1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "ci/ciFlatArrayKlass.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/c2/barrierSetC2.hpp" 33 #include "gc/shared/tlab_globals.hpp" 34 #include "memory/allocation.inline.hpp" 35 #include "memory/resourceArea.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/cfgnode.hpp" 40 #include "opto/regalloc.hpp" 41 #include "opto/compile.hpp" 42 #include "opto/connode.hpp" 43 #include "opto/convertnode.hpp" 44 #include "opto/inlinetypenode.hpp" 45 #include "opto/loopnode.hpp" 46 #include "opto/machnode.hpp" 47 #include "opto/matcher.hpp" 48 #include "opto/memnode.hpp" 49 #include "opto/mempointer.hpp" 50 #include "opto/mulnode.hpp" 51 #include "opto/narrowptrnode.hpp" 52 #include "opto/phaseX.hpp" 53 #include "opto/regmask.hpp" 54 #include "opto/rootnode.hpp" 55 #include "opto/traceMergeStoresTag.hpp" 56 #include "opto/vectornode.hpp" 57 #include "utilities/align.hpp" 58 #include "utilities/copy.hpp" 59 #include "utilities/macros.hpp" 60 #include "utilities/powerOfTwo.hpp" 61 #include "utilities/vmError.hpp" 62 63 // Portions of code courtesy of Clifford Click 64 65 // Optimization - Graph Style 66 67 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st); 68 69 //============================================================================= 70 uint MemNode::size_of() const { return sizeof(*this); } 71 72 const TypePtr *MemNode::adr_type() const { 73 Node* adr = in(Address); 74 if (adr == nullptr) return nullptr; // node is dead 75 const TypePtr* cross_check = nullptr; 76 DEBUG_ONLY(cross_check = _adr_type); 77 return calculate_adr_type(adr->bottom_type(), cross_check); 78 } 79 80 bool MemNode::check_if_adr_maybe_raw(Node* adr) { 81 if (adr != nullptr) { 82 if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) { 83 return true; 84 } 85 } 86 return false; 87 } 88 89 #ifndef PRODUCT 90 void MemNode::dump_spec(outputStream *st) const { 91 if (in(Address) == nullptr) return; // node is dead 92 #ifndef ASSERT 93 // fake the missing field 94 const TypePtr* _adr_type = nullptr; 95 if (in(Address) != nullptr) 96 _adr_type = in(Address)->bottom_type()->isa_ptr(); 97 #endif 98 dump_adr_type(this, _adr_type, st); 99 100 Compile* C = Compile::current(); 101 if (C->alias_type(_adr_type)->is_volatile()) { 102 st->print(" Volatile!"); 103 } 104 if (_unaligned_access) { 105 st->print(" unaligned"); 106 } 107 if (_mismatched_access) { 108 st->print(" mismatched"); 109 } 110 if (_unsafe_access) { 111 st->print(" unsafe"); 112 } 113 } 114 115 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) { 116 st->print(" @"); 117 if (adr_type == nullptr) { 118 st->print("null"); 119 } else { 120 adr_type->dump_on(st); 121 Compile* C = Compile::current(); 122 Compile::AliasType* atp = nullptr; 123 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type); 124 if (atp == nullptr) 125 st->print(", idx=?\?;"); 126 else if (atp->index() == Compile::AliasIdxBot) 127 st->print(", idx=Bot;"); 128 else if (atp->index() == Compile::AliasIdxTop) 129 st->print(", idx=Top;"); 130 else if (atp->index() == Compile::AliasIdxRaw) 131 st->print(", idx=Raw;"); 132 else { 133 ciField* field = atp->field(); 134 if (field) { 135 st->print(", name="); 136 field->print_name_on(st); 137 } 138 st->print(", idx=%d;", atp->index()); 139 } 140 } 141 } 142 143 extern void print_alias_types(); 144 145 #endif 146 147 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) { 148 assert((t_oop != nullptr), "sanity"); 149 bool is_instance = t_oop->is_known_instance_field(); 150 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() && 151 (load != nullptr) && load->is_Load() && 152 (phase->is_IterGVN() != nullptr); 153 if (!(is_instance || is_boxed_value_load)) 154 return mchain; // don't try to optimize non-instance types 155 uint instance_id = t_oop->instance_id(); 156 Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory); 157 Node *prev = nullptr; 158 Node *result = mchain; 159 while (prev != result) { 160 prev = result; 161 if (result == start_mem) 162 break; // hit one of our sentinels 163 // skip over a call which does not affect this memory slice 164 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 165 Node *proj_in = result->in(0); 166 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) { 167 break; // hit one of our sentinels 168 } else if (proj_in->is_Call()) { 169 // ArrayCopyNodes processed here as well 170 CallNode *call = proj_in->as_Call(); 171 if (!call->may_modify(t_oop, phase)) { // returns false for instances 172 result = call->in(TypeFunc::Memory); 173 } 174 } else if (proj_in->is_Initialize()) { 175 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 176 // Stop if this is the initialization for the object instance which 177 // contains this memory slice, otherwise skip over it. 178 if ((alloc == nullptr) || (alloc->_idx == instance_id)) { 179 break; 180 } 181 if (is_instance) { 182 result = proj_in->in(TypeFunc::Memory); 183 } else if (is_boxed_value_load) { 184 Node* klass = alloc->in(AllocateNode::KlassNode); 185 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr(); 186 if (tklass->klass_is_exact() && !tklass->exact_klass()->equals(t_oop->is_instptr()->exact_klass())) { 187 result = proj_in->in(TypeFunc::Memory); // not related allocation 188 } 189 } 190 } else if (proj_in->is_MemBar()) { 191 ArrayCopyNode* ac = nullptr; 192 if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) { 193 break; 194 } 195 result = proj_in->in(TypeFunc::Memory); 196 } else if (proj_in->is_top()) { 197 break; // dead code 198 } else { 199 assert(false, "unexpected projection"); 200 } 201 } else if (result->is_ClearArray()) { 202 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) { 203 // Can not bypass initialization of the instance 204 // we are looking for. 205 break; 206 } 207 // Otherwise skip it (the call updated 'result' value). 208 } else if (result->is_MergeMem()) { 209 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty); 210 } 211 } 212 return result; 213 } 214 215 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) { 216 const TypeOopPtr* t_oop = t_adr->isa_oopptr(); 217 if (t_oop == nullptr) 218 return mchain; // don't try to optimize non-oop types 219 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase); 220 bool is_instance = t_oop->is_known_instance_field(); 221 PhaseIterGVN *igvn = phase->is_IterGVN(); 222 if (is_instance && igvn != nullptr && result->is_Phi()) { 223 PhiNode *mphi = result->as_Phi(); 224 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 225 const TypePtr *t = mphi->adr_type(); 226 bool do_split = false; 227 // In the following cases, Load memory input can be further optimized based on 228 // its precise address type 229 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ) { 230 do_split = true; 231 } else if (t->isa_oopptr() && !t->is_oopptr()->is_known_instance()) { 232 const TypeOopPtr* mem_t = 233 t->is_oopptr()->cast_to_exactness(true) 234 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) 235 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()); 236 if (t_oop->isa_aryptr()) { 237 mem_t = mem_t->is_aryptr() 238 ->cast_to_stable(t_oop->is_aryptr()->is_stable()) 239 ->cast_to_size(t_oop->is_aryptr()->size()) 240 ->cast_to_not_flat(t_oop->is_aryptr()->is_not_flat()) 241 ->cast_to_not_null_free(t_oop->is_aryptr()->is_not_null_free()) 242 ->with_offset(t_oop->is_aryptr()->offset()) 243 ->is_aryptr(); 244 } 245 do_split = mem_t == t_oop; 246 } 247 if (do_split) { 248 // clone the Phi with our address type 249 result = mphi->split_out_instance(t_adr, igvn); 250 } else { 251 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain"); 252 } 253 } 254 return result; 255 } 256 257 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) { 258 uint alias_idx = phase->C->get_alias_index(tp); 259 Node *mem = mmem; 260 #ifdef ASSERT 261 { 262 // Check that current type is consistent with the alias index used during graph construction 263 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx"); 264 bool consistent = adr_check == nullptr || adr_check->empty() || 265 phase->C->must_alias(adr_check, alias_idx ); 266 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3] 267 if( !consistent && adr_check != nullptr && !adr_check->empty() && 268 tp->isa_aryptr() && tp->offset() == Type::OffsetBot && 269 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot && 270 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() || 271 adr_check->offset() == oopDesc::klass_offset_in_bytes() || 272 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) { 273 // don't assert if it is dead code. 274 consistent = true; 275 } 276 if( !consistent ) { 277 st->print("alias_idx==%d, adr_check==", alias_idx); 278 if( adr_check == nullptr ) { 279 st->print("null"); 280 } else { 281 adr_check->dump(); 282 } 283 st->cr(); 284 print_alias_types(); 285 assert(consistent, "adr_check must match alias idx"); 286 } 287 } 288 #endif 289 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 290 // means an array I have not precisely typed yet. Do not do any 291 // alias stuff with it any time soon. 292 const TypeOopPtr *toop = tp->isa_oopptr(); 293 if (tp->base() != Type::AnyPtr && 294 !(toop && 295 toop->isa_instptr() && 296 toop->is_instptr()->instance_klass()->is_java_lang_Object() && 297 toop->offset() == Type::OffsetBot)) { 298 // compress paths and change unreachable cycles to TOP 299 // If not, we can update the input infinitely along a MergeMem cycle 300 // Equivalent code in PhiNode::Ideal 301 Node* m = phase->transform(mmem); 302 // If transformed to a MergeMem, get the desired slice 303 // Otherwise the returned node represents memory for every slice 304 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m; 305 // Update input if it is progress over what we have now 306 } 307 return mem; 308 } 309 310 //--------------------------Ideal_common--------------------------------------- 311 // Look for degenerate control and memory inputs. Bypass MergeMem inputs. 312 // Unhook non-raw memories from complete (macro-expanded) initializations. 313 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) { 314 // If our control input is a dead region, kill all below the region 315 Node *ctl = in(MemNode::Control); 316 if (ctl && remove_dead_region(phase, can_reshape)) 317 return this; 318 ctl = in(MemNode::Control); 319 // Don't bother trying to transform a dead node 320 if (ctl && ctl->is_top()) return NodeSentinel; 321 322 PhaseIterGVN *igvn = phase->is_IterGVN(); 323 // Wait if control on the worklist. 324 if (ctl && can_reshape && igvn != nullptr) { 325 Node* bol = nullptr; 326 Node* cmp = nullptr; 327 if (ctl->in(0)->is_If()) { 328 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity"); 329 bol = ctl->in(0)->in(1); 330 if (bol->is_Bool()) 331 cmp = ctl->in(0)->in(1)->in(1); 332 } 333 if (igvn->_worklist.member(ctl) || 334 (bol != nullptr && igvn->_worklist.member(bol)) || 335 (cmp != nullptr && igvn->_worklist.member(cmp)) ) { 336 // This control path may be dead. 337 // Delay this memory node transformation until the control is processed. 338 igvn->_worklist.push(this); 339 return NodeSentinel; // caller will return null 340 } 341 } 342 // Ignore if memory is dead, or self-loop 343 Node *mem = in(MemNode::Memory); 344 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null 345 assert(mem != this, "dead loop in MemNode::Ideal"); 346 347 if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) { 348 // This memory slice may be dead. 349 // Delay this mem node transformation until the memory is processed. 350 igvn->_worklist.push(this); 351 return NodeSentinel; // caller will return null 352 } 353 354 Node *address = in(MemNode::Address); 355 const Type *t_adr = phase->type(address); 356 if (t_adr == Type::TOP) return NodeSentinel; // caller will return null 357 358 if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) { 359 // Unsafe off-heap access with zero address. Remove access and other control users 360 // to not confuse optimizations and add a HaltNode to fail if this is ever executed. 361 assert(ctl != nullptr, "unsafe accesses should be control dependent"); 362 for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) { 363 Node* u = ctl->fast_out(i); 364 if (u != ctl) { 365 igvn->rehash_node_delayed(u); 366 int nb = u->replace_edge(ctl, phase->C->top(), igvn); 367 --i, imax -= nb; 368 } 369 } 370 Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr)); 371 Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address")); 372 phase->C->root()->add_req(halt); 373 return this; 374 } 375 376 if (can_reshape && igvn != nullptr && 377 (igvn->_worklist.member(address) || 378 (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) { 379 // The address's base and type may change when the address is processed. 380 // Delay this mem node transformation until the address is processed. 381 igvn->_worklist.push(this); 382 return NodeSentinel; // caller will return null 383 } 384 385 // Do NOT remove or optimize the next lines: ensure a new alias index 386 // is allocated for an oop pointer type before Escape Analysis. 387 // Note: C++ will not remove it since the call has side effect. 388 if (t_adr->isa_oopptr()) { 389 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr()); 390 } 391 392 Node* base = nullptr; 393 if (address->is_AddP()) { 394 base = address->in(AddPNode::Base); 395 } 396 if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) && 397 !t_adr->isa_rawptr()) { 398 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true. 399 // Skip this node optimization if its address has TOP base. 400 return NodeSentinel; // caller will return null 401 } 402 403 // Avoid independent memory operations 404 Node* old_mem = mem; 405 406 // The code which unhooks non-raw memories from complete (macro-expanded) 407 // initializations was removed. After macro-expansion all stores caught 408 // by Initialize node became raw stores and there is no information 409 // which memory slices they modify. So it is unsafe to move any memory 410 // operation above these stores. Also in most cases hooked non-raw memories 411 // were already unhooked by using information from detect_ptr_independence() 412 // and find_previous_store(). 413 414 if (mem->is_MergeMem()) { 415 MergeMemNode* mmem = mem->as_MergeMem(); 416 const TypePtr *tp = t_adr->is_ptr(); 417 418 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty); 419 } 420 421 if (mem != old_mem) { 422 set_req_X(MemNode::Memory, mem, phase); 423 if (phase->type(mem) == Type::TOP) return NodeSentinel; 424 return this; 425 } 426 427 // let the subclass continue analyzing... 428 return nullptr; 429 } 430 431 // Helper function for proving some simple control dominations. 432 // Attempt to prove that all control inputs of 'dom' dominate 'sub'. 433 // Already assumes that 'dom' is available at 'sub', and that 'sub' 434 // is not a constant (dominated by the method's StartNode). 435 // Used by MemNode::find_previous_store to prove that the 436 // control input of a memory operation predates (dominates) 437 // an allocation it wants to look past. 438 // Returns 'DomResult::Dominate' if all control inputs of 'dom' 439 // dominate 'sub', 'DomResult::NotDominate' if not, 440 // and 'DomResult::EncounteredDeadCode' if we can't decide due to 441 // dead code, but at the end of IGVN, we know the definite result 442 // once the dead code is cleaned up. 443 Node::DomResult MemNode::maybe_all_controls_dominate(Node* dom, Node* sub) { 444 if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top()) { 445 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 446 } 447 448 // Check 'dom'. Skip Proj and CatchProj nodes. 449 dom = dom->find_exact_control(dom); 450 if (dom == nullptr || dom->is_top()) { 451 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 452 } 453 454 if (dom == sub) { 455 // For the case when, for example, 'sub' is Initialize and the original 456 // 'dom' is Proj node of the 'sub'. 457 return DomResult::NotDominate; 458 } 459 460 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) { 461 return DomResult::Dominate; 462 } 463 464 // 'dom' dominates 'sub' if its control edge and control edges 465 // of all its inputs dominate or equal to sub's control edge. 466 467 // Currently 'sub' is either Allocate, Initialize or Start nodes. 468 // Or Region for the check in LoadNode::Ideal(); 469 // 'sub' should have sub->in(0) != nullptr. 470 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || 471 sub->is_Region() || sub->is_Call(), "expecting only these nodes"); 472 473 // Get control edge of 'sub'. 474 Node* orig_sub = sub; 475 sub = sub->find_exact_control(sub->in(0)); 476 if (sub == nullptr || sub->is_top()) { 477 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 478 } 479 480 assert(sub->is_CFG(), "expecting control"); 481 482 if (sub == dom) { 483 return DomResult::Dominate; 484 } 485 486 if (sub->is_Start() || sub->is_Root()) { 487 return DomResult::NotDominate; 488 } 489 490 { 491 // Check all control edges of 'dom'. 492 493 ResourceMark rm; 494 Node_List nlist; 495 Unique_Node_List dom_list; 496 497 dom_list.push(dom); 498 bool only_dominating_controls = false; 499 500 for (uint next = 0; next < dom_list.size(); next++) { 501 Node* n = dom_list.at(next); 502 if (n == orig_sub) { 503 return DomResult::NotDominate; // One of dom's inputs dominated by sub. 504 } 505 if (!n->is_CFG() && n->pinned()) { 506 // Check only own control edge for pinned non-control nodes. 507 n = n->find_exact_control(n->in(0)); 508 if (n == nullptr || n->is_top()) { 509 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 510 } 511 assert(n->is_CFG(), "expecting control"); 512 dom_list.push(n); 513 } else if (n->is_Con() || n->is_Start() || n->is_Root()) { 514 only_dominating_controls = true; 515 } else if (n->is_CFG()) { 516 DomResult dom_result = n->dominates(sub, nlist); 517 if (dom_result == DomResult::Dominate) { 518 only_dominating_controls = true; 519 } else { 520 return dom_result; 521 } 522 } else { 523 // First, own control edge. 524 Node* m = n->find_exact_control(n->in(0)); 525 if (m != nullptr) { 526 if (m->is_top()) { 527 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 528 } 529 dom_list.push(m); 530 } 531 // Now, the rest of edges. 532 uint cnt = n->req(); 533 for (uint i = 1; i < cnt; i++) { 534 m = n->find_exact_control(n->in(i)); 535 if (m == nullptr || m->is_top()) { 536 continue; 537 } 538 dom_list.push(m); 539 } 540 } 541 } 542 return only_dominating_controls ? DomResult::Dominate : DomResult::NotDominate; 543 } 544 } 545 546 //---------------------detect_ptr_independence--------------------------------- 547 // Used by MemNode::find_previous_store to prove that two base 548 // pointers are never equal. 549 // The pointers are accompanied by their associated allocations, 550 // if any, which have been previously discovered by the caller. 551 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1, 552 Node* p2, AllocateNode* a2, 553 PhaseTransform* phase) { 554 // Attempt to prove that these two pointers cannot be aliased. 555 // They may both manifestly be allocations, and they should differ. 556 // Or, if they are not both allocations, they can be distinct constants. 557 // Otherwise, one is an allocation and the other a pre-existing value. 558 if (a1 == nullptr && a2 == nullptr) { // neither an allocation 559 return (p1 != p2) && p1->is_Con() && p2->is_Con(); 560 } else if (a1 != nullptr && a2 != nullptr) { // both allocations 561 return (a1 != a2); 562 } else if (a1 != nullptr) { // one allocation a1 563 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.) 564 return all_controls_dominate(p2, a1); 565 } else { //(a2 != null) // one allocation a2 566 return all_controls_dominate(p1, a2); 567 } 568 return false; 569 } 570 571 572 // Find an arraycopy ac that produces the memory state represented by parameter mem. 573 // Return ac if 574 // (a) can_see_stored_value=true and ac must have set the value for this load or if 575 // (b) can_see_stored_value=false and ac could have set the value for this load or if 576 // (c) can_see_stored_value=false and ac cannot have set the value for this load. 577 // In case (c) change the parameter mem to the memory input of ac to skip it 578 // when searching stored value. 579 // Otherwise return null. 580 Node* LoadNode::find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { 581 ArrayCopyNode* ac = find_array_copy_clone(ld_alloc, mem); 582 if (ac != nullptr) { 583 Node* ld_addp = in(MemNode::Address); 584 Node* src = ac->in(ArrayCopyNode::Src); 585 const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr(); 586 587 // This is a load from a cloned array. The corresponding arraycopy ac must 588 // have set the value for the load and we can return ac but only if the load 589 // is known to be within bounds. This is checked below. 590 if (ary_t != nullptr && ld_addp->is_AddP()) { 591 Node* ld_offs = ld_addp->in(AddPNode::Offset); 592 BasicType ary_elem = ary_t->elem()->array_element_basic_type(); 593 jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem); 594 jlong elemsize = type2aelembytes(ary_elem); 595 596 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 597 const TypeInt* sizetype = ary_t->size(); 598 599 if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) { 600 // The load is known to be within bounds. It receives its value from ac. 601 return ac; 602 } 603 // The load is known to be out-of-bounds. 604 } 605 // The load could be out-of-bounds. It must not be hoisted but must remain 606 // dependent on the runtime range check. This is achieved by returning null. 607 } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) { 608 ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy(); 609 610 if (ac->is_arraycopy_validated() || 611 ac->is_copyof_validated() || 612 ac->is_copyofrange_validated()) { 613 Node* ld_addp = in(MemNode::Address); 614 if (ld_addp->is_AddP()) { 615 Node* ld_base = ld_addp->in(AddPNode::Address); 616 Node* ld_offs = ld_addp->in(AddPNode::Offset); 617 618 Node* dest = ac->in(ArrayCopyNode::Dest); 619 620 if (dest == ld_base) { 621 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 622 assert(!ld_offs_t->empty(), "dead reference should be checked already"); 623 // Take into account vector or unsafe access size 624 jlong ld_size_in_bytes = (jlong)memory_size(); 625 jlong offset_hi = ld_offs_t->_hi + ld_size_in_bytes - 1; 626 offset_hi = MIN2(offset_hi, (jlong)(TypeX::MAX->_hi)); // Take care for overflow in 32-bit VM 627 if (ac->modifies(ld_offs_t->_lo, (intptr_t)offset_hi, phase, can_see_stored_value)) { 628 return ac; 629 } 630 if (!can_see_stored_value) { 631 mem = ac->in(TypeFunc::Memory); 632 return ac; 633 } 634 } 635 } 636 } 637 } 638 return nullptr; 639 } 640 641 ArrayCopyNode* MemNode::find_array_copy_clone(Node* ld_alloc, Node* mem) const { 642 if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore || 643 mem->in(0)->Opcode() == Op_MemBarCPUOrder)) { 644 if (ld_alloc != nullptr) { 645 // Check if there is an array copy for a clone 646 Node* mb = mem->in(0); 647 ArrayCopyNode* ac = nullptr; 648 if (mb->in(0) != nullptr && mb->in(0)->is_Proj() && 649 mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) { 650 ac = mb->in(0)->in(0)->as_ArrayCopy(); 651 } else { 652 // Step over GC barrier when ReduceInitialCardMarks is disabled 653 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 654 Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0)); 655 656 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { 657 ac = control_proj_ac->in(0)->as_ArrayCopy(); 658 } 659 } 660 661 if (ac != nullptr && ac->is_clonebasic()) { 662 AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest)); 663 if (alloc != nullptr && alloc == ld_alloc) { 664 return ac; 665 } 666 } 667 } 668 } 669 return nullptr; 670 } 671 672 // The logic for reordering loads and stores uses four steps: 673 // (a) Walk carefully past stores and initializations which we 674 // can prove are independent of this load. 675 // (b) Observe that the next memory state makes an exact match 676 // with self (load or store), and locate the relevant store. 677 // (c) Ensure that, if we were to wire self directly to the store, 678 // the optimizer would fold it up somehow. 679 // (d) Do the rewiring, and return, depending on some other part of 680 // the optimizer to fold up the load. 681 // This routine handles steps (a) and (b). Steps (c) and (d) are 682 // specific to loads and stores, so they are handled by the callers. 683 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.) 684 // 685 Node* MemNode::find_previous_store(PhaseValues* phase) { 686 Node* ctrl = in(MemNode::Control); 687 Node* adr = in(MemNode::Address); 688 intptr_t offset = 0; 689 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 690 AllocateNode* alloc = AllocateNode::Ideal_allocation(base); 691 692 if (offset == Type::OffsetBot) 693 return nullptr; // cannot unalias unless there are precise offsets 694 695 const bool adr_maybe_raw = check_if_adr_maybe_raw(adr); 696 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr(); 697 698 intptr_t size_in_bytes = memory_size(); 699 700 Node* mem = in(MemNode::Memory); // start searching here... 701 702 int cnt = 50; // Cycle limiter 703 for (;;) { // While we can dance past unrelated stores... 704 if (--cnt < 0) break; // Caught in cycle or a complicated dance? 705 706 Node* prev = mem; 707 if (mem->is_Store()) { 708 Node* st_adr = mem->in(MemNode::Address); 709 intptr_t st_offset = 0; 710 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 711 if (st_base == nullptr) 712 break; // inscrutable pointer 713 714 // For raw accesses it's not enough to prove that constant offsets don't intersect. 715 // We need the bases to be the equal in order for the offset check to make sense. 716 if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) { 717 break; 718 } 719 720 if (st_offset != offset && st_offset != Type::OffsetBot) { 721 const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 722 assert(mem->as_Store()->memory_size() <= MAX_STORE, ""); 723 if (st_offset >= offset + size_in_bytes || 724 st_offset <= offset - MAX_STORE || 725 st_offset <= offset - mem->as_Store()->memory_size()) { 726 // Success: The offsets are provably independent. 727 // (You may ask, why not just test st_offset != offset and be done? 728 // The answer is that stores of different sizes can co-exist 729 // in the same sequence of RawMem effects. We sometimes initialize 730 // a whole 'tile' of array elements with a single jint or jlong.) 731 mem = mem->in(MemNode::Memory); 732 continue; // (a) advance through independent store memory 733 } 734 } 735 if (st_base != base && 736 detect_ptr_independence(base, alloc, 737 st_base, 738 AllocateNode::Ideal_allocation(st_base), 739 phase)) { 740 // Success: The bases are provably independent. 741 mem = mem->in(MemNode::Memory); 742 continue; // (a) advance through independent store memory 743 } 744 745 // (b) At this point, if the bases or offsets do not agree, we lose, 746 // since we have not managed to prove 'this' and 'mem' independent. 747 if (st_base == base && st_offset == offset) { 748 return mem; // let caller handle steps (c), (d) 749 } 750 751 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 752 InitializeNode* st_init = mem->in(0)->as_Initialize(); 753 AllocateNode* st_alloc = st_init->allocation(); 754 if (st_alloc == nullptr) { 755 break; // something degenerated 756 } 757 bool known_identical = false; 758 bool known_independent = false; 759 if (alloc == st_alloc) { 760 known_identical = true; 761 } else if (alloc != nullptr) { 762 known_independent = true; 763 } else if (all_controls_dominate(this, st_alloc)) { 764 known_independent = true; 765 } 766 767 if (known_independent) { 768 // The bases are provably independent: Either they are 769 // manifestly distinct allocations, or else the control 770 // of this load dominates the store's allocation. 771 int alias_idx = phase->C->get_alias_index(adr_type()); 772 if (alias_idx == Compile::AliasIdxRaw) { 773 mem = st_alloc->in(TypeFunc::Memory); 774 } else { 775 mem = st_init->memory(alias_idx); 776 } 777 continue; // (a) advance through independent store memory 778 } 779 780 // (b) at this point, if we are not looking at a store initializing 781 // the same allocation we are loading from, we lose. 782 if (known_identical) { 783 // From caller, can_see_stored_value will consult find_captured_store. 