1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "memory/allocation.inline.hpp" 29 #include "memory/resourceArea.hpp" 30 #include "oops/compressedOops.hpp" 31 #include "opto/ad.hpp" 32 #include "opto/addnode.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/idealGraphPrinter.hpp" 35 #include "opto/matcher.hpp" 36 #include "opto/memnode.hpp" 37 #include "opto/movenode.hpp" 38 #include "opto/opcodes.hpp" 39 #include "opto/regmask.hpp" 40 #include "opto/rootnode.hpp" 41 #include "opto/runtime.hpp" 42 #include "opto/type.hpp" 43 #include "opto/vectornode.hpp" 44 #include "runtime/os.inline.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/align.hpp" 47 48 OptoReg::Name OptoReg::c_frame_pointer; 49 50 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf]; 51 RegMask Matcher::mreg2regmask[_last_Mach_Reg]; 52 RegMask Matcher::caller_save_regmask; 53 RegMask Matcher::caller_save_regmask_exclude_soe; 54 RegMask Matcher::mh_caller_save_regmask; 55 RegMask Matcher::mh_caller_save_regmask_exclude_soe; 56 RegMask Matcher::STACK_ONLY_mask; 57 RegMask Matcher::c_frame_ptr_mask; 58 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE; 59 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; 60 61 //---------------------------Matcher------------------------------------------- 62 Matcher::Matcher() 63 : PhaseTransform( Phase::Ins_Select ), 64 _states_arena(Chunk::medium_size, mtCompiler), 65 _new_nodes(C->comp_arena()), 66 _visited(&_states_arena), 67 _shared(&_states_arena), 68 _dontcare(&_states_arena), 69 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp), 70 _swallowed(swallowed), 71 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), 72 _end_inst_chain_rule(_END_INST_CHAIN_RULE), 73 _must_clone(must_clone), 74 _shared_nodes(C->comp_arena()), 75 #ifndef PRODUCT 76 _old2new_map(C->comp_arena()), 77 _new2old_map(C->comp_arena()), 78 _reused(C->comp_arena()), 79 #endif // !PRODUCT 80 _allocation_started(false), 81 _ruleName(ruleName), 82 _register_save_policy(register_save_policy), 83 _c_reg_save_policy(c_reg_save_policy), 84 _register_save_type(register_save_type) { 85 C->set_matcher(this); 86 87 idealreg2spillmask [Op_RegI] = nullptr; 88 idealreg2spillmask [Op_RegN] = nullptr; 89 idealreg2spillmask [Op_RegL] = nullptr; 90 idealreg2spillmask [Op_RegF] = nullptr; 91 idealreg2spillmask [Op_RegD] = nullptr; 92 idealreg2spillmask [Op_RegP] = nullptr; 93 idealreg2spillmask [Op_VecA] = nullptr; 94 idealreg2spillmask [Op_VecS] = nullptr; 95 idealreg2spillmask [Op_VecD] = nullptr; 96 idealreg2spillmask [Op_VecX] = nullptr; 97 idealreg2spillmask [Op_VecY] = nullptr; 98 idealreg2spillmask [Op_VecZ] = nullptr; 99 idealreg2spillmask [Op_RegFlags] = nullptr; 100 idealreg2spillmask [Op_RegVectMask] = nullptr; 101 102 idealreg2debugmask [Op_RegI] = nullptr; 103 idealreg2debugmask [Op_RegN] = nullptr; 104 idealreg2debugmask [Op_RegL] = nullptr; 105 idealreg2debugmask [Op_RegF] = nullptr; 106 idealreg2debugmask [Op_RegD] = nullptr; 107 idealreg2debugmask [Op_RegP] = nullptr; 108 idealreg2debugmask [Op_VecA] = nullptr; 109 idealreg2debugmask [Op_VecS] = nullptr; 110 idealreg2debugmask [Op_VecD] = nullptr; 111 idealreg2debugmask [Op_VecX] = nullptr; 112 idealreg2debugmask [Op_VecY] = nullptr; 113 idealreg2debugmask [Op_VecZ] = nullptr; 114 idealreg2debugmask [Op_RegFlags] = nullptr; 115 idealreg2debugmask [Op_RegVectMask] = nullptr; 116 117 idealreg2mhdebugmask[Op_RegI] = nullptr; 118 idealreg2mhdebugmask[Op_RegN] = nullptr; 119 idealreg2mhdebugmask[Op_RegL] = nullptr; 120 idealreg2mhdebugmask[Op_RegF] = nullptr; 121 idealreg2mhdebugmask[Op_RegD] = nullptr; 122 idealreg2mhdebugmask[Op_RegP] = nullptr; 123 idealreg2mhdebugmask[Op_VecA] = nullptr; 124 idealreg2mhdebugmask[Op_VecS] = nullptr; 125 idealreg2mhdebugmask[Op_VecD] = nullptr; 126 idealreg2mhdebugmask[Op_VecX] = nullptr; 127 idealreg2mhdebugmask[Op_VecY] = nullptr; 128 idealreg2mhdebugmask[Op_VecZ] = nullptr; 129 idealreg2mhdebugmask[Op_RegFlags] = nullptr; 130 idealreg2mhdebugmask[Op_RegVectMask] = nullptr; 131 132 debug_only(_mem_node = nullptr;) // Ideal memory node consumed by mach node 133 } 134 135 //------------------------------warp_incoming_stk_arg------------------------ 136 // This warps a VMReg into an OptoReg::Name 137 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) { 138 OptoReg::Name warped; 139 if( reg->is_stack() ) { // Stack slot argument? 140 warped = OptoReg::add(_old_SP, reg->reg2stack() ); 141 warped = OptoReg::add(warped, C->out_preserve_stack_slots()); 142 if( warped >= _in_arg_limit ) 143 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen 144 if (!RegMask::can_represent_arg(warped)) { 145 // the compiler cannot represent this method's calling sequence 146 // Bailout. We do not have space to represent all arguments. 147 C->record_method_not_compilable("unsupported incoming calling sequence"); 148 return OptoReg::Bad; 149 } 150 return warped; 151 } 152 return OptoReg::as_OptoReg(reg); 153 } 154 155 //---------------------------compute_old_SP------------------------------------ 156 OptoReg::Name Compile::compute_old_SP() { 157 int fixed = fixed_slots(); 158 int preserve = in_preserve_stack_slots(); 159 return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots())); 160 } 161 162 163 164 #ifdef ASSERT 165 void Matcher::verify_new_nodes_only(Node* xroot) { 166 // Make sure that the new graph only references new nodes 167 ResourceMark rm; 168 Unique_Node_List worklist; 169 VectorSet visited; 170 worklist.push(xroot); 171 while (worklist.size() > 0) { 172 Node* n = worklist.pop(); 173 visited.set(n->_idx); 174 assert(C->node_arena()->contains(n), "dead node"); 175 for (uint j = 0; j < n->req(); j++) { 176 Node* in = n->in(j); 177 if (in != nullptr) { 178 assert(C->node_arena()->contains(in), "dead node"); 179 if (!visited.test(in->_idx)) { 180 worklist.push(in); 181 } 182 } 183 } 184 } 185 } 186 #endif 187 188 // Array of RegMask, one per returned values (inline type instances can 189 // be returned as multiple return values, one per field) 190 RegMask* Matcher::return_values_mask(const TypeFunc* tf) { 191 const TypeTuple* range = tf->range_cc(); 192 uint cnt = range->cnt() - TypeFunc::Parms; 193 if (cnt == 0) { 194 return nullptr; 195 } 196 RegMask* mask = NEW_RESOURCE_ARRAY(RegMask, cnt); 197 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, cnt); 198 VMRegPair* vm_parm_regs = NEW_RESOURCE_ARRAY(VMRegPair, cnt); 199 for (uint i = 0; i < cnt; i++) { 200 sig_bt[i] = range->field_at(i+TypeFunc::Parms)->basic_type(); 201 } 202 203 int regs = SharedRuntime::java_return_convention(sig_bt, vm_parm_regs, cnt); 204 if (regs <= 0) { 205 // We ran out of registers to store the IsInit information for a nullable inline type return. 206 // Since it is only set in the 'call_epilog', we can simply put it on the stack. 207 assert(tf->returns_inline_type_as_fields(), "should have been tested during graph construction"); 208 // TODO 8284443 Can we teach the register allocator to reserve a stack slot instead? 209 // mask[--cnt] = STACK_ONLY_mask does not work (test with -XX:+StressGCM) 210 int slot = C->fixed_slots() - 2; 211 if (C->needs_stack_repair()) { 212 slot -= 2; // Account for stack increment value 213 } 214 mask[--cnt].Clear(); 215 mask[cnt].Insert(OptoReg::stack2reg(slot)); 216 } 217 for (uint i = 0; i < cnt; i++) { 218 mask[i].Clear(); 219 220 OptoReg::Name reg1 = OptoReg::as_OptoReg(vm_parm_regs[i].first()); 221 if (OptoReg::is_valid(reg1)) { 222 mask[i].Insert(reg1); 223 } 224 OptoReg::Name reg2 = OptoReg::as_OptoReg(vm_parm_regs[i].second()); 225 if (OptoReg::is_valid(reg2)) { 226 mask[i].Insert(reg2); 227 } 228 } 229 230 return mask; 231 } 232 233 //---------------------------match--------------------------------------------- 234 void Matcher::match( ) { 235 if( MaxLabelRootDepth < 100 ) { // Too small? 236 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum"); 237 MaxLabelRootDepth = 100; 238 } 239 // One-time initialization of some register masks. 240 init_spill_mask( C->root()->in(1) ); 241 if (C->failing()) { 242 return; 243 } 244 _return_addr_mask = return_addr(); 245 #ifdef _LP64 246 // Pointers take 2 slots in 64-bit land 247 _return_addr_mask.Insert(OptoReg::add(return_addr(),1)); 248 #endif 249 250 // Map Java-signature return types into return register-value 251 // machine registers. 252 _return_values_mask = return_values_mask(C->tf()); 253 254 // --------------- 255 // Frame Layout 256 257 // Need the method signature to determine the incoming argument types, 258 // because the types determine which registers the incoming arguments are 259 // in, and this affects the matched code. 260 const TypeTuple *domain = C->tf()->domain_cc(); 261 uint argcnt = domain->cnt() - TypeFunc::Parms; 262 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 263 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 264 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt ); 265 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt ); 266 uint i; 267 for( i = 0; i<argcnt; i++ ) { 268 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 269 } 270 271 // Pass array of ideal registers and length to USER code (from the AD file) 272 // that will convert this to an array of register numbers. 273 const StartNode *start = C->start(); 274 start->calling_convention( sig_bt, vm_parm_regs, argcnt ); 275 #ifdef ASSERT 276 // Sanity check users' calling convention. Real handy while trying to 277 // get the initial port correct. 278 { for (uint i = 0; i<argcnt; i++) { 279 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 280 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" ); 281 _parm_regs[i].set_bad(); 282 continue; 283 } 284 VMReg parm_reg = vm_parm_regs[i].first(); 285 assert(parm_reg->is_valid(), "invalid arg?"); 286 if (parm_reg->is_reg()) { 287 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg); 288 assert(can_be_java_arg(opto_parm_reg) || 289 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) || 290 opto_parm_reg == inline_cache_reg(), 291 "parameters in register must be preserved by runtime stubs"); 292 } 293 for (uint j = 0; j < i; j++) { 294 assert(parm_reg != vm_parm_regs[j].first(), 295 "calling conv. must produce distinct regs"); 296 } 297 } 298 } 299 #endif 300 301 // Do some initial frame layout. 302 303 // Compute the old incoming SP (may be called FP) as 304 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2. 305 _old_SP = C->compute_old_SP(); 306 assert( is_even(_old_SP), "must be even" ); 307 308 // Compute highest incoming stack argument as 309 // _old_SP + out_preserve_stack_slots + incoming argument size. 310 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 311 assert( is_even(_in_arg_limit), "out_preserve must be even" ); 312 for( i = 0; i < argcnt; i++ ) { 313 // Permit args to have no register 314 _calling_convention_mask[i].Clear(); 315 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 316 _parm_regs[i].set_bad(); 317 continue; 318 } 319 // calling_convention returns stack arguments as a count of 320 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to 321 // the allocators point of view, taking into account all the 322 // preserve area, locks & pad2. 323 324 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first()); 325 if (C->failing()) { 326 return; 327 } 328 if( OptoReg::is_valid(reg1)) 329 _calling_convention_mask[i].Insert(reg1); 330 331 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second()); 332 if (C->failing()) { 333 return; 334 } 335 if( OptoReg::is_valid(reg2)) 336 _calling_convention_mask[i].Insert(reg2); 337 338 // Saved biased stack-slot register number 339 _parm_regs[i].set_pair(reg2, reg1); 340 } 341 342 // Finally, make sure the incoming arguments take up an even number of 343 // words, in case the arguments or locals need to contain doubleword stack 344 // slots. The rest of the system assumes that stack slot pairs (in 345 // particular, in the spill area) which look aligned will in fact be 346 // aligned relative to the stack pointer in the target machine. Double 347 // stack slots will always be allocated aligned. 348 _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong)); 349 350 // Compute highest outgoing stack argument as 351 // _new_SP + out_preserve_stack_slots + max(outgoing argument size). 352 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 353 assert( is_even(_out_arg_limit), "out_preserve must be even" ); 354 355 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) { 356 // the compiler cannot represent this method's calling sequence 357 // Bailout. We do not have space to represent all arguments. 358 C->record_method_not_compilable("must be able to represent all call arguments in reg mask"); 359 } 360 361 if (C->failing()) return; // bailed out on incoming arg failure 362 363 // --------------- 364 // Collect roots of matcher trees. Every node for which 365 // _shared[_idx] is cleared is guaranteed to not be shared, and thus 366 // can be a valid interior of some tree. 367 find_shared( C->root() ); 368 find_shared( C->top() ); 369 370 C->print_method(PHASE_BEFORE_MATCHING, 1); 371 372 // Create new ideal node ConP #null even if it does exist in old space 373 // to avoid false sharing if the corresponding mach node is not used. 374 // The corresponding mach node is only used in rare cases for derived 375 // pointers. 376 Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR); 377 378 // Swap out to old-space; emptying new-space 379 Arena* old = C->swap_old_and_new(); 380 381 // Save debug and profile information for nodes in old space: 382 _old_node_note_array = C->node_note_array(); 383 if (_old_node_note_array != nullptr) { 384 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*> 385 (C->comp_arena(), _old_node_note_array->length(), 386 0, nullptr)); 387 } 388 389 // Pre-size the new_node table to avoid the need for range checks. 390 grow_new_node_array(C->unique()); 391 392 // Reset node counter so MachNodes start with _idx at 0 393 int live_nodes = C->live_nodes(); 394 C->set_unique(0); 395 C->reset_dead_node_list(); 396 397 // Recursively match trees from old space into new space. 398 // Correct leaves of new-space Nodes; they point to old-space. 399 _visited.clear(); 400 Node* const n = xform(C->top(), live_nodes); 401 if (C->failing()) return; 402 C->set_cached_top_node(n); 403 if (!C->failing()) { 404 Node* xroot = xform( C->root(), 1 ); 405 if (C->failing()) return; 406 if (xroot == nullptr) { 407 Matcher::soft_match_failure(); // recursive matching process failed 408 assert(false, "instruction match failed"); 409 C->record_method_not_compilable("instruction match failed"); 410 } else { 411 // During matching shared constants were attached to C->root() 412 // because xroot wasn't available yet, so transfer the uses to 413 // the xroot. 