1 /*
  2  * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_MATCHER_HPP
 26 #define SHARE_OPTO_MATCHER_HPP
 27 
 28 #include "libadt/vectset.hpp"
 29 #include "memory/resourceArea.hpp"
 30 #include "oops/compressedOops.hpp"
 31 #include "opto/node.hpp"
 32 #include "opto/phaseX.hpp"
 33 #include "opto/regmask.hpp"
 34 #include "opto/subnode.hpp"
 35 #include "runtime/vm_version.hpp"
 36 
 37 class Compile;
 38 class Node;
 39 class MachNode;
 40 class MachTypeNode;
 41 class MachOper;
 42 
 43 //---------------------------Matcher-------------------------------------------
 44 class Matcher : public PhaseTransform {
 45   friend class VMStructs;
 46 
 47 public:
 48 
 49   // Machine-dependent definitions
 50 #include CPU_HEADER(matcher)
 51 
 52   // State and MStack class used in xform() and find_shared() iterative methods.
 53   enum Node_State { Pre_Visit,  // node has to be pre-visited
 54                     Visit,  // visit node
 55                     Post_Visit,  // post-visit node
 56                     Alt_Post_Visit   // alternative post-visit path
 57   };
 58 
 59   class MStack: public Node_Stack {
 60   public:
 61     MStack(int size) : Node_Stack(size) { }
 62 
 63     void push(Node *n, Node_State ns) {
 64       Node_Stack::push(n, (uint)ns);
 65     }
 66     void push(Node *n, Node_State ns, Node *parent, int indx) {
 67       ++_inode_top;
 68       if ((_inode_top + 1) >= _inode_max) grow();
 69       _inode_top->node = parent;
 70       _inode_top->indx = (uint)indx;
 71       ++_inode_top;
 72       _inode_top->node = n;
 73       _inode_top->indx = (uint)ns;
 74     }
 75     Node *parent() {
 76       pop();
 77       return node();
 78     }
 79     Node_State state() const {
 80       return (Node_State)index();
 81     }
 82     void set_state(Node_State ns) {
 83       set_index((uint)ns);
 84     }
 85   };
 86 
 87 private:
 88   // Private arena of State objects
 89   ResourceArea _states_arena;
 90 
 91   VectorSet   _visited;         // Visit bits
 92 
 93   // Used to control the Label pass
 94   VectorSet   _shared;          // Shared Ideal Node
 95   VectorSet   _dontcare;        // Nothing the matcher cares about
 96 
 97   // Private methods which perform the actual matching and reduction
 98   // Walks the label tree, generating machine nodes
 99   MachNode *ReduceInst( State *s, int rule, Node *&mem);
100   void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
101   uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
102   void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
103 
104   // If this node already matched using "rule", return the MachNode for it.
105   MachNode* find_shared_node(Node* n, uint rule);
106 
107   // Convert a dense opcode number to an expanded rule number
108   const int *_reduceOp;
109   const int *_leftOp;
110   const int *_rightOp;
111 
112   // Map dense opcode number to info on when rule is swallowed constant.
113   const bool *_swallowed;
114 
115   // Map dense rule number to determine if this is an instruction chain rule
116   const uint _begin_inst_chain_rule;
117   const uint _end_inst_chain_rule;
118 
119   // We want to clone constants and possible CmpI-variants.
120   // If we do not clone CmpI, then we can have many instances of
121   // condition codes alive at once.  This is OK on some chips and
122   // bad on others.  Hence the machine-dependent table lookup.