784 return mem; // let caller handle steps (c), (d) 785 } 786 787 } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) { 788 if (prev != mem) { 789 // Found an arraycopy but it doesn't affect that load 790 continue; 791 } 792 // Found an arraycopy that may affect that load 793 return mem; 794 } else if (addr_t != nullptr && addr_t->is_known_instance_field()) { 795 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN. 796 if (mem->is_Proj() && mem->in(0)->is_Call()) { 797 // ArrayCopyNodes processed here as well. 798 CallNode *call = mem->in(0)->as_Call(); 799 if (!call->may_modify(addr_t, phase)) { 800 mem = call->in(TypeFunc::Memory); 801 continue; // (a) advance through independent call memory 802 } 803 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) { 804 ArrayCopyNode* ac = nullptr; 805 if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) { 806 break; 807 } 808 mem = mem->in(0)->in(TypeFunc::Memory); 809 continue; // (a) advance through independent MemBar memory 810 } else if (mem->is_ClearArray()) { 811 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) { 812 // (the call updated 'mem' value) 813 continue; // (a) advance through independent allocation memory 814 } else { 815 // Can not bypass initialization of the instance 816 // we are looking for. 817 return mem; 818 } 819 } else if (mem->is_MergeMem()) { 820 int alias_idx = phase->C->get_alias_index(adr_type()); 821 mem = mem->as_MergeMem()->memory_at(alias_idx); 822 continue; // (a) advance through independent MergeMem memory 823 } 824 } 825 826 // Unless there is an explicit 'continue', we must bail out here, 827 // because 'mem' is an inscrutable memory state (e.g., a call). 828 break; 829 } 830 831 return nullptr; // bail out 832 } 833 834 //----------------------calculate_adr_type------------------------------------- 835 // Helper function. Notices when the given type of address hits top or bottom. 836 // Also, asserts a cross-check of the type against the expected address type. 837 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) { 838 if (t == Type::TOP) return nullptr; // does not touch memory any more? 839 #ifdef ASSERT 840 if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump()) cross_check = nullptr; 841 #endif 842 const TypePtr* tp = t->isa_ptr(); 843 if (tp == nullptr) { 844 assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide"); 845 return TypePtr::BOTTOM; // touches lots of memory 846 } else { 847 #ifdef ASSERT 848 // %%%% [phh] We don't check the alias index if cross_check is 849 // TypeRawPtr::BOTTOM. Needs to be investigated. 850 if (cross_check != nullptr && 851 cross_check != TypePtr::BOTTOM && 852 cross_check != TypeRawPtr::BOTTOM) { 853 // Recheck the alias index, to see if it has changed (due to a bug). 854 Compile* C = Compile::current(); 855 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp), 856 "must stay in the original alias category"); 857 // The type of the address must be contained in the adr_type, 858 // disregarding "null"-ness. 859 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.) 860 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr(); 861 assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(), 862 "real address must not escape from expected memory type"); 863 } 864 #endif 865 return tp; 866 } 867 } 868 869 uint8_t MemNode::barrier_data(const Node* n) { 870 if (n->is_LoadStore()) { 871 return n->as_LoadStore()->barrier_data(); 872 } else if (n->is_Mem()) { 873 return n->as_Mem()->barrier_data(); 874 } 875 return 0; 876 } 877 878 //============================================================================= 879 // Should LoadNode::Ideal() attempt to remove control edges? 880 bool LoadNode::can_remove_control() const { 881 return !has_pinned_control_dependency(); 882 } 883 uint LoadNode::size_of() const { return sizeof(*this); } 884 bool LoadNode::cmp(const Node &n) const { 885 LoadNode& load = (LoadNode &)n; 886 return Type::equals(_type, load._type) && 887 _control_dependency == load._control_dependency && 888 _mo == load._mo; 889 } 890 const Type *LoadNode::bottom_type() const { return _type; } 891 uint LoadNode::ideal_reg() const { 892 return _type->ideal_reg(); 893 } 894 895 #ifndef PRODUCT 896 void LoadNode::dump_spec(outputStream *st) const { 897 MemNode::dump_spec(st); 898 if( !Verbose && !WizardMode ) { 899 // standard dump does this in Verbose and WizardMode 900 st->print(" #"); _type->dump_on(st); 901 } 902 if (!depends_only_on_test()) { 903 st->print(" (does not depend only on test, "); 904 if (control_dependency() == UnknownControl) { 905 st->print("unknown control"); 906 } else if (control_dependency() == Pinned) { 907 st->print("pinned"); 908 } else if (adr_type() == TypeRawPtr::BOTTOM) { 909 st->print("raw access"); 910 } else { 911 st->print("unknown reason"); 912 } 913 st->print(")"); 914 } 915 } 916 #endif 917 918 #ifdef ASSERT 919 //----------------------------is_immutable_value------------------------------- 920 // Helper function to allow a raw load without control edge for some cases 921 bool LoadNode::is_immutable_value(Node* adr) { 922 if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() && 923 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal) { 924 925 jlong offset = adr->in(AddPNode::Offset)->find_intptr_t_con(-1); 926 int offsets[] = { 927 in_bytes(JavaThread::osthread_offset()), 928 in_bytes(JavaThread::threadObj_offset()), 929 in_bytes(JavaThread::vthread_offset()), 930 in_bytes(JavaThread::scopedValueCache_offset()), 931 }; 932 933 for (size_t i = 0; i < sizeof offsets / sizeof offsets[0]; i++) { 934 if (offset == offsets[i]) { 935 return true; 936 } 937 } 938 } 939 940 return false; 941 } 942 #endif 943 944 //----------------------------LoadNode::make----------------------------------- 945 // Polymorphic factory method: 946 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo, 947 ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { 948 Compile* C = gvn.C; 949 950 // sanity check the alias category against the created node type 951 assert(!(adr_type->isa_oopptr() && 952 adr_type->offset() == oopDesc::klass_offset_in_bytes()), 953 "use LoadKlassNode instead"); 954 assert(!(adr_type->isa_aryptr() && 955 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()), 956 "use LoadRangeNode instead"); 957 // Check control edge of raw loads 958 assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 959 // oop will be recorded in oop map if load crosses safepoint 960 rt->isa_oopptr() || is_immutable_value(adr), 961 "raw memory operations should have control edge"); 962 LoadNode* load = nullptr; 963 switch (bt) { 964 case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 965 case T_BYTE: load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 966 case T_INT: load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 967 case T_CHAR: load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 968 case T_SHORT: load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 969 case T_LONG: load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break; 970 case T_FLOAT: load = new LoadFNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; 971 case T_DOUBLE: load = new LoadDNode (ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic_access); break; 972 case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); break; 973 case T_OBJECT: 974 case T_NARROWOOP: 975 #ifdef _LP64 976 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 977 load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency); 978 } else 979 #endif 980 { 981 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop"); 982 load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); 983 } 984 break; 985 default: 986 ShouldNotReachHere(); 987 break; 988 } 989 assert(load != nullptr, "LoadNode should have been created"); 990 if (unaligned) { 991 load->set_unaligned_access(); 992 } 993 if (mismatched) { 994 load->set_mismatched_access(); 995 } 996 if (unsafe) { 997 load->set_unsafe_access(); 998 } 999 load->set_barrier_data(barrier_data); 1000 if (load->Opcode() == Op_LoadN) { 1001 Node* ld = gvn.transform(load); 1002 return new DecodeNNode(ld, ld->bottom_type()->make_ptr()); 1003 } 1004 1005 return load; 1006 } 1007 1008 //------------------------------hash------------------------------------------- 1009 uint LoadNode::hash() const { 1010 // unroll addition of interesting fields 1011 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address); 1012 } 1013 1014 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) { 1015 if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) { 1016 bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile(); 1017 bool is_stable_ary = FoldStableValues && 1018 (tp != nullptr) && (tp->isa_aryptr() != nullptr) && 1019 tp->isa_aryptr()->is_stable(); 1020 1021 return (eliminate_boxing && non_volatile) || is_stable_ary || tp->is_inlinetypeptr(); 1022 } 1023 1024 return false; 1025 } 1026 1027 LoadNode* LoadNode::pin_array_access_node() const { 1028 const TypePtr* adr_type = this->adr_type(); 1029 if (adr_type != nullptr && adr_type->isa_aryptr()) { 1030 return clone_pinned(); 1031 } 1032 return nullptr; 1033 } 1034 1035 // Is the value loaded previously stored by an arraycopy? If so return 1036 // a load node that reads from the source array so we may be able to 1037 // optimize out the ArrayCopy node later. 1038 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const { 1039 Node* ld_adr = in(MemNode::Address); 1040 intptr_t ld_off = 0; 1041 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); 1042 Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true); 1043 if (ac != nullptr) { 1044 assert(ac->is_ArrayCopy(), "what kind of node can this be?"); 1045 1046 Node* mem = ac->in(TypeFunc::Memory); 1047 Node* ctl = ac->in(0); 1048 Node* src = ac->in(ArrayCopyNode::Src); 1049 1050 if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) { 1051 return nullptr; 1052 } 1053 1054 // load depends on the tests that validate the arraycopy 1055 LoadNode* ld = clone_pinned(); 1056 Node* addp = in(MemNode::Address)->clone(); 1057 if (ac->as_ArrayCopy()->is_clonebasic()) { 1058 assert(ld_alloc != nullptr, "need an alloc"); 1059 assert(addp->is_AddP(), "address must be addp"); 1060 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1061 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 1062 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 1063 addp->set_req(AddPNode::Base, src); 1064 addp->set_req(AddPNode::Address, src); 1065 } else { 1066 assert(ac->as_ArrayCopy()->is_arraycopy_validated() || 1067 ac->as_ArrayCopy()->is_copyof_validated() || 1068 ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases"); 1069 assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be"); 1070 addp->set_req(AddPNode::Base, src); 1071 addp->set_req(AddPNode::Address, src); 1072 1073 const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr(); 1074 BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type(); 1075 if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT; 1076 1077 uint header = arrayOopDesc::base_offset_in_bytes(ary_elem); 1078 uint shift = ary_t->is_flat() ? ary_t->flat_log_elem_size() : exact_log2(type2aelembytes(ary_elem)); 1079 1080 Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 1081 #ifdef _LP64 1082 diff = phase->transform(new ConvI2LNode(diff)); 1083 #endif 1084 diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift))); 1085 1086 Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff)); 1087 addp->set_req(AddPNode::Offset, offset); 1088 } 1089 addp = phase->transform(addp); 1090 #ifdef ASSERT 1091 const TypePtr* adr_type = phase->type(addp)->is_ptr(); 1092 ld->_adr_type = adr_type; 1093 #endif 1094 ld->set_req(MemNode::Address, addp); 1095 ld->set_req(0, ctl); 1096 ld->set_req(MemNode::Memory, mem); 1097 return ld; 1098 } 1099 return nullptr; 1100 } 1101 1102 1103 //---------------------------can_see_stored_value------------------------------ 1104 // This routine exists to make sure this set of tests is done the same 1105 // everywhere. We need to make a coordinated change: first LoadNode::Ideal 1106 // will change the graph shape in a way which makes memory alive twice at the 1107 // same time (uses the Oracle model of aliasing), then some 1108 // LoadXNode::Identity will fold things back to the equivalence-class model 1109 // of aliasing. 1110 Node* MemNode::can_see_stored_value(Node* st, PhaseValues* phase) const { 1111 Node* ld_adr = in(MemNode::Address); 1112 intptr_t ld_off = 0; 1113 Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off); 1114 Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base); 1115 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); 1116 Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr; 1117 // This is more general than load from boxing objects. 1118 if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) { 1119 uint alias_idx = atp->index(); 1120 Node* result = nullptr; 1121 Node* current = st; 1122 // Skip through chains of MemBarNodes checking the MergeMems for 1123 // new states for the slice of this load. Stop once any other 1124 // kind of node is encountered. Loads from final memory can skip 1125 // through any kind of MemBar but normal loads shouldn't skip 1126 // through MemBarAcquire since the could allow them to move out of 1127 // a synchronized region. It is not safe to step over MemBarCPUOrder, 1128 // because alias info above them may be inaccurate (e.g., due to 1129 // mixed/mismatched unsafe accesses). 1130 bool is_final_mem = !atp->is_rewritable(); 1131 while (current->is_Proj()) { 1132 int opc = current->in(0)->Opcode(); 1133 if ((is_final_mem && (opc == Op_MemBarAcquire || 1134 opc == Op_MemBarAcquireLock || 1135 opc == Op_LoadFence)) || 1136 opc == Op_MemBarRelease || 1137 opc == Op_StoreFence || 1138 opc == Op_MemBarReleaseLock || 1139 opc == Op_MemBarStoreStore || 1140 opc == Op_StoreStoreFence) { 1141 Node* mem = current->in(0)->in(TypeFunc::Memory); 1142 if (mem->is_MergeMem()) { 1143 MergeMemNode* merge = mem->as_MergeMem(); 1144 Node* new_st = merge->memory_at(alias_idx); 1145 if (new_st == merge->base_memory()) { 1146 // Keep searching 1147 current = new_st; 1148 continue; 1149 } 1150 // Save the new memory state for the slice and fall through 1151 // to exit. 1152 result = new_st; 1153 } 1154 } 1155 break; 1156 } 1157 if (result != nullptr) { 1158 st = result; 1159 } 1160 } 1161 1162 // Loop around twice in the case Load -> Initialize -> Store. 1163 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.) 1164 for (int trip = 0; trip <= 1; trip++) { 1165 1166 if (st->is_Store()) { 1167 Node* st_adr = st->in(MemNode::Address); 1168 if (st_adr != ld_adr) { 1169 // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers). 1170 intptr_t st_off = 0; 1171 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off); 1172 if (ld_base == nullptr) return nullptr; 1173 if (st_base == nullptr) return nullptr; 1174 if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr; 1175 if (ld_off != st_off) return nullptr; 1176 if (ld_off == Type::OffsetBot) return nullptr; 1177 // Same base, same offset. 1178 // Possible improvement for arrays: check index value instead of absolute offset. 1179 1180 // At this point we have proven something like this setup: 1181 // B = << base >> 1182 // L = LoadQ(AddP(Check/CastPP(B), #Off)) 1183 // S = StoreQ(AddP( B , #Off), V) 1184 // (Actually, we haven't yet proven the Q's are the same.) 1185 // In other words, we are loading from a casted version of 1186 // the same pointer-and-offset that we stored to. 1187 // Casted version may carry a dependency and it is respected. 1188 // Thus, we are able to replace L by V. 1189 } 1190 // Now prove that we have a LoadQ matched to a StoreQ, for some Q. 1191 if (store_Opcode() != st->Opcode()) { 1192 return nullptr; 1193 } 1194 // LoadVector/StoreVector needs additional check to ensure the types match. 1195 if (st->is_StoreVector()) { 1196 const TypeVect* in_vt = st->as_StoreVector()->vect_type(); 1197 const TypeVect* out_vt = is_Load() ? as_LoadVector()->vect_type() : as_StoreVector()->vect_type(); 1198 if (in_vt != out_vt) { 1199 return nullptr; 1200 } 1201 } 1202 return st->in(MemNode::ValueIn); 1203 } 1204 1205 // A load from a freshly-created object always returns zero. 1206 // (This can happen after LoadNode::Ideal resets the load's memory input 1207 // to find_captured_store, which returned InitializeNode::zero_memory.) 1208 if (st->is_Proj() && st->in(0)->is_Allocate() && 1209 (st->in(0) == ld_alloc) && 1210 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) { 1211 // return a zero value for the load's basic type 1212 // (This is one of the few places where a generic PhaseTransform 1213 // can create new nodes. Think of it as lazily manifesting 1214 // virtually pre-existing constants.) 1215 Node* default_value = ld_alloc->in(AllocateNode::DefaultValue); 1216 if (default_value != nullptr) { 1217 return default_value; 1218 } 1219 assert(ld_alloc->in(AllocateNode::RawDefaultValue) == nullptr, "default value may not be null"); 1220 if (memory_type() != T_VOID) { 1221 if (ReduceBulkZeroing || find_array_copy_clone(ld_alloc, in(MemNode::Memory)) == nullptr) { 1222 // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an 1223 // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done 1224 // by the ArrayCopyNode. 1225 return phase->zerocon(memory_type()); 1226 } 1227 } else { 1228 // TODO: materialize all-zero vector constant 1229 assert(!isa_Load() || as_Load()->type()->isa_vect(), ""); 1230 } 1231 } 1232 1233 // A load from an initialization barrier can match a captured store. 1234 if (st->is_Proj() && st->in(0)->is_Initialize()) { 1235 InitializeNode* init = st->in(0)->as_Initialize(); 1236 AllocateNode* alloc = init->allocation(); 1237 if ((alloc != nullptr) && (alloc == ld_alloc)) { 1238 // examine a captured store value 1239 st = init->find_captured_store(ld_off, memory_size(), phase); 1240 if (st != nullptr) { 1241 continue; // take one more trip around 1242 } 1243 } 1244 } 1245 1246 // Load boxed value from result of valueOf() call is input parameter. 1247 if (this->is_Load() && ld_adr->is_AddP() && 1248 (tp != nullptr) && tp->is_ptr_to_boxed_value()) { 1249 intptr_t ignore = 0; 1250 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore); 1251 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1252 base = bs->step_over_gc_barrier(base); 1253 if (base != nullptr && base->is_Proj() && 1254 base->as_Proj()->_con == TypeFunc::Parms && 1255 base->in(0)->is_CallStaticJava() && 1256 base->in(0)->as_CallStaticJava()->is_boxing_method()) { 1257 return base->in(0)->in(TypeFunc::Parms); 1258 } 1259 } 1260 1261 break; 1262 } 1263 1264 return nullptr; 1265 } 1266 1267 //----------------------is_instance_field_load_with_local_phi------------------ 1268 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { 1269 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl && 1270 in(Address)->is_AddP() ) { 1271 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr(); 1272 // Only instances and boxed values. 1273 if( t_oop != nullptr && 1274 (t_oop->is_ptr_to_boxed_value() || 1275 t_oop->is_known_instance_field()) && 1276 t_oop->offset() != Type::OffsetBot && 1277 t_oop->offset() != Type::OffsetTop) { 1278 return true; 1279 } 1280 } 1281 return false; 1282 } 1283 1284 //------------------------------Identity--------------------------------------- 1285 // Loads are identity if previous store is to same address 1286 Node* LoadNode::Identity(PhaseGVN* phase) { 1287 // Loading from an InlineType? The InlineType has the values of 1288 // all fields as input. Look for the field with matching offset. 1289 Node* addr = in(Address); 1290 intptr_t offset; 1291 Node* base = AddPNode::Ideal_base_and_offset(addr, phase, offset); 1292 if (base != nullptr && base->is_InlineType() && offset > oopDesc::klass_offset_in_bytes()) { 1293 Node* value = base->as_InlineType()->field_value_by_offset((int)offset, true); 1294 if (value != nullptr) { 1295 if (Opcode() == Op_LoadN) { 1296 // Encode oop value if we are loading a narrow oop 1297 assert(!phase->type(value)->isa_narrowoop(), "should already be decoded"); 1298 value = phase->transform(new EncodePNode(value, bottom_type())); 1299 } 1300 return value; 1301 } 1302 } 1303 1304 // If the previous store-maker is the right kind of Store, and the store is 1305 // to the same address, then we are equal to the value stored. 1306 Node* mem = in(Memory); 1307 Node* value = can_see_stored_value(mem, phase); 1308 if( value ) { 1309 // byte, short & char stores truncate naturally. 1310 // A load has to load the truncated value which requires 1311 // some sort of masking operation and that requires an 1312 // Ideal call instead of an Identity call. 1313 if (memory_size() < BytesPerInt) { 1314 // If the input to the store does not fit with the load's result type, 1315 // it must be truncated via an Ideal call. 1316 if (!phase->type(value)->higher_equal(phase->type(this))) 1317 return this; 1318 } 1319 // (This works even when value is a Con, but LoadNode::Value 1320 // usually runs first, producing the singleton type of the Con.) 1321 if (!has_pinned_control_dependency() || value->is_Con()) { 1322 return value; 1323 } else { 1324 return this; 1325 } 1326 } 1327 1328 if (has_pinned_control_dependency()) { 1329 return this; 1330 } 1331 // Search for an existing data phi which was generated before for the same 1332 // instance's field to avoid infinite generation of phis in a loop. 1333 Node *region = mem->in(0); 1334 if (is_instance_field_load_with_local_phi(region)) { 1335 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr(); 1336 int this_index = phase->C->get_alias_index(addr_t); 1337 int this_offset = addr_t->offset(); 1338 int this_iid = addr_t->instance_id(); 1339 if (!addr_t->is_known_instance() && 1340 addr_t->is_ptr_to_boxed_value()) { 1341 // Use _idx of address base (could be Phi node) for boxed values. 1342 intptr_t ignore = 0; 1343 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); 1344 if (base == nullptr) { 1345 return this; 1346 } 1347 this_iid = base->_idx; 1348 } 1349 const Type* this_type = bottom_type(); 1350 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1351 Node* phi = region->fast_out(i); 1352 if (phi->is_Phi() && phi != mem && 1353 phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) { 1354 return phi; 1355 } 1356 } 1357 } 1358 1359 return this; 1360 } 1361 1362 // Construct an equivalent unsigned load. 1363 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) { 1364 BasicType bt = T_ILLEGAL; 1365 const Type* rt = nullptr; 1366 switch (Opcode()) { 1367 case Op_LoadUB: return this; 1368 case Op_LoadUS: return this; 1369 case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break; 1370 case Op_LoadS: bt = T_CHAR; rt = TypeInt::CHAR; break; 1371 default: 1372 assert(false, "no unsigned variant: %s", Name()); 1373 return nullptr; 1374 } 1375 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1376 raw_adr_type(), rt, bt, _mo, _control_dependency, 1377 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1378 } 1379 1380 // Construct an equivalent signed load. 1381 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) { 1382 BasicType bt = T_ILLEGAL; 1383 const Type* rt = nullptr; 1384 switch (Opcode()) { 1385 case Op_LoadUB: bt = T_BYTE; rt = TypeInt::BYTE; break; 1386 case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break; 1387 case Op_LoadB: // fall through 1388 case Op_LoadS: // fall through 1389 case Op_LoadI: // fall through 1390 case Op_LoadL: return this; 1391 default: 1392 assert(false, "no signed variant: %s", Name()); 1393 return nullptr; 1394 } 1395 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1396 raw_adr_type(), rt, bt, _mo, _control_dependency, 1397 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1398 } 1399 1400 bool LoadNode::has_reinterpret_variant(const Type* rt) { 1401 BasicType bt = rt->basic_type(); 1402 switch (Opcode()) { 1403 case Op_LoadI: return (bt == T_FLOAT); 1404 case Op_LoadL: return (bt == T_DOUBLE); 1405 case Op_LoadF: return (bt == T_INT); 1406 case Op_LoadD: return (bt == T_LONG); 1407 1408 default: return false; 1409 } 1410 } 1411 1412 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) { 1413 BasicType bt = rt->basic_type(); 1414 assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1415 bool is_mismatched = is_mismatched_access(); 1416 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1417 if (raw_type == nullptr) { 1418 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1419 } 1420 const int op = Opcode(); 1421 bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) || 1422 (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access()); 1423 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1424 raw_adr_type(), rt, bt, _mo, _control_dependency, 1425 require_atomic_access, is_unaligned_access(), is_mismatched); 1426 } 1427 1428 bool StoreNode::has_reinterpret_variant(const Type* vt) { 1429 BasicType bt = vt->basic_type(); 1430 switch (Opcode()) { 1431 case Op_StoreI: return (bt == T_FLOAT); 1432 case Op_StoreL: return (bt == T_DOUBLE); 1433 case Op_StoreF: return (bt == T_INT); 1434 case Op_StoreD: return (bt == T_LONG); 1435 1436 default: return false; 1437 } 1438 } 1439 1440 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) { 1441 BasicType bt = vt->basic_type(); 1442 assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1443 const int op = Opcode(); 1444 bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) || 1445 (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access()); 1446 StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1447 raw_adr_type(), val, bt, _mo, require_atomic_access); 1448 1449 bool is_mismatched = is_mismatched_access(); 1450 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1451 if (raw_type == nullptr) { 1452 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1453 } 1454 if (is_mismatched) { 1455 st->set_mismatched_access(); 1456 } 1457 return st; 1458 } 1459 1460 // We're loading from an object which has autobox behaviour. 1461 // If this object is result of a valueOf call we'll have a phi 1462 // merging a newly allocated object and a load from the cache. 1463 // We want to replace this load with the original incoming 1464 // argument to the valueOf call. 1465 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) { 1466 assert(igvn->C->eliminate_boxing(), "sanity"); 1467 intptr_t ignore = 0; 1468 Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore); 1469 if ((base == nullptr) || base->is_Phi()) { 1470 // Push the loads from the phi that comes from valueOf up 1471 // through it to allow elimination of the loads and the recovery 1472 // of the original value. It is done in split_through_phi(). 1473 return nullptr; 1474 } else if (base->is_Load() || 1475 (base->is_DecodeN() && base->in(1)->is_Load())) { 1476 // Eliminate the load of boxed value for integer types from the cache 1477 // array by deriving the value from the index into the array. 1478 // Capture the offset of the load and then reverse the computation. 1479 1480 // Get LoadN node which loads a boxing object from 'cache' array. 1481 if (base->is_DecodeN()) { 1482 base = base->in(1); 1483 } 1484 if (!base->in(Address)->is_AddP()) { 1485 return nullptr; // Complex address 1486 } 1487 AddPNode* address = base->in(Address)->as_AddP(); 1488 Node* cache_base = address->in(AddPNode::Base); 1489 if ((cache_base != nullptr) && cache_base->is_DecodeN()) { 1490 // Get ConP node which is static 'cache' field. 