match_tree(sfpt);
1367     if (C->failing())  return nullptr;
1368     msfpt = mn->as_MachSafePoint();
1369     cnt = TypeFunc::Parms;
1370   }
1371   msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope();
1372 
1373   // Advertise the correct memory effects (for anti-dependence computation).
1374   msfpt->set_adr_type(sfpt->adr_type());
1375 
1376   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1377   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1378   // Empty them all.
1379   for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask();
1380 
1381   // Do all the pre-defined non-Empty register masks
1382   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1383   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1384 
1385   // Place first outgoing argument can possibly be put.
1386   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1387   assert( is_even(begin_out_arg_area), "" );
1388   // Compute max outgoing register number per call site.
1389   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1390   // Calls to C may hammer extra stack slots above and beyond any arguments.
1391   // These are usually backing store for register arguments for varargs.
1392   if( call != nullptr && call->is_CallRuntime() )
1393     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1394 
1395 
1396   // Do the normal argument list (parameters) register masks
1397   // Null entry point is a special cast where the target of the call
1398   // is in a register.
1399   int adj = (call != nullptr && call->entry_point() == nullptr) ? 1 : 0;
1400   int argcnt = cnt - TypeFunc::Parms - adj;
1401   if( argcnt > 0 ) {          // Skip it all if we have no args
1402     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1403     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1404     int i;
1405     for( i = 0; i < argcnt; i++ ) {
1406       sig_bt[i] = domain->field_at(i+TypeFunc::Parms+adj)->basic_type();
1407     }
1408     // V-call to pick proper calling convention
1409     call->calling_convention( sig_bt, parm_regs, argcnt );
1410 
1411 #ifdef ASSERT
1412     // Sanity check users' calling convention.  Really handy during
1413     // the initial porting effort.  Fairly expensive otherwise.
1414     { for (int i = 0; i<argcnt; i++) {
1415       if( !parm_regs[i].first()->is_valid() &&
1416           !parm_regs[i].second()->is_valid() ) continue;
1417       VMReg reg1 = parm_regs[i].first();
1418       VMReg reg2 = parm_regs[i].second();
1419       for (int j = 0; j < i; j++) {
1420         if( !parm_regs[j].first()->is_valid() &&
1421             !parm_regs[j].second()->is_valid() ) continue;
1422         VMReg reg3 = parm_regs[j].first();
1423         VMReg reg4 = parm_regs[j].second();
1424         if( !reg1->is_valid() ) {
1425           assert( !reg2->is_valid(), "valid halvsies" );
1426         } else if( !reg3->is_valid() ) {
1427           assert( !reg4->is_valid(), "valid halvsies" );
1428         } else {
1429           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1430           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1431           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1432           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1433           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1434           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1435         }
1436       }
1437     }
1438     }
1439 #endif
1440 
1441     // Visit each argument.  Compute its outgoing register mask.
1442     // Return results now can have 2 bits returned.
1443     // Compute max over all outgoing arguments both per call-site
1444     // and over the entire method.
1445     for( i = 0; i < argcnt; i++ ) {
1446       // Address of incoming argument mask to fill in
1447       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms+adj];
1448       VMReg first = parm_regs[i].first();
1449       VMReg second = parm_regs[i].second();
1450       if(!first->is_valid() &&
1451          !second->is_valid()) {
1452         continue;               // Avoid Halves
1453       }
1454       // Handle case where arguments are in vector registers.
1455       if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1456         OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1457         OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1458         assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
1459         for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1460           rm->Insert(r);
1461         }
1462       }
1463       // Grab first register, adjust stack slots and insert in mask.
1464       OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1465       if (OptoReg::is_valid(reg1)) {
1466         rm->Insert( reg1 );
1467       }
1468       // Grab second register (if any), adjust stack slots and insert in mask.
1469       OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1470       if (OptoReg::is_valid(reg2)) {
1471         rm->Insert( reg2 );
1472       }
1473     } // End of for all arguments
1474   }
1475 
1476   // Compute the max stack slot killed by any call.  These will not be
1477   // available for debug info, and will be used to adjust FIRST_STACK_mask
1478   // after all call sites have been visited.
1479   if( _out_arg_limit < out_arg_limit_per_call)
1480     _out_arg_limit = out_arg_limit_per_call;
1481 
1482   if (mcall) {
1483     // Kill the outgoing argument area, including any non-argument holes and
1484     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1485     // Since the max-per-method covers the max-per-call-site and debug info
1486     // is excluded on the max-per-method basis, debug info cannot land in
1487     // this killed area.
1488     uint r_cnt = mcall->tf()->range_sig()->cnt();
1489     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1490     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1491       // Bailout. We do not have space to represent all arguments.
1492       C->record_method_not_compilable("unsupported outgoing calling sequence");
1493     } else {
1494       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1495         proj->_rout.Insert(OptoReg::Name(i));
1496     }
1497     if (proj->_rout.is_NotEmpty()) {
1498       push_projection(proj);
1499     }
1500   }
1501   // Transfer the safepoint information from the call to the mcall
1502   // Move the JVMState list
1503   msfpt->set_jvms(sfpt->jvms());
1504   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1505     jvms->set_map(sfpt);
1506   }
1507 
1508   // Debug inputs begin just after the last incoming parameter
1509   assert((mcall == nullptr) || (mcall->jvms() == nullptr) ||
1510          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain_cc()->cnt()), "");
1511 
1512   // Add additional edges.
1513   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1514     // For these calls we can not add MachConstantBase in expand(), as the
1515     // ins are not complete then.
1516     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1517     if (msfpt->jvms() &&
1518         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1519       // We added an edge before jvms, so we must adapt the position of the ins.
1520       msfpt->jvms()->adapt_position(+1);
1521     }
1522   }
1523 
1524   // Registers killed by the call are set in the local scheduling pass
1525   // of Global Code Motion.
1526   return msfpt;
1527 }
1528 
1529 //---------------------------match_tree----------------------------------------
1530 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1531 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1532 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1533 // a Load's result RegMask for memoization in idealreg2regmask[]
1534 MachNode *Matcher::match_tree( const Node *n ) {
1535   assert( n->Opcode() != Op_Phi, "cannot match" );
1536   assert( !n->is_block_start(), "cannot match" );
1537   // Set the mark for all locally allocated State objects.
1538   // When this call returns, the _states_arena arena will be reset
1539   // freeing all State objects.
1540   ResourceMark rm( &_states_arena );
1541 
1542   LabelRootDepth = 0;
1543 
1544   // StoreNodes require their Memory input to match any LoadNodes
1545   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1546 #ifdef ASSERT
1547   Node* save_mem_node = _mem_node;
1548   _mem_node = n->is_Store() ? (Node*)n : nullptr;
1549 #endif
1550   // State object for root node of match tree
1551   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1552   State *s = new (&_states_arena) State;
1553   s->_kids[0] = nullptr;
1554   s->_kids[1] = nullptr;
1555   s->_leaf = (Node*)n;
1556   // Label the input tree, allocating labels from top-level arena
1557   Node* root_mem = mem;
1558   Label_Root(n, s, n->in(0), root_mem);
1559   if (C->failing())  return nullptr;
1560 
1561   // The minimum cost match for the whole tree is found at the root State
1562   uint mincost = max_juint;
1563   uint cost = max_juint;
1564   uint i;
1565   for (i = 0; i < NUM_OPERANDS; i++) {
1566     if (s->valid(i) &&               // valid entry and
1567         s->cost(i) < cost &&         // low cost and
1568         s->rule(i) >= NUM_OPERANDS) {// not an operand
1569       mincost = i;
1570       cost = s->cost(i);
1571     }
1572   }
1573   if (mincost == max_juint) {
1574 #ifndef PRODUCT
1575     tty->print("No matching rule for:");
1576     s->dump();
1577 #endif
1578     Matcher::soft_match_failure();
1579     return nullptr;
1580   }
1581   // Reduce input tree based upon the state labels to machine Nodes
1582   MachNode *m = ReduceInst(s, s->rule(mincost), mem);
1583   // New-to-old mapping is done in ReduceInst, to cover complex instructions.