123   const char *_must_clone;
124 
125   // Find shared Nodes, or Nodes that otherwise are Matcher roots
126   void find_shared( Node *n );
127   bool find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx);
128   void find_shared_post_visit(Node* n, uint opcode);
129 
130   bool is_vshift_con_pattern(Node* n, Node* m);
131 
132   // Debug and profile information for nodes in old space:
133   GrowableArray<Node_Notes*>* _old_node_note_array;
134 
135   // Node labeling iterator for instruction selection
136   Node* Label_Root(const Node* n, State* svec, Node* control, Node*& mem);
137 
138   Node *transform( Node *dummy );
139 
140   Node_List _projection_list;        // For Machine nodes killing many values
141 
142   Node_Array _shared_nodes;
143 
144 #ifndef PRODUCT
145   Node_Array _old2new_map;    // Map roots of ideal-trees to machine-roots
146   Node_Array _new2old_map;    // Maps machine nodes back to ideal
147   VectorSet _reused;          // Ideal IGV identifiers reused by machine nodes
148 #endif // !PRODUCT
149 
150   // Accessors for the inherited field PhaseTransform::_nodes:
151   void   grow_new_node_array(uint idx_limit) {
152     _nodes.map(idx_limit-1, NULL);
153   }
154   bool    has_new_node(const Node* n) const {
155     return _nodes.at(n->_idx) != NULL;
156   }
157   Node*       new_node(const Node* n) const {
158     assert(has_new_node(n), "set before get");
159     return _nodes.at(n->_idx);
160   }
161   void    set_new_node(const Node* n, Node *nn) {
162     assert(!has_new_node(n), "set only once");
163     _nodes.map(n->_idx, nn);
164   }
165 
166 #ifdef ASSERT
167   // Make sure only new nodes are reachable from this node
168   void verify_new_nodes_only(Node* root);
169 
170   Node* _mem_node;   // Ideal memory node consumed by mach node
171 #endif
172 
173   // Mach node for ConP #NULL
174   MachNode* _mach_null;
175 
176   void handle_precedence_edges(Node* n, MachNode *mach);
177 
178 public:
179   int LabelRootDepth;
180   // Convert ideal machine register to a register mask for spill-loads
181   static const RegMask *idealreg2regmask[];
182   RegMask *idealreg2spillmask  [_last_machine_leaf];
183   RegMask *idealreg2debugmask  [_last_machine_leaf];
184   RegMask *idealreg2mhdebugmask[_last_machine_leaf];
185   void init_spill_mask( Node *ret );
186   // Convert machine register number to register mask
187   static uint mreg2regmask_max;
188   static RegMask mreg2regmask[];
189   static RegMask STACK_ONLY_mask;
190   static RegMask caller_save_regmask;
191   static RegMask caller_save_regmask_exclude_soe;
192   static RegMask mh_caller_save_regmask;
193   static RegMask mh_caller_save_regmask_exclude_soe;
194 
195   MachNode* mach_null() const { return _mach_null; }
196 
197   bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
198   void   set_shared( Node *n ) {  _shared.set(n->_idx); }
199   bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
200   void  set_visited( Node *n ) { _visited.set(n->_idx); }
201   bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
202   void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
203 
204   // Mode bit to tell DFA and expand rules whether we are running after
205   // (or during) register selection.  Usually, the matcher runs before,
206   // but it will also get called to generate post-allocation spill code.
207   // In this situation, it is a deadly error to attempt to allocate more
208   // temporary registers.
209   bool _allocation_started;
210 
211   // Machine register names
212   static const char *regName[];
213   // Machine register encodings
214   static const unsigned char _regEncode[];
215   // Machine Node names
216   const char **_ruleName;
217   // Rules that are cheaper to rematerialize than to spill
218   static const uint _begin_rematerialize;
219   static const uint _end_rematerialize;
220 
221   // An array of chars, from 0 to _last_Mach_Reg.
222   // No Save       = 'N' (for register windows)
223   // Save on Entry = 'E'
224   // Save on Call  = 'C'
225   // Always Save   = 'A' (same as SOE + SOC)
226   const char *_register_save_policy;
227   const char *_c_reg_save_policy;
228   // Convert a machine register to a machine register type, so-as to
229   // properly match spill code.
230   const int *_register_save_type;
231   // Maps from machine register to boolean; true if machine register can
232   // be holding a call argument in some signature.
233   static bool can_be_java_arg( int reg );
234   // Maps from machine register to boolean; true if machine register holds
235   // a spillable argument.