414 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) { 415 Node* n = C->root()->fast_out(j); 416 if (C->node_arena()->contains(n)) { 417 assert(n->in(0) == C->root(), "should be control user"); 418 n->set_req(0, xroot); 419 --j; 420 --jmax; 421 } 422 } 423 424 // Generate new mach node for ConP #null 425 assert(new_ideal_null != nullptr, "sanity"); 426 _mach_null = match_tree(new_ideal_null); 427 // Don't set control, it will confuse GCM since there are no uses. 428 // The control will be set when this node is used first time 429 // in find_base_for_derived(). 430 assert(_mach_null != nullptr || C->failure_is_artificial(), ""); // bailouts are handled below. 431 432 C->set_root(xroot->is_Root() ? xroot->as_Root() : nullptr); 433 434 #ifdef ASSERT 435 verify_new_nodes_only(xroot); 436 #endif 437 } 438 } 439 if (C->top() == nullptr || C->root() == nullptr) { 440 // New graph lost. This is due to a compilation failure we encountered earlier. 441 stringStream ss; 442 if (C->failure_reason() != nullptr) { 443 ss.print("graph lost: %s", C->failure_reason()); 444 } else { 445 assert(C->failure_reason() != nullptr, "graph lost: reason unknown"); 446 ss.print("graph lost: reason unknown"); 447 } 448 C->record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 449 } 450 if (C->failing()) { 451 // delete old; 452 old->destruct_contents(); 453 return; 454 } 455 assert( C->top(), "" ); 456 assert( C->root(), "" ); 457 validate_null_checks(); 458 459 // Now smoke old-space 460 NOT_DEBUG( old->destruct_contents() ); 461 462 // ------------------------ 463 // Set up save-on-entry registers. 464 Fixup_Save_On_Entry( ); 465 466 { // Cleanup mach IR after selection phase is over. 467 Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]); 468 do_postselect_cleanup(); 469 if (C->failing()) return; 470 assert(verify_after_postselect_cleanup(), ""); 471 } 472 } 473 474 //------------------------------Fixup_Save_On_Entry---------------------------- 475 // The stated purpose of this routine is to take care of save-on-entry 476 // registers. However, the overall goal of the Match phase is to convert into 477 // machine-specific instructions which have RegMasks to guide allocation. 478 // So what this procedure really does is put a valid RegMask on each input 479 // to the machine-specific variations of all Return, TailCall and Halt 480 // instructions. It also adds edgs to define the save-on-entry values (and of 481 // course gives them a mask). 482 483 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) { 484 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size ); 485 // Do all the pre-defined register masks 486 rms[TypeFunc::Control ] = RegMask::Empty; 487 rms[TypeFunc::I_O ] = RegMask::Empty; 488 rms[TypeFunc::Memory ] = RegMask::Empty; 489 rms[TypeFunc::ReturnAdr] = ret_adr; 490 rms[TypeFunc::FramePtr ] = fp; 491 return rms; 492 } 493 494 int Matcher::scalable_predicate_reg_slots() { 495 assert(Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector(), 496 "scalable predicate vector should be supported"); 497 int vector_reg_bit_size = Matcher::scalable_vector_reg_size(T_BYTE) << LogBitsPerByte; 498 // We assume each predicate register is one-eighth of the size of 499 // scalable vector register, one mask bit per vector byte. 500 int predicate_reg_bit_size = vector_reg_bit_size >> 3; 501 // Compute number of slots which is required when scalable predicate 502 // register is spilled. E.g. if scalable vector register is 640 bits, 503 // predicate register is 80 bits, which is 2.5 * slots. 504 // We will round up the slot number to power of 2, which is required 505 // by find_first_set(). 506 int slots = predicate_reg_bit_size & (BitsPerInt - 1) 507 ? (predicate_reg_bit_size >> LogBitsPerInt) + 1 508 : predicate_reg_bit_size >> LogBitsPerInt; 509 return round_up_power_of_2(slots); 510 } 511 512 #define NOF_STACK_MASKS (3*13) 513 514 // Create the initial stack mask used by values spilling to the stack. 515 // Disallow any debug info in outgoing argument areas by setting the 516 // initial mask accordingly. 517 void Matcher::init_first_stack_mask() { 518 519 // Allocate storage for spill masks as masks for the appropriate load type. 520 RegMask *rms = (RegMask*)C->comp_arena()->AmallocWords(sizeof(RegMask) * NOF_STACK_MASKS); 521 522 // Initialize empty placeholder masks into the newly allocated arena 523 for (int i = 0; i < NOF_STACK_MASKS; i++) { 524 new (rms + i) RegMask(); 525 } 526 527 idealreg2spillmask [Op_RegN] = &rms[0]; 528 idealreg2spillmask [Op_RegI] = &rms[1]; 529 idealreg2spillmask [Op_RegL] = &rms[2]; 530 idealreg2spillmask [Op_RegF] = &rms[3]; 531 idealreg2spillmask [Op_RegD] = &rms[4]; 532 idealreg2spillmask [Op_RegP] = &rms[5]; 533 534 idealreg2debugmask [Op_RegN] = &rms[6]; 535 idealreg2debugmask [Op_RegI] = &rms[7]; 536 idealreg2debugmask [Op_RegL] = &rms[8]; 537 idealreg2debugmask [Op_RegF] = &rms[9]; 538 idealreg2debugmask [Op_RegD] = &rms[10]; 539 idealreg2debugmask [Op_RegP] = &rms[11]; 540 541 idealreg2mhdebugmask[Op_RegN] = &rms[12]; 542 idealreg2mhdebugmask[Op_RegI] = &rms[13]; 543 idealreg2mhdebugmask[Op_RegL] = &rms[14]; 544 idealreg2mhdebugmask[Op_RegF] = &rms[15]; 545 idealreg2mhdebugmask[Op_RegD] = &rms[16]; 546 idealreg2mhdebugmask[Op_RegP] = &rms[17]; 547 548 idealreg2spillmask [Op_VecA] = &rms[18]; 549 idealreg2spillmask [Op_VecS] = &rms[19]; 550 idealreg2spillmask [Op_VecD] = &rms[20]; 551 idealreg2spillmask [Op_VecX] = &rms[21]; 552 idealreg2spillmask [Op_VecY] = &rms[22]; 553 idealreg2spillmask [Op_VecZ] = &rms[23]; 554 555 idealreg2debugmask [Op_VecA] = &rms[24]; 556 idealreg2debugmask [Op_VecS] = &rms[25]; 557 idealreg2debugmask [Op_VecD] = &rms[26]; 558 idealreg2debugmask [Op_VecX] = &rms[27]; 559 idealreg2debugmask [Op_VecY] = &rms[28]; 560 idealreg2debugmask [Op_VecZ] = &rms[29]; 561 562 idealreg2mhdebugmask[Op_VecA] = &rms[30]; 563 idealreg2mhdebugmask[Op_VecS] = &rms[31]; 564 idealreg2mhdebugmask[Op_VecD] = &rms[32]; 565 idealreg2mhdebugmask[Op_VecX] = &rms[33]; 566 idealreg2mhdebugmask[Op_VecY] = &rms[34]; 567 idealreg2mhdebugmask[Op_VecZ] = &rms[35]; 568 569 idealreg2spillmask [Op_RegVectMask] = &rms[36]; 570 idealreg2debugmask [Op_RegVectMask] = &rms[37]; 571 idealreg2mhdebugmask[Op_RegVectMask] = &rms[38]; 572 573 OptoReg::Name i; 574 575 // At first, start with the empty mask 576 C->FIRST_STACK_mask().Clear(); 577 578 // Add in the incoming argument area 579 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 580 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) { 581 C->FIRST_STACK_mask().Insert(i); 582 } 583 584 // Add in all bits past the outgoing argument area 585 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)), 586 "must be able to represent all call arguments in reg mask"); 587 OptoReg::Name init = _out_arg_limit; 588 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) { 589 C->FIRST_STACK_mask().Insert(i); 590 } 591 // Finally, set the "infinite stack" bit. 592 C->FIRST_STACK_mask().set_AllStack(); 593 594 // Make spill masks. Registers for their class, plus FIRST_STACK_mask. 595 RegMask aligned_stack_mask = C->FIRST_STACK_mask(); 596 // Keep spill masks aligned. 597 aligned_stack_mask.clear_to_pairs(); 598 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 599 RegMask scalable_stack_mask = aligned_stack_mask; 600 601 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; 602 #ifdef _LP64 603 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN]; 604 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask()); 605 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask); 606 #else 607 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask()); 608 #endif 609 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI]; 610 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask()); 611 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; 612 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask); 613 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; 614 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask()); 615 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; 616 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask); 617 618 if (Matcher::has_predicated_vectors()) { 619 *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; 620 idealreg2spillmask[Op_RegVectMask]->OR(aligned_stack_mask); 621 } else { 622 *idealreg2spillmask[Op_RegVectMask] = RegMask::Empty; 623 } 624 625 if (Matcher::vector_size_supported(T_BYTE,4)) { 626 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS]; 627 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask()); 628 } else { 629 *idealreg2spillmask[Op_VecS] = RegMask::Empty; 630 } 631 632 if (Matcher::vector_size_supported(T_FLOAT,2)) { 633 // For VecD we need dual alignment and 8 bytes (2 slots) for spills. 634 // RA guarantees such alignment since it is needed for Double and Long values. 635 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD]; 636 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask); 637 } else { 638 *idealreg2spillmask[Op_VecD] = RegMask::Empty; 639 } 640 641 if (Matcher::vector_size_supported(T_FLOAT,4)) { 642 // For VecX we need quadro alignment and 16 bytes (4 slots) for spills. 643 // 644 // RA can use input arguments stack slots for spills but until RA 645 // we don't know frame size and offset of input arg stack slots. 646 // 647 // Exclude last input arg stack slots to avoid spilling vectors there 648 // otherwise vector spills could stomp over stack slots in caller frame. 649 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 650 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) { 651 aligned_stack_mask.Remove(in); 652 in = OptoReg::add(in, -1); 653 } 654 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX); 655 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 656 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX]; 657 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask); 658 } else { 659 *idealreg2spillmask[Op_VecX] = RegMask::Empty; 660 } 661 662 if (Matcher::vector_size_supported(T_FLOAT,8)) { 663 // For VecY we need octo alignment and 32 bytes (8 slots) for spills. 664 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 665 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) { 666 aligned_stack_mask.Remove(in); 667 in = OptoReg::add(in, -1); 668 } 669 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY); 670 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 671 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY]; 672 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask); 673 } else { 674 *idealreg2spillmask[Op_VecY] = RegMask::Empty; 675 } 676 677 if (Matcher::vector_size_supported(T_FLOAT,16)) { 678 // For VecZ we need enough alignment and 64 bytes (16 slots) for spills. 679 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 680 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) { 681 aligned_stack_mask.Remove(in); 682 in = OptoReg::add(in, -1); 683 } 684 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ); 685 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 686 *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ]; 687 idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask); 688 } else { 689 *idealreg2spillmask[Op_VecZ] = RegMask::Empty; 690 } 691 692 if (Matcher::supports_scalable_vector()) { 693 int k = 1; 694 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 695 if (Matcher::has_predicated_vectors()) { 696 // Exclude last input arg stack slots to avoid spilling vector register there, 697 // otherwise RegVectMask spills could stomp over stack slots in caller frame. 698 for (; (in >= init_in) && (k < scalable_predicate_reg_slots()); k++) { 699 scalable_stack_mask.Remove(in); 700 in = OptoReg::add(in, -1); 701 } 702 703 // For RegVectMask 704 scalable_stack_mask.clear_to_sets(scalable_predicate_reg_slots()); 705 assert(scalable_stack_mask.is_AllStack(), "should be infinite stack"); 706 *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; 707 idealreg2spillmask[Op_RegVectMask]->OR(scalable_stack_mask); 708 } 709 710 // Exclude last input arg stack slots to avoid spilling vector register there, 711 // otherwise vector spills could stomp over stack slots in caller frame. 712 for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) { 713 scalable_stack_mask.Remove(in); 714 in = OptoReg::add(in, -1); 715 } 716 717 // For VecA 718 scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA); 719 assert(scalable_stack_mask.is_AllStack(), "should be infinite stack"); 720 *idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA]; 721 idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask); 722 } else { 723 *idealreg2spillmask[Op_VecA] = RegMask::Empty; 724 } 725 726 if (UseFPUForSpilling) { 727 // This mask logic assumes that the spill operations are 728 // symmetric and that the registers involved are the same size. 729 // On sparc for instance we may have to use 64 bit moves will 730 // kill 2 registers when used with F0-F31. 731 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]); 732 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]); 733 #ifdef _LP64 734 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]); 735 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 736 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 737 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]); 738 #else 739 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]); 740 #ifdef ARM 741 // ARM has support for moving 64bit values between a pair of 742 // integer registers and a double register 743 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 744 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 745 #endif 746 #endif 747 } 748 749 // Make up debug masks. Any spill slot plus callee-save (SOE) registers. 750 // Caller-save (SOC, AS) registers are assumed to be trashable by the various 751 // inline-cache fixup routines. 