1584   NOT_PRODUCT(_old2new_map.map(n->_idx, m);)
1585 
1586   // Add any Matcher-ignored edges
1587   uint cnt = n->req();
1588   uint start = 1;
1589   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1590   if( n->is_AddP() ) {
1591     assert( mem == (Node*)1, "" );
1592     start = AddPNode::Base+1;
1593   }
1594   for( i = start; i < cnt; i++ ) {
1595     if( !n->match_edge(i) ) {
1596       if( i < m->req() )
1597         m->ins_req( i, n->in(i) );
1598       else
1599         m->add_req( n->in(i) );
1600     }
1601   }
1602 
1603   debug_only( _mem_node = save_mem_node; )
1604   return m;
1605 }
1606 
1607 
1608 //------------------------------match_into_reg---------------------------------
1609 // Choose to either match this Node in a register or part of the current
1610 // match tree.  Return true for requiring a register and false for matching
1611 // as part of the current match tree.
1612 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1613 
1614   const Type *t = m->bottom_type();
1615 
1616   if (t->singleton()) {
1617     // Never force constants into registers.  Allow them to match as
1618     // constants or registers.  Copies of the same value will share
1619     // the same register.  See find_shared_node.
1620     return false;
1621   } else {                      // Not a constant
1622     // Stop recursion if they have different Controls.
1623     Node* m_control = m->in(0);
1624     // Control of load's memory can post-dominates load's control.
1625     // So use it since load can't float above its memory.
1626     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : nullptr;
1627     if (control && m_control && control != m_control && control != mem_control) {
1628 
1629       // Actually, we can live with the most conservative control we
1630       // find, if it post-dominates the others.  This allows us to
1631       // pick up load/op/store trees where the load can float a little
1632       // above the store.
1633       Node *x = control;
1634       const uint max_scan = 6;  // Arbitrary scan cutoff
1635       uint j;
1636       for (j=0; j<max_scan; j++) {
1637         if (x->is_Region())     // Bail out at merge points
1638           return true;
1639         x = x->in(0);
1640         if (x == m_control)     // Does 'control' post-dominate
1641           break;                // m->in(0)?  If so, we can use it
1642         if (x == mem_control)   // Does 'control' post-dominate
1643           break;                // mem_control?  If so, we can use it
1644       }
1645       if (j == max_scan)        // No post-domination before scan end?
1646         return true;            // Then break the match tree up
1647     }
1648     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1649         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1650       // These are commonly used in address expressions and can
1651       // efficiently fold into them on X64 in some cases.
1652       return false;
1653     }
1654   }
1655 
1656   // Not forceable cloning.  If shared, put it into a register.
1657   return shared;
1658 }
1659 
1660 
1661 //------------------------------Instruction Selection--------------------------
1662 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1663 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1664 // things the Matcher does not match (e.g., Memory), and things with different
1665 // Controls (hence forced into different blocks).  We pass in the Control
1666 // selected for this entire State tree.
1667 
1668 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1669 // Store and the Load must have identical Memories (as well as identical
1670 // pointers).  Since the Matcher does not have anything for Memory (and
1671 // does not handle DAGs), I have to match the Memory input myself.  If the
1672 // Tree root is a Store or if there are multiple Loads in the tree, I require
1673 // all Loads to have the identical memory.
1674 Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) {
1675   // Since Label_Root is a recursive function, its possible that we might run
1676   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1677   LabelRootDepth++;
1678   if (LabelRootDepth > MaxLabelRootDepth) {
1679     // Bailout. Can for example be hit with a deep chain of operations.
1680     C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
1681     return nullptr;
1682   }
1683   uint care = 0;                // Edges matcher cares about
1684   uint cnt = n->req();
1685   uint i = 0;
1686 
1687   // Examine children for memory state
1688   // Can only subsume a child into your match-tree if that child's memory state
1689   // is not modified along the path to another input.
1690   // It is unsafe even if the other inputs are separate roots.
1691   Node *input_mem = nullptr;
1692   for( i = 1; i < cnt; i++ ) {
1693     if( !n->match_edge(i) ) continue;
1694     Node *m = n->in(i);         // Get ith input
1695     assert( m, "expect non-null children" );
1696     if( m->is_Load() ) {
1697       if( input_mem == nullptr ) {
1698         input_mem = m->in(MemNode::Memory);
1699         if (mem == (Node*)1) {
1700           // Save this memory to bail out if there's another memory access
1701           // to a different memory location in the same tree.
1702           mem = input_mem;
1703         }
1704       } else if( input_mem != m->in(MemNode::Memory) ) {
1705         input_mem = NodeSentinel;
1706       }
1707     }
1708   }
1709 
1710   for( i = 1; i < cnt; i++ ){// For my children
1711     if( !n->match_edge(i) ) continue;
1712     Node *m = n->in(i);         // Get ith input
1713     // Allocate states out of a private arena
1714     State *s = new (&_states_arena) State;
1715     svec->_kids[care++] = s;
1716     assert( care <= 2, "binary only for now" );
1717 
1718     // Recursively label the State tree.
1719     s->_kids[0] = nullptr;
1720     s->_kids[1] = nullptr;
1721     s->_leaf = m;
1722 
1723     // Check for leaves of the State Tree; things that cannot be a part of
1724     // the current tree.  If it finds any, that value is matched as a
1725     // register operand.  If not, then the normal matching is used.
1726     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1727         // Stop recursion if this is a LoadNode and there is another memory access
1728         // to a different memory location in the same tree (for example, a StoreNode
1729         // at the root of this tree or another LoadNode in one of the children).
1730         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1731         // Can NOT include the match of a subtree when its memory state
1732         // is used by any of the other subtrees
1733         (input_mem == NodeSentinel) ) {
1734       // Print when we exclude matching due to different memory states at input-loads
1735       if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1736           && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1737         tty->print_cr("invalid input_mem");
1738       }
1739       // Switch to a register-only opcode; this value must be in a register
1740       // and cannot be subsumed as part of a larger instruction.
1741       s->DFA( m->ideal_reg(), m );
1742 
1743     } else {
1744       // If match tree has no control and we do, adopt it for entire tree
1745       if( control == nullptr && m->in(0) != nullptr && m->req() > 1 )
1746         control = m->in(0);         // Pick up control
1747       // Else match as a normal part of the match tree.
1748       control = Label_Root(m, s, control, mem);
1749       if (C->failing()) return nullptr;
1750     }
1751   }
1752 
1753   // Call DFA to match this node, and return
1754   svec->DFA( n->Opcode(), n );
1755 
1756 #ifdef ASSERT
1757   uint x;
1758   for( x = 0; x < _LAST_MACH_OPER; x++ )
1759     if( svec->valid(x) )
1760       break;
1761 
1762   if (x >= _LAST_MACH_OPER) {
1763     n->dump();
1764     svec->dump();
1765     assert( false, "bad AD file" );
1766   }
1767 #endif
1768   return control;
1769 }
1770 
1771 
1772 // Con nodes reduced using the same rule can share their MachNode
1773 // which reduces the number of copies of a constant in the final
1774 // program.  The register allocator is free to split uses later to
1775 // split live ranges.
1776 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1777   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return nullptr;
1778 
1779   // See if this Con has already been reduced using this rule.
1780   if (_shared_nodes.max() <= leaf->_idx) return nullptr;
1781   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1782   if (last != nullptr && rule == last->rule()) {
1783     // Don't expect control change for DecodeN
1784     if (leaf->is_DecodeNarrowPtr())
1785       return last;
1786     // Get the new space root.
1787     Node* xroot = new_node(C->root());
1788     if (xroot == nullptr) {
1789       // This shouldn't happen give the order of matching.
1790       return nullptr;
1791     }
1792 
1793     // Shared constants need to have their control be root so they
1794     // can be scheduled properly.
