1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "gc/shared/tlab_globals.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/arraycopynode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/regalloc.hpp"
  38 #include "opto/compile.hpp"
  39 #include "opto/connode.hpp"
  40 #include "opto/convertnode.hpp"
  41 #include "opto/loopnode.hpp"
  42 #include "opto/machnode.hpp"
  43 #include "opto/matcher.hpp"
  44 #include "opto/memnode.hpp"
  45 #include "opto/mulnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/phaseX.hpp"
  48 #include "opto/regmask.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/vectornode.hpp"
  51 #include "utilities/align.hpp"
  52 #include "utilities/copy.hpp"
  53 #include "utilities/macros.hpp"
  54 #include "utilities/powerOfTwo.hpp"
  55 #include "utilities/vmError.hpp"
  56 
  57 // Portions of code courtesy of Clifford Click
  58 
  59 // Optimization - Graph Style
  60 
  61 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  62 
  63 //=============================================================================
  64 uint MemNode::size_of() const { return sizeof(*this); }
  65 
  66 const TypePtr *MemNode::adr_type() const {
  67   Node* adr = in(Address);
  68   if (adr == nullptr)  return nullptr; // node is dead
  69   const TypePtr* cross_check = nullptr;
  70   DEBUG_ONLY(cross_check = _adr_type);
  71   return calculate_adr_type(adr->bottom_type(), cross_check);
  72 }
  73 
  74 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  75   if (adr != nullptr) {
  76     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  77       return true;
  78     }
  79   }
  80   return false;
  81 }
  82 
  83 #ifndef PRODUCT
  84 void MemNode::dump_spec(outputStream *st) const {
  85   if (in(Address) == nullptr)  return; // node is dead
  86 #ifndef ASSERT
  87   // fake the missing field
  88   const TypePtr* _adr_type = nullptr;
  89   if (in(Address) != nullptr)
  90     _adr_type = in(Address)->bottom_type()->isa_ptr();
  91 #endif
  92   dump_adr_type(this, _adr_type, st);
  93 
  94   Compile* C = Compile::current();
  95   if (C->alias_type(_adr_type)->is_volatile()) {
  96     st->print(" Volatile!");
  97   }
  98   if (_unaligned_access) {
  99     st->print(" unaligned");
 100   }
 101   if (_mismatched_access) {
 102     st->print(" mismatched");
 103   }
 104   if (_unsafe_access) {
 105     st->print(" unsafe");
 106   }
 107 }
 108 
 109 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 110   st->print(" @");
 111   if (adr_type == nullptr) {
 112     st->print("null");
 113   } else {
 114     adr_type->dump_on(st);
 115     Compile* C = Compile::current();
 116     Compile::AliasType* atp = nullptr;
 117     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 118     if (atp == nullptr)
 119       st->print(", idx=?\?;");
 120     else if (atp->index() == Compile::AliasIdxBot)
 121       st->print(", idx=Bot;");
 122     else if (atp->index() == Compile::AliasIdxTop)
 123       st->print(", idx=Top;");
 124     else if (atp->index() == Compile::AliasIdxRaw)
 125       st->print(", idx=Raw;");
 126     else {
 127       ciField* field = atp->field();
 128       if (field) {
 129         st->print(", name=");
 130         field->print_name_on(st);
 131       }
 132       st->print(", idx=%d;", atp->index());
 133     }
 134   }
 135 }
 136 
 137 extern void print_alias_types();
 138 
 139 #endif
 140 
 141 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 142   assert((t_oop != nullptr), "sanity");
 143   bool is_instance = t_oop->is_known_instance_field();
 144   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 145                              (load != nullptr) && load->is_Load() &&
 146                              (phase->is_IterGVN() != nullptr);
 147   if (!(is_instance || is_boxed_value_load))
 148     return mchain;  // don't try to optimize non-instance types
 149   uint instance_id = t_oop->instance_id();
 150   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 151   Node *prev = nullptr;
 152   Node *result = mchain;
 153   while (prev != result) {
 154     prev = result;
 155     if (result == start_mem)
 156       break;  // hit one of our sentinels
 157     // skip over a call which does not affect this memory slice
 158     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 159       Node *proj_in = result->in(0);
 160       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 161         break;  // hit one of our sentinels
 162       } else if (proj_in->is_Call()) {
 163         // ArrayCopyNodes processed here as well
 164         CallNode *call = proj_in->as_Call();
 165         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 166           result = call->in(TypeFunc::Memory);
 167         }
 168       } else if (proj_in->is_Initialize()) {
 169         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 170         // Stop if this is the initialization for the object instance which
 171         // contains this memory slice, otherwise skip over it.
 172         if ((alloc == nullptr) || (alloc->_idx == instance_id)) {
 173           break;
 174         }
 175         if (is_instance) {
 176           result = proj_in->in(TypeFunc::Memory);
 177         } else if (is_boxed_value_load) {
 178           Node* klass = alloc->in(AllocateNode::KlassNode);
 179           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 180           if (tklass->klass_is_exact() && !tklass->exact_klass()->equals(t_oop->is_instptr()->exact_klass())) {
 181             result = proj_in->in(TypeFunc::Memory); // not related allocation
 182           }
 183         }
 184       } else if (proj_in->is_MemBar()) {
 185         ArrayCopyNode* ac = nullptr;
 186         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 187           break;
 188         }
 189         result = proj_in->in(TypeFunc::Memory);
 190       } else if (proj_in->is_top()) {
 191         break; // dead code
 192       } else {
 193         assert(false, "unexpected projection");
 194       }
 195     } else if (result->is_ClearArray()) {
 196       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 197         // Can not bypass initialization of the instance
 198         // we are looking for.
 199         break;
 200       }
 201       // Otherwise skip it (the call updated 'result' value).
 202     } else if (result->is_MergeMem()) {
 203       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty);
 204     }
 205   }
 206   return result;
 207 }
 208 
 209 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 210   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 211   if (t_oop == nullptr)
 212     return mchain;  // don't try to optimize non-oop types
 213   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 214   bool is_instance = t_oop->is_known_instance_field();
 215   PhaseIterGVN *igvn = phase->is_IterGVN();
 216   if (is_instance && igvn != nullptr && result->is_Phi()) {
 217     PhiNode *mphi = result->as_Phi();
 218     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 219     const TypePtr *t = mphi->adr_type();
 220     bool do_split = false;
 221     // In the following cases, Load memory input can be further optimized based on
 222     // its precise address type
 223     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ) {
 224       do_split = true;
 225     } else if (t->isa_oopptr() && !t->is_oopptr()->is_known_instance()) {
 226       const TypeOopPtr* mem_t =
 227         t->is_oopptr()->cast_to_exactness(true)
 228         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 229         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id());
 230       if (t_oop->is_aryptr()) {
 231         mem_t = mem_t->is_aryptr()
 232                      ->cast_to_stable(t_oop->is_aryptr()->is_stable())
 233                      ->cast_to_size(t_oop->is_aryptr()->size())
 234                      ->with_offset(t_oop->is_aryptr()->offset())
 235                      ->is_aryptr();
 236       }
 237       do_split = mem_t == t_oop;
 238     }
 239     if (do_split) {
 240       // clone the Phi with our address type
 241       result = mphi->split_out_instance(t_adr, igvn);
 242     } else {
 243       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 244     }
 245   }
 246   return result;
 247 }
 248 
 249 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 250   uint alias_idx = phase->C->get_alias_index(tp);
 251   Node *mem = mmem;
 252 #ifdef ASSERT
 253   {
 254     // Check that current type is consistent with the alias index used during graph construction
 255     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 256     bool consistent =  adr_check == nullptr || adr_check->empty() ||
 257                        phase->C->must_alias(adr_check, alias_idx );
 258     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 259     if( !consistent && adr_check != nullptr && !adr_check->empty() &&
 260                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 261         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 262         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 263           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 264           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 265       // don't assert if it is dead code.
 266       consistent = true;
 267     }
 268     if( !consistent ) {
 269       st->print("alias_idx==%d, adr_check==", alias_idx);
 270       if( adr_check == nullptr ) {
 271         st->print("null");
 272       } else {
 273         adr_check->dump();
 274       }
 275       st->cr();
 276       print_alias_types();
 277       assert(consistent, "adr_check must match alias idx");
 278     }
 279   }
 280 #endif
 281   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 282   // means an array I have not precisely typed yet.  Do not do any
 283   // alias stuff with it any time soon.
 284   const TypeOopPtr *toop = tp->isa_oopptr();
 285   if (tp->base() != Type::AnyPtr &&
 286       !(toop &&
 287         toop->isa_instptr() &&
 288         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
 289         toop->offset() == Type::OffsetBot)) {
 290     // compress paths and change unreachable cycles to TOP
 291     // If not, we can update the input infinitely along a MergeMem cycle
 292     // Equivalent code in PhiNode::Ideal
 293     Node* m  = phase->transform(mmem);
 294     // If transformed to a MergeMem, get the desired slice
 295     // Otherwise the returned node represents memory for every slice
 296     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 297     // Update input if it is progress over what we have now
 298   }
 299   return mem;
 300 }
 301 
 302 //--------------------------Ideal_common---------------------------------------
 303 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 304 // Unhook non-raw memories from complete (macro-expanded) initializations.
 305 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 306   // If our control input is a dead region, kill all below the region
 307   Node *ctl = in(MemNode::Control);
 308   if (ctl && remove_dead_region(phase, can_reshape))
 309     return this;
 310   ctl = in(MemNode::Control);
 311   // Don't bother trying to transform a dead node
 312   if (ctl && ctl->is_top())  return NodeSentinel;
 313 
 314   PhaseIterGVN *igvn = phase->is_IterGVN();
 315   // Wait if control on the worklist.
 316   if (ctl && can_reshape && igvn != nullptr) {
 317     Node* bol = nullptr;
 318     Node* cmp = nullptr;
 319     if (ctl->in(0)->is_If()) {
 320       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 321       bol = ctl->in(0)->in(1);
 322       if (bol->is_Bool())
 323         cmp = ctl->in(0)->in(1)->in(1);
 324     }
 325     if (igvn->_worklist.member(ctl) ||
 326         (bol != nullptr && igvn->_worklist.member(bol)) ||
 327         (cmp != nullptr && igvn->_worklist.member(cmp)) ) {
 328       // This control path may be dead.
 329       // Delay this memory node transformation until the control is processed.
 330       igvn->_worklist.push(this);
 331       return NodeSentinel; // caller will return null
 332     }
 333   }
 334   // Ignore if memory is dead, or self-loop
 335   Node *mem = in(MemNode::Memory);
 336   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null
 337   assert(mem != this, "dead loop in MemNode::Ideal");
 338 
 339   if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) {
 340     // This memory slice may be dead.
 341     // Delay this mem node transformation until the memory is processed.
 342     igvn->_worklist.push(this);
 343     return NodeSentinel; // caller will return null
 344   }
 345 
 346   Node *address = in(MemNode::Address);
 347   const Type *t_adr = phase->type(address);
 348   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return null
 349 
 350   if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) {
 351     // Unsafe off-heap access with zero address. Remove access and other control users
 352     // to not confuse optimizations and add a HaltNode to fail if this is ever executed.
 353     assert(ctl != nullptr, "unsafe accesses should be control dependent");
 354     for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
 355       Node* u = ctl->fast_out(i);
 356       if (u != ctl) {
 357         igvn->rehash_node_delayed(u);
 358         int nb = u->replace_edge(ctl, phase->C->top(), igvn);
 359         --i, imax -= nb;
 360       }
 361     }
 362     Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr));
 363     Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address"));
 364     phase->C->root()->add_req(halt);
 365     return this;
 366   }
 367 
 368   if (can_reshape && igvn != nullptr &&
 369       (igvn->_worklist.member(address) ||
 370        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 371     // The address's base and type may change when the address is processed.
 372     // Delay this mem node transformation until the address is processed.
 373     igvn->_worklist.push(this);
 374     return NodeSentinel; // caller will return null
 375   }
 376 
 377   // Do NOT remove or optimize the next lines: ensure a new alias index
 378   // is allocated for an oop pointer type before Escape Analysis.
 379   // Note: C++ will not remove it since the call has side effect.
 380   if (t_adr->isa_oopptr()) {
 381     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 382   }
 383 
 384   Node* base = nullptr;
 385   if (address->is_AddP()) {
 386     base = address->in(AddPNode::Base);
 387   }
 388   if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 389       !t_adr->isa_rawptr()) {
 390     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 391     // Skip this node optimization if its address has TOP base.
 392     return NodeSentinel; // caller will return null
 393   }
 394 
 395   // Avoid independent memory operations
 396   Node* old_mem = mem;
 397 
 398   // The code which unhooks non-raw memories from complete (macro-expanded)
 399   // initializations was removed. After macro-expansion all stores caught
 400   // by Initialize node became raw stores and there is no information
 401   // which memory slices they modify. So it is unsafe to move any memory
 402   // operation above these stores. Also in most cases hooked non-raw memories
 403   // were already unhooked by using information from detect_ptr_independence()
 404   // and find_previous_store().
 405 
 406   if (mem->is_MergeMem()) {
 407     MergeMemNode* mmem = mem->as_MergeMem();
 408     const TypePtr *tp = t_adr->is_ptr();
 409 
 410     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 411   }
 412 
 413   if (mem != old_mem) {
 414     set_req_X(MemNode::Memory, mem, phase);
 415     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 416     return this;
 417   }
 418 
 419   // let the subclass continue analyzing...
 420   return nullptr;
 421 }
 422 
 423 // Helper function for proving some simple control dominations.
 424 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 425 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 426 // is not a constant (dominated by the method's StartNode).
 427 // Used by MemNode::find_previous_store to prove that the
 428 // control input of a memory operation predates (dominates)
 429 // an allocation it wants to look past.
 430 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 431   if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top())
 432     return false; // Conservative answer for dead code
 433 
 434   // Check 'dom'. Skip Proj and CatchProj nodes.
 435   dom = dom->find_exact_control(dom);
 436   if (dom == nullptr || dom->is_top())
 437     return false; // Conservative answer for dead code
 438 
 439   if (dom == sub) {
 440     // For the case when, for example, 'sub' is Initialize and the original
 441     // 'dom' is Proj node of the 'sub'.
 442     return false;
 443   }
 444 
 445   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 446     return true;
 447 
 448   // 'dom' dominates 'sub' if its control edge and control edges
 449   // of all its inputs dominate or equal to sub's control edge.
 450 
 451   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 452   // Or Region for the check in LoadNode::Ideal();
 453   // 'sub' should have sub->in(0) != nullptr.
 454   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 455          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 456 
 457   // Get control edge of 'sub'.
 458   Node* orig_sub = sub;
 459   sub = sub->find_exact_control(sub->in(0));
 460   if (sub == nullptr || sub->is_top())
 461     return false; // Conservative answer for dead code
 462 
 463   assert(sub->is_CFG(), "expecting control");
 464 
 465   if (sub == dom)
 466     return true;
 467 
 468   if (sub->is_Start() || sub->is_Root())
 469     return false;
 470 
 471   {
 472     // Check all control edges of 'dom'.
 473 
 474     ResourceMark rm;
 475     Node_List nlist;
 476     Unique_Node_List dom_list;
 477 
 478     dom_list.push(dom);
 479     bool only_dominating_controls = false;
 480 
 481     for (uint next = 0; next < dom_list.size(); next++) {
 482       Node* n = dom_list.at(next);
 483       if (n == orig_sub)
 484         return false; // One of dom's inputs dominated by sub.
 485       if (!n->is_CFG() && n->pinned()) {
 486         // Check only own control edge for pinned non-control nodes.
 487         n = n->find_exact_control(n->in(0));
 488         if (n == nullptr || n->is_top())
 489           return false; // Conservative answer for dead code
 490         assert(n->is_CFG(), "expecting control");
 491         dom_list.push(n);
 492       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 493         only_dominating_controls = true;
 494       } else if (n->is_CFG()) {
 495         if (n->dominates(sub, nlist))
 496           only_dominating_controls = true;
 497         else
 498           return false;
 499       } else {
 500         // First, own control edge.
 501         Node* m = n->find_exact_control(n->in(0));
 502         if (m != nullptr) {
 503           if (m->is_top())
 504             return false; // Conservative answer for dead code
 505           dom_list.push(m);
 506         }
 507         // Now, the rest of edges.
 508         uint cnt = n->req();
 509         for (uint i = 1; i < cnt; i++) {
 510           m = n->find_exact_control(n->in(i));
 511           if (m == nullptr || m->is_top())
 512             continue;
 513           dom_list.push(m);
 514         }
 515       }
 516     }
 517     return only_dominating_controls;
 518   }
 519 }
 520 
 521 //---------------------detect_ptr_independence---------------------------------
 522 // Used by MemNode::find_previous_store to prove that two base
 523 // pointers are never equal.
 524 // The pointers are accompanied by their associated allocations,
 525 // if any, which have been previously discovered by the caller.
 526 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 527                                       Node* p2, AllocateNode* a2,
 528                                       PhaseTransform* phase) {
 529   // Attempt to prove that these two pointers cannot be aliased.
 530   // They may both manifestly be allocations, and they should differ.
 531   // Or, if they are not both allocations, they can be distinct constants.
 532   // Otherwise, one is an allocation and the other a pre-existing value.
 533   if (a1 == nullptr && a2 == nullptr) {           // neither an allocation
 534     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 535   } else if (a1 != nullptr && a2 != nullptr) {    // both allocations
 536     return (a1 != a2);
 537   } else if (a1 != nullptr) {                  // one allocation a1
 538     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 539     return all_controls_dominate(p2, a1);
 540   } else { //(a2 != null)                   // one allocation a2
 541     return all_controls_dominate(p1, a2);
 542   }
 543   return false;
 544 }
 545 
 546 
 547 // Find an arraycopy ac that produces the memory state represented by parameter mem.
 548 // Return ac if
 549 // (a) can_see_stored_value=true  and ac must have set the value for this load or if
 550 // (b) can_see_stored_value=false and ac could have set the value for this load or if
 551 // (c) can_see_stored_value=false and ac cannot have set the value for this load.
 552 // In case (c) change the parameter mem to the memory input of ac to skip it
 553 // when searching stored value.
 554 // Otherwise return null.
 555 Node* LoadNode::find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 556   ArrayCopyNode* ac = find_array_copy_clone(ld_alloc, mem);
 557   if (ac != nullptr) {
 558     Node* ld_addp = in(MemNode::Address);
 559     Node* src = ac->in(ArrayCopyNode::Src);
 560     const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr();
 561 
 562     // This is a load from a cloned array. The corresponding arraycopy ac must
 563     // have set the value for the load and we can return ac but only if the load
 564     // is known to be within bounds. This is checked below.
 565     if (ary_t != nullptr && ld_addp->is_AddP()) {
 566       Node* ld_offs = ld_addp->in(AddPNode::Offset);
 567       BasicType ary_elem = ary_t->elem()->array_element_basic_type();
 568       jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 569       jlong elemsize = type2aelembytes(ary_elem);
 570 
 571       const TypeX*   ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 572       const TypeInt* sizetype  = ary_t->size();
 573 
 574       if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) {
 575         // The load is known to be within bounds. It receives its value from ac.
 576         return ac;
 577       }
 578       // The load is known to be out-of-bounds.
 579     }
 580     // The load could be out-of-bounds. It must not be hoisted but must remain
 581     // dependent on the runtime range check. This is achieved by returning null.
 582   } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) {
 583     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 584 
 585     if (ac->is_arraycopy_validated() ||
 586         ac->is_copyof_validated() ||
 587         ac->is_copyofrange_validated()) {
 588       Node* ld_addp = in(MemNode::Address);
 589       if (ld_addp->is_AddP()) {
 590         Node* ld_base = ld_addp->in(AddPNode::Address);
 591         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 592 
 593         Node* dest = ac->in(ArrayCopyNode::Dest);
 594 
 595         if (dest == ld_base) {
 596           const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 597           assert(!ld_offs_t->empty(), "dead reference should be checked already");
 598           // Take into account vector or unsafe access size
 599           jlong ld_size_in_bytes = (jlong)memory_size();
 600           jlong offset_hi = ld_offs_t->_hi + ld_size_in_bytes - 1;
 601           offset_hi = MIN2(offset_hi, (jlong)(TypeX::MAX->_hi)); // Take care for overflow in 32-bit VM
 602           if (ac->modifies(ld_offs_t->_lo, (intptr_t)offset_hi, phase, can_see_stored_value)) {
 603             return ac;
 604           }
 605           if (!can_see_stored_value) {
 606             mem = ac->in(TypeFunc::Memory);
 607             return ac;
 608           }
 609         }
 610       }
 611     }
 612   }
 613   return nullptr;
 614 }
 615 
 616 ArrayCopyNode* MemNode::find_array_copy_clone(Node* ld_alloc, Node* mem) const {
 617   if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 618                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 619     if (ld_alloc != nullptr) {
 620       // Check if there is an array copy for a clone
 621       Node* mb = mem->in(0);
 622       ArrayCopyNode* ac = nullptr;
 623       if (mb->in(0) != nullptr && mb->in(0)->is_Proj() &&
 624           mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) {
 625         ac = mb->in(0)->in(0)->as_ArrayCopy();
 626       } else {
 627         // Step over GC barrier when ReduceInitialCardMarks is disabled
 628         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 629         Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0));
 630 
 631         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
 632           ac = control_proj_ac->in(0)->as_ArrayCopy();
 633         }
 634       }
 635 
 636       if (ac != nullptr && ac->is_clonebasic()) {
 637         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest));
 638         if (alloc != nullptr && alloc == ld_alloc) {
 639           return ac;
 640         }
 641       }
 642     }
 643   }
 644   return nullptr;
 645 }
 646 
 647 // The logic for reordering loads and stores uses four steps:
 648 // (a) Walk carefully past stores and initializations which we
 649 //     can prove are independent of this load.
 650 // (b) Observe that the next memory state makes an exact match
 651 //     with self (load or store), and locate the relevant store.
 652 // (c) Ensure that, if we were to wire self directly to the store,
 653 //     the optimizer would fold it up somehow.
 654 // (d) Do the rewiring, and return, depending on some other part of
 655 //     the optimizer to fold up the load.
