1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shared/c2/barrierSetC2.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/compressedOops.hpp"
  30 #include "opto/ad.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/idealGraphPrinter.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/movenode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/regmask.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/type.hpp"
  42 #include "opto/vectornode.hpp"
  43 #include "runtime/os.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "utilities/align.hpp"
  46 
  47 OptoReg::Name OptoReg::c_frame_pointer;
  48 
  49 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  50 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  51 RegMask Matcher::caller_save_regmask;
  52 RegMask Matcher::caller_save_regmask_exclude_soe;
  53 RegMask Matcher::STACK_ONLY_mask;
  54 RegMask Matcher::c_frame_ptr_mask;
  55 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  56 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  57 
  58 //---------------------------Matcher-------------------------------------------
  59 Matcher::Matcher()
  60 : PhaseTransform( Phase::Ins_Select ),
  61   _states_arena(Chunk::medium_size, mtCompiler, Arena::Tag::tag_states),
  62   _new_nodes(C->comp_arena()),
  63   _visited(&_states_arena),
  64   _shared(&_states_arena),
  65   _dontcare(&_states_arena),
  66   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  67   _swallowed(swallowed),
  68   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  69   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  70   _must_clone(must_clone),
  71   _shared_nodes(C->comp_arena()),
  72 #ifndef PRODUCT
  73   _old2new_map(C->comp_arena()),
  74   _new2old_map(C->comp_arena()),
  75   _reused(C->comp_arena()),
  76 #endif // !PRODUCT
  77   _allocation_started(false),
  78   _ruleName(ruleName),
  79   _register_save_policy(register_save_policy),
  80   _c_reg_save_policy(c_reg_save_policy),
  81   _register_save_type(register_save_type),
  82   _return_addr_mask(C->comp_arena()) {
  83   C->set_matcher(this);
  84 
  85   idealreg2spillmask  [Op_RegI] = nullptr;
  86   idealreg2spillmask  [Op_RegN] = nullptr;
  87   idealreg2spillmask  [Op_RegL] = nullptr;
  88   idealreg2spillmask  [Op_RegF] = nullptr;
  89   idealreg2spillmask  [Op_RegD] = nullptr;
  90   idealreg2spillmask  [Op_RegP] = nullptr;
  91   idealreg2spillmask  [Op_VecA] = nullptr;
  92   idealreg2spillmask  [Op_VecS] = nullptr;
  93   idealreg2spillmask  [Op_VecD] = nullptr;
  94   idealreg2spillmask  [Op_VecX] = nullptr;
  95   idealreg2spillmask  [Op_VecY] = nullptr;
  96   idealreg2spillmask  [Op_VecZ] = nullptr;
  97   idealreg2spillmask  [Op_RegFlags] = nullptr;
  98   idealreg2spillmask  [Op_RegVectMask] = nullptr;
  99 
 100   idealreg2debugmask  [Op_RegI] = nullptr;
 101   idealreg2debugmask  [Op_RegN] = nullptr;
 102   idealreg2debugmask  [Op_RegL] = nullptr;
 103   idealreg2debugmask  [Op_RegF] = nullptr;
 104   idealreg2debugmask  [Op_RegD] = nullptr;
 105   idealreg2debugmask  [Op_RegP] = nullptr;
 106   idealreg2debugmask  [Op_VecA] = nullptr;
 107   idealreg2debugmask  [Op_VecS] = nullptr;
 108   idealreg2debugmask  [Op_VecD] = nullptr;
 109   idealreg2debugmask  [Op_VecX] = nullptr;
 110   idealreg2debugmask  [Op_VecY] = nullptr;
 111   idealreg2debugmask  [Op_VecZ] = nullptr;
 112   idealreg2debugmask  [Op_RegFlags] = nullptr;
 113   idealreg2debugmask  [Op_RegVectMask] = nullptr;
 114 
 115   DEBUG_ONLY(_mem_node = nullptr;)   // Ideal memory node consumed by mach node
 116 }
 117 
 118 //------------------------------warp_incoming_stk_arg------------------------
 119 // This warps a VMReg into an OptoReg::Name
 120 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 121   OptoReg::Name warped;
 122   if( reg->is_stack() ) {  // Stack slot argument?
 123     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 124     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 125     if( warped >= _in_arg_limit )
 126       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 127     return warped;
 128   }
 129   return OptoReg::as_OptoReg(reg);
 130 }
 131 
 132 //---------------------------compute_old_SP------------------------------------
 133 OptoReg::Name Compile::compute_old_SP() {
 134   int fixed    = fixed_slots();
 135   int preserve = in_preserve_stack_slots();
 136   return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots()));
 137 }
 138 
 139 
 140 
 141 #ifdef ASSERT
 142 void Matcher::verify_new_nodes_only(Node* xroot) {
 143   // Make sure that the new graph only references new nodes
 144   ResourceMark rm;
 145   Unique_Node_List worklist;
 146   VectorSet visited;
 147   worklist.push(xroot);
 148   while (worklist.size() > 0) {
 149     Node* n = worklist.pop();
 150     if (visited.test_set(n->_idx)) {
 151       continue;
 152     }
 153     assert(C->node_arena()->contains(n), "dead node");
 154     for (uint j = 0; j < n->req(); j++) {
 155       Node* in = n->in(j);
 156       if (in != nullptr) {
 157         worklist.push(in);
 158       }
 159     }
 160     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 161       worklist.push(n->fast_out(j));
 162     }
 163   }
 164 }
 165 #endif
 166 
 167 // Array of RegMask, one per returned values (inline type instances can
 168 // be returned as multiple return values, one per field)
 169 RegMask* Matcher::return_values_mask(const TypeFunc* tf) {
 170   const TypeTuple* range = tf->range_cc();
 171   uint cnt = range->cnt() - TypeFunc::Parms;
 172   if (cnt == 0) {
 173     return nullptr;
 174   }
 175   RegMask* mask = NEW_RESOURCE_ARRAY(RegMask, cnt);
 176   BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, cnt);
 177   VMRegPair* vm_parm_regs = NEW_RESOURCE_ARRAY(VMRegPair, cnt);
 178   for (uint i = 0; i < cnt; i++) {
 179     sig_bt[i] = range->field_at(i+TypeFunc::Parms)->basic_type();
 180     new (mask + i) RegMask();
 181   }
 182 
 183   int regs = SharedRuntime::java_return_convention(sig_bt, vm_parm_regs, cnt);
 184   if (regs <= 0) {
 185     // We ran out of registers to store the null marker for a nullable inline type return.
 186     // Since it is only set in the 'call_epilog', we can simply put it on the stack.
 187     assert(tf->returns_inline_type_as_fields(), "should have been tested during graph construction");
 188     // TODO 8284443 Can we teach the register allocator to reserve a stack slot instead?
 189     // mask[--cnt] = STACK_ONLY_mask does not work (test with -XX:+StressGCM)
 190     int slot = C->fixed_slots() - 2;
 191     if (C->needs_stack_repair()) {
 192       slot -= 2; // Account for stack increment value
 193     }
 194     mask[--cnt].Clear();
 195     mask[cnt].Insert(OptoReg::stack2reg(slot));
 196   }
 197   for (uint i = 0; i < cnt; i++) {
 198     mask[i].Clear();
 199 
 200     OptoReg::Name reg1 = OptoReg::as_OptoReg(vm_parm_regs[i].first());
 201     if (OptoReg::is_valid(reg1)) {
 202       mask[i].Insert(reg1);
 203     }
 204     OptoReg::Name reg2 = OptoReg::as_OptoReg(vm_parm_regs[i].second());
 205     if (OptoReg::is_valid(reg2)) {
 206       mask[i].Insert(reg2);
 207     }
 208   }
 209 
 210   return mask;
 211 }
 212 
 213 //---------------------------match---------------------------------------------
 214 void Matcher::match( ) {
 215   if( MaxLabelRootDepth < 100 ) { // Too small?
 216     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 217     MaxLabelRootDepth = 100;
 218   }
 219   // One-time initialization of some register masks.
 220   init_spill_mask( C->root()->in(1) );
 221   if (C->failing()) {
 222     return;
 223   }
 224   assert(_return_addr_mask.is_Empty(),
 225          "return address mask must be empty initially");
 226   _return_addr_mask.Insert(return_addr());
 227 #ifdef _LP64
 228   // Pointers take 2 slots in 64-bit land
 229   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 230 #endif
 231 
 232   // Map Java-signature return types into return register-value
 233   // machine registers.
 234   _return_values_mask = return_values_mask(C->tf());
 235 
 236   // ---------------
 237   // Frame Layout
 238 
 239   // Need the method signature to determine the incoming argument types,
 240   // because the types determine which registers the incoming arguments are
 241   // in, and this affects the matched code.
 242   const TypeTuple *domain = C->tf()->domain_cc();
 243   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 244   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 245   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 246   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 247   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 248   uint i;
 249   for( i = 0; i<argcnt; i++ ) {
 250     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 251     new (_calling_convention_mask + i) RegMask(C->comp_arena());
 252   }
 253 
 254   // Pass array of ideal registers and length to USER code (from the AD file)
 255   // that will convert this to an array of register numbers.
 256   const StartNode *start = C->start();
 257   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 258 #ifdef ASSERT
 259   // Sanity check users' calling convention.  Real handy while trying to
 260   // get the initial port correct.
 261   { for (uint i = 0; i<argcnt; i++) {
 262       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 263         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 264         _parm_regs[i].set_bad();
 265         continue;
 266       }
 267       VMReg parm_reg = vm_parm_regs[i].first();
 268       assert(parm_reg->is_valid(), "invalid arg?");
 269       if (parm_reg->is_reg()) {
 270         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 271         assert(can_be_java_arg(opto_parm_reg) ||
 272                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 273                opto_parm_reg == inline_cache_reg(),
 274                "parameters in register must be preserved by runtime stubs");
 275       }
 276       for (uint j = 0; j < i; j++) {
 277         assert(parm_reg != vm_parm_regs[j].first(),
 278                "calling conv. must produce distinct regs");
 279       }
 280     }
 281   }
 282 #endif
 283 
 284   // Do some initial frame layout.
 285 
 286   // Compute the old incoming SP (may be called FP) as
 287   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 288   _old_SP = C->compute_old_SP();
 289   assert( is_even(_old_SP), "must be even" );
 290 
 291   // Compute highest incoming stack argument as
 292   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 293   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 294   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 295   for( i = 0; i < argcnt; i++ ) {
 296     // Permit args to have no register
 297     _calling_convention_mask[i].Clear();
 298     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 299       _parm_regs[i].set_bad();
 300       continue;
 301     }
 302     // calling_convention returns stack arguments as a count of
 303     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 304     // the allocators point of view, taking into account all the
 305     // preserve area, locks & pad2.
 306 
 307     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 308     if( OptoReg::is_valid(reg1))
 309       _calling_convention_mask[i].Insert(reg1);
 310 
 311     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 312     if( OptoReg::is_valid(reg2))
 313       _calling_convention_mask[i].Insert(reg2);
 314 
 315     // Saved biased stack-slot register number
 316     _parm_regs[i].set_pair(reg2, reg1);
 317   }
 318 
 319   // Finally, make sure the incoming arguments take up an even number of
 320   // words, in case the arguments or locals need to contain doubleword stack
 321   // slots.  The rest of the system assumes that stack slot pairs (in
 322   // particular, in the spill area) which look aligned will in fact be
 323   // aligned relative to the stack pointer in the target machine.  Double
 324   // stack slots will always be allocated aligned.
 325   _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong));
 326 
 327   // Compute highest outgoing stack argument as
 328   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 329   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 330   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 331 
 332   // ---------------
 333   // Collect roots of matcher trees.  Every node for which
 334   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 335   // can be a valid interior of some tree.
 336   find_shared( C->root() );
 337   find_shared( C->top() );
 338 
 339   C->print_method(PHASE_BEFORE_MATCHING, 1);
 340 
 341   // Create new ideal node ConP #null even if it does exist in old space
 342   // to avoid false sharing if the corresponding mach node is not used.
 343   // The corresponding mach node is only used in rare cases for derived
 344   // pointers.
 345   Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
 346 
 347   // Swap out to old-space; emptying new-space
 348   Arena* old = C->swap_old_and_new();
 349 
 350   // Save debug and profile information for nodes in old space:
 351   _old_node_note_array = C->node_note_array();
 352   if (_old_node_note_array != nullptr) {
 353     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 354                            (C->comp_arena(), _old_node_note_array->length(),
 355                             0, nullptr));
 356   }
 357 
 358   // Pre-size the new_node table to avoid the need for range checks.
 359   grow_new_node_array(C->unique());
 360 
 361   // Reset node counter so MachNodes start with _idx at 0
 362   int live_nodes = C->live_nodes();
 363   C->set_unique(0);
 364   C->reset_dead_node_list();
 365 
 366   // Recursively match trees from old space into new space.
 367   // Correct leaves of new-space Nodes; they point to old-space.
 368   _visited.clear();
 369   Node* const n = xform(C->top(), live_nodes);
 370   if (C->failing()) return;
 371   C->set_cached_top_node(n);
 372   if (!C->failing()) {
 373     Node* xroot =        xform( C->root(), 1 );
 374     if (C->failing()) return;
 375     if (xroot == nullptr) {
 376       Matcher::soft_match_failure();  // recursive matching process failed
 377       assert(false, "instruction match failed");
 378       C->record_method_not_compilable("instruction match failed");
 379     } else {
 380       // During matching shared constants were attached to C->root()
 381       // because xroot wasn't available yet, so transfer the uses to
 382       // the xroot.
 383       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 384         Node* n = C->root()->fast_out(j);
 385         if (C->node_arena()->contains(n)) {
 386           assert(n->in(0) == C->root(), "should be control user");
 387           n->set_req(0, xroot);
 388           --j;
 389           --jmax;
 390         }
 391       }
 392 
 393       // Generate new mach node for ConP #null
 394       assert(new_ideal_null != nullptr, "sanity");
 395       _mach_null = match_tree(new_ideal_null);
 396       // Don't set control, it will confuse GCM since there are no uses.
