1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "compiler/compileLog.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/c2/barrierSetC2.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "memory/allocation.inline.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/objArrayKlass.hpp" 35 #include "opto/addnode.hpp" 36 #include "opto/arraycopynode.hpp" 37 #include "opto/cfgnode.hpp" 38 #include "opto/regalloc.hpp" 39 #include "opto/compile.hpp" 40 #include "opto/connode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/loopnode.hpp" 43 #include "opto/machnode.hpp" 44 #include "opto/matcher.hpp" 45 #include "opto/memnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/phaseX.hpp" 49 #include "opto/regmask.hpp" 50 #include "opto/rootnode.hpp" 51 #include "opto/vectornode.hpp" 52 #include "utilities/align.hpp" 53 #include "utilities/copy.hpp" 54 #include "utilities/macros.hpp" 55 #include "utilities/powerOfTwo.hpp" 56 #include "utilities/vmError.hpp" 57 58 // Portions of code courtesy of Clifford Click 59 60 // Optimization - Graph Style 61 62 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st); 63 64 //============================================================================= 65 uint MemNode::size_of() const { return sizeof(*this); } 66 67 const TypePtr *MemNode::adr_type() const { 68 Node* adr = in(Address); 69 if (adr == nullptr) return nullptr; // node is dead 70 const TypePtr* cross_check = nullptr; 71 DEBUG_ONLY(cross_check = _adr_type); 72 return calculate_adr_type(adr->bottom_type(), cross_check); 73 } 74 75 bool MemNode::check_if_adr_maybe_raw(Node* adr) { 76 if (adr != nullptr) { 77 if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) { 78 return true; 79 } 80 } 81 return false; 82 } 83 84 #ifndef PRODUCT 85 void MemNode::dump_spec(outputStream *st) const { 86 if (in(Address) == nullptr) return; // node is dead 87 #ifndef ASSERT 88 // fake the missing field 89 const TypePtr* _adr_type = nullptr; 90 if (in(Address) != nullptr) 91 _adr_type = in(Address)->bottom_type()->isa_ptr(); 92 #endif 93 dump_adr_type(this, _adr_type, st); 94 95 Compile* C = Compile::current(); 96 if (C->alias_type(_adr_type)->is_volatile()) { 97 st->print(" Volatile!"); 98 } 99 if (_unaligned_access) { 100 st->print(" unaligned"); 101 } 102 if (_mismatched_access) { 103 st->print(" mismatched"); 104 } 105 if (_unsafe_access) { 106 st->print(" unsafe"); 107 } 108 } 109 110 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) { 111 st->print(" @"); 112 if (adr_type == nullptr) { 113 st->print("null"); 114 } else { 115 adr_type->dump_on(st); 116 Compile* C = Compile::current(); 117 Compile::AliasType* atp = nullptr; 118 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type); 119 if (atp == nullptr) 120 st->print(", idx=?\?;"); 121 else if (atp->index() == Compile::AliasIdxBot) 122 st->print(", idx=Bot;"); 123 else if (atp->index() == Compile::AliasIdxTop) 124 st->print(", idx=Top;"); 125 else if (atp->index() == Compile::AliasIdxRaw) 126 st->print(", idx=Raw;"); 127 else { 128 ciField* field = atp->field(); 129 if (field) { 130 st->print(", name="); 131 field->print_name_on(st); 132 } 133 st->print(", idx=%d;", atp->index()); 134 } 135 } 136 } 137 138 extern void print_alias_types(); 139 140 #endif 141 142 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) { 143 assert((t_oop != nullptr), "sanity"); 144 bool is_instance = t_oop->is_known_instance_field(); 145 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() && 146 (load != nullptr) && load->is_Load() && 147 (phase->is_IterGVN() != nullptr); 148 if (!(is_instance || is_boxed_value_load)) 149 return mchain; // don't try to optimize non-instance types 150 uint instance_id = t_oop->instance_id(); 151 Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory); 152 Node *prev = nullptr; 153 Node *result = mchain; 154 while (prev != result) { 155 prev = result; 156 if (result == start_mem) 157 break; // hit one of our sentinels 158 // skip over a call which does not affect this memory slice 159 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 160 Node *proj_in = result->in(0); 161 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) { 162 break; // hit one of our sentinels 163 } else if (proj_in->is_Call()) { 164 // ArrayCopyNodes processed here as well 165 CallNode *call = proj_in->as_Call(); 166 if (!call->may_modify(t_oop, phase)) { // returns false for instances 167 result = call->in(TypeFunc::Memory); 168 } 169 } else if (proj_in->is_Initialize()) { 170 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 171 // Stop if this is the initialization for the object instance which 172 // contains this memory slice, otherwise skip over it. 173 if ((alloc == nullptr) || (alloc->_idx == instance_id)) { 174 break; 175 } 176 if (is_instance) { 177 result = proj_in->in(TypeFunc::Memory); 178 } else if (is_boxed_value_load) { 179 Node* klass = alloc->in(AllocateNode::KlassNode); 180 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr(); 181 if (tklass->klass_is_exact() && !tklass->exact_klass()->equals(t_oop->is_instptr()->exact_klass())) { 182 result = proj_in->in(TypeFunc::Memory); // not related allocation 183 } 184 } 185 } else if (proj_in->is_MemBar()) { 186 ArrayCopyNode* ac = nullptr; 187 if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) { 188 break; 189 } 190 result = proj_in->in(TypeFunc::Memory); 191 } else if (proj_in->is_top()) { 192 break; // dead code 193 } else { 194 assert(false, "unexpected projection"); 195 } 196 } else if (result->is_ClearArray()) { 197 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) { 198 // Can not bypass initialization of the instance 199 // we are looking for. 200 break; 201 } 202 // Otherwise skip it (the call updated 'result' value). 203 } else if (result->is_MergeMem()) { 204 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty); 205 } 206 } 207 return result; 208 } 209 210 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) { 211 const TypeOopPtr* t_oop = t_adr->isa_oopptr(); 212 if (t_oop == nullptr) 213 return mchain; // don't try to optimize non-oop types 214 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase); 215 bool is_instance = t_oop->is_known_instance_field(); 216 PhaseIterGVN *igvn = phase->is_IterGVN(); 217 if (is_instance && igvn != nullptr && result->is_Phi()) { 218 PhiNode *mphi = result->as_Phi(); 219 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 220 const TypePtr *t = mphi->adr_type(); 221 bool do_split = false; 222 // In the following cases, Load memory input can be further optimized based on 223 // its precise address type 224 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ) { 225 do_split = true; 226 } else if (t->isa_oopptr() && !t->is_oopptr()->is_known_instance()) { 227 const TypeOopPtr* mem_t = 228 t->is_oopptr()->cast_to_exactness(true) 229 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) 230 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()); 231 if (t_oop->isa_aryptr()) { 232 mem_t = mem_t->is_aryptr() 233 ->cast_to_stable(t_oop->is_aryptr()->is_stable()) 234 ->cast_to_size(t_oop->is_aryptr()->size()) 235 ->with_offset(t_oop->is_aryptr()->offset()) 236 ->is_aryptr(); 237 } 238 do_split = mem_t == t_oop; 239 } 240 if (do_split) { 241 // clone the Phi with our address type 242 result = mphi->split_out_instance(t_adr, igvn); 243 } else { 244 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain"); 245 } 246 } 247 return result; 248 } 249 250 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) { 251 uint alias_idx = phase->C->get_alias_index(tp); 252 Node *mem = mmem; 253 #ifdef ASSERT 254 { 255 // Check that current type is consistent with the alias index used during graph construction 256 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx"); 257 bool consistent = adr_check == nullptr || adr_check->empty() || 258 phase->C->must_alias(adr_check, alias_idx ); 259 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3] 260 if( !consistent && adr_check != nullptr && !adr_check->empty() && 261 tp->isa_aryptr() && tp->offset() == Type::OffsetBot && 262 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot && 263 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() || 264 adr_check->offset() == oopDesc::klass_offset_in_bytes() || 265 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) { 266 // don't assert if it is dead code. 267 consistent = true; 268 } 269 if( !consistent ) { 270 st->print("alias_idx==%d, adr_check==", alias_idx); 271 if( adr_check == nullptr ) { 272 st->print("null"); 273 } else { 274 adr_check->dump(); 275 } 276 st->cr(); 277 print_alias_types(); 278 assert(consistent, "adr_check must match alias idx"); 279 } 280 } 281 #endif 282 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 283 // means an array I have not precisely typed yet. Do not do any 284 // alias stuff with it any time soon. 285 const TypeOopPtr *toop = tp->isa_oopptr(); 286 if (tp->base() != Type::AnyPtr && 287 !(toop && 288 toop->isa_instptr() && 289 toop->is_instptr()->instance_klass()->is_java_lang_Object() && 290 toop->offset() == Type::OffsetBot)) { 291 // compress paths and change unreachable cycles to TOP 292 // If not, we can update the input infinitely along a MergeMem cycle 293 // Equivalent code in PhiNode::Ideal 294 Node* m = phase->transform(mmem); 295 // If transformed to a MergeMem, get the desired slice 296 // Otherwise the returned node represents memory for every slice 297 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m; 298 // Update input if it is progress over what we have now 299 } 300 return mem; 301 } 302 303 //--------------------------Ideal_common--------------------------------------- 304 // Look for degenerate control and memory inputs. Bypass MergeMem inputs. 305 // Unhook non-raw memories from complete (macro-expanded) initializations. 306 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) { 307 // If our control input is a dead region, kill all below the region 308 Node *ctl = in(MemNode::Control); 309 if (ctl && remove_dead_region(phase, can_reshape)) 310 return this; 311 ctl = in(MemNode::Control); 312 // Don't bother trying to transform a dead node 313 if (ctl && ctl->is_top()) return NodeSentinel; 314 315 PhaseIterGVN *igvn = phase->is_IterGVN(); 316 // Wait if control on the worklist. 317 if (ctl && can_reshape && igvn != nullptr) { 318 Node* bol = nullptr; 319 Node* cmp = nullptr; 320 if (ctl->in(0)->is_If()) { 321 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity"); 322 bol = ctl->in(0)->in(1); 323 if (bol->is_Bool()) 324 cmp = ctl->in(0)->in(1)->in(1); 325 } 326 if (igvn->_worklist.member(ctl) || 327 (bol != nullptr && igvn->_worklist.member(bol)) || 328 (cmp != nullptr && igvn->_worklist.member(cmp)) ) { 329 // This control path may be dead. 330 // Delay this memory node transformation until the control is processed. 331 igvn->_worklist.push(this); 332 return NodeSentinel; // caller will return null 333 } 334 } 335 // Ignore if memory is dead, or self-loop 336 Node *mem = in(MemNode::Memory); 337 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null 338 assert(mem != this, "dead loop in MemNode::Ideal"); 339 340 if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) { 341 // This memory slice may be dead. 342 // Delay this mem node transformation until the memory is processed. 343 igvn->_worklist.push(this); 344 return NodeSentinel; // caller will return null 345 } 346 347 Node *address = in(MemNode::Address); 348 const Type *t_adr = phase->type(address); 349 if (t_adr == Type::TOP) return NodeSentinel; // caller will return null 350 351 if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) { 352 // Unsafe off-heap access with zero address. Remove access and other control users 353 // to not confuse optimizations and add a HaltNode to fail if this is ever executed. 354 assert(ctl != nullptr, "unsafe accesses should be control dependent"); 355 for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) { 356 Node* u = ctl->fast_out(i); 357 if (u != ctl) { 358 igvn->rehash_node_delayed(u); 359 int nb = u->replace_edge(ctl, phase->C->top(), igvn); 360 --i, imax -= nb; 361 } 362 } 363 Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr)); 364 Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address")); 365 phase->C->root()->add_req(halt); 366 return this; 367 } 368 369 if (can_reshape && igvn != nullptr && 370 (igvn->_worklist.member(address) || 371 (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) { 372 // The address's base and type may change when the address is processed. 373 // Delay this mem node transformation until the address is processed. 374 igvn->_worklist.push(this); 375 return NodeSentinel; // caller will return null 376 } 377 378 // Do NOT remove or optimize the next lines: ensure a new alias index 379 // is allocated for an oop pointer type before Escape Analysis. 380 // Note: C++ will not remove it since the call has side effect. 381 if (t_adr->isa_oopptr()) { 382 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr()); 383 } 384 385 Node* base = nullptr; 386 if (address->is_AddP()) { 387 base = address->in(AddPNode::Base); 388 } 389 if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) && 390 !t_adr->isa_rawptr()) { 391 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true. 392 // Skip this node optimization if its address has TOP base. 393 return NodeSentinel; // caller will return null 394 } 395 396 // Avoid independent memory operations 397 Node* old_mem = mem; 398 399 // The code which unhooks non-raw memories from complete (macro-expanded) 400 // initializations was removed. After macro-expansion all stores caught 401 // by Initialize node became raw stores and there is no information 402 // which memory slices they modify. So it is unsafe to move any memory 403 // operation above these stores. Also in most cases hooked non-raw memories 404 // were already unhooked by using information from detect_ptr_independence() 405 // and find_previous_store(). 406 407 if (mem->is_MergeMem()) { 408 MergeMemNode* mmem = mem->as_MergeMem(); 409 const TypePtr *tp = t_adr->is_ptr(); 410 411 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty); 412 } 413 414 if (mem != old_mem) { 415 set_req_X(MemNode::Memory, mem, phase); 416 if (phase->type(mem) == Type::TOP) return NodeSentinel; 417 return this; 418 } 419 420 // let the subclass continue analyzing... 421 return nullptr; 422 } 423 424 // Helper function for proving some simple control dominations. 425 // Attempt to prove that all control inputs of 'dom' dominate 'sub'. 426 // Already assumes that 'dom' is available at 'sub', and that 'sub' 427 // is not a constant (dominated by the method's StartNode). 428 // Used by MemNode::find_previous_store to prove that the 429 // control input of a memory operation predates (dominates) 430 // an allocation it wants to look past. 431 // Returns 'DomResult::Dominate' if all control inputs of 'dom' 432 // dominate 'sub', 'DomResult::NotDominate' if not, 433 // and 'DomResult::EncounteredDeadCode' if we can't decide due to 434 // dead code, but at the end of IGVN, we know the definite result 435 // once the dead code is cleaned up. 436 Node::DomResult MemNode::maybe_all_controls_dominate(Node* dom, Node* sub) { 437 if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top()) { 438 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 439 } 440 441 // Check 'dom'. Skip Proj and CatchProj nodes. 442 dom = dom->find_exact_control(dom); 443 if (dom == nullptr || dom->is_top()) { 444 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 445 } 446 447 if (dom == sub) { 448 // For the case when, for example, 'sub' is Initialize and the original 449 // 'dom' is Proj node of the 'sub'. 450 return DomResult::NotDominate; 451 } 452 453 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) { 454 return DomResult::Dominate; 455 } 456 457 // 'dom' dominates 'sub' if its control edge and control edges 458 // of all its inputs dominate or equal to sub's control edge. 459 460 // Currently 'sub' is either Allocate, Initialize or Start nodes. 461 // Or Region for the check in LoadNode::Ideal(); 462 // 'sub' should have sub->in(0) != nullptr. 463 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || 464 sub->is_Region() || sub->is_Call(), "expecting only these nodes"); 465 466 // Get control edge of 'sub'. 467 Node* orig_sub = sub; 468 sub = sub->find_exact_control(sub->in(0)); 469 if (sub == nullptr || sub->is_top()) { 470 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 471 } 472 473 assert(sub->is_CFG(), "expecting control"); 474 475 if (sub == dom) { 476 return DomResult::Dominate; 477 } 478 479 if (sub->is_Start() || sub->is_Root()) { 480 return DomResult::NotDominate; 481 } 482 483 { 484 // Check all control edges of 'dom'. 485 486 ResourceMark rm; 487 Node_List nlist; 488 Unique_Node_List dom_list; 489 490 dom_list.push(dom); 491 bool only_dominating_controls = false; 492 493 for (uint next = 0; next < dom_list.size(); next++) { 494 Node* n = dom_list.at(next); 495 if (n == orig_sub) { 496 return DomResult::NotDominate; // One of dom's inputs dominated by sub. 497 } 498 if (!n->is_CFG() && n->pinned()) { 499 // Check only own control edge for pinned non-control nodes. 500 n = n->find_exact_control(n->in(0)); 501 if (n == nullptr || n->is_top()) { 502 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 503 } 504 assert(n->is_CFG(), "expecting control"); 505 dom_list.push(n); 506 } else if (n->is_Con() || n->is_Start() || n->is_Root()) { 507 only_dominating_controls = true; 508 } else if (n->is_CFG()) { 509 DomResult dom_result = n->dominates(sub, nlist); 510 if (dom_result == DomResult::Dominate) { 511 only_dominating_controls = true; 512 } else { 513 return dom_result; 514 } 515 } else { 516 // First, own control edge. 517 Node* m = n->find_exact_control(n->in(0)); 518 if (m != nullptr) { 519 if (m->is_top()) { 520 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 521 } 522 dom_list.push(m); 523 } 524 // Now, the rest of edges. 525 uint cnt = n->req(); 526 for (uint i = 1; i < cnt; i++) { 527 m = n->find_exact_control(n->in(i)); 528 if (m == nullptr || m->is_top()) { 529 continue; 530 } 531 dom_list.push(m); 532 } 533 } 534 } 535 return only_dominating_controls ? DomResult::Dominate : DomResult::NotDominate; 536 } 537 } 538 539 //---------------------detect_ptr_independence--------------------------------- 540 // Used by MemNode::find_previous_store to prove that two base 541 // pointers are never equal. 542 // The pointers are accompanied by their associated allocations, 543 // if any, which have been previously discovered by the caller. 544 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1, 545 Node* p2, AllocateNode* a2, 546 PhaseTransform* phase) { 547 // Attempt to prove that these two pointers cannot be aliased. 548 // They may both manifestly be allocations, and they should differ. 549 // Or, if they are not both allocations, they can be distinct constants. 550 // Otherwise, one is an allocation and the other a pre-existing value. 551 if (a1 == nullptr && a2 == nullptr) { // neither an allocation 552 return (p1 != p2) && p1->is_Con() && p2->is_Con(); 553 } else if (a1 != nullptr && a2 != nullptr) { // both allocations 554 return (a1 != a2); 555 } else if (a1 != nullptr) { // one allocation a1 556 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.) 557 return all_controls_dominate(p2, a1); 558 } else { //(a2 != null) // one allocation a2 559 return all_controls_dominate(p1, a2); 560 } 561 return false; 562 } 563 564 565 // Find an arraycopy ac that produces the memory state represented by parameter mem. 566 // Return ac if 567 // (a) can_see_stored_value=true and ac must have set the value for this load or if 568 // (b) can_see_stored_value=false and ac could have set the value for this load or if 569 // (c) can_see_stored_value=false and ac cannot have set the value for this load. 570 // In case (c) change the parameter mem to the memory input of ac to skip it 571 // when searching stored value. 572 // Otherwise return null. 573 Node* LoadNode::find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { 574 ArrayCopyNode* ac = find_array_copy_clone(ld_alloc, mem); 575 if (ac != nullptr) { 576 Node* ld_addp = in(MemNode::Address); 577 Node* src = ac->in(ArrayCopyNode::Src); 578 const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr(); 579 580 // This is a load from a cloned array. The corresponding arraycopy ac must 581 // have set the value for the load and we can return ac but only if the load 582 // is known to be within bounds. This is checked below. 583 if (ary_t != nullptr && ld_addp->is_AddP()) { 584 Node* ld_offs = ld_addp->in(AddPNode::Offset); 585 BasicType ary_elem = ary_t->elem()->array_element_basic_type(); 586 jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem); 587 jlong elemsize = type2aelembytes(ary_elem); 588 589 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 590 const TypeInt* sizetype = ary_t->size(); 591 592 if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) { 593 // The load is known to be within bounds. It receives its value from ac. 594 return ac; 595 } 596 // The load is known to be out-of-bounds. 597 } 598 // The load could be out-of-bounds. It must not be hoisted but must remain 599 // dependent on the runtime range check. This is achieved by returning null. 600 } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) { 601 ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy(); 602 603 if (ac->is_arraycopy_validated() || 604 ac->is_copyof_validated() || 605 ac->is_copyofrange_validated()) { 606 Node* ld_addp = in(MemNode::Address); 607 if (ld_addp->is_AddP()) { 608 Node* ld_base = ld_addp->in(AddPNode::Address); 609 Node* ld_offs = ld_addp->in(AddPNode::Offset); 610 611 Node* dest = ac->in(ArrayCopyNode::Dest); 612 613 if (dest == ld_base) { 614 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 615 assert(!ld_offs_t->empty(), "dead reference should be checked already"); 616 // Take into account vector or unsafe access size 617 jlong ld_size_in_bytes = (jlong)memory_size(); 618 jlong offset_hi = ld_offs_t->_hi + ld_size_in_bytes - 1; 619 offset_hi = MIN2(offset_hi, (jlong)(TypeX::MAX->_hi)); // Take care for overflow in 32-bit VM 620 if (ac->modifies(ld_offs_t->_lo, (intptr_t)offset_hi, phase, can_see_stored_value)) { 621 return ac; 622 } 623 if (!can_see_stored_value) { 624 mem = ac->in(TypeFunc::Memory); 625 return ac; 626 } 627 } 628 } 629 } 630 } 631 return nullptr; 632 } 633 634 ArrayCopyNode* MemNode::find_array_copy_clone(Node* ld_alloc, Node* mem) const { 635 if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore || 636 mem->in(0)->Opcode() == Op_MemBarCPUOrder)) { 637 if (ld_alloc != nullptr) { 638 // Check if there is an array copy for a clone 639 Node* mb = mem->in(0); 640 ArrayCopyNode* ac = nullptr; 641 if (mb->in(0) != nullptr && mb->in(0)->is_Proj() && 642 mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) { 643 ac = mb->in(0)->in(0)->as_ArrayCopy(); 644 } else { 645 // Step over GC barrier when ReduceInitialCardMarks is disabled 646 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 647 Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0)); 648 649 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { 650 ac = control_proj_ac->in(0)->as_ArrayCopy(); 651 } 652 } 653 654 if (ac != nullptr && ac->is_clonebasic()) { 655 AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest)); 656 if (alloc != nullptr && alloc == ld_alloc) { 657 return ac; 658 } 659 } 660 } 661 } 662 return nullptr; 663 } 664 665 // The logic for reordering loads and stores uses four steps: 666 // (a) Walk carefully past stores and initializations which we 667 // can prove are independent of this load. 668 // (b) Observe that the next memory state makes an exact match 669 // with self (load or store), and locate the relevant store. 670 // (c) Ensure that, if we were to wire self directly to the store, 671 // the optimizer would fold it up somehow. 672 // (d) Do the rewiring, and return, depending on some other part of 673 // the optimizer to fold up the load. 674 // This routine handles steps (a) and (b). Steps (c) and (d) are 675 // specific to loads and stores, so they are handled by the callers. 676 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.) 677 // 678 Node* MemNode::find_previous_store(PhaseValues* phase) { 679 Node* ctrl = in(MemNode::Control); 680 Node* adr = in(MemNode::Address); 681 intptr_t offset = 0; 682 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 683 AllocateNode* alloc = AllocateNode::Ideal_allocation(base); 684 685 if (offset == Type::OffsetBot) 686 return nullptr; // cannot unalias unless there are precise offsets 687 688 const bool adr_maybe_raw = check_if_adr_maybe_raw(adr); 689 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr(); 690 691 intptr_t size_in_bytes = memory_size(); 692 693 Node* mem = in(MemNode::Memory); // start searching here... 694 695 int cnt = 50; // Cycle limiter 696 for (;;) { // While we can dance past unrelated stores... 697 if (--cnt < 0) break; // Caught in cycle or a complicated dance? 698 699 Node* prev = mem; 700 if (mem->is_Store()) { 701 Node* st_adr = mem->in(MemNode::Address); 702 intptr_t st_offset = 0; 703 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 704 if (st_base == nullptr) 705 break; // inscrutable pointer 706 707 // For raw accesses it's not enough to prove that constant offsets don't intersect. 708 // We need the bases to be the equal in order for the offset check to make sense. 709 if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) { 710 break; 711 } 712 713 if (st_offset != offset && st_offset != Type::OffsetBot) { 714 const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 715 assert(mem->as_Store()->memory_size() <= MAX_STORE, ""); 716 if (st_offset >= offset + size_in_bytes || 717 st_offset <= offset - MAX_STORE || 718 st_offset <= offset - mem->as_Store()->memory_size()) { 719 // Success: The offsets are provably independent. 720 // (You may ask, why not just test st_offset != offset and be done? 721 // The answer is that stores of different sizes can co-exist 722 // in the same sequence of RawMem effects. We sometimes initialize 723 // a whole 'tile' of array elements with a single jint or jlong.) 724 mem = mem->in(MemNode::Memory); 725 continue; // (a) advance through independent store memory 726 } 727 } 728 if (st_base != base && 729 detect_ptr_independence(base, alloc, 730 st_base, 731 AllocateNode::Ideal_allocation(st_base), 732 phase)) { 733 // Success: The bases are provably independent. 734 mem = mem->in(MemNode::Memory); 735 continue; // (a) advance through independent store memory 736 } 737 738 // (b) At this point, if the bases or offsets do not agree, we lose, 739 // since we have not managed to prove 'this' and 'mem' independent. 740 if (st_base == base && st_offset == offset) { 741 return mem; // let caller handle steps (c), (d) 742 } 743 744 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 745 InitializeNode* st_init = mem->in(0)->as_Initialize(); 746 AllocateNode* st_alloc = st_init->allocation(); 747 if (st_alloc == nullptr) { 748 break; // something degenerated 749 } 750 bool known_identical = false; 751 bool known_independent = false; 752 if (alloc == st_alloc) { 753 known_identical = true; 754 } else if (alloc != nullptr) { 755 known_independent = true; 756 } else if (all_controls_dominate(this, st_alloc)) { 757 known_independent = true; 758 } 759 760 if (known_independent) { 761 // The bases are provably independent: Either they are 762 // manifestly distinct allocations, or else the control 763 // of this load dominates the store's allocation. 764 int alias_idx = phase->C->get_alias_index(adr_type()); 765 if (alias_idx == Compile::AliasIdxRaw) { 766 mem = st_alloc->in(TypeFunc::Memory); 767 } else { 768 mem = st_init->memory(alias_idx); 769 } 770 continue; // (a) advance through independent store memory 771 } 772 773 // (b) at this point, if we are not looking at a store initializing 774 // the same allocation we are loading from, we lose. 775 if (known_identical) { 776 // From caller, can_see_stored_value will consult find_captured_store. 