752 *idealreg2debugmask [Op_RegN] = *idealreg2spillmask[Op_RegN]; 753 *idealreg2debugmask [Op_RegI] = *idealreg2spillmask[Op_RegI]; 754 *idealreg2debugmask [Op_RegL] = *idealreg2spillmask[Op_RegL]; 755 *idealreg2debugmask [Op_RegF] = *idealreg2spillmask[Op_RegF]; 756 *idealreg2debugmask [Op_RegD] = *idealreg2spillmask[Op_RegD]; 757 *idealreg2debugmask [Op_RegP] = *idealreg2spillmask[Op_RegP]; 758 *idealreg2debugmask [Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; 759 760 *idealreg2debugmask [Op_VecA] = *idealreg2spillmask[Op_VecA]; 761 *idealreg2debugmask [Op_VecS] = *idealreg2spillmask[Op_VecS]; 762 *idealreg2debugmask [Op_VecD] = *idealreg2spillmask[Op_VecD]; 763 *idealreg2debugmask [Op_VecX] = *idealreg2spillmask[Op_VecX]; 764 *idealreg2debugmask [Op_VecY] = *idealreg2spillmask[Op_VecY]; 765 *idealreg2debugmask [Op_VecZ] = *idealreg2spillmask[Op_VecZ]; 766 767 *idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN]; 768 *idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI]; 769 *idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL]; 770 *idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF]; 771 *idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD]; 772 *idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP]; 773 *idealreg2mhdebugmask[Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; 774 775 *idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA]; 776 *idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS]; 777 *idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD]; 778 *idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX]; 779 *idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY]; 780 *idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ]; 781 782 // Prevent stub compilations from attempting to reference 783 // callee-saved (SOE) registers from debug info 784 bool exclude_soe = !Compile::current()->is_method_compilation(); 785 RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask; 786 RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask; 787 788 idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask); 789 idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask); 790 idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask); 791 idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask); 792 idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask); 793 idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask); 794 idealreg2debugmask[Op_RegVectMask]->SUBTRACT(*caller_save_mask); 795 796 idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask); 797 idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask); 798 idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask); 799 idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask); 800 idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask); 801 idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask); 802 803 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask); 804 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask); 805 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask); 806 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask); 807 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask); 808 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask); 809 idealreg2mhdebugmask[Op_RegVectMask]->SUBTRACT(*mh_caller_save_mask); 810 811 idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask); 812 idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask); 813 idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask); 814 idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask); 815 idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask); 816 idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask); 817 } 818 819 //---------------------------is_save_on_entry---------------------------------- 820 bool Matcher::is_save_on_entry(int reg) { 821 return 822 _register_save_policy[reg] == 'E' || 823 _register_save_policy[reg] == 'A'; // Save-on-entry register? 824 } 825 826 //---------------------------Fixup_Save_On_Entry------------------------------- 827 void Matcher::Fixup_Save_On_Entry( ) { 828 init_first_stack_mask(); 829 830 Node *root = C->root(); // Short name for root 831 // Count number of save-on-entry registers. 832 uint soe_cnt = number_of_saved_registers(); 833 uint i; 834 835 // Find the procedure Start Node 836 StartNode *start = C->start(); 837 assert( start, "Expect a start node" ); 838 839 // Input RegMask array shared by all Returns. 840 // The type for doubles and longs has a count of 2, but 841 // there is only 1 returned value 842 uint ret_edge_cnt = C->tf()->range_cc()->cnt(); 843 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 844 for (i = TypeFunc::Parms; i < ret_edge_cnt; i++) { 845 ret_rms[i] = _return_values_mask[i-TypeFunc::Parms]; 846 } 847 848 // Input RegMask array shared by all ForwardExceptions 849 uint forw_exc_edge_cnt = TypeFunc::Parms; 850 RegMask* forw_exc_rms = init_input_masks( forw_exc_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 851 852 // Input RegMask array shared by all Rethrows. 853 uint reth_edge_cnt = TypeFunc::Parms+1; 854 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 855 // Rethrow takes exception oop only, but in the argument 0 slot. 856 OptoReg::Name reg = find_receiver(); 857 if (reg >= 0) { 858 reth_rms[TypeFunc::Parms] = mreg2regmask[reg]; 859 #ifdef _LP64 860 // Need two slots for ptrs in 64-bit land 861 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1)); 862 #endif 863 } 864 865 // Input RegMask array shared by all TailCalls 866 uint tail_call_edge_cnt = TypeFunc::Parms+2; 867 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 868 869 // Input RegMask array shared by all TailJumps 870 uint tail_jump_edge_cnt = TypeFunc::Parms+2; 871 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 872 873 // TailCalls have 2 returned values (target & moop), whose masks come 874 // from the usual MachNode/MachOper mechanism. Find a sample 875 // TailCall to extract these masks and put the correct masks into 876 // the tail_call_rms array. 877 for( i=1; i < root->req(); i++ ) { 878 MachReturnNode *m = root->in(i)->as_MachReturn(); 879 if( m->ideal_Opcode() == Op_TailCall ) { 880 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 881 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 882 break; 883 } 884 } 885 886 // TailJumps have 2 returned values (target & ex_oop), whose masks come 887 // from the usual MachNode/MachOper mechanism. Find a sample 888 // TailJump to extract these masks and put the correct masks into 889 // the tail_jump_rms array. 890 for( i=1; i < root->req(); i++ ) { 891 MachReturnNode *m = root->in(i)->as_MachReturn(); 892 if( m->ideal_Opcode() == Op_TailJump ) { 893 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 894 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 895 break; 896 } 897 } 898 899 // Input RegMask array shared by all Halts 900 uint halt_edge_cnt = TypeFunc::Parms; 901 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 902 903 // Capture the return input masks into each exit flavor 904 for( i=1; i < root->req(); i++ ) { 905 MachReturnNode *exit = root->in(i)->as_MachReturn(); 906 switch( exit->ideal_Opcode() ) { 907 case Op_Return : exit->_in_rms = ret_rms; break; 908 case Op_Rethrow : exit->_in_rms = reth_rms; break; 909 case Op_TailCall : exit->_in_rms = tail_call_rms; break; 910 case Op_TailJump : exit->_in_rms = tail_jump_rms; break; 911 case Op_ForwardException: exit->_in_rms = forw_exc_rms; break; 912 case Op_Halt : exit->_in_rms = halt_rms; break; 913 default : ShouldNotReachHere(); 914 } 915 } 916 917 // Next unused projection number from Start. 918 int proj_cnt = C->tf()->domain_cc()->cnt(); 919 920 // Do all the save-on-entry registers. Make projections from Start for 921 // them, and give them a use at the exit points. To the allocator, they 922 // look like incoming register arguments. 923 for( i = 0; i < _last_Mach_Reg; i++ ) { 924 if( is_save_on_entry(i) ) { 925 926 // Add the save-on-entry to the mask array 927 ret_rms [ ret_edge_cnt] = mreg2regmask[i]; 928 reth_rms [ reth_edge_cnt] = mreg2regmask[i]; 929 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i]; 930 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i]; 931 forw_exc_rms [ forw_exc_edge_cnt] = mreg2regmask[i]; 932 // Halts need the SOE registers, but only in the stack as debug info. 933 // A just-prior uncommon-trap or deoptimization will use the SOE regs. 934 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]]; 935 936 Node *mproj; 937 938 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's 939 // into a single RegD. 940 if( (i&1) == 0 && 941 _register_save_type[i ] == Op_RegF && 942 _register_save_type[i+1] == Op_RegF && 943 is_save_on_entry(i+1) ) { 944 // Add other bit for double 945 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 946 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 947 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 948 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 949 forw_exc_rms [ forw_exc_edge_cnt].Insert(OptoReg::Name(i+1)); 950 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 951 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD ); 952 proj_cnt += 2; // Skip 2 for doubles 953 } 954 else if( (i&1) == 1 && // Else check for high half of double 955 _register_save_type[i-1] == Op_RegF && 956 _register_save_type[i ] == Op_RegF && 957 is_save_on_entry(i-1) ) { 958 ret_rms [ ret_edge_cnt] = RegMask::Empty; 959 reth_rms [ reth_edge_cnt] = RegMask::Empty; 960 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 961 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 962 forw_exc_rms [ forw_exc_edge_cnt] = RegMask::Empty; 963 halt_rms [ halt_edge_cnt] = RegMask::Empty; 964 mproj = C->top(); 965 } 966 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's 967 // into a single RegL. 968 else if( (i&1) == 0 && 969 _register_save_type[i ] == Op_RegI && 970 _register_save_type[i+1] == Op_RegI && 971 is_save_on_entry(i+1) ) { 972 // Add other bit for long 973 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 974 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 975 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 976 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 977 forw_exc_rms [ forw_exc_edge_cnt].Insert(OptoReg::Name(i+1)); 978 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 979 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL ); 980 proj_cnt += 2; // Skip 2 for longs 981 } 982 else if( (i&1) == 1 && // Else check for high half of long 983 _register_save_type[i-1] == Op_RegI && 984 _register_save_type[i ] == Op_RegI && 985 is_save_on_entry(i-1) ) { 986 ret_rms [ ret_edge_cnt] = RegMask::Empty; 987 reth_rms [ reth_edge_cnt] = RegMask::Empty; 988 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 989 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 990 forw_exc_rms [ forw_exc_edge_cnt] = RegMask::Empty; 991 halt_rms [ halt_edge_cnt] = RegMask::Empty; 992 mproj = C->top(); 993 } else { 994 // Make a projection for it off the Start 995 mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] ); 996 } 997 998 ret_edge_cnt ++; 999 reth_edge_cnt ++; 1000 tail_call_edge_cnt ++; 1001 tail_jump_edge_cnt ++; 1002 forw_exc_edge_cnt++; 1003 halt_edge_cnt ++; 1004 1005 // Add a use of the SOE register to all exit paths 1006 for (uint j=1; j < root->req(); j++) { 1007 root->in(j)->add_req(mproj); 1008 } 1009 } // End of if a save-on-entry register 1010 } // End of for all machine registers 1011 } 1012 1013 //------------------------------init_spill_mask-------------------------------- 1014 void Matcher::init_spill_mask( Node *ret ) { 1015 if( idealreg2regmask[Op_RegI] ) return; // One time only init 1016 1017 OptoReg::c_frame_pointer = c_frame_pointer(); 1018 c_frame_ptr_mask = c_frame_pointer(); 1019 #ifdef _LP64 1020 // pointers are twice as big 1021 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1)); 1022 #endif 1023 1024 // Start at OptoReg::stack0() 1025 STACK_ONLY_mask.Clear(); 1026 OptoReg::Name init = OptoReg::stack2reg(0); 1027 // STACK_ONLY_mask is all stack bits 1028 OptoReg::Name i; 1029 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) 1030 STACK_ONLY_mask.Insert(i); 1031 // Also set the "infinite stack" bit. 1032 STACK_ONLY_mask.set_AllStack(); 1033 1034 for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) { 1035 // Copy the register names over into the shared world. 1036 // SharedInfo::regName[i] = regName[i]; 1037 // Handy RegMasks per machine register 1038 mreg2regmask[i].Insert(i); 1039 1040 // Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks. 1041 if (_register_save_policy[i] == 'C' || 1042 _register_save_policy[i] == 'A') { 1043 caller_save_regmask.Insert(i); 1044 mh_caller_save_regmask.Insert(i); 1045 } 1046 // Exclude save-on-entry registers from debug masks for stub compilations. 1047 if (_register_save_policy[i] == 'C' || 1048 _register_save_policy[i] == 'A' || 1049 _register_save_policy[i] == 'E') { 1050 caller_save_regmask_exclude_soe.Insert(i); 1051 mh_caller_save_regmask_exclude_soe.Insert(i); 1052 } 1053 } 1054 1055 // Also exclude the register we use to save the SP for MethodHandle 1056 // invokes to from the corresponding MH debug masks 1057 const RegMask sp_save_mask = method_handle_invoke_SP_save_mask(); 1058 mh_caller_save_regmask.OR(sp_save_mask); 1059 mh_caller_save_regmask_exclude_soe.OR(sp_save_mask); 1060 1061 // Grab the Frame Pointer 1062 Node *fp = ret->in(TypeFunc::FramePtr); 1063 // Share frame pointer while making spill ops 1064 set_shared(fp); 1065 1066 // Get the ADLC notion of the right regmask, for each basic type. 1067 #ifdef _LP64 1068 idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret); 1069 #endif 1070 idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret); 1071 idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret); 1072 idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret); 1073 idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret); 1074 idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret); 1075 idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret); 1076 idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret); 1077 idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret); 1078 idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret); 1079 idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret); 1080 idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret); 1081 idealreg2regmask[Op_RegVectMask] = regmask_for_ideal_register(Op_RegVectMask, ret); 1082 } 1083 1084 #ifdef ASSERT 1085 static void match_alias_type(Compile* C, Node* n, Node* m) { 1086 if (!VerifyAliases) return; // do not go looking for trouble by default 1087 const TypePtr* nat = n->adr_type(); 1088 const TypePtr* mat = m->adr_type(); 1089 int nidx = C->get_alias_index(nat); 1090 int midx = C->get_alias_index(mat); 1091 // Detune the assert for cases like (AndI 0xFF (LoadB p)). 1092 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) { 1093 for (uint i = 1; i < n->req(); i++) { 1094 Node* n1 = n->in(i); 1095 const TypePtr* n1at = n1->adr_type(); 1096 if (n1at != nullptr) { 1097 nat = n1at; 1098 nidx = C->get_alias_index(n1at); 1099 } 1100 } 1101 } 1102 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases: 1103 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) { 1104 switch (n->Opcode()) { 1105 case Op_PrefetchAllocation: 1106 nidx = Compile::AliasIdxRaw; 1107 nat = TypeRawPtr::BOTTOM; 1108 break; 1109 } 1110 } 1111 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) { 1112 switch (n->Opcode()) { 1113 case Op_ClearArray: 1114 midx = Compile::AliasIdxRaw; 1115 mat = TypeRawPtr::BOTTOM; 1116 break; 1117 } 1118 } 1119 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) { 1120 switch (n->Opcode()) { 1121 case Op_Return: 1122 case Op_Rethrow: 1123 case Op_Halt: 1124 case Op_TailCall: 1125 case Op_TailJump: 1126 case Op_ForwardException: 1127 nidx = Compile::AliasIdxBot; 1128 nat = TypePtr::BOTTOM; 1129 break; 1130 } 1131 } 1132 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) { 1133 switch (n->Opcode()) { 1134 case Op_StrComp: 1135 case Op_StrEquals: 1136 case Op_StrIndexOf: 1137 case Op_StrIndexOfChar: 1138 case Op_AryEq: 1139 case Op_VectorizedHashCode: 1140 case Op_CountPositives: 1141 case Op_MemBarVolatile: 1142 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type? 1143 case Op_StrInflatedCopy: 1144 case Op_StrCompressedCopy: 1145 case Op_OnSpinWait: 1146 case Op_EncodeISOArray: 1147 nidx = Compile::AliasIdxTop; 1148 nat = nullptr; 1149 break; 1150 } 1151 } 1152 if (nidx != midx) { 1153 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) { 1154 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx); 1155 n->dump(); 1156 m->dump(); 1157 } 1158 assert(C->subsume_loads() && C->must_alias(nat, midx), 1159 "must not lose alias info when matching"); 1160 } 1161 } 1162 #endif 1163 1164 //------------------------------xform------------------------------------------ 1165 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine 1166 // Node in new-space. Given a new-space Node, recursively walk his children. 