1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "gc/shared/tlab_globals.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/cfgnode.hpp"
  39 #include "opto/regalloc.hpp"
  40 #include "opto/compile.hpp"
  41 #include "opto/connode.hpp"
  42 #include "opto/convertnode.hpp"
  43 #include "opto/inlinetypenode.hpp"
  44 #include "opto/loopnode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/matcher.hpp"
  47 #include "opto/memnode.hpp"
  48 #include "opto/mempointer.hpp"
  49 #include "opto/mulnode.hpp"
  50 #include "opto/narrowptrnode.hpp"
  51 #include "opto/phaseX.hpp"
  52 #include "opto/regmask.hpp"
  53 #include "opto/rootnode.hpp"
  54 #include "opto/traceMergeStoresTag.hpp"
  55 #include "opto/vectornode.hpp"
  56 #include "utilities/align.hpp"
  57 #include "utilities/copy.hpp"
  58 #include "utilities/macros.hpp"
  59 #include "utilities/powerOfTwo.hpp"
  60 #include "utilities/vmError.hpp"
  61 
  62 // Portions of code courtesy of Clifford Click
  63 
  64 // Optimization - Graph Style
  65 
  66 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  67 
  68 //=============================================================================
  69 uint MemNode::size_of() const { return sizeof(*this); }
  70 
  71 const TypePtr *MemNode::adr_type() const {
  72   Node* adr = in(Address);
  73   if (adr == nullptr)  return nullptr; // node is dead
  74   const TypePtr* cross_check = nullptr;
  75   DEBUG_ONLY(cross_check = _adr_type);
  76   return calculate_adr_type(adr->bottom_type(), cross_check);
  77 }
  78 
  79 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  80   if (adr != nullptr) {
  81     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  82       return true;
  83     }
  84   }
  85   return false;
  86 }
  87 
  88 #ifndef PRODUCT
  89 void MemNode::dump_spec(outputStream *st) const {
  90   if (in(Address) == nullptr)  return; // node is dead
  91 #ifndef ASSERT
  92   // fake the missing field
  93   const TypePtr* _adr_type = nullptr;
  94   if (in(Address) != nullptr)
  95     _adr_type = in(Address)->bottom_type()->isa_ptr();
  96 #endif
  97   dump_adr_type(this, _adr_type, st);
  98 
  99   Compile* C = Compile::current();
 100   if (C->alias_type(_adr_type)->is_volatile()) {
 101     st->print(" Volatile!");
 102   }
 103   if (_unaligned_access) {
 104     st->print(" unaligned");
 105   }
 106   if (_mismatched_access) {
 107     st->print(" mismatched");
 108   }
 109   if (_unsafe_access) {
 110     st->print(" unsafe");
 111   }
 112 }
 113 
 114 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 115   st->print(" @");
 116   if (adr_type == nullptr) {
 117     st->print("null");
 118   } else {
 119     adr_type->dump_on(st);
 120     Compile* C = Compile::current();
 121     Compile::AliasType* atp = nullptr;
 122     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 123     if (atp == nullptr)
 124       st->print(", idx=?\?;");
 125     else if (atp->index() == Compile::AliasIdxBot)
 126       st->print(", idx=Bot;");
 127     else if (atp->index() == Compile::AliasIdxTop)
 128       st->print(", idx=Top;");
 129     else if (atp->index() == Compile::AliasIdxRaw)
 130       st->print(", idx=Raw;");
 131     else {
 132       ciField* field = atp->field();
 133       if (field) {
 134         st->print(", name=");
 135         field->print_name_on(st);
 136       }
 137       st->print(", idx=%d;", atp->index());
 138     }
 139   }
 140 }
 141 
 142 extern void print_alias_types();
 143 
 144 #endif
 145 
 146 // Find the memory output corresponding to the fall-through path of a call
 147 static Node* find_call_fallthrough_mem_output(CallNode* call) {
 148   ResourceMark rm;
 149   CallProjections* projs = call->extract_projections(false, false);
 150   Node* res = projs->fallthrough_memproj;
 151   assert(res != nullptr, "must have a fallthrough mem output");
 152   return res;
 153 }
 154 
 155 // Try to find a better memory input for a load from a strict final field
 156 static Node* try_optimize_strict_final_load_memory(PhaseGVN* phase, Node* adr, ProjNode*& base_local) {
 157   intptr_t offset = 0;
 158   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 159   if (base == nullptr) {
 160     return nullptr;
 161   }
 162 
 163   Node* base_uncasted = base->uncast();
 164   if (base_uncasted->is_Proj()) {
 165     MultiNode* multi = base_uncasted->in(0)->as_Multi();
 166     if (multi->is_Allocate()) {
 167       base_local = base_uncasted->as_Proj();
 168       return nullptr;
 169     } else if (multi->is_Call()) {
 170       // The oop is returned from a call, the memory can be the fallthrough output of the call
 171       return find_call_fallthrough_mem_output(multi->as_Call());
 172     } else if (multi->is_Start()) {
 173       // The oop is a parameter
 174       if (phase->C->method()->is_object_constructor() && base_uncasted->as_Proj()->_con == TypeFunc::Parms) {
 175         // The receiver of a constructor is similar to the result of an AllocateNode
 176         base_local = base_uncasted->as_Proj();
 177         return nullptr;
 178       } else {
 179         // Use the start memory otherwise
 180         return multi->proj_out(TypeFunc::Memory);
 181       }
 182     }
 183   }
 184 
 185   return nullptr;
 186 }
 187 
 188 // Whether a call can modify a strict final field, given that the object is allocated inside the
 189 // current compilation unit, or is the first parameter when the compilation root is a constructor.
 190 // This is equivalent to asking whether 'call' is a constructor invocation and the class declaring
 191 // the target method is a subclass of the class declaring 'field'.
 192 static bool call_can_modify_local_object(ciField* field, CallNode* call) {
 193   if (!call->is_CallJava()) {
 194     return false;
 195   }
 196 
 197   ciMethod* target = call->as_CallJava()->method();
 198   if (target == nullptr || !target->is_object_constructor()) {
 199     return false;
 200   }
 201 
 202   // If 'field' is declared in a class that is a subclass of the one declaring the constructor,
 203   // then the field is set inside the constructor, else the field must be set before the
 204   // constructor invocation. E.g. A field Super.x will be set during the execution of Sub::<init>,
 205   // while a field Sub.y must be set before Super::<init> is invoked.
 206   // We can try to be more heroic and decide if the receiver of the constructor invocation is the
 207   // object from which we are loading from. This, however, may be problematic as deciding if 2
 208   // nodes are definitely different may not be trivial, especially if the graph is not canonical.
 209   // As a result, it is made more conservative for now.
 210   assert(call->req() > TypeFunc::Parms, "constructor must have at least 1 argument");
 211   return target->holder()->is_subclass_of(field->holder());
 212 }
 213 
 214 Node* MemNode::optimize_simple_memory_chain(Node* mchain, const TypeOopPtr* t_oop, Node* load, PhaseGVN* phase) {
 215   assert(t_oop != nullptr, "sanity");
 216   bool is_instance = t_oop->is_known_instance_field();
 217 
 218   ciField* field = phase->C->alias_type(t_oop)->field();
 219   bool is_strict_final_load = false;
 220 
 221   // After macro expansion, an allocation may become a call, changing the memory input to the
 222   // memory output of that call would be illegal. As a result, disallow this transformation after
 223   // macro expansion.
 224   if (phase->is_IterGVN() && phase->C->allow_macro_nodes() && load != nullptr && load->is_Load() && !load->as_Load()->is_mismatched_access()) {
 225     if (EnableValhalla) {
 226       if (field != nullptr && (field->holder()->is_inlinetype() || field->holder()->is_abstract_value_klass())) {
 227         is_strict_final_load = true;
 228       }
 229 #ifdef ASSERT
 230       if (t_oop->is_inlinetypeptr() && t_oop->inline_klass()->contains_field_offset(t_oop->offset())) {
 231         assert(is_strict_final_load, "sanity check for basic cases");
 232       }
 233 #endif
 234     } else {
 235       is_strict_final_load = field != nullptr && t_oop->is_ptr_to_boxed_value();
 236     }
 237   }
 238 
 239   if (!is_instance && !is_strict_final_load) {
 240     return mchain;
 241   }
 242 
 243   Node* result = mchain;
 244   ProjNode* base_local = nullptr;
 245 
 246   if (is_strict_final_load) {
 247     Node* adr = load->in(MemNode::Address);
 248     assert(phase->type(adr) == t_oop, "inconsistent type");
 249     Node* tmp = try_optimize_strict_final_load_memory(phase, adr, base_local);
 250     if (tmp != nullptr) {
 251       result = tmp;
 252     }
 253   }
 254 
 255   uint instance_id = t_oop->instance_id();
 256   Node* start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 257   Node* prev = nullptr;
 258   while (prev != result) {
 259     prev = result;
 260     if (result == start_mem) {
 261       // start_mem is the earliest memory possible
 262       break;
 263     }
 264 
 265     // skip over a call which does not affect this memory slice
 266     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 267       Node* proj_in = result->in(0);
 268       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 269         // This is the allocation that creates the object from which we are loading from
 270         break;
 271       } else if (proj_in->is_Call()) {
 272         // ArrayCopyNodes processed here as well
 273         CallNode* call = proj_in->as_Call();
 274         if (!call->may_modify(t_oop, phase)) {
 275           result = call->in(TypeFunc::Memory);
 276         } else if (is_strict_final_load && base_local != nullptr && !call_can_modify_local_object(field, call)) {
 277           result = call->in(TypeFunc::Memory);
 278         }
 279       } else if (proj_in->is_Initialize()) {
 280         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 281         // Stop if this is the initialization for the object instance which
 282         // contains this memory slice, otherwise skip over it.
 283         if ((alloc == nullptr) || (alloc->_idx == instance_id)) {
 284           break;
 285         }
 286         if (is_instance) {
 287           result = proj_in->in(TypeFunc::Memory);
 288         } else if (is_strict_final_load) {
 289           Node* klass = alloc->in(AllocateNode::KlassNode);
 290           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 291           if (tklass->klass_is_exact() && !tklass->exact_klass()->equals(t_oop->is_instptr()->exact_klass())) {
 292             // Allocation of another type, must be another object
 293             result = proj_in->in(TypeFunc::Memory);
 294           } else if (base_local != nullptr && (base_local->is_Parm() || base_local->in(0) != alloc)) {
 295             // Allocation of another object
 296             result = proj_in->in(TypeFunc::Memory);
 297           }
 298         }
 299       } else if (proj_in->is_MemBar()) {
 300         ArrayCopyNode* ac = nullptr;
 301         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 302           break;
 303         }
 304         result = proj_in->in(TypeFunc::Memory);
 305       } else if (proj_in->is_top()) {
 306         break; // dead code
 307       } else {
 308         assert(false, "unexpected projection");
 309       }
 310     } else if (result->is_ClearArray()) {
 311       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 312         // Can not bypass initialization of the instance
 313         // we are looking for.
 314         break;
 315       }
 316       // Otherwise skip it (the call updated 'result' value).
 317     } else if (result->is_MergeMem()) {
 318       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty);
 319     }
 320   }
 321   return result;
 322 }
 323 
 324 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 325   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 326   if (t_oop == nullptr)
 327     return mchain;  // don't try to optimize non-oop types
 328   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 329   bool is_instance = t_oop->is_known_instance_field();
 330   PhaseIterGVN *igvn = phase->is_IterGVN();
 331   if (is_instance && igvn != nullptr && result->is_Phi()) {
 332     PhiNode *mphi = result->as_Phi();
 333     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 334     const TypePtr *t = mphi->adr_type();
 335     bool do_split = false;
 336     // In the following cases, Load memory input can be further optimized based on
 337     // its precise address type
 338     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ) {
 339       do_split = true;
 340     } else if (t->isa_oopptr() && !t->is_oopptr()->is_known_instance()) {
 341       const TypeOopPtr* mem_t =
 342         t->is_oopptr()->cast_to_exactness(true)
 343         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 344         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id());
 345       if (t_oop->isa_aryptr()) {
 346         mem_t = mem_t->is_aryptr()
 347                      ->cast_to_stable(t_oop->is_aryptr()->is_stable())
 348                      ->cast_to_size(t_oop->is_aryptr()->size())
 349                      ->cast_to_not_flat(t_oop->is_aryptr()->is_not_flat())
 350                      ->cast_to_not_null_free(t_oop->is_aryptr()->is_not_null_free())
 351                      ->with_offset(t_oop->is_aryptr()->offset())
 352                      ->is_aryptr();
 353       }
 354       do_split = mem_t == t_oop;
 355     }
 356     if (do_split) {
 357       // clone the Phi with our address type
 358       result = mphi->split_out_instance(t_adr, igvn);
 359     } else {
 360       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 361     }
 362   }
 363   return result;
 364 }
 365 
 366 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 367   uint alias_idx = phase->C->get_alias_index(tp);
 368   Node *mem = mmem;
 369 #ifdef ASSERT
 370   {
 371     // Check that current type is consistent with the alias index used during graph construction
 372     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 373     bool consistent =  adr_check == nullptr || adr_check->empty() ||
 374                        phase->C->must_alias(adr_check, alias_idx );
 375     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 376     if( !consistent && adr_check != nullptr && !adr_check->empty() &&
 377         tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 378         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 379         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 380           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 381           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 382       // don't assert if it is dead code.