777 return mem; // let caller handle steps (c), (d) 778 } 779 780 } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) { 781 if (prev != mem) { 782 // Found an arraycopy but it doesn't affect that load 783 continue; 784 } 785 // Found an arraycopy that may affect that load 786 return mem; 787 } else if (addr_t != nullptr && addr_t->is_known_instance_field()) { 788 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN. 789 if (mem->is_Proj() && mem->in(0)->is_Call()) { 790 // ArrayCopyNodes processed here as well. 791 CallNode *call = mem->in(0)->as_Call(); 792 if (!call->may_modify(addr_t, phase)) { 793 mem = call->in(TypeFunc::Memory); 794 continue; // (a) advance through independent call memory 795 } 796 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) { 797 ArrayCopyNode* ac = nullptr; 798 if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) { 799 break; 800 } 801 mem = mem->in(0)->in(TypeFunc::Memory); 802 continue; // (a) advance through independent MemBar memory 803 } else if (mem->is_ClearArray()) { 804 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) { 805 // (the call updated 'mem' value) 806 continue; // (a) advance through independent allocation memory 807 } else { 808 // Can not bypass initialization of the instance 809 // we are looking for. 810 return mem; 811 } 812 } else if (mem->is_MergeMem()) { 813 int alias_idx = phase->C->get_alias_index(adr_type()); 814 mem = mem->as_MergeMem()->memory_at(alias_idx); 815 continue; // (a) advance through independent MergeMem memory 816 } 817 } 818 819 // Unless there is an explicit 'continue', we must bail out here, 820 // because 'mem' is an inscrutable memory state (e.g., a call). 821 break; 822 } 823 824 return nullptr; // bail out 825 } 826 827 //----------------------calculate_adr_type------------------------------------- 828 // Helper function. Notices when the given type of address hits top or bottom. 829 // Also, asserts a cross-check of the type against the expected address type. 830 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) { 831 if (t == Type::TOP) return nullptr; // does not touch memory any more? 832 #ifdef ASSERT 833 if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump()) cross_check = nullptr; 834 #endif 835 const TypePtr* tp = t->isa_ptr(); 836 if (tp == nullptr) { 837 assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide"); 838 return TypePtr::BOTTOM; // touches lots of memory 839 } else { 840 #ifdef ASSERT 841 // %%%% [phh] We don't check the alias index if cross_check is 842 // TypeRawPtr::BOTTOM. Needs to be investigated. 843 if (cross_check != nullptr && 844 cross_check != TypePtr::BOTTOM && 845 cross_check != TypeRawPtr::BOTTOM) { 846 // Recheck the alias index, to see if it has changed (due to a bug). 847 Compile* C = Compile::current(); 848 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp), 849 "must stay in the original alias category"); 850 // The type of the address must be contained in the adr_type, 851 // disregarding "null"-ness. 852 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.) 853 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr(); 854 assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(), 855 "real address must not escape from expected memory type"); 856 } 857 #endif 858 return tp; 859 } 860 } 861 862 uint8_t MemNode::barrier_data(const Node* n) { 863 if (n->is_LoadStore()) { 864 return n->as_LoadStore()->barrier_data(); 865 } else if (n->is_Mem()) { 866 return n->as_Mem()->barrier_data(); 867 } 868 return 0; 869 } 870 871 //============================================================================= 872 // Should LoadNode::Ideal() attempt to remove control edges? 873 bool LoadNode::can_remove_control() const { 874 return !has_pinned_control_dependency(); 875 } 876 uint LoadNode::size_of() const { return sizeof(*this); } 877 bool LoadNode::cmp(const Node &n) const { 878 LoadNode& load = (LoadNode &)n; 879 return Type::equals(_type, load._type) && 880 _control_dependency == load._control_dependency && 881 _mo == load._mo; 882 } 883 const Type *LoadNode::bottom_type() const { return _type; } 884 uint LoadNode::ideal_reg() const { 885 return _type->ideal_reg(); 886 } 887 888 #ifndef PRODUCT 889 void LoadNode::dump_spec(outputStream *st) const { 890 MemNode::dump_spec(st); 891 if( !Verbose && !WizardMode ) { 892 // standard dump does this in Verbose and WizardMode 893 st->print(" #"); _type->dump_on(st); 894 } 895 if (!depends_only_on_test()) { 896 st->print(" (does not depend only on test, "); 897 if (control_dependency() == UnknownControl) { 898 st->print("unknown control"); 899 } else if (control_dependency() == Pinned) { 900 st->print("pinned"); 901 } else if (adr_type() == TypeRawPtr::BOTTOM) { 902 st->print("raw access"); 903 } else { 904 st->print("unknown reason"); 905 } 906 st->print(")"); 907 } 908 } 909 #endif 910 911 #ifdef ASSERT 912 //----------------------------is_immutable_value------------------------------- 913 // Helper function to allow a raw load without control edge for some cases 914 bool LoadNode::is_immutable_value(Node* adr) { 915 if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() && 916 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal) { 917 918 jlong offset = adr->in(AddPNode::Offset)->find_intptr_t_con(-1); 919 int offsets[] = { 920 in_bytes(JavaThread::osthread_offset()), 921 in_bytes(JavaThread::threadObj_offset()), 922 in_bytes(JavaThread::vthread_offset()), 923 in_bytes(JavaThread::scopedValueCache_offset()), 924 }; 925 926 for (size_t i = 0; i < sizeof offsets / sizeof offsets[0]; i++) { 927 if (offset == offsets[i]) { 928 return true; 929 } 930 } 931 } 932 933 return false; 934 } 935 #endif 936 937 //----------------------------LoadNode::make----------------------------------- 938 // Polymorphic factory method: 939 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo, 940 ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { 941 Compile* C = gvn.C; 942 943 // sanity check the alias category against the created node type 944 assert(!(adr_type->isa_oopptr() && 945 adr_type->offset() == oopDesc::klass_offset_in_bytes()), 946 "use LoadKlassNode instead"); 947 assert(!(adr_type->isa_aryptr() && 948 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()), 949 "use LoadRangeNode instead"); 950 // Check control edge of raw loads 951 assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 952 // oop will be recorded in oop map if load crosses safepoint 953 rt->isa_oopptr() || is_immutable_value(adr), 954 "raw memory operations should have control edge"); 955 LoadNode* load = nullptr; 956 switch (bt) { 957 case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 958 case T_BYTE: load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 959 case T_INT: load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 960 case T_CHAR: load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 961 case T_SHORT: load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 962 case T_LONG: load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break; 963 case T_FLOAT: load = new LoadFNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; 964 case T_DOUBLE: load = new LoadDNode (ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic_access); break; 965 case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); break; 966 case T_OBJECT: 967 case T_NARROWOOP: 968 #ifdef _LP64 969 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 970 load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency); 971 } else 972 #endif 973 { 974 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop"); 975 load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); 976 } 977 break; 978 default: 979 ShouldNotReachHere(); 980 break; 981 } 982 assert(load != nullptr, "LoadNode should have been created"); 983 if (unaligned) { 984 load->set_unaligned_access(); 985 } 986 if (mismatched) { 987 load->set_mismatched_access(); 988 } 989 if (unsafe) { 990 load->set_unsafe_access(); 991 } 992 load->set_barrier_data(barrier_data); 993 if (load->Opcode() == Op_LoadN) { 994 Node* ld = gvn.transform(load); 995 return new DecodeNNode(ld, ld->bottom_type()->make_ptr()); 996 } 997 998 return load; 999 } 1000 1001 //------------------------------hash------------------------------------------- 1002 uint LoadNode::hash() const { 1003 // unroll addition of interesting fields 1004 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address); 1005 } 1006 1007 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) { 1008 if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) { 1009 bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile(); 1010 bool is_stable_ary = FoldStableValues && 1011 (tp != nullptr) && (tp->isa_aryptr() != nullptr) && 1012 tp->isa_aryptr()->is_stable(); 1013 1014 return (eliminate_boxing && non_volatile) || is_stable_ary; 1015 } 1016 1017 return false; 1018 } 1019 1020 LoadNode* LoadNode::pin_array_access_node() const { 1021 const TypePtr* adr_type = this->adr_type(); 1022 if (adr_type != nullptr && adr_type->isa_aryptr()) { 1023 return clone_pinned(); 1024 } 1025 return nullptr; 1026 } 1027 1028 // Is the value loaded previously stored by an arraycopy? If so return 1029 // a load node that reads from the source array so we may be able to 1030 // optimize out the ArrayCopy node later. 1031 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const { 1032 Node* ld_adr = in(MemNode::Address); 1033 intptr_t ld_off = 0; 1034 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); 1035 Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true); 1036 if (ac != nullptr) { 1037 assert(ac->is_ArrayCopy(), "what kind of node can this be?"); 1038 1039 Node* mem = ac->in(TypeFunc::Memory); 1040 Node* ctl = ac->in(0); 1041 Node* src = ac->in(ArrayCopyNode::Src); 1042 1043 if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) { 1044 return nullptr; 1045 } 1046 1047 // load depends on the tests that validate the arraycopy 1048 LoadNode* ld = clone_pinned(); 1049 Node* addp = in(MemNode::Address)->clone(); 1050 if (ac->as_ArrayCopy()->is_clonebasic()) { 1051 assert(ld_alloc != nullptr, "need an alloc"); 1052 assert(addp->is_AddP(), "address must be addp"); 1053 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1054 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 1055 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 1056 addp->set_req(AddPNode::Base, src); 1057 addp->set_req(AddPNode::Address, src); 1058 } else { 1059 assert(ac->as_ArrayCopy()->is_arraycopy_validated() || 1060 ac->as_ArrayCopy()->is_copyof_validated() || 1061 ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases"); 1062 assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be"); 1063 addp->set_req(AddPNode::Base, src); 1064 addp->set_req(AddPNode::Address, src); 1065 1066 const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr(); 1067 BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type(); 1068 if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT; 1069 1070 uint header = arrayOopDesc::base_offset_in_bytes(ary_elem); 1071 uint shift = exact_log2(type2aelembytes(ary_elem)); 1072 1073 Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 1074 #ifdef _LP64 1075 diff = phase->transform(new ConvI2LNode(diff)); 1076 #endif 1077 diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift))); 1078 1079 Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff)); 1080 addp->set_req(AddPNode::Offset, offset); 1081 } 1082 addp = phase->transform(addp); 1083 #ifdef ASSERT 1084 const TypePtr* adr_type = phase->type(addp)->is_ptr(); 1085 ld->_adr_type = adr_type; 1086 #endif 1087 ld->set_req(MemNode::Address, addp); 1088 ld->set_req(0, ctl); 1089 ld->set_req(MemNode::Memory, mem); 1090 return ld; 1091 } 1092 return nullptr; 1093 } 1094 1095 1096 //---------------------------can_see_stored_value------------------------------ 1097 // This routine exists to make sure this set of tests is done the same 1098 // everywhere. We need to make a coordinated change: first LoadNode::Ideal 1099 // will change the graph shape in a way which makes memory alive twice at the 1100 // same time (uses the Oracle model of aliasing), then some 1101 // LoadXNode::Identity will fold things back to the equivalence-class model 1102 // of aliasing. 1103 Node* MemNode::can_see_stored_value(Node* st, PhaseValues* phase) const { 1104 Node* ld_adr = in(MemNode::Address); 1105 intptr_t ld_off = 0; 1106 Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off); 1107 Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base); 1108 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); 1109 Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr; 1110 // This is more general than load from boxing objects. 1111 if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) { 1112 uint alias_idx = atp->index(); 1113 Node* result = nullptr; 1114 Node* current = st; 1115 // Skip through chains of MemBarNodes checking the MergeMems for 1116 // new states for the slice of this load. Stop once any other 1117 // kind of node is encountered. Loads from final memory can skip 1118 // through any kind of MemBar but normal loads shouldn't skip 1119 // through MemBarAcquire since the could allow them to move out of 1120 // a synchronized region. It is not safe to step over MemBarCPUOrder, 1121 // because alias info above them may be inaccurate (e.g., due to 1122 // mixed/mismatched unsafe accesses). 1123 bool is_final_mem = !atp->is_rewritable(); 1124 while (current->is_Proj()) { 1125 int opc = current->in(0)->Opcode(); 1126 if ((is_final_mem && (opc == Op_MemBarAcquire || 1127 opc == Op_MemBarAcquireLock || 1128 opc == Op_LoadFence)) || 1129 opc == Op_MemBarRelease || 1130 opc == Op_StoreFence || 1131 opc == Op_MemBarReleaseLock || 1132 opc == Op_MemBarStoreStore || 1133 opc == Op_StoreStoreFence) { 1134 Node* mem = current->in(0)->in(TypeFunc::Memory); 1135 if (mem->is_MergeMem()) { 1136 MergeMemNode* merge = mem->as_MergeMem(); 1137 Node* new_st = merge->memory_at(alias_idx); 1138 if (new_st == merge->base_memory()) { 1139 // Keep searching 1140 current = new_st; 1141 continue; 1142 } 1143 // Save the new memory state for the slice and fall through 1144 // to exit. 1145 result = new_st; 1146 } 1147 } 1148 break; 1149 } 1150 if (result != nullptr) { 1151 st = result; 1152 } 1153 } 1154 1155 // Loop around twice in the case Load -> Initialize -> Store. 1156 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.) 1157 for (int trip = 0; trip <= 1; trip++) { 1158 1159 if (st->is_Store()) { 1160 Node* st_adr = st->in(MemNode::Address); 1161 if (st_adr != ld_adr) { 1162 // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers). 1163 intptr_t st_off = 0; 1164 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off); 1165 if (ld_base == nullptr) return nullptr; 1166 if (st_base == nullptr) return nullptr; 1167 if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr; 1168 if (ld_off != st_off) return nullptr; 1169 if (ld_off == Type::OffsetBot) return nullptr; 1170 // Same base, same offset. 1171 // Possible improvement for arrays: check index value instead of absolute offset. 1172 1173 // At this point we have proven something like this setup: 1174 // B = << base >> 1175 // L = LoadQ(AddP(Check/CastPP(B), #Off)) 1176 // S = StoreQ(AddP( B , #Off), V) 1177 // (Actually, we haven't yet proven the Q's are the same.) 1178 // In other words, we are loading from a casted version of 1179 // the same pointer-and-offset that we stored to. 1180 // Casted version may carry a dependency and it is respected. 1181 // Thus, we are able to replace L by V. 1182 } 1183 // Now prove that we have a LoadQ matched to a StoreQ, for some Q. 1184 if (store_Opcode() != st->Opcode()) { 1185 return nullptr; 1186 } 1187 // LoadVector/StoreVector needs additional check to ensure the types match. 1188 if (st->is_StoreVector()) { 1189 const TypeVect* in_vt = st->as_StoreVector()->vect_type(); 1190 const TypeVect* out_vt = as_LoadVector()->vect_type(); 1191 if (in_vt != out_vt) { 1192 return nullptr; 1193 } 1194 } 1195 return st->in(MemNode::ValueIn); 1196 } 1197 1198 // A load from a freshly-created object always returns zero. 1199 // (This can happen after LoadNode::Ideal resets the load's memory input 1200 // to find_captured_store, which returned InitializeNode::zero_memory.) 1201 if (st->is_Proj() && st->in(0)->is_Allocate() && 1202 (st->in(0) == ld_alloc) && 1203 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) { 1204 // return a zero value for the load's basic type 1205 // (This is one of the few places where a generic PhaseTransform 1206 // can create new nodes. Think of it as lazily manifesting 1207 // virtually pre-existing constants.) 1208 if (memory_type() != T_VOID) { 1209 if (ReduceBulkZeroing || find_array_copy_clone(ld_alloc, in(MemNode::Memory)) == nullptr) { 1210 // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an 1211 // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done 1212 // by the ArrayCopyNode. 1213 return phase->zerocon(memory_type()); 1214 } 1215 } else { 1216 // TODO: materialize all-zero vector constant 1217 assert(!isa_Load() || as_Load()->type()->isa_vect(), ""); 1218 } 1219 } 1220 1221 // A load from an initialization barrier can match a captured store. 1222 if (st->is_Proj() && st->in(0)->is_Initialize()) { 1223 InitializeNode* init = st->in(0)->as_Initialize(); 1224 AllocateNode* alloc = init->allocation(); 1225 if ((alloc != nullptr) && (alloc == ld_alloc)) { 1226 // examine a captured store value 1227 st = init->find_captured_store(ld_off, memory_size(), phase); 1228 if (st != nullptr) { 1229 continue; // take one more trip around 1230 } 1231 } 1232 } 1233 1234 // Load boxed value from result of valueOf() call is input parameter. 1235 if (this->is_Load() && ld_adr->is_AddP() && 1236 (tp != nullptr) && tp->is_ptr_to_boxed_value()) { 1237 intptr_t ignore = 0; 1238 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore); 1239 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1240 base = bs->step_over_gc_barrier(base); 1241 if (base != nullptr && base->is_Proj() && 1242 base->as_Proj()->_con == TypeFunc::Parms && 1243 base->in(0)->is_CallStaticJava() && 1244 base->in(0)->as_CallStaticJava()->is_boxing_method()) { 1245 return base->in(0)->in(TypeFunc::Parms); 1246 } 1247 } 1248 1249 break; 1250 } 1251 1252 return nullptr; 1253 } 1254 1255 //----------------------is_instance_field_load_with_local_phi------------------ 1256 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { 1257 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl && 1258 in(Address)->is_AddP() ) { 1259 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr(); 1260 // Only instances and boxed values. 1261 if( t_oop != nullptr && 1262 (t_oop->is_ptr_to_boxed_value() || 1263 t_oop->is_known_instance_field()) && 1264 t_oop->offset() != Type::OffsetBot && 1265 t_oop->offset() != Type::OffsetTop) { 1266 return true; 1267 } 1268 } 1269 return false; 1270 } 1271 1272 //------------------------------Identity--------------------------------------- 1273 // Loads are identity if previous store is to same address 1274 Node* LoadNode::Identity(PhaseGVN* phase) { 1275 // If the previous store-maker is the right kind of Store, and the store is 1276 // to the same address, then we are equal to the value stored. 1277 Node* mem = in(Memory); 1278 Node* value = can_see_stored_value(mem, phase); 1279 if( value ) { 1280 // byte, short & char stores truncate naturally. 1281 // A load has to load the truncated value which requires 1282 // some sort of masking operation and that requires an 1283 // Ideal call instead of an Identity call. 1284 if (memory_size() < BytesPerInt) { 1285 // If the input to the store does not fit with the load's result type, 1286 // it must be truncated via an Ideal call. 1287 if (!phase->type(value)->higher_equal(phase->type(this))) 1288 return this; 1289 } 1290 // (This works even when value is a Con, but LoadNode::Value 1291 // usually runs first, producing the singleton type of the Con.) 1292 if (!has_pinned_control_dependency() || value->is_Con()) { 1293 return value; 1294 } else { 1295 return this; 1296 } 1297 } 1298 1299 if (has_pinned_control_dependency()) { 1300 return this; 1301 } 1302 // Search for an existing data phi which was generated before for the same 1303 // instance's field to avoid infinite generation of phis in a loop. 1304 Node *region = mem->in(0); 1305 if (is_instance_field_load_with_local_phi(region)) { 1306 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr(); 1307 int this_index = phase->C->get_alias_index(addr_t); 1308 int this_offset = addr_t->offset(); 1309 int this_iid = addr_t->instance_id(); 1310 if (!addr_t->is_known_instance() && 1311 addr_t->is_ptr_to_boxed_value()) { 1312 // Use _idx of address base (could be Phi node) for boxed values. 1313 intptr_t ignore = 0; 1314 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); 1315 if (base == nullptr) { 1316 return this; 1317 } 1318 this_iid = base->_idx; 1319 } 1320 const Type* this_type = bottom_type(); 1321 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1322 Node* phi = region->fast_out(i); 1323 if (phi->is_Phi() && phi != mem && 1324 phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) { 1325 return phi; 1326 } 1327 } 1328 } 1329 1330 return this; 1331 } 1332 1333 // Construct an equivalent unsigned load. 1334 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) { 1335 BasicType bt = T_ILLEGAL; 1336 const Type* rt = nullptr; 1337 switch (Opcode()) { 1338 case Op_LoadUB: return this; 1339 case Op_LoadUS: return this; 1340 case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break; 1341 case Op_LoadS: bt = T_CHAR; rt = TypeInt::CHAR; break; 1342 default: 1343 assert(false, "no unsigned variant: %s", Name()); 1344 return nullptr; 1345 } 1346 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1347 raw_adr_type(), rt, bt, _mo, _control_dependency, 1348 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1349 } 1350 1351 // Construct an equivalent signed load. 1352 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) { 1353 BasicType bt = T_ILLEGAL; 1354 const Type* rt = nullptr; 1355 switch (Opcode()) { 1356 case Op_LoadUB: bt = T_BYTE; rt = TypeInt::BYTE; break; 1357 case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break; 1358 case Op_LoadB: // fall through 1359 case Op_LoadS: // fall through 1360 case Op_LoadI: // fall through 1361 case Op_LoadL: return this; 1362 default: 1363 assert(false, "no signed variant: %s", Name()); 1364 return nullptr; 1365 } 1366 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1367 raw_adr_type(), rt, bt, _mo, _control_dependency, 1368 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1369 } 1370 1371 bool LoadNode::has_reinterpret_variant(const Type* rt) { 1372 BasicType bt = rt->basic_type(); 1373 switch (Opcode()) { 1374 case Op_LoadI: return (bt == T_FLOAT); 1375 case Op_LoadL: return (bt == T_DOUBLE); 1376 case Op_LoadF: return (bt == T_INT); 1377 case Op_LoadD: return (bt == T_LONG); 1378 1379 default: return false; 1380 } 1381 } 1382 1383 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) { 1384 BasicType bt = rt->basic_type(); 1385 assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1386 bool is_mismatched = is_mismatched_access(); 1387 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1388 if (raw_type == nullptr) { 1389 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1390 } 1391 const int op = Opcode(); 1392 bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) || 1393 (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access()); 1394 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1395 raw_adr_type(), rt, bt, _mo, _control_dependency, 1396 require_atomic_access, is_unaligned_access(), is_mismatched); 1397 } 1398 1399 bool StoreNode::has_reinterpret_variant(const Type* vt) { 1400 BasicType bt = vt->basic_type(); 1401 switch (Opcode()) { 1402 case Op_StoreI: return (bt == T_FLOAT); 1403 case Op_StoreL: return (bt == T_DOUBLE); 1404 case Op_StoreF: return (bt == T_INT); 1405 case Op_StoreD: return (bt == T_LONG); 1406 1407 default: return false; 1408 } 1409 } 1410 1411 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) { 1412 BasicType bt = vt->basic_type(); 1413 assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1414 const int op = Opcode(); 1415 bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) || 1416 (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access()); 1417 StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1418 raw_adr_type(), val, bt, _mo, require_atomic_access); 1419 1420 bool is_mismatched = is_mismatched_access(); 1421 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1422 if (raw_type == nullptr) { 1423 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1424 } 1425 if (is_mismatched) { 1426 st->set_mismatched_access(); 1427 } 1428 return st; 1429 } 1430 1431 // We're loading from an object which has autobox behaviour. 1432 // If this object is result of a valueOf call we'll have a phi 1433 // merging a newly allocated object and a load from the cache. 1434 // We want to replace this load with the original incoming 1435 // argument to the valueOf call. 1436 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) { 1437 assert(igvn->C->eliminate_boxing(), "sanity"); 1438 intptr_t ignore = 0; 1439 Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore); 1440 if ((base == nullptr) || base->is_Phi()) { 1441 // Push the loads from the phi that comes from valueOf up 1442 // through it to allow elimination of the loads and the recovery 1443 // of the original value. It is done in split_through_phi(). 1444 return nullptr; 1445 } else if (base->is_Load() || 1446 (base->is_DecodeN() && base->in(1)->is_Load())) { 1447 // Eliminate the load of boxed value for integer types from the cache 1448 // array by deriving the value from the index into the array. 1449 // Capture the offset of the load and then reverse the computation. 1450 1451 // Get LoadN node which loads a boxing object from 'cache' array. 1452 if (base->is_DecodeN()) { 1453 base = base->in(1); 1454 } 1455 if (!base->in(Address)->is_AddP()) { 1456 return nullptr; // Complex address 1457 } 1458 AddPNode* address = base->in(Address)->as_AddP(); 1459 Node* cache_base = address->in(AddPNode::Base); 1460 if ((cache_base != nullptr) && cache_base->is_DecodeN()) { 1461 // Get ConP node which is static 'cache' field. 1462 cache_base = cache_base->in(1); 1463 } 1464 if ((cache_base != nullptr) && cache_base->is_Con()) { 1465 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr(); 1466 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 1467 Node* elements[4]; 1468 int shift = exact_log2(type2aelembytes(T_OBJECT)); 1469 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)); 1470 if (count > 0 && elements[0]->is_Con() && 1471 (count == 1 || 1472 (count == 2 && elements[1]->Opcode() == Op_LShiftX && 1473 elements[1]->in(2) == igvn->intcon(shift)))) { 1474 ciObjArray* array = base_type->const_oop()->as_obj_array(); 1475 // Fetch the box object cache[0] at the base of the array and get its value 1476 ciInstance* box = array->obj_at(0)->as_instance(); 1477 ciInstanceKlass* ik = box->klass()->as_instance_klass(); 1478 assert(ik->is_box_klass(), "sanity"); 1479 assert(ik->nof_nonstatic_fields() == 1, "change following code"); 1480 if (ik->nof_nonstatic_fields() == 1) { 1481 // This should be true nonstatic_field_at requires calling 1482 // nof_nonstatic_fields so check it anyway 1483 ciConstant c = box->field_value(ik->nonstatic_field_at(0)); 1484 BasicType bt = c.basic_type(); 1485 // Only integer types have boxing cache. 1486 assert(bt == T_BOOLEAN || bt == T_CHAR || 1487 bt == T_BYTE || bt == T_SHORT || 1488 bt == T_INT || bt == T_LONG, "wrong type = %s", type2name(bt)); 1489 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int(); 1490 if (cache_low != (int)cache_low) { 1491 return nullptr; // should not happen since cache is array indexed by value 1492 } 1493 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift); 1494 if (offset != (int)offset) { 1495 return nullptr; // should not happen since cache is array indexed by value 1496 } 1497 // Add up all the offsets making of the address of the load 1498 Node* result = elements[0]; 1499 for (int i = 1; i < count; i++) { 1500 result = igvn->transform(new AddXNode(result, elements[i])); 1501 } 1502 // Remove the constant offset from the address and then 1503 result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset))); 1504 // remove the scaling of the offset to recover the original index. 