1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "compiler/compileLog.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/c2/barrierSetC2.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "memory/allocation.inline.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/objArrayKlass.hpp" 35 #include "opto/addnode.hpp" 36 #include "opto/arraycopynode.hpp" 37 #include "opto/cfgnode.hpp" 38 #include "opto/regalloc.hpp" 39 #include "opto/compile.hpp" 40 #include "opto/connode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/loopnode.hpp" 43 #include "opto/machnode.hpp" 44 #include "opto/matcher.hpp" 45 #include "opto/memnode.hpp" 46 #include "opto/mempointer.hpp" 47 #include "opto/mulnode.hpp" 48 #include "opto/narrowptrnode.hpp" 49 #include "opto/phaseX.hpp" 50 #include "opto/regmask.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/traceMergeStoresTag.hpp" 53 #include "opto/vectornode.hpp" 54 #include "utilities/align.hpp" 55 #include "utilities/copy.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #include "utilities/vmError.hpp" 59 60 // Portions of code courtesy of Clifford Click 61 62 // Optimization - Graph Style 63 64 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st); 65 66 //============================================================================= 67 uint MemNode::size_of() const { return sizeof(*this); } 68 69 const TypePtr *MemNode::adr_type() const { 70 Node* adr = in(Address); 71 if (adr == nullptr) return nullptr; // node is dead 72 const TypePtr* cross_check = nullptr; 73 DEBUG_ONLY(cross_check = _adr_type); 74 return calculate_adr_type(adr->bottom_type(), cross_check); 75 } 76 77 bool MemNode::check_if_adr_maybe_raw(Node* adr) { 78 if (adr != nullptr) { 79 if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) { 80 return true; 81 } 82 } 83 return false; 84 } 85 86 #ifndef PRODUCT 87 void MemNode::dump_spec(outputStream *st) const { 88 if (in(Address) == nullptr) return; // node is dead 89 #ifndef ASSERT 90 // fake the missing field 91 const TypePtr* _adr_type = nullptr; 92 if (in(Address) != nullptr) 93 _adr_type = in(Address)->bottom_type()->isa_ptr(); 94 #endif 95 dump_adr_type(this, _adr_type, st); 96 97 Compile* C = Compile::current(); 98 if (C->alias_type(_adr_type)->is_volatile()) { 99 st->print(" Volatile!"); 100 } 101 if (_unaligned_access) { 102 st->print(" unaligned"); 103 } 104 if (_mismatched_access) { 105 st->print(" mismatched"); 106 } 107 if (_unsafe_access) { 108 st->print(" unsafe"); 109 } 110 } 111 112 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) { 113 st->print(" @"); 114 if (adr_type == nullptr) { 115 st->print("null"); 116 } else { 117 adr_type->dump_on(st); 118 Compile* C = Compile::current(); 119 Compile::AliasType* atp = nullptr; 120 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type); 121 if (atp == nullptr) 122 st->print(", idx=?\?;"); 123 else if (atp->index() == Compile::AliasIdxBot) 124 st->print(", idx=Bot;"); 125 else if (atp->index() == Compile::AliasIdxTop) 126 st->print(", idx=Top;"); 127 else if (atp->index() == Compile::AliasIdxRaw) 128 st->print(", idx=Raw;"); 129 else { 130 ciField* field = atp->field(); 131 if (field) { 132 st->print(", name="); 133 field->print_name_on(st); 134 } 135 st->print(", idx=%d;", atp->index()); 136 } 137 } 138 } 139 140 extern void print_alias_types(); 141 142 #endif 143 144 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) { 145 assert((t_oop != nullptr), "sanity"); 146 bool is_instance = t_oop->is_known_instance_field(); 147 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() && 148 (load != nullptr) && load->is_Load() && 149 (phase->is_IterGVN() != nullptr); 150 if (!(is_instance || is_boxed_value_load)) 151 return mchain; // don't try to optimize non-instance types 152 uint instance_id = t_oop->instance_id(); 153 Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory); 154 Node *prev = nullptr; 155 Node *result = mchain; 156 while (prev != result) { 157 prev = result; 158 if (result == start_mem) 159 break; // hit one of our sentinels 160 // skip over a call which does not affect this memory slice 161 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 162 Node *proj_in = result->in(0); 163 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) { 164 break; // hit one of our sentinels 165 } else if (proj_in->is_Call()) { 166 // ArrayCopyNodes processed here as well 167 CallNode *call = proj_in->as_Call(); 168 if (!call->may_modify(t_oop, phase)) { // returns false for instances 169 result = call->in(TypeFunc::Memory); 170 } 171 } else if (proj_in->is_Initialize()) { 172 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 173 // Stop if this is the initialization for the object instance which 174 // contains this memory slice, otherwise skip over it. 175 if ((alloc == nullptr) || (alloc->_idx == instance_id)) { 176 break; 177 } 178 if (is_instance) { 179 result = proj_in->in(TypeFunc::Memory); 180 } else if (is_boxed_value_load) { 181 Node* klass = alloc->in(AllocateNode::KlassNode); 182 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr(); 183 if (tklass->klass_is_exact() && !tklass->exact_klass()->equals(t_oop->is_instptr()->exact_klass())) { 184 result = proj_in->in(TypeFunc::Memory); // not related allocation 185 } 186 } 187 } else if (proj_in->is_MemBar()) { 188 ArrayCopyNode* ac = nullptr; 189 if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) { 190 break; 191 } 192 result = proj_in->in(TypeFunc::Memory); 193 } else if (proj_in->is_top()) { 194 break; // dead code 195 } else { 196 assert(false, "unexpected projection"); 197 } 198 } else if (result->is_ClearArray()) { 199 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) { 200 // Can not bypass initialization of the instance 201 // we are looking for. 202 break; 203 } 204 // Otherwise skip it (the call updated 'result' value). 205 } else if (result->is_MergeMem()) { 206 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty); 207 } 208 } 209 return result; 210 } 211 212 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) { 213 const TypeOopPtr* t_oop = t_adr->isa_oopptr(); 214 if (t_oop == nullptr) 215 return mchain; // don't try to optimize non-oop types 216 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase); 217 bool is_instance = t_oop->is_known_instance_field(); 218 PhaseIterGVN *igvn = phase->is_IterGVN(); 219 if (is_instance && igvn != nullptr && result->is_Phi()) { 220 PhiNode *mphi = result->as_Phi(); 221 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 222 const TypePtr *t = mphi->adr_type(); 223 bool do_split = false; 224 // In the following cases, Load memory input can be further optimized based on 225 // its precise address type 226 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ) { 227 do_split = true; 228 } else if (t->isa_oopptr() && !t->is_oopptr()->is_known_instance()) { 229 const TypeOopPtr* mem_t = 230 t->is_oopptr()->cast_to_exactness(true) 231 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) 232 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()); 233 if (t_oop->isa_aryptr()) { 234 mem_t = mem_t->is_aryptr() 235 ->cast_to_stable(t_oop->is_aryptr()->is_stable()) 236 ->cast_to_size(t_oop->is_aryptr()->size()) 237 ->with_offset(t_oop->is_aryptr()->offset()) 238 ->is_aryptr(); 239 } 240 do_split = mem_t == t_oop; 241 } 242 if (do_split) { 243 // clone the Phi with our address type 244 result = mphi->split_out_instance(t_adr, igvn); 245 } else { 246 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain"); 247 } 248 } 249 return result; 250 } 251 252 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) { 253 uint alias_idx = phase->C->get_alias_index(tp); 254 Node *mem = mmem; 255 #ifdef ASSERT 256 { 257 // Check that current type is consistent with the alias index used during graph construction 258 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx"); 259 bool consistent = adr_check == nullptr || adr_check->empty() || 260 phase->C->must_alias(adr_check, alias_idx ); 261 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3] 262 if( !consistent && adr_check != nullptr && !adr_check->empty() && 263 tp->isa_aryptr() && tp->offset() == Type::OffsetBot && 264 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot && 265 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() || 266 adr_check->offset() == oopDesc::klass_offset_in_bytes() || 267 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) { 268 // don't assert if it is dead code. 269 consistent = true; 270 } 271 if( !consistent ) { 272 st->print("alias_idx==%d, adr_check==", alias_idx); 273 if( adr_check == nullptr ) { 274 st->print("null"); 275 } else { 276 adr_check->dump(); 277 } 278 st->cr(); 279 print_alias_types(); 280 assert(consistent, "adr_check must match alias idx"); 281 } 282 } 283 #endif 284 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 285 // means an array I have not precisely typed yet. Do not do any 286 // alias stuff with it any time soon. 287 const TypeOopPtr *toop = tp->isa_oopptr(); 288 if (tp->base() != Type::AnyPtr && 289 !(toop && 290 toop->isa_instptr() && 291 toop->is_instptr()->instance_klass()->is_java_lang_Object() && 292 toop->offset() == Type::OffsetBot)) { 293 // compress paths and change unreachable cycles to TOP 294 // If not, we can update the input infinitely along a MergeMem cycle 295 // Equivalent code in PhiNode::Ideal 296 Node* m = phase->transform(mmem); 297 // If transformed to a MergeMem, get the desired slice 298 // Otherwise the returned node represents memory for every slice 299 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m; 300 // Update input if it is progress over what we have now 301 } 302 return mem; 303 } 304 305 //--------------------------Ideal_common--------------------------------------- 306 // Look for degenerate control and memory inputs. Bypass MergeMem inputs. 307 // Unhook non-raw memories from complete (macro-expanded) initializations. 308 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) { 309 // If our control input is a dead region, kill all below the region 310 Node *ctl = in(MemNode::Control); 311 if (ctl && remove_dead_region(phase, can_reshape)) 312 return this; 313 ctl = in(MemNode::Control); 314 // Don't bother trying to transform a dead node 315 if (ctl && ctl->is_top()) return NodeSentinel; 316 317 PhaseIterGVN *igvn = phase->is_IterGVN(); 318 // Wait if control on the worklist. 319 if (ctl && can_reshape && igvn != nullptr) { 320 Node* bol = nullptr; 321 Node* cmp = nullptr; 322 if (ctl->in(0)->is_If()) { 323 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity"); 324 bol = ctl->in(0)->in(1); 325 if (bol->is_Bool()) 326 cmp = ctl->in(0)->in(1)->in(1); 327 } 328 if (igvn->_worklist.member(ctl) || 329 (bol != nullptr && igvn->_worklist.member(bol)) || 330 (cmp != nullptr && igvn->_worklist.member(cmp)) ) { 331 // This control path may be dead. 332 // Delay this memory node transformation until the control is processed. 333 igvn->_worklist.push(this); 334 return NodeSentinel; // caller will return null 335 } 336 } 337 // Ignore if memory is dead, or self-loop 338 Node *mem = in(MemNode::Memory); 339 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null 340 assert(mem != this, "dead loop in MemNode::Ideal"); 341 342 if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) { 343 // This memory slice may be dead. 344 // Delay this mem node transformation until the memory is processed. 345 igvn->_worklist.push(this); 346 return NodeSentinel; // caller will return null 347 } 348 349 Node *address = in(MemNode::Address); 350 const Type *t_adr = phase->type(address); 351 if (t_adr == Type::TOP) return NodeSentinel; // caller will return null 352 353 if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) { 354 // Unsafe off-heap access with zero address. Remove access and other control users 355 // to not confuse optimizations and add a HaltNode to fail if this is ever executed. 356 assert(ctl != nullptr, "unsafe accesses should be control dependent"); 357 for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) { 358 Node* u = ctl->fast_out(i); 359 if (u != ctl) { 360 igvn->rehash_node_delayed(u); 361 int nb = u->replace_edge(ctl, phase->C->top(), igvn); 362 --i, imax -= nb; 363 } 364 } 365 Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr)); 366 Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address")); 367 phase->C->root()->add_req(halt); 368 return this; 369 } 370 371 if (can_reshape && igvn != nullptr && 372 (igvn->_worklist.member(address) || 373 (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) { 374 // The address's base and type may change when the address is processed. 375 // Delay this mem node transformation until the address is processed. 376 igvn->_worklist.push(this); 377 return NodeSentinel; // caller will return null 378 } 379 380 // Do NOT remove or optimize the next lines: ensure a new alias index 381 // is allocated for an oop pointer type before Escape Analysis. 382 // Note: C++ will not remove it since the call has side effect. 383 if (t_adr->isa_oopptr()) { 384 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr()); 385 } 386 387 Node* base = nullptr; 388 if (address->is_AddP()) { 389 base = address->in(AddPNode::Base); 390 } 391 if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) && 392 !t_adr->isa_rawptr()) { 393 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true. 394 // Skip this node optimization if its address has TOP base. 395 return NodeSentinel; // caller will return null 396 } 397 398 // Avoid independent memory operations 399 Node* old_mem = mem; 400 401 // The code which unhooks non-raw memories from complete (macro-expanded) 402 // initializations was removed. After macro-expansion all stores caught 403 // by Initialize node became raw stores and there is no information 404 // which memory slices they modify. So it is unsafe to move any memory 405 // operation above these stores. Also in most cases hooked non-raw memories 406 // were already unhooked by using information from detect_ptr_independence() 407 // and find_previous_store(). 408 409 if (mem->is_MergeMem()) { 410 MergeMemNode* mmem = mem->as_MergeMem(); 411 const TypePtr *tp = t_adr->is_ptr(); 412 413 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty); 414 } 415 416 if (mem != old_mem) { 417 set_req_X(MemNode::Memory, mem, phase); 418 if (phase->type(mem) == Type::TOP) return NodeSentinel; 419 return this; 420 } 421 422 // let the subclass continue analyzing... 423 return nullptr; 424 } 425 426 // Helper function for proving some simple control dominations. 427 // Attempt to prove that all control inputs of 'dom' dominate 'sub'. 428 // Already assumes that 'dom' is available at 'sub', and that 'sub' 429 // is not a constant (dominated by the method's StartNode). 430 // Used by MemNode::find_previous_store to prove that the 431 // control input of a memory operation predates (dominates) 432 // an allocation it wants to look past. 433 // Returns 'DomResult::Dominate' if all control inputs of 'dom' 434 // dominate 'sub', 'DomResult::NotDominate' if not, 435 // and 'DomResult::EncounteredDeadCode' if we can't decide due to 436 // dead code, but at the end of IGVN, we know the definite result 437 // once the dead code is cleaned up. 438 Node::DomResult MemNode::maybe_all_controls_dominate(Node* dom, Node* sub) { 439 if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top()) { 440 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 441 } 442 443 // Check 'dom'. Skip Proj and CatchProj nodes. 444 dom = dom->find_exact_control(dom); 445 if (dom == nullptr || dom->is_top()) { 446 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 447 } 448 449 if (dom == sub) { 450 // For the case when, for example, 'sub' is Initialize and the original 451 // 'dom' is Proj node of the 'sub'. 452 return DomResult::NotDominate; 453 } 454 455 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) { 456 return DomResult::Dominate; 457 } 458 459 // 'dom' dominates 'sub' if its control edge and control edges 460 // of all its inputs dominate or equal to sub's control edge. 461 462 // Currently 'sub' is either Allocate, Initialize or Start nodes. 463 // Or Region for the check in LoadNode::Ideal(); 464 // 'sub' should have sub->in(0) != nullptr. 465 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || 466 sub->is_Region() || sub->is_Call(), "expecting only these nodes"); 467 468 // Get control edge of 'sub'. 469 Node* orig_sub = sub; 470 sub = sub->find_exact_control(sub->in(0)); 471 if (sub == nullptr || sub->is_top()) { 472 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 473 } 474 475 assert(sub->is_CFG(), "expecting control"); 476 477 if (sub == dom) { 478 return DomResult::Dominate; 479 } 480 481 if (sub->is_Start() || sub->is_Root()) { 482 return DomResult::NotDominate; 483 } 484 485 { 486 // Check all control edges of 'dom'. 487 488 ResourceMark rm; 489 Node_List nlist; 490 Unique_Node_List dom_list; 491 492 dom_list.push(dom); 493 bool only_dominating_controls = false; 494 495 for (uint next = 0; next < dom_list.size(); next++) { 496 Node* n = dom_list.at(next); 497 if (n == orig_sub) { 498 return DomResult::NotDominate; // One of dom's inputs dominated by sub. 499 } 500 if (!n->is_CFG() && n->pinned()) { 501 // Check only own control edge for pinned non-control nodes. 502 n = n->find_exact_control(n->in(0)); 503 if (n == nullptr || n->is_top()) { 504 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 505 } 506 assert(n->is_CFG(), "expecting control"); 507 dom_list.push(n); 508 } else if (n->is_Con() || n->is_Start() || n->is_Root()) { 509 only_dominating_controls = true; 510 } else if (n->is_CFG()) { 511 DomResult dom_result = n->dominates(sub, nlist); 512 if (dom_result == DomResult::Dominate) { 513 only_dominating_controls = true; 514 } else { 515 return dom_result; 516 } 517 } else { 518 // First, own control edge. 519 Node* m = n->find_exact_control(n->in(0)); 520 if (m != nullptr) { 521 if (m->is_top()) { 522 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 523 } 524 dom_list.push(m); 525 } 526 // Now, the rest of edges. 527 uint cnt = n->req(); 528 for (uint i = 1; i < cnt; i++) { 529 m = n->find_exact_control(n->in(i)); 530 if (m == nullptr || m->is_top()) { 531 continue; 532 } 533 dom_list.push(m); 534 } 535 } 536 } 537 return only_dominating_controls ? DomResult::Dominate : DomResult::NotDominate; 538 } 539 } 540 541 //---------------------detect_ptr_independence--------------------------------- 542 // Used by MemNode::find_previous_store to prove that two base 543 // pointers are never equal. 544 // The pointers are accompanied by their associated allocations, 545 // if any, which have been previously discovered by the caller. 546 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1, 547 Node* p2, AllocateNode* a2, 548 PhaseTransform* phase) { 549 // Attempt to prove that these two pointers cannot be aliased. 550 // They may both manifestly be allocations, and they should differ. 551 // Or, if they are not both allocations, they can be distinct constants. 552 // Otherwise, one is an allocation and the other a pre-existing value. 553 if (a1 == nullptr && a2 == nullptr) { // neither an allocation 554 return (p1 != p2) && p1->is_Con() && p2->is_Con(); 555 } else if (a1 != nullptr && a2 != nullptr) { // both allocations 556 return (a1 != a2); 557 } else if (a1 != nullptr) { // one allocation a1 558 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.) 559 return all_controls_dominate(p2, a1); 560 } else { //(a2 != null) // one allocation a2 561 return all_controls_dominate(p1, a2); 562 } 563 return false; 564 } 565 566 567 // Find an arraycopy ac that produces the memory state represented by parameter mem. 568 // Return ac if 569 // (a) can_see_stored_value=true and ac must have set the value for this load or if 570 // (b) can_see_stored_value=false and ac could have set the value for this load or if 571 // (c) can_see_stored_value=false and ac cannot have set the value for this load. 572 // In case (c) change the parameter mem to the memory input of ac to skip it 573 // when searching stored value. 574 // Otherwise return null. 575 Node* LoadNode::find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { 576 ArrayCopyNode* ac = find_array_copy_clone(ld_alloc, mem); 577 if (ac != nullptr) { 578 Node* ld_addp = in(MemNode::Address); 579 Node* src = ac->in(ArrayCopyNode::Src); 580 const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr(); 581 582 // This is a load from a cloned array. The corresponding arraycopy ac must 583 // have set the value for the load and we can return ac but only if the load 584 // is known to be within bounds. This is checked below. 585 if (ary_t != nullptr && ld_addp->is_AddP()) { 586 Node* ld_offs = ld_addp->in(AddPNode::Offset); 587 BasicType ary_elem = ary_t->elem()->array_element_basic_type(); 588 jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem); 589 jlong elemsize = type2aelembytes(ary_elem); 590 591 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 592 const TypeInt* sizetype = ary_t->size(); 593 594 if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) { 595 // The load is known to be within bounds. It receives its value from ac. 596 return ac; 597 } 598 // The load is known to be out-of-bounds. 599 } 600 // The load could be out-of-bounds. It must not be hoisted but must remain 601 // dependent on the runtime range check. This is achieved by returning null. 602 } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) { 603 ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy(); 604 605 if (ac->is_arraycopy_validated() || 606 ac->is_copyof_validated() || 607 ac->is_copyofrange_validated()) { 608 Node* ld_addp = in(MemNode::Address); 609 if (ld_addp->is_AddP()) { 610 Node* ld_base = ld_addp->in(AddPNode::Address); 611 Node* ld_offs = ld_addp->in(AddPNode::Offset); 612 613 Node* dest = ac->in(ArrayCopyNode::Dest); 614 615 if (dest == ld_base) { 616 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 617 assert(!ld_offs_t->empty(), "dead reference should be checked already"); 618 // Take into account vector or unsafe access size 619 jlong ld_size_in_bytes = (jlong)memory_size(); 620 jlong offset_hi = ld_offs_t->_hi + ld_size_in_bytes - 1; 621 offset_hi = MIN2(offset_hi, (jlong)(TypeX::MAX->_hi)); // Take care for overflow in 32-bit VM 622 if (ac->modifies(ld_offs_t->_lo, (intptr_t)offset_hi, phase, can_see_stored_value)) { 623 return ac; 624 } 625 if (!can_see_stored_value) { 626 mem = ac->in(TypeFunc::Memory); 627 return ac; 628 } 629 } 630 } 631 } 632 } 633 return nullptr; 634 } 635 636 ArrayCopyNode* MemNode::find_array_copy_clone(Node* ld_alloc, Node* mem) const { 637 if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore || 638 mem->in(0)->Opcode() == Op_MemBarCPUOrder)) { 639 if (ld_alloc != nullptr) { 640 // Check if there is an array copy for a clone 641 Node* mb = mem->in(0); 642 ArrayCopyNode* ac = nullptr; 643 if (mb->in(0) != nullptr && mb->in(0)->is_Proj() && 644 mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) { 645 ac = mb->in(0)->in(0)->as_ArrayCopy(); 646 } else { 647 // Step over GC barrier when ReduceInitialCardMarks is disabled 648 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 649 Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0)); 650 651 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { 652 ac = control_proj_ac->in(0)->as_ArrayCopy(); 653 } 654 } 655 656 if (ac != nullptr && ac->is_clonebasic()) { 657 AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest)); 658 if (alloc != nullptr && alloc == ld_alloc) { 659 return ac; 660 } 661 } 662 } 663 } 664 return nullptr; 665 } 666 667 // The logic for reordering loads and stores uses four steps: 668 // (a) Walk carefully past stores and initializations which we 669 // can prove are independent of this load. 670 // (b) Observe that the next memory state makes an exact match 671 // with self (load or store), and locate the relevant store. 672 // (c) Ensure that, if we were to wire self directly to the store, 673 // the optimizer would fold it up somehow. 674 // (d) Do the rewiring, and return, depending on some other part of 675 // the optimizer to fold up the load. 676 // This routine handles steps (a) and (b). Steps (c) and (d) are 677 // specific to loads and stores, so they are handled by the callers. 678 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.) 679 // 680 Node* MemNode::find_previous_store(PhaseValues* phase) { 681 Node* ctrl = in(MemNode::Control); 682 Node* adr = in(MemNode::Address); 683 intptr_t offset = 0; 684 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 685 AllocateNode* alloc = AllocateNode::Ideal_allocation(base); 686 687 if (offset == Type::OffsetBot) 688 return nullptr; // cannot unalias unless there are precise offsets 689 690 const bool adr_maybe_raw = check_if_adr_maybe_raw(adr); 691 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr(); 692 693 intptr_t size_in_bytes = memory_size(); 694 695 Node* mem = in(MemNode::Memory); // start searching here... 696 697 int cnt = 50; // Cycle limiter 698 for (;;) { // While we can dance past unrelated stores... 699 if (--cnt < 0) break; // Caught in cycle or a complicated dance? 700 701 Node* prev = mem; 702 if (mem->is_Store()) { 703 Node* st_adr = mem->in(MemNode::Address); 704 intptr_t st_offset = 0; 705 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 706 if (st_base == nullptr) 707 break; // inscrutable pointer 708 709 // For raw accesses it's not enough to prove that constant offsets don't intersect. 710 // We need the bases to be the equal in order for the offset check to make sense. 711 if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) { 712 break; 713 } 714 715 if (st_offset != offset && st_offset != Type::OffsetBot) { 716 const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 717 assert(mem->as_Store()->memory_size() <= MAX_STORE, ""); 718 if (st_offset >= offset + size_in_bytes || 719 st_offset <= offset - MAX_STORE || 720 st_offset <= offset - mem->as_Store()->memory_size()) { 721 // Success: The offsets are provably independent. 722 // (You may ask, why not just test st_offset != offset and be done? 723 // The answer is that stores of different sizes can co-exist 724 // in the same sequence of RawMem effects. We sometimes initialize 725 // a whole 'tile' of array elements with a single jint or jlong.) 726 mem = mem->in(MemNode::Memory); 727 continue; // (a) advance through independent store memory 728 } 729 } 730 if (st_base != base && 731 detect_ptr_independence(base, alloc, 732 st_base, 733 AllocateNode::Ideal_allocation(st_base), 734 phase)) { 735 // Success: The bases are provably independent. 736 mem = mem->in(MemNode::Memory); 737 continue; // (a) advance through independent store memory 738 } 739 740 // (b) At this point, if the bases or offsets do not agree, we lose, 741 // since we have not managed to prove 'this' and 'mem' independent. 742 if (st_base == base && st_offset == offset) { 743 return mem; // let caller handle steps (c), (d) 744 } 745 746 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 747 InitializeNode* st_init = mem->in(0)->as_Initialize(); 748 AllocateNode* st_alloc = st_init->allocation(); 749 if (st_alloc == nullptr) { 750 break; // something degenerated 751 } 752 bool known_identical = false; 753 bool known_independent = false; 754 if (alloc == st_alloc) { 755 known_identical = true; 756 } else if (alloc != nullptr) { 757 known_independent = true; 758 } else if (all_controls_dominate(this, st_alloc)) { 759 known_independent = true; 760 } 761 762 if (known_independent) { 763 // The bases are provably independent: Either they are 764 // manifestly distinct allocations, or else the control 765 // of this load dominates the store's allocation. 