 383       consistent = true;
 384     }
 385     if( !consistent ) {
 386       st->print("alias_idx==%d, adr_check==", alias_idx);
 387       if( adr_check == nullptr ) {
 388         st->print("null");
 389       } else {
 390         adr_check->dump();
 391       }
 392       st->cr();
 393       print_alias_types();
 394       assert(consistent, "adr_check must match alias idx");
 395     }
 396   }
 397 #endif
 398   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 399   // means an array I have not precisely typed yet.  Do not do any
 400   // alias stuff with it any time soon.
 401   const TypeOopPtr *toop = tp->isa_oopptr();
 402   if (tp->base() != Type::AnyPtr &&
 403       !(toop &&
 404         toop->isa_instptr() &&
 405         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
 406         toop->offset() == Type::OffsetBot)) {
 407     // IGVN _delay_transform may be set to true and if that is the case and mmem
 408     // is already a registered node then the validation inside transform will
 409     // complain.
 410     Node* m = mmem;
 411     PhaseIterGVN* igvn = phase->is_IterGVN();
 412     if (igvn == nullptr || !igvn->delay_transform()) {
 413       // compress paths and change unreachable cycles to TOP
 414       // If not, we can update the input infinitely along a MergeMem cycle
 415       // Equivalent code in PhiNode::Ideal
 416       m = phase->transform(mmem);
 417     }
 418     // If transformed to a MergeMem, get the desired slice
 419     // Otherwise the returned node represents memory for every slice
 420     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 421     // Update input if it is progress over what we have now
 422   }
 423   return mem;
 424 }
 425 
 426 //--------------------------Ideal_common---------------------------------------
 427 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 428 // Unhook non-raw memories from complete (macro-expanded) initializations.
 429 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 430   // If our control input is a dead region, kill all below the region
 431   Node *ctl = in(MemNode::Control);
 432   if (ctl && remove_dead_region(phase, can_reshape))
 433     return this;
 434   ctl = in(MemNode::Control);
 435   // Don't bother trying to transform a dead node
 436   if (ctl && ctl->is_top())  return NodeSentinel;
 437 
 438   PhaseIterGVN *igvn = phase->is_IterGVN();
 439   // Wait if control on the worklist.
 440   if (ctl && can_reshape && igvn != nullptr) {
 441     Node* bol = nullptr;
 442     Node* cmp = nullptr;
 443     if (ctl->in(0)->is_If()) {
 444       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 445       bol = ctl->in(0)->in(1);
 446       if (bol->is_Bool())
 447         cmp = ctl->in(0)->in(1)->in(1);
 448     }
 449     if (igvn->_worklist.member(ctl) ||
 450         (bol != nullptr && igvn->_worklist.member(bol)) ||
 451         (cmp != nullptr && igvn->_worklist.member(cmp)) ) {
 452       // This control path may be dead.
 453       // Delay this memory node transformation until the control is processed.
 454       igvn->_worklist.push(this);
 455       return NodeSentinel; // caller will return null
 456     }
 457   }
 458   // Ignore if memory is dead, or self-loop
 459   Node *mem = in(MemNode::Memory);
 460   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null
 461   assert(mem != this, "dead loop in MemNode::Ideal");
 462 
 463   if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) {
 464     // This memory slice may be dead.
 465     // Delay this mem node transformation until the memory is processed.
 466     igvn->_worklist.push(this);
 467     return NodeSentinel; // caller will return null
 468   }
 469 
 470   Node *address = in(MemNode::Address);
 471   const Type *t_adr = phase->type(address);
 472   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return null
 473 
 474   if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) {
 475     // Unsafe off-heap access with zero address. Remove access and other control users
 476     // to not confuse optimizations and add a HaltNode to fail if this is ever executed.
 477     assert(ctl != nullptr, "unsafe accesses should be control dependent");
 478     for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
 479       Node* u = ctl->fast_out(i);
 480       if (u != ctl) {
 481         igvn->rehash_node_delayed(u);
 482         int nb = u->replace_edge(ctl, phase->C->top(), igvn);
 483         --i, imax -= nb;
 484       }
 485     }
 486     Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr));
 487     Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address"));
 488     phase->C->root()->add_req(halt);
 489     return this;
 490   }
 491 
 492   if (can_reshape && igvn != nullptr &&
 493       (igvn->_worklist.member(address) ||
 494        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 495     // The address's base and type may change when the address is processed.
 496     // Delay this mem node transformation until the address is processed.
 497     igvn->_worklist.push(this);
 498     return NodeSentinel; // caller will return null
 499   }
 500 
 501   // Do NOT remove or optimize the next lines: ensure a new alias index
 502   // is allocated for an oop pointer type before Escape Analysis.
 503   // Note: C++ will not remove it since the call has side effect.
 504   if (t_adr->isa_oopptr()) {
 505     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 506   }
 507 
 508   Node* base = nullptr;
 509   if (address->is_AddP()) {
 510     base = address->in(AddPNode::Base);
 511   }
 512   if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 513       !t_adr->isa_rawptr()) {
 514     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 515     // Skip this node optimization if its address has TOP base.
 516     return NodeSentinel; // caller will return null
 517   }
 518 
 519   // Avoid independent memory operations
 520   Node* old_mem = mem;
 521 
 522   // The code which unhooks non-raw memories from complete (macro-expanded)
 523   // initializations was removed. After macro-expansion all stores caught
 524   // by Initialize node became raw stores and there is no information
 525   // which memory slices they modify. So it is unsafe to move any memory
 526   // operation above these stores. Also in most cases hooked non-raw memories
 527   // were already unhooked by using information from detect_ptr_independence()
 528   // and find_previous_store().
 529 
 530   if (mem->is_MergeMem()) {
 531     MergeMemNode* mmem = mem->as_MergeMem();
 532     const TypePtr *tp = t_adr->is_ptr();
 533 
 534     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 535   }
 536 
 537   if (mem != old_mem) {
 538     set_req_X(MemNode::Memory, mem, phase);
 539     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 540     return this;
 541   }
 542 
 543   // let the subclass continue analyzing...
 544   return nullptr;
 545 }
 546 
 547 // Helper function for proving some simple control dominations.
 548 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 549 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 550 // is not a constant (dominated by the method's StartNode).
 551 // Used by MemNode::find_previous_store to prove that the
 552 // control input of a memory operation predates (dominates)
 553 // an allocation it wants to look past.
 554 // Returns 'DomResult::Dominate' if all control inputs of 'dom'
 555 // dominate 'sub', 'DomResult::NotDominate' if not,
 556 // and 'DomResult::EncounteredDeadCode' if we can't decide due to
 557 // dead code, but at the end of IGVN, we know the definite result
 558 // once the dead code is cleaned up.
 559 Node::DomResult MemNode::maybe_all_controls_dominate(Node* dom, Node* sub) {
 560   if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top()) {
 561     return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 562   }
 563 
 564   // Check 'dom'. Skip Proj and CatchProj nodes.
 565   dom = dom->find_exact_control(dom);
 566   if (dom == nullptr || dom->is_top()) {
 567     return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 568   }
 569 
 570   if (dom == sub) {
 571     // For the case when, for example, 'sub' is Initialize and the original
 572     // 'dom' is Proj node of the 'sub'.
 573     return DomResult::NotDominate;
 574   }
 575 
 576   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) {
 577     return DomResult::Dominate;
 578   }
 579 
 580   // 'dom' dominates 'sub' if its control edge and control edges
 581   // of all its inputs dominate or equal to sub's control edge.
 582 
 583   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 584   // Or Region for the check in LoadNode::Ideal();
 585   // 'sub' should have sub->in(0) != nullptr.
 586   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 587          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 588 
 589   // Get control edge of 'sub'.
 590   Node* orig_sub = sub;
 591   sub = sub->find_exact_control(sub->in(0));
 592   if (sub == nullptr || sub->is_top()) {
 593     return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 594   }
 595 
 596   assert(sub->is_CFG(), "expecting control");
 597 
 598   if (sub == dom) {
 599     return DomResult::Dominate;
 600   }
 601 
 602   if (sub->is_Start() || sub->is_Root()) {
 603     return DomResult::NotDominate;
 604   }
 605 
 606   {
 607     // Check all control edges of 'dom'.
 608 
 609     ResourceMark rm;
 610     Node_List nlist;
 611     Unique_Node_List dom_list;
 612 
 613     dom_list.push(dom);
 614     bool only_dominating_controls = false;
 615 
 616     for (uint next = 0; next < dom_list.size(); next++) {
 617       Node* n = dom_list.at(next);
 618       if (n == orig_sub) {
 619         return DomResult::NotDominate; // One of dom's inputs dominated by sub.
 620       }
 621       if (!n->is_CFG() && n->pinned()) {
 622         // Check only own control edge for pinned non-control nodes.
 623         n = n->find_exact_control(n->in(0));
 624         if (n == nullptr || n->is_top()) {
 625           return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 626         }
 627         assert(n->is_CFG(), "expecting control");
 628         dom_list.push(n);
 629       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 630         only_dominating_controls = true;
 631       } else if (n->is_CFG()) {
 632         DomResult dom_result = n->dominates(sub, nlist);
 633         if (dom_result == DomResult::Dominate) {
 634           only_dominating_controls = true;
 635         } else {
 636           return dom_result;
 637         }
 638       } else {
 639         // First, own control edge.
 640         Node* m = n->find_exact_control(n->in(0));
 641         if (m != nullptr) {
 642           if (m->is_top()) {
 643             return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 644           }
 645           dom_list.push(m);
 646         }
 647         // Now, the rest of edges.
 648         uint cnt = n->req();
 649         for (uint i = 1; i < cnt; i++) {
 650           m = n->find_exact_control(n->in(i));
 651           if (m == nullptr || m->is_top()) {
 652             continue;
 653           }
 654           dom_list.push(m);
 655         }
 656       }
 657     }
 658     return only_dominating_controls ? DomResult::Dominate : DomResult::NotDominate;
 659   }
 660 }
 661 
 662 //---------------------detect_ptr_independence---------------------------------
 663 // Used by MemNode::find_previous_store to prove that two base
 664 // pointers are never equal.
 665 // The pointers are accompanied by their associated allocations,
 666 // if any, which have been previously discovered by the caller.
 667 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 668                                       Node* p2, AllocateNode* a2,
 669                                       PhaseTransform* phase) {
 670   // Attempt to prove that these two pointers cannot be aliased.
 671   // They may both manifestly be allocations, and they should differ.
 672   // Or, if they are not both allocations, they can be distinct constants.
 673   // Otherwise, one is an allocation and the other a pre-existing value.
 674   if (a1 == nullptr && a2 == nullptr) {           // neither an allocation
 675     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 676   } else if (a1 != nullptr && a2 != nullptr) {    // both allocations
 677     return (a1 != a2);
 678   } else if (a1 != nullptr) {                  // one allocation a1
 679     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 680     return all_controls_dominate(p2, a1);
 681   } else { //(a2 != null)                   // one allocation a2
 682     return all_controls_dominate(p1, a2);
 683   }
 684   return false;
 685 }
 686 
 687 
 688 // Find an arraycopy ac that produces the memory state represented by parameter mem.
 689 // Return ac if
 690 // (a) can_see_stored_value=true  and ac must have set the value for this load or if
 691 // (b) can_see_stored_value=false and ac could have set the value for this load or if
 692 // (c) can_see_stored_value=false and ac cannot have set the value for this load.
 693 // In case (c) change the parameter mem to the memory input of ac to skip it
 694 // when searching stored value.
 695 // Otherwise return null.
 696 Node* LoadNode::find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 697   ArrayCopyNode* ac = find_array_copy_clone(ld_alloc, mem);
 698   if (ac != nullptr) {
 699     Node* ld_addp = in(MemNode::Address);
 700     Node* src = ac->in(ArrayCopyNode::Src);
 701     const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr();
 702 
 703     // This is a load from a cloned array. The corresponding arraycopy ac must
 704     // have set the value for the load and we can return ac but only if the load
 705     // is known to be within bounds. This is checked below.
 706     if (ary_t != nullptr && ld_addp->is_AddP()) {
 707       Node* ld_offs = ld_addp->in(AddPNode::Offset);
 708       BasicType ary_elem = ary_t->elem()->array_element_basic_type();
 709       jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 710       jlong elemsize = type2aelembytes(ary_elem);
 711 
 712       const TypeX*   ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 713       const TypeInt* sizetype  = ary_t->size();
 714 
 715       if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) {
 716         // The load is known to be within bounds. It receives its value from ac.
 717         return ac;
 718       }
 719       // The load is known to be out-of-bounds.
 720     }
 721     // The load could be out-of-bounds. It must not be hoisted but must remain
 722     // dependent on the runtime range check. This is achieved by returning null.