1505 if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) { 1506 // Peel the shift off directly but wrap it in a dummy node 1507 // since Ideal can't return existing nodes 1508 igvn->_worklist.push(result); // remove dead node later 1509 result = new RShiftXNode(result->in(1), igvn->intcon(0)); 1510 } else if (result->is_Add() && result->in(2)->is_Con() && 1511 result->in(1)->Opcode() == Op_LShiftX && 1512 result->in(1)->in(2) == igvn->intcon(shift)) { 1513 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z) 1514 // but for boxing cache access we know that X<<Z will not overflow 1515 // (there is range check) so we do this optimizatrion by hand here. 1516 igvn->_worklist.push(result); // remove dead node later 1517 Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift)); 1518 result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con)); 1519 } else { 1520 result = new RShiftXNode(result, igvn->intcon(shift)); 1521 } 1522 #ifdef _LP64 1523 if (bt != T_LONG) { 1524 result = new ConvL2INode(igvn->transform(result)); 1525 } 1526 #else 1527 if (bt == T_LONG) { 1528 result = new ConvI2LNode(igvn->transform(result)); 1529 } 1530 #endif 1531 // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair). 1532 // Need to preserve unboxing load type if it is unsigned. 1533 switch(this->Opcode()) { 1534 case Op_LoadUB: 1535 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF)); 1536 break; 1537 case Op_LoadUS: 1538 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF)); 1539 break; 1540 } 1541 return result; 1542 } 1543 } 1544 } 1545 } 1546 } 1547 return nullptr; 1548 } 1549 1550 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) { 1551 Node* region = phi->in(0); 1552 if (region == nullptr) { 1553 return false; // Wait stable graph 1554 } 1555 uint cnt = phi->req(); 1556 for (uint i = 1; i < cnt; i++) { 1557 Node* rc = region->in(i); 1558 if (rc == nullptr || phase->type(rc) == Type::TOP) 1559 return false; // Wait stable graph 1560 Node* in = phi->in(i); 1561 if (in == nullptr || phase->type(in) == Type::TOP) 1562 return false; // Wait stable graph 1563 } 1564 return true; 1565 } 1566 1567 //------------------------------split_through_phi------------------------------ 1568 // Check whether a call to 'split_through_phi' would split this load through the 1569 // Phi *base*. This method is essentially a copy of the validations performed 1570 // by 'split_through_phi'. The first use of this method was in EA code as part 1571 // of simplification of allocation merges. 1572 // Some differences from original method (split_through_phi): 1573 // - If base->is_CastPP(): base = base->in(1) 1574 bool LoadNode::can_split_through_phi_base(PhaseGVN* phase) { 1575 Node* mem = in(Memory); 1576 Node* address = in(Address); 1577 intptr_t ignore = 0; 1578 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1579 1580 if (base->is_CastPP()) { 1581 base = base->in(1); 1582 } 1583 1584 if (req() > 3 || base == nullptr || !base->is_Phi()) { 1585 return false; 1586 } 1587 1588 if (!mem->is_Phi()) { 1589 if (!MemNode::all_controls_dominate(mem, base->in(0))) { 1590 return false; 1591 } 1592 } else if (base->in(0) != mem->in(0)) { 1593 if (!MemNode::all_controls_dominate(mem, base->in(0))) { 1594 return false; 1595 } 1596 } 1597 1598 return true; 1599 } 1600 1601 //------------------------------split_through_phi------------------------------ 1602 // Split instance or boxed field load through Phi. 1603 Node* LoadNode::split_through_phi(PhaseGVN* phase, bool ignore_missing_instance_id) { 1604 if (req() > 3) { 1605 assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs"); 1606 // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account 1607 return nullptr; 1608 } 1609 Node* mem = in(Memory); 1610 Node* address = in(Address); 1611 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr(); 1612 1613 assert((t_oop != nullptr) && 1614 (ignore_missing_instance_id || 1615 t_oop->is_known_instance_field() || 1616 t_oop->is_ptr_to_boxed_value()), "invalid conditions"); 1617 1618 Compile* C = phase->C; 1619 intptr_t ignore = 0; 1620 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1621 bool base_is_phi = (base != nullptr) && base->is_Phi(); 1622 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() && 1623 (base != nullptr) && (base == address->in(AddPNode::Base)) && 1624 phase->type(base)->higher_equal(TypePtr::NOTNULL); 1625 1626 if (!((mem->is_Phi() || base_is_phi) && 1627 (ignore_missing_instance_id || load_boxed_values || t_oop->is_known_instance_field()))) { 1628 return nullptr; // Neither memory or base are Phi 1629 } 1630 1631 if (mem->is_Phi()) { 1632 if (!stable_phi(mem->as_Phi(), phase)) { 1633 return nullptr; // Wait stable graph 1634 } 1635 uint cnt = mem->req(); 1636 // Check for loop invariant memory. 1637 if (cnt == 3) { 1638 for (uint i = 1; i < cnt; i++) { 1639 Node* in = mem->in(i); 1640 Node* m = optimize_memory_chain(in, t_oop, this, phase); 1641 if (m == mem) { 1642 if (i == 1) { 1643 // if the first edge was a loop, check second edge too. 1644 // If both are replaceable - we are in an infinite loop 1645 Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase); 1646 if (n == mem) { 1647 break; 1648 } 1649 } 1650 set_req(Memory, mem->in(cnt - i)); 1651 return this; // made change 1652 } 1653 } 1654 } 1655 } 1656 if (base_is_phi) { 1657 if (!stable_phi(base->as_Phi(), phase)) { 1658 return nullptr; // Wait stable graph 1659 } 1660 uint cnt = base->req(); 1661 // Check for loop invariant memory. 1662 if (cnt == 3) { 1663 for (uint i = 1; i < cnt; i++) { 1664 if (base->in(i) == base) { 1665 return nullptr; // Wait stable graph 1666 } 1667 } 1668 } 1669 } 1670 1671 // Split through Phi (see original code in loopopts.cpp). 1672 assert(ignore_missing_instance_id || C->have_alias_type(t_oop), "instance should have alias type"); 1673 1674 // Do nothing here if Identity will find a value 1675 // (to avoid infinite chain of value phis generation). 1676 if (this != Identity(phase)) { 1677 return nullptr; 1678 } 1679 1680 // Select Region to split through. 1681 Node* region; 1682 DomResult dom_result = DomResult::Dominate; 1683 if (!base_is_phi) { 1684 assert(mem->is_Phi(), "sanity"); 1685 region = mem->in(0); 1686 // Skip if the region dominates some control edge of the address. 1687 // We will check `dom_result` later. 1688 dom_result = MemNode::maybe_all_controls_dominate(address, region); 1689 } else if (!mem->is_Phi()) { 1690 assert(base_is_phi, "sanity"); 1691 region = base->in(0); 1692 // Skip if the region dominates some control edge of the memory. 1693 // We will check `dom_result` later. 1694 dom_result = MemNode::maybe_all_controls_dominate(mem, region); 1695 } else if (base->in(0) != mem->in(0)) { 1696 assert(base_is_phi && mem->is_Phi(), "sanity"); 1697 dom_result = MemNode::maybe_all_controls_dominate(mem, base->in(0)); 1698 if (dom_result == DomResult::Dominate) { 1699 region = base->in(0); 1700 } else { 1701 dom_result = MemNode::maybe_all_controls_dominate(address, mem->in(0)); 1702 if (dom_result == DomResult::Dominate) { 1703 region = mem->in(0); 1704 } 1705 // Otherwise we encountered a complex graph. 1706 } 1707 } else { 1708 assert(base->in(0) == mem->in(0), "sanity"); 1709 region = mem->in(0); 1710 } 1711 1712 PhaseIterGVN* igvn = phase->is_IterGVN(); 1713 if (dom_result != DomResult::Dominate) { 1714 if (dom_result == DomResult::EncounteredDeadCode) { 1715 // There is some dead code which eventually will be removed in IGVN. 1716 // Once this is the case, we get an unambiguous dominance result. 1717 // Push the node to the worklist again until the dead code is removed. 1718 igvn->_worklist.push(this); 1719 } 1720 return nullptr; 1721 } 1722 1723 Node* phi = nullptr; 1724 const Type* this_type = this->bottom_type(); 1725 if (t_oop != nullptr && (t_oop->is_known_instance_field() || load_boxed_values)) { 1726 int this_index = C->get_alias_index(t_oop); 1727 int this_offset = t_oop->offset(); 1728 int this_iid = t_oop->is_known_instance_field() ? t_oop->instance_id() : base->_idx; 1729 phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset); 1730 } else if (ignore_missing_instance_id) { 1731 phi = new PhiNode(region, this_type, nullptr, mem->_idx); 1732 } else { 1733 return nullptr; 1734 } 1735 1736 for (uint i = 1; i < region->req(); i++) { 1737 Node* x; 1738 Node* the_clone = nullptr; 1739 Node* in = region->in(i); 1740 if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl && 1741 in != nullptr && in->is_OuterStripMinedLoop()) { 1742 // No node should go in the outer strip mined loop 1743 in = in->in(LoopNode::EntryControl); 1744 } 1745 if (in == nullptr || in == C->top()) { 1746 x = C->top(); // Dead path? Use a dead data op 1747 } else { 1748 x = this->clone(); // Else clone up the data op 1749 the_clone = x; // Remember for possible deletion. 1750 // Alter data node to use pre-phi inputs 1751 if (this->in(0) == region) { 1752 x->set_req(0, in); 1753 } else { 1754 x->set_req(0, nullptr); 1755 } 1756 if (mem->is_Phi() && (mem->in(0) == region)) { 1757 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone. 1758 } 1759 if (address->is_Phi() && address->in(0) == region) { 1760 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone 1761 } 1762 if (base_is_phi && (base->in(0) == region)) { 1763 Node* base_x = base->in(i); // Clone address for loads from boxed objects. 1764 Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset))); 1765 x->set_req(Address, adr_x); 1766 } 1767 } 1768 // Check for a 'win' on some paths 1769 const Type *t = x->Value(igvn); 1770 1771 bool singleton = t->singleton(); 1772 1773 // See comments in PhaseIdealLoop::split_thru_phi(). 1774 if (singleton && t == Type::TOP) { 1775 singleton &= region->is_Loop() && (i != LoopNode::EntryControl); 1776 } 1777 1778 if (singleton) { 1779 x = igvn->makecon(t); 1780 } else { 1781 // We now call Identity to try to simplify the cloned node. 1782 // Note that some Identity methods call phase->type(this). 1783 // Make sure that the type array is big enough for 1784 // our new node, even though we may throw the node away. 1785 // (This tweaking with igvn only works because x is a new node.) 1786 igvn->set_type(x, t); 1787 // If x is a TypeNode, capture any more-precise type permanently into Node 1788 // otherwise it will be not updated during igvn->transform since 1789 // igvn->type(x) is set to x->Value() already. 1790 x->raise_bottom_type(t); 1791 Node* y = x->Identity(igvn); 1792 if (y != x) { 1793 x = y; 1794 } else { 1795 y = igvn->hash_find_insert(x); 1796 if (y) { 1797 x = y; 1798 } else { 1799 // Else x is a new node we are keeping 1800 // We do not need register_new_node_with_optimizer 1801 // because set_type has already been called. 1802 igvn->_worklist.push(x); 1803 } 1804 } 1805 } 1806 if (x != the_clone && the_clone != nullptr) { 1807 igvn->remove_dead_node(the_clone); 1808 } 1809 phi->set_req(i, x); 1810 } 1811 // Record Phi 1812 igvn->register_new_node_with_optimizer(phi); 1813 return phi; 1814 } 1815 1816 AllocateNode* LoadNode::is_new_object_mark_load() const { 1817 if (Opcode() == Op_LoadX) { 1818 Node* address = in(MemNode::Address); 1819 AllocateNode* alloc = AllocateNode::Ideal_allocation(address); 1820 Node* mem = in(MemNode::Memory); 1821 if (alloc != nullptr && mem->is_Proj() && 1822 mem->in(0) != nullptr && 1823 mem->in(0) == alloc->initialization() && 1824 alloc->initialization()->proj_out_or_null(0) != nullptr) { 1825 return alloc; 1826 } 1827 } 1828 return nullptr; 1829 } 1830 1831 1832 //------------------------------Ideal------------------------------------------ 1833 // If the load is from Field memory and the pointer is non-null, it might be possible to 1834 // zero out the control input. 1835 // If the offset is constant and the base is an object allocation, 1836 // try to hook me up to the exact initializing store. 1837 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1838 if (has_pinned_control_dependency()) { 1839 return nullptr; 1840 } 1841 Node* p = MemNode::Ideal_common(phase, can_reshape); 1842 if (p) return (p == NodeSentinel) ? nullptr : p; 1843 1844 Node* ctrl = in(MemNode::Control); 1845 Node* address = in(MemNode::Address); 1846 bool progress = false; 1847 1848 bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) && 1849 phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes()); 1850 1851 // Skip up past a SafePoint control. Cannot do this for Stores because 1852 // pointer stores & cardmarks must stay on the same side of a SafePoint. 1853 if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint && 1854 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw && 1855 !addr_mark && 1856 (depends_only_on_test() || has_unknown_control_dependency())) { 1857 ctrl = ctrl->in(0); 1858 set_req(MemNode::Control,ctrl); 1859 progress = true; 1860 } 1861 1862 intptr_t ignore = 0; 1863 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1864 if (base != nullptr 1865 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) { 1866 // Check for useless control edge in some common special cases 1867 if (in(MemNode::Control) != nullptr 1868 && can_remove_control() 1869 && phase->type(base)->higher_equal(TypePtr::NOTNULL) 1870 && all_controls_dominate(base, phase->C->start())) { 1871 // A method-invariant, non-null address (constant or 'this' argument). 1872 set_req(MemNode::Control, nullptr); 1873 progress = true; 1874 } 1875 } 1876 1877 Node* mem = in(MemNode::Memory); 1878 const TypePtr *addr_t = phase->type(address)->isa_ptr(); 1879 1880 if (can_reshape && (addr_t != nullptr)) { 1881 // try to optimize our memory input 1882 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase); 1883 if (opt_mem != mem) { 1884 set_req_X(MemNode::Memory, opt_mem, phase); 1885 if (phase->type( opt_mem ) == Type::TOP) return nullptr; 1886 return this; 1887 } 1888 const TypeOopPtr *t_oop = addr_t->isa_oopptr(); 1889 if ((t_oop != nullptr) && 1890 (t_oop->is_known_instance_field() || 1891 t_oop->is_ptr_to_boxed_value())) { 1892 PhaseIterGVN *igvn = phase->is_IterGVN(); 1893 assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true"); 1894 if (igvn->_worklist.member(opt_mem)) { 1895 // Delay this transformation until memory Phi is processed. 1896 igvn->_worklist.push(this); 1897 return nullptr; 1898 } 1899 // Split instance field load through Phi. 1900 Node* result = split_through_phi(phase); 1901 if (result != nullptr) return result; 1902 1903 if (t_oop->is_ptr_to_boxed_value()) { 1904 Node* result = eliminate_autobox(igvn); 1905 if (result != nullptr) return result; 1906 } 1907 } 1908 } 1909 1910 // Is there a dominating load that loads the same value? Leave 1911 // anything that is not a load of a field/array element (like 1912 // barriers etc.) alone 1913 if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) { 1914 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 1915 Node *use = mem->fast_out(i); 1916 if (use != this && 1917 use->Opcode() == Opcode() && 1918 use->in(0) != nullptr && 1919 use->in(0) != in(0) && 1920 use->in(Address) == in(Address)) { 1921 Node* ctl = in(0); 1922 for (int i = 0; i < 10 && ctl != nullptr; i++) { 1923 ctl = IfNode::up_one_dom(ctl); 1924 if (ctl == use->in(0)) { 1925 set_req(0, use->in(0)); 1926 return this; 1927 } 1928 } 1929 } 1930 } 1931 } 1932 1933 // Check for prior store with a different base or offset; make Load 1934 // independent. Skip through any number of them. Bail out if the stores 1935 // are in an endless dead cycle and report no progress. This is a key 1936 // transform for Reflection. However, if after skipping through the Stores 1937 // we can't then fold up against a prior store do NOT do the transform as 1938 // this amounts to using the 'Oracle' model of aliasing. It leaves the same 1939 // array memory alive twice: once for the hoisted Load and again after the 1940 // bypassed Store. This situation only works if EVERYBODY who does 1941 // anti-dependence work knows how to bypass. I.e. we need all 1942 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is 1943 // the alias index stuff. So instead, peek through Stores and IFF we can 1944 // fold up, do so. 1945 Node* prev_mem = find_previous_store(phase); 1946 if (prev_mem != nullptr) { 1947 Node* value = can_see_arraycopy_value(prev_mem, phase); 1948 if (value != nullptr) { 1949 return value; 1950 } 1951 } 1952 // Steps (a), (b): Walk past independent stores to find an exact match. 1953 if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) { 1954 // (c) See if we can fold up on the spot, but don't fold up here. 1955 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or 1956 // just return a prior value, which is done by Identity calls. 1957 if (can_see_stored_value(prev_mem, phase)) { 1958 // Make ready for step (d): 1959 set_req_X(MemNode::Memory, prev_mem, phase); 1960 return this; 1961 } 1962 } 1963 1964 return progress ? this : nullptr; 1965 } 1966 1967 // Helper to recognize certain Klass fields which are invariant across 1968 // some group of array types (e.g., int[] or all T[] where T < Object). 1969 const Type* 1970 LoadNode::load_array_final_field(const TypeKlassPtr *tkls, 1971 ciKlass* klass) const { 1972 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) { 1973 // The field is Klass::_modifier_flags. Return its (constant) value. 1974 // (Folds up the 2nd indirection in aClassConstant.getModifiers().) 1975 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags"); 1976 return TypeInt::make(klass->modifier_flags()); 1977 } 1978 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) { 1979 // The field is Klass::_access_flags. Return its (constant) value. 1980 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 1981 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags"); 1982 return TypeInt::make(klass->access_flags()); 1983 } 1984 if (tkls->offset() == in_bytes(Klass::misc_flags_offset())) { 1985 // The field is Klass::_misc_flags. Return its (constant) value. 1986 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 1987 assert(this->Opcode() == Op_LoadUB, "must load an unsigned byte from _misc_flags"); 1988 return TypeInt::make(klass->misc_flags()); 1989 } 1990 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) { 1991 // The field is Klass::_layout_helper. Return its constant value if known. 1992 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper"); 1993 return TypeInt::make(klass->layout_helper()); 1994 } 1995 1996 // No match. 1997 return nullptr; 1998 } 1999 2000 //------------------------------Value----------------------------------------- 2001 const Type* LoadNode::Value(PhaseGVN* phase) const { 2002 // Either input is TOP ==> the result is TOP 2003 Node* mem = in(MemNode::Memory); 2004 const Type *t1 = phase->type(mem); 2005 if (t1 == Type::TOP) return Type::TOP; 2006 Node* adr = in(MemNode::Address); 2007 const TypePtr* tp = phase->type(adr)->isa_ptr(); 2008 if (tp == nullptr || tp->empty()) return Type::TOP; 2009 int off = tp->offset(); 2010 assert(off != Type::OffsetTop, "case covered by TypePtr::empty"); 2011 Compile* C = phase->C; 2012 2013 // Try to guess loaded type from pointer type 2014 if (tp->isa_aryptr()) { 2015 const TypeAryPtr* ary = tp->is_aryptr(); 2016 const Type* t = ary->elem(); 2017 2018 // Determine whether the reference is beyond the header or not, by comparing 2019 // the offset against the offset of the start of the array's data. 2020 // Different array types begin at slightly different offsets (12 vs. 16). 2021 // We choose T_BYTE as an example base type that is least restrictive 2022 // as to alignment, which will therefore produce the smallest 2023 // possible base offset. 2024 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE); 2025 const bool off_beyond_header = (off >= min_base_off); 2026 2027 // Try to constant-fold a stable array element. 2028 if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) { 2029 // Make sure the reference is not into the header and the offset is constant 2030 ciObject* aobj = ary->const_oop(); 2031 if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) { 2032 int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0); 2033 const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off, 2034 stable_dimension, 2035 memory_type(), is_unsigned()); 2036 if (con_type != nullptr) { 2037 return con_type; 2038 } 2039 } 2040 } 2041 2042 // Don't do this for integer types. There is only potential profit if 2043 // the element type t is lower than _type; that is, for int types, if _type is 2044 // more restrictive than t. This only happens here if one is short and the other 2045 // char (both 16 bits), and in those cases we've made an intentional decision 2046 // to use one kind of load over the other. See AndINode::Ideal and 4965907. 2047 // Also, do not try to narrow the type for a LoadKlass, regardless of offset. 2048 // 2049 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8)) 2050 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier 2051 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been 2052 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed, 2053 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any. 2054 // In fact, that could have been the original type of p1, and p1 could have 2055 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the 2056 // expression (LShiftL quux 3) independently optimized to the constant 8. 2057 if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr) 2058 && (_type->isa_vect() == nullptr) 2059 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) { 2060 // t might actually be lower than _type, if _type is a unique 2061 // concrete subclass of abstract class t. 2062 if (off_beyond_header || off == Type::OffsetBot) { // is the offset beyond the header? 2063 const Type* jt = t->join_speculative(_type); 2064 // In any case, do not allow the join, per se, to empty out the type. 2065 if (jt->empty() && !t->empty()) { 2066 // This can happen if a interface-typed array narrows to a class type. 2067 jt = _type; 2068 } 2069 #ifdef ASSERT 2070 if (phase->C->eliminate_boxing() && adr->is_AddP()) { 2071 // The pointers in the autobox arrays are always non-null 2072 Node* base = adr->in(AddPNode::Base); 2073 if ((base != nullptr) && base->is_DecodeN()) { 2074 // Get LoadN node which loads IntegerCache.cache field 2075 base = base->in(1); 2076 } 2077 if ((base != nullptr) && base->is_Con()) { 2078 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr(); 2079 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 2080 // It could be narrow oop 2081 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity"); 2082 } 2083 } 2084 } 2085 #endif 2086 return jt; 2087 } 2088 } 2089 } else if (tp->base() == Type::InstPtr) { 2090 assert( off != Type::OffsetBot || 2091 // arrays can be cast to Objects 2092 !tp->isa_instptr() || 2093 tp->is_instptr()->instance_klass()->is_java_lang_Object() || 2094 // unsafe field access may not have a constant offset 2095 C->has_unsafe_access(), 2096 "Field accesses must be precise" ); 2097 // For oop loads, we expect the _type to be precise. 2098 2099 // Optimize loads from constant fields. 2100 const TypeInstPtr* tinst = tp->is_instptr(); 2101 ciObject* const_oop = tinst->const_oop(); 2102 if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) { 2103 const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type()); 2104 if (con_type != nullptr) { 2105 return con_type; 2106 } 2107 } 2108 } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) { 2109 assert(off != Type::OffsetBot || 2110 !tp->isa_instklassptr() || 2111 // arrays can be cast to Objects 2112 tp->isa_instklassptr()->instance_klass()->is_java_lang_Object() || 2113 // also allow array-loading from the primary supertype 2114 // array during subtype checks 2115 Opcode() == Op_LoadKlass, 2116 "Field accesses must be precise"); 2117 // For klass/static loads, we expect the _type to be precise 2118 } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) { 2119 /* With mirrors being an indirect in the Klass* 2120 * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset)) 2121 * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass). 2122 * 2123 * So check the type and klass of the node before the LoadP. 2124 */ 2125 Node* adr2 = adr->in(MemNode::Address); 2126 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2127 if (tkls != nullptr && !StressReflectiveCode) { 2128 if (tkls->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) { 2129 ciKlass* klass = tkls->exact_klass(); 2130 assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2131 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2132 return TypeInstPtr::make(klass->java_mirror()); 2133 } 2134 } 2135 } 2136 2137 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2138 if (tkls != nullptr) { 2139 if (tkls->is_loaded() && tkls->klass_is_exact()) { 2140 ciKlass* klass = tkls->exact_klass(); 2141 // We are loading a field from a Klass metaobject whose identity 2142 // is known at compile time (the type is "exact" or "precise"). 2143 // Check for fields we know are maintained as constants by the VM. 2144 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) { 2145 // The field is Klass::_super_check_offset. Return its (constant) value. 2146 // (Folds up type checking code.) 2147 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset"); 2148 return TypeInt::make(klass->super_check_offset()); 2149 } 2150 // Compute index into primary_supers array 2151 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2152 // Check for overflowing; use unsigned compare to handle the negative case. 2153 if( depth < ciKlass::primary_super_limit() ) { 2154 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2155 // (Folds up type checking code.) 2156 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2157 ciKlass *ss = klass->super_of_depth(depth); 2158 return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR; 2159 } 2160 const Type* aift = load_array_final_field(tkls, klass); 2161 if (aift != nullptr) return aift; 2162 } 2163 2164 // We can still check if we are loading from the primary_supers array at a 2165 // shallow enough depth. Even though the klass is not exact, entries less 2166 // than or equal to its super depth are correct. 2167 if (tkls->is_loaded()) { 2168 ciKlass* klass = nullptr; 2169 if (tkls->isa_instklassptr()) { 2170 klass = tkls->is_instklassptr()->instance_klass(); 2171 } else { 2172 int dims; 2173 const Type* inner = tkls->is_aryklassptr()->base_element_type(dims); 2174 if (inner->isa_instklassptr()) { 2175 klass = inner->is_instklassptr()->instance_klass(); 2176 klass = ciObjArrayKlass::make(klass, dims); 2177 } 2178 } 2179 if (klass != nullptr) { 2180 // Compute index into primary_supers array 2181 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2182 // Check for overflowing; use unsigned compare to handle the negative case. 2183 if (depth < ciKlass::primary_super_limit() && 2184 depth <= klass->super_depth()) { // allow self-depth checks to handle self-check case 2185 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2186 // (Folds up type checking code.) 2187 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2188 ciKlass *ss = klass->super_of_depth(depth); 2189 return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR; 2190 } 2191 } 2192 } 2193 2194 // If the type is enough to determine that the thing is not an array, 2195 // we can give the layout_helper a positive interval type. 2196 // This will help short-circuit some reflective code. 2197 if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) && 2198 tkls->isa_instklassptr() && // not directly typed as an array 2199 !tkls->is_instklassptr()->instance_klass()->is_java_lang_Object() // not the supertype of all T[] and specifically not Serializable & Cloneable 2200 ) { 2201 // Note: When interfaces are reliable, we can narrow the interface 2202 // test to (klass != Serializable && klass != Cloneable). 2203 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper"); 2204 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false); 2205 // The key property of this type is that it folds up tests 2206 // for array-ness, since it proves that the layout_helper is positive. 2207 // Thus, a generic value like the basic object layout helper works fine. 2208 return TypeInt::make(min_size, max_jint, Type::WidenMin); 2209 } 2210 } 2211 2212 // If we are loading from a freshly-allocated object, produce a zero, 2213 // if the load is provably beyond the header of the object. 2214 // (Also allow a variable load from a fresh array to produce zero.) 2215 const TypeOopPtr *tinst = tp->isa_oopptr(); 2216 bool is_instance = (tinst != nullptr) && tinst->is_known_instance_field(); 2217 bool is_boxed_value = (tinst != nullptr) && tinst->is_ptr_to_boxed_value(); 2218 if (ReduceFieldZeroing || is_instance || is_boxed_value) { 2219 Node* value = can_see_stored_value(mem,phase); 2220 if (value != nullptr && value->is_Con()) { 2221 assert(value->bottom_type()->higher_equal(_type),"sanity"); 2222 return value->bottom_type(); 2223 } 2224 } 2225 2226 bool is_vect = (_type->isa_vect() != nullptr); 2227 if (is_instance && !is_vect) { 2228 // If we have an instance type and our memory input is the 2229 // programs's initial memory state, there is no matching store, 2230 // so just return a zero of the appropriate type - 2231 // except if it is vectorized - then we have no zero constant. 