1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_MATCHER_HPP
 26 #define SHARE_OPTO_MATCHER_HPP
 27 
 28 #include "libadt/vectset.hpp"
 29 #include "memory/resourceArea.hpp"
 30 #include "oops/compressedKlass.hpp"
 31 #include "oops/compressedOops.hpp"
 32 #include "opto/node.hpp"
 33 #include "opto/phaseX.hpp"
 34 #include "opto/regmask.hpp"
 35 #include "opto/subnode.hpp"
 36 #include "runtime/vm_version.hpp"
 37 
 38 class Compile;
 39 class Node;
 40 class MachNode;
 41 class MachTypeNode;
 42 class MachOper;
 43 
 44 //---------------------------Matcher-------------------------------------------
 45 class Matcher : public PhaseTransform {
 46 public:
 47 
 48   // Machine-dependent definitions
 49 #include CPU_HEADER(matcher)
 50 
 51   // State and MStack class used in xform() and find_shared() iterative methods.
 52   enum Node_State { Pre_Visit,  // node has to be pre-visited
 53                     Visit,  // visit node
 54                     Post_Visit,  // post-visit node
 55                     Alt_Post_Visit   // alternative post-visit path
 56   };
 57 
 58   class MStack: public Node_Stack {
 59   public:
 60     MStack(int size) : Node_Stack(size) { }
 61 
 62     void push(Node *n, Node_State ns) {
 63       Node_Stack::push(n, (uint)ns);
 64     }
 65     void push(Node *n, Node_State ns, Node *parent, int indx) {
 66       Node_Stack::push(parent, (uint)indx);
 67       Node_Stack::push(n, (uint)ns);
 68     }
 69     Node *parent() {
 70       pop();
 71       return node();
 72     }
 73     Node_State state() const {
 74       return (Node_State)index();
 75     }
 76     void set_state(Node_State ns) {
 77       set_index((uint)ns);
 78     }
 79   };
 80 
 81 private:
 82   // Private arena of State objects
 83   ResourceArea _states_arena;
 84 
 85   // Map old nodes to new nodes
 86   Node_List   _new_nodes;
 87 
 88   VectorSet   _visited;         // Visit bits
 89 
 90   // Used to control the Label pass
 91   VectorSet   _shared;          // Shared Ideal Node
 92   VectorSet   _dontcare;        // Nothing the matcher cares about
 93 
 94   // Private methods which perform the actual matching and reduction
 95   // Walks the label tree, generating machine nodes
 96   MachNode *ReduceInst( State *s, int rule, Node *&mem);
 97   void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
 98   uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
 99   void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
100 
101   // If this node already matched using "rule", return the MachNode for it.
102   MachNode* find_shared_node(Node* n, uint rule);
103 
104   // Convert a dense opcode number to an expanded rule number
105   const int *_reduceOp;
106   const int *_leftOp;
107   const int *_rightOp;
108 
109   // Map dense opcode number to info on when rule is swallowed constant.
110   const bool *_swallowed;
111 
112   // Map dense rule number to determine if this is an instruction chain rule
113   const uint _begin_inst_chain_rule;
114   const uint _end_inst_chain_rule;
115 
116   // We want to clone constants and possible CmpI-variants.
117   // If we do not clone CmpI, then we can have many instances of
118   // condition codes alive at once.  This is OK on some chips and
119   // bad on others.  Hence the machine-dependent table lookup.