766 int alias_idx = phase->C->get_alias_index(adr_type()); 767 if (alias_idx == Compile::AliasIdxRaw) { 768 mem = st_alloc->in(TypeFunc::Memory); 769 } else { 770 mem = st_init->memory(alias_idx); 771 } 772 continue; // (a) advance through independent store memory 773 } 774 775 // (b) at this point, if we are not looking at a store initializing 776 // the same allocation we are loading from, we lose. 777 if (known_identical) { 778 // From caller, can_see_stored_value will consult find_captured_store. 779 return mem; // let caller handle steps (c), (d) 780 } 781 782 } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) { 783 if (prev != mem) { 784 // Found an arraycopy but it doesn't affect that load 785 continue; 786 } 787 // Found an arraycopy that may affect that load 788 return mem; 789 } else if (addr_t != nullptr && addr_t->is_known_instance_field()) { 790 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN. 791 if (mem->is_Proj() && mem->in(0)->is_Call()) { 792 // ArrayCopyNodes processed here as well. 793 CallNode *call = mem->in(0)->as_Call(); 794 if (!call->may_modify(addr_t, phase)) { 795 mem = call->in(TypeFunc::Memory); 796 continue; // (a) advance through independent call memory 797 } 798 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) { 799 ArrayCopyNode* ac = nullptr; 800 if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) { 801 break; 802 } 803 mem = mem->in(0)->in(TypeFunc::Memory); 804 continue; // (a) advance through independent MemBar memory 805 } else if (mem->is_ClearArray()) { 806 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) { 807 // (the call updated 'mem' value) 808 continue; // (a) advance through independent allocation memory 809 } else { 810 // Can not bypass initialization of the instance 811 // we are looking for. 812 return mem; 813 } 814 } else if (mem->is_MergeMem()) { 815 int alias_idx = phase->C->get_alias_index(adr_type()); 816 mem = mem->as_MergeMem()->memory_at(alias_idx); 817 continue; // (a) advance through independent MergeMem memory 818 } 819 } 820 821 // Unless there is an explicit 'continue', we must bail out here, 822 // because 'mem' is an inscrutable memory state (e.g., a call). 823 break; 824 } 825 826 return nullptr; // bail out 827 } 828 829 //----------------------calculate_adr_type------------------------------------- 830 // Helper function. Notices when the given type of address hits top or bottom. 831 // Also, asserts a cross-check of the type against the expected address type. 832 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) { 833 if (t == Type::TOP) return nullptr; // does not touch memory any more? 834 #ifdef ASSERT 835 if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump()) cross_check = nullptr; 836 #endif 837 const TypePtr* tp = t->isa_ptr(); 838 if (tp == nullptr) { 839 assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide"); 840 return TypePtr::BOTTOM; // touches lots of memory 841 } else { 842 #ifdef ASSERT 843 // %%%% [phh] We don't check the alias index if cross_check is 844 // TypeRawPtr::BOTTOM. Needs to be investigated. 845 if (cross_check != nullptr && 846 cross_check != TypePtr::BOTTOM && 847 cross_check != TypeRawPtr::BOTTOM) { 848 // Recheck the alias index, to see if it has changed (due to a bug). 849 Compile* C = Compile::current(); 850 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp), 851 "must stay in the original alias category"); 852 // The type of the address must be contained in the adr_type, 853 // disregarding "null"-ness. 854 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.) 855 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr(); 856 assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(), 857 "real address must not escape from expected memory type"); 858 } 859 #endif 860 return tp; 861 } 862 } 863 864 uint8_t MemNode::barrier_data(const Node* n) { 865 if (n->is_LoadStore()) { 866 return n->as_LoadStore()->barrier_data(); 867 } else if (n->is_Mem()) { 868 return n->as_Mem()->barrier_data(); 869 } 870 return 0; 871 } 872 873 //============================================================================= 874 // Should LoadNode::Ideal() attempt to remove control edges? 875 bool LoadNode::can_remove_control() const { 876 return !has_pinned_control_dependency(); 877 } 878 uint LoadNode::size_of() const { return sizeof(*this); } 879 bool LoadNode::cmp(const Node &n) const { 880 LoadNode& load = (LoadNode &)n; 881 return Type::equals(_type, load._type) && 882 _control_dependency == load._control_dependency && 883 _mo == load._mo; 884 } 885 const Type *LoadNode::bottom_type() const { return _type; } 886 uint LoadNode::ideal_reg() const { 887 return _type->ideal_reg(); 888 } 889 890 #ifndef PRODUCT 891 void LoadNode::dump_spec(outputStream *st) const { 892 MemNode::dump_spec(st); 893 if( !Verbose && !WizardMode ) { 894 // standard dump does this in Verbose and WizardMode 895 st->print(" #"); _type->dump_on(st); 896 } 897 if (!depends_only_on_test()) { 898 st->print(" (does not depend only on test, "); 899 if (control_dependency() == UnknownControl) { 900 st->print("unknown control"); 901 } else if (control_dependency() == Pinned) { 902 st->print("pinned"); 903 } else if (adr_type() == TypeRawPtr::BOTTOM) { 904 st->print("raw access"); 905 } else { 906 st->print("unknown reason"); 907 } 908 st->print(")"); 909 } 910 } 911 #endif 912 913 #ifdef ASSERT 914 //----------------------------is_immutable_value------------------------------- 915 // Helper function to allow a raw load without control edge for some cases 916 bool LoadNode::is_immutable_value(Node* adr) { 917 if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() && 918 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal) { 919 920 jlong offset = adr->in(AddPNode::Offset)->find_intptr_t_con(-1); 921 int offsets[] = { 922 in_bytes(JavaThread::osthread_offset()), 923 in_bytes(JavaThread::threadObj_offset()), 924 in_bytes(JavaThread::vthread_offset()), 925 in_bytes(JavaThread::scopedValueCache_offset()), 926 }; 927 928 for (size_t i = 0; i < sizeof offsets / sizeof offsets[0]; i++) { 929 if (offset == offsets[i]) { 930 return true; 931 } 932 } 933 } 934 935 return false; 936 } 937 #endif 938 939 //----------------------------LoadNode::make----------------------------------- 940 // Polymorphic factory method: 941 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo, 942 ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { 943 Compile* C = gvn.C; 944 945 // sanity check the alias category against the created node type 946 assert(!(adr_type->isa_oopptr() && 947 adr_type->offset() == oopDesc::klass_offset_in_bytes()), 948 "use LoadKlassNode instead"); 949 assert(!(adr_type->isa_aryptr() && 950 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()), 951 "use LoadRangeNode instead"); 952 // Check control edge of raw loads 953 assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 954 // oop will be recorded in oop map if load crosses safepoint 955 rt->isa_oopptr() || is_immutable_value(adr), 956 "raw memory operations should have control edge"); 957 LoadNode* load = nullptr; 958 switch (bt) { 959 case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 960 case T_BYTE: load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 961 case T_INT: load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 962 case T_CHAR: load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 963 case T_SHORT: load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 964 case T_LONG: load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break; 965 case T_FLOAT: load = new LoadFNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; 966 case T_DOUBLE: load = new LoadDNode (ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic_access); break; 967 case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); break; 968 case T_OBJECT: 969 case T_NARROWOOP: 970 #ifdef _LP64 971 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 972 load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency); 973 } else 974 #endif 975 { 976 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop"); 977 load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); 978 } 979 break; 980 default: 981 ShouldNotReachHere(); 982 break; 983 } 984 assert(load != nullptr, "LoadNode should have been created"); 985 if (unaligned) { 986 load->set_unaligned_access(); 987 } 988 if (mismatched) { 989 load->set_mismatched_access(); 990 } 991 if (unsafe) { 992 load->set_unsafe_access(); 993 } 994 load->set_barrier_data(barrier_data); 995 if (load->Opcode() == Op_LoadN) { 996 Node* ld = gvn.transform(load); 997 return new DecodeNNode(ld, ld->bottom_type()->make_ptr()); 998 } 999 1000 return load; 1001 } 1002 1003 //------------------------------hash------------------------------------------- 1004 uint LoadNode::hash() const { 1005 // unroll addition of interesting fields 1006 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address); 1007 } 1008 1009 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) { 1010 if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) { 1011 bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile(); 1012 bool is_stable_ary = FoldStableValues && 1013 (tp != nullptr) && (tp->isa_aryptr() != nullptr) && 1014 tp->isa_aryptr()->is_stable(); 1015 1016 return (eliminate_boxing && non_volatile) || is_stable_ary; 1017 } 1018 1019 return false; 1020 } 1021 1022 LoadNode* LoadNode::pin_array_access_node() const { 1023 const TypePtr* adr_type = this->adr_type(); 1024 if (adr_type != nullptr && adr_type->isa_aryptr()) { 1025 return clone_pinned(); 1026 } 1027 return nullptr; 1028 } 1029 1030 // Is the value loaded previously stored by an arraycopy? If so return 1031 // a load node that reads from the source array so we may be able to 1032 // optimize out the ArrayCopy node later. 1033 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const { 1034 Node* ld_adr = in(MemNode::Address); 1035 intptr_t ld_off = 0; 1036 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); 1037 Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true); 1038 if (ac != nullptr) { 1039 assert(ac->is_ArrayCopy(), "what kind of node can this be?"); 1040 1041 Node* mem = ac->in(TypeFunc::Memory); 1042 Node* ctl = ac->in(0); 1043 Node* src = ac->in(ArrayCopyNode::Src); 1044 1045 if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) { 1046 return nullptr; 1047 } 1048 1049 // load depends on the tests that validate the arraycopy 1050 LoadNode* ld = clone_pinned(); 1051 Node* addp = in(MemNode::Address)->clone(); 1052 if (ac->as_ArrayCopy()->is_clonebasic()) { 1053 assert(ld_alloc != nullptr, "need an alloc"); 1054 assert(addp->is_AddP(), "address must be addp"); 1055 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1056 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 1057 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 1058 addp->set_req(AddPNode::Base, src); 1059 addp->set_req(AddPNode::Address, src); 1060 } else { 1061 assert(ac->as_ArrayCopy()->is_arraycopy_validated() || 1062 ac->as_ArrayCopy()->is_copyof_validated() || 1063 ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases"); 1064 assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be"); 1065 addp->set_req(AddPNode::Base, src); 1066 addp->set_req(AddPNode::Address, src); 1067 1068 const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr(); 1069 BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type(); 1070 if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT; 1071 1072 uint header = arrayOopDesc::base_offset_in_bytes(ary_elem); 1073 uint shift = exact_log2(type2aelembytes(ary_elem)); 1074 1075 Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 1076 #ifdef _LP64 1077 diff = phase->transform(new ConvI2LNode(diff)); 1078 #endif 1079 diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift))); 1080 1081 Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff)); 1082 addp->set_req(AddPNode::Offset, offset); 1083 } 1084 addp = phase->transform(addp); 1085 #ifdef ASSERT 1086 const TypePtr* adr_type = phase->type(addp)->is_ptr(); 1087 ld->_adr_type = adr_type; 1088 #endif 1089 ld->set_req(MemNode::Address, addp); 1090 ld->set_req(0, ctl); 1091 ld->set_req(MemNode::Memory, mem); 1092 return ld; 1093 } 1094 return nullptr; 1095 } 1096 1097 1098 //---------------------------can_see_stored_value------------------------------ 1099 // This routine exists to make sure this set of tests is done the same 1100 // everywhere. We need to make a coordinated change: first LoadNode::Ideal 1101 // will change the graph shape in a way which makes memory alive twice at the 1102 // same time (uses the Oracle model of aliasing), then some 1103 // LoadXNode::Identity will fold things back to the equivalence-class model 1104 // of aliasing. 1105 Node* MemNode::can_see_stored_value(Node* st, PhaseValues* phase) const { 1106 Node* ld_adr = in(MemNode::Address); 1107 intptr_t ld_off = 0; 1108 Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off); 1109 Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base); 1110 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); 1111 Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr; 1112 // This is more general than load from boxing objects. 1113 if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) { 1114 uint alias_idx = atp->index(); 1115 Node* result = nullptr; 1116 Node* current = st; 1117 // Skip through chains of MemBarNodes checking the MergeMems for 1118 // new states for the slice of this load. Stop once any other 1119 // kind of node is encountered. Loads from final memory can skip 1120 // through any kind of MemBar but normal loads shouldn't skip 1121 // through MemBarAcquire since the could allow them to move out of 1122 // a synchronized region. It is not safe to step over MemBarCPUOrder, 1123 // because alias info above them may be inaccurate (e.g., due to 1124 // mixed/mismatched unsafe accesses). 1125 bool is_final_mem = !atp->is_rewritable(); 1126 while (current->is_Proj()) { 1127 int opc = current->in(0)->Opcode(); 1128 if ((is_final_mem && (opc == Op_MemBarAcquire || 1129 opc == Op_MemBarAcquireLock || 1130 opc == Op_LoadFence)) || 1131 opc == Op_MemBarRelease || 1132 opc == Op_StoreFence || 1133 opc == Op_MemBarReleaseLock || 1134 opc == Op_MemBarStoreStore || 1135 opc == Op_StoreStoreFence) { 1136 Node* mem = current->in(0)->in(TypeFunc::Memory); 1137 if (mem->is_MergeMem()) { 1138 MergeMemNode* merge = mem->as_MergeMem(); 1139 Node* new_st = merge->memory_at(alias_idx); 1140 if (new_st == merge->base_memory()) { 1141 // Keep searching 1142 current = new_st; 1143 continue; 1144 } 1145 // Save the new memory state for the slice and fall through 1146 // to exit. 1147 result = new_st; 1148 } 1149 } 1150 break; 1151 } 1152 if (result != nullptr) { 1153 st = result; 1154 } 1155 } 1156 1157 // Loop around twice in the case Load -> Initialize -> Store. 1158 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.) 1159 for (int trip = 0; trip <= 1; trip++) { 1160 1161 if (st->is_Store()) { 1162 Node* st_adr = st->in(MemNode::Address); 1163 if (st_adr != ld_adr) { 1164 // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers). 1165 intptr_t st_off = 0; 1166 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off); 1167 if (ld_base == nullptr) return nullptr; 1168 if (st_base == nullptr) return nullptr; 1169 if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr; 1170 if (ld_off != st_off) return nullptr; 1171 if (ld_off == Type::OffsetBot) return nullptr; 1172 // Same base, same offset. 1173 // Possible improvement for arrays: check index value instead of absolute offset. 1174 1175 // At this point we have proven something like this setup: 1176 // B = << base >> 1177 // L = LoadQ(AddP(Check/CastPP(B), #Off)) 1178 // S = StoreQ(AddP( B , #Off), V) 1179 // (Actually, we haven't yet proven the Q's are the same.) 1180 // In other words, we are loading from a casted version of 1181 // the same pointer-and-offset that we stored to. 1182 // Casted version may carry a dependency and it is respected. 1183 // Thus, we are able to replace L by V. 1184 } 1185 // Now prove that we have a LoadQ matched to a StoreQ, for some Q. 1186 if (store_Opcode() != st->Opcode()) { 1187 return nullptr; 1188 } 1189 // LoadVector/StoreVector needs additional check to ensure the types match. 1190 if (st->is_StoreVector()) { 1191 const TypeVect* in_vt = st->as_StoreVector()->vect_type(); 1192 const TypeVect* out_vt = as_LoadVector()->vect_type(); 1193 if (in_vt != out_vt) { 1194 return nullptr; 1195 } 1196 } 1197 return st->in(MemNode::ValueIn); 1198 } 1199 1200 // A load from a freshly-created object always returns zero. 1201 // (This can happen after LoadNode::Ideal resets the load's memory input 1202 // to find_captured_store, which returned InitializeNode::zero_memory.) 1203 if (st->is_Proj() && st->in(0)->is_Allocate() && 1204 (st->in(0) == ld_alloc) && 1205 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) { 1206 // return a zero value for the load's basic type 1207 // (This is one of the few places where a generic PhaseTransform 1208 // can create new nodes. Think of it as lazily manifesting 1209 // virtually pre-existing constants.) 1210 if (memory_type() != T_VOID) { 1211 if (ReduceBulkZeroing || find_array_copy_clone(ld_alloc, in(MemNode::Memory)) == nullptr) { 1212 // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an 1213 // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done 1214 // by the ArrayCopyNode. 1215 return phase->zerocon(memory_type()); 1216 } 1217 } else { 1218 // TODO: materialize all-zero vector constant 1219 assert(!isa_Load() || as_Load()->type()->isa_vect(), ""); 1220 } 1221 } 1222 1223 // A load from an initialization barrier can match a captured store. 1224 if (st->is_Proj() && st->in(0)->is_Initialize()) { 1225 InitializeNode* init = st->in(0)->as_Initialize(); 1226 AllocateNode* alloc = init->allocation(); 1227 if ((alloc != nullptr) && (alloc == ld_alloc)) { 1228 // examine a captured store value 1229 st = init->find_captured_store(ld_off, memory_size(), phase); 1230 if (st != nullptr) { 1231 continue; // take one more trip around 1232 } 1233 } 1234 } 1235 1236 // Load boxed value from result of valueOf() call is input parameter. 1237 if (this->is_Load() && ld_adr->is_AddP() && 1238 (tp != nullptr) && tp->is_ptr_to_boxed_value()) { 1239 intptr_t ignore = 0; 1240 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore); 1241 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1242 base = bs->step_over_gc_barrier(base); 1243 if (base != nullptr && base->is_Proj() && 1244 base->as_Proj()->_con == TypeFunc::Parms && 1245 base->in(0)->is_CallStaticJava() && 1246 base->in(0)->as_CallStaticJava()->is_boxing_method()) { 1247 return base->in(0)->in(TypeFunc::Parms); 1248 } 1249 } 1250 1251 break; 1252 } 1253 1254 return nullptr; 1255 } 1256 1257 //----------------------is_instance_field_load_with_local_phi------------------ 1258 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { 1259 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl && 1260 in(Address)->is_AddP() ) { 1261 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr(); 1262 // Only instances and boxed values. 1263 if( t_oop != nullptr && 1264 (t_oop->is_ptr_to_boxed_value() || 1265 t_oop->is_known_instance_field()) && 1266 t_oop->offset() != Type::OffsetBot && 1267 t_oop->offset() != Type::OffsetTop) { 1268 return true; 1269 } 1270 } 1271 return false; 1272 } 1273 1274 //------------------------------Identity--------------------------------------- 1275 // Loads are identity if previous store is to same address 1276 Node* LoadNode::Identity(PhaseGVN* phase) { 1277 // If the previous store-maker is the right kind of Store, and the store is 1278 // to the same address, then we are equal to the value stored. 1279 Node* mem = in(Memory); 1280 Node* value = can_see_stored_value(mem, phase); 1281 if( value ) { 1282 // byte, short & char stores truncate naturally. 1283 // A load has to load the truncated value which requires 1284 // some sort of masking operation and that requires an 1285 // Ideal call instead of an Identity call. 1286 if (memory_size() < BytesPerInt) { 1287 // If the input to the store does not fit with the load's result type, 1288 // it must be truncated via an Ideal call. 1289 if (!phase->type(value)->higher_equal(phase->type(this))) 1290 return this; 1291 } 1292 // (This works even when value is a Con, but LoadNode::Value 1293 // usually runs first, producing the singleton type of the Con.) 1294 if (!has_pinned_control_dependency() || value->is_Con()) { 1295 return value; 1296 } else { 1297 return this; 1298 } 1299 } 1300 1301 if (has_pinned_control_dependency()) { 1302 return this; 1303 } 1304 // Search for an existing data phi which was generated before for the same 1305 // instance's field to avoid infinite generation of phis in a loop. 1306 Node *region = mem->in(0); 1307 if (is_instance_field_load_with_local_phi(region)) { 1308 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr(); 1309 int this_index = phase->C->get_alias_index(addr_t); 1310 int this_offset = addr_t->offset(); 1311 int this_iid = addr_t->instance_id(); 1312 if (!addr_t->is_known_instance() && 1313 addr_t->is_ptr_to_boxed_value()) { 1314 // Use _idx of address base (could be Phi node) for boxed values. 1315 intptr_t ignore = 0; 1316 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); 1317 if (base == nullptr) { 1318 return this; 1319 } 1320 this_iid = base->_idx; 1321 } 1322 const Type* this_type = bottom_type(); 1323 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1324 Node* phi = region->fast_out(i); 1325 if (phi->is_Phi() && phi != mem && 1326 phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) { 1327 return phi; 1328 } 1329 } 1330 } 1331 1332 return this; 1333 } 1334 1335 // Construct an equivalent unsigned load. 1336 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) { 1337 BasicType bt = T_ILLEGAL; 1338 const Type* rt = nullptr; 1339 switch (Opcode()) { 1340 case Op_LoadUB: return this; 1341 case Op_LoadUS: return this; 1342 case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break; 1343 case Op_LoadS: bt = T_CHAR; rt = TypeInt::CHAR; break; 1344 default: 1345 assert(false, "no unsigned variant: %s", Name()); 1346 return nullptr; 1347 } 1348 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1349 raw_adr_type(), rt, bt, _mo, _control_dependency, 1350 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1351 } 1352 1353 // Construct an equivalent signed load. 1354 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) { 1355 BasicType bt = T_ILLEGAL; 1356 const Type* rt = nullptr; 1357 switch (Opcode()) { 1358 case Op_LoadUB: bt = T_BYTE; rt = TypeInt::BYTE; break; 1359 case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break; 1360 case Op_LoadB: // fall through 1361 case Op_LoadS: // fall through 1362 case Op_LoadI: // fall through 1363 case Op_LoadL: return this; 1364 default: 1365 assert(false, "no signed variant: %s", Name()); 1366 return nullptr; 1367 } 1368 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1369 raw_adr_type(), rt, bt, _mo, _control_dependency, 1370 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1371 } 1372 1373 bool LoadNode::has_reinterpret_variant(const Type* rt) { 1374 BasicType bt = rt->basic_type(); 1375 switch (Opcode()) { 1376 case Op_LoadI: return (bt == T_FLOAT); 1377 case Op_LoadL: return (bt == T_DOUBLE); 1378 case Op_LoadF: return (bt == T_INT); 1379 case Op_LoadD: return (bt == T_LONG); 1380 1381 default: return false; 1382 } 1383 } 1384 1385 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) { 1386 BasicType bt = rt->basic_type(); 1387 assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1388 bool is_mismatched = is_mismatched_access(); 1389 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1390 if (raw_type == nullptr) { 1391 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1392 } 1393 const int op = Opcode(); 1394 bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) || 1395 (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access()); 1396 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1397 raw_adr_type(), rt, bt, _mo, _control_dependency, 1398 require_atomic_access, is_unaligned_access(), is_mismatched); 1399 } 1400 1401 bool StoreNode::has_reinterpret_variant(const Type* vt) { 1402 BasicType bt = vt->basic_type(); 1403 switch (Opcode()) { 1404 case Op_StoreI: return (bt == T_FLOAT); 1405 case Op_StoreL: return (bt == T_DOUBLE); 1406 case Op_StoreF: return (bt == T_INT); 1407 case Op_StoreD: return (bt == T_LONG); 1408 1409 default: return false; 1410 } 1411 } 1412 1413 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) { 1414 BasicType bt = vt->basic_type(); 1415 assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1416 const int op = Opcode(); 1417 bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) || 1418 (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access()); 1419 StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1420 raw_adr_type(), val, bt, _mo, require_atomic_access); 1421 1422 bool is_mismatched = is_mismatched_access(); 1423 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1424 if (raw_type == nullptr) { 1425 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1426 } 1427 if (is_mismatched) { 1428 st->set_mismatched_access(); 1429 } 1430 return st; 1431 } 1432 1433 // We're loading from an object which has autobox behaviour. 1434 // If this object is result of a valueOf call we'll have a phi 1435 // merging a newly allocated object and a load from the cache. 1436 // We want to replace this load with the original incoming 1437 // argument to the valueOf call. 1438 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) { 1439 assert(igvn->C->eliminate_boxing(), "sanity"); 1440 intptr_t ignore = 0; 1441 Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore); 1442 if ((base == nullptr) || base->is_Phi()) { 1443 // Push the loads from the phi that comes from valueOf up 1444 // through it to allow elimination of the loads and the recovery 1445 // of the original value. It is done in split_through_phi(). 1446 return nullptr; 1447 } else if (base->is_Load() || 1448 (base->is_DecodeN() && base->in(1)->is_Load())) { 1449 // Eliminate the load of boxed value for integer types from the cache 1450 // array by deriving the value from the index into the array. 1451 // Capture the offset of the load and then reverse the computation. 1452 1453 // Get LoadN node which loads a boxing object from 'cache' array. 1454 if (base->is_DecodeN()) { 1455 base = base->in(1); 1456 } 1457 if (!base->in(Address)->is_AddP()) { 1458 return nullptr; // Complex address 1459 } 1460 AddPNode* address = base->in(Address)->as_AddP(); 1461 Node* cache_base = address->in(AddPNode::Base); 1462 if ((cache_base != nullptr) && cache_base->is_DecodeN()) { 1463 // Get ConP node which is static 'cache' field. 1464 cache_base = cache_base->in(1); 1465 } 1466 if ((cache_base != nullptr) && cache_base->is_Con()) { 1467 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr(); 1468 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 1469 Node* elements[4]; 1470 int shift = exact_log2(type2aelembytes(T_OBJECT)); 1471 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)); 1472 if (count > 0 && elements[0]->is_Con() && 1473 (count == 1 || 1474 (count == 2 && elements[1]->Opcode() == Op_LShiftX && 1475 elements[1]->in(2) == igvn->intcon(shift)))) { 1476 ciObjArray* array = base_type->const_oop()->as_obj_array(); 1477 // Fetch the box object cache[0] at the base of the array and get its value 1478 ciInstance* box = array->obj_at(0)->as_instance(); 1479 ciInstanceKlass* ik = box->klass()->as_instance_klass(); 1480 assert(ik->is_box_klass(), "sanity"); 1481 assert(ik->nof_nonstatic_fields() == 1, "change following code"); 1482 if (ik->nof_nonstatic_fields() == 1) { 1483 // This should be true nonstatic_field_at requires calling 1484 // nof_nonstatic_fields so check it anyway 1485 ciConstant c = box->field_value(ik->nonstatic_field_at(0)); 1486 BasicType bt = c.basic_type(); 1487 // Only integer types have boxing cache. 