1795     Node* control = last->in(0);
1796     if (control != xroot) {
1797       if (control == nullptr || control == C->root()) {
1798         last->set_req(0, xroot);
1799       } else {
1800         assert(false, "unexpected control");
1801         return nullptr;
1802       }
1803     }
1804     return last;
1805   }
1806   return nullptr;
1807 }
1808 
1809 
1810 //------------------------------ReduceInst-------------------------------------
1811 // Reduce a State tree (with given Control) into a tree of MachNodes.
1812 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1813 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1814 // Each MachNode has a number of complicated MachOper operands; each
1815 // MachOper also covers a further tree of Ideal Nodes.
1816 
1817 // The root of the Ideal match tree is always an instruction, so we enter
1818 // the recursion here.  After building the MachNode, we need to recurse
1819 // the tree checking for these cases:
1820 // (1) Child is an instruction -
1821 //     Build the instruction (recursively), add it as an edge.
1822 //     Build a simple operand (register) to hold the result of the instruction.
1823 // (2) Child is an interior part of an instruction -
1824 //     Skip over it (do nothing)
1825 // (3) Child is the start of a operand -
1826 //     Build the operand, place it inside the instruction
1827 //     Call ReduceOper.
1828 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1829   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1830 
1831   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1832   if (shared_node != nullptr) {
1833     return shared_node;
1834   }
1835 
1836   // Build the object to represent this state & prepare for recursive calls
1837   MachNode *mach = s->MachNodeGenerator(rule);
1838   guarantee(mach != nullptr, "Missing MachNode");
1839   mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1840   assert( mach->_opnds[0] != nullptr, "Missing result operand" );
1841   Node *leaf = s->_leaf;
1842   NOT_PRODUCT(record_new2old(mach, leaf);)
1843   // Check for instruction or instruction chain rule
1844   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1845     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1846            "duplicating node that's already been matched");
1847     // Instruction
1848     mach->add_req( leaf->in(0) ); // Set initial control
1849     // Reduce interior of complex instruction
1850     ReduceInst_Interior( s, rule, mem, mach, 1 );
1851   } else {
1852     // Instruction chain rules are data-dependent on their inputs
1853     mach->add_req(0);             // Set initial control to none
1854     ReduceInst_Chain_Rule( s, rule, mem, mach );
1855   }
1856 
1857   // If a Memory was used, insert a Memory edge
1858   if( mem != (Node*)1 ) {
1859     mach->ins_req(MemNode::Memory,mem);
1860 #ifdef ASSERT
1861     // Verify adr type after matching memory operation
1862     const MachOper* oper = mach->memory_operand();
1863     if (oper != nullptr && oper != (MachOper*)-1) {
1864       // It has a unique memory operand.  Find corresponding ideal mem node.
1865       Node* m = nullptr;
1866       if (leaf->is_Mem()) {
1867         m = leaf;
1868       } else {
1869         m = _mem_node;
1870         assert(m != nullptr && m->is_Mem(), "expecting memory node");
1871       }
1872       const Type* mach_at = mach->adr_type();
1873       // DecodeN node consumed by an address may have different type
1874       // than its input. Don't compare types for such case.
1875       if (m->adr_type() != mach_at &&
1876           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1877            (m->in(MemNode::Address)->is_AddP() &&
1878             m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) ||
1879            (m->in(MemNode::Address)->is_AddP() &&
1880             m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1881             m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) {
1882         mach_at = m->adr_type();
1883       }
1884       if (m->adr_type() != mach_at) {
1885         m->dump();
1886         tty->print_cr("mach:");
1887         mach->dump(1);
1888       }
1889       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1890     }
1891 #endif
1892   }
1893 
1894   // If the _leaf is an AddP, insert the base edge
1895   if (leaf->is_AddP()) {
1896     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1897   }
1898 
1899   uint number_of_projections_prior = number_of_projections();
1900 
1901   // Perform any 1-to-many expansions required
1902   MachNode *ex = mach->Expand(s, _projection_list, mem);
1903   if (ex != mach) {
1904     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1905     if( ex->in(1)->is_Con() )
1906       ex->in(1)->set_req(0, C->root());
1907     // Remove old node from the graph
1908     for( uint i=0; i<mach->req(); i++ ) {
1909       mach->set_req(i,nullptr);
1910     }
1911     NOT_PRODUCT(record_new2old(ex, s->_leaf);)
1912   }
1913 
1914   // PhaseChaitin::fixup_spills will sometimes generate spill code
1915   // via the matcher.  By the time, nodes have been wired into the CFG,
1916   // and any further nodes generated by expand rules will be left hanging
1917   // in space, and will not get emitted as output code.  Catch this.
1918   // Also, catch any new register allocation constraints ("projections")
1919   // generated belatedly during spill code generation.
1920   if (_allocation_started) {
1921     guarantee(ex == mach, "no expand rules during spill generation");
1922     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1923   }
1924 
1925   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1926     // Record the con for sharing
1927     _shared_nodes.map(leaf->_idx, ex);
1928   }
1929 
1930   // Have mach nodes inherit GC barrier data
1931   if (leaf->is_LoadStore()) {
1932     mach->set_barrier_data(leaf->as_LoadStore()->barrier_data());
1933   } else if (leaf->is_Mem()) {
1934     mach->set_barrier_data(leaf->as_Mem()->barrier_data());
1935   }
1936 
1937   return ex;
1938 }
1939 
1940 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1941   for (uint i = n->req(); i < n->len(); i++) {
1942     if (n->in(i) != nullptr) {
1943       mach->add_prec(n->in(i));
1944     }
1945   }
1946 }
1947 
1948 void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) {
1949   // 'op' is what I am expecting to receive
1950   int op = _leftOp[rule];
1951   // Operand type to catch childs result
1952   // This is what my child will give me.
1953   unsigned int opnd_class_instance = s->rule(op);
1954   // Choose between operand class or not.
1955   // This is what I will receive.
1956   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1957   // New rule for child.  Chase operand classes to get the actual rule.
1958   unsigned int newrule = s->rule(catch_op);
1959 
1960   if (newrule < NUM_OPERANDS) {
1961     // Chain from operand or operand class, may be output of shared node
1962     assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand");
1963     // Insert operand into array of operands for this instruction
1964     mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1965 
1966     ReduceOper(s, newrule, mem, mach);
1967   } else {
1968     // Chain from the result of an instruction
1969     assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1970     mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1971     Node *mem1 = (Node*)1;
1972     debug_only(Node *save_mem_node = _mem_node;)
1973     mach->add_req( ReduceInst(s, newrule, mem1) );
1974     debug_only(_mem_node = save_mem_node;)
1975   }
1976   return;
1977 }
1978 
1979 
1980 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1981   handle_precedence_edges(s->_leaf, mach);
1982 
1983   if( s->_leaf->is_Load() ) {
1984     Node *mem2 = s->_leaf->in(MemNode::Memory);
1985     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1986     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1987     mem = mem2;
1988   }
1989   if( s->_leaf->in(0) != nullptr && s->_leaf->req() > 1) {
1990     if( mach->in(0) == nullptr )
1991       mach->set_req(0, s->_leaf->in(0));
1992   }
1993 
1994   // Now recursively walk the state tree & add operand list.
1995   for( uint i=0; i<2; i++ ) {   // binary tree
1996     State *newstate = s->_kids[i];
1997     if( newstate == nullptr ) break;      // Might only have 1 child
1998     // 'op' is what I am expecting to receive
1999     int op;
2000     if( i == 0 ) {
2001       op = _leftOp[rule];
2002     } else {
2003       op = _rightOp[rule];
2004     }
2005     // Operand type to catch childs result
2006     // This is what my child will give me.
2007     int opnd_class_instance = newstate->rule(op);
2008     // Choose between operand class or not.
2009     // This is what I will receive.
2010     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
2011     // New rule for child.  Chase operand classes to get the actual rule.