 397       // The control will be set when this node is used first time
 398       // in find_base_for_derived().
 399       assert(_mach_null != nullptr || C->failure_is_artificial(), ""); // bailouts are handled below.
 400 
 401       C->set_root(xroot->is_Root() ? xroot->as_Root() : nullptr);
 402 
 403 #ifdef ASSERT
 404       verify_new_nodes_only(xroot);
 405 #endif
 406     }
 407   }
 408   if (C->top() == nullptr || C->root() == nullptr) {
 409     // New graph lost. This is due to a compilation failure we encountered earlier.
 410     stringStream ss;
 411     if (C->failure_reason() != nullptr) {
 412       ss.print("graph lost: %s", C->failure_reason());
 413     } else {
 414       assert(C->failure_reason() != nullptr, "graph lost: reason unknown");
 415       ss.print("graph lost: reason unknown");
 416     }
 417     C->record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true));
 418   }
 419   if (C->failing()) {
 420     // delete old;
 421     old->destruct_contents();
 422     return;
 423   }
 424   assert( C->top(), "" );
 425   assert( C->root(), "" );
 426   validate_null_checks();
 427 
 428   // Now smoke old-space
 429   NOT_DEBUG( old->destruct_contents() );
 430 
 431   // ------------------------
 432   // Set up save-on-entry registers.
 433   Fixup_Save_On_Entry( );
 434 
 435   { // Cleanup mach IR after selection phase is over.
 436     Compile::TracePhase tp(_t_postselect_cleanup);
 437     do_postselect_cleanup();
 438     if (C->failing())  return;
 439     assert(verify_after_postselect_cleanup(), "");
 440   }
 441 }
 442 
 443 //------------------------------Fixup_Save_On_Entry----------------------------
 444 // The stated purpose of this routine is to take care of save-on-entry
 445 // registers.  However, the overall goal of the Match phase is to convert into
 446 // machine-specific instructions which have RegMasks to guide allocation.
 447 // So what this procedure really does is put a valid RegMask on each input
 448 // to the machine-specific variations of all Return, TailCall and Halt
 449 // instructions.  It also adds edgs to define the save-on-entry values (and of
 450 // course gives them a mask).
 451 
 452 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 453   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 454   for (unsigned int i = 0; i < size; ++i) {
 455     new (rms + i) RegMask(Compile::current()->comp_arena());
 456   }
 457   // Do all the pre-defined register masks
 458   rms[TypeFunc::Control  ] = RegMask::Empty;
 459   rms[TypeFunc::I_O      ] = RegMask::Empty;
 460   rms[TypeFunc::Memory   ] = RegMask::Empty;
 461   rms[TypeFunc::ReturnAdr] = ret_adr;
 462   rms[TypeFunc::FramePtr ] = fp;
 463   return rms;
 464 }
 465 
 466 int Matcher::scalable_predicate_reg_slots() {
 467   assert(Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector(),
 468         "scalable predicate vector should be supported");
 469   int vector_reg_bit_size = Matcher::scalable_vector_reg_size(T_BYTE) << LogBitsPerByte;
 470   // We assume each predicate register is one-eighth of the size of
 471   // scalable vector register, one mask bit per vector byte.
 472   int predicate_reg_bit_size = vector_reg_bit_size >> 3;
 473   // Compute number of slots which is required when scalable predicate
 474   // register is spilled. E.g. if scalable vector register is 640 bits,
 475   // predicate register is 80 bits, which is 2.5 * slots.
 476   // We will round up the slot number to power of 2, which is required
 477   // by find_first_set().
 478   int slots = predicate_reg_bit_size & (BitsPerInt - 1)
 479               ? (predicate_reg_bit_size >> LogBitsPerInt) + 1
 480               : predicate_reg_bit_size >> LogBitsPerInt;
 481   return round_up_power_of_2(slots);
 482 }
 483 
 484 #define NOF_STACK_MASKS (2*13)
 485 
 486 // Create the initial stack mask used by values spilling to the stack.
 487 // Disallow any debug info in outgoing argument areas by setting the
 488 // initial mask accordingly.
 489 void Matcher::init_first_stack_mask() {
 490 
 491   // Allocate storage for spill masks as masks for the appropriate load type.
 492   RegMask *rms = (RegMask*)C->comp_arena()->AmallocWords(sizeof(RegMask) * NOF_STACK_MASKS);
 493 
 494   // Initialize empty placeholder masks into the newly allocated arena
 495   for (int i = 0; i < NOF_STACK_MASKS; i++) {
 496     new (rms + i) RegMask(C->comp_arena());
 497   }
 498 
 499   int index = 0;
 500   for (int i = Op_RegN; i <= Op_RegVectMask; ++i) {
 501     idealreg2spillmask[i] = &rms[index++];
 502     idealreg2debugmask[i] = &rms[index++];
 503   }
 504   assert(index == NOF_STACK_MASKS, "wrong size");
 505 
 506   // At first, start with the empty mask
 507   C->FIRST_STACK_mask().Clear();
 508 
 509   // Add in the incoming argument area
 510   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 511   for (OptoReg::Name i = init_in; i < _in_arg_limit; i = OptoReg::add(i, 1)) {
 512     C->FIRST_STACK_mask().Insert(i);
 513   }
 514 
 515   // Add in all bits past the outgoing argument area
 516   C->FIRST_STACK_mask().Set_All_From(_out_arg_limit);
 517 
 518   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 519   RegMask aligned_stack_mask(C->FIRST_STACK_mask(), C->comp_arena());
 520   // Keep spill masks aligned.
 521   aligned_stack_mask.clear_to_pairs();
 522   assert(aligned_stack_mask.is_infinite_stack(), "should be infinite stack");
 523   RegMask scalable_stack_mask(aligned_stack_mask, C->comp_arena());
 524 
 525   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 526 #ifdef _LP64
 527   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 528    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 529    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 530 #else
 531    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 532 #endif
 533   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 534    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 535   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 536    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 537   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 538    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 539   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 540    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 541 
 542   if (Matcher::has_predicated_vectors()) {
 543     *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask];
 544      idealreg2spillmask[Op_RegVectMask]->OR(aligned_stack_mask);
 545   } else {
 546     *idealreg2spillmask[Op_RegVectMask] = RegMask::Empty;
 547   }
 548 
 549   if (Matcher::vector_size_supported(T_BYTE,4)) {
 550     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 551      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 552   } else {
 553     *idealreg2spillmask[Op_VecS] = RegMask::Empty;
 554   }
 555 
 556   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 557     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 558     // RA guarantees such alignment since it is needed for Double and Long values.
 559     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 560      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 561   } else {
 562     *idealreg2spillmask[Op_VecD] = RegMask::Empty;
 563   }
 564 
 565   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 566     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 567     //
 568     // RA can use input arguments stack slots for spills but until RA
 569     // we don't know frame size and offset of input arg stack slots.
 570     //
 571     // Exclude last input arg stack slots to avoid spilling vectors there
 572     // otherwise vector spills could stomp over stack slots in caller frame.
 573     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 574     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 575       aligned_stack_mask.Remove(in);
 576       in = OptoReg::add(in, -1);
 577     }
 578      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 579      assert(aligned_stack_mask.is_infinite_stack(), "should be infinite stack");
 580     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 581      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 582   } else {
 583     *idealreg2spillmask[Op_VecX] = RegMask::Empty;
 584   }
 585 
 586   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 587     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 588     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 589     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 590       aligned_stack_mask.Remove(in);
 591       in = OptoReg::add(in, -1);
 592     }
 593      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 594      assert(aligned_stack_mask.is_infinite_stack(), "should be infinite stack");
 595     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 596      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 597   } else {
 598     *idealreg2spillmask[Op_VecY] = RegMask::Empty;
 599   }
 600 
 601   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 602     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
 603     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 604     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
 605       aligned_stack_mask.Remove(in);
 606       in = OptoReg::add(in, -1);
 607     }
 608      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
 609      assert(aligned_stack_mask.is_infinite_stack(), "should be infinite stack");
 610     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
 611      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
 612   } else {
 613     *idealreg2spillmask[Op_VecZ] = RegMask::Empty;
 614   }
 615 
 616   if (Matcher::supports_scalable_vector()) {
 617     int k = 1;
 618     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 619     if (Matcher::has_predicated_vectors()) {
 620       // Exclude last input arg stack slots to avoid spilling vector register there,
 621       // otherwise RegVectMask spills could stomp over stack slots in caller frame.
 622       for (; (in >= init_in) && (k < scalable_predicate_reg_slots()); k++) {
 623         scalable_stack_mask.Remove(in);
 624         in = OptoReg::add(in, -1);
 625       }
 626 
 627       // For RegVectMask
 628       scalable_stack_mask.clear_to_sets(scalable_predicate_reg_slots());
 629       assert(scalable_stack_mask.is_infinite_stack(), "should be infinite stack");
 630       *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask];
 631       idealreg2spillmask[Op_RegVectMask]->OR(scalable_stack_mask);
 632     }
 633 
 634     // Exclude last input arg stack slots to avoid spilling vector register there,
 635     // otherwise vector spills could stomp over stack slots in caller frame.
 636     for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) {
 637       scalable_stack_mask.Remove(in);
 638       in = OptoReg::add(in, -1);
 639     }
 640 
 641     // For VecA
 642      scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA);
 643      assert(scalable_stack_mask.is_infinite_stack(), "should be infinite stack");
 644     *idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA];
 645      idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask);
 646   } else {
 647     *idealreg2spillmask[Op_VecA] = RegMask::Empty;
 648   }
 649 
 650   if (UseFPUForSpilling) {
 651     // This mask logic assumes that the spill operations are
 652     // symmetric and that the registers involved are the same size.
 653     // On sparc for instance we may have to use 64 bit moves will
 654     // kill 2 registers when used with F0-F31.
 655     idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 656     idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 657 #ifdef _LP64
 658     idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 659     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 660     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 661     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 662 #else
 663     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 664 #ifdef ARM
 665     // ARM has support for moving 64bit values between a pair of
 666     // integer registers and a double register
 667     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 668     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 669 #endif
 670 #endif
 671   }
 672 
 673   // Make up debug masks.  Any spill slot plus callee-save (SOE) registers.
 674   // Caller-save (SOC, AS) registers are assumed to be trashable by the various
 675   // inline-cache fixup routines.
 676   *idealreg2debugmask  [Op_RegN] = *idealreg2spillmask[Op_RegN];
 677   *idealreg2debugmask  [Op_RegI] = *idealreg2spillmask[Op_RegI];
 678   *idealreg2debugmask  [Op_RegL] = *idealreg2spillmask[Op_RegL];
 679   *idealreg2debugmask  [Op_RegF] = *idealreg2spillmask[Op_RegF];
 680   *idealreg2debugmask  [Op_RegD] = *idealreg2spillmask[Op_RegD];
 681   *idealreg2debugmask  [Op_RegP] = *idealreg2spillmask[Op_RegP];
 682   *idealreg2debugmask  [Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask];
 683 
 684   *idealreg2debugmask  [Op_VecA] = *idealreg2spillmask[Op_VecA];
 685   *idealreg2debugmask  [Op_VecS] = *idealreg2spillmask[Op_VecS];
 686   *idealreg2debugmask  [Op_VecD] = *idealreg2spillmask[Op_VecD];
 687   *idealreg2debugmask  [Op_VecX] = *idealreg2spillmask[Op_VecX];
 688   *idealreg2debugmask  [Op_VecY] = *idealreg2spillmask[Op_VecY];
 689   *idealreg2debugmask  [Op_VecZ] = *idealreg2spillmask[Op_VecZ];
 690 
 691   // Prevent stub compilations from attempting to reference
 692   // callee-saved (SOE) registers from debug info
 693   bool exclude_soe = !Compile::current()->is_method_compilation();
 694   RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask;
 695 
 696   idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask);
 697   idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask);
 698   idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask);
 699   idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask);
 700   idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask);
 701   idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask);
 702   idealreg2debugmask[Op_RegVectMask]->SUBTRACT(*caller_save_mask);
 703 
 704   idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask);
 705   idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask);
 706   idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask);
 707   idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask);
 708   idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask);
 709   idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask);
 710 }
 711 
 712 //---------------------------is_save_on_entry----------------------------------
 713 bool Matcher::is_save_on_entry(int reg) {
 714   return
 715     _register_save_policy[reg] == 'E' ||
 716     _register_save_policy[reg] == 'A'; // Save-on-entry register?
 717 }
 718 
 719 //---------------------------Fixup_Save_On_Entry-------------------------------
 720 void Matcher::Fixup_Save_On_Entry( ) {
 721   init_first_stack_mask();
 722 
 723   Node *root = C->root();       // Short name for root
 724   // Count number of save-on-entry registers.
 725   uint soe_cnt = number_of_saved_registers();
 726   uint i;
 727 
 728   // Find the procedure Start Node
 729   StartNode *start = C->start();
 730   assert( start, "Expect a start node" );
 731 
 732   // Input RegMask array shared by all Returns.
 733   // The type for doubles and longs has a count of 2, but
 734   // there is only 1 returned value
 735   uint ret_edge_cnt = C->tf()->range_cc()->cnt();
 736   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 737   for (i = TypeFunc::Parms; i < ret_edge_cnt; i++) {
 738     ret_rms[i] = _return_values_mask[i-TypeFunc::Parms];
 739   }
 740 
 741   // Input RegMask array shared by all ForwardExceptions
 742   uint forw_exc_edge_cnt = TypeFunc::Parms;
 743   RegMask* forw_exc_rms  = init_input_masks( forw_exc_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 744 
 745   // Input RegMask array shared by all Rethrows.