1488 assert(bt == T_BOOLEAN || bt == T_CHAR || 1489 bt == T_BYTE || bt == T_SHORT || 1490 bt == T_INT || bt == T_LONG, "wrong type = %s", type2name(bt)); 1491 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int(); 1492 if (cache_low != (int)cache_low) { 1493 return nullptr; // should not happen since cache is array indexed by value 1494 } 1495 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift); 1496 if (offset != (int)offset) { 1497 return nullptr; // should not happen since cache is array indexed by value 1498 } 1499 // Add up all the offsets making of the address of the load 1500 Node* result = elements[0]; 1501 for (int i = 1; i < count; i++) { 1502 result = igvn->transform(new AddXNode(result, elements[i])); 1503 } 1504 // Remove the constant offset from the address and then 1505 result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset))); 1506 // remove the scaling of the offset to recover the original index. 1507 if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) { 1508 // Peel the shift off directly but wrap it in a dummy node 1509 // since Ideal can't return existing nodes 1510 igvn->_worklist.push(result); // remove dead node later 1511 result = new RShiftXNode(result->in(1), igvn->intcon(0)); 1512 } else if (result->is_Add() && result->in(2)->is_Con() && 1513 result->in(1)->Opcode() == Op_LShiftX && 1514 result->in(1)->in(2) == igvn->intcon(shift)) { 1515 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z) 1516 // but for boxing cache access we know that X<<Z will not overflow 1517 // (there is range check) so we do this optimizatrion by hand here. 1518 igvn->_worklist.push(result); // remove dead node later 1519 Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift)); 1520 result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con)); 1521 } else { 1522 result = new RShiftXNode(result, igvn->intcon(shift)); 1523 } 1524 #ifdef _LP64 1525 if (bt != T_LONG) { 1526 result = new ConvL2INode(igvn->transform(result)); 1527 } 1528 #else 1529 if (bt == T_LONG) { 1530 result = new ConvI2LNode(igvn->transform(result)); 1531 } 1532 #endif 1533 // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair). 1534 // Need to preserve unboxing load type if it is unsigned. 1535 switch(this->Opcode()) { 1536 case Op_LoadUB: 1537 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF)); 1538 break; 1539 case Op_LoadUS: 1540 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF)); 1541 break; 1542 } 1543 return result; 1544 } 1545 } 1546 } 1547 } 1548 } 1549 return nullptr; 1550 } 1551 1552 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) { 1553 Node* region = phi->in(0); 1554 if (region == nullptr) { 1555 return false; // Wait stable graph 1556 } 1557 uint cnt = phi->req(); 1558 for (uint i = 1; i < cnt; i++) { 1559 Node* rc = region->in(i); 1560 if (rc == nullptr || phase->type(rc) == Type::TOP) 1561 return false; // Wait stable graph 1562 Node* in = phi->in(i); 1563 if (in == nullptr || phase->type(in) == Type::TOP) 1564 return false; // Wait stable graph 1565 } 1566 return true; 1567 } 1568 1569 //------------------------------split_through_phi------------------------------ 1570 // Check whether a call to 'split_through_phi' would split this load through the 1571 // Phi *base*. This method is essentially a copy of the validations performed 1572 // by 'split_through_phi'. The first use of this method was in EA code as part 1573 // of simplification of allocation merges. 1574 // Some differences from original method (split_through_phi): 1575 // - If base->is_CastPP(): base = base->in(1) 1576 bool LoadNode::can_split_through_phi_base(PhaseGVN* phase) { 1577 Node* mem = in(Memory); 1578 Node* address = in(Address); 1579 intptr_t ignore = 0; 1580 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1581 1582 if (base->is_CastPP()) { 1583 base = base->in(1); 1584 } 1585 1586 if (req() > 3 || base == nullptr || !base->is_Phi()) { 1587 return false; 1588 } 1589 1590 if (!mem->is_Phi()) { 1591 if (!MemNode::all_controls_dominate(mem, base->in(0))) { 1592 return false; 1593 } 1594 } else if (base->in(0) != mem->in(0)) { 1595 if (!MemNode::all_controls_dominate(mem, base->in(0))) { 1596 return false; 1597 } 1598 } 1599 1600 return true; 1601 } 1602 1603 //------------------------------split_through_phi------------------------------ 1604 // Split instance or boxed field load through Phi. 1605 Node* LoadNode::split_through_phi(PhaseGVN* phase, bool ignore_missing_instance_id) { 1606 if (req() > 3) { 1607 assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs"); 1608 // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account 1609 return nullptr; 1610 } 1611 Node* mem = in(Memory); 1612 Node* address = in(Address); 1613 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr(); 1614 1615 assert((t_oop != nullptr) && 1616 (ignore_missing_instance_id || 1617 t_oop->is_known_instance_field() || 1618 t_oop->is_ptr_to_boxed_value()), "invalid conditions"); 1619 1620 Compile* C = phase->C; 1621 intptr_t ignore = 0; 1622 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1623 bool base_is_phi = (base != nullptr) && base->is_Phi(); 1624 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() && 1625 (base != nullptr) && (base == address->in(AddPNode::Base)) && 1626 phase->type(base)->higher_equal(TypePtr::NOTNULL); 1627 1628 if (!((mem->is_Phi() || base_is_phi) && 1629 (ignore_missing_instance_id || load_boxed_values || t_oop->is_known_instance_field()))) { 1630 return nullptr; // Neither memory or base are Phi 1631 } 1632 1633 if (mem->is_Phi()) { 1634 if (!stable_phi(mem->as_Phi(), phase)) { 1635 return nullptr; // Wait stable graph 1636 } 1637 uint cnt = mem->req(); 1638 // Check for loop invariant memory. 1639 if (cnt == 3) { 1640 for (uint i = 1; i < cnt; i++) { 1641 Node* in = mem->in(i); 1642 Node* m = optimize_memory_chain(in, t_oop, this, phase); 1643 if (m == mem) { 1644 if (i == 1) { 1645 // if the first edge was a loop, check second edge too. 1646 // If both are replaceable - we are in an infinite loop 1647 Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase); 1648 if (n == mem) { 1649 break; 1650 } 1651 } 1652 set_req(Memory, mem->in(cnt - i)); 1653 return this; // made change 1654 } 1655 } 1656 } 1657 } 1658 if (base_is_phi) { 1659 if (!stable_phi(base->as_Phi(), phase)) { 1660 return nullptr; // Wait stable graph 1661 } 1662 uint cnt = base->req(); 1663 // Check for loop invariant memory. 1664 if (cnt == 3) { 1665 for (uint i = 1; i < cnt; i++) { 1666 if (base->in(i) == base) { 1667 return nullptr; // Wait stable graph 1668 } 1669 } 1670 } 1671 } 1672 1673 // Split through Phi (see original code in loopopts.cpp). 1674 assert(ignore_missing_instance_id || C->have_alias_type(t_oop), "instance should have alias type"); 1675 1676 // Do nothing here if Identity will find a value 1677 // (to avoid infinite chain of value phis generation). 1678 if (this != Identity(phase)) { 1679 return nullptr; 1680 } 1681 1682 // Select Region to split through. 1683 Node* region; 1684 DomResult dom_result = DomResult::Dominate; 1685 if (!base_is_phi) { 1686 assert(mem->is_Phi(), "sanity"); 1687 region = mem->in(0); 1688 // Skip if the region dominates some control edge of the address. 1689 // We will check `dom_result` later. 1690 dom_result = MemNode::maybe_all_controls_dominate(address, region); 1691 } else if (!mem->is_Phi()) { 1692 assert(base_is_phi, "sanity"); 1693 region = base->in(0); 1694 // Skip if the region dominates some control edge of the memory. 1695 // We will check `dom_result` later. 1696 dom_result = MemNode::maybe_all_controls_dominate(mem, region); 1697 } else if (base->in(0) != mem->in(0)) { 1698 assert(base_is_phi && mem->is_Phi(), "sanity"); 1699 dom_result = MemNode::maybe_all_controls_dominate(mem, base->in(0)); 1700 if (dom_result == DomResult::Dominate) { 1701 region = base->in(0); 1702 } else { 1703 dom_result = MemNode::maybe_all_controls_dominate(address, mem->in(0)); 1704 if (dom_result == DomResult::Dominate) { 1705 region = mem->in(0); 1706 } 1707 // Otherwise we encountered a complex graph. 1708 } 1709 } else { 1710 assert(base->in(0) == mem->in(0), "sanity"); 1711 region = mem->in(0); 1712 } 1713 1714 PhaseIterGVN* igvn = phase->is_IterGVN(); 1715 if (dom_result != DomResult::Dominate) { 1716 if (dom_result == DomResult::EncounteredDeadCode) { 1717 // There is some dead code which eventually will be removed in IGVN. 1718 // Once this is the case, we get an unambiguous dominance result. 1719 // Push the node to the worklist again until the dead code is removed. 1720 igvn->_worklist.push(this); 1721 } 1722 return nullptr; 1723 } 1724 1725 Node* phi = nullptr; 1726 const Type* this_type = this->bottom_type(); 1727 if (t_oop != nullptr && (t_oop->is_known_instance_field() || load_boxed_values)) { 1728 int this_index = C->get_alias_index(t_oop); 1729 int this_offset = t_oop->offset(); 1730 int this_iid = t_oop->is_known_instance_field() ? t_oop->instance_id() : base->_idx; 1731 phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset); 1732 } else if (ignore_missing_instance_id) { 1733 phi = new PhiNode(region, this_type, nullptr, mem->_idx); 1734 } else { 1735 return nullptr; 1736 } 1737 1738 for (uint i = 1; i < region->req(); i++) { 1739 Node* x; 1740 Node* the_clone = nullptr; 1741 Node* in = region->in(i); 1742 if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl && 1743 in != nullptr && in->is_OuterStripMinedLoop()) { 1744 // No node should go in the outer strip mined loop 1745 in = in->in(LoopNode::EntryControl); 1746 } 1747 if (in == nullptr || in == C->top()) { 1748 x = C->top(); // Dead path? Use a dead data op 1749 } else { 1750 x = this->clone(); // Else clone up the data op 1751 the_clone = x; // Remember for possible deletion. 1752 // Alter data node to use pre-phi inputs 1753 if (this->in(0) == region) { 1754 x->set_req(0, in); 1755 } else { 1756 x->set_req(0, nullptr); 1757 } 1758 if (mem->is_Phi() && (mem->in(0) == region)) { 1759 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone. 1760 } 1761 if (address->is_Phi() && address->in(0) == region) { 1762 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone 1763 } 1764 if (base_is_phi && (base->in(0) == region)) { 1765 Node* base_x = base->in(i); // Clone address for loads from boxed objects. 1766 Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset))); 1767 x->set_req(Address, adr_x); 1768 } 1769 } 1770 // Check for a 'win' on some paths 1771 const Type *t = x->Value(igvn); 1772 1773 bool singleton = t->singleton(); 1774 1775 // See comments in PhaseIdealLoop::split_thru_phi(). 1776 if (singleton && t == Type::TOP) { 1777 singleton &= region->is_Loop() && (i != LoopNode::EntryControl); 1778 } 1779 1780 if (singleton) { 1781 x = igvn->makecon(t); 1782 } else { 1783 // We now call Identity to try to simplify the cloned node. 1784 // Note that some Identity methods call phase->type(this). 1785 // Make sure that the type array is big enough for 1786 // our new node, even though we may throw the node away. 1787 // (This tweaking with igvn only works because x is a new node.) 1788 igvn->set_type(x, t); 1789 // If x is a TypeNode, capture any more-precise type permanently into Node 1790 // otherwise it will be not updated during igvn->transform since 1791 // igvn->type(x) is set to x->Value() already. 1792 x->raise_bottom_type(t); 1793 Node* y = x->Identity(igvn); 1794 if (y != x) { 1795 x = y; 1796 } else { 1797 y = igvn->hash_find_insert(x); 1798 if (y) { 1799 x = y; 1800 } else { 1801 // Else x is a new node we are keeping 1802 // We do not need register_new_node_with_optimizer 1803 // because set_type has already been called. 1804 igvn->_worklist.push(x); 1805 } 1806 } 1807 } 1808 if (x != the_clone && the_clone != nullptr) { 1809 igvn->remove_dead_node(the_clone); 1810 } 1811 phi->set_req(i, x); 1812 } 1813 // Record Phi 1814 igvn->register_new_node_with_optimizer(phi); 1815 return phi; 1816 } 1817 1818 AllocateNode* LoadNode::is_new_object_mark_load() const { 1819 if (Opcode() == Op_LoadX) { 1820 Node* address = in(MemNode::Address); 1821 AllocateNode* alloc = AllocateNode::Ideal_allocation(address); 1822 Node* mem = in(MemNode::Memory); 1823 if (alloc != nullptr && mem->is_Proj() && 1824 mem->in(0) != nullptr && 1825 mem->in(0) == alloc->initialization() && 1826 alloc->initialization()->proj_out_or_null(0) != nullptr) { 1827 return alloc; 1828 } 1829 } 1830 return nullptr; 1831 } 1832 1833 1834 //------------------------------Ideal------------------------------------------ 1835 // If the load is from Field memory and the pointer is non-null, it might be possible to 1836 // zero out the control input. 1837 // If the offset is constant and the base is an object allocation, 1838 // try to hook me up to the exact initializing store. 1839 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1840 if (has_pinned_control_dependency()) { 1841 return nullptr; 1842 } 1843 Node* p = MemNode::Ideal_common(phase, can_reshape); 1844 if (p) return (p == NodeSentinel) ? nullptr : p; 1845 1846 Node* ctrl = in(MemNode::Control); 1847 Node* address = in(MemNode::Address); 1848 bool progress = false; 1849 1850 bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) && 1851 phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes()); 1852 1853 // Skip up past a SafePoint control. Cannot do this for Stores because 1854 // pointer stores & cardmarks must stay on the same side of a SafePoint. 1855 if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint && 1856 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw && 1857 !addr_mark && 1858 (depends_only_on_test() || has_unknown_control_dependency())) { 1859 ctrl = ctrl->in(0); 1860 set_req(MemNode::Control,ctrl); 1861 progress = true; 1862 } 1863 1864 intptr_t ignore = 0; 1865 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1866 if (base != nullptr 1867 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) { 1868 // Check for useless control edge in some common special cases 1869 if (in(MemNode::Control) != nullptr 1870 && can_remove_control() 1871 && phase->type(base)->higher_equal(TypePtr::NOTNULL) 1872 && all_controls_dominate(base, phase->C->start())) { 1873 // A method-invariant, non-null address (constant or 'this' argument). 1874 set_req(MemNode::Control, nullptr); 1875 progress = true; 1876 } 1877 } 1878 1879 Node* mem = in(MemNode::Memory); 1880 const TypePtr *addr_t = phase->type(address)->isa_ptr(); 1881 1882 if (can_reshape && (addr_t != nullptr)) { 1883 // try to optimize our memory input 1884 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase); 1885 if (opt_mem != mem) { 1886 set_req_X(MemNode::Memory, opt_mem, phase); 1887 if (phase->type( opt_mem ) == Type::TOP) return nullptr; 1888 return this; 1889 } 1890 const TypeOopPtr *t_oop = addr_t->isa_oopptr(); 1891 if ((t_oop != nullptr) && 1892 (t_oop->is_known_instance_field() || 1893 t_oop->is_ptr_to_boxed_value())) { 1894 PhaseIterGVN *igvn = phase->is_IterGVN(); 1895 assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true"); 1896 if (igvn->_worklist.member(opt_mem)) { 1897 // Delay this transformation until memory Phi is processed. 1898 igvn->_worklist.push(this); 1899 return nullptr; 1900 } 1901 // Split instance field load through Phi. 1902 Node* result = split_through_phi(phase); 1903 if (result != nullptr) return result; 1904 1905 if (t_oop->is_ptr_to_boxed_value()) { 1906 Node* result = eliminate_autobox(igvn); 1907 if (result != nullptr) return result; 1908 } 1909 } 1910 } 1911 1912 // Is there a dominating load that loads the same value? Leave 1913 // anything that is not a load of a field/array element (like 1914 // barriers etc.) alone 1915 if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) { 1916 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 1917 Node *use = mem->fast_out(i); 1918 if (use != this && 1919 use->Opcode() == Opcode() && 1920 use->in(0) != nullptr && 1921 use->in(0) != in(0) && 1922 use->in(Address) == in(Address)) { 1923 Node* ctl = in(0); 1924 for (int i = 0; i < 10 && ctl != nullptr; i++) { 1925 ctl = IfNode::up_one_dom(ctl); 1926 if (ctl == use->in(0)) { 1927 set_req(0, use->in(0)); 1928 return this; 1929 } 1930 } 1931 } 1932 } 1933 } 1934 1935 // Check for prior store with a different base or offset; make Load 1936 // independent. Skip through any number of them. Bail out if the stores 1937 // are in an endless dead cycle and report no progress. This is a key 1938 // transform for Reflection. However, if after skipping through the Stores 1939 // we can't then fold up against a prior store do NOT do the transform as 1940 // this amounts to using the 'Oracle' model of aliasing. It leaves the same 1941 // array memory alive twice: once for the hoisted Load and again after the 1942 // bypassed Store. This situation only works if EVERYBODY who does 1943 // anti-dependence work knows how to bypass. I.e. we need all 1944 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is 1945 // the alias index stuff. So instead, peek through Stores and IFF we can 1946 // fold up, do so. 1947 Node* prev_mem = find_previous_store(phase); 1948 if (prev_mem != nullptr) { 1949 Node* value = can_see_arraycopy_value(prev_mem, phase); 1950 if (value != nullptr) { 1951 return value; 1952 } 1953 } 1954 // Steps (a), (b): Walk past independent stores to find an exact match. 1955 if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) { 1956 // (c) See if we can fold up on the spot, but don't fold up here. 1957 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or 1958 // just return a prior value, which is done by Identity calls. 1959 if (can_see_stored_value(prev_mem, phase)) { 1960 // Make ready for step (d): 1961 set_req_X(MemNode::Memory, prev_mem, phase); 1962 return this; 1963 } 1964 } 1965 1966 return progress ? this : nullptr; 1967 } 1968 1969 // Helper to recognize certain Klass fields which are invariant across 1970 // some group of array types (e.g., int[] or all T[] where T < Object). 1971 const Type* 1972 LoadNode::load_array_final_field(const TypeKlassPtr *tkls, 1973 ciKlass* klass) const { 1974 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) { 1975 // The field is Klass::_modifier_flags. Return its (constant) value. 1976 // (Folds up the 2nd indirection in aClassConstant.getModifiers().) 1977 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags"); 1978 return TypeInt::make(klass->modifier_flags()); 1979 } 1980 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) { 1981 // The field is Klass::_access_flags. Return its (constant) value. 1982 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 1983 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags"); 1984 return TypeInt::make(klass->access_flags()); 1985 } 1986 if (tkls->offset() == in_bytes(Klass::misc_flags_offset())) { 1987 // The field is Klass::_misc_flags. Return its (constant) value. 1988 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 1989 assert(this->Opcode() == Op_LoadUB, "must load an unsigned byte from _misc_flags"); 1990 return TypeInt::make(klass->misc_flags()); 1991 } 1992 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) { 1993 // The field is Klass::_layout_helper. Return its constant value if known. 1994 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper"); 1995 return TypeInt::make(klass->layout_helper()); 1996 } 1997 1998 // No match. 1999 return nullptr; 2000 } 2001 2002 //------------------------------Value----------------------------------------- 2003 const Type* LoadNode::Value(PhaseGVN* phase) const { 2004 // Either input is TOP ==> the result is TOP 2005 Node* mem = in(MemNode::Memory); 2006 const Type *t1 = phase->type(mem); 2007 if (t1 == Type::TOP) return Type::TOP; 2008 Node* adr = in(MemNode::Address); 2009 const TypePtr* tp = phase->type(adr)->isa_ptr(); 2010 if (tp == nullptr || tp->empty()) return Type::TOP; 2011 int off = tp->offset(); 2012 assert(off != Type::OffsetTop, "case covered by TypePtr::empty"); 2013 Compile* C = phase->C; 2014 2015 // Try to guess loaded type from pointer type 2016 if (tp->isa_aryptr()) { 2017 const TypeAryPtr* ary = tp->is_aryptr(); 2018 const Type* t = ary->elem(); 2019 2020 // Determine whether the reference is beyond the header or not, by comparing 2021 // the offset against the offset of the start of the array's data. 2022 // Different array types begin at slightly different offsets (12 vs. 16). 2023 // We choose T_BYTE as an example base type that is least restrictive 2024 // as to alignment, which will therefore produce the smallest 2025 // possible base offset. 2026 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE); 2027 const bool off_beyond_header = (off >= min_base_off); 2028 2029 // Try to constant-fold a stable array element. 2030 if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) { 2031 // Make sure the reference is not into the header and the offset is constant 2032 ciObject* aobj = ary->const_oop(); 2033 if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) { 2034 int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0); 2035 const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off, 2036 stable_dimension, 2037 memory_type(), is_unsigned()); 2038 if (con_type != nullptr) { 2039 return con_type; 2040 } 2041 } 2042 } 2043 2044 // Don't do this for integer types. There is only potential profit if 2045 // the element type t is lower than _type; that is, for int types, if _type is 2046 // more restrictive than t. This only happens here if one is short and the other 2047 // char (both 16 bits), and in those cases we've made an intentional decision 2048 // to use one kind of load over the other. See AndINode::Ideal and 4965907. 2049 // Also, do not try to narrow the type for a LoadKlass, regardless of offset. 2050 // 2051 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8)) 2052 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier 2053 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been 2054 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed, 2055 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any. 2056 // In fact, that could have been the original type of p1, and p1 could have 2057 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the 2058 // expression (LShiftL quux 3) independently optimized to the constant 8. 2059 if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr) 2060 && (_type->isa_vect() == nullptr) 2061 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) { 2062 // t might actually be lower than _type, if _type is a unique 2063 // concrete subclass of abstract class t. 2064 if (off_beyond_header || off == Type::OffsetBot) { // is the offset beyond the header? 2065 const Type* jt = t->join_speculative(_type); 2066 // In any case, do not allow the join, per se, to empty out the type. 2067 if (jt->empty() && !t->empty()) { 2068 // This can happen if a interface-typed array narrows to a class type. 2069 jt = _type; 2070 } 2071 #ifdef ASSERT 2072 if (phase->C->eliminate_boxing() && adr->is_AddP()) { 2073 // The pointers in the autobox arrays are always non-null 2074 Node* base = adr->in(AddPNode::Base); 2075 if ((base != nullptr) && base->is_DecodeN()) { 2076 // Get LoadN node which loads IntegerCache.cache field 2077 base = base->in(1); 2078 } 2079 if ((base != nullptr) && base->is_Con()) { 2080 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr(); 2081 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 2082 // It could be narrow oop 2083 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity"); 2084 } 2085 } 2086 } 2087 #endif 2088 return jt; 2089 } 2090 } 2091 } else if (tp->base() == Type::InstPtr) { 2092 assert( off != Type::OffsetBot || 2093 // arrays can be cast to Objects 2094 !tp->isa_instptr() || 2095 tp->is_instptr()->instance_klass()->is_java_lang_Object() || 2096 // unsafe field access may not have a constant offset 2097 C->has_unsafe_access(), 2098 "Field accesses must be precise" ); 2099 // For oop loads, we expect the _type to be precise. 2100 2101 // Optimize loads from constant fields. 2102 const TypeInstPtr* tinst = tp->is_instptr(); 2103 ciObject* const_oop = tinst->const_oop(); 2104 if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) { 2105 const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type()); 2106 if (con_type != nullptr) { 2107 return con_type; 2108 } 2109 } 2110 } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) { 2111 assert(off != Type::OffsetBot || 2112 !tp->isa_instklassptr() || 2113 // arrays can be cast to Objects 2114 tp->isa_instklassptr()->instance_klass()->is_java_lang_Object() || 2115 // also allow array-loading from the primary supertype 2116 // array during subtype checks 2117 Opcode() == Op_LoadKlass, 2118 "Field accesses must be precise"); 2119 // For klass/static loads, we expect the _type to be precise 2120 } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) { 2121 /* With mirrors being an indirect in the Klass* 2122 * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset)) 2123 * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass). 2124 * 2125 * So check the type and klass of the node before the LoadP. 2126 */ 2127 Node* adr2 = adr->in(MemNode::Address); 2128 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2129 if (tkls != nullptr && !StressReflectiveCode) { 2130 if (tkls->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) { 2131 ciKlass* klass = tkls->exact_klass(); 2132 assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2133 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2134 return TypeInstPtr::make(klass->java_mirror()); 2135 } 2136 } 2137 } 2138 2139 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2140 if (tkls != nullptr) { 2141 if (tkls->is_loaded() && tkls->klass_is_exact()) { 2142 ciKlass* klass = tkls->exact_klass(); 2143 // We are loading a field from a Klass metaobject whose identity 2144 // is known at compile time (the type is "exact" or "precise"). 2145 // Check for fields we know are maintained as constants by the VM. 2146 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) { 2147 // The field is Klass::_super_check_offset. Return its (constant) value. 2148 // (Folds up type checking code.) 2149 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset"); 2150 return TypeInt::make(klass->super_check_offset()); 2151 } 2152 // Compute index into primary_supers array 2153 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2154 // Check for overflowing; use unsigned compare to handle the negative case. 2155 if( depth < ciKlass::primary_super_limit() ) { 2156 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2157 // (Folds up type checking code.) 2158 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2159 ciKlass *ss = klass->super_of_depth(depth); 2160 return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR; 2161 } 2162 const Type* aift = load_array_final_field(tkls, klass); 2163 if (aift != nullptr) return aift; 2164 } 2165 2166 // We can still check if we are loading from the primary_supers array at a 2167 // shallow enough depth. Even though the klass is not exact, entries less 2168 // than or equal to its super depth are correct. 