 656 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 657 // specific to loads and stores, so they are handled by the callers.
 658 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 659 //
 660 Node* MemNode::find_previous_store(PhaseValues* phase) {
 661   Node*         ctrl   = in(MemNode::Control);
 662   Node*         adr    = in(MemNode::Address);
 663   intptr_t      offset = 0;
 664   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 665   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base);
 666 
 667   if (offset == Type::OffsetBot)
 668     return nullptr;            // cannot unalias unless there are precise offsets
 669 
 670   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 671   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 672 
 673   intptr_t size_in_bytes = memory_size();
 674 
 675   Node* mem = in(MemNode::Memory);   // start searching here...
 676 
 677   int cnt = 50;             // Cycle limiter
 678   for (;;) {                // While we can dance past unrelated stores...
 679     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 680 
 681     Node* prev = mem;
 682     if (mem->is_Store()) {
 683       Node* st_adr = mem->in(MemNode::Address);
 684       intptr_t st_offset = 0;
 685       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 686       if (st_base == nullptr)
 687         break;              // inscrutable pointer
 688 
 689       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 690       // We need the bases to be the equal in order for the offset check to make sense.
 691       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 692         break;
 693       }
 694 
 695       if (st_offset != offset && st_offset != Type::OffsetBot) {
 696         const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
 697         assert(mem->as_Store()->memory_size() <= MAX_STORE, "");
 698         if (st_offset >= offset + size_in_bytes ||
 699             st_offset <= offset - MAX_STORE ||
 700             st_offset <= offset - mem->as_Store()->memory_size()) {
 701           // Success:  The offsets are provably independent.
 702           // (You may ask, why not just test st_offset != offset and be done?
 703           // The answer is that stores of different sizes can co-exist
 704           // in the same sequence of RawMem effects.  We sometimes initialize
 705           // a whole 'tile' of array elements with a single jint or jlong.)
 706           mem = mem->in(MemNode::Memory);
 707           continue;           // (a) advance through independent store memory
 708         }
 709       }
 710       if (st_base != base &&
 711           detect_ptr_independence(base, alloc,
 712                                   st_base,
 713                                   AllocateNode::Ideal_allocation(st_base),
 714                                   phase)) {
 715         // Success:  The bases are provably independent.
 716         mem = mem->in(MemNode::Memory);
 717         continue;           // (a) advance through independent store memory
 718       }
 719 
 720       // (b) At this point, if the bases or offsets do not agree, we lose,
 721       // since we have not managed to prove 'this' and 'mem' independent.
 722       if (st_base == base && st_offset == offset) {
 723         return mem;         // let caller handle steps (c), (d)
 724       }
 725 
 726     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 727       InitializeNode* st_init = mem->in(0)->as_Initialize();
 728       AllocateNode*  st_alloc = st_init->allocation();
 729       if (st_alloc == nullptr)
 730         break;              // something degenerated
 731       bool known_identical = false;
 732       bool known_independent = false;
 733       if (alloc == st_alloc)
 734         known_identical = true;
 735       else if (alloc != nullptr)
 736         known_independent = true;
 737       else if (all_controls_dominate(this, st_alloc))
 738         known_independent = true;
 739 
 740       if (known_independent) {
 741         // The bases are provably independent: Either they are
 742         // manifestly distinct allocations, or else the control
 743         // of this load dominates the store's allocation.
 744         int alias_idx = phase->C->get_alias_index(adr_type());
 745         if (alias_idx == Compile::AliasIdxRaw) {
 746           mem = st_alloc->in(TypeFunc::Memory);
 747         } else {
 748           mem = st_init->memory(alias_idx);
 749         }
 750         continue;           // (a) advance through independent store memory
 751       }
 752 
 753       // (b) at this point, if we are not looking at a store initializing
 754       // the same allocation we are loading from, we lose.
 755       if (known_identical) {
 756         // From caller, can_see_stored_value will consult find_captured_store.
 757         return mem;         // let caller handle steps (c), (d)
 758       }
 759 
 760     } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) {
 761       if (prev != mem) {
 762         // Found an arraycopy but it doesn't affect that load
 763         continue;
 764       }
 765       // Found an arraycopy that may affect that load
 766       return mem;
 767     } else if (addr_t != nullptr && addr_t->is_known_instance_field()) {
 768       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 769       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 770         // ArrayCopyNodes processed here as well.
 771         CallNode *call = mem->in(0)->as_Call();
 772         if (!call->may_modify(addr_t, phase)) {
 773           mem = call->in(TypeFunc::Memory);
 774           continue;         // (a) advance through independent call memory
 775         }
 776       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 777         ArrayCopyNode* ac = nullptr;
 778         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 779           break;
 780         }
 781         mem = mem->in(0)->in(TypeFunc::Memory);
 782         continue;           // (a) advance through independent MemBar memory
 783       } else if (mem->is_ClearArray()) {
 784         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 785           // (the call updated 'mem' value)
 786           continue;         // (a) advance through independent allocation memory
 787         } else {
 788           // Can not bypass initialization of the instance
 789           // we are looking for.
 790           return mem;
 791         }
 792       } else if (mem->is_MergeMem()) {
 793         int alias_idx = phase->C->get_alias_index(adr_type());
 794         mem = mem->as_MergeMem()->memory_at(alias_idx);
 795         continue;           // (a) advance through independent MergeMem memory
 796       }
 797     }
 798 
 799     // Unless there is an explicit 'continue', we must bail out here,
 800     // because 'mem' is an inscrutable memory state (e.g., a call).
 801     break;
 802   }
 803 
 804   return nullptr;              // bail out
 805 }
 806 
 807 //----------------------calculate_adr_type-------------------------------------
 808 // Helper function.  Notices when the given type of address hits top or bottom.
 809 // Also, asserts a cross-check of the type against the expected address type.
 810 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 811   if (t == Type::TOP)  return nullptr; // does not touch memory any more?
 812   #ifdef ASSERT
 813   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = nullptr;
 814   #endif
 815   const TypePtr* tp = t->isa_ptr();
 816   if (tp == nullptr) {
 817     assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 818     return TypePtr::BOTTOM;           // touches lots of memory
 819   } else {
 820     #ifdef ASSERT
 821     // %%%% [phh] We don't check the alias index if cross_check is
 822     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 823     if (cross_check != nullptr &&
 824         cross_check != TypePtr::BOTTOM &&
 825         cross_check != TypeRawPtr::BOTTOM) {
 826       // Recheck the alias index, to see if it has changed (due to a bug).
 827       Compile* C = Compile::current();
 828       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 829              "must stay in the original alias category");
 830       // The type of the address must be contained in the adr_type,
 831       // disregarding "null"-ness.
 832       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 833       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 834       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 835              "real address must not escape from expected memory type");
 836     }
 837     #endif
 838     return tp;
 839   }
 840 }
 841 
 842 //=============================================================================
 843 // Should LoadNode::Ideal() attempt to remove control edges?
 844 bool LoadNode::can_remove_control() const {
 845   return !has_pinned_control_dependency();
 846 }
 847 uint LoadNode::size_of() const { return sizeof(*this); }
 848 bool LoadNode::cmp( const Node &n ) const
 849 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 850 const Type *LoadNode::bottom_type() const { return _type; }
 851 uint LoadNode::ideal_reg() const {
 852   return _type->ideal_reg();
 853 }
 854 
 855 #ifndef PRODUCT
 856 void LoadNode::dump_spec(outputStream *st) const {
 857   MemNode::dump_spec(st);
 858   if( !Verbose && !WizardMode ) {
 859     // standard dump does this in Verbose and WizardMode
 860     st->print(" #"); _type->dump_on(st);
 861   }
 862   if (!depends_only_on_test()) {
 863     st->print(" (does not depend only on test, ");
 864     if (control_dependency() == UnknownControl) {
 865       st->print("unknown control");
 866     } else if (control_dependency() == Pinned) {
 867       st->print("pinned");
 868     } else if (adr_type() == TypeRawPtr::BOTTOM) {
 869       st->print("raw access");
 870     } else {
 871       st->print("unknown reason");
 872     }
 873     st->print(")");
 874   }
 875 }
 876 #endif
 877 
 878 #ifdef ASSERT
 879 //----------------------------is_immutable_value-------------------------------
 880 // Helper function to allow a raw load without control edge for some cases
 881 bool LoadNode::is_immutable_value(Node* adr) {
 882   if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 883       adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal) {
 884 
 885     jlong offset = adr->in(AddPNode::Offset)->find_intptr_t_con(-1);
 886     int offsets[] = {
 887       in_bytes(JavaThread::osthread_offset()),
 888       in_bytes(JavaThread::threadObj_offset()),
 889       in_bytes(JavaThread::vthread_offset()),
 890       in_bytes(JavaThread::scopedValueCache_offset()),
 891     };
 892 
 893     for (size_t i = 0; i < sizeof offsets / sizeof offsets[0]; i++) {
 894       if (offset == offsets[i]) {
 895         return true;
 896       }
 897     }
 898   }
 899 
 900   return false;
 901 }
 902 #endif
 903 
 904 //----------------------------LoadNode::make-----------------------------------
 905 // Polymorphic factory method:
 906 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo,
 907                      ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) {
 908   Compile* C = gvn.C;
 909 
 910   // sanity check the alias category against the created node type
 911   assert(!(adr_type->isa_oopptr() &&
 912            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 913          "use LoadKlassNode instead");
 914   assert(!(adr_type->isa_aryptr() &&
 915            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 916          "use LoadRangeNode instead");
 917   // Check control edge of raw loads
 918   assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 919           // oop will be recorded in oop map if load crosses safepoint
 920           rt->isa_oopptr() || is_immutable_value(adr),
 921           "raw memory operations should have control edge");
 922   LoadNode* load = nullptr;
 923   switch (bt) {
 924   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 925   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 926   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 927   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 928   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 929   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break;
 930   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 931   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency, require_atomic_access); break;
 932   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 933   case T_OBJECT:
 934 #ifdef _LP64
 935     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 936       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 937     } else
 938 #endif
 939     {
 940       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 941       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 942     }
 943     break;
 944   default:
 945     ShouldNotReachHere();
 946     break;
 947   }
 948   assert(load != nullptr, "LoadNode should have been created");
 949   if (unaligned) {
 950     load->set_unaligned_access();
 951   }
 952   if (mismatched) {
 953     load->set_mismatched_access();
 954   }
 955   if (unsafe) {
 956     load->set_unsafe_access();
 957   }
 958   load->set_barrier_data(barrier_data);
 959   if (load->Opcode() == Op_LoadN) {
 960     Node* ld = gvn.transform(load);
 961     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 962   }
 963 
 964   return load;
 965 }
 966 
 967 //------------------------------hash-------------------------------------------
 968 uint LoadNode::hash() const {
 969   // unroll addition of interesting fields
 970   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 971 }
 972 
 973 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 974   if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) {
 975     bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile();
 976     bool is_stable_ary = FoldStableValues &&
 977                          (tp != nullptr) && (tp->isa_aryptr() != nullptr) &&
 978                          tp->isa_aryptr()->is_stable();
 979 
 980     return (eliminate_boxing && non_volatile) || is_stable_ary;
 981   }
 982 
 983   return false;
 984 }
 985 
 986 // Is the value loaded previously stored by an arraycopy? If so return
 987 // a load node that reads from the source array so we may be able to
 988 // optimize out the ArrayCopy node later.
 989 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 990   Node* ld_adr = in(MemNode::Address);
 991   intptr_t ld_off = 0;
 992   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 993   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 994   if (ac != nullptr) {
 995     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 996 
 997     Node* mem = ac->in(TypeFunc::Memory);
 998     Node* ctl = ac->in(0);
 999     Node* src = ac->in(ArrayCopyNode::Src);
1000 
1001     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
1002       return nullptr;
1003     }
1004 
1005     LoadNode* ld = clone()->as_Load();
1006     Node* addp = in(MemNode::Address)->clone();
1007     if (ac->as_ArrayCopy()->is_clonebasic()) {
1008       assert(ld_alloc != nullptr, "need an alloc");
1009       assert(addp->is_AddP(), "address must be addp");
1010       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1011       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern");
1012       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern");
1013       addp->set_req(AddPNode::Base, src);
1014       addp->set_req(AddPNode::Address, src);
1015     } else {
1016       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
1017              ac->as_ArrayCopy()->is_copyof_validated() ||
1018              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
1019       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
1020       addp->set_req(AddPNode::Base, src);
1021       addp->set_req(AddPNode::Address, src);
1022 
1023       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
1024       BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
1025       if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
1026 
1027       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
1028       uint shift  = exact_log2(type2aelembytes(ary_elem));
1029 
1030       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
1031 #ifdef _LP64
1032       diff = phase->transform(new ConvI2LNode(diff));
1033 #endif
1034       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
1035 
1036       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
1037       addp->set_req(AddPNode::Offset, offset);
1038     }
1039     addp = phase->transform(addp);
1040 #ifdef ASSERT
1041     const TypePtr* adr_type = phase->type(addp)->is_ptr();
1042     ld->_adr_type = adr_type;
1043 #endif
1044     ld->set_req(MemNode::Address, addp);
1045     ld->set_req(0, ctl);
1046     ld->set_req(MemNode::Memory, mem);
1047     // load depends on the tests that validate the arraycopy
1048     ld->_control_dependency = UnknownControl;
1049     return ld;
1050   }
1051   return nullptr;
1052 }
1053 
1054 
1055 //---------------------------can_see_stored_value------------------------------
1056 // This routine exists to make sure this set of tests is done the same
1057 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
1058 // will change the graph shape in a way which makes memory alive twice at the
1059 // same time (uses the Oracle model of aliasing), then some
1060 // LoadXNode::Identity will fold things back to the equivalence-class model
1061 // of aliasing.
1062 Node* MemNode::can_see_stored_value(Node* st, PhaseValues* phase) const {
1063   Node* ld_adr = in(MemNode::Address);
1064   intptr_t ld_off = 0;
1065   Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off);
1066   Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base);
1067   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
1068   Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr;
1069   // This is more general than load from boxing objects.
1070   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
1071     uint alias_idx = atp->index();
1072     Node* result = nullptr;
1073     Node* current = st;
1074     // Skip through chains of MemBarNodes checking the MergeMems for
1075     // new states for the slice of this load.  Stop once any other
1076     // kind of node is encountered.  Loads from final memory can skip
1077     // through any kind of MemBar but normal loads shouldn't skip
1078     // through MemBarAcquire since the could allow them to move out of
1079     // a synchronized region. It is not safe to step over MemBarCPUOrder,
1080     // because alias info above them may be inaccurate (e.g., due to
1081     // mixed/mismatched unsafe accesses).
1082     bool is_final_mem = !atp->is_rewritable();
1083     while (current->is_Proj()) {
1084       int opc = current->in(0)->Opcode();
1085       if ((is_final_mem && (opc == Op_MemBarAcquire ||
1086                             opc == Op_MemBarAcquireLock ||
1087                             opc == Op_LoadFence)) ||
1088           opc == Op_MemBarRelease ||
1089           opc == Op_StoreFence ||
1090           opc == Op_MemBarReleaseLock ||
1091           opc == Op_MemBarStoreStore ||
1092           opc == Op_StoreStoreFence) {
1093         Node* mem = current->in(0)->in(TypeFunc::Memory);
1094         if (mem->is_MergeMem()) {
1095           MergeMemNode* merge = mem->as_MergeMem();
1096           Node* new_st = merge->memory_at(alias_idx);
1097           if (new_st == merge->base_memory()) {
1098             // Keep searching
1099             current = new_st;
1100             continue;
1101           }
1102           // Save the new memory state for the slice and fall through
1103           // to exit.
1104           result = new_st;
1105         }
1106       }
1107       break;
1108     }
1109     if (result != nullptr) {
1110       st = result;
1111     }
1112   }
1113 
1114   // Loop around twice in the case Load -> Initialize -> Store.
1115   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1116   for (int trip = 0; trip <= 1; trip++) {
1117 
1118     if (st->is_Store()) {
1119       Node* st_adr = st->in(MemNode::Address);
1120       if (st_adr != ld_adr) {
1121         // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers).
1122         intptr_t st_off = 0;
1123         Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off);
1124         if (ld_base == nullptr)                                return nullptr;
1125         if (st_base == nullptr)                                return nullptr;
1126         if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr;
1127         if (ld_off != st_off)                                  return nullptr;
1128         if (ld_off == Type::OffsetBot)                         return nullptr;
1129         // Same base, same offset.
1130         // Possible improvement for arrays: check index value instead of absolute offset.
1131 
1132         // At this point we have proven something like this setup:
1133         //   B = << base >>
1134         //   L =  LoadQ(AddP(Check/CastPP(B), #Off))
1135         //   S = StoreQ(AddP(             B , #Off), V)
1136         // (Actually, we haven't yet proven the Q's are the same.)
1137         // In other words, we are loading from a casted version of
1138         // the same pointer-and-offset that we stored to.
1139         // Casted version may carry a dependency and it is respected.
1140         // Thus, we are able to replace L by V.
1141       }
1142       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1143       if (store_Opcode() != st->Opcode()) {
1144         return nullptr;
1145       }
1146       // LoadVector/StoreVector needs additional check to ensure the types match.
1147       if (st->is_StoreVector()) {
1148         const TypeVect*  in_vt = st->as_StoreVector()->vect_type();
1149         const TypeVect* out_vt = as_LoadVector()->vect_type();
1150         if (in_vt != out_vt) {
1151           return nullptr;
1152         }
1153       }
1154       return st->in(MemNode::ValueIn);
1155     }
1156 
1157     // A load from a freshly-created object always returns zero.
1158     // (This can happen after LoadNode::Ideal resets the load's memory input
1159     // to find_captured_store, which returned InitializeNode::zero_memory.)
1160     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1161         (st->in(0) == ld_alloc) &&
1162         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1163       // return a zero value for the load's basic type
1164       // (This is one of the few places where a generic PhaseTransform
1165       // can create new nodes.  Think of it as lazily manifesting
1166       // virtually pre-existing constants.)
1167       if (memory_type() != T_VOID) {
1168         if (ReduceBulkZeroing || find_array_copy_clone(ld_alloc, in(MemNode::Memory)) == nullptr) {
1169           // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an
1170           // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done
1171           // by the ArrayCopyNode.
1172           return phase->zerocon(memory_type());
1173         }
1174       } else {
1175         // TODO: materialize all-zero vector constant
1176         assert(!isa_Load() || as_Load()->type()->isa_vect(), "");
1177       }
1178     }
1179 
1180     // A load from an initialization barrier can match a captured store.
1181     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1182       InitializeNode* init = st->in(0)->as_Initialize();
1183       AllocateNode* alloc = init->allocation();
1184       if ((alloc != nullptr) && (alloc == ld_alloc)) {
1185         // examine a captured store value
1186         st = init->find_captured_store(ld_off, memory_size(), phase);
1187         if (st != nullptr) {
1188           continue;             // take one more trip around
1189         }
1190       }
1191     }
1192 
1193     // Load boxed value from result of valueOf() call is input parameter.
1194     if (this->is_Load() && ld_adr->is_AddP() &&
1195         (tp != nullptr) && tp->is_ptr_to_boxed_value()) {
1196       intptr_t ignore = 0;
1197       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1198       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1199       base = bs->step_over_gc_barrier(base);
1200       if (base != nullptr && base->is_Proj() &&
1201           base->as_Proj()->_con == TypeFunc::Parms &&
1202           base->in(0)->is_CallStaticJava() &&
1203           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1204         return base->in(0)->in(TypeFunc::Parms);
1205       }
1206     }
1207 
1208     break;
1209   }
1210 
1211   return nullptr;
1212 }
1213 
1214 //----------------------is_instance_field_load_with_local_phi------------------
1215 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1216   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1217       in(Address)->is_AddP() ) {
1218     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1219     // Only instances and boxed values.
1220     if( t_oop != nullptr &&
1221         (t_oop->is_ptr_to_boxed_value() ||
1222          t_oop->is_known_instance_field()) &&
1223         t_oop->offset() != Type::OffsetBot &&
1224         t_oop->offset() != Type::OffsetTop) {
1225       return true;
1226     }
1227   }
1228   return false;
1229 }
1230 
1231 //------------------------------Identity---------------------------------------
1232 // Loads are identity if previous store is to same address
1233 Node* LoadNode::Identity(PhaseGVN* phase) {
1234   // If the previous store-maker is the right kind of Store, and the store is
1235   // to the same address, then we are equal to the value stored.
1236   Node* mem = in(Memory);
1237   Node* value = can_see_stored_value(mem, phase);
1238   if( value ) {
1239     // byte, short & char stores truncate naturally.
1240     // A load has to load the truncated value which requires
1241     // some sort of masking operation and that requires an
1242     // Ideal call instead of an Identity call.
1243     if (memory_size() < BytesPerInt) {
1244       // If the input to the store does not fit with the load's result type,
1245       // it must be truncated via an Ideal call.
1246       if (!phase->type(value)->higher_equal(phase->type(this)))
1247         return this;
1248     }
1249     // (This works even when value is a Con, but LoadNode::Value
1250     // usually runs first, producing the singleton type of the Con.)
1251     if (!has_pinned_control_dependency() || value->is_Con()) {
1252       return value;
1253     } else {
1254       return this;
1255     }
1256   }
1257 
1258   if (has_pinned_control_dependency()) {
1259     return this;
1260   }
1261   // Search for an existing data phi which was generated before for the same
1262   // instance's field to avoid infinite generation of phis in a loop.
1263   Node *region = mem->in(0);
1264   if (is_instance_field_load_with_local_phi(region)) {
1265     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1266     int this_index  = phase->C->get_alias_index(addr_t);
1267     int this_offset = addr_t->offset();
1268     int this_iid    = addr_t->instance_id();
1269     if (!addr_t->is_known_instance() &&
1270          addr_t->is_ptr_to_boxed_value()) {
1271       // Use _idx of address base (could be Phi node) for boxed values.
1272       intptr_t   ignore = 0;
1273       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1274       if (base == nullptr) {
1275         return this;
1276       }
1277       this_iid = base->_idx;
1278     }
1279     const Type* this_type = bottom_type();
1280     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1281       Node* phi = region->fast_out(i);
1282       if (phi->is_Phi() && phi != mem &&
1283           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1284         return phi;
1285       }
1286     }
1287   }
1288 
1289   return this;
1290 }
1291 
1292 // Construct an equivalent unsigned load.