2232 Node *mem = in(MemNode::Memory); 2233 if (mem->is_Parm() && mem->in(0)->is_Start()) { 2234 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm"); 2235 return Type::get_zero_type(_type->basic_type()); 2236 } 2237 } 2238 2239 Node* alloc = is_new_object_mark_load(); 2240 if (alloc != nullptr) { 2241 return TypeX::make(markWord::prototype().value()); 2242 } 2243 2244 return _type; 2245 } 2246 2247 //------------------------------match_edge------------------------------------- 2248 // Do we Match on this edge index or not? Match only the address. 2249 uint LoadNode::match_edge(uint idx) const { 2250 return idx == MemNode::Address; 2251 } 2252 2253 //--------------------------LoadBNode::Ideal-------------------------------------- 2254 // 2255 // If the previous store is to the same address as this load, 2256 // and the value stored was larger than a byte, replace this load 2257 // with the value stored truncated to a byte. If no truncation is 2258 // needed, the replacement is done in LoadNode::Identity(). 2259 // 2260 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2261 Node* mem = in(MemNode::Memory); 2262 Node* value = can_see_stored_value(mem,phase); 2263 if (value != nullptr) { 2264 Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false); 2265 if (narrow != value) { 2266 return narrow; 2267 } 2268 } 2269 // Identity call will handle the case where truncation is not needed. 2270 return LoadNode::Ideal(phase, can_reshape); 2271 } 2272 2273 const Type* LoadBNode::Value(PhaseGVN* phase) const { 2274 Node* mem = in(MemNode::Memory); 2275 Node* value = can_see_stored_value(mem,phase); 2276 if (value != nullptr && value->is_Con() && 2277 !value->bottom_type()->higher_equal(_type)) { 2278 // If the input to the store does not fit with the load's result type, 2279 // it must be truncated. We can't delay until Ideal call since 2280 // a singleton Value is needed for split_thru_phi optimization. 2281 int con = value->get_int(); 2282 return TypeInt::make((con << 24) >> 24); 2283 } 2284 return LoadNode::Value(phase); 2285 } 2286 2287 //--------------------------LoadUBNode::Ideal------------------------------------- 2288 // 2289 // If the previous store is to the same address as this load, 2290 // and the value stored was larger than a byte, replace this load 2291 // with the value stored truncated to a byte. If no truncation is 2292 // needed, the replacement is done in LoadNode::Identity(). 2293 // 2294 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2295 Node* mem = in(MemNode::Memory); 2296 Node* value = can_see_stored_value(mem, phase); 2297 if (value != nullptr) { 2298 Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false); 2299 if (narrow != value) { 2300 return narrow; 2301 } 2302 } 2303 // Identity call will handle the case where truncation is not needed. 2304 return LoadNode::Ideal(phase, can_reshape); 2305 } 2306 2307 const Type* LoadUBNode::Value(PhaseGVN* phase) const { 2308 Node* mem = in(MemNode::Memory); 2309 Node* value = can_see_stored_value(mem,phase); 2310 if (value != nullptr && value->is_Con() && 2311 !value->bottom_type()->higher_equal(_type)) { 2312 // If the input to the store does not fit with the load's result type, 2313 // it must be truncated. We can't delay until Ideal call since 2314 // a singleton Value is needed for split_thru_phi optimization. 2315 int con = value->get_int(); 2316 return TypeInt::make(con & 0xFF); 2317 } 2318 return LoadNode::Value(phase); 2319 } 2320 2321 //--------------------------LoadUSNode::Ideal------------------------------------- 2322 // 2323 // If the previous store is to the same address as this load, 2324 // and the value stored was larger than a char, replace this load 2325 // with the value stored truncated to a char. If no truncation is 2326 // needed, the replacement is done in LoadNode::Identity(). 2327 // 2328 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2329 Node* mem = in(MemNode::Memory); 2330 Node* value = can_see_stored_value(mem,phase); 2331 if (value != nullptr) { 2332 Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false); 2333 if (narrow != value) { 2334 return narrow; 2335 } 2336 } 2337 // Identity call will handle the case where truncation is not needed. 2338 return LoadNode::Ideal(phase, can_reshape); 2339 } 2340 2341 const Type* LoadUSNode::Value(PhaseGVN* phase) const { 2342 Node* mem = in(MemNode::Memory); 2343 Node* value = can_see_stored_value(mem,phase); 2344 if (value != nullptr && value->is_Con() && 2345 !value->bottom_type()->higher_equal(_type)) { 2346 // If the input to the store does not fit with the load's result type, 2347 // it must be truncated. We can't delay until Ideal call since 2348 // a singleton Value is needed for split_thru_phi optimization. 2349 int con = value->get_int(); 2350 return TypeInt::make(con & 0xFFFF); 2351 } 2352 return LoadNode::Value(phase); 2353 } 2354 2355 //--------------------------LoadSNode::Ideal-------------------------------------- 2356 // 2357 // If the previous store is to the same address as this load, 2358 // and the value stored was larger than a short, replace this load 2359 // with the value stored truncated to a short. If no truncation is 2360 // needed, the replacement is done in LoadNode::Identity(). 2361 // 2362 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2363 Node* mem = in(MemNode::Memory); 2364 Node* value = can_see_stored_value(mem,phase); 2365 if (value != nullptr) { 2366 Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false); 2367 if (narrow != value) { 2368 return narrow; 2369 } 2370 } 2371 // Identity call will handle the case where truncation is not needed. 2372 return LoadNode::Ideal(phase, can_reshape); 2373 } 2374 2375 const Type* LoadSNode::Value(PhaseGVN* phase) const { 2376 Node* mem = in(MemNode::Memory); 2377 Node* value = can_see_stored_value(mem,phase); 2378 if (value != nullptr && value->is_Con() && 2379 !value->bottom_type()->higher_equal(_type)) { 2380 // If the input to the store does not fit with the load's result type, 2381 // it must be truncated. We can't delay until Ideal call since 2382 // a singleton Value is needed for split_thru_phi optimization. 2383 int con = value->get_int(); 2384 return TypeInt::make((con << 16) >> 16); 2385 } 2386 return LoadNode::Value(phase); 2387 } 2388 2389 //============================================================================= 2390 //----------------------------LoadKlassNode::make------------------------------ 2391 // Polymorphic factory method: 2392 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) { 2393 // sanity check the alias category against the created node type 2394 const TypePtr *adr_type = adr->bottom_type()->isa_ptr(); 2395 assert(adr_type != nullptr, "expecting TypeKlassPtr"); 2396 #ifdef _LP64 2397 if (adr_type->is_ptr_to_narrowklass()) { 2398 assert(UseCompressedClassPointers, "no compressed klasses"); 2399 Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered)); 2400 return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr()); 2401 } 2402 #endif 2403 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop"); 2404 return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered); 2405 } 2406 2407 //------------------------------Value------------------------------------------ 2408 const Type* LoadKlassNode::Value(PhaseGVN* phase) const { 2409 return klass_value_common(phase); 2410 } 2411 2412 // In most cases, LoadKlassNode does not have the control input set. If the control 2413 // input is set, it must not be removed (by LoadNode::Ideal()). 2414 bool LoadKlassNode::can_remove_control() const { 2415 return false; 2416 } 2417 2418 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const { 2419 // Either input is TOP ==> the result is TOP 2420 const Type *t1 = phase->type( in(MemNode::Memory) ); 2421 if (t1 == Type::TOP) return Type::TOP; 2422 Node *adr = in(MemNode::Address); 2423 const Type *t2 = phase->type( adr ); 2424 if (t2 == Type::TOP) return Type::TOP; 2425 const TypePtr *tp = t2->is_ptr(); 2426 if (TypePtr::above_centerline(tp->ptr()) || 2427 tp->ptr() == TypePtr::Null) return Type::TOP; 2428 2429 // Return a more precise klass, if possible 2430 const TypeInstPtr *tinst = tp->isa_instptr(); 2431 if (tinst != nullptr) { 2432 ciInstanceKlass* ik = tinst->instance_klass(); 2433 int offset = tinst->offset(); 2434 if (ik == phase->C->env()->Class_klass() 2435 && (offset == java_lang_Class::klass_offset() || 2436 offset == java_lang_Class::array_klass_offset())) { 2437 // We are loading a special hidden field from a Class mirror object, 2438 // the field which points to the VM's Klass metaobject. 2439 ciType* t = tinst->java_mirror_type(); 2440 // java_mirror_type returns non-null for compile-time Class constants. 2441 if (t != nullptr) { 2442 // constant oop => constant klass 2443 if (offset == java_lang_Class::array_klass_offset()) { 2444 if (t->is_void()) { 2445 // We cannot create a void array. Since void is a primitive type return null 2446 // klass. Users of this result need to do a null check on the returned klass. 2447 return TypePtr::NULL_PTR; 2448 } 2449 return TypeKlassPtr::make(ciArrayKlass::make(t), Type::trust_interfaces); 2450 } 2451 if (!t->is_klass()) { 2452 // a primitive Class (e.g., int.class) has null for a klass field 2453 return TypePtr::NULL_PTR; 2454 } 2455 // (Folds up the 1st indirection in aClassConstant.getModifiers().) 2456 return TypeKlassPtr::make(t->as_klass(), Type::trust_interfaces); 2457 } 2458 // non-constant mirror, so we can't tell what's going on 2459 } 2460 if (!tinst->is_loaded()) 2461 return _type; // Bail out if not loaded 2462 if (offset == oopDesc::klass_offset_in_bytes()) { 2463 return tinst->as_klass_type(true); 2464 } 2465 } 2466 2467 // Check for loading klass from an array 2468 const TypeAryPtr *tary = tp->isa_aryptr(); 2469 if (tary != nullptr && 2470 tary->offset() == oopDesc::klass_offset_in_bytes()) { 2471 return tary->as_klass_type(true); 2472 } 2473 2474 // Check for loading klass from an array klass 2475 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2476 if (tkls != nullptr && !StressReflectiveCode) { 2477 if (!tkls->is_loaded()) 2478 return _type; // Bail out if not loaded 2479 if (tkls->isa_aryklassptr() && tkls->is_aryklassptr()->elem()->isa_klassptr() && 2480 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) { 2481 // // Always returning precise element type is incorrect, 2482 // // e.g., element type could be object and array may contain strings 2483 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0); 2484 2485 // The array's TypeKlassPtr was declared 'precise' or 'not precise' 2486 // according to the element type's subclassing. 2487 return tkls->is_aryklassptr()->elem()->isa_klassptr()->cast_to_exactness(tkls->klass_is_exact()); 2488 } 2489 if (tkls->isa_instklassptr() != nullptr && tkls->klass_is_exact() && 2490 tkls->offset() == in_bytes(Klass::super_offset())) { 2491 ciKlass* sup = tkls->is_instklassptr()->instance_klass()->super(); 2492 // The field is Klass::_super. Return its (constant) value. 2493 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().) 2494 return sup ? TypeKlassPtr::make(sup, Type::trust_interfaces) : TypePtr::NULL_PTR; 2495 } 2496 } 2497 2498 if (tkls != nullptr && !UseSecondarySupersCache 2499 && tkls->offset() == in_bytes(Klass::secondary_super_cache_offset())) { 2500 // Treat Klass::_secondary_super_cache as a constant when the cache is disabled. 2501 return TypePtr::NULL_PTR; 2502 } 2503 2504 // Bailout case 2505 return LoadNode::Value(phase); 2506 } 2507 2508 //------------------------------Identity--------------------------------------- 2509 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k. 2510 // Also feed through the klass in Allocate(...klass...)._klass. 2511 Node* LoadKlassNode::Identity(PhaseGVN* phase) { 2512 return klass_identity_common(phase); 2513 } 2514 2515 Node* LoadNode::klass_identity_common(PhaseGVN* phase) { 2516 Node* x = LoadNode::Identity(phase); 2517 if (x != this) return x; 2518 2519 // Take apart the address into an oop and offset. 2520 // Return 'this' if we cannot. 2521 Node* adr = in(MemNode::Address); 2522 intptr_t offset = 0; 2523 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2524 if (base == nullptr) return this; 2525 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr(); 2526 if (toop == nullptr) return this; 2527 2528 // Step over potential GC barrier for OopHandle resolve 2529 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2530 if (bs->is_gc_barrier_node(base)) { 2531 base = bs->step_over_gc_barrier(base); 2532 } 2533 2534 // We can fetch the klass directly through an AllocateNode. 2535 // This works even if the klass is not constant (clone or newArray). 2536 if (offset == oopDesc::klass_offset_in_bytes()) { 2537 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase); 2538 if (allocated_klass != nullptr) { 2539 return allocated_klass; 2540 } 2541 } 2542 2543 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*. 2544 // See inline_native_Class_query for occurrences of these patterns. 2545 // Java Example: x.getClass().isAssignableFrom(y) 2546 // 2547 // This improves reflective code, often making the Class 2548 // mirror go completely dead. (Current exception: Class 2549 // mirrors may appear in debug info, but we could clean them out by 2550 // introducing a new debug info operator for Klass.java_mirror). 2551 2552 if (toop->isa_instptr() && toop->is_instptr()->instance_klass() == phase->C->env()->Class_klass() 2553 && offset == java_lang_Class::klass_offset()) { 2554 if (base->is_Load()) { 2555 Node* base2 = base->in(MemNode::Address); 2556 if (base2->is_Load()) { /* direct load of a load which is the OopHandle */ 2557 Node* adr2 = base2->in(MemNode::Address); 2558 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2559 if (tkls != nullptr && !tkls->empty() 2560 && (tkls->isa_instklassptr() || tkls->isa_aryklassptr()) 2561 && adr2->is_AddP() 2562 ) { 2563 int mirror_field = in_bytes(Klass::java_mirror_offset()); 2564 if (tkls->offset() == mirror_field) { 2565 return adr2->in(AddPNode::Base); 2566 } 2567 } 2568 } 2569 } 2570 } 2571 2572 return this; 2573 } 2574 2575 LoadNode* LoadNode::clone_pinned() const { 2576 LoadNode* ld = clone()->as_Load(); 2577 ld->_control_dependency = UnknownControl; 2578 return ld; 2579 } 2580 2581 2582 //------------------------------Value------------------------------------------ 2583 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const { 2584 const Type *t = klass_value_common(phase); 2585 if (t == Type::TOP) 2586 return t; 2587 2588 return t->make_narrowklass(); 2589 } 2590 2591 //------------------------------Identity--------------------------------------- 2592 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k. 2593 // Also feed through the klass in Allocate(...klass...)._klass. 2594 Node* LoadNKlassNode::Identity(PhaseGVN* phase) { 2595 Node *x = klass_identity_common(phase); 2596 2597 const Type *t = phase->type( x ); 2598 if( t == Type::TOP ) return x; 2599 if( t->isa_narrowklass()) return x; 2600 assert (!t->isa_narrowoop(), "no narrow oop here"); 2601 2602 return phase->transform(new EncodePKlassNode(x, t->make_narrowklass())); 2603 } 2604 2605 //------------------------------Value----------------------------------------- 2606 const Type* LoadRangeNode::Value(PhaseGVN* phase) const { 2607 // Either input is TOP ==> the result is TOP 2608 const Type *t1 = phase->type( in(MemNode::Memory) ); 2609 if( t1 == Type::TOP ) return Type::TOP; 2610 Node *adr = in(MemNode::Address); 2611 const Type *t2 = phase->type( adr ); 2612 if( t2 == Type::TOP ) return Type::TOP; 2613 const TypePtr *tp = t2->is_ptr(); 2614 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP; 2615 const TypeAryPtr *tap = tp->isa_aryptr(); 2616 if( !tap ) return _type; 2617 return tap->size(); 2618 } 2619 2620 //-------------------------------Ideal--------------------------------------- 2621 // Feed through the length in AllocateArray(...length...)._length. 2622 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2623 Node* p = MemNode::Ideal_common(phase, can_reshape); 2624 if (p) return (p == NodeSentinel) ? nullptr : p; 2625 2626 // Take apart the address into an oop and offset. 2627 // Return 'this' if we cannot. 2628 Node* adr = in(MemNode::Address); 2629 intptr_t offset = 0; 2630 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2631 if (base == nullptr) return nullptr; 2632 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2633 if (tary == nullptr) return nullptr; 2634 2635 // We can fetch the length directly through an AllocateArrayNode. 2636 // This works even if the length is not constant (clone or newArray). 2637 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2638 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base); 2639 if (alloc != nullptr) { 2640 Node* allocated_length = alloc->Ideal_length(); 2641 Node* len = alloc->make_ideal_length(tary, phase); 2642 if (allocated_length != len) { 2643 // New CastII improves on this. 2644 return len; 2645 } 2646 } 2647 } 2648 2649 return nullptr; 2650 } 2651 2652 //------------------------------Identity--------------------------------------- 2653 // Feed through the length in AllocateArray(...length...)._length. 2654 Node* LoadRangeNode::Identity(PhaseGVN* phase) { 2655 Node* x = LoadINode::Identity(phase); 2656 if (x != this) return x; 2657 2658 // Take apart the address into an oop and offset. 2659 // Return 'this' if we cannot. 2660 Node* adr = in(MemNode::Address); 2661 intptr_t offset = 0; 2662 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2663 if (base == nullptr) return this; 2664 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2665 if (tary == nullptr) return this; 2666 2667 // We can fetch the length directly through an AllocateArrayNode. 2668 // This works even if the length is not constant (clone or newArray). 2669 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2670 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base); 2671 if (alloc != nullptr) { 2672 Node* allocated_length = alloc->Ideal_length(); 2673 // Do not allow make_ideal_length to allocate a CastII node. 2674 Node* len = alloc->make_ideal_length(tary, phase, false); 2675 if (allocated_length == len) { 2676 // Return allocated_length only if it would not be improved by a CastII. 2677 return allocated_length; 2678 } 2679 } 2680 } 2681 2682 return this; 2683 2684 } 2685 2686 //============================================================================= 2687 //---------------------------StoreNode::make----------------------------------- 2688 // Polymorphic factory method: 2689 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) { 2690 assert((mo == unordered || mo == release), "unexpected"); 2691 Compile* C = gvn.C; 2692 assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 2693 ctl != nullptr, "raw memory operations should have control edge"); 2694 2695 switch (bt) { 2696 case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case 2697 case T_BYTE: return new StoreBNode(ctl, mem, adr, adr_type, val, mo); 2698 case T_INT: return new StoreINode(ctl, mem, adr, adr_type, val, mo); 2699 case T_CHAR: 2700 case T_SHORT: return new StoreCNode(ctl, mem, adr, adr_type, val, mo); 2701 case T_LONG: return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2702 case T_FLOAT: return new StoreFNode(ctl, mem, adr, adr_type, val, mo); 2703 case T_DOUBLE: return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2704 case T_METADATA: 2705 case T_ADDRESS: 2706 case T_OBJECT: 2707 #ifdef _LP64 2708 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 2709 val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop())); 2710 return new StoreNNode(ctl, mem, adr, adr_type, val, mo); 2711 } else if (adr->bottom_type()->is_ptr_to_narrowklass() || 2712 (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() && 2713 adr->bottom_type()->isa_rawptr())) { 2714 val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass())); 2715 return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo); 2716 } 2717 #endif 2718 { 2719 return new StorePNode(ctl, mem, adr, adr_type, val, mo); 2720 } 2721 default: 2722 ShouldNotReachHere(); 2723 return (StoreNode*)nullptr; 2724 } 2725 } 2726 2727 //--------------------------bottom_type---------------------------------------- 2728 const Type *StoreNode::bottom_type() const { 2729 return Type::MEMORY; 2730 } 2731 2732 //------------------------------hash------------------------------------------- 2733 uint StoreNode::hash() const { 2734 // unroll addition of interesting fields 2735 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn); 2736 2737 // Since they are not commoned, do not hash them: 2738 return NO_HASH; 2739 } 2740 2741 // Class to parse array pointers, and determine if they are adjacent. We parse the form: 2742 // 2743 // pointer = base 2744 // + constant_offset 2745 // + LShiftL( ConvI2L(int_offset + int_con), int_offset_shift) 2746 // + sum(other_offsets) 2747 // 2748 // 2749 // Note: we accumulate all constant offsets into constant_offset, even the int constant behind 2750 // the "LShiftL(ConvI2L(...))" pattern. We convert "ConvI2L(int_offset + int_con)" to 2751 // "ConvI2L(int_offset) + int_con", which is only safe if we can assume that either all 2752 // compared addresses have an overflow for "int_offset + int_con" or none. 2753 // For loads and stores on arrays, we know that if one overflows and the other not, then 2754 // the two addresses lay almost max_int indices apart, but the maximal array size is 2755 // only about half of that. Therefore, the RangeCheck on at least one of them must have 2756 // failed. 2757 // 2758 // constant_offset += LShiftL( ConvI2L(int_con), int_offset_shift) 2759 // 2760 // pointer = base 2761 // + constant_offset 2762 // + LShiftL( ConvI2L(int_offset), int_offset_shift) 2763 // + sum(other_offsets) 2764 // 2765 class ArrayPointer { 2766 private: 2767 const Node* _pointer; // The final pointer to the position in the array 2768 const Node* _base; // Base address of the array 2769 const jlong _constant_offset; // Sum of collected constant offsets 2770 const Node* _int_offset; // (optional) Offset behind LShiftL and ConvI2L 2771 const GrowableArray<Node*>* _other_offsets; // List of other AddP offsets 2772 const jint _int_offset_shift; // (optional) Shift value for int_offset 2773 const bool _is_valid; // The parsing succeeded 2774 2775 ArrayPointer(const bool is_valid, 2776 const Node* pointer, 2777 const Node* base, 2778 const jlong constant_offset, 2779 const Node* int_offset, 2780 const jint int_offset_shift, 2781 const GrowableArray<Node*>* other_offsets) : 2782 _pointer(pointer), 2783 _base(base), 2784 _constant_offset(constant_offset), 2785 _int_offset(int_offset), 2786 _other_offsets(other_offsets), 2787 _int_offset_shift(int_offset_shift), 2788 _is_valid(is_valid) 2789 { 2790 assert(_pointer != nullptr, "must always have pointer"); 2791 assert(is_valid == (_base != nullptr), "have base exactly if valid"); 2792 assert(is_valid == (_other_offsets != nullptr), "have other_offsets exactly if valid"); 2793 } 2794 2795 static ArrayPointer make_invalid(const Node* pointer) { 2796 return ArrayPointer(false, pointer, nullptr, 0, nullptr, 0, nullptr); 2797 } 2798 2799 static bool parse_int_offset(Node* offset, Node*& int_offset, jint& int_offset_shift) { 2800 // offset = LShiftL( ConvI2L(int_offset), int_offset_shift) 2801 if (offset->Opcode() == Op_LShiftL && 2802 offset->in(1)->Opcode() == Op_ConvI2L && 2803 offset->in(2)->Opcode() == Op_ConI) { 2804 int_offset = offset->in(1)->in(1); // LShiftL -> ConvI2L -> int_offset 2805 int_offset_shift = offset->in(2)->get_int(); // LShiftL -> int_offset_shift 2806 return true; 2807 } 2808 2809 // offset = ConvI2L(int_offset) = LShiftL( ConvI2L(int_offset), 0) 2810 if (offset->Opcode() == Op_ConvI2L) { 2811 int_offset = offset->in(1); 2812 int_offset_shift = 0; 2813 return true; 2814 } 2815 2816 // parse failed 2817 return false; 2818 } 2819 2820 public: 2821 // Parse the structure above the pointer 2822 static ArrayPointer make(PhaseGVN* phase, const Node* pointer) { 2823 assert(phase->type(pointer)->isa_aryptr() != nullptr, "must be array pointer"); 2824 if (!pointer->is_AddP()) { return ArrayPointer::make_invalid(pointer); } 2825 2826 const Node* base = pointer->in(AddPNode::Base); 2827 if (base == nullptr) { return ArrayPointer::make_invalid(pointer); } 2828 2829 const int search_depth = 5; 2830 Node* offsets[search_depth]; 2831 int count = pointer->as_AddP()->unpack_offsets(offsets, search_depth); 2832 2833 // We expect at least a constant each 2834 if (count <= 0) { return ArrayPointer::make_invalid(pointer); } 2835 2836 // We extract the form: 2837 // 2838 // pointer = base 2839 // + constant_offset 2840 // + LShiftL( ConvI2L(int_offset + int_con), int_offset_shift) 2841 // + sum(other_offsets) 2842 // 2843 jlong constant_offset = 0; 2844 Node* int_offset = nullptr; 2845 jint int_offset_shift = 0; 2846 GrowableArray<Node*>* other_offsets = new GrowableArray<Node*>(count); 2847 2848 for (int i = 0; i < count; i++) { 2849 Node* offset = offsets[i]; 2850 if (offset->Opcode() == Op_ConI) { 2851 // Constant int offset 2852 constant_offset += offset->get_int(); 2853 } else if (offset->Opcode() == Op_ConL) { 2854 // Constant long offset 2855 constant_offset += offset->get_long(); 2856 } else if(int_offset == nullptr && parse_int_offset(offset, int_offset, int_offset_shift)) { 2857 // LShiftL( ConvI2L(int_offset), int_offset_shift) 2858 int_offset = int_offset->uncast(); 2859 if (int_offset->Opcode() == Op_AddI && int_offset->in(2)->Opcode() == Op_ConI) { 2860 // LShiftL( ConvI2L(int_offset + int_con), int_offset_shift) 2861 constant_offset += ((jlong)int_offset->in(2)->get_int()) << int_offset_shift; 2862 int_offset = int_offset->in(1); 2863 } 2864 } else { 2865 // All others 2866 other_offsets->append(offset); 2867 } 2868 } 2869 2870 return ArrayPointer(true, pointer, base, constant_offset, int_offset, int_offset_shift, other_offsets); 2871 } 2872 2873 bool is_adjacent_to_and_before(const ArrayPointer& other, const jlong data_size) const { 2874 if (!_is_valid || !other._is_valid) { return false; } 2875 2876 // Offset adjacent? 2877 if (this->_constant_offset + data_size != other._constant_offset) { return false; } 2878 2879 // All other components identical? 2880 if (this->_base != other._base || 2881 this->_int_offset != other._int_offset || 2882 this->_int_offset_shift != other._int_offset_shift || 2883 this->_other_offsets->length() != other._other_offsets->length()) { 2884 return false; 2885 } 2886 2887 for (int i = 0; i < this->_other_offsets->length(); i++) { 2888 Node* o1 = this->_other_offsets->at(i); 2889 Node* o2 = other._other_offsets->at(i); 2890 if (o1 != o2) { return false; } 2891 } 2892 2893 return true; 2894 } 2895 2896 #ifndef PRODUCT 2897 void dump() { 2898 if (!_is_valid) { 2899 tty->print("ArrayPointer[%d %s, invalid]", _pointer->_idx, _pointer->Name()); 2900 return; 2901 } 2902 tty->print("ArrayPointer[%d %s, base[%d %s] + %lld", 2903 _pointer->_idx, _pointer->Name(), 2904 _base->_idx, _base->Name(), 2905 (long long)_constant_offset); 2906 if (_int_offset != nullptr) { 2907 tty->print(" + I2L[%d %s] << %d", 2908 _int_offset->_idx, _int_offset->Name(), _int_offset_shift); 2909 } 2910 for (int i = 0; i < _other_offsets->length(); i++) { 2911 Node* n = _other_offsets->at(i); 2912 tty->print(" + [%d %s]", n->_idx, n->Name()); 2913 } 2914 tty->print_cr("]"); 2915 } 2916 #endif 2917 }; 2918 2919 // Link together multiple stores (B/S/C/I) into a longer one. 2920 // 2921 // Example: _store = StoreB[i+3] 2922 // 2923 // RangeCheck[i+0] RangeCheck[i+0] 2924 // StoreB[i+0] 2925 // RangeCheck[i+3] RangeCheck[i+3] 2926 // StoreB[i+1] --> pass: fail: 2927 // StoreB[i+2] StoreI[i+0] StoreB[i+0] 2928 // StoreB[i+3] 2929 // 2930 // The 4 StoreB are merged into a single StoreI node. We have to be careful with RangeCheck[i+1]: before 2931 // the optimization, if this RangeCheck[i+1] fails, then we execute only StoreB[i+0], and then trap. After 2932 // the optimization, the new StoreI[i+0] is on the passing path of RangeCheck[i+3], and StoreB[i+0] on the 2933 // failing path. 2934 // 2935 // Note: For normal array stores, every store at first has a RangeCheck. But they can be removed with: 2936 // - RCE (RangeCheck Elimination): the RangeChecks in the loop are hoisted out and before the loop, 2937 // and possibly no RangeChecks remain between the stores. 