2169 if (tkls->is_loaded()) { 2170 ciKlass* klass = nullptr; 2171 if (tkls->isa_instklassptr()) { 2172 klass = tkls->is_instklassptr()->instance_klass(); 2173 } else { 2174 int dims; 2175 const Type* inner = tkls->is_aryklassptr()->base_element_type(dims); 2176 if (inner->isa_instklassptr()) { 2177 klass = inner->is_instklassptr()->instance_klass(); 2178 klass = ciObjArrayKlass::make(klass, dims); 2179 } 2180 } 2181 if (klass != nullptr) { 2182 // Compute index into primary_supers array 2183 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2184 // Check for overflowing; use unsigned compare to handle the negative case. 2185 if (depth < ciKlass::primary_super_limit() && 2186 depth <= klass->super_depth()) { // allow self-depth checks to handle self-check case 2187 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2188 // (Folds up type checking code.) 2189 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2190 ciKlass *ss = klass->super_of_depth(depth); 2191 return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR; 2192 } 2193 } 2194 } 2195 2196 // If the type is enough to determine that the thing is not an array, 2197 // we can give the layout_helper a positive interval type. 2198 // This will help short-circuit some reflective code. 2199 if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) && 2200 tkls->isa_instklassptr() && // not directly typed as an array 2201 !tkls->is_instklassptr()->instance_klass()->is_java_lang_Object() // not the supertype of all T[] and specifically not Serializable & Cloneable 2202 ) { 2203 // Note: When interfaces are reliable, we can narrow the interface 2204 // test to (klass != Serializable && klass != Cloneable). 2205 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper"); 2206 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false); 2207 // The key property of this type is that it folds up tests 2208 // for array-ness, since it proves that the layout_helper is positive. 2209 // Thus, a generic value like the basic object layout helper works fine. 2210 return TypeInt::make(min_size, max_jint, Type::WidenMin); 2211 } 2212 } 2213 2214 // If we are loading from a freshly-allocated object, produce a zero, 2215 // if the load is provably beyond the header of the object. 2216 // (Also allow a variable load from a fresh array to produce zero.) 2217 const TypeOopPtr *tinst = tp->isa_oopptr(); 2218 bool is_instance = (tinst != nullptr) && tinst->is_known_instance_field(); 2219 bool is_boxed_value = (tinst != nullptr) && tinst->is_ptr_to_boxed_value(); 2220 if (ReduceFieldZeroing || is_instance || is_boxed_value) { 2221 Node* value = can_see_stored_value(mem,phase); 2222 if (value != nullptr && value->is_Con()) { 2223 assert(value->bottom_type()->higher_equal(_type),"sanity"); 2224 return value->bottom_type(); 2225 } 2226 } 2227 2228 bool is_vect = (_type->isa_vect() != nullptr); 2229 if (is_instance && !is_vect) { 2230 // If we have an instance type and our memory input is the 2231 // programs's initial memory state, there is no matching store, 2232 // so just return a zero of the appropriate type - 2233 // except if it is vectorized - then we have no zero constant. 2234 Node *mem = in(MemNode::Memory); 2235 if (mem->is_Parm() && mem->in(0)->is_Start()) { 2236 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm"); 2237 return Type::get_zero_type(_type->basic_type()); 2238 } 2239 } 2240 2241 Node* alloc = is_new_object_mark_load(); 2242 if (alloc != nullptr) { 2243 return TypeX::make(markWord::prototype().value()); 2244 } 2245 2246 return _type; 2247 } 2248 2249 //------------------------------match_edge------------------------------------- 2250 // Do we Match on this edge index or not? Match only the address. 2251 uint LoadNode::match_edge(uint idx) const { 2252 return idx == MemNode::Address; 2253 } 2254 2255 //--------------------------LoadBNode::Ideal-------------------------------------- 2256 // 2257 // If the previous store is to the same address as this load, 2258 // and the value stored was larger than a byte, replace this load 2259 // with the value stored truncated to a byte. If no truncation is 2260 // needed, the replacement is done in LoadNode::Identity(). 2261 // 2262 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2263 Node* mem = in(MemNode::Memory); 2264 Node* value = can_see_stored_value(mem,phase); 2265 if (value != nullptr) { 2266 Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false); 2267 if (narrow != value) { 2268 return narrow; 2269 } 2270 } 2271 // Identity call will handle the case where truncation is not needed. 2272 return LoadNode::Ideal(phase, can_reshape); 2273 } 2274 2275 const Type* LoadBNode::Value(PhaseGVN* phase) const { 2276 Node* mem = in(MemNode::Memory); 2277 Node* value = can_see_stored_value(mem,phase); 2278 if (value != nullptr && value->is_Con() && 2279 !value->bottom_type()->higher_equal(_type)) { 2280 // If the input to the store does not fit with the load's result type, 2281 // it must be truncated. We can't delay until Ideal call since 2282 // a singleton Value is needed for split_thru_phi optimization. 2283 int con = value->get_int(); 2284 return TypeInt::make((con << 24) >> 24); 2285 } 2286 return LoadNode::Value(phase); 2287 } 2288 2289 //--------------------------LoadUBNode::Ideal------------------------------------- 2290 // 2291 // If the previous store is to the same address as this load, 2292 // and the value stored was larger than a byte, replace this load 2293 // with the value stored truncated to a byte. If no truncation is 2294 // needed, the replacement is done in LoadNode::Identity(). 2295 // 2296 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2297 Node* mem = in(MemNode::Memory); 2298 Node* value = can_see_stored_value(mem, phase); 2299 if (value != nullptr) { 2300 Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false); 2301 if (narrow != value) { 2302 return narrow; 2303 } 2304 } 2305 // Identity call will handle the case where truncation is not needed. 2306 return LoadNode::Ideal(phase, can_reshape); 2307 } 2308 2309 const Type* LoadUBNode::Value(PhaseGVN* phase) const { 2310 Node* mem = in(MemNode::Memory); 2311 Node* value = can_see_stored_value(mem,phase); 2312 if (value != nullptr && value->is_Con() && 2313 !value->bottom_type()->higher_equal(_type)) { 2314 // If the input to the store does not fit with the load's result type, 2315 // it must be truncated. We can't delay until Ideal call since 2316 // a singleton Value is needed for split_thru_phi optimization. 2317 int con = value->get_int(); 2318 return TypeInt::make(con & 0xFF); 2319 } 2320 return LoadNode::Value(phase); 2321 } 2322 2323 //--------------------------LoadUSNode::Ideal------------------------------------- 2324 // 2325 // If the previous store is to the same address as this load, 2326 // and the value stored was larger than a char, replace this load 2327 // with the value stored truncated to a char. If no truncation is 2328 // needed, the replacement is done in LoadNode::Identity(). 2329 // 2330 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2331 Node* mem = in(MemNode::Memory); 2332 Node* value = can_see_stored_value(mem,phase); 2333 if (value != nullptr) { 2334 Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false); 2335 if (narrow != value) { 2336 return narrow; 2337 } 2338 } 2339 // Identity call will handle the case where truncation is not needed. 2340 return LoadNode::Ideal(phase, can_reshape); 2341 } 2342 2343 const Type* LoadUSNode::Value(PhaseGVN* phase) const { 2344 Node* mem = in(MemNode::Memory); 2345 Node* value = can_see_stored_value(mem,phase); 2346 if (value != nullptr && value->is_Con() && 2347 !value->bottom_type()->higher_equal(_type)) { 2348 // If the input to the store does not fit with the load's result type, 2349 // it must be truncated. We can't delay until Ideal call since 2350 // a singleton Value is needed for split_thru_phi optimization. 2351 int con = value->get_int(); 2352 return TypeInt::make(con & 0xFFFF); 2353 } 2354 return LoadNode::Value(phase); 2355 } 2356 2357 //--------------------------LoadSNode::Ideal-------------------------------------- 2358 // 2359 // If the previous store is to the same address as this load, 2360 // and the value stored was larger than a short, replace this load 2361 // with the value stored truncated to a short. If no truncation is 2362 // needed, the replacement is done in LoadNode::Identity(). 2363 // 2364 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2365 Node* mem = in(MemNode::Memory); 2366 Node* value = can_see_stored_value(mem,phase); 2367 if (value != nullptr) { 2368 Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false); 2369 if (narrow != value) { 2370 return narrow; 2371 } 2372 } 2373 // Identity call will handle the case where truncation is not needed. 2374 return LoadNode::Ideal(phase, can_reshape); 2375 } 2376 2377 const Type* LoadSNode::Value(PhaseGVN* phase) const { 2378 Node* mem = in(MemNode::Memory); 2379 Node* value = can_see_stored_value(mem,phase); 2380 if (value != nullptr && value->is_Con() && 2381 !value->bottom_type()->higher_equal(_type)) { 2382 // If the input to the store does not fit with the load's result type, 2383 // it must be truncated. We can't delay until Ideal call since 2384 // a singleton Value is needed for split_thru_phi optimization. 2385 int con = value->get_int(); 2386 return TypeInt::make((con << 16) >> 16); 2387 } 2388 return LoadNode::Value(phase); 2389 } 2390 2391 //============================================================================= 2392 //----------------------------LoadKlassNode::make------------------------------ 2393 // Polymorphic factory method: 2394 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) { 2395 // sanity check the alias category against the created node type 2396 const TypePtr *adr_type = adr->bottom_type()->isa_ptr(); 2397 assert(adr_type != nullptr, "expecting TypeKlassPtr"); 2398 #ifdef _LP64 2399 if (adr_type->is_ptr_to_narrowklass()) { 2400 assert(UseCompressedClassPointers, "no compressed klasses"); 2401 Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered)); 2402 return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr()); 2403 } 2404 #endif 2405 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop"); 2406 return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered); 2407 } 2408 2409 //------------------------------Value------------------------------------------ 2410 const Type* LoadKlassNode::Value(PhaseGVN* phase) const { 2411 return klass_value_common(phase); 2412 } 2413 2414 // In most cases, LoadKlassNode does not have the control input set. If the control 2415 // input is set, it must not be removed (by LoadNode::Ideal()). 2416 bool LoadKlassNode::can_remove_control() const { 2417 return false; 2418 } 2419 2420 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const { 2421 // Either input is TOP ==> the result is TOP 2422 const Type *t1 = phase->type( in(MemNode::Memory) ); 2423 if (t1 == Type::TOP) return Type::TOP; 2424 Node *adr = in(MemNode::Address); 2425 const Type *t2 = phase->type( adr ); 2426 if (t2 == Type::TOP) return Type::TOP; 2427 const TypePtr *tp = t2->is_ptr(); 2428 if (TypePtr::above_centerline(tp->ptr()) || 2429 tp->ptr() == TypePtr::Null) return Type::TOP; 2430 2431 // Return a more precise klass, if possible 2432 const TypeInstPtr *tinst = tp->isa_instptr(); 2433 if (tinst != nullptr) { 2434 ciInstanceKlass* ik = tinst->instance_klass(); 2435 int offset = tinst->offset(); 2436 if (ik == phase->C->env()->Class_klass() 2437 && (offset == java_lang_Class::klass_offset() || 2438 offset == java_lang_Class::array_klass_offset())) { 2439 // We are loading a special hidden field from a Class mirror object, 2440 // the field which points to the VM's Klass metaobject. 2441 ciType* t = tinst->java_mirror_type(); 2442 // java_mirror_type returns non-null for compile-time Class constants. 2443 if (t != nullptr) { 2444 // constant oop => constant klass 2445 if (offset == java_lang_Class::array_klass_offset()) { 2446 if (t->is_void()) { 2447 // We cannot create a void array. Since void is a primitive type return null 2448 // klass. Users of this result need to do a null check on the returned klass. 2449 return TypePtr::NULL_PTR; 2450 } 2451 return TypeKlassPtr::make(ciArrayKlass::make(t), Type::trust_interfaces); 2452 } 2453 if (!t->is_klass()) { 2454 // a primitive Class (e.g., int.class) has null for a klass field 2455 return TypePtr::NULL_PTR; 2456 } 2457 // (Folds up the 1st indirection in aClassConstant.getModifiers().) 2458 return TypeKlassPtr::make(t->as_klass(), Type::trust_interfaces); 2459 } 2460 // non-constant mirror, so we can't tell what's going on 2461 } 2462 if (!tinst->is_loaded()) 2463 return _type; // Bail out if not loaded 2464 if (offset == oopDesc::klass_offset_in_bytes()) { 2465 return tinst->as_klass_type(true); 2466 } 2467 } 2468 2469 // Check for loading klass from an array 2470 const TypeAryPtr *tary = tp->isa_aryptr(); 2471 if (tary != nullptr && 2472 tary->offset() == oopDesc::klass_offset_in_bytes()) { 2473 return tary->as_klass_type(true); 2474 } 2475 2476 // Check for loading klass from an array klass 2477 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2478 if (tkls != nullptr && !StressReflectiveCode) { 2479 if (!tkls->is_loaded()) 2480 return _type; // Bail out if not loaded 2481 if (tkls->isa_aryklassptr() && tkls->is_aryklassptr()->elem()->isa_klassptr() && 2482 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) { 2483 // // Always returning precise element type is incorrect, 2484 // // e.g., element type could be object and array may contain strings 2485 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0); 2486 2487 // The array's TypeKlassPtr was declared 'precise' or 'not precise' 2488 // according to the element type's subclassing. 2489 return tkls->is_aryklassptr()->elem()->isa_klassptr()->cast_to_exactness(tkls->klass_is_exact()); 2490 } 2491 if (tkls->isa_instklassptr() != nullptr && tkls->klass_is_exact() && 2492 tkls->offset() == in_bytes(Klass::super_offset())) { 2493 ciKlass* sup = tkls->is_instklassptr()->instance_klass()->super(); 2494 // The field is Klass::_super. Return its (constant) value. 2495 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().) 2496 return sup ? TypeKlassPtr::make(sup, Type::trust_interfaces) : TypePtr::NULL_PTR; 2497 } 2498 } 2499 2500 if (tkls != nullptr && !UseSecondarySupersCache 2501 && tkls->offset() == in_bytes(Klass::secondary_super_cache_offset())) { 2502 // Treat Klass::_secondary_super_cache as a constant when the cache is disabled. 2503 return TypePtr::NULL_PTR; 2504 } 2505 2506 // Bailout case 2507 return LoadNode::Value(phase); 2508 } 2509 2510 //------------------------------Identity--------------------------------------- 2511 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k. 2512 // Also feed through the klass in Allocate(...klass...)._klass. 2513 Node* LoadKlassNode::Identity(PhaseGVN* phase) { 2514 return klass_identity_common(phase); 2515 } 2516 2517 Node* LoadNode::klass_identity_common(PhaseGVN* phase) { 2518 Node* x = LoadNode::Identity(phase); 2519 if (x != this) return x; 2520 2521 // Take apart the address into an oop and offset. 2522 // Return 'this' if we cannot. 2523 Node* adr = in(MemNode::Address); 2524 intptr_t offset = 0; 2525 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2526 if (base == nullptr) return this; 2527 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr(); 2528 if (toop == nullptr) return this; 2529 2530 // Step over potential GC barrier for OopHandle resolve 2531 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2532 if (bs->is_gc_barrier_node(base)) { 2533 base = bs->step_over_gc_barrier(base); 2534 } 2535 2536 // We can fetch the klass directly through an AllocateNode. 2537 // This works even if the klass is not constant (clone or newArray). 2538 if (offset == oopDesc::klass_offset_in_bytes()) { 2539 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase); 2540 if (allocated_klass != nullptr) { 2541 return allocated_klass; 2542 } 2543 } 2544 2545 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*. 2546 // See inline_native_Class_query for occurrences of these patterns. 2547 // Java Example: x.getClass().isAssignableFrom(y) 2548 // 2549 // This improves reflective code, often making the Class 2550 // mirror go completely dead. (Current exception: Class 2551 // mirrors may appear in debug info, but we could clean them out by 2552 // introducing a new debug info operator for Klass.java_mirror). 2553 2554 if (toop->isa_instptr() && toop->is_instptr()->instance_klass() == phase->C->env()->Class_klass() 2555 && offset == java_lang_Class::klass_offset()) { 2556 if (base->is_Load()) { 2557 Node* base2 = base->in(MemNode::Address); 2558 if (base2->is_Load()) { /* direct load of a load which is the OopHandle */ 2559 Node* adr2 = base2->in(MemNode::Address); 2560 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2561 if (tkls != nullptr && !tkls->empty() 2562 && (tkls->isa_instklassptr() || tkls->isa_aryklassptr()) 2563 && adr2->is_AddP() 2564 ) { 2565 int mirror_field = in_bytes(Klass::java_mirror_offset()); 2566 if (tkls->offset() == mirror_field) { 2567 return adr2->in(AddPNode::Base); 2568 } 2569 } 2570 } 2571 } 2572 } 2573 2574 return this; 2575 } 2576 2577 LoadNode* LoadNode::clone_pinned() const { 2578 LoadNode* ld = clone()->as_Load(); 2579 ld->_control_dependency = UnknownControl; 2580 return ld; 2581 } 2582 2583 2584 //------------------------------Value------------------------------------------ 2585 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const { 2586 const Type *t = klass_value_common(phase); 2587 if (t == Type::TOP) 2588 return t; 2589 2590 return t->make_narrowklass(); 2591 } 2592 2593 //------------------------------Identity--------------------------------------- 2594 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k. 2595 // Also feed through the klass in Allocate(...klass...)._klass. 2596 Node* LoadNKlassNode::Identity(PhaseGVN* phase) { 2597 Node *x = klass_identity_common(phase); 2598 2599 const Type *t = phase->type( x ); 2600 if( t == Type::TOP ) return x; 2601 if( t->isa_narrowklass()) return x; 2602 assert (!t->isa_narrowoop(), "no narrow oop here"); 2603 2604 return phase->transform(new EncodePKlassNode(x, t->make_narrowklass())); 2605 } 2606 2607 //------------------------------Value----------------------------------------- 2608 const Type* LoadRangeNode::Value(PhaseGVN* phase) const { 2609 // Either input is TOP ==> the result is TOP 2610 const Type *t1 = phase->type( in(MemNode::Memory) ); 2611 if( t1 == Type::TOP ) return Type::TOP; 2612 Node *adr = in(MemNode::Address); 2613 const Type *t2 = phase->type( adr ); 2614 if( t2 == Type::TOP ) return Type::TOP; 2615 const TypePtr *tp = t2->is_ptr(); 2616 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP; 2617 const TypeAryPtr *tap = tp->isa_aryptr(); 2618 if( !tap ) return _type; 2619 return tap->size(); 2620 } 2621 2622 //-------------------------------Ideal--------------------------------------- 2623 // Feed through the length in AllocateArray(...length...)._length. 2624 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2625 Node* p = MemNode::Ideal_common(phase, can_reshape); 2626 if (p) return (p == NodeSentinel) ? nullptr : p; 2627 2628 // Take apart the address into an oop and offset. 2629 // Return 'this' if we cannot. 2630 Node* adr = in(MemNode::Address); 2631 intptr_t offset = 0; 2632 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2633 if (base == nullptr) return nullptr; 2634 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2635 if (tary == nullptr) return nullptr; 2636 2637 // We can fetch the length directly through an AllocateArrayNode. 2638 // This works even if the length is not constant (clone or newArray). 2639 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2640 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base); 2641 if (alloc != nullptr) { 2642 Node* allocated_length = alloc->Ideal_length(); 2643 Node* len = alloc->make_ideal_length(tary, phase); 2644 if (allocated_length != len) { 2645 // New CastII improves on this. 2646 return len; 2647 } 2648 } 2649 } 2650 2651 return nullptr; 2652 } 2653 2654 //------------------------------Identity--------------------------------------- 2655 // Feed through the length in AllocateArray(...length...)._length. 2656 Node* LoadRangeNode::Identity(PhaseGVN* phase) { 2657 Node* x = LoadINode::Identity(phase); 2658 if (x != this) return x; 2659 2660 // Take apart the address into an oop and offset. 2661 // Return 'this' if we cannot. 2662 Node* adr = in(MemNode::Address); 2663 intptr_t offset = 0; 2664 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2665 if (base == nullptr) return this; 2666 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2667 if (tary == nullptr) return this; 2668 2669 // We can fetch the length directly through an AllocateArrayNode. 2670 // This works even if the length is not constant (clone or newArray). 2671 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2672 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base); 2673 if (alloc != nullptr) { 2674 Node* allocated_length = alloc->Ideal_length(); 2675 // Do not allow make_ideal_length to allocate a CastII node. 2676 Node* len = alloc->make_ideal_length(tary, phase, false); 2677 if (allocated_length == len) { 2678 // Return allocated_length only if it would not be improved by a CastII. 2679 return allocated_length; 2680 } 2681 } 2682 } 2683 2684 return this; 2685 2686 } 2687 2688 //============================================================================= 2689 //---------------------------StoreNode::make----------------------------------- 2690 // Polymorphic factory method: 2691 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) { 2692 assert((mo == unordered || mo == release), "unexpected"); 2693 Compile* C = gvn.C; 2694 assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 2695 ctl != nullptr, "raw memory operations should have control edge"); 2696 2697 switch (bt) { 2698 case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case 2699 case T_BYTE: return new StoreBNode(ctl, mem, adr, adr_type, val, mo); 2700 case T_INT: return new StoreINode(ctl, mem, adr, adr_type, val, mo); 2701 case T_CHAR: 2702 case T_SHORT: return new StoreCNode(ctl, mem, adr, adr_type, val, mo); 2703 case T_LONG: return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2704 case T_FLOAT: return new StoreFNode(ctl, mem, adr, adr_type, val, mo); 2705 case T_DOUBLE: return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2706 case T_METADATA: 2707 case T_ADDRESS: 2708 case T_OBJECT: 2709 #ifdef _LP64 2710 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 2711 val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop())); 2712 return new StoreNNode(ctl, mem, adr, adr_type, val, mo); 2713 } else if (adr->bottom_type()->is_ptr_to_narrowklass() || 2714 (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() && 2715 adr->bottom_type()->isa_rawptr())) { 2716 val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass())); 2717 return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo); 2718 } 2719 #endif 2720 { 2721 return new StorePNode(ctl, mem, adr, adr_type, val, mo); 2722 } 2723 default: 2724 ShouldNotReachHere(); 2725 return (StoreNode*)nullptr; 2726 } 2727 } 2728 2729 //--------------------------bottom_type---------------------------------------- 2730 const Type *StoreNode::bottom_type() const { 2731 return Type::MEMORY; 2732 } 2733 2734 //------------------------------hash------------------------------------------- 2735 uint StoreNode::hash() const { 2736 // unroll addition of interesting fields 2737 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn); 2738 2739 // Since they are not commoned, do not hash them: 2740 return NO_HASH; 2741 } 2742 2743 // Link together multiple stores (B/S/C/I) into a longer one. 2744 // 2745 // Example: _store = StoreB[i+3] 2746 // 2747 // RangeCheck[i+0] RangeCheck[i+0] 2748 // StoreB[i+0] 2749 // RangeCheck[i+3] RangeCheck[i+3] 2750 // StoreB[i+1] --> pass: fail: 2751 // StoreB[i+2] StoreI[i+0] StoreB[i+0] 2752 // StoreB[i+3] 2753 // 2754 // The 4 StoreB are merged into a single StoreI node. We have to be careful with RangeCheck[i+1]: before 2755 // the optimization, if this RangeCheck[i+1] fails, then we execute only StoreB[i+0], and then trap. After 2756 // the optimization, the new StoreI[i+0] is on the passing path of RangeCheck[i+3], and StoreB[i+0] on the 2757 // failing path. 2758 // 2759 // Note: For normal array stores, every store at first has a RangeCheck. But they can be removed with: 2760 // - RCE (RangeCheck Elimination): the RangeChecks in the loop are hoisted out and before the loop, 2761 // and possibly no RangeChecks remain between the stores. 2762 // - RangeCheck smearing: the earlier RangeChecks are adjusted such that they cover later RangeChecks, 2763 // and those later RangeChecks can be removed. Example: 2764 // 2765 // RangeCheck[i+0] RangeCheck[i+0] <- before first store 2766 // StoreB[i+0] StoreB[i+0] <- first store 2767 // RangeCheck[i+1] --> smeared --> RangeCheck[i+3] <- only RC between first and last store 2768 // StoreB[i+1] StoreB[i+1] <- second store 2769 // RangeCheck[i+2] --> removed 2770 // StoreB[i+2] StoreB[i+2] 2771 // RangeCheck[i+3] --> removed 2772 // StoreB[i+3] StoreB[i+3] <- last store 2773 // 2774 // Thus, it is a common pattern that between the first and last store in a chain 2775 // of adjacent stores there remains exactly one RangeCheck, located between the 2776 // first and the second store (e.g. RangeCheck[i+3]). 2777 // 2778 class MergePrimitiveStores : public StackObj { 2779 private: 2780 PhaseGVN* const _phase; 2781 StoreNode* const _store; 2782 2783 NOT_PRODUCT( const CHeapBitMap &_trace_tags; ) 2784 2785 public: 2786 MergePrimitiveStores(PhaseGVN* phase, StoreNode* store) : 2787 _phase(phase), _store(store) 2788 NOT_PRODUCT( COMMA _trace_tags(Compile::current()->directive()->trace_merge_stores_tags()) ) 2789 {} 2790 2791 StoreNode* run(); 2792 2793 private: 2794 bool is_compatible_store(const StoreNode* other_store) const; 2795 bool is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const; 2796 bool is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const; 2797 static bool is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out); 2798 enum CFGStatus { SuccessNoRangeCheck, SuccessWithRangeCheck, Failure }; 2799 static CFGStatus cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store); 2800 2801 class Status { 2802 private: 2803 StoreNode* _found_store; 2804 bool _found_range_check; 2805 2806 Status(StoreNode* found_store, bool found_range_check) 2807 : _found_store(found_store), _found_range_check(found_range_check) {} 2808 2809 public: 2810 StoreNode* found_store() const { return _found_store; } 2811 bool found_range_check() const { return _found_range_check; } 2812 static Status make_failure() { return Status(nullptr, false); } 2813 2814 static Status make(StoreNode* found_store, const CFGStatus cfg_status) { 2815 if (cfg_status == CFGStatus::Failure) { 2816 return Status::make_failure(); 2817 } 2818 return Status(found_store, cfg_status == CFGStatus::SuccessWithRangeCheck); 2819 } 2820 2821 #ifndef PRODUCT 2822 void print_on(outputStream* st) const { 2823 if (_found_store == nullptr) { 2824 st->print_cr("None"); 2825 } else { 2826 st->print_cr("Found[%d %s, %s]", _found_store->_idx, _found_store->Name(), 2827 _found_range_check ? "RC" : "no-RC"); 2828 } 2829 } 2830 #endif 2831 }; 2832 2833 Status find_adjacent_use_store(const StoreNode* def_store) const; 2834 Status find_adjacent_def_store(const StoreNode* use_store) const; 2835 Status find_use_store(const StoreNode* def_store) const; 2836 Status find_def_store(const StoreNode* use_store) const; 2837 Status find_use_store_unidirectional(const StoreNode* def_store) const; 2838 Status find_def_store_unidirectional(const StoreNode* use_store) const; 2839 2840 void collect_merge_list(Node_List& merge_list) const; 2841 Node* make_merged_input_value(const Node_List& merge_list); 2842 StoreNode* make_merged_store(const Node_List& merge_list, Node* merged_input_value); 2843 2844 #ifndef PRODUCT 2845 // Access to TraceMergeStores tags 2846 bool is_trace(TraceMergeStores::Tag tag) const { 2847 return _trace_tags.at(tag); 2848 } 2849 2850 bool is_trace_basic() const { 2851 return is_trace(TraceMergeStores::Tag::BASIC); 2852 } 2853 2854 bool is_trace_pointer() const { 2855 return is_trace(TraceMergeStores::Tag::POINTER); 2856 } 2857 2858 bool is_trace_aliasing() const { 2859 return is_trace(TraceMergeStores::Tag::ALIASING); 2860 } 2861 2862 bool is_trace_adjacency() const { 2863 return is_trace(TraceMergeStores::Tag::ADJACENCY); 2864 } 2865 2866 bool is_trace_success() const { 2867 return is_trace(TraceMergeStores::Tag::SUCCESS); 2868 } 2869 #endif 2870 2871 NOT_PRODUCT( void trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const; ) 2872 }; 2873 2874 StoreNode* MergePrimitiveStores::run() { 2875 // Check for B/S/C/I 2876 int opc = _store->Opcode(); 2877 if (opc != Op_StoreB && opc != Op_StoreC && opc != Op_StoreI) { 2878 return nullptr; 2879 } 2880 2881 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] MergePrimitiveStores::run: "); _store->dump(); }) 2882 2883 // The _store must be the "last" store in a chain. If we find a use we could merge with 2884 // then that use or a store further down is the "last" store. 