1293 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1294   BasicType bt = T_ILLEGAL;
1295   const Type* rt = nullptr;
1296   switch (Opcode()) {
1297     case Op_LoadUB: return this;
1298     case Op_LoadUS: return this;
1299     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1300     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1301     default:
1302       assert(false, "no unsigned variant: %s", Name());
1303       return nullptr;
1304   }
1305   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1306                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1307                         false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access());
1308 }
1309 
1310 // Construct an equivalent signed load.
1311 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1312   BasicType bt = T_ILLEGAL;
1313   const Type* rt = nullptr;
1314   switch (Opcode()) {
1315     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1316     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1317     case Op_LoadB: // fall through
1318     case Op_LoadS: // fall through
1319     case Op_LoadI: // fall through
1320     case Op_LoadL: return this;
1321     default:
1322       assert(false, "no signed variant: %s", Name());
1323       return nullptr;
1324   }
1325   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1326                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1327                         false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access());
1328 }
1329 
1330 bool LoadNode::has_reinterpret_variant(const Type* rt) {
1331   BasicType bt = rt->basic_type();
1332   switch (Opcode()) {
1333     case Op_LoadI: return (bt == T_FLOAT);
1334     case Op_LoadL: return (bt == T_DOUBLE);
1335     case Op_LoadF: return (bt == T_INT);
1336     case Op_LoadD: return (bt == T_LONG);
1337 
1338     default: return false;
1339   }
1340 }
1341 
1342 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) {
1343   BasicType bt = rt->basic_type();
1344   assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt));
1345   bool is_mismatched = is_mismatched_access();
1346   const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1347   if (raw_type == nullptr) {
1348     is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1349   }
1350   const int op = Opcode();
1351   bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) ||
1352                                (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access());
1353   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1354                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1355                         require_atomic_access, is_unaligned_access(), is_mismatched);
1356 }
1357 
1358 bool StoreNode::has_reinterpret_variant(const Type* vt) {
1359   BasicType bt = vt->basic_type();
1360   switch (Opcode()) {
1361     case Op_StoreI: return (bt == T_FLOAT);
1362     case Op_StoreL: return (bt == T_DOUBLE);
1363     case Op_StoreF: return (bt == T_INT);
1364     case Op_StoreD: return (bt == T_LONG);
1365 
1366     default: return false;
1367   }
1368 }
1369 
1370 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) {
1371   BasicType bt = vt->basic_type();
1372   assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt));
1373   const int op = Opcode();
1374   bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) ||
1375                                (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access());
1376   StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1377                                   raw_adr_type(), val, bt, _mo, require_atomic_access);
1378 
1379   bool is_mismatched = is_mismatched_access();
1380   const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1381   if (raw_type == nullptr) {
1382     is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1383   }
1384   if (is_mismatched) {
1385     st->set_mismatched_access();
1386   }
1387   return st;
1388 }
1389 
1390 // We're loading from an object which has autobox behaviour.
1391 // If this object is result of a valueOf call we'll have a phi
1392 // merging a newly allocated object and a load from the cache.
1393 // We want to replace this load with the original incoming
1394 // argument to the valueOf call.
1395 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) {
1396   assert(igvn->C->eliminate_boxing(), "sanity");
1397   intptr_t ignore = 0;
1398   Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore);
1399   if ((base == nullptr) || base->is_Phi()) {
1400     // Push the loads from the phi that comes from valueOf up
1401     // through it to allow elimination of the loads and the recovery
1402     // of the original value. It is done in split_through_phi().
1403     return nullptr;
1404   } else if (base->is_Load() ||
1405              (base->is_DecodeN() && base->in(1)->is_Load())) {
1406     // Eliminate the load of boxed value for integer types from the cache
1407     // array by deriving the value from the index into the array.
1408     // Capture the offset of the load and then reverse the computation.
1409 
1410     // Get LoadN node which loads a boxing object from 'cache' array.
1411     if (base->is_DecodeN()) {
1412       base = base->in(1);
1413     }
1414     if (!base->in(Address)->is_AddP()) {
1415       return nullptr; // Complex address
1416     }
1417     AddPNode* address = base->in(Address)->as_AddP();
1418     Node* cache_base = address->in(AddPNode::Base);
1419     if ((cache_base != nullptr) && cache_base->is_DecodeN()) {
1420       // Get ConP node which is static 'cache' field.
1421       cache_base = cache_base->in(1);
1422     }
1423     if ((cache_base != nullptr) && cache_base->is_Con()) {
1424       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1425       if ((base_type != nullptr) && base_type->is_autobox_cache()) {
1426         Node* elements[4];
1427         int shift = exact_log2(type2aelembytes(T_OBJECT));
1428         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1429         if (count > 0 && elements[0]->is_Con() &&
1430             (count == 1 ||
1431              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1432                             elements[1]->in(2) == igvn->intcon(shift)))) {
1433           ciObjArray* array = base_type->const_oop()->as_obj_array();
1434           // Fetch the box object cache[0] at the base of the array and get its value
1435           ciInstance* box = array->obj_at(0)->as_instance();
1436           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1437           assert(ik->is_box_klass(), "sanity");
1438           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1439           if (ik->nof_nonstatic_fields() == 1) {
1440             // This should be true nonstatic_field_at requires calling
1441             // nof_nonstatic_fields so check it anyway
1442             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1443             BasicType bt = c.basic_type();
1444             // Only integer types have boxing cache.
1445             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1446                    bt == T_BYTE    || bt == T_SHORT ||
1447                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1448             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1449             if (cache_low != (int)cache_low) {
1450               return nullptr; // should not happen since cache is array indexed by value
1451             }
1452             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1453             if (offset != (int)offset) {
1454               return nullptr; // should not happen since cache is array indexed by value
1455             }
1456            // Add up all the offsets making of the address of the load
1457             Node* result = elements[0];
1458             for (int i = 1; i < count; i++) {
1459               result = igvn->transform(new AddXNode(result, elements[i]));
1460             }
1461             // Remove the constant offset from the address and then
1462             result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset)));
1463             // remove the scaling of the offset to recover the original index.
1464             if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) {
1465               // Peel the shift off directly but wrap it in a dummy node
1466               // since Ideal can't return existing nodes
1467               igvn->_worklist.push(result); // remove dead node later
1468               result = new RShiftXNode(result->in(1), igvn->intcon(0));
1469             } else if (result->is_Add() && result->in(2)->is_Con() &&
1470                        result->in(1)->Opcode() == Op_LShiftX &&
1471                        result->in(1)->in(2) == igvn->intcon(shift)) {
1472               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1473               // but for boxing cache access we know that X<<Z will not overflow
1474               // (there is range check) so we do this optimizatrion by hand here.
1475               igvn->_worklist.push(result); // remove dead node later
1476               Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift));
1477               result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con));
1478             } else {
1479               result = new RShiftXNode(result, igvn->intcon(shift));
1480             }
1481 #ifdef _LP64
1482             if (bt != T_LONG) {
1483               result = new ConvL2INode(igvn->transform(result));
1484             }
1485 #else
1486             if (bt == T_LONG) {
1487               result = new ConvI2LNode(igvn->transform(result));
1488             }
1489 #endif
1490             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1491             // Need to preserve unboxing load type if it is unsigned.
1492             switch(this->Opcode()) {
1493               case Op_LoadUB:
1494                 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF));
1495                 break;
1496               case Op_LoadUS:
1497                 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF));
1498                 break;
1499             }
1500             return result;
1501           }
1502         }
1503       }
1504     }
1505   }
1506   return nullptr;
1507 }
1508 
1509 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1510   Node* region = phi->in(0);
1511   if (region == nullptr) {
1512     return false; // Wait stable graph
1513   }
1514   uint cnt = phi->req();
1515   for (uint i = 1; i < cnt; i++) {
1516     Node* rc = region->in(i);
1517     if (rc == nullptr || phase->type(rc) == Type::TOP)
1518       return false; // Wait stable graph
1519     Node* in = phi->in(i);
1520     if (in == nullptr || phase->type(in) == Type::TOP)
1521       return false; // Wait stable graph
1522   }
1523   return true;
1524 }
1525 
1526 //------------------------------split_through_phi------------------------------
1527 // Check whether a call to 'split_through_phi' would split this load through the
1528 // Phi *base*. This method is essentially a copy of the validations performed
1529 // by 'split_through_phi'. The first use of this method was in EA code as part
1530 // of simplification of allocation merges.
1531 bool LoadNode::can_split_through_phi_base(PhaseGVN* phase) {
1532   Node* mem        = in(Memory);
1533   Node* address    = in(Address);
1534   intptr_t ignore  = 0;
1535   Node*    base    = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1536   bool base_is_phi = (base != nullptr) && base->is_Phi();
1537 
1538   if (req() > 3 || !base_is_phi) {
1539     return false;
1540   }
1541 
1542   if (!mem->is_Phi()) {
1543     if (!MemNode::all_controls_dominate(mem, base->in(0)))
1544       return false;
1545   } else if (base->in(0) != mem->in(0)) {
1546     if (!MemNode::all_controls_dominate(mem, base->in(0))) {
1547       return false;
1548     }
1549   }
1550 
1551   return true;
1552 }
1553 
1554 //------------------------------split_through_phi------------------------------
1555 // Split instance or boxed field load through Phi.
1556 Node* LoadNode::split_through_phi(PhaseGVN* phase, bool ignore_missing_instance_id) {
1557   if (req() > 3) {
1558     assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs");
1559     // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account
1560     return nullptr;
1561   }
1562   Node* mem     = in(Memory);
1563   Node* address = in(Address);
1564   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1565 
1566   assert((t_oop != nullptr) &&
1567          (ignore_missing_instance_id ||
1568           t_oop->is_known_instance_field() ||
1569           t_oop->is_ptr_to_boxed_value()), "invalid conditions");
1570 
1571   Compile* C = phase->C;
1572   intptr_t ignore = 0;
1573   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1574   bool base_is_phi = (base != nullptr) && base->is_Phi();
1575   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1576                            (base != nullptr) && (base == address->in(AddPNode::Base)) &&
1577                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1578 
1579   if (!((mem->is_Phi() || base_is_phi) &&
1580         (ignore_missing_instance_id || load_boxed_values || t_oop->is_known_instance_field()))) {
1581     return nullptr; // Neither memory or base are Phi
1582   }
1583 
1584   if (mem->is_Phi()) {
1585     if (!stable_phi(mem->as_Phi(), phase)) {
1586       return nullptr; // Wait stable graph
1587     }
1588     uint cnt = mem->req();
1589     // Check for loop invariant memory.
1590     if (cnt == 3) {
1591       for (uint i = 1; i < cnt; i++) {
1592         Node* in = mem->in(i);
1593         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1594         if (m == mem) {
1595           if (i == 1) {
1596             // if the first edge was a loop, check second edge too.
1597             // If both are replaceable - we are in an infinite loop
1598             Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase);
1599             if (n == mem) {
1600               break;
1601             }
1602           }
1603           set_req(Memory, mem->in(cnt - i));
1604           return this; // made change
1605         }
1606       }
1607     }
1608   }
1609   if (base_is_phi) {
1610     if (!stable_phi(base->as_Phi(), phase)) {
1611       return nullptr; // Wait stable graph
1612     }
1613     uint cnt = base->req();
1614     // Check for loop invariant memory.
1615     if (cnt == 3) {
1616       for (uint i = 1; i < cnt; i++) {
1617         if (base->in(i) == base) {
1618           return nullptr; // Wait stable graph
1619         }
1620       }
1621     }
1622   }
1623 
1624   // Split through Phi (see original code in loopopts.cpp).
1625   assert(ignore_missing_instance_id || C->have_alias_type(t_oop), "instance should have alias type");
1626 
1627   // Do nothing here if Identity will find a value
1628   // (to avoid infinite chain of value phis generation).
1629   if (this != Identity(phase)) {
1630     return nullptr;
1631   }
1632 
1633   // Select Region to split through.
1634   Node* region;
1635   if (!base_is_phi) {
1636     assert(mem->is_Phi(), "sanity");
1637     region = mem->in(0);
1638     // Skip if the region dominates some control edge of the address.
1639     if (!MemNode::all_controls_dominate(address, region))
1640       return nullptr;
1641   } else if (!mem->is_Phi()) {
1642     assert(base_is_phi, "sanity");
1643     region = base->in(0);
1644     // Skip if the region dominates some control edge of the memory.
1645     if (!MemNode::all_controls_dominate(mem, region))
1646       return nullptr;
1647   } else if (base->in(0) != mem->in(0)) {
1648     assert(base_is_phi && mem->is_Phi(), "sanity");
1649     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1650       region = base->in(0);
1651     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1652       region = mem->in(0);
1653     } else {
1654       return nullptr; // complex graph
1655     }
1656   } else {
1657     assert(base->in(0) == mem->in(0), "sanity");
1658     region = mem->in(0);
1659   }
1660 
1661   Node* phi = nullptr;
1662   const Type* this_type = this->bottom_type();
1663   PhaseIterGVN* igvn = phase->is_IterGVN();
1664   if (t_oop != nullptr && (t_oop->is_known_instance_field() || load_boxed_values)) {
1665     int this_index = C->get_alias_index(t_oop);
1666     int this_offset = t_oop->offset();
1667     int this_iid = t_oop->is_known_instance_field() ? t_oop->instance_id() : base->_idx;
1668     phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset);
1669   } else if (ignore_missing_instance_id) {
1670     phi = new PhiNode(region, this_type, nullptr, mem->_idx);
1671   } else {
1672     return nullptr;
1673   }
1674 
1675   for (uint i = 1; i < region->req(); i++) {
1676     Node* x;
1677     Node* the_clone = nullptr;
1678     Node* in = region->in(i);
1679     if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl &&
1680         in != nullptr && in->is_OuterStripMinedLoop()) {
1681       // No node should go in the outer strip mined loop
1682       in = in->in(LoopNode::EntryControl);
1683     }
1684     if (in == nullptr || in == C->top()) {
1685       x = C->top();      // Dead path?  Use a dead data op
1686     } else {
1687       x = this->clone();        // Else clone up the data op
1688       the_clone = x;            // Remember for possible deletion.
1689       // Alter data node to use pre-phi inputs
1690       if (this->in(0) == region) {
1691         x->set_req(0, in);
1692       } else {
1693         x->set_req(0, nullptr);
1694       }
1695       if (mem->is_Phi() && (mem->in(0) == region)) {
1696         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1697       }
1698       if (address->is_Phi() && address->in(0) == region) {
1699         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1700       }
1701       if (base_is_phi && (base->in(0) == region)) {
1702         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1703         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1704         x->set_req(Address, adr_x);
1705       }
1706     }
1707     // Check for a 'win' on some paths
1708     const Type *t = x->Value(igvn);
1709 
1710     bool singleton = t->singleton();
1711 
1712     // See comments in PhaseIdealLoop::split_thru_phi().
1713     if (singleton && t == Type::TOP) {
1714       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1715     }
1716 
1717     if (singleton) {
1718       x = igvn->makecon(t);
1719     } else {
1720       // We now call Identity to try to simplify the cloned node.
1721       // Note that some Identity methods call phase->type(this).
1722       // Make sure that the type array is big enough for
1723       // our new node, even though we may throw the node away.
1724       // (This tweaking with igvn only works because x is a new node.)
1725       igvn->set_type(x, t);
1726       // If x is a TypeNode, capture any more-precise type permanently into Node
1727       // otherwise it will be not updated during igvn->transform since
1728       // igvn->type(x) is set to x->Value() already.
1729       x->raise_bottom_type(t);
1730       Node* y = x->Identity(igvn);
1731       if (y != x) {
1732         x = y;
1733       } else {
1734         y = igvn->hash_find_insert(x);
1735         if (y) {
1736           x = y;
1737         } else {
1738           // Else x is a new node we are keeping
1739           // We do not need register_new_node_with_optimizer
1740           // because set_type has already been called.
1741           igvn->_worklist.push(x);
1742         }
1743       }
1744     }
1745     if (x != the_clone && the_clone != nullptr) {
1746       igvn->remove_dead_node(the_clone);
1747     }
1748     phi->set_req(i, x);
1749   }
1750   // Record Phi
1751   igvn->register_new_node_with_optimizer(phi);
1752   return phi;
1753 }
1754 
1755 AllocateNode* LoadNode::is_new_object_mark_load() const {
1756   if (Opcode() == Op_LoadX) {
1757     Node* address = in(MemNode::Address);
1758     AllocateNode* alloc = AllocateNode::Ideal_allocation(address);
1759     Node* mem = in(MemNode::Memory);
1760     if (alloc != nullptr && mem->is_Proj() &&
1761         mem->in(0) != nullptr &&
1762         mem->in(0) == alloc->initialization() &&
1763         alloc->initialization()->proj_out_or_null(0) != nullptr) {
1764       return alloc;
1765     }
1766   }
1767   return nullptr;
1768 }
1769 
1770 
1771 //------------------------------Ideal------------------------------------------
1772 // If the load is from Field memory and the pointer is non-null, it might be possible to
1773 // zero out the control input.
1774 // If the offset is constant and the base is an object allocation,
1775 // try to hook me up to the exact initializing store.
1776 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1777   if (has_pinned_control_dependency()) {
1778     return nullptr;
1779   }
1780   Node* p = MemNode::Ideal_common(phase, can_reshape);
1781   if (p)  return (p == NodeSentinel) ? nullptr : p;
1782 
1783   Node* ctrl    = in(MemNode::Control);
1784   Node* address = in(MemNode::Address);
1785   bool progress = false;
1786 
1787   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1788          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1789 
1790   // Skip up past a SafePoint control.  Cannot do this for Stores because
1791   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1792   if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint &&
1793       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
1794       !addr_mark &&
1795       (depends_only_on_test() || has_unknown_control_dependency())) {
1796     ctrl = ctrl->in(0);
1797     set_req(MemNode::Control,ctrl);
1798     progress = true;
1799   }
1800 
1801   intptr_t ignore = 0;
1802   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1803   if (base != nullptr
1804       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1805     // Check for useless control edge in some common special cases
1806     if (in(MemNode::Control) != nullptr
1807         && can_remove_control()
1808         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1809         && all_controls_dominate(base, phase->C->start())) {
1810       // A method-invariant, non-null address (constant or 'this' argument).
1811       set_req(MemNode::Control, nullptr);
1812       progress = true;
1813     }
1814   }
1815 
1816   Node* mem = in(MemNode::Memory);
1817   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1818 
1819   if (can_reshape && (addr_t != nullptr)) {
1820     // try to optimize our memory input
1821     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1822     if (opt_mem != mem) {
1823       set_req_X(MemNode::Memory, opt_mem, phase);
1824       if (phase->type( opt_mem ) == Type::TOP) return nullptr;
1825       return this;
1826     }
1827     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1828     if ((t_oop != nullptr) &&
1829         (t_oop->is_known_instance_field() ||
1830          t_oop->is_ptr_to_boxed_value())) {
1831       PhaseIterGVN *igvn = phase->is_IterGVN();
1832       assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true");
1833       if (igvn->_worklist.member(opt_mem)) {
1834         // Delay this transformation until memory Phi is processed.
1835         igvn->_worklist.push(this);
1836         return nullptr;
1837       }
1838       // Split instance field load through Phi.
1839       Node* result = split_through_phi(phase);
1840       if (result != nullptr) return result;
1841 
1842       if (t_oop->is_ptr_to_boxed_value()) {
1843         Node* result = eliminate_autobox(igvn);
1844         if (result != nullptr) return result;
1845       }
1846     }
1847   }
1848 
1849   // Is there a dominating load that loads the same value?  Leave
1850   // anything that is not a load of a field/array element (like
1851   // barriers etc.) alone
1852   if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) {
1853     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1854       Node *use = mem->fast_out(i);
1855       if (use != this &&
1856           use->Opcode() == Opcode() &&
1857           use->in(0) != nullptr &&
1858           use->in(0) != in(0) &&
1859           use->in(Address) == in(Address)) {
1860         Node* ctl = in(0);
1861         for (int i = 0; i < 10 && ctl != nullptr; i++) {
1862           ctl = IfNode::up_one_dom(ctl);
1863           if (ctl == use->in(0)) {
1864             set_req(0, use->in(0));
1865             return this;
1866           }
1867         }
1868       }
1869     }
1870   }
1871 
1872   // Check for prior store with a different base or offset; make Load
1873   // independent.  Skip through any number of them.  Bail out if the stores
1874   // are in an endless dead cycle and report no progress.  This is a key
1875   // transform for Reflection.  However, if after skipping through the Stores
1876   // we can't then fold up against a prior store do NOT do the transform as
1877   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1878   // array memory alive twice: once for the hoisted Load and again after the
1879   // bypassed Store.  This situation only works if EVERYBODY who does
1880   // anti-dependence work knows how to bypass.  I.e. we need all
1881   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1882   // the alias index stuff.  So instead, peek through Stores and IFF we can
1883   // fold up, do so.
1884   Node* prev_mem = find_previous_store(phase);
1885   if (prev_mem != nullptr) {
1886     Node* value = can_see_arraycopy_value(prev_mem, phase);
1887     if (value != nullptr) {
1888       return value;
1889     }
1890   }
1891   // Steps (a), (b):  Walk past independent stores to find an exact match.
1892   if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) {
1893     // (c) See if we can fold up on the spot, but don't fold up here.
1894     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1895     // just return a prior value, which is done by Identity calls.
1896     if (can_see_stored_value(prev_mem, phase)) {
1897       // Make ready for step (d):
1898       set_req_X(MemNode::Memory, prev_mem, phase);
1899       return this;
1900     }
1901   }
1902 
1903   return progress ? this : nullptr;
1904 }
1905 
1906 // Helper to recognize certain Klass fields which are invariant across
1907 // some group of array types (e.g., int[] or all T[] where T < Object).
1908 const Type*
1909 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1910                                  ciKlass* klass) const {
1911   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1912     // The field is Klass::_modifier_flags.  Return its (constant) value.