2938 // - RangeCheck smearing: the earlier RangeChecks are adjusted such that they cover later RangeChecks, 2939 // and those later RangeChecks can be removed. Example: 2940 // 2941 // RangeCheck[i+0] RangeCheck[i+0] <- before first store 2942 // StoreB[i+0] StoreB[i+0] <- first store 2943 // RangeCheck[i+1] --> smeared --> RangeCheck[i+3] <- only RC between first and last store 2944 // StoreB[i+1] StoreB[i+1] <- second store 2945 // RangeCheck[i+2] --> removed 2946 // StoreB[i+2] StoreB[i+2] 2947 // RangeCheck[i+3] --> removed 2948 // StoreB[i+3] StoreB[i+3] <- last store 2949 // 2950 // Thus, it is a common pattern that between the first and last store in a chain 2951 // of adjacent stores there remains exactly one RangeCheck, located between the 2952 // first and the second store (e.g. RangeCheck[i+3]). 2953 // 2954 class MergePrimitiveArrayStores : public StackObj { 2955 private: 2956 PhaseGVN* _phase; 2957 StoreNode* _store; 2958 2959 public: 2960 MergePrimitiveArrayStores(PhaseGVN* phase, StoreNode* store) : _phase(phase), _store(store) {} 2961 2962 StoreNode* run(); 2963 2964 private: 2965 bool is_compatible_store(const StoreNode* other_store) const; 2966 bool is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const; 2967 bool is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const; 2968 static bool is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out); 2969 enum CFGStatus { SuccessNoRangeCheck, SuccessWithRangeCheck, Failure }; 2970 static CFGStatus cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store); 2971 2972 class Status { 2973 private: 2974 StoreNode* _found_store; 2975 bool _found_range_check; 2976 2977 Status(StoreNode* found_store, bool found_range_check) 2978 : _found_store(found_store), _found_range_check(found_range_check) {} 2979 2980 public: 2981 StoreNode* found_store() const { return _found_store; } 2982 bool found_range_check() const { return _found_range_check; } 2983 static Status make_failure() { return Status(nullptr, false); } 2984 2985 static Status make(StoreNode* found_store, const CFGStatus cfg_status) { 2986 if (cfg_status == CFGStatus::Failure) { 2987 return Status::make_failure(); 2988 } 2989 return Status(found_store, cfg_status == CFGStatus::SuccessWithRangeCheck); 2990 } 2991 }; 2992 2993 Status find_adjacent_use_store(const StoreNode* def_store) const; 2994 Status find_adjacent_def_store(const StoreNode* use_store) const; 2995 Status find_use_store(const StoreNode* def_store) const; 2996 Status find_def_store(const StoreNode* use_store) const; 2997 Status find_use_store_unidirectional(const StoreNode* def_store) const; 2998 Status find_def_store_unidirectional(const StoreNode* use_store) const; 2999 3000 void collect_merge_list(Node_List& merge_list) const; 3001 Node* make_merged_input_value(const Node_List& merge_list); 3002 StoreNode* make_merged_store(const Node_List& merge_list, Node* merged_input_value); 3003 3004 DEBUG_ONLY( void trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const; ) 3005 }; 3006 3007 StoreNode* MergePrimitiveArrayStores::run() { 3008 // Check for B/S/C/I 3009 int opc = _store->Opcode(); 3010 if (opc != Op_StoreB && opc != Op_StoreC && opc != Op_StoreI) { 3011 return nullptr; 3012 } 3013 3014 // Only merge stores on arrays, and the stores must have the same size as the elements. 3015 const TypePtr* ptr_t = _store->adr_type(); 3016 if (ptr_t == nullptr) { 3017 return nullptr; 3018 } 3019 const TypeAryPtr* aryptr_t = ptr_t->isa_aryptr(); 3020 if (aryptr_t == nullptr) { 3021 return nullptr; 3022 } 3023 BasicType bt = aryptr_t->elem()->array_element_basic_type(); 3024 if (!is_java_primitive(bt) || 3025 type2aelembytes(bt) != _store->memory_size()) { 3026 return nullptr; 3027 } 3028 if (_store->is_unsafe_access()) { 3029 return nullptr; 3030 } 3031 3032 // The _store must be the "last" store in a chain. If we find a use we could merge with 3033 // then that use or a store further down is the "last" store. 3034 Status status_use = find_adjacent_use_store(_store); 3035 if (status_use.found_store() != nullptr) { 3036 return nullptr; 3037 } 3038 3039 // Check if we can merge with at least one def, so that we have at least 2 stores to merge. 3040 Status status_def = find_adjacent_def_store(_store); 3041 if (status_def.found_store() == nullptr) { 3042 return nullptr; 3043 } 3044 3045 ResourceMark rm; 3046 Node_List merge_list; 3047 collect_merge_list(merge_list); 3048 3049 Node* merged_input_value = make_merged_input_value(merge_list); 3050 if (merged_input_value == nullptr) { return nullptr; } 3051 3052 StoreNode* merged_store = make_merged_store(merge_list, merged_input_value); 3053 3054 DEBUG_ONLY( if(TraceMergeStores) { trace(merge_list, merged_input_value, merged_store); } ) 3055 3056 return merged_store; 3057 } 3058 3059 // Check compatibility between _store and other_store. 3060 bool MergePrimitiveArrayStores::is_compatible_store(const StoreNode* other_store) const { 3061 int opc = _store->Opcode(); 3062 assert(opc == Op_StoreB || opc == Op_StoreC || opc == Op_StoreI, "precondition"); 3063 assert(_store->adr_type()->isa_aryptr() != nullptr, "must be array store"); 3064 assert(!_store->is_unsafe_access(), "no unsafe accesses"); 3065 3066 if (other_store == nullptr || 3067 _store->Opcode() != other_store->Opcode() || 3068 other_store->adr_type() == nullptr || 3069 other_store->adr_type()->isa_aryptr() == nullptr || 3070 other_store->is_unsafe_access()) { 3071 return false; 3072 } 3073 3074 // Check that the size of the stores, and the array elements are all the same. 3075 const TypeAryPtr* aryptr_t1 = _store->adr_type()->is_aryptr(); 3076 const TypeAryPtr* aryptr_t2 = other_store->adr_type()->is_aryptr(); 3077 BasicType aryptr_bt1 = aryptr_t1->elem()->array_element_basic_type(); 3078 BasicType aryptr_bt2 = aryptr_t2->elem()->array_element_basic_type(); 3079 if (!is_java_primitive(aryptr_bt1) || !is_java_primitive(aryptr_bt2)) { 3080 return false; 3081 } 3082 int size1 = type2aelembytes(aryptr_bt1); 3083 int size2 = type2aelembytes(aryptr_bt2); 3084 if (size1 != size2 || 3085 size1 != _store->memory_size() || 3086 _store->memory_size() != other_store->memory_size()) { 3087 return false; 3088 } 3089 return true; 3090 } 3091 3092 bool MergePrimitiveArrayStores::is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const { 3093 if (!is_adjacent_input_pair(def_store->in(MemNode::ValueIn), 3094 use_store->in(MemNode::ValueIn), 3095 def_store->memory_size())) { 3096 return false; 3097 } 3098 3099 ResourceMark rm; 3100 ArrayPointer array_pointer_use = ArrayPointer::make(_phase, use_store->in(MemNode::Address)); 3101 ArrayPointer array_pointer_def = ArrayPointer::make(_phase, def_store->in(MemNode::Address)); 3102 if (!array_pointer_def.is_adjacent_to_and_before(array_pointer_use, use_store->memory_size())) { 3103 return false; 3104 } 3105 3106 return true; 3107 } 3108 3109 bool MergePrimitiveArrayStores::is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const { 3110 // Pattern: [n1 = ConI, n2 = ConI] 3111 if (n1->Opcode() == Op_ConI) { 3112 return n2->Opcode() == Op_ConI; 3113 } 3114 3115 // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)] 3116 #ifndef VM_LITTLE_ENDIAN 3117 // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift] 3118 // Swapping n1 with n2 gives same pattern as on little endian platforms. 3119 swap(n1, n2); 3120 #endif // !VM_LITTLE_ENDIAN 3121 Node const* base_n2; 3122 jint shift_n2; 3123 if (!is_con_RShift(n2, base_n2, shift_n2)) { 3124 return false; 3125 } 3126 if (n1->Opcode() == Op_ConvL2I) { 3127 // look through 3128 n1 = n1->in(1); 3129 } 3130 Node const* base_n1; 3131 jint shift_n1; 3132 if (n1 == base_n2) { 3133 // n1 = base = base >> 0 3134 base_n1 = n1; 3135 shift_n1 = 0; 3136 } else if (!is_con_RShift(n1, base_n1, shift_n1)) { 3137 return false; 3138 } 3139 int bits_per_store = memory_size * 8; 3140 if (base_n1 != base_n2 || 3141 shift_n1 + bits_per_store != shift_n2 || 3142 shift_n1 % bits_per_store != 0) { 3143 return false; 3144 } 3145 3146 // both load from same value with correct shift 3147 return true; 3148 } 3149 3150 // Detect pattern: n = base_out >> shift_out 3151 bool MergePrimitiveArrayStores::is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out) { 3152 assert(n != nullptr, "precondition"); 3153 3154 int opc = n->Opcode(); 3155 if (opc == Op_ConvL2I) { 3156 n = n->in(1); 3157 opc = n->Opcode(); 3158 } 3159 3160 if ((opc == Op_RShiftI || 3161 opc == Op_RShiftL || 3162 opc == Op_URShiftI || 3163 opc == Op_URShiftL) && 3164 n->in(2)->is_ConI()) { 3165 base_out = n->in(1); 3166 shift_out = n->in(2)->get_int(); 3167 // The shift must be positive: 3168 return shift_out >= 0; 3169 } 3170 return false; 3171 } 3172 3173 // Check if there is nothing between the two stores, except optionally a RangeCheck leading to an uncommon trap. 3174 MergePrimitiveArrayStores::CFGStatus MergePrimitiveArrayStores::cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store) { 3175 assert(use_store->in(MemNode::Memory) == def_store, "use-def relationship"); 3176 3177 Node* ctrl_use = use_store->in(MemNode::Control); 3178 Node* ctrl_def = def_store->in(MemNode::Control); 3179 if (ctrl_use == nullptr || ctrl_def == nullptr) { 3180 return CFGStatus::Failure; 3181 } 3182 3183 if (ctrl_use == ctrl_def) { 3184 // Same ctrl -> no RangeCheck in between. 3185 // Check: use_store must be the only use of def_store. 3186 if (def_store->outcnt() > 1) { 3187 return CFGStatus::Failure; 3188 } 3189 return CFGStatus::SuccessNoRangeCheck; 3190 } 3191 3192 // Different ctrl -> could have RangeCheck in between. 3193 // Check: 1. def_store only has these uses: use_store and MergeMem for uncommon trap, and 3194 // 2. ctrl separated by RangeCheck. 3195 if (def_store->outcnt() != 2) { 3196 return CFGStatus::Failure; // Cannot have exactly these uses: use_store and MergeMem for uncommon trap. 3197 } 3198 int use_store_out_idx = def_store->raw_out(0) == use_store ? 0 : 1; 3199 Node* merge_mem = def_store->raw_out(1 - use_store_out_idx)->isa_MergeMem(); 3200 if (merge_mem == nullptr || 3201 merge_mem->outcnt() != 1) { 3202 return CFGStatus::Failure; // Does not have MergeMem for uncommon trap. 3203 } 3204 if (!ctrl_use->is_IfProj() || 3205 !ctrl_use->in(0)->is_RangeCheck() || 3206 ctrl_use->in(0)->outcnt() != 2) { 3207 return CFGStatus::Failure; // Not RangeCheck. 3208 } 3209 ProjNode* other_proj = ctrl_use->as_IfProj()->other_if_proj(); 3210 Node* trap = other_proj->is_uncommon_trap_proj(Deoptimization::Reason_range_check); 3211 if (trap != merge_mem->unique_out() || 3212 ctrl_use->in(0)->in(0) != ctrl_def) { 3213 return CFGStatus::Failure; // Not RangeCheck with merge_mem leading to uncommon trap. 3214 } 3215 3216 return CFGStatus::SuccessWithRangeCheck; 3217 } 3218 3219 MergePrimitiveArrayStores::Status MergePrimitiveArrayStores::find_adjacent_use_store(const StoreNode* def_store) const { 3220 Status status_use = find_use_store(def_store); 3221 StoreNode* use_store = status_use.found_store(); 3222 if (use_store != nullptr && !is_adjacent_pair(use_store, def_store)) { 3223 return Status::make_failure(); 3224 } 3225 return status_use; 3226 } 3227 3228 MergePrimitiveArrayStores::Status MergePrimitiveArrayStores::find_adjacent_def_store(const StoreNode* use_store) const { 3229 Status status_def = find_def_store(use_store); 3230 StoreNode* def_store = status_def.found_store(); 3231 if (def_store != nullptr && !is_adjacent_pair(use_store, def_store)) { 3232 return Status::make_failure(); 3233 } 3234 return status_def; 3235 } 3236 3237 MergePrimitiveArrayStores::Status MergePrimitiveArrayStores::find_use_store(const StoreNode* def_store) const { 3238 Status status_use = find_use_store_unidirectional(def_store); 3239 3240 #ifdef ASSERT 3241 StoreNode* use_store = status_use.found_store(); 3242 if (use_store != nullptr) { 3243 Status status_def = find_def_store_unidirectional(use_store); 3244 assert(status_def.found_store() == def_store && 3245 status_def.found_range_check() == status_use.found_range_check(), 3246 "find_use_store and find_def_store must be symmetric"); 3247 } 3248 #endif 3249 3250 return status_use; 3251 } 3252 3253 MergePrimitiveArrayStores::Status MergePrimitiveArrayStores::find_def_store(const StoreNode* use_store) const { 3254 Status status_def = find_def_store_unidirectional(use_store); 3255 3256 #ifdef ASSERT 3257 StoreNode* def_store = status_def.found_store(); 3258 if (def_store != nullptr) { 3259 Status status_use = find_use_store_unidirectional(def_store); 3260 assert(status_use.found_store() == use_store && 3261 status_use.found_range_check() == status_def.found_range_check(), 3262 "find_use_store and find_def_store must be symmetric"); 3263 } 3264 #endif 3265 3266 return status_def; 3267 } 3268 3269 MergePrimitiveArrayStores::Status MergePrimitiveArrayStores::find_use_store_unidirectional(const StoreNode* def_store) const { 3270 assert(is_compatible_store(def_store), "precondition: must be compatible with _store"); 3271 3272 for (DUIterator_Fast imax, i = def_store->fast_outs(imax); i < imax; i++) { 3273 StoreNode* use_store = def_store->fast_out(i)->isa_Store(); 3274 if (is_compatible_store(use_store)) { 3275 return Status::make(use_store, cfg_status_for_pair(use_store, def_store)); 3276 } 3277 } 3278 3279 return Status::make_failure(); 3280 } 3281 3282 MergePrimitiveArrayStores::Status MergePrimitiveArrayStores::find_def_store_unidirectional(const StoreNode* use_store) const { 3283 assert(is_compatible_store(use_store), "precondition: must be compatible with _store"); 3284 3285 StoreNode* def_store = use_store->in(MemNode::Memory)->isa_Store(); 3286 if (!is_compatible_store(def_store)) { 3287 return Status::make_failure(); 3288 } 3289 3290 return Status::make(def_store, cfg_status_for_pair(use_store, def_store)); 3291 } 3292 3293 void MergePrimitiveArrayStores::collect_merge_list(Node_List& merge_list) const { 3294 // The merged store can be at most 8 bytes. 3295 const uint merge_list_max_size = 8 / _store->memory_size(); 3296 assert(merge_list_max_size >= 2 && 3297 merge_list_max_size <= 8 && 3298 is_power_of_2(merge_list_max_size), 3299 "must be 2, 4 or 8"); 3300 3301 // Traverse up the chain of adjacent def stores. 3302 StoreNode* current = _store; 3303 merge_list.push(current); 3304 while (current != nullptr && merge_list.size() < merge_list_max_size) { 3305 Status status = find_adjacent_def_store(current); 3306 current = status.found_store(); 3307 if (current != nullptr) { 3308 merge_list.push(current); 3309 3310 // We can have at most one RangeCheck. 3311 if (status.found_range_check()) { 3312 break; 3313 } 3314 } 3315 } 3316 3317 // Truncate the merge_list to a power of 2. 3318 const uint pow2size = round_down_power_of_2(merge_list.size()); 3319 assert(pow2size >= 2, "must be merging at least 2 stores"); 3320 while (merge_list.size() > pow2size) { merge_list.pop(); } 3321 } 3322 3323 // Merge the input values of the smaller stores to a single larger input value. 3324 Node* MergePrimitiveArrayStores::make_merged_input_value(const Node_List& merge_list) { 3325 int new_memory_size = _store->memory_size() * merge_list.size(); 3326 Node* first = merge_list.at(merge_list.size()-1); 3327 Node* merged_input_value = nullptr; 3328 if (_store->in(MemNode::ValueIn)->Opcode() == Op_ConI) { 3329 // Pattern: [ConI, ConI, ...] -> new constant 3330 jlong con = 0; 3331 jlong bits_per_store = _store->memory_size() * 8; 3332 jlong mask = (((jlong)1) << bits_per_store) - 1; 3333 for (uint i = 0; i < merge_list.size(); i++) { 3334 jlong con_i = merge_list.at(i)->in(MemNode::ValueIn)->get_int(); 3335 #ifdef VM_LITTLE_ENDIAN 3336 con = con << bits_per_store; 3337 con = con | (mask & con_i); 3338 #else // VM_LITTLE_ENDIAN 3339 con_i = (mask & con_i) << (i * bits_per_store); 3340 con = con | con_i; 3341 #endif // VM_LITTLE_ENDIAN 3342 } 3343 merged_input_value = _phase->longcon(con); 3344 } else { 3345 // Pattern: [base >> 24, base >> 16, base >> 8, base] -> base 3346 // | | 3347 // _store first 3348 // 3349 Node* hi = _store->in(MemNode::ValueIn); 3350 Node* lo = first->in(MemNode::ValueIn); 3351 #ifndef VM_LITTLE_ENDIAN 3352 // `_store` and `first` are swapped in the diagram above 3353 swap(hi, lo); 3354 #endif // !VM_LITTLE_ENDIAN 3355 Node const* hi_base; 3356 jint hi_shift; 3357 merged_input_value = lo; 3358 bool is_true = is_con_RShift(hi, hi_base, hi_shift); 3359 assert(is_true, "must detect con RShift"); 3360 if (merged_input_value != hi_base && merged_input_value->Opcode() == Op_ConvL2I) { 3361 // look through 3362 merged_input_value = merged_input_value->in(1); 3363 } 3364 if (merged_input_value != hi_base) { 3365 // merged_input_value is not the base 3366 return nullptr; 3367 } 3368 } 3369 3370 if (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size <= 4) { 3371 // Example: 3372 // 3373 // long base = ...; 3374 // a[0] = (byte)(base >> 0); 3375 // a[1] = (byte)(base >> 8); 3376 // 3377 merged_input_value = _phase->transform(new ConvL2INode(merged_input_value)); 3378 } 3379 3380 assert((_phase->type(merged_input_value)->isa_int() != nullptr && new_memory_size <= 4) || 3381 (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size == 8), 3382 "merged_input_value is either int or long, and new_memory_size is small enough"); 3383 3384 return merged_input_value; 3385 } 3386 3387 // // 3388 // first_ctrl first_mem first_adr first_ctrl first_mem first_adr // 3389 // | | | | | | // 3390 // | | | | +---------------+ | // 3391 // | | | | | | | // 3392 // | | +---------+ | | +---------------+ // 3393 // | | | | | | | | // 3394 // +--------------+ | | v1 +------------------------------+ | | v1 // 3395 // | | | | | | | | | | | | // 3396 // RangeCheck first_store RangeCheck | | first_store // 3397 // | | | | | | | // 3398 // last_ctrl | +----> unc_trap last_ctrl | | +----> unc_trap // 3399 // | | ===> | | | // 3400 // +--------------+ | a2 v2 | | | // 3401 // | | | | | | | | // 3402 // | second_store | | | // 3403 // | | | | | [v1 v2 ... vn] // 3404 // ... ... | | | | // 3405 // | | | | | v // 3406 // +--------------+ | an vn +--------------+ | | merged_input_value // 3407 // | | | | | | | | // 3408 // last_store (= _store) merged_store // 3409 // // 3410 StoreNode* MergePrimitiveArrayStores::make_merged_store(const Node_List& merge_list, Node* merged_input_value) { 3411 Node* first_store = merge_list.at(merge_list.size()-1); 3412 Node* last_ctrl = _store->in(MemNode::Control); // after (optional) RangeCheck 3413 Node* first_mem = first_store->in(MemNode::Memory); 3414 Node* first_adr = first_store->in(MemNode::Address); 3415 3416 const TypePtr* new_adr_type = _store->adr_type(); 3417 3418 int new_memory_size = _store->memory_size() * merge_list.size(); 3419 BasicType bt = T_ILLEGAL; 3420 switch (new_memory_size) { 3421 case 2: bt = T_SHORT; break; 3422 case 4: bt = T_INT; break; 3423 case 8: bt = T_LONG; break; 3424 } 3425 3426 StoreNode* merged_store = StoreNode::make(*_phase, last_ctrl, first_mem, first_adr, 3427 new_adr_type, merged_input_value, bt, MemNode::unordered); 3428 3429 // Marking the store mismatched is sufficient to prevent reordering, since array stores 3430 // are all on the same slice. Hence, we need no barriers. 3431 merged_store->set_mismatched_access(); 3432 3433 // Constants above may now also be be packed -> put candidate on worklist 3434 _phase->is_IterGVN()->_worklist.push(first_mem); 3435 3436 return merged_store; 3437 } 3438 3439 #ifdef ASSERT 3440 void MergePrimitiveArrayStores::trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const { 3441 stringStream ss; 3442 ss.print_cr("[TraceMergeStores]: Replace"); 3443 for (int i = (int)merge_list.size() - 1; i >= 0; i--) { 3444 merge_list.at(i)->dump("\n", false, &ss); 3445 } 3446 ss.print_cr("[TraceMergeStores]: with"); 3447 merged_input_value->dump("\n", false, &ss); 3448 merged_store->dump("\n", false, &ss); 3449 tty->print("%s", ss.as_string()); 3450 } 3451 #endif 3452 3453 //------------------------------Ideal------------------------------------------ 3454 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x). 3455 // When a store immediately follows a relevant allocation/initialization, 3456 // try to capture it into the initialization, or hoist it above. 3457 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3458 Node* p = MemNode::Ideal_common(phase, can_reshape); 3459 if (p) return (p == NodeSentinel) ? nullptr : p; 3460 3461 Node* mem = in(MemNode::Memory); 3462 Node* address = in(MemNode::Address); 3463 Node* value = in(MemNode::ValueIn); 3464 // Back-to-back stores to same address? Fold em up. Generally 3465 // unsafe if I have intervening uses. 3466 { 3467 Node* st = mem; 3468 // If Store 'st' has more than one use, we cannot fold 'st' away. 3469 // For example, 'st' might be the final state at a conditional 3470 // return. Or, 'st' might be used by some node which is live at 3471 // the same time 'st' is live, which might be unschedulable. So, 3472 // require exactly ONE user until such time as we clone 'mem' for 3473 // each of 'mem's uses (thus making the exactly-1-user-rule hold 3474 // true). 3475 while (st->is_Store() && st->outcnt() == 1) { 3476 // Looking at a dead closed cycle of memory? 3477 assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal"); 3478 assert(Opcode() == st->Opcode() || 3479 st->Opcode() == Op_StoreVector || 3480 Opcode() == Op_StoreVector || 3481 st->Opcode() == Op_StoreVectorScatter || 3482 Opcode() == Op_StoreVectorScatter || 3483 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || 3484 (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode 3485 (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy 3486 (is_mismatched_access() || st->as_Store()->is_mismatched_access()), 3487 "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); 3488 3489 if (st->in(MemNode::Address)->eqv_uncast(address) && 3490 st->as_Store()->memory_size() <= this->memory_size()) { 3491 Node* use = st->raw_out(0); 3492 if (phase->is_IterGVN()) { 3493 phase->is_IterGVN()->rehash_node_delayed(use); 3494 } 3495 // It's OK to do this in the parser, since DU info is always accurate, 3496 // and the parser always refers to nodes via SafePointNode maps. 3497 use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase); 3498 return this; 3499 } 3500 st = st->in(MemNode::Memory); 3501 } 3502 } 3503 3504 3505 // Capture an unaliased, unconditional, simple store into an initializer. 3506 // Or, if it is independent of the allocation, hoist it above the allocation. 3507 if (ReduceFieldZeroing && /*can_reshape &&*/ 3508 mem->is_Proj() && mem->in(0)->is_Initialize()) { 3509 InitializeNode* init = mem->in(0)->as_Initialize(); 3510 intptr_t offset = init->can_capture_store(this, phase, can_reshape); 3511 if (offset > 0) { 3512 Node* moved = init->capture_store(this, offset, phase, can_reshape); 3513 // If the InitializeNode captured me, it made a raw copy of me, 3514 // and I need to disappear. 3515 if (moved != nullptr) { 3516 // %%% hack to ensure that Ideal returns a new node: 3517 mem = MergeMemNode::make(mem); 3518 return mem; // fold me away 3519 } 3520 } 3521 } 3522 3523 // Fold reinterpret cast into memory operation: 3524 // StoreX mem (MoveY2X v) => StoreY mem v 3525 if (value->is_Move()) { 3526 const Type* vt = value->in(1)->bottom_type(); 3527 if (has_reinterpret_variant(vt)) { 3528 if (phase->C->post_loop_opts_phase()) { 3529 return convert_to_reinterpret_store(*phase, value->in(1), vt); 3530 } else { 3531 phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over 3532 } 3533 } 3534 } 3535 3536 if (MergeStores && UseUnalignedAccesses) { 3537 if (phase->C->post_loop_opts_phase()) { 3538 MergePrimitiveArrayStores merge(phase, this); 3539 Node* progress = merge.run(); 3540 if (progress != nullptr) { return progress; } 3541 } else { 3542 phase->C->record_for_post_loop_opts_igvn(this); 3543 } 3544 } 3545 3546 return nullptr; // No further progress 3547 } 3548 3549 //------------------------------Value----------------------------------------- 3550 const Type* StoreNode::Value(PhaseGVN* phase) const { 3551 // Either input is TOP ==> the result is TOP 3552 const Type *t1 = phase->type( in(MemNode::Memory) ); 3553 if( t1 == Type::TOP ) return Type::TOP; 3554 const Type *t2 = phase->type( in(MemNode::Address) ); 3555 if( t2 == Type::TOP ) return Type::TOP; 3556 const Type *t3 = phase->type( in(MemNode::ValueIn) ); 3557 if( t3 == Type::TOP ) return Type::TOP; 3558 return Type::MEMORY; 3559 } 3560 3561 //------------------------------Identity--------------------------------------- 3562 // Remove redundant stores: 3563 // Store(m, p, Load(m, p)) changes to m. 3564 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x). 3565 Node* StoreNode::Identity(PhaseGVN* phase) { 3566 Node* mem = in(MemNode::Memory); 3567 Node* adr = in(MemNode::Address); 3568 Node* val = in(MemNode::ValueIn); 3569 3570 Node* result = this; 3571 3572 // Load then Store? Then the Store is useless 3573 if (val->is_Load() && 3574 val->in(MemNode::Address)->eqv_uncast(adr) && 3575 val->in(MemNode::Memory )->eqv_uncast(mem) && 3576 val->as_Load()->store_Opcode() == Opcode()) { 3577 // Ensure vector type is the same 3578 if (!is_StoreVector() || (mem->is_LoadVector() && as_StoreVector()->vect_type() == mem->as_LoadVector()->vect_type())) { 3579 result = mem; 3580 } 3581 } 3582 3583 // Two stores in a row of the same value? 3584 if (result == this && 3585 mem->is_Store() && 3586 mem->in(MemNode::Address)->eqv_uncast(adr) && 3587 mem->in(MemNode::ValueIn)->eqv_uncast(val) && 3588 mem->Opcode() == Opcode()) { 3589 if (!is_StoreVector()) { 3590 result = mem; 3591 } else { 3592 const StoreVectorNode* store_vector = as_StoreVector(); 3593 const StoreVectorNode* mem_vector = mem->as_StoreVector(); 3594 const Node* store_indices = store_vector->indices(); 3595 const Node* mem_indices = mem_vector->indices(); 3596 const Node* store_mask = store_vector->mask(); 3597 const Node* mem_mask = mem_vector->mask(); 3598 // Ensure types, indices, and masks match 3599 if (store_vector->vect_type() == mem_vector->vect_type() && 3600 ((store_indices == nullptr) == (mem_indices == nullptr) && 3601 (store_indices == nullptr || store_indices->eqv_uncast(mem_indices))) && 3602 ((store_mask == nullptr) == (mem_mask == nullptr) && 3603 (store_mask == nullptr || store_mask->eqv_uncast(mem_mask)))) { 3604 result = mem; 3605 } 3606 } 3607 } 3608 3609 // Store of zero anywhere into a freshly-allocated object? 3610 // Then the store is useless. 3611 // (It must already have been captured by the InitializeNode.) 3612 if (result == this && 3613 ReduceFieldZeroing && phase->type(val)->is_zero_type()) { 3614 // a newly allocated object is already all-zeroes everywhere 3615 if (mem->is_Proj() && mem->in(0)->is_Allocate()) { 3616 result = mem; 3617 } 3618 3619 if (result == this) { 3620 // the store may also apply to zero-bits in an earlier object 3621 Node* prev_mem = find_previous_store(phase); 3622 // Steps (a), (b): Walk past independent stores to find an exact match. 3623 if (prev_mem != nullptr) { 3624 Node* prev_val = can_see_stored_value(prev_mem, phase); 3625 if (prev_val != nullptr && prev_val == val) { 3626 // prev_val and val might differ by a cast; it would be good 3627 // to keep the more informative of the two. 3628 result = mem; 3629 } 3630 } 3631 } 3632 } 3633 3634 PhaseIterGVN* igvn = phase->is_IterGVN(); 3635 if (result != this && igvn != nullptr) { 3636 MemBarNode* trailing = trailing_membar(); 3637 if (trailing != nullptr) { 3638 #ifdef ASSERT 3639 const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr(); 3640 assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects"); 3641 #endif 3642 trailing->remove(igvn); 3643 } 3644 } 3645 3646 return result; 3647 } 3648 3649 //------------------------------match_edge------------------------------------- 3650 // Do we Match on this edge index or not? Match only memory & value 3651 uint StoreNode::match_edge(uint idx) const { 3652 return idx == MemNode::Address || idx == MemNode::ValueIn; 3653 } 3654 3655 //------------------------------cmp-------------------------------------------- 3656 // Do not common stores up together. They generally have to be split 3657 // back up anyways, so do not bother. 