2885 Status status_use = find_adjacent_use_store(_store); 2886 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect no use: "); status_use.print_on(tty); }) 2887 if (status_use.found_store() != nullptr) { 2888 return nullptr; 2889 } 2890 2891 // Check if we can merge with at least one def, so that we have at least 2 stores to merge. 2892 Status status_def = find_adjacent_def_store(_store); 2893 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect def: "); status_def.print_on(tty); }) 2894 if (status_def.found_store() == nullptr) { 2895 return nullptr; 2896 } 2897 2898 ResourceMark rm; 2899 Node_List merge_list; 2900 collect_merge_list(merge_list); 2901 2902 Node* merged_input_value = make_merged_input_value(merge_list); 2903 if (merged_input_value == nullptr) { return nullptr; } 2904 2905 StoreNode* merged_store = make_merged_store(merge_list, merged_input_value); 2906 2907 NOT_PRODUCT( if (is_trace_success()) { trace(merge_list, merged_input_value, merged_store); } ) 2908 2909 return merged_store; 2910 } 2911 2912 // Check compatibility between _store and other_store. 2913 bool MergePrimitiveStores::is_compatible_store(const StoreNode* other_store) const { 2914 int opc = _store->Opcode(); 2915 assert(opc == Op_StoreB || opc == Op_StoreC || opc == Op_StoreI, "precondition"); 2916 2917 if (other_store == nullptr || 2918 _store->Opcode() != other_store->Opcode()) { 2919 return false; 2920 } 2921 2922 return true; 2923 } 2924 2925 bool MergePrimitiveStores::is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const { 2926 if (!is_adjacent_input_pair(def_store->in(MemNode::ValueIn), 2927 use_store->in(MemNode::ValueIn), 2928 def_store->memory_size())) { 2929 return false; 2930 } 2931 2932 ResourceMark rm; 2933 #ifndef PRODUCT 2934 const TraceMemPointer trace(is_trace_pointer(), 2935 is_trace_aliasing(), 2936 is_trace_adjacency()); 2937 #endif 2938 const MemPointer pointer_use(use_store NOT_PRODUCT( COMMA trace )); 2939 const MemPointer pointer_def(def_store NOT_PRODUCT( COMMA trace )); 2940 return pointer_def.is_adjacent_to_and_before(pointer_use); 2941 } 2942 2943 bool MergePrimitiveStores::is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const { 2944 // Pattern: [n1 = ConI, n2 = ConI] 2945 if (n1->Opcode() == Op_ConI) { 2946 return n2->Opcode() == Op_ConI; 2947 } 2948 2949 // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)] 2950 #ifndef VM_LITTLE_ENDIAN 2951 // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift] 2952 // Swapping n1 with n2 gives same pattern as on little endian platforms. 2953 swap(n1, n2); 2954 #endif // !VM_LITTLE_ENDIAN 2955 Node const* base_n2; 2956 jint shift_n2; 2957 if (!is_con_RShift(n2, base_n2, shift_n2)) { 2958 return false; 2959 } 2960 if (n1->Opcode() == Op_ConvL2I) { 2961 // look through 2962 n1 = n1->in(1); 2963 } 2964 Node const* base_n1; 2965 jint shift_n1; 2966 if (n1 == base_n2) { 2967 // n1 = base = base >> 0 2968 base_n1 = n1; 2969 shift_n1 = 0; 2970 } else if (!is_con_RShift(n1, base_n1, shift_n1)) { 2971 return false; 2972 } 2973 int bits_per_store = memory_size * 8; 2974 if (base_n1 != base_n2 || 2975 shift_n1 + bits_per_store != shift_n2 || 2976 shift_n1 % bits_per_store != 0) { 2977 return false; 2978 } 2979 2980 // both load from same value with correct shift 2981 return true; 2982 } 2983 2984 // Detect pattern: n = base_out >> shift_out 2985 bool MergePrimitiveStores::is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out) { 2986 assert(n != nullptr, "precondition"); 2987 2988 int opc = n->Opcode(); 2989 if (opc == Op_ConvL2I) { 2990 n = n->in(1); 2991 opc = n->Opcode(); 2992 } 2993 2994 if ((opc == Op_RShiftI || 2995 opc == Op_RShiftL || 2996 opc == Op_URShiftI || 2997 opc == Op_URShiftL) && 2998 n->in(2)->is_ConI()) { 2999 base_out = n->in(1); 3000 shift_out = n->in(2)->get_int(); 3001 // The shift must be positive: 3002 return shift_out >= 0; 3003 } 3004 return false; 3005 } 3006 3007 // Check if there is nothing between the two stores, except optionally a RangeCheck leading to an uncommon trap. 3008 MergePrimitiveStores::CFGStatus MergePrimitiveStores::cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store) { 3009 assert(use_store->in(MemNode::Memory) == def_store, "use-def relationship"); 3010 3011 Node* ctrl_use = use_store->in(MemNode::Control); 3012 Node* ctrl_def = def_store->in(MemNode::Control); 3013 if (ctrl_use == nullptr || ctrl_def == nullptr) { 3014 return CFGStatus::Failure; 3015 } 3016 3017 if (ctrl_use == ctrl_def) { 3018 // Same ctrl -> no RangeCheck in between. 3019 // Check: use_store must be the only use of def_store. 3020 if (def_store->outcnt() > 1) { 3021 return CFGStatus::Failure; 3022 } 3023 return CFGStatus::SuccessNoRangeCheck; 3024 } 3025 3026 // Different ctrl -> could have RangeCheck in between. 3027 // Check: 1. def_store only has these uses: use_store and MergeMem for uncommon trap, and 3028 // 2. ctrl separated by RangeCheck. 3029 if (def_store->outcnt() != 2) { 3030 return CFGStatus::Failure; // Cannot have exactly these uses: use_store and MergeMem for uncommon trap. 3031 } 3032 int use_store_out_idx = def_store->raw_out(0) == use_store ? 0 : 1; 3033 Node* merge_mem = def_store->raw_out(1 - use_store_out_idx)->isa_MergeMem(); 3034 if (merge_mem == nullptr || 3035 merge_mem->outcnt() != 1) { 3036 return CFGStatus::Failure; // Does not have MergeMem for uncommon trap. 3037 } 3038 if (!ctrl_use->is_IfProj() || 3039 !ctrl_use->in(0)->is_RangeCheck() || 3040 ctrl_use->in(0)->outcnt() != 2) { 3041 return CFGStatus::Failure; // Not RangeCheck. 3042 } 3043 ProjNode* other_proj = ctrl_use->as_IfProj()->other_if_proj(); 3044 Node* trap = other_proj->is_uncommon_trap_proj(Deoptimization::Reason_range_check); 3045 if (trap != merge_mem->unique_out() || 3046 ctrl_use->in(0)->in(0) != ctrl_def) { 3047 return CFGStatus::Failure; // Not RangeCheck with merge_mem leading to uncommon trap. 3048 } 3049 3050 return CFGStatus::SuccessWithRangeCheck; 3051 } 3052 3053 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_use_store(const StoreNode* def_store) const { 3054 Status status_use = find_use_store(def_store); 3055 StoreNode* use_store = status_use.found_store(); 3056 if (use_store != nullptr && !is_adjacent_pair(use_store, def_store)) { 3057 return Status::make_failure(); 3058 } 3059 return status_use; 3060 } 3061 3062 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_def_store(const StoreNode* use_store) const { 3063 Status status_def = find_def_store(use_store); 3064 StoreNode* def_store = status_def.found_store(); 3065 if (def_store != nullptr && !is_adjacent_pair(use_store, def_store)) { 3066 return Status::make_failure(); 3067 } 3068 return status_def; 3069 } 3070 3071 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store(const StoreNode* def_store) const { 3072 Status status_use = find_use_store_unidirectional(def_store); 3073 3074 #ifdef ASSERT 3075 StoreNode* use_store = status_use.found_store(); 3076 if (use_store != nullptr) { 3077 Status status_def = find_def_store_unidirectional(use_store); 3078 assert(status_def.found_store() == def_store && 3079 status_def.found_range_check() == status_use.found_range_check(), 3080 "find_use_store and find_def_store must be symmetric"); 3081 } 3082 #endif 3083 3084 return status_use; 3085 } 3086 3087 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store(const StoreNode* use_store) const { 3088 Status status_def = find_def_store_unidirectional(use_store); 3089 3090 #ifdef ASSERT 3091 StoreNode* def_store = status_def.found_store(); 3092 if (def_store != nullptr) { 3093 Status status_use = find_use_store_unidirectional(def_store); 3094 assert(status_use.found_store() == use_store && 3095 status_use.found_range_check() == status_def.found_range_check(), 3096 "find_use_store and find_def_store must be symmetric"); 3097 } 3098 #endif 3099 3100 return status_def; 3101 } 3102 3103 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store_unidirectional(const StoreNode* def_store) const { 3104 assert(is_compatible_store(def_store), "precondition: must be compatible with _store"); 3105 3106 for (DUIterator_Fast imax, i = def_store->fast_outs(imax); i < imax; i++) { 3107 StoreNode* use_store = def_store->fast_out(i)->isa_Store(); 3108 if (is_compatible_store(use_store)) { 3109 return Status::make(use_store, cfg_status_for_pair(use_store, def_store)); 3110 } 3111 } 3112 3113 return Status::make_failure(); 3114 } 3115 3116 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store_unidirectional(const StoreNode* use_store) const { 3117 assert(is_compatible_store(use_store), "precondition: must be compatible with _store"); 3118 3119 StoreNode* def_store = use_store->in(MemNode::Memory)->isa_Store(); 3120 if (!is_compatible_store(def_store)) { 3121 return Status::make_failure(); 3122 } 3123 3124 return Status::make(def_store, cfg_status_for_pair(use_store, def_store)); 3125 } 3126 3127 void MergePrimitiveStores::collect_merge_list(Node_List& merge_list) const { 3128 // The merged store can be at most 8 bytes. 3129 const uint merge_list_max_size = 8 / _store->memory_size(); 3130 assert(merge_list_max_size >= 2 && 3131 merge_list_max_size <= 8 && 3132 is_power_of_2(merge_list_max_size), 3133 "must be 2, 4 or 8"); 3134 3135 // Traverse up the chain of adjacent def stores. 3136 StoreNode* current = _store; 3137 merge_list.push(current); 3138 while (current != nullptr && merge_list.size() < merge_list_max_size) { 3139 Status status = find_adjacent_def_store(current); 3140 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] find def: "); status.print_on(tty); }) 3141 3142 current = status.found_store(); 3143 if (current != nullptr) { 3144 merge_list.push(current); 3145 3146 // We can have at most one RangeCheck. 3147 if (status.found_range_check()) { 3148 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found RangeCheck, stop traversal."); }) 3149 break; 3150 } 3151 } 3152 } 3153 3154 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found:"); merge_list.dump(); }) 3155 3156 // Truncate the merge_list to a power of 2. 3157 const uint pow2size = round_down_power_of_2(merge_list.size()); 3158 assert(pow2size >= 2, "must be merging at least 2 stores"); 3159 while (merge_list.size() > pow2size) { merge_list.pop(); } 3160 3161 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] truncated:"); merge_list.dump(); }) 3162 } 3163 3164 // Merge the input values of the smaller stores to a single larger input value. 3165 Node* MergePrimitiveStores::make_merged_input_value(const Node_List& merge_list) { 3166 int new_memory_size = _store->memory_size() * merge_list.size(); 3167 Node* first = merge_list.at(merge_list.size()-1); 3168 Node* merged_input_value = nullptr; 3169 if (_store->in(MemNode::ValueIn)->Opcode() == Op_ConI) { 3170 // Pattern: [ConI, ConI, ...] -> new constant 3171 jlong con = 0; 3172 jlong bits_per_store = _store->memory_size() * 8; 3173 jlong mask = (((jlong)1) << bits_per_store) - 1; 3174 for (uint i = 0; i < merge_list.size(); i++) { 3175 jlong con_i = merge_list.at(i)->in(MemNode::ValueIn)->get_int(); 3176 #ifdef VM_LITTLE_ENDIAN 3177 con = con << bits_per_store; 3178 con = con | (mask & con_i); 3179 #else // VM_LITTLE_ENDIAN 3180 con_i = (mask & con_i) << (i * bits_per_store); 3181 con = con | con_i; 3182 #endif // VM_LITTLE_ENDIAN 3183 } 3184 merged_input_value = _phase->longcon(con); 3185 } else { 3186 // Pattern: [base >> 24, base >> 16, base >> 8, base] -> base 3187 // | | 3188 // _store first 3189 // 3190 Node* hi = _store->in(MemNode::ValueIn); 3191 Node* lo = first->in(MemNode::ValueIn); 3192 #ifndef VM_LITTLE_ENDIAN 3193 // `_store` and `first` are swapped in the diagram above 3194 swap(hi, lo); 3195 #endif // !VM_LITTLE_ENDIAN 3196 Node const* hi_base; 3197 jint hi_shift; 3198 merged_input_value = lo; 3199 bool is_true = is_con_RShift(hi, hi_base, hi_shift); 3200 assert(is_true, "must detect con RShift"); 3201 if (merged_input_value != hi_base && merged_input_value->Opcode() == Op_ConvL2I) { 3202 // look through 3203 merged_input_value = merged_input_value->in(1); 3204 } 3205 if (merged_input_value != hi_base) { 3206 // merged_input_value is not the base 3207 return nullptr; 3208 } 3209 } 3210 3211 if (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size <= 4) { 3212 // Example: 3213 // 3214 // long base = ...; 3215 // a[0] = (byte)(base >> 0); 3216 // a[1] = (byte)(base >> 8); 3217 // 3218 merged_input_value = _phase->transform(new ConvL2INode(merged_input_value)); 3219 } 3220 3221 assert((_phase->type(merged_input_value)->isa_int() != nullptr && new_memory_size <= 4) || 3222 (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size == 8), 3223 "merged_input_value is either int or long, and new_memory_size is small enough"); 3224 3225 return merged_input_value; 3226 } 3227 3228 // // 3229 // first_ctrl first_mem first_adr first_ctrl first_mem first_adr // 3230 // | | | | | | // 3231 // | | | | +---------------+ | // 3232 // | | | | | | | // 3233 // | | +---------+ | | +---------------+ // 3234 // | | | | | | | | // 3235 // +--------------+ | | v1 +------------------------------+ | | v1 // 3236 // | | | | | | | | | | | | // 3237 // RangeCheck first_store RangeCheck | | first_store // 3238 // | | | | | | | // 3239 // last_ctrl | +----> unc_trap last_ctrl | | +----> unc_trap // 3240 // | | ===> | | | // 3241 // +--------------+ | a2 v2 | | | // 3242 // | | | | | | | | // 3243 // | second_store | | | // 3244 // | | | | | [v1 v2 ... vn] // 3245 // ... ... | | | | // 3246 // | | | | | v // 3247 // +--------------+ | an vn +--------------+ | | merged_input_value // 3248 // | | | | | | | | // 3249 // last_store (= _store) merged_store // 3250 // // 3251 StoreNode* MergePrimitiveStores::make_merged_store(const Node_List& merge_list, Node* merged_input_value) { 3252 Node* first_store = merge_list.at(merge_list.size()-1); 3253 Node* last_ctrl = _store->in(MemNode::Control); // after (optional) RangeCheck 3254 Node* first_mem = first_store->in(MemNode::Memory); 3255 Node* first_adr = first_store->in(MemNode::Address); 3256 3257 const TypePtr* new_adr_type = _store->adr_type(); 3258 3259 int new_memory_size = _store->memory_size() * merge_list.size(); 3260 BasicType bt = T_ILLEGAL; 3261 switch (new_memory_size) { 3262 case 2: bt = T_SHORT; break; 3263 case 4: bt = T_INT; break; 3264 case 8: bt = T_LONG; break; 3265 } 3266 3267 StoreNode* merged_store = StoreNode::make(*_phase, last_ctrl, first_mem, first_adr, 3268 new_adr_type, merged_input_value, bt, MemNode::unordered); 3269 3270 // Marking the store mismatched is sufficient to prevent reordering, since array stores 3271 // are all on the same slice. Hence, we need no barriers. 3272 merged_store->set_mismatched_access(); 3273 3274 // Constants above may now also be be packed -> put candidate on worklist 3275 _phase->is_IterGVN()->_worklist.push(first_mem); 3276 3277 return merged_store; 3278 } 3279 3280 #ifndef PRODUCT 3281 void MergePrimitiveStores::trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const { 3282 stringStream ss; 3283 ss.print_cr("[TraceMergeStores]: Replace"); 3284 for (int i = (int)merge_list.size() - 1; i >= 0; i--) { 3285 merge_list.at(i)->dump("\n", false, &ss); 3286 } 3287 ss.print_cr("[TraceMergeStores]: with"); 3288 merged_input_value->dump("\n", false, &ss); 3289 merged_store->dump("\n", false, &ss); 3290 tty->print("%s", ss.as_string()); 3291 } 3292 #endif 3293 3294 //------------------------------Ideal------------------------------------------ 3295 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x). 3296 // When a store immediately follows a relevant allocation/initialization, 3297 // try to capture it into the initialization, or hoist it above. 3298 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3299 Node* p = MemNode::Ideal_common(phase, can_reshape); 3300 if (p) return (p == NodeSentinel) ? nullptr : p; 3301 3302 Node* mem = in(MemNode::Memory); 3303 Node* address = in(MemNode::Address); 3304 Node* value = in(MemNode::ValueIn); 3305 // Back-to-back stores to same address? Fold em up. Generally 3306 // unsafe if I have intervening uses. 3307 { 3308 Node* st = mem; 3309 // If Store 'st' has more than one use, we cannot fold 'st' away. 3310 // For example, 'st' might be the final state at a conditional 3311 // return. Or, 'st' might be used by some node which is live at 3312 // the same time 'st' is live, which might be unschedulable. So, 3313 // require exactly ONE user until such time as we clone 'mem' for 3314 // each of 'mem's uses (thus making the exactly-1-user-rule hold 3315 // true). 3316 while (st->is_Store() && st->outcnt() == 1) { 3317 // Looking at a dead closed cycle of memory? 3318 assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal"); 3319 assert(Opcode() == st->Opcode() || 3320 st->Opcode() == Op_StoreVector || 3321 Opcode() == Op_StoreVector || 3322 st->Opcode() == Op_StoreVectorScatter || 3323 Opcode() == Op_StoreVectorScatter || 3324 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || 3325 (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode 3326 (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy 3327 (is_mismatched_access() || st->as_Store()->is_mismatched_access()), 3328 "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); 3329 3330 if (st->in(MemNode::Address)->eqv_uncast(address) && 3331 st->as_Store()->memory_size() <= this->memory_size()) { 3332 Node* use = st->raw_out(0); 3333 if (phase->is_IterGVN()) { 3334 phase->is_IterGVN()->rehash_node_delayed(use); 3335 } 3336 // It's OK to do this in the parser, since DU info is always accurate, 3337 // and the parser always refers to nodes via SafePointNode maps. 3338 use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase); 3339 return this; 3340 } 3341 st = st->in(MemNode::Memory); 3342 } 3343 } 3344 3345 3346 // Capture an unaliased, unconditional, simple store into an initializer. 3347 // Or, if it is independent of the allocation, hoist it above the allocation. 3348 if (ReduceFieldZeroing && /*can_reshape &&*/ 3349 mem->is_Proj() && mem->in(0)->is_Initialize()) { 3350 InitializeNode* init = mem->in(0)->as_Initialize(); 3351 intptr_t offset = init->can_capture_store(this, phase, can_reshape); 3352 if (offset > 0) { 3353 Node* moved = init->capture_store(this, offset, phase, can_reshape); 3354 // If the InitializeNode captured me, it made a raw copy of me, 3355 // and I need to disappear. 3356 if (moved != nullptr) { 3357 // %%% hack to ensure that Ideal returns a new node: 3358 mem = MergeMemNode::make(mem); 3359 return mem; // fold me away 3360 } 3361 } 3362 } 3363 3364 // Fold reinterpret cast into memory operation: 3365 // StoreX mem (MoveY2X v) => StoreY mem v 3366 if (value->is_Move()) { 3367 const Type* vt = value->in(1)->bottom_type(); 3368 if (has_reinterpret_variant(vt)) { 3369 if (phase->C->post_loop_opts_phase()) { 3370 return convert_to_reinterpret_store(*phase, value->in(1), vt); 3371 } else { 3372 phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over 3373 } 3374 } 3375 } 3376 3377 if (MergeStores && UseUnalignedAccesses) { 3378 if (phase->C->post_loop_opts_phase()) { 3379 MergePrimitiveStores merge(phase, this); 3380 Node* progress = merge.run(); 3381 if (progress != nullptr) { return progress; } 3382 } else { 3383 phase->C->record_for_post_loop_opts_igvn(this); 3384 } 3385 } 3386 3387 return nullptr; // No further progress 3388 } 3389 3390 //------------------------------Value----------------------------------------- 3391 const Type* StoreNode::Value(PhaseGVN* phase) const { 3392 // Either input is TOP ==> the result is TOP 3393 const Type *t1 = phase->type( in(MemNode::Memory) ); 3394 if( t1 == Type::TOP ) return Type::TOP; 3395 const Type *t2 = phase->type( in(MemNode::Address) ); 3396 if( t2 == Type::TOP ) return Type::TOP; 3397 const Type *t3 = phase->type( in(MemNode::ValueIn) ); 3398 if( t3 == Type::TOP ) return Type::TOP; 3399 return Type::MEMORY; 3400 } 3401 3402 //------------------------------Identity--------------------------------------- 3403 // Remove redundant stores: 3404 // Store(m, p, Load(m, p)) changes to m. 3405 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x). 3406 Node* StoreNode::Identity(PhaseGVN* phase) { 3407 Node* mem = in(MemNode::Memory); 3408 Node* adr = in(MemNode::Address); 3409 Node* val = in(MemNode::ValueIn); 3410 3411 Node* result = this; 3412 3413 // Load then Store? Then the Store is useless 3414 if (val->is_Load() && 3415 val->in(MemNode::Address)->eqv_uncast(adr) && 3416 val->in(MemNode::Memory )->eqv_uncast(mem) && 3417 val->as_Load()->store_Opcode() == Opcode()) { 3418 // Ensure vector type is the same 3419 if (!is_StoreVector() || (mem->is_LoadVector() && as_StoreVector()->vect_type() == mem->as_LoadVector()->vect_type())) { 3420 result = mem; 3421 } 3422 } 3423 3424 // Two stores in a row of the same value? 3425 if (result == this && 3426 mem->is_Store() && 3427 mem->in(MemNode::Address)->eqv_uncast(adr) && 3428 mem->in(MemNode::ValueIn)->eqv_uncast(val) && 3429 mem->Opcode() == Opcode()) { 3430 if (!is_StoreVector()) { 3431 result = mem; 3432 } else { 3433 const StoreVectorNode* store_vector = as_StoreVector(); 3434 const StoreVectorNode* mem_vector = mem->as_StoreVector(); 3435 const Node* store_indices = store_vector->indices(); 3436 const Node* mem_indices = mem_vector->indices(); 3437 const Node* store_mask = store_vector->mask(); 3438 const Node* mem_mask = mem_vector->mask(); 3439 // Ensure types, indices, and masks match 3440 if (store_vector->vect_type() == mem_vector->vect_type() && 3441 ((store_indices == nullptr) == (mem_indices == nullptr) && 3442 (store_indices == nullptr || store_indices->eqv_uncast(mem_indices))) && 3443 ((store_mask == nullptr) == (mem_mask == nullptr) && 3444 (store_mask == nullptr || store_mask->eqv_uncast(mem_mask)))) { 3445 result = mem; 3446 } 3447 } 3448 } 3449 3450 // Store of zero anywhere into a freshly-allocated object? 3451 // Then the store is useless. 3452 // (It must already have been captured by the InitializeNode.) 3453 if (result == this && 3454 ReduceFieldZeroing && phase->type(val)->is_zero_type()) { 3455 // a newly allocated object is already all-zeroes everywhere 3456 if (mem->is_Proj() && mem->in(0)->is_Allocate()) { 3457 result = mem; 3458 } 3459 3460 if (result == this) { 3461 // the store may also apply to zero-bits in an earlier object 3462 Node* prev_mem = find_previous_store(phase); 3463 // Steps (a), (b): Walk past independent stores to find an exact match. 3464 if (prev_mem != nullptr) { 3465 Node* prev_val = can_see_stored_value(prev_mem, phase); 3466 if (prev_val != nullptr && prev_val == val) { 3467 // prev_val and val might differ by a cast; it would be good 3468 // to keep the more informative of the two. 3469 result = mem; 3470 } 3471 } 3472 } 3473 } 3474 3475 PhaseIterGVN* igvn = phase->is_IterGVN(); 3476 if (result != this && igvn != nullptr) { 3477 MemBarNode* trailing = trailing_membar(); 3478 if (trailing != nullptr) { 3479 #ifdef ASSERT 3480 const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr(); 3481 assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects"); 3482 #endif 3483 trailing->remove(igvn); 3484 } 3485 } 3486 3487 return result; 3488 } 3489 3490 //------------------------------match_edge------------------------------------- 3491 // Do we Match on this edge index or not? Match only memory & value 3492 uint StoreNode::match_edge(uint idx) const { 3493 return idx == MemNode::Address || idx == MemNode::ValueIn; 3494 } 3495 3496 //------------------------------cmp-------------------------------------------- 3497 // Do not common stores up together. They generally have to be split 3498 // back up anyways, so do not bother. 3499 bool StoreNode::cmp( const Node &n ) const { 3500 return (&n == this); // Always fail except on self 3501 } 3502 3503 //------------------------------Ideal_masked_input----------------------------- 3504 // Check for a useless mask before a partial-word store 3505 // (StoreB ... (AndI valIn conIa) ) 3506 // If (conIa & mask == mask) this simplifies to 3507 // (StoreB ... (valIn) ) 3508 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) { 3509 Node *val = in(MemNode::ValueIn); 3510 if( val->Opcode() == Op_AndI ) { 3511 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 3512 if( t && t->is_con() && (t->get_con() & mask) == mask ) { 3513 set_req_X(MemNode::ValueIn, val->in(1), phase); 3514 return this; 3515 } 3516 } 3517 return nullptr; 3518 } 3519 3520 3521 //------------------------------Ideal_sign_extended_input---------------------- 3522 // Check for useless sign-extension before a partial-word store 3523 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) ) 3524 // If (conIL == conIR && conIR <= num_bits) this simplifies to 3525 // (StoreB ... (valIn) ) 3526 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) { 3527 Node *val = in(MemNode::ValueIn); 3528 if( val->Opcode() == Op_RShiftI ) { 3529 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 3530 if( t && t->is_con() && (t->get_con() <= num_bits) ) { 3531 Node *shl = val->in(1); 3532 if( shl->Opcode() == Op_LShiftI ) { 3533 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int(); 3534 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) { 3535 set_req_X(MemNode::ValueIn, shl->in(1), phase); 3536 return this; 3537 } 3538 } 3539 } 3540 } 3541 return nullptr; 3542 } 3543 3544 //------------------------------value_never_loaded----------------------------------- 3545 // Determine whether there are any possible loads of the value stored. 