1913     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1914     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1915     return TypeInt::make(klass->modifier_flags());
1916   }
1917   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1918     // The field is Klass::_access_flags.  Return its (constant) value.
1919     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1920     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1921     return TypeInt::make(klass->access_flags());
1922   }
1923   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1924     // The field is Klass::_layout_helper.  Return its constant value if known.
1925     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1926     return TypeInt::make(klass->layout_helper());
1927   }
1928 
1929   // No match.
1930   return nullptr;
1931 }
1932 
1933 //------------------------------Value-----------------------------------------
1934 const Type* LoadNode::Value(PhaseGVN* phase) const {
1935   // Either input is TOP ==> the result is TOP
1936   Node* mem = in(MemNode::Memory);
1937   const Type *t1 = phase->type(mem);
1938   if (t1 == Type::TOP)  return Type::TOP;
1939   Node* adr = in(MemNode::Address);
1940   const TypePtr* tp = phase->type(adr)->isa_ptr();
1941   if (tp == nullptr || tp->empty())  return Type::TOP;
1942   int off = tp->offset();
1943   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1944   Compile* C = phase->C;
1945 
1946   // Try to guess loaded type from pointer type
1947   if (tp->isa_aryptr()) {
1948     const TypeAryPtr* ary = tp->is_aryptr();
1949     const Type* t = ary->elem();
1950 
1951     // Determine whether the reference is beyond the header or not, by comparing
1952     // the offset against the offset of the start of the array's data.
1953     // Different array types begin at slightly different offsets (12 vs. 16).
1954     // We choose T_BYTE as an example base type that is least restrictive
1955     // as to alignment, which will therefore produce the smallest
1956     // possible base offset.
1957     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1958     const bool off_beyond_header = (off >= min_base_off);
1959 
1960     // Try to constant-fold a stable array element.
1961     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1962       // Make sure the reference is not into the header and the offset is constant
1963       ciObject* aobj = ary->const_oop();
1964       if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1965         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1966         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1967                                                                       stable_dimension,
1968                                                                       memory_type(), is_unsigned());
1969         if (con_type != nullptr) {
1970           return con_type;
1971         }
1972       }
1973     }
1974 
1975     // Don't do this for integer types. There is only potential profit if
1976     // the element type t is lower than _type; that is, for int types, if _type is
1977     // more restrictive than t.  This only happens here if one is short and the other
1978     // char (both 16 bits), and in those cases we've made an intentional decision
1979     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1980     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1981     //
1982     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1983     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1984     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1985     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1986     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1987     // In fact, that could have been the original type of p1, and p1 could have
1988     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1989     // expression (LShiftL quux 3) independently optimized to the constant 8.
1990     if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr)
1991         && (_type->isa_vect() == nullptr)
1992         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1993       // t might actually be lower than _type, if _type is a unique
1994       // concrete subclass of abstract class t.
1995       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
1996         const Type* jt = t->join_speculative(_type);
1997         // In any case, do not allow the join, per se, to empty out the type.
1998         if (jt->empty() && !t->empty()) {
1999           // This can happen if a interface-typed array narrows to a class type.
2000           jt = _type;
2001         }
2002 #ifdef ASSERT
2003         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
2004           // The pointers in the autobox arrays are always non-null
2005           Node* base = adr->in(AddPNode::Base);
2006           if ((base != nullptr) && base->is_DecodeN()) {
2007             // Get LoadN node which loads IntegerCache.cache field
2008             base = base->in(1);
2009           }
2010           if ((base != nullptr) && base->is_Con()) {
2011             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
2012             if ((base_type != nullptr) && base_type->is_autobox_cache()) {
2013               // It could be narrow oop
2014               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
2015             }
2016           }
2017         }
2018 #endif
2019         return jt;
2020       }
2021     }
2022   } else if (tp->base() == Type::InstPtr) {
2023     assert( off != Type::OffsetBot ||
2024             // arrays can be cast to Objects
2025             !tp->isa_instptr() ||
2026             tp->is_instptr()->instance_klass()->is_java_lang_Object() ||
2027             // unsafe field access may not have a constant offset
2028             C->has_unsafe_access(),
2029             "Field accesses must be precise" );
2030     // For oop loads, we expect the _type to be precise.
2031 
2032     // Optimize loads from constant fields.
2033     const TypeInstPtr* tinst = tp->is_instptr();
2034     ciObject* const_oop = tinst->const_oop();
2035     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) {
2036       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
2037       if (con_type != nullptr) {
2038         return con_type;
2039       }
2040     }
2041   } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) {
2042     assert(off != Type::OffsetBot ||
2043             !tp->isa_instklassptr() ||
2044            // arrays can be cast to Objects
2045            tp->isa_instklassptr()->instance_klass()->is_java_lang_Object() ||
2046            // also allow array-loading from the primary supertype
2047            // array during subtype checks
2048            Opcode() == Op_LoadKlass,
2049            "Field accesses must be precise");
2050     // For klass/static loads, we expect the _type to be precise
2051   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
2052     /* With mirrors being an indirect in the Klass*
2053      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
2054      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
2055      *
2056      * So check the type and klass of the node before the LoadP.
2057      */
2058     Node* adr2 = adr->in(MemNode::Address);
2059     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2060     if (tkls != nullptr && !StressReflectiveCode) {
2061       if (tkls->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
2062         ciKlass* klass = tkls->exact_klass();
2063         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
2064         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
2065         return TypeInstPtr::make(klass->java_mirror());
2066       }
2067     }
2068   }
2069 
2070   const TypeKlassPtr *tkls = tp->isa_klassptr();
2071   if (tkls != nullptr) {
2072     if (tkls->is_loaded() && tkls->klass_is_exact()) {
2073       ciKlass* klass = tkls->exact_klass();
2074       // We are loading a field from a Klass metaobject whose identity
2075       // is known at compile time (the type is "exact" or "precise").
2076       // Check for fields we know are maintained as constants by the VM.
2077       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
2078         // The field is Klass::_super_check_offset.  Return its (constant) value.
2079         // (Folds up type checking code.)
2080         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
2081         return TypeInt::make(klass->super_check_offset());
2082       }
2083       // Compute index into primary_supers array
2084       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2085       // Check for overflowing; use unsigned compare to handle the negative case.
2086       if( depth < ciKlass::primary_super_limit() ) {
2087         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2088         // (Folds up type checking code.)
2089         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2090         ciKlass *ss = klass->super_of_depth(depth);
2091         return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR;
2092       }
2093       const Type* aift = load_array_final_field(tkls, klass);
2094       if (aift != nullptr)  return aift;
2095     }
2096 
2097     // We can still check if we are loading from the primary_supers array at a
2098     // shallow enough depth.  Even though the klass is not exact, entries less
2099     // than or equal to its super depth are correct.
2100     if (tkls->is_loaded()) {
2101       ciKlass* klass = nullptr;
2102       if (tkls->isa_instklassptr()) {
2103         klass = tkls->is_instklassptr()->instance_klass();
2104       } else {
2105         int dims;
2106         const Type* inner = tkls->is_aryklassptr()->base_element_type(dims);
2107         if (inner->isa_instklassptr()) {
2108           klass = inner->is_instklassptr()->instance_klass();
2109           klass = ciObjArrayKlass::make(klass, dims);
2110         }
2111       }
2112       if (klass != nullptr) {
2113         // Compute index into primary_supers array
2114         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2115         // Check for overflowing; use unsigned compare to handle the negative case.
2116         if (depth < ciKlass::primary_super_limit() &&
2117             depth <= klass->super_depth()) { // allow self-depth checks to handle self-check case
2118           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2119           // (Folds up type checking code.)
2120           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2121           ciKlass *ss = klass->super_of_depth(depth);
2122           return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR;
2123         }
2124       }
2125     }
2126 
2127     // If the type is enough to determine that the thing is not an array,
2128     // we can give the layout_helper a positive interval type.
2129     // This will help short-circuit some reflective code.
2130     if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) &&
2131         tkls->isa_instklassptr() && // not directly typed as an array
2132         !tkls->is_instklassptr()->instance_klass()->is_java_lang_Object() // not the supertype of all T[] and specifically not Serializable & Cloneable
2133         ) {
2134       // Note:  When interfaces are reliable, we can narrow the interface
2135       // test to (klass != Serializable && klass != Cloneable).
2136       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
2137       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
2138       // The key property of this type is that it folds up tests
2139       // for array-ness, since it proves that the layout_helper is positive.
2140       // Thus, a generic value like the basic object layout helper works fine.
2141       return TypeInt::make(min_size, max_jint, Type::WidenMin);
2142     }
2143   }
2144 
2145   // If we are loading from a freshly-allocated object, produce a zero,
2146   // if the load is provably beyond the header of the object.
2147   // (Also allow a variable load from a fresh array to produce zero.)
2148   const TypeOopPtr *tinst = tp->isa_oopptr();
2149   bool is_instance = (tinst != nullptr) && tinst->is_known_instance_field();
2150   bool is_boxed_value = (tinst != nullptr) && tinst->is_ptr_to_boxed_value();
2151   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
2152     Node* value = can_see_stored_value(mem,phase);
2153     if (value != nullptr && value->is_Con()) {
2154       assert(value->bottom_type()->higher_equal(_type),"sanity");
2155       return value->bottom_type();
2156     }
2157   }
2158 
2159   bool is_vect = (_type->isa_vect() != nullptr);
2160   if (is_instance && !is_vect) {
2161     // If we have an instance type and our memory input is the
2162     // programs's initial memory state, there is no matching store,
2163     // so just return a zero of the appropriate type -
2164     // except if it is vectorized - then we have no zero constant.
2165     Node *mem = in(MemNode::Memory);
2166     if (mem->is_Parm() && mem->in(0)->is_Start()) {
2167       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
2168       return Type::get_zero_type(_type->basic_type());
2169     }
2170   }
2171 
2172   Node* alloc = is_new_object_mark_load();
2173   if (alloc != nullptr) {
2174     return TypeX::make(markWord::prototype().value());
2175   }
2176 
2177   return _type;
2178 }
2179 
2180 //------------------------------match_edge-------------------------------------
2181 // Do we Match on this edge index or not?  Match only the address.
2182 uint LoadNode::match_edge(uint idx) const {
2183   return idx == MemNode::Address;
2184 }
2185 
2186 //--------------------------LoadBNode::Ideal--------------------------------------
2187 //
2188 //  If the previous store is to the same address as this load,
2189 //  and the value stored was larger than a byte, replace this load
2190 //  with the value stored truncated to a byte.  If no truncation is
2191 //  needed, the replacement is done in LoadNode::Identity().
2192 //
2193 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2194   Node* mem = in(MemNode::Memory);
2195   Node* value = can_see_stored_value(mem,phase);
2196   if (value != nullptr) {
2197     Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false);
2198     if (narrow != value) {
2199       return narrow;
2200     }
2201   }
2202   // Identity call will handle the case where truncation is not needed.
2203   return LoadNode::Ideal(phase, can_reshape);
2204 }
2205 
2206 const Type* LoadBNode::Value(PhaseGVN* phase) const {
2207   Node* mem = in(MemNode::Memory);
2208   Node* value = can_see_stored_value(mem,phase);
2209   if (value != nullptr && value->is_Con() &&
2210       !value->bottom_type()->higher_equal(_type)) {
2211     // If the input to the store does not fit with the load's result type,
2212     // it must be truncated. We can't delay until Ideal call since
2213     // a singleton Value is needed for split_thru_phi optimization.
2214     int con = value->get_int();
2215     return TypeInt::make((con << 24) >> 24);
2216   }
2217   return LoadNode::Value(phase);
2218 }
2219 
2220 //--------------------------LoadUBNode::Ideal-------------------------------------
2221 //
2222 //  If the previous store is to the same address as this load,
2223 //  and the value stored was larger than a byte, replace this load
2224 //  with the value stored truncated to a byte.  If no truncation is
2225 //  needed, the replacement is done in LoadNode::Identity().
2226 //
2227 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2228   Node* mem = in(MemNode::Memory);
2229   Node* value = can_see_stored_value(mem, phase);
2230   if (value != nullptr) {
2231     Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false);
2232     if (narrow != value) {
2233       return narrow;
2234     }
2235   }
2236   // Identity call will handle the case where truncation is not needed.
2237   return LoadNode::Ideal(phase, can_reshape);
2238 }
2239 
2240 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2241   Node* mem = in(MemNode::Memory);
2242   Node* value = can_see_stored_value(mem,phase);
2243   if (value != nullptr && value->is_Con() &&
2244       !value->bottom_type()->higher_equal(_type)) {
2245     // If the input to the store does not fit with the load's result type,
2246     // it must be truncated. We can't delay until Ideal call since
2247     // a singleton Value is needed for split_thru_phi optimization.
2248     int con = value->get_int();
2249     return TypeInt::make(con & 0xFF);
2250   }
2251   return LoadNode::Value(phase);
2252 }
2253 
2254 //--------------------------LoadUSNode::Ideal-------------------------------------
2255 //
2256 //  If the previous store is to the same address as this load,
2257 //  and the value stored was larger than a char, replace this load
2258 //  with the value stored truncated to a char.  If no truncation is
2259 //  needed, the replacement is done in LoadNode::Identity().
2260 //
2261 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2262   Node* mem = in(MemNode::Memory);
2263   Node* value = can_see_stored_value(mem,phase);
2264   if (value != nullptr) {
2265     Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false);
2266     if (narrow != value) {
2267       return narrow;
2268     }
2269   }
2270   // Identity call will handle the case where truncation is not needed.
2271   return LoadNode::Ideal(phase, can_reshape);
2272 }
2273 
2274 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2275   Node* mem = in(MemNode::Memory);
2276   Node* value = can_see_stored_value(mem,phase);
2277   if (value != nullptr && value->is_Con() &&
2278       !value->bottom_type()->higher_equal(_type)) {
2279     // If the input to the store does not fit with the load's result type,
2280     // it must be truncated. We can't delay until Ideal call since
2281     // a singleton Value is needed for split_thru_phi optimization.
2282     int con = value->get_int();
2283     return TypeInt::make(con & 0xFFFF);
2284   }
2285   return LoadNode::Value(phase);
2286 }
2287 
2288 //--------------------------LoadSNode::Ideal--------------------------------------
2289 //
2290 //  If the previous store is to the same address as this load,
2291 //  and the value stored was larger than a short, replace this load
2292 //  with the value stored truncated to a short.  If no truncation is
2293 //  needed, the replacement is done in LoadNode::Identity().
2294 //
2295 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2296   Node* mem = in(MemNode::Memory);
2297   Node* value = can_see_stored_value(mem,phase);
2298   if (value != nullptr) {
2299     Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false);
2300     if (narrow != value) {
2301       return narrow;
2302     }
2303   }
2304   // Identity call will handle the case where truncation is not needed.
2305   return LoadNode::Ideal(phase, can_reshape);
2306 }
2307 
2308 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2309   Node* mem = in(MemNode::Memory);
2310   Node* value = can_see_stored_value(mem,phase);
2311   if (value != nullptr && value->is_Con() &&
2312       !value->bottom_type()->higher_equal(_type)) {
2313     // If the input to the store does not fit with the load's result type,
2314     // it must be truncated. We can't delay until Ideal call since
2315     // a singleton Value is needed for split_thru_phi optimization.
2316     int con = value->get_int();
2317     return TypeInt::make((con << 16) >> 16);
2318   }
2319   return LoadNode::Value(phase);
2320 }
2321 
2322 //=============================================================================
2323 //----------------------------LoadKlassNode::make------------------------------
2324 // Polymorphic factory method:
2325 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2326   // sanity check the alias category against the created node type
2327   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2328   assert(adr_type != nullptr, "expecting TypeKlassPtr");
2329 #ifdef _LP64
2330   if (adr_type->is_ptr_to_narrowklass()) {
2331     assert(UseCompressedClassPointers, "no compressed klasses");
2332     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2333     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2334   }
2335 #endif
2336   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2337   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2338 }
2339 
2340 //------------------------------Value------------------------------------------
2341 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2342   return klass_value_common(phase);
2343 }
2344 
2345 // In most cases, LoadKlassNode does not have the control input set. If the control
2346 // input is set, it must not be removed (by LoadNode::Ideal()).
2347 bool LoadKlassNode::can_remove_control() const {
2348   return false;
2349 }
2350 
2351 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2352   // Either input is TOP ==> the result is TOP
2353   const Type *t1 = phase->type( in(MemNode::Memory) );
2354   if (t1 == Type::TOP)  return Type::TOP;
2355   Node *adr = in(MemNode::Address);
2356   const Type *t2 = phase->type( adr );
2357   if (t2 == Type::TOP)  return Type::TOP;
2358   const TypePtr *tp = t2->is_ptr();
2359   if (TypePtr::above_centerline(tp->ptr()) ||
2360       tp->ptr() == TypePtr::Null)  return Type::TOP;
2361 
2362   // Return a more precise klass, if possible
2363   const TypeInstPtr *tinst = tp->isa_instptr();
2364   if (tinst != nullptr) {
2365     ciInstanceKlass* ik = tinst->instance_klass();
2366     int offset = tinst->offset();
2367     if (ik == phase->C->env()->Class_klass()
2368         && (offset == java_lang_Class::klass_offset() ||
2369             offset == java_lang_Class::array_klass_offset())) {
2370       // We are loading a special hidden field from a Class mirror object,
2371       // the field which points to the VM's Klass metaobject.
2372       ciType* t = tinst->java_mirror_type();
2373       // java_mirror_type returns non-null for compile-time Class constants.
2374       if (t != nullptr) {
2375         // constant oop => constant klass
2376         if (offset == java_lang_Class::array_klass_offset()) {
2377           if (t->is_void()) {
2378             // We cannot create a void array.  Since void is a primitive type return null
2379             // klass.  Users of this result need to do a null check on the returned klass.
2380             return TypePtr::NULL_PTR;
2381           }
2382           return TypeKlassPtr::make(ciArrayKlass::make(t), Type::trust_interfaces);
2383         }
2384         if (!t->is_klass()) {
2385           // a primitive Class (e.g., int.class) has null for a klass field
2386           return TypePtr::NULL_PTR;
2387         }
2388         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2389         return TypeKlassPtr::make(t->as_klass(), Type::trust_interfaces);
2390       }
2391       // non-constant mirror, so we can't tell what's going on
2392     }
2393     if (!tinst->is_loaded())
2394       return _type;             // Bail out if not loaded
2395     if (offset == oopDesc::klass_offset_in_bytes()) {
2396       return tinst->as_klass_type(true);
2397     }
2398   }
2399 
2400   // Check for loading klass from an array
2401   const TypeAryPtr *tary = tp->isa_aryptr();
2402   if (tary != nullptr &&
2403       tary->offset() == oopDesc::klass_offset_in_bytes()) {
2404     return tary->as_klass_type(true);
2405   }
2406 
2407   // Check for loading klass from an array klass
2408   const TypeKlassPtr *tkls = tp->isa_klassptr();
2409   if (tkls != nullptr && !StressReflectiveCode) {
2410     if (!tkls->is_loaded())
2411      return _type;             // Bail out if not loaded
2412     if (tkls->isa_aryklassptr() && tkls->is_aryklassptr()->elem()->isa_klassptr() &&
2413         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2414       // // Always returning precise element type is incorrect,
2415       // // e.g., element type could be object and array may contain strings
2416       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2417 
2418       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2419       // according to the element type's subclassing.
2420       return tkls->is_aryklassptr()->elem()->isa_klassptr()->cast_to_exactness(tkls->klass_is_exact());
2421     }
2422     if (tkls->isa_instklassptr() != nullptr && tkls->klass_is_exact() &&
2423         tkls->offset() == in_bytes(Klass::super_offset())) {
2424       ciKlass* sup = tkls->is_instklassptr()->instance_klass()->super();
2425       // The field is Klass::_super.  Return its (constant) value.
2426       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2427       return sup ? TypeKlassPtr::make(sup, Type::trust_interfaces) : TypePtr::NULL_PTR;
2428     }
2429   }
2430 
2431   // Bailout case
2432   return LoadNode::Value(phase);
2433 }
2434 
2435 //------------------------------Identity---------------------------------------
2436 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2437 // Also feed through the klass in Allocate(...klass...)._klass.
2438 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2439   return klass_identity_common(phase);
2440 }
2441 
2442 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2443   Node* x = LoadNode::Identity(phase);
2444   if (x != this)  return x;
2445 
2446   // Take apart the address into an oop and offset.
2447   // Return 'this' if we cannot.
2448   Node*    adr    = in(MemNode::Address);
2449   intptr_t offset = 0;
2450   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2451   if (base == nullptr)     return this;
2452   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2453   if (toop == nullptr)     return this;
2454 
2455   // Step over potential GC barrier for OopHandle resolve
2456   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2457   if (bs->is_gc_barrier_node(base)) {
2458     base = bs->step_over_gc_barrier(base);
2459   }
2460 
2461   // We can fetch the klass directly through an AllocateNode.
2462   // This works even if the klass is not constant (clone or newArray).
2463   if (offset == oopDesc::klass_offset_in_bytes()) {
2464     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2465     if (allocated_klass != nullptr) {
2466       return allocated_klass;
2467     }
2468   }
2469 
2470   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2471   // See inline_native_Class_query for occurrences of these patterns.
2472   // Java Example:  x.getClass().isAssignableFrom(y)
2473   //
2474   // This improves reflective code, often making the Class
2475   // mirror go completely dead.  (Current exception:  Class
2476   // mirrors may appear in debug info, but we could clean them out by
2477   // introducing a new debug info operator for Klass.java_mirror).
2478 
2479   if (toop->isa_instptr() && toop->is_instptr()->instance_klass() == phase->C->env()->Class_klass()
2480       && offset == java_lang_Class::klass_offset()) {
2481     if (base->is_Load()) {
2482       Node* base2 = base->in(MemNode::Address);
2483       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2484         Node* adr2 = base2->in(MemNode::Address);
2485         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2486         if (tkls != nullptr && !tkls->empty()
2487             && (tkls->isa_instklassptr() || tkls->isa_aryklassptr())
2488             && adr2->is_AddP()
2489            ) {
2490           int mirror_field = in_bytes(Klass::java_mirror_offset());
2491           if (tkls->offset() == mirror_field) {
2492             return adr2->in(AddPNode::Base);
2493           }
2494         }
2495       }
2496     }
2497   }
2498 
2499   return this;
2500 }
2501 
2502 
2503 //------------------------------Value------------------------------------------
2504 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2505   const Type *t = klass_value_common(phase);
2506   if (t == Type::TOP)
2507     return t;
2508 
2509   return t->make_narrowklass();
2510 }
2511 
2512 //------------------------------Identity---------------------------------------
2513 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2514 // Also feed through the klass in Allocate(...klass...)._klass.