3658 bool StoreNode::cmp( const Node &n ) const { 3659 return (&n == this); // Always fail except on self 3660 } 3661 3662 //------------------------------Ideal_masked_input----------------------------- 3663 // Check for a useless mask before a partial-word store 3664 // (StoreB ... (AndI valIn conIa) ) 3665 // If (conIa & mask == mask) this simplifies to 3666 // (StoreB ... (valIn) ) 3667 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) { 3668 Node *val = in(MemNode::ValueIn); 3669 if( val->Opcode() == Op_AndI ) { 3670 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 3671 if( t && t->is_con() && (t->get_con() & mask) == mask ) { 3672 set_req_X(MemNode::ValueIn, val->in(1), phase); 3673 return this; 3674 } 3675 } 3676 return nullptr; 3677 } 3678 3679 3680 //------------------------------Ideal_sign_extended_input---------------------- 3681 // Check for useless sign-extension before a partial-word store 3682 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) ) 3683 // If (conIL == conIR && conIR <= num_bits) this simplifies to 3684 // (StoreB ... (valIn) ) 3685 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) { 3686 Node *val = in(MemNode::ValueIn); 3687 if( val->Opcode() == Op_RShiftI ) { 3688 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 3689 if( t && t->is_con() && (t->get_con() <= num_bits) ) { 3690 Node *shl = val->in(1); 3691 if( shl->Opcode() == Op_LShiftI ) { 3692 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int(); 3693 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) { 3694 set_req_X(MemNode::ValueIn, shl->in(1), phase); 3695 return this; 3696 } 3697 } 3698 } 3699 } 3700 return nullptr; 3701 } 3702 3703 //------------------------------value_never_loaded----------------------------------- 3704 // Determine whether there are any possible loads of the value stored. 3705 // For simplicity, we actually check if there are any loads from the 3706 // address stored to, not just for loads of the value stored by this node. 3707 // 3708 bool StoreNode::value_never_loaded(PhaseValues* phase) const { 3709 Node *adr = in(Address); 3710 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr(); 3711 if (adr_oop == nullptr) 3712 return false; 3713 if (!adr_oop->is_known_instance_field()) 3714 return false; // if not a distinct instance, there may be aliases of the address 3715 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) { 3716 Node *use = adr->fast_out(i); 3717 if (use->is_Load() || use->is_LoadStore()) { 3718 return false; 3719 } 3720 } 3721 return true; 3722 } 3723 3724 MemBarNode* StoreNode::trailing_membar() const { 3725 if (is_release()) { 3726 MemBarNode* trailing_mb = nullptr; 3727 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3728 Node* u = fast_out(i); 3729 if (u->is_MemBar()) { 3730 if (u->as_MemBar()->trailing_store()) { 3731 assert(u->Opcode() == Op_MemBarVolatile, ""); 3732 assert(trailing_mb == nullptr, "only one"); 3733 trailing_mb = u->as_MemBar(); 3734 #ifdef ASSERT 3735 Node* leading = u->as_MemBar()->leading_membar(); 3736 assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 3737 assert(leading->as_MemBar()->leading_store(), "incorrect membar pair"); 3738 assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair"); 3739 #endif 3740 } else { 3741 assert(u->as_MemBar()->standalone(), ""); 3742 } 3743 } 3744 } 3745 return trailing_mb; 3746 } 3747 return nullptr; 3748 } 3749 3750 3751 //============================================================================= 3752 //------------------------------Ideal------------------------------------------ 3753 // If the store is from an AND mask that leaves the low bits untouched, then 3754 // we can skip the AND operation. If the store is from a sign-extension 3755 // (a left shift, then right shift) we can skip both. 3756 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){ 3757 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF); 3758 if( progress != nullptr ) return progress; 3759 3760 progress = StoreNode::Ideal_sign_extended_input(phase, 24); 3761 if( progress != nullptr ) return progress; 3762 3763 // Finally check the default case 3764 return StoreNode::Ideal(phase, can_reshape); 3765 } 3766 3767 //============================================================================= 3768 //------------------------------Ideal------------------------------------------ 3769 // If the store is from an AND mask that leaves the low bits untouched, then 3770 // we can skip the AND operation 3771 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){ 3772 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF); 3773 if( progress != nullptr ) return progress; 3774 3775 progress = StoreNode::Ideal_sign_extended_input(phase, 16); 3776 if( progress != nullptr ) return progress; 3777 3778 // Finally check the default case 3779 return StoreNode::Ideal(phase, can_reshape); 3780 } 3781 3782 //============================================================================= 3783 //----------------------------------SCMemProjNode------------------------------ 3784 const Type* SCMemProjNode::Value(PhaseGVN* phase) const 3785 { 3786 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) { 3787 return Type::TOP; 3788 } 3789 return bottom_type(); 3790 } 3791 3792 //============================================================================= 3793 //----------------------------------LoadStoreNode------------------------------ 3794 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ) 3795 : Node(required), 3796 _type(rt), 3797 _adr_type(at), 3798 _barrier_data(0) 3799 { 3800 init_req(MemNode::Control, c ); 3801 init_req(MemNode::Memory , mem); 3802 init_req(MemNode::Address, adr); 3803 init_req(MemNode::ValueIn, val); 3804 init_class_id(Class_LoadStore); 3805 } 3806 3807 //------------------------------Value----------------------------------------- 3808 const Type* LoadStoreNode::Value(PhaseGVN* phase) const { 3809 // Either input is TOP ==> the result is TOP 3810 if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) { 3811 return Type::TOP; 3812 } 3813 const Type* t = phase->type(in(MemNode::Memory)); 3814 if (t == Type::TOP) { 3815 return Type::TOP; 3816 } 3817 t = phase->type(in(MemNode::Address)); 3818 if (t == Type::TOP) { 3819 return Type::TOP; 3820 } 3821 t = phase->type(in(MemNode::ValueIn)); 3822 if (t == Type::TOP) { 3823 return Type::TOP; 3824 } 3825 return bottom_type(); 3826 } 3827 3828 uint LoadStoreNode::ideal_reg() const { 3829 return _type->ideal_reg(); 3830 } 3831 3832 // This method conservatively checks if the result of a LoadStoreNode is 3833 // used, that is, if it returns true, then it is definitely the case that 3834 // the result of the node is not needed. 3835 // For example, GetAndAdd can be matched into a lock_add instead of a 3836 // lock_xadd if the result of LoadStoreNode::result_not_used() is true 3837 bool LoadStoreNode::result_not_used() const { 3838 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3839 Node *x = fast_out(i); 3840 if (x->Opcode() == Op_SCMemProj) { 3841 continue; 3842 } 3843 if (x->bottom_type() == TypeTuple::MEMBAR && 3844 !x->is_Call() && 3845 x->Opcode() != Op_Blackhole) { 3846 continue; 3847 } 3848 return false; 3849 } 3850 return true; 3851 } 3852 3853 MemBarNode* LoadStoreNode::trailing_membar() const { 3854 MemBarNode* trailing = nullptr; 3855 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3856 Node* u = fast_out(i); 3857 if (u->is_MemBar()) { 3858 if (u->as_MemBar()->trailing_load_store()) { 3859 assert(u->Opcode() == Op_MemBarAcquire, ""); 3860 assert(trailing == nullptr, "only one"); 3861 trailing = u->as_MemBar(); 3862 #ifdef ASSERT 3863 Node* leading = trailing->leading_membar(); 3864 assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 3865 assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair"); 3866 assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair"); 3867 #endif 3868 } else { 3869 assert(u->as_MemBar()->standalone(), "wrong barrier kind"); 3870 } 3871 } 3872 } 3873 3874 return trailing; 3875 } 3876 3877 uint LoadStoreNode::size_of() const { return sizeof(*this); } 3878 3879 //============================================================================= 3880 //----------------------------------LoadStoreConditionalNode-------------------- 3881 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) { 3882 init_req(ExpectedIn, ex ); 3883 } 3884 3885 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const { 3886 // Either input is TOP ==> the result is TOP 3887 const Type* t = phase->type(in(ExpectedIn)); 3888 if (t == Type::TOP) { 3889 return Type::TOP; 3890 } 3891 return LoadStoreNode::Value(phase); 3892 } 3893 3894 //============================================================================= 3895 //-------------------------------adr_type-------------------------------------- 3896 const TypePtr* ClearArrayNode::adr_type() const { 3897 Node *adr = in(3); 3898 if (adr == nullptr) return nullptr; // node is dead 3899 return MemNode::calculate_adr_type(adr->bottom_type()); 3900 } 3901 3902 //------------------------------match_edge------------------------------------- 3903 // Do we Match on this edge index or not? Do not match memory 3904 uint ClearArrayNode::match_edge(uint idx) const { 3905 return idx > 1; 3906 } 3907 3908 //------------------------------Identity--------------------------------------- 3909 // Clearing a zero length array does nothing 3910 Node* ClearArrayNode::Identity(PhaseGVN* phase) { 3911 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this; 3912 } 3913 3914 //------------------------------Idealize--------------------------------------- 3915 // Clearing a short array is faster with stores 3916 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3917 // Already know this is a large node, do not try to ideal it 3918 if (_is_large) return nullptr; 3919 3920 const int unit = BytesPerLong; 3921 const TypeX* t = phase->type(in(2))->isa_intptr_t(); 3922 if (!t) return nullptr; 3923 if (!t->is_con()) return nullptr; 3924 intptr_t raw_count = t->get_con(); 3925 intptr_t size = raw_count; 3926 if (!Matcher::init_array_count_is_in_bytes) size *= unit; 3927 // Clearing nothing uses the Identity call. 3928 // Negative clears are possible on dead ClearArrays 3929 // (see jck test stmt114.stmt11402.val). 3930 if (size <= 0 || size % unit != 0) return nullptr; 3931 intptr_t count = size / unit; 3932 // Length too long; communicate this to matchers and assemblers. 3933 // Assemblers are responsible to produce fast hardware clears for it. 3934 if (size > InitArrayShortSize) { 3935 return new ClearArrayNode(in(0), in(1), in(2), in(3), true); 3936 } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) { 3937 return nullptr; 3938 } 3939 if (!IdealizeClearArrayNode) return nullptr; 3940 Node *mem = in(1); 3941 if( phase->type(mem)==Type::TOP ) return nullptr; 3942 Node *adr = in(3); 3943 const Type* at = phase->type(adr); 3944 if( at==Type::TOP ) return nullptr; 3945 const TypePtr* atp = at->isa_ptr(); 3946 // adjust atp to be the correct array element address type 3947 if (atp == nullptr) atp = TypePtr::BOTTOM; 3948 else atp = atp->add_offset(Type::OffsetBot); 3949 // Get base for derived pointer purposes 3950 if( adr->Opcode() != Op_AddP ) Unimplemented(); 3951 Node *base = adr->in(1); 3952 3953 Node *zero = phase->makecon(TypeLong::ZERO); 3954 Node *off = phase->MakeConX(BytesPerLong); 3955 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); 3956 count--; 3957 while( count-- ) { 3958 mem = phase->transform(mem); 3959 adr = phase->transform(new AddPNode(base,adr,off)); 3960 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); 3961 } 3962 return mem; 3963 } 3964 3965 //----------------------------step_through---------------------------------- 3966 // Return allocation input memory edge if it is different instance 3967 // or itself if it is the one we are looking for. 3968 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseValues* phase) { 3969 Node* n = *np; 3970 assert(n->is_ClearArray(), "sanity"); 3971 intptr_t offset; 3972 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset); 3973 // This method is called only before Allocate nodes are expanded 3974 // during macro nodes expansion. Before that ClearArray nodes are 3975 // only generated in PhaseMacroExpand::generate_arraycopy() (before 3976 // Allocate nodes are expanded) which follows allocations. 3977 assert(alloc != nullptr, "should have allocation"); 3978 if (alloc->_idx == instance_id) { 3979 // Can not bypass initialization of the instance we are looking for. 3980 return false; 3981 } 3982 // Otherwise skip it. 3983 InitializeNode* init = alloc->initialization(); 3984 if (init != nullptr) 3985 *np = init->in(TypeFunc::Memory); 3986 else 3987 *np = alloc->in(TypeFunc::Memory); 3988 return true; 3989 } 3990 3991 //----------------------------clear_memory------------------------------------- 3992 // Generate code to initialize object storage to zero. 3993 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3994 intptr_t start_offset, 3995 Node* end_offset, 3996 PhaseGVN* phase) { 3997 intptr_t offset = start_offset; 3998 3999 int unit = BytesPerLong; 4000 if ((offset % unit) != 0) { 4001 Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset)); 4002 adr = phase->transform(adr); 4003 const TypePtr* atp = TypeRawPtr::BOTTOM; 4004 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 4005 mem = phase->transform(mem); 4006 offset += BytesPerInt; 4007 } 4008 assert((offset % unit) == 0, ""); 4009 4010 // Initialize the remaining stuff, if any, with a ClearArray. 4011 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase); 4012 } 4013 4014 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 4015 Node* start_offset, 4016 Node* end_offset, 4017 PhaseGVN* phase) { 4018 if (start_offset == end_offset) { 4019 // nothing to do 4020 return mem; 4021 } 4022 4023 int unit = BytesPerLong; 4024 Node* zbase = start_offset; 4025 Node* zend = end_offset; 4026 4027 // Scale to the unit required by the CPU: 4028 if (!Matcher::init_array_count_is_in_bytes) { 4029 Node* shift = phase->intcon(exact_log2(unit)); 4030 zbase = phase->transform(new URShiftXNode(zbase, shift) ); 4031 zend = phase->transform(new URShiftXNode(zend, shift) ); 4032 } 4033 4034 // Bulk clear double-words 4035 Node* zsize = phase->transform(new SubXNode(zend, zbase) ); 4036 Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) ); 4037 mem = new ClearArrayNode(ctl, mem, zsize, adr, false); 4038 return phase->transform(mem); 4039 } 4040 4041 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 4042 intptr_t start_offset, 4043 intptr_t end_offset, 4044 PhaseGVN* phase) { 4045 if (start_offset == end_offset) { 4046 // nothing to do 4047 return mem; 4048 } 4049 4050 assert((end_offset % BytesPerInt) == 0, "odd end offset"); 4051 intptr_t done_offset = end_offset; 4052 if ((done_offset % BytesPerLong) != 0) { 4053 done_offset -= BytesPerInt; 4054 } 4055 if (done_offset > start_offset) { 4056 mem = clear_memory(ctl, mem, dest, 4057 start_offset, phase->MakeConX(done_offset), phase); 4058 } 4059 if (done_offset < end_offset) { // emit the final 32-bit store 4060 Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset)); 4061 adr = phase->transform(adr); 4062 const TypePtr* atp = TypeRawPtr::BOTTOM; 4063 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 4064 mem = phase->transform(mem); 4065 done_offset += BytesPerInt; 4066 } 4067 assert(done_offset == end_offset, ""); 4068 return mem; 4069 } 4070 4071 //============================================================================= 4072 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent) 4073 : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)), 4074 _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone) 4075 #ifdef ASSERT 4076 , _pair_idx(0) 4077 #endif 4078 { 4079 init_class_id(Class_MemBar); 4080 Node* top = C->top(); 4081 init_req(TypeFunc::I_O,top); 4082 init_req(TypeFunc::FramePtr,top); 4083 init_req(TypeFunc::ReturnAdr,top); 4084 if (precedent != nullptr) 4085 init_req(TypeFunc::Parms, precedent); 4086 } 4087 4088 //------------------------------cmp-------------------------------------------- 4089 uint MemBarNode::hash() const { return NO_HASH; } 4090 bool MemBarNode::cmp( const Node &n ) const { 4091 return (&n == this); // Always fail except on self 4092 } 4093 4094 //------------------------------make------------------------------------------- 4095 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) { 4096 switch (opcode) { 4097 case Op_MemBarAcquire: return new MemBarAcquireNode(C, atp, pn); 4098 case Op_LoadFence: return new LoadFenceNode(C, atp, pn); 4099 case Op_MemBarRelease: return new MemBarReleaseNode(C, atp, pn); 4100 case Op_StoreFence: return new StoreFenceNode(C, atp, pn); 4101 case Op_MemBarStoreStore: return new MemBarStoreStoreNode(C, atp, pn); 4102 case Op_StoreStoreFence: return new StoreStoreFenceNode(C, atp, pn); 4103 case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn); 4104 case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn); 4105 case Op_MemBarVolatile: return new MemBarVolatileNode(C, atp, pn); 4106 case Op_MemBarCPUOrder: return new MemBarCPUOrderNode(C, atp, pn); 4107 case Op_OnSpinWait: return new OnSpinWaitNode(C, atp, pn); 4108 case Op_Initialize: return new InitializeNode(C, atp, pn); 4109 default: ShouldNotReachHere(); return nullptr; 4110 } 4111 } 4112 4113 void MemBarNode::remove(PhaseIterGVN *igvn) { 4114 if (outcnt() != 2) { 4115 assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory"); 4116 assert(outcnt() == 1, "Only control then"); 4117 } 4118 if (trailing_store() || trailing_load_store()) { 4119 MemBarNode* leading = leading_membar(); 4120 if (leading != nullptr) { 4121 assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars"); 4122 leading->remove(igvn); 4123 } 4124 } 4125 if (proj_out_or_null(TypeFunc::Memory) != nullptr) { 4126 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); 4127 } 4128 if (proj_out_or_null(TypeFunc::Control) != nullptr) { 4129 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); 4130 } 4131 } 4132 4133 //------------------------------Ideal------------------------------------------ 4134 // Return a node which is more "ideal" than the current node. Strip out 4135 // control copies 4136 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) { 4137 if (remove_dead_region(phase, can_reshape)) return this; 4138 // Don't bother trying to transform a dead node 4139 if (in(0) && in(0)->is_top()) { 4140 return nullptr; 4141 } 4142 4143 bool progress = false; 4144 // Eliminate volatile MemBars for scalar replaced objects. 4145 if (can_reshape && req() == (Precedent+1)) { 4146 bool eliminate = false; 4147 int opc = Opcode(); 4148 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) { 4149 // Volatile field loads and stores. 4150 Node* my_mem = in(MemBarNode::Precedent); 4151 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge 4152 if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) { 4153 // if the Precedent is a decodeN and its input (a Load) is used at more than one place, 4154 // replace this Precedent (decodeN) with the Load instead. 4155 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) { 4156 Node* load_node = my_mem->in(1); 4157 set_req(MemBarNode::Precedent, load_node); 4158 phase->is_IterGVN()->_worklist.push(my_mem); 4159 my_mem = load_node; 4160 } else { 4161 assert(my_mem->unique_out() == this, "sanity"); 4162 assert(!trailing_load_store(), "load store node can't be eliminated"); 4163 del_req(Precedent); 4164 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later 4165 my_mem = nullptr; 4166 } 4167 progress = true; 4168 } 4169 if (my_mem != nullptr && my_mem->is_Mem()) { 4170 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); 4171 // Check for scalar replaced object reference. 4172 if( t_oop != nullptr && t_oop->is_known_instance_field() && 4173 t_oop->offset() != Type::OffsetBot && 4174 t_oop->offset() != Type::OffsetTop) { 4175 eliminate = true; 4176 } 4177 } 4178 } else if (opc == Op_MemBarRelease || (UseStoreStoreForCtor && opc == Op_MemBarStoreStore)) { 4179 // Final field stores. 4180 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent)); 4181 if ((alloc != nullptr) && alloc->is_Allocate() && 4182 alloc->as_Allocate()->does_not_escape_thread()) { 4183 // The allocated object does not escape. 4184 eliminate = true; 4185 } 4186 } 4187 if (eliminate) { 4188 // Replace MemBar projections by its inputs. 4189 PhaseIterGVN* igvn = phase->is_IterGVN(); 4190 remove(igvn); 4191 // Must return either the original node (now dead) or a new node 4192 // (Do not return a top here, since that would break the uniqueness of top.) 4193 return new ConINode(TypeInt::ZERO); 4194 } 4195 } 4196 return progress ? this : nullptr; 4197 } 4198 4199 //------------------------------Value------------------------------------------ 4200 const Type* MemBarNode::Value(PhaseGVN* phase) const { 4201 if( !in(0) ) return Type::TOP; 4202 if( phase->type(in(0)) == Type::TOP ) 4203 return Type::TOP; 4204 return TypeTuple::MEMBAR; 4205 } 4206 4207 //------------------------------match------------------------------------------ 4208 // Construct projections for memory. 4209 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) { 4210 switch (proj->_con) { 4211 case TypeFunc::Control: 4212 case TypeFunc::Memory: 4213 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 4214 } 4215 ShouldNotReachHere(); 4216 return nullptr; 4217 } 4218 4219 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) { 4220 trailing->_kind = TrailingStore; 4221 leading->_kind = LeadingStore; 4222 #ifdef ASSERT 4223 trailing->_pair_idx = leading->_idx; 4224 leading->_pair_idx = leading->_idx; 4225 #endif 4226 } 4227 4228 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) { 4229 trailing->_kind = TrailingLoadStore; 4230 leading->_kind = LeadingLoadStore; 4231 #ifdef ASSERT 4232 trailing->_pair_idx = leading->_idx; 4233 leading->_pair_idx = leading->_idx; 4234 #endif 4235 } 4236 4237 MemBarNode* MemBarNode::trailing_membar() const { 4238 ResourceMark rm; 4239 Node* trailing = (Node*)this; 4240 VectorSet seen; 4241 Node_Stack multis(0); 4242 do { 4243 Node* c = trailing; 4244 uint i = 0; 4245 do { 4246 trailing = nullptr; 4247 for (; i < c->outcnt(); i++) { 4248 Node* next = c->raw_out(i); 4249 if (next != c && next->is_CFG()) { 4250 if (c->is_MultiBranch()) { 4251 if (multis.node() == c) { 4252 multis.set_index(i+1); 4253 } else { 4254 multis.push(c, i+1); 4255 } 4256 } 4257 trailing = next; 4258 break; 4259 } 4260 } 4261 if (trailing != nullptr && !seen.test_set(trailing->_idx)) { 4262 break; 4263 } 4264 while (multis.size() > 0) { 4265 c = multis.node(); 4266 i = multis.index(); 4267 if (i < c->req()) { 4268 break; 4269 } 4270 multis.pop(); 4271 } 4272 } while (multis.size() > 0); 4273 } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()); 4274 4275 MemBarNode* mb = trailing->as_MemBar(); 4276 assert((mb->_kind == TrailingStore && _kind == LeadingStore) || 4277 (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar"); 4278 assert(mb->_pair_idx == _pair_idx, "bad trailing membar"); 4279 return mb; 4280 } 4281 4282 MemBarNode* MemBarNode::leading_membar() const { 4283 ResourceMark rm; 4284 VectorSet seen; 4285 Node_Stack regions(0); 4286 Node* leading = in(0); 4287 while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) { 4288 while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) { 4289 leading = nullptr; 4290 while (regions.size() > 0 && leading == nullptr) { 4291 Node* r = regions.node(); 4292 uint i = regions.index(); 4293 if (i < r->req()) { 4294 leading = r->in(i); 4295 regions.set_index(i+1); 4296 } else { 4297 regions.pop(); 4298 } 4299 } 4300 if (leading == nullptr) { 4301 assert(regions.size() == 0, "all paths should have been tried"); 4302 return nullptr; 4303 } 4304 } 4305 if (leading->is_Region()) { 4306 regions.push(leading, 2); 4307 leading = leading->in(1); 4308 } else { 4309 leading = leading->in(0); 4310 } 4311 } 4312 #ifdef ASSERT 4313 Unique_Node_List wq; 4314 wq.push((Node*)this); 4315 uint found = 0; 4316 for (uint i = 0; i < wq.size(); i++) { 4317 Node* n = wq.at(i); 4318 if (n->is_Region()) { 4319 for (uint j = 1; j < n->req(); j++) { 4320 Node* in = n->in(j); 4321 if (in != nullptr && !in->is_top()) { 4322 wq.push(in); 4323 } 4324 } 4325 } else { 4326 if (n->is_MemBar() && n->as_MemBar()->leading()) { 4327 assert(n == leading, "consistency check failed"); 4328 found++; 4329 } else { 4330 Node* in = n->in(0); 4331 if (in != nullptr && !in->is_top()) { 4332 wq.push(in); 4333 } 4334 } 4335 } 4336 } 4337 assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed"); 4338 #endif 4339 if (leading == nullptr) { 4340 return nullptr; 4341 } 4342 MemBarNode* mb = leading->as_MemBar(); 4343 assert((mb->_kind == LeadingStore && _kind == TrailingStore) || 4344 (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar"); 4345 assert(mb->_pair_idx == _pair_idx, "bad leading membar"); 4346 return mb; 4347 } 4348 4349 4350 //===========================InitializeNode==================================== 4351 // SUMMARY: 4352 // This node acts as a memory barrier on raw memory, after some raw stores. 4353 // The 'cooked' oop value feeds from the Initialize, not the Allocation. 4354 // The Initialize can 'capture' suitably constrained stores as raw inits. 4355 // It can coalesce related raw stores into larger units (called 'tiles'). 4356 // It can avoid zeroing new storage for memory units which have raw inits. 4357 // At macro-expansion, it is marked 'complete', and does not optimize further. 4358 // 4359 // EXAMPLE: 4360 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine. 4361 // ctl = incoming control; mem* = incoming memory 4362 // (Note: A star * on a memory edge denotes I/O and other standard edges.) 4363 // First allocate uninitialized memory and fill in the header: 4364 // alloc = (Allocate ctl mem* 16 #short[].klass ...) 4365 // ctl := alloc.Control; mem* := alloc.Memory* 4366 // rawmem = alloc.Memory; rawoop = alloc.RawAddress 4367 // Then initialize to zero the non-header parts of the raw memory block: 4368 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress) 4369 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory 4370 // After the initialize node executes, the object is ready for service: 4371 // oop := (CheckCastPP init.Control alloc.RawAddress #short[]) 4372 // Suppose its body is immediately initialized as {1,2}: 4373 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 4374 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 4375 // mem.SLICE(#short[*]) := store2 4376 // 4377 // DETAILS: 4378 // An InitializeNode collects and isolates object initialization after 4379 // an AllocateNode and before the next possible safepoint. As a 4380 // memory barrier (MemBarNode), it keeps critical stores from drifting 4381 // down past any safepoint or any publication of the allocation. 4382 // Before this barrier, a newly-allocated object may have uninitialized bits. 4383 // After this barrier, it may be treated as a real oop, and GC is allowed. 4384 // 4385 // The semantics of the InitializeNode include an implicit zeroing of 4386 // the new object from object header to the end of the object. 4387 // (The object header and end are determined by the AllocateNode.) 4388 // 4389 // Certain stores may be added as direct inputs to the InitializeNode. 4390 // These stores must update raw memory, and they must be to addresses 4391 // derived from the raw address produced by AllocateNode, and with 4392 // a constant offset. They must be ordered by increasing offset. 4393 // The first one is at in(RawStores), the last at in(req()-1). 4394 // Unlike most memory operations, they are not linked in a chain, 4395 // but are displayed in parallel as users of the rawmem output of 4396 // the allocation. 4397 // 4398 // (See comments in InitializeNode::capture_store, which continue 4399 // the example given above.) 4400 // 4401 // When the associated Allocate is macro-expanded, the InitializeNode 4402 // may be rewritten to optimize collected stores. A ClearArrayNode 4403 // may also be created at that point to represent any required zeroing. 4404 // The InitializeNode is then marked 'complete', prohibiting further 4405 // capturing of nearby memory operations. 4406 // 4407 // During macro-expansion, all captured initializations which store 4408 // constant values of 32 bits or smaller are coalesced (if advantageous) 4409 // into larger 'tiles' 32 or 64 bits. This allows an object to be 4410 // initialized in fewer memory operations. Memory words which are 4411 // covered by neither tiles nor non-constant stores are pre-zeroed 4412 // by explicit stores of zero. (The code shape happens to do all 4413 // zeroing first, then all other stores, with both sequences occurring 4414 // in order of ascending offsets.) 