2012     int newrule = newstate->rule(catch_op);
2013 
2014     if (newrule < NUM_OPERANDS) { // Operand/operandClass or internalOp/instruction?
2015       // Operand/operandClass
2016       // Insert operand into array of operands for this instruction
2017       mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
2018       ReduceOper(newstate, newrule, mem, mach);
2019 
2020     } else {                    // Child is internal operand or new instruction
2021       if (newrule < _LAST_MACH_OPER) { // internal operand or instruction?
2022         // internal operand --> call ReduceInst_Interior
2023         // Interior of complex instruction.  Do nothing but recurse.
2024         num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds);
2025       } else {
2026         // instruction --> call build operand(  ) to catch result
2027         //             --> ReduceInst( newrule )
2028         mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
2029         Node *mem1 = (Node*)1;
2030         debug_only(Node *save_mem_node = _mem_node;)
2031         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
2032         debug_only(_mem_node = save_mem_node;)
2033       }
2034     }
2035     assert( mach->_opnds[num_opnds-1], "" );
2036   }
2037   return num_opnds;
2038 }
2039 
2040 // This routine walks the interior of possible complex operands.
2041 // At each point we check our children in the match tree:
2042 // (1) No children -
2043 //     We are a leaf; add _leaf field as an input to the MachNode
2044 // (2) Child is an internal operand -
2045 //     Skip over it ( do nothing )
2046 // (3) Child is an instruction -
2047 //     Call ReduceInst recursively and
2048 //     and instruction as an input to the MachNode
2049 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
2050   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
2051   State *kid = s->_kids[0];
2052   assert( kid == nullptr || s->_leaf->in(0) == nullptr, "internal operands have no control" );
2053 
2054   // Leaf?  And not subsumed?
2055   if( kid == nullptr && !_swallowed[rule] ) {
2056     mach->add_req( s->_leaf );  // Add leaf pointer
2057     return;                     // Bail out
2058   }
2059 
2060   if( s->_leaf->is_Load() ) {
2061     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
2062     mem = s->_leaf->in(MemNode::Memory);
2063     debug_only(_mem_node = s->_leaf;)
2064   }
2065 
2066   handle_precedence_edges(s->_leaf, mach);
2067 
2068   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
2069     if( !mach->in(0) )
2070       mach->set_req(0,s->_leaf->in(0));
2071     else {
2072       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
2073     }
2074   }
2075 
2076   for (uint i = 0; kid != nullptr && i < 2; kid = s->_kids[1], i++) {   // binary tree
2077     int newrule;
2078     if( i == 0) {
2079       newrule = kid->rule(_leftOp[rule]);
2080     } else {
2081       newrule = kid->rule(_rightOp[rule]);
2082     }
2083 
2084     if (newrule < _LAST_MACH_OPER) { // Operand or instruction?
2085       // Internal operand; recurse but do nothing else
2086       ReduceOper(kid, newrule, mem, mach);
2087 
2088     } else {                    // Child is a new instruction
2089       // Reduce the instruction, and add a direct pointer from this
2090       // machine instruction to the newly reduced one.
2091       Node *mem1 = (Node*)1;
2092       debug_only(Node *save_mem_node = _mem_node;)
2093       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
2094       debug_only(_mem_node = save_mem_node;)
2095     }
2096   }
2097 }
2098 
2099 
2100 // -------------------------------------------------------------------------
2101 // Java-Java calling convention
2102 // (what you use when Java calls Java)
2103 
2104 //------------------------------find_receiver----------------------------------
2105 // For a given signature, return the OptoReg for parameter 0.
2106 OptoReg::Name Matcher::find_receiver() {
2107   VMRegPair regs;
2108   BasicType sig_bt = T_OBJECT;
2109   SharedRuntime::java_calling_convention(&sig_bt, &regs, 1);
2110   // Return argument 0 register.  In the LP64 build pointers
2111   // take 2 registers, but the VM wants only the 'main' name.
2112   return OptoReg::as_OptoReg(regs.first());
2113 }
2114 
2115 bool Matcher::is_vshift_con_pattern(Node* n, Node* m) {
2116   if (n != nullptr && m != nullptr) {
2117     return VectorNode::is_vector_shift(n) &&
2118            VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con();
2119   }
2120   return false;
2121 }
2122 
2123 bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
2124   // Must clone all producers of flags, or we will not match correctly.
2125   // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2126   // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2127   // are also there, so we may match a float-branch to int-flags and
2128   // expect the allocator to haul the flags from the int-side to the
2129   // fp-side.  No can do.
2130   if (_must_clone[m->Opcode()]) {
2131     mstack.push(m, Visit);
2132     return true;
2133   }
2134   return pd_clone_node(n, m, mstack);
2135 }
2136 
2137 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2138   Node *off = m->in(AddPNode::Offset);
2139   if (off->is_Con()) {
2140     address_visited.test_set(m->_idx); // Flag as address_visited
2141     mstack.push(m->in(AddPNode::Address), Pre_Visit);
2142     // Clone X+offset as it also folds into most addressing expressions
2143     mstack.push(off, Visit);
2144     mstack.push(m->in(AddPNode::Base), Pre_Visit);
2145     return true;
2146   }
2147   return false;
2148 }
2149 
2150 // A method-klass-holder may be passed in the inline_cache_reg
2151 // and then expanded into the inline_cache_reg and a method_ptr register
2152 //   defined in ad_<arch>.cpp
2153 
2154 //------------------------------find_shared------------------------------------
2155 // Set bits if Node is shared or otherwise a root
2156 void Matcher::find_shared(Node* n) {
2157   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2158   MStack mstack(C->live_nodes() * 2);
2159   // Mark nodes as address_visited if they are inputs to an address expression
2160   VectorSet address_visited;
2161   mstack.push(n, Visit);     // Don't need to pre-visit root node
2162   while (mstack.is_nonempty()) {
2163     n = mstack.node();       // Leave node on stack
2164     Node_State nstate = mstack.state();
2165     uint nop = n->Opcode();
2166     if (nstate == Pre_Visit) {
2167       if (address_visited.test(n->_idx)) { // Visited in address already?
2168         // Flag as visited and shared now.
2169         set_visited(n);
2170       }
2171       if (is_visited(n)) {   // Visited already?
2172         // Node is shared and has no reason to clone.  Flag it as shared.
2173         // This causes it to match into a register for the sharing.
2174         set_shared(n);       // Flag as shared and
2175         if (n->is_DecodeNarrowPtr()) {
2176           // Oop field/array element loads must be shared but since
2177           // they are shared through a DecodeN they may appear to have
2178           // a single use so force sharing here.
2179           set_shared(n->in(1));
2180         }
2181         mstack.pop();        // remove node from stack
2182         continue;
2183       }
2184       nstate = Visit; // Not already visited; so visit now
2185     }
2186     if (nstate == Visit) {
2187       mstack.set_state(Post_Visit);
2188       set_visited(n);   // Flag as visited now
2189       bool mem_op = false;
2190       int mem_addr_idx = MemNode::Address;
2191       if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2192         continue;
2193       }
2194       for (int i = n->len() - 1; i >= 0; --i) { // For my children
2195         Node* m = n->in(i); // Get ith input
2196         if (m == nullptr) {
2197           continue;  // Ignore nulls
2198         }
2199         if (clone_node(n, m, mstack)) {
2200           continue;
2201         }
2202 
2203         // Clone addressing expressions as they are "free" in memory access instructions
2204         if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2205             // When there are other uses besides address expressions
2206             // put it on stack and mark as shared.
2207             !is_visited(m)) {
2208           // Some inputs for address expression are not put on stack
2209           // to avoid marking them as shared and forcing them into register
2210           // if they are used only in address expressions.
2211           // But they should be marked as shared if there are other uses
2212           // besides address expressions.
2213 
2214           if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2215             continue;
2216           }
2217         }   // if( mem_op &&
2218         mstack.push(m, Pre_Visit);
2219       }     // for(int i = ...)