2515 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2516   Node *x = klass_identity_common(phase);
2517 
2518   const Type *t = phase->type( x );
2519   if( t == Type::TOP ) return x;
2520   if( t->isa_narrowklass()) return x;
2521   assert (!t->isa_narrowoop(), "no narrow oop here");
2522 
2523   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2524 }
2525 
2526 //------------------------------Value-----------------------------------------
2527 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2528   // Either input is TOP ==> the result is TOP
2529   const Type *t1 = phase->type( in(MemNode::Memory) );
2530   if( t1 == Type::TOP ) return Type::TOP;
2531   Node *adr = in(MemNode::Address);
2532   const Type *t2 = phase->type( adr );
2533   if( t2 == Type::TOP ) return Type::TOP;
2534   const TypePtr *tp = t2->is_ptr();
2535   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2536   const TypeAryPtr *tap = tp->isa_aryptr();
2537   if( !tap ) return _type;
2538   return tap->size();
2539 }
2540 
2541 //-------------------------------Ideal---------------------------------------
2542 // Feed through the length in AllocateArray(...length...)._length.
2543 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2544   Node* p = MemNode::Ideal_common(phase, can_reshape);
2545   if (p)  return (p == NodeSentinel) ? nullptr : p;
2546 
2547   // Take apart the address into an oop and offset.
2548   // Return 'this' if we cannot.
2549   Node*    adr    = in(MemNode::Address);
2550   intptr_t offset = 0;
2551   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2552   if (base == nullptr)     return nullptr;
2553   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2554   if (tary == nullptr)     return nullptr;
2555 
2556   // We can fetch the length directly through an AllocateArrayNode.
2557   // This works even if the length is not constant (clone or newArray).
2558   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2559     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base);
2560     if (alloc != nullptr) {
2561       Node* allocated_length = alloc->Ideal_length();
2562       Node* len = alloc->make_ideal_length(tary, phase);
2563       if (allocated_length != len) {
2564         // New CastII improves on this.
2565         return len;
2566       }
2567     }
2568   }
2569 
2570   return nullptr;
2571 }
2572 
2573 //------------------------------Identity---------------------------------------
2574 // Feed through the length in AllocateArray(...length...)._length.
2575 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2576   Node* x = LoadINode::Identity(phase);
2577   if (x != this)  return x;
2578 
2579   // Take apart the address into an oop and offset.
2580   // Return 'this' if we cannot.
2581   Node*    adr    = in(MemNode::Address);
2582   intptr_t offset = 0;
2583   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2584   if (base == nullptr)     return this;
2585   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2586   if (tary == nullptr)     return this;
2587 
2588   // We can fetch the length directly through an AllocateArrayNode.
2589   // This works even if the length is not constant (clone or newArray).
2590   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2591     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base);
2592     if (alloc != nullptr) {
2593       Node* allocated_length = alloc->Ideal_length();
2594       // Do not allow make_ideal_length to allocate a CastII node.
2595       Node* len = alloc->make_ideal_length(tary, phase, false);
2596       if (allocated_length == len) {
2597         // Return allocated_length only if it would not be improved by a CastII.
2598         return allocated_length;
2599       }
2600     }
2601   }
2602 
2603   return this;
2604 
2605 }
2606 
2607 //=============================================================================
2608 //---------------------------StoreNode::make-----------------------------------
2609 // Polymorphic factory method:
2610 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) {
2611   assert((mo == unordered || mo == release), "unexpected");
2612   Compile* C = gvn.C;
2613   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2614          ctl != nullptr, "raw memory operations should have control edge");
2615 
2616   switch (bt) {
2617   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2618   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2619   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2620   case T_CHAR:
2621   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2622   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access);
2623   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2624   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access);
2625   case T_METADATA:
2626   case T_ADDRESS:
2627   case T_OBJECT:
2628 #ifdef _LP64
2629     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2630       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2631       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2632     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2633                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2634                 adr->bottom_type()->isa_rawptr())) {
2635       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2636       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2637     }
2638 #endif
2639     {
2640       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2641     }
2642   default:
2643     ShouldNotReachHere();
2644     return (StoreNode*)nullptr;
2645   }
2646 }
2647 
2648 //--------------------------bottom_type----------------------------------------
2649 const Type *StoreNode::bottom_type() const {
2650   return Type::MEMORY;
2651 }
2652 
2653 //------------------------------hash-------------------------------------------
2654 uint StoreNode::hash() const {
2655   // unroll addition of interesting fields
2656   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2657 
2658   // Since they are not commoned, do not hash them:
2659   return NO_HASH;
2660 }
2661 
2662 //------------------------------Ideal------------------------------------------
2663 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2664 // When a store immediately follows a relevant allocation/initialization,
2665 // try to capture it into the initialization, or hoist it above.
2666 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2667   Node* p = MemNode::Ideal_common(phase, can_reshape);
2668   if (p)  return (p == NodeSentinel) ? nullptr : p;
2669 
2670   Node* mem     = in(MemNode::Memory);
2671   Node* address = in(MemNode::Address);
2672   Node* value   = in(MemNode::ValueIn);
2673   // Back-to-back stores to same address?  Fold em up.  Generally
2674   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2675   // since they must follow each StoreP operation.  Redundant StoreCMs
2676   // are eliminated just before matching in final_graph_reshape.
2677   {
2678     Node* st = mem;
2679     // If Store 'st' has more than one use, we cannot fold 'st' away.
2680     // For example, 'st' might be the final state at a conditional
2681     // return.  Or, 'st' might be used by some node which is live at
2682     // the same time 'st' is live, which might be unschedulable.  So,
2683     // require exactly ONE user until such time as we clone 'mem' for
2684     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2685     // true).
2686     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2687       // Looking at a dead closed cycle of memory?
2688       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2689       assert(Opcode() == st->Opcode() ||
2690              st->Opcode() == Op_StoreVector ||
2691              Opcode() == Op_StoreVector ||
2692              st->Opcode() == Op_StoreVectorScatter ||
2693              Opcode() == Op_StoreVectorScatter ||
2694              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2695              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2696              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2697              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2698              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2699 
2700       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2701           st->as_Store()->memory_size() <= this->memory_size()) {
2702         Node* use = st->raw_out(0);
2703         if (phase->is_IterGVN()) {
2704           phase->is_IterGVN()->rehash_node_delayed(use);
2705         }
2706         // It's OK to do this in the parser, since DU info is always accurate,
2707         // and the parser always refers to nodes via SafePointNode maps.
2708         use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase);
2709         return this;
2710       }
2711       st = st->in(MemNode::Memory);
2712     }
2713   }
2714 
2715 
2716   // Capture an unaliased, unconditional, simple store into an initializer.
2717   // Or, if it is independent of the allocation, hoist it above the allocation.
2718   if (ReduceFieldZeroing && /*can_reshape &&*/
2719       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2720     InitializeNode* init = mem->in(0)->as_Initialize();
2721     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2722     if (offset > 0) {
2723       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2724       // If the InitializeNode captured me, it made a raw copy of me,
2725       // and I need to disappear.
2726       if (moved != nullptr) {
2727         // %%% hack to ensure that Ideal returns a new node:
2728         mem = MergeMemNode::make(mem);
2729         return mem;             // fold me away
2730       }
2731     }
2732   }
2733 
2734   // Fold reinterpret cast into memory operation:
2735   //    StoreX mem (MoveY2X v) => StoreY mem v
2736   if (value->is_Move()) {
2737     const Type* vt = value->in(1)->bottom_type();
2738     if (has_reinterpret_variant(vt)) {
2739       if (phase->C->post_loop_opts_phase()) {
2740         return convert_to_reinterpret_store(*phase, value->in(1), vt);
2741       } else {
2742         phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over
2743       }
2744     }
2745   }
2746 
2747   return nullptr;                  // No further progress
2748 }
2749 
2750 //------------------------------Value-----------------------------------------
2751 const Type* StoreNode::Value(PhaseGVN* phase) const {
2752   // Either input is TOP ==> the result is TOP
2753   const Type *t1 = phase->type( in(MemNode::Memory) );
2754   if( t1 == Type::TOP ) return Type::TOP;
2755   const Type *t2 = phase->type( in(MemNode::Address) );
2756   if( t2 == Type::TOP ) return Type::TOP;
2757   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2758   if( t3 == Type::TOP ) return Type::TOP;
2759   return Type::MEMORY;
2760 }
2761 
2762 //------------------------------Identity---------------------------------------
2763 // Remove redundant stores:
2764 //   Store(m, p, Load(m, p)) changes to m.
2765 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2766 Node* StoreNode::Identity(PhaseGVN* phase) {
2767   Node* mem = in(MemNode::Memory);
2768   Node* adr = in(MemNode::Address);
2769   Node* val = in(MemNode::ValueIn);
2770 
2771   Node* result = this;
2772 
2773   // Load then Store?  Then the Store is useless
2774   if (val->is_Load() &&
2775       val->in(MemNode::Address)->eqv_uncast(adr) &&
2776       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2777       val->as_Load()->store_Opcode() == Opcode()) {
2778     result = mem;
2779   }
2780 
2781   // Two stores in a row of the same value?
2782   if (result == this &&
2783       mem->is_Store() &&
2784       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2785       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2786       mem->Opcode() == Opcode()) {
2787     result = mem;
2788   }
2789 
2790   // Store of zero anywhere into a freshly-allocated object?
2791   // Then the store is useless.
2792   // (It must already have been captured by the InitializeNode.)
2793   if (result == this &&
2794       ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2795     // a newly allocated object is already all-zeroes everywhere
2796     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2797       result = mem;
2798     }
2799 
2800     if (result == this) {
2801       // the store may also apply to zero-bits in an earlier object
2802       Node* prev_mem = find_previous_store(phase);
2803       // Steps (a), (b):  Walk past independent stores to find an exact match.
2804       if (prev_mem != nullptr) {
2805         Node* prev_val = can_see_stored_value(prev_mem, phase);
2806         if (prev_val != nullptr && prev_val == val) {
2807           // prev_val and val might differ by a cast; it would be good
2808           // to keep the more informative of the two.
2809           result = mem;
2810         }
2811       }
2812     }
2813   }
2814 
2815   PhaseIterGVN* igvn = phase->is_IterGVN();
2816   if (result != this && igvn != nullptr) {
2817     MemBarNode* trailing = trailing_membar();
2818     if (trailing != nullptr) {
2819 #ifdef ASSERT
2820       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2821       assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects");
2822 #endif
2823       trailing->remove(igvn);
2824     }
2825   }
2826 
2827   return result;
2828 }
2829 
2830 //------------------------------match_edge-------------------------------------
2831 // Do we Match on this edge index or not?  Match only memory & value
2832 uint StoreNode::match_edge(uint idx) const {
2833   return idx == MemNode::Address || idx == MemNode::ValueIn;
2834 }
2835 
2836 //------------------------------cmp--------------------------------------------
2837 // Do not common stores up together.  They generally have to be split
2838 // back up anyways, so do not bother.
2839 bool StoreNode::cmp( const Node &n ) const {
2840   return (&n == this);          // Always fail except on self
2841 }
2842 
2843 //------------------------------Ideal_masked_input-----------------------------
2844 // Check for a useless mask before a partial-word store
2845 // (StoreB ... (AndI valIn conIa) )
2846 // If (conIa & mask == mask) this simplifies to
2847 // (StoreB ... (valIn) )
2848 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2849   Node *val = in(MemNode::ValueIn);
2850   if( val->Opcode() == Op_AndI ) {
2851     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2852     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2853       set_req_X(MemNode::ValueIn, val->in(1), phase);
2854       return this;
2855     }
2856   }
2857   return nullptr;
2858 }
2859 
2860 
2861 //------------------------------Ideal_sign_extended_input----------------------
2862 // Check for useless sign-extension before a partial-word store
2863 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2864 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2865 // (StoreB ... (valIn) )
2866 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2867   Node *val = in(MemNode::ValueIn);
2868   if( val->Opcode() == Op_RShiftI ) {
2869     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2870     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2871       Node *shl = val->in(1);
2872       if( shl->Opcode() == Op_LShiftI ) {
2873         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2874         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2875           set_req_X(MemNode::ValueIn, shl->in(1), phase);
2876           return this;
2877         }
2878       }
2879     }
2880   }
2881   return nullptr;
2882 }
2883 
2884 //------------------------------value_never_loaded-----------------------------------
2885 // Determine whether there are any possible loads of the value stored.
2886 // For simplicity, we actually check if there are any loads from the
2887 // address stored to, not just for loads of the value stored by this node.
2888 //
2889 bool StoreNode::value_never_loaded(PhaseValues* phase) const {
2890   Node *adr = in(Address);
2891   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2892   if (adr_oop == nullptr)
2893     return false;
2894   if (!adr_oop->is_known_instance_field())
2895     return false; // if not a distinct instance, there may be aliases of the address
2896   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2897     Node *use = adr->fast_out(i);
2898     if (use->is_Load() || use->is_LoadStore()) {
2899       return false;
2900     }
2901   }
2902   return true;
2903 }
2904 
2905 MemBarNode* StoreNode::trailing_membar() const {
2906   if (is_release()) {
2907     MemBarNode* trailing_mb = nullptr;
2908     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2909       Node* u = fast_out(i);
2910       if (u->is_MemBar()) {
2911         if (u->as_MemBar()->trailing_store()) {
2912           assert(u->Opcode() == Op_MemBarVolatile, "");
2913           assert(trailing_mb == nullptr, "only one");
2914           trailing_mb = u->as_MemBar();
2915 #ifdef ASSERT
2916           Node* leading = u->as_MemBar()->leading_membar();
2917           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2918           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2919           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2920 #endif
2921         } else {
2922           assert(u->as_MemBar()->standalone(), "");
2923         }
2924       }
2925     }
2926     return trailing_mb;
2927   }
2928   return nullptr;
2929 }
2930 
2931 
2932 //=============================================================================
2933 //------------------------------Ideal------------------------------------------
2934 // If the store is from an AND mask that leaves the low bits untouched, then
2935 // we can skip the AND operation.  If the store is from a sign-extension
2936 // (a left shift, then right shift) we can skip both.
2937 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2938   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2939   if( progress != nullptr ) return progress;
2940 
2941   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2942   if( progress != nullptr ) return progress;
2943 
2944   // Finally check the default case
2945   return StoreNode::Ideal(phase, can_reshape);
2946 }
2947 
2948 //=============================================================================
2949 //------------------------------Ideal------------------------------------------
2950 // If the store is from an AND mask that leaves the low bits untouched, then
2951 // we can skip the AND operation
2952 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2953   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2954   if( progress != nullptr ) return progress;
2955 
2956   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2957   if( progress != nullptr ) return progress;
2958 
2959   // Finally check the default case
2960   return StoreNode::Ideal(phase, can_reshape);
2961 }
2962 
2963 //=============================================================================
2964 //------------------------------Identity---------------------------------------
2965 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2966   // No need to card mark when storing a null ptr
2967   Node* my_store = in(MemNode::OopStore);
2968   if (my_store->is_Store()) {
2969     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2970     if( t1 == TypePtr::NULL_PTR ) {
2971       return in(MemNode::Memory);
2972     }
2973   }
2974   return this;
2975 }
2976 
2977 //=============================================================================
2978 //------------------------------Ideal---------------------------------------
2979 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2980   Node* progress = StoreNode::Ideal(phase, can_reshape);
2981   if (progress != nullptr) return progress;
2982 
2983   Node* my_store = in(MemNode::OopStore);
2984   if (my_store->is_MergeMem()) {
2985     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2986     set_req_X(MemNode::OopStore, mem, phase);
2987     return this;
2988   }
2989 
2990   return nullptr;
2991 }
2992 
2993 //------------------------------Value-----------------------------------------
2994 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2995   // Either input is TOP ==> the result is TOP (checked in StoreNode::Value).
2996   // If extra input is TOP ==> the result is TOP
2997   const Type* t = phase->type(in(MemNode::OopStore));
2998   if (t == Type::TOP) {
2999     return Type::TOP;
3000   }
3001   return StoreNode::Value(phase);
3002 }
3003 
3004 
3005 //=============================================================================
3006 //----------------------------------SCMemProjNode------------------------------
3007 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
3008 {
3009   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
3010     return Type::TOP;
3011   }
3012   return bottom_type();
3013 }
3014 
3015 //=============================================================================
3016 //----------------------------------LoadStoreNode------------------------------
3017 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
3018   : Node(required),
3019     _type(rt),
3020     _adr_type(at),
3021     _barrier_data(0)
3022 {
3023   init_req(MemNode::Control, c  );
3024   init_req(MemNode::Memory , mem);
3025   init_req(MemNode::Address, adr);
3026   init_req(MemNode::ValueIn, val);
3027   init_class_id(Class_LoadStore);
3028 }
3029 
3030 //------------------------------Value-----------------------------------------
3031 const Type* LoadStoreNode::Value(PhaseGVN* phase) const {
3032   // Either input is TOP ==> the result is TOP
3033   if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) {
3034     return Type::TOP;
3035   }
3036   const Type* t = phase->type(in(MemNode::Memory));
3037   if (t == Type::TOP) {
3038     return Type::TOP;
3039   }
3040   t = phase->type(in(MemNode::Address));
3041   if (t == Type::TOP) {
3042     return Type::TOP;
3043   }
3044   t = phase->type(in(MemNode::ValueIn));
3045   if (t == Type::TOP) {
3046     return Type::TOP;
3047   }
3048   return bottom_type();
3049 }
3050 
3051 uint LoadStoreNode::ideal_reg() const {
3052   return _type->ideal_reg();
3053 }
3054 
3055 // This method conservatively checks if the result of a LoadStoreNode is
3056 // used, that is, if it returns true, then it is definitely the case that
3057 // the result of the node is not needed.
3058 // For example, GetAndAdd can be matched into a lock_add instead of a
3059 // lock_xadd if the result of LoadStoreNode::result_not_used() is true
3060 bool LoadStoreNode::result_not_used() const {
3061   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
3062     Node *x = fast_out(i);
3063     if (x->Opcode() == Op_SCMemProj) {
3064       continue;
3065     }
3066     if (x->bottom_type() == TypeTuple::MEMBAR &&
3067         !x->is_Call() &&
3068         x->Opcode() != Op_Blackhole) {
3069       continue;
3070     }
3071     return false;
3072   }
3073   return true;
3074 }
3075 
3076 MemBarNode* LoadStoreNode::trailing_membar() const {
3077   MemBarNode* trailing = nullptr;
3078   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
3079     Node* u = fast_out(i);
3080     if (u->is_MemBar()) {
3081       if (u->as_MemBar()->trailing_load_store()) {
3082         assert(u->Opcode() == Op_MemBarAcquire, "");
3083         assert(trailing == nullptr, "only one");
3084         trailing = u->as_MemBar();
3085 #ifdef ASSERT
3086         Node* leading = trailing->leading_membar();
3087         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
3088         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
3089         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
3090 #endif
3091       } else {
3092         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
3093       }
3094     }
3095   }
3096 
3097   return trailing;
3098 }
3099 
3100 uint LoadStoreNode::size_of() const { return sizeof(*this); }
3101 
3102 //=============================================================================
3103 //----------------------------------LoadStoreConditionalNode--------------------
3104 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) {
3105   init_req(ExpectedIn, ex );
3106 }
3107 
3108 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const {
3109   // Either input is TOP ==> the result is TOP
3110   const Type* t = phase->type(in(ExpectedIn));
3111   if (t == Type::TOP) {
3112     return Type::TOP;
3113   }
3114   return LoadStoreNode::Value(phase);
3115 }
3116 
3117 //=============================================================================
3118 //-------------------------------adr_type--------------------------------------
3119 const TypePtr* ClearArrayNode::adr_type() const {
3120   Node *adr = in(3);
3121   if (adr == nullptr)  return nullptr; // node is dead
3122   return MemNode::calculate_adr_type(adr->bottom_type());
3123 }
3124 
3125 //------------------------------match_edge-------------------------------------
3126 // Do we Match on this edge index or not?  Do not match memory
3127 uint ClearArrayNode::match_edge(uint idx) const {
3128   return idx > 1;
3129 }
3130 
3131 //------------------------------Identity---------------------------------------
3132 // Clearing a zero length array does nothing
3133 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
3134   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
3135 }
3136 
3137 //------------------------------Idealize---------------------------------------
3138 // Clearing a short array is faster with stores
3139 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3140   // Already know this is a large node, do not try to ideal it
3141   if (_is_large) return nullptr;
3142 
3143   const int unit = BytesPerLong;
3144   const TypeX* t = phase->type(in(2))->isa_intptr_t();
3145   if (!t)  return nullptr;
3146   if (!t->is_con())  return nullptr;
3147   intptr_t raw_count = t->get_con();
3148   intptr_t size = raw_count;
3149   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
3150   // Clearing nothing uses the Identity call.
3151   // Negative clears are possible on dead ClearArrays
3152   // (see jck test stmt114.stmt11402.val).
3153   if (size <= 0 || size % unit != 0)  return nullptr;
3154   intptr_t count = size / unit;
3155   // Length too long; communicate this to matchers and assemblers.
3156   // Assemblers are responsible to produce fast hardware clears for it.