 723   } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) {
 724     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 725 
 726     if (ac->is_arraycopy_validated() ||
 727         ac->is_copyof_validated() ||
 728         ac->is_copyofrange_validated()) {
 729       Node* ld_addp = in(MemNode::Address);
 730       if (ld_addp->is_AddP()) {
 731         Node* ld_base = ld_addp->in(AddPNode::Address);
 732         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 733 
 734         Node* dest = ac->in(ArrayCopyNode::Dest);
 735 
 736         if (dest == ld_base) {
 737           const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 738           assert(!ld_offs_t->empty(), "dead reference should be checked already");
 739           // Take into account vector or unsafe access size
 740           jlong ld_size_in_bytes = (jlong)memory_size();
 741           jlong offset_hi = ld_offs_t->_hi + ld_size_in_bytes - 1;
 742           offset_hi = MIN2(offset_hi, (jlong)(TypeX::MAX->_hi)); // Take care for overflow in 32-bit VM
 743           if (ac->modifies(ld_offs_t->_lo, (intptr_t)offset_hi, phase, can_see_stored_value)) {
 744             return ac;
 745           }
 746           if (!can_see_stored_value) {
 747             mem = ac->in(TypeFunc::Memory);
 748             return ac;
 749           }
 750         }
 751       }
 752     }
 753   }
 754   return nullptr;
 755 }
 756 
 757 ArrayCopyNode* MemNode::find_array_copy_clone(Node* ld_alloc, Node* mem) const {
 758   if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 759                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 760     if (ld_alloc != nullptr) {
 761       // Check if there is an array copy for a clone
 762       Node* mb = mem->in(0);
 763       ArrayCopyNode* ac = nullptr;
 764       if (mb->in(0) != nullptr && mb->in(0)->is_Proj() &&
 765           mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) {
 766         ac = mb->in(0)->in(0)->as_ArrayCopy();
 767       } else {
 768         // Step over GC barrier when ReduceInitialCardMarks is disabled
 769         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 770         Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0));
 771 
 772         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
 773           ac = control_proj_ac->in(0)->as_ArrayCopy();
 774         }
 775       }
 776 
 777       if (ac != nullptr && ac->is_clonebasic()) {
 778         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest));
 779         if (alloc != nullptr && alloc == ld_alloc) {
 780           return ac;
 781         }
 782       }
 783     }
 784   }
 785   return nullptr;
 786 }
 787 
 788 // The logic for reordering loads and stores uses four steps:
 789 // (a) Walk carefully past stores and initializations which we
 790 //     can prove are independent of this load.
 791 // (b) Observe that the next memory state makes an exact match
 792 //     with self (load or store), and locate the relevant store.
 793 // (c) Ensure that, if we were to wire self directly to the store,
 794 //     the optimizer would fold it up somehow.
 795 // (d) Do the rewiring, and return, depending on some other part of
 796 //     the optimizer to fold up the load.
 797 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 798 // specific to loads and stores, so they are handled by the callers.
 799 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 800 //
 801 Node* MemNode::find_previous_store(PhaseValues* phase) {
 802   Node*         ctrl   = in(MemNode::Control);
 803   Node*         adr    = in(MemNode::Address);
 804   intptr_t      offset = 0;
 805   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 806   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base);
 807 
 808   if (offset == Type::OffsetBot)
 809     return nullptr;            // cannot unalias unless there are precise offsets
 810 
 811   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 812   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 813 
 814   intptr_t size_in_bytes = memory_size();
 815 
 816   Node* mem = in(MemNode::Memory);   // start searching here...
 817 
 818   int cnt = 50;             // Cycle limiter
 819   for (;;) {                // While we can dance past unrelated stores...
 820     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 821 
 822     Node* prev = mem;
 823     if (mem->is_Store()) {
 824       Node* st_adr = mem->in(MemNode::Address);
 825       intptr_t st_offset = 0;
 826       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 827       if (st_base == nullptr)
 828         break;              // inscrutable pointer
 829 
 830       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 831       // We need the bases to be the equal in order for the offset check to make sense.
 832       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 833         break;
 834       }
 835 
 836       if (st_offset != offset && st_offset != Type::OffsetBot) {
 837         const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
 838         assert(mem->as_Store()->memory_size() <= MAX_STORE, "");
 839         if (st_offset >= offset + size_in_bytes ||
 840             st_offset <= offset - MAX_STORE ||
 841             st_offset <= offset - mem->as_Store()->memory_size()) {
 842           // Success:  The offsets are provably independent.
 843           // (You may ask, why not just test st_offset != offset and be done?
 844           // The answer is that stores of different sizes can co-exist
 845           // in the same sequence of RawMem effects.  We sometimes initialize
 846           // a whole 'tile' of array elements with a single jint or jlong.)
 847           mem = mem->in(MemNode::Memory);
 848           continue;           // (a) advance through independent store memory
 849         }
 850       }
 851       if (st_base != base &&
 852           detect_ptr_independence(base, alloc,
 853                                   st_base,
 854                                   AllocateNode::Ideal_allocation(st_base),
 855                                   phase)) {
 856         // Success:  The bases are provably independent.
 857         mem = mem->in(MemNode::Memory);
 858         continue;           // (a) advance through independent store memory
 859       }
 860 
 861       // (b) At this point, if the bases or offsets do not agree, we lose,
 862       // since we have not managed to prove 'this' and 'mem' independent.
 863       if (st_base == base && st_offset == offset) {
 864         return mem;         // let caller handle steps (c), (d)
 865       }
 866 
 867     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 868       InitializeNode* st_init = mem->in(0)->as_Initialize();
 869       AllocateNode*  st_alloc = st_init->allocation();
 870       if (st_alloc == nullptr) {
 871         break;              // something degenerated
 872       }
 873       bool known_identical = false;
 874       bool known_independent = false;
 875       if (alloc == st_alloc) {
 876         known_identical = true;
 877       } else if (alloc != nullptr) {
 878         known_independent = true;
 879       } else if (all_controls_dominate(this, st_alloc)) {
 880         known_independent = true;
 881       }
 882 
 883       if (known_independent) {
 884         // The bases are provably independent: Either they are
 885         // manifestly distinct allocations, or else the control
 886         // of this load dominates the store's allocation.
 887         int alias_idx = phase->C->get_alias_index(adr_type());
 888         if (alias_idx == Compile::AliasIdxRaw) {
 889           mem = st_alloc->in(TypeFunc::Memory);
 890         } else {
 891           mem = st_init->memory(alias_idx);
 892         }
 893         continue;           // (a) advance through independent store memory
 894       }
 895 
 896       // (b) at this point, if we are not looking at a store initializing
 897       // the same allocation we are loading from, we lose.
 898       if (known_identical) {
 899         // From caller, can_see_stored_value will consult find_captured_store.
 900         return mem;         // let caller handle steps (c), (d)
 901       }
 902 
 903     } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) {
 904       if (prev != mem) {
 905         // Found an arraycopy but it doesn't affect that load
 906         continue;
 907       }
 908       // Found an arraycopy that may affect that load
 909       return mem;
 910     } else if (addr_t != nullptr && addr_t->is_known_instance_field()) {
 911       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 912       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 913         // ArrayCopyNodes processed here as well.
 914         CallNode *call = mem->in(0)->as_Call();
 915         if (!call->may_modify(addr_t, phase)) {
 916           mem = call->in(TypeFunc::Memory);
 917           continue;         // (a) advance through independent call memory
 918         }
 919       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 920         ArrayCopyNode* ac = nullptr;
 921         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 922           break;
 923         }
 924         mem = mem->in(0)->in(TypeFunc::Memory);
 925         continue;           // (a) advance through independent MemBar memory
 926       } else if (mem->is_ClearArray()) {
 927         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 928           // (the call updated 'mem' value)
 929           continue;         // (a) advance through independent allocation memory
 930         } else {
 931           // Can not bypass initialization of the instance
 932           // we are looking for.
 933           return mem;
 934         }
 935       } else if (mem->is_MergeMem()) {
 936         int alias_idx = phase->C->get_alias_index(adr_type());
 937         mem = mem->as_MergeMem()->memory_at(alias_idx);
 938         continue;           // (a) advance through independent MergeMem memory
 939       }
 940     }
 941 
 942     // Unless there is an explicit 'continue', we must bail out here,
 943     // because 'mem' is an inscrutable memory state (e.g., a call).
 944     break;
 945   }
 946 
 947   return nullptr;              // bail out
 948 }
 949 
 950 //----------------------calculate_adr_type-------------------------------------
 951 // Helper function.  Notices when the given type of address hits top or bottom.
 952 // Also, asserts a cross-check of the type against the expected address type.
 953 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 954   if (t == Type::TOP)  return nullptr; // does not touch memory any more?
 955   #ifdef ASSERT
 956   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = nullptr;
 957   #endif
 958   const TypePtr* tp = t->isa_ptr();
 959   if (tp == nullptr) {
 960     assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 961     return TypePtr::BOTTOM;           // touches lots of memory
 962   } else {
 963     #ifdef ASSERT
 964     // %%%% [phh] We don't check the alias index if cross_check is
 965     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 966     if (cross_check != nullptr &&
 967         cross_check != TypePtr::BOTTOM &&
 968         cross_check != TypeRawPtr::BOTTOM) {
 969       // Recheck the alias index, to see if it has changed (due to a bug).
 970       Compile* C = Compile::current();
 971       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 972              "must stay in the original alias category");
 973       // The type of the address must be contained in the adr_type,
 974       // disregarding "null"-ness.
 975       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 976       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 977       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 978              "real address must not escape from expected memory type");
 979     }
 980     #endif
 981     return tp;
 982   }
 983 }
 984 
 985 uint8_t MemNode::barrier_data(const Node* n) {
 986   if (n->is_LoadStore()) {
 987     return n->as_LoadStore()->barrier_data();
 988   } else if (n->is_Mem()) {
 989     return n->as_Mem()->barrier_data();
 990   }
 991   return 0;
 992 }
 993 
 994 //=============================================================================
 995 // Should LoadNode::Ideal() attempt to remove control edges?
 996 bool LoadNode::can_remove_control() const {
 997   return !has_pinned_control_dependency();
 998 }
 999 uint LoadNode::size_of() const { return sizeof(*this); }
1000 bool LoadNode::cmp(const Node &n) const {
1001   LoadNode& load = (LoadNode &)n;
1002   return Type::equals(_type, load._type) &&
1003          _control_dependency == load._control_dependency &&
1004          _mo == load._mo;
1005 }
1006 const Type *LoadNode::bottom_type() const { return _type; }
1007 uint LoadNode::ideal_reg() const {
1008   return _type->ideal_reg();
1009 }
1010 
1011 #ifndef PRODUCT
1012 void LoadNode::dump_spec(outputStream *st) const {
1013   MemNode::dump_spec(st);
1014   if( !Verbose && !WizardMode ) {
1015     // standard dump does this in Verbose and WizardMode
1016     st->print(" #"); _type->dump_on(st);
1017   }
1018   if (!depends_only_on_test()) {
1019     st->print(" (does not depend only on test, ");
1020     if (control_dependency() == UnknownControl) {
1021       st->print("unknown control");
1022     } else if (control_dependency() == Pinned) {
1023       st->print("pinned");
1024     } else if (adr_type() == TypeRawPtr::BOTTOM) {
1025       st->print("raw access");
1026     } else {
1027       st->print("unknown reason");
1028     }
1029     st->print(")");
1030   }
1031 }
1032 #endif
1033 
1034 #ifdef ASSERT
1035 //----------------------------is_immutable_value-------------------------------
1036 // Helper function to allow a raw load without control edge for some cases
1037 bool LoadNode::is_immutable_value(Node* adr) {
1038   if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
1039       adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal) {
1040 
1041     jlong offset = adr->in(AddPNode::Offset)->find_intptr_t_con(-1);
1042     int offsets[] = {
1043       in_bytes(JavaThread::osthread_offset()),
1044       in_bytes(JavaThread::threadObj_offset()),
1045       in_bytes(JavaThread::vthread_offset()),
1046       in_bytes(JavaThread::scopedValueCache_offset()),
1047     };
1048 
1049     for (size_t i = 0; i < sizeof offsets / sizeof offsets[0]; i++) {
1050       if (offset == offsets[i]) {
1051         return true;
1052       }
1053     }
1054   }
1055 
1056   return false;
1057 }
1058 #endif
1059 
1060 //----------------------------LoadNode::make-----------------------------------
1061 // Polymorphic factory method:
1062 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo,
1063                      ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) {
1064   Compile* C = gvn.C;
1065 
1066   // sanity check the alias category against the created node type
1067   assert(!(adr_type->isa_oopptr() &&
1068            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
1069          "use LoadKlassNode instead");
1070   assert(!(adr_type->isa_aryptr() &&
1071            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
1072          "use LoadRangeNode instead");
1073   // Check control edge of raw loads
1074   assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
1075           // oop will be recorded in oop map if load crosses safepoint
1076           rt->isa_oopptr() || is_immutable_value(adr),
1077           "raw memory operations should have control edge");
1078   LoadNode* load = nullptr;
1079   switch (bt) {
1080   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
1081   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
1082   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
1083   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
1084   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
1085   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break;
1086   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
1087   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency, require_atomic_access); break;
1088   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
1089   case T_OBJECT:
1090   case T_NARROWOOP:
1091 #ifdef _LP64
1092     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1093       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
1094     } else
1095 #endif
1096     {
1097       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
1098       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
1099     }
1100     break;
1101   default:
1102     ShouldNotReachHere();
1103     break;
1104   }
1105   assert(load != nullptr, "LoadNode should have been created");
1106   if (unaligned) {
1107     load->set_unaligned_access();
1108   }
1109   if (mismatched) {
1110     load->set_mismatched_access();
1111   }
1112   if (unsafe) {
1113     load->set_unsafe_access();
1114   }
1115   load->set_barrier_data(barrier_data);
1116   if (load->Opcode() == Op_LoadN) {
1117     Node* ld = gvn.transform(load);
1118     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
1119   }
1120 
1121   return load;
1122 }
1123 
1124 //------------------------------hash-------------------------------------------
1125 uint LoadNode::hash() const {
1126   // unroll addition of interesting fields
1127   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
1128 }
1129 
1130 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
1131   if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) {
1132     bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile();
1133     bool is_stable_ary = FoldStableValues &&
1134                          (tp != nullptr) && (tp->isa_aryptr() != nullptr) &&
1135                          tp->isa_aryptr()->is_stable();
1136 
1137     return (eliminate_boxing && non_volatile) || is_stable_ary || tp->is_inlinetypeptr();
1138   }
1139 
1140   return false;
1141 }
1142 
1143 LoadNode* LoadNode::pin_array_access_node() const {
1144   const TypePtr* adr_type = this->adr_type();
1145   if (adr_type != nullptr && adr_type->isa_aryptr()) {
1146     return clone_pinned();
1147   }
1148   return nullptr;
1149 }
1150 
1151 // Is the value loaded previously stored by an arraycopy? If so return
1152 // a load node that reads from the source array so we may be able to
1153 // optimize out the ArrayCopy node later.