2220     }
2221     else if (nstate == Alt_Post_Visit) {
2222       mstack.pop(); // Remove node from stack
2223       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2224       // shared and all users of the Bool need to move the Cmp in parallel.
2225       // This leaves both the Bool and the If pointing at the Cmp.  To
2226       // prevent the Matcher from trying to Match the Cmp along both paths
2227       // BoolNode::match_edge always returns a zero.
2228 
2229       // We reorder the Op_If in a pre-order manner, so we can visit without
2230       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2231       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2232     }
2233     else if (nstate == Post_Visit) {
2234       mstack.pop(); // Remove node from stack
2235 
2236       // Now hack a few special opcodes
2237       uint opcode = n->Opcode();
2238       bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode);
2239       if (!gc_handled) {
2240         find_shared_post_visit(n, opcode);
2241       }
2242     }
2243     else {
2244       ShouldNotReachHere();
2245     }
2246   } // end of while (mstack.is_nonempty())
2247 }
2248 
2249 bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) {
2250   switch(opcode) {  // Handle some opcodes special
2251     case Op_Phi:             // Treat Phis as shared roots
2252     case Op_Parm:
2253     case Op_Proj:            // All handled specially during matching
2254     case Op_SafePointScalarObject:
2255       set_shared(n);
2256       set_dontcare(n);
2257       break;
2258     case Op_If:
2259     case Op_CountedLoopEnd:
2260       mstack.set_state(Alt_Post_Visit); // Alternative way
2261       // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2262       // with matching cmp/branch in 1 instruction.  The Matcher needs the
2263       // Bool and CmpX side-by-side, because it can only get at constants
2264       // that are at the leaves of Match trees, and the Bool's condition acts
2265       // as a constant here.
2266       mstack.push(n->in(1), Visit);         // Clone the Bool
2267       mstack.push(n->in(0), Pre_Visit);     // Visit control input
2268       return true; // while (mstack.is_nonempty())
2269     case Op_ConvI2D:         // These forms efficiently match with a prior
2270     case Op_ConvI2F:         //   Load but not a following Store
2271       if( n->in(1)->is_Load() &&        // Prior load
2272           n->outcnt() == 1 &&           // Not already shared
2273           n->unique_out()->is_Store() ) // Following store
2274         set_shared(n);       // Force it to be a root
2275       break;
2276     case Op_ReverseBytesI:
2277     case Op_ReverseBytesL:
2278       if( n->in(1)->is_Load() &&        // Prior load
2279           n->outcnt() == 1 )            // Not already shared
2280         set_shared(n);                  // Force it to be a root
2281       break;
2282     case Op_BoxLock:         // Can't match until we get stack-regs in ADLC
2283     case Op_IfFalse:
2284     case Op_IfTrue:
2285     case Op_MachProj:
2286     case Op_MergeMem:
2287     case Op_Catch:
2288     case Op_CatchProj:
2289     case Op_CProj:
2290     case Op_JumpProj:
2291     case Op_JProj:
2292     case Op_NeverBranch:
2293       set_dontcare(n);
2294       break;
2295     case Op_Jump:
2296       mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2297       mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2298       return true;                             // while (mstack.is_nonempty())
2299     case Op_StrComp:
2300     case Op_StrEquals:
2301     case Op_StrIndexOf:
2302     case Op_StrIndexOfChar:
2303     case Op_AryEq:
2304     case Op_VectorizedHashCode:
2305     case Op_CountPositives:
2306     case Op_StrInflatedCopy:
2307     case Op_StrCompressedCopy:
2308     case Op_EncodeISOArray:
2309     case Op_FmaD:
2310     case Op_FmaF:
2311     case Op_FmaVD:
2312     case Op_FmaVF:
2313     case Op_MacroLogicV:
2314     case Op_VectorCmpMasked:
2315     case Op_CompressV:
2316     case Op_CompressM:
2317     case Op_ExpandV:
2318     case Op_VectorLoadMask:
2319       set_shared(n); // Force result into register (it will be anyways)
2320       break;
2321     case Op_ConP: {  // Convert pointers above the centerline to NUL
2322       TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2323       const TypePtr* tp = tn->type()->is_ptr();
2324       if (tp->_ptr == TypePtr::AnyNull) {
2325         tn->set_type(TypePtr::NULL_PTR);
2326       }
2327       break;
2328     }
2329     case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2330       TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2331       const TypePtr* tp = tn->type()->make_ptr();
2332       if (tp && tp->_ptr == TypePtr::AnyNull) {
2333         tn->set_type(TypeNarrowOop::NULL_PTR);
2334       }
2335       break;
2336     }
2337     case Op_Binary:         // These are introduced in the Post_Visit state.
2338       ShouldNotReachHere();
2339       break;
2340     case Op_ClearArray:
2341     case Op_SafePoint:
2342       mem_op = true;
2343       break;
2344     default:
2345       if( n->is_Store() ) {
2346         // Do match stores, despite no ideal reg
2347         mem_op = true;
2348         break;
2349       }
2350       if( n->is_Mem() ) { // Loads and LoadStores
2351         mem_op = true;
2352         // Loads must be root of match tree due to prior load conflict
2353         if( C->subsume_loads() == false )
2354           set_shared(n);
2355       }
2356       // Fall into default case
2357       if( !n->ideal_reg() )
2358         set_dontcare(n);  // Unmatchable Nodes
2359   } // end_switch
2360   return false;
2361 }
2362 
2363 void Matcher::find_shared_post_visit(Node* n, uint opcode) {
2364   if (n->is_predicated_vector()) {
2365     // Restructure into binary trees for Matching.
2366     if (n->req() == 4) {
2367       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2368       n->set_req(2, n->in(3));
2369       n->del_req(3);
2370     } else if (n->req() == 5) {
2371       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2372       n->set_req(2, new BinaryNode(n->in(3), n->in(4)));
2373       n->del_req(4);
2374       n->del_req(3);
2375     } else if (n->req() == 6) {
2376       Node* b3 = new BinaryNode(n->in(4), n->in(5));
2377       Node* b2 = new BinaryNode(n->in(3), b3);
2378       Node* b1 = new BinaryNode(n->in(2), b2);
2379       n->set_req(2, b1);
2380       n->del_req(5);
2381       n->del_req(4);
2382       n->del_req(3);
2383     }
2384     return;
2385   }
2386 
2387   switch(opcode) {       // Handle some opcodes special
2388     case Op_CompareAndExchangeB:
2389     case Op_CompareAndExchangeS:
2390     case Op_CompareAndExchangeI:
2391     case Op_CompareAndExchangeL:
2392     case Op_CompareAndExchangeP:
2393     case Op_CompareAndExchangeN:
2394     case Op_WeakCompareAndSwapB:
2395     case Op_WeakCompareAndSwapS:
2396     case Op_WeakCompareAndSwapI:
2397     case Op_WeakCompareAndSwapL:
2398     case Op_WeakCompareAndSwapP:
2399     case Op_WeakCompareAndSwapN:
2400     case Op_CompareAndSwapB:
2401     case Op_CompareAndSwapS:
2402     case Op_CompareAndSwapI:
2403     case Op_CompareAndSwapL:
2404     case Op_CompareAndSwapP:
2405     case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2406       Node* newval = n->in(MemNode::ValueIn);
2407       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
2408       Node* pair = new BinaryNode(oldval, newval);
2409       n->set_req(MemNode::ValueIn, pair);
2410       n->del_req(LoadStoreConditionalNode::ExpectedIn);
2411       break;
2412     }
2413     case Op_CMoveD:              // Convert trinary to binary-tree
2414     case Op_CMoveF:
2415     case Op_CMoveI:
2416     case Op_CMoveL:
2417     case Op_CMoveN:
2418     case Op_CMoveP: {
2419       // Restructure into a binary tree for Matching.  It's possible that
2420       // we could move this code up next to the graph reshaping for IfNodes
2421       // or vice-versa, but I do not want to debug this for Ladybird.