1491 cache_base = cache_base->in(1); 1492 } 1493 if ((cache_base != nullptr) && cache_base->is_Con()) { 1494 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr(); 1495 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 1496 Node* elements[4]; 1497 int shift = exact_log2(type2aelembytes(T_OBJECT)); 1498 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)); 1499 if (count > 0 && elements[0]->is_Con() && 1500 (count == 1 || 1501 (count == 2 && elements[1]->Opcode() == Op_LShiftX && 1502 elements[1]->in(2) == igvn->intcon(shift)))) { 1503 ciObjArray* array = base_type->const_oop()->as_obj_array(); 1504 // Fetch the box object cache[0] at the base of the array and get its value 1505 ciInstance* box = array->obj_at(0)->as_instance(); 1506 ciInstanceKlass* ik = box->klass()->as_instance_klass(); 1507 assert(ik->is_box_klass(), "sanity"); 1508 assert(ik->nof_nonstatic_fields() == 1, "change following code"); 1509 if (ik->nof_nonstatic_fields() == 1) { 1510 // This should be true nonstatic_field_at requires calling 1511 // nof_nonstatic_fields so check it anyway 1512 ciConstant c = box->field_value(ik->nonstatic_field_at(0)); 1513 BasicType bt = c.basic_type(); 1514 // Only integer types have boxing cache. 1515 assert(bt == T_BOOLEAN || bt == T_CHAR || 1516 bt == T_BYTE || bt == T_SHORT || 1517 bt == T_INT || bt == T_LONG, "wrong type = %s", type2name(bt)); 1518 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int(); 1519 if (cache_low != (int)cache_low) { 1520 return nullptr; // should not happen since cache is array indexed by value 1521 } 1522 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift); 1523 if (offset != (int)offset) { 1524 return nullptr; // should not happen since cache is array indexed by value 1525 } 1526 // Add up all the offsets making of the address of the load 1527 Node* result = elements[0]; 1528 for (int i = 1; i < count; i++) { 1529 result = igvn->transform(new AddXNode(result, elements[i])); 1530 } 1531 // Remove the constant offset from the address and then 1532 result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset))); 1533 // remove the scaling of the offset to recover the original index. 1534 if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) { 1535 // Peel the shift off directly but wrap it in a dummy node 1536 // since Ideal can't return existing nodes 1537 igvn->_worklist.push(result); // remove dead node later 1538 result = new RShiftXNode(result->in(1), igvn->intcon(0)); 1539 } else if (result->is_Add() && result->in(2)->is_Con() && 1540 result->in(1)->Opcode() == Op_LShiftX && 1541 result->in(1)->in(2) == igvn->intcon(shift)) { 1542 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z) 1543 // but for boxing cache access we know that X<<Z will not overflow 1544 // (there is range check) so we do this optimizatrion by hand here. 1545 igvn->_worklist.push(result); // remove dead node later 1546 Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift)); 1547 result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con)); 1548 } else { 1549 result = new RShiftXNode(result, igvn->intcon(shift)); 1550 } 1551 #ifdef _LP64 1552 if (bt != T_LONG) { 1553 result = new ConvL2INode(igvn->transform(result)); 1554 } 1555 #else 1556 if (bt == T_LONG) { 1557 result = new ConvI2LNode(igvn->transform(result)); 1558 } 1559 #endif 1560 // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair). 1561 // Need to preserve unboxing load type if it is unsigned. 1562 switch(this->Opcode()) { 1563 case Op_LoadUB: 1564 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF)); 1565 break; 1566 case Op_LoadUS: 1567 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF)); 1568 break; 1569 } 1570 return result; 1571 } 1572 } 1573 } 1574 } 1575 } 1576 return nullptr; 1577 } 1578 1579 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) { 1580 Node* region = phi->in(0); 1581 if (region == nullptr) { 1582 return false; // Wait stable graph 1583 } 1584 uint cnt = phi->req(); 1585 for (uint i = 1; i < cnt; i++) { 1586 Node* rc = region->in(i); 1587 if (rc == nullptr || phase->type(rc) == Type::TOP) 1588 return false; // Wait stable graph 1589 Node* in = phi->in(i); 1590 if (in == nullptr || phase->type(in) == Type::TOP) 1591 return false; // Wait stable graph 1592 } 1593 return true; 1594 } 1595 1596 //------------------------------split_through_phi------------------------------ 1597 // Check whether a call to 'split_through_phi' would split this load through the 1598 // Phi *base*. This method is essentially a copy of the validations performed 1599 // by 'split_through_phi'. The first use of this method was in EA code as part 1600 // of simplification of allocation merges. 1601 // Some differences from original method (split_through_phi): 1602 // - If base->is_CastPP(): base = base->in(1) 1603 bool LoadNode::can_split_through_phi_base(PhaseGVN* phase) { 1604 Node* mem = in(Memory); 1605 Node* address = in(Address); 1606 intptr_t ignore = 0; 1607 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1608 1609 if (base->is_CastPP()) { 1610 base = base->in(1); 1611 } 1612 1613 if (req() > 3 || base == nullptr || !base->is_Phi()) { 1614 return false; 1615 } 1616 1617 if (!mem->is_Phi()) { 1618 if (!MemNode::all_controls_dominate(mem, base->in(0))) { 1619 return false; 1620 } 1621 } else if (base->in(0) != mem->in(0)) { 1622 if (!MemNode::all_controls_dominate(mem, base->in(0))) { 1623 return false; 1624 } 1625 } 1626 1627 return true; 1628 } 1629 1630 //------------------------------split_through_phi------------------------------ 1631 // Split instance or boxed field load through Phi. 1632 Node* LoadNode::split_through_phi(PhaseGVN* phase, bool ignore_missing_instance_id) { 1633 if (req() > 3) { 1634 assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs"); 1635 // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account 1636 return nullptr; 1637 } 1638 Node* mem = in(Memory); 1639 Node* address = in(Address); 1640 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr(); 1641 1642 assert((t_oop != nullptr) && 1643 (ignore_missing_instance_id || 1644 t_oop->is_known_instance_field() || 1645 t_oop->is_ptr_to_boxed_value()), "invalid conditions"); 1646 1647 Compile* C = phase->C; 1648 intptr_t ignore = 0; 1649 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1650 bool base_is_phi = (base != nullptr) && base->is_Phi(); 1651 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() && 1652 (base != nullptr) && (base == address->in(AddPNode::Base)) && 1653 phase->type(base)->higher_equal(TypePtr::NOTNULL); 1654 1655 if (!((mem->is_Phi() || base_is_phi) && 1656 (ignore_missing_instance_id || load_boxed_values || t_oop->is_known_instance_field()))) { 1657 return nullptr; // Neither memory or base are Phi 1658 } 1659 1660 if (mem->is_Phi()) { 1661 if (!stable_phi(mem->as_Phi(), phase)) { 1662 return nullptr; // Wait stable graph 1663 } 1664 uint cnt = mem->req(); 1665 // Check for loop invariant memory. 1666 if (cnt == 3) { 1667 for (uint i = 1; i < cnt; i++) { 1668 Node* in = mem->in(i); 1669 Node* m = optimize_memory_chain(in, t_oop, this, phase); 1670 if (m == mem) { 1671 if (i == 1) { 1672 // if the first edge was a loop, check second edge too. 1673 // If both are replaceable - we are in an infinite loop 1674 Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase); 1675 if (n == mem) { 1676 break; 1677 } 1678 } 1679 set_req(Memory, mem->in(cnt - i)); 1680 return this; // made change 1681 } 1682 } 1683 } 1684 } 1685 if (base_is_phi) { 1686 if (!stable_phi(base->as_Phi(), phase)) { 1687 return nullptr; // Wait stable graph 1688 } 1689 uint cnt = base->req(); 1690 // Check for loop invariant memory. 1691 if (cnt == 3) { 1692 for (uint i = 1; i < cnt; i++) { 1693 if (base->in(i) == base) { 1694 return nullptr; // Wait stable graph 1695 } 1696 } 1697 } 1698 } 1699 1700 // Split through Phi (see original code in loopopts.cpp). 1701 assert(ignore_missing_instance_id || C->have_alias_type(t_oop), "instance should have alias type"); 1702 1703 // Do nothing here if Identity will find a value 1704 // (to avoid infinite chain of value phis generation). 1705 if (this != Identity(phase)) { 1706 return nullptr; 1707 } 1708 1709 // Select Region to split through. 1710 Node* region; 1711 DomResult dom_result = DomResult::Dominate; 1712 if (!base_is_phi) { 1713 assert(mem->is_Phi(), "sanity"); 1714 region = mem->in(0); 1715 // Skip if the region dominates some control edge of the address. 1716 // We will check `dom_result` later. 1717 dom_result = MemNode::maybe_all_controls_dominate(address, region); 1718 } else if (!mem->is_Phi()) { 1719 assert(base_is_phi, "sanity"); 1720 region = base->in(0); 1721 // Skip if the region dominates some control edge of the memory. 1722 // We will check `dom_result` later. 1723 dom_result = MemNode::maybe_all_controls_dominate(mem, region); 1724 } else if (base->in(0) != mem->in(0)) { 1725 assert(base_is_phi && mem->is_Phi(), "sanity"); 1726 dom_result = MemNode::maybe_all_controls_dominate(mem, base->in(0)); 1727 if (dom_result == DomResult::Dominate) { 1728 region = base->in(0); 1729 } else { 1730 dom_result = MemNode::maybe_all_controls_dominate(address, mem->in(0)); 1731 if (dom_result == DomResult::Dominate) { 1732 region = mem->in(0); 1733 } 1734 // Otherwise we encountered a complex graph. 1735 } 1736 } else { 1737 assert(base->in(0) == mem->in(0), "sanity"); 1738 region = mem->in(0); 1739 } 1740 1741 PhaseIterGVN* igvn = phase->is_IterGVN(); 1742 if (dom_result != DomResult::Dominate) { 1743 if (dom_result == DomResult::EncounteredDeadCode) { 1744 // There is some dead code which eventually will be removed in IGVN. 1745 // Once this is the case, we get an unambiguous dominance result. 1746 // Push the node to the worklist again until the dead code is removed. 1747 igvn->_worklist.push(this); 1748 } 1749 return nullptr; 1750 } 1751 1752 Node* phi = nullptr; 1753 const Type* this_type = this->bottom_type(); 1754 if (t_oop != nullptr && (t_oop->is_known_instance_field() || load_boxed_values)) { 1755 int this_index = C->get_alias_index(t_oop); 1756 int this_offset = t_oop->offset(); 1757 int this_iid = t_oop->is_known_instance_field() ? t_oop->instance_id() : base->_idx; 1758 phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset); 1759 } else if (ignore_missing_instance_id) { 1760 phi = new PhiNode(region, this_type, nullptr, mem->_idx); 1761 } else { 1762 return nullptr; 1763 } 1764 1765 for (uint i = 1; i < region->req(); i++) { 1766 Node* x; 1767 Node* the_clone = nullptr; 1768 Node* in = region->in(i); 1769 if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl && 1770 in != nullptr && in->is_OuterStripMinedLoop()) { 1771 // No node should go in the outer strip mined loop 1772 in = in->in(LoopNode::EntryControl); 1773 } 1774 if (in == nullptr || in == C->top()) { 1775 x = C->top(); // Dead path? Use a dead data op 1776 } else { 1777 x = this->clone(); // Else clone up the data op 1778 the_clone = x; // Remember for possible deletion. 1779 // Alter data node to use pre-phi inputs 1780 if (this->in(0) == region) { 1781 x->set_req(0, in); 1782 } else { 1783 x->set_req(0, nullptr); 1784 } 1785 if (mem->is_Phi() && (mem->in(0) == region)) { 1786 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone. 1787 } 1788 if (address->is_Phi() && address->in(0) == region) { 1789 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone 1790 } 1791 if (base_is_phi && (base->in(0) == region)) { 1792 Node* base_x = base->in(i); // Clone address for loads from boxed objects. 1793 Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset))); 1794 x->set_req(Address, adr_x); 1795 } 1796 } 1797 // Check for a 'win' on some paths 1798 const Type *t = x->Value(igvn); 1799 1800 bool singleton = t->singleton(); 1801 1802 // See comments in PhaseIdealLoop::split_thru_phi(). 1803 if (singleton && t == Type::TOP) { 1804 singleton &= region->is_Loop() && (i != LoopNode::EntryControl); 1805 } 1806 1807 if (singleton) { 1808 x = igvn->makecon(t); 1809 } else { 1810 // We now call Identity to try to simplify the cloned node. 1811 // Note that some Identity methods call phase->type(this). 1812 // Make sure that the type array is big enough for 1813 // our new node, even though we may throw the node away. 1814 // (This tweaking with igvn only works because x is a new node.) 1815 igvn->set_type(x, t); 1816 // If x is a TypeNode, capture any more-precise type permanently into Node 1817 // otherwise it will be not updated during igvn->transform since 1818 // igvn->type(x) is set to x->Value() already. 1819 x->raise_bottom_type(t); 1820 Node* y = x->Identity(igvn); 1821 if (y != x) { 1822 x = y; 1823 } else { 1824 y = igvn->hash_find_insert(x); 1825 if (y) { 1826 x = y; 1827 } else { 1828 // Else x is a new node we are keeping 1829 // We do not need register_new_node_with_optimizer 1830 // because set_type has already been called. 1831 igvn->_worklist.push(x); 1832 } 1833 } 1834 } 1835 if (x != the_clone && the_clone != nullptr) { 1836 igvn->remove_dead_node(the_clone); 1837 } 1838 phi->set_req(i, x); 1839 } 1840 // Record Phi 1841 igvn->register_new_node_with_optimizer(phi); 1842 return phi; 1843 } 1844 1845 AllocateNode* LoadNode::is_new_object_mark_load() const { 1846 if (Opcode() == Op_LoadX) { 1847 Node* address = in(MemNode::Address); 1848 AllocateNode* alloc = AllocateNode::Ideal_allocation(address); 1849 Node* mem = in(MemNode::Memory); 1850 if (alloc != nullptr && mem->is_Proj() && 1851 mem->in(0) != nullptr && 1852 mem->in(0) == alloc->initialization() && 1853 alloc->initialization()->proj_out_or_null(0) != nullptr) { 1854 return alloc; 1855 } 1856 } 1857 return nullptr; 1858 } 1859 1860 1861 //------------------------------Ideal------------------------------------------ 1862 // If the load is from Field memory and the pointer is non-null, it might be possible to 1863 // zero out the control input. 1864 // If the offset is constant and the base is an object allocation, 1865 // try to hook me up to the exact initializing store. 1866 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1867 if (has_pinned_control_dependency()) { 1868 return nullptr; 1869 } 1870 Node* p = MemNode::Ideal_common(phase, can_reshape); 1871 if (p) return (p == NodeSentinel) ? nullptr : p; 1872 1873 Node* ctrl = in(MemNode::Control); 1874 Node* address = in(MemNode::Address); 1875 bool progress = false; 1876 1877 bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) && 1878 phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes()); 1879 1880 // Skip up past a SafePoint control. Cannot do this for Stores because 1881 // pointer stores & cardmarks must stay on the same side of a SafePoint. 1882 if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint && 1883 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw && 1884 !addr_mark && 1885 (depends_only_on_test() || has_unknown_control_dependency())) { 1886 ctrl = ctrl->in(0); 1887 set_req(MemNode::Control,ctrl); 1888 progress = true; 1889 } 1890 1891 intptr_t ignore = 0; 1892 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1893 if (base != nullptr 1894 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) { 1895 // Check for useless control edge in some common special cases 1896 if (in(MemNode::Control) != nullptr 1897 && can_remove_control() 1898 && phase->type(base)->higher_equal(TypePtr::NOTNULL) 1899 && all_controls_dominate(base, phase->C->start())) { 1900 // A method-invariant, non-null address (constant or 'this' argument). 1901 set_req(MemNode::Control, nullptr); 1902 progress = true; 1903 } 1904 } 1905 1906 Node* mem = in(MemNode::Memory); 1907 const TypePtr *addr_t = phase->type(address)->isa_ptr(); 1908 1909 if (can_reshape && (addr_t != nullptr)) { 1910 // try to optimize our memory input 1911 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase); 1912 if (opt_mem != mem) { 1913 set_req_X(MemNode::Memory, opt_mem, phase); 1914 if (phase->type( opt_mem ) == Type::TOP) return nullptr; 1915 return this; 1916 } 1917 const TypeOopPtr *t_oop = addr_t->isa_oopptr(); 1918 if ((t_oop != nullptr) && 1919 (t_oop->is_known_instance_field() || 1920 t_oop->is_ptr_to_boxed_value())) { 1921 PhaseIterGVN *igvn = phase->is_IterGVN(); 1922 assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true"); 1923 if (igvn->_worklist.member(opt_mem)) { 1924 // Delay this transformation until memory Phi is processed. 1925 igvn->_worklist.push(this); 1926 return nullptr; 1927 } 1928 // Split instance field load through Phi. 1929 Node* result = split_through_phi(phase); 1930 if (result != nullptr) return result; 1931 1932 if (t_oop->is_ptr_to_boxed_value()) { 1933 Node* result = eliminate_autobox(igvn); 1934 if (result != nullptr) return result; 1935 } 1936 } 1937 } 1938 1939 // Is there a dominating load that loads the same value? Leave 1940 // anything that is not a load of a field/array element (like 1941 // barriers etc.) alone 1942 if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) { 1943 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 1944 Node *use = mem->fast_out(i); 1945 if (use != this && 1946 use->Opcode() == Opcode() && 1947 use->in(0) != nullptr && 1948 use->in(0) != in(0) && 1949 use->in(Address) == in(Address)) { 1950 Node* ctl = in(0); 1951 for (int i = 0; i < 10 && ctl != nullptr; i++) { 1952 ctl = IfNode::up_one_dom(ctl); 1953 if (ctl == use->in(0)) { 1954 set_req(0, use->in(0)); 1955 return this; 1956 } 1957 } 1958 } 1959 } 1960 } 1961 1962 // Check for prior store with a different base or offset; make Load 1963 // independent. Skip through any number of them. Bail out if the stores 1964 // are in an endless dead cycle and report no progress. This is a key 1965 // transform for Reflection. However, if after skipping through the Stores 1966 // we can't then fold up against a prior store do NOT do the transform as 1967 // this amounts to using the 'Oracle' model of aliasing. It leaves the same 1968 // array memory alive twice: once for the hoisted Load and again after the 1969 // bypassed Store. This situation only works if EVERYBODY who does 1970 // anti-dependence work knows how to bypass. I.e. we need all 1971 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is 1972 // the alias index stuff. So instead, peek through Stores and IFF we can 1973 // fold up, do so. 1974 Node* prev_mem = find_previous_store(phase); 1975 if (prev_mem != nullptr) { 1976 Node* value = can_see_arraycopy_value(prev_mem, phase); 1977 if (value != nullptr) { 1978 return value; 1979 } 1980 } 1981 // Steps (a), (b): Walk past independent stores to find an exact match. 1982 if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) { 1983 // (c) See if we can fold up on the spot, but don't fold up here. 1984 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or 1985 // just return a prior value, which is done by Identity calls. 1986 if (can_see_stored_value(prev_mem, phase)) { 1987 // Make ready for step (d): 1988 set_req_X(MemNode::Memory, prev_mem, phase); 1989 return this; 1990 } 1991 } 1992 1993 return progress ? this : nullptr; 1994 } 1995 1996 // Helper to recognize certain Klass fields which are invariant across 1997 // some group of array types (e.g., int[] or all T[] where T < Object). 1998 const Type* 1999 LoadNode::load_array_final_field(const TypeKlassPtr *tkls, 2000 ciKlass* klass) const { 2001 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) { 2002 // The field is Klass::_modifier_flags. Return its (constant) value. 2003 // (Folds up the 2nd indirection in aClassConstant.getModifiers().) 2004 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags"); 2005 return TypeInt::make(klass->modifier_flags()); 2006 } 2007 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) { 2008 // The field is Klass::_access_flags. Return its (constant) value. 2009 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 2010 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags"); 2011 return TypeInt::make(klass->access_flags()); 2012 } 2013 if (tkls->offset() == in_bytes(Klass::misc_flags_offset())) { 2014 // The field is Klass::_misc_flags. Return its (constant) value. 2015 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 2016 assert(this->Opcode() == Op_LoadUB, "must load an unsigned byte from _misc_flags"); 2017 return TypeInt::make(klass->misc_flags()); 2018 } 2019 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) { 2020 // The field is Klass::_layout_helper. Return its constant value if known. 2021 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper"); 2022 return TypeInt::make(klass->layout_helper()); 2023 } 2024 2025 // No match. 2026 return nullptr; 2027 } 2028 2029 //------------------------------Value----------------------------------------- 2030 const Type* LoadNode::Value(PhaseGVN* phase) const { 2031 // Either input is TOP ==> the result is TOP 2032 Node* mem = in(MemNode::Memory); 2033 const Type *t1 = phase->type(mem); 2034 if (t1 == Type::TOP) return Type::TOP; 2035 Node* adr = in(MemNode::Address); 2036 const TypePtr* tp = phase->type(adr)->isa_ptr(); 2037 if (tp == nullptr || tp->empty()) return Type::TOP; 2038 int off = tp->offset(); 2039 assert(off != Type::OffsetTop, "case covered by TypePtr::empty"); 2040 Compile* C = phase->C; 2041 2042 // Try to guess loaded type from pointer type 2043 if (tp->isa_aryptr()) { 2044 const TypeAryPtr* ary = tp->is_aryptr(); 2045 const Type* t = ary->elem(); 2046 2047 // Determine whether the reference is beyond the header or not, by comparing 2048 // the offset against the offset of the start of the array's data. 2049 // Different array types begin at slightly different offsets (12 vs. 16). 2050 // We choose T_BYTE as an example base type that is least restrictive 2051 // as to alignment, which will therefore produce the smallest 2052 // possible base offset. 2053 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE); 2054 const bool off_beyond_header = (off >= min_base_off); 2055 2056 // Try to constant-fold a stable array element. 2057 if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) { 2058 // Make sure the reference is not into the header and the offset is constant 2059 ciObject* aobj = ary->const_oop(); 2060 if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) { 2061 int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0); 2062 const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off, 2063 stable_dimension, 2064 memory_type(), is_unsigned()); 2065 if (con_type != nullptr) { 2066 return con_type; 2067 } 2068 } 2069 } 2070 2071 // Don't do this for integer types. There is only potential profit if 2072 // the element type t is lower than _type; that is, for int types, if _type is 2073 // more restrictive than t. This only happens here if one is short and the other 2074 // char (both 16 bits), and in those cases we've made an intentional decision 2075 // to use one kind of load over the other. See AndINode::Ideal and 4965907. 2076 // Also, do not try to narrow the type for a LoadKlass, regardless of offset. 2077 // 2078 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8)) 2079 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier 2080 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been 2081 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed, 2082 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any. 2083 // In fact, that could have been the original type of p1, and p1 could have 2084 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the 2085 // expression (LShiftL quux 3) independently optimized to the constant 8. 2086 if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr) 2087 && (_type->isa_vect() == nullptr) 2088 && !ary->is_flat() 2089 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) { 2090 // t might actually be lower than _type, if _type is a unique 2091 // concrete subclass of abstract class t. 2092 if (off_beyond_header || off == Type::OffsetBot) { // is the offset beyond the header? 2093 const Type* jt = t->join_speculative(_type); 2094 // In any case, do not allow the join, per se, to empty out the type. 2095 if (jt->empty() && !t->empty()) { 2096 // This can happen if a interface-typed array narrows to a class type. 2097 jt = _type; 2098 } 2099 #ifdef ASSERT 2100 if (phase->C->eliminate_boxing() && adr->is_AddP()) { 2101 // The pointers in the autobox arrays are always non-null 2102 Node* base = adr->in(AddPNode::Base); 2103 if ((base != nullptr) && base->is_DecodeN()) { 2104 // Get LoadN node which loads IntegerCache.cache field 2105 base = base->in(1); 2106 } 2107 if ((base != nullptr) && base->is_Con()) { 2108 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr(); 2109 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 2110 // It could be narrow oop 2111 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity"); 2112 } 2113 } 2114 } 2115 #endif 2116 return jt; 2117 } 2118 } 2119 } else if (tp->base() == Type::InstPtr) { 2120 assert( off != Type::OffsetBot || 2121 // arrays can be cast to Objects 2122 !tp->isa_instptr() || 2123 tp->is_instptr()->instance_klass()->is_java_lang_Object() || 2124 // Default value load 2125 tp->is_instptr()->instance_klass() == ciEnv::current()->Class_klass() || 2126 // unsafe field access may not have a constant offset 2127 C->has_unsafe_access(), 2128 "Field accesses must be precise" ); 2129 // For oop loads, we expect the _type to be precise. 2130 2131 const TypeInstPtr* tinst = tp->is_instptr(); 2132 BasicType bt = memory_type(); 2133 2134 // Optimize loads from constant fields. 2135 ciObject* const_oop = tinst->const_oop(); 2136 if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) { 2137 const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), bt); 2138 if (con_type != nullptr) { 2139 return con_type; 2140 } 2141 } 2142 } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) { 2143 assert(off != Type::OffsetBot || 2144 !tp->isa_instklassptr() || 2145 // arrays can be cast to Objects 2146 tp->isa_instklassptr()->instance_klass()->is_java_lang_Object() || 2147 // also allow array-loading from the primary supertype 2148 // array during subtype checks 2149 Opcode() == Op_LoadKlass, 2150 "Field accesses must be precise"); 2151 // For klass/static loads, we expect the _type to be precise 2152 } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) { 2153 /* With mirrors being an indirect in the Klass* 2154 * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset)) 2155 * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass). 2156 * 2157 * So check the type and klass of the node before the LoadP. 2158 */ 2159 Node* adr2 = adr->in(MemNode::Address); 2160 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2161 if (tkls != nullptr && !StressReflectiveCode) { 2162 if (tkls->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) { 2163 ciKlass* klass = tkls->exact_klass(); 2164 assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2165 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2166 return TypeInstPtr::make(klass->java_mirror()); 2167 } 2168 } 2169 } 2170 2171 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2172 if (tkls != nullptr) { 2173 if (tkls->is_loaded() && tkls->klass_is_exact()) { 2174 ciKlass* klass = tkls->exact_klass(); 2175 // We are loading a field from a Klass metaobject whose identity 2176 // is known at compile time (the type is "exact" or "precise"). 2177 // Check for fields we know are maintained as constants by the VM. 2178 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) { 2179 // The field is Klass::_super_check_offset. Return its (constant) value. 2180 // (Folds up type checking code.) 2181 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset"); 2182 return TypeInt::make(klass->super_check_offset()); 2183 } 2184 // Compute index into primary_supers array 2185 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2186 // Check for overflowing; use unsigned compare to handle the negative case. 2187 if( depth < ciKlass::primary_super_limit() ) { 2188 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2189 // (Folds up type checking code.) 2190 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2191 ciKlass *ss = klass->super_of_depth(depth); 2192 return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR; 2193 } 2194 const Type* aift = load_array_final_field(tkls, klass); 2195 if (aift != nullptr) return aift; 2196 } 2197 2198 // We can still check if we are loading from the primary_supers array at a 2199 // shallow enough depth. Even though the klass is not exact, entries less 2200 // than or equal to its super depth are correct. 