120   const char *_must_clone;
121 
122   // Find shared Nodes, or Nodes that otherwise are Matcher roots
123   void find_shared( Node *n );
124   bool find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx);
125   void find_shared_post_visit(Node* n, uint opcode);
126 
127   bool is_vshift_con_pattern(Node* n, Node* m);
128 
129   // Debug and profile information for nodes in old space:
130   GrowableArray<Node_Notes*>* _old_node_note_array;
131 
132   // Node labeling iterator for instruction selection
133   Node* Label_Root(const Node* n, State* svec, Node* control, Node*& mem);
134 
135   Node *transform( Node *dummy );
136 
137   Node_List _projection_list;        // For Machine nodes killing many values
138 
139   Node_Array _shared_nodes;
140 
141 #ifndef PRODUCT
142   Node_Array _old2new_map;    // Map roots of ideal-trees to machine-roots
143   Node_Array _new2old_map;    // Maps machine nodes back to ideal
144   VectorSet _reused;          // Ideal IGV identifiers reused by machine nodes
145 #endif // !PRODUCT
146 
147   void   grow_new_node_array(uint idx_limit) {
148     _new_nodes.map(idx_limit-1, nullptr);
149   }
150   bool    has_new_node(const Node* n) const {
151     return _new_nodes.at(n->_idx) != nullptr;
152   }
153   Node*       new_node(const Node* n) const {
154     assert(has_new_node(n), "set before get");
155     return _new_nodes.at(n->_idx);
156   }
157   void    set_new_node(const Node* n, Node *nn) {
158     assert(!has_new_node(n), "set only once");
159     _new_nodes.map(n->_idx, nn);
160   }
161 
162 #ifdef ASSERT
163   // Make sure only new nodes are reachable from this node
164   void verify_new_nodes_only(Node* root);
165 
166   Node* _mem_node;   // Ideal memory node consumed by mach node
167 #endif
168 
169   // Mach node for ConP #null
170   MachNode* _mach_null;
171 
172   void handle_precedence_edges(Node* n, MachNode *mach);
173 
174 public:
175   int LabelRootDepth;
176   // Convert ideal machine register to a register mask for spill-loads
177   static const RegMask *idealreg2regmask[];
178   RegMask *idealreg2spillmask  [_last_machine_leaf];
179   RegMask *idealreg2debugmask  [_last_machine_leaf];
180   void init_spill_mask( Node *ret );
181   // Convert machine register number to register mask
182   static uint mreg2regmask_max;
183   static RegMask mreg2regmask[];
184   static RegMask STACK_ONLY_mask;
185   static RegMask caller_save_regmask;
186   static RegMask caller_save_regmask_exclude_soe;
187 
188   MachNode* mach_null() const { return _mach_null; }
189 
190   bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
191   void   set_shared( Node *n ) {  _shared.set(n->_idx); }
192   bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
193   void  set_visited( Node *n ) { _visited.set(n->_idx); }
194   bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
195   void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
196 
197   // Mode bit to tell DFA and expand rules whether we are running after
198   // (or during) register selection.  Usually, the matcher runs before,
199   // but it will also get called to generate post-allocation spill code.
200   // In this situation, it is a deadly error to attempt to allocate more
201   // temporary registers.
202   bool _allocation_started;
203 
204   // Machine register names
205   static const char *regName[];
206   // Machine register encodings
207   static const unsigned char _regEncode[];
208   // Machine Node names
209   const char **_ruleName;
210   // Rules that are cheaper to rematerialize than to spill
211   static const uint _begin_rematerialize;
212   static const uint _end_rematerialize;
213 
214   // An array of chars, from 0 to _last_Mach_Reg.
215   // No Save       = 'N' (for register windows)
216   // Save on Entry = 'E'
217   // Save on Call  = 'C'
218   // Always Save   = 'A' (same as SOE + SOC)
219   const char *_register_save_policy;
220   const char *_c_reg_save_policy;
221   // Convert a machine register to a machine register type, so-as to
222   // properly match spill code.
223   const int *_register_save_type;
224   // Maps from machine register to boolean; true if machine register can
225   // be holding a call argument in some signature.
226   static bool can_be_java_arg( int reg );
227   // Maps from machine register to boolean; true if machine register holds
228   // a spillable argument.
229   static bool is_spillable_arg( int reg );
230   // Number of integer live ranges that constitute high register pressure
231   static uint int_pressure_limit();
232   // Number of float live ranges that constitute high register pressure
233   static uint float_pressure_limit();
234 
235   // List of IfFalse or IfTrue Nodes that indicate a taken null test.
236   // List is valid in the post-matching space.