2422       // 10/2/2000 CNC.
2423       Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1));
2424       n->set_req(1, pair1);
2425       Node* pair2 = new BinaryNode(n->in(2), n->in(3));
2426       n->set_req(2, pair2);
2427       n->del_req(3);
2428       break;
2429     }
2430     case Op_MacroLogicV: {
2431       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2432       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2433       n->set_req(1, pair1);
2434       n->set_req(2, pair2);
2435       n->del_req(4);
2436       n->del_req(3);
2437       break;
2438     }
2439     case Op_StoreVectorMasked: {
2440       Node* pair = new BinaryNode(n->in(3), n->in(4));
2441       n->set_req(3, pair);
2442       n->del_req(4);
2443       break;
2444     }
2445     case Op_LoopLimit: {
2446       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2447       n->set_req(1, pair1);
2448       n->set_req(2, n->in(3));
2449       n->del_req(3);
2450       break;
2451     }
2452     case Op_StrEquals:
2453     case Op_StrIndexOfChar: {
2454       Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2455       n->set_req(2, pair1);
2456       n->set_req(3, n->in(4));
2457       n->del_req(4);
2458       break;
2459     }
2460     case Op_StrComp:
2461     case Op_StrIndexOf:
2462     case Op_VectorizedHashCode: {
2463       Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2464       n->set_req(2, pair1);
2465       Node* pair2 = new BinaryNode(n->in(4),n->in(5));
2466       n->set_req(3, pair2);
2467       n->del_req(5);
2468       n->del_req(4);
2469       break;
2470     }
2471     case Op_EncodeISOArray:
2472     case Op_StrCompressedCopy:
2473     case Op_StrInflatedCopy: {
2474       // Restructure into a binary tree for Matching.
2475       Node* pair = new BinaryNode(n->in(3), n->in(4));
2476       n->set_req(3, pair);
2477       n->del_req(4);
2478       break;
2479     }
2480     case Op_FmaD:
2481     case Op_FmaF:
2482     case Op_FmaVD:
2483     case Op_FmaVF: {
2484       // Restructure into a binary tree for Matching.
2485       Node* pair = new BinaryNode(n->in(1), n->in(2));
2486       n->set_req(2, pair);
2487       n->set_req(1, n->in(3));
2488       n->del_req(3);
2489       break;
2490     }
2491     case Op_MulAddS2I: {
2492       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2493       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2494       n->set_req(1, pair1);
2495       n->set_req(2, pair2);
2496       n->del_req(4);
2497       n->del_req(3);
2498       break;
2499     }
2500     case Op_ClearArray: {
2501       Node* pair = new BinaryNode(n->in(2), n->in(3));
2502       n->set_req(2, pair);
2503       n->set_req(3, n->in(4));
2504       n->del_req(4);
2505       break;
2506     }
2507     case Op_VectorCmpMasked:
2508     case Op_CopySignD:
2509     case Op_SignumVF:
2510     case Op_SignumVD:
2511     case Op_SignumF:
2512     case Op_SignumD: {
2513       Node* pair = new BinaryNode(n->in(2), n->in(3));
2514       n->set_req(2, pair);
2515       n->del_req(3);
2516       break;
2517     }
2518     case Op_VectorBlend:
2519     case Op_VectorInsert: {
2520       Node* pair = new BinaryNode(n->in(1), n->in(2));
2521       n->set_req(1, pair);
2522       n->set_req(2, n->in(3));
2523       n->del_req(3);
2524       break;
2525     }
2526     case Op_LoadVectorGatherMasked:
2527     case Op_StoreVectorScatter: {
2528       Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2529       n->set_req(MemNode::ValueIn, pair);
2530       n->del_req(MemNode::ValueIn+1);
2531       break;
2532     }
2533     case Op_StoreVectorScatterMasked: {
2534       Node* pair = new BinaryNode(n->in(MemNode::ValueIn+1), n->in(MemNode::ValueIn+2));
2535       n->set_req(MemNode::ValueIn+1, pair);
2536       n->del_req(MemNode::ValueIn+2);
2537       pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2538       n->set_req(MemNode::ValueIn, pair);
2539       n->del_req(MemNode::ValueIn+1);
2540       break;
2541     }
2542     case Op_VectorMaskCmp: {
2543       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2544       n->set_req(2, n->in(3));
2545       n->del_req(3);
2546       break;
2547     }
2548     default:
2549       break;
2550   }
2551 }
2552 
2553 #ifndef PRODUCT
2554 void Matcher::record_new2old(Node* newn, Node* old) {
2555   _new2old_map.map(newn->_idx, old);
2556   if (!_reused.test_set(old->_igv_idx)) {
2557     // Reuse the Ideal-level IGV identifier so that the node can be tracked
2558     // across matching. If there are multiple machine nodes expanded from the
2559     // same Ideal node, only one will reuse its IGV identifier.
2560     newn->_igv_idx = old->_igv_idx;
2561   }
2562 }
2563 
2564 // machine-independent root to machine-dependent root
2565 void Matcher::dump_old2new_map() {
2566   _old2new_map.dump();
2567 }
2568 #endif // !PRODUCT
2569 
2570 //---------------------------collect_null_checks-------------------------------
2571 // Find null checks in the ideal graph; write a machine-specific node for
2572 // it.  Used by later implicit-null-check handling.  Actually collects
2573 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2574 // value being tested.
2575 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2576   Node *iff = proj->in(0);
2577   if( iff->Opcode() == Op_If ) {
2578     // During matching If's have Bool & Cmp side-by-side
2579     BoolNode *b = iff->in(1)->as_Bool();
2580     Node *cmp = iff->in(2);
2581     int opc = cmp->Opcode();
2582     if (opc != Op_CmpP && opc != Op_CmpN) return;
2583 
2584     const Type* ct = cmp->in(2)->bottom_type();
2585     if (ct == TypePtr::NULL_PTR ||
2586         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2587 
2588       bool push_it = false;
2589       if( proj->Opcode() == Op_IfTrue ) {
2590 #ifndef PRODUCT
2591         extern uint all_null_checks_found;
2592         all_null_checks_found++;
2593 #endif
2594         if( b->_test._test == BoolTest::ne ) {
2595           push_it = true;
2596         }
2597       } else {
2598         assert( proj->Opcode() == Op_IfFalse, "" );
2599         if( b->_test._test == BoolTest::eq ) {
2600           push_it = true;
2601         }
2602       }
2603       if( push_it ) {
2604         _null_check_tests.push(proj);
2605         Node* val = cmp->in(1);
2606 #ifdef _LP64
2607         if (val->bottom_type()->isa_narrowoop() &&
2608             !Matcher::narrow_oop_use_complex_address()) {
2609           //
2610           // Look for DecodeN node which should be pinned to orig_proj.
2611           // On platforms (Sparc) which can not handle 2 adds
2612           // in addressing mode we have to keep a DecodeN node and
2613           // use it to do implicit null check in address.
2614           //
2615           // DecodeN node was pinned to non-null path (orig_proj) during
2616           // CastPP transformation in final_graph_reshaping_impl().
2617           //
2618           uint cnt = orig_proj->outcnt();
2619           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2620             Node* d = orig_proj->raw_out(i);
2621             if (d->is_DecodeN() && d->in(1) == val) {
2622               val = d;
2623               val->set_req(0, nullptr); // Unpin now.
2624               // Mark this as special case to distinguish from
2625               // a regular case: CmpP(DecodeN, null).
2626               val = (Node*)(((intptr_t)val) | 1);
2627               break;
2628             }
2629           }
2630         }
2631 #endif
2632         _null_check_tests.push(val);
2633       }
2634     }
2635   }
2636 }
2637 
2638 //---------------------------validate_null_checks------------------------------
2639 // Its possible that the value being null checked is not the root of a match
2640 // tree.  If so, I cannot use the value in an implicit null check.