2201 if (tkls->is_loaded()) { 2202 ciKlass* klass = nullptr; 2203 if (tkls->isa_instklassptr()) { 2204 klass = tkls->is_instklassptr()->instance_klass(); 2205 } else { 2206 int dims; 2207 const Type* inner = tkls->is_aryklassptr()->base_element_type(dims); 2208 if (inner->isa_instklassptr()) { 2209 klass = inner->is_instklassptr()->instance_klass(); 2210 klass = ciObjArrayKlass::make(klass, dims); 2211 } 2212 } 2213 if (klass != nullptr) { 2214 // Compute index into primary_supers array 2215 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2216 // Check for overflowing; use unsigned compare to handle the negative case. 2217 if (depth < ciKlass::primary_super_limit() && 2218 depth <= klass->super_depth()) { // allow self-depth checks to handle self-check case 2219 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2220 // (Folds up type checking code.) 2221 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2222 ciKlass *ss = klass->super_of_depth(depth); 2223 return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR; 2224 } 2225 } 2226 } 2227 2228 // If the type is enough to determine that the thing is not an array, 2229 // we can give the layout_helper a positive interval type. 2230 // This will help short-circuit some reflective code. 2231 if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) && 2232 tkls->isa_instklassptr() && // not directly typed as an array 2233 !tkls->is_instklassptr()->instance_klass()->is_java_lang_Object() // not the supertype of all T[] and specifically not Serializable & Cloneable 2234 ) { 2235 // Note: When interfaces are reliable, we can narrow the interface 2236 // test to (klass != Serializable && klass != Cloneable). 2237 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper"); 2238 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false); 2239 // The key property of this type is that it folds up tests 2240 // for array-ness, since it proves that the layout_helper is positive. 2241 // Thus, a generic value like the basic object layout helper works fine. 2242 return TypeInt::make(min_size, max_jint, Type::WidenMin); 2243 } 2244 } 2245 2246 // If we are loading from a freshly-allocated object, produce a zero, 2247 // if the load is provably beyond the header of the object. 2248 // (Also allow a variable load from a fresh array to produce zero.) 2249 const TypeOopPtr *tinst = tp->isa_oopptr(); 2250 bool is_instance = (tinst != nullptr) && tinst->is_known_instance_field(); 2251 bool is_boxed_value = (tinst != nullptr) && tinst->is_ptr_to_boxed_value(); 2252 if (ReduceFieldZeroing || is_instance || is_boxed_value) { 2253 Node* value = can_see_stored_value(mem,phase); 2254 if (value != nullptr && value->is_Con()) { 2255 assert(value->bottom_type()->higher_equal(_type),"sanity"); 2256 return value->bottom_type(); 2257 } 2258 } 2259 2260 bool is_vect = (_type->isa_vect() != nullptr); 2261 if (is_instance && !is_vect) { 2262 // If we have an instance type and our memory input is the 2263 // programs's initial memory state, there is no matching store, 2264 // so just return a zero of the appropriate type - 2265 // except if it is vectorized - then we have no zero constant. 2266 Node *mem = in(MemNode::Memory); 2267 if (mem->is_Parm() && mem->in(0)->is_Start()) { 2268 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm"); 2269 return Type::get_zero_type(_type->basic_type()); 2270 } 2271 } 2272 Node* alloc = is_new_object_mark_load(); 2273 if (alloc != nullptr) { 2274 if (EnableValhalla) { 2275 // The mark word may contain property bits (inline, flat, null-free) 2276 Node* klass_node = alloc->in(AllocateNode::KlassNode); 2277 const TypeKlassPtr* tkls = phase->type(klass_node)->isa_klassptr(); 2278 if (tkls != nullptr && tkls->is_loaded() && tkls->klass_is_exact()) { 2279 return TypeX::make(tkls->exact_klass()->prototype_header().value()); 2280 } 2281 } else { 2282 return TypeX::make(markWord::prototype().value()); 2283 } 2284 } 2285 2286 return _type; 2287 } 2288 2289 //------------------------------match_edge------------------------------------- 2290 // Do we Match on this edge index or not? Match only the address. 2291 uint LoadNode::match_edge(uint idx) const { 2292 return idx == MemNode::Address; 2293 } 2294 2295 //--------------------------LoadBNode::Ideal-------------------------------------- 2296 // 2297 // If the previous store is to the same address as this load, 2298 // and the value stored was larger than a byte, replace this load 2299 // with the value stored truncated to a byte. If no truncation is 2300 // needed, the replacement is done in LoadNode::Identity(). 2301 // 2302 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2303 Node* mem = in(MemNode::Memory); 2304 Node* value = can_see_stored_value(mem,phase); 2305 if (value != nullptr) { 2306 Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false); 2307 if (narrow != value) { 2308 return narrow; 2309 } 2310 } 2311 // Identity call will handle the case where truncation is not needed. 2312 return LoadNode::Ideal(phase, can_reshape); 2313 } 2314 2315 const Type* LoadBNode::Value(PhaseGVN* phase) const { 2316 Node* mem = in(MemNode::Memory); 2317 Node* value = can_see_stored_value(mem,phase); 2318 if (value != nullptr && value->is_Con() && 2319 !value->bottom_type()->higher_equal(_type)) { 2320 // If the input to the store does not fit with the load's result type, 2321 // it must be truncated. We can't delay until Ideal call since 2322 // a singleton Value is needed for split_thru_phi optimization. 2323 int con = value->get_int(); 2324 return TypeInt::make((con << 24) >> 24); 2325 } 2326 return LoadNode::Value(phase); 2327 } 2328 2329 //--------------------------LoadUBNode::Ideal------------------------------------- 2330 // 2331 // If the previous store is to the same address as this load, 2332 // and the value stored was larger than a byte, replace this load 2333 // with the value stored truncated to a byte. If no truncation is 2334 // needed, the replacement is done in LoadNode::Identity(). 2335 // 2336 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2337 Node* mem = in(MemNode::Memory); 2338 Node* value = can_see_stored_value(mem, phase); 2339 if (value != nullptr) { 2340 Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false); 2341 if (narrow != value) { 2342 return narrow; 2343 } 2344 } 2345 // Identity call will handle the case where truncation is not needed. 2346 return LoadNode::Ideal(phase, can_reshape); 2347 } 2348 2349 const Type* LoadUBNode::Value(PhaseGVN* phase) const { 2350 Node* mem = in(MemNode::Memory); 2351 Node* value = can_see_stored_value(mem,phase); 2352 if (value != nullptr && value->is_Con() && 2353 !value->bottom_type()->higher_equal(_type)) { 2354 // If the input to the store does not fit with the load's result type, 2355 // it must be truncated. We can't delay until Ideal call since 2356 // a singleton Value is needed for split_thru_phi optimization. 2357 int con = value->get_int(); 2358 return TypeInt::make(con & 0xFF); 2359 } 2360 return LoadNode::Value(phase); 2361 } 2362 2363 //--------------------------LoadUSNode::Ideal------------------------------------- 2364 // 2365 // If the previous store is to the same address as this load, 2366 // and the value stored was larger than a char, replace this load 2367 // with the value stored truncated to a char. If no truncation is 2368 // needed, the replacement is done in LoadNode::Identity(). 2369 // 2370 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2371 Node* mem = in(MemNode::Memory); 2372 Node* value = can_see_stored_value(mem,phase); 2373 if (value != nullptr) { 2374 Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false); 2375 if (narrow != value) { 2376 return narrow; 2377 } 2378 } 2379 // Identity call will handle the case where truncation is not needed. 2380 return LoadNode::Ideal(phase, can_reshape); 2381 } 2382 2383 const Type* LoadUSNode::Value(PhaseGVN* phase) const { 2384 Node* mem = in(MemNode::Memory); 2385 Node* value = can_see_stored_value(mem,phase); 2386 if (value != nullptr && value->is_Con() && 2387 !value->bottom_type()->higher_equal(_type)) { 2388 // If the input to the store does not fit with the load's result type, 2389 // it must be truncated. We can't delay until Ideal call since 2390 // a singleton Value is needed for split_thru_phi optimization. 2391 int con = value->get_int(); 2392 return TypeInt::make(con & 0xFFFF); 2393 } 2394 return LoadNode::Value(phase); 2395 } 2396 2397 //--------------------------LoadSNode::Ideal-------------------------------------- 2398 // 2399 // If the previous store is to the same address as this load, 2400 // and the value stored was larger than a short, replace this load 2401 // with the value stored truncated to a short. If no truncation is 2402 // needed, the replacement is done in LoadNode::Identity(). 2403 // 2404 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2405 Node* mem = in(MemNode::Memory); 2406 Node* value = can_see_stored_value(mem,phase); 2407 if (value != nullptr) { 2408 Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false); 2409 if (narrow != value) { 2410 return narrow; 2411 } 2412 } 2413 // Identity call will handle the case where truncation is not needed. 2414 return LoadNode::Ideal(phase, can_reshape); 2415 } 2416 2417 const Type* LoadSNode::Value(PhaseGVN* phase) const { 2418 Node* mem = in(MemNode::Memory); 2419 Node* value = can_see_stored_value(mem,phase); 2420 if (value != nullptr && value->is_Con() && 2421 !value->bottom_type()->higher_equal(_type)) { 2422 // If the input to the store does not fit with the load's result type, 2423 // it must be truncated. We can't delay until Ideal call since 2424 // a singleton Value is needed for split_thru_phi optimization. 2425 int con = value->get_int(); 2426 return TypeInt::make((con << 16) >> 16); 2427 } 2428 return LoadNode::Value(phase); 2429 } 2430 2431 //============================================================================= 2432 //----------------------------LoadKlassNode::make------------------------------ 2433 // Polymorphic factory method: 2434 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, 2435 const TypeKlassPtr* tk) { 2436 // sanity check the alias category against the created node type 2437 const TypePtr *adr_type = adr->bottom_type()->isa_ptr(); 2438 assert(adr_type != nullptr, "expecting TypeKlassPtr"); 2439 #ifdef _LP64 2440 if (adr_type->is_ptr_to_narrowklass()) { 2441 assert(UseCompressedClassPointers, "no compressed klasses"); 2442 Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered)); 2443 return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr()); 2444 } 2445 #endif 2446 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop"); 2447 return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered); 2448 } 2449 2450 //------------------------------Value------------------------------------------ 2451 const Type* LoadKlassNode::Value(PhaseGVN* phase) const { 2452 return klass_value_common(phase); 2453 } 2454 2455 // In most cases, LoadKlassNode does not have the control input set. If the control 2456 // input is set, it must not be removed (by LoadNode::Ideal()). 2457 bool LoadKlassNode::can_remove_control() const { 2458 return false; 2459 } 2460 2461 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const { 2462 // Either input is TOP ==> the result is TOP 2463 const Type *t1 = phase->type( in(MemNode::Memory) ); 2464 if (t1 == Type::TOP) return Type::TOP; 2465 Node *adr = in(MemNode::Address); 2466 const Type *t2 = phase->type( adr ); 2467 if (t2 == Type::TOP) return Type::TOP; 2468 const TypePtr *tp = t2->is_ptr(); 2469 if (TypePtr::above_centerline(tp->ptr()) || 2470 tp->ptr() == TypePtr::Null) return Type::TOP; 2471 2472 // Return a more precise klass, if possible 2473 const TypeInstPtr *tinst = tp->isa_instptr(); 2474 if (tinst != nullptr) { 2475 ciInstanceKlass* ik = tinst->instance_klass(); 2476 int offset = tinst->offset(); 2477 if (ik == phase->C->env()->Class_klass() 2478 && (offset == java_lang_Class::klass_offset() || 2479 offset == java_lang_Class::array_klass_offset())) { 2480 // We are loading a special hidden field from a Class mirror object, 2481 // the field which points to the VM's Klass metaobject. 2482 bool is_null_free_array = false; 2483 ciType* t = tinst->java_mirror_type(&is_null_free_array); 2484 // java_mirror_type returns non-null for compile-time Class constants. 2485 if (t != nullptr) { 2486 // constant oop => constant klass 2487 if (offset == java_lang_Class::array_klass_offset()) { 2488 if (t->is_void()) { 2489 // We cannot create a void array. Since void is a primitive type return null 2490 // klass. Users of this result need to do a null check on the returned klass. 2491 return TypePtr::NULL_PTR; 2492 } 2493 const TypeKlassPtr* tklass = TypeKlassPtr::make(ciArrayKlass::make(t), Type::trust_interfaces); 2494 if (is_null_free_array) { 2495 tklass = tklass->is_aryklassptr()->cast_to_null_free(); 2496 } 2497 return tklass; 2498 } 2499 if (!t->is_klass()) { 2500 // a primitive Class (e.g., int.class) has null for a klass field 2501 return TypePtr::NULL_PTR; 2502 } 2503 // (Folds up the 1st indirection in aClassConstant.getModifiers().) 2504 const TypeKlassPtr* tklass = TypeKlassPtr::make(t->as_klass(), Type::trust_interfaces); 2505 if (is_null_free_array) { 2506 tklass = tklass->is_aryklassptr()->cast_to_null_free(); 2507 } 2508 return tklass; 2509 } 2510 // non-constant mirror, so we can't tell what's going on 2511 } 2512 if (!tinst->is_loaded()) 2513 return _type; // Bail out if not loaded 2514 if (offset == oopDesc::klass_offset_in_bytes()) { 2515 return tinst->as_klass_type(true); 2516 } 2517 } 2518 2519 // Check for loading klass from an array 2520 const TypeAryPtr* tary = tp->isa_aryptr(); 2521 if (tary != nullptr && 2522 tary->offset() == oopDesc::klass_offset_in_bytes()) { 2523 return tary->as_klass_type(true); 2524 } 2525 2526 // Check for loading klass from an array klass 2527 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2528 if (tkls != nullptr && !StressReflectiveCode) { 2529 if (!tkls->is_loaded()) 2530 return _type; // Bail out if not loaded 2531 if (tkls->isa_aryklassptr() && tkls->is_aryklassptr()->elem()->isa_klassptr() && 2532 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) { 2533 // // Always returning precise element type is incorrect, 2534 // // e.g., element type could be object and array may contain strings 2535 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0); 2536 2537 // The array's TypeKlassPtr was declared 'precise' or 'not precise' 2538 // according to the element type's subclassing. 2539 return tkls->is_aryklassptr()->elem()->isa_klassptr()->cast_to_exactness(tkls->klass_is_exact()); 2540 } 2541 if (tkls->isa_instklassptr() != nullptr && tkls->klass_is_exact() && 2542 tkls->offset() == in_bytes(Klass::super_offset())) { 2543 ciKlass* sup = tkls->is_instklassptr()->instance_klass()->super(); 2544 // The field is Klass::_super. Return its (constant) value. 2545 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().) 2546 return sup ? TypeKlassPtr::make(sup, Type::trust_interfaces) : TypePtr::NULL_PTR; 2547 } 2548 } 2549 2550 if (tkls != nullptr && !UseSecondarySupersCache 2551 && tkls->offset() == in_bytes(Klass::secondary_super_cache_offset())) { 2552 // Treat Klass::_secondary_super_cache as a constant when the cache is disabled. 2553 return TypePtr::NULL_PTR; 2554 } 2555 2556 // Bailout case 2557 return LoadNode::Value(phase); 2558 } 2559 2560 //------------------------------Identity--------------------------------------- 2561 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k. 2562 // Also feed through the klass in Allocate(...klass...)._klass. 2563 Node* LoadKlassNode::Identity(PhaseGVN* phase) { 2564 return klass_identity_common(phase); 2565 } 2566 2567 Node* LoadNode::klass_identity_common(PhaseGVN* phase) { 2568 Node* x = LoadNode::Identity(phase); 2569 if (x != this) return x; 2570 2571 // Take apart the address into an oop and offset. 2572 // Return 'this' if we cannot. 2573 Node* adr = in(MemNode::Address); 2574 intptr_t offset = 0; 2575 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2576 if (base == nullptr) return this; 2577 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr(); 2578 if (toop == nullptr) return this; 2579 2580 // Step over potential GC barrier for OopHandle resolve 2581 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2582 if (bs->is_gc_barrier_node(base)) { 2583 base = bs->step_over_gc_barrier(base); 2584 } 2585 2586 // We can fetch the klass directly through an AllocateNode. 2587 // This works even if the klass is not constant (clone or newArray). 2588 if (offset == oopDesc::klass_offset_in_bytes()) { 2589 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase); 2590 if (allocated_klass != nullptr) { 2591 return allocated_klass; 2592 } 2593 } 2594 2595 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*. 2596 // See inline_native_Class_query for occurrences of these patterns. 2597 // Java Example: x.getClass().isAssignableFrom(y) 2598 // 2599 // This improves reflective code, often making the Class 2600 // mirror go completely dead. (Current exception: Class 2601 // mirrors may appear in debug info, but we could clean them out by 2602 // introducing a new debug info operator for Klass.java_mirror). 2603 2604 if (toop->isa_instptr() && toop->is_instptr()->instance_klass() == phase->C->env()->Class_klass() 2605 && offset == java_lang_Class::klass_offset()) { 2606 if (base->is_Load()) { 2607 Node* base2 = base->in(MemNode::Address); 2608 if (base2->is_Load()) { /* direct load of a load which is the OopHandle */ 2609 Node* adr2 = base2->in(MemNode::Address); 2610 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2611 if (tkls != nullptr && !tkls->empty() 2612 && (tkls->isa_instklassptr() || tkls->isa_aryklassptr()) 2613 && adr2->is_AddP() 2614 ) { 2615 int mirror_field = in_bytes(Klass::java_mirror_offset()); 2616 if (tkls->offset() == mirror_field) { 2617 return adr2->in(AddPNode::Base); 2618 } 2619 } 2620 } 2621 } 2622 } 2623 2624 return this; 2625 } 2626 2627 LoadNode* LoadNode::clone_pinned() const { 2628 LoadNode* ld = clone()->as_Load(); 2629 ld->_control_dependency = UnknownControl; 2630 return ld; 2631 } 2632 2633 2634 //------------------------------Value------------------------------------------ 2635 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const { 2636 const Type *t = klass_value_common(phase); 2637 if (t == Type::TOP) 2638 return t; 2639 2640 return t->make_narrowklass(); 2641 } 2642 2643 //------------------------------Identity--------------------------------------- 2644 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k. 2645 // Also feed through the klass in Allocate(...klass...)._klass. 2646 Node* LoadNKlassNode::Identity(PhaseGVN* phase) { 2647 Node *x = klass_identity_common(phase); 2648 2649 const Type *t = phase->type( x ); 2650 if( t == Type::TOP ) return x; 2651 if( t->isa_narrowklass()) return x; 2652 assert (!t->isa_narrowoop(), "no narrow oop here"); 2653 2654 return phase->transform(new EncodePKlassNode(x, t->make_narrowklass())); 2655 } 2656 2657 //------------------------------Value----------------------------------------- 2658 const Type* LoadRangeNode::Value(PhaseGVN* phase) const { 2659 // Either input is TOP ==> the result is TOP 2660 const Type *t1 = phase->type( in(MemNode::Memory) ); 2661 if( t1 == Type::TOP ) return Type::TOP; 2662 Node *adr = in(MemNode::Address); 2663 const Type *t2 = phase->type( adr ); 2664 if( t2 == Type::TOP ) return Type::TOP; 2665 const TypePtr *tp = t2->is_ptr(); 2666 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP; 2667 const TypeAryPtr *tap = tp->isa_aryptr(); 2668 if( !tap ) return _type; 2669 return tap->size(); 2670 } 2671 2672 //-------------------------------Ideal--------------------------------------- 2673 // Feed through the length in AllocateArray(...length...)._length. 2674 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2675 Node* p = MemNode::Ideal_common(phase, can_reshape); 2676 if (p) return (p == NodeSentinel) ? nullptr : p; 2677 2678 // Take apart the address into an oop and offset. 2679 // Return 'this' if we cannot. 2680 Node* adr = in(MemNode::Address); 2681 intptr_t offset = 0; 2682 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2683 if (base == nullptr) return nullptr; 2684 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2685 if (tary == nullptr) return nullptr; 2686 2687 // We can fetch the length directly through an AllocateArrayNode. 2688 // This works even if the length is not constant (clone or newArray). 2689 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2690 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base); 2691 if (alloc != nullptr) { 2692 Node* allocated_length = alloc->Ideal_length(); 2693 Node* len = alloc->make_ideal_length(tary, phase); 2694 if (allocated_length != len) { 2695 // New CastII improves on this. 2696 return len; 2697 } 2698 } 2699 } 2700 2701 return nullptr; 2702 } 2703 2704 //------------------------------Identity--------------------------------------- 2705 // Feed through the length in AllocateArray(...length...)._length. 2706 Node* LoadRangeNode::Identity(PhaseGVN* phase) { 2707 Node* x = LoadINode::Identity(phase); 2708 if (x != this) return x; 2709 2710 // Take apart the address into an oop and offset. 2711 // Return 'this' if we cannot. 2712 Node* adr = in(MemNode::Address); 2713 intptr_t offset = 0; 2714 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2715 if (base == nullptr) return this; 2716 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2717 if (tary == nullptr) return this; 2718 2719 // We can fetch the length directly through an AllocateArrayNode. 2720 // This works even if the length is not constant (clone or newArray). 2721 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2722 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base); 2723 if (alloc != nullptr) { 2724 Node* allocated_length = alloc->Ideal_length(); 2725 // Do not allow make_ideal_length to allocate a CastII node. 2726 Node* len = alloc->make_ideal_length(tary, phase, false); 2727 if (allocated_length == len) { 2728 // Return allocated_length only if it would not be improved by a CastII. 2729 return allocated_length; 2730 } 2731 } 2732 } 2733 2734 return this; 2735 2736 } 2737 2738 //============================================================================= 2739 //---------------------------StoreNode::make----------------------------------- 2740 // Polymorphic factory method: 2741 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) { 2742 assert((mo == unordered || mo == release), "unexpected"); 2743 Compile* C = gvn.C; 2744 assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 2745 ctl != nullptr, "raw memory operations should have control edge"); 2746 2747 switch (bt) { 2748 case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case 2749 case T_BYTE: return new StoreBNode(ctl, mem, adr, adr_type, val, mo); 2750 case T_INT: return new StoreINode(ctl, mem, adr, adr_type, val, mo); 2751 case T_CHAR: 2752 case T_SHORT: return new StoreCNode(ctl, mem, adr, adr_type, val, mo); 2753 case T_LONG: return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2754 case T_FLOAT: return new StoreFNode(ctl, mem, adr, adr_type, val, mo); 2755 case T_DOUBLE: return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2756 case T_METADATA: 2757 case T_ADDRESS: 2758 case T_OBJECT: 2759 #ifdef _LP64 2760 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 2761 val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop())); 2762 return new StoreNNode(ctl, mem, adr, adr_type, val, mo); 2763 } else if (adr->bottom_type()->is_ptr_to_narrowklass() || 2764 (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() && 2765 adr->bottom_type()->isa_rawptr())) { 2766 val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass())); 2767 return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo); 2768 } 2769 #endif 2770 { 2771 return new StorePNode(ctl, mem, adr, adr_type, val, mo); 2772 } 2773 default: 2774 ShouldNotReachHere(); 2775 return (StoreNode*)nullptr; 2776 } 2777 } 2778 2779 //--------------------------bottom_type---------------------------------------- 2780 const Type *StoreNode::bottom_type() const { 2781 return Type::MEMORY; 2782 } 2783 2784 //------------------------------hash------------------------------------------- 2785 uint StoreNode::hash() const { 2786 // unroll addition of interesting fields 2787 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn); 2788 2789 // Since they are not commoned, do not hash them: 2790 return NO_HASH; 2791 } 2792 2793 // Link together multiple stores (B/S/C/I) into a longer one. 2794 // 2795 // Example: _store = StoreB[i+3] 2796 // 2797 // RangeCheck[i+0] RangeCheck[i+0] 2798 // StoreB[i+0] 2799 // RangeCheck[i+3] RangeCheck[i+3] 2800 // StoreB[i+1] --> pass: fail: 2801 // StoreB[i+2] StoreI[i+0] StoreB[i+0] 2802 // StoreB[i+3] 2803 // 2804 // The 4 StoreB are merged into a single StoreI node. We have to be careful with RangeCheck[i+1]: before 2805 // the optimization, if this RangeCheck[i+1] fails, then we execute only StoreB[i+0], and then trap. After 2806 // the optimization, the new StoreI[i+0] is on the passing path of RangeCheck[i+3], and StoreB[i+0] on the 2807 // failing path. 2808 // 2809 // Note: For normal array stores, every store at first has a RangeCheck. But they can be removed with: 2810 // - RCE (RangeCheck Elimination): the RangeChecks in the loop are hoisted out and before the loop, 2811 // and possibly no RangeChecks remain between the stores. 2812 // - RangeCheck smearing: the earlier RangeChecks are adjusted such that they cover later RangeChecks, 2813 // and those later RangeChecks can be removed. Example: 2814 // 2815 // RangeCheck[i+0] RangeCheck[i+0] <- before first store 2816 // StoreB[i+0] StoreB[i+0] <- first store 2817 // RangeCheck[i+1] --> smeared --> RangeCheck[i+3] <- only RC between first and last store 2818 // StoreB[i+1] StoreB[i+1] <- second store 2819 // RangeCheck[i+2] --> removed 2820 // StoreB[i+2] StoreB[i+2] 2821 // RangeCheck[i+3] --> removed 2822 // StoreB[i+3] StoreB[i+3] <- last store 2823 // 2824 // Thus, it is a common pattern that between the first and last store in a chain 2825 // of adjacent stores there remains exactly one RangeCheck, located between the 2826 // first and the second store (e.g. RangeCheck[i+3]). 2827 // 2828 class MergePrimitiveStores : public StackObj { 2829 private: 2830 PhaseGVN* const _phase; 2831 StoreNode* const _store; 2832 2833 NOT_PRODUCT( const CHeapBitMap &_trace_tags; ) 2834 2835 public: 2836 MergePrimitiveStores(PhaseGVN* phase, StoreNode* store) : 2837 _phase(phase), _store(store) 2838 NOT_PRODUCT( COMMA _trace_tags(Compile::current()->directive()->trace_merge_stores_tags()) ) 2839 {} 2840 2841 StoreNode* run(); 2842 2843 private: 2844 bool is_compatible_store(const StoreNode* other_store) const; 2845 bool is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const; 2846 bool is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const; 2847 static bool is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out); 2848 enum CFGStatus { SuccessNoRangeCheck, SuccessWithRangeCheck, Failure }; 2849 static CFGStatus cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store); 2850 2851 class Status { 2852 private: 2853 StoreNode* _found_store; 2854 bool _found_range_check; 2855 2856 Status(StoreNode* found_store, bool found_range_check) 2857 : _found_store(found_store), _found_range_check(found_range_check) {} 2858 2859 public: 2860 StoreNode* found_store() const { return _found_store; } 2861 bool found_range_check() const { return _found_range_check; } 2862 static Status make_failure() { return Status(nullptr, false); } 2863 2864 static Status make(StoreNode* found_store, const CFGStatus cfg_status) { 2865 if (cfg_status == CFGStatus::Failure) { 2866 return Status::make_failure(); 2867 } 2868 return Status(found_store, cfg_status == CFGStatus::SuccessWithRangeCheck); 2869 } 2870 2871 #ifndef PRODUCT 2872 void print_on(outputStream* st) const { 2873 if (_found_store == nullptr) { 2874 st->print_cr("None"); 2875 } else { 2876 st->print_cr("Found[%d %s, %s]", _found_store->_idx, _found_store->Name(), 2877 _found_range_check ? "RC" : "no-RC"); 2878 } 2879 } 2880 #endif 2881 }; 2882 2883 Status find_adjacent_use_store(const StoreNode* def_store) const; 2884 Status find_adjacent_def_store(const StoreNode* use_store) const; 2885 Status find_use_store(const StoreNode* def_store) const; 2886 Status find_def_store(const StoreNode* use_store) const; 2887 Status find_use_store_unidirectional(const StoreNode* def_store) const; 2888 Status find_def_store_unidirectional(const StoreNode* use_store) const; 2889 2890 void collect_merge_list(Node_List& merge_list) const; 2891 Node* make_merged_input_value(const Node_List& merge_list); 2892 StoreNode* make_merged_store(const Node_List& merge_list, Node* merged_input_value); 2893 2894 #ifndef PRODUCT 2895 // Access to TraceMergeStores tags 2896 bool is_trace(TraceMergeStores::Tag tag) const { 2897 return _trace_tags.at(tag); 2898 } 2899 2900 bool is_trace_basic() const { 2901 return is_trace(TraceMergeStores::Tag::BASIC); 2902 } 2903 2904 bool is_trace_pointer() const { 2905 return is_trace(TraceMergeStores::Tag::POINTER); 2906 } 2907 2908 bool is_trace_aliasing() const { 2909 return is_trace(TraceMergeStores::Tag::ALIASING); 2910 } 2911 2912 bool is_trace_adjacency() const { 2913 return is_trace(TraceMergeStores::Tag::ADJACENCY); 2914 } 2915 2916 bool is_trace_success() const { 2917 return is_trace(TraceMergeStores::Tag::SUCCESS); 2918 } 2919 #endif 2920 2921 NOT_PRODUCT( void trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const; ) 2922 }; 2923 2924 StoreNode* MergePrimitiveStores::run() { 2925 // Check for B/S/C/I 2926 int opc = _store->Opcode(); 2927 if (opc != Op_StoreB && opc != Op_StoreC && opc != Op_StoreI) { 2928 return nullptr; 2929 } 2930 2931 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] MergePrimitiveStores::run: "); _store->dump(); }) 2932 2933 // The _store must be the "last" store in a chain. If we find a use we could merge with 2934 // then that use or a store further down is the "last" store. 