237   Node_List _null_check_tests;
238   void collect_null_checks( Node *proj, Node *orig_proj );
239   void validate_null_checks( );
240 
241   Matcher();
242 
243   // Get a projection node at position pos
244   Node* get_projection(uint pos) {
245     return _projection_list[pos];
246   }
247 
248   // Push a projection node onto the projection list
249   void push_projection(Node* node) {
250     _projection_list.push(node);
251   }
252 
253   Node* pop_projection() {
254     return _projection_list.pop();
255   }
256 
257   // Number of nodes in the projection list
258   uint number_of_projections() const {
259     return _projection_list.size();
260   }
261 
262   // Select instructions for entire method
263   void match();
264 
265   // Helper for match
266   OptoReg::Name warp_incoming_stk_arg( VMReg reg );
267 
268   RegMask* return_values_mask(const TypeFunc* tf);
269 
270   // Transform, then walk.  Does implicit DCE while walking.
271   // Name changed from "transform" to avoid it being virtual.
272   Node *xform( Node *old_space_node, int Nodes );
273 
274   // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
275   MachNode *match_tree( const Node *n );
276   MachNode *match_sfpt( SafePointNode *sfpt );
277   // Helper for match_sfpt
278   OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
279 
280   // Initialize first stack mask and related masks.
281   void init_first_stack_mask();
282 
283   // If we should save-on-entry this register
284   bool is_save_on_entry( int reg );
285 
286   // Fixup the save-on-entry registers
287   void Fixup_Save_On_Entry( );
288 
289   // --- Frame handling ---
290 
291   // Register number of the stack slot corresponding to the incoming SP.
292   // Per the Big Picture in the AD file, it is:
293   //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
294   OptoReg::Name _old_SP;
295 
296   // Register number of the stack slot corresponding to the highest incoming
297   // argument on the stack.  Per the Big Picture in the AD file, it is:
298   //   _old_SP + out_preserve_stack_slots + incoming argument size.
299   OptoReg::Name _in_arg_limit;
300 
301   // Register number of the stack slot corresponding to the new SP.
302   // Per the Big Picture in the AD file, it is:
303   //   _in_arg_limit + pad0
304   OptoReg::Name _new_SP;
305 
306   // Register number of the stack slot corresponding to the highest outgoing
307   // argument on the stack.  Per the Big Picture in the AD file, it is:
308   //   _new_SP + max outgoing arguments of all calls
309   OptoReg::Name _out_arg_limit;
310 
311   OptoRegPair *_parm_regs;        // Array of machine registers per argument
312   RegMask *_calling_convention_mask; // Array of RegMasks per argument
313 
314   // Does matcher have a match rule for this ideal node?
315   static bool has_match_rule(int opcode);
316   static const bool _hasMatchRule[_last_opcode];
317 
318   // Does matcher have a match rule for this ideal node and is the
319   // predicate (if there is one) true?
320   // NOTE: If this function is used more commonly in the future, ADLC
321   // should generate this one.
322   static bool match_rule_supported(int opcode);
323 
324   // Identify extra cases that we might want to vectorize automatically
325   // And exclude cases which are not profitable to auto-vectorize.
326   static bool match_rule_supported_auto_vectorization(int opcode, int vlen, BasicType bt);
327 
328   // identify extra cases that we might want to provide match rules for
329   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
330   static bool match_rule_supported_vector(int opcode, int vlen, BasicType bt);
331 
332   static bool match_rule_supported_vector_masked(int opcode, int vlen, BasicType bt);
333 
334   static bool vector_needs_partial_operations(Node* node, const TypeVect* vt);
335 
336   static bool vector_rearrange_requires_load_shuffle(BasicType elem_bt, int vlen);
337 
338   static const RegMask* predicate_reg_mask(void);
339 
340   // Vector width in bytes
341   static int vector_width_in_bytes(BasicType bt);
342 
343   // Limits on vector size (number of elements).