1154 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
1155   Node* ld_adr = in(MemNode::Address);
1156   intptr_t ld_off = 0;
1157   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
1158   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
1159   if (ac != nullptr) {
1160     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
1161 
1162     Node* mem = ac->in(TypeFunc::Memory);
1163     Node* ctl = ac->in(0);
1164     Node* src = ac->in(ArrayCopyNode::Src);
1165 
1166     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
1167       return nullptr;
1168     }
1169 
1170     // load depends on the tests that validate the arraycopy
1171     LoadNode* ld = clone_pinned();
1172     Node* addp = in(MemNode::Address)->clone();
1173     if (ac->as_ArrayCopy()->is_clonebasic()) {
1174       assert(ld_alloc != nullptr, "need an alloc");
1175       assert(addp->is_AddP(), "address must be addp");
1176       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1177       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern");
1178       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern");
1179       addp->set_req(AddPNode::Base, src);
1180       addp->set_req(AddPNode::Address, src);
1181     } else {
1182       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
1183              ac->as_ArrayCopy()->is_copyof_validated() ||
1184              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
1185       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
1186       addp->set_req(AddPNode::Base, src);
1187       addp->set_req(AddPNode::Address, src);
1188 
1189       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
1190       BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
1191       if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
1192 
1193       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
1194       uint shift  = ary_t->is_flat() ? ary_t->flat_log_elem_size() : exact_log2(type2aelembytes(ary_elem));
1195 
1196       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
1197 #ifdef _LP64
1198       diff = phase->transform(new ConvI2LNode(diff));
1199 #endif
1200       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
1201 
1202       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
1203       addp->set_req(AddPNode::Offset, offset);
1204     }
1205     addp = phase->transform(addp);
1206 #ifdef ASSERT
1207     const TypePtr* adr_type = phase->type(addp)->is_ptr();
1208     ld->_adr_type = adr_type;
1209 #endif
1210     ld->set_req(MemNode::Address, addp);
1211     ld->set_req(0, ctl);
1212     ld->set_req(MemNode::Memory, mem);
1213     return ld;
1214   }
1215   return nullptr;
1216 }
1217 
1218 static Node* see_through_inline_type(PhaseValues* phase, const MemNode* load, Node* base, int offset) {
1219   if (!load->is_mismatched_access() && base != nullptr && base->is_InlineType() && offset > oopDesc::klass_offset_in_bytes()) {
1220     InlineTypeNode* vt = base->as_InlineType();
1221     Node* value = vt->field_value_by_offset(offset, true);
1222     assert(value != nullptr, "must see some value");
1223     return value;
1224   }
1225 
1226   return nullptr;
1227 }
1228 
1229 //---------------------------can_see_stored_value------------------------------
1230 // This routine exists to make sure this set of tests is done the same
1231 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
1232 // will change the graph shape in a way which makes memory alive twice at the
1233 // same time (uses the Oracle model of aliasing), then some
1234 // LoadXNode::Identity will fold things back to the equivalence-class model
1235 // of aliasing.
1236 Node* MemNode::can_see_stored_value(Node* st, PhaseValues* phase) const {
1237   Node* ld_adr = in(MemNode::Address);
1238   intptr_t ld_off = 0;
1239   Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off);
1240   // Try to see through an InlineTypeNode
1241   // LoadN is special because the input is not compressed
1242   if (Opcode() != Op_LoadN) {
1243     Node* value = see_through_inline_type(phase, this, ld_base, ld_off);
1244     if (value != nullptr) {
1245       return value;
1246     }
1247   }
1248 
1249   Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base);
1250   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
1251   Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr;
1252   // This is more general than load from boxing objects.
1253   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
1254     uint alias_idx = atp->index();
1255     Node* result = nullptr;
1256     Node* current = st;
1257     // Skip through chains of MemBarNodes checking the MergeMems for
1258     // new states for the slice of this load.  Stop once any other
1259     // kind of node is encountered.  Loads from final memory can skip
1260     // through any kind of MemBar but normal loads shouldn't skip
1261     // through MemBarAcquire since the could allow them to move out of
1262     // a synchronized region. It is not safe to step over MemBarCPUOrder,
1263     // because alias info above them may be inaccurate (e.g., due to
1264     // mixed/mismatched unsafe accesses).
1265     bool is_final_mem = !atp->is_rewritable();
1266     while (current->is_Proj()) {
1267       int opc = current->in(0)->Opcode();
1268       if ((is_final_mem && (opc == Op_MemBarAcquire ||
1269                             opc == Op_MemBarAcquireLock ||
1270                             opc == Op_LoadFence)) ||
1271           opc == Op_MemBarRelease ||
1272           opc == Op_StoreFence ||
1273           opc == Op_MemBarReleaseLock ||
1274           opc == Op_MemBarStoreStore ||
1275           opc == Op_StoreStoreFence) {
1276         Node* mem = current->in(0)->in(TypeFunc::Memory);
1277         if (mem->is_MergeMem()) {
1278           MergeMemNode* merge = mem->as_MergeMem();
1279           Node* new_st = merge->memory_at(alias_idx);
1280           if (new_st == merge->base_memory()) {
1281             // Keep searching
1282             current = new_st;
1283             continue;
1284           }
1285           // Save the new memory state for the slice and fall through
1286           // to exit.
1287           result = new_st;
1288         }
1289       }
1290       break;
1291     }
1292     if (result != nullptr) {
1293       st = result;
1294     }
1295   }
1296 
1297   // Loop around twice in the case Load -> Initialize -> Store.
1298   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1299   for (int trip = 0; trip <= 1; trip++) {
1300 
1301     if (st->is_Store()) {
1302       Node* st_adr = st->in(MemNode::Address);
1303       if (st_adr != ld_adr) {
1304         // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers).
1305         intptr_t st_off = 0;
1306         Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off);
1307         if (ld_base == nullptr)                                return nullptr;
1308         if (st_base == nullptr)                                return nullptr;
1309         if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr;
1310         if (ld_off != st_off)                                  return nullptr;
1311         if (ld_off == Type::OffsetBot)                         return nullptr;
1312         // Same base, same offset.
1313         // Possible improvement for arrays: check index value instead of absolute offset.
1314 
1315         // At this point we have proven something like this setup:
1316         //   B = << base >>
1317         //   L =  LoadQ(AddP(Check/CastPP(B), #Off))
1318         //   S = StoreQ(AddP(             B , #Off), V)
1319         // (Actually, we haven't yet proven the Q's are the same.)
1320         // In other words, we are loading from a casted version of
1321         // the same pointer-and-offset that we stored to.
1322         // Casted version may carry a dependency and it is respected.
1323         // Thus, we are able to replace L by V.
1324       }
1325       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1326       if (store_Opcode() != st->Opcode()) {
1327         return nullptr;
1328       }
1329       // LoadVector/StoreVector needs additional check to ensure the types match.
1330       if (st->is_StoreVector()) {
1331         const TypeVect*  in_vt = st->as_StoreVector()->vect_type();
1332         const TypeVect* out_vt = is_Load() ? as_LoadVector()->vect_type() : as_StoreVector()->vect_type();
1333         if (in_vt != out_vt) {
1334           return nullptr;
1335         }
1336       }
1337       return st->in(MemNode::ValueIn);
1338     }
1339 
1340     // A load from a freshly-created object always returns zero.
1341     // (This can happen after LoadNode::Ideal resets the load's memory input
1342     // to find_captured_store, which returned InitializeNode::zero_memory.)
1343     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1344         (st->in(0) == ld_alloc) &&
1345         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1346       // return a zero value for the load's basic type
1347       // (This is one of the few places where a generic PhaseTransform
1348       // can create new nodes.  Think of it as lazily manifesting
1349       // virtually pre-existing constants.)
1350       Node* init_value = ld_alloc->in(AllocateNode::InitValue);
1351       if (init_value != nullptr) {
1352         // TODO 8350865 Scalar replacement does not work well for flat arrays.
1353         // Is this correct for non-all-zero init values? Don't we need field_value_by_offset?
1354         return init_value;
1355       }
1356       assert(ld_alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null");
1357       if (memory_type() != T_VOID) {
1358         if (ReduceBulkZeroing || find_array_copy_clone(ld_alloc, in(MemNode::Memory)) == nullptr) {
1359           // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an
1360           // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done
1361           // by the ArrayCopyNode.
1362           return phase->zerocon(memory_type());
1363         }
1364       } else {
1365         // TODO: materialize all-zero vector constant
1366         assert(!isa_Load() || as_Load()->type()->isa_vect(), "");
1367       }
1368     }
1369 
1370     // A load from an initialization barrier can match a captured store.
1371     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1372       InitializeNode* init = st->in(0)->as_Initialize();
1373       AllocateNode* alloc = init->allocation();
1374       if ((alloc != nullptr) && (alloc == ld_alloc)) {
1375         // examine a captured store value
1376         st = init->find_captured_store(ld_off, memory_size(), phase);
1377         if (st != nullptr) {
1378           continue;             // take one more trip around
1379         }
1380       }
1381     }
1382 
1383     // Load boxed value from result of valueOf() call is input parameter.
1384     if (this->is_Load() && ld_adr->is_AddP() &&
1385         (tp != nullptr) && tp->is_ptr_to_boxed_value()) {
1386       intptr_t ignore = 0;
1387       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1388       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1389       base = bs->step_over_gc_barrier(base);
1390       if (base != nullptr && base->is_Proj() &&
1391           base->as_Proj()->_con == TypeFunc::Parms &&
1392           base->in(0)->is_CallStaticJava() &&
1393           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1394         return base->in(0)->in(TypeFunc::Parms);
1395       }
1396     }
1397 
1398     break;
1399   }
1400 
1401   return nullptr;
1402 }
1403 
1404 //----------------------is_instance_field_load_with_local_phi------------------
1405 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1406   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1407       in(Address)->is_AddP() ) {
1408     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1409     // Only instances and boxed values.
1410     if( t_oop != nullptr &&
1411         (t_oop->is_ptr_to_boxed_value() ||
1412          t_oop->is_known_instance_field()) &&
1413         t_oop->offset() != Type::OffsetBot &&
1414         t_oop->offset() != Type::OffsetTop) {
1415       return true;
1416     }
1417   }
1418   return false;
1419 }
1420 
1421 //------------------------------Identity---------------------------------------
1422 // Loads are identity if previous store is to same address
1423 Node* LoadNode::Identity(PhaseGVN* phase) {
1424   // If the previous store-maker is the right kind of Store, and the store is
1425   // to the same address, then we are equal to the value stored.
1426   Node* mem = in(Memory);
1427   Node* value = can_see_stored_value(mem, phase);
1428   if( value ) {
1429     // byte, short & char stores truncate naturally.
1430     // A load has to load the truncated value which requires
1431     // some sort of masking operation and that requires an
1432     // Ideal call instead of an Identity call.
1433     if (memory_size() < BytesPerInt) {
1434       // If the input to the store does not fit with the load's result type,
1435       // it must be truncated via an Ideal call.
1436       if (!phase->type(value)->higher_equal(phase->type(this)))
1437         return this;
1438     }
1439     // (This works even when value is a Con, but LoadNode::Value
1440     // usually runs first, producing the singleton type of the Con.)
1441     if (!has_pinned_control_dependency() || value->is_Con()) {
1442       return value;
1443     } else {
1444       return this;
1445     }
1446   }
1447 
1448   if (has_pinned_control_dependency()) {
1449     return this;
1450   }
1451   // Search for an existing data phi which was generated before for the same
1452   // instance's field to avoid infinite generation of phis in a loop.
1453   Node *region = mem->in(0);
1454   if (is_instance_field_load_with_local_phi(region)) {
1455     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1456     int this_index  = phase->C->get_alias_index(addr_t);
1457     int this_offset = addr_t->offset();
1458     int this_iid    = addr_t->instance_id();
1459     if (!addr_t->is_known_instance() &&
1460          addr_t->is_ptr_to_boxed_value()) {
1461       // Use _idx of address base (could be Phi node) for boxed values.
1462       intptr_t   ignore = 0;
1463       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1464       if (base == nullptr) {
1465         return this;
1466       }
1467       this_iid = base->_idx;
1468     }
1469     const Type* this_type = bottom_type();
1470     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1471       Node* phi = region->fast_out(i);
1472       if (phi->is_Phi() && phi != mem &&
1473           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1474         return phi;
1475       }
1476     }
1477   }
1478 
1479   return this;
1480 }
1481 
1482 // Construct an equivalent unsigned load.