3546 // For simplicity, we actually check if there are any loads from the 3547 // address stored to, not just for loads of the value stored by this node. 3548 // 3549 bool StoreNode::value_never_loaded(PhaseValues* phase) const { 3550 Node *adr = in(Address); 3551 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr(); 3552 if (adr_oop == nullptr) 3553 return false; 3554 if (!adr_oop->is_known_instance_field()) 3555 return false; // if not a distinct instance, there may be aliases of the address 3556 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) { 3557 Node *use = adr->fast_out(i); 3558 if (use->is_Load() || use->is_LoadStore()) { 3559 return false; 3560 } 3561 } 3562 return true; 3563 } 3564 3565 MemBarNode* StoreNode::trailing_membar() const { 3566 if (is_release()) { 3567 MemBarNode* trailing_mb = nullptr; 3568 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3569 Node* u = fast_out(i); 3570 if (u->is_MemBar()) { 3571 if (u->as_MemBar()->trailing_store()) { 3572 assert(u->Opcode() == Op_MemBarVolatile, ""); 3573 assert(trailing_mb == nullptr, "only one"); 3574 trailing_mb = u->as_MemBar(); 3575 #ifdef ASSERT 3576 Node* leading = u->as_MemBar()->leading_membar(); 3577 assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 3578 assert(leading->as_MemBar()->leading_store(), "incorrect membar pair"); 3579 assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair"); 3580 #endif 3581 } else { 3582 assert(u->as_MemBar()->standalone(), ""); 3583 } 3584 } 3585 } 3586 return trailing_mb; 3587 } 3588 return nullptr; 3589 } 3590 3591 3592 //============================================================================= 3593 //------------------------------Ideal------------------------------------------ 3594 // If the store is from an AND mask that leaves the low bits untouched, then 3595 // we can skip the AND operation. If the store is from a sign-extension 3596 // (a left shift, then right shift) we can skip both. 3597 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){ 3598 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF); 3599 if( progress != nullptr ) return progress; 3600 3601 progress = StoreNode::Ideal_sign_extended_input(phase, 24); 3602 if( progress != nullptr ) return progress; 3603 3604 // Finally check the default case 3605 return StoreNode::Ideal(phase, can_reshape); 3606 } 3607 3608 //============================================================================= 3609 //------------------------------Ideal------------------------------------------ 3610 // If the store is from an AND mask that leaves the low bits untouched, then 3611 // we can skip the AND operation 3612 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){ 3613 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF); 3614 if( progress != nullptr ) return progress; 3615 3616 progress = StoreNode::Ideal_sign_extended_input(phase, 16); 3617 if( progress != nullptr ) return progress; 3618 3619 // Finally check the default case 3620 return StoreNode::Ideal(phase, can_reshape); 3621 } 3622 3623 //============================================================================= 3624 //----------------------------------SCMemProjNode------------------------------ 3625 const Type* SCMemProjNode::Value(PhaseGVN* phase) const 3626 { 3627 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) { 3628 return Type::TOP; 3629 } 3630 return bottom_type(); 3631 } 3632 3633 //============================================================================= 3634 //----------------------------------LoadStoreNode------------------------------ 3635 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ) 3636 : Node(required), 3637 _type(rt), 3638 _adr_type(at), 3639 _barrier_data(0) 3640 { 3641 init_req(MemNode::Control, c ); 3642 init_req(MemNode::Memory , mem); 3643 init_req(MemNode::Address, adr); 3644 init_req(MemNode::ValueIn, val); 3645 init_class_id(Class_LoadStore); 3646 } 3647 3648 //------------------------------Value----------------------------------------- 3649 const Type* LoadStoreNode::Value(PhaseGVN* phase) const { 3650 // Either input is TOP ==> the result is TOP 3651 if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) { 3652 return Type::TOP; 3653 } 3654 const Type* t = phase->type(in(MemNode::Memory)); 3655 if (t == Type::TOP) { 3656 return Type::TOP; 3657 } 3658 t = phase->type(in(MemNode::Address)); 3659 if (t == Type::TOP) { 3660 return Type::TOP; 3661 } 3662 t = phase->type(in(MemNode::ValueIn)); 3663 if (t == Type::TOP) { 3664 return Type::TOP; 3665 } 3666 return bottom_type(); 3667 } 3668 3669 uint LoadStoreNode::ideal_reg() const { 3670 return _type->ideal_reg(); 3671 } 3672 3673 // This method conservatively checks if the result of a LoadStoreNode is 3674 // used, that is, if it returns true, then it is definitely the case that 3675 // the result of the node is not needed. 3676 // For example, GetAndAdd can be matched into a lock_add instead of a 3677 // lock_xadd if the result of LoadStoreNode::result_not_used() is true 3678 bool LoadStoreNode::result_not_used() const { 3679 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3680 Node *x = fast_out(i); 3681 if (x->Opcode() == Op_SCMemProj) { 3682 continue; 3683 } 3684 if (x->bottom_type() == TypeTuple::MEMBAR && 3685 !x->is_Call() && 3686 x->Opcode() != Op_Blackhole) { 3687 continue; 3688 } 3689 return false; 3690 } 3691 return true; 3692 } 3693 3694 MemBarNode* LoadStoreNode::trailing_membar() const { 3695 MemBarNode* trailing = nullptr; 3696 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3697 Node* u = fast_out(i); 3698 if (u->is_MemBar()) { 3699 if (u->as_MemBar()->trailing_load_store()) { 3700 assert(u->Opcode() == Op_MemBarAcquire, ""); 3701 assert(trailing == nullptr, "only one"); 3702 trailing = u->as_MemBar(); 3703 #ifdef ASSERT 3704 Node* leading = trailing->leading_membar(); 3705 assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 3706 assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair"); 3707 assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair"); 3708 #endif 3709 } else { 3710 assert(u->as_MemBar()->standalone(), "wrong barrier kind"); 3711 } 3712 } 3713 } 3714 3715 return trailing; 3716 } 3717 3718 uint LoadStoreNode::size_of() const { return sizeof(*this); } 3719 3720 //============================================================================= 3721 //----------------------------------LoadStoreConditionalNode-------------------- 3722 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) { 3723 init_req(ExpectedIn, ex ); 3724 } 3725 3726 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const { 3727 // Either input is TOP ==> the result is TOP 3728 const Type* t = phase->type(in(ExpectedIn)); 3729 if (t == Type::TOP) { 3730 return Type::TOP; 3731 } 3732 return LoadStoreNode::Value(phase); 3733 } 3734 3735 //============================================================================= 3736 //-------------------------------adr_type-------------------------------------- 3737 const TypePtr* ClearArrayNode::adr_type() const { 3738 Node *adr = in(3); 3739 if (adr == nullptr) return nullptr; // node is dead 3740 return MemNode::calculate_adr_type(adr->bottom_type()); 3741 } 3742 3743 //------------------------------match_edge------------------------------------- 3744 // Do we Match on this edge index or not? Do not match memory 3745 uint ClearArrayNode::match_edge(uint idx) const { 3746 return idx > 1; 3747 } 3748 3749 //------------------------------Identity--------------------------------------- 3750 // Clearing a zero length array does nothing 3751 Node* ClearArrayNode::Identity(PhaseGVN* phase) { 3752 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this; 3753 } 3754 3755 //------------------------------Idealize--------------------------------------- 3756 // Clearing a short array is faster with stores 3757 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3758 // Already know this is a large node, do not try to ideal it 3759 if (_is_large) return nullptr; 3760 3761 const int unit = BytesPerLong; 3762 const TypeX* t = phase->type(in(2))->isa_intptr_t(); 3763 if (!t) return nullptr; 3764 if (!t->is_con()) return nullptr; 3765 intptr_t raw_count = t->get_con(); 3766 intptr_t size = raw_count; 3767 if (!Matcher::init_array_count_is_in_bytes) size *= unit; 3768 // Clearing nothing uses the Identity call. 3769 // Negative clears are possible on dead ClearArrays 3770 // (see jck test stmt114.stmt11402.val). 3771 if (size <= 0 || size % unit != 0) return nullptr; 3772 intptr_t count = size / unit; 3773 // Length too long; communicate this to matchers and assemblers. 3774 // Assemblers are responsible to produce fast hardware clears for it. 3775 if (size > InitArrayShortSize) { 3776 return new ClearArrayNode(in(0), in(1), in(2), in(3), true); 3777 } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) { 3778 return nullptr; 3779 } 3780 if (!IdealizeClearArrayNode) return nullptr; 3781 Node *mem = in(1); 3782 if( phase->type(mem)==Type::TOP ) return nullptr; 3783 Node *adr = in(3); 3784 const Type* at = phase->type(adr); 3785 if( at==Type::TOP ) return nullptr; 3786 const TypePtr* atp = at->isa_ptr(); 3787 // adjust atp to be the correct array element address type 3788 if (atp == nullptr) atp = TypePtr::BOTTOM; 3789 else atp = atp->add_offset(Type::OffsetBot); 3790 // Get base for derived pointer purposes 3791 if( adr->Opcode() != Op_AddP ) Unimplemented(); 3792 Node *base = adr->in(1); 3793 3794 Node *zero = phase->makecon(TypeLong::ZERO); 3795 Node *off = phase->MakeConX(BytesPerLong); 3796 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); 3797 count--; 3798 while( count-- ) { 3799 mem = phase->transform(mem); 3800 adr = phase->transform(new AddPNode(base,adr,off)); 3801 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); 3802 } 3803 return mem; 3804 } 3805 3806 //----------------------------step_through---------------------------------- 3807 // Return allocation input memory edge if it is different instance 3808 // or itself if it is the one we are looking for. 3809 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseValues* phase) { 3810 Node* n = *np; 3811 assert(n->is_ClearArray(), "sanity"); 3812 intptr_t offset; 3813 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset); 3814 // This method is called only before Allocate nodes are expanded 3815 // during macro nodes expansion. Before that ClearArray nodes are 3816 // only generated in PhaseMacroExpand::generate_arraycopy() (before 3817 // Allocate nodes are expanded) which follows allocations. 3818 assert(alloc != nullptr, "should have allocation"); 3819 if (alloc->_idx == instance_id) { 3820 // Can not bypass initialization of the instance we are looking for. 3821 return false; 3822 } 3823 // Otherwise skip it. 3824 InitializeNode* init = alloc->initialization(); 3825 if (init != nullptr) 3826 *np = init->in(TypeFunc::Memory); 3827 else 3828 *np = alloc->in(TypeFunc::Memory); 3829 return true; 3830 } 3831 3832 //----------------------------clear_memory------------------------------------- 3833 // Generate code to initialize object storage to zero. 3834 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3835 intptr_t start_offset, 3836 Node* end_offset, 3837 PhaseGVN* phase) { 3838 intptr_t offset = start_offset; 3839 3840 int unit = BytesPerLong; 3841 if ((offset % unit) != 0) { 3842 Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset)); 3843 adr = phase->transform(adr); 3844 const TypePtr* atp = TypeRawPtr::BOTTOM; 3845 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 3846 mem = phase->transform(mem); 3847 offset += BytesPerInt; 3848 } 3849 assert((offset % unit) == 0, ""); 3850 3851 // Initialize the remaining stuff, if any, with a ClearArray. 3852 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase); 3853 } 3854 3855 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3856 Node* start_offset, 3857 Node* end_offset, 3858 PhaseGVN* phase) { 3859 if (start_offset == end_offset) { 3860 // nothing to do 3861 return mem; 3862 } 3863 3864 int unit = BytesPerLong; 3865 Node* zbase = start_offset; 3866 Node* zend = end_offset; 3867 3868 // Scale to the unit required by the CPU: 3869 if (!Matcher::init_array_count_is_in_bytes) { 3870 Node* shift = phase->intcon(exact_log2(unit)); 3871 zbase = phase->transform(new URShiftXNode(zbase, shift) ); 3872 zend = phase->transform(new URShiftXNode(zend, shift) ); 3873 } 3874 3875 // Bulk clear double-words 3876 Node* zsize = phase->transform(new SubXNode(zend, zbase) ); 3877 Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) ); 3878 mem = new ClearArrayNode(ctl, mem, zsize, adr, false); 3879 return phase->transform(mem); 3880 } 3881 3882 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3883 intptr_t start_offset, 3884 intptr_t end_offset, 3885 PhaseGVN* phase) { 3886 if (start_offset == end_offset) { 3887 // nothing to do 3888 return mem; 3889 } 3890 3891 assert((end_offset % BytesPerInt) == 0, "odd end offset"); 3892 intptr_t done_offset = end_offset; 3893 if ((done_offset % BytesPerLong) != 0) { 3894 done_offset -= BytesPerInt; 3895 } 3896 if (done_offset > start_offset) { 3897 mem = clear_memory(ctl, mem, dest, 3898 start_offset, phase->MakeConX(done_offset), phase); 3899 } 3900 if (done_offset < end_offset) { // emit the final 32-bit store 3901 Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset)); 3902 adr = phase->transform(adr); 3903 const TypePtr* atp = TypeRawPtr::BOTTOM; 3904 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 3905 mem = phase->transform(mem); 3906 done_offset += BytesPerInt; 3907 } 3908 assert(done_offset == end_offset, ""); 3909 return mem; 3910 } 3911 3912 //============================================================================= 3913 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent) 3914 : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)), 3915 _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone) 3916 #ifdef ASSERT 3917 , _pair_idx(0) 3918 #endif 3919 { 3920 init_class_id(Class_MemBar); 3921 Node* top = C->top(); 3922 init_req(TypeFunc::I_O,top); 3923 init_req(TypeFunc::FramePtr,top); 3924 init_req(TypeFunc::ReturnAdr,top); 3925 if (precedent != nullptr) 3926 init_req(TypeFunc::Parms, precedent); 3927 } 3928 3929 //------------------------------cmp-------------------------------------------- 3930 uint MemBarNode::hash() const { return NO_HASH; } 3931 bool MemBarNode::cmp( const Node &n ) const { 3932 return (&n == this); // Always fail except on self 3933 } 3934 3935 //------------------------------make------------------------------------------- 3936 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) { 3937 switch (opcode) { 3938 case Op_MemBarAcquire: return new MemBarAcquireNode(C, atp, pn); 3939 case Op_LoadFence: return new LoadFenceNode(C, atp, pn); 3940 case Op_MemBarRelease: return new MemBarReleaseNode(C, atp, pn); 3941 case Op_StoreFence: return new StoreFenceNode(C, atp, pn); 3942 case Op_MemBarStoreStore: return new MemBarStoreStoreNode(C, atp, pn); 3943 case Op_StoreStoreFence: return new StoreStoreFenceNode(C, atp, pn); 3944 case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn); 3945 case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn); 3946 case Op_MemBarVolatile: return new MemBarVolatileNode(C, atp, pn); 3947 case Op_MemBarCPUOrder: return new MemBarCPUOrderNode(C, atp, pn); 3948 case Op_OnSpinWait: return new OnSpinWaitNode(C, atp, pn); 3949 case Op_Initialize: return new InitializeNode(C, atp, pn); 3950 default: ShouldNotReachHere(); return nullptr; 3951 } 3952 } 3953 3954 void MemBarNode::remove(PhaseIterGVN *igvn) { 3955 if (outcnt() != 2) { 3956 assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory"); 3957 assert(outcnt() == 1, "Only control then"); 3958 } 3959 if (trailing_store() || trailing_load_store()) { 3960 MemBarNode* leading = leading_membar(); 3961 if (leading != nullptr) { 3962 assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars"); 3963 leading->remove(igvn); 3964 } 3965 } 3966 if (proj_out_or_null(TypeFunc::Memory) != nullptr) { 3967 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); 3968 } 3969 if (proj_out_or_null(TypeFunc::Control) != nullptr) { 3970 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); 3971 } 3972 } 3973 3974 //------------------------------Ideal------------------------------------------ 3975 // Return a node which is more "ideal" than the current node. Strip out 3976 // control copies 3977 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3978 if (remove_dead_region(phase, can_reshape)) return this; 3979 // Don't bother trying to transform a dead node 3980 if (in(0) && in(0)->is_top()) { 3981 return nullptr; 3982 } 3983 3984 bool progress = false; 3985 // Eliminate volatile MemBars for scalar replaced objects. 3986 if (can_reshape && req() == (Precedent+1)) { 3987 bool eliminate = false; 3988 int opc = Opcode(); 3989 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) { 3990 // Volatile field loads and stores. 3991 Node* my_mem = in(MemBarNode::Precedent); 3992 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge 3993 if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) { 3994 // if the Precedent is a decodeN and its input (a Load) is used at more than one place, 3995 // replace this Precedent (decodeN) with the Load instead. 3996 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) { 3997 Node* load_node = my_mem->in(1); 3998 set_req(MemBarNode::Precedent, load_node); 3999 phase->is_IterGVN()->_worklist.push(my_mem); 4000 my_mem = load_node; 4001 } else { 4002 assert(my_mem->unique_out() == this, "sanity"); 4003 assert(!trailing_load_store(), "load store node can't be eliminated"); 4004 del_req(Precedent); 4005 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later 4006 my_mem = nullptr; 4007 } 4008 progress = true; 4009 } 4010 if (my_mem != nullptr && my_mem->is_Mem()) { 4011 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); 4012 // Check for scalar replaced object reference. 4013 if( t_oop != nullptr && t_oop->is_known_instance_field() && 4014 t_oop->offset() != Type::OffsetBot && 4015 t_oop->offset() != Type::OffsetTop) { 4016 eliminate = true; 4017 } 4018 } 4019 } else if (opc == Op_MemBarRelease || (UseStoreStoreForCtor && opc == Op_MemBarStoreStore)) { 4020 // Final field stores. 4021 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent)); 4022 if ((alloc != nullptr) && alloc->is_Allocate() && 4023 alloc->as_Allocate()->does_not_escape_thread()) { 4024 // The allocated object does not escape. 4025 eliminate = true; 4026 } 4027 } 4028 if (eliminate) { 4029 // Replace MemBar projections by its inputs. 4030 PhaseIterGVN* igvn = phase->is_IterGVN(); 4031 remove(igvn); 4032 // Must return either the original node (now dead) or a new node 4033 // (Do not return a top here, since that would break the uniqueness of top.) 4034 return new ConINode(TypeInt::ZERO); 4035 } 4036 } 4037 return progress ? this : nullptr; 4038 } 4039 4040 //------------------------------Value------------------------------------------ 4041 const Type* MemBarNode::Value(PhaseGVN* phase) const { 4042 if( !in(0) ) return Type::TOP; 4043 if( phase->type(in(0)) == Type::TOP ) 4044 return Type::TOP; 4045 return TypeTuple::MEMBAR; 4046 } 4047 4048 //------------------------------match------------------------------------------ 4049 // Construct projections for memory. 4050 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) { 4051 switch (proj->_con) { 4052 case TypeFunc::Control: 4053 case TypeFunc::Memory: 4054 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 4055 } 4056 ShouldNotReachHere(); 4057 return nullptr; 4058 } 4059 4060 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) { 4061 trailing->_kind = TrailingStore; 4062 leading->_kind = LeadingStore; 4063 #ifdef ASSERT 4064 trailing->_pair_idx = leading->_idx; 4065 leading->_pair_idx = leading->_idx; 4066 #endif 4067 } 4068 4069 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) { 4070 trailing->_kind = TrailingLoadStore; 4071 leading->_kind = LeadingLoadStore; 4072 #ifdef ASSERT 4073 trailing->_pair_idx = leading->_idx; 4074 leading->_pair_idx = leading->_idx; 4075 #endif 4076 } 4077 4078 MemBarNode* MemBarNode::trailing_membar() const { 4079 ResourceMark rm; 4080 Node* trailing = (Node*)this; 4081 VectorSet seen; 4082 Node_Stack multis(0); 4083 do { 4084 Node* c = trailing; 4085 uint i = 0; 4086 do { 4087 trailing = nullptr; 4088 for (; i < c->outcnt(); i++) { 4089 Node* next = c->raw_out(i); 4090 if (next != c && next->is_CFG()) { 4091 if (c->is_MultiBranch()) { 4092 if (multis.node() == c) { 4093 multis.set_index(i+1); 4094 } else { 4095 multis.push(c, i+1); 4096 } 4097 } 4098 trailing = next; 4099 break; 4100 } 4101 } 4102 if (trailing != nullptr && !seen.test_set(trailing->_idx)) { 4103 break; 4104 } 4105 while (multis.size() > 0) { 4106 c = multis.node(); 4107 i = multis.index(); 4108 if (i < c->req()) { 4109 break; 4110 } 4111 multis.pop(); 4112 } 4113 } while (multis.size() > 0); 4114 } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()); 4115 4116 MemBarNode* mb = trailing->as_MemBar(); 4117 assert((mb->_kind == TrailingStore && _kind == LeadingStore) || 4118 (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar"); 4119 assert(mb->_pair_idx == _pair_idx, "bad trailing membar"); 4120 return mb; 4121 } 4122 4123 MemBarNode* MemBarNode::leading_membar() const { 4124 ResourceMark rm; 4125 VectorSet seen; 4126 Node_Stack regions(0); 4127 Node* leading = in(0); 4128 while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) { 4129 while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) { 4130 leading = nullptr; 4131 while (regions.size() > 0 && leading == nullptr) { 4132 Node* r = regions.node(); 4133 uint i = regions.index(); 4134 if (i < r->req()) { 4135 leading = r->in(i); 4136 regions.set_index(i+1); 4137 } else { 4138 regions.pop(); 4139 } 4140 } 4141 if (leading == nullptr) { 4142 assert(regions.size() == 0, "all paths should have been tried"); 4143 return nullptr; 4144 } 4145 } 4146 if (leading->is_Region()) { 4147 regions.push(leading, 2); 4148 leading = leading->in(1); 4149 } else { 4150 leading = leading->in(0); 4151 } 4152 } 4153 #ifdef ASSERT 4154 Unique_Node_List wq; 4155 wq.push((Node*)this); 4156 uint found = 0; 4157 for (uint i = 0; i < wq.size(); i++) { 4158 Node* n = wq.at(i); 4159 if (n->is_Region()) { 4160 for (uint j = 1; j < n->req(); j++) { 4161 Node* in = n->in(j); 4162 if (in != nullptr && !in->is_top()) { 4163 wq.push(in); 4164 } 4165 } 4166 } else { 4167 if (n->is_MemBar() && n->as_MemBar()->leading()) { 4168 assert(n == leading, "consistency check failed"); 4169 found++; 4170 } else { 4171 Node* in = n->in(0); 4172 if (in != nullptr && !in->is_top()) { 4173 wq.push(in); 4174 } 4175 } 4176 } 4177 } 4178 assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed"); 4179 #endif 4180 if (leading == nullptr) { 4181 return nullptr; 4182 } 4183 MemBarNode* mb = leading->as_MemBar(); 4184 assert((mb->_kind == LeadingStore && _kind == TrailingStore) || 4185 (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar"); 4186 assert(mb->_pair_idx == _pair_idx, "bad leading membar"); 4187 return mb; 4188 } 4189 4190 4191 //===========================InitializeNode==================================== 4192 // SUMMARY: 4193 // This node acts as a memory barrier on raw memory, after some raw stores. 4194 // The 'cooked' oop value feeds from the Initialize, not the Allocation. 4195 // The Initialize can 'capture' suitably constrained stores as raw inits. 4196 // It can coalesce related raw stores into larger units (called 'tiles'). 4197 // It can avoid zeroing new storage for memory units which have raw inits. 4198 // At macro-expansion, it is marked 'complete', and does not optimize further. 4199 // 4200 // EXAMPLE: 4201 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine. 4202 // ctl = incoming control; mem* = incoming memory 4203 // (Note: A star * on a memory edge denotes I/O and other standard edges.) 4204 // First allocate uninitialized memory and fill in the header: 4205 // alloc = (Allocate ctl mem* 16 #short[].klass ...) 4206 // ctl := alloc.Control; mem* := alloc.Memory* 4207 // rawmem = alloc.Memory; rawoop = alloc.RawAddress 4208 // Then initialize to zero the non-header parts of the raw memory block: 4209 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress) 4210 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory 4211 // After the initialize node executes, the object is ready for service: 4212 // oop := (CheckCastPP init.Control alloc.RawAddress #short[]) 4213 // Suppose its body is immediately initialized as {1,2}: 4214 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 4215 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 4216 // mem.SLICE(#short[*]) := store2 4217 // 4218 // DETAILS: 4219 // An InitializeNode collects and isolates object initialization after 4220 // an AllocateNode and before the next possible safepoint. As a 4221 // memory barrier (MemBarNode), it keeps critical stores from drifting 4222 // down past any safepoint or any publication of the allocation. 4223 // Before this barrier, a newly-allocated object may have uninitialized bits. 4224 // After this barrier, it may be treated as a real oop, and GC is allowed. 4225 // 4226 // The semantics of the InitializeNode include an implicit zeroing of 4227 // the new object from object header to the end of the object. 4228 // (The object header and end are determined by the AllocateNode.) 4229 // 4230 // Certain stores may be added as direct inputs to the InitializeNode. 4231 // These stores must update raw memory, and they must be to addresses 4232 // derived from the raw address produced by AllocateNode, and with 4233 // a constant offset. They must be ordered by increasing offset. 4234 // The first one is at in(RawStores), the last at in(req()-1). 4235 // Unlike most memory operations, they are not linked in a chain, 4236 // but are displayed in parallel as users of the rawmem output of 4237 // the allocation. 4238 // 4239 // (See comments in InitializeNode::capture_store, which continue 4240 // the example given above.) 4241 // 4242 // When the associated Allocate is macro-expanded, the InitializeNode 4243 // may be rewritten to optimize collected stores. A ClearArrayNode 4244 // may also be created at that point to represent any required zeroing. 4245 // The InitializeNode is then marked 'complete', prohibiting further 4246 // capturing of nearby memory operations. 4247 // 4248 // During macro-expansion, all captured initializations which store 4249 // constant values of 32 bits or smaller are coalesced (if advantageous) 4250 // into larger 'tiles' 32 or 64 bits. This allows an object to be 4251 // initialized in fewer memory operations. Memory words which are 4252 // covered by neither tiles nor non-constant stores are pre-zeroed 4253 // by explicit stores of zero. (The code shape happens to do all 4254 // zeroing first, then all other stores, with both sequences occurring 4255 // in order of ascending offsets.) 4256 // 4257 // Alternatively, code may be inserted between an AllocateNode and its 4258 // InitializeNode, to perform arbitrary initialization of the new object. 4259 // E.g., the object copying intrinsics insert complex data transfers here. 4260 // The initialization must then be marked as 'complete' disable the 4261 // built-in zeroing semantics and the collection of initializing stores. 4262 // 4263 // While an InitializeNode is incomplete, reads from the memory state 4264 // produced by it are optimizable if they match the control edge and 4265 // new oop address associated with the allocation/initialization. 4266 // They return a stored value (if the offset matches) or else zero. 4267 // A write to the memory state, if it matches control and address, 4268 // and if it is to a constant offset, may be 'captured' by the 4269 // InitializeNode. It is cloned as a raw memory operation and rewired 4270 // inside the initialization, to the raw oop produced by the allocation. 4271 // Operations on addresses which are provably distinct (e.g., to 4272 // other AllocateNodes) are allowed to bypass the initialization. 4273 // 4274 // The effect of all this is to consolidate object initialization 4275 // (both arrays and non-arrays, both piecewise and bulk) into a 4276 // single location, where it can be optimized as a unit. 4277 // 4278 // Only stores with an offset less than TrackedInitializationLimit words 4279 // will be considered for capture by an InitializeNode. This puts a 4280 // reasonable limit on the complexity of optimized initializations. 