236   static bool is_spillable_arg( int reg );
237   // Number of integer live ranges that constitute high register pressure
238   static uint int_pressure_limit();
239   // Number of float live ranges that constitute high register pressure
240   static uint float_pressure_limit();
241 
242   // List of IfFalse or IfTrue Nodes that indicate a taken null test.
243   // List is valid in the post-matching space.
244   Node_List _null_check_tests;
245   void collect_null_checks( Node *proj, Node *orig_proj );
246   void validate_null_checks( );
247 
248   Matcher();
249 
250   // Get a projection node at position pos
251   Node* get_projection(uint pos) {
252     return _projection_list[pos];
253   }
254 
255   // Push a projection node onto the projection list
256   void push_projection(Node* node) {
257     _projection_list.push(node);
258   }
259 
260   Node* pop_projection() {
261     return _projection_list.pop();
262   }
263 
264   // Number of nodes in the projection list
265   uint number_of_projections() const {
266     return _projection_list.size();
267   }
268 
269   // Select instructions for entire method
270   void match();
271 
272   // Helper for match
273   OptoReg::Name warp_incoming_stk_arg( VMReg reg );
274 
275   RegMask* return_values_mask(const TypeFunc* tf);
276 
277   // Transform, then walk.  Does implicit DCE while walking.
278   // Name changed from "transform" to avoid it being virtual.
279   Node *xform( Node *old_space_node, int Nodes );
280 
281   // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
282   MachNode *match_tree( const Node *n );
283   MachNode *match_sfpt( SafePointNode *sfpt );
284   // Helper for match_sfpt
285   OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
286 
287   // Initialize first stack mask and related masks.
288   void init_first_stack_mask();
289 
290   // If we should save-on-entry this register
291   bool is_save_on_entry( int reg );
292 
293   // Fixup the save-on-entry registers
294   void Fixup_Save_On_Entry( );
295 
296   // --- Frame handling ---
297 
298   // Register number of the stack slot corresponding to the incoming SP.
299   // Per the Big Picture in the AD file, it is:
300   //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
301   OptoReg::Name _old_SP;
302 
303   // Register number of the stack slot corresponding to the highest incoming
304   // argument on the stack.  Per the Big Picture in the AD file, it is:
305   //   _old_SP + out_preserve_stack_slots + incoming argument size.
306   OptoReg::Name _in_arg_limit;
307 
308   // Register number of the stack slot corresponding to the new SP.
309   // Per the Big Picture in the AD file, it is:
310   //   _in_arg_limit + pad0
311   OptoReg::Name _new_SP;
312 
313   // Register number of the stack slot corresponding to the highest outgoing
314   // argument on the stack.  Per the Big Picture in the AD file, it is:
315   //   _new_SP + max outgoing arguments of all calls
316   OptoReg::Name _out_arg_limit;
317 
318   OptoRegPair *_parm_regs;        // Array of machine registers per argument
319   RegMask *_calling_convention_mask; // Array of RegMasks per argument
320 
321   // Does matcher have a match rule for this ideal node?
322   static const bool has_match_rule(int opcode);
323   static const bool _hasMatchRule[_last_opcode];
324 
325   // Does matcher have a match rule for this ideal node and is the
326   // predicate (if there is one) true?
327   // NOTE: If this function is used more commonly in the future, ADLC
328   // should generate this one.
329   static const bool match_rule_supported(int opcode);
330 
331   // Identify extra cases that we might want to vectorize automatically
332   // And exclude cases which are not profitable to auto-vectorize.
333   static const bool match_rule_supported_superword(int opcode, int vlen, BasicType bt);
334 
335   // identify extra cases that we might want to provide match rules for
336   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
337   static const bool match_rule_supported_vector(int opcode, int vlen, BasicType bt);
338 
339   static const bool match_rule_supported_vector_masked(int opcode, int vlen, BasicType bt);
340 
341   static const bool vector_needs_partial_operations(Node* node, const TypeVect* vt);
342 
343   static const RegMask* predicate_reg_mask(void);
344   static const TypeVectMask* predicate_reg_type(const Type* elemTy, int length);
345 
346   // Vector width in bytes
347   static const int vector_width_in_bytes(BasicType bt);
348 
349   // Limits on vector size (number of elements).