1483 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1484   BasicType bt = T_ILLEGAL;
1485   const Type* rt = nullptr;
1486   switch (Opcode()) {
1487     case Op_LoadUB: return this;
1488     case Op_LoadUS: return this;
1489     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1490     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1491     default:
1492       assert(false, "no unsigned variant: %s", Name());
1493       return nullptr;
1494   }
1495   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1496                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1497                         false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access());
1498 }
1499 
1500 // Construct an equivalent signed load.
1501 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1502   BasicType bt = T_ILLEGAL;
1503   const Type* rt = nullptr;
1504   switch (Opcode()) {
1505     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1506     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1507     case Op_LoadB: // fall through
1508     case Op_LoadS: // fall through
1509     case Op_LoadI: // fall through
1510     case Op_LoadL: return this;
1511     default:
1512       assert(false, "no signed variant: %s", Name());
1513       return nullptr;
1514   }
1515   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1516                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1517                         false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access());
1518 }
1519 
1520 bool LoadNode::has_reinterpret_variant(const Type* rt) {
1521   BasicType bt = rt->basic_type();
1522   switch (Opcode()) {
1523     case Op_LoadI: return (bt == T_FLOAT);
1524     case Op_LoadL: return (bt == T_DOUBLE);
1525     case Op_LoadF: return (bt == T_INT);
1526     case Op_LoadD: return (bt == T_LONG);
1527 
1528     default: return false;
1529   }
1530 }
1531 
1532 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) {
1533   BasicType bt = rt->basic_type();
1534   assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt));
1535   bool is_mismatched = is_mismatched_access();
1536   const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1537   if (raw_type == nullptr) {
1538     is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1539   }
1540   const int op = Opcode();
1541   bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) ||
1542                                (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access());
1543   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1544                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1545                         require_atomic_access, is_unaligned_access(), is_mismatched);
1546 }
1547 
1548 bool StoreNode::has_reinterpret_variant(const Type* vt) {
1549   BasicType bt = vt->basic_type();
1550   switch (Opcode()) {
1551     case Op_StoreI: return (bt == T_FLOAT);
1552     case Op_StoreL: return (bt == T_DOUBLE);
1553     case Op_StoreF: return (bt == T_INT);
1554     case Op_StoreD: return (bt == T_LONG);
1555 
1556     default: return false;
1557   }
1558 }
1559 
1560 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) {
1561   BasicType bt = vt->basic_type();
1562   assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt));
1563   const int op = Opcode();
1564   bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) ||
1565                                (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access());
1566   StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1567                                   raw_adr_type(), val, bt, _mo, require_atomic_access);
1568 
1569   bool is_mismatched = is_mismatched_access();
1570   const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1571   if (raw_type == nullptr) {
1572     is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1573   }
1574   if (is_mismatched) {
1575     st->set_mismatched_access();
1576   }
1577   return st;
1578 }
1579 
1580 // We're loading from an object which has autobox behaviour.
1581 // If this object is result of a valueOf call we'll have a phi
1582 // merging a newly allocated object and a load from the cache.
1583 // We want to replace this load with the original incoming
1584 // argument to the valueOf call.
1585 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) {
1586   assert(igvn->C->eliminate_boxing(), "sanity");
1587   intptr_t ignore = 0;
1588   Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore);
1589   if ((base == nullptr) || base->is_Phi()) {
1590     // Push the loads from the phi that comes from valueOf up
1591     // through it to allow elimination of the loads and the recovery
1592     // of the original value. It is done in split_through_phi().
1593     return nullptr;
1594   } else if (base->is_Load() ||
1595              (base->is_DecodeN() && base->in(1)->is_Load())) {
1596     // Eliminate the load of boxed value for integer types from the cache
1597     // array by deriving the value from the index into the array.
1598     // Capture the offset of the load and then reverse the computation.
1599 
1600     // Get LoadN node which loads a boxing object from 'cache' array.
1601     if (base->is_DecodeN()) {
1602       base = base->in(1);
1603     }
1604     if (!base->in(Address)->is_AddP()) {
1605       return nullptr; // Complex address
1606     }
1607     AddPNode* address = base->in(Address)->as_AddP();
1608     Node* cache_base = address->in(AddPNode::Base);
1609     if ((cache_base != nullptr) && cache_base->is_DecodeN()) {
1610       // Get ConP node which is static 'cache' field.
1611       cache_base = cache_base->in(1);
1612     }
1613     if ((cache_base != nullptr) && cache_base->is_Con()) {
1614       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1615       if ((base_type != nullptr) && base_type->is_autobox_cache()) {
1616         Node* elements[4];
1617         int shift = exact_log2(type2aelembytes(T_OBJECT));
1618         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1619         if (count > 0 && elements[0]->is_Con() &&
1620             (count == 1 ||
1621              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1622                             elements[1]->in(2) == igvn->intcon(shift)))) {
1623           ciObjArray* array = base_type->const_oop()->as_obj_array();
1624           // Fetch the box object cache[0] at the base of the array and get its value
1625           ciInstance* box = array->obj_at(0)->as_instance();
1626           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1627           assert(ik->is_box_klass(), "sanity");
1628           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1629           if (ik->nof_nonstatic_fields() == 1) {
1630             // This should be true nonstatic_field_at requires calling
1631             // nof_nonstatic_fields so check it anyway
1632             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1633             BasicType bt = c.basic_type();
1634             // Only integer types have boxing cache.
1635             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1636                    bt == T_BYTE    || bt == T_SHORT ||
1637                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1638             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1639             if (cache_low != (int)cache_low) {
1640               return nullptr; // should not happen since cache is array indexed by value
1641             }
1642             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1643             if (offset != (int)offset) {
1644               return nullptr; // should not happen since cache is array indexed by value
1645             }
1646            // Add up all the offsets making of the address of the load
1647             Node* result = elements[0];
1648             for (int i = 1; i < count; i++) {
1649               result = igvn->transform(new AddXNode(result, elements[i]));
1650             }
1651             // Remove the constant offset from the address and then
1652             result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset)));
1653             // remove the scaling of the offset to recover the original index.
1654             if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) {
1655               // Peel the shift off directly but wrap it in a dummy node
1656               // since Ideal can't return existing nodes
1657               igvn->_worklist.push(result); // remove dead node later
1658               result = new RShiftXNode(result->in(1), igvn->intcon(0));
1659             } else if (result->is_Add() && result->in(2)->is_Con() &&
1660                        result->in(1)->Opcode() == Op_LShiftX &&
1661                        result->in(1)->in(2) == igvn->intcon(shift)) {
1662               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1663               // but for boxing cache access we know that X<<Z will not overflow
1664               // (there is range check) so we do this optimizatrion by hand here.
1665               igvn->_worklist.push(result); // remove dead node later
1666               Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift));
1667               result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con));
1668             } else {
1669               result = new RShiftXNode(result, igvn->intcon(shift));
1670             }
1671 #ifdef _LP64
1672             if (bt != T_LONG) {
1673               result = new ConvL2INode(igvn->transform(result));
1674             }
1675 #else
1676             if (bt == T_LONG) {
1677               result = new ConvI2LNode(igvn->transform(result));
1678             }
1679 #endif
1680             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1681             // Need to preserve unboxing load type if it is unsigned.
1682             switch(this->Opcode()) {
1683               case Op_LoadUB:
1684                 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF));
1685                 break;
1686               case Op_LoadUS:
1687                 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF));
1688                 break;
1689             }
1690             return result;
1691           }
1692         }
1693       }
1694     }
1695   }
1696   return nullptr;
1697 }
1698 
1699 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1700   Node* region = phi->in(0);
1701   if (region == nullptr) {
1702     return false; // Wait stable graph
1703   }
1704   uint cnt = phi->req();
1705   for (uint i = 1; i < cnt; i++) {
1706     Node* rc = region->in(i);
1707     if (rc == nullptr || phase->type(rc) == Type::TOP)
1708       return false; // Wait stable graph
1709     Node* in = phi->in(i);
1710     if (in == nullptr || phase->type(in) == Type::TOP)
1711       return false; // Wait stable graph
1712   }
1713   return true;
1714 }
1715 
1716 //------------------------------split_through_phi------------------------------
1717 // Check whether a call to 'split_through_phi' would split this load through the
1718 // Phi *base*. This method is essentially a copy of the validations performed
1719 // by 'split_through_phi'. The first use of this method was in EA code as part
1720 // of simplification of allocation merges.
1721 // Some differences from original method (split_through_phi):
1722 //  - If base->is_CastPP(): base = base->in(1)
1723 bool LoadNode::can_split_through_phi_base(PhaseGVN* phase) {
1724   Node* mem        = in(Memory);
1725   Node* address    = in(Address);
1726   intptr_t ignore  = 0;
1727   Node*    base    = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1728 
1729   if (base->is_CastPP()) {
1730     base = base->in(1);
1731   }
1732 
1733   if (req() > 3 || base == nullptr || !base->is_Phi()) {
1734     return false;
1735   }
1736 
1737   if (!mem->is_Phi()) {
1738     if (!MemNode::all_controls_dominate(mem, base->in(0))) {
1739       return false;
1740     }
1741   } else if (base->in(0) != mem->in(0)) {
1742     if (!MemNode::all_controls_dominate(mem, base->in(0))) {
1743       return false;
1744     }
1745   }
1746 
1747   return true;
1748 }
1749 
1750 //------------------------------split_through_phi------------------------------
1751 // Split instance or boxed field load through Phi.
1752 Node* LoadNode::split_through_phi(PhaseGVN* phase, bool ignore_missing_instance_id) {
1753   if (req() > 3) {
1754     assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs");
1755     // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account
1756     return nullptr;
1757   }
1758   Node* mem     = in(Memory);
1759   Node* address = in(Address);
1760   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1761 
1762   assert((t_oop != nullptr) &&
1763          (ignore_missing_instance_id ||
1764           t_oop->is_known_instance_field() ||
1765           t_oop->is_ptr_to_boxed_value()), "invalid conditions");
1766 
1767   Compile* C = phase->C;
1768   intptr_t ignore = 0;
1769   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1770   bool base_is_phi = (base != nullptr) && base->is_Phi();
1771   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1772                            (base != nullptr) && (base == address->in(AddPNode::Base)) &&
1773                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1774 
1775   if (!((mem->is_Phi() || base_is_phi) &&
1776         (ignore_missing_instance_id || load_boxed_values || t_oop->is_known_instance_field()))) {
1777     return nullptr; // Neither memory or base are Phi
1778   }
1779 
1780   if (mem->is_Phi()) {
1781     if (!stable_phi(mem->as_Phi(), phase)) {
1782       return nullptr; // Wait stable graph
1783     }
1784     uint cnt = mem->req();
1785     // Check for loop invariant memory.
1786     if (cnt == 3) {
1787       for (uint i = 1; i < cnt; i++) {
1788         Node* in = mem->in(i);
1789         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1790         if (m == mem) {
1791           if (i == 1) {
1792             // if the first edge was a loop, check second edge too.
1793             // If both are replaceable - we are in an infinite loop
1794             Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase);
1795             if (n == mem) {
1796               break;
1797             }
1798           }
1799           set_req(Memory, mem->in(cnt - i));
1800           return this; // made change
1801         }
1802       }
1803     }
1804   }
1805   if (base_is_phi) {
1806     if (!stable_phi(base->as_Phi(), phase)) {
1807       return nullptr; // Wait stable graph
1808     }
1809     uint cnt = base->req();
1810     // Check for loop invariant memory.
1811     if (cnt == 3) {
1812       for (uint i = 1; i < cnt; i++) {
1813         if (base->in(i) == base) {
1814           return nullptr; // Wait stable graph
1815         }
1816       }
1817     }
1818   }
1819 
1820   // Split through Phi (see original code in loopopts.cpp).
1821   assert(ignore_missing_instance_id || C->have_alias_type(t_oop), "instance should have alias type");
1822 
1823   // Do nothing here if Identity will find a value
1824   // (to avoid infinite chain of value phis generation).
1825   if (this != Identity(phase)) {
1826     return nullptr;
1827   }
1828 
1829   // Select Region to split through.
1830   Node* region;
1831   DomResult dom_result = DomResult::Dominate;
1832   if (!base_is_phi) {
1833     assert(mem->is_Phi(), "sanity");
1834     region = mem->in(0);
1835     // Skip if the region dominates some control edge of the address.
1836     // We will check `dom_result` later.
1837     dom_result = MemNode::maybe_all_controls_dominate(address, region);
1838   } else if (!mem->is_Phi()) {
1839     assert(base_is_phi, "sanity");
1840     region = base->in(0);
1841     // Skip if the region dominates some control edge of the memory.
1842     // We will check `dom_result` later.
1843     dom_result = MemNode::maybe_all_controls_dominate(mem, region);
1844   } else if (base->in(0) != mem->in(0)) {
1845     assert(base_is_phi && mem->is_Phi(), "sanity");
1846     dom_result = MemNode::maybe_all_controls_dominate(mem, base->in(0));
1847     if (dom_result == DomResult::Dominate) {
1848       region = base->in(0);
1849     } else {
1850       dom_result = MemNode::maybe_all_controls_dominate(address, mem->in(0));
1851       if (dom_result == DomResult::Dominate) {
1852         region = mem->in(0);
1853       }
1854       // Otherwise we encountered a complex graph.