2935 Status status_use = find_adjacent_use_store(_store); 2936 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect no use: "); status_use.print_on(tty); }) 2937 if (status_use.found_store() != nullptr) { 2938 return nullptr; 2939 } 2940 2941 // Check if we can merge with at least one def, so that we have at least 2 stores to merge. 2942 Status status_def = find_adjacent_def_store(_store); 2943 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect def: "); status_def.print_on(tty); }) 2944 if (status_def.found_store() == nullptr) { 2945 return nullptr; 2946 } 2947 2948 ResourceMark rm; 2949 Node_List merge_list; 2950 collect_merge_list(merge_list); 2951 2952 Node* merged_input_value = make_merged_input_value(merge_list); 2953 if (merged_input_value == nullptr) { return nullptr; } 2954 2955 StoreNode* merged_store = make_merged_store(merge_list, merged_input_value); 2956 2957 NOT_PRODUCT( if (is_trace_success()) { trace(merge_list, merged_input_value, merged_store); } ) 2958 2959 return merged_store; 2960 } 2961 2962 // Check compatibility between _store and other_store. 2963 bool MergePrimitiveStores::is_compatible_store(const StoreNode* other_store) const { 2964 int opc = _store->Opcode(); 2965 assert(opc == Op_StoreB || opc == Op_StoreC || opc == Op_StoreI, "precondition"); 2966 2967 if (other_store == nullptr || 2968 _store->Opcode() != other_store->Opcode()) { 2969 return false; 2970 } 2971 2972 return true; 2973 } 2974 2975 bool MergePrimitiveStores::is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const { 2976 if (!is_adjacent_input_pair(def_store->in(MemNode::ValueIn), 2977 use_store->in(MemNode::ValueIn), 2978 def_store->memory_size())) { 2979 return false; 2980 } 2981 2982 ResourceMark rm; 2983 #ifndef PRODUCT 2984 const TraceMemPointer trace(is_trace_pointer(), 2985 is_trace_aliasing(), 2986 is_trace_adjacency()); 2987 #endif 2988 const MemPointer pointer_use(use_store NOT_PRODUCT( COMMA trace )); 2989 const MemPointer pointer_def(def_store NOT_PRODUCT( COMMA trace )); 2990 return pointer_def.is_adjacent_to_and_before(pointer_use); 2991 } 2992 2993 bool MergePrimitiveStores::is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const { 2994 // Pattern: [n1 = ConI, n2 = ConI] 2995 if (n1->Opcode() == Op_ConI) { 2996 return n2->Opcode() == Op_ConI; 2997 } 2998 2999 // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)] 3000 #ifndef VM_LITTLE_ENDIAN 3001 // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift] 3002 // Swapping n1 with n2 gives same pattern as on little endian platforms. 3003 swap(n1, n2); 3004 #endif // !VM_LITTLE_ENDIAN 3005 Node const* base_n2; 3006 jint shift_n2; 3007 if (!is_con_RShift(n2, base_n2, shift_n2)) { 3008 return false; 3009 } 3010 if (n1->Opcode() == Op_ConvL2I) { 3011 // look through 3012 n1 = n1->in(1); 3013 } 3014 Node const* base_n1; 3015 jint shift_n1; 3016 if (n1 == base_n2) { 3017 // n1 = base = base >> 0 3018 base_n1 = n1; 3019 shift_n1 = 0; 3020 } else if (!is_con_RShift(n1, base_n1, shift_n1)) { 3021 return false; 3022 } 3023 int bits_per_store = memory_size * 8; 3024 if (base_n1 != base_n2 || 3025 shift_n1 + bits_per_store != shift_n2 || 3026 shift_n1 % bits_per_store != 0) { 3027 return false; 3028 } 3029 3030 // both load from same value with correct shift 3031 return true; 3032 } 3033 3034 // Detect pattern: n = base_out >> shift_out 3035 bool MergePrimitiveStores::is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out) { 3036 assert(n != nullptr, "precondition"); 3037 3038 int opc = n->Opcode(); 3039 if (opc == Op_ConvL2I) { 3040 n = n->in(1); 3041 opc = n->Opcode(); 3042 } 3043 3044 if ((opc == Op_RShiftI || 3045 opc == Op_RShiftL || 3046 opc == Op_URShiftI || 3047 opc == Op_URShiftL) && 3048 n->in(2)->is_ConI()) { 3049 base_out = n->in(1); 3050 shift_out = n->in(2)->get_int(); 3051 // The shift must be positive: 3052 return shift_out >= 0; 3053 } 3054 return false; 3055 } 3056 3057 // Check if there is nothing between the two stores, except optionally a RangeCheck leading to an uncommon trap. 3058 MergePrimitiveStores::CFGStatus MergePrimitiveStores::cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store) { 3059 assert(use_store->in(MemNode::Memory) == def_store, "use-def relationship"); 3060 3061 Node* ctrl_use = use_store->in(MemNode::Control); 3062 Node* ctrl_def = def_store->in(MemNode::Control); 3063 if (ctrl_use == nullptr || ctrl_def == nullptr) { 3064 return CFGStatus::Failure; 3065 } 3066 3067 if (ctrl_use == ctrl_def) { 3068 // Same ctrl -> no RangeCheck in between. 3069 // Check: use_store must be the only use of def_store. 3070 if (def_store->outcnt() > 1) { 3071 return CFGStatus::Failure; 3072 } 3073 return CFGStatus::SuccessNoRangeCheck; 3074 } 3075 3076 // Different ctrl -> could have RangeCheck in between. 3077 // Check: 1. def_store only has these uses: use_store and MergeMem for uncommon trap, and 3078 // 2. ctrl separated by RangeCheck. 3079 if (def_store->outcnt() != 2) { 3080 return CFGStatus::Failure; // Cannot have exactly these uses: use_store and MergeMem for uncommon trap. 3081 } 3082 int use_store_out_idx = def_store->raw_out(0) == use_store ? 0 : 1; 3083 Node* merge_mem = def_store->raw_out(1 - use_store_out_idx)->isa_MergeMem(); 3084 if (merge_mem == nullptr || 3085 merge_mem->outcnt() != 1) { 3086 return CFGStatus::Failure; // Does not have MergeMem for uncommon trap. 3087 } 3088 if (!ctrl_use->is_IfProj() || 3089 !ctrl_use->in(0)->is_RangeCheck() || 3090 ctrl_use->in(0)->outcnt() != 2) { 3091 return CFGStatus::Failure; // Not RangeCheck. 3092 } 3093 ProjNode* other_proj = ctrl_use->as_IfProj()->other_if_proj(); 3094 Node* trap = other_proj->is_uncommon_trap_proj(Deoptimization::Reason_range_check); 3095 if (trap != merge_mem->unique_out() || 3096 ctrl_use->in(0)->in(0) != ctrl_def) { 3097 return CFGStatus::Failure; // Not RangeCheck with merge_mem leading to uncommon trap. 3098 } 3099 3100 return CFGStatus::SuccessWithRangeCheck; 3101 } 3102 3103 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_use_store(const StoreNode* def_store) const { 3104 Status status_use = find_use_store(def_store); 3105 StoreNode* use_store = status_use.found_store(); 3106 if (use_store != nullptr && !is_adjacent_pair(use_store, def_store)) { 3107 return Status::make_failure(); 3108 } 3109 return status_use; 3110 } 3111 3112 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_def_store(const StoreNode* use_store) const { 3113 Status status_def = find_def_store(use_store); 3114 StoreNode* def_store = status_def.found_store(); 3115 if (def_store != nullptr && !is_adjacent_pair(use_store, def_store)) { 3116 return Status::make_failure(); 3117 } 3118 return status_def; 3119 } 3120 3121 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store(const StoreNode* def_store) const { 3122 Status status_use = find_use_store_unidirectional(def_store); 3123 3124 #ifdef ASSERT 3125 StoreNode* use_store = status_use.found_store(); 3126 if (use_store != nullptr) { 3127 Status status_def = find_def_store_unidirectional(use_store); 3128 assert(status_def.found_store() == def_store && 3129 status_def.found_range_check() == status_use.found_range_check(), 3130 "find_use_store and find_def_store must be symmetric"); 3131 } 3132 #endif 3133 3134 return status_use; 3135 } 3136 3137 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store(const StoreNode* use_store) const { 3138 Status status_def = find_def_store_unidirectional(use_store); 3139 3140 #ifdef ASSERT 3141 StoreNode* def_store = status_def.found_store(); 3142 if (def_store != nullptr) { 3143 Status status_use = find_use_store_unidirectional(def_store); 3144 assert(status_use.found_store() == use_store && 3145 status_use.found_range_check() == status_def.found_range_check(), 3146 "find_use_store and find_def_store must be symmetric"); 3147 } 3148 #endif 3149 3150 return status_def; 3151 } 3152 3153 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store_unidirectional(const StoreNode* def_store) const { 3154 assert(is_compatible_store(def_store), "precondition: must be compatible with _store"); 3155 3156 for (DUIterator_Fast imax, i = def_store->fast_outs(imax); i < imax; i++) { 3157 StoreNode* use_store = def_store->fast_out(i)->isa_Store(); 3158 if (is_compatible_store(use_store)) { 3159 return Status::make(use_store, cfg_status_for_pair(use_store, def_store)); 3160 } 3161 } 3162 3163 return Status::make_failure(); 3164 } 3165 3166 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store_unidirectional(const StoreNode* use_store) const { 3167 assert(is_compatible_store(use_store), "precondition: must be compatible with _store"); 3168 3169 StoreNode* def_store = use_store->in(MemNode::Memory)->isa_Store(); 3170 if (!is_compatible_store(def_store)) { 3171 return Status::make_failure(); 3172 } 3173 3174 return Status::make(def_store, cfg_status_for_pair(use_store, def_store)); 3175 } 3176 3177 void MergePrimitiveStores::collect_merge_list(Node_List& merge_list) const { 3178 // The merged store can be at most 8 bytes. 3179 const uint merge_list_max_size = 8 / _store->memory_size(); 3180 assert(merge_list_max_size >= 2 && 3181 merge_list_max_size <= 8 && 3182 is_power_of_2(merge_list_max_size), 3183 "must be 2, 4 or 8"); 3184 3185 // Traverse up the chain of adjacent def stores. 3186 StoreNode* current = _store; 3187 merge_list.push(current); 3188 while (current != nullptr && merge_list.size() < merge_list_max_size) { 3189 Status status = find_adjacent_def_store(current); 3190 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] find def: "); status.print_on(tty); }) 3191 3192 current = status.found_store(); 3193 if (current != nullptr) { 3194 merge_list.push(current); 3195 3196 // We can have at most one RangeCheck. 3197 if (status.found_range_check()) { 3198 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found RangeCheck, stop traversal."); }) 3199 break; 3200 } 3201 } 3202 } 3203 3204 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found:"); merge_list.dump(); }) 3205 3206 // Truncate the merge_list to a power of 2. 3207 const uint pow2size = round_down_power_of_2(merge_list.size()); 3208 assert(pow2size >= 2, "must be merging at least 2 stores"); 3209 while (merge_list.size() > pow2size) { merge_list.pop(); } 3210 3211 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] truncated:"); merge_list.dump(); }) 3212 } 3213 3214 // Merge the input values of the smaller stores to a single larger input value. 3215 Node* MergePrimitiveStores::make_merged_input_value(const Node_List& merge_list) { 3216 int new_memory_size = _store->memory_size() * merge_list.size(); 3217 Node* first = merge_list.at(merge_list.size()-1); 3218 Node* merged_input_value = nullptr; 3219 if (_store->in(MemNode::ValueIn)->Opcode() == Op_ConI) { 3220 // Pattern: [ConI, ConI, ...] -> new constant 3221 jlong con = 0; 3222 jlong bits_per_store = _store->memory_size() * 8; 3223 jlong mask = (((jlong)1) << bits_per_store) - 1; 3224 for (uint i = 0; i < merge_list.size(); i++) { 3225 jlong con_i = merge_list.at(i)->in(MemNode::ValueIn)->get_int(); 3226 #ifdef VM_LITTLE_ENDIAN 3227 con = con << bits_per_store; 3228 con = con | (mask & con_i); 3229 #else // VM_LITTLE_ENDIAN 3230 con_i = (mask & con_i) << (i * bits_per_store); 3231 con = con | con_i; 3232 #endif // VM_LITTLE_ENDIAN 3233 } 3234 merged_input_value = _phase->longcon(con); 3235 } else { 3236 // Pattern: [base >> 24, base >> 16, base >> 8, base] -> base 3237 // | | 3238 // _store first 3239 // 3240 Node* hi = _store->in(MemNode::ValueIn); 3241 Node* lo = first->in(MemNode::ValueIn); 3242 #ifndef VM_LITTLE_ENDIAN 3243 // `_store` and `first` are swapped in the diagram above 3244 swap(hi, lo); 3245 #endif // !VM_LITTLE_ENDIAN 3246 Node const* hi_base; 3247 jint hi_shift; 3248 merged_input_value = lo; 3249 bool is_true = is_con_RShift(hi, hi_base, hi_shift); 3250 assert(is_true, "must detect con RShift"); 3251 if (merged_input_value != hi_base && merged_input_value->Opcode() == Op_ConvL2I) { 3252 // look through 3253 merged_input_value = merged_input_value->in(1); 3254 } 3255 if (merged_input_value != hi_base) { 3256 // merged_input_value is not the base 3257 return nullptr; 3258 } 3259 } 3260 3261 if (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size <= 4) { 3262 // Example: 3263 // 3264 // long base = ...; 3265 // a[0] = (byte)(base >> 0); 3266 // a[1] = (byte)(base >> 8); 3267 // 3268 merged_input_value = _phase->transform(new ConvL2INode(merged_input_value)); 3269 } 3270 3271 assert((_phase->type(merged_input_value)->isa_int() != nullptr && new_memory_size <= 4) || 3272 (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size == 8), 3273 "merged_input_value is either int or long, and new_memory_size is small enough"); 3274 3275 return merged_input_value; 3276 } 3277 3278 // // 3279 // first_ctrl first_mem first_adr first_ctrl first_mem first_adr // 3280 // | | | | | | // 3281 // | | | | +---------------+ | // 3282 // | | | | | | | // 3283 // | | +---------+ | | +---------------+ // 3284 // | | | | | | | | // 3285 // +--------------+ | | v1 +------------------------------+ | | v1 // 3286 // | | | | | | | | | | | | // 3287 // RangeCheck first_store RangeCheck | | first_store // 3288 // | | | | | | | // 3289 // last_ctrl | +----> unc_trap last_ctrl | | +----> unc_trap // 3290 // | | ===> | | | // 3291 // +--------------+ | a2 v2 | | | // 3292 // | | | | | | | | // 3293 // | second_store | | | // 3294 // | | | | | [v1 v2 ... vn] // 3295 // ... ... | | | | // 3296 // | | | | | v // 3297 // +--------------+ | an vn +--------------+ | | merged_input_value // 3298 // | | | | | | | | // 3299 // last_store (= _store) merged_store // 3300 // // 3301 StoreNode* MergePrimitiveStores::make_merged_store(const Node_List& merge_list, Node* merged_input_value) { 3302 Node* first_store = merge_list.at(merge_list.size()-1); 3303 Node* last_ctrl = _store->in(MemNode::Control); // after (optional) RangeCheck 3304 Node* first_mem = first_store->in(MemNode::Memory); 3305 Node* first_adr = first_store->in(MemNode::Address); 3306 3307 const TypePtr* new_adr_type = _store->adr_type(); 3308 3309 int new_memory_size = _store->memory_size() * merge_list.size(); 3310 BasicType bt = T_ILLEGAL; 3311 switch (new_memory_size) { 3312 case 2: bt = T_SHORT; break; 3313 case 4: bt = T_INT; break; 3314 case 8: bt = T_LONG; break; 3315 } 3316 3317 StoreNode* merged_store = StoreNode::make(*_phase, last_ctrl, first_mem, first_adr, 3318 new_adr_type, merged_input_value, bt, MemNode::unordered); 3319 3320 // Marking the store mismatched is sufficient to prevent reordering, since array stores 3321 // are all on the same slice. Hence, we need no barriers. 3322 merged_store->set_mismatched_access(); 3323 3324 // Constants above may now also be be packed -> put candidate on worklist 3325 _phase->is_IterGVN()->_worklist.push(first_mem); 3326 3327 return merged_store; 3328 } 3329 3330 #ifndef PRODUCT 3331 void MergePrimitiveStores::trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const { 3332 stringStream ss; 3333 ss.print_cr("[TraceMergeStores]: Replace"); 3334 for (int i = (int)merge_list.size() - 1; i >= 0; i--) { 3335 merge_list.at(i)->dump("\n", false, &ss); 3336 } 3337 ss.print_cr("[TraceMergeStores]: with"); 3338 merged_input_value->dump("\n", false, &ss); 3339 merged_store->dump("\n", false, &ss); 3340 tty->print("%s", ss.as_string()); 3341 } 3342 #endif 3343 3344 //------------------------------Ideal------------------------------------------ 3345 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x). 3346 // When a store immediately follows a relevant allocation/initialization, 3347 // try to capture it into the initialization, or hoist it above. 3348 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3349 Node* p = MemNode::Ideal_common(phase, can_reshape); 3350 if (p) return (p == NodeSentinel) ? nullptr : p; 3351 3352 Node* mem = in(MemNode::Memory); 3353 Node* address = in(MemNode::Address); 3354 Node* value = in(MemNode::ValueIn); 3355 // Back-to-back stores to same address? Fold em up. Generally 3356 // unsafe if I have intervening uses... 3357 if (phase->C->get_adr_type(phase->C->get_alias_index(adr_type())) != TypeAryPtr::INLINES) { 3358 Node* st = mem; 3359 // If Store 'st' has more than one use, we cannot fold 'st' away. 3360 // For example, 'st' might be the final state at a conditional 3361 // return. Or, 'st' might be used by some node which is live at 3362 // the same time 'st' is live, which might be unschedulable. So, 3363 // require exactly ONE user until such time as we clone 'mem' for 3364 // each of 'mem's uses (thus making the exactly-1-user-rule hold 3365 // true). 3366 while (st->is_Store() && st->outcnt() == 1) { 3367 // Looking at a dead closed cycle of memory? 3368 assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal"); 3369 assert(Opcode() == st->Opcode() || 3370 st->Opcode() == Op_StoreVector || 3371 Opcode() == Op_StoreVector || 3372 st->Opcode() == Op_StoreVectorScatter || 3373 Opcode() == Op_StoreVectorScatter || 3374 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || 3375 (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode 3376 (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy 3377 (Opcode() == Op_StoreL && st->Opcode() == Op_StoreN) || 3378 (is_mismatched_access() || st->as_Store()->is_mismatched_access()), 3379 "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); 3380 3381 if (st->in(MemNode::Address)->eqv_uncast(address) && 3382 st->as_Store()->memory_size() <= this->memory_size()) { 3383 Node* use = st->raw_out(0); 3384 if (phase->is_IterGVN()) { 3385 phase->is_IterGVN()->rehash_node_delayed(use); 3386 } 3387 // It's OK to do this in the parser, since DU info is always accurate, 3388 // and the parser always refers to nodes via SafePointNode maps. 3389 use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase); 3390 return this; 3391 } 3392 st = st->in(MemNode::Memory); 3393 } 3394 } 3395 3396 3397 // Capture an unaliased, unconditional, simple store into an initializer. 3398 // Or, if it is independent of the allocation, hoist it above the allocation. 3399 if (ReduceFieldZeroing && /*can_reshape &&*/ 3400 mem->is_Proj() && mem->in(0)->is_Initialize()) { 3401 InitializeNode* init = mem->in(0)->as_Initialize(); 3402 intptr_t offset = init->can_capture_store(this, phase, can_reshape); 3403 if (offset > 0) { 3404 Node* moved = init->capture_store(this, offset, phase, can_reshape); 3405 // If the InitializeNode captured me, it made a raw copy of me, 3406 // and I need to disappear. 3407 if (moved != nullptr) { 3408 // %%% hack to ensure that Ideal returns a new node: 3409 mem = MergeMemNode::make(mem); 3410 return mem; // fold me away 3411 } 3412 } 3413 } 3414 3415 // Fold reinterpret cast into memory operation: 3416 // StoreX mem (MoveY2X v) => StoreY mem v 3417 if (value->is_Move()) { 3418 const Type* vt = value->in(1)->bottom_type(); 3419 if (has_reinterpret_variant(vt)) { 3420 if (phase->C->post_loop_opts_phase()) { 3421 return convert_to_reinterpret_store(*phase, value->in(1), vt); 3422 } else { 3423 phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over 3424 } 3425 } 3426 } 3427 3428 if (MergeStores && UseUnalignedAccesses) { 3429 if (phase->C->post_loop_opts_phase()) { 3430 MergePrimitiveStores merge(phase, this); 3431 Node* progress = merge.run(); 3432 if (progress != nullptr) { return progress; } 3433 } else { 3434 phase->C->record_for_post_loop_opts_igvn(this); 3435 } 3436 } 3437 3438 return nullptr; // No further progress 3439 } 3440 3441 //------------------------------Value----------------------------------------- 3442 const Type* StoreNode::Value(PhaseGVN* phase) const { 3443 // Either input is TOP ==> the result is TOP 3444 const Type *t1 = phase->type( in(MemNode::Memory) ); 3445 if( t1 == Type::TOP ) return Type::TOP; 3446 const Type *t2 = phase->type( in(MemNode::Address) ); 3447 if( t2 == Type::TOP ) return Type::TOP; 3448 const Type *t3 = phase->type( in(MemNode::ValueIn) ); 3449 if( t3 == Type::TOP ) return Type::TOP; 3450 return Type::MEMORY; 3451 } 3452 3453 //------------------------------Identity--------------------------------------- 3454 // Remove redundant stores: 3455 // Store(m, p, Load(m, p)) changes to m. 3456 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x). 3457 Node* StoreNode::Identity(PhaseGVN* phase) { 3458 Node* mem = in(MemNode::Memory); 3459 Node* adr = in(MemNode::Address); 3460 Node* val = in(MemNode::ValueIn); 3461 3462 Node* result = this; 3463 3464 // Load then Store? Then the Store is useless 3465 if (val->is_Load() && 3466 val->in(MemNode::Address)->eqv_uncast(adr) && 3467 val->in(MemNode::Memory )->eqv_uncast(mem) && 3468 val->as_Load()->store_Opcode() == Opcode()) { 3469 // Ensure vector type is the same 3470 if (!is_StoreVector() || (mem->is_LoadVector() && as_StoreVector()->vect_type() == mem->as_LoadVector()->vect_type())) { 3471 result = mem; 3472 } 3473 } 3474 3475 // Two stores in a row of the same value? 3476 if (result == this && 3477 mem->is_Store() && 3478 mem->in(MemNode::Address)->eqv_uncast(adr) && 3479 mem->in(MemNode::ValueIn)->eqv_uncast(val) && 3480 mem->Opcode() == Opcode()) { 3481 if (!is_StoreVector()) { 3482 result = mem; 3483 } else { 3484 const StoreVectorNode* store_vector = as_StoreVector(); 3485 const StoreVectorNode* mem_vector = mem->as_StoreVector(); 3486 const Node* store_indices = store_vector->indices(); 3487 const Node* mem_indices = mem_vector->indices(); 3488 const Node* store_mask = store_vector->mask(); 3489 const Node* mem_mask = mem_vector->mask(); 3490 // Ensure types, indices, and masks match 3491 if (store_vector->vect_type() == mem_vector->vect_type() && 3492 ((store_indices == nullptr) == (mem_indices == nullptr) && 3493 (store_indices == nullptr || store_indices->eqv_uncast(mem_indices))) && 3494 ((store_mask == nullptr) == (mem_mask == nullptr) && 3495 (store_mask == nullptr || store_mask->eqv_uncast(mem_mask)))) { 3496 result = mem; 3497 } 3498 } 3499 } 3500 3501 // Store of zero anywhere into a freshly-allocated object? 3502 // Then the store is useless. 3503 // (It must already have been captured by the InitializeNode.) 3504 if (result == this && ReduceFieldZeroing) { 3505 // a newly allocated object is already all-zeroes everywhere 3506 if (mem->is_Proj() && mem->in(0)->is_Allocate() && 3507 (phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == val)) { 3508 result = mem; 3509 } 3510 3511 if (result == this && phase->type(val)->is_zero_type()) { 3512 // the store may also apply to zero-bits in an earlier object 3513 Node* prev_mem = find_previous_store(phase); 3514 // Steps (a), (b): Walk past independent stores to find an exact match. 3515 if (prev_mem != nullptr) { 3516 Node* prev_val = can_see_stored_value(prev_mem, phase); 3517 if (prev_val != nullptr && prev_val == val) { 3518 // prev_val and val might differ by a cast; it would be good 3519 // to keep the more informative of the two. 3520 result = mem; 3521 } 3522 } 3523 } 3524 } 3525 3526 PhaseIterGVN* igvn = phase->is_IterGVN(); 3527 if (result != this && igvn != nullptr) { 3528 MemBarNode* trailing = trailing_membar(); 3529 if (trailing != nullptr) { 3530 #ifdef ASSERT 3531 const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr(); 3532 assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects"); 3533 #endif 3534 trailing->remove(igvn); 3535 } 3536 } 3537 3538 return result; 3539 } 3540 3541 //------------------------------match_edge------------------------------------- 3542 // Do we Match on this edge index or not? Match only memory & value 3543 uint StoreNode::match_edge(uint idx) const { 3544 return idx == MemNode::Address || idx == MemNode::ValueIn; 3545 } 3546 3547 //------------------------------cmp-------------------------------------------- 3548 // Do not common stores up together. They generally have to be split 3549 // back up anyways, so do not bother. 3550 bool StoreNode::cmp( const Node &n ) const { 3551 return (&n == this); // Always fail except on self 3552 } 3553 3554 //------------------------------Ideal_masked_input----------------------------- 3555 // Check for a useless mask before a partial-word store 3556 // (StoreB ... (AndI valIn conIa) ) 3557 // If (conIa & mask == mask) this simplifies to 3558 // (StoreB ... (valIn) ) 3559 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) { 3560 Node *val = in(MemNode::ValueIn); 3561 if( val->Opcode() == Op_AndI ) { 3562 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 3563 if( t && t->is_con() && (t->get_con() & mask) == mask ) { 3564 set_req_X(MemNode::ValueIn, val->in(1), phase); 3565 return this; 3566 } 3567 } 3568 return nullptr; 3569 } 3570 3571 3572 //------------------------------Ideal_sign_extended_input---------------------- 3573 // Check for useless sign-extension before a partial-word store 3574 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) ) 3575 // If (conIL == conIR && conIR <= num_bits) this simplifies to 3576 // (StoreB ... (valIn) ) 3577 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) { 3578 Node *val = in(MemNode::ValueIn); 3579 if( val->Opcode() == Op_RShiftI ) { 3580 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 3581 if( t && t->is_con() && (t->get_con() <= num_bits) ) { 3582 Node *shl = val->in(1); 3583 if( shl->Opcode() == Op_LShiftI ) { 3584 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int(); 3585 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) { 3586 set_req_X(MemNode::ValueIn, shl->in(1), phase); 3587 return this; 3588 } 3589 } 3590 } 3591 } 3592 return nullptr; 3593 } 3594 3595 //------------------------------value_never_loaded----------------------------------- 3596 // Determine whether there are any possible loads of the value stored. 