 746   uint reth_edge_cnt = TypeFunc::Parms+1;
 747   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 748   // Rethrow takes exception oop only, but in the argument 0 slot.
 749   OptoReg::Name reg = find_receiver();
 750   if (reg >= 0) {
 751     reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
 752 #ifdef _LP64
 753     // Need two slots for ptrs in 64-bit land
 754     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
 755 #endif
 756   }
 757 
 758   // Input RegMask array shared by all TailCalls
 759   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 760   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 761 
 762   // Input RegMask array shared by all TailJumps
 763   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 764   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 765 
 766   // TailCalls have 2 returned values (target & moop), whose masks come
 767   // from the usual MachNode/MachOper mechanism.  Find a sample
 768   // TailCall to extract these masks and put the correct masks into
 769   // the tail_call_rms array.
 770   for( i=1; i < root->req(); i++ ) {
 771     MachReturnNode *m = root->in(i)->as_MachReturn();
 772     if( m->ideal_Opcode() == Op_TailCall ) {
 773       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 774       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 775       break;
 776     }
 777   }
 778 
 779   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 780   // from the usual MachNode/MachOper mechanism.  Find a sample
 781   // TailJump to extract these masks and put the correct masks into
 782   // the tail_jump_rms array.
 783   for( i=1; i < root->req(); i++ ) {
 784     MachReturnNode *m = root->in(i)->as_MachReturn();
 785     if( m->ideal_Opcode() == Op_TailJump ) {
 786       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 787       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 788       break;
 789     }
 790   }
 791 
 792   // Input RegMask array shared by all Halts
 793   uint halt_edge_cnt = TypeFunc::Parms;
 794   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 795 
 796   // Capture the return input masks into each exit flavor
 797   for( i=1; i < root->req(); i++ ) {
 798     MachReturnNode *exit = root->in(i)->as_MachReturn();
 799     switch( exit->ideal_Opcode() ) {
 800       case Op_Return   : exit->_in_rms = ret_rms;  break;
 801       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 802       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 803       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 804       case Op_ForwardException: exit->_in_rms = forw_exc_rms; break;
 805       case Op_Halt     : exit->_in_rms = halt_rms; break;
 806       default          : ShouldNotReachHere();
 807     }
 808   }
 809 
 810   // Next unused projection number from Start.
 811   int proj_cnt = C->tf()->domain_cc()->cnt();
 812 
 813   // Do all the save-on-entry registers.  Make projections from Start for
 814   // them, and give them a use at the exit points.  To the allocator, they
 815   // look like incoming register arguments.
 816   for( i = 0; i < _last_Mach_Reg; i++ ) {
 817     if( is_save_on_entry(i) ) {
 818 
 819       // Add the save-on-entry to the mask array
 820       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 821       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 822       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 823       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 824       forw_exc_rms [ forw_exc_edge_cnt] = mreg2regmask[i];
 825       // Halts need the SOE registers, but only in the stack as debug info.
 826       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 827       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 828 
 829       Node *mproj;
 830 
 831       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 832       // into a single RegD.
 833       if( (i&1) == 0 &&
 834           _register_save_type[i  ] == Op_RegF &&
 835           _register_save_type[i+1] == Op_RegF &&
 836           is_save_on_entry(i+1) ) {
 837         // Add other bit for double
 838         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 839         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 840         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 841         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 842         forw_exc_rms [ forw_exc_edge_cnt].Insert(OptoReg::Name(i+1));
 843         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 844         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 845         proj_cnt += 2;          // Skip 2 for doubles
 846       }
 847       else if( (i&1) == 1 &&    // Else check for high half of double
 848                _register_save_type[i-1] == Op_RegF &&
 849                _register_save_type[i  ] == Op_RegF &&
 850                is_save_on_entry(i-1) ) {
 851         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 852         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 853         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 854         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 855         forw_exc_rms [ forw_exc_edge_cnt] = RegMask::Empty;
 856         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 857         mproj = C->top();
 858       }
 859       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 860       // into a single RegL.
 861       else if( (i&1) == 0 &&
 862           _register_save_type[i  ] == Op_RegI &&
 863           _register_save_type[i+1] == Op_RegI &&
 864         is_save_on_entry(i+1) ) {
 865         // Add other bit for long
 866         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 867         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 868         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 869         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 870         forw_exc_rms [ forw_exc_edge_cnt].Insert(OptoReg::Name(i+1));
 871         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 872         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 873         proj_cnt += 2;          // Skip 2 for longs
 874       }
 875       else if( (i&1) == 1 &&    // Else check for high half of long
 876                _register_save_type[i-1] == Op_RegI &&
 877                _register_save_type[i  ] == Op_RegI &&
 878                is_save_on_entry(i-1) ) {
 879         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 880         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 881         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 882         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 883         forw_exc_rms [ forw_exc_edge_cnt] = RegMask::Empty;
 884         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 885         mproj = C->top();
 886       } else {
 887         // Make a projection for it off the Start
 888         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 889       }
 890 
 891       ret_edge_cnt ++;
 892       reth_edge_cnt ++;
 893       tail_call_edge_cnt ++;
 894       tail_jump_edge_cnt ++;
 895       forw_exc_edge_cnt++;
 896       halt_edge_cnt ++;
 897 
 898       // Add a use of the SOE register to all exit paths
 899       for (uint j=1; j < root->req(); j++) {
 900         root->in(j)->add_req(mproj);
 901       }
 902     } // End of if a save-on-entry register
 903   } // End of for all machine registers
 904 }
 905 
 906 //------------------------------init_spill_mask--------------------------------
 907 void Matcher::init_spill_mask( Node *ret ) {
 908   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 909 
 910   OptoReg::c_frame_pointer = c_frame_pointer();
 911   c_frame_ptr_mask = RegMask(c_frame_pointer());
 912 #ifdef _LP64
 913   // pointers are twice as big
 914   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 915 #endif
 916 
 917   // Start at OptoReg::stack0()
 918   STACK_ONLY_mask.Clear();
 919   // STACK_ONLY_mask is all stack bits
 920   STACK_ONLY_mask.Set_All_From(OptoReg::stack2reg(0));
 921 
 922   for (OptoReg::Name i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg);
 923        i = OptoReg::add(i, 1)) {
 924     // Copy the register names over into the shared world.
 925     // SharedInfo::regName[i] = regName[i];
 926     // Handy RegMasks per machine register
 927     mreg2regmask[i].Insert(i);
 928 
 929     // Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks.
 930     if (_register_save_policy[i] == 'C' ||
 931         _register_save_policy[i] == 'A') {
 932       caller_save_regmask.Insert(i);
 933     }
 934     // Exclude save-on-entry registers from debug masks for stub compilations.
 935     if (_register_save_policy[i] == 'C' ||
 936         _register_save_policy[i] == 'A' ||
 937         _register_save_policy[i] == 'E') {
 938       caller_save_regmask_exclude_soe.Insert(i);
 939     }
 940   }
 941 
 942   // Grab the Frame Pointer
 943   Node *fp  = ret->in(TypeFunc::FramePtr);
 944   // Share frame pointer while making spill ops
 945   set_shared(fp);
 946 
 947 // Get the ADLC notion of the right regmask, for each basic type.
 948 #ifdef _LP64
 949   idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret);
 950 #endif
 951   idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret);
 952   idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret);
 953   idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret);
 954   idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret);
 955   idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret);
 956   idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret);
 957   idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret);
 958   idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret);
 959   idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret);
 960   idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret);
 961   idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret);
 962   idealreg2regmask[Op_RegVectMask] = regmask_for_ideal_register(Op_RegVectMask, ret);
 963 }
 964 
 965 #ifdef ASSERT
 966 static void match_alias_type(Compile* C, Node* n, Node* m) {
 967   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 968   const TypePtr* nat = n->adr_type();
 969   const TypePtr* mat = m->adr_type();
 970   int nidx = C->get_alias_index(nat);
 971   int midx = C->get_alias_index(mat);
 972   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 973   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 974     for (uint i = 1; i < n->req(); i++) {
 975       Node* n1 = n->in(i);
 976       const TypePtr* n1at = n1->adr_type();
 977       if (n1at != nullptr) {
 978         nat = n1at;
 979         nidx = C->get_alias_index(n1at);
 980       }
 981     }
 982   }
 983   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 984   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 985     switch (n->Opcode()) {
 986     case Op_PrefetchAllocation:
 987       nidx = Compile::AliasIdxRaw;
 988       nat = TypeRawPtr::BOTTOM;
 989       break;
 990     }
 991   }
 992   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 993     switch (n->Opcode()) {
 994     case Op_ClearArray:
 995       midx = Compile::AliasIdxRaw;
 996       mat = TypeRawPtr::BOTTOM;
 997       break;
 998     }
 999   }
1000   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
1001     switch (n->Opcode()) {
1002     case Op_Return:
1003     case Op_Rethrow:
1004     case Op_Halt:
1005     case Op_TailCall:
1006     case Op_TailJump:
1007     case Op_ForwardException:
1008       nidx = Compile::AliasIdxBot;
1009       nat = TypePtr::BOTTOM;
1010       break;
1011     }
1012   }
1013   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
1014     switch (n->Opcode()) {
1015     case Op_StrComp:
1016     case Op_StrEquals:
1017     case Op_StrIndexOf:
1018     case Op_StrIndexOfChar:
1019     case Op_AryEq:
1020     case Op_VectorizedHashCode:
1021     case Op_CountPositives:
1022     case Op_MemBarVolatile:
1023     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
1024     case Op_StrInflatedCopy:
1025     case Op_StrCompressedCopy:
1026     case Op_OnSpinWait:
1027     case Op_EncodeISOArray:
1028       nidx = Compile::AliasIdxTop;
1029       nat = nullptr;
1030       break;
1031     }
1032   }
1033   if (nidx != midx) {
1034     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
1035       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
1036       n->dump();
1037       m->dump();
1038     }
1039     assert(C->subsume_loads() && C->must_alias(nat, midx),
1040            "must not lose alias info when matching");
1041   }
1042 }
1043 #endif
1044 
1045 //------------------------------xform------------------------------------------
1046 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
1047 // Node in new-space.  Given a new-space Node, recursively walk his children.
1048 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
1049 Node *Matcher::xform( Node *n, int max_stack ) {
1050   // Use one stack to keep both: child's node/state and parent's node/index
1051   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
1052   mstack.push(n, Visit, nullptr, -1);  // set null as parent to indicate root
1053   while (mstack.is_nonempty()) {
1054     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
1055     if (C->failing()) return nullptr;
1056     n = mstack.node();          // Leave node on stack
1057     Node_State nstate = mstack.state();
1058     if (nstate == Visit) {
1059       mstack.set_state(Post_Visit);
1060       Node *oldn = n;
1061       // Old-space or new-space check
1062       if (!C->node_arena()->contains(n)) {
1063         // Old space!
1064         Node* m;
1065         if (has_new_node(n)) {  // Not yet Label/Reduced
1066           m = new_node(n);
1067         } else {
1068           if (!is_dontcare(n)) { // Matcher can match this guy
1069             // Calls match special.  They match alone with no children.
1070             // Their children, the incoming arguments, match normally.
1071             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1072             if (C->failing())  return nullptr;
1073             if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; }
1074             if (n->is_MemBar()) {
1075               m->as_MachMemBar()->set_adr_type(n->adr_type());
1076             }
1077           } else {                  // Nothing the matcher cares about
1078             if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) {       // Projections?
1079               // Convert to machine-dependent projection
1080               RegMask* mask = nullptr;
1081               if (n->in(0)->is_Call() && n->in(0)->as_Call()->tf()->returns_inline_type_as_fields()) {
1082                 mask = return_values_mask(n->in(0)->as_Call()->tf());
1083               }
1084               m = n->in(0)->as_Multi()->match(n->as_Proj(), this, mask);
1085               NOT_PRODUCT(record_new2old(m, n);)
1086               if (m->in(0) != nullptr) // m might be top
1087                 collect_null_checks(m, n);
1088             } else {                // Else just a regular 'ol guy
1089               m = n->clone();       // So just clone into new-space
1090               NOT_PRODUCT(record_new2old(m, n);)
1091               // Def-Use edges will be added incrementally as Uses
1092               // of this node are matched.
1093               assert(m->outcnt() == 0, "no Uses of this clone yet");
1094             }
1095           }
1096 
1097           set_new_node(n, m);       // Map old to new
1098           if (_old_node_note_array != nullptr) {
1099             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1100                                                   n->_idx);
1101             C->set_node_notes_at(m->_idx, nn);
1102           }
1103           DEBUG_ONLY(match_alias_type(C, n, m));
1104         }
1105         n = m;    // n is now a new-space node
1106         mstack.set_node(n);
1107       }
1108 
1109       // New space!
1110       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1111 
1112       int i;
1113       // Put precedence edges on stack first (match them last).
1114       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1115         Node *m = oldn->in(i);
1116         if (m == nullptr) break;
1117         // set -1 to call add_prec() instead of set_req() during Step1
1118         mstack.push(m, Visit, n, -1);
1119       }
1120 
1121       // Handle precedence edges for interior nodes
1122       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1123         Node *m = n->in(i);
1124         if (m == nullptr || C->node_arena()->contains(m)) continue;
1125         n->rm_prec(i);
1126         // set -1 to call add_prec() instead of set_req() during Step1
1127         mstack.push(m, Visit, n, -1);
1128       }
1129 
1130       // For constant debug info, I'd rather have unmatched constants.
1131       int cnt = n->req();
1132       JVMState* jvms = n->jvms();
1133       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1134 
1135       // Now do only debug info.  Clone constants rather than matching.
1136       // Constants are represented directly in the debug info without
1137       // the need for executable machine instructions.
1138       // Monitor boxes are also represented directly.