3157   if (size > InitArrayShortSize) {
3158     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
3159   } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) {
3160     return nullptr;
3161   }
3162   if (!IdealizeClearArrayNode) return nullptr;
3163   Node *mem = in(1);
3164   if( phase->type(mem)==Type::TOP ) return nullptr;
3165   Node *adr = in(3);
3166   const Type* at = phase->type(adr);
3167   if( at==Type::TOP ) return nullptr;
3168   const TypePtr* atp = at->isa_ptr();
3169   // adjust atp to be the correct array element address type
3170   if (atp == nullptr)  atp = TypePtr::BOTTOM;
3171   else              atp = atp->add_offset(Type::OffsetBot);
3172   // Get base for derived pointer purposes
3173   if( adr->Opcode() != Op_AddP ) Unimplemented();
3174   Node *base = adr->in(1);
3175 
3176   Node *zero = phase->makecon(TypeLong::ZERO);
3177   Node *off  = phase->MakeConX(BytesPerLong);
3178   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
3179   count--;
3180   while( count-- ) {
3181     mem = phase->transform(mem);
3182     adr = phase->transform(new AddPNode(base,adr,off));
3183     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
3184   }
3185   return mem;
3186 }
3187 
3188 //----------------------------step_through----------------------------------
3189 // Return allocation input memory edge if it is different instance
3190 // or itself if it is the one we are looking for.
3191 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseValues* phase) {
3192   Node* n = *np;
3193   assert(n->is_ClearArray(), "sanity");
3194   intptr_t offset;
3195   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
3196   // This method is called only before Allocate nodes are expanded
3197   // during macro nodes expansion. Before that ClearArray nodes are
3198   // only generated in PhaseMacroExpand::generate_arraycopy() (before
3199   // Allocate nodes are expanded) which follows allocations.
3200   assert(alloc != nullptr, "should have allocation");
3201   if (alloc->_idx == instance_id) {
3202     // Can not bypass initialization of the instance we are looking for.
3203     return false;
3204   }
3205   // Otherwise skip it.
3206   InitializeNode* init = alloc->initialization();
3207   if (init != nullptr)
3208     *np = init->in(TypeFunc::Memory);
3209   else
3210     *np = alloc->in(TypeFunc::Memory);
3211   return true;
3212 }
3213 
3214 //----------------------------clear_memory-------------------------------------
3215 // Generate code to initialize object storage to zero.
3216 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3217                                    intptr_t start_offset,
3218                                    Node* end_offset,
3219                                    PhaseGVN* phase) {
3220   intptr_t offset = start_offset;
3221 
3222   int unit = BytesPerLong;
3223   if ((offset % unit) != 0) {
3224     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
3225     adr = phase->transform(adr);
3226     const TypePtr* atp = TypeRawPtr::BOTTOM;
3227     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3228     mem = phase->transform(mem);
3229     offset += BytesPerInt;
3230   }
3231   assert((offset % unit) == 0, "");
3232 
3233   // Initialize the remaining stuff, if any, with a ClearArray.
3234   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
3235 }
3236 
3237 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3238                                    Node* start_offset,
3239                                    Node* end_offset,
3240                                    PhaseGVN* phase) {
3241   if (start_offset == end_offset) {
3242     // nothing to do
3243     return mem;
3244   }
3245 
3246   int unit = BytesPerLong;
3247   Node* zbase = start_offset;
3248   Node* zend  = end_offset;
3249 
3250   // Scale to the unit required by the CPU:
3251   if (!Matcher::init_array_count_is_in_bytes) {
3252     Node* shift = phase->intcon(exact_log2(unit));
3253     zbase = phase->transform(new URShiftXNode(zbase, shift) );
3254     zend  = phase->transform(new URShiftXNode(zend,  shift) );
3255   }
3256 
3257   // Bulk clear double-words
3258   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
3259   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3260   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
3261   return phase->transform(mem);
3262 }
3263 
3264 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3265                                    intptr_t start_offset,
3266                                    intptr_t end_offset,
3267                                    PhaseGVN* phase) {
3268   if (start_offset == end_offset) {
3269     // nothing to do
3270     return mem;
3271   }
3272 
3273   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3274   intptr_t done_offset = end_offset;
3275   if ((done_offset % BytesPerLong) != 0) {
3276     done_offset -= BytesPerInt;
3277   }
3278   if (done_offset > start_offset) {
3279     mem = clear_memory(ctl, mem, dest,
3280                        start_offset, phase->MakeConX(done_offset), phase);
3281   }
3282   if (done_offset < end_offset) { // emit the final 32-bit store
3283     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3284     adr = phase->transform(adr);
3285     const TypePtr* atp = TypeRawPtr::BOTTOM;
3286     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3287     mem = phase->transform(mem);
3288     done_offset += BytesPerInt;
3289   }
3290   assert(done_offset == end_offset, "");
3291   return mem;
3292 }
3293 
3294 //=============================================================================
3295 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3296   : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)),
3297     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3298 #ifdef ASSERT
3299   , _pair_idx(0)
3300 #endif
3301 {
3302   init_class_id(Class_MemBar);
3303   Node* top = C->top();
3304   init_req(TypeFunc::I_O,top);
3305   init_req(TypeFunc::FramePtr,top);
3306   init_req(TypeFunc::ReturnAdr,top);
3307   if (precedent != nullptr)
3308     init_req(TypeFunc::Parms, precedent);
3309 }
3310 
3311 //------------------------------cmp--------------------------------------------
3312 uint MemBarNode::hash() const { return NO_HASH; }
3313 bool MemBarNode::cmp( const Node &n ) const {
3314   return (&n == this);          // Always fail except on self
3315 }
3316 
3317 //------------------------------make-------------------------------------------
3318 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3319   switch (opcode) {
3320   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3321   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3322   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3323   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3324   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3325   case Op_StoreStoreFence:   return new StoreStoreFenceNode(C, atp, pn);
3326   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3327   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3328   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3329   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3330   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3331   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3332   default: ShouldNotReachHere(); return nullptr;
3333   }
3334 }
3335 
3336 void MemBarNode::remove(PhaseIterGVN *igvn) {
3337   if (outcnt() != 2) {
3338     assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory");
3339     assert(outcnt() == 1, "Only control then");
3340   }
3341   if (trailing_store() || trailing_load_store()) {
3342     MemBarNode* leading = leading_membar();
3343     if (leading != nullptr) {
3344       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3345       leading->remove(igvn);
3346     }
3347   }
3348   if (proj_out_or_null(TypeFunc::Memory) != nullptr) {
3349     igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3350   }
3351   if (proj_out_or_null(TypeFunc::Control) != nullptr) {
3352     igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3353   }
3354 }
3355 
3356 //------------------------------Ideal------------------------------------------
3357 // Return a node which is more "ideal" than the current node.  Strip out
3358 // control copies
3359 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3360   if (remove_dead_region(phase, can_reshape)) return this;
3361   // Don't bother trying to transform a dead node
3362   if (in(0) && in(0)->is_top()) {
3363     return nullptr;
3364   }
3365 
3366   bool progress = false;
3367   // Eliminate volatile MemBars for scalar replaced objects.
3368   if (can_reshape && req() == (Precedent+1)) {
3369     bool eliminate = false;
3370     int opc = Opcode();
3371     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3372       // Volatile field loads and stores.
3373       Node* my_mem = in(MemBarNode::Precedent);
3374       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3375       if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3376         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3377         // replace this Precedent (decodeN) with the Load instead.
3378         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3379           Node* load_node = my_mem->in(1);
3380           set_req(MemBarNode::Precedent, load_node);
3381           phase->is_IterGVN()->_worklist.push(my_mem);
3382           my_mem = load_node;
3383         } else {
3384           assert(my_mem->unique_out() == this, "sanity");
3385           del_req(Precedent);
3386           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3387           my_mem = nullptr;
3388         }
3389         progress = true;
3390       }
3391       if (my_mem != nullptr && my_mem->is_Mem()) {
3392         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3393         // Check for scalar replaced object reference.
3394         if( t_oop != nullptr && t_oop->is_known_instance_field() &&
3395             t_oop->offset() != Type::OffsetBot &&
3396             t_oop->offset() != Type::OffsetTop) {
3397           eliminate = true;
3398         }
3399       }
3400     } else if (opc == Op_MemBarRelease) {
3401       // Final field stores.
3402       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent));
3403       if ((alloc != nullptr) && alloc->is_Allocate() &&
3404           alloc->as_Allocate()->does_not_escape_thread()) {
3405         // The allocated object does not escape.
3406         eliminate = true;
3407       }
3408     }
3409     if (eliminate) {
3410       // Replace MemBar projections by its inputs.
3411       PhaseIterGVN* igvn = phase->is_IterGVN();
3412       remove(igvn);
3413       // Must return either the original node (now dead) or a new node
3414       // (Do not return a top here, since that would break the uniqueness of top.)
3415       return new ConINode(TypeInt::ZERO);
3416     }
3417   }
3418   return progress ? this : nullptr;
3419 }
3420 
3421 //------------------------------Value------------------------------------------
3422 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3423   if( !in(0) ) return Type::TOP;
3424   if( phase->type(in(0)) == Type::TOP )
3425     return Type::TOP;
3426   return TypeTuple::MEMBAR;
3427 }
3428 
3429 //------------------------------match------------------------------------------
3430 // Construct projections for memory.
3431 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3432   switch (proj->_con) {
3433   case TypeFunc::Control:
3434   case TypeFunc::Memory:
3435     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3436   }
3437   ShouldNotReachHere();
3438   return nullptr;
3439 }
3440 
3441 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3442   trailing->_kind = TrailingStore;
3443   leading->_kind = LeadingStore;
3444 #ifdef ASSERT
3445   trailing->_pair_idx = leading->_idx;
3446   leading->_pair_idx = leading->_idx;
3447 #endif
3448 }
3449 
3450 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3451   trailing->_kind = TrailingLoadStore;
3452   leading->_kind = LeadingLoadStore;
3453 #ifdef ASSERT
3454   trailing->_pair_idx = leading->_idx;
3455   leading->_pair_idx = leading->_idx;
3456 #endif
3457 }
3458 
3459 MemBarNode* MemBarNode::trailing_membar() const {
3460   ResourceMark rm;
3461   Node* trailing = (Node*)this;
3462   VectorSet seen;
3463   Node_Stack multis(0);
3464   do {
3465     Node* c = trailing;
3466     uint i = 0;
3467     do {
3468       trailing = nullptr;
3469       for (; i < c->outcnt(); i++) {
3470         Node* next = c->raw_out(i);
3471         if (next != c && next->is_CFG()) {
3472           if (c->is_MultiBranch()) {
3473             if (multis.node() == c) {
3474               multis.set_index(i+1);
3475             } else {
3476               multis.push(c, i+1);
3477             }
3478           }
3479           trailing = next;
3480           break;
3481         }
3482       }
3483       if (trailing != nullptr && !seen.test_set(trailing->_idx)) {
3484         break;
3485       }
3486       while (multis.size() > 0) {
3487         c = multis.node();
3488         i = multis.index();
3489         if (i < c->req()) {
3490           break;
3491         }
3492         multis.pop();
3493       }
3494     } while (multis.size() > 0);
3495   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3496 
3497   MemBarNode* mb = trailing->as_MemBar();
3498   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3499          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3500   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3501   return mb;
3502 }
3503 
3504 MemBarNode* MemBarNode::leading_membar() const {
3505   ResourceMark rm;
3506   VectorSet seen;
3507   Node_Stack regions(0);
3508   Node* leading = in(0);
3509   while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3510     while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) {
3511       leading = nullptr;
3512       while (regions.size() > 0 && leading == nullptr) {
3513         Node* r = regions.node();
3514         uint i = regions.index();
3515         if (i < r->req()) {
3516           leading = r->in(i);
3517           regions.set_index(i+1);
3518         } else {
3519           regions.pop();
3520         }
3521       }
3522       if (leading == nullptr) {
3523         assert(regions.size() == 0, "all paths should have been tried");
3524         return nullptr;
3525       }
3526     }
3527     if (leading->is_Region()) {
3528       regions.push(leading, 2);
3529       leading = leading->in(1);
3530     } else {
3531       leading = leading->in(0);
3532     }
3533   }
3534 #ifdef ASSERT
3535   Unique_Node_List wq;
3536   wq.push((Node*)this);
3537   uint found = 0;
3538   for (uint i = 0; i < wq.size(); i++) {
3539     Node* n = wq.at(i);
3540     if (n->is_Region()) {
3541       for (uint j = 1; j < n->req(); j++) {
3542         Node* in = n->in(j);
3543         if (in != nullptr && !in->is_top()) {
3544           wq.push(in);
3545         }
3546       }
3547     } else {
3548       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3549         assert(n == leading, "consistency check failed");
3550         found++;
3551       } else {
3552         Node* in = n->in(0);
3553         if (in != nullptr && !in->is_top()) {
3554           wq.push(in);
3555         }
3556       }
3557     }
3558   }
3559   assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed");
3560 #endif
3561   if (leading == nullptr) {
3562     return nullptr;
3563   }
3564   MemBarNode* mb = leading->as_MemBar();
3565   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3566          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3567   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3568   return mb;
3569 }
3570 
3571 
3572 //===========================InitializeNode====================================
3573 // SUMMARY:
3574 // This node acts as a memory barrier on raw memory, after some raw stores.
3575 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3576 // The Initialize can 'capture' suitably constrained stores as raw inits.
3577 // It can coalesce related raw stores into larger units (called 'tiles').
3578 // It can avoid zeroing new storage for memory units which have raw inits.
3579 // At macro-expansion, it is marked 'complete', and does not optimize further.
3580 //
3581 // EXAMPLE:
3582 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3583 //   ctl = incoming control; mem* = incoming memory
3584 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3585 // First allocate uninitialized memory and fill in the header:
3586 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3587 //   ctl := alloc.Control; mem* := alloc.Memory*
3588 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3589 // Then initialize to zero the non-header parts of the raw memory block:
3590 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3591 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3592 // After the initialize node executes, the object is ready for service:
3593 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3594 // Suppose its body is immediately initialized as {1,2}:
3595 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3596 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3597 //   mem.SLICE(#short[*]) := store2
3598 //
3599 // DETAILS:
3600 // An InitializeNode collects and isolates object initialization after
3601 // an AllocateNode and before the next possible safepoint.  As a
3602 // memory barrier (MemBarNode), it keeps critical stores from drifting
3603 // down past any safepoint or any publication of the allocation.
3604 // Before this barrier, a newly-allocated object may have uninitialized bits.
3605 // After this barrier, it may be treated as a real oop, and GC is allowed.
3606 //
3607 // The semantics of the InitializeNode include an implicit zeroing of
3608 // the new object from object header to the end of the object.
3609 // (The object header and end are determined by the AllocateNode.)
3610 //
3611 // Certain stores may be added as direct inputs to the InitializeNode.
3612 // These stores must update raw memory, and they must be to addresses
3613 // derived from the raw address produced by AllocateNode, and with
3614 // a constant offset.  They must be ordered by increasing offset.
3615 // The first one is at in(RawStores), the last at in(req()-1).
3616 // Unlike most memory operations, they are not linked in a chain,
3617 // but are displayed in parallel as users of the rawmem output of
3618 // the allocation.
3619 //
3620 // (See comments in InitializeNode::capture_store, which continue
3621 // the example given above.)
3622 //
3623 // When the associated Allocate is macro-expanded, the InitializeNode
3624 // may be rewritten to optimize collected stores.  A ClearArrayNode
3625 // may also be created at that point to represent any required zeroing.
3626 // The InitializeNode is then marked 'complete', prohibiting further
3627 // capturing of nearby memory operations.
3628 //
3629 // During macro-expansion, all captured initializations which store
3630 // constant values of 32 bits or smaller are coalesced (if advantageous)
3631 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3632 // initialized in fewer memory operations.  Memory words which are
3633 // covered by neither tiles nor non-constant stores are pre-zeroed
3634 // by explicit stores of zero.  (The code shape happens to do all
3635 // zeroing first, then all other stores, with both sequences occurring
3636 // in order of ascending offsets.)
3637 //
3638 // Alternatively, code may be inserted between an AllocateNode and its
3639 // InitializeNode, to perform arbitrary initialization of the new object.
3640 // E.g., the object copying intrinsics insert complex data transfers here.
3641 // The initialization must then be marked as 'complete' disable the
3642 // built-in zeroing semantics and the collection of initializing stores.
3643 //
3644 // While an InitializeNode is incomplete, reads from the memory state
3645 // produced by it are optimizable if they match the control edge and
3646 // new oop address associated with the allocation/initialization.
3647 // They return a stored value (if the offset matches) or else zero.
3648 // A write to the memory state, if it matches control and address,
3649 // and if it is to a constant offset, may be 'captured' by the
3650 // InitializeNode.  It is cloned as a raw memory operation and rewired
3651 // inside the initialization, to the raw oop produced by the allocation.
3652 // Operations on addresses which are provably distinct (e.g., to
3653 // other AllocateNodes) are allowed to bypass the initialization.
3654 //
3655 // The effect of all this is to consolidate object initialization
3656 // (both arrays and non-arrays, both piecewise and bulk) into a
3657 // single location, where it can be optimized as a unit.
3658 //
3659 // Only stores with an offset less than TrackedInitializationLimit words
3660 // will be considered for capture by an InitializeNode.  This puts a
3661 // reasonable limit on the complexity of optimized initializations.
3662 
3663 //---------------------------InitializeNode------------------------------------
3664 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3665   : MemBarNode(C, adr_type, rawoop),
3666     _is_complete(Incomplete), _does_not_escape(false)
3667 {
3668   init_class_id(Class_Initialize);
3669 
3670   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3671   assert(in(RawAddress) == rawoop, "proper init");
3672   // Note:  allocation() can be null, for secondary initialization barriers
3673 }
3674 
3675 // Since this node is not matched, it will be processed by the
3676 // register allocator.  Declare that there are no constraints
3677 // on the allocation of the RawAddress edge.
3678 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3679   // This edge should be set to top, by the set_complete.  But be conservative.
3680   if (idx == InitializeNode::RawAddress)
3681     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3682   return RegMask::Empty;
3683 }
3684 
3685 Node* InitializeNode::memory(uint alias_idx) {
3686   Node* mem = in(Memory);
3687   if (mem->is_MergeMem()) {
3688     return mem->as_MergeMem()->memory_at(alias_idx);
3689   } else {
3690     // incoming raw memory is not split
3691     return mem;
3692   }
3693 }
3694 
3695 bool InitializeNode::is_non_zero() {
3696   if (is_complete())  return false;
3697   remove_extra_zeroes();
3698   return (req() > RawStores);
3699 }
3700 
3701 void InitializeNode::set_complete(PhaseGVN* phase) {
3702   assert(!is_complete(), "caller responsibility");
3703   _is_complete = Complete;
3704 
3705   // After this node is complete, it contains a bunch of
3706   // raw-memory initializations.  There is no need for
3707   // it to have anything to do with non-raw memory effects.
3708   // Therefore, tell all non-raw users to re-optimize themselves,
3709   // after skipping the memory effects of this initialization.
3710   PhaseIterGVN* igvn = phase->is_IterGVN();
3711   if (igvn)  igvn->add_users_to_worklist(this);
3712 }
3713 
3714 // convenience function
3715 // return false if the init contains any stores already
3716 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3717   InitializeNode* init = initialization();
3718   if (init == nullptr || init->is_complete())  return false;
3719   init->remove_extra_zeroes();
3720   // for now, if this allocation has already collected any inits, bail:
3721   if (init->is_non_zero())  return false;
3722   init->set_complete(phase);
3723   return true;
3724 }
3725 
3726 void InitializeNode::remove_extra_zeroes() {
3727   if (req() == RawStores)  return;
3728   Node* zmem = zero_memory();
3729   uint fill = RawStores;
3730   for (uint i = fill; i < req(); i++) {
3731     Node* n = in(i);
3732     if (n->is_top() || n == zmem)  continue;  // skip
3733     if (fill < i)  set_req(fill, n);          // compact
3734     ++fill;
3735   }
3736   // delete any empty spaces created:
3737   while (fill < req()) {
3738     del_req(fill);
3739   }
3740 }
3741 
3742 // Helper for remembering which stores go with which offsets.
3743 intptr_t InitializeNode::get_store_offset(Node* st, PhaseValues* phase) {
3744   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3745   intptr_t offset = -1;
3746   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3747                                                phase, offset);
3748   if (base == nullptr)  return -1;  // something is dead,
3749   if (offset < 0)       return -1;  //        dead, dead
3750   return offset;
3751 }
3752 
3753 // Helper for proving that an initialization expression is
3754 // "simple enough" to be folded into an object initialization.
3755 // Attempts to prove that a store's initial value 'n' can be captured
3756 // within the initialization without creating a vicious cycle, such as:
3757 //     { Foo p = new Foo(); p.next = p; }
3758 // True for constants and parameters and small combinations thereof.
3759 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) {
3760   ResourceMark rm;
3761   Unique_Node_List worklist;
3762   worklist.push(value);
3763 
3764   uint complexity_limit = 20;
3765   for (uint j = 0; j < worklist.size(); j++) {
3766     if (j >= complexity_limit) {
3767       return false;  // Bail out if processed too many nodes
3768     }
3769 
3770     Node* n = worklist.at(j);
3771     if (n == nullptr)   continue;   // (can this really happen?)
3772     if (n->is_Proj())   n = n->in(0);
3773     if (n == this)      return false;  // found a cycle
3774     if (n->is_Con())    continue;
3775     if (n->is_Start())  continue;   // params, etc., are OK
3776     if (n->is_Root())   continue;   // even better
3777 
3778     // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation
3779     if (n->is_CFG() && phase->is_dominator(n, allocation())) {
3780       continue;
3781     }
3782 
3783     Node* ctl = n->in(0);
3784     if (ctl != nullptr && !ctl->is_top()) {
3785       if (ctl->is_Proj())  ctl = ctl->in(0);
3786       if (ctl == this)  return false;
3787 
3788       // If we already know that the enclosing memory op is pinned right after
3789       // the init, then any control flow that the store has picked up
3790       // must have preceded the init, or else be equal to the init.
3791       // Even after loop optimizations (which might change control edges)
3792       // a store is never pinned *before* the availability of its inputs.
3793       if (!MemNode::all_controls_dominate(n, this))
3794         return false;                  // failed to prove a good control
3795     }
3796 
3797     // Check data edges for possible dependencies on 'this'.
3798     for (uint i = 1; i < n->req(); i++) {
3799       Node* m = n->in(i);
3800       if (m == nullptr || m == n || m->is_top())  continue;
3801 
3802       // Only process data inputs once
3803       worklist.push(m);
3804     }
3805   }
3806 
3807   return true;
3808 }
3809 
3810 // Here are all the checks a Store must pass before it can be moved into
3811 // an initialization.  Returns zero if a check fails.