1167 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; } 1168 Node *Matcher::xform( Node *n, int max_stack ) { 1169 // Use one stack to keep both: child's node/state and parent's node/index 1170 MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2 1171 mstack.push(n, Visit, nullptr, -1); // set null as parent to indicate root 1172 while (mstack.is_nonempty()) { 1173 C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions"); 1174 if (C->failing()) return nullptr; 1175 n = mstack.node(); // Leave node on stack 1176 Node_State nstate = mstack.state(); 1177 if (nstate == Visit) { 1178 mstack.set_state(Post_Visit); 1179 Node *oldn = n; 1180 // Old-space or new-space check 1181 if (!C->node_arena()->contains(n)) { 1182 // Old space! 1183 Node* m; 1184 if (has_new_node(n)) { // Not yet Label/Reduced 1185 m = new_node(n); 1186 } else { 1187 if (!is_dontcare(n)) { // Matcher can match this guy 1188 // Calls match special. They match alone with no children. 1189 // Their children, the incoming arguments, match normally. 1190 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n); 1191 if (C->failing()) return nullptr; 1192 if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; } 1193 if (n->is_MemBar()) { 1194 m->as_MachMemBar()->set_adr_type(n->adr_type()); 1195 } 1196 } else { // Nothing the matcher cares about 1197 if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) { // Projections? 1198 // Convert to machine-dependent projection 1199 RegMask* mask = nullptr; 1200 if (n->in(0)->is_Call() && n->in(0)->as_Call()->tf()->returns_inline_type_as_fields()) { 1201 mask = return_values_mask(n->in(0)->as_Call()->tf()); 1202 } 1203 m = n->in(0)->as_Multi()->match(n->as_Proj(), this, mask); 1204 NOT_PRODUCT(record_new2old(m, n);) 1205 if (m->in(0) != nullptr) // m might be top 1206 collect_null_checks(m, n); 1207 } else { // Else just a regular 'ol guy 1208 m = n->clone(); // So just clone into new-space 1209 NOT_PRODUCT(record_new2old(m, n);) 1210 // Def-Use edges will be added incrementally as Uses 1211 // of this node are matched. 1212 assert(m->outcnt() == 0, "no Uses of this clone yet"); 1213 } 1214 } 1215 1216 set_new_node(n, m); // Map old to new 1217 if (_old_node_note_array != nullptr) { 1218 Node_Notes* nn = C->locate_node_notes(_old_node_note_array, 1219 n->_idx); 1220 C->set_node_notes_at(m->_idx, nn); 1221 } 1222 debug_only(match_alias_type(C, n, m)); 1223 } 1224 n = m; // n is now a new-space node 1225 mstack.set_node(n); 1226 } 1227 1228 // New space! 1229 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty()) 1230 1231 int i; 1232 // Put precedence edges on stack first (match them last). 1233 for (i = oldn->req(); (uint)i < oldn->len(); i++) { 1234 Node *m = oldn->in(i); 1235 if (m == nullptr) break; 1236 // set -1 to call add_prec() instead of set_req() during Step1 1237 mstack.push(m, Visit, n, -1); 1238 } 1239 1240 // Handle precedence edges for interior nodes 1241 for (i = n->len()-1; (uint)i >= n->req(); i--) { 1242 Node *m = n->in(i); 1243 if (m == nullptr || C->node_arena()->contains(m)) continue; 1244 n->rm_prec(i); 1245 // set -1 to call add_prec() instead of set_req() during Step1 1246 mstack.push(m, Visit, n, -1); 1247 } 1248 1249 // For constant debug info, I'd rather have unmatched constants. 1250 int cnt = n->req(); 1251 JVMState* jvms = n->jvms(); 1252 int debug_cnt = jvms ? jvms->debug_start() : cnt; 1253 1254 // Now do only debug info. Clone constants rather than matching. 1255 // Constants are represented directly in the debug info without 1256 // the need for executable machine instructions. 1257 // Monitor boxes are also represented directly. 1258 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do 1259 Node *m = n->in(i); // Get input 1260 int op = m->Opcode(); 1261 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites"); 1262 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass || 1263 op == Op_ConF || op == Op_ConD || op == Op_ConL 1264 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp 1265 ) { 1266 m = m->clone(); 1267 NOT_PRODUCT(record_new2old(m, n)); 1268 mstack.push(m, Post_Visit, n, i); // Don't need to visit 1269 mstack.push(m->in(0), Visit, m, 0); 1270 } else { 1271 mstack.push(m, Visit, n, i); 1272 } 1273 } 1274 1275 // And now walk his children, and convert his inputs to new-space. 1276 for( ; i >= 0; --i ) { // For all normal inputs do 1277 Node *m = n->in(i); // Get input 1278 if(m != nullptr) 1279 mstack.push(m, Visit, n, i); 1280 } 1281 1282 } 1283 else if (nstate == Post_Visit) { 1284 // Set xformed input 1285 Node *p = mstack.parent(); 1286 if (p != nullptr) { // root doesn't have parent 1287 int i = (int)mstack.index(); 1288 if (i >= 0) 1289 p->set_req(i, n); // required input 1290 else if (i == -1) 1291 p->add_prec(n); // precedence input 1292 else 1293 ShouldNotReachHere(); 1294 } 1295 mstack.pop(); // remove processed node from stack 1296 } 1297 else { 1298 ShouldNotReachHere(); 1299 } 1300 } // while (mstack.is_nonempty()) 1301 return n; // Return new-space Node 1302 } 1303 1304 //------------------------------warp_outgoing_stk_arg------------------------ 1305 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) { 1306 // Convert outgoing argument location to a pre-biased stack offset 1307 if (reg->is_stack()) { 1308 OptoReg::Name warped = reg->reg2stack(); 1309 // Adjust the stack slot offset to be the register number used 1310 // by the allocator. 1311 warped = OptoReg::add(begin_out_arg_area, warped); 1312 // Keep track of the largest numbered stack slot used for an arg. 1313 // Largest used slot per call-site indicates the amount of stack 1314 // that is killed by the call. 1315 if( warped >= out_arg_limit_per_call ) 1316 out_arg_limit_per_call = OptoReg::add(warped,1); 1317 if (!RegMask::can_represent_arg(warped)) { 1318 // Bailout. For example not enough space on stack for all arguments. Happens for methods with too many arguments. 1319 C->record_method_not_compilable("unsupported calling sequence"); 1320 return OptoReg::Bad; 1321 } 1322 return warped; 1323 } 1324 return OptoReg::as_OptoReg(reg); 1325 } 1326 1327 1328 //------------------------------match_sfpt------------------------------------- 1329 // Helper function to match call instructions. Calls match special. 1330 // They match alone with no children. Their children, the incoming 1331 // arguments, match normally. 1332 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) { 1333 MachSafePointNode *msfpt = nullptr; 1334 MachCallNode *mcall = nullptr; 1335 uint cnt; 1336 // Split out case for SafePoint vs Call 1337 CallNode *call; 1338 const TypeTuple *domain; 1339 ciMethod* method = nullptr; 1340 bool is_method_handle_invoke = false; // for special kill effects 1341 if( sfpt->is_Call() ) { 1342 call = sfpt->as_Call(); 1343 domain = call->tf()->domain_cc(); 1344 cnt = domain->cnt(); 1345 1346 // Match just the call, nothing else 1347 MachNode *m = match_tree(call); 1348 if (C->failing()) return nullptr; 1349 if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; } 1350 1351 // Copy data from the Ideal SafePoint to the machine version 1352 mcall = m->as_MachCall(); 1353 1354 mcall->set_tf( call->tf()); 1355 mcall->set_entry_point( call->entry_point()); 1356 mcall->set_cnt( call->cnt()); 1357 mcall->set_guaranteed_safepoint(call->guaranteed_safepoint()); 1358 1359 if( mcall->is_MachCallJava() ) { 1360 MachCallJavaNode *mcall_java = mcall->as_MachCallJava(); 1361 const CallJavaNode *call_java = call->as_CallJava(); 1362 assert(call_java->validate_symbolic_info(), "inconsistent info"); 1363 method = call_java->method(); 1364 mcall_java->_method = method; 1365 mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); 1366 is_method_handle_invoke = call_java->is_method_handle_invoke(); 1367 mcall_java->_method_handle_invoke = is_method_handle_invoke; 1368 mcall_java->_override_symbolic_info = call_java->override_symbolic_info(); 1369 mcall_java->_arg_escape = call_java->arg_escape(); 1370 if (is_method_handle_invoke) { 1371 C->set_has_method_handle_invokes(true); 1372 } 1373 if( mcall_java->is_MachCallStaticJava() ) 1374 mcall_java->as_MachCallStaticJava()->_name = 1375 call_java->as_CallStaticJava()->_name; 1376 if( mcall_java->is_MachCallDynamicJava() ) 1377 mcall_java->as_MachCallDynamicJava()->_vtable_index = 1378 call_java->as_CallDynamicJava()->_vtable_index; 1379 } 1380 else if( mcall->is_MachCallRuntime() ) { 1381 MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime(); 1382 mach_call_rt->_name = call->as_CallRuntime()->_name; 1383 mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP(); 1384 } 1385 msfpt = mcall; 1386 } 1387 // This is a non-call safepoint 1388 else { 1389 call = nullptr; 1390 domain = nullptr; 1391 MachNode *mn = match_tree(sfpt); 1392 if (C->failing()) return nullptr; 1393 msfpt = mn->as_MachSafePoint(); 1394 cnt = TypeFunc::Parms; 1395 } 1396 msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope(); 1397 1398 // Advertise the correct memory effects (for anti-dependence computation). 1399 msfpt->set_adr_type(sfpt->adr_type()); 1400 1401 // Allocate a private array of RegMasks. These RegMasks are not shared. 1402 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt ); 1403 // Empty them all. 1404 for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask(); 1405 1406 // Do all the pre-defined non-Empty register masks 1407 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask; 1408 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask; 1409 1410 // Place first outgoing argument can possibly be put. 1411 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 1412 assert( is_even(begin_out_arg_area), "" ); 1413 // Compute max outgoing register number per call site. 1414 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area; 1415 // Calls to C may hammer extra stack slots above and beyond any arguments. 1416 // These are usually backing store for register arguments for varargs. 1417 if( call != nullptr && call->is_CallRuntime() ) 1418 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed()); 1419 1420 1421 // Do the normal argument list (parameters) register masks 1422 // Null entry point is a special cast where the target of the call 1423 // is in a register. 1424 int adj = (call != nullptr && call->entry_point() == nullptr) ? 1 : 0; 1425 int argcnt = cnt - TypeFunc::Parms - adj; 1426 if( argcnt > 0 ) { // Skip it all if we have no args 1427 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 1428 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 1429 int i; 1430 for( i = 0; i < argcnt; i++ ) { 1431 sig_bt[i] = domain->field_at(i+TypeFunc::Parms+adj)->basic_type(); 1432 } 1433 // V-call to pick proper calling convention 1434 call->calling_convention( sig_bt, parm_regs, argcnt ); 1435 1436 #ifdef ASSERT 1437 // Sanity check users' calling convention. Really handy during 1438 // the initial porting effort. Fairly expensive otherwise. 1439 { for (int i = 0; i<argcnt; i++) { 1440 if( !parm_regs[i].first()->is_valid() && 1441 !parm_regs[i].second()->is_valid() ) continue; 1442 VMReg reg1 = parm_regs[i].first(); 1443 VMReg reg2 = parm_regs[i].second(); 1444 for (int j = 0; j < i; j++) { 1445 if( !parm_regs[j].first()->is_valid() && 1446 !parm_regs[j].second()->is_valid() ) continue; 1447 VMReg reg3 = parm_regs[j].first(); 1448 VMReg reg4 = parm_regs[j].second(); 1449 if( !reg1->is_valid() ) { 1450 assert( !reg2->is_valid(), "valid halvsies" ); 1451 } else if( !reg3->is_valid() ) { 1452 assert( !reg4->is_valid(), "valid halvsies" ); 1453 } else { 1454 assert( reg1 != reg2, "calling conv. must produce distinct regs"); 1455 assert( reg1 != reg3, "calling conv. must produce distinct regs"); 1456 assert( reg1 != reg4, "calling conv. must produce distinct regs"); 1457 assert( reg2 != reg3, "calling conv. must produce distinct regs"); 1458 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs"); 1459 assert( reg3 != reg4, "calling conv. must produce distinct regs"); 1460 } 1461 } 1462 } 1463 } 1464 #endif 1465 1466 // Visit each argument. Compute its outgoing register mask. 1467 // Return results now can have 2 bits returned. 1468 // Compute max over all outgoing arguments both per call-site 1469 // and over the entire method. 1470 for( i = 0; i < argcnt; i++ ) { 1471 // Address of incoming argument mask to fill in 1472 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms+adj]; 1473 VMReg first = parm_regs[i].first(); 1474 VMReg second = parm_regs[i].second(); 1475 if(!first->is_valid() && 1476 !second->is_valid()) { 1477 continue; // Avoid Halves 1478 } 1479 // Handle case where arguments are in vector registers. 1480 if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) { 1481 OptoReg::Name reg_fst = OptoReg::as_OptoReg(first); 1482 OptoReg::Name reg_snd = OptoReg::as_OptoReg(second); 1483 assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd); 1484 for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) { 1485 rm->Insert(r); 1486 } 1487 } 1488 // Grab first register, adjust stack slots and insert in mask. 1489 OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call ); 1490 if (C->failing()) { 1491 return nullptr; 1492 } 1493 if (OptoReg::is_valid(reg1)) { 1494 rm->Insert( reg1 ); 1495 } 1496 // Grab second register (if any), adjust stack slots and insert in mask. 1497 OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call ); 1498 if (C->failing()) { 1499 return nullptr; 1500 } 1501 if (OptoReg::is_valid(reg2)) { 1502 rm->Insert( reg2 ); 1503 } 1504 } // End of for all arguments 1505 } 1506 1507 // Compute the max stack slot killed by any call. These will not be 1508 // available for debug info, and will be used to adjust FIRST_STACK_mask 1509 // after all call sites have been visited. 1510 if( _out_arg_limit < out_arg_limit_per_call) 1511 _out_arg_limit = out_arg_limit_per_call; 1512 1513 if (mcall) { 1514 // Kill the outgoing argument area, including any non-argument holes and 1515 // any legacy C-killed slots. Use Fat-Projections to do the killing. 