1139       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1140         Node *m = n->in(i);          // Get input
1141         int op = m->Opcode();
1142         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1143         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1144             op == Op_ConF || op == Op_ConD || op == Op_ConL
1145             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1146             ) {
1147           m = m->clone();
1148           NOT_PRODUCT(record_new2old(m, n));
1149           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1150           mstack.push(m->in(0), Visit, m, 0);
1151         } else {
1152           mstack.push(m, Visit, n, i);
1153         }
1154       }
1155 
1156       // And now walk his children, and convert his inputs to new-space.
1157       for( ; i >= 0; --i ) { // For all normal inputs do
1158         Node *m = n->in(i);  // Get input
1159         if(m != nullptr)
1160           mstack.push(m, Visit, n, i);
1161       }
1162 
1163     }
1164     else if (nstate == Post_Visit) {
1165       // Set xformed input
1166       Node *p = mstack.parent();
1167       if (p != nullptr) { // root doesn't have parent
1168         int i = (int)mstack.index();
1169         if (i >= 0)
1170           p->set_req(i, n); // required input
1171         else if (i == -1)
1172           p->add_prec(n);   // precedence input
1173         else
1174           ShouldNotReachHere();
1175       }
1176       mstack.pop(); // remove processed node from stack
1177     }
1178     else {
1179       ShouldNotReachHere();
1180     }
1181   } // while (mstack.is_nonempty())
1182   return n; // Return new-space Node
1183 }
1184 
1185 //------------------------------warp_outgoing_stk_arg------------------------
1186 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1187   // Convert outgoing argument location to a pre-biased stack offset
1188   if (reg->is_stack()) {
1189     OptoReg::Name warped = reg->reg2stack();
1190     // Adjust the stack slot offset to be the register number used
1191     // by the allocator.
1192     warped = OptoReg::add(begin_out_arg_area, warped);
1193     // Keep track of the largest numbered stack slot used for an arg.
1194     // Largest used slot per call-site indicates the amount of stack
1195     // that is killed by the call.
1196     if (warped >= out_arg_limit_per_call) {
1197       out_arg_limit_per_call = OptoReg::add(warped, 1);
1198     }
1199     return warped;
1200   }
1201   return OptoReg::as_OptoReg(reg);
1202 }
1203 
1204 
1205 //------------------------------match_sfpt-------------------------------------
1206 // Helper function to match call instructions.  Calls match special.
1207 // They match alone with no children.  Their children, the incoming
1208 // arguments, match normally.
1209 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1210   MachSafePointNode *msfpt = nullptr;
1211   MachCallNode      *mcall = nullptr;
1212   uint               cnt;
1213   // Split out case for SafePoint vs Call
1214   CallNode *call;
1215   const TypeTuple *domain;
1216   ciMethod*        method = nullptr;
1217   if( sfpt->is_Call() ) {
1218     call = sfpt->as_Call();
1219     domain = call->tf()->domain_cc();
1220     cnt = domain->cnt();
1221 
1222     // Match just the call, nothing else
1223     MachNode *m = match_tree(call);
1224     if (C->failing())  return nullptr;
1225     if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; }
1226 
1227     // Copy data from the Ideal SafePoint to the machine version
1228     mcall = m->as_MachCall();
1229 
1230     mcall->set_tf(                  call->tf());
1231     mcall->set_entry_point(         call->entry_point());
1232     mcall->set_cnt(                 call->cnt());
1233     mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1234 
1235     if( mcall->is_MachCallJava() ) {
1236       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1237       const CallJavaNode *call_java =  call->as_CallJava();
1238       assert(call_java->validate_symbolic_info(), "inconsistent info");
1239       method = call_java->method();
1240       mcall_java->_method = method;
1241       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1242       mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1243       mcall_java->_arg_escape = call_java->arg_escape();
1244       if( mcall_java->is_MachCallStaticJava() )
1245         mcall_java->as_MachCallStaticJava()->_name =
1246          call_java->as_CallStaticJava()->_name;
1247       if( mcall_java->is_MachCallDynamicJava() )
1248         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1249          call_java->as_CallDynamicJava()->_vtable_index;
1250     }
1251     else if( mcall->is_MachCallRuntime() ) {
1252       MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime();
1253       mach_call_rt->_name = call->as_CallRuntime()->_name;
1254       mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP();
1255     }
1256     msfpt = mcall;
1257   }
1258   // This is a non-call safepoint
1259   else {
1260     call = nullptr;
1261     domain = nullptr;
1262     MachNode *mn = match_tree(sfpt);
1263     if (C->failing())  return nullptr;
1264     msfpt = mn->as_MachSafePoint();
1265     cnt = TypeFunc::Parms;
1266   }
1267   msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope();
1268 
1269   // Advertise the correct memory effects (for anti-dependence computation).
1270   msfpt->set_adr_type(sfpt->adr_type());
1271 
1272   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1273   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1274   // Empty them all.
1275   for (uint i = 0; i < cnt; i++) {
1276     ::new (msfpt->_in_rms + i) RegMask(C->comp_arena());
1277   }
1278 
1279   // Do all the pre-defined non-Empty register masks
1280   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1281   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1282 
1283   // Place first outgoing argument can possibly be put.
1284   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1285   assert( is_even(begin_out_arg_area), "" );
1286   // Compute max outgoing register number per call site.
1287   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1288   // Calls to C may hammer extra stack slots above and beyond any arguments.
1289   // These are usually backing store for register arguments for varargs.
1290   if( call != nullptr && call->is_CallRuntime() )
1291     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1292 
1293 
1294   // Do the normal argument list (parameters) register masks
1295   // Null entry point is a special cast where the target of the call
1296   // is in a register.
1297   int adj = (call != nullptr && call->entry_point() == nullptr) ? 1 : 0;
1298   int argcnt = cnt - TypeFunc::Parms - adj;
1299   if( argcnt > 0 ) {          // Skip it all if we have no args
1300     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1301     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1302     int i;
1303     for( i = 0; i < argcnt; i++ ) {
1304       sig_bt[i] = domain->field_at(i+TypeFunc::Parms+adj)->basic_type();
1305     }
1306     // V-call to pick proper calling convention
1307     call->calling_convention( sig_bt, parm_regs, argcnt );
1308 
1309 #ifdef ASSERT
1310     // Sanity check users' calling convention.  Really handy during
1311     // the initial porting effort.  Fairly expensive otherwise.
1312     { for (int i = 0; i<argcnt; i++) {
1313       if( !parm_regs[i].first()->is_valid() &&
1314           !parm_regs[i].second()->is_valid() ) continue;
1315       VMReg reg1 = parm_regs[i].first();
1316       VMReg reg2 = parm_regs[i].second();
1317       for (int j = 0; j < i; j++) {
1318         if( !parm_regs[j].first()->is_valid() &&
1319             !parm_regs[j].second()->is_valid() ) continue;
1320         VMReg reg3 = parm_regs[j].first();
1321         VMReg reg4 = parm_regs[j].second();
1322         if( !reg1->is_valid() ) {
1323           assert( !reg2->is_valid(), "valid halvsies" );
1324         } else if( !reg3->is_valid() ) {
1325           assert( !reg4->is_valid(), "valid halvsies" );
1326         } else {
1327           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1328           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1329           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1330           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1331           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1332           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1333         }
1334       }
1335     }
1336     }
1337 #endif
1338 
1339     // Visit each argument.  Compute its outgoing register mask.
1340     // Return results now can have 2 bits returned.
1341     // Compute max over all outgoing arguments both per call-site
1342     // and over the entire method.
1343     for( i = 0; i < argcnt; i++ ) {
1344       // Address of incoming argument mask to fill in
1345       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms+adj];
1346       VMReg first = parm_regs[i].first();
1347       VMReg second = parm_regs[i].second();
1348       if(!first->is_valid() &&
1349          !second->is_valid()) {
1350         continue;               // Avoid Halves
1351       }
1352       // Handle case where arguments are in vector registers.
1353       if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1354         OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1355         OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1356         assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
1357         for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1358           rm->Insert(r);
1359         }
1360       }
1361       // Grab first register, adjust stack slots and insert in mask.
1362       OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1363       if (OptoReg::is_valid(reg1)) {
1364         rm->Insert( reg1 );
1365       }
1366       // Grab second register (if any), adjust stack slots and insert in mask.
1367       OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1368       if (OptoReg::is_valid(reg2)) {
1369         rm->Insert( reg2 );
1370       }
1371     } // End of for all arguments
1372   }
1373 
1374   // Compute the max stack slot killed by any call.  These will not be
1375   // available for debug info, and will be used to adjust FIRST_STACK_mask
1376   // after all call sites have been visited.
1377   if( _out_arg_limit < out_arg_limit_per_call)
1378     _out_arg_limit = out_arg_limit_per_call;
1379 
1380   if (mcall) {
1381     // Kill the outgoing argument area, including any non-argument holes and
1382     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1383     // Since the max-per-method covers the max-per-call-site and debug info
1384     // is excluded on the max-per-method basis, debug info cannot land in
1385     // this killed area.
1386     uint r_cnt = mcall->tf()->range_sig()->cnt();
1387     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1388     for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) {
1389       proj->_rout.Insert(OptoReg::Name(i));
1390     }
1391     if (!proj->_rout.is_Empty()) {
1392       push_projection(proj);
1393     }
1394   }
1395   // Transfer the safepoint information from the call to the mcall
1396   // Move the JVMState list
1397   msfpt->set_jvms(sfpt->jvms());
1398   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1399     jvms->set_map(sfpt);
1400   }
1401 
1402   // Debug inputs begin just after the last incoming parameter
1403   assert((mcall == nullptr) || (mcall->jvms() == nullptr) ||
1404          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain_cc()->cnt()), "");
1405 
1406   // Add additional edges.
1407   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1408     // For these calls we can not add MachConstantBase in expand(), as the
1409     // ins are not complete then.
1410     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1411     if (msfpt->jvms() &&
1412         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1413       // We added an edge before jvms, so we must adapt the position of the ins.
1414       msfpt->jvms()->adapt_position(+1);
1415     }
1416   }
1417 
1418   // Registers killed by the call are set in the local scheduling pass
1419   // of Global Code Motion.
1420   return msfpt;
1421 }
1422 
1423 //---------------------------match_tree----------------------------------------
1424 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1425 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1426 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1427 // a Load's result RegMask for memoization in idealreg2regmask[]
1428 MachNode *Matcher::match_tree( const Node *n ) {
1429   assert( n->Opcode() != Op_Phi, "cannot match" );
1430   assert( !n->is_block_start(), "cannot match" );
1431   // Set the mark for all locally allocated State objects.
1432   // When this call returns, the _states_arena arena will be reset
1433   // freeing all State objects.
1434   ResourceMark rm( &_states_arena );
1435 
1436   LabelRootDepth = 0;
1437 
1438   // StoreNodes require their Memory input to match any LoadNodes
1439   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1440 #ifdef ASSERT
1441   Node* save_mem_node = _mem_node;
1442   _mem_node = n->is_Store() ? (Node*)n : nullptr;
1443 #endif
1444   // State object for root node of match tree
1445   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1446   State *s = new (&_states_arena) State;
1447   s->_kids[0] = nullptr;
1448   s->_kids[1] = nullptr;
1449   s->_leaf = (Node*)n;
1450   // Label the input tree, allocating labels from top-level arena
1451   Node* root_mem = mem;
1452   Label_Root(n, s, n->in(0), root_mem);
1453   if (C->failing())  return nullptr;
1454 
1455   // The minimum cost match for the whole tree is found at the root State
1456   uint mincost = max_juint;
1457   uint cost = max_juint;
1458   uint i;
1459   for (i = 0; i < NUM_OPERANDS; i++) {
1460     if (s->valid(i) &&               // valid entry and
1461         s->cost(i) < cost &&         // low cost and
1462         s->rule(i) >= NUM_OPERANDS) {// not an operand
1463       mincost = i;
1464       cost = s->cost(i);
1465     }
1466   }
1467   if (mincost == max_juint) {
1468 #ifndef PRODUCT
1469     tty->print("No matching rule for:");
1470     s->dump();
1471 #endif
1472     Matcher::soft_match_failure();
1473     return nullptr;
1474   }
1475   // Reduce input tree based upon the state labels to machine Nodes
1476   MachNode *m = ReduceInst(s, s->rule(mincost), mem);
1477   // New-to-old mapping is done in ReduceInst, to cover complex instructions.
1478   NOT_PRODUCT(_old2new_map.map(n->_idx, m);)
1479 
1480   // Add any Matcher-ignored edges
1481   uint cnt = n->req();
1482   uint start = 1;
1483   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1484   if( n->is_AddP() ) {
1485     assert( mem == (Node*)1, "" );
1486     start = AddPNode::Base+1;
1487   }
1488   for( i = start; i < cnt; i++ ) {
1489     if( !n->match_edge(i) ) {
1490       if( i < m->req() )
1491         m->ins_req( i, n->in(i) );
1492       else
1493         m->add_req( n->in(i) );
1494     }
1495   }
1496 
1497   DEBUG_ONLY( _mem_node = save_mem_node; )
1498   return m;
1499 }
1500 
1501 
1502 //------------------------------match_into_reg---------------------------------
1503 // Choose to either match this Node in a register or part of the current
1504 // match tree.  Return true for requiring a register and false for matching
1505 // as part of the current match tree.
1506 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1507 
1508   const Type *t = m->bottom_type();
1509 
1510   if (t->singleton()) {
1511     // Never force constants into registers.  Allow them to match as
1512     // constants or registers.  Copies of the same value will share
1513     // the same register.  See find_shared_node.
1514     return false;
1515   } else {                      // Not a constant
1516     if (!shared && Matcher::is_encode_and_store_pattern(n, m)) {
1517       // Make it possible to match "encode and store" patterns with non-shared
1518       // encode operations that are pinned to a control node (e.g. by CastPP
1519       // node removal in final graph reshaping). The matched instruction cannot
1520       // float above the encode's control node because it is pinned to the
1521       // store's control node.