3597 // For simplicity, we actually check if there are any loads from the 3598 // address stored to, not just for loads of the value stored by this node. 3599 // 3600 bool StoreNode::value_never_loaded(PhaseValues* phase) const { 3601 Node *adr = in(Address); 3602 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr(); 3603 if (adr_oop == nullptr) 3604 return false; 3605 if (!adr_oop->is_known_instance_field()) 3606 return false; // if not a distinct instance, there may be aliases of the address 3607 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) { 3608 Node *use = adr->fast_out(i); 3609 if (use->is_Load() || use->is_LoadStore()) { 3610 return false; 3611 } 3612 } 3613 return true; 3614 } 3615 3616 MemBarNode* StoreNode::trailing_membar() const { 3617 if (is_release()) { 3618 MemBarNode* trailing_mb = nullptr; 3619 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3620 Node* u = fast_out(i); 3621 if (u->is_MemBar()) { 3622 if (u->as_MemBar()->trailing_store()) { 3623 assert(u->Opcode() == Op_MemBarVolatile, ""); 3624 assert(trailing_mb == nullptr, "only one"); 3625 trailing_mb = u->as_MemBar(); 3626 #ifdef ASSERT 3627 Node* leading = u->as_MemBar()->leading_membar(); 3628 assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 3629 assert(leading->as_MemBar()->leading_store(), "incorrect membar pair"); 3630 assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair"); 3631 #endif 3632 } else { 3633 assert(u->as_MemBar()->standalone(), ""); 3634 } 3635 } 3636 } 3637 return trailing_mb; 3638 } 3639 return nullptr; 3640 } 3641 3642 3643 //============================================================================= 3644 //------------------------------Ideal------------------------------------------ 3645 // If the store is from an AND mask that leaves the low bits untouched, then 3646 // we can skip the AND operation. If the store is from a sign-extension 3647 // (a left shift, then right shift) we can skip both. 3648 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){ 3649 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF); 3650 if( progress != nullptr ) return progress; 3651 3652 progress = StoreNode::Ideal_sign_extended_input(phase, 24); 3653 if( progress != nullptr ) return progress; 3654 3655 // Finally check the default case 3656 return StoreNode::Ideal(phase, can_reshape); 3657 } 3658 3659 //============================================================================= 3660 //------------------------------Ideal------------------------------------------ 3661 // If the store is from an AND mask that leaves the low bits untouched, then 3662 // we can skip the AND operation 3663 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){ 3664 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF); 3665 if( progress != nullptr ) return progress; 3666 3667 progress = StoreNode::Ideal_sign_extended_input(phase, 16); 3668 if( progress != nullptr ) return progress; 3669 3670 // Finally check the default case 3671 return StoreNode::Ideal(phase, can_reshape); 3672 } 3673 3674 //============================================================================= 3675 //----------------------------------SCMemProjNode------------------------------ 3676 const Type* SCMemProjNode::Value(PhaseGVN* phase) const 3677 { 3678 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) { 3679 return Type::TOP; 3680 } 3681 return bottom_type(); 3682 } 3683 3684 //============================================================================= 3685 //----------------------------------LoadStoreNode------------------------------ 3686 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ) 3687 : Node(required), 3688 _type(rt), 3689 _adr_type(at), 3690 _barrier_data(0) 3691 { 3692 init_req(MemNode::Control, c ); 3693 init_req(MemNode::Memory , mem); 3694 init_req(MemNode::Address, adr); 3695 init_req(MemNode::ValueIn, val); 3696 init_class_id(Class_LoadStore); 3697 } 3698 3699 //------------------------------Value----------------------------------------- 3700 const Type* LoadStoreNode::Value(PhaseGVN* phase) const { 3701 // Either input is TOP ==> the result is TOP 3702 if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) { 3703 return Type::TOP; 3704 } 3705 const Type* t = phase->type(in(MemNode::Memory)); 3706 if (t == Type::TOP) { 3707 return Type::TOP; 3708 } 3709 t = phase->type(in(MemNode::Address)); 3710 if (t == Type::TOP) { 3711 return Type::TOP; 3712 } 3713 t = phase->type(in(MemNode::ValueIn)); 3714 if (t == Type::TOP) { 3715 return Type::TOP; 3716 } 3717 return bottom_type(); 3718 } 3719 3720 uint LoadStoreNode::ideal_reg() const { 3721 return _type->ideal_reg(); 3722 } 3723 3724 // This method conservatively checks if the result of a LoadStoreNode is 3725 // used, that is, if it returns true, then it is definitely the case that 3726 // the result of the node is not needed. 3727 // For example, GetAndAdd can be matched into a lock_add instead of a 3728 // lock_xadd if the result of LoadStoreNode::result_not_used() is true 3729 bool LoadStoreNode::result_not_used() const { 3730 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3731 Node *x = fast_out(i); 3732 if (x->Opcode() == Op_SCMemProj) { 3733 continue; 3734 } 3735 if (x->bottom_type() == TypeTuple::MEMBAR && 3736 !x->is_Call() && 3737 x->Opcode() != Op_Blackhole) { 3738 continue; 3739 } 3740 return false; 3741 } 3742 return true; 3743 } 3744 3745 MemBarNode* LoadStoreNode::trailing_membar() const { 3746 MemBarNode* trailing = nullptr; 3747 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3748 Node* u = fast_out(i); 3749 if (u->is_MemBar()) { 3750 if (u->as_MemBar()->trailing_load_store()) { 3751 assert(u->Opcode() == Op_MemBarAcquire, ""); 3752 assert(trailing == nullptr, "only one"); 3753 trailing = u->as_MemBar(); 3754 #ifdef ASSERT 3755 Node* leading = trailing->leading_membar(); 3756 assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 3757 assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair"); 3758 assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair"); 3759 #endif 3760 } else { 3761 assert(u->as_MemBar()->standalone(), "wrong barrier kind"); 3762 } 3763 } 3764 } 3765 3766 return trailing; 3767 } 3768 3769 uint LoadStoreNode::size_of() const { return sizeof(*this); } 3770 3771 //============================================================================= 3772 //----------------------------------LoadStoreConditionalNode-------------------- 3773 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) { 3774 init_req(ExpectedIn, ex ); 3775 } 3776 3777 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const { 3778 // Either input is TOP ==> the result is TOP 3779 const Type* t = phase->type(in(ExpectedIn)); 3780 if (t == Type::TOP) { 3781 return Type::TOP; 3782 } 3783 return LoadStoreNode::Value(phase); 3784 } 3785 3786 //============================================================================= 3787 //-------------------------------adr_type-------------------------------------- 3788 const TypePtr* ClearArrayNode::adr_type() const { 3789 Node *adr = in(3); 3790 if (adr == nullptr) return nullptr; // node is dead 3791 return MemNode::calculate_adr_type(adr->bottom_type()); 3792 } 3793 3794 //------------------------------match_edge------------------------------------- 3795 // Do we Match on this edge index or not? Do not match memory 3796 uint ClearArrayNode::match_edge(uint idx) const { 3797 return idx > 1; 3798 } 3799 3800 //------------------------------Identity--------------------------------------- 3801 // Clearing a zero length array does nothing 3802 Node* ClearArrayNode::Identity(PhaseGVN* phase) { 3803 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this; 3804 } 3805 3806 //------------------------------Idealize--------------------------------------- 3807 // Clearing a short array is faster with stores 3808 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3809 // Already know this is a large node, do not try to ideal it 3810 if (_is_large) return nullptr; 3811 3812 const int unit = BytesPerLong; 3813 const TypeX* t = phase->type(in(2))->isa_intptr_t(); 3814 if (!t) return nullptr; 3815 if (!t->is_con()) return nullptr; 3816 intptr_t raw_count = t->get_con(); 3817 intptr_t size = raw_count; 3818 if (!Matcher::init_array_count_is_in_bytes) size *= unit; 3819 // Clearing nothing uses the Identity call. 3820 // Negative clears are possible on dead ClearArrays 3821 // (see jck test stmt114.stmt11402.val). 3822 if (size <= 0 || size % unit != 0) return nullptr; 3823 intptr_t count = size / unit; 3824 // Length too long; communicate this to matchers and assemblers. 3825 // Assemblers are responsible to produce fast hardware clears for it. 3826 if (size > InitArrayShortSize) { 3827 return new ClearArrayNode(in(0), in(1), in(2), in(3), in(4), true); 3828 } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) { 3829 return nullptr; 3830 } 3831 if (!IdealizeClearArrayNode) return nullptr; 3832 Node *mem = in(1); 3833 if( phase->type(mem)==Type::TOP ) return nullptr; 3834 Node *adr = in(3); 3835 const Type* at = phase->type(adr); 3836 if( at==Type::TOP ) return nullptr; 3837 const TypePtr* atp = at->isa_ptr(); 3838 // adjust atp to be the correct array element address type 3839 if (atp == nullptr) atp = TypePtr::BOTTOM; 3840 else atp = atp->add_offset(Type::OffsetBot); 3841 // Get base for derived pointer purposes 3842 if( adr->Opcode() != Op_AddP ) Unimplemented(); 3843 Node *base = adr->in(1); 3844 3845 Node *val = in(4); 3846 Node *off = phase->MakeConX(BytesPerLong); 3847 mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false); 3848 count--; 3849 while( count-- ) { 3850 mem = phase->transform(mem); 3851 adr = phase->transform(new AddPNode(base,adr,off)); 3852 mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false); 3853 } 3854 return mem; 3855 } 3856 3857 //----------------------------step_through---------------------------------- 3858 // Return allocation input memory edge if it is different instance 3859 // or itself if it is the one we are looking for. 3860 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseValues* phase) { 3861 Node* n = *np; 3862 assert(n->is_ClearArray(), "sanity"); 3863 intptr_t offset; 3864 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset); 3865 // This method is called only before Allocate nodes are expanded 3866 // during macro nodes expansion. Before that ClearArray nodes are 3867 // only generated in PhaseMacroExpand::generate_arraycopy() (before 3868 // Allocate nodes are expanded) which follows allocations. 3869 assert(alloc != nullptr, "should have allocation"); 3870 if (alloc->_idx == instance_id) { 3871 // Can not bypass initialization of the instance we are looking for. 3872 return false; 3873 } 3874 // Otherwise skip it. 3875 InitializeNode* init = alloc->initialization(); 3876 if (init != nullptr) 3877 *np = init->in(TypeFunc::Memory); 3878 else 3879 *np = alloc->in(TypeFunc::Memory); 3880 return true; 3881 } 3882 3883 //----------------------------clear_memory------------------------------------- 3884 // Generate code to initialize object storage to zero. 3885 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3886 Node* val, 3887 Node* raw_val, 3888 intptr_t start_offset, 3889 Node* end_offset, 3890 PhaseGVN* phase) { 3891 intptr_t offset = start_offset; 3892 3893 int unit = BytesPerLong; 3894 if ((offset % unit) != 0) { 3895 Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset)); 3896 adr = phase->transform(adr); 3897 const TypePtr* atp = TypeRawPtr::BOTTOM; 3898 if (val != nullptr) { 3899 assert(phase->type(val)->isa_narrowoop(), "should be narrow oop"); 3900 mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered); 3901 } else { 3902 assert(raw_val == nullptr, "val may not be null"); 3903 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 3904 } 3905 mem = phase->transform(mem); 3906 offset += BytesPerInt; 3907 } 3908 assert((offset % unit) == 0, ""); 3909 3910 // Initialize the remaining stuff, if any, with a ClearArray. 3911 return clear_memory(ctl, mem, dest, raw_val, phase->MakeConX(offset), end_offset, phase); 3912 } 3913 3914 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3915 Node* raw_val, 3916 Node* start_offset, 3917 Node* end_offset, 3918 PhaseGVN* phase) { 3919 if (start_offset == end_offset) { 3920 // nothing to do 3921 return mem; 3922 } 3923 3924 int unit = BytesPerLong; 3925 Node* zbase = start_offset; 3926 Node* zend = end_offset; 3927 3928 // Scale to the unit required by the CPU: 3929 if (!Matcher::init_array_count_is_in_bytes) { 3930 Node* shift = phase->intcon(exact_log2(unit)); 3931 zbase = phase->transform(new URShiftXNode(zbase, shift) ); 3932 zend = phase->transform(new URShiftXNode(zend, shift) ); 3933 } 3934 3935 // Bulk clear double-words 3936 Node* zsize = phase->transform(new SubXNode(zend, zbase) ); 3937 Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) ); 3938 if (raw_val == nullptr) { 3939 raw_val = phase->MakeConX(0); 3940 } 3941 mem = new ClearArrayNode(ctl, mem, zsize, adr, raw_val, false); 3942 return phase->transform(mem); 3943 } 3944 3945 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3946 Node* val, 3947 Node* raw_val, 3948 intptr_t start_offset, 3949 intptr_t end_offset, 3950 PhaseGVN* phase) { 3951 if (start_offset == end_offset) { 3952 // nothing to do 3953 return mem; 3954 } 3955 3956 assert((end_offset % BytesPerInt) == 0, "odd end offset"); 3957 intptr_t done_offset = end_offset; 3958 if ((done_offset % BytesPerLong) != 0) { 3959 done_offset -= BytesPerInt; 3960 } 3961 if (done_offset > start_offset) { 3962 mem = clear_memory(ctl, mem, dest, val, raw_val, 3963 start_offset, phase->MakeConX(done_offset), phase); 3964 } 3965 if (done_offset < end_offset) { // emit the final 32-bit store 3966 Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset)); 3967 adr = phase->transform(adr); 3968 const TypePtr* atp = TypeRawPtr::BOTTOM; 3969 if (val != nullptr) { 3970 assert(phase->type(val)->isa_narrowoop(), "should be narrow oop"); 3971 mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered); 3972 } else { 3973 assert(raw_val == nullptr, "val may not be null"); 3974 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 3975 } 3976 mem = phase->transform(mem); 3977 done_offset += BytesPerInt; 3978 } 3979 assert(done_offset == end_offset, ""); 3980 return mem; 3981 } 3982 3983 //============================================================================= 3984 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent) 3985 : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)), 3986 _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone) 3987 #ifdef ASSERT 3988 , _pair_idx(0) 3989 #endif 3990 { 3991 init_class_id(Class_MemBar); 3992 Node* top = C->top(); 3993 init_req(TypeFunc::I_O,top); 3994 init_req(TypeFunc::FramePtr,top); 3995 init_req(TypeFunc::ReturnAdr,top); 3996 if (precedent != nullptr) 3997 init_req(TypeFunc::Parms, precedent); 3998 } 3999 4000 //------------------------------cmp-------------------------------------------- 4001 uint MemBarNode::hash() const { return NO_HASH; } 4002 bool MemBarNode::cmp( const Node &n ) const { 4003 return (&n == this); // Always fail except on self 4004 } 4005 4006 //------------------------------make------------------------------------------- 4007 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) { 4008 switch (opcode) { 4009 case Op_MemBarAcquire: return new MemBarAcquireNode(C, atp, pn); 4010 case Op_LoadFence: return new LoadFenceNode(C, atp, pn); 4011 case Op_MemBarRelease: return new MemBarReleaseNode(C, atp, pn); 4012 case Op_StoreFence: return new StoreFenceNode(C, atp, pn); 4013 case Op_MemBarStoreStore: return new MemBarStoreStoreNode(C, atp, pn); 4014 case Op_StoreStoreFence: return new StoreStoreFenceNode(C, atp, pn); 4015 case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn); 4016 case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn); 4017 case Op_MemBarVolatile: return new MemBarVolatileNode(C, atp, pn); 4018 case Op_MemBarCPUOrder: return new MemBarCPUOrderNode(C, atp, pn); 4019 case Op_OnSpinWait: return new OnSpinWaitNode(C, atp, pn); 4020 case Op_Initialize: return new InitializeNode(C, atp, pn); 4021 default: ShouldNotReachHere(); return nullptr; 4022 } 4023 } 4024 4025 void MemBarNode::remove(PhaseIterGVN *igvn) { 4026 if (outcnt() != 2) { 4027 assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory"); 4028 assert(outcnt() == 1, "Only control then"); 4029 } 4030 if (trailing_store() || trailing_load_store()) { 4031 MemBarNode* leading = leading_membar(); 4032 if (leading != nullptr) { 4033 assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars"); 4034 leading->remove(igvn); 4035 } 4036 } 4037 if (proj_out_or_null(TypeFunc::Memory) != nullptr) { 4038 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); 4039 } 4040 if (proj_out_or_null(TypeFunc::Control) != nullptr) { 4041 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); 4042 } 4043 } 4044 4045 //------------------------------Ideal------------------------------------------ 4046 // Return a node which is more "ideal" than the current node. Strip out 4047 // control copies 4048 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) { 4049 if (remove_dead_region(phase, can_reshape)) return this; 4050 // Don't bother trying to transform a dead node 4051 if (in(0) && in(0)->is_top()) { 4052 return nullptr; 4053 } 4054 4055 bool progress = false; 4056 // Eliminate volatile MemBars for scalar replaced objects. 4057 if (can_reshape && req() == (Precedent+1)) { 4058 bool eliminate = false; 4059 int opc = Opcode(); 4060 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) { 4061 // Volatile field loads and stores. 4062 Node* my_mem = in(MemBarNode::Precedent); 4063 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge 4064 if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) { 4065 // if the Precedent is a decodeN and its input (a Load) is used at more than one place, 4066 // replace this Precedent (decodeN) with the Load instead. 4067 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) { 4068 Node* load_node = my_mem->in(1); 4069 set_req(MemBarNode::Precedent, load_node); 4070 phase->is_IterGVN()->_worklist.push(my_mem); 4071 my_mem = load_node; 4072 } else { 4073 assert(my_mem->unique_out() == this, "sanity"); 4074 assert(!trailing_load_store(), "load store node can't be eliminated"); 4075 del_req(Precedent); 4076 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later 4077 my_mem = nullptr; 4078 } 4079 progress = true; 4080 } 4081 if (my_mem != nullptr && my_mem->is_Mem()) { 4082 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); 4083 // Check for scalar replaced object reference. 4084 if( t_oop != nullptr && t_oop->is_known_instance_field() && 4085 t_oop->offset() != Type::OffsetBot && 4086 t_oop->offset() != Type::OffsetTop) { 4087 eliminate = true; 4088 } 4089 } 4090 } else if (opc == Op_MemBarRelease || (UseStoreStoreForCtor && opc == Op_MemBarStoreStore)) { 4091 // Final field stores. 4092 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent)); 4093 if ((alloc != nullptr) && alloc->is_Allocate() && 4094 alloc->as_Allocate()->does_not_escape_thread()) { 4095 // The allocated object does not escape. 4096 eliminate = true; 4097 } 4098 } 4099 if (eliminate) { 4100 // Replace MemBar projections by its inputs. 4101 PhaseIterGVN* igvn = phase->is_IterGVN(); 4102 remove(igvn); 4103 // Must return either the original node (now dead) or a new node 4104 // (Do not return a top here, since that would break the uniqueness of top.) 4105 return new ConINode(TypeInt::ZERO); 4106 } 4107 } 4108 return progress ? this : nullptr; 4109 } 4110 4111 //------------------------------Value------------------------------------------ 4112 const Type* MemBarNode::Value(PhaseGVN* phase) const { 4113 if( !in(0) ) return Type::TOP; 4114 if( phase->type(in(0)) == Type::TOP ) 4115 return Type::TOP; 4116 return TypeTuple::MEMBAR; 4117 } 4118 4119 //------------------------------match------------------------------------------ 4120 // Construct projections for memory. 4121 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) { 4122 switch (proj->_con) { 4123 case TypeFunc::Control: 4124 case TypeFunc::Memory: 4125 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 4126 } 4127 ShouldNotReachHere(); 4128 return nullptr; 4129 } 4130 4131 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) { 4132 trailing->_kind = TrailingStore; 4133 leading->_kind = LeadingStore; 4134 #ifdef ASSERT 4135 trailing->_pair_idx = leading->_idx; 4136 leading->_pair_idx = leading->_idx; 4137 #endif 4138 } 4139 4140 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) { 4141 trailing->_kind = TrailingLoadStore; 4142 leading->_kind = LeadingLoadStore; 4143 #ifdef ASSERT 4144 trailing->_pair_idx = leading->_idx; 4145 leading->_pair_idx = leading->_idx; 4146 #endif 4147 } 4148 4149 MemBarNode* MemBarNode::trailing_membar() const { 4150 ResourceMark rm; 4151 Node* trailing = (Node*)this; 4152 VectorSet seen; 4153 Node_Stack multis(0); 4154 do { 4155 Node* c = trailing; 4156 uint i = 0; 4157 do { 4158 trailing = nullptr; 4159 for (; i < c->outcnt(); i++) { 4160 Node* next = c->raw_out(i); 4161 if (next != c && next->is_CFG()) { 4162 if (c->is_MultiBranch()) { 4163 if (multis.node() == c) { 4164 multis.set_index(i+1); 4165 } else { 4166 multis.push(c, i+1); 4167 } 4168 } 4169 trailing = next; 4170 break; 4171 } 4172 } 4173 if (trailing != nullptr && !seen.test_set(trailing->_idx)) { 4174 break; 4175 } 4176 while (multis.size() > 0) { 4177 c = multis.node(); 4178 i = multis.index(); 4179 if (i < c->req()) { 4180 break; 4181 } 4182 multis.pop(); 4183 } 4184 } while (multis.size() > 0); 4185 } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()); 4186 4187 MemBarNode* mb = trailing->as_MemBar(); 4188 assert((mb->_kind == TrailingStore && _kind == LeadingStore) || 4189 (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar"); 4190 assert(mb->_pair_idx == _pair_idx, "bad trailing membar"); 4191 return mb; 4192 } 4193 4194 MemBarNode* MemBarNode::leading_membar() const { 4195 ResourceMark rm; 4196 VectorSet seen; 4197 Node_Stack regions(0); 4198 Node* leading = in(0); 4199 while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) { 4200 while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) { 4201 leading = nullptr; 4202 while (regions.size() > 0 && leading == nullptr) { 4203 Node* r = regions.node(); 4204 uint i = regions.index(); 4205 if (i < r->req()) { 4206 leading = r->in(i); 4207 regions.set_index(i+1); 4208 } else { 4209 regions.pop(); 4210 } 4211 } 4212 if (leading == nullptr) { 4213 assert(regions.size() == 0, "all paths should have been tried"); 4214 return nullptr; 4215 } 4216 } 4217 if (leading->is_Region()) { 4218 regions.push(leading, 2); 4219 leading = leading->in(1); 4220 } else { 4221 leading = leading->in(0); 4222 } 4223 } 4224 #ifdef ASSERT 4225 Unique_Node_List wq; 4226 wq.push((Node*)this); 4227 uint found = 0; 4228 for (uint i = 0; i < wq.size(); i++) { 4229 Node* n = wq.at(i); 4230 if (n->is_Region()) { 4231 for (uint j = 1; j < n->req(); j++) { 4232 Node* in = n->in(j); 4233 if (in != nullptr && !in->is_top()) { 4234 wq.push(in); 4235 } 4236 } 4237 } else { 4238 if (n->is_MemBar() && n->as_MemBar()->leading()) { 4239 assert(n == leading, "consistency check failed"); 4240 found++; 4241 } else { 4242 Node* in = n->in(0); 4243 if (in != nullptr && !in->is_top()) { 4244 wq.push(in); 4245 } 4246 } 4247 } 4248 } 4249 assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed"); 4250 #endif 4251 if (leading == nullptr) { 4252 return nullptr; 4253 } 4254 MemBarNode* mb = leading->as_MemBar(); 4255 assert((mb->_kind == LeadingStore && _kind == TrailingStore) || 4256 (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar"); 4257 assert(mb->_pair_idx == _pair_idx, "bad leading membar"); 4258 return mb; 4259 } 4260 4261 4262 //===========================InitializeNode==================================== 4263 // SUMMARY: 4264 // This node acts as a memory barrier on raw memory, after some raw stores. 4265 // The 'cooked' oop value feeds from the Initialize, not the Allocation. 4266 // The Initialize can 'capture' suitably constrained stores as raw inits. 4267 // It can coalesce related raw stores into larger units (called 'tiles'). 4268 // It can avoid zeroing new storage for memory units which have raw inits. 4269 // At macro-expansion, it is marked 'complete', and does not optimize further. 4270 // 4271 // EXAMPLE: 4272 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine. 4273 // ctl = incoming control; mem* = incoming memory 4274 // (Note: A star * on a memory edge denotes I/O and other standard edges.) 4275 // First allocate uninitialized memory and fill in the header: 4276 // alloc = (Allocate ctl mem* 16 #short[].klass ...) 4277 // ctl := alloc.Control; mem* := alloc.Memory* 4278 // rawmem = alloc.Memory; rawoop = alloc.RawAddress 4279 // Then initialize to zero the non-header parts of the raw memory block: 4280 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress) 4281 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory 4282 // After the initialize node executes, the object is ready for service: 4283 // oop := (CheckCastPP init.Control alloc.RawAddress #short[]) 4284 // Suppose its body is immediately initialized as {1,2}: 4285 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 4286 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 4287 // mem.SLICE(#short[*]) := store2 4288 // 4289 // DETAILS: 4290 // An InitializeNode collects and isolates object initialization after 4291 // an AllocateNode and before the next possible safepoint. As a 4292 // memory barrier (MemBarNode), it keeps critical stores from drifting 4293 // down past any safepoint or any publication of the allocation. 4294 // Before this barrier, a newly-allocated object may have uninitialized bits. 4295 // After this barrier, it may be treated as a real oop, and GC is allowed. 4296 // 4297 // The semantics of the InitializeNode include an implicit zeroing of 4298 // the new object from object header to the end of the object. 4299 // (The object header and end are determined by the AllocateNode.) 4300 // 4301 // Certain stores may be added as direct inputs to the InitializeNode. 4302 // These stores must update raw memory, and they must be to addresses 4303 // derived from the raw address produced by AllocateNode, and with 4304 // a constant offset. They must be ordered by increasing offset. 4305 // The first one is at in(RawStores), the last at in(req()-1). 4306 // Unlike most memory operations, they are not linked in a chain, 4307 // but are displayed in parallel as users of the rawmem output of 4308 // the allocation. 4309 // 4310 // (See comments in InitializeNode::capture_store, which continue 4311 // the example given above.) 4312 // 4313 // When the associated Allocate is macro-expanded, the InitializeNode 4314 // may be rewritten to optimize collected stores. A ClearArrayNode 4315 // may also be created at that point to represent any required zeroing. 4316 // The InitializeNode is then marked 'complete', prohibiting further 4317 // capturing of nearby memory operations. 4318 // 4319 // During macro-expansion, all captured initializations which store 4320 // constant values of 32 bits or smaller are coalesced (if advantageous) 4321 // into larger 'tiles' 32 or 64 bits. This allows an object to be 4322 // initialized in fewer memory operations. Memory words which are 4323 // covered by neither tiles nor non-constant stores are pre-zeroed 4324 // by explicit stores of zero. (The code shape happens to do all 4325 // zeroing first, then all other stores, with both sequences occurring 4326 // in order of ascending offsets.) 4327 // 4328 // Alternatively, code may be inserted between an AllocateNode and its 4329 // InitializeNode, to perform arbitrary initialization of the new object. 4330 // E.g., the object copying intrinsics insert complex data transfers here. 4331 // The initialization must then be marked as 'complete' disable the 4332 // built-in zeroing semantics and the collection of initializing stores. 4333 // 4334 // While an InitializeNode is incomplete, reads from the memory state 4335 // produced by it are optimizable if they match the control edge and 4336 // new oop address associated with the allocation/initialization. 4337 // They return a stored value (if the offset matches) or else zero. 4338 // A write to the memory state, if it matches control and address, 4339 // and if it is to a constant offset, may be 'captured' by the 4340 // InitializeNode. It is cloned as a raw memory operation and rewired 4341 // inside the initialization, to the raw oop produced by the allocation. 4342 // Operations on addresses which are provably distinct (e.g., to 4343 // other AllocateNodes) are allowed to bypass the initialization. 