4415 // 4416 // Alternatively, code may be inserted between an AllocateNode and its 4417 // InitializeNode, to perform arbitrary initialization of the new object. 4418 // E.g., the object copying intrinsics insert complex data transfers here. 4419 // The initialization must then be marked as 'complete' disable the 4420 // built-in zeroing semantics and the collection of initializing stores. 4421 // 4422 // While an InitializeNode is incomplete, reads from the memory state 4423 // produced by it are optimizable if they match the control edge and 4424 // new oop address associated with the allocation/initialization. 4425 // They return a stored value (if the offset matches) or else zero. 4426 // A write to the memory state, if it matches control and address, 4427 // and if it is to a constant offset, may be 'captured' by the 4428 // InitializeNode. It is cloned as a raw memory operation and rewired 4429 // inside the initialization, to the raw oop produced by the allocation. 4430 // Operations on addresses which are provably distinct (e.g., to 4431 // other AllocateNodes) are allowed to bypass the initialization. 4432 // 4433 // The effect of all this is to consolidate object initialization 4434 // (both arrays and non-arrays, both piecewise and bulk) into a 4435 // single location, where it can be optimized as a unit. 4436 // 4437 // Only stores with an offset less than TrackedInitializationLimit words 4438 // will be considered for capture by an InitializeNode. This puts a 4439 // reasonable limit on the complexity of optimized initializations. 4440 4441 //---------------------------InitializeNode------------------------------------ 4442 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop) 4443 : MemBarNode(C, adr_type, rawoop), 4444 _is_complete(Incomplete), _does_not_escape(false) 4445 { 4446 init_class_id(Class_Initialize); 4447 4448 assert(adr_type == Compile::AliasIdxRaw, "only valid atp"); 4449 assert(in(RawAddress) == rawoop, "proper init"); 4450 // Note: allocation() can be null, for secondary initialization barriers 4451 } 4452 4453 // Since this node is not matched, it will be processed by the 4454 // register allocator. Declare that there are no constraints 4455 // on the allocation of the RawAddress edge. 4456 const RegMask &InitializeNode::in_RegMask(uint idx) const { 4457 // This edge should be set to top, by the set_complete. But be conservative. 4458 if (idx == InitializeNode::RawAddress) 4459 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]); 4460 return RegMask::Empty; 4461 } 4462 4463 Node* InitializeNode::memory(uint alias_idx) { 4464 Node* mem = in(Memory); 4465 if (mem->is_MergeMem()) { 4466 return mem->as_MergeMem()->memory_at(alias_idx); 4467 } else { 4468 // incoming raw memory is not split 4469 return mem; 4470 } 4471 } 4472 4473 bool InitializeNode::is_non_zero() { 4474 if (is_complete()) return false; 4475 remove_extra_zeroes(); 4476 return (req() > RawStores); 4477 } 4478 4479 void InitializeNode::set_complete(PhaseGVN* phase) { 4480 assert(!is_complete(), "caller responsibility"); 4481 _is_complete = Complete; 4482 4483 // After this node is complete, it contains a bunch of 4484 // raw-memory initializations. There is no need for 4485 // it to have anything to do with non-raw memory effects. 4486 // Therefore, tell all non-raw users to re-optimize themselves, 4487 // after skipping the memory effects of this initialization. 4488 PhaseIterGVN* igvn = phase->is_IterGVN(); 4489 if (igvn) igvn->add_users_to_worklist(this); 4490 } 4491 4492 // convenience function 4493 // return false if the init contains any stores already 4494 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) { 4495 InitializeNode* init = initialization(); 4496 if (init == nullptr || init->is_complete()) return false; 4497 init->remove_extra_zeroes(); 4498 // for now, if this allocation has already collected any inits, bail: 4499 if (init->is_non_zero()) return false; 4500 init->set_complete(phase); 4501 return true; 4502 } 4503 4504 void InitializeNode::remove_extra_zeroes() { 4505 if (req() == RawStores) return; 4506 Node* zmem = zero_memory(); 4507 uint fill = RawStores; 4508 for (uint i = fill; i < req(); i++) { 4509 Node* n = in(i); 4510 if (n->is_top() || n == zmem) continue; // skip 4511 if (fill < i) set_req(fill, n); // compact 4512 ++fill; 4513 } 4514 // delete any empty spaces created: 4515 while (fill < req()) { 4516 del_req(fill); 4517 } 4518 } 4519 4520 // Helper for remembering which stores go with which offsets. 4521 intptr_t InitializeNode::get_store_offset(Node* st, PhaseValues* phase) { 4522 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node 4523 intptr_t offset = -1; 4524 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address), 4525 phase, offset); 4526 if (base == nullptr) return -1; // something is dead, 4527 if (offset < 0) return -1; // dead, dead 4528 return offset; 4529 } 4530 4531 // Helper for proving that an initialization expression is 4532 // "simple enough" to be folded into an object initialization. 4533 // Attempts to prove that a store's initial value 'n' can be captured 4534 // within the initialization without creating a vicious cycle, such as: 4535 // { Foo p = new Foo(); p.next = p; } 4536 // True for constants and parameters and small combinations thereof. 4537 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) { 4538 ResourceMark rm; 4539 Unique_Node_List worklist; 4540 worklist.push(value); 4541 4542 uint complexity_limit = 20; 4543 for (uint j = 0; j < worklist.size(); j++) { 4544 if (j >= complexity_limit) { 4545 return false; // Bail out if processed too many nodes 4546 } 4547 4548 Node* n = worklist.at(j); 4549 if (n == nullptr) continue; // (can this really happen?) 4550 if (n->is_Proj()) n = n->in(0); 4551 if (n == this) return false; // found a cycle 4552 if (n->is_Con()) continue; 4553 if (n->is_Start()) continue; // params, etc., are OK 4554 if (n->is_Root()) continue; // even better 4555 4556 // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation 4557 if (n->is_CFG() && phase->is_dominator(n, allocation())) { 4558 continue; 4559 } 4560 4561 Node* ctl = n->in(0); 4562 if (ctl != nullptr && !ctl->is_top()) { 4563 if (ctl->is_Proj()) ctl = ctl->in(0); 4564 if (ctl == this) return false; 4565 4566 // If we already know that the enclosing memory op is pinned right after 4567 // the init, then any control flow that the store has picked up 4568 // must have preceded the init, or else be equal to the init. 4569 // Even after loop optimizations (which might change control edges) 4570 // a store is never pinned *before* the availability of its inputs. 4571 if (!MemNode::all_controls_dominate(n, this)) { 4572 return false; // failed to prove a good control 4573 } 4574 } 4575 4576 // Check data edges for possible dependencies on 'this'. 4577 for (uint i = 1; i < n->req(); i++) { 4578 Node* m = n->in(i); 4579 if (m == nullptr || m == n || m->is_top()) continue; 4580 4581 // Only process data inputs once 4582 worklist.push(m); 4583 } 4584 } 4585 4586 return true; 4587 } 4588 4589 // Here are all the checks a Store must pass before it can be moved into 4590 // an initialization. Returns zero if a check fails. 4591 // On success, returns the (constant) offset to which the store applies, 4592 // within the initialized memory. 4593 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) { 4594 const int FAIL = 0; 4595 if (st->req() != MemNode::ValueIn + 1) 4596 return FAIL; // an inscrutable StoreNode (card mark?) 4597 Node* ctl = st->in(MemNode::Control); 4598 if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this)) 4599 return FAIL; // must be unconditional after the initialization 4600 Node* mem = st->in(MemNode::Memory); 4601 if (!(mem->is_Proj() && mem->in(0) == this)) 4602 return FAIL; // must not be preceded by other stores 4603 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4604 if ((st->Opcode() == Op_StoreP || st->Opcode() == Op_StoreN) && 4605 !bs->can_initialize_object(st)) { 4606 return FAIL; 4607 } 4608 Node* adr = st->in(MemNode::Address); 4609 intptr_t offset; 4610 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset); 4611 if (alloc == nullptr) 4612 return FAIL; // inscrutable address 4613 if (alloc != allocation()) 4614 return FAIL; // wrong allocation! (store needs to float up) 4615 int size_in_bytes = st->memory_size(); 4616 if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) { 4617 return FAIL; // mismatched access 4618 } 4619 Node* val = st->in(MemNode::ValueIn); 4620 4621 if (!detect_init_independence(val, phase)) 4622 return FAIL; // stored value must be 'simple enough' 4623 4624 // The Store can be captured only if nothing after the allocation 4625 // and before the Store is using the memory location that the store 4626 // overwrites. 4627 bool failed = false; 4628 // If is_complete_with_arraycopy() is true the shape of the graph is 4629 // well defined and is safe so no need for extra checks. 4630 if (!is_complete_with_arraycopy()) { 4631 // We are going to look at each use of the memory state following 4632 // the allocation to make sure nothing reads the memory that the 4633 // Store writes. 4634 const TypePtr* t_adr = phase->type(adr)->isa_ptr(); 4635 int alias_idx = phase->C->get_alias_index(t_adr); 4636 ResourceMark rm; 4637 Unique_Node_List mems; 4638 mems.push(mem); 4639 Node* unique_merge = nullptr; 4640 for (uint next = 0; next < mems.size(); ++next) { 4641 Node *m = mems.at(next); 4642 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 4643 Node *n = m->fast_out(j); 4644 if (n->outcnt() == 0) { 4645 continue; 4646 } 4647 if (n == st) { 4648 continue; 4649 } else if (n->in(0) != nullptr && n->in(0) != ctl) { 4650 // If the control of this use is different from the control 4651 // of the Store which is right after the InitializeNode then 4652 // this node cannot be between the InitializeNode and the 4653 // Store. 4654 continue; 4655 } else if (n->is_MergeMem()) { 4656 if (n->as_MergeMem()->memory_at(alias_idx) == m) { 4657 // We can hit a MergeMemNode (that will likely go away 4658 // later) that is a direct use of the memory state 4659 // following the InitializeNode on the same slice as the 4660 // store node that we'd like to capture. We need to check 4661 // the uses of the MergeMemNode. 4662 mems.push(n); 4663 } 4664 } else if (n->is_Mem()) { 4665 Node* other_adr = n->in(MemNode::Address); 4666 if (other_adr == adr) { 4667 failed = true; 4668 break; 4669 } else { 4670 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr(); 4671 if (other_t_adr != nullptr) { 4672 int other_alias_idx = phase->C->get_alias_index(other_t_adr); 4673 if (other_alias_idx == alias_idx) { 4674 // A load from the same memory slice as the store right 4675 // after the InitializeNode. We check the control of the 4676 // object/array that is loaded from. If it's the same as 4677 // the store control then we cannot capture the store. 4678 assert(!n->is_Store(), "2 stores to same slice on same control?"); 4679 Node* base = other_adr; 4680 assert(base->is_AddP(), "should be addp but is %s", base->Name()); 4681 base = base->in(AddPNode::Base); 4682 if (base != nullptr) { 4683 base = base->uncast(); 4684 if (base->is_Proj() && base->in(0) == alloc) { 4685 failed = true; 4686 break; 4687 } 4688 } 4689 } 4690 } 4691 } 4692 } else { 4693 failed = true; 4694 break; 4695 } 4696 } 4697 } 4698 } 4699 if (failed) { 4700 if (!can_reshape) { 4701 // We decided we couldn't capture the store during parsing. We 4702 // should try again during the next IGVN once the graph is 4703 // cleaner. 4704 phase->C->record_for_igvn(st); 4705 } 4706 return FAIL; 4707 } 4708 4709 return offset; // success 4710 } 4711 4712 // Find the captured store in(i) which corresponds to the range 4713 // [start..start+size) in the initialized object. 4714 // If there is one, return its index i. If there isn't, return the 4715 // negative of the index where it should be inserted. 4716 // Return 0 if the queried range overlaps an initialization boundary 4717 // or if dead code is encountered. 4718 // If size_in_bytes is zero, do not bother with overlap checks. 4719 int InitializeNode::captured_store_insertion_point(intptr_t start, 4720 int size_in_bytes, 4721 PhaseValues* phase) { 4722 const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 4723 4724 if (is_complete()) 4725 return FAIL; // arraycopy got here first; punt 4726 4727 assert(allocation() != nullptr, "must be present"); 4728 4729 // no negatives, no header fields: 4730 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL; 4731 4732 // after a certain size, we bail out on tracking all the stores: 4733 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 4734 if (start >= ti_limit) return FAIL; 4735 4736 for (uint i = InitializeNode::RawStores, limit = req(); ; ) { 4737 if (i >= limit) return -(int)i; // not found; here is where to put it 4738 4739 Node* st = in(i); 4740 intptr_t st_off = get_store_offset(st, phase); 4741 if (st_off < 0) { 4742 if (st != zero_memory()) { 4743 return FAIL; // bail out if there is dead garbage 4744 } 4745 } else if (st_off > start) { 4746 // ...we are done, since stores are ordered 4747 if (st_off < start + size_in_bytes) { 4748 return FAIL; // the next store overlaps 4749 } 4750 return -(int)i; // not found; here is where to put it 4751 } else if (st_off < start) { 4752 assert(st->as_Store()->memory_size() <= MAX_STORE, ""); 4753 if (size_in_bytes != 0 && 4754 start < st_off + MAX_STORE && 4755 start < st_off + st->as_Store()->memory_size()) { 4756 return FAIL; // the previous store overlaps 4757 } 4758 } else { 4759 if (size_in_bytes != 0 && 4760 st->as_Store()->memory_size() != size_in_bytes) { 4761 return FAIL; // mismatched store size 4762 } 4763 return i; 4764 } 4765 4766 ++i; 4767 } 4768 } 4769 4770 // Look for a captured store which initializes at the offset 'start' 4771 // with the given size. If there is no such store, and no other 4772 // initialization interferes, then return zero_memory (the memory 4773 // projection of the AllocateNode). 4774 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes, 4775 PhaseValues* phase) { 4776 assert(stores_are_sane(phase), ""); 4777 int i = captured_store_insertion_point(start, size_in_bytes, phase); 4778 if (i == 0) { 4779 return nullptr; // something is dead 4780 } else if (i < 0) { 4781 return zero_memory(); // just primordial zero bits here 4782 } else { 4783 Node* st = in(i); // here is the store at this position 4784 assert(get_store_offset(st->as_Store(), phase) == start, "sanity"); 4785 return st; 4786 } 4787 } 4788 4789 // Create, as a raw pointer, an address within my new object at 'offset'. 4790 Node* InitializeNode::make_raw_address(intptr_t offset, 4791 PhaseGVN* phase) { 4792 Node* addr = in(RawAddress); 4793 if (offset != 0) { 4794 Compile* C = phase->C; 4795 addr = phase->transform( new AddPNode(C->top(), addr, 4796 phase->MakeConX(offset)) ); 4797 } 4798 return addr; 4799 } 4800 4801 // Clone the given store, converting it into a raw store 4802 // initializing a field or element of my new object. 4803 // Caller is responsible for retiring the original store, 4804 // with subsume_node or the like. 4805 // 4806 // From the example above InitializeNode::InitializeNode, 4807 // here are the old stores to be captured: 4808 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 4809 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 4810 // 4811 // Here is the changed code; note the extra edges on init: 4812 // alloc = (Allocate ...) 4813 // rawoop = alloc.RawAddress 4814 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1) 4815 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2) 4816 // init = (Initialize alloc.Control alloc.Memory rawoop 4817 // rawstore1 rawstore2) 4818 // 4819 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start, 4820 PhaseGVN* phase, bool can_reshape) { 4821 assert(stores_are_sane(phase), ""); 4822 4823 if (start < 0) return nullptr; 4824 assert(can_capture_store(st, phase, can_reshape) == start, "sanity"); 4825 4826 Compile* C = phase->C; 4827 int size_in_bytes = st->memory_size(); 4828 int i = captured_store_insertion_point(start, size_in_bytes, phase); 4829 if (i == 0) return nullptr; // bail out 4830 Node* prev_mem = nullptr; // raw memory for the captured store 4831 if (i > 0) { 4832 prev_mem = in(i); // there is a pre-existing store under this one 4833 set_req(i, C->top()); // temporarily disconnect it 4834 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect. 4835 } else { 4836 i = -i; // no pre-existing store 4837 prev_mem = zero_memory(); // a slice of the newly allocated object 4838 if (i > InitializeNode::RawStores && in(i-1) == prev_mem) 4839 set_req(--i, C->top()); // reuse this edge; it has been folded away 4840 else 4841 ins_req(i, C->top()); // build a new edge 4842 } 4843 Node* new_st = st->clone(); 4844 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4845 new_st->set_req(MemNode::Control, in(Control)); 4846 new_st->set_req(MemNode::Memory, prev_mem); 4847 new_st->set_req(MemNode::Address, make_raw_address(start, phase)); 4848 bs->eliminate_gc_barrier_data(new_st); 4849 new_st = phase->transform(new_st); 4850 4851 // At this point, new_st might have swallowed a pre-existing store 4852 // at the same offset, or perhaps new_st might have disappeared, 4853 // if it redundantly stored the same value (or zero to fresh memory). 4854 4855 // In any case, wire it in: 4856 PhaseIterGVN* igvn = phase->is_IterGVN(); 4857 if (igvn) { 4858 igvn->rehash_node_delayed(this); 4859 } 4860 set_req(i, new_st); 4861 4862 // The caller may now kill the old guy. 4863 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase)); 4864 assert(check_st == new_st || check_st == nullptr, "must be findable"); 4865 assert(!is_complete(), ""); 4866 return new_st; 4867 } 4868 4869 static bool store_constant(jlong* tiles, int num_tiles, 4870 intptr_t st_off, int st_size, 4871 jlong con) { 4872 if ((st_off & (st_size-1)) != 0) 4873 return false; // strange store offset (assume size==2**N) 4874 address addr = (address)tiles + st_off; 4875 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob"); 4876 switch (st_size) { 4877 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break; 4878 case sizeof(jchar): *(jchar*) addr = (jchar) con; break; 4879 case sizeof(jint): *(jint*) addr = (jint) con; break; 4880 case sizeof(jlong): *(jlong*) addr = (jlong) con; break; 4881 default: return false; // strange store size (detect size!=2**N here) 4882 } 4883 return true; // return success to caller 4884 } 4885 4886 // Coalesce subword constants into int constants and possibly 4887 // into long constants. The goal, if the CPU permits, 4888 // is to initialize the object with a small number of 64-bit tiles. 4889 // Also, convert floating-point constants to bit patterns. 4890 // Non-constants are not relevant to this pass. 4891 // 4892 // In terms of the running example on InitializeNode::InitializeNode 4893 // and InitializeNode::capture_store, here is the transformation 4894 // of rawstore1 and rawstore2 into rawstore12: 4895 // alloc = (Allocate ...) 4896 // rawoop = alloc.RawAddress 4897 // tile12 = 0x00010002 4898 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12) 4899 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12) 4900 // 4901 void 4902 InitializeNode::coalesce_subword_stores(intptr_t header_size, 4903 Node* size_in_bytes, 4904 PhaseGVN* phase) { 4905 Compile* C = phase->C; 4906 4907 assert(stores_are_sane(phase), ""); 4908 // Note: After this pass, they are not completely sane, 4909 // since there may be some overlaps. 4910 4911 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0; 4912 4913 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 4914 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit); 4915 size_limit = MIN2(size_limit, ti_limit); 4916 size_limit = align_up(size_limit, BytesPerLong); 4917 int num_tiles = size_limit / BytesPerLong; 4918 4919 // allocate space for the tile map: 4920 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small 4921 jlong tiles_buf[small_len]; 4922 Node* nodes_buf[small_len]; 4923 jlong inits_buf[small_len]; 4924 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0] 4925 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 4926 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0] 4927 : NEW_RESOURCE_ARRAY(Node*, num_tiles)); 4928 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0] 4929 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 4930 // tiles: exact bitwise model of all primitive constants 4931 // nodes: last constant-storing node subsumed into the tiles model 4932 // inits: which bytes (in each tile) are touched by any initializations 4933 4934 //// Pass A: Fill in the tile model with any relevant stores. 4935 4936 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles); 4937 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles); 4938 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles); 4939 Node* zmem = zero_memory(); // initially zero memory state 4940 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 4941 Node* st = in(i); 4942 intptr_t st_off = get_store_offset(st, phase); 4943 4944 // Figure out the store's offset and constant value: 4945 if (st_off < header_size) continue; //skip (ignore header) 4946 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain) 4947 int st_size = st->as_Store()->memory_size(); 4948 if (st_off + st_size > size_limit) break; 4949 4950 // Record which bytes are touched, whether by constant or not. 4951 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1)) 4952 continue; // skip (strange store size) 4953 4954 const Type* val = phase->type(st->in(MemNode::ValueIn)); 4955 if (!val->singleton()) continue; //skip (non-con store) 4956 BasicType type = val->basic_type(); 4957 4958 jlong con = 0; 4959 switch (type) { 4960 case T_INT: con = val->is_int()->get_con(); break; 4961 case T_LONG: con = val->is_long()->get_con(); break; 4962 case T_FLOAT: con = jint_cast(val->getf()); break; 4963 case T_DOUBLE: con = jlong_cast(val->getd()); break; 4964 default: continue; //skip (odd store type) 4965 } 4966 4967 if (type == T_LONG && Matcher::isSimpleConstant64(con) && 4968 st->Opcode() == Op_StoreL) { 4969 continue; // This StoreL is already optimal. 4970 } 4971 4972 // Store down the constant. 4973 store_constant(tiles, num_tiles, st_off, st_size, con); 4974 4975 intptr_t j = st_off >> LogBytesPerLong; 4976 4977 if (type == T_INT && st_size == BytesPerInt 4978 && (st_off & BytesPerInt) == BytesPerInt) { 4979 jlong lcon = tiles[j]; 4980 if (!Matcher::isSimpleConstant64(lcon) && 4981 st->Opcode() == Op_StoreI) { 4982 // This StoreI is already optimal by itself. 4983 jint* intcon = (jint*) &tiles[j]; 4984 intcon[1] = 0; // undo the store_constant() 4985 4986 // If the previous store is also optimal by itself, back up and 4987 // undo the action of the previous loop iteration... if we can. 4988 // But if we can't, just let the previous half take care of itself. 4989 st = nodes[j]; 4990 st_off -= BytesPerInt; 4991 con = intcon[0]; 4992 if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) { 4993 assert(st_off >= header_size, "still ignoring header"); 4994 assert(get_store_offset(st, phase) == st_off, "must be"); 4995 assert(in(i-1) == zmem, "must be"); 4996 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn))); 4997 assert(con == tcon->is_int()->get_con(), "must be"); 4998 // Undo the effects of the previous loop trip, which swallowed st: 4999 intcon[0] = 0; // undo store_constant() 5000 set_req(i-1, st); // undo set_req(i, zmem) 5001 nodes[j] = nullptr; // undo nodes[j] = st 5002 --old_subword; // undo ++old_subword 5003 } 5004 continue; // This StoreI is already optimal. 5005 } 5006 } 5007 5008 // This store is not needed. 5009 set_req(i, zmem); 5010 nodes[j] = st; // record for the moment 5011 if (st_size < BytesPerLong) // something has changed 5012 ++old_subword; // includes int/float, but who's counting... 5013 else ++old_long; 5014 } 5015 5016 if ((old_subword + old_long) == 0) 5017 return; // nothing more to do 5018 5019 //// Pass B: Convert any non-zero tiles into optimal constant stores. 5020 // Be sure to insert them before overlapping non-constant stores. 5021 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.) 5022 for (int j = 0; j < num_tiles; j++) { 5023 jlong con = tiles[j]; 5024 jlong init = inits[j]; 5025 if (con == 0) continue; 5026 jint con0, con1; // split the constant, address-wise 5027 jint init0, init1; // split the init map, address-wise 5028 { union { jlong con; jint intcon[2]; } u; 5029 u.con = con; 5030 con0 = u.intcon[0]; 5031 con1 = u.intcon[1]; 5032 u.con = init; 5033 init0 = u.intcon[0]; 5034 init1 = u.intcon[1]; 5035 } 5036 5037 Node* old = nodes[j]; 5038 assert(old != nullptr, "need the prior store"); 5039 intptr_t offset = (j * BytesPerLong); 5040 5041 bool split = !Matcher::isSimpleConstant64(con); 5042 5043 if (offset < header_size) { 5044 assert(offset + BytesPerInt >= header_size, "second int counts"); 5045 assert(*(jint*)&tiles[j] == 0, "junk in header"); 5046 split = true; // only the second word counts 5047 // Example: int a[] = { 42 ... } 5048 } else if (con0 == 0 && init0 == -1) { 5049 split = true; // first word is covered by full inits 5050 // Example: int a[] = { ... foo(), 42 ... } 5051 } else if (con1 == 0 && init1 == -1) { 5052 split = true; // second word is covered by full inits 5053 // Example: int a[] = { ... 42, foo() ... } 5054 } 5055 5056 // Here's a case where init0 is neither 0 nor -1: 5057 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... } 5058 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF. 5059 // In this case the tile is not split; it is (jlong)42. 5060 // The big tile is stored down, and then the foo() value is inserted. 5061 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.) 5062 5063 Node* ctl = old->in(MemNode::Control); 5064 Node* adr = make_raw_address(offset, phase); 5065 const TypePtr* atp = TypeRawPtr::BOTTOM; 5066 5067 // One or two coalesced stores to plop down. 5068 Node* st[2]; 5069 intptr_t off[2]; 5070 int nst = 0; 5071 if (!split) { 5072 ++new_long; 5073 off[nst] = offset; 5074 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 5075 phase->longcon(con), T_LONG, MemNode::unordered); 5076 } else { 5077 // Omit either if it is a zero. 5078 if (con0 != 0) { 5079 ++new_int; 5080 off[nst] = offset; 5081 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 5082 phase->intcon(con0), T_INT, MemNode::unordered); 5083 } 5084 if (con1 != 0) { 5085 ++new_int; 5086 offset += BytesPerInt; 5087 adr = make_raw_address(offset, phase); 5088 off[nst] = offset; 5089 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 5090 phase->intcon(con1), T_INT, MemNode::unordered); 5091 } 5092 } 5093 5094 // Insert second store first, then the first before the second. 5095 // Insert each one just before any overlapping non-constant stores. 5096 while (nst > 0) { 5097 Node* st1 = st[--nst]; 5098 C->copy_node_notes_to(st1, old); 5099 st1 = phase->transform(st1); 5100 offset = off[nst]; 5101 assert(offset >= header_size, "do not smash header"); 5102 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase); 5103 guarantee(ins_idx != 0, "must re-insert constant store"); 5104 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap 5105 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem) 5106 set_req(--ins_idx, st1); 5107 else 5108 ins_req(ins_idx, st1); 5109 } 5110 } 5111 5112 if (PrintCompilation && WizardMode) 5113 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long", 5114 old_subword, old_long, new_int, new_long); 5115 if (C->log() != nullptr) 5116 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'", 5117 old_subword, old_long, new_int, new_long); 5118 5119 // Clean up any remaining occurrences of zmem: 5120 remove_extra_zeroes(); 5121 } 5122 5123 // Explore forward from in(start) to find the first fully initialized 5124 // word, and return its offset. Skip groups of subword stores which 5125 // together initialize full words. If in(start) is itself part of a 5126 // fully initialized word, return the offset of in(start). If there 5127 // are no following full-word stores, or if something is fishy, return 5128 // a negative value. 