1522       return false;
1523     }
1524     // Stop recursion if they have different Controls.
1525     Node* m_control = m->in(0);
1526     // Control of load's memory can post-dominates load's control.
1527     // So use it since load can't float above its memory.
1528     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : nullptr;
1529     if (control && m_control && control != m_control && control != mem_control) {
1530 
1531       // Actually, we can live with the most conservative control we
1532       // find, if it post-dominates the others.  This allows us to
1533       // pick up load/op/store trees where the load can float a little
1534       // above the store.
1535       Node *x = control;
1536       const uint max_scan = 6;  // Arbitrary scan cutoff
1537       uint j;
1538       for (j=0; j<max_scan; j++) {
1539         if (x->is_Region())     // Bail out at merge points
1540           return true;
1541         x = x->in(0);
1542         if (x == m_control)     // Does 'control' post-dominate
1543           break;                // m->in(0)?  If so, we can use it
1544         if (x == mem_control)   // Does 'control' post-dominate
1545           break;                // mem_control?  If so, we can use it
1546       }
1547       if (j == max_scan)        // No post-domination before scan end?
1548         return true;            // Then break the match tree up
1549     }
1550     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1551         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1552       // These are commonly used in address expressions and can
1553       // efficiently fold into them on X64 in some cases.
1554       return false;
1555     }
1556   }
1557 
1558   // Not forceable cloning.  If shared, put it into a register.
1559   return shared;
1560 }
1561 
1562 
1563 //------------------------------Instruction Selection--------------------------
1564 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1565 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1566 // things the Matcher does not match (e.g., Memory), and things with different
1567 // Controls (hence forced into different blocks).  We pass in the Control
1568 // selected for this entire State tree.
1569 
1570 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1571 // Store and the Load must have identical Memories (as well as identical
1572 // pointers).  Since the Matcher does not have anything for Memory (and
1573 // does not handle DAGs), I have to match the Memory input myself.  If the
1574 // Tree root is a Store or if there are multiple Loads in the tree, I require
1575 // all Loads to have the identical memory.
1576 Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) {
1577   // Since Label_Root is a recursive function, its possible that we might run
1578   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1579   LabelRootDepth++;
1580   if (LabelRootDepth > MaxLabelRootDepth) {
1581     // Bailout. Can for example be hit with a deep chain of operations.
1582     C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
1583     return nullptr;
1584   }
1585   uint care = 0;                // Edges matcher cares about
1586   uint cnt = n->req();
1587   uint i = 0;
1588 
1589   // Examine children for memory state
1590   // Can only subsume a child into your match-tree if that child's memory state
1591   // is not modified along the path to another input.
1592   // It is unsafe even if the other inputs are separate roots.
1593   Node *input_mem = nullptr;
1594   for( i = 1; i < cnt; i++ ) {
1595     if( !n->match_edge(i) ) continue;
1596     Node *m = n->in(i);         // Get ith input
1597     assert( m, "expect non-null children" );
1598     if( m->is_Load() ) {
1599       if( input_mem == nullptr ) {
1600         input_mem = m->in(MemNode::Memory);
1601         if (mem == (Node*)1) {
1602           // Save this memory to bail out if there's another memory access
1603           // to a different memory location in the same tree.
1604           mem = input_mem;
1605         }
1606       } else if( input_mem != m->in(MemNode::Memory) ) {
1607         input_mem = NodeSentinel;
1608       }
1609     }
1610   }
1611 
1612   for( i = 1; i < cnt; i++ ){// For my children
1613     if( !n->match_edge(i) ) continue;
1614     Node *m = n->in(i);         // Get ith input
1615     // Allocate states out of a private arena
1616     State *s = new (&_states_arena) State;
1617     svec->_kids[care++] = s;
1618     assert( care <= 2, "binary only for now" );
1619 
1620     // Recursively label the State tree.
1621     s->_kids[0] = nullptr;
1622     s->_kids[1] = nullptr;
1623     s->_leaf = m;
1624 
1625     // Check for leaves of the State Tree; things that cannot be a part of
1626     // the current tree.  If it finds any, that value is matched as a
1627     // register operand.  If not, then the normal matching is used.
1628     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1629         // Stop recursion if this is a LoadNode and there is another memory access
1630         // to a different memory location in the same tree (for example, a StoreNode
1631         // at the root of this tree or another LoadNode in one of the children).
1632         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1633         // Can NOT include the match of a subtree when its memory state
1634         // is used by any of the other subtrees
1635         (input_mem == NodeSentinel) ) {
1636       // Print when we exclude matching due to different memory states at input-loads
1637       if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1638           && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1639         tty->print_cr("invalid input_mem");
1640       }
1641       // Switch to a register-only opcode; this value must be in a register
1642       // and cannot be subsumed as part of a larger instruction.
1643       s->DFA( m->ideal_reg(), m );
1644 
1645     } else {
1646       // If match tree has no control and we do, adopt it for entire tree
1647       if( control == nullptr && m->in(0) != nullptr && m->req() > 1 )
1648         control = m->in(0);         // Pick up control
1649       // Else match as a normal part of the match tree.
1650       control = Label_Root(m, s, control, mem);
1651       if (C->failing()) return nullptr;
1652     }
1653   }
1654 
1655   // Call DFA to match this node, and return
1656   svec->DFA( n->Opcode(), n );
1657 
1658   uint x;
1659   for( x = 0; x < _LAST_MACH_OPER; x++ )
1660     if( svec->valid(x) )
1661       break;
1662 
1663   if (x >= _LAST_MACH_OPER) {
1664 #ifdef ASSERT
1665     n->dump();
1666     svec->dump();
1667 #endif
1668     assert( false, "bad AD file" );
1669     C->record_failure("bad AD file");
1670   }
1671   return control;
1672 }
1673 
1674 
1675 // Con nodes reduced using the same rule can share their MachNode
1676 // which reduces the number of copies of a constant in the final
1677 // program.  The register allocator is free to split uses later to
1678 // split live ranges.
1679 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1680   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return nullptr;
1681 
1682   // See if this Con has already been reduced using this rule.
1683   if (_shared_nodes.max() <= leaf->_idx) return nullptr;
1684   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1685   if (last != nullptr && rule == last->rule()) {
1686     // Don't expect control change for DecodeN
1687     if (leaf->is_DecodeNarrowPtr())
1688       return last;
1689     // Get the new space root.
1690     Node* xroot = new_node(C->root());
1691     if (xroot == nullptr) {
1692       // This shouldn't happen give the order of matching.
1693       return nullptr;
1694     }
1695 
1696     // Shared constants need to have their control be root so they
1697     // can be scheduled properly.
1698     Node* control = last->in(0);
1699     if (control != xroot) {
1700       if (control == nullptr || control == C->root()) {
1701         last->set_req(0, xroot);
1702       } else {
1703         assert(false, "unexpected control");
1704         return nullptr;
1705       }
1706     }
1707     return last;
1708   }
1709   return nullptr;
1710 }
1711 
1712 
1713 //------------------------------ReduceInst-------------------------------------
1714 // Reduce a State tree (with given Control) into a tree of MachNodes.
1715 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1716 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1717 // Each MachNode has a number of complicated MachOper operands; each
1718 // MachOper also covers a further tree of Ideal Nodes.
1719 
1720 // The root of the Ideal match tree is always an instruction, so we enter
1721 // the recursion here.  After building the MachNode, we need to recurse
1722 // the tree checking for these cases:
1723 // (1) Child is an instruction -
1724 //     Build the instruction (recursively), add it as an edge.
1725 //     Build a simple operand (register) to hold the result of the instruction.
1726 // (2) Child is an interior part of an instruction -
1727 //     Skip over it (do nothing)
1728 // (3) Child is the start of a operand -
1729 //     Build the operand, place it inside the instruction
1730 //     Call ReduceOper.
1731 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1732   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1733 
1734   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1735   if (shared_node != nullptr) {
1736     return shared_node;
1737   }
1738 
1739   // Build the object to represent this state & prepare for recursive calls
1740   MachNode *mach = s->MachNodeGenerator(rule);
1741   guarantee(mach != nullptr, "Missing MachNode");
1742   mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1743   assert( mach->_opnds[0] != nullptr, "Missing result operand" );
1744   Node *leaf = s->_leaf;
1745   NOT_PRODUCT(record_new2old(mach, leaf);)
1746   // Check for instruction or instruction chain rule
1747   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1748     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1749            "duplicating node that's already been matched");
1750     // Instruction
1751     mach->add_req( leaf->in(0) ); // Set initial control
1752     // Reduce interior of complex instruction
1753     ReduceInst_Interior( s, rule, mem, mach, 1 );
1754   } else {
1755     // Instruction chain rules are data-dependent on their inputs
1756     mach->add_req(nullptr);     // Set initial control to none
1757     ReduceInst_Chain_Rule( s, rule, mem, mach );
1758   }
1759 
1760   // If a Memory was used, insert a Memory edge
1761   if( mem != (Node*)1 ) {
1762     mach->ins_req(MemNode::Memory,mem);
1763 #ifdef ASSERT
1764     // Verify adr type after matching memory operation
1765     const MachOper* oper = mach->memory_operand();
1766     if (oper != nullptr && oper != (MachOper*)-1) {
1767       // It has a unique memory operand.  Find corresponding ideal mem node.
1768       Node* m = nullptr;
1769       if (leaf->is_Mem()) {
1770         m = leaf;
1771       } else {
1772         m = _mem_node;
1773         assert(m != nullptr && m->is_Mem(), "expecting memory node");
1774       }
1775       const Type* mach_at = mach->adr_type();
1776       // DecodeN node consumed by an address may have different type
1777       // than its input. Don't compare types for such case.
1778       if (m->adr_type() != mach_at &&
1779           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1780            (m->in(MemNode::Address)->is_AddP() &&
1781             m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) ||
1782            (m->in(MemNode::Address)->is_AddP() &&
1783             m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1784             m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) {
1785         mach_at = m->adr_type();
1786       }
1787       if (m->adr_type() != mach_at) {
1788         m->dump();
1789         tty->print_cr("mach:");
1790         mach->dump(1);
1791       }
1792       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1793     }
1794 #endif
1795   }
1796 
1797   // If the _leaf is an AddP, insert the base edge
1798   if (leaf->is_AddP()) {
1799     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1800   }
1801 
1802   uint number_of_projections_prior = number_of_projections();
1803 
1804   // Perform any 1-to-many expansions required
1805   MachNode *ex = mach->Expand(s, _projection_list, mem);
1806   if (ex != mach) {
1807     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1808     if( ex->in(1)->is_Con() )
1809       ex->in(1)->set_req(0, C->root());
1810     // Remove old node from the graph
1811     for( uint i=0; i<mach->req(); i++ ) {
1812       mach->set_req(i,nullptr);
1813     }
1814     NOT_PRODUCT(record_new2old(ex, s->_leaf);)
1815   }
1816 
1817   // PhaseChaitin::fixup_spills will sometimes generate spill code
1818   // via the matcher.  By the time, nodes have been wired into the CFG,
1819   // and any further nodes generated by expand rules will be left hanging
1820   // in space, and will not get emitted as output code.  Catch this.
1821   // Also, catch any new register allocation constraints ("projections")
1822   // generated belatedly during spill code generation.
1823   if (_allocation_started) {
1824     guarantee(ex == mach, "no expand rules during spill generation");
1825     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1826   }
1827 
1828   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1829     // Record the con for sharing
1830     _shared_nodes.map(leaf->_idx, ex);
1831   }
1832 
1833   // Have mach nodes inherit GC barrier data
1834   mach->set_barrier_data(MemNode::barrier_data(leaf));
1835 
1836   return ex;
1837 }
1838 
1839 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1840   for (uint i = n->req(); i < n->len(); i++) {
1841     if (n->in(i) != nullptr) {
1842       mach->add_prec(n->in(i));
1843     }
1844   }
1845 }
1846 
1847 void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) {
1848   // 'op' is what I am expecting to receive
1849   int op = _leftOp[rule];
1850   // Operand type to catch childs result
1851   // This is what my child will give me.
1852   unsigned int opnd_class_instance = s->rule(op);
1853   // Choose between operand class or not.
1854   // This is what I will receive.
1855   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1856   // New rule for child.  Chase operand classes to get the actual rule.
1857   unsigned int newrule = s->rule(catch_op);
1858 
1859   if (newrule < NUM_OPERANDS) {
1860     // Chain from operand or operand class, may be output of shared node
1861     assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand");
1862     // Insert operand into array of operands for this instruction
1863     mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1864 
1865     ReduceOper(s, newrule, mem, mach);
1866   } else {
1867     // Chain from the result of an instruction
1868     assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1869     mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1870     Node *mem1 = (Node*)1;
1871     DEBUG_ONLY(Node *save_mem_node = _mem_node;)
1872     mach->add_req( ReduceInst(s, newrule, mem1) );
1873     DEBUG_ONLY(_mem_node = save_mem_node;)
1874   }
1875   return;
1876 }
1877 
1878 
1879 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1880   handle_precedence_edges(s->_leaf, mach);
1881 
1882   if( s->_leaf->is_Load() ) {
1883     Node *mem2 = s->_leaf->in(MemNode::Memory);
1884     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1885     DEBUG_ONLY( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1886     mem = mem2;
1887   }
1888   if( s->_leaf->in(0) != nullptr && s->_leaf->req() > 1) {
1889     if( mach->in(0) == nullptr )
1890       mach->set_req(0, s->_leaf->in(0));
1891   }
1892 
1893   // Now recursively walk the state tree & add operand list.
1894   for( uint i=0; i<2; i++ ) {   // binary tree
1895     State *newstate = s->_kids[i];
1896     if( newstate == nullptr ) break;      // Might only have 1 child
1897     // 'op' is what I am expecting to receive
1898     int op;
1899     if( i == 0 ) {
1900       op = _leftOp[rule];
1901     } else {
1902       op = _rightOp[rule];
1903     }
1904     // Operand type to catch childs result
1905     // This is what my child will give me.