1516 // Since the max-per-method covers the max-per-call-site and debug info 1517 // is excluded on the max-per-method basis, debug info cannot land in 1518 // this killed area. 1519 uint r_cnt = mcall->tf()->range_sig()->cnt(); 1520 MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj ); 1521 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) { 1522 // Bailout. We do not have space to represent all arguments. 1523 C->record_method_not_compilable("unsupported outgoing calling sequence"); 1524 } else { 1525 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) 1526 proj->_rout.Insert(OptoReg::Name(i)); 1527 } 1528 if (proj->_rout.is_NotEmpty()) { 1529 push_projection(proj); 1530 } 1531 } 1532 // Transfer the safepoint information from the call to the mcall 1533 // Move the JVMState list 1534 msfpt->set_jvms(sfpt->jvms()); 1535 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) { 1536 jvms->set_map(sfpt); 1537 } 1538 1539 // Debug inputs begin just after the last incoming parameter 1540 assert((mcall == nullptr) || (mcall->jvms() == nullptr) || 1541 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain_cc()->cnt()), ""); 1542 1543 // Add additional edges. 1544 if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) { 1545 // For these calls we can not add MachConstantBase in expand(), as the 1546 // ins are not complete then. 1547 msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node()); 1548 if (msfpt->jvms() && 1549 msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) { 1550 // We added an edge before jvms, so we must adapt the position of the ins. 1551 msfpt->jvms()->adapt_position(+1); 1552 } 1553 } 1554 1555 // Registers killed by the call are set in the local scheduling pass 1556 // of Global Code Motion. 1557 return msfpt; 1558 } 1559 1560 //---------------------------match_tree---------------------------------------- 1561 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part 1562 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for 1563 // making GotoNodes while building the CFG and in init_spill_mask() to identify 1564 // a Load's result RegMask for memoization in idealreg2regmask[] 1565 MachNode *Matcher::match_tree( const Node *n ) { 1566 assert( n->Opcode() != Op_Phi, "cannot match" ); 1567 assert( !n->is_block_start(), "cannot match" ); 1568 // Set the mark for all locally allocated State objects. 1569 // When this call returns, the _states_arena arena will be reset 1570 // freeing all State objects. 1571 ResourceMark rm( &_states_arena ); 1572 1573 LabelRootDepth = 0; 1574 1575 // StoreNodes require their Memory input to match any LoadNodes 1576 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ; 1577 #ifdef ASSERT 1578 Node* save_mem_node = _mem_node; 1579 _mem_node = n->is_Store() ? (Node*)n : nullptr; 1580 #endif 1581 // State object for root node of match tree 1582 // Allocate it on _states_arena - stack allocation can cause stack overflow. 1583 State *s = new (&_states_arena) State; 1584 s->_kids[0] = nullptr; 1585 s->_kids[1] = nullptr; 1586 s->_leaf = (Node*)n; 1587 // Label the input tree, allocating labels from top-level arena 1588 Node* root_mem = mem; 1589 Label_Root(n, s, n->in(0), root_mem); 1590 if (C->failing()) return nullptr; 1591 1592 // The minimum cost match for the whole tree is found at the root State 1593 uint mincost = max_juint; 1594 uint cost = max_juint; 1595 uint i; 1596 for (i = 0; i < NUM_OPERANDS; i++) { 1597 if (s->valid(i) && // valid entry and 1598 s->cost(i) < cost && // low cost and 1599 s->rule(i) >= NUM_OPERANDS) {// not an operand 1600 mincost = i; 1601 cost = s->cost(i); 1602 } 1603 } 1604 if (mincost == max_juint) { 1605 #ifndef PRODUCT 1606 tty->print("No matching rule for:"); 1607 s->dump(); 1608 #endif 1609 Matcher::soft_match_failure(); 1610 return nullptr; 1611 } 1612 // Reduce input tree based upon the state labels to machine Nodes 1613 MachNode *m = ReduceInst(s, s->rule(mincost), mem); 1614 // New-to-old mapping is done in ReduceInst, to cover complex instructions. 1615 NOT_PRODUCT(_old2new_map.map(n->_idx, m);) 1616 1617 // Add any Matcher-ignored edges 1618 uint cnt = n->req(); 1619 uint start = 1; 1620 if( mem != (Node*)1 ) start = MemNode::Memory+1; 1621 if( n->is_AddP() ) { 1622 assert( mem == (Node*)1, "" ); 1623 start = AddPNode::Base+1; 1624 } 1625 for( i = start; i < cnt; i++ ) { 1626 if( !n->match_edge(i) ) { 1627 if( i < m->req() ) 1628 m->ins_req( i, n->in(i) ); 1629 else 1630 m->add_req( n->in(i) ); 1631 } 1632 } 1633 1634 debug_only( _mem_node = save_mem_node; ) 1635 return m; 1636 } 1637 1638 1639 //------------------------------match_into_reg--------------------------------- 1640 // Choose to either match this Node in a register or part of the current 1641 // match tree. Return true for requiring a register and false for matching 1642 // as part of the current match tree. 1643 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) { 1644 1645 const Type *t = m->bottom_type(); 1646 1647 if (t->singleton()) { 1648 // Never force constants into registers. Allow them to match as 1649 // constants or registers. Copies of the same value will share 1650 // the same register. See find_shared_node. 1651 return false; 1652 } else { // Not a constant 1653 if (!shared && Matcher::is_encode_and_store_pattern(n, m)) { 1654 // Make it possible to match "encode and store" patterns with non-shared 1655 // encode operations that are pinned to a control node (e.g. by CastPP 1656 // node removal in final graph reshaping). The matched instruction cannot 1657 // float above the encode's control node because it is pinned to the 1658 // store's control node. 1659 return false; 1660 } 1661 // Stop recursion if they have different Controls. 1662 Node* m_control = m->in(0); 1663 // Control of load's memory can post-dominates load's control. 1664 // So use it since load can't float above its memory. 1665 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : nullptr; 1666 if (control && m_control && control != m_control && control != mem_control) { 1667 1668 // Actually, we can live with the most conservative control we 1669 // find, if it post-dominates the others. This allows us to 1670 // pick up load/op/store trees where the load can float a little 1671 // above the store. 1672 Node *x = control; 1673 const uint max_scan = 6; // Arbitrary scan cutoff 1674 uint j; 1675 for (j=0; j<max_scan; j++) { 1676 if (x->is_Region()) // Bail out at merge points 1677 return true; 1678 x = x->in(0); 1679 if (x == m_control) // Does 'control' post-dominate 1680 break; // m->in(0)? If so, we can use it 1681 if (x == mem_control) // Does 'control' post-dominate 1682 break; // mem_control? If so, we can use it 1683 } 1684 if (j == max_scan) // No post-domination before scan end? 1685 return true; // Then break the match tree up 1686 } 1687 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) || 1688 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) { 1689 // These are commonly used in address expressions and can 1690 // efficiently fold into them on X64 in some cases. 1691 return false; 1692 } 1693 } 1694 1695 // Not forceable cloning. If shared, put it into a register. 1696 return shared; 1697 } 1698 1699 1700 //------------------------------Instruction Selection-------------------------- 1701 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match 1702 // ideal nodes to machine instructions. Trees are delimited by shared Nodes, 1703 // things the Matcher does not match (e.g., Memory), and things with different 1704 // Controls (hence forced into different blocks). We pass in the Control 1705 // selected for this entire State tree. 1706 1707 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the 1708 // Store and the Load must have identical Memories (as well as identical 1709 // pointers). Since the Matcher does not have anything for Memory (and 1710 // does not handle DAGs), I have to match the Memory input myself. If the 1711 // Tree root is a Store or if there are multiple Loads in the tree, I require 1712 // all Loads to have the identical memory. 1713 Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) { 1714 // Since Label_Root is a recursive function, its possible that we might run 1715 // out of stack space. See bugs 6272980 & 6227033 for more info. 1716 LabelRootDepth++; 1717 if (LabelRootDepth > MaxLabelRootDepth) { 1718 // Bailout. Can for example be hit with a deep chain of operations. 1719 C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth"); 1720 return nullptr; 1721 } 1722 uint care = 0; // Edges matcher cares about 1723 uint cnt = n->req(); 1724 uint i = 0; 1725 1726 // Examine children for memory state 1727 // Can only subsume a child into your match-tree if that child's memory state 1728 // is not modified along the path to another input. 1729 // It is unsafe even if the other inputs are separate roots. 1730 Node *input_mem = nullptr; 1731 for( i = 1; i < cnt; i++ ) { 1732 if( !n->match_edge(i) ) continue; 1733 Node *m = n->in(i); // Get ith input 1734 assert( m, "expect non-null children" ); 1735 if( m->is_Load() ) { 1736 if( input_mem == nullptr ) { 1737 input_mem = m->in(MemNode::Memory); 1738 if (mem == (Node*)1) { 1739 // Save this memory to bail out if there's another memory access 1740 // to a different memory location in the same tree. 1741 mem = input_mem; 1742 } 1743 } else if( input_mem != m->in(MemNode::Memory) ) { 1744 input_mem = NodeSentinel; 1745 } 1746 } 1747 } 1748 1749 for( i = 1; i < cnt; i++ ){// For my children 1750 if( !n->match_edge(i) ) continue; 1751 Node *m = n->in(i); // Get ith input 1752 // Allocate states out of a private arena 1753 State *s = new (&_states_arena) State; 1754 svec->_kids[care++] = s; 1755 assert( care <= 2, "binary only for now" ); 1756 1757 // Recursively label the State tree. 1758 s->_kids[0] = nullptr; 1759 s->_kids[1] = nullptr; 1760 s->_leaf = m; 1761 1762 // Check for leaves of the State Tree; things that cannot be a part of 1763 // the current tree. If it finds any, that value is matched as a 1764 // register operand. If not, then the normal matching is used. 1765 if( match_into_reg(n, m, control, i, is_shared(m)) || 1766 // Stop recursion if this is a LoadNode and there is another memory access 1767 // to a different memory location in the same tree (for example, a StoreNode 1768 // at the root of this tree or another LoadNode in one of the children). 1769 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) || 1770 // Can NOT include the match of a subtree when its memory state 1771 // is used by any of the other subtrees 1772 (input_mem == NodeSentinel) ) { 1773 // Print when we exclude matching due to different memory states at input-loads 1774 if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel) 1775 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) { 1776 tty->print_cr("invalid input_mem"); 1777 } 1778 // Switch to a register-only opcode; this value must be in a register 1779 // and cannot be subsumed as part of a larger instruction. 1780 s->DFA( m->ideal_reg(), m ); 1781 1782 } else { 1783 // If match tree has no control and we do, adopt it for entire tree 1784 if( control == nullptr && m->in(0) != nullptr && m->req() > 1 ) 1785 control = m->in(0); // Pick up control 1786 // Else match as a normal part of the match tree. 1787 control = Label_Root(m, s, control, mem); 1788 if (C->failing()) return nullptr; 1789 } 1790 } 1791 1792 // Call DFA to match this node, and return 1793 svec->DFA( n->Opcode(), n ); 1794 1795 #ifdef ASSERT 1796 uint x; 1797 for( x = 0; x < _LAST_MACH_OPER; x++ ) 1798 if( svec->valid(x) ) 1799 break; 1800 1801 if (x >= _LAST_MACH_OPER) { 1802 n->dump(); 1803 svec->dump(); 1804 assert( false, "bad AD file" ); 1805 } 1806 #endif 1807 return control; 1808 } 1809 1810 1811 // Con nodes reduced using the same rule can share their MachNode 1812 // which reduces the number of copies of a constant in the final 1813 // program. The register allocator is free to split uses later to 1814 // split live ranges. 1815 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) { 1816 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return nullptr; 1817 1818 // See if this Con has already been reduced using this rule. 1819 if (_shared_nodes.max() <= leaf->_idx) return nullptr; 1820 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx); 1821 if (last != nullptr && rule == last->rule()) { 1822 // Don't expect control change for DecodeN 1823 if (leaf->is_DecodeNarrowPtr()) 1824 return last; 1825 // Get the new space root. 1826 Node* xroot = new_node(C->root()); 1827 if (xroot == nullptr) { 1828 // This shouldn't happen give the order of matching. 1829 return nullptr; 1830 } 1831 1832 // Shared constants need to have their control be root so they 1833 // can be scheduled properly. 1834 Node* control = last->in(0); 1835 if (control != xroot) { 1836 if (control == nullptr || control == C->root()) { 1837 last->set_req(0, xroot); 1838 } else { 1839 assert(false, "unexpected control"); 1840 return nullptr; 1841 } 1842 } 1843 return last; 1844 } 1845 return nullptr; 1846 } 1847 1848 1849 //------------------------------ReduceInst------------------------------------- 1850 // Reduce a State tree (with given Control) into a tree of MachNodes. 1851 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into 1852 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes. 1853 // Each MachNode has a number of complicated MachOper operands; each 1854 // MachOper also covers a further tree of Ideal Nodes. 1855 1856 // The root of the Ideal match tree is always an instruction, so we enter 1857 // the recursion here. After building the MachNode, we need to recurse 1858 // the tree checking for these cases: 1859 // (1) Child is an instruction - 1860 // Build the instruction (recursively), add it as an edge. 1861 // Build a simple operand (register) to hold the result of the instruction. 1862 // (2) Child is an interior part of an instruction - 1863 // Skip over it (do nothing) 1864 // (3) Child is the start of a operand - 1865 // Build the operand, place it inside the instruction 1866 // Call ReduceOper. 