4281 4282 //---------------------------InitializeNode------------------------------------ 4283 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop) 4284 : MemBarNode(C, adr_type, rawoop), 4285 _is_complete(Incomplete), _does_not_escape(false) 4286 { 4287 init_class_id(Class_Initialize); 4288 4289 assert(adr_type == Compile::AliasIdxRaw, "only valid atp"); 4290 assert(in(RawAddress) == rawoop, "proper init"); 4291 // Note: allocation() can be null, for secondary initialization barriers 4292 } 4293 4294 // Since this node is not matched, it will be processed by the 4295 // register allocator. Declare that there are no constraints 4296 // on the allocation of the RawAddress edge. 4297 const RegMask &InitializeNode::in_RegMask(uint idx) const { 4298 // This edge should be set to top, by the set_complete. But be conservative. 4299 if (idx == InitializeNode::RawAddress) 4300 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]); 4301 return RegMask::Empty; 4302 } 4303 4304 Node* InitializeNode::memory(uint alias_idx) { 4305 Node* mem = in(Memory); 4306 if (mem->is_MergeMem()) { 4307 return mem->as_MergeMem()->memory_at(alias_idx); 4308 } else { 4309 // incoming raw memory is not split 4310 return mem; 4311 } 4312 } 4313 4314 bool InitializeNode::is_non_zero() { 4315 if (is_complete()) return false; 4316 remove_extra_zeroes(); 4317 return (req() > RawStores); 4318 } 4319 4320 void InitializeNode::set_complete(PhaseGVN* phase) { 4321 assert(!is_complete(), "caller responsibility"); 4322 _is_complete = Complete; 4323 4324 // After this node is complete, it contains a bunch of 4325 // raw-memory initializations. There is no need for 4326 // it to have anything to do with non-raw memory effects. 4327 // Therefore, tell all non-raw users to re-optimize themselves, 4328 // after skipping the memory effects of this initialization. 4329 PhaseIterGVN* igvn = phase->is_IterGVN(); 4330 if (igvn) igvn->add_users_to_worklist(this); 4331 } 4332 4333 // convenience function 4334 // return false if the init contains any stores already 4335 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) { 4336 InitializeNode* init = initialization(); 4337 if (init == nullptr || init->is_complete()) return false; 4338 init->remove_extra_zeroes(); 4339 // for now, if this allocation has already collected any inits, bail: 4340 if (init->is_non_zero()) return false; 4341 init->set_complete(phase); 4342 return true; 4343 } 4344 4345 void InitializeNode::remove_extra_zeroes() { 4346 if (req() == RawStores) return; 4347 Node* zmem = zero_memory(); 4348 uint fill = RawStores; 4349 for (uint i = fill; i < req(); i++) { 4350 Node* n = in(i); 4351 if (n->is_top() || n == zmem) continue; // skip 4352 if (fill < i) set_req(fill, n); // compact 4353 ++fill; 4354 } 4355 // delete any empty spaces created: 4356 while (fill < req()) { 4357 del_req(fill); 4358 } 4359 } 4360 4361 // Helper for remembering which stores go with which offsets. 4362 intptr_t InitializeNode::get_store_offset(Node* st, PhaseValues* phase) { 4363 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node 4364 intptr_t offset = -1; 4365 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address), 4366 phase, offset); 4367 if (base == nullptr) return -1; // something is dead, 4368 if (offset < 0) return -1; // dead, dead 4369 return offset; 4370 } 4371 4372 // Helper for proving that an initialization expression is 4373 // "simple enough" to be folded into an object initialization. 4374 // Attempts to prove that a store's initial value 'n' can be captured 4375 // within the initialization without creating a vicious cycle, such as: 4376 // { Foo p = new Foo(); p.next = p; } 4377 // True for constants and parameters and small combinations thereof. 4378 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) { 4379 ResourceMark rm; 4380 Unique_Node_List worklist; 4381 worklist.push(value); 4382 4383 uint complexity_limit = 20; 4384 for (uint j = 0; j < worklist.size(); j++) { 4385 if (j >= complexity_limit) { 4386 return false; // Bail out if processed too many nodes 4387 } 4388 4389 Node* n = worklist.at(j); 4390 if (n == nullptr) continue; // (can this really happen?) 4391 if (n->is_Proj()) n = n->in(0); 4392 if (n == this) return false; // found a cycle 4393 if (n->is_Con()) continue; 4394 if (n->is_Start()) continue; // params, etc., are OK 4395 if (n->is_Root()) continue; // even better 4396 4397 // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation 4398 if (n->is_CFG() && phase->is_dominator(n, allocation())) { 4399 continue; 4400 } 4401 4402 Node* ctl = n->in(0); 4403 if (ctl != nullptr && !ctl->is_top()) { 4404 if (ctl->is_Proj()) ctl = ctl->in(0); 4405 if (ctl == this) return false; 4406 4407 // If we already know that the enclosing memory op is pinned right after 4408 // the init, then any control flow that the store has picked up 4409 // must have preceded the init, or else be equal to the init. 4410 // Even after loop optimizations (which might change control edges) 4411 // a store is never pinned *before* the availability of its inputs. 4412 if (!MemNode::all_controls_dominate(n, this)) { 4413 return false; // failed to prove a good control 4414 } 4415 } 4416 4417 // Check data edges for possible dependencies on 'this'. 4418 for (uint i = 1; i < n->req(); i++) { 4419 Node* m = n->in(i); 4420 if (m == nullptr || m == n || m->is_top()) continue; 4421 4422 // Only process data inputs once 4423 worklist.push(m); 4424 } 4425 } 4426 4427 return true; 4428 } 4429 4430 // Here are all the checks a Store must pass before it can be moved into 4431 // an initialization. Returns zero if a check fails. 4432 // On success, returns the (constant) offset to which the store applies, 4433 // within the initialized memory. 4434 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) { 4435 const int FAIL = 0; 4436 if (st->req() != MemNode::ValueIn + 1) 4437 return FAIL; // an inscrutable StoreNode (card mark?) 4438 Node* ctl = st->in(MemNode::Control); 4439 if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this)) 4440 return FAIL; // must be unconditional after the initialization 4441 Node* mem = st->in(MemNode::Memory); 4442 if (!(mem->is_Proj() && mem->in(0) == this)) 4443 return FAIL; // must not be preceded by other stores 4444 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4445 if ((st->Opcode() == Op_StoreP || st->Opcode() == Op_StoreN) && 4446 !bs->can_initialize_object(st)) { 4447 return FAIL; 4448 } 4449 Node* adr = st->in(MemNode::Address); 4450 intptr_t offset; 4451 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset); 4452 if (alloc == nullptr) 4453 return FAIL; // inscrutable address 4454 if (alloc != allocation()) 4455 return FAIL; // wrong allocation! (store needs to float up) 4456 int size_in_bytes = st->memory_size(); 4457 if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) { 4458 return FAIL; // mismatched access 4459 } 4460 Node* val = st->in(MemNode::ValueIn); 4461 4462 if (!detect_init_independence(val, phase)) 4463 return FAIL; // stored value must be 'simple enough' 4464 4465 // The Store can be captured only if nothing after the allocation 4466 // and before the Store is using the memory location that the store 4467 // overwrites. 4468 bool failed = false; 4469 // If is_complete_with_arraycopy() is true the shape of the graph is 4470 // well defined and is safe so no need for extra checks. 4471 if (!is_complete_with_arraycopy()) { 4472 // We are going to look at each use of the memory state following 4473 // the allocation to make sure nothing reads the memory that the 4474 // Store writes. 4475 const TypePtr* t_adr = phase->type(adr)->isa_ptr(); 4476 int alias_idx = phase->C->get_alias_index(t_adr); 4477 ResourceMark rm; 4478 Unique_Node_List mems; 4479 mems.push(mem); 4480 Node* unique_merge = nullptr; 4481 for (uint next = 0; next < mems.size(); ++next) { 4482 Node *m = mems.at(next); 4483 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 4484 Node *n = m->fast_out(j); 4485 if (n->outcnt() == 0) { 4486 continue; 4487 } 4488 if (n == st) { 4489 continue; 4490 } else if (n->in(0) != nullptr && n->in(0) != ctl) { 4491 // If the control of this use is different from the control 4492 // of the Store which is right after the InitializeNode then 4493 // this node cannot be between the InitializeNode and the 4494 // Store. 4495 continue; 4496 } else if (n->is_MergeMem()) { 4497 if (n->as_MergeMem()->memory_at(alias_idx) == m) { 4498 // We can hit a MergeMemNode (that will likely go away 4499 // later) that is a direct use of the memory state 4500 // following the InitializeNode on the same slice as the 4501 // store node that we'd like to capture. We need to check 4502 // the uses of the MergeMemNode. 4503 mems.push(n); 4504 } 4505 } else if (n->is_Mem()) { 4506 Node* other_adr = n->in(MemNode::Address); 4507 if (other_adr == adr) { 4508 failed = true; 4509 break; 4510 } else { 4511 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr(); 4512 if (other_t_adr != nullptr) { 4513 int other_alias_idx = phase->C->get_alias_index(other_t_adr); 4514 if (other_alias_idx == alias_idx) { 4515 // A load from the same memory slice as the store right 4516 // after the InitializeNode. We check the control of the 4517 // object/array that is loaded from. If it's the same as 4518 // the store control then we cannot capture the store. 4519 assert(!n->is_Store(), "2 stores to same slice on same control?"); 4520 Node* base = other_adr; 4521 assert(base->is_AddP(), "should be addp but is %s", base->Name()); 4522 base = base->in(AddPNode::Base); 4523 if (base != nullptr) { 4524 base = base->uncast(); 4525 if (base->is_Proj() && base->in(0) == alloc) { 4526 failed = true; 4527 break; 4528 } 4529 } 4530 } 4531 } 4532 } 4533 } else { 4534 failed = true; 4535 break; 4536 } 4537 } 4538 } 4539 } 4540 if (failed) { 4541 if (!can_reshape) { 4542 // We decided we couldn't capture the store during parsing. We 4543 // should try again during the next IGVN once the graph is 4544 // cleaner. 4545 phase->C->record_for_igvn(st); 4546 } 4547 return FAIL; 4548 } 4549 4550 return offset; // success 4551 } 4552 4553 // Find the captured store in(i) which corresponds to the range 4554 // [start..start+size) in the initialized object. 4555 // If there is one, return its index i. If there isn't, return the 4556 // negative of the index where it should be inserted. 4557 // Return 0 if the queried range overlaps an initialization boundary 4558 // or if dead code is encountered. 4559 // If size_in_bytes is zero, do not bother with overlap checks. 4560 int InitializeNode::captured_store_insertion_point(intptr_t start, 4561 int size_in_bytes, 4562 PhaseValues* phase) { 4563 const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 4564 4565 if (is_complete()) 4566 return FAIL; // arraycopy got here first; punt 4567 4568 assert(allocation() != nullptr, "must be present"); 4569 4570 // no negatives, no header fields: 4571 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL; 4572 4573 // after a certain size, we bail out on tracking all the stores: 4574 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 4575 if (start >= ti_limit) return FAIL; 4576 4577 for (uint i = InitializeNode::RawStores, limit = req(); ; ) { 4578 if (i >= limit) return -(int)i; // not found; here is where to put it 4579 4580 Node* st = in(i); 4581 intptr_t st_off = get_store_offset(st, phase); 4582 if (st_off < 0) { 4583 if (st != zero_memory()) { 4584 return FAIL; // bail out if there is dead garbage 4585 } 4586 } else if (st_off > start) { 4587 // ...we are done, since stores are ordered 4588 if (st_off < start + size_in_bytes) { 4589 return FAIL; // the next store overlaps 4590 } 4591 return -(int)i; // not found; here is where to put it 4592 } else if (st_off < start) { 4593 assert(st->as_Store()->memory_size() <= MAX_STORE, ""); 4594 if (size_in_bytes != 0 && 4595 start < st_off + MAX_STORE && 4596 start < st_off + st->as_Store()->memory_size()) { 4597 return FAIL; // the previous store overlaps 4598 } 4599 } else { 4600 if (size_in_bytes != 0 && 4601 st->as_Store()->memory_size() != size_in_bytes) { 4602 return FAIL; // mismatched store size 4603 } 4604 return i; 4605 } 4606 4607 ++i; 4608 } 4609 } 4610 4611 // Look for a captured store which initializes at the offset 'start' 4612 // with the given size. If there is no such store, and no other 4613 // initialization interferes, then return zero_memory (the memory 4614 // projection of the AllocateNode). 4615 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes, 4616 PhaseValues* phase) { 4617 assert(stores_are_sane(phase), ""); 4618 int i = captured_store_insertion_point(start, size_in_bytes, phase); 4619 if (i == 0) { 4620 return nullptr; // something is dead 4621 } else if (i < 0) { 4622 return zero_memory(); // just primordial zero bits here 4623 } else { 4624 Node* st = in(i); // here is the store at this position 4625 assert(get_store_offset(st->as_Store(), phase) == start, "sanity"); 4626 return st; 4627 } 4628 } 4629 4630 // Create, as a raw pointer, an address within my new object at 'offset'. 4631 Node* InitializeNode::make_raw_address(intptr_t offset, 4632 PhaseGVN* phase) { 4633 Node* addr = in(RawAddress); 4634 if (offset != 0) { 4635 Compile* C = phase->C; 4636 addr = phase->transform( new AddPNode(C->top(), addr, 4637 phase->MakeConX(offset)) ); 4638 } 4639 return addr; 4640 } 4641 4642 // Clone the given store, converting it into a raw store 4643 // initializing a field or element of my new object. 4644 // Caller is responsible for retiring the original store, 4645 // with subsume_node or the like. 4646 // 4647 // From the example above InitializeNode::InitializeNode, 4648 // here are the old stores to be captured: 4649 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 4650 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 4651 // 4652 // Here is the changed code; note the extra edges on init: 4653 // alloc = (Allocate ...) 4654 // rawoop = alloc.RawAddress 4655 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1) 4656 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2) 4657 // init = (Initialize alloc.Control alloc.Memory rawoop 4658 // rawstore1 rawstore2) 4659 // 4660 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start, 4661 PhaseGVN* phase, bool can_reshape) { 4662 assert(stores_are_sane(phase), ""); 4663 4664 if (start < 0) return nullptr; 4665 assert(can_capture_store(st, phase, can_reshape) == start, "sanity"); 4666 4667 Compile* C = phase->C; 4668 int size_in_bytes = st->memory_size(); 4669 int i = captured_store_insertion_point(start, size_in_bytes, phase); 4670 if (i == 0) return nullptr; // bail out 4671 Node* prev_mem = nullptr; // raw memory for the captured store 4672 if (i > 0) { 4673 prev_mem = in(i); // there is a pre-existing store under this one 4674 set_req(i, C->top()); // temporarily disconnect it 4675 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect. 4676 } else { 4677 i = -i; // no pre-existing store 4678 prev_mem = zero_memory(); // a slice of the newly allocated object 4679 if (i > InitializeNode::RawStores && in(i-1) == prev_mem) 4680 set_req(--i, C->top()); // reuse this edge; it has been folded away 4681 else 4682 ins_req(i, C->top()); // build a new edge 4683 } 4684 Node* new_st = st->clone(); 4685 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4686 new_st->set_req(MemNode::Control, in(Control)); 4687 new_st->set_req(MemNode::Memory, prev_mem); 4688 new_st->set_req(MemNode::Address, make_raw_address(start, phase)); 4689 bs->eliminate_gc_barrier_data(new_st); 4690 new_st = phase->transform(new_st); 4691 4692 // At this point, new_st might have swallowed a pre-existing store 4693 // at the same offset, or perhaps new_st might have disappeared, 4694 // if it redundantly stored the same value (or zero to fresh memory). 4695 4696 // In any case, wire it in: 4697 PhaseIterGVN* igvn = phase->is_IterGVN(); 4698 if (igvn) { 4699 igvn->rehash_node_delayed(this); 4700 } 4701 set_req(i, new_st); 4702 4703 // The caller may now kill the old guy. 4704 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase)); 4705 assert(check_st == new_st || check_st == nullptr, "must be findable"); 4706 assert(!is_complete(), ""); 4707 return new_st; 4708 } 4709 4710 static bool store_constant(jlong* tiles, int num_tiles, 4711 intptr_t st_off, int st_size, 4712 jlong con) { 4713 if ((st_off & (st_size-1)) != 0) 4714 return false; // strange store offset (assume size==2**N) 4715 address addr = (address)tiles + st_off; 4716 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob"); 4717 switch (st_size) { 4718 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break; 4719 case sizeof(jchar): *(jchar*) addr = (jchar) con; break; 4720 case sizeof(jint): *(jint*) addr = (jint) con; break; 4721 case sizeof(jlong): *(jlong*) addr = (jlong) con; break; 4722 default: return false; // strange store size (detect size!=2**N here) 4723 } 4724 return true; // return success to caller 4725 } 4726 4727 // Coalesce subword constants into int constants and possibly 4728 // into long constants. The goal, if the CPU permits, 4729 // is to initialize the object with a small number of 64-bit tiles. 4730 // Also, convert floating-point constants to bit patterns. 4731 // Non-constants are not relevant to this pass. 4732 // 4733 // In terms of the running example on InitializeNode::InitializeNode 4734 // and InitializeNode::capture_store, here is the transformation 4735 // of rawstore1 and rawstore2 into rawstore12: 4736 // alloc = (Allocate ...) 4737 // rawoop = alloc.RawAddress 4738 // tile12 = 0x00010002 4739 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12) 4740 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12) 4741 // 4742 void 4743 InitializeNode::coalesce_subword_stores(intptr_t header_size, 4744 Node* size_in_bytes, 4745 PhaseGVN* phase) { 4746 Compile* C = phase->C; 4747 4748 assert(stores_are_sane(phase), ""); 4749 // Note: After this pass, they are not completely sane, 4750 // since there may be some overlaps. 4751 4752 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0; 4753 4754 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 4755 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit); 4756 size_limit = MIN2(size_limit, ti_limit); 4757 size_limit = align_up(size_limit, BytesPerLong); 4758 int num_tiles = size_limit / BytesPerLong; 4759 4760 // allocate space for the tile map: 4761 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small 4762 jlong tiles_buf[small_len]; 4763 Node* nodes_buf[small_len]; 4764 jlong inits_buf[small_len]; 4765 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0] 4766 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 4767 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0] 4768 : NEW_RESOURCE_ARRAY(Node*, num_tiles)); 4769 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0] 4770 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 4771 // tiles: exact bitwise model of all primitive constants 4772 // nodes: last constant-storing node subsumed into the tiles model 4773 // inits: which bytes (in each tile) are touched by any initializations 4774 4775 //// Pass A: Fill in the tile model with any relevant stores. 4776 4777 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles); 4778 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles); 4779 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles); 4780 Node* zmem = zero_memory(); // initially zero memory state 4781 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 4782 Node* st = in(i); 4783 intptr_t st_off = get_store_offset(st, phase); 4784 4785 // Figure out the store's offset and constant value: 4786 if (st_off < header_size) continue; //skip (ignore header) 4787 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain) 4788 int st_size = st->as_Store()->memory_size(); 4789 if (st_off + st_size > size_limit) break; 4790 4791 // Record which bytes are touched, whether by constant or not. 4792 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1)) 4793 continue; // skip (strange store size) 4794 4795 const Type* val = phase->type(st->in(MemNode::ValueIn)); 4796 if (!val->singleton()) continue; //skip (non-con store) 4797 BasicType type = val->basic_type(); 4798 4799 jlong con = 0; 4800 switch (type) { 4801 case T_INT: con = val->is_int()->get_con(); break; 4802 case T_LONG: con = val->is_long()->get_con(); break; 4803 case T_FLOAT: con = jint_cast(val->getf()); break; 4804 case T_DOUBLE: con = jlong_cast(val->getd()); break; 4805 default: continue; //skip (odd store type) 4806 } 4807 4808 if (type == T_LONG && Matcher::isSimpleConstant64(con) && 4809 st->Opcode() == Op_StoreL) { 4810 continue; // This StoreL is already optimal. 4811 } 4812 4813 // Store down the constant. 4814 store_constant(tiles, num_tiles, st_off, st_size, con); 4815 4816 intptr_t j = st_off >> LogBytesPerLong; 4817 4818 if (type == T_INT && st_size == BytesPerInt 4819 && (st_off & BytesPerInt) == BytesPerInt) { 4820 jlong lcon = tiles[j]; 4821 if (!Matcher::isSimpleConstant64(lcon) && 4822 st->Opcode() == Op_StoreI) { 4823 // This StoreI is already optimal by itself. 4824 jint* intcon = (jint*) &tiles[j]; 4825 intcon[1] = 0; // undo the store_constant() 4826 4827 // If the previous store is also optimal by itself, back up and 4828 // undo the action of the previous loop iteration... if we can. 4829 // But if we can't, just let the previous half take care of itself. 4830 st = nodes[j]; 4831 st_off -= BytesPerInt; 4832 con = intcon[0]; 4833 if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) { 4834 assert(st_off >= header_size, "still ignoring header"); 4835 assert(get_store_offset(st, phase) == st_off, "must be"); 4836 assert(in(i-1) == zmem, "must be"); 4837 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn))); 4838 assert(con == tcon->is_int()->get_con(), "must be"); 4839 // Undo the effects of the previous loop trip, which swallowed st: 4840 intcon[0] = 0; // undo store_constant() 4841 set_req(i-1, st); // undo set_req(i, zmem) 4842 nodes[j] = nullptr; // undo nodes[j] = st 4843 --old_subword; // undo ++old_subword 4844 } 4845 continue; // This StoreI is already optimal. 4846 } 4847 } 4848 4849 // This store is not needed. 4850 set_req(i, zmem); 4851 nodes[j] = st; // record for the moment 4852 if (st_size < BytesPerLong) // something has changed 4853 ++old_subword; // includes int/float, but who's counting... 4854 else ++old_long; 4855 } 4856 4857 if ((old_subword + old_long) == 0) 4858 return; // nothing more to do 4859 4860 //// Pass B: Convert any non-zero tiles into optimal constant stores. 4861 // Be sure to insert them before overlapping non-constant stores. 4862 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.) 4863 for (int j = 0; j < num_tiles; j++) { 4864 jlong con = tiles[j]; 4865 jlong init = inits[j]; 4866 if (con == 0) continue; 4867 jint con0, con1; // split the constant, address-wise 4868 jint init0, init1; // split the init map, address-wise 4869 { union { jlong con; jint intcon[2]; } u; 4870 u.con = con; 4871 con0 = u.intcon[0]; 4872 con1 = u.intcon[1]; 4873 u.con = init; 4874 init0 = u.intcon[0]; 4875 init1 = u.intcon[1]; 4876 } 4877 4878 Node* old = nodes[j]; 4879 assert(old != nullptr, "need the prior store"); 4880 intptr_t offset = (j * BytesPerLong); 4881 4882 bool split = !Matcher::isSimpleConstant64(con); 4883 4884 if (offset < header_size) { 4885 assert(offset + BytesPerInt >= header_size, "second int counts"); 4886 assert(*(jint*)&tiles[j] == 0, "junk in header"); 4887 split = true; // only the second word counts 4888 // Example: int a[] = { 42 ... } 4889 } else if (con0 == 0 && init0 == -1) { 4890 split = true; // first word is covered by full inits 4891 // Example: int a[] = { ... foo(), 42 ... } 4892 } else if (con1 == 0 && init1 == -1) { 4893 split = true; // second word is covered by full inits 4894 // Example: int a[] = { ... 42, foo() ... } 4895 } 4896 4897 // Here's a case where init0 is neither 0 nor -1: 4898 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... } 4899 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF. 4900 // In this case the tile is not split; it is (jlong)42. 4901 // The big tile is stored down, and then the foo() value is inserted. 4902 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.) 4903 4904 Node* ctl = old->in(MemNode::Control); 4905 Node* adr = make_raw_address(offset, phase); 4906 const TypePtr* atp = TypeRawPtr::BOTTOM; 4907 4908 // One or two coalesced stores to plop down. 4909 Node* st[2]; 4910 intptr_t off[2]; 4911 int nst = 0; 4912 if (!split) { 4913 ++new_long; 4914 off[nst] = offset; 4915 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 4916 phase->longcon(con), T_LONG, MemNode::unordered); 4917 } else { 4918 // Omit either if it is a zero. 4919 if (con0 != 0) { 4920 ++new_int; 4921 off[nst] = offset; 4922 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 4923 phase->intcon(con0), T_INT, MemNode::unordered); 4924 } 4925 if (con1 != 0) { 4926 ++new_int; 4927 offset += BytesPerInt; 4928 adr = make_raw_address(offset, phase); 4929 off[nst] = offset; 4930 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 4931 phase->intcon(con1), T_INT, MemNode::unordered); 4932 } 4933 } 4934 4935 // Insert second store first, then the first before the second. 4936 // Insert each one just before any overlapping non-constant stores. 4937 while (nst > 0) { 4938 Node* st1 = st[--nst]; 4939 C->copy_node_notes_to(st1, old); 4940 st1 = phase->transform(st1); 4941 offset = off[nst]; 4942 assert(offset >= header_size, "do not smash header"); 4943 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase); 4944 guarantee(ins_idx != 0, "must re-insert constant store"); 4945 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap 4946 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem) 4947 set_req(--ins_idx, st1); 4948 else 4949 ins_req(ins_idx, st1); 4950 } 4951 } 4952 4953 if (PrintCompilation && WizardMode) 4954 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long", 4955 old_subword, old_long, new_int, new_long); 4956 if (C->log() != nullptr) 4957 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'", 4958 old_subword, old_long, new_int, new_long); 4959 4960 // Clean up any remaining occurrences of zmem: 4961 remove_extra_zeroes(); 4962 } 4963 4964 // Explore forward from in(start) to find the first fully initialized 4965 // word, and return its offset. Skip groups of subword stores which 4966 // together initialize full words. If in(start) is itself part of a 4967 // fully initialized word, return the offset of in(start). If there 4968 // are no following full-word stores, or if something is fishy, return 4969 // a negative value. 4970 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) { 4971 int int_map = 0; 4972 intptr_t int_map_off = 0; 4973 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for 4974 4975 for (uint i = start, limit = req(); i < limit; i++) { 4976 Node* st = in(i); 4977 4978 intptr_t st_off = get_store_offset(st, phase); 4979 if (st_off < 0) break; // return conservative answer 4980 4981 int st_size = st->as_Store()->memory_size(); 4982 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) { 4983 return st_off; // we found a complete word init 4984 } 4985 4986 // update the map: 4987 4988 intptr_t this_int_off = align_down(st_off, BytesPerInt); 4989 if (this_int_off != int_map_off) { 4990 // reset the map: 4991 int_map = 0; 4992 int_map_off = this_int_off; 4993 } 4994 4995 int subword_off = st_off - this_int_off; 4996 int_map |= right_n_bits(st_size) << subword_off; 4997 if ((int_map & FULL_MAP) == FULL_MAP) { 4998 return this_int_off; // we found a complete word init 4999 } 5000 5001 // Did this store hit or cross the word boundary? 