1906     int opnd_class_instance = newstate->rule(op);
1907     // Choose between operand class or not.
1908     // This is what I will receive.
1909     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1910     // New rule for child.  Chase operand classes to get the actual rule.
1911     int newrule = newstate->rule(catch_op);
1912 
1913     if (newrule < NUM_OPERANDS) { // Operand/operandClass or internalOp/instruction?
1914       // Operand/operandClass
1915       // Insert operand into array of operands for this instruction
1916       mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1917       ReduceOper(newstate, newrule, mem, mach);
1918 
1919     } else {                    // Child is internal operand or new instruction
1920       if (newrule < _LAST_MACH_OPER) { // internal operand or instruction?
1921         // internal operand --> call ReduceInst_Interior
1922         // Interior of complex instruction.  Do nothing but recurse.
1923         num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds);
1924       } else {
1925         // instruction --> call build operand(  ) to catch result
1926         //             --> ReduceInst( newrule )
1927         mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1928         Node *mem1 = (Node*)1;
1929         DEBUG_ONLY(Node *save_mem_node = _mem_node;)
1930         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1931         DEBUG_ONLY(_mem_node = save_mem_node;)
1932       }
1933     }
1934     assert( mach->_opnds[num_opnds-1], "" );
1935   }
1936   return num_opnds;
1937 }
1938 
1939 // This routine walks the interior of possible complex operands.
1940 // At each point we check our children in the match tree:
1941 // (1) No children -
1942 //     We are a leaf; add _leaf field as an input to the MachNode
1943 // (2) Child is an internal operand -
1944 //     Skip over it ( do nothing )
1945 // (3) Child is an instruction -
1946 //     Call ReduceInst recursively and
1947 //     and instruction as an input to the MachNode
1948 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1949   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1950   State *kid = s->_kids[0];
1951   assert( kid == nullptr || s->_leaf->in(0) == nullptr, "internal operands have no control" );
1952 
1953   // Leaf?  And not subsumed?
1954   if( kid == nullptr && !_swallowed[rule] ) {
1955     mach->add_req( s->_leaf );  // Add leaf pointer
1956     return;                     // Bail out
1957   }
1958 
1959   if( s->_leaf->is_Load() ) {
1960     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1961     mem = s->_leaf->in(MemNode::Memory);
1962     DEBUG_ONLY(_mem_node = s->_leaf;)
1963   }
1964 
1965   handle_precedence_edges(s->_leaf, mach);
1966 
1967   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1968     if( !mach->in(0) )
1969       mach->set_req(0,s->_leaf->in(0));
1970     else {
1971       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1972     }
1973   }
1974 
1975   for (uint i = 0; kid != nullptr && i < 2; kid = s->_kids[1], i++) {   // binary tree
1976     int newrule;
1977     if( i == 0) {
1978       newrule = kid->rule(_leftOp[rule]);
1979     } else {
1980       newrule = kid->rule(_rightOp[rule]);
1981     }
1982 
1983     if (newrule < _LAST_MACH_OPER) { // Operand or instruction?
1984       // Internal operand; recurse but do nothing else
1985       ReduceOper(kid, newrule, mem, mach);
1986 
1987     } else {                    // Child is a new instruction
1988       // Reduce the instruction, and add a direct pointer from this
1989       // machine instruction to the newly reduced one.
1990       Node *mem1 = (Node*)1;
1991       DEBUG_ONLY(Node *save_mem_node = _mem_node;)
1992       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1993       DEBUG_ONLY(_mem_node = save_mem_node;)
1994     }
1995   }
1996 }
1997 
1998 
1999 // -------------------------------------------------------------------------
2000 // Java-Java calling convention
2001 // (what you use when Java calls Java)
2002 
2003 //------------------------------find_receiver----------------------------------
2004 // For a given signature, return the OptoReg for parameter 0.
2005 OptoReg::Name Matcher::find_receiver() {
2006   VMRegPair regs;
2007   BasicType sig_bt = T_OBJECT;
2008   SharedRuntime::java_calling_convention(&sig_bt, &regs, 1);
2009   // Return argument 0 register.  In the LP64 build pointers
2010   // take 2 registers, but the VM wants only the 'main' name.
2011   return OptoReg::as_OptoReg(regs.first());
2012 }
2013 
2014 bool Matcher::is_vshift_con_pattern(Node* n, Node* m) {
2015   if (n != nullptr && m != nullptr) {
2016     return VectorNode::is_vector_shift(n) &&
2017            VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con();
2018   }
2019   return false;
2020 }
2021 
2022 bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
2023   // Must clone all producers of flags, or we will not match correctly.
2024   // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2025   // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2026   // are also there, so we may match a float-branch to int-flags and
2027   // expect the allocator to haul the flags from the int-side to the
2028   // fp-side.  No can do.
2029   if (_must_clone[m->Opcode()]) {
2030     mstack.push(m, Visit);
2031     return true;
2032   }
2033   return pd_clone_node(n, m, mstack);
2034 }
2035 
2036 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2037   Node *off = m->in(AddPNode::Offset);
2038   if (off->is_Con()) {
2039     address_visited.test_set(m->_idx); // Flag as address_visited
2040     mstack.push(m->in(AddPNode::Address), Pre_Visit);
2041     // Clone X+offset as it also folds into most addressing expressions
2042     mstack.push(off, Visit);
2043     mstack.push(m->in(AddPNode::Base), Pre_Visit);
2044     return true;
2045   }
2046   return false;
2047 }
2048 
2049 // A method-klass-holder may be passed in the inline_cache_reg
2050 // and then expanded into the inline_cache_reg and a method_ptr register
2051 //   defined in ad_<arch>.cpp
2052 
2053 //------------------------------find_shared------------------------------------
2054 // Set bits if Node is shared or otherwise a root
2055 void Matcher::find_shared(Node* n) {
2056   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2057   MStack mstack(C->live_nodes() * 2);
2058   // Mark nodes as address_visited if they are inputs to an address expression
2059   VectorSet address_visited;
2060   mstack.push(n, Visit);     // Don't need to pre-visit root node
2061   while (mstack.is_nonempty()) {
2062     n = mstack.node();       // Leave node on stack
2063     Node_State nstate = mstack.state();
2064     uint nop = n->Opcode();
2065     if (nstate == Pre_Visit) {
2066       if (address_visited.test(n->_idx)) { // Visited in address already?
2067         // Flag as visited and shared now.
2068         set_visited(n);
2069       }
2070       if (is_visited(n)) {   // Visited already?
2071         // Node is shared and has no reason to clone.  Flag it as shared.
2072         // This causes it to match into a register for the sharing.
2073         set_shared(n);       // Flag as shared and
2074         if (n->is_DecodeNarrowPtr()) {
2075           // Oop field/array element loads must be shared but since
2076           // they are shared through a DecodeN they may appear to have
2077           // a single use so force sharing here.
2078           set_shared(n->in(1));
2079         }
2080         mstack.pop();        // remove node from stack
2081         continue;
2082       }
2083       nstate = Visit; // Not already visited; so visit now
2084     }
2085     if (nstate == Visit) {
2086       mstack.set_state(Post_Visit);
2087       set_visited(n);   // Flag as visited now
2088       bool mem_op = false;
2089       int mem_addr_idx = MemNode::Address;
2090       if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2091         continue;
2092       }
2093       for (int i = n->len() - 1; i >= 0; --i) { // For my children
2094         Node* m = n->in(i); // Get ith input
2095         if (m == nullptr) {
2096           continue;  // Ignore nulls
2097         }
2098         if (clone_node(n, m, mstack)) {
2099           continue;
2100         }
2101 
2102         // Clone addressing expressions as they are "free" in memory access instructions
2103         if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2104             // When there are other uses besides address expressions
2105             // put it on stack and mark as shared.
2106             !is_visited(m)) {
2107           // Some inputs for address expression are not put on stack
2108           // to avoid marking them as shared and forcing them into register
2109           // if they are used only in address expressions.
2110           // But they should be marked as shared if there are other uses
2111           // besides address expressions.
2112 
2113           if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2114             continue;
2115           }
2116         }   // if( mem_op &&
2117         mstack.push(m, Pre_Visit);
2118       }     // for(int i = ...)
2119     }
2120     else if (nstate == Alt_Post_Visit) {
2121       mstack.pop(); // Remove node from stack
2122       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2123       // shared and all users of the Bool need to move the Cmp in parallel.
2124       // This leaves both the Bool and the If pointing at the Cmp.  To
2125       // prevent the Matcher from trying to Match the Cmp along both paths
2126       // BoolNode::match_edge always returns a zero.
2127 
2128       // We reorder the Op_If in a pre-order manner, so we can visit without
2129       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2130       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2131     }
2132     else if (nstate == Post_Visit) {
2133       mstack.pop(); // Remove node from stack
2134 
2135       // Now hack a few special opcodes
2136       uint opcode = n->Opcode();
2137       bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode);
2138       if (!gc_handled) {
2139         find_shared_post_visit(n, opcode);
2140       }
2141     }
2142     else {
2143       ShouldNotReachHere();
2144     }
2145   } // end of while (mstack.is_nonempty())
2146 }
2147 
2148 bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) {
2149   switch(opcode) {  // Handle some opcodes special
2150     case Op_Phi:             // Treat Phis as shared roots
2151     case Op_Parm:
2152     case Op_Proj:            // All handled specially during matching
2153     case Op_SafePointScalarObject:
2154       set_shared(n);
2155       set_dontcare(n);
2156       break;
2157     case Op_If:
2158     case Op_CountedLoopEnd:
2159       mstack.set_state(Alt_Post_Visit); // Alternative way
2160       // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2161       // with matching cmp/branch in 1 instruction.  The Matcher needs the
2162       // Bool and CmpX side-by-side, because it can only get at constants
2163       // that are at the leaves of Match trees, and the Bool's condition acts
2164       // as a constant here.
2165       mstack.push(n->in(1), Visit);         // Clone the Bool
2166       mstack.push(n->in(0), Pre_Visit);     // Visit control input
2167       return true; // while (mstack.is_nonempty())
2168     case Op_ConvI2D:         // These forms efficiently match with a prior
2169     case Op_ConvI2F:         //   Load but not a following Store
2170       if( n->in(1)->is_Load() &&        // Prior load
2171           n->outcnt() == 1 &&           // Not already shared
2172           n->unique_out()->is_Store() ) // Following store
2173         set_shared(n);       // Force it to be a root
2174       break;
2175     case Op_ReverseBytesI:
2176     case Op_ReverseBytesL:
2177       if( n->in(1)->is_Load() &&        // Prior load
2178           n->outcnt() == 1 )            // Not already shared
2179         set_shared(n);                  // Force it to be a root
2180       break;
2181     case Op_BoxLock:         // Can't match until we get stack-regs in ADLC
2182     case Op_IfFalse:
2183     case Op_IfTrue:
2184     case Op_MachProj:
2185     case Op_MergeMem:
2186     case Op_Catch:
2187     case Op_CatchProj:
2188     case Op_CProj:
2189     case Op_JumpProj:
2190     case Op_JProj:
2191     case Op_NeverBranch:
2192       set_dontcare(n);
2193       break;
2194     case Op_Jump:
2195       mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2196       mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2197       return true;                             // while (mstack.is_nonempty())
2198     case Op_StrComp:
2199     case Op_StrEquals:
2200     case Op_StrIndexOf:
2201     case Op_StrIndexOfChar:
2202     case Op_AryEq:
2203     case Op_VectorizedHashCode:
2204     case Op_CountPositives:
2205     case Op_StrInflatedCopy:
2206     case Op_StrCompressedCopy:
2207     case Op_EncodeISOArray:
2208     case Op_FmaD:
2209     case Op_FmaF:
2210     case Op_FmaHF:
2211     case Op_FmaVD:
2212     case Op_FmaVF:
2213     case Op_FmaVHF:
2214     case Op_MacroLogicV:
2215     case Op_VectorCmpMasked:
2216     case Op_CompressV:
2217     case Op_CompressM:
2218     case Op_ExpandV:
2219     case Op_VectorLoadMask:
2220       set_shared(n); // Force result into register (it will be anyways)
2221       break;
2222     case Op_ConP: {  // Convert pointers above the centerline to NUL
2223       TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2224       const TypePtr* tp = tn->type()->is_ptr();
2225       if (tp->_ptr == TypePtr::AnyNull) {
2226         tn->set_type(TypePtr::NULL_PTR);
2227       }
2228       break;
2229     }
2230     case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2231       TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2232       const TypePtr* tp = tn->type()->make_ptr();
2233       if (tp && tp->_ptr == TypePtr::AnyNull) {
2234         tn->set_type(TypeNarrowOop::NULL_PTR);
2235       }
2236       break;
2237     }
2238     case Op_Binary:         // These are introduced in the Post_Visit state.
2239       ShouldNotReachHere();
2240       break;
2241     case Op_ClearArray:
2242     case Op_SafePoint:
2243       mem_op = true;
2244       break;
2245     default:
2246       if( n->is_Store() ) {
2247         // Do match stores, despite no ideal reg
2248         mem_op = true;
2249         break;
2250       }
2251       if( n->is_Mem() ) { // Loads and LoadStores
2252         mem_op = true;
2253         // Loads must be root of match tree due to prior load conflict
2254         if( C->subsume_loads() == false )
2255           set_shared(n);
2256       }
2257       // Fall into default case
2258       if( !n->ideal_reg() )
2259         set_dontcare(n);  // Unmatchable Nodes
2260   } // end_switch
2261   return false;
2262 }
2263 
2264 void Matcher::find_shared_post_visit(Node* n, uint opcode) {
2265   if (n->is_predicated_vector()) {
2266     // Restructure into binary trees for Matching.