1867 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) { 1868 assert( rule >= NUM_OPERANDS, "called with operand rule" ); 1869 1870 MachNode* shared_node = find_shared_node(s->_leaf, rule); 1871 if (shared_node != nullptr) { 1872 return shared_node; 1873 } 1874 1875 // Build the object to represent this state & prepare for recursive calls 1876 MachNode *mach = s->MachNodeGenerator(rule); 1877 guarantee(mach != nullptr, "Missing MachNode"); 1878 mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]); 1879 assert( mach->_opnds[0] != nullptr, "Missing result operand" ); 1880 Node *leaf = s->_leaf; 1881 NOT_PRODUCT(record_new2old(mach, leaf);) 1882 // Check for instruction or instruction chain rule 1883 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) { 1884 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf), 1885 "duplicating node that's already been matched"); 1886 // Instruction 1887 mach->add_req( leaf->in(0) ); // Set initial control 1888 // Reduce interior of complex instruction 1889 ReduceInst_Interior( s, rule, mem, mach, 1 ); 1890 } else { 1891 // Instruction chain rules are data-dependent on their inputs 1892 mach->add_req(nullptr); // Set initial control to none 1893 ReduceInst_Chain_Rule( s, rule, mem, mach ); 1894 } 1895 1896 // If a Memory was used, insert a Memory edge 1897 if( mem != (Node*)1 ) { 1898 mach->ins_req(MemNode::Memory,mem); 1899 #ifdef ASSERT 1900 // Verify adr type after matching memory operation 1901 const MachOper* oper = mach->memory_operand(); 1902 if (oper != nullptr && oper != (MachOper*)-1) { 1903 // It has a unique memory operand. Find corresponding ideal mem node. 1904 Node* m = nullptr; 1905 if (leaf->is_Mem()) { 1906 m = leaf; 1907 } else { 1908 m = _mem_node; 1909 assert(m != nullptr && m->is_Mem(), "expecting memory node"); 1910 } 1911 const Type* mach_at = mach->adr_type(); 1912 // DecodeN node consumed by an address may have different type 1913 // than its input. Don't compare types for such case. 1914 if (m->adr_type() != mach_at && 1915 (m->in(MemNode::Address)->is_DecodeNarrowPtr() || 1916 (m->in(MemNode::Address)->is_AddP() && 1917 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) || 1918 (m->in(MemNode::Address)->is_AddP() && 1919 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() && 1920 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) { 1921 mach_at = m->adr_type(); 1922 } 1923 if (m->adr_type() != mach_at) { 1924 m->dump(); 1925 tty->print_cr("mach:"); 1926 mach->dump(1); 1927 } 1928 assert(m->adr_type() == mach_at, "matcher should not change adr type"); 1929 } 1930 #endif 1931 } 1932 1933 // If the _leaf is an AddP, insert the base edge 1934 if (leaf->is_AddP()) { 1935 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); 1936 } 1937 1938 uint number_of_projections_prior = number_of_projections(); 1939 1940 // Perform any 1-to-many expansions required 1941 MachNode *ex = mach->Expand(s, _projection_list, mem); 1942 if (ex != mach) { 1943 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match"); 1944 if( ex->in(1)->is_Con() ) 1945 ex->in(1)->set_req(0, C->root()); 1946 // Remove old node from the graph 1947 for( uint i=0; i<mach->req(); i++ ) { 1948 mach->set_req(i,nullptr); 1949 } 1950 NOT_PRODUCT(record_new2old(ex, s->_leaf);) 1951 } 1952 1953 // PhaseChaitin::fixup_spills will sometimes generate spill code 1954 // via the matcher. By the time, nodes have been wired into the CFG, 1955 // and any further nodes generated by expand rules will be left hanging 1956 // in space, and will not get emitted as output code. Catch this. 1957 // Also, catch any new register allocation constraints ("projections") 1958 // generated belatedly during spill code generation. 1959 if (_allocation_started) { 1960 guarantee(ex == mach, "no expand rules during spill generation"); 1961 guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation"); 1962 } 1963 1964 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { 1965 // Record the con for sharing 1966 _shared_nodes.map(leaf->_idx, ex); 1967 } 1968 1969 // Have mach nodes inherit GC barrier data 1970 mach->set_barrier_data(MemNode::barrier_data(leaf)); 1971 1972 return ex; 1973 } 1974 1975 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) { 1976 for (uint i = n->req(); i < n->len(); i++) { 1977 if (n->in(i) != nullptr) { 1978 mach->add_prec(n->in(i)); 1979 } 1980 } 1981 } 1982 1983 void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) { 1984 // 'op' is what I am expecting to receive 1985 int op = _leftOp[rule]; 1986 // Operand type to catch childs result 1987 // This is what my child will give me. 1988 unsigned int opnd_class_instance = s->rule(op); 1989 // Choose between operand class or not. 1990 // This is what I will receive. 1991 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op; 1992 // New rule for child. Chase operand classes to get the actual rule. 1993 unsigned int newrule = s->rule(catch_op); 1994 1995 if (newrule < NUM_OPERANDS) { 1996 // Chain from operand or operand class, may be output of shared node 1997 assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand"); 1998 // Insert operand into array of operands for this instruction 1999 mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance); 2000 2001 ReduceOper(s, newrule, mem, mach); 2002 } else { 2003 // Chain from the result of an instruction 2004 assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand"); 2005 mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]); 2006 Node *mem1 = (Node*)1; 2007 debug_only(Node *save_mem_node = _mem_node;) 2008 mach->add_req( ReduceInst(s, newrule, mem1) ); 2009 debug_only(_mem_node = save_mem_node;) 2010 } 2011 return; 2012 } 2013 2014 2015 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) { 2016 handle_precedence_edges(s->_leaf, mach); 2017 2018 if( s->_leaf->is_Load() ) { 2019 Node *mem2 = s->_leaf->in(MemNode::Memory); 2020 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" ); 2021 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;) 2022 mem = mem2; 2023 } 2024 if( s->_leaf->in(0) != nullptr && s->_leaf->req() > 1) { 2025 if( mach->in(0) == nullptr ) 2026 mach->set_req(0, s->_leaf->in(0)); 2027 } 2028 2029 // Now recursively walk the state tree & add operand list. 2030 for( uint i=0; i<2; i++ ) { // binary tree 2031 State *newstate = s->_kids[i]; 2032 if( newstate == nullptr ) break; // Might only have 1 child 2033 // 'op' is what I am expecting to receive 2034 int op; 2035 if( i == 0 ) { 2036 op = _leftOp[rule]; 2037 } else { 2038 op = _rightOp[rule]; 2039 } 2040 // Operand type to catch childs result 2041 // This is what my child will give me. 2042 int opnd_class_instance = newstate->rule(op); 2043 // Choose between operand class or not. 2044 // This is what I will receive. 2045 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op; 2046 // New rule for child. Chase operand classes to get the actual rule. 2047 int newrule = newstate->rule(catch_op); 2048 2049 if (newrule < NUM_OPERANDS) { // Operand/operandClass or internalOp/instruction? 2050 // Operand/operandClass 2051 // Insert operand into array of operands for this instruction 2052 mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance); 2053 ReduceOper(newstate, newrule, mem, mach); 2054 2055 } else { // Child is internal operand or new instruction 2056 if (newrule < _LAST_MACH_OPER) { // internal operand or instruction? 2057 // internal operand --> call ReduceInst_Interior 2058 // Interior of complex instruction. Do nothing but recurse. 2059 num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds); 2060 } else { 2061 // instruction --> call build operand( ) to catch result 2062 // --> ReduceInst( newrule ) 2063 mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]); 2064 Node *mem1 = (Node*)1; 2065 debug_only(Node *save_mem_node = _mem_node;) 2066 mach->add_req( ReduceInst( newstate, newrule, mem1 ) ); 2067 debug_only(_mem_node = save_mem_node;) 2068 } 2069 } 2070 assert( mach->_opnds[num_opnds-1], "" ); 2071 } 2072 return num_opnds; 2073 } 2074 2075 // This routine walks the interior of possible complex operands. 2076 // At each point we check our children in the match tree: 2077 // (1) No children - 2078 // We are a leaf; add _leaf field as an input to the MachNode 2079 // (2) Child is an internal operand - 2080 // Skip over it ( do nothing ) 2081 // (3) Child is an instruction - 2082 // Call ReduceInst recursively and 2083 // and instruction as an input to the MachNode 2084 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) { 2085 assert( rule < _LAST_MACH_OPER, "called with operand rule" ); 2086 State *kid = s->_kids[0]; 2087 assert( kid == nullptr || s->_leaf->in(0) == nullptr, "internal operands have no control" ); 2088 2089 // Leaf? And not subsumed? 2090 if( kid == nullptr && !_swallowed[rule] ) { 2091 mach->add_req( s->_leaf ); // Add leaf pointer 2092 return; // Bail out 2093 } 2094 2095 if( s->_leaf->is_Load() ) { 2096 assert( mem == (Node*)1, "multiple Memories being matched at once?" ); 2097 mem = s->_leaf->in(MemNode::Memory); 2098 debug_only(_mem_node = s->_leaf;) 2099 } 2100 2101 handle_precedence_edges(s->_leaf, mach); 2102 2103 if( s->_leaf->in(0) && s->_leaf->req() > 1) { 2104 if( !mach->in(0) ) 2105 mach->set_req(0,s->_leaf->in(0)); 2106 else { 2107 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" ); 2108 } 2109 } 2110 2111 for (uint i = 0; kid != nullptr && i < 2; kid = s->_kids[1], i++) { // binary tree 2112 int newrule; 2113 if( i == 0) { 2114 newrule = kid->rule(_leftOp[rule]); 2115 } else { 2116 newrule = kid->rule(_rightOp[rule]); 2117 } 2118 2119 if (newrule < _LAST_MACH_OPER) { // Operand or instruction? 2120 // Internal operand; recurse but do nothing else 2121 ReduceOper(kid, newrule, mem, mach); 2122 2123 } else { // Child is a new instruction 2124 // Reduce the instruction, and add a direct pointer from this 2125 // machine instruction to the newly reduced one. 2126 Node *mem1 = (Node*)1; 2127 debug_only(Node *save_mem_node = _mem_node;) 2128 mach->add_req( ReduceInst( kid, newrule, mem1 ) ); 2129 debug_only(_mem_node = save_mem_node;) 2130 } 2131 } 2132 } 2133 2134 2135 // ------------------------------------------------------------------------- 2136 // Java-Java calling convention 2137 // (what you use when Java calls Java) 2138 2139 //------------------------------find_receiver---------------------------------- 2140 // For a given signature, return the OptoReg for parameter 0. 2141 OptoReg::Name Matcher::find_receiver() { 2142 VMRegPair regs; 2143 BasicType sig_bt = T_OBJECT; 2144 SharedRuntime::java_calling_convention(&sig_bt, ®s, 1); 2145 // Return argument 0 register. In the LP64 build pointers 2146 // take 2 registers, but the VM wants only the 'main' name. 2147 return OptoReg::as_OptoReg(regs.first()); 2148 } 2149 2150 bool Matcher::is_vshift_con_pattern(Node* n, Node* m) { 2151 if (n != nullptr && m != nullptr) { 2152 return VectorNode::is_vector_shift(n) && 2153 VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con(); 2154 } 2155 return false; 2156 } 2157 2158 bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) { 2159 // Must clone all producers of flags, or we will not match correctly. 2160 // Suppose a compare setting int-flags is shared (e.g., a switch-tree) 2161 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags 2162 // are also there, so we may match a float-branch to int-flags and 2163 // expect the allocator to haul the flags from the int-side to the 2164 // fp-side. No can do. 2165 if (_must_clone[m->Opcode()]) { 2166 mstack.push(m, Visit); 2167 return true; 2168 } 2169 return pd_clone_node(n, m, mstack); 2170 } 2171 2172 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { 2173 Node *off = m->in(AddPNode::Offset); 2174 if (off->is_Con()) { 2175 address_visited.test_set(m->_idx); // Flag as address_visited 2176 mstack.push(m->in(AddPNode::Address), Pre_Visit); 2177 // Clone X+offset as it also folds into most addressing expressions 2178 mstack.push(off, Visit); 2179 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2180 return true; 2181 } 2182 return false; 2183 } 2184 2185 // A method-klass-holder may be passed in the inline_cache_reg 2186 // and then expanded into the inline_cache_reg and a method_ptr register 2187 // defined in ad_<arch>.cpp 2188 2189 //------------------------------find_shared------------------------------------ 2190 // Set bits if Node is shared or otherwise a root 2191 void Matcher::find_shared(Node* n) { 2192 // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc 2193 MStack mstack(C->live_nodes() * 2); 2194 // Mark nodes as address_visited if they are inputs to an address expression 2195 VectorSet address_visited; 2196 mstack.push(n, Visit); // Don't need to pre-visit root node 2197 while (mstack.is_nonempty()) { 2198 n = mstack.node(); // Leave node on stack 2199 Node_State nstate = mstack.state(); 2200 uint nop = n->Opcode(); 2201 if (nstate == Pre_Visit) { 2202 if (address_visited.test(n->_idx)) { // Visited in address already? 2203 // Flag as visited and shared now. 2204 set_visited(n); 2205 } 2206 if (is_visited(n)) { // Visited already? 2207 // Node is shared and has no reason to clone. Flag it as shared. 2208 // This causes it to match into a register for the sharing. 2209 set_shared(n); // Flag as shared and 2210 if (n->is_DecodeNarrowPtr()) { 2211 // Oop field/array element loads must be shared but since 2212 // they are shared through a DecodeN they may appear to have 2213 // a single use so force sharing here. 2214 set_shared(n->in(1)); 2215 } 2216 mstack.pop(); // remove node from stack 2217 continue; 2218 } 2219 nstate = Visit; // Not already visited; so visit now 2220 } 2221 if (nstate == Visit) { 2222 mstack.set_state(Post_Visit); 2223 set_visited(n); // Flag as visited now 2224 bool mem_op = false; 2225 int mem_addr_idx = MemNode::Address; 2226 if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) { 2227 continue; 2228 } 2229 for (int i = n->len() - 1; i >= 0; --i) { // For my children 2230 Node* m = n->in(i); // Get ith input 2231 if (m == nullptr) { 2232 continue; // Ignore nulls 2233 } 2234 if (clone_node(n, m, mstack)) { 2235 continue; 2236 } 2237 2238 // Clone addressing expressions as they are "free" in memory access instructions 2239 if (mem_op && i == mem_addr_idx && m->is_AddP() && 2240 // When there are other uses besides address expressions 2241 // put it on stack and mark as shared. 2242 !is_visited(m)) { 2243 // Some inputs for address expression are not put on stack 2244 // to avoid marking them as shared and forcing them into register 2245 // if they are used only in address expressions. 2246 // But they should be marked as shared if there are other uses 2247 // besides address expressions. 2248 2249 if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) { 2250 continue; 2251 } 2252 } // if( mem_op && 2253 mstack.push(m, Pre_Visit); 2254 } // for(int i = ...) 2255 } 2256 else if (nstate == Alt_Post_Visit) { 2257 mstack.pop(); // Remove node from stack 2258 // We cannot remove the Cmp input from the Bool here, as the Bool may be 2259 // shared and all users of the Bool need to move the Cmp in parallel. 2260 // This leaves both the Bool and the If pointing at the Cmp. To 2261 // prevent the Matcher from trying to Match the Cmp along both paths 2262 // BoolNode::match_edge always returns a zero. 2263 2264 // We reorder the Op_If in a pre-order manner, so we can visit without 2265 // accidentally sharing the Cmp (the Bool and the If make 2 users). 