5129 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) { 5130 int int_map = 0; 5131 intptr_t int_map_off = 0; 5132 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for 5133 5134 for (uint i = start, limit = req(); i < limit; i++) { 5135 Node* st = in(i); 5136 5137 intptr_t st_off = get_store_offset(st, phase); 5138 if (st_off < 0) break; // return conservative answer 5139 5140 int st_size = st->as_Store()->memory_size(); 5141 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) { 5142 return st_off; // we found a complete word init 5143 } 5144 5145 // update the map: 5146 5147 intptr_t this_int_off = align_down(st_off, BytesPerInt); 5148 if (this_int_off != int_map_off) { 5149 // reset the map: 5150 int_map = 0; 5151 int_map_off = this_int_off; 5152 } 5153 5154 int subword_off = st_off - this_int_off; 5155 int_map |= right_n_bits(st_size) << subword_off; 5156 if ((int_map & FULL_MAP) == FULL_MAP) { 5157 return this_int_off; // we found a complete word init 5158 } 5159 5160 // Did this store hit or cross the word boundary? 5161 intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt); 5162 if (next_int_off == this_int_off + BytesPerInt) { 5163 // We passed the current int, without fully initializing it. 5164 int_map_off = next_int_off; 5165 int_map >>= BytesPerInt; 5166 } else if (next_int_off > this_int_off + BytesPerInt) { 5167 // We passed the current and next int. 5168 return this_int_off + BytesPerInt; 5169 } 5170 } 5171 5172 return -1; 5173 } 5174 5175 5176 // Called when the associated AllocateNode is expanded into CFG. 5177 // At this point, we may perform additional optimizations. 5178 // Linearize the stores by ascending offset, to make memory 5179 // activity as coherent as possible. 5180 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, 5181 intptr_t header_size, 5182 Node* size_in_bytes, 5183 PhaseIterGVN* phase) { 5184 assert(!is_complete(), "not already complete"); 5185 assert(stores_are_sane(phase), ""); 5186 assert(allocation() != nullptr, "must be present"); 5187 5188 remove_extra_zeroes(); 5189 5190 if (ReduceFieldZeroing || ReduceBulkZeroing) 5191 // reduce instruction count for common initialization patterns 5192 coalesce_subword_stores(header_size, size_in_bytes, phase); 5193 5194 Node* zmem = zero_memory(); // initially zero memory state 5195 Node* inits = zmem; // accumulating a linearized chain of inits 5196 #ifdef ASSERT 5197 intptr_t first_offset = allocation()->minimum_header_size(); 5198 intptr_t last_init_off = first_offset; // previous init offset 5199 intptr_t last_init_end = first_offset; // previous init offset+size 5200 intptr_t last_tile_end = first_offset; // previous tile offset+size 5201 #endif 5202 intptr_t zeroes_done = header_size; 5203 5204 bool do_zeroing = true; // we might give up if inits are very sparse 5205 int big_init_gaps = 0; // how many large gaps have we seen? 5206 5207 if (UseTLAB && ZeroTLAB) do_zeroing = false; 5208 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false; 5209 5210 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 5211 Node* st = in(i); 5212 intptr_t st_off = get_store_offset(st, phase); 5213 if (st_off < 0) 5214 break; // unknown junk in the inits 5215 if (st->in(MemNode::Memory) != zmem) 5216 break; // complicated store chains somehow in list 5217 5218 int st_size = st->as_Store()->memory_size(); 5219 intptr_t next_init_off = st_off + st_size; 5220 5221 if (do_zeroing && zeroes_done < next_init_off) { 5222 // See if this store needs a zero before it or under it. 5223 intptr_t zeroes_needed = st_off; 5224 5225 if (st_size < BytesPerInt) { 5226 // Look for subword stores which only partially initialize words. 5227 // If we find some, we must lay down some word-level zeroes first, 5228 // underneath the subword stores. 5229 // 5230 // Examples: 5231 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s 5232 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y 5233 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z 5234 // 5235 // Note: coalesce_subword_stores may have already done this, 5236 // if it was prompted by constant non-zero subword initializers. 5237 // But this case can still arise with non-constant stores. 5238 5239 intptr_t next_full_store = find_next_fullword_store(i, phase); 5240 5241 // In the examples above: 5242 // in(i) p q r s x y z 5243 // st_off 12 13 14 15 12 13 14 5244 // st_size 1 1 1 1 1 1 1 5245 // next_full_s. 12 16 16 16 16 16 16 5246 // z's_done 12 16 16 16 12 16 12 5247 // z's_needed 12 16 16 16 16 16 16 5248 // zsize 0 0 0 0 4 0 4 5249 if (next_full_store < 0) { 5250 // Conservative tack: Zero to end of current word. 5251 zeroes_needed = align_up(zeroes_needed, BytesPerInt); 5252 } else { 5253 // Zero to beginning of next fully initialized word. 5254 // Or, don't zero at all, if we are already in that word. 5255 assert(next_full_store >= zeroes_needed, "must go forward"); 5256 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary"); 5257 zeroes_needed = next_full_store; 5258 } 5259 } 5260 5261 if (zeroes_needed > zeroes_done) { 5262 intptr_t zsize = zeroes_needed - zeroes_done; 5263 // Do some incremental zeroing on rawmem, in parallel with inits. 5264 zeroes_done = align_down(zeroes_done, BytesPerInt); 5265 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 5266 zeroes_done, zeroes_needed, 5267 phase); 5268 zeroes_done = zeroes_needed; 5269 if (zsize > InitArrayShortSize && ++big_init_gaps > 2) 5270 do_zeroing = false; // leave the hole, next time 5271 } 5272 } 5273 5274 // Collect the store and move on: 5275 phase->replace_input_of(st, MemNode::Memory, inits); 5276 inits = st; // put it on the linearized chain 5277 set_req(i, zmem); // unhook from previous position 5278 5279 if (zeroes_done == st_off) 5280 zeroes_done = next_init_off; 5281 5282 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any"); 5283 5284 #ifdef ASSERT 5285 // Various order invariants. Weaker than stores_are_sane because 5286 // a large constant tile can be filled in by smaller non-constant stores. 5287 assert(st_off >= last_init_off, "inits do not reverse"); 5288 last_init_off = st_off; 5289 const Type* val = nullptr; 5290 if (st_size >= BytesPerInt && 5291 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() && 5292 (int)val->basic_type() < (int)T_OBJECT) { 5293 assert(st_off >= last_tile_end, "tiles do not overlap"); 5294 assert(st_off >= last_init_end, "tiles do not overwrite inits"); 5295 last_tile_end = MAX2(last_tile_end, next_init_off); 5296 } else { 5297 intptr_t st_tile_end = align_up(next_init_off, BytesPerLong); 5298 assert(st_tile_end >= last_tile_end, "inits stay with tiles"); 5299 assert(st_off >= last_init_end, "inits do not overlap"); 5300 last_init_end = next_init_off; // it's a non-tile 5301 } 5302 #endif //ASSERT 5303 } 5304 5305 remove_extra_zeroes(); // clear out all the zmems left over 5306 add_req(inits); 5307 5308 if (!(UseTLAB && ZeroTLAB)) { 5309 // If anything remains to be zeroed, zero it all now. 5310 zeroes_done = align_down(zeroes_done, BytesPerInt); 5311 // if it is the last unused 4 bytes of an instance, forget about it 5312 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint); 5313 if (zeroes_done + BytesPerLong >= size_limit) { 5314 AllocateNode* alloc = allocation(); 5315 assert(alloc != nullptr, "must be present"); 5316 if (alloc != nullptr && alloc->Opcode() == Op_Allocate) { 5317 Node* klass_node = alloc->in(AllocateNode::KlassNode); 5318 ciKlass* k = phase->type(klass_node)->is_instklassptr()->instance_klass(); 5319 if (zeroes_done == k->layout_helper()) 5320 zeroes_done = size_limit; 5321 } 5322 } 5323 if (zeroes_done < size_limit) { 5324 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 5325 zeroes_done, size_in_bytes, phase); 5326 } 5327 } 5328 5329 set_complete(phase); 5330 return rawmem; 5331 } 5332 5333 5334 #ifdef ASSERT 5335 bool InitializeNode::stores_are_sane(PhaseValues* phase) { 5336 if (is_complete()) 5337 return true; // stores could be anything at this point 5338 assert(allocation() != nullptr, "must be present"); 5339 intptr_t last_off = allocation()->minimum_header_size(); 5340 for (uint i = InitializeNode::RawStores; i < req(); i++) { 5341 Node* st = in(i); 5342 intptr_t st_off = get_store_offset(st, phase); 5343 if (st_off < 0) continue; // ignore dead garbage 5344 if (last_off > st_off) { 5345 tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off); 5346 this->dump(2); 5347 assert(false, "ascending store offsets"); 5348 return false; 5349 } 5350 last_off = st_off + st->as_Store()->memory_size(); 5351 } 5352 return true; 5353 } 5354 #endif //ASSERT 5355 5356 5357 5358 5359 //============================MergeMemNode===================================== 5360 // 5361 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several 5362 // contributing store or call operations. Each contributor provides the memory 5363 // state for a particular "alias type" (see Compile::alias_type). For example, 5364 // if a MergeMem has an input X for alias category #6, then any memory reference 5365 // to alias category #6 may use X as its memory state input, as an exact equivalent 5366 // to using the MergeMem as a whole. 5367 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p) 5368 // 5369 // (Here, the <N> notation gives the index of the relevant adr_type.) 5370 // 5371 // In one special case (and more cases in the future), alias categories overlap. 5372 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory 5373 // states. Therefore, if a MergeMem has only one contributing input W for Bot, 5374 // it is exactly equivalent to that state W: 5375 // MergeMem(<Bot>: W) <==> W 5376 // 5377 // Usually, the merge has more than one input. In that case, where inputs 5378 // overlap (i.e., one is Bot), the narrower alias type determines the memory 5379 // state for that type, and the wider alias type (Bot) fills in everywhere else: 5380 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p) 5381 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p) 5382 // 5383 // A merge can take a "wide" memory state as one of its narrow inputs. 5384 // This simply means that the merge observes out only the relevant parts of 5385 // the wide input. That is, wide memory states arriving at narrow merge inputs 5386 // are implicitly "filtered" or "sliced" as necessary. (This is rare.) 5387 // 5388 // These rules imply that MergeMem nodes may cascade (via their <Bot> links), 5389 // and that memory slices "leak through": 5390 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y) 5391 // 5392 // But, in such a cascade, repeated memory slices can "block the leak": 5393 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y') 5394 // 5395 // In the last example, Y is not part of the combined memory state of the 5396 // outermost MergeMem. The system must, of course, prevent unschedulable 5397 // memory states from arising, so you can be sure that the state Y is somehow 5398 // a precursor to state Y'. 5399 // 5400 // 5401 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array 5402 // of each MergeMemNode array are exactly the numerical alias indexes, including 5403 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions 5404 // Compile::alias_type (and kin) produce and manage these indexes. 5405 // 5406 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node. 5407 // (Note that this provides quick access to the top node inside MergeMem methods, 5408 // without the need to reach out via TLS to Compile::current.) 5409 // 5410 // As a consequence of what was just described, a MergeMem that represents a full 5411 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state, 5412 // containing all alias categories. 5413 // 5414 // MergeMem nodes never (?) have control inputs, so in(0) is null. 5415 // 5416 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either 5417 // a memory state for the alias type <N>, or else the top node, meaning that 5418 // there is no particular input for that alias type. Note that the length of 5419 // a MergeMem is variable, and may be extended at any time to accommodate new 5420 // memory states at larger alias indexes. When merges grow, they are of course 5421 // filled with "top" in the unused in() positions. 5422 // 5423 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable. 5424 // (Top was chosen because it works smoothly with passes like GCM.) 5425 // 5426 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is 5427 // the type of random VM bits like TLS references.) Since it is always the 5428 // first non-Bot memory slice, some low-level loops use it to initialize an 5429 // index variable: for (i = AliasIdxRaw; i < req(); i++). 5430 // 5431 // 5432 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns 5433 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns 5434 // the memory state for alias type <N>, or (if there is no particular slice at <N>, 5435 // it returns the base memory. To prevent bugs, memory_at does not accept <Top> 5436 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over 5437 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited. 5438 // 5439 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't 5440 // really that different from the other memory inputs. An abbreviation called 5441 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy. 5442 // 5443 // 5444 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent 5445 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi 5446 // that "emerges though" the base memory will be marked as excluding the alias types 5447 // of the other (narrow-memory) copies which "emerged through" the narrow edges: 5448 // 5449 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y)) 5450 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y)) 5451 // 5452 // This strange "subtraction" effect is necessary to ensure IGVN convergence. 5453 // (It is currently unimplemented.) As you can see, the resulting merge is 5454 // actually a disjoint union of memory states, rather than an overlay. 5455 // 5456 5457 //------------------------------MergeMemNode----------------------------------- 5458 Node* MergeMemNode::make_empty_memory() { 5459 Node* empty_memory = (Node*) Compile::current()->top(); 5460 assert(empty_memory->is_top(), "correct sentinel identity"); 5461 return empty_memory; 5462 } 5463 5464 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) { 5465 init_class_id(Class_MergeMem); 5466 // all inputs are nullified in Node::Node(int) 5467 // set_input(0, nullptr); // no control input 5468 5469 // Initialize the edges uniformly to top, for starters. 5470 Node* empty_mem = make_empty_memory(); 5471 for (uint i = Compile::AliasIdxTop; i < req(); i++) { 5472 init_req(i,empty_mem); 5473 } 5474 assert(empty_memory() == empty_mem, ""); 5475 5476 if( new_base != nullptr && new_base->is_MergeMem() ) { 5477 MergeMemNode* mdef = new_base->as_MergeMem(); 5478 assert(mdef->empty_memory() == empty_mem, "consistent sentinels"); 5479 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) { 5480 mms.set_memory(mms.memory2()); 5481 } 5482 assert(base_memory() == mdef->base_memory(), ""); 5483 } else { 5484 set_base_memory(new_base); 5485 } 5486 } 5487 5488 // Make a new, untransformed MergeMem with the same base as 'mem'. 5489 // If mem is itself a MergeMem, populate the result with the same edges. 5490 MergeMemNode* MergeMemNode::make(Node* mem) { 5491 return new MergeMemNode(mem); 5492 } 5493 5494 //------------------------------cmp-------------------------------------------- 5495 uint MergeMemNode::hash() const { return NO_HASH; } 5496 bool MergeMemNode::cmp( const Node &n ) const { 5497 return (&n == this); // Always fail except on self 5498 } 5499 5500 //------------------------------Identity--------------------------------------- 5501 Node* MergeMemNode::Identity(PhaseGVN* phase) { 5502 // Identity if this merge point does not record any interesting memory 5503 // disambiguations. 5504 Node* base_mem = base_memory(); 5505 Node* empty_mem = empty_memory(); 5506 if (base_mem != empty_mem) { // Memory path is not dead? 5507 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5508 Node* mem = in(i); 5509 if (mem != empty_mem && mem != base_mem) { 5510 return this; // Many memory splits; no change 5511 } 5512 } 5513 } 5514 return base_mem; // No memory splits; ID on the one true input 5515 } 5516 5517 //------------------------------Ideal------------------------------------------ 5518 // This method is invoked recursively on chains of MergeMem nodes 5519 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) { 5520 // Remove chain'd MergeMems 5521 // 5522 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted 5523 // relative to the "in(Bot)". Since we are patching both at the same time, 5524 // we have to be careful to read each "in(i)" relative to the old "in(Bot)", 5525 // but rewrite each "in(i)" relative to the new "in(Bot)". 5526 Node *progress = nullptr; 5527 5528 5529 Node* old_base = base_memory(); 5530 Node* empty_mem = empty_memory(); 5531 if (old_base == empty_mem) 5532 return nullptr; // Dead memory path. 5533 5534 MergeMemNode* old_mbase; 5535 if (old_base != nullptr && old_base->is_MergeMem()) 5536 old_mbase = old_base->as_MergeMem(); 5537 else 5538 old_mbase = nullptr; 5539 Node* new_base = old_base; 5540 5541 // simplify stacked MergeMems in base memory 5542 if (old_mbase) new_base = old_mbase->base_memory(); 5543 5544 // the base memory might contribute new slices beyond my req() 5545 if (old_mbase) grow_to_match(old_mbase); 5546 5547 // Note: We do not call verify_sparse on entry, because inputs 5548 // can normalize to the base_memory via subsume_node or similar 5549 // mechanisms. This method repairs that damage. 5550 5551 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels"); 5552 5553 // Look at each slice. 5554 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5555 Node* old_in = in(i); 5556 // calculate the old memory value 5557 Node* old_mem = old_in; 5558 if (old_mem == empty_mem) old_mem = old_base; 5559 assert(old_mem == memory_at(i), ""); 5560 5561 // maybe update (reslice) the old memory value 5562 5563 // simplify stacked MergeMems 5564 Node* new_mem = old_mem; 5565 MergeMemNode* old_mmem; 5566 if (old_mem != nullptr && old_mem->is_MergeMem()) 5567 old_mmem = old_mem->as_MergeMem(); 5568 else 5569 old_mmem = nullptr; 5570 if (old_mmem == this) { 5571 // This can happen if loops break up and safepoints disappear. 5572 // A merge of BotPtr (default) with a RawPtr memory derived from a 5573 // safepoint can be rewritten to a merge of the same BotPtr with 5574 // the BotPtr phi coming into the loop. If that phi disappears 5575 // also, we can end up with a self-loop of the mergemem. 5576 // In general, if loops degenerate and memory effects disappear, 5577 // a mergemem can be left looking at itself. This simply means 5578 // that the mergemem's default should be used, since there is 5579 // no longer any apparent effect on this slice. 5580 // Note: If a memory slice is a MergeMem cycle, it is unreachable 5581 // from start. Update the input to TOP. 5582 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base; 5583 } 5584 else if (old_mmem != nullptr) { 5585 new_mem = old_mmem->memory_at(i); 5586 } 5587 // else preceding memory was not a MergeMem 5588 5589 // maybe store down a new value 5590 Node* new_in = new_mem; 5591 if (new_in == new_base) new_in = empty_mem; 5592 5593 if (new_in != old_in) { 5594 // Warning: Do not combine this "if" with the previous "if" 5595 // A memory slice might have be be rewritten even if it is semantically 5596 // unchanged, if the base_memory value has changed. 5597 set_req_X(i, new_in, phase); 5598 progress = this; // Report progress 5599 } 5600 } 5601 5602 if (new_base != old_base) { 5603 set_req_X(Compile::AliasIdxBot, new_base, phase); 5604 // Don't use set_base_memory(new_base), because we need to update du. 5605 assert(base_memory() == new_base, ""); 5606 progress = this; 5607 } 5608 5609 if( base_memory() == this ) { 5610 // a self cycle indicates this memory path is dead 5611 set_req(Compile::AliasIdxBot, empty_mem); 5612 } 5613 5614 // Resolve external cycles by calling Ideal on a MergeMem base_memory 5615 // Recursion must occur after the self cycle check above 5616 if( base_memory()->is_MergeMem() ) { 5617 MergeMemNode *new_mbase = base_memory()->as_MergeMem(); 5618 Node *m = phase->transform(new_mbase); // Rollup any cycles 5619 if( m != nullptr && 5620 (m->is_top() || 5621 (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) { 5622 // propagate rollup of dead cycle to self 5623 set_req(Compile::AliasIdxBot, empty_mem); 5624 } 5625 } 5626 5627 if( base_memory() == empty_mem ) { 5628 progress = this; 5629 // Cut inputs during Parse phase only. 5630 // During Optimize phase a dead MergeMem node will be subsumed by Top. 5631 if( !can_reshape ) { 5632 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5633 if( in(i) != empty_mem ) { set_req(i, empty_mem); } 5634 } 5635 } 5636 } 5637 5638 if( !progress && base_memory()->is_Phi() && can_reshape ) { 5639 // Check if PhiNode::Ideal's "Split phis through memory merges" 5640 // transform should be attempted. Look for this->phi->this cycle. 5641 uint merge_width = req(); 5642 if (merge_width > Compile::AliasIdxRaw) { 5643 PhiNode* phi = base_memory()->as_Phi(); 5644 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in 5645 if (phi->in(i) == this) { 5646 phase->is_IterGVN()->_worklist.push(phi); 5647 break; 5648 } 5649 } 5650 } 5651 } 5652 5653 assert(progress || verify_sparse(), "please, no dups of base"); 5654 return progress; 5655 } 5656 5657 //-------------------------set_base_memory------------------------------------- 5658 void MergeMemNode::set_base_memory(Node *new_base) { 5659 Node* empty_mem = empty_memory(); 5660 set_req(Compile::AliasIdxBot, new_base); 5661 assert(memory_at(req()) == new_base, "must set default memory"); 5662 // Clear out other occurrences of new_base: 5663 if (new_base != empty_mem) { 5664 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5665 if (in(i) == new_base) set_req(i, empty_mem); 5666 } 5667 } 5668 } 5669 5670 //------------------------------out_RegMask------------------------------------ 5671 const RegMask &MergeMemNode::out_RegMask() const { 5672 return RegMask::Empty; 5673 } 5674 5675 //------------------------------dump_spec-------------------------------------- 5676 #ifndef PRODUCT 5677 void MergeMemNode::dump_spec(outputStream *st) const { 5678 st->print(" {"); 5679 Node* base_mem = base_memory(); 5680 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) { 5681 Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem; 5682 if (mem == base_mem) { st->print(" -"); continue; } 5683 st->print( " N%d:", mem->_idx ); 5684 Compile::current()->get_adr_type(i)->dump_on(st); 5685 } 5686 st->print(" }"); 5687 } 5688 #endif // !PRODUCT 5689 5690 5691 #ifdef ASSERT 5692 static bool might_be_same(Node* a, Node* b) { 5693 if (a == b) return true; 5694 if (!(a->is_Phi() || b->is_Phi())) return false; 5695 // phis shift around during optimization 5696 return true; // pretty stupid... 5697 } 5698 5699 // verify a narrow slice (either incoming or outgoing) 5700 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) { 5701 if (!VerifyAliases) return; // don't bother to verify unless requested 5702 if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error 5703 if (Node::in_dump()) return; // muzzle asserts when printing 5704 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel"); 5705 assert(n != nullptr, ""); 5706 // Elide intervening MergeMem's 5707 while (n->is_MergeMem()) { 5708 n = n->as_MergeMem()->memory_at(alias_idx); 5709 } 5710 Compile* C = Compile::current(); 5711 const TypePtr* n_adr_type = n->adr_type(); 5712 if (n == m->empty_memory()) { 5713 // Implicit copy of base_memory() 5714 } else if (n_adr_type != TypePtr::BOTTOM) { 5715 assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type"); 5716 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice"); 5717 } else { 5718 // A few places like make_runtime_call "know" that VM calls are narrow, 5719 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM. 5720 bool expected_wide_mem = false; 5721 if (n == m->base_memory()) { 5722 expected_wide_mem = true; 5723 } else if (alias_idx == Compile::AliasIdxRaw || 5724 n == m->memory_at(Compile::AliasIdxRaw)) { 5725 expected_wide_mem = true; 5726 } else if (!C->alias_type(alias_idx)->is_rewritable()) { 5727 // memory can "leak through" calls on channels that 5728 // are write-once. Allow this also. 5729 expected_wide_mem = true; 5730 } 5731 assert(expected_wide_mem, "expected narrow slice replacement"); 5732 } 5733 } 5734 #else // !ASSERT 5735 #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op 5736 #endif 5737 5738 5739 //-----------------------------memory_at--------------------------------------- 5740 Node* MergeMemNode::memory_at(uint alias_idx) const { 5741 assert(alias_idx >= Compile::AliasIdxRaw || 5742 (alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing()), 5743 "must avoid base_memory and AliasIdxTop"); 5744 5745 // Otherwise, it is a narrow slice. 5746 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory(); 5747 if (is_empty_memory(n)) { 5748 // the array is sparse; empty slots are the "top" node 5749 n = base_memory(); 5750 assert(Node::in_dump() 5751 || n == nullptr || n->bottom_type() == Type::TOP 5752 || n->adr_type() == nullptr // address is TOP 5753 || n->adr_type() == TypePtr::BOTTOM 5754 || n->adr_type() == TypeRawPtr::BOTTOM 5755 || !Compile::current()->do_aliasing(), 5756 "must be a wide memory"); 5757 // do_aliasing == false if we are organizing the memory states manually. 5758 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM. 5759 } else { 5760 // make sure the stored slice is sane 5761 #ifdef ASSERT 5762 if (VMError::is_error_reported() || Node::in_dump()) { 5763 } else if (might_be_same(n, base_memory())) { 5764 // Give it a pass: It is a mostly harmless repetition of the base. 5765 // This can arise normally from node subsumption during optimization. 5766 } else { 5767 verify_memory_slice(this, alias_idx, n); 5768 } 5769 #endif 5770 } 5771 return n; 5772 } 5773 5774 //---------------------------set_memory_at------------------------------------- 5775 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) { 5776 verify_memory_slice(this, alias_idx, n); 5777 Node* empty_mem = empty_memory(); 5778 if (n == base_memory()) n = empty_mem; // collapse default 5779 uint need_req = alias_idx+1; 5780 if (req() < need_req) { 5781 if (n == empty_mem) return; // already the default, so do not grow me 5782 // grow the sparse array 5783 do { 5784 add_req(empty_mem); 5785 } while (req() < need_req); 5786 } 5787 set_req( alias_idx, n ); 5788 } 5789 5790 5791 5792 //--------------------------iteration_setup------------------------------------ 5793 void MergeMemNode::iteration_setup(const MergeMemNode* other) { 5794 if (other != nullptr) { 5795 grow_to_match(other); 5796 // invariant: the finite support of mm2 is within mm->req() 5797 #ifdef ASSERT 5798 for (uint i = req(); i < other->req(); i++) { 5799 assert(other->is_empty_memory(other->in(i)), "slice left uncovered"); 5800 } 5801 #endif 5802 } 5803 // Replace spurious copies of base_memory by top. 5804 Node* base_mem = base_memory(); 5805 if (base_mem != nullptr && !base_mem->is_top()) { 5806 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) { 5807 if (in(i) == base_mem) 5808 set_req(i, empty_memory()); 5809 } 5810 } 5811 } 5812 5813 //---------------------------grow_to_match------------------------------------- 5814 void MergeMemNode::grow_to_match(const MergeMemNode* other) { 5815 Node* empty_mem = empty_memory(); 5816 assert(other->is_empty_memory(empty_mem), "consistent sentinels"); 5817 // look for the finite support of the other memory 5818 for (uint i = other->req(); --i >= req(); ) { 5819 if (other->in(i) != empty_mem) { 5820 uint new_len = i+1; 5821 while (req() < new_len) add_req(empty_mem); 5822 break; 5823 } 5824 } 5825 } 5826 5827 //---------------------------verify_sparse------------------------------------- 5828 #ifndef PRODUCT 5829 bool MergeMemNode::verify_sparse() const { 5830 assert(is_empty_memory(make_empty_memory()), "sane sentinel"); 5831 Node* base_mem = base_memory(); 5832 // The following can happen in degenerate cases, since empty==top. 5833 if (is_empty_memory(base_mem)) return true; 5834 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5835 assert(in(i) != nullptr, "sane slice"); 5836 if (in(i) == base_mem) return false; // should have been the sentinel value! 5837 } 5838 return true; 5839 } 5840 5841 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) { 5842 Node* n; 5843 n = mm->in(idx); 5844 if (mem == n) return true; // might be empty_memory() 5845 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx); 5846 if (mem == n) return true; 5847 return false; 5848 } 5849 #endif // !PRODUCT