1855     }
1856   } else {
1857     assert(base->in(0) == mem->in(0), "sanity");
1858     region = mem->in(0);
1859   }
1860 
1861   PhaseIterGVN* igvn = phase->is_IterGVN();
1862   if (dom_result != DomResult::Dominate) {
1863     if (dom_result == DomResult::EncounteredDeadCode) {
1864       // There is some dead code which eventually will be removed in IGVN.
1865       // Once this is the case, we get an unambiguous dominance result.
1866       // Push the node to the worklist again until the dead code is removed.
1867       igvn->_worklist.push(this);
1868     }
1869     return nullptr;
1870   }
1871 
1872   Node* phi = nullptr;
1873   const Type* this_type = this->bottom_type();
1874   if (t_oop != nullptr && (t_oop->is_known_instance_field() || load_boxed_values)) {
1875     int this_index = C->get_alias_index(t_oop);
1876     int this_offset = t_oop->offset();
1877     int this_iid = t_oop->is_known_instance_field() ? t_oop->instance_id() : base->_idx;
1878     phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset);
1879   } else if (ignore_missing_instance_id) {
1880     phi = new PhiNode(region, this_type, nullptr, mem->_idx);
1881   } else {
1882     return nullptr;
1883   }
1884 
1885   for (uint i = 1; i < region->req(); i++) {
1886     Node* x;
1887     Node* the_clone = nullptr;
1888     Node* in = region->in(i);
1889     if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl &&
1890         in != nullptr && in->is_OuterStripMinedLoop()) {
1891       // No node should go in the outer strip mined loop
1892       in = in->in(LoopNode::EntryControl);
1893     }
1894     if (in == nullptr || in == C->top()) {
1895       x = C->top();      // Dead path?  Use a dead data op
1896     } else {
1897       x = this->clone();        // Else clone up the data op
1898       the_clone = x;            // Remember for possible deletion.
1899       // Alter data node to use pre-phi inputs
1900       if (this->in(0) == region) {
1901         x->set_req(0, in);
1902       } else {
1903         x->set_req(0, nullptr);
1904       }
1905       if (mem->is_Phi() && (mem->in(0) == region)) {
1906         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1907       }
1908       if (address->is_Phi() && address->in(0) == region) {
1909         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1910       }
1911       if (base_is_phi && (base->in(0) == region)) {
1912         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1913         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1914         x->set_req(Address, adr_x);
1915       }
1916     }
1917     // Check for a 'win' on some paths
1918     const Type *t = x->Value(igvn);
1919 
1920     bool singleton = t->singleton();
1921 
1922     // See comments in PhaseIdealLoop::split_thru_phi().
1923     if (singleton && t == Type::TOP) {
1924       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1925     }
1926 
1927     if (singleton) {
1928       x = igvn->makecon(t);
1929     } else {
1930       // We now call Identity to try to simplify the cloned node.
1931       // Note that some Identity methods call phase->type(this).
1932       // Make sure that the type array is big enough for
1933       // our new node, even though we may throw the node away.
1934       // (This tweaking with igvn only works because x is a new node.)
1935       igvn->set_type(x, t);
1936       // If x is a TypeNode, capture any more-precise type permanently into Node
1937       // otherwise it will be not updated during igvn->transform since
1938       // igvn->type(x) is set to x->Value() already.
1939       x->raise_bottom_type(t);
1940       Node* y = x->Identity(igvn);
1941       if (y != x) {
1942         x = y;
1943       } else {
1944         y = igvn->hash_find_insert(x);
1945         if (y) {
1946           x = y;
1947         } else {
1948           // Else x is a new node we are keeping
1949           // We do not need register_new_node_with_optimizer
1950           // because set_type has already been called.
1951           igvn->_worklist.push(x);
1952         }
1953       }
1954     }
1955     if (x != the_clone && the_clone != nullptr) {
1956       igvn->remove_dead_node(the_clone);
1957     }
1958     phi->set_req(i, x);
1959   }
1960   // Record Phi
1961   igvn->register_new_node_with_optimizer(phi);
1962   return phi;
1963 }
1964 
1965 AllocateNode* LoadNode::is_new_object_mark_load() const {
1966   if (Opcode() == Op_LoadX) {
1967     Node* address = in(MemNode::Address);
1968     AllocateNode* alloc = AllocateNode::Ideal_allocation(address);
1969     Node* mem = in(MemNode::Memory);
1970     if (alloc != nullptr && mem->is_Proj() &&
1971         mem->in(0) != nullptr &&
1972         mem->in(0) == alloc->initialization() &&
1973         alloc->initialization()->proj_out_or_null(0) != nullptr) {
1974       return alloc;
1975     }
1976   }
1977   return nullptr;
1978 }
1979 
1980 
1981 //------------------------------Ideal------------------------------------------
1982 // If the load is from Field memory and the pointer is non-null, it might be possible to
1983 // zero out the control input.
1984 // If the offset is constant and the base is an object allocation,
1985 // try to hook me up to the exact initializing store.
1986 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1987   if (has_pinned_control_dependency()) {
1988     return nullptr;
1989   }
1990   Node* p = MemNode::Ideal_common(phase, can_reshape);
1991   if (p)  return (p == NodeSentinel) ? nullptr : p;
1992 
1993   Node* ctrl    = in(MemNode::Control);
1994   Node* address = in(MemNode::Address);
1995   bool progress = false;
1996 
1997   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1998          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1999 
2000   // Skip up past a SafePoint control.  Cannot do this for Stores because
2001   // pointer stores & cardmarks must stay on the same side of a SafePoint.
2002   if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint &&
2003       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
2004       !addr_mark &&
2005       (depends_only_on_test() || has_unknown_control_dependency())) {
2006     ctrl = ctrl->in(0);
2007     set_req(MemNode::Control,ctrl);
2008     progress = true;
2009   }
2010 
2011   intptr_t ignore = 0;
2012   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
2013   if (base != nullptr
2014       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
2015     // Check for useless control edge in some common special cases
2016     if (in(MemNode::Control) != nullptr
2017         && !(phase->type(address)->is_inlinetypeptr() && is_mismatched_access())
2018         && can_remove_control()
2019         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
2020         && all_controls_dominate(base, phase->C->start())) {
2021       // A method-invariant, non-null address (constant or 'this' argument).
2022       set_req(MemNode::Control, nullptr);
2023       progress = true;
2024     }
2025   }
2026 
2027   Node* mem = in(MemNode::Memory);
2028   const TypePtr *addr_t = phase->type(address)->isa_ptr();
2029 
2030   if (can_reshape && (addr_t != nullptr)) {
2031     // try to optimize our memory input
2032     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
2033     if (opt_mem != mem) {
2034       set_req_X(MemNode::Memory, opt_mem, phase);
2035       if (phase->type( opt_mem ) == Type::TOP) return nullptr;
2036       return this;
2037     }
2038     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
2039     if ((t_oop != nullptr) &&
2040         (t_oop->is_known_instance_field() ||
2041          t_oop->is_ptr_to_boxed_value())) {
2042       PhaseIterGVN *igvn = phase->is_IterGVN();
2043       assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true");
2044       if (igvn->_worklist.member(opt_mem)) {
2045         // Delay this transformation until memory Phi is processed.
2046         igvn->_worklist.push(this);
2047         return nullptr;
2048       }
2049       // Split instance field load through Phi.
2050       Node* result = split_through_phi(phase);
2051       if (result != nullptr) return result;
2052 
2053       if (t_oop->is_ptr_to_boxed_value()) {
2054         Node* result = eliminate_autobox(igvn);
2055         if (result != nullptr) return result;
2056       }
2057     }
2058   }
2059 
2060   // Is there a dominating load that loads the same value?  Leave
2061   // anything that is not a load of a field/array element (like
2062   // barriers etc.) alone
2063   if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) {
2064     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
2065       Node *use = mem->fast_out(i);
2066       if (use != this &&
2067           use->Opcode() == Opcode() &&
2068           use->in(0) != nullptr &&
2069           use->in(0) != in(0) &&
2070           use->in(Address) == in(Address)) {
2071         Node* ctl = in(0);
2072         for (int i = 0; i < 10 && ctl != nullptr; i++) {
2073           ctl = IfNode::up_one_dom(ctl);
2074           if (ctl == use->in(0)) {
2075             set_req(0, use->in(0));
2076             return this;
2077           }
2078         }
2079       }
2080     }
2081   }
2082 
2083   // Check for prior store with a different base or offset; make Load
2084   // independent.  Skip through any number of them.  Bail out if the stores
2085   // are in an endless dead cycle and report no progress.  This is a key
2086   // transform for Reflection.  However, if after skipping through the Stores
2087   // we can't then fold up against a prior store do NOT do the transform as
2088   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
2089   // array memory alive twice: once for the hoisted Load and again after the
2090   // bypassed Store.  This situation only works if EVERYBODY who does
2091   // anti-dependence work knows how to bypass.  I.e. we need all
2092   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
2093   // the alias index stuff.  So instead, peek through Stores and IFF we can
2094   // fold up, do so.
2095   Node* prev_mem = find_previous_store(phase);
2096   if (prev_mem != nullptr) {
2097     Node* value = can_see_arraycopy_value(prev_mem, phase);
2098     if (value != nullptr) {
2099       return value;
2100     }
2101   }
2102   // Steps (a), (b):  Walk past independent stores to find an exact match.
2103   if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) {
2104     // (c) See if we can fold up on the spot, but don't fold up here.
2105     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
2106     // just return a prior value, which is done by Identity calls.
2107     if (can_see_stored_value(prev_mem, phase)) {
2108       // Make ready for step (d):
2109       set_req_X(MemNode::Memory, prev_mem, phase);
2110       return this;
2111     }
2112   }
2113 
2114   if (progress) {
2115     return this;
2116   }
2117 
2118   if (!can_reshape) {
2119     phase->record_for_igvn(this);
2120   }
2121   return nullptr;
2122 }
2123 
2124 // Helper to recognize certain Klass fields which are invariant across
2125 // some group of array types (e.g., int[] or all T[] where T < Object).
2126 const Type*
2127 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
2128                                  ciKlass* klass) const {
2129   assert(!UseCompactObjectHeaders || tkls->offset() != in_bytes(Klass::prototype_header_offset()),
2130          "must not happen");
2131   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
2132     // The field is Klass::_access_flags.  Return its (constant) value.
2133     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
2134     assert(Opcode() == Op_LoadUS, "must load an unsigned short from _access_flags");
2135     return TypeInt::make(klass->access_flags());
2136   }
2137   if (tkls->offset() == in_bytes(Klass::misc_flags_offset())) {
2138     // The field is Klass::_misc_flags.  Return its (constant) value.
2139     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
2140     assert(Opcode() == Op_LoadUB, "must load an unsigned byte from _misc_flags");
2141     return TypeInt::make(klass->misc_flags());
2142   }
2143   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
2144     // The field is Klass::_layout_helper.  Return its constant value if known.
2145     assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
2146     return TypeInt::make(klass->layout_helper());
2147   }
2148 
2149   // No match.
2150   return nullptr;
2151 }
2152 
2153 //------------------------------Value-----------------------------------------
2154 const Type* LoadNode::Value(PhaseGVN* phase) const {
2155   // Either input is TOP ==> the result is TOP
2156   Node* mem = in(MemNode::Memory);
2157   const Type *t1 = phase->type(mem);
2158   if (t1 == Type::TOP)  return Type::TOP;
2159   Node* adr = in(MemNode::Address);
2160   const TypePtr* tp = phase->type(adr)->isa_ptr();
2161   if (tp == nullptr || tp->empty())  return Type::TOP;
2162   int off = tp->offset();
2163   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
2164   Compile* C = phase->C;
2165 
2166   // If we are loading from a freshly-allocated object, produce a zero,
2167   // if the load is provably beyond the header of the object.
2168   // (Also allow a variable load from a fresh array to produce zero.)
2169   const TypeOopPtr* tinst = tp->isa_oopptr();
2170   bool is_instance = (tinst != nullptr) && tinst->is_known_instance_field();
2171   Node* value = can_see_stored_value(mem, phase);
2172   if (value != nullptr && value->is_Con()) {
2173     assert(value->bottom_type()->higher_equal(_type), "sanity");
2174     return value->bottom_type();
2175   }
2176 
2177   // Try to guess loaded type from pointer type
2178   if (tp->isa_aryptr()) {
2179     const TypeAryPtr* ary = tp->is_aryptr();
2180     const Type* t = ary->elem();
2181 
2182     // Determine whether the reference is beyond the header or not, by comparing
2183     // the offset against the offset of the start of the array's data.
2184     // Different array types begin at slightly different offsets (12 vs. 16).
2185     // We choose T_BYTE as an example base type that is least restrictive
2186     // as to alignment, which will therefore produce the smallest
2187     // possible base offset.
2188     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
2189     const bool off_beyond_header = (off >= min_base_off);
2190 
2191     // Try to constant-fold a stable array element.
2192     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
2193       // Make sure the reference is not into the header and the offset is constant
2194       ciObject* aobj = ary->const_oop();
2195       if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
2196         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
2197         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
2198                                                                       stable_dimension,
2199                                                                       memory_type(), is_unsigned());
2200         if (con_type != nullptr) {
2201           return con_type;
2202         }
2203       }
2204     }
2205 
2206     // Don't do this for integer types. There is only potential profit if
2207     // the element type t is lower than _type; that is, for int types, if _type is
2208     // more restrictive than t.  This only happens here if one is short and the other
2209     // char (both 16 bits), and in those cases we've made an intentional decision
2210     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
2211     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
2212     //
2213     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
2214     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
2215     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
2216     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
2217     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
2218     // In fact, that could have been the original type of p1, and p1 could have
2219     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
2220     // expression (LShiftL quux 3) independently optimized to the constant 8.