344   static int max_vector_size(const BasicType bt);
345   static int min_vector_size(const BasicType bt);
346   static bool vector_size_supported(const BasicType bt, int size) {
347     return (Matcher::max_vector_size(bt) >= size &&
348             Matcher::min_vector_size(bt) <= size);
349   }
350   // Limits on max vector size (number of elements) for auto-vectorization.
351   static int max_vector_size_auto_vectorization(const BasicType bt);
352 
353   // Actual max scalable vector register length.
354   static int scalable_vector_reg_size(const BasicType bt);
355   // Actual max scalable predicate register length.
356   static int scalable_predicate_reg_slots();
357 
358   // Vector ideal reg
359   static uint vector_ideal_reg(int len);
360 
361   // Vector length
362   static uint vector_length(const Node* n);
363   static uint vector_length(const MachNode* use, const MachOper* opnd);
364 
365   // Vector length in bytes
366   static uint vector_length_in_bytes(const Node* n);
367   static uint vector_length_in_bytes(const MachNode* use, const MachOper* opnd);
368 
369   // Vector element basic type
370   static BasicType vector_element_basic_type(const Node* n);
371   static BasicType vector_element_basic_type(const MachNode* use, const MachOper* opnd);
372 
373   // Vector element basic type is non double word integral type.
374   static bool is_non_long_integral_vector(const Node* n);
375 
376   // Check if given booltest condition is unsigned or not
377   static inline bool is_unsigned_booltest_pred(int bt) {
378     return ((bt & BoolTest::unsigned_compare) == BoolTest::unsigned_compare);
379   }
380 
381   static bool is_encode_and_store_pattern(const Node* n, const Node* m);
382 
383   // These calls are all generated by the ADLC
384 
385   // Java-Java calling convention
386   // (what you use when Java calls Java)
387 
388   // Alignment of stack in bytes, standard Intel word alignment is 4.
389   // Sparc probably wants at least double-word (8).
390   static uint stack_alignment_in_bytes();
391   // Alignment of stack, measured in stack slots.
392   // The size of stack slots is defined by VMRegImpl::stack_slot_size.
393   static uint stack_alignment_in_slots() {
394     return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
395   }
396 
397   // Convert a sig into a calling convention register layout
398   // and find interesting things about it.
399   static OptoReg::Name  find_receiver();
400   // Return address register.  On Intel it is a stack-slot.  On PowerPC
401   // it is the Link register.  On Sparc it is r31?
402   virtual OptoReg::Name return_addr() const;
403   RegMask              _return_addr_mask;
404   // Return value register.  On Intel it is EAX.
405   static OptoRegPair   return_value(uint ideal_reg);
406   static OptoRegPair c_return_value(uint ideal_reg);
407   RegMask*            _return_values_mask;
408   // Inline Cache Register
409   static OptoReg::Name  inline_cache_reg();
410   static int            inline_cache_reg_encode();
411 
412   // Register for DIVI projection of divmodI
413   static RegMask divI_proj_mask();
414   // Register for MODI projection of divmodI
415   static RegMask modI_proj_mask();
416 
417   // Register for DIVL projection of divmodL
418   static RegMask divL_proj_mask();
419   // Register for MODL projection of divmodL
420   static RegMask modL_proj_mask();
421 
422   // Use hardware DIV instruction when it is faster than
423   // a code which use multiply for division by constant.
424   static bool use_asm_for_ldiv_by_con( jlong divisor );
425 
426   // Java-Interpreter calling convention
427   // (what you use when calling between compiled-Java and Interpreted-Java
428 
429   // Number of callee-save + always-save registers
430   // Ignores frame pointer and "special" registers
431   static int  number_of_saved_registers();
432 
433   // The Method-klass-holder may be passed in the inline_cache_reg
434   // and then expanded into the inline_cache_reg and a method_ptr register
435 
436   // Interpreter's Frame Pointer Register
437   static OptoReg::Name  interpreter_frame_pointer_reg();
438 
439   // Java-Native calling convention
440   // (what you use when intercalling between Java and C++ code)
441 
442   // Frame pointer. The frame pointer is kept at the base of the stack
443   // and so is probably the stack pointer for most machines.  On Intel
444   // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
445   OptoReg::Name  c_frame_pointer() const;
446   static RegMask c_frame_ptr_mask;
447 
448   // Java-Native vector calling convention
449   static bool supports_vector_calling_convention();
450   static OptoRegPair vector_return_value(uint ideal_reg);
451 
452   // Is this branch offset small enough to be addressed by a short branch?