2641 void Matcher::validate_null_checks( ) {
2642   uint cnt = _null_check_tests.size();
2643   for( uint i=0; i < cnt; i+=2 ) {
2644     Node *test = _null_check_tests[i];
2645     Node *val = _null_check_tests[i+1];
2646     bool is_decoden = ((intptr_t)val) & 1;
2647     val = (Node*)(((intptr_t)val) & ~1);
2648     if (has_new_node(val)) {
2649       Node* new_val = new_node(val);
2650       if (is_decoden) {
2651         assert(val->is_DecodeNarrowPtr() && val->in(0) == nullptr, "sanity");
2652         // Note: new_val may have a control edge if
2653         // the original ideal node DecodeN was matched before
2654         // it was unpinned in Matcher::collect_null_checks().
2655         // Unpin the mach node and mark it.
2656         new_val->set_req(0, nullptr);
2657         new_val = (Node*)(((intptr_t)new_val) | 1);
2658       }
2659       // Is a match-tree root, so replace with the matched value
2660       _null_check_tests.map(i+1, new_val);
2661     } else {
2662       // Yank from candidate list
2663       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2664       _null_check_tests.map(i,_null_check_tests[--cnt]);
2665       _null_check_tests.pop();
2666       _null_check_tests.pop();
2667       i-=2;
2668     }
2669   }
2670 }
2671 
2672 bool Matcher::gen_narrow_oop_implicit_null_checks() {
2673   // Advice matcher to perform null checks on the narrow oop side.
2674   // Implicit checks are not possible on the uncompressed oop side anyway
2675   // (at least not for read accesses).
2676   // Performs significantly better (especially on Power 6).
2677   if (!os::zero_page_read_protected()) {
2678     return true;
2679   }
2680   return CompressedOops::use_implicit_null_checks() &&
2681          (narrow_oop_use_complex_address() ||
2682           CompressedOops::base() != nullptr);
2683 }
2684 
2685 // Compute RegMask for an ideal register.
2686 const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) {
2687   const Type* t = Type::mreg2type[ideal_reg];
2688   if (t == nullptr) {
2689     assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg);
2690     return nullptr; // not supported
2691   }
2692   Node* fp  = ret->in(TypeFunc::FramePtr);
2693   Node* mem = ret->in(TypeFunc::Memory);
2694   const TypePtr* atp = TypePtr::BOTTOM;
2695   MemNode::MemOrd mo = MemNode::unordered;
2696 
2697   Node* spill;
2698   switch (ideal_reg) {
2699     case Op_RegN: spill = new LoadNNode(nullptr, mem, fp, atp, t->is_narrowoop(), mo); break;
2700     case Op_RegI: spill = new LoadINode(nullptr, mem, fp, atp, t->is_int(),       mo); break;
2701     case Op_RegP: spill = new LoadPNode(nullptr, mem, fp, atp, t->is_ptr(),       mo); break;
2702     case Op_RegF: spill = new LoadFNode(nullptr, mem, fp, atp, t,                 mo); break;
2703     case Op_RegD: spill = new LoadDNode(nullptr, mem, fp, atp, t,                 mo); break;
2704     case Op_RegL: spill = new LoadLNode(nullptr, mem, fp, atp, t->is_long(),      mo); break;
2705 
2706     case Op_VecA: // fall-through
2707     case Op_VecS: // fall-through
2708     case Op_VecD: // fall-through
2709     case Op_VecX: // fall-through
2710     case Op_VecY: // fall-through
2711     case Op_VecZ: spill = new LoadVectorNode(nullptr, mem, fp, atp, t->is_vect()); break;
2712     case Op_RegVectMask: return Matcher::predicate_reg_mask();
2713 
2714     default: ShouldNotReachHere();
2715   }
2716   MachNode* mspill = match_tree(spill);
2717   assert(mspill != nullptr, "matching failed: %d", ideal_reg);
2718   // Handle generic vector operand case
2719   if (Matcher::supports_generic_vector_operands && t->isa_vect()) {
2720     specialize_mach_node(mspill);
2721   }
2722   return &mspill->out_RegMask();
2723 }
2724 
2725 // Process Mach IR right after selection phase is over.
2726 void Matcher::do_postselect_cleanup() {
2727   if (supports_generic_vector_operands) {
2728     specialize_generic_vector_operands();
2729     if (C->failing())  return;
2730   }
2731 }
2732 
2733 //----------------------------------------------------------------------
2734 // Generic machine operands elision.
2735 //----------------------------------------------------------------------
2736 
2737 // Compute concrete vector operand for a generic TEMP vector mach node based on its user info.
2738 void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) {
2739   assert(use->in(idx) == tmp, "not a user");
2740   assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet");
2741 
2742   if ((uint)idx == use->two_adr()) { // DEF_TEMP case
2743     tmp->_opnds[0] = use->_opnds[0]->clone();
2744   } else {
2745     uint ideal_vreg = vector_ideal_reg(C->max_vector_size());
2746     tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/);
2747   }
2748 }
2749 
2750 // Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx).
2751 MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) {
2752   assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates");
2753   Node* def = nullptr;
2754   if (opnd_idx == 0) { // DEF
2755     def = m; // use mach node itself to compute vector operand type
2756   } else {
2757     int base_idx = m->operand_index(opnd_idx);
2758     def = m->in(base_idx);
2759     if (def->is_Mach()) {
2760       if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) {
2761         specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site
2762       } else if (is_reg2reg_move(def->as_Mach())) {
2763         def = def->in(1); // skip over generic reg-to-reg moves
2764       }
2765     }
2766   }
2767   assert(def->bottom_type()->isa_vect(), "not a vector");
2768   uint ideal_vreg = def->bottom_type()->ideal_reg();
2769   return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/);
2770 }
2771 
2772 void Matcher::specialize_mach_node(MachNode* m) {
2773   assert(!m->is_MachTemp(), "processed along with its user");
2774   // For generic use operands pull specific register class operands from
2775   // its def instruction's output operand (def operand).
2776   for (uint i = 0; i < m->num_opnds(); i++) {
2777     if (Matcher::is_generic_vector(m->_opnds[i])) {
2778       m->_opnds[i] = specialize_vector_operand(m, i);
2779     }
2780   }
2781 }
2782 
2783 // Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph.
2784 void Matcher::specialize_generic_vector_operands() {
2785   assert(supports_generic_vector_operands, "sanity");
2786   ResourceMark rm;
2787 
2788   // Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ])
2789   // and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec).
2790   Unique_Node_List live_nodes;
2791   C->identify_useful_nodes(live_nodes);
2792 
2793   while (live_nodes.size() > 0) {
2794     MachNode* m = live_nodes.pop()->isa_Mach();
2795     if (m != nullptr) {
2796       if (Matcher::is_reg2reg_move(m)) {
2797         // Register allocator properly handles vec <=> leg moves using register masks.