3812 // On success, returns the (constant) offset to which the store applies,
3813 // within the initialized memory.
3814 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) {
3815   const int FAIL = 0;
3816   if (st->req() != MemNode::ValueIn + 1)
3817     return FAIL;                // an inscrutable StoreNode (card mark?)
3818   Node* ctl = st->in(MemNode::Control);
3819   if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this))
3820     return FAIL;                // must be unconditional after the initialization
3821   Node* mem = st->in(MemNode::Memory);
3822   if (!(mem->is_Proj() && mem->in(0) == this))
3823     return FAIL;                // must not be preceded by other stores
3824   Node* adr = st->in(MemNode::Address);
3825   intptr_t offset;
3826   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3827   if (alloc == nullptr)
3828     return FAIL;                // inscrutable address
3829   if (alloc != allocation())
3830     return FAIL;                // wrong allocation!  (store needs to float up)
3831   int size_in_bytes = st->memory_size();
3832   if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) {
3833     return FAIL;                // mismatched access
3834   }
3835   Node* val = st->in(MemNode::ValueIn);
3836 
3837   if (!detect_init_independence(val, phase))
3838     return FAIL;                // stored value must be 'simple enough'
3839 
3840   // The Store can be captured only if nothing after the allocation
3841   // and before the Store is using the memory location that the store
3842   // overwrites.
3843   bool failed = false;
3844   // If is_complete_with_arraycopy() is true the shape of the graph is
3845   // well defined and is safe so no need for extra checks.
3846   if (!is_complete_with_arraycopy()) {
3847     // We are going to look at each use of the memory state following
3848     // the allocation to make sure nothing reads the memory that the
3849     // Store writes.
3850     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3851     int alias_idx = phase->C->get_alias_index(t_adr);
3852     ResourceMark rm;
3853     Unique_Node_List mems;
3854     mems.push(mem);
3855     Node* unique_merge = nullptr;
3856     for (uint next = 0; next < mems.size(); ++next) {
3857       Node *m  = mems.at(next);
3858       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3859         Node *n = m->fast_out(j);
3860         if (n->outcnt() == 0) {
3861           continue;
3862         }
3863         if (n == st) {
3864           continue;
3865         } else if (n->in(0) != nullptr && n->in(0) != ctl) {
3866           // If the control of this use is different from the control
3867           // of the Store which is right after the InitializeNode then
3868           // this node cannot be between the InitializeNode and the
3869           // Store.
3870           continue;
3871         } else if (n->is_MergeMem()) {
3872           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3873             // We can hit a MergeMemNode (that will likely go away
3874             // later) that is a direct use of the memory state
3875             // following the InitializeNode on the same slice as the
3876             // store node that we'd like to capture. We need to check
3877             // the uses of the MergeMemNode.
3878             mems.push(n);
3879           }
3880         } else if (n->is_Mem()) {
3881           Node* other_adr = n->in(MemNode::Address);
3882           if (other_adr == adr) {
3883             failed = true;
3884             break;
3885           } else {
3886             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3887             if (other_t_adr != nullptr) {
3888               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3889               if (other_alias_idx == alias_idx) {
3890                 // A load from the same memory slice as the store right
3891                 // after the InitializeNode. We check the control of the
3892                 // object/array that is loaded from. If it's the same as
3893                 // the store control then we cannot capture the store.
3894                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3895                 Node* base = other_adr;
3896                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3897                 base = base->in(AddPNode::Base);
3898                 if (base != nullptr) {
3899                   base = base->uncast();
3900                   if (base->is_Proj() && base->in(0) == alloc) {
3901                     failed = true;
3902                     break;
3903                   }
3904                 }
3905               }
3906             }
3907           }
3908         } else {
3909           failed = true;
3910           break;
3911         }
3912       }
3913     }
3914   }
3915   if (failed) {
3916     if (!can_reshape) {
3917       // We decided we couldn't capture the store during parsing. We
3918       // should try again during the next IGVN once the graph is
3919       // cleaner.
3920       phase->C->record_for_igvn(st);
3921     }
3922     return FAIL;
3923   }
3924 
3925   return offset;                // success
3926 }
3927 
3928 // Find the captured store in(i) which corresponds to the range
3929 // [start..start+size) in the initialized object.
3930 // If there is one, return its index i.  If there isn't, return the
3931 // negative of the index where it should be inserted.
3932 // Return 0 if the queried range overlaps an initialization boundary
3933 // or if dead code is encountered.
3934 // If size_in_bytes is zero, do not bother with overlap checks.
3935 int InitializeNode::captured_store_insertion_point(intptr_t start,
3936                                                    int size_in_bytes,
3937                                                    PhaseValues* phase) {
3938   const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
3939 
3940   if (is_complete())
3941     return FAIL;                // arraycopy got here first; punt
3942 
3943   assert(allocation() != nullptr, "must be present");
3944 
3945   // no negatives, no header fields:
3946   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3947 
3948   // after a certain size, we bail out on tracking all the stores:
3949   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3950   if (start >= ti_limit)  return FAIL;
3951 
3952   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3953     if (i >= limit)  return -(int)i; // not found; here is where to put it
3954 
3955     Node*    st     = in(i);
3956     intptr_t st_off = get_store_offset(st, phase);
3957     if (st_off < 0) {
3958       if (st != zero_memory()) {
3959         return FAIL;            // bail out if there is dead garbage
3960       }
3961     } else if (st_off > start) {
3962       // ...we are done, since stores are ordered
3963       if (st_off < start + size_in_bytes) {
3964         return FAIL;            // the next store overlaps
3965       }
3966       return -(int)i;           // not found; here is where to put it
3967     } else if (st_off < start) {
3968       assert(st->as_Store()->memory_size() <= MAX_STORE, "");
3969       if (size_in_bytes != 0 &&
3970           start < st_off + MAX_STORE &&
3971           start < st_off + st->as_Store()->memory_size()) {
3972         return FAIL;            // the previous store overlaps
3973       }
3974     } else {
3975       if (size_in_bytes != 0 &&
3976           st->as_Store()->memory_size() != size_in_bytes) {
3977         return FAIL;            // mismatched store size
3978       }
3979       return i;
3980     }
3981 
3982     ++i;
3983   }
3984 }
3985 
3986 // Look for a captured store which initializes at the offset 'start'
3987 // with the given size.  If there is no such store, and no other
3988 // initialization interferes, then return zero_memory (the memory
3989 // projection of the AllocateNode).
3990 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3991                                           PhaseValues* phase) {
3992   assert(stores_are_sane(phase), "");
3993   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3994   if (i == 0) {
3995     return nullptr;              // something is dead
3996   } else if (i < 0) {
3997     return zero_memory();       // just primordial zero bits here
3998   } else {
3999     Node* st = in(i);           // here is the store at this position
4000     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
4001     return st;
4002   }
4003 }
4004 
4005 // Create, as a raw pointer, an address within my new object at 'offset'.
4006 Node* InitializeNode::make_raw_address(intptr_t offset,
4007                                        PhaseGVN* phase) {
4008   Node* addr = in(RawAddress);
4009   if (offset != 0) {
4010     Compile* C = phase->C;
4011     addr = phase->transform( new AddPNode(C->top(), addr,
4012                                                  phase->MakeConX(offset)) );
4013   }
4014   return addr;
4015 }
4016 
4017 // Clone the given store, converting it into a raw store
4018 // initializing a field or element of my new object.
4019 // Caller is responsible for retiring the original store,
4020 // with subsume_node or the like.
4021 //
4022 // From the example above InitializeNode::InitializeNode,
4023 // here are the old stores to be captured:
4024 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
4025 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
4026 //
4027 // Here is the changed code; note the extra edges on init:
4028 //   alloc = (Allocate ...)
4029 //   rawoop = alloc.RawAddress
4030 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
4031 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
4032 //   init = (Initialize alloc.Control alloc.Memory rawoop
4033 //                      rawstore1 rawstore2)
4034 //
4035 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
4036                                     PhaseGVN* phase, bool can_reshape) {
4037   assert(stores_are_sane(phase), "");
4038 
4039   if (start < 0)  return nullptr;
4040   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
4041 
4042   Compile* C = phase->C;
4043   int size_in_bytes = st->memory_size();
4044   int i = captured_store_insertion_point(start, size_in_bytes, phase);
4045   if (i == 0)  return nullptr;  // bail out
4046   Node* prev_mem = nullptr;     // raw memory for the captured store
4047   if (i > 0) {
4048     prev_mem = in(i);           // there is a pre-existing store under this one
4049     set_req(i, C->top());       // temporarily disconnect it
4050     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
4051   } else {
4052     i = -i;                     // no pre-existing store
4053     prev_mem = zero_memory();   // a slice of the newly allocated object
4054     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
4055       set_req(--i, C->top());   // reuse this edge; it has been folded away
4056     else
4057       ins_req(i, C->top());     // build a new edge
4058   }
4059   Node* new_st = st->clone();
4060   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4061   new_st->set_req(MemNode::Control, in(Control));
4062   new_st->set_req(MemNode::Memory,  prev_mem);
4063   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
4064   bs->eliminate_gc_barrier_data(new_st);
4065   new_st = phase->transform(new_st);
4066 
4067   // At this point, new_st might have swallowed a pre-existing store
4068   // at the same offset, or perhaps new_st might have disappeared,
4069   // if it redundantly stored the same value (or zero to fresh memory).
4070 
4071   // In any case, wire it in:
4072   PhaseIterGVN* igvn = phase->is_IterGVN();
4073   if (igvn) {
4074     igvn->rehash_node_delayed(this);
4075   }
4076   set_req(i, new_st);
4077 
4078   // The caller may now kill the old guy.
4079   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
4080   assert(check_st == new_st || check_st == nullptr, "must be findable");
4081   assert(!is_complete(), "");
4082   return new_st;
4083 }
4084 
4085 static bool store_constant(jlong* tiles, int num_tiles,
4086                            intptr_t st_off, int st_size,
4087                            jlong con) {
4088   if ((st_off & (st_size-1)) != 0)
4089     return false;               // strange store offset (assume size==2**N)
4090   address addr = (address)tiles + st_off;
4091   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
4092   switch (st_size) {
4093   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
4094   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
4095   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
4096   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
4097   default: return false;        // strange store size (detect size!=2**N here)
4098   }
4099   return true;                  // return success to caller
4100 }
4101 
4102 // Coalesce subword constants into int constants and possibly
4103 // into long constants.  The goal, if the CPU permits,
4104 // is to initialize the object with a small number of 64-bit tiles.
4105 // Also, convert floating-point constants to bit patterns.
4106 // Non-constants are not relevant to this pass.
4107 //
4108 // In terms of the running example on InitializeNode::InitializeNode
4109 // and InitializeNode::capture_store, here is the transformation
4110 // of rawstore1 and rawstore2 into rawstore12:
4111 //   alloc = (Allocate ...)
4112 //   rawoop = alloc.RawAddress
4113 //   tile12 = 0x00010002
4114 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
4115 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
4116 //
4117 void
4118 InitializeNode::coalesce_subword_stores(intptr_t header_size,
4119                                         Node* size_in_bytes,
4120                                         PhaseGVN* phase) {
4121   Compile* C = phase->C;
4122 
4123   assert(stores_are_sane(phase), "");
4124   // Note:  After this pass, they are not completely sane,
4125   // since there may be some overlaps.
4126 
4127   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
4128 
4129   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
4130   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
4131   size_limit = MIN2(size_limit, ti_limit);
4132   size_limit = align_up(size_limit, BytesPerLong);
4133   int num_tiles = size_limit / BytesPerLong;
4134 
4135   // allocate space for the tile map:
4136   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
4137   jlong  tiles_buf[small_len];
4138   Node*  nodes_buf[small_len];
4139   jlong  inits_buf[small_len];
4140   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
4141                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
4142   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
4143                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
4144   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
4145                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
4146   // tiles: exact bitwise model of all primitive constants
4147   // nodes: last constant-storing node subsumed into the tiles model
4148   // inits: which bytes (in each tile) are touched by any initializations
4149 
4150   //// Pass A: Fill in the tile model with any relevant stores.
4151 
4152   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
4153   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
4154   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
4155   Node* zmem = zero_memory(); // initially zero memory state
4156   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4157     Node* st = in(i);
4158     intptr_t st_off = get_store_offset(st, phase);
4159 
4160     // Figure out the store's offset and constant value:
4161     if (st_off < header_size)             continue; //skip (ignore header)
4162     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
4163     int st_size = st->as_Store()->memory_size();
4164     if (st_off + st_size > size_limit)    break;
4165 
4166     // Record which bytes are touched, whether by constant or not.
4167     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
4168       continue;                 // skip (strange store size)
4169 
4170     const Type* val = phase->type(st->in(MemNode::ValueIn));
4171     if (!val->singleton())                continue; //skip (non-con store)
4172     BasicType type = val->basic_type();
4173 
4174     jlong con = 0;
4175     switch (type) {
4176     case T_INT:    con = val->is_int()->get_con();  break;
4177     case T_LONG:   con = val->is_long()->get_con(); break;
4178     case T_FLOAT:  con = jint_cast(val->getf());    break;
4179     case T_DOUBLE: con = jlong_cast(val->getd());   break;
4180     default:                              continue; //skip (odd store type)
4181     }
4182 
4183     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
4184         st->Opcode() == Op_StoreL) {
4185       continue;                 // This StoreL is already optimal.
4186     }
4187 
4188     // Store down the constant.
4189     store_constant(tiles, num_tiles, st_off, st_size, con);
4190 
4191     intptr_t j = st_off >> LogBytesPerLong;
4192 
4193     if (type == T_INT && st_size == BytesPerInt
4194         && (st_off & BytesPerInt) == BytesPerInt) {
4195       jlong lcon = tiles[j];
4196       if (!Matcher::isSimpleConstant64(lcon) &&
4197           st->Opcode() == Op_StoreI) {
4198         // This StoreI is already optimal by itself.
4199         jint* intcon = (jint*) &tiles[j];
4200         intcon[1] = 0;  // undo the store_constant()
4201 
4202         // If the previous store is also optimal by itself, back up and
4203         // undo the action of the previous loop iteration... if we can.
4204         // But if we can't, just let the previous half take care of itself.
4205         st = nodes[j];
4206         st_off -= BytesPerInt;
4207         con = intcon[0];
4208         if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) {
4209           assert(st_off >= header_size, "still ignoring header");
4210           assert(get_store_offset(st, phase) == st_off, "must be");
4211           assert(in(i-1) == zmem, "must be");
4212           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
4213           assert(con == tcon->is_int()->get_con(), "must be");
4214           // Undo the effects of the previous loop trip, which swallowed st:
4215           intcon[0] = 0;        // undo store_constant()
4216           set_req(i-1, st);     // undo set_req(i, zmem)
4217           nodes[j] = nullptr;   // undo nodes[j] = st
4218           --old_subword;        // undo ++old_subword
4219         }
4220         continue;               // This StoreI is already optimal.
4221       }
4222     }
4223 
4224     // This store is not needed.
4225     set_req(i, zmem);
4226     nodes[j] = st;              // record for the moment
4227     if (st_size < BytesPerLong) // something has changed
4228           ++old_subword;        // includes int/float, but who's counting...
4229     else  ++old_long;
4230   }
4231 
4232   if ((old_subword + old_long) == 0)
4233     return;                     // nothing more to do
4234 
4235   //// Pass B: Convert any non-zero tiles into optimal constant stores.
4236   // Be sure to insert them before overlapping non-constant stores.
4237   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
4238   for (int j = 0; j < num_tiles; j++) {
4239     jlong con  = tiles[j];
4240     jlong init = inits[j];
4241     if (con == 0)  continue;
4242     jint con0,  con1;           // split the constant, address-wise
4243     jint init0, init1;          // split the init map, address-wise
4244     { union { jlong con; jint intcon[2]; } u;
4245       u.con = con;
4246       con0  = u.intcon[0];
4247       con1  = u.intcon[1];
4248       u.con = init;
4249       init0 = u.intcon[0];
4250       init1 = u.intcon[1];
4251     }
4252 
4253     Node* old = nodes[j];
4254     assert(old != nullptr, "need the prior store");
4255     intptr_t offset = (j * BytesPerLong);
4256 
4257     bool split = !Matcher::isSimpleConstant64(con);
4258 
4259     if (offset < header_size) {
4260       assert(offset + BytesPerInt >= header_size, "second int counts");
4261       assert(*(jint*)&tiles[j] == 0, "junk in header");
4262       split = true;             // only the second word counts
4263       // Example:  int a[] = { 42 ... }
4264     } else if (con0 == 0 && init0 == -1) {
4265       split = true;             // first word is covered by full inits
4266       // Example:  int a[] = { ... foo(), 42 ... }
4267     } else if (con1 == 0 && init1 == -1) {
4268       split = true;             // second word is covered by full inits
4269       // Example:  int a[] = { ... 42, foo() ... }
4270     }
4271 
4272     // Here's a case where init0 is neither 0 nor -1:
4273     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
4274     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4275     // In this case the tile is not split; it is (jlong)42.
4276     // The big tile is stored down, and then the foo() value is inserted.
4277     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4278 
4279     Node* ctl = old->in(MemNode::Control);
4280     Node* adr = make_raw_address(offset, phase);
4281     const TypePtr* atp = TypeRawPtr::BOTTOM;
4282 
4283     // One or two coalesced stores to plop down.
4284     Node*    st[2];
4285     intptr_t off[2];
4286     int  nst = 0;
4287     if (!split) {
4288       ++new_long;
4289       off[nst] = offset;
4290       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4291                                   phase->longcon(con), T_LONG, MemNode::unordered);
4292     } else {
4293       // Omit either if it is a zero.
4294       if (con0 != 0) {
4295         ++new_int;
4296         off[nst]  = offset;
4297         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4298                                     phase->intcon(con0), T_INT, MemNode::unordered);
4299       }
4300       if (con1 != 0) {
4301         ++new_int;
4302         offset += BytesPerInt;
4303         adr = make_raw_address(offset, phase);
4304         off[nst]  = offset;
4305         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4306                                     phase->intcon(con1), T_INT, MemNode::unordered);
4307       }
4308     }
4309 
4310     // Insert second store first, then the first before the second.
4311     // Insert each one just before any overlapping non-constant stores.
4312     while (nst > 0) {
4313       Node* st1 = st[--nst];
4314       C->copy_node_notes_to(st1, old);
4315       st1 = phase->transform(st1);
4316       offset = off[nst];
4317       assert(offset >= header_size, "do not smash header");
4318       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4319       guarantee(ins_idx != 0, "must re-insert constant store");
4320       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4321       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4322         set_req(--ins_idx, st1);
4323       else
4324         ins_req(ins_idx, st1);
4325     }
4326   }
4327 
4328   if (PrintCompilation && WizardMode)
4329     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4330                   old_subword, old_long, new_int, new_long);
4331   if (C->log() != nullptr)
4332     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4333                    old_subword, old_long, new_int, new_long);
4334 
4335   // Clean up any remaining occurrences of zmem:
4336   remove_extra_zeroes();
4337 }
4338 
4339 // Explore forward from in(start) to find the first fully initialized
4340 // word, and return its offset.  Skip groups of subword stores which
4341 // together initialize full words.  If in(start) is itself part of a
4342 // fully initialized word, return the offset of in(start).  If there
4343 // are no following full-word stores, or if something is fishy, return
4344 // a negative value.
4345 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4346   int       int_map = 0;
4347   intptr_t  int_map_off = 0;
4348   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4349 
4350   for (uint i = start, limit = req(); i < limit; i++) {
4351     Node* st = in(i);
4352 
4353     intptr_t st_off = get_store_offset(st, phase);
4354     if (st_off < 0)  break;  // return conservative answer
4355 
4356     int st_size = st->as_Store()->memory_size();
4357     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4358       return st_off;            // we found a complete word init
4359     }
4360 
4361     // update the map:
4362 
4363     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4364     if (this_int_off != int_map_off) {
4365       // reset the map:
4366       int_map = 0;
4367       int_map_off = this_int_off;
4368     }
4369 
4370     int subword_off = st_off - this_int_off;
4371     int_map |= right_n_bits(st_size) << subword_off;
4372     if ((int_map & FULL_MAP) == FULL_MAP) {
4373       return this_int_off;      // we found a complete word init
4374     }
4375 
4376     // Did this store hit or cross the word boundary?
4377     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4378     if (next_int_off == this_int_off + BytesPerInt) {
4379       // We passed the current int, without fully initializing it.
4380       int_map_off = next_int_off;
4381       int_map >>= BytesPerInt;
4382     } else if (next_int_off > this_int_off + BytesPerInt) {
4383       // We passed the current and next int.
4384       return this_int_off + BytesPerInt;
4385     }
4386   }
4387 
4388   return -1;
4389 }
4390 
4391 
4392 // Called when the associated AllocateNode is expanded into CFG.
4393 // At this point, we may perform additional optimizations.
4394 // Linearize the stores by ascending offset, to make memory
4395 // activity as coherent as possible.
4396 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4397                                       intptr_t header_size,
4398                                       Node* size_in_bytes,
4399                                       PhaseIterGVN* phase) {
4400   assert(!is_complete(), "not already complete");
4401   assert(stores_are_sane(phase), "");
4402   assert(allocation() != nullptr, "must be present");
4403 
4404   remove_extra_zeroes();
4405 
4406   if (ReduceFieldZeroing || ReduceBulkZeroing)
4407     // reduce instruction count for common initialization patterns
4408     coalesce_subword_stores(header_size, size_in_bytes, phase);
4409 
4410   Node* zmem = zero_memory();   // initially zero memory state
4411   Node* inits = zmem;           // accumulating a linearized chain of inits
4412   #ifdef ASSERT
4413   intptr_t first_offset = allocation()->minimum_header_size();
4414   intptr_t last_init_off = first_offset;  // previous init offset
4415   intptr_t last_init_end = first_offset;  // previous init offset+size
4416   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4417   #endif
4418   intptr_t zeroes_done = header_size;
4419 
4420   bool do_zeroing = true;       // we might give up if inits are very sparse
4421   int  big_init_gaps = 0;       // how many large gaps have we seen?