5002 intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt); 5003 if (next_int_off == this_int_off + BytesPerInt) { 5004 // We passed the current int, without fully initializing it. 5005 int_map_off = next_int_off; 5006 int_map >>= BytesPerInt; 5007 } else if (next_int_off > this_int_off + BytesPerInt) { 5008 // We passed the current and next int. 5009 return this_int_off + BytesPerInt; 5010 } 5011 } 5012 5013 return -1; 5014 } 5015 5016 5017 // Called when the associated AllocateNode is expanded into CFG. 5018 // At this point, we may perform additional optimizations. 5019 // Linearize the stores by ascending offset, to make memory 5020 // activity as coherent as possible. 5021 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, 5022 intptr_t header_size, 5023 Node* size_in_bytes, 5024 PhaseIterGVN* phase) { 5025 assert(!is_complete(), "not already complete"); 5026 assert(stores_are_sane(phase), ""); 5027 assert(allocation() != nullptr, "must be present"); 5028 5029 remove_extra_zeroes(); 5030 5031 if (ReduceFieldZeroing || ReduceBulkZeroing) 5032 // reduce instruction count for common initialization patterns 5033 coalesce_subword_stores(header_size, size_in_bytes, phase); 5034 5035 Node* zmem = zero_memory(); // initially zero memory state 5036 Node* inits = zmem; // accumulating a linearized chain of inits 5037 #ifdef ASSERT 5038 intptr_t first_offset = allocation()->minimum_header_size(); 5039 intptr_t last_init_off = first_offset; // previous init offset 5040 intptr_t last_init_end = first_offset; // previous init offset+size 5041 intptr_t last_tile_end = first_offset; // previous tile offset+size 5042 #endif 5043 intptr_t zeroes_done = header_size; 5044 5045 bool do_zeroing = true; // we might give up if inits are very sparse 5046 int big_init_gaps = 0; // how many large gaps have we seen? 5047 5048 if (UseTLAB && ZeroTLAB) do_zeroing = false; 5049 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false; 5050 5051 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 5052 Node* st = in(i); 5053 intptr_t st_off = get_store_offset(st, phase); 5054 if (st_off < 0) 5055 break; // unknown junk in the inits 5056 if (st->in(MemNode::Memory) != zmem) 5057 break; // complicated store chains somehow in list 5058 5059 int st_size = st->as_Store()->memory_size(); 5060 intptr_t next_init_off = st_off + st_size; 5061 5062 if (do_zeroing && zeroes_done < next_init_off) { 5063 // See if this store needs a zero before it or under it. 5064 intptr_t zeroes_needed = st_off; 5065 5066 if (st_size < BytesPerInt) { 5067 // Look for subword stores which only partially initialize words. 5068 // If we find some, we must lay down some word-level zeroes first, 5069 // underneath the subword stores. 5070 // 5071 // Examples: 5072 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s 5073 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y 5074 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z 5075 // 5076 // Note: coalesce_subword_stores may have already done this, 5077 // if it was prompted by constant non-zero subword initializers. 5078 // But this case can still arise with non-constant stores. 5079 5080 intptr_t next_full_store = find_next_fullword_store(i, phase); 5081 5082 // In the examples above: 5083 // in(i) p q r s x y z 5084 // st_off 12 13 14 15 12 13 14 5085 // st_size 1 1 1 1 1 1 1 5086 // next_full_s. 12 16 16 16 16 16 16 5087 // z's_done 12 16 16 16 12 16 12 5088 // z's_needed 12 16 16 16 16 16 16 5089 // zsize 0 0 0 0 4 0 4 5090 if (next_full_store < 0) { 5091 // Conservative tack: Zero to end of current word. 5092 zeroes_needed = align_up(zeroes_needed, BytesPerInt); 5093 } else { 5094 // Zero to beginning of next fully initialized word. 5095 // Or, don't zero at all, if we are already in that word. 5096 assert(next_full_store >= zeroes_needed, "must go forward"); 5097 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary"); 5098 zeroes_needed = next_full_store; 5099 } 5100 } 5101 5102 if (zeroes_needed > zeroes_done) { 5103 intptr_t zsize = zeroes_needed - zeroes_done; 5104 // Do some incremental zeroing on rawmem, in parallel with inits. 5105 zeroes_done = align_down(zeroes_done, BytesPerInt); 5106 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 5107 zeroes_done, zeroes_needed, 5108 phase); 5109 zeroes_done = zeroes_needed; 5110 if (zsize > InitArrayShortSize && ++big_init_gaps > 2) 5111 do_zeroing = false; // leave the hole, next time 5112 } 5113 } 5114 5115 // Collect the store and move on: 5116 phase->replace_input_of(st, MemNode::Memory, inits); 5117 inits = st; // put it on the linearized chain 5118 set_req(i, zmem); // unhook from previous position 5119 5120 if (zeroes_done == st_off) 5121 zeroes_done = next_init_off; 5122 5123 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any"); 5124 5125 #ifdef ASSERT 5126 // Various order invariants. Weaker than stores_are_sane because 5127 // a large constant tile can be filled in by smaller non-constant stores. 5128 assert(st_off >= last_init_off, "inits do not reverse"); 5129 last_init_off = st_off; 5130 const Type* val = nullptr; 5131 if (st_size >= BytesPerInt && 5132 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() && 5133 (int)val->basic_type() < (int)T_OBJECT) { 5134 assert(st_off >= last_tile_end, "tiles do not overlap"); 5135 assert(st_off >= last_init_end, "tiles do not overwrite inits"); 5136 last_tile_end = MAX2(last_tile_end, next_init_off); 5137 } else { 5138 intptr_t st_tile_end = align_up(next_init_off, BytesPerLong); 5139 assert(st_tile_end >= last_tile_end, "inits stay with tiles"); 5140 assert(st_off >= last_init_end, "inits do not overlap"); 5141 last_init_end = next_init_off; // it's a non-tile 5142 } 5143 #endif //ASSERT 5144 } 5145 5146 remove_extra_zeroes(); // clear out all the zmems left over 5147 add_req(inits); 5148 5149 if (!(UseTLAB && ZeroTLAB)) { 5150 // If anything remains to be zeroed, zero it all now. 5151 zeroes_done = align_down(zeroes_done, BytesPerInt); 5152 // if it is the last unused 4 bytes of an instance, forget about it 5153 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint); 5154 if (zeroes_done + BytesPerLong >= size_limit) { 5155 AllocateNode* alloc = allocation(); 5156 assert(alloc != nullptr, "must be present"); 5157 if (alloc != nullptr && alloc->Opcode() == Op_Allocate) { 5158 Node* klass_node = alloc->in(AllocateNode::KlassNode); 5159 ciKlass* k = phase->type(klass_node)->is_instklassptr()->instance_klass(); 5160 if (zeroes_done == k->layout_helper()) 5161 zeroes_done = size_limit; 5162 } 5163 } 5164 if (zeroes_done < size_limit) { 5165 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 5166 zeroes_done, size_in_bytes, phase); 5167 } 5168 } 5169 5170 set_complete(phase); 5171 return rawmem; 5172 } 5173 5174 5175 #ifdef ASSERT 5176 bool InitializeNode::stores_are_sane(PhaseValues* phase) { 5177 if (is_complete()) 5178 return true; // stores could be anything at this point 5179 assert(allocation() != nullptr, "must be present"); 5180 intptr_t last_off = allocation()->minimum_header_size(); 5181 for (uint i = InitializeNode::RawStores; i < req(); i++) { 5182 Node* st = in(i); 5183 intptr_t st_off = get_store_offset(st, phase); 5184 if (st_off < 0) continue; // ignore dead garbage 5185 if (last_off > st_off) { 5186 tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off); 5187 this->dump(2); 5188 assert(false, "ascending store offsets"); 5189 return false; 5190 } 5191 last_off = st_off + st->as_Store()->memory_size(); 5192 } 5193 return true; 5194 } 5195 #endif //ASSERT 5196 5197 5198 5199 5200 //============================MergeMemNode===================================== 5201 // 5202 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several 5203 // contributing store or call operations. Each contributor provides the memory 5204 // state for a particular "alias type" (see Compile::alias_type). For example, 5205 // if a MergeMem has an input X for alias category #6, then any memory reference 5206 // to alias category #6 may use X as its memory state input, as an exact equivalent 5207 // to using the MergeMem as a whole. 5208 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p) 5209 // 5210 // (Here, the <N> notation gives the index of the relevant adr_type.) 5211 // 5212 // In one special case (and more cases in the future), alias categories overlap. 5213 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory 5214 // states. Therefore, if a MergeMem has only one contributing input W for Bot, 5215 // it is exactly equivalent to that state W: 5216 // MergeMem(<Bot>: W) <==> W 5217 // 5218 // Usually, the merge has more than one input. In that case, where inputs 5219 // overlap (i.e., one is Bot), the narrower alias type determines the memory 5220 // state for that type, and the wider alias type (Bot) fills in everywhere else: 5221 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p) 5222 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p) 5223 // 5224 // A merge can take a "wide" memory state as one of its narrow inputs. 5225 // This simply means that the merge observes out only the relevant parts of 5226 // the wide input. That is, wide memory states arriving at narrow merge inputs 5227 // are implicitly "filtered" or "sliced" as necessary. (This is rare.) 5228 // 5229 // These rules imply that MergeMem nodes may cascade (via their <Bot> links), 5230 // and that memory slices "leak through": 5231 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y) 5232 // 5233 // But, in such a cascade, repeated memory slices can "block the leak": 5234 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y') 5235 // 5236 // In the last example, Y is not part of the combined memory state of the 5237 // outermost MergeMem. The system must, of course, prevent unschedulable 5238 // memory states from arising, so you can be sure that the state Y is somehow 5239 // a precursor to state Y'. 5240 // 5241 // 5242 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array 5243 // of each MergeMemNode array are exactly the numerical alias indexes, including 5244 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions 5245 // Compile::alias_type (and kin) produce and manage these indexes. 5246 // 5247 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node. 5248 // (Note that this provides quick access to the top node inside MergeMem methods, 5249 // without the need to reach out via TLS to Compile::current.) 5250 // 5251 // As a consequence of what was just described, a MergeMem that represents a full 5252 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state, 5253 // containing all alias categories. 5254 // 5255 // MergeMem nodes never (?) have control inputs, so in(0) is null. 5256 // 5257 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either 5258 // a memory state for the alias type <N>, or else the top node, meaning that 5259 // there is no particular input for that alias type. Note that the length of 5260 // a MergeMem is variable, and may be extended at any time to accommodate new 5261 // memory states at larger alias indexes. When merges grow, they are of course 5262 // filled with "top" in the unused in() positions. 5263 // 5264 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable. 5265 // (Top was chosen because it works smoothly with passes like GCM.) 5266 // 5267 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is 5268 // the type of random VM bits like TLS references.) Since it is always the 5269 // first non-Bot memory slice, some low-level loops use it to initialize an 5270 // index variable: for (i = AliasIdxRaw; i < req(); i++). 5271 // 5272 // 5273 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns 5274 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns 5275 // the memory state for alias type <N>, or (if there is no particular slice at <N>, 5276 // it returns the base memory. To prevent bugs, memory_at does not accept <Top> 5277 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over 5278 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited. 5279 // 5280 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't 5281 // really that different from the other memory inputs. An abbreviation called 5282 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy. 5283 // 5284 // 5285 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent 5286 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi 5287 // that "emerges though" the base memory will be marked as excluding the alias types 5288 // of the other (narrow-memory) copies which "emerged through" the narrow edges: 5289 // 5290 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y)) 5291 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y)) 5292 // 5293 // This strange "subtraction" effect is necessary to ensure IGVN convergence. 5294 // (It is currently unimplemented.) As you can see, the resulting merge is 5295 // actually a disjoint union of memory states, rather than an overlay. 5296 // 5297 5298 //------------------------------MergeMemNode----------------------------------- 5299 Node* MergeMemNode::make_empty_memory() { 5300 Node* empty_memory = (Node*) Compile::current()->top(); 5301 assert(empty_memory->is_top(), "correct sentinel identity"); 5302 return empty_memory; 5303 } 5304 5305 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) { 5306 init_class_id(Class_MergeMem); 5307 // all inputs are nullified in Node::Node(int) 5308 // set_input(0, nullptr); // no control input 5309 5310 // Initialize the edges uniformly to top, for starters. 5311 Node* empty_mem = make_empty_memory(); 5312 for (uint i = Compile::AliasIdxTop; i < req(); i++) { 5313 init_req(i,empty_mem); 5314 } 5315 assert(empty_memory() == empty_mem, ""); 5316 5317 if( new_base != nullptr && new_base->is_MergeMem() ) { 5318 MergeMemNode* mdef = new_base->as_MergeMem(); 5319 assert(mdef->empty_memory() == empty_mem, "consistent sentinels"); 5320 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) { 5321 mms.set_memory(mms.memory2()); 5322 } 5323 assert(base_memory() == mdef->base_memory(), ""); 5324 } else { 5325 set_base_memory(new_base); 5326 } 5327 } 5328 5329 // Make a new, untransformed MergeMem with the same base as 'mem'. 5330 // If mem is itself a MergeMem, populate the result with the same edges. 5331 MergeMemNode* MergeMemNode::make(Node* mem) { 5332 return new MergeMemNode(mem); 5333 } 5334 5335 //------------------------------cmp-------------------------------------------- 5336 uint MergeMemNode::hash() const { return NO_HASH; } 5337 bool MergeMemNode::cmp( const Node &n ) const { 5338 return (&n == this); // Always fail except on self 5339 } 5340 5341 //------------------------------Identity--------------------------------------- 5342 Node* MergeMemNode::Identity(PhaseGVN* phase) { 5343 // Identity if this merge point does not record any interesting memory 5344 // disambiguations. 5345 Node* base_mem = base_memory(); 5346 Node* empty_mem = empty_memory(); 5347 if (base_mem != empty_mem) { // Memory path is not dead? 5348 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5349 Node* mem = in(i); 5350 if (mem != empty_mem && mem != base_mem) { 5351 return this; // Many memory splits; no change 5352 } 5353 } 5354 } 5355 return base_mem; // No memory splits; ID on the one true input 5356 } 5357 5358 //------------------------------Ideal------------------------------------------ 5359 // This method is invoked recursively on chains of MergeMem nodes 5360 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) { 5361 // Remove chain'd MergeMems 5362 // 5363 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted 5364 // relative to the "in(Bot)". Since we are patching both at the same time, 5365 // we have to be careful to read each "in(i)" relative to the old "in(Bot)", 5366 // but rewrite each "in(i)" relative to the new "in(Bot)". 5367 Node *progress = nullptr; 5368 5369 5370 Node* old_base = base_memory(); 5371 Node* empty_mem = empty_memory(); 5372 if (old_base == empty_mem) 5373 return nullptr; // Dead memory path. 5374 5375 MergeMemNode* old_mbase; 5376 if (old_base != nullptr && old_base->is_MergeMem()) 5377 old_mbase = old_base->as_MergeMem(); 5378 else 5379 old_mbase = nullptr; 5380 Node* new_base = old_base; 5381 5382 // simplify stacked MergeMems in base memory 5383 if (old_mbase) new_base = old_mbase->base_memory(); 5384 5385 // the base memory might contribute new slices beyond my req() 5386 if (old_mbase) grow_to_match(old_mbase); 5387 5388 // Note: We do not call verify_sparse on entry, because inputs 5389 // can normalize to the base_memory via subsume_node or similar 5390 // mechanisms. This method repairs that damage. 5391 5392 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels"); 5393 5394 // Look at each slice. 5395 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5396 Node* old_in = in(i); 5397 // calculate the old memory value 5398 Node* old_mem = old_in; 5399 if (old_mem == empty_mem) old_mem = old_base; 5400 assert(old_mem == memory_at(i), ""); 5401 5402 // maybe update (reslice) the old memory value 5403 5404 // simplify stacked MergeMems 5405 Node* new_mem = old_mem; 5406 MergeMemNode* old_mmem; 5407 if (old_mem != nullptr && old_mem->is_MergeMem()) 5408 old_mmem = old_mem->as_MergeMem(); 5409 else 5410 old_mmem = nullptr; 5411 if (old_mmem == this) { 5412 // This can happen if loops break up and safepoints disappear. 5413 // A merge of BotPtr (default) with a RawPtr memory derived from a 5414 // safepoint can be rewritten to a merge of the same BotPtr with 5415 // the BotPtr phi coming into the loop. If that phi disappears 5416 // also, we can end up with a self-loop of the mergemem. 5417 // In general, if loops degenerate and memory effects disappear, 5418 // a mergemem can be left looking at itself. This simply means 5419 // that the mergemem's default should be used, since there is 5420 // no longer any apparent effect on this slice. 5421 // Note: If a memory slice is a MergeMem cycle, it is unreachable 5422 // from start. Update the input to TOP. 5423 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base; 5424 } 5425 else if (old_mmem != nullptr) { 5426 new_mem = old_mmem->memory_at(i); 5427 } 5428 // else preceding memory was not a MergeMem 5429 5430 // maybe store down a new value 5431 Node* new_in = new_mem; 5432 if (new_in == new_base) new_in = empty_mem; 5433 5434 if (new_in != old_in) { 5435 // Warning: Do not combine this "if" with the previous "if" 5436 // A memory slice might have be be rewritten even if it is semantically 5437 // unchanged, if the base_memory value has changed. 5438 set_req_X(i, new_in, phase); 5439 progress = this; // Report progress 5440 } 5441 } 5442 5443 if (new_base != old_base) { 5444 set_req_X(Compile::AliasIdxBot, new_base, phase); 5445 // Don't use set_base_memory(new_base), because we need to update du. 5446 assert(base_memory() == new_base, ""); 5447 progress = this; 5448 } 5449 5450 if( base_memory() == this ) { 5451 // a self cycle indicates this memory path is dead 5452 set_req(Compile::AliasIdxBot, empty_mem); 5453 } 5454 5455 // Resolve external cycles by calling Ideal on a MergeMem base_memory 5456 // Recursion must occur after the self cycle check above 5457 if( base_memory()->is_MergeMem() ) { 5458 MergeMemNode *new_mbase = base_memory()->as_MergeMem(); 5459 Node *m = phase->transform(new_mbase); // Rollup any cycles 5460 if( m != nullptr && 5461 (m->is_top() || 5462 (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) { 5463 // propagate rollup of dead cycle to self 5464 set_req(Compile::AliasIdxBot, empty_mem); 5465 } 5466 } 5467 5468 if( base_memory() == empty_mem ) { 5469 progress = this; 5470 // Cut inputs during Parse phase only. 5471 // During Optimize phase a dead MergeMem node will be subsumed by Top. 5472 if( !can_reshape ) { 5473 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5474 if( in(i) != empty_mem ) { set_req(i, empty_mem); } 5475 } 5476 } 5477 } 5478 5479 if( !progress && base_memory()->is_Phi() && can_reshape ) { 5480 // Check if PhiNode::Ideal's "Split phis through memory merges" 5481 // transform should be attempted. Look for this->phi->this cycle. 5482 uint merge_width = req(); 5483 if (merge_width > Compile::AliasIdxRaw) { 5484 PhiNode* phi = base_memory()->as_Phi(); 5485 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in 5486 if (phi->in(i) == this) { 5487 phase->is_IterGVN()->_worklist.push(phi); 5488 break; 5489 } 5490 } 5491 } 5492 } 5493 5494 assert(progress || verify_sparse(), "please, no dups of base"); 5495 return progress; 5496 } 5497 5498 //-------------------------set_base_memory------------------------------------- 5499 void MergeMemNode::set_base_memory(Node *new_base) { 5500 Node* empty_mem = empty_memory(); 5501 set_req(Compile::AliasIdxBot, new_base); 5502 assert(memory_at(req()) == new_base, "must set default memory"); 5503 // Clear out other occurrences of new_base: 5504 if (new_base != empty_mem) { 5505 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5506 if (in(i) == new_base) set_req(i, empty_mem); 5507 } 5508 } 5509 } 5510 5511 //------------------------------out_RegMask------------------------------------ 5512 const RegMask &MergeMemNode::out_RegMask() const { 5513 return RegMask::Empty; 5514 } 5515 5516 //------------------------------dump_spec-------------------------------------- 5517 #ifndef PRODUCT 5518 void MergeMemNode::dump_spec(outputStream *st) const { 5519 st->print(" {"); 5520 Node* base_mem = base_memory(); 5521 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) { 5522 Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem; 5523 if (mem == base_mem) { st->print(" -"); continue; } 5524 st->print( " N%d:", mem->_idx ); 5525 Compile::current()->get_adr_type(i)->dump_on(st); 5526 } 5527 st->print(" }"); 5528 } 5529 #endif // !PRODUCT 5530 5531 5532 #ifdef ASSERT 5533 static bool might_be_same(Node* a, Node* b) { 5534 if (a == b) return true; 5535 if (!(a->is_Phi() || b->is_Phi())) return false; 5536 // phis shift around during optimization 5537 return true; // pretty stupid... 5538 } 5539 5540 // verify a narrow slice (either incoming or outgoing) 5541 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) { 5542 if (!VerifyAliases) return; // don't bother to verify unless requested 5543 if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error 5544 if (Node::in_dump()) return; // muzzle asserts when printing 5545 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel"); 5546 assert(n != nullptr, ""); 5547 // Elide intervening MergeMem's 5548 while (n->is_MergeMem()) { 5549 n = n->as_MergeMem()->memory_at(alias_idx); 5550 } 5551 Compile* C = Compile::current(); 5552 const TypePtr* n_adr_type = n->adr_type(); 5553 if (n == m->empty_memory()) { 5554 // Implicit copy of base_memory() 5555 } else if (n_adr_type != TypePtr::BOTTOM) { 5556 assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type"); 5557 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice"); 5558 } else { 5559 // A few places like make_runtime_call "know" that VM calls are narrow, 5560 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM. 5561 bool expected_wide_mem = false; 5562 if (n == m->base_memory()) { 5563 expected_wide_mem = true; 5564 } else if (alias_idx == Compile::AliasIdxRaw || 5565 n == m->memory_at(Compile::AliasIdxRaw)) { 5566 expected_wide_mem = true; 5567 } else if (!C->alias_type(alias_idx)->is_rewritable()) { 5568 // memory can "leak through" calls on channels that 5569 // are write-once. Allow this also. 5570 expected_wide_mem = true; 5571 } 5572 assert(expected_wide_mem, "expected narrow slice replacement"); 5573 } 5574 } 5575 #else // !ASSERT 5576 #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op 5577 #endif 5578 5579 5580 //-----------------------------memory_at--------------------------------------- 5581 Node* MergeMemNode::memory_at(uint alias_idx) const { 5582 assert(alias_idx >= Compile::AliasIdxRaw || 5583 (alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing()), 5584 "must avoid base_memory and AliasIdxTop"); 5585 5586 // Otherwise, it is a narrow slice. 5587 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory(); 5588 if (is_empty_memory(n)) { 5589 // the array is sparse; empty slots are the "top" node 5590 n = base_memory(); 5591 assert(Node::in_dump() 5592 || n == nullptr || n->bottom_type() == Type::TOP 5593 || n->adr_type() == nullptr // address is TOP 5594 || n->adr_type() == TypePtr::BOTTOM 5595 || n->adr_type() == TypeRawPtr::BOTTOM 5596 || !Compile::current()->do_aliasing(), 5597 "must be a wide memory"); 5598 // do_aliasing == false if we are organizing the memory states manually. 5599 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM. 5600 } else { 5601 // make sure the stored slice is sane 5602 #ifdef ASSERT 5603 if (VMError::is_error_reported() || Node::in_dump()) { 5604 } else if (might_be_same(n, base_memory())) { 5605 // Give it a pass: It is a mostly harmless repetition of the base. 5606 // This can arise normally from node subsumption during optimization. 5607 } else { 5608 verify_memory_slice(this, alias_idx, n); 5609 } 5610 #endif 5611 } 5612 return n; 5613 } 5614 5615 //---------------------------set_memory_at------------------------------------- 5616 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) { 5617 verify_memory_slice(this, alias_idx, n); 5618 Node* empty_mem = empty_memory(); 5619 if (n == base_memory()) n = empty_mem; // collapse default 5620 uint need_req = alias_idx+1; 5621 if (req() < need_req) { 5622 if (n == empty_mem) return; // already the default, so do not grow me 5623 // grow the sparse array 5624 do { 5625 add_req(empty_mem); 5626 } while (req() < need_req); 5627 } 5628 set_req( alias_idx, n ); 5629 } 5630 5631 5632 5633 //--------------------------iteration_setup------------------------------------ 5634 void MergeMemNode::iteration_setup(const MergeMemNode* other) { 5635 if (other != nullptr) { 5636 grow_to_match(other); 5637 // invariant: the finite support of mm2 is within mm->req() 5638 #ifdef ASSERT 5639 for (uint i = req(); i < other->req(); i++) { 5640 assert(other->is_empty_memory(other->in(i)), "slice left uncovered"); 5641 } 5642 #endif 5643 } 5644 // Replace spurious copies of base_memory by top. 5645 Node* base_mem = base_memory(); 5646 if (base_mem != nullptr && !base_mem->is_top()) { 5647 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) { 5648 if (in(i) == base_mem) 5649 set_req(i, empty_memory()); 5650 } 5651 } 5652 } 5653 5654 //---------------------------grow_to_match------------------------------------- 5655 void MergeMemNode::grow_to_match(const MergeMemNode* other) { 5656 Node* empty_mem = empty_memory(); 5657 assert(other->is_empty_memory(empty_mem), "consistent sentinels"); 5658 // look for the finite support of the other memory 5659 for (uint i = other->req(); --i >= req(); ) { 5660 if (other->in(i) != empty_mem) { 5661 uint new_len = i+1; 5662 while (req() < new_len) add_req(empty_mem); 5663 break; 5664 } 5665 } 5666 } 5667 5668 //---------------------------verify_sparse------------------------------------- 5669 #ifndef PRODUCT 5670 bool MergeMemNode::verify_sparse() const { 5671 assert(is_empty_memory(make_empty_memory()), "sane sentinel"); 5672 Node* base_mem = base_memory(); 5673 // The following can happen in degenerate cases, since empty==top. 5674 if (is_empty_memory(base_mem)) return true; 5675 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5676 assert(in(i) != nullptr, "sane slice"); 5677 if (in(i) == base_mem) return false; // should have been the sentinel value! 5678 } 5679 return true; 5680 } 5681 5682 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) { 5683 Node* n; 5684 n = mm->in(idx); 5685 if (mem == n) return true; // might be empty_memory() 5686 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx); 5687 if (mem == n) return true; 5688 return false; 5689 } 5690 #endif // !PRODUCT