350   static const int max_vector_size(const BasicType bt);
351   static const int min_vector_size(const BasicType bt);
352   static const bool vector_size_supported(const BasicType bt, int size) {
353     return (Matcher::max_vector_size(bt) >= size &&
354             Matcher::min_vector_size(bt) <= size);
355   }
356 
357   // Actual max scalable vector register length.
358   static const int scalable_vector_reg_size(const BasicType bt);
359   // Actual max scalable predicate register length.
360   static const int scalable_predicate_reg_slots();
361 
362   // Vector ideal reg
363   static const uint vector_ideal_reg(int len);
364 
365   // Vector length
366   static uint vector_length(const Node* n);
367   static uint vector_length(const MachNode* use, const MachOper* opnd);
368 
369   // Vector length in bytes
370   static uint vector_length_in_bytes(const Node* n);
371   static uint vector_length_in_bytes(const MachNode* use, const MachOper* opnd);
372 
373   // Vector element basic type
374   static BasicType vector_element_basic_type(const Node* n);
375   static BasicType vector_element_basic_type(const MachNode* use, const MachOper* opnd);
376 
377   // These calls are all generated by the ADLC
378 
379   // Java-Java calling convention
380   // (what you use when Java calls Java)
381 
382   // Alignment of stack in bytes, standard Intel word alignment is 4.
383   // Sparc probably wants at least double-word (8).
384   static uint stack_alignment_in_bytes();
385   // Alignment of stack, measured in stack slots.
386   // The size of stack slots is defined by VMRegImpl::stack_slot_size.
387   static uint stack_alignment_in_slots() {
388     return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
389   }
390 
391   // Convert a sig into a calling convention register layout
392   // and find interesting things about it.
393   static OptoReg::Name  find_receiver();
394   // Return address register.  On Intel it is a stack-slot.  On PowerPC
395   // it is the Link register.  On Sparc it is r31?
396   virtual OptoReg::Name return_addr() const;
397   RegMask              _return_addr_mask;
398   // Return value register.  On Intel it is EAX.
399   static OptoRegPair   return_value(uint ideal_reg);
400   static OptoRegPair c_return_value(uint ideal_reg);
401   RegMask*            _return_values_mask;
402   // Inline Cache Register
403   static OptoReg::Name  inline_cache_reg();
404   static int            inline_cache_reg_encode();
405 
406   // Register for DIVI projection of divmodI
407   static RegMask divI_proj_mask();
408   // Register for MODI projection of divmodI
409   static RegMask modI_proj_mask();
410 
411   // Register for DIVL projection of divmodL
412   static RegMask divL_proj_mask();
413   // Register for MODL projection of divmodL
414   static RegMask modL_proj_mask();
415 
416   // Use hardware DIV instruction when it is faster than
417   // a code which use multiply for division by constant.
418   static bool use_asm_for_ldiv_by_con( jlong divisor );
419 
420   static const RegMask method_handle_invoke_SP_save_mask();
421 
422   // Java-Interpreter calling convention
423   // (what you use when calling between compiled-Java and Interpreted-Java
424 
425   // Number of callee-save + always-save registers
426   // Ignores frame pointer and "special" registers
427   static int  number_of_saved_registers();
428 
429   // The Method-klass-holder may be passed in the inline_cache_reg
430   // and then expanded into the inline_cache_reg and a method_ptr register
431 
432   // Interpreter's Frame Pointer Register
433   static OptoReg::Name  interpreter_frame_pointer_reg();
434 
435   // Java-Native calling convention
436   // (what you use when intercalling between Java and C++ code)
437 
438   // Frame pointer. The frame pointer is kept at the base of the stack
439   // and so is probably the stack pointer for most machines.  On Intel
440   // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
441   OptoReg::Name  c_frame_pointer() const;
442   static RegMask c_frame_ptr_mask;
443 
444   // Java-Native vector calling convention
445   static const bool supports_vector_calling_convention();
446   static OptoRegPair vector_return_value(uint ideal_reg);
447 
448   // Is this branch offset small enough to be addressed by a short branch?