2798         int opnd_idx = m->operand_index(1);
2799         Node* def = m->in(opnd_idx);
2800         m->subsume_by(def, C);
2801       } else if (m->is_MachTemp()) {
2802         // process MachTemp nodes at use site (see Matcher::specialize_vector_operand)
2803       } else {
2804         specialize_mach_node(m);
2805       }
2806     }
2807   }
2808 }
2809 
2810 uint Matcher::vector_length(const Node* n) {
2811   const TypeVect* vt = n->bottom_type()->is_vect();
2812   return vt->length();
2813 }
2814 
2815 uint Matcher::vector_length(const MachNode* use, const MachOper* opnd) {
2816   int def_idx = use->operand_index(opnd);
2817   Node* def = use->in(def_idx);
2818   return def->bottom_type()->is_vect()->length();
2819 }
2820 
2821 uint Matcher::vector_length_in_bytes(const Node* n) {
2822   const TypeVect* vt = n->bottom_type()->is_vect();
2823   return vt->length_in_bytes();
2824 }
2825 
2826 uint Matcher::vector_length_in_bytes(const MachNode* use, const MachOper* opnd) {
2827   uint def_idx = use->operand_index(opnd);
2828   Node* def = use->in(def_idx);
2829   return def->bottom_type()->is_vect()->length_in_bytes();
2830 }
2831 
2832 BasicType Matcher::vector_element_basic_type(const Node* n) {
2833   const TypeVect* vt = n->bottom_type()->is_vect();
2834   return vt->element_basic_type();
2835 }
2836 
2837 BasicType Matcher::vector_element_basic_type(const MachNode* use, const MachOper* opnd) {
2838   int def_idx = use->operand_index(opnd);
2839   Node* def = use->in(def_idx);
2840   return def->bottom_type()->is_vect()->element_basic_type();
2841 }
2842 
2843 #ifdef ASSERT
2844 bool Matcher::verify_after_postselect_cleanup() {
2845   assert(!C->failing(), "sanity");
2846   if (supports_generic_vector_operands) {
2847     Unique_Node_List useful;
2848     C->identify_useful_nodes(useful);
2849     for (uint i = 0; i < useful.size(); i++) {
2850       MachNode* m = useful.at(i)->isa_Mach();
2851       if (m != nullptr) {
2852         assert(!Matcher::is_reg2reg_move(m), "no MoveVec nodes allowed");
2853         for (uint j = 0; j < m->num_opnds(); j++) {
2854           assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed");
2855         }
2856       }
2857     }
2858   }
2859   return true;
2860 }
2861 #endif // ASSERT
2862 
2863 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2864 // atomic instruction acting as a store_load barrier without any
2865 // intervening volatile load, and thus we don't need a barrier here.
2866 // We retain the Node to act as a compiler ordering barrier.
2867 bool Matcher::post_store_load_barrier(const Node* vmb) {
2868   Compile* C = Compile::current();
2869   assert(vmb->is_MemBar(), "");
2870   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2871   const MemBarNode* membar = vmb->as_MemBar();
2872 
2873   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2874   Node* ctrl = nullptr;
2875   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2876     Node* p = membar->fast_out(i);
2877     assert(p->is_Proj(), "only projections here");
2878     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2879         !C->node_arena()->contains(p)) { // Unmatched old-space only
2880       ctrl = p;
2881       break;
2882     }
2883   }
2884   assert((ctrl != nullptr), "missing control projection");
2885 
2886   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2887     Node *x = ctrl->fast_out(j);
2888     int xop = x->Opcode();
2889 
2890     // We don't need current barrier if we see another or a lock
2891     // before seeing volatile load.
2892     //
2893     // Op_Fastunlock previously appeared in the Op_* list below.
2894     // With the advent of 1-0 lock operations we're no longer guaranteed
2895     // that a monitor exit operation contains a serializing instruction.
2896 
2897     if (xop == Op_MemBarVolatile ||
2898         xop == Op_CompareAndExchangeB ||
2899         xop == Op_CompareAndExchangeS ||
2900         xop == Op_CompareAndExchangeI ||
2901         xop == Op_CompareAndExchangeL ||
2902         xop == Op_CompareAndExchangeP ||
2903         xop == Op_CompareAndExchangeN ||
2904         xop == Op_WeakCompareAndSwapB ||
2905         xop == Op_WeakCompareAndSwapS ||
2906         xop == Op_WeakCompareAndSwapL ||
2907         xop == Op_WeakCompareAndSwapP ||
2908         xop == Op_WeakCompareAndSwapN ||
2909         xop == Op_WeakCompareAndSwapI ||
2910         xop == Op_CompareAndSwapB ||
2911         xop == Op_CompareAndSwapS ||
2912         xop == Op_CompareAndSwapL ||
2913         xop == Op_CompareAndSwapP ||
2914         xop == Op_CompareAndSwapN ||
2915         xop == Op_CompareAndSwapI ||
2916         BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) {
2917       return true;
2918     }
2919 
2920     // Op_FastLock previously appeared in the Op_* list above.
2921     if (xop == Op_FastLock) {
2922       return true;
2923     }
2924 
2925     if (x->is_MemBar()) {
2926       // We must retain this membar if there is an upcoming volatile
2927       // load, which will be followed by acquire membar.
2928       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2929         return false;
2930       } else {
2931         // For other kinds of barriers, check by pretending we
2932         // are them, and seeing if we can be removed.
2933         return post_store_load_barrier(x->as_MemBar());
2934       }
2935     }
2936 
2937     // probably not necessary to check for these
2938     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2939       return false;
2940     }
2941   }
2942   return false;
2943 }
2944 
2945 // Check whether node n is a branch to an uncommon trap that we could
2946 // optimize as test with very high branch costs in case of going to
2947 // the uncommon trap. The code must be able to be recompiled to use
2948 // a cheaper test.
2949 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2950   // Don't do it for natives, adapters, or runtime stubs
2951   Compile *C = Compile::current();
2952   if (!C->is_method_compilation()) return false;
2953 
2954   assert(n->is_If(), "You should only call this on if nodes.");
2955   IfNode *ifn = n->as_If();
2956 
2957   Node *ifFalse = nullptr;
2958   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2959     if (ifn->fast_out(i)->is_IfFalse()) {
2960       ifFalse = ifn->fast_out(i);
2961       break;
2962     }
2963   }
2964   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2965 
2966   Node *reg = ifFalse;
2967   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2968                // Alternatively use visited set?  Seems too expensive.
2969   while (reg != nullptr && cnt > 0) {
2970     CallNode *call = nullptr;
2971     RegionNode *nxt_reg = nullptr;
2972     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2973       Node *o = reg->fast_out(i);
2974       if (o->is_Call()) {
2975         call = o->as_Call();
2976       }
2977       if (o->is_Region()) {
2978         nxt_reg = o->as_Region();
2979       }
2980     }
2981 
2982     if (call &&
2983         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2984       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2985       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2986         jint tr_con = trtype->is_int()->get_con();
2987         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2988         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2989         assert((int)reason < (int)BitsPerInt, "recode bit map");
2990 
2991         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2992             && action != Deoptimization::Action_none) {
2993           // This uncommon trap is sure to recompile, eventually.
2994           // When that happens, C->too_many_traps will prevent
2995           // this transformation from happening again.
2996           return true;
2997         }
2998       }
2999     }
3000 
3001     reg = nxt_reg;
3002     cnt--;
3003   }
3004 
3005   return false;
3006 }
3007 
3008 //=============================================================================
3009 //---------------------------State---------------------------------------------
3010 State::State(void) : _rule() {
3011 #ifdef ASSERT
3012   _id = 0;
3013   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
3014   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
3015 #endif
3016 }
3017 
3018 #ifdef ASSERT
3019 State::~State() {
3020   _id = 99;
3021   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
3022   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
3023   memset(_cost, -3, sizeof(_cost));
3024   memset(_rule, -3, sizeof(_rule));
3025 }
3026 #endif
3027 
3028 #ifndef PRODUCT
3029 //---------------------------dump----------------------------------------------
3030 void State::dump() {
3031   tty->print("\n");
3032   dump(0);
3033 }
3034 
3035 void State::dump(int depth) {
3036   for (int j = 0; j < depth; j++) {
3037     tty->print("   ");
3038   }
3039   tty->print("--N: ");
3040   _leaf->dump();
3041   uint i;
3042   for (i = 0; i < _LAST_MACH_OPER; i++) {
3043     // Check for valid entry
3044     if (valid(i)) {
3045       for (int j = 0; j < depth; j++) {
3046         tty->print("   ");
3047       }
3048       assert(cost(i) != max_juint, "cost must be a valid value");
3049       assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule");
3050       tty->print_cr("%s  %d  %s",
3051                     ruleName[i], cost(i), ruleName[rule(i)] );
3052     }
3053   }
3054   tty->cr();
3055 
3056   for (i = 0; i < 2; i++) {
3057     if (_kids[i]) {
3058       _kids[i]->dump(depth + 1);
3059     }
3060   }
3061 }
3062 #endif