4344 // 4345 // The effect of all this is to consolidate object initialization 4346 // (both arrays and non-arrays, both piecewise and bulk) into a 4347 // single location, where it can be optimized as a unit. 4348 // 4349 // Only stores with an offset less than TrackedInitializationLimit words 4350 // will be considered for capture by an InitializeNode. This puts a 4351 // reasonable limit on the complexity of optimized initializations. 4352 4353 //---------------------------InitializeNode------------------------------------ 4354 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop) 4355 : MemBarNode(C, adr_type, rawoop), 4356 _is_complete(Incomplete), _does_not_escape(false) 4357 { 4358 init_class_id(Class_Initialize); 4359 4360 assert(adr_type == Compile::AliasIdxRaw, "only valid atp"); 4361 assert(in(RawAddress) == rawoop, "proper init"); 4362 // Note: allocation() can be null, for secondary initialization barriers 4363 } 4364 4365 // Since this node is not matched, it will be processed by the 4366 // register allocator. Declare that there are no constraints 4367 // on the allocation of the RawAddress edge. 4368 const RegMask &InitializeNode::in_RegMask(uint idx) const { 4369 // This edge should be set to top, by the set_complete. But be conservative. 4370 if (idx == InitializeNode::RawAddress) 4371 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]); 4372 return RegMask::Empty; 4373 } 4374 4375 Node* InitializeNode::memory(uint alias_idx) { 4376 Node* mem = in(Memory); 4377 if (mem->is_MergeMem()) { 4378 return mem->as_MergeMem()->memory_at(alias_idx); 4379 } else { 4380 // incoming raw memory is not split 4381 return mem; 4382 } 4383 } 4384 4385 bool InitializeNode::is_non_zero() { 4386 if (is_complete()) return false; 4387 remove_extra_zeroes(); 4388 return (req() > RawStores); 4389 } 4390 4391 void InitializeNode::set_complete(PhaseGVN* phase) { 4392 assert(!is_complete(), "caller responsibility"); 4393 _is_complete = Complete; 4394 4395 // After this node is complete, it contains a bunch of 4396 // raw-memory initializations. There is no need for 4397 // it to have anything to do with non-raw memory effects. 4398 // Therefore, tell all non-raw users to re-optimize themselves, 4399 // after skipping the memory effects of this initialization. 4400 PhaseIterGVN* igvn = phase->is_IterGVN(); 4401 if (igvn) igvn->add_users_to_worklist(this); 4402 } 4403 4404 // convenience function 4405 // return false if the init contains any stores already 4406 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) { 4407 InitializeNode* init = initialization(); 4408 if (init == nullptr || init->is_complete()) { 4409 return false; 4410 } 4411 init->remove_extra_zeroes(); 4412 // for now, if this allocation has already collected any inits, bail: 4413 if (init->is_non_zero()) return false; 4414 init->set_complete(phase); 4415 return true; 4416 } 4417 4418 void InitializeNode::remove_extra_zeroes() { 4419 if (req() == RawStores) return; 4420 Node* zmem = zero_memory(); 4421 uint fill = RawStores; 4422 for (uint i = fill; i < req(); i++) { 4423 Node* n = in(i); 4424 if (n->is_top() || n == zmem) continue; // skip 4425 if (fill < i) set_req(fill, n); // compact 4426 ++fill; 4427 } 4428 // delete any empty spaces created: 4429 while (fill < req()) { 4430 del_req(fill); 4431 } 4432 } 4433 4434 // Helper for remembering which stores go with which offsets. 4435 intptr_t InitializeNode::get_store_offset(Node* st, PhaseValues* phase) { 4436 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node 4437 intptr_t offset = -1; 4438 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address), 4439 phase, offset); 4440 if (base == nullptr) return -1; // something is dead, 4441 if (offset < 0) return -1; // dead, dead 4442 return offset; 4443 } 4444 4445 // Helper for proving that an initialization expression is 4446 // "simple enough" to be folded into an object initialization. 4447 // Attempts to prove that a store's initial value 'n' can be captured 4448 // within the initialization without creating a vicious cycle, such as: 4449 // { Foo p = new Foo(); p.next = p; } 4450 // True for constants and parameters and small combinations thereof. 4451 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) { 4452 ResourceMark rm; 4453 Unique_Node_List worklist; 4454 worklist.push(value); 4455 4456 uint complexity_limit = 20; 4457 for (uint j = 0; j < worklist.size(); j++) { 4458 if (j >= complexity_limit) { 4459 return false; // Bail out if processed too many nodes 4460 } 4461 4462 Node* n = worklist.at(j); 4463 if (n == nullptr) continue; // (can this really happen?) 4464 if (n->is_Proj()) n = n->in(0); 4465 if (n == this) return false; // found a cycle 4466 if (n->is_Con()) continue; 4467 if (n->is_Start()) continue; // params, etc., are OK 4468 if (n->is_Root()) continue; // even better 4469 4470 // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation 4471 if (n->is_CFG() && phase->is_dominator(n, allocation())) { 4472 continue; 4473 } 4474 4475 Node* ctl = n->in(0); 4476 if (ctl != nullptr && !ctl->is_top()) { 4477 if (ctl->is_Proj()) ctl = ctl->in(0); 4478 if (ctl == this) return false; 4479 4480 // If we already know that the enclosing memory op is pinned right after 4481 // the init, then any control flow that the store has picked up 4482 // must have preceded the init, or else be equal to the init. 4483 // Even after loop optimizations (which might change control edges) 4484 // a store is never pinned *before* the availability of its inputs. 4485 if (!MemNode::all_controls_dominate(n, this)) { 4486 return false; // failed to prove a good control 4487 } 4488 } 4489 4490 // Check data edges for possible dependencies on 'this'. 4491 for (uint i = 1; i < n->req(); i++) { 4492 Node* m = n->in(i); 4493 if (m == nullptr || m == n || m->is_top()) continue; 4494 4495 // Only process data inputs once 4496 worklist.push(m); 4497 } 4498 } 4499 4500 return true; 4501 } 4502 4503 // Here are all the checks a Store must pass before it can be moved into 4504 // an initialization. Returns zero if a check fails. 4505 // On success, returns the (constant) offset to which the store applies, 4506 // within the initialized memory. 4507 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) { 4508 const int FAIL = 0; 4509 if (st->req() != MemNode::ValueIn + 1) 4510 return FAIL; // an inscrutable StoreNode (card mark?) 4511 Node* ctl = st->in(MemNode::Control); 4512 if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this)) 4513 return FAIL; // must be unconditional after the initialization 4514 Node* mem = st->in(MemNode::Memory); 4515 if (!(mem->is_Proj() && mem->in(0) == this)) 4516 return FAIL; // must not be preceded by other stores 4517 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4518 if ((st->Opcode() == Op_StoreP || st->Opcode() == Op_StoreN) && 4519 !bs->can_initialize_object(st)) { 4520 return FAIL; 4521 } 4522 Node* adr = st->in(MemNode::Address); 4523 intptr_t offset; 4524 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset); 4525 if (alloc == nullptr) 4526 return FAIL; // inscrutable address 4527 if (alloc != allocation()) 4528 return FAIL; // wrong allocation! (store needs to float up) 4529 int size_in_bytes = st->memory_size(); 4530 if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) { 4531 return FAIL; // mismatched access 4532 } 4533 Node* val = st->in(MemNode::ValueIn); 4534 4535 if (!detect_init_independence(val, phase)) 4536 return FAIL; // stored value must be 'simple enough' 4537 4538 // The Store can be captured only if nothing after the allocation 4539 // and before the Store is using the memory location that the store 4540 // overwrites. 4541 bool failed = false; 4542 // If is_complete_with_arraycopy() is true the shape of the graph is 4543 // well defined and is safe so no need for extra checks. 4544 if (!is_complete_with_arraycopy()) { 4545 // We are going to look at each use of the memory state following 4546 // the allocation to make sure nothing reads the memory that the 4547 // Store writes. 4548 const TypePtr* t_adr = phase->type(adr)->isa_ptr(); 4549 int alias_idx = phase->C->get_alias_index(t_adr); 4550 ResourceMark rm; 4551 Unique_Node_List mems; 4552 mems.push(mem); 4553 Node* unique_merge = nullptr; 4554 for (uint next = 0; next < mems.size(); ++next) { 4555 Node *m = mems.at(next); 4556 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 4557 Node *n = m->fast_out(j); 4558 if (n->outcnt() == 0) { 4559 continue; 4560 } 4561 if (n == st) { 4562 continue; 4563 } else if (n->in(0) != nullptr && n->in(0) != ctl) { 4564 // If the control of this use is different from the control 4565 // of the Store which is right after the InitializeNode then 4566 // this node cannot be between the InitializeNode and the 4567 // Store. 4568 continue; 4569 } else if (n->is_MergeMem()) { 4570 if (n->as_MergeMem()->memory_at(alias_idx) == m) { 4571 // We can hit a MergeMemNode (that will likely go away 4572 // later) that is a direct use of the memory state 4573 // following the InitializeNode on the same slice as the 4574 // store node that we'd like to capture. We need to check 4575 // the uses of the MergeMemNode. 4576 mems.push(n); 4577 } 4578 } else if (n->is_Mem()) { 4579 Node* other_adr = n->in(MemNode::Address); 4580 if (other_adr == adr) { 4581 failed = true; 4582 break; 4583 } else { 4584 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr(); 4585 if (other_t_adr != nullptr) { 4586 int other_alias_idx = phase->C->get_alias_index(other_t_adr); 4587 if (other_alias_idx == alias_idx) { 4588 // A load from the same memory slice as the store right 4589 // after the InitializeNode. We check the control of the 4590 // object/array that is loaded from. If it's the same as 4591 // the store control then we cannot capture the store. 4592 assert(!n->is_Store(), "2 stores to same slice on same control?"); 4593 Node* base = other_adr; 4594 if (base->is_Phi()) { 4595 // In rare case, base may be a PhiNode and it may read 4596 // the same memory slice between InitializeNode and store. 4597 failed = true; 4598 break; 4599 } 4600 assert(base->is_AddP(), "should be addp but is %s", base->Name()); 4601 base = base->in(AddPNode::Base); 4602 if (base != nullptr) { 4603 base = base->uncast(); 4604 if (base->is_Proj() && base->in(0) == alloc) { 4605 failed = true; 4606 break; 4607 } 4608 } 4609 } 4610 } 4611 } 4612 } else { 4613 failed = true; 4614 break; 4615 } 4616 } 4617 } 4618 } 4619 if (failed) { 4620 if (!can_reshape) { 4621 // We decided we couldn't capture the store during parsing. We 4622 // should try again during the next IGVN once the graph is 4623 // cleaner. 4624 phase->C->record_for_igvn(st); 4625 } 4626 return FAIL; 4627 } 4628 4629 return offset; // success 4630 } 4631 4632 // Find the captured store in(i) which corresponds to the range 4633 // [start..start+size) in the initialized object. 4634 // If there is one, return its index i. If there isn't, return the 4635 // negative of the index where it should be inserted. 4636 // Return 0 if the queried range overlaps an initialization boundary 4637 // or if dead code is encountered. 4638 // If size_in_bytes is zero, do not bother with overlap checks. 4639 int InitializeNode::captured_store_insertion_point(intptr_t start, 4640 int size_in_bytes, 4641 PhaseValues* phase) { 4642 const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 4643 4644 if (is_complete()) 4645 return FAIL; // arraycopy got here first; punt 4646 4647 assert(allocation() != nullptr, "must be present"); 4648 4649 // no negatives, no header fields: 4650 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL; 4651 4652 // after a certain size, we bail out on tracking all the stores: 4653 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 4654 if (start >= ti_limit) return FAIL; 4655 4656 for (uint i = InitializeNode::RawStores, limit = req(); ; ) { 4657 if (i >= limit) return -(int)i; // not found; here is where to put it 4658 4659 Node* st = in(i); 4660 intptr_t st_off = get_store_offset(st, phase); 4661 if (st_off < 0) { 4662 if (st != zero_memory()) { 4663 return FAIL; // bail out if there is dead garbage 4664 } 4665 } else if (st_off > start) { 4666 // ...we are done, since stores are ordered 4667 if (st_off < start + size_in_bytes) { 4668 return FAIL; // the next store overlaps 4669 } 4670 return -(int)i; // not found; here is where to put it 4671 } else if (st_off < start) { 4672 assert(st->as_Store()->memory_size() <= MAX_STORE, ""); 4673 if (size_in_bytes != 0 && 4674 start < st_off + MAX_STORE && 4675 start < st_off + st->as_Store()->memory_size()) { 4676 return FAIL; // the previous store overlaps 4677 } 4678 } else { 4679 if (size_in_bytes != 0 && 4680 st->as_Store()->memory_size() != size_in_bytes) { 4681 return FAIL; // mismatched store size 4682 } 4683 return i; 4684 } 4685 4686 ++i; 4687 } 4688 } 4689 4690 // Look for a captured store which initializes at the offset 'start' 4691 // with the given size. If there is no such store, and no other 4692 // initialization interferes, then return zero_memory (the memory 4693 // projection of the AllocateNode). 4694 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes, 4695 PhaseValues* phase) { 4696 assert(stores_are_sane(phase), ""); 4697 int i = captured_store_insertion_point(start, size_in_bytes, phase); 4698 if (i == 0) { 4699 return nullptr; // something is dead 4700 } else if (i < 0) { 4701 return zero_memory(); // just primordial zero bits here 4702 } else { 4703 Node* st = in(i); // here is the store at this position 4704 assert(get_store_offset(st->as_Store(), phase) == start, "sanity"); 4705 return st; 4706 } 4707 } 4708 4709 // Create, as a raw pointer, an address within my new object at 'offset'. 4710 Node* InitializeNode::make_raw_address(intptr_t offset, 4711 PhaseGVN* phase) { 4712 Node* addr = in(RawAddress); 4713 if (offset != 0) { 4714 Compile* C = phase->C; 4715 addr = phase->transform( new AddPNode(C->top(), addr, 4716 phase->MakeConX(offset)) ); 4717 } 4718 return addr; 4719 } 4720 4721 // Clone the given store, converting it into a raw store 4722 // initializing a field or element of my new object. 4723 // Caller is responsible for retiring the original store, 4724 // with subsume_node or the like. 4725 // 4726 // From the example above InitializeNode::InitializeNode, 4727 // here are the old stores to be captured: 4728 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 4729 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 4730 // 4731 // Here is the changed code; note the extra edges on init: 4732 // alloc = (Allocate ...) 4733 // rawoop = alloc.RawAddress 4734 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1) 4735 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2) 4736 // init = (Initialize alloc.Control alloc.Memory rawoop 4737 // rawstore1 rawstore2) 4738 // 4739 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start, 4740 PhaseGVN* phase, bool can_reshape) { 4741 assert(stores_are_sane(phase), ""); 4742 4743 if (start < 0) return nullptr; 4744 assert(can_capture_store(st, phase, can_reshape) == start, "sanity"); 4745 4746 Compile* C = phase->C; 4747 int size_in_bytes = st->memory_size(); 4748 int i = captured_store_insertion_point(start, size_in_bytes, phase); 4749 if (i == 0) return nullptr; // bail out 4750 Node* prev_mem = nullptr; // raw memory for the captured store 4751 if (i > 0) { 4752 prev_mem = in(i); // there is a pre-existing store under this one 4753 set_req(i, C->top()); // temporarily disconnect it 4754 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect. 4755 } else { 4756 i = -i; // no pre-existing store 4757 prev_mem = zero_memory(); // a slice of the newly allocated object 4758 if (i > InitializeNode::RawStores && in(i-1) == prev_mem) 4759 set_req(--i, C->top()); // reuse this edge; it has been folded away 4760 else 4761 ins_req(i, C->top()); // build a new edge 4762 } 4763 Node* new_st = st->clone(); 4764 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4765 new_st->set_req(MemNode::Control, in(Control)); 4766 new_st->set_req(MemNode::Memory, prev_mem); 4767 new_st->set_req(MemNode::Address, make_raw_address(start, phase)); 4768 bs->eliminate_gc_barrier_data(new_st); 4769 new_st = phase->transform(new_st); 4770 4771 // At this point, new_st might have swallowed a pre-existing store 4772 // at the same offset, or perhaps new_st might have disappeared, 4773 // if it redundantly stored the same value (or zero to fresh memory). 4774 4775 // In any case, wire it in: 4776 PhaseIterGVN* igvn = phase->is_IterGVN(); 4777 if (igvn) { 4778 igvn->rehash_node_delayed(this); 4779 } 4780 set_req(i, new_st); 4781 4782 // The caller may now kill the old guy. 4783 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase)); 4784 assert(check_st == new_st || check_st == nullptr, "must be findable"); 4785 assert(!is_complete(), ""); 4786 return new_st; 4787 } 4788 4789 static bool store_constant(jlong* tiles, int num_tiles, 4790 intptr_t st_off, int st_size, 4791 jlong con) { 4792 if ((st_off & (st_size-1)) != 0) 4793 return false; // strange store offset (assume size==2**N) 4794 address addr = (address)tiles + st_off; 4795 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob"); 4796 switch (st_size) { 4797 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break; 4798 case sizeof(jchar): *(jchar*) addr = (jchar) con; break; 4799 case sizeof(jint): *(jint*) addr = (jint) con; break; 4800 case sizeof(jlong): *(jlong*) addr = (jlong) con; break; 4801 default: return false; // strange store size (detect size!=2**N here) 4802 } 4803 return true; // return success to caller 4804 } 4805 4806 // Coalesce subword constants into int constants and possibly 4807 // into long constants. The goal, if the CPU permits, 4808 // is to initialize the object with a small number of 64-bit tiles. 4809 // Also, convert floating-point constants to bit patterns. 4810 // Non-constants are not relevant to this pass. 4811 // 4812 // In terms of the running example on InitializeNode::InitializeNode 4813 // and InitializeNode::capture_store, here is the transformation 4814 // of rawstore1 and rawstore2 into rawstore12: 4815 // alloc = (Allocate ...) 4816 // rawoop = alloc.RawAddress 4817 // tile12 = 0x00010002 4818 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12) 4819 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12) 4820 // 4821 void 4822 InitializeNode::coalesce_subword_stores(intptr_t header_size, 4823 Node* size_in_bytes, 4824 PhaseGVN* phase) { 4825 Compile* C = phase->C; 4826 4827 assert(stores_are_sane(phase), ""); 4828 // Note: After this pass, they are not completely sane, 4829 // since there may be some overlaps. 4830 4831 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0; 4832 4833 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 4834 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit); 4835 size_limit = MIN2(size_limit, ti_limit); 4836 size_limit = align_up(size_limit, BytesPerLong); 4837 int num_tiles = size_limit / BytesPerLong; 4838 4839 // allocate space for the tile map: 4840 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small 4841 jlong tiles_buf[small_len]; 4842 Node* nodes_buf[small_len]; 4843 jlong inits_buf[small_len]; 4844 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0] 4845 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 4846 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0] 4847 : NEW_RESOURCE_ARRAY(Node*, num_tiles)); 4848 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0] 4849 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 4850 // tiles: exact bitwise model of all primitive constants 4851 // nodes: last constant-storing node subsumed into the tiles model 4852 // inits: which bytes (in each tile) are touched by any initializations 4853 4854 //// Pass A: Fill in the tile model with any relevant stores. 4855 4856 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles); 4857 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles); 4858 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles); 4859 Node* zmem = zero_memory(); // initially zero memory state 4860 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 4861 Node* st = in(i); 4862 intptr_t st_off = get_store_offset(st, phase); 4863 4864 // Figure out the store's offset and constant value: 4865 if (st_off < header_size) continue; //skip (ignore header) 4866 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain) 4867 int st_size = st->as_Store()->memory_size(); 4868 if (st_off + st_size > size_limit) break; 4869 4870 // Record which bytes are touched, whether by constant or not. 4871 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1)) 4872 continue; // skip (strange store size) 4873 4874 const Type* val = phase->type(st->in(MemNode::ValueIn)); 4875 if (!val->singleton()) continue; //skip (non-con store) 4876 BasicType type = val->basic_type(); 4877 4878 jlong con = 0; 4879 switch (type) { 4880 case T_INT: con = val->is_int()->get_con(); break; 4881 case T_LONG: con = val->is_long()->get_con(); break; 4882 case T_FLOAT: con = jint_cast(val->getf()); break; 4883 case T_DOUBLE: con = jlong_cast(val->getd()); break; 4884 default: continue; //skip (odd store type) 4885 } 4886 4887 if (type == T_LONG && Matcher::isSimpleConstant64(con) && 4888 st->Opcode() == Op_StoreL) { 4889 continue; // This StoreL is already optimal. 4890 } 4891 4892 // Store down the constant. 4893 store_constant(tiles, num_tiles, st_off, st_size, con); 4894 4895 intptr_t j = st_off >> LogBytesPerLong; 4896 4897 if (type == T_INT && st_size == BytesPerInt 4898 && (st_off & BytesPerInt) == BytesPerInt) { 4899 jlong lcon = tiles[j]; 4900 if (!Matcher::isSimpleConstant64(lcon) && 4901 st->Opcode() == Op_StoreI) { 4902 // This StoreI is already optimal by itself. 4903 jint* intcon = (jint*) &tiles[j]; 4904 intcon[1] = 0; // undo the store_constant() 4905 4906 // If the previous store is also optimal by itself, back up and 4907 // undo the action of the previous loop iteration... if we can. 4908 // But if we can't, just let the previous half take care of itself. 4909 st = nodes[j]; 4910 st_off -= BytesPerInt; 4911 con = intcon[0]; 4912 if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) { 4913 assert(st_off >= header_size, "still ignoring header"); 4914 assert(get_store_offset(st, phase) == st_off, "must be"); 4915 assert(in(i-1) == zmem, "must be"); 4916 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn))); 4917 assert(con == tcon->is_int()->get_con(), "must be"); 4918 // Undo the effects of the previous loop trip, which swallowed st: 4919 intcon[0] = 0; // undo store_constant() 4920 set_req(i-1, st); // undo set_req(i, zmem) 4921 nodes[j] = nullptr; // undo nodes[j] = st 4922 --old_subword; // undo ++old_subword 4923 } 4924 continue; // This StoreI is already optimal. 4925 } 4926 } 4927 4928 // This store is not needed. 4929 set_req(i, zmem); 4930 nodes[j] = st; // record for the moment 4931 if (st_size < BytesPerLong) // something has changed 4932 ++old_subword; // includes int/float, but who's counting... 4933 else ++old_long; 4934 } 4935 4936 if ((old_subword + old_long) == 0) 4937 return; // nothing more to do 4938 4939 //// Pass B: Convert any non-zero tiles into optimal constant stores. 4940 // Be sure to insert them before overlapping non-constant stores. 4941 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.) 4942 for (int j = 0; j < num_tiles; j++) { 4943 jlong con = tiles[j]; 4944 jlong init = inits[j]; 4945 if (con == 0) continue; 4946 jint con0, con1; // split the constant, address-wise 4947 jint init0, init1; // split the init map, address-wise 4948 { union { jlong con; jint intcon[2]; } u; 4949 u.con = con; 4950 con0 = u.intcon[0]; 4951 con1 = u.intcon[1]; 4952 u.con = init; 4953 init0 = u.intcon[0]; 4954 init1 = u.intcon[1]; 4955 } 4956 4957 Node* old = nodes[j]; 4958 assert(old != nullptr, "need the prior store"); 4959 intptr_t offset = (j * BytesPerLong); 4960 4961 bool split = !Matcher::isSimpleConstant64(con); 4962 4963 if (offset < header_size) { 4964 assert(offset + BytesPerInt >= header_size, "second int counts"); 4965 assert(*(jint*)&tiles[j] == 0, "junk in header"); 4966 split = true; // only the second word counts 4967 // Example: int a[] = { 42 ... } 4968 } else if (con0 == 0 && init0 == -1) { 4969 split = true; // first word is covered by full inits 4970 // Example: int a[] = { ... foo(), 42 ... } 4971 } else if (con1 == 0 && init1 == -1) { 4972 split = true; // second word is covered by full inits 4973 // Example: int a[] = { ... 42, foo() ... } 4974 } 4975 4976 // Here's a case where init0 is neither 0 nor -1: 4977 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... } 4978 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF. 4979 // In this case the tile is not split; it is (jlong)42. 4980 // The big tile is stored down, and then the foo() value is inserted. 4981 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.) 4982 4983 Node* ctl = old->in(MemNode::Control); 4984 Node* adr = make_raw_address(offset, phase); 4985 const TypePtr* atp = TypeRawPtr::BOTTOM; 4986 4987 // One or two coalesced stores to plop down. 4988 Node* st[2]; 4989 intptr_t off[2]; 4990 int nst = 0; 4991 if (!split) { 4992 ++new_long; 4993 off[nst] = offset; 4994 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 4995 phase->longcon(con), T_LONG, MemNode::unordered); 4996 } else { 4997 // Omit either if it is a zero. 4998 if (con0 != 0) { 4999 ++new_int; 5000 off[nst] = offset; 5001 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 5002 phase->intcon(con0), T_INT, MemNode::unordered); 5003 } 5004 if (con1 != 0) { 5005 ++new_int; 5006 offset += BytesPerInt; 5007 adr = make_raw_address(offset, phase); 5008 off[nst] = offset; 5009 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 5010 phase->intcon(con1), T_INT, MemNode::unordered); 5011 } 5012 } 5013 5014 // Insert second store first, then the first before the second. 5015 // Insert each one just before any overlapping non-constant stores. 5016 while (nst > 0) { 5017 Node* st1 = st[--nst]; 5018 C->copy_node_notes_to(st1, old); 5019 st1 = phase->transform(st1); 5020 offset = off[nst]; 5021 assert(offset >= header_size, "do not smash header"); 5022 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase); 5023 guarantee(ins_idx != 0, "must re-insert constant store"); 5024 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap 5025 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem) 5026 set_req(--ins_idx, st1); 5027 else 5028 ins_req(ins_idx, st1); 5029 } 5030 } 5031 5032 if (PrintCompilation && WizardMode) 5033 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long", 5034 old_subword, old_long, new_int, new_long); 5035 if (C->log() != nullptr) 5036 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'", 5037 old_subword, old_long, new_int, new_long); 5038 5039 // Clean up any remaining occurrences of zmem: 5040 remove_extra_zeroes(); 5041 } 5042 5043 // Explore forward from in(start) to find the first fully initialized 5044 // word, and return its offset. Skip groups of subword stores which 5045 // together initialize full words. If in(start) is itself part of a 5046 // fully initialized word, return the offset of in(start). If there 5047 // are no following full-word stores, or if something is fishy, return 5048 // a negative value. 5049 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) { 5050 int int_map = 0; 5051 intptr_t int_map_off = 0; 5052 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for 5053 5054 for (uint i = start, limit = req(); i < limit; i++) { 5055 Node* st = in(i); 5056 5057 intptr_t st_off = get_store_offset(st, phase); 5058 if (st_off < 0) break; // return conservative answer 5059 5060 int st_size = st->as_Store()->memory_size(); 5061 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) { 5062 return st_off; // we found a complete word init 5063 } 5064 5065 // update the map: 5066 5067 intptr_t this_int_off = align_down(st_off, BytesPerInt); 5068 if (this_int_off != int_map_off) { 5069 // reset the map: 5070 int_map = 0; 5071 int_map_off = this_int_off; 5072 } 5073 5074 int subword_off = st_off - this_int_off; 5075 int_map |= right_n_bits(st_size) << subword_off; 5076 if ((int_map & FULL_MAP) == FULL_MAP) { 5077 return this_int_off; // we found a complete word init 5078 } 5079 5080 // Did this store hit or cross the word boundary? 