2221     if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr)
2222         && (_type->isa_vect() == nullptr)
2223         && !ary->is_flat()
2224         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
2225       // t might actually be lower than _type, if _type is a unique
2226       // concrete subclass of abstract class t.
2227       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
2228         const Type* jt = t->join_speculative(_type);
2229         // In any case, do not allow the join, per se, to empty out the type.
2230         if (jt->empty() && !t->empty()) {
2231           // This can happen if a interface-typed array narrows to a class type.
2232           jt = _type;
2233         }
2234 #ifdef ASSERT
2235         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
2236           // The pointers in the autobox arrays are always non-null
2237           Node* base = adr->in(AddPNode::Base);
2238           if ((base != nullptr) && base->is_DecodeN()) {
2239             // Get LoadN node which loads IntegerCache.cache field
2240             base = base->in(1);
2241           }
2242           if ((base != nullptr) && base->is_Con()) {
2243             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
2244             if ((base_type != nullptr) && base_type->is_autobox_cache()) {
2245               // It could be narrow oop
2246               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
2247             }
2248           }
2249         }
2250 #endif
2251         return jt;
2252       }
2253     }
2254   } else if (tp->base() == Type::InstPtr) {
2255     assert( off != Type::OffsetBot ||
2256             // arrays can be cast to Objects
2257             !tp->isa_instptr() ||
2258             tp->is_instptr()->instance_klass()->is_java_lang_Object() ||
2259             // Default value load
2260             tp->is_instptr()->instance_klass() == ciEnv::current()->Class_klass() ||
2261             // unsafe field access may not have a constant offset
2262             C->has_unsafe_access(),
2263             "Field accesses must be precise" );
2264     // For oop loads, we expect the _type to be precise.
2265 
2266     const TypeInstPtr* tinst = tp->is_instptr();
2267     BasicType bt = memory_type();
2268 
2269     // Optimize loads from constant fields.
2270     ciObject* const_oop = tinst->const_oop();
2271     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) {
2272       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), bt);
2273       if (con_type != nullptr) {
2274         return con_type;
2275       }
2276     }
2277   } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) {
2278     assert(off != Type::OffsetBot ||
2279             !tp->isa_instklassptr() ||
2280            // arrays can be cast to Objects
2281            tp->isa_instklassptr()->instance_klass()->is_java_lang_Object() ||
2282            // also allow array-loading from the primary supertype
2283            // array during subtype checks
2284            Opcode() == Op_LoadKlass,
2285            "Field accesses must be precise");
2286     // For klass/static loads, we expect the _type to be precise
2287   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
2288     /* With mirrors being an indirect in the Klass*
2289      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
2290      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
2291      *
2292      * So check the type and klass of the node before the LoadP.
2293      */
2294     Node* adr2 = adr->in(MemNode::Address);
2295     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2296     if (tkls != nullptr && !StressReflectiveCode) {
2297       if (tkls->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
2298         ciKlass* klass = tkls->exact_klass();
2299         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
2300         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
2301         return TypeInstPtr::make(klass->java_mirror());
2302       }
2303     }
2304   }
2305 
2306   const TypeKlassPtr *tkls = tp->isa_klassptr();
2307   if (tkls != nullptr) {
2308     if (tkls->is_loaded() && tkls->klass_is_exact()) {
2309       ciKlass* klass = tkls->exact_klass();
2310       // We are loading a field from a Klass metaobject whose identity
2311       // is known at compile time (the type is "exact" or "precise").
2312       // Check for fields we know are maintained as constants by the VM.
2313       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
2314         // The field is Klass::_super_check_offset.  Return its (constant) value.
2315         // (Folds up type checking code.)
2316         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
2317         return TypeInt::make(klass->super_check_offset());
2318       }
2319       if (UseCompactObjectHeaders) { // TODO: Should EnableValhalla also take this path ?
2320         if (tkls->offset() == in_bytes(Klass::prototype_header_offset())) {
2321           // The field is Klass::_prototype_header. Return its (constant) value.
2322           assert(this->Opcode() == Op_LoadX, "must load a proper type from _prototype_header");
2323           return TypeX::make(klass->prototype_header());
2324         }
2325       }
2326       // Compute index into primary_supers array
2327       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2328       // Check for overflowing; use unsigned compare to handle the negative case.
2329       if( depth < ciKlass::primary_super_limit() ) {
2330         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2331         // (Folds up type checking code.)
2332         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2333         ciKlass *ss = klass->super_of_depth(depth);
2334         return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR;
2335       }
2336       const Type* aift = load_array_final_field(tkls, klass);
2337       if (aift != nullptr)  return aift;
2338     }
2339 
2340     // We can still check if we are loading from the primary_supers array at a
2341     // shallow enough depth.  Even though the klass is not exact, entries less
2342     // than or equal to its super depth are correct.
2343     if (tkls->is_loaded()) {
2344       ciKlass* klass = nullptr;
2345       if (tkls->isa_instklassptr()) {
2346         klass = tkls->is_instklassptr()->instance_klass();
2347       } else {
2348         int dims;
2349         const Type* inner = tkls->is_aryklassptr()->base_element_type(dims);
2350         if (inner->isa_instklassptr()) {
2351           klass = inner->is_instklassptr()->instance_klass();
2352           klass = ciObjArrayKlass::make(klass, dims);
2353         }
2354       }
2355       if (klass != nullptr) {
2356         // Compute index into primary_supers array
2357         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2358         // Check for overflowing; use unsigned compare to handle the negative case.
2359         if (depth < ciKlass::primary_super_limit() &&
2360             depth <= klass->super_depth()) { // allow self-depth checks to handle self-check case
2361           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2362           // (Folds up type checking code.)
2363           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2364           ciKlass *ss = klass->super_of_depth(depth);
2365           return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR;
2366         }
2367       }
2368     }
2369 
2370     // If the type is enough to determine that the thing is not an array,
2371     // we can give the layout_helper a positive interval type.
2372     // This will help short-circuit some reflective code.
2373     if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) &&
2374         tkls->isa_instklassptr() && // not directly typed as an array
2375         !tkls->is_instklassptr()->might_be_an_array() // not the supertype of all T[] (java.lang.Object) or has an interface that is not Serializable or Cloneable
2376     ) {
2377       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
2378       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
2379       // The key property of this type is that it folds up tests
2380       // for array-ness, since it proves that the layout_helper is positive.
2381       // Thus, a generic value like the basic object layout helper works fine.
2382       return TypeInt::make(min_size, max_jint, Type::WidenMin);
2383     }
2384   }
2385 
2386   bool is_vect = (_type->isa_vect() != nullptr);
2387   if (is_instance && !is_vect) {
2388     // If we have an instance type and our memory input is the
2389     // programs's initial memory state, there is no matching store,
2390     // so just return a zero of the appropriate type -
2391     // except if it is vectorized - then we have no zero constant.
2392     Node *mem = in(MemNode::Memory);
2393     if (mem->is_Parm() && mem->in(0)->is_Start()) {
2394       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
2395       // TODO 8350865 Scalar replacement does not work well for flat arrays.
2396       // Escape Analysis assumes that arrays are always zeroed during allocation which is not true for null-free arrays
2397       // ConnectionGraph::split_unique_types will re-wire the memory of loads from such arrays around the allocation
2398       // TestArrays::test6 and test152 and TestBasicFunctionality::test20 are affected by this.
2399       if (tp->isa_aryptr() && tp->is_aryptr()->is_flat() && tp->is_aryptr()->is_null_free()) {
2400         intptr_t offset = 0;
2401         Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2402         AllocateNode* alloc = AllocateNode::Ideal_allocation(base);
2403         if (alloc != nullptr && alloc->is_AllocateArray() && alloc->in(AllocateNode::InitValue) != nullptr) {
2404           return _type;
2405         }
2406       }
2407       return Type::get_zero_type(_type->basic_type());
2408     }
2409   }
2410   if (!UseCompactObjectHeaders) {
2411     Node* alloc = is_new_object_mark_load();
2412     if (alloc != nullptr) {
2413       if (EnableValhalla) {
2414         // The mark word may contain property bits (inline, flat, null-free)
2415         Node* klass_node = alloc->in(AllocateNode::KlassNode);
2416         const TypeKlassPtr* tkls = phase->type(klass_node)->isa_klassptr();
2417         if (tkls != nullptr && tkls->is_loaded() && tkls->klass_is_exact()) {
2418           return TypeX::make(tkls->exact_klass()->prototype_header());
2419         }
2420       } else {
2421         return TypeX::make(markWord::prototype().value());
2422       }
2423     }
2424   }
2425 
2426   return _type;
2427 }
2428 
2429 //------------------------------match_edge-------------------------------------
2430 // Do we Match on this edge index or not?  Match only the address.
2431 uint LoadNode::match_edge(uint idx) const {
2432   return idx == MemNode::Address;
2433 }
2434 
2435 //--------------------------LoadBNode::Ideal--------------------------------------
2436 //
2437 //  If the previous store is to the same address as this load,
2438 //  and the value stored was larger than a byte, replace this load
2439 //  with the value stored truncated to a byte.  If no truncation is
2440 //  needed, the replacement is done in LoadNode::Identity().
2441 //
2442 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2443   Node* mem = in(MemNode::Memory);
2444   Node* value = can_see_stored_value(mem,phase);
2445   if (value != nullptr) {
2446     Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false);
2447     if (narrow != value) {
2448       return narrow;
2449     }
2450   }
2451   // Identity call will handle the case where truncation is not needed.
2452   return LoadNode::Ideal(phase, can_reshape);
2453 }
2454 
2455 const Type* LoadBNode::Value(PhaseGVN* phase) const {
2456   Node* mem = in(MemNode::Memory);
2457   Node* value = can_see_stored_value(mem,phase);
2458   if (value != nullptr && value->is_Con() &&
2459       !value->bottom_type()->higher_equal(_type)) {
2460     // If the input to the store does not fit with the load's result type,
2461     // it must be truncated. We can't delay until Ideal call since
2462     // a singleton Value is needed for split_thru_phi optimization.
2463     int con = value->get_int();
2464     return TypeInt::make((con << 24) >> 24);
2465   }
2466   return LoadNode::Value(phase);
2467 }
2468 
2469 //--------------------------LoadUBNode::Ideal-------------------------------------
2470 //
2471 //  If the previous store is to the same address as this load,
2472 //  and the value stored was larger than a byte, replace this load
2473 //  with the value stored truncated to a byte.  If no truncation is
2474 //  needed, the replacement is done in LoadNode::Identity().
2475 //
2476 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2477   Node* mem = in(MemNode::Memory);
2478   Node* value = can_see_stored_value(mem, phase);
2479   if (value != nullptr) {
2480     Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false);
2481     if (narrow != value) {
2482       return narrow;
2483     }
2484   }
2485   // Identity call will handle the case where truncation is not needed.
2486   return LoadNode::Ideal(phase, can_reshape);
2487 }
2488 
2489 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2490   Node* mem = in(MemNode::Memory);
2491   Node* value = can_see_stored_value(mem,phase);
2492   if (value != nullptr && value->is_Con() &&
2493       !value->bottom_type()->higher_equal(_type)) {
2494     // If the input to the store does not fit with the load's result type,
2495     // it must be truncated. We can't delay until Ideal call since
2496     // a singleton Value is needed for split_thru_phi optimization.
2497     int con = value->get_int();
2498     return TypeInt::make(con & 0xFF);
2499   }
2500   return LoadNode::Value(phase);
2501 }
2502 
2503 //--------------------------LoadUSNode::Ideal-------------------------------------
2504 //
2505 //  If the previous store is to the same address as this load,
2506 //  and the value stored was larger than a char, replace this load
2507 //  with the value stored truncated to a char.  If no truncation is
2508 //  needed, the replacement is done in LoadNode::Identity().
2509 //
2510 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2511   Node* mem = in(MemNode::Memory);
2512   Node* value = can_see_stored_value(mem,phase);
2513   if (value != nullptr) {
2514     Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false);
2515     if (narrow != value) {
2516       return narrow;
2517     }
2518   }
2519   // Identity call will handle the case where truncation is not needed.
2520   return LoadNode::Ideal(phase, can_reshape);
2521 }
2522 
2523 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2524   Node* mem = in(MemNode::Memory);
2525   Node* value = can_see_stored_value(mem,phase);
2526   if (value != nullptr && value->is_Con() &&
2527       !value->bottom_type()->higher_equal(_type)) {
2528     // If the input to the store does not fit with the load's result type,
2529     // it must be truncated. We can't delay until Ideal call since
2530     // a singleton Value is needed for split_thru_phi optimization.
2531     int con = value->get_int();
2532     return TypeInt::make(con & 0xFFFF);
2533   }
2534   return LoadNode::Value(phase);
2535 }
2536 
2537 //--------------------------LoadSNode::Ideal--------------------------------------
2538 //
2539 //  If the previous store is to the same address as this load,
2540 //  and the value stored was larger than a short, replace this load
2541 //  with the value stored truncated to a short.  If no truncation is
2542 //  needed, the replacement is done in LoadNode::Identity().
2543 //
2544 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2545   Node* mem = in(MemNode::Memory);
2546   Node* value = can_see_stored_value(mem,phase);
2547   if (value != nullptr) {
2548     Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false);
2549     if (narrow != value) {
2550       return narrow;
2551     }
2552   }
2553   // Identity call will handle the case where truncation is not needed.