449   bool is_short_branch_offset(int rule, int br_size, int offset);
450 
451   // Should the input 'm' of node 'n' be cloned during matching?
452   // Reports back whether the node was cloned or not.
453   bool    clone_node(Node* n, Node* m, Matcher::MStack& mstack);
454   bool pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack);
455 
456   // Should the Matcher clone shifts on addressing modes, expecting them to
457   // be subsumed into complex addressing expressions or compute them into
458   // registers?  True for Intel but false for most RISCs
459   bool pd_clone_address_expressions(AddPNode* m, MStack& mstack, VectorSet& address_visited);
460   // Clone base + offset address expression
461   bool clone_base_plus_offset_address(AddPNode* m, MStack& mstack, VectorSet& address_visited);
462 
463   // Generate implicit null check for narrow oops if it can fold
464   // into address expression (x64).
465   //
466   // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
467   // NullCheck narrow_oop_reg
468   //
469   // When narrow oops can't fold into address expression (Sparc) and
470   // base is not null use decode_not_null and normal implicit null check.
471   // Note, decode_not_null node can be used here since it is referenced
472   // only on non null path but it requires special handling, see
473   // collect_null_checks():
474   //
475   // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
476   // [oop_reg + offset]
477   // NullCheck oop_reg
478   //
479   // With Zero base and when narrow oops can not fold into address
480   // expression use normal implicit null check since only shift
481   // is needed to decode narrow oop.
482   //
483   // decode narrow_oop_reg, oop_reg // only 'shift'
484   // [oop_reg + offset]
485   // NullCheck oop_reg
486   //
487   static bool gen_narrow_oop_implicit_null_checks();
488 
489  private:
490   void do_postselect_cleanup();
491 
492   void specialize_generic_vector_operands();
493   void specialize_mach_node(MachNode* m);
494   void specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx);
495   MachOper* specialize_vector_operand(MachNode* m, uint opnd_idx);
496 
497   static MachOper* pd_specialize_generic_vector_operand(MachOper* generic_opnd, uint ideal_reg, bool is_temp);
498   static bool is_reg2reg_move(MachNode* m);
499   static bool is_generic_vector(MachOper* opnd);
500 
501   const RegMask* regmask_for_ideal_register(uint ideal_reg, Node* ret);
502 
503   // Graph verification code
504   DEBUG_ONLY( bool verify_after_postselect_cleanup(); )
505 
506  public:
507   // This routine is run whenever a graph fails to match.
508   // If it returns, the compiler should bailout to interpreter without error.
509   // In non-product mode, SoftMatchFailure is false to detect non-canonical
510   // graphs.  Print a message and exit.
511   static void soft_match_failure() {
512     if( SoftMatchFailure ) return;
513     else { fatal("SoftMatchFailure is not allowed except in product"); }
514   }
515 
516   // Check for a following volatile memory barrier without an
517   // intervening load and thus we don't need a barrier here.  We
518   // retain the Node to act as a compiler ordering barrier.
519   static bool post_store_load_barrier(const Node* mb);
520 
521   // Does n lead to an uncommon trap that can cause deoptimization?
522   static bool branches_to_uncommon_trap(const Node *n);
523 
524 #ifndef PRODUCT
525   // Record mach-to-Ideal mapping, reusing the Ideal IGV identifier if possible.
526   void record_new2old(Node* newn, Node* old);
527 
528   void dump_old2new_map();      // machine-independent to machine-dependent
529 
530   Node* find_old_node(const Node* new_node) {
531     return _new2old_map[new_node->_idx];
532   }
533 #endif // !PRODUCT
534 };
535 
536 #endif // SHARE_OPTO_MATCHER_HPP