5081 intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt); 5082 if (next_int_off == this_int_off + BytesPerInt) { 5083 // We passed the current int, without fully initializing it. 5084 int_map_off = next_int_off; 5085 int_map >>= BytesPerInt; 5086 } else if (next_int_off > this_int_off + BytesPerInt) { 5087 // We passed the current and next int. 5088 return this_int_off + BytesPerInt; 5089 } 5090 } 5091 5092 return -1; 5093 } 5094 5095 5096 // Called when the associated AllocateNode is expanded into CFG. 5097 // At this point, we may perform additional optimizations. 5098 // Linearize the stores by ascending offset, to make memory 5099 // activity as coherent as possible. 5100 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, 5101 intptr_t header_size, 5102 Node* size_in_bytes, 5103 PhaseIterGVN* phase) { 5104 assert(!is_complete(), "not already complete"); 5105 assert(stores_are_sane(phase), ""); 5106 assert(allocation() != nullptr, "must be present"); 5107 5108 remove_extra_zeroes(); 5109 5110 if (ReduceFieldZeroing || ReduceBulkZeroing) 5111 // reduce instruction count for common initialization patterns 5112 coalesce_subword_stores(header_size, size_in_bytes, phase); 5113 5114 Node* zmem = zero_memory(); // initially zero memory state 5115 Node* inits = zmem; // accumulating a linearized chain of inits 5116 #ifdef ASSERT 5117 intptr_t first_offset = allocation()->minimum_header_size(); 5118 intptr_t last_init_off = first_offset; // previous init offset 5119 intptr_t last_init_end = first_offset; // previous init offset+size 5120 intptr_t last_tile_end = first_offset; // previous tile offset+size 5121 #endif 5122 intptr_t zeroes_done = header_size; 5123 5124 bool do_zeroing = true; // we might give up if inits are very sparse 5125 int big_init_gaps = 0; // how many large gaps have we seen? 5126 5127 if (UseTLAB && ZeroTLAB) do_zeroing = false; 5128 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false; 5129 5130 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 5131 Node* st = in(i); 5132 intptr_t st_off = get_store_offset(st, phase); 5133 if (st_off < 0) 5134 break; // unknown junk in the inits 5135 if (st->in(MemNode::Memory) != zmem) 5136 break; // complicated store chains somehow in list 5137 5138 int st_size = st->as_Store()->memory_size(); 5139 intptr_t next_init_off = st_off + st_size; 5140 5141 if (do_zeroing && zeroes_done < next_init_off) { 5142 // See if this store needs a zero before it or under it. 5143 intptr_t zeroes_needed = st_off; 5144 5145 if (st_size < BytesPerInt) { 5146 // Look for subword stores which only partially initialize words. 5147 // If we find some, we must lay down some word-level zeroes first, 5148 // underneath the subword stores. 5149 // 5150 // Examples: 5151 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s 5152 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y 5153 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z 5154 // 5155 // Note: coalesce_subword_stores may have already done this, 5156 // if it was prompted by constant non-zero subword initializers. 5157 // But this case can still arise with non-constant stores. 5158 5159 intptr_t next_full_store = find_next_fullword_store(i, phase); 5160 5161 // In the examples above: 5162 // in(i) p q r s x y z 5163 // st_off 12 13 14 15 12 13 14 5164 // st_size 1 1 1 1 1 1 1 5165 // next_full_s. 12 16 16 16 16 16 16 5166 // z's_done 12 16 16 16 12 16 12 5167 // z's_needed 12 16 16 16 16 16 16 5168 // zsize 0 0 0 0 4 0 4 5169 if (next_full_store < 0) { 5170 // Conservative tack: Zero to end of current word. 5171 zeroes_needed = align_up(zeroes_needed, BytesPerInt); 5172 } else { 5173 // Zero to beginning of next fully initialized word. 5174 // Or, don't zero at all, if we are already in that word. 5175 assert(next_full_store >= zeroes_needed, "must go forward"); 5176 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary"); 5177 zeroes_needed = next_full_store; 5178 } 5179 } 5180 5181 if (zeroes_needed > zeroes_done) { 5182 intptr_t zsize = zeroes_needed - zeroes_done; 5183 // Do some incremental zeroing on rawmem, in parallel with inits. 5184 zeroes_done = align_down(zeroes_done, BytesPerInt); 5185 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 5186 allocation()->in(AllocateNode::DefaultValue), 5187 allocation()->in(AllocateNode::RawDefaultValue), 5188 zeroes_done, zeroes_needed, 5189 phase); 5190 zeroes_done = zeroes_needed; 5191 if (zsize > InitArrayShortSize && ++big_init_gaps > 2) 5192 do_zeroing = false; // leave the hole, next time 5193 } 5194 } 5195 5196 // Collect the store and move on: 5197 phase->replace_input_of(st, MemNode::Memory, inits); 5198 inits = st; // put it on the linearized chain 5199 set_req(i, zmem); // unhook from previous position 5200 5201 if (zeroes_done == st_off) 5202 zeroes_done = next_init_off; 5203 5204 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any"); 5205 5206 #ifdef ASSERT 5207 // Various order invariants. Weaker than stores_are_sane because 5208 // a large constant tile can be filled in by smaller non-constant stores. 5209 assert(st_off >= last_init_off, "inits do not reverse"); 5210 last_init_off = st_off; 5211 const Type* val = nullptr; 5212 if (st_size >= BytesPerInt && 5213 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() && 5214 (int)val->basic_type() < (int)T_OBJECT) { 5215 assert(st_off >= last_tile_end, "tiles do not overlap"); 5216 assert(st_off >= last_init_end, "tiles do not overwrite inits"); 5217 last_tile_end = MAX2(last_tile_end, next_init_off); 5218 } else { 5219 intptr_t st_tile_end = align_up(next_init_off, BytesPerLong); 5220 assert(st_tile_end >= last_tile_end, "inits stay with tiles"); 5221 assert(st_off >= last_init_end, "inits do not overlap"); 5222 last_init_end = next_init_off; // it's a non-tile 5223 } 5224 #endif //ASSERT 5225 } 5226 5227 remove_extra_zeroes(); // clear out all the zmems left over 5228 add_req(inits); 5229 5230 if (!(UseTLAB && ZeroTLAB)) { 5231 // If anything remains to be zeroed, zero it all now. 5232 zeroes_done = align_down(zeroes_done, BytesPerInt); 5233 // if it is the last unused 4 bytes of an instance, forget about it 5234 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint); 5235 if (zeroes_done + BytesPerLong >= size_limit) { 5236 AllocateNode* alloc = allocation(); 5237 assert(alloc != nullptr, "must be present"); 5238 if (alloc != nullptr && alloc->Opcode() == Op_Allocate) { 5239 Node* klass_node = alloc->in(AllocateNode::KlassNode); 5240 ciKlass* k = phase->type(klass_node)->is_instklassptr()->instance_klass(); 5241 if (zeroes_done == k->layout_helper()) 5242 zeroes_done = size_limit; 5243 } 5244 } 5245 if (zeroes_done < size_limit) { 5246 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 5247 allocation()->in(AllocateNode::DefaultValue), 5248 allocation()->in(AllocateNode::RawDefaultValue), 5249 zeroes_done, size_in_bytes, phase); 5250 } 5251 } 5252 5253 set_complete(phase); 5254 return rawmem; 5255 } 5256 5257 5258 #ifdef ASSERT 5259 bool InitializeNode::stores_are_sane(PhaseValues* phase) { 5260 if (is_complete()) 5261 return true; // stores could be anything at this point 5262 assert(allocation() != nullptr, "must be present"); 5263 intptr_t last_off = allocation()->minimum_header_size(); 5264 for (uint i = InitializeNode::RawStores; i < req(); i++) { 5265 Node* st = in(i); 5266 intptr_t st_off = get_store_offset(st, phase); 5267 if (st_off < 0) continue; // ignore dead garbage 5268 if (last_off > st_off) { 5269 tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off); 5270 this->dump(2); 5271 assert(false, "ascending store offsets"); 5272 return false; 5273 } 5274 last_off = st_off + st->as_Store()->memory_size(); 5275 } 5276 return true; 5277 } 5278 #endif //ASSERT 5279 5280 5281 5282 5283 //============================MergeMemNode===================================== 5284 // 5285 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several 5286 // contributing store or call operations. Each contributor provides the memory 5287 // state for a particular "alias type" (see Compile::alias_type). For example, 5288 // if a MergeMem has an input X for alias category #6, then any memory reference 5289 // to alias category #6 may use X as its memory state input, as an exact equivalent 5290 // to using the MergeMem as a whole. 5291 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p) 5292 // 5293 // (Here, the <N> notation gives the index of the relevant adr_type.) 5294 // 5295 // In one special case (and more cases in the future), alias categories overlap. 5296 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory 5297 // states. Therefore, if a MergeMem has only one contributing input W for Bot, 5298 // it is exactly equivalent to that state W: 5299 // MergeMem(<Bot>: W) <==> W 5300 // 5301 // Usually, the merge has more than one input. In that case, where inputs 5302 // overlap (i.e., one is Bot), the narrower alias type determines the memory 5303 // state for that type, and the wider alias type (Bot) fills in everywhere else: 5304 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p) 5305 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p) 5306 // 5307 // A merge can take a "wide" memory state as one of its narrow inputs. 5308 // This simply means that the merge observes out only the relevant parts of 5309 // the wide input. That is, wide memory states arriving at narrow merge inputs 5310 // are implicitly "filtered" or "sliced" as necessary. (This is rare.) 5311 // 5312 // These rules imply that MergeMem nodes may cascade (via their <Bot> links), 5313 // and that memory slices "leak through": 5314 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y) 5315 // 5316 // But, in such a cascade, repeated memory slices can "block the leak": 5317 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y') 5318 // 5319 // In the last example, Y is not part of the combined memory state of the 5320 // outermost MergeMem. The system must, of course, prevent unschedulable 5321 // memory states from arising, so you can be sure that the state Y is somehow 5322 // a precursor to state Y'. 5323 // 5324 // 5325 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array 5326 // of each MergeMemNode array are exactly the numerical alias indexes, including 5327 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions 5328 // Compile::alias_type (and kin) produce and manage these indexes. 5329 // 5330 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node. 5331 // (Note that this provides quick access to the top node inside MergeMem methods, 5332 // without the need to reach out via TLS to Compile::current.) 5333 // 5334 // As a consequence of what was just described, a MergeMem that represents a full 5335 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state, 5336 // containing all alias categories. 5337 // 5338 // MergeMem nodes never (?) have control inputs, so in(0) is null. 5339 // 5340 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either 5341 // a memory state for the alias type <N>, or else the top node, meaning that 5342 // there is no particular input for that alias type. Note that the length of 5343 // a MergeMem is variable, and may be extended at any time to accommodate new 5344 // memory states at larger alias indexes. When merges grow, they are of course 5345 // filled with "top" in the unused in() positions. 5346 // 5347 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable. 5348 // (Top was chosen because it works smoothly with passes like GCM.) 5349 // 5350 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is 5351 // the type of random VM bits like TLS references.) Since it is always the 5352 // first non-Bot memory slice, some low-level loops use it to initialize an 5353 // index variable: for (i = AliasIdxRaw; i < req(); i++). 5354 // 5355 // 5356 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns 5357 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns 5358 // the memory state for alias type <N>, or (if there is no particular slice at <N>, 5359 // it returns the base memory. To prevent bugs, memory_at does not accept <Top> 5360 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over 5361 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited. 5362 // 5363 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't 5364 // really that different from the other memory inputs. An abbreviation called 5365 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy. 5366 // 5367 // 5368 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent 5369 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi 5370 // that "emerges though" the base memory will be marked as excluding the alias types 5371 // of the other (narrow-memory) copies which "emerged through" the narrow edges: 5372 // 5373 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y)) 5374 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y)) 5375 // 5376 // This strange "subtraction" effect is necessary to ensure IGVN convergence. 5377 // (It is currently unimplemented.) As you can see, the resulting merge is 5378 // actually a disjoint union of memory states, rather than an overlay. 5379 // 5380 5381 //------------------------------MergeMemNode----------------------------------- 5382 Node* MergeMemNode::make_empty_memory() { 5383 Node* empty_memory = (Node*) Compile::current()->top(); 5384 assert(empty_memory->is_top(), "correct sentinel identity"); 5385 return empty_memory; 5386 } 5387 5388 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) { 5389 init_class_id(Class_MergeMem); 5390 // all inputs are nullified in Node::Node(int) 5391 // set_input(0, nullptr); // no control input 5392 5393 // Initialize the edges uniformly to top, for starters. 5394 Node* empty_mem = make_empty_memory(); 5395 for (uint i = Compile::AliasIdxTop; i < req(); i++) { 5396 init_req(i,empty_mem); 5397 } 5398 assert(empty_memory() == empty_mem, ""); 5399 5400 if( new_base != nullptr && new_base->is_MergeMem() ) { 5401 MergeMemNode* mdef = new_base->as_MergeMem(); 5402 assert(mdef->empty_memory() == empty_mem, "consistent sentinels"); 5403 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) { 5404 mms.set_memory(mms.memory2()); 5405 } 5406 assert(base_memory() == mdef->base_memory(), ""); 5407 } else { 5408 set_base_memory(new_base); 5409 } 5410 } 5411 5412 // Make a new, untransformed MergeMem with the same base as 'mem'. 5413 // If mem is itself a MergeMem, populate the result with the same edges. 5414 MergeMemNode* MergeMemNode::make(Node* mem) { 5415 return new MergeMemNode(mem); 5416 } 5417 5418 //------------------------------cmp-------------------------------------------- 5419 uint MergeMemNode::hash() const { return NO_HASH; } 5420 bool MergeMemNode::cmp( const Node &n ) const { 5421 return (&n == this); // Always fail except on self 5422 } 5423 5424 //------------------------------Identity--------------------------------------- 5425 Node* MergeMemNode::Identity(PhaseGVN* phase) { 5426 // Identity if this merge point does not record any interesting memory 5427 // disambiguations. 5428 Node* base_mem = base_memory(); 5429 Node* empty_mem = empty_memory(); 5430 if (base_mem != empty_mem) { // Memory path is not dead? 5431 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5432 Node* mem = in(i); 5433 if (mem != empty_mem && mem != base_mem) { 5434 return this; // Many memory splits; no change 5435 } 5436 } 5437 } 5438 return base_mem; // No memory splits; ID on the one true input 5439 } 5440 5441 //------------------------------Ideal------------------------------------------ 5442 // This method is invoked recursively on chains of MergeMem nodes 5443 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) { 5444 // Remove chain'd MergeMems 5445 // 5446 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted 5447 // relative to the "in(Bot)". Since we are patching both at the same time, 5448 // we have to be careful to read each "in(i)" relative to the old "in(Bot)", 5449 // but rewrite each "in(i)" relative to the new "in(Bot)". 5450 Node *progress = nullptr; 5451 5452 5453 Node* old_base = base_memory(); 5454 Node* empty_mem = empty_memory(); 5455 if (old_base == empty_mem) 5456 return nullptr; // Dead memory path. 5457 5458 MergeMemNode* old_mbase; 5459 if (old_base != nullptr && old_base->is_MergeMem()) 5460 old_mbase = old_base->as_MergeMem(); 5461 else 5462 old_mbase = nullptr; 5463 Node* new_base = old_base; 5464 5465 // simplify stacked MergeMems in base memory 5466 if (old_mbase) new_base = old_mbase->base_memory(); 5467 5468 // the base memory might contribute new slices beyond my req() 5469 if (old_mbase) grow_to_match(old_mbase); 5470 5471 // Note: We do not call verify_sparse on entry, because inputs 5472 // can normalize to the base_memory via subsume_node or similar 5473 // mechanisms. This method repairs that damage. 5474 5475 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels"); 5476 5477 // Look at each slice. 5478 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5479 Node* old_in = in(i); 5480 // calculate the old memory value 5481 Node* old_mem = old_in; 5482 if (old_mem == empty_mem) old_mem = old_base; 5483 assert(old_mem == memory_at(i), ""); 5484 5485 // maybe update (reslice) the old memory value 5486 5487 // simplify stacked MergeMems 5488 Node* new_mem = old_mem; 5489 MergeMemNode* old_mmem; 5490 if (old_mem != nullptr && old_mem->is_MergeMem()) 5491 old_mmem = old_mem->as_MergeMem(); 5492 else 5493 old_mmem = nullptr; 5494 if (old_mmem == this) { 5495 // This can happen if loops break up and safepoints disappear. 5496 // A merge of BotPtr (default) with a RawPtr memory derived from a 5497 // safepoint can be rewritten to a merge of the same BotPtr with 5498 // the BotPtr phi coming into the loop. If that phi disappears 5499 // also, we can end up with a self-loop of the mergemem. 5500 // In general, if loops degenerate and memory effects disappear, 5501 // a mergemem can be left looking at itself. This simply means 5502 // that the mergemem's default should be used, since there is 5503 // no longer any apparent effect on this slice. 5504 // Note: If a memory slice is a MergeMem cycle, it is unreachable 5505 // from start. Update the input to TOP. 5506 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base; 5507 } 5508 else if (old_mmem != nullptr) { 5509 new_mem = old_mmem->memory_at(i); 5510 } 5511 // else preceding memory was not a MergeMem 5512 5513 // maybe store down a new value 5514 Node* new_in = new_mem; 5515 if (new_in == new_base) new_in = empty_mem; 5516 5517 if (new_in != old_in) { 5518 // Warning: Do not combine this "if" with the previous "if" 5519 // A memory slice might have be be rewritten even if it is semantically 5520 // unchanged, if the base_memory value has changed. 5521 set_req_X(i, new_in, phase); 5522 progress = this; // Report progress 5523 } 5524 } 5525 5526 if (new_base != old_base) { 5527 set_req_X(Compile::AliasIdxBot, new_base, phase); 5528 // Don't use set_base_memory(new_base), because we need to update du. 5529 assert(base_memory() == new_base, ""); 5530 progress = this; 5531 } 5532 5533 if( base_memory() == this ) { 5534 // a self cycle indicates this memory path is dead 5535 set_req(Compile::AliasIdxBot, empty_mem); 5536 } 5537 5538 // Resolve external cycles by calling Ideal on a MergeMem base_memory 5539 // Recursion must occur after the self cycle check above 5540 if( base_memory()->is_MergeMem() ) { 5541 MergeMemNode *new_mbase = base_memory()->as_MergeMem(); 5542 Node *m = phase->transform(new_mbase); // Rollup any cycles 5543 if( m != nullptr && 5544 (m->is_top() || 5545 (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) { 5546 // propagate rollup of dead cycle to self 5547 set_req(Compile::AliasIdxBot, empty_mem); 5548 } 5549 } 5550 5551 if( base_memory() == empty_mem ) { 5552 progress = this; 5553 // Cut inputs during Parse phase only. 5554 // During Optimize phase a dead MergeMem node will be subsumed by Top. 5555 if( !can_reshape ) { 5556 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5557 if( in(i) != empty_mem ) { set_req(i, empty_mem); } 5558 } 5559 } 5560 } 5561 5562 if( !progress && base_memory()->is_Phi() && can_reshape ) { 5563 // Check if PhiNode::Ideal's "Split phis through memory merges" 5564 // transform should be attempted. Look for this->phi->this cycle. 5565 uint merge_width = req(); 5566 if (merge_width > Compile::AliasIdxRaw) { 5567 PhiNode* phi = base_memory()->as_Phi(); 5568 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in 5569 if (phi->in(i) == this) { 5570 phase->is_IterGVN()->_worklist.push(phi); 5571 break; 5572 } 5573 } 5574 } 5575 } 5576 5577 assert(progress || verify_sparse(), "please, no dups of base"); 5578 return progress; 5579 } 5580 5581 //-------------------------set_base_memory------------------------------------- 5582 void MergeMemNode::set_base_memory(Node *new_base) { 5583 Node* empty_mem = empty_memory(); 5584 set_req(Compile::AliasIdxBot, new_base); 5585 assert(memory_at(req()) == new_base, "must set default memory"); 5586 // Clear out other occurrences of new_base: 5587 if (new_base != empty_mem) { 5588 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5589 if (in(i) == new_base) set_req(i, empty_mem); 5590 } 5591 } 5592 } 5593 5594 //------------------------------out_RegMask------------------------------------ 5595 const RegMask &MergeMemNode::out_RegMask() const { 5596 return RegMask::Empty; 5597 } 5598 5599 //------------------------------dump_spec-------------------------------------- 5600 #ifndef PRODUCT 5601 void MergeMemNode::dump_spec(outputStream *st) const { 5602 st->print(" {"); 5603 Node* base_mem = base_memory(); 5604 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) { 5605 Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem; 5606 if (mem == base_mem) { st->print(" -"); continue; } 5607 st->print( " N%d:", mem->_idx ); 5608 Compile::current()->get_adr_type(i)->dump_on(st); 5609 } 5610 st->print(" }"); 5611 } 5612 #endif // !PRODUCT 5613 5614 5615 #ifdef ASSERT 5616 static bool might_be_same(Node* a, Node* b) { 5617 if (a == b) return true; 5618 if (!(a->is_Phi() || b->is_Phi())) return false; 5619 // phis shift around during optimization 5620 return true; // pretty stupid... 5621 } 5622 5623 // verify a narrow slice (either incoming or outgoing) 5624 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) { 5625 if (!VerifyAliases) return; // don't bother to verify unless requested 5626 if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error 5627 if (Node::in_dump()) return; // muzzle asserts when printing 5628 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel"); 5629 assert(n != nullptr, ""); 5630 // Elide intervening MergeMem's 5631 while (n->is_MergeMem()) { 5632 n = n->as_MergeMem()->memory_at(alias_idx); 5633 } 5634 Compile* C = Compile::current(); 5635 const TypePtr* n_adr_type = n->adr_type(); 5636 if (n == m->empty_memory()) { 5637 // Implicit copy of base_memory() 5638 } else if (n_adr_type != TypePtr::BOTTOM) { 5639 assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type"); 5640 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice"); 5641 } else { 5642 // A few places like make_runtime_call "know" that VM calls are narrow, 5643 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM. 5644 bool expected_wide_mem = false; 5645 if (n == m->base_memory()) { 5646 expected_wide_mem = true; 5647 } else if (alias_idx == Compile::AliasIdxRaw || 5648 n == m->memory_at(Compile::AliasIdxRaw)) { 5649 expected_wide_mem = true; 5650 } else if (!C->alias_type(alias_idx)->is_rewritable()) { 5651 // memory can "leak through" calls on channels that 5652 // are write-once. Allow this also. 5653 expected_wide_mem = true; 5654 } 5655 assert(expected_wide_mem, "expected narrow slice replacement"); 5656 } 5657 } 5658 #else // !ASSERT 5659 #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op 5660 #endif 5661 5662 5663 //-----------------------------memory_at--------------------------------------- 5664 Node* MergeMemNode::memory_at(uint alias_idx) const { 5665 assert(alias_idx >= Compile::AliasIdxRaw || 5666 (alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing()), 5667 "must avoid base_memory and AliasIdxTop"); 5668 5669 // Otherwise, it is a narrow slice. 5670 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory(); 5671 if (is_empty_memory(n)) { 5672 // the array is sparse; empty slots are the "top" node 5673 n = base_memory(); 5674 assert(Node::in_dump() 5675 || n == nullptr || n->bottom_type() == Type::TOP 5676 || n->adr_type() == nullptr // address is TOP 5677 || n->adr_type() == TypePtr::BOTTOM 5678 || n->adr_type() == TypeRawPtr::BOTTOM 5679 || !Compile::current()->do_aliasing(), 5680 "must be a wide memory"); 5681 // do_aliasing == false if we are organizing the memory states manually. 5682 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM. 5683 } else { 5684 // make sure the stored slice is sane 5685 #ifdef ASSERT 5686 if (VMError::is_error_reported() || Node::in_dump()) { 5687 } else if (might_be_same(n, base_memory())) { 5688 // Give it a pass: It is a mostly harmless repetition of the base. 5689 // This can arise normally from node subsumption during optimization. 5690 } else { 5691 verify_memory_slice(this, alias_idx, n); 5692 } 5693 #endif 5694 } 5695 return n; 5696 } 5697 5698 //---------------------------set_memory_at------------------------------------- 5699 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) { 5700 verify_memory_slice(this, alias_idx, n); 5701 Node* empty_mem = empty_memory(); 5702 if (n == base_memory()) n = empty_mem; // collapse default 5703 uint need_req = alias_idx+1; 5704 if (req() < need_req) { 5705 if (n == empty_mem) return; // already the default, so do not grow me 5706 // grow the sparse array 5707 do { 5708 add_req(empty_mem); 5709 } while (req() < need_req); 5710 } 5711 set_req( alias_idx, n ); 5712 } 5713 5714 5715 5716 //--------------------------iteration_setup------------------------------------ 5717 void MergeMemNode::iteration_setup(const MergeMemNode* other) { 5718 if (other != nullptr) { 5719 grow_to_match(other); 5720 // invariant: the finite support of mm2 is within mm->req() 5721 #ifdef ASSERT 5722 for (uint i = req(); i < other->req(); i++) { 5723 assert(other->is_empty_memory(other->in(i)), "slice left uncovered"); 5724 } 5725 #endif 5726 } 5727 // Replace spurious copies of base_memory by top. 5728 Node* base_mem = base_memory(); 5729 if (base_mem != nullptr && !base_mem->is_top()) { 5730 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) { 5731 if (in(i) == base_mem) 5732 set_req(i, empty_memory()); 5733 } 5734 } 5735 } 5736 5737 //---------------------------grow_to_match------------------------------------- 5738 void MergeMemNode::grow_to_match(const MergeMemNode* other) { 5739 Node* empty_mem = empty_memory(); 5740 assert(other->is_empty_memory(empty_mem), "consistent sentinels"); 5741 // look for the finite support of the other memory 5742 for (uint i = other->req(); --i >= req(); ) { 5743 if (other->in(i) != empty_mem) { 5744 uint new_len = i+1; 5745 while (req() < new_len) add_req(empty_mem); 5746 break; 5747 } 5748 } 5749 } 5750 5751 //---------------------------verify_sparse------------------------------------- 5752 #ifndef PRODUCT 5753 bool MergeMemNode::verify_sparse() const { 5754 assert(is_empty_memory(make_empty_memory()), "sane sentinel"); 5755 Node* base_mem = base_memory(); 5756 // The following can happen in degenerate cases, since empty==top. 5757 if (is_empty_memory(base_mem)) return true; 5758 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5759 assert(in(i) != nullptr, "sane slice"); 5760 if (in(i) == base_mem) return false; // should have been the sentinel value! 5761 } 5762 return true; 5763 } 5764 5765 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) { 5766 Node* n; 5767 n = mm->in(idx); 5768 if (mem == n) return true; // might be empty_memory() 5769 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx); 5770 if (mem == n) return true; 5771 return false; 5772 } 5773 #endif // !PRODUCT