2267     if (n->req() == 4) {
2268       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2269       n->set_req(2, n->in(3));
2270       n->del_req(3);
2271     } else if (n->req() == 5) {
2272       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2273       n->set_req(2, new BinaryNode(n->in(3), n->in(4)));
2274       n->del_req(4);
2275       n->del_req(3);
2276     } else if (n->req() == 6) {
2277       Node* b3 = new BinaryNode(n->in(4), n->in(5));
2278       Node* b2 = new BinaryNode(n->in(3), b3);
2279       Node* b1 = new BinaryNode(n->in(2), b2);
2280       n->set_req(2, b1);
2281       n->del_req(5);
2282       n->del_req(4);
2283       n->del_req(3);
2284     }
2285     return;
2286   }
2287 
2288   switch(opcode) {       // Handle some opcodes special
2289     case Op_CompareAndExchangeB:
2290     case Op_CompareAndExchangeS:
2291     case Op_CompareAndExchangeI:
2292     case Op_CompareAndExchangeL:
2293     case Op_CompareAndExchangeP:
2294     case Op_CompareAndExchangeN:
2295     case Op_WeakCompareAndSwapB:
2296     case Op_WeakCompareAndSwapS:
2297     case Op_WeakCompareAndSwapI:
2298     case Op_WeakCompareAndSwapL:
2299     case Op_WeakCompareAndSwapP:
2300     case Op_WeakCompareAndSwapN:
2301     case Op_CompareAndSwapB:
2302     case Op_CompareAndSwapS:
2303     case Op_CompareAndSwapI:
2304     case Op_CompareAndSwapL:
2305     case Op_CompareAndSwapP:
2306     case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2307       Node* newval = n->in(MemNode::ValueIn);
2308       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
2309       Node* pair = new BinaryNode(oldval, newval);
2310       n->set_req(MemNode::ValueIn, pair);
2311       n->del_req(LoadStoreConditionalNode::ExpectedIn);
2312       break;
2313     }
2314     case Op_CMoveD:              // Convert trinary to binary-tree
2315     case Op_CMoveF:
2316     case Op_CMoveI:
2317     case Op_CMoveL:
2318     case Op_CMoveN:
2319     case Op_CMoveP: {
2320       // Restructure into a binary tree for Matching.  It's possible that
2321       // we could move this code up next to the graph reshaping for IfNodes
2322       // or vice-versa, but I do not want to debug this for Ladybird.
2323       // 10/2/2000 CNC.
2324       Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1));
2325       n->set_req(1, pair1);
2326       Node* pair2 = new BinaryNode(n->in(2), n->in(3));
2327       n->set_req(2, pair2);
2328       n->del_req(3);
2329       break;
2330     }
2331     case Op_MacroLogicV: {
2332       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2333       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2334       n->set_req(1, pair1);
2335       n->set_req(2, pair2);
2336       n->del_req(4);
2337       n->del_req(3);
2338       break;
2339     }
2340     case Op_StoreVectorMasked: {
2341       Node* pair = new BinaryNode(n->in(3), n->in(4));
2342       n->set_req(3, pair);
2343       n->del_req(4);
2344       break;
2345     }
2346     case Op_SelectFromTwoVector:
2347     case Op_LoopLimit: {
2348       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2349       n->set_req(1, pair1);
2350       n->set_req(2, n->in(3));
2351       n->del_req(3);
2352       break;
2353     }
2354     case Op_StrEquals:
2355     case Op_StrIndexOfChar: {
2356       Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2357       n->set_req(2, pair1);
2358       n->set_req(3, n->in(4));
2359       n->del_req(4);
2360       break;
2361     }
2362     case Op_StrComp:
2363     case Op_StrIndexOf:
2364     case Op_VectorizedHashCode: {
2365       Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2366       n->set_req(2, pair1);
2367       Node* pair2 = new BinaryNode(n->in(4),n->in(5));
2368       n->set_req(3, pair2);
2369       n->del_req(5);
2370       n->del_req(4);
2371       break;
2372     }
2373     case Op_EncodeISOArray:
2374     case Op_StrCompressedCopy:
2375     case Op_StrInflatedCopy: {
2376       // Restructure into a binary tree for Matching.
2377       Node* pair = new BinaryNode(n->in(3), n->in(4));
2378       n->set_req(3, pair);
2379       n->del_req(4);
2380       break;
2381     }
2382     case Op_FmaD:
2383     case Op_FmaF:
2384     case Op_FmaHF:
2385     case Op_FmaVD:
2386     case Op_FmaVF:
2387     case Op_FmaVHF: {
2388       // Restructure into a binary tree for Matching.
2389       Node* pair = new BinaryNode(n->in(1), n->in(2));
2390       n->set_req(2, pair);
2391       n->set_req(1, n->in(3));
2392       n->del_req(3);
2393       break;
2394     }
2395     case Op_MulAddS2I: {
2396       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2397       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2398       n->set_req(1, pair1);
2399       n->set_req(2, pair2);
2400       n->del_req(4);
2401       n->del_req(3);
2402       break;
2403     }
2404     case Op_ClearArray: {
2405       Node* pair = new BinaryNode(n->in(2), n->in(3));
2406       n->set_req(2, pair);
2407       n->set_req(3, n->in(4));
2408       n->del_req(4);
2409       break;
2410     }
2411     case Op_VectorCmpMasked:
2412     case Op_CopySignD:
2413     case Op_SignumVF:
2414     case Op_SignumVD:
2415     case Op_SignumF:
2416     case Op_SignumD: {
2417       Node* pair = new BinaryNode(n->in(2), n->in(3));
2418       n->set_req(2, pair);
2419       n->del_req(3);
2420       break;
2421     }
2422     case Op_VectorBlend:
2423     case Op_VectorInsert: {
2424       Node* pair = new BinaryNode(n->in(1), n->in(2));
2425       n->set_req(1, pair);
2426       n->set_req(2, n->in(3));
2427       n->del_req(3);
2428       break;
2429     }
2430     case Op_LoadVectorGatherMasked: // fall-through
2431     case Op_StoreVectorScatter: {
2432       Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2433       n->set_req(MemNode::ValueIn, pair);
2434       n->del_req(MemNode::ValueIn+1);
2435       break;
2436     }
2437     case Op_StoreVectorScatterMasked: {
2438       Node* pair = new BinaryNode(n->in(MemNode::ValueIn+1), n->in(MemNode::ValueIn+2));
2439       n->set_req(MemNode::ValueIn+1, pair);
2440       n->del_req(MemNode::ValueIn+2);
2441       pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2442       n->set_req(MemNode::ValueIn, pair);
2443       n->del_req(MemNode::ValueIn+1);
2444       break;
2445     }
2446     case Op_VectorMaskCmp: {
2447       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2448       n->set_req(2, n->in(3));
2449       n->del_req(3);
2450       break;
2451     }
2452     case Op_PartialSubtypeCheck: {
2453       if (UseSecondarySupersTable && n->in(2)->is_Con()) {
2454         // PartialSubtypeCheck uses both constant and register operands for superclass input.
2455         n->set_req(2, new BinaryNode(n->in(2), n->in(2)));
2456         break;
2457       }
2458       break;
2459     }
2460     case Op_StoreLSpecial: {
2461       if (n->req() > (MemNode::ValueIn + 1) && n->in(MemNode::ValueIn + 1) != nullptr) {
2462         Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn + 1));
2463         n->set_req(MemNode::ValueIn, pair);
2464         n->del_req(MemNode::ValueIn + 1);
2465       }
2466       break;
2467     }
2468     default:
2469       break;
2470   }
2471 }
2472 
2473 #ifndef PRODUCT
2474 void Matcher::record_new2old(Node* newn, Node* old) {
2475   _new2old_map.map(newn->_idx, old);
2476   if (!_reused.test_set(old->_igv_idx)) {
2477     // Reuse the Ideal-level IGV identifier so that the node can be tracked
2478     // across matching. If there are multiple machine nodes expanded from the
2479     // same Ideal node, only one will reuse its IGV identifier.
2480     newn->_igv_idx = old->_igv_idx;
2481   }
2482 }
2483 
2484 // machine-independent root to machine-dependent root
2485 void Matcher::dump_old2new_map() {
2486   _old2new_map.dump();
2487 }
2488 #endif // !PRODUCT
2489 
2490 //---------------------------collect_null_checks-------------------------------
2491 // Find null checks in the ideal graph; write a machine-specific node for
2492 // it.  Used by later implicit-null-check handling.  Actually collects
2493 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2494 // value being tested.
2495 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2496   Node *iff = proj->in(0);
2497   if( iff->Opcode() == Op_If ) {
2498     // During matching If's have Bool & Cmp side-by-side
2499     BoolNode *b = iff->in(1)->as_Bool();
2500     Node *cmp = iff->in(2);
2501     int opc = cmp->Opcode();
2502     if (opc != Op_CmpP && opc != Op_CmpN) return;
2503 
2504     const Type* ct = cmp->in(2)->bottom_type();
2505     if (ct == TypePtr::NULL_PTR ||
2506         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2507 
2508       bool push_it = false;
2509       if( proj->Opcode() == Op_IfTrue ) {
2510 #ifndef PRODUCT
2511         extern uint all_null_checks_found;
2512         all_null_checks_found++;
2513 #endif
2514         if( b->_test._test == BoolTest::ne ) {
2515           push_it = true;
2516         }
2517       } else {
2518         assert( proj->Opcode() == Op_IfFalse, "" );
2519         if( b->_test._test == BoolTest::eq ) {
2520           push_it = true;
2521         }
2522       }
2523       if( push_it ) {
2524         _null_check_tests.push(proj);
2525         Node* val = cmp->in(1);
2526 #ifdef _LP64
2527         if (val->bottom_type()->isa_narrowoop() &&
2528             !Matcher::narrow_oop_use_complex_address()) {
2529           //
2530           // Look for DecodeN node which should be pinned to orig_proj.
2531           // On platforms (Sparc) which can not handle 2 adds
2532           // in addressing mode we have to keep a DecodeN node and
2533           // use it to do implicit null check in address.
2534           //
2535           // DecodeN node was pinned to non-null path (orig_proj) during
2536           // CastPP transformation in final_graph_reshaping_impl().
2537           //
2538           uint cnt = orig_proj->outcnt();
2539           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2540             Node* d = orig_proj->raw_out(i);
2541             if (d->is_DecodeN() && d->in(1) == val) {
2542               val = d;
2543               val->set_req(0, nullptr); // Unpin now.
2544               // Mark this as special case to distinguish from
2545               // a regular case: CmpP(DecodeN, null).
2546               val = (Node*)(((intptr_t)val) | 1);
2547               break;
2548             }
2549           }
2550         }
2551 #endif
2552         _null_check_tests.push(val);
2553       }
2554     }
2555   }
2556 }
2557 
2558 //---------------------------validate_null_checks------------------------------
2559 // Its possible that the value being null checked is not the root of a match
2560 // tree.  If so, I cannot use the value in an implicit null check.
2561 void Matcher::validate_null_checks( ) {
2562   uint cnt = _null_check_tests.size();
2563   for( uint i=0; i < cnt; i+=2 ) {
2564     Node *test = _null_check_tests[i];
2565     Node *val = _null_check_tests[i+1];
2566     bool is_decoden = ((intptr_t)val) & 1;
2567     val = (Node*)(((intptr_t)val) & ~1);
2568     if (has_new_node(val)) {
2569       Node* new_val = new_node(val);
2570       if (is_decoden) {
2571         assert(val->is_DecodeNarrowPtr() && val->in(0) == nullptr, "sanity");
2572         // Note: new_val may have a control edge if
2573         // the original ideal node DecodeN was matched before
2574         // it was unpinned in Matcher::collect_null_checks().
2575         // Unpin the mach node and mark it.
2576         new_val->set_req(0, nullptr);
2577         new_val = (Node*)(((intptr_t)new_val) | 1);
2578       }
2579       // Is a match-tree root, so replace with the matched value
2580       _null_check_tests.map(i+1, new_val);
2581     } else {
2582       // Yank from candidate list
2583       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2584       _null_check_tests.map(i,_null_check_tests[--cnt]);
2585       _null_check_tests.pop();
2586       _null_check_tests.pop();
2587       i-=2;
2588     }
2589   }
2590 }
2591 
2592 bool Matcher::gen_narrow_oop_implicit_null_checks() {
2593   // Advice matcher to perform null checks on the narrow oop side.
2594   // Implicit checks are not possible on the uncompressed oop side anyway
2595   // (at least not for read accesses).
2596   // Performs significantly better (especially on Power 6).
2597   if (!os::zero_page_read_protected()) {
2598     return true;
2599   }
2600   return CompressedOops::use_implicit_null_checks() &&
2601          (narrow_oop_use_complex_address() ||
2602           CompressedOops::base() != nullptr);
2603 }
2604 
2605 // Compute RegMask for an ideal register.