453   bool is_short_branch_offset(int rule, int br_size, int offset);
454 
455   // Should the input 'm' of node 'n' be cloned during matching?
456   // Reports back whether the node was cloned or not.
457   bool    clone_node(Node* n, Node* m, Matcher::MStack& mstack);
458   bool pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack);
459 
460   // Should the Matcher clone shifts on addressing modes, expecting them to
461   // be subsumed into complex addressing expressions or compute them into
462   // registers?  True for Intel but false for most RISCs
463   bool pd_clone_address_expressions(AddPNode* m, MStack& mstack, VectorSet& address_visited);
464   // Clone base + offset address expression
465   bool clone_base_plus_offset_address(AddPNode* m, MStack& mstack, VectorSet& address_visited);
466 
467   // Generate implicit null check for narrow oops if it can fold
468   // into address expression (x64).
469   //
470   // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
471   // NullCheck narrow_oop_reg
472   //
473   // When narrow oops can't fold into address expression (Sparc) and
474   // base is not null use decode_not_null and normal implicit null check.
475   // Note, decode_not_null node can be used here since it is referenced
476   // only on non null path but it requires special handling, see
477   // collect_null_checks():
478   //
479   // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
480   // [oop_reg + offset]
481   // NullCheck oop_reg
482   //
483   // With Zero base and when narrow oops can not fold into address
484   // expression use normal implicit null check since only shift
485   // is needed to decode narrow oop.
486   //
487   // decode narrow_oop_reg, oop_reg // only 'shift'
488   // [oop_reg + offset]
489   // NullCheck oop_reg
490   //
491   static bool gen_narrow_oop_implicit_null_checks();
492 
493  private:
494   void do_postselect_cleanup();
495 
496   void specialize_generic_vector_operands();
497   void specialize_mach_node(MachNode* m);
498   void specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx);
499   MachOper* specialize_vector_operand(MachNode* m, uint opnd_idx);
500 
501   static MachOper* pd_specialize_generic_vector_operand(MachOper* generic_opnd, uint ideal_reg, bool is_temp);
502   static bool is_reg2reg_move(MachNode* m);
503   static bool is_generic_vector(MachOper* opnd);
504 
505   const RegMask* regmask_for_ideal_register(uint ideal_reg, Node* ret);
506 
507   // Graph verification code
508   DEBUG_ONLY( bool verify_after_postselect_cleanup(); )
509 
510  public:
511   // This routine is run whenever a graph fails to match.
512   // If it returns, the compiler should bailout to interpreter without error.
513   // In non-product mode, SoftMatchFailure is false to detect non-canonical
514   // graphs.  Print a message and exit.
515   static void soft_match_failure() {
516     if( SoftMatchFailure ) return;
517     else { fatal("SoftMatchFailure is not allowed except in product"); }
518   }
519 
520   // Check for a following volatile memory barrier without an
521   // intervening load and thus we don't need a barrier here.  We
522   // retain the Node to act as a compiler ordering barrier.
523   static bool post_store_load_barrier(const Node* mb);
524 
525   // Does n lead to an uncommon trap that can cause deoptimization?
526   static bool branches_to_uncommon_trap(const Node *n);
527 
528 #ifndef PRODUCT
529   // Record mach-to-Ideal mapping, reusing the Ideal IGV identifier if possible.
530   void record_new2old(Node* newn, Node* old);
531 
532   void dump_old2new_map();      // machine-independent to machine-dependent
533 
534   Node* find_old_node(const Node* new_node) {
535     return _new2old_map[new_node->_idx];
536   }
537 #endif // !PRODUCT
538 };
539 
540 #endif // SHARE_OPTO_MATCHER_HPP
--- EOF ---