2266 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool 2267 } 2268 else if (nstate == Post_Visit) { 2269 mstack.pop(); // Remove node from stack 2270 2271 // Now hack a few special opcodes 2272 uint opcode = n->Opcode(); 2273 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode); 2274 if (!gc_handled) { 2275 find_shared_post_visit(n, opcode); 2276 } 2277 } 2278 else { 2279 ShouldNotReachHere(); 2280 } 2281 } // end of while (mstack.is_nonempty()) 2282 } 2283 2284 bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) { 2285 switch(opcode) { // Handle some opcodes special 2286 case Op_Phi: // Treat Phis as shared roots 2287 case Op_Parm: 2288 case Op_Proj: // All handled specially during matching 2289 case Op_SafePointScalarObject: 2290 set_shared(n); 2291 set_dontcare(n); 2292 break; 2293 case Op_If: 2294 case Op_CountedLoopEnd: 2295 mstack.set_state(Alt_Post_Visit); // Alternative way 2296 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps 2297 // with matching cmp/branch in 1 instruction. The Matcher needs the 2298 // Bool and CmpX side-by-side, because it can only get at constants 2299 // that are at the leaves of Match trees, and the Bool's condition acts 2300 // as a constant here. 2301 mstack.push(n->in(1), Visit); // Clone the Bool 2302 mstack.push(n->in(0), Pre_Visit); // Visit control input 2303 return true; // while (mstack.is_nonempty()) 2304 case Op_ConvI2D: // These forms efficiently match with a prior 2305 case Op_ConvI2F: // Load but not a following Store 2306 if( n->in(1)->is_Load() && // Prior load 2307 n->outcnt() == 1 && // Not already shared 2308 n->unique_out()->is_Store() ) // Following store 2309 set_shared(n); // Force it to be a root 2310 break; 2311 case Op_ReverseBytesI: 2312 case Op_ReverseBytesL: 2313 if( n->in(1)->is_Load() && // Prior load 2314 n->outcnt() == 1 ) // Not already shared 2315 set_shared(n); // Force it to be a root 2316 break; 2317 case Op_BoxLock: // Can't match until we get stack-regs in ADLC 2318 case Op_IfFalse: 2319 case Op_IfTrue: 2320 case Op_MachProj: 2321 case Op_MergeMem: 2322 case Op_Catch: 2323 case Op_CatchProj: 2324 case Op_CProj: 2325 case Op_JumpProj: 2326 case Op_JProj: 2327 case Op_NeverBranch: 2328 set_dontcare(n); 2329 break; 2330 case Op_Jump: 2331 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared) 2332 mstack.push(n->in(0), Pre_Visit); // Visit Control input 2333 return true; // while (mstack.is_nonempty()) 2334 case Op_StrComp: 2335 case Op_StrEquals: 2336 case Op_StrIndexOf: 2337 case Op_StrIndexOfChar: 2338 case Op_AryEq: 2339 case Op_VectorizedHashCode: 2340 case Op_CountPositives: 2341 case Op_StrInflatedCopy: 2342 case Op_StrCompressedCopy: 2343 case Op_EncodeISOArray: 2344 case Op_FmaD: 2345 case Op_FmaF: 2346 case Op_FmaVD: 2347 case Op_FmaVF: 2348 case Op_MacroLogicV: 2349 case Op_VectorCmpMasked: 2350 case Op_CompressV: 2351 case Op_CompressM: 2352 case Op_ExpandV: 2353 case Op_VectorLoadMask: 2354 set_shared(n); // Force result into register (it will be anyways) 2355 break; 2356 case Op_ConP: { // Convert pointers above the centerline to NUL 2357 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2358 const TypePtr* tp = tn->type()->is_ptr(); 2359 if (tp->_ptr == TypePtr::AnyNull) { 2360 tn->set_type(TypePtr::NULL_PTR); 2361 } 2362 break; 2363 } 2364 case Op_ConN: { // Convert narrow pointers above the centerline to NUL 2365 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2366 const TypePtr* tp = tn->type()->make_ptr(); 2367 if (tp && tp->_ptr == TypePtr::AnyNull) { 2368 tn->set_type(TypeNarrowOop::NULL_PTR); 2369 } 2370 break; 2371 } 2372 case Op_Binary: // These are introduced in the Post_Visit state. 2373 ShouldNotReachHere(); 2374 break; 2375 case Op_ClearArray: 2376 case Op_SafePoint: 2377 mem_op = true; 2378 break; 2379 default: 2380 if( n->is_Store() ) { 2381 // Do match stores, despite no ideal reg 2382 mem_op = true; 2383 break; 2384 } 2385 if( n->is_Mem() ) { // Loads and LoadStores 2386 mem_op = true; 2387 // Loads must be root of match tree due to prior load conflict 2388 if( C->subsume_loads() == false ) 2389 set_shared(n); 2390 } 2391 // Fall into default case 2392 if( !n->ideal_reg() ) 2393 set_dontcare(n); // Unmatchable Nodes 2394 } // end_switch 2395 return false; 2396 } 2397 2398 void Matcher::find_shared_post_visit(Node* n, uint opcode) { 2399 if (n->is_predicated_vector()) { 2400 // Restructure into binary trees for Matching. 2401 if (n->req() == 4) { 2402 n->set_req(1, new BinaryNode(n->in(1), n->in(2))); 2403 n->set_req(2, n->in(3)); 2404 n->del_req(3); 2405 } else if (n->req() == 5) { 2406 n->set_req(1, new BinaryNode(n->in(1), n->in(2))); 2407 n->set_req(2, new BinaryNode(n->in(3), n->in(4))); 2408 n->del_req(4); 2409 n->del_req(3); 2410 } else if (n->req() == 6) { 2411 Node* b3 = new BinaryNode(n->in(4), n->in(5)); 2412 Node* b2 = new BinaryNode(n->in(3), b3); 2413 Node* b1 = new BinaryNode(n->in(2), b2); 2414 n->set_req(2, b1); 2415 n->del_req(5); 2416 n->del_req(4); 2417 n->del_req(3); 2418 } 2419 return; 2420 } 2421 2422 switch(opcode) { // Handle some opcodes special 2423 case Op_CompareAndExchangeB: 2424 case Op_CompareAndExchangeS: 2425 case Op_CompareAndExchangeI: 2426 case Op_CompareAndExchangeL: 2427 case Op_CompareAndExchangeP: 2428 case Op_CompareAndExchangeN: 2429 case Op_WeakCompareAndSwapB: 2430 case Op_WeakCompareAndSwapS: 2431 case Op_WeakCompareAndSwapI: 2432 case Op_WeakCompareAndSwapL: 2433 case Op_WeakCompareAndSwapP: 2434 case Op_WeakCompareAndSwapN: 2435 case Op_CompareAndSwapB: 2436 case Op_CompareAndSwapS: 2437 case Op_CompareAndSwapI: 2438 case Op_CompareAndSwapL: 2439 case Op_CompareAndSwapP: 2440 case Op_CompareAndSwapN: { // Convert trinary to binary-tree 2441 Node* newval = n->in(MemNode::ValueIn); 2442 Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 2443 Node* pair = new BinaryNode(oldval, newval); 2444 n->set_req(MemNode::ValueIn, pair); 2445 n->del_req(LoadStoreConditionalNode::ExpectedIn); 2446 break; 2447 } 2448 case Op_CMoveD: // Convert trinary to binary-tree 2449 case Op_CMoveF: 2450 case Op_CMoveI: 2451 case Op_CMoveL: 2452 case Op_CMoveN: 2453 case Op_CMoveP: { 2454 // Restructure into a binary tree for Matching. It's possible that 2455 // we could move this code up next to the graph reshaping for IfNodes 2456 // or vice-versa, but I do not want to debug this for Ladybird. 2457 // 10/2/2000 CNC. 2458 Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1)); 2459 n->set_req(1, pair1); 2460 Node* pair2 = new BinaryNode(n->in(2), n->in(3)); 2461 n->set_req(2, pair2); 2462 n->del_req(3); 2463 break; 2464 } 2465 case Op_MacroLogicV: { 2466 Node* pair1 = new BinaryNode(n->in(1), n->in(2)); 2467 Node* pair2 = new BinaryNode(n->in(3), n->in(4)); 2468 n->set_req(1, pair1); 2469 n->set_req(2, pair2); 2470 n->del_req(4); 2471 n->del_req(3); 2472 break; 2473 } 2474 case Op_StoreVectorMasked: { 2475 Node* pair = new BinaryNode(n->in(3), n->in(4)); 2476 n->set_req(3, pair); 2477 n->del_req(4); 2478 break; 2479 } 2480 case Op_SelectFromTwoVector: 2481 case Op_LoopLimit: { 2482 Node* pair1 = new BinaryNode(n->in(1), n->in(2)); 2483 n->set_req(1, pair1); 2484 n->set_req(2, n->in(3)); 2485 n->del_req(3); 2486 break; 2487 } 2488 case Op_StrEquals: 2489 case Op_StrIndexOfChar: { 2490 Node* pair1 = new BinaryNode(n->in(2), n->in(3)); 2491 n->set_req(2, pair1); 2492 n->set_req(3, n->in(4)); 2493 n->del_req(4); 2494 break; 2495 } 2496 case Op_StrComp: 2497 case Op_StrIndexOf: 2498 case Op_VectorizedHashCode: { 2499 Node* pair1 = new BinaryNode(n->in(2), n->in(3)); 2500 n->set_req(2, pair1); 2501 Node* pair2 = new BinaryNode(n->in(4),n->in(5)); 2502 n->set_req(3, pair2); 2503 n->del_req(5); 2504 n->del_req(4); 2505 break; 2506 } 2507 case Op_EncodeISOArray: 2508 case Op_StrCompressedCopy: 2509 case Op_StrInflatedCopy: { 2510 // Restructure into a binary tree for Matching. 2511 Node* pair = new BinaryNode(n->in(3), n->in(4)); 2512 n->set_req(3, pair); 2513 n->del_req(4); 2514 break; 2515 } 2516 case Op_FmaD: 2517 case Op_FmaF: 2518 case Op_FmaVD: 2519 case Op_FmaVF: { 2520 // Restructure into a binary tree for Matching. 2521 Node* pair = new BinaryNode(n->in(1), n->in(2)); 2522 n->set_req(2, pair); 2523 n->set_req(1, n->in(3)); 2524 n->del_req(3); 2525 break; 2526 } 2527 case Op_MulAddS2I: { 2528 Node* pair1 = new BinaryNode(n->in(1), n->in(2)); 2529 Node* pair2 = new BinaryNode(n->in(3), n->in(4)); 2530 n->set_req(1, pair1); 2531 n->set_req(2, pair2); 2532 n->del_req(4); 2533 n->del_req(3); 2534 break; 2535 } 2536 case Op_ClearArray: { 2537 Node* pair = new BinaryNode(n->in(2), n->in(3)); 2538 n->set_req(2, pair); 2539 n->set_req(3, n->in(4)); 2540 n->del_req(4); 2541 break; 2542 } 2543 case Op_VectorCmpMasked: 2544 case Op_CopySignD: 2545 case Op_SignumVF: 2546 case Op_SignumVD: 2547 case Op_SignumF: 2548 case Op_SignumD: { 2549 Node* pair = new BinaryNode(n->in(2), n->in(3)); 2550 n->set_req(2, pair); 2551 n->del_req(3); 2552 break; 2553 } 2554 case Op_VectorBlend: 2555 case Op_VectorInsert: { 2556 Node* pair = new BinaryNode(n->in(1), n->in(2)); 2557 n->set_req(1, pair); 2558 n->set_req(2, n->in(3)); 2559 n->del_req(3); 2560 break; 2561 } 2562 case Op_LoadVectorGather: 2563 if (is_subword_type(n->bottom_type()->is_vect()->element_basic_type())) { 2564 Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); 2565 n->set_req(MemNode::ValueIn, pair); 2566 n->del_req(MemNode::ValueIn+1); 2567 } 2568 break; 2569 case Op_LoadVectorGatherMasked: 2570 if (is_subword_type(n->bottom_type()->is_vect()->element_basic_type())) { 2571 Node* pair2 = new BinaryNode(n->in(MemNode::ValueIn + 1), n->in(MemNode::ValueIn + 2)); 2572 Node* pair1 = new BinaryNode(n->in(MemNode::ValueIn), pair2); 2573 n->set_req(MemNode::ValueIn, pair1); 2574 n->del_req(MemNode::ValueIn+2); 2575 n->del_req(MemNode::ValueIn+1); 2576 break; 2577 } // fall-through 2578 case Op_StoreVectorScatter: { 2579 Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); 2580 n->set_req(MemNode::ValueIn, pair); 2581 n->del_req(MemNode::ValueIn+1); 2582 break; 2583 } 2584 case Op_StoreVectorScatterMasked: { 2585 Node* pair = new BinaryNode(n->in(MemNode::ValueIn+1), n->in(MemNode::ValueIn+2)); 2586 n->set_req(MemNode::ValueIn+1, pair); 2587 n->del_req(MemNode::ValueIn+2); 2588 pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); 2589 n->set_req(MemNode::ValueIn, pair); 2590 n->del_req(MemNode::ValueIn+1); 2591 break; 2592 } 2593 case Op_VectorMaskCmp: { 2594 n->set_req(1, new BinaryNode(n->in(1), n->in(2))); 2595 n->set_req(2, n->in(3)); 2596 n->del_req(3); 2597 break; 2598 } 2599 case Op_PartialSubtypeCheck: { 2600 if (UseSecondarySupersTable && n->in(2)->is_Con()) { 2601 // PartialSubtypeCheck uses both constant and register operands for superclass input. 2602 n->set_req(2, new BinaryNode(n->in(2), n->in(2))); 2603 break; 2604 } 2605 break; 2606 } 2607 default: 2608 break; 2609 } 2610 } 2611 2612 #ifndef PRODUCT 2613 void Matcher::record_new2old(Node* newn, Node* old) { 2614 _new2old_map.map(newn->_idx, old); 2615 if (!_reused.test_set(old->_igv_idx)) { 2616 // Reuse the Ideal-level IGV identifier so that the node can be tracked 2617 // across matching. If there are multiple machine nodes expanded from the 2618 // same Ideal node, only one will reuse its IGV identifier. 2619 newn->_igv_idx = old->_igv_idx; 2620 } 2621 } 2622 2623 // machine-independent root to machine-dependent root 2624 void Matcher::dump_old2new_map() { 2625 _old2new_map.dump(); 2626 } 2627 #endif // !PRODUCT 2628 2629 //---------------------------collect_null_checks------------------------------- 2630 // Find null checks in the ideal graph; write a machine-specific node for 2631 // it. Used by later implicit-null-check handling. Actually collects 2632 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal 2633 // value being tested. 2634 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) { 2635 Node *iff = proj->in(0); 2636 if( iff->Opcode() == Op_If ) { 2637 // During matching If's have Bool & Cmp side-by-side 2638 BoolNode *b = iff->in(1)->as_Bool(); 2639 Node *cmp = iff->in(2); 2640 int opc = cmp->Opcode(); 2641 if (opc != Op_CmpP && opc != Op_CmpN) return; 2642 2643 const Type* ct = cmp->in(2)->bottom_type(); 2644 if (ct == TypePtr::NULL_PTR || 2645 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) { 2646 2647 bool push_it = false; 2648 if( proj->Opcode() == Op_IfTrue ) { 2649 #ifndef PRODUCT 2650 extern uint all_null_checks_found; 2651 all_null_checks_found++; 2652 #endif 2653 if( b->_test._test == BoolTest::ne ) { 2654 push_it = true; 2655 } 2656 } else { 2657 assert( proj->Opcode() == Op_IfFalse, "" ); 2658 if( b->_test._test == BoolTest::eq ) { 2659 push_it = true; 2660 } 2661 } 2662 if( push_it ) { 2663 _null_check_tests.push(proj); 2664 Node* val = cmp->in(1); 2665 #ifdef _LP64 2666 if (val->bottom_type()->isa_narrowoop() && 2667 !Matcher::narrow_oop_use_complex_address()) { 2668 // 2669 // Look for DecodeN node which should be pinned to orig_proj. 2670 // On platforms (Sparc) which can not handle 2 adds 2671 // in addressing mode we have to keep a DecodeN node and 2672 // use it to do implicit null check in address. 2673 // 2674 // DecodeN node was pinned to non-null path (orig_proj) during 2675 // CastPP transformation in final_graph_reshaping_impl(). 2676 // 2677 uint cnt = orig_proj->outcnt(); 2678 for (uint i = 0; i < orig_proj->outcnt(); i++) { 2679 Node* d = orig_proj->raw_out(i); 2680 if (d->is_DecodeN() && d->in(1) == val) { 2681 val = d; 2682 val->set_req(0, nullptr); // Unpin now. 2683 // Mark this as special case to distinguish from 2684 // a regular case: CmpP(DecodeN, null). 2685 val = (Node*)(((intptr_t)val) | 1); 2686 break; 2687 } 2688 } 2689 } 2690 #endif 2691 _null_check_tests.push(val); 2692 } 2693 } 2694 } 2695 } 2696 2697 //---------------------------validate_null_checks------------------------------ 2698 // Its possible that the value being null checked is not the root of a match 2699 // tree. If so, I cannot use the value in an implicit null check. 2700 void Matcher::validate_null_checks( ) { 2701 uint cnt = _null_check_tests.size(); 2702 for( uint i=0; i < cnt; i+=2 ) { 2703 Node *test = _null_check_tests[i]; 2704 Node *val = _null_check_tests[i+1]; 2705 bool is_decoden = ((intptr_t)val) & 1; 2706 val = (Node*)(((intptr_t)val) & ~1); 2707 if (has_new_node(val)) { 2708 Node* new_val = new_node(val); 2709 if (is_decoden) { 2710 assert(val->is_DecodeNarrowPtr() && val->in(0) == nullptr, "sanity"); 2711 // Note: new_val may have a control edge if 2712 // the original ideal node DecodeN was matched before 2713 // it was unpinned in Matcher::collect_null_checks(). 2714 // Unpin the mach node and mark it. 2715 new_val->set_req(0, nullptr); 2716 new_val = (Node*)(((intptr_t)new_val) | 1); 2717 } 2718 // Is a match-tree root, so replace with the matched value 2719 _null_check_tests.map(i+1, new_val); 2720 } else { 2721 // Yank from candidate list 2722 _null_check_tests.map(i+1,_null_check_tests[--cnt]); 2723 _null_check_tests.map(i,_null_check_tests[--cnt]); 2724 _null_check_tests.pop(); 2725 _null_check_tests.pop(); 2726 i-=2; 2727 } 2728 } 2729 } 2730 2731 bool Matcher::gen_narrow_oop_implicit_null_checks() { 2732 // Advice matcher to perform null checks on the narrow oop side. 2733 // Implicit checks are not possible on the uncompressed oop side anyway 2734 // (at least not for read accesses). 