2606 const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) {
2607   assert(!C->failing_internal() || C->failure_is_artificial(), "already failing.");
2608   if (C->failing()) {
2609     return nullptr;
2610   }
2611   const Type* t = Type::mreg2type[ideal_reg];
2612   if (t == nullptr) {
2613     assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg);
2614     return nullptr; // not supported
2615   }
2616   Node* fp  = ret->in(TypeFunc::FramePtr);
2617   Node* mem = ret->in(TypeFunc::Memory);
2618   const TypePtr* atp = TypePtr::BOTTOM;
2619   MemNode::MemOrd mo = MemNode::unordered;
2620 
2621   Node* spill;
2622   switch (ideal_reg) {
2623     case Op_RegN: spill = new LoadNNode(nullptr, mem, fp, atp, t->is_narrowoop(), mo); break;
2624     case Op_RegI: spill = new LoadINode(nullptr, mem, fp, atp, t->is_int(),       mo); break;
2625     case Op_RegP: spill = new LoadPNode(nullptr, mem, fp, atp, t->is_ptr(),       mo); break;
2626     case Op_RegF: spill = new LoadFNode(nullptr, mem, fp, atp, t,                 mo); break;
2627     case Op_RegD: spill = new LoadDNode(nullptr, mem, fp, atp, t,                 mo); break;
2628     case Op_RegL: spill = new LoadLNode(nullptr, mem, fp, atp, t->is_long(),      mo); break;
2629 
2630     case Op_VecA: // fall-through
2631     case Op_VecS: // fall-through
2632     case Op_VecD: // fall-through
2633     case Op_VecX: // fall-through
2634     case Op_VecY: // fall-through
2635     case Op_VecZ: spill = new LoadVectorNode(nullptr, mem, fp, atp, t->is_vect()); break;
2636     case Op_RegVectMask: return Matcher::predicate_reg_mask();
2637 
2638     default: ShouldNotReachHere();
2639   }
2640   MachNode* mspill = match_tree(spill);
2641   assert(mspill != nullptr || C->failure_is_artificial(), "matching failed: %d", ideal_reg);
2642   if (C->failing()) {
2643     return nullptr;
2644   }
2645   // Handle generic vector operand case
2646   if (Matcher::supports_generic_vector_operands && t->isa_vect()) {
2647     specialize_mach_node(mspill);
2648   }
2649   return &mspill->out_RegMask();
2650 }
2651 
2652 // Process Mach IR right after selection phase is over.
2653 void Matcher::do_postselect_cleanup() {
2654   if (supports_generic_vector_operands) {
2655     specialize_generic_vector_operands();
2656     if (C->failing())  return;
2657   }
2658 }
2659 
2660 //----------------------------------------------------------------------
2661 // Generic machine operands elision.
2662 //----------------------------------------------------------------------
2663 
2664 // Compute concrete vector operand for a generic TEMP vector mach node based on its user info.
2665 void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) {
2666   assert(use->in(idx) == tmp, "not a user");
2667   assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet");
2668 
2669   if ((uint)idx == use->two_adr()) { // DEF_TEMP case
2670     tmp->_opnds[0] = use->_opnds[0]->clone();
2671   } else {
2672     uint ideal_vreg = vector_ideal_reg(C->max_vector_size());
2673     tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/);
2674   }
2675 }
2676 
2677 // Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx).
2678 MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) {
2679   assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates");
2680   Node* def = nullptr;
2681   if (opnd_idx == 0) { // DEF
2682     def = m; // use mach node itself to compute vector operand type
2683   } else {
2684     int base_idx = m->operand_index(opnd_idx);
2685     def = m->in(base_idx);
2686     if (def->is_Mach()) {
2687       if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) {
2688         specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site
2689       } else if (is_reg2reg_move(def->as_Mach())) {
2690         def = def->in(1); // skip over generic reg-to-reg moves
2691       }
2692     }
2693   }
2694   assert(def->bottom_type()->isa_vect(), "not a vector");
2695   uint ideal_vreg = def->bottom_type()->ideal_reg();
2696   return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/);
2697 }
2698 
2699 void Matcher::specialize_mach_node(MachNode* m) {
2700   assert(!m->is_MachTemp(), "processed along with its user");
2701   // For generic use operands pull specific register class operands from
2702   // its def instruction's output operand (def operand).
2703   for (uint i = 0; i < m->num_opnds(); i++) {
2704     if (Matcher::is_generic_vector(m->_opnds[i])) {
2705       m->_opnds[i] = specialize_vector_operand(m, i);
2706     }
2707   }
2708 }
2709 
2710 // Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph.
2711 void Matcher::specialize_generic_vector_operands() {
2712   assert(supports_generic_vector_operands, "sanity");
2713   ResourceMark rm;
2714 
2715   // Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ])
2716   // and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec).
2717   Unique_Node_List live_nodes;
2718   C->identify_useful_nodes(live_nodes);
2719 
2720   while (live_nodes.size() > 0) {
2721     MachNode* m = live_nodes.pop()->isa_Mach();
2722     if (m != nullptr) {
2723       if (Matcher::is_reg2reg_move(m)) {
2724         // Register allocator properly handles vec <=> leg moves using register masks.
2725         int opnd_idx = m->operand_index(1);
2726         Node* def = m->in(opnd_idx);
2727         m->subsume_by(def, C);
2728       } else if (m->is_MachTemp()) {
2729         // process MachTemp nodes at use site (see Matcher::specialize_vector_operand)
2730       } else {
2731         specialize_mach_node(m);
2732       }
2733     }
2734   }
2735 }
2736 
2737 uint Matcher::vector_length(const Node* n) {
2738   const TypeVect* vt = n->bottom_type()->is_vect();
2739   return vt->length();
2740 }
2741 
2742 uint Matcher::vector_length(const MachNode* use, const MachOper* opnd) {
2743   int def_idx = use->operand_index(opnd);
2744   Node* def = use->in(def_idx);
2745   return def->bottom_type()->is_vect()->length();
2746 }
2747 
2748 uint Matcher::vector_length_in_bytes(const Node* n) {
2749   const TypeVect* vt = n->bottom_type()->is_vect();
2750   return vt->length_in_bytes();
2751 }
2752 
2753 uint Matcher::vector_length_in_bytes(const MachNode* use, const MachOper* opnd) {
2754   uint def_idx = use->operand_index(opnd);
2755   Node* def = use->in(def_idx);
2756   return def->bottom_type()->is_vect()->length_in_bytes();
2757 }
2758 
2759 BasicType Matcher::vector_element_basic_type(const Node* n) {
2760   const TypeVect* vt = n->bottom_type()->is_vect();
2761   return vt->element_basic_type();
2762 }
2763 
2764 BasicType Matcher::vector_element_basic_type(const MachNode* use, const MachOper* opnd) {
2765   int def_idx = use->operand_index(opnd);
2766   Node* def = use->in(def_idx);
2767   return def->bottom_type()->is_vect()->element_basic_type();
2768 }
2769 
2770 bool Matcher::is_non_long_integral_vector(const Node* n) {
2771   BasicType bt = vector_element_basic_type(n);
2772   assert(bt != T_CHAR, "char is not allowed in vector");
2773   return is_subword_type(bt) || bt == T_INT;
2774 }
2775 
2776 bool Matcher::is_encode_and_store_pattern(const Node* n, const Node* m) {
2777   if (n == nullptr ||
2778       m == nullptr ||
2779       n->Opcode() != Op_StoreN ||
2780       !m->is_EncodeP() ||
2781       n->as_Store()->barrier_data() == 0) {
2782     return false;
2783   }
2784   assert(m == n->in(MemNode::ValueIn), "m should be input to n");
2785   return true;
2786 }
2787 
2788 #ifdef ASSERT
2789 bool Matcher::verify_after_postselect_cleanup() {
2790   assert(!C->failing_internal() || C->failure_is_artificial(), "sanity");
2791   if (supports_generic_vector_operands) {
2792     Unique_Node_List useful;
2793     C->identify_useful_nodes(useful);
2794     for (uint i = 0; i < useful.size(); i++) {
2795       MachNode* m = useful.at(i)->isa_Mach();
2796       if (m != nullptr) {
2797         assert(!Matcher::is_reg2reg_move(m), "no MoveVec nodes allowed");
2798         for (uint j = 0; j < m->num_opnds(); j++) {
2799           assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed");
2800         }
2801       }
2802     }
2803   }
2804   return true;
2805 }
2806 #endif // ASSERT
2807 
2808 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2809 // atomic instruction acting as a store_load barrier without any
2810 // intervening volatile load, and thus we don't need a barrier here.
2811 // We retain the Node to act as a compiler ordering barrier.
2812 bool Matcher::post_store_load_barrier(const Node* vmb) {
2813   Compile* C = Compile::current();
2814   assert(vmb->is_MemBar(), "");
2815   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2816   const MemBarNode* membar = vmb->as_MemBar();
2817 
2818   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2819   Node* ctrl = nullptr;
2820   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2821     Node* p = membar->fast_out(i);
2822     assert(p->is_Proj(), "only projections here");
2823     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2824         !C->node_arena()->contains(p)) { // Unmatched old-space only
2825       ctrl = p;
2826       break;
2827     }
2828   }
2829   assert((ctrl != nullptr), "missing control projection");
2830 
2831   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2832     Node *x = ctrl->fast_out(j);
2833     int xop = x->Opcode();
2834 
2835     // We don't need current barrier if we see another or a lock
2836     // before seeing volatile load.
2837     //
2838     // Op_Fastunlock previously appeared in the Op_* list below.
2839     // With the advent of 1-0 lock operations we're no longer guaranteed
2840     // that a monitor exit operation contains a serializing instruction.
2841 
2842     if (xop == Op_MemBarVolatile ||
2843         xop == Op_CompareAndExchangeB ||
2844         xop == Op_CompareAndExchangeS ||
2845         xop == Op_CompareAndExchangeI ||
2846         xop == Op_CompareAndExchangeL ||
2847         xop == Op_CompareAndExchangeP ||
2848         xop == Op_CompareAndExchangeN ||
2849         xop == Op_WeakCompareAndSwapB ||
2850         xop == Op_WeakCompareAndSwapS ||
2851         xop == Op_WeakCompareAndSwapL ||
2852         xop == Op_WeakCompareAndSwapP ||
2853         xop == Op_WeakCompareAndSwapN ||
2854         xop == Op_WeakCompareAndSwapI ||
2855         xop == Op_CompareAndSwapB ||
2856         xop == Op_CompareAndSwapS ||
2857         xop == Op_CompareAndSwapL ||
2858         xop == Op_CompareAndSwapP ||
2859         xop == Op_CompareAndSwapN ||
2860         xop == Op_CompareAndSwapI ||
2861         BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) {
2862       return true;
2863     }
2864 
2865     // Op_FastLock previously appeared in the Op_* list above.
2866     if (xop == Op_FastLock) {
2867       return true;
2868     }
2869 
2870     if (x->is_MemBar()) {
2871       // We must retain this membar if there is an upcoming volatile
2872       // load, which will be followed by acquire membar.
2873       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2874         return false;
2875       } else {
2876         // For other kinds of barriers, check by pretending we
2877         // are them, and seeing if we can be removed.
2878         return post_store_load_barrier(x->as_MemBar());
2879       }
2880     }
2881 
2882     // probably not necessary to check for these
2883     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2884       return false;
2885     }
2886   }
2887   return false;
2888 }
2889 
2890 // Check whether node n is a branch to an uncommon trap that we could
2891 // optimize as test with very high branch costs in case of going to
2892 // the uncommon trap. The code must be able to be recompiled to use
2893 // a cheaper test.
2894 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2895   // Don't do it for natives, adapters, or runtime stubs
2896   Compile *C = Compile::current();
2897   if (!C->is_method_compilation()) return false;
2898 
2899   assert(n->is_If(), "You should only call this on if nodes.");
2900   IfNode *ifn = n->as_If();
2901 
2902   Node *ifFalse = nullptr;
2903   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2904     if (ifn->fast_out(i)->is_IfFalse()) {
2905       ifFalse = ifn->fast_out(i);
2906       break;
2907     }
2908   }
2909   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2910 
2911   Node *reg = ifFalse;
2912   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2913                // Alternatively use visited set?  Seems too expensive.
2914   while (reg != nullptr && cnt > 0) {
2915     CallNode *call = nullptr;
2916     RegionNode *nxt_reg = nullptr;
2917     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2918       Node *o = reg->fast_out(i);
2919       if (o->is_Call()) {
2920         call = o->as_Call();
2921       }
2922       if (o->is_Region()) {
2923         nxt_reg = o->as_Region();
2924       }
2925     }
2926 
2927     if (call &&
2928         call->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point()) {
2929       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2930       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2931         jint tr_con = trtype->is_int()->get_con();
2932         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2933         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2934         assert((int)reason < (int)BitsPerInt, "recode bit map");
2935 
2936         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2937             && action != Deoptimization::Action_none) {
2938           // This uncommon trap is sure to recompile, eventually.
2939           // When that happens, C->too_many_traps will prevent
2940           // this transformation from happening again.
2941           return true;
2942         }
2943       }
2944     }
2945 
2946     reg = nxt_reg;
2947     cnt--;
2948   }
2949 
2950   return false;
2951 }
2952 
2953 //=============================================================================
2954 //---------------------------State---------------------------------------------
2955 State::State(void) : _rule() {
2956 #ifdef ASSERT
2957   _id = 0;
2958   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2959   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2960 #endif
2961 }
2962 
2963 #ifdef ASSERT
2964 State::~State() {
2965   _id = 99;
2966   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2967   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2968   memset(_cost, -3, sizeof(_cost));
2969   memset(_rule, -3, sizeof(_rule));
2970 }
2971 #endif
2972 
2973 #ifndef PRODUCT
2974 //---------------------------dump----------------------------------------------
2975 void State::dump() {
2976   tty->print("\n");
2977   dump(0);
2978 }
2979 
2980 void State::dump(int depth) {
2981   for (int j = 0; j < depth; j++) {
2982     tty->print("   ");
2983   }
2984   tty->print("--N: ");
2985   _leaf->dump();
2986   uint i;
2987   for (i = 0; i < _LAST_MACH_OPER; i++) {
2988     // Check for valid entry
2989     if (valid(i)) {
2990       for (int j = 0; j < depth; j++) {
2991         tty->print("   ");
2992       }
2993       assert(cost(i) != max_juint, "cost must be a valid value");
2994       assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule");
2995       tty->print_cr("%s  %d  %s",
2996                     ruleName[i], cost(i), ruleName[rule(i)] );
2997     }
2998   }
2999   tty->cr();
3000 
3001   for (i = 0; i < 2; i++) {
3002     if (_kids[i]) {
3003       _kids[i]->dump(depth + 1);
3004     }
3005   }
3006 }
3007 #endif