4422 
4423   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4424   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4425 
4426   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4427     Node* st = in(i);
4428     intptr_t st_off = get_store_offset(st, phase);
4429     if (st_off < 0)
4430       break;                    // unknown junk in the inits
4431     if (st->in(MemNode::Memory) != zmem)
4432       break;                    // complicated store chains somehow in list
4433 
4434     int st_size = st->as_Store()->memory_size();
4435     intptr_t next_init_off = st_off + st_size;
4436 
4437     if (do_zeroing && zeroes_done < next_init_off) {
4438       // See if this store needs a zero before it or under it.
4439       intptr_t zeroes_needed = st_off;
4440 
4441       if (st_size < BytesPerInt) {
4442         // Look for subword stores which only partially initialize words.
4443         // If we find some, we must lay down some word-level zeroes first,
4444         // underneath the subword stores.
4445         //
4446         // Examples:
4447         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4448         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4449         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4450         //
4451         // Note:  coalesce_subword_stores may have already done this,
4452         // if it was prompted by constant non-zero subword initializers.
4453         // But this case can still arise with non-constant stores.
4454 
4455         intptr_t next_full_store = find_next_fullword_store(i, phase);
4456 
4457         // In the examples above:
4458         //   in(i)          p   q   r   s     x   y     z
4459         //   st_off        12  13  14  15    12  13    14
4460         //   st_size        1   1   1   1     1   1     1
4461         //   next_full_s.  12  16  16  16    16  16    16
4462         //   z's_done      12  16  16  16    12  16    12
4463         //   z's_needed    12  16  16  16    16  16    16
4464         //   zsize          0   0   0   0     4   0     4
4465         if (next_full_store < 0) {
4466           // Conservative tack:  Zero to end of current word.
4467           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4468         } else {
4469           // Zero to beginning of next fully initialized word.
4470           // Or, don't zero at all, if we are already in that word.
4471           assert(next_full_store >= zeroes_needed, "must go forward");
4472           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4473           zeroes_needed = next_full_store;
4474         }
4475       }
4476 
4477       if (zeroes_needed > zeroes_done) {
4478         intptr_t zsize = zeroes_needed - zeroes_done;
4479         // Do some incremental zeroing on rawmem, in parallel with inits.
4480         zeroes_done = align_down(zeroes_done, BytesPerInt);
4481         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4482                                               zeroes_done, zeroes_needed,
4483                                               phase);
4484         zeroes_done = zeroes_needed;
4485         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4486           do_zeroing = false;   // leave the hole, next time
4487       }
4488     }
4489 
4490     // Collect the store and move on:
4491     phase->replace_input_of(st, MemNode::Memory, inits);
4492     inits = st;                 // put it on the linearized chain
4493     set_req(i, zmem);           // unhook from previous position
4494 
4495     if (zeroes_done == st_off)
4496       zeroes_done = next_init_off;
4497 
4498     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4499 
4500     #ifdef ASSERT
4501     // Various order invariants.  Weaker than stores_are_sane because
4502     // a large constant tile can be filled in by smaller non-constant stores.
4503     assert(st_off >= last_init_off, "inits do not reverse");
4504     last_init_off = st_off;
4505     const Type* val = nullptr;
4506     if (st_size >= BytesPerInt &&
4507         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4508         (int)val->basic_type() < (int)T_OBJECT) {
4509       assert(st_off >= last_tile_end, "tiles do not overlap");
4510       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4511       last_tile_end = MAX2(last_tile_end, next_init_off);
4512     } else {
4513       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4514       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4515       assert(st_off      >= last_init_end, "inits do not overlap");
4516       last_init_end = next_init_off;  // it's a non-tile
4517     }
4518     #endif //ASSERT
4519   }
4520 
4521   remove_extra_zeroes();        // clear out all the zmems left over
4522   add_req(inits);
4523 
4524   if (!(UseTLAB && ZeroTLAB)) {
4525     // If anything remains to be zeroed, zero it all now.
4526     zeroes_done = align_down(zeroes_done, BytesPerInt);
4527     // if it is the last unused 4 bytes of an instance, forget about it
4528     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4529     if (zeroes_done + BytesPerLong >= size_limit) {
4530       AllocateNode* alloc = allocation();
4531       assert(alloc != nullptr, "must be present");
4532       if (alloc != nullptr && alloc->Opcode() == Op_Allocate) {
4533         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4534         ciKlass* k = phase->type(klass_node)->is_instklassptr()->instance_klass();
4535         if (zeroes_done == k->layout_helper())
4536           zeroes_done = size_limit;
4537       }
4538     }
4539     if (zeroes_done < size_limit) {
4540       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4541                                             zeroes_done, size_in_bytes, phase);
4542     }
4543   }
4544 
4545   set_complete(phase);
4546   return rawmem;
4547 }
4548 
4549 
4550 #ifdef ASSERT
4551 bool InitializeNode::stores_are_sane(PhaseValues* phase) {
4552   if (is_complete())
4553     return true;                // stores could be anything at this point
4554   assert(allocation() != nullptr, "must be present");
4555   intptr_t last_off = allocation()->minimum_header_size();
4556   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4557     Node* st = in(i);
4558     intptr_t st_off = get_store_offset(st, phase);
4559     if (st_off < 0)  continue;  // ignore dead garbage
4560     if (last_off > st_off) {
4561       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4562       this->dump(2);
4563       assert(false, "ascending store offsets");
4564       return false;
4565     }
4566     last_off = st_off + st->as_Store()->memory_size();
4567   }
4568   return true;
4569 }
4570 #endif //ASSERT
4571 
4572 
4573 
4574 
4575 //============================MergeMemNode=====================================
4576 //
4577 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4578 // contributing store or call operations.  Each contributor provides the memory
4579 // state for a particular "alias type" (see Compile::alias_type).  For example,
4580 // if a MergeMem has an input X for alias category #6, then any memory reference
4581 // to alias category #6 may use X as its memory state input, as an exact equivalent
4582 // to using the MergeMem as a whole.
4583 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4584 //
4585 // (Here, the <N> notation gives the index of the relevant adr_type.)
4586 //
4587 // In one special case (and more cases in the future), alias categories overlap.
4588 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4589 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4590 // it is exactly equivalent to that state W:
4591 //   MergeMem(<Bot>: W) <==> W
4592 //
4593 // Usually, the merge has more than one input.  In that case, where inputs
4594 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4595 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4596 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4597 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4598 //
4599 // A merge can take a "wide" memory state as one of its narrow inputs.
4600 // This simply means that the merge observes out only the relevant parts of
4601 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4602 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4603 //
4604 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4605 // and that memory slices "leak through":
4606 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4607 //
4608 // But, in such a cascade, repeated memory slices can "block the leak":
4609 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4610 //
4611 // In the last example, Y is not part of the combined memory state of the
4612 // outermost MergeMem.  The system must, of course, prevent unschedulable
4613 // memory states from arising, so you can be sure that the state Y is somehow
4614 // a precursor to state Y'.
4615 //
4616 //
4617 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4618 // of each MergeMemNode array are exactly the numerical alias indexes, including
4619 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4620 // Compile::alias_type (and kin) produce and manage these indexes.
4621 //
4622 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4623 // (Note that this provides quick access to the top node inside MergeMem methods,
4624 // without the need to reach out via TLS to Compile::current.)
4625 //
4626 // As a consequence of what was just described, a MergeMem that represents a full
4627 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4628 // containing all alias categories.
4629 //
4630 // MergeMem nodes never (?) have control inputs, so in(0) is null.
4631 //
4632 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4633 // a memory state for the alias type <N>, or else the top node, meaning that
4634 // there is no particular input for that alias type.  Note that the length of
4635 // a MergeMem is variable, and may be extended at any time to accommodate new
4636 // memory states at larger alias indexes.  When merges grow, they are of course
4637 // filled with "top" in the unused in() positions.
4638 //
4639 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4640 // (Top was chosen because it works smoothly with passes like GCM.)
4641 //
4642 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4643 // the type of random VM bits like TLS references.)  Since it is always the
4644 // first non-Bot memory slice, some low-level loops use it to initialize an
4645 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4646 //
4647 //
4648 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4649 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4650 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4651 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4652 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4653 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4654 //
4655 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4656 // really that different from the other memory inputs.  An abbreviation called
4657 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4658 //
4659 //
4660 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4661 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4662 // that "emerges though" the base memory will be marked as excluding the alias types
4663 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4664 //
4665 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4666 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4667 //
4668 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4669 // (It is currently unimplemented.)  As you can see, the resulting merge is
4670 // actually a disjoint union of memory states, rather than an overlay.
4671 //
4672 
4673 //------------------------------MergeMemNode-----------------------------------
4674 Node* MergeMemNode::make_empty_memory() {
4675   Node* empty_memory = (Node*) Compile::current()->top();
4676   assert(empty_memory->is_top(), "correct sentinel identity");
4677   return empty_memory;
4678 }
4679 
4680 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4681   init_class_id(Class_MergeMem);
4682   // all inputs are nullified in Node::Node(int)
4683   // set_input(0, nullptr);  // no control input
4684 
4685   // Initialize the edges uniformly to top, for starters.
4686   Node* empty_mem = make_empty_memory();
4687   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4688     init_req(i,empty_mem);
4689   }
4690   assert(empty_memory() == empty_mem, "");
4691 
4692   if( new_base != nullptr && new_base->is_MergeMem() ) {
4693     MergeMemNode* mdef = new_base->as_MergeMem();
4694     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4695     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4696       mms.set_memory(mms.memory2());
4697     }
4698     assert(base_memory() == mdef->base_memory(), "");
4699   } else {
4700     set_base_memory(new_base);
4701   }
4702 }
4703 
4704 // Make a new, untransformed MergeMem with the same base as 'mem'.
4705 // If mem is itself a MergeMem, populate the result with the same edges.
4706 MergeMemNode* MergeMemNode::make(Node* mem) {
4707   return new MergeMemNode(mem);
4708 }
4709 
4710 //------------------------------cmp--------------------------------------------
4711 uint MergeMemNode::hash() const { return NO_HASH; }
4712 bool MergeMemNode::cmp( const Node &n ) const {
4713   return (&n == this);          // Always fail except on self
4714 }
4715 
4716 //------------------------------Identity---------------------------------------
4717 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4718   // Identity if this merge point does not record any interesting memory
4719   // disambiguations.
4720   Node* base_mem = base_memory();
4721   Node* empty_mem = empty_memory();
4722   if (base_mem != empty_mem) {  // Memory path is not dead?
4723     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4724       Node* mem = in(i);
4725       if (mem != empty_mem && mem != base_mem) {
4726         return this;            // Many memory splits; no change
4727       }
4728     }
4729   }
4730   return base_mem;              // No memory splits; ID on the one true input
4731 }
4732 
4733 //------------------------------Ideal------------------------------------------
4734 // This method is invoked recursively on chains of MergeMem nodes
4735 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4736   // Remove chain'd MergeMems
4737   //
4738   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4739   // relative to the "in(Bot)".  Since we are patching both at the same time,
4740   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4741   // but rewrite each "in(i)" relative to the new "in(Bot)".
4742   Node *progress = nullptr;
4743 
4744 
4745   Node* old_base = base_memory();
4746   Node* empty_mem = empty_memory();
4747   if (old_base == empty_mem)
4748     return nullptr; // Dead memory path.
4749 
4750   MergeMemNode* old_mbase;
4751   if (old_base != nullptr && old_base->is_MergeMem())
4752     old_mbase = old_base->as_MergeMem();
4753   else
4754     old_mbase = nullptr;
4755   Node* new_base = old_base;
4756 
4757   // simplify stacked MergeMems in base memory
4758   if (old_mbase)  new_base = old_mbase->base_memory();
4759 
4760   // the base memory might contribute new slices beyond my req()
4761   if (old_mbase)  grow_to_match(old_mbase);
4762 
4763   // Note:  We do not call verify_sparse on entry, because inputs
4764   // can normalize to the base_memory via subsume_node or similar
4765   // mechanisms.  This method repairs that damage.
4766 
4767   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4768 
4769   // Look at each slice.
4770   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4771     Node* old_in = in(i);
4772     // calculate the old memory value
4773     Node* old_mem = old_in;
4774     if (old_mem == empty_mem)  old_mem = old_base;
4775     assert(old_mem == memory_at(i), "");
4776 
4777     // maybe update (reslice) the old memory value
4778 
4779     // simplify stacked MergeMems
4780     Node* new_mem = old_mem;
4781     MergeMemNode* old_mmem;
4782     if (old_mem != nullptr && old_mem->is_MergeMem())
4783       old_mmem = old_mem->as_MergeMem();
4784     else
4785       old_mmem = nullptr;
4786     if (old_mmem == this) {
4787       // This can happen if loops break up and safepoints disappear.
4788       // A merge of BotPtr (default) with a RawPtr memory derived from a
4789       // safepoint can be rewritten to a merge of the same BotPtr with
4790       // the BotPtr phi coming into the loop.  If that phi disappears
4791       // also, we can end up with a self-loop of the mergemem.
4792       // In general, if loops degenerate and memory effects disappear,
4793       // a mergemem can be left looking at itself.  This simply means
4794       // that the mergemem's default should be used, since there is
4795       // no longer any apparent effect on this slice.
4796       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4797       //       from start.  Update the input to TOP.
4798       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4799     }
4800     else if (old_mmem != nullptr) {
4801       new_mem = old_mmem->memory_at(i);
4802     }
4803     // else preceding memory was not a MergeMem
4804 
4805     // maybe store down a new value
4806     Node* new_in = new_mem;
4807     if (new_in == new_base)  new_in = empty_mem;
4808 
4809     if (new_in != old_in) {
4810       // Warning:  Do not combine this "if" with the previous "if"
4811       // A memory slice might have be be rewritten even if it is semantically
4812       // unchanged, if the base_memory value has changed.
4813       set_req_X(i, new_in, phase);
4814       progress = this;          // Report progress
4815     }
4816   }
4817 
4818   if (new_base != old_base) {
4819     set_req_X(Compile::AliasIdxBot, new_base, phase);
4820     // Don't use set_base_memory(new_base), because we need to update du.
4821     assert(base_memory() == new_base, "");
4822     progress = this;
4823   }
4824 
4825   if( base_memory() == this ) {
4826     // a self cycle indicates this memory path is dead
4827     set_req(Compile::AliasIdxBot, empty_mem);
4828   }
4829 
4830   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4831   // Recursion must occur after the self cycle check above
4832   if( base_memory()->is_MergeMem() ) {
4833     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4834     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4835     if( m != nullptr &&
4836         (m->is_top() ||
4837          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4838       // propagate rollup of dead cycle to self
4839       set_req(Compile::AliasIdxBot, empty_mem);
4840     }
4841   }
4842 
4843   if( base_memory() == empty_mem ) {
4844     progress = this;
4845     // Cut inputs during Parse phase only.
4846     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4847     if( !can_reshape ) {
4848       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4849         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4850       }
4851     }
4852   }
4853 
4854   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4855     // Check if PhiNode::Ideal's "Split phis through memory merges"
4856     // transform should be attempted. Look for this->phi->this cycle.
4857     uint merge_width = req();
4858     if (merge_width > Compile::AliasIdxRaw) {
4859       PhiNode* phi = base_memory()->as_Phi();
4860       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4861         if (phi->in(i) == this) {
4862           phase->is_IterGVN()->_worklist.push(phi);
4863           break;
4864         }
4865       }
4866     }
4867   }
4868 
4869   assert(progress || verify_sparse(), "please, no dups of base");
4870   return progress;
4871 }
4872 
4873 //-------------------------set_base_memory-------------------------------------
4874 void MergeMemNode::set_base_memory(Node *new_base) {
4875   Node* empty_mem = empty_memory();
4876   set_req(Compile::AliasIdxBot, new_base);
4877   assert(memory_at(req()) == new_base, "must set default memory");
4878   // Clear out other occurrences of new_base:
4879   if (new_base != empty_mem) {
4880     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4881       if (in(i) == new_base)  set_req(i, empty_mem);
4882     }
4883   }
4884 }
4885 
4886 //------------------------------out_RegMask------------------------------------
4887 const RegMask &MergeMemNode::out_RegMask() const {
4888   return RegMask::Empty;
4889 }
4890 
4891 //------------------------------dump_spec--------------------------------------
4892 #ifndef PRODUCT
4893 void MergeMemNode::dump_spec(outputStream *st) const {
4894   st->print(" {");
4895   Node* base_mem = base_memory();
4896   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4897     Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem;
4898     if (mem == base_mem) { st->print(" -"); continue; }
4899     st->print( " N%d:", mem->_idx );
4900     Compile::current()->get_adr_type(i)->dump_on(st);
4901   }
4902   st->print(" }");
4903 }
4904 #endif // !PRODUCT
4905 
4906 
4907 #ifdef ASSERT
4908 static bool might_be_same(Node* a, Node* b) {
4909   if (a == b)  return true;
4910   if (!(a->is_Phi() || b->is_Phi()))  return false;
4911   // phis shift around during optimization
4912   return true;  // pretty stupid...
4913 }
4914 
4915 // verify a narrow slice (either incoming or outgoing)
4916 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4917   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4918   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4919   if (Node::in_dump())               return;  // muzzle asserts when printing
4920   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4921   assert(n != nullptr, "");
4922   // Elide intervening MergeMem's
4923   while (n->is_MergeMem()) {
4924     n = n->as_MergeMem()->memory_at(alias_idx);
4925   }
4926   Compile* C = Compile::current();
4927   const TypePtr* n_adr_type = n->adr_type();
4928   if (n == m->empty_memory()) {
4929     // Implicit copy of base_memory()
4930   } else if (n_adr_type != TypePtr::BOTTOM) {
4931     assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type");
4932     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4933   } else {
4934     // A few places like make_runtime_call "know" that VM calls are narrow,
4935     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4936     bool expected_wide_mem = false;
4937     if (n == m->base_memory()) {
4938       expected_wide_mem = true;
4939     } else if (alias_idx == Compile::AliasIdxRaw ||
4940                n == m->memory_at(Compile::AliasIdxRaw)) {
4941       expected_wide_mem = true;
4942     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4943       // memory can "leak through" calls on channels that
4944       // are write-once.  Allow this also.
4945       expected_wide_mem = true;
4946     }
4947     assert(expected_wide_mem, "expected narrow slice replacement");
4948   }
4949 }
4950 #else // !ASSERT
4951 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4952 #endif
4953 
4954 
4955 //-----------------------------memory_at---------------------------------------
4956 Node* MergeMemNode::memory_at(uint alias_idx) const {
4957   assert(alias_idx >= Compile::AliasIdxRaw ||
4958          alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing(),
4959          "must avoid base_memory and AliasIdxTop");
4960 
4961   // Otherwise, it is a narrow slice.
4962   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4963   if (is_empty_memory(n)) {
4964     // the array is sparse; empty slots are the "top" node
4965     n = base_memory();
4966     assert(Node::in_dump()
4967            || n == nullptr || n->bottom_type() == Type::TOP
4968            || n->adr_type() == nullptr // address is TOP
4969            || n->adr_type() == TypePtr::BOTTOM
4970            || n->adr_type() == TypeRawPtr::BOTTOM
4971            || !Compile::current()->do_aliasing(),
4972            "must be a wide memory");
4973     // do_aliasing == false if we are organizing the memory states manually.
4974     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4975   } else {
4976     // make sure the stored slice is sane
4977     #ifdef ASSERT
4978     if (VMError::is_error_reported() || Node::in_dump()) {
4979     } else if (might_be_same(n, base_memory())) {
4980       // Give it a pass:  It is a mostly harmless repetition of the base.
4981       // This can arise normally from node subsumption during optimization.
4982     } else {
4983       verify_memory_slice(this, alias_idx, n);
4984     }
4985     #endif
4986   }
4987   return n;
4988 }
4989 
4990 //---------------------------set_memory_at-------------------------------------
4991 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4992   verify_memory_slice(this, alias_idx, n);
4993   Node* empty_mem = empty_memory();
4994   if (n == base_memory())  n = empty_mem;  // collapse default
4995   uint need_req = alias_idx+1;
4996   if (req() < need_req) {
4997     if (n == empty_mem)  return;  // already the default, so do not grow me
4998     // grow the sparse array
4999     do {
5000       add_req(empty_mem);
5001     } while (req() < need_req);
5002   }
5003   set_req( alias_idx, n );
5004 }
5005 
5006 
5007 
5008 //--------------------------iteration_setup------------------------------------
5009 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
5010   if (other != nullptr) {
5011     grow_to_match(other);
5012     // invariant:  the finite support of mm2 is within mm->req()
5013     #ifdef ASSERT
5014     for (uint i = req(); i < other->req(); i++) {
5015       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
5016     }
5017     #endif
5018   }
5019   // Replace spurious copies of base_memory by top.
5020   Node* base_mem = base_memory();
5021   if (base_mem != nullptr && !base_mem->is_top()) {
5022     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
5023       if (in(i) == base_mem)
5024         set_req(i, empty_memory());
5025     }
5026   }
5027 }
5028 
5029 //---------------------------grow_to_match-------------------------------------
5030 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
5031   Node* empty_mem = empty_memory();
5032   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
5033   // look for the finite support of the other memory
5034   for (uint i = other->req(); --i >= req(); ) {
5035     if (other->in(i) != empty_mem) {
5036       uint new_len = i+1;
5037       while (req() < new_len)  add_req(empty_mem);
5038       break;
5039     }
5040   }
5041 }
5042 
5043 //---------------------------verify_sparse-------------------------------------
5044 #ifndef PRODUCT
5045 bool MergeMemNode::verify_sparse() const {
5046   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
5047   Node* base_mem = base_memory();
5048   // The following can happen in degenerate cases, since empty==top.
5049   if (is_empty_memory(base_mem))  return true;
5050   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5051     assert(in(i) != nullptr, "sane slice");
5052     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
5053   }
5054   return true;
5055 }
5056 
5057 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
5058   Node* n;
5059   n = mm->in(idx);
5060   if (mem == n)  return true;  // might be empty_memory()
5061   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
5062   if (mem == n)  return true;
5063   return false;
5064 }
5065 #endif // !PRODUCT