2735 // Performs significantly better (especially on Power 6). 2736 if (!os::zero_page_read_protected()) { 2737 return true; 2738 } 2739 return CompressedOops::use_implicit_null_checks() && 2740 (narrow_oop_use_complex_address() || 2741 CompressedOops::base() != nullptr); 2742 } 2743 2744 // Compute RegMask for an ideal register. 2745 const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) { 2746 assert(!C->failing_internal() || C->failure_is_artificial(), "already failing."); 2747 if (C->failing()) { 2748 return nullptr; 2749 } 2750 const Type* t = Type::mreg2type[ideal_reg]; 2751 if (t == nullptr) { 2752 assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg); 2753 return nullptr; // not supported 2754 } 2755 Node* fp = ret->in(TypeFunc::FramePtr); 2756 Node* mem = ret->in(TypeFunc::Memory); 2757 const TypePtr* atp = TypePtr::BOTTOM; 2758 MemNode::MemOrd mo = MemNode::unordered; 2759 2760 Node* spill; 2761 switch (ideal_reg) { 2762 case Op_RegN: spill = new LoadNNode(nullptr, mem, fp, atp, t->is_narrowoop(), mo); break; 2763 case Op_RegI: spill = new LoadINode(nullptr, mem, fp, atp, t->is_int(), mo); break; 2764 case Op_RegP: spill = new LoadPNode(nullptr, mem, fp, atp, t->is_ptr(), mo); break; 2765 case Op_RegF: spill = new LoadFNode(nullptr, mem, fp, atp, t, mo); break; 2766 case Op_RegD: spill = new LoadDNode(nullptr, mem, fp, atp, t, mo); break; 2767 case Op_RegL: spill = new LoadLNode(nullptr, mem, fp, atp, t->is_long(), mo); break; 2768 2769 case Op_VecA: // fall-through 2770 case Op_VecS: // fall-through 2771 case Op_VecD: // fall-through 2772 case Op_VecX: // fall-through 2773 case Op_VecY: // fall-through 2774 case Op_VecZ: spill = new LoadVectorNode(nullptr, mem, fp, atp, t->is_vect()); break; 2775 case Op_RegVectMask: return Matcher::predicate_reg_mask(); 2776 2777 default: ShouldNotReachHere(); 2778 } 2779 MachNode* mspill = match_tree(spill); 2780 assert(mspill != nullptr || C->failure_is_artificial(), "matching failed: %d", ideal_reg); 2781 if (C->failing()) { 2782 return nullptr; 2783 } 2784 // Handle generic vector operand case 2785 if (Matcher::supports_generic_vector_operands && t->isa_vect()) { 2786 specialize_mach_node(mspill); 2787 } 2788 return &mspill->out_RegMask(); 2789 } 2790 2791 // Process Mach IR right after selection phase is over. 2792 void Matcher::do_postselect_cleanup() { 2793 if (supports_generic_vector_operands) { 2794 specialize_generic_vector_operands(); 2795 if (C->failing()) return; 2796 } 2797 } 2798 2799 //---------------------------------------------------------------------- 2800 // Generic machine operands elision. 2801 //---------------------------------------------------------------------- 2802 2803 // Compute concrete vector operand for a generic TEMP vector mach node based on its user info. 2804 void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) { 2805 assert(use->in(idx) == tmp, "not a user"); 2806 assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet"); 2807 2808 if ((uint)idx == use->two_adr()) { // DEF_TEMP case 2809 tmp->_opnds[0] = use->_opnds[0]->clone(); 2810 } else { 2811 uint ideal_vreg = vector_ideal_reg(C->max_vector_size()); 2812 tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/); 2813 } 2814 } 2815 2816 // Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx). 2817 MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) { 2818 assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates"); 2819 Node* def = nullptr; 2820 if (opnd_idx == 0) { // DEF 2821 def = m; // use mach node itself to compute vector operand type 2822 } else { 2823 int base_idx = m->operand_index(opnd_idx); 2824 def = m->in(base_idx); 2825 if (def->is_Mach()) { 2826 if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) { 2827 specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site 2828 } else if (is_reg2reg_move(def->as_Mach())) { 2829 def = def->in(1); // skip over generic reg-to-reg moves 2830 } 2831 } 2832 } 2833 assert(def->bottom_type()->isa_vect(), "not a vector"); 2834 uint ideal_vreg = def->bottom_type()->ideal_reg(); 2835 return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/); 2836 } 2837 2838 void Matcher::specialize_mach_node(MachNode* m) { 2839 assert(!m->is_MachTemp(), "processed along with its user"); 2840 // For generic use operands pull specific register class operands from 2841 // its def instruction's output operand (def operand). 2842 for (uint i = 0; i < m->num_opnds(); i++) { 2843 if (Matcher::is_generic_vector(m->_opnds[i])) { 2844 m->_opnds[i] = specialize_vector_operand(m, i); 2845 } 2846 } 2847 } 2848 2849 // Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph. 2850 void Matcher::specialize_generic_vector_operands() { 2851 assert(supports_generic_vector_operands, "sanity"); 2852 ResourceMark rm; 2853 2854 // Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ]) 2855 // and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec). 2856 Unique_Node_List live_nodes; 2857 C->identify_useful_nodes(live_nodes); 2858 2859 while (live_nodes.size() > 0) { 2860 MachNode* m = live_nodes.pop()->isa_Mach(); 2861 if (m != nullptr) { 2862 if (Matcher::is_reg2reg_move(m)) { 2863 // Register allocator properly handles vec <=> leg moves using register masks. 2864 int opnd_idx = m->operand_index(1); 2865 Node* def = m->in(opnd_idx); 2866 m->subsume_by(def, C); 2867 } else if (m->is_MachTemp()) { 2868 // process MachTemp nodes at use site (see Matcher::specialize_vector_operand) 2869 } else { 2870 specialize_mach_node(m); 2871 } 2872 } 2873 } 2874 } 2875 2876 uint Matcher::vector_length(const Node* n) { 2877 const TypeVect* vt = n->bottom_type()->is_vect(); 2878 return vt->length(); 2879 } 2880 2881 uint Matcher::vector_length(const MachNode* use, const MachOper* opnd) { 2882 int def_idx = use->operand_index(opnd); 2883 Node* def = use->in(def_idx); 2884 return def->bottom_type()->is_vect()->length(); 2885 } 2886 2887 uint Matcher::vector_length_in_bytes(const Node* n) { 2888 const TypeVect* vt = n->bottom_type()->is_vect(); 2889 return vt->length_in_bytes(); 2890 } 2891 2892 uint Matcher::vector_length_in_bytes(const MachNode* use, const MachOper* opnd) { 2893 uint def_idx = use->operand_index(opnd); 2894 Node* def = use->in(def_idx); 2895 return def->bottom_type()->is_vect()->length_in_bytes(); 2896 } 2897 2898 BasicType Matcher::vector_element_basic_type(const Node* n) { 2899 const TypeVect* vt = n->bottom_type()->is_vect(); 2900 return vt->element_basic_type(); 2901 } 2902 2903 BasicType Matcher::vector_element_basic_type(const MachNode* use, const MachOper* opnd) { 2904 int def_idx = use->operand_index(opnd); 2905 Node* def = use->in(def_idx); 2906 return def->bottom_type()->is_vect()->element_basic_type(); 2907 } 2908 2909 bool Matcher::is_non_long_integral_vector(const Node* n) { 2910 BasicType bt = vector_element_basic_type(n); 2911 assert(bt != T_CHAR, "char is not allowed in vector"); 2912 return is_subword_type(bt) || bt == T_INT; 2913 } 2914 2915 bool Matcher::is_encode_and_store_pattern(const Node* n, const Node* m) { 2916 if (n == nullptr || 2917 m == nullptr || 2918 n->Opcode() != Op_StoreN || 2919 !m->is_EncodeP() || 2920 n->as_Store()->barrier_data() == 0) { 2921 return false; 2922 } 2923 assert(m == n->in(MemNode::ValueIn), "m should be input to n"); 2924 return true; 2925 } 2926 2927 #ifdef ASSERT 2928 bool Matcher::verify_after_postselect_cleanup() { 2929 assert(!C->failing_internal() || C->failure_is_artificial(), "sanity"); 2930 if (supports_generic_vector_operands) { 2931 Unique_Node_List useful; 2932 C->identify_useful_nodes(useful); 2933 for (uint i = 0; i < useful.size(); i++) { 2934 MachNode* m = useful.at(i)->isa_Mach(); 2935 if (m != nullptr) { 2936 assert(!Matcher::is_reg2reg_move(m), "no MoveVec nodes allowed"); 2937 for (uint j = 0; j < m->num_opnds(); j++) { 2938 assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed"); 2939 } 2940 } 2941 } 2942 } 2943 return true; 2944 } 2945 #endif // ASSERT 2946 2947 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or 2948 // atomic instruction acting as a store_load barrier without any 2949 // intervening volatile load, and thus we don't need a barrier here. 2950 // We retain the Node to act as a compiler ordering barrier. 2951 bool Matcher::post_store_load_barrier(const Node* vmb) { 2952 Compile* C = Compile::current(); 2953 assert(vmb->is_MemBar(), ""); 2954 assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, ""); 2955 const MemBarNode* membar = vmb->as_MemBar(); 2956 2957 // Get the Ideal Proj node, ctrl, that can be used to iterate forward 2958 Node* ctrl = nullptr; 2959 for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) { 2960 Node* p = membar->fast_out(i); 2961 assert(p->is_Proj(), "only projections here"); 2962 if ((p->as_Proj()->_con == TypeFunc::Control) && 2963 !C->node_arena()->contains(p)) { // Unmatched old-space only 2964 ctrl = p; 2965 break; 2966 } 2967 } 2968 assert((ctrl != nullptr), "missing control projection"); 2969 2970 for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) { 2971 Node *x = ctrl->fast_out(j); 2972 int xop = x->Opcode(); 2973 2974 // We don't need current barrier if we see another or a lock 2975 // before seeing volatile load. 2976 // 2977 // Op_Fastunlock previously appeared in the Op_* list below. 2978 // With the advent of 1-0 lock operations we're no longer guaranteed 2979 // that a monitor exit operation contains a serializing instruction. 2980 2981 if (xop == Op_MemBarVolatile || 2982 xop == Op_CompareAndExchangeB || 2983 xop == Op_CompareAndExchangeS || 2984 xop == Op_CompareAndExchangeI || 2985 xop == Op_CompareAndExchangeL || 2986 xop == Op_CompareAndExchangeP || 2987 xop == Op_CompareAndExchangeN || 2988 xop == Op_WeakCompareAndSwapB || 2989 xop == Op_WeakCompareAndSwapS || 2990 xop == Op_WeakCompareAndSwapL || 2991 xop == Op_WeakCompareAndSwapP || 2992 xop == Op_WeakCompareAndSwapN || 2993 xop == Op_WeakCompareAndSwapI || 2994 xop == Op_CompareAndSwapB || 2995 xop == Op_CompareAndSwapS || 2996 xop == Op_CompareAndSwapL || 2997 xop == Op_CompareAndSwapP || 2998 xop == Op_CompareAndSwapN || 2999 xop == Op_CompareAndSwapI || 3000 BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) { 3001 return true; 3002 } 3003 3004 // Op_FastLock previously appeared in the Op_* list above. 3005 if (xop == Op_FastLock) { 3006 return true; 3007 } 3008 3009 if (x->is_MemBar()) { 3010 // We must retain this membar if there is an upcoming volatile 3011 // load, which will be followed by acquire membar. 3012 if (xop == Op_MemBarAcquire || xop == Op_LoadFence) { 3013 return false; 3014 } else { 3015 // For other kinds of barriers, check by pretending we 3016 // are them, and seeing if we can be removed. 3017 return post_store_load_barrier(x->as_MemBar()); 3018 } 3019 } 3020 3021 // probably not necessary to check for these 3022 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) { 3023 return false; 3024 } 3025 } 3026 return false; 3027 } 3028 3029 // Check whether node n is a branch to an uncommon trap that we could 3030 // optimize as test with very high branch costs in case of going to 3031 // the uncommon trap. The code must be able to be recompiled to use 3032 // a cheaper test. 3033 bool Matcher::branches_to_uncommon_trap(const Node *n) { 3034 // Don't do it for natives, adapters, or runtime stubs 3035 Compile *C = Compile::current(); 3036 if (!C->is_method_compilation()) return false; 3037 3038 assert(n->is_If(), "You should only call this on if nodes."); 3039 IfNode *ifn = n->as_If(); 3040 3041 Node *ifFalse = nullptr; 3042 for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) { 3043 if (ifn->fast_out(i)->is_IfFalse()) { 3044 ifFalse = ifn->fast_out(i); 3045 break; 3046 } 3047 } 3048 assert(ifFalse, "An If should have an ifFalse. Graph is broken."); 3049 3050 Node *reg = ifFalse; 3051 int cnt = 4; // We must protect against cycles. Limit to 4 iterations. 3052 // Alternatively use visited set? Seems too expensive. 3053 while (reg != nullptr && cnt > 0) { 3054 CallNode *call = nullptr; 3055 RegionNode *nxt_reg = nullptr; 3056 for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) { 3057 Node *o = reg->fast_out(i); 3058 if (o->is_Call()) { 3059 call = o->as_Call(); 3060 } 3061 if (o->is_Region()) { 3062 nxt_reg = o->as_Region(); 3063 } 3064 } 3065 3066 if (call && 3067 call->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point()) { 3068 const Type* trtype = call->in(TypeFunc::Parms)->bottom_type(); 3069 if (trtype->isa_int() && trtype->is_int()->is_con()) { 3070 jint tr_con = trtype->is_int()->get_con(); 3071 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); 3072 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); 3073 assert((int)reason < (int)BitsPerInt, "recode bit map"); 3074 3075 if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason) 3076 && action != Deoptimization::Action_none) { 3077 // This uncommon trap is sure to recompile, eventually. 3078 // When that happens, C->too_many_traps will prevent 3079 // this transformation from happening again. 3080 return true; 3081 } 3082 } 3083 } 3084 3085 reg = nxt_reg; 3086 cnt--; 3087 } 3088 3089 return false; 3090 } 3091 3092 //============================================================================= 3093 //---------------------------State--------------------------------------------- 3094 State::State(void) : _rule() { 3095 #ifdef ASSERT 3096 _id = 0; 3097 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 3098 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 3099 #endif 3100 } 3101 3102 #ifdef ASSERT 3103 State::~State() { 3104 _id = 99; 3105 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 3106 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 3107 memset(_cost, -3, sizeof(_cost)); 3108 memset(_rule, -3, sizeof(_rule)); 3109 } 3110 #endif 3111 3112 #ifndef PRODUCT 3113 //---------------------------dump---------------------------------------------- 3114 void State::dump() { 3115 tty->print("\n"); 3116 dump(0); 3117 } 3118 3119 void State::dump(int depth) { 3120 for (int j = 0; j < depth; j++) { 3121 tty->print(" "); 3122 } 3123 tty->print("--N: "); 3124 _leaf->dump(); 3125 uint i; 3126 for (i = 0; i < _LAST_MACH_OPER; i++) { 3127 // Check for valid entry 3128 if (valid(i)) { 3129 for (int j = 0; j < depth; j++) { 3130 tty->print(" "); 3131 } 3132 assert(cost(i) != max_juint, "cost must be a valid value"); 3133 assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule"); 3134 tty->print_cr("%s %d %s", 3135 ruleName[i], cost(i), ruleName[rule(i)] ); 3136 } 3137 } 3138 tty->cr(); 3139 3140 for (i = 0; i < 2; i++) { 3141 if (_kids[i]) { 3142 _kids[i]->dump(depth + 1); 3143 } 3144 } 3145 } 3146 #endif