2554   return LoadNode::Ideal(phase, can_reshape);
2555 }
2556 
2557 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2558   Node* mem = in(MemNode::Memory);
2559   Node* value = can_see_stored_value(mem,phase);
2560   if (value != nullptr && value->is_Con() &&
2561       !value->bottom_type()->higher_equal(_type)) {
2562     // If the input to the store does not fit with the load's result type,
2563     // it must be truncated. We can't delay until Ideal call since
2564     // a singleton Value is needed for split_thru_phi optimization.
2565     int con = value->get_int();
2566     return TypeInt::make((con << 16) >> 16);
2567   }
2568   return LoadNode::Value(phase);
2569 }
2570 
2571 Node* LoadNNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2572   // Loading from an InlineType, find the input and make an EncodeP
2573   Node* addr = in(Address);
2574   intptr_t offset;
2575   Node* base = AddPNode::Ideal_base_and_offset(addr, phase, offset);
2576   Node* value = see_through_inline_type(phase, this, base, offset);
2577   if (value != nullptr) {
2578     return new EncodePNode(value, type());
2579   }
2580 
2581   return LoadNode::Ideal(phase, can_reshape);
2582 }
2583 
2584 //=============================================================================
2585 //----------------------------LoadKlassNode::make------------------------------
2586 // Polymorphic factory method:
2587 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk, bool fold_for_arrays) {
2588   // sanity check the alias category against the created node type
2589   const TypePtr* adr_type = adr->bottom_type()->isa_ptr();
2590   assert(adr_type != nullptr, "expecting TypeKlassPtr");
2591 #ifdef _LP64
2592   if (adr_type->is_ptr_to_narrowklass()) {
2593     assert(UseCompressedClassPointers, "no compressed klasses");
2594     Node* load_klass = gvn.transform(new LoadNKlassNode(mem, adr, at, tk->make_narrowklass(), MemNode::unordered, fold_for_arrays));
2595     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2596   }
2597 #endif
2598   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2599   return new LoadKlassNode(mem, adr, at, tk, MemNode::unordered, fold_for_arrays);
2600 }
2601 
2602 //------------------------------Value------------------------------------------
2603 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2604   return klass_value_common(phase, _fold_for_arrays);
2605 }
2606 
2607 const Type* LoadNode::klass_value_common(PhaseGVN* phase, bool fold_for_arrays) const {
2608   // Either input is TOP ==> the result is TOP
2609   const Type *t1 = phase->type( in(MemNode::Memory) );
2610   if (t1 == Type::TOP)  return Type::TOP;
2611   Node *adr = in(MemNode::Address);
2612   const Type *t2 = phase->type( adr );
2613   if (t2 == Type::TOP)  return Type::TOP;
2614   const TypePtr *tp = t2->is_ptr();
2615   if (TypePtr::above_centerline(tp->ptr()) ||
2616       tp->ptr() == TypePtr::Null)  return Type::TOP;
2617 
2618   // Return a more precise klass, if possible
2619   const TypeInstPtr *tinst = tp->isa_instptr();
2620   if (tinst != nullptr) {
2621     ciInstanceKlass* ik = tinst->instance_klass();
2622     int offset = tinst->offset();
2623     if (ik == phase->C->env()->Class_klass()
2624         && (offset == java_lang_Class::klass_offset() ||
2625             offset == java_lang_Class::array_klass_offset())) {
2626       // We are loading a special hidden field from a Class mirror object,
2627       // the field which points to the VM's Klass metaobject.
2628       bool is_null_free_array = false;
2629       ciType* t = tinst->java_mirror_type(&is_null_free_array);
2630       // java_mirror_type returns non-null for compile-time Class constants.
2631       if (t != nullptr) {
2632         // constant oop => constant klass
2633         if (offset == java_lang_Class::array_klass_offset()) {
2634           if (t->is_void()) {
2635             // We cannot create a void array.  Since void is a primitive type return null
2636             // klass.  Users of this result need to do a null check on the returned klass.
2637             return TypePtr::NULL_PTR;
2638           }
2639           const TypeKlassPtr* tklass = TypeKlassPtr::make(ciArrayKlass::make(t), Type::trust_interfaces);
2640           if (is_null_free_array) {
2641             tklass = tklass->is_aryklassptr()->cast_to_null_free();
2642           }
2643           return tklass;
2644         }
2645         if (!t->is_klass()) {
2646           // a primitive Class (e.g., int.class) has null for a klass field
2647           return TypePtr::NULL_PTR;
2648         }
2649         // Fold up the load of the hidden field
2650         const TypeKlassPtr* tklass = TypeKlassPtr::make(t->as_klass(), Type::trust_interfaces);
2651         if (is_null_free_array) {
2652           tklass = tklass->is_aryklassptr()->cast_to_null_free();
2653         }
2654         return tklass;
2655       }
2656       // non-constant mirror, so we can't tell what's going on
2657     }
2658     if (!tinst->is_loaded())
2659       return _type;             // Bail out if not loaded
2660     if (offset == oopDesc::klass_offset_in_bytes()) {
2661       return tinst->as_klass_type(true);
2662     }
2663   }
2664 
2665   // Check for loading klass from an array
2666   const TypeAryPtr* tary = tp->isa_aryptr();
2667   if (tary != nullptr && fold_for_arrays &&
2668       tary->offset() == oopDesc::klass_offset_in_bytes()) {
2669     return tary->as_klass_type(true);
2670   }
2671 
2672   // Check for loading klass from an array klass
2673   const TypeKlassPtr *tkls = tp->isa_klassptr();
2674   if (tkls != nullptr && !StressReflectiveCode) {
2675     if (!tkls->is_loaded())
2676      return _type;             // Bail out if not loaded
2677     if (tkls->isa_aryklassptr() && tkls->is_aryklassptr()->elem()->isa_klassptr() &&
2678         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2679       // // Always returning precise element type is incorrect,
2680       // // e.g., element type could be object and array may contain strings
2681       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2682 
2683       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2684       // according to the element type's subclassing.
2685       return tkls->is_aryklassptr()->elem()->isa_klassptr()->cast_to_exactness(tkls->klass_is_exact());
2686     }
2687     if (tkls->isa_instklassptr() != nullptr && tkls->klass_is_exact() &&
2688         tkls->offset() == in_bytes(Klass::super_offset())) {
2689       ciKlass* sup = tkls->is_instklassptr()->instance_klass()->super();
2690       // The field is Klass::_super.  Return its (constant) value.
2691       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2692       return sup ? TypeKlassPtr::make(sup, Type::trust_interfaces) : TypePtr::NULL_PTR;
2693     }
2694   }
2695 
2696   if (tkls != nullptr && !UseSecondarySupersCache
2697       && tkls->offset() == in_bytes(Klass::secondary_super_cache_offset()))  {
2698     // Treat Klass::_secondary_super_cache as a constant when the cache is disabled.
2699     return TypePtr::NULL_PTR;
2700   }
2701 
2702   // Bailout case
2703   return LoadNode::Value(phase);
2704 }
2705 
2706 //------------------------------Identity---------------------------------------
2707 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2708 // Also feed through the klass in Allocate(...klass...)._klass.
2709 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2710   return klass_identity_common(phase);
2711 }
2712 
2713 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2714   Node* x = LoadNode::Identity(phase);
2715   if (x != this)  return x;
2716 
2717   // Take apart the address into an oop and offset.
2718   // Return 'this' if we cannot.
2719   Node*    adr    = in(MemNode::Address);
2720   intptr_t offset = 0;
2721   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2722   if (base == nullptr)     return this;
2723   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2724   if (toop == nullptr)     return this;
2725 
2726   // Step over potential GC barrier for OopHandle resolve
2727   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2728   if (bs->is_gc_barrier_node(base)) {
2729     base = bs->step_over_gc_barrier(base);
2730   }
2731 
2732   // We can fetch the klass directly through an AllocateNode.
2733   // This works even if the klass is not constant (clone or newArray).
2734   if (offset == oopDesc::klass_offset_in_bytes()) {
2735     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2736     if (allocated_klass != nullptr) {
2737       return allocated_klass;
2738     }
2739   }
2740 
2741   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2742   // See inline_native_Class_query for occurrences of these patterns.
2743   // Java Example:  x.getClass().isAssignableFrom(y)
2744   //
2745   // This improves reflective code, often making the Class
2746   // mirror go completely dead.  (Current exception:  Class
2747   // mirrors may appear in debug info, but we could clean them out by
2748   // introducing a new debug info operator for Klass.java_mirror).
2749 
2750   if (toop->isa_instptr() && toop->is_instptr()->instance_klass() == phase->C->env()->Class_klass()
2751       && offset == java_lang_Class::klass_offset()) {
2752     if (base->is_Load()) {
2753       Node* base2 = base->in(MemNode::Address);
2754       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2755         Node* adr2 = base2->in(MemNode::Address);
2756         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2757         if (tkls != nullptr && !tkls->empty()
2758             && (tkls->isa_instklassptr() || tkls->isa_aryklassptr())
2759             && adr2->is_AddP()
2760            ) {
2761           int mirror_field = in_bytes(Klass::java_mirror_offset());
2762           if (tkls->offset() == mirror_field) {
2763             return adr2->in(AddPNode::Base);
2764           }
2765         }
2766       }
2767     }
2768   }
2769 
2770   return this;
2771 }
2772 
2773 LoadNode* LoadNode::clone_pinned() const {
2774   LoadNode* ld = clone()->as_Load();
2775   ld->_control_dependency = UnknownControl;
2776   return ld;
2777 }
2778 
2779 
2780 //------------------------------Value------------------------------------------
2781 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2782   const Type *t = klass_value_common(phase, _fold_for_arrays);
2783   if (t == Type::TOP)
2784     return t;
2785 
2786   return t->make_narrowklass();
2787 }
2788 
2789 //------------------------------Identity---------------------------------------
2790 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2791 // Also feed through the klass in Allocate(...klass...)._klass.
2792 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2793   Node *x = klass_identity_common(phase);
2794 
2795   const Type *t = phase->type( x );
2796   if( t == Type::TOP ) return x;
2797   if( t->isa_narrowklass()) return x;
2798   assert (!t->isa_narrowoop(), "no narrow oop here");
2799 
2800   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2801 }
2802 
2803 //------------------------------Value-----------------------------------------
2804 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2805   // Either input is TOP ==> the result is TOP
2806   const Type *t1 = phase->type( in(MemNode::Memory) );
2807   if( t1 == Type::TOP ) return Type::TOP;
2808   Node *adr = in(MemNode::Address);
2809   const Type *t2 = phase->type( adr );
2810   if( t2 == Type::TOP ) return Type::TOP;
2811   const TypePtr *tp = t2->is_ptr();
2812   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2813   const TypeAryPtr *tap = tp->isa_aryptr();
2814   if( !tap ) return _type;
2815   return tap->size();
2816 }
2817 
2818 //-------------------------------Ideal---------------------------------------
2819 // Feed through the length in AllocateArray(...length...)._length.
2820 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2821   Node* p = MemNode::Ideal_common(phase, can_reshape);
2822   if (p)  return (p == NodeSentinel) ? nullptr : p;
2823 
2824   // Take apart the address into an oop and offset.
2825   // Return 'this' if we cannot.
2826   Node*    adr    = in(MemNode::Address);
2827   intptr_t offset = 0;
2828   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2829   if (base == nullptr)     return nullptr;
2830   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2831   if (tary == nullptr)     return nullptr;
2832 
2833   // We can fetch the length directly through an AllocateArrayNode.
2834   // This works even if the length is not constant (clone or newArray).
2835   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2836     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base);
2837     if (alloc != nullptr) {
2838       Node* allocated_length = alloc->Ideal_length();
2839       Node* len = alloc->make_ideal_length(tary, phase);
2840       if (allocated_length != len) {
2841         // New CastII improves on this.
2842         return len;
2843       }
2844     }
2845   }
2846 
2847   return nullptr;
2848 }
2849 
2850 //------------------------------Identity---------------------------------------
2851 // Feed through the length in AllocateArray(...length...)._length.
2852 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2853   Node* x = LoadINode::Identity(phase);
2854   if (x != this)  return x;
2855 
2856   // Take apart the address into an oop and offset.
2857   // Return 'this' if we cannot.
2858   Node*    adr    = in(MemNode::Address);
2859   intptr_t offset = 0;
2860   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2861   if (base == nullptr)     return this;
2862   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2863   if (tary == nullptr)     return this;
2864 
2865   // We can fetch the length directly through an AllocateArrayNode.
2866   // This works even if the length is not constant (clone or newArray).
2867   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2868     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base);
2869     if (alloc != nullptr) {
2870       Node* allocated_length = alloc->Ideal_length();
2871       // Do not allow make_ideal_length to allocate a CastII node.
2872       Node* len = alloc->make_ideal_length(tary, phase, false);
2873       if (allocated_length == len) {
2874         // Return allocated_length only if it would not be improved by a CastII.
2875         return allocated_length;
2876       }
2877     }
2878   }
2879 
2880   return this;
2881 
2882 }
2883 
2884 //=============================================================================
2885 //---------------------------StoreNode::make-----------------------------------
2886 // Polymorphic factory method:
2887 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) {
2888   assert((mo == unordered || mo == release), "unexpected");
2889   Compile* C = gvn.C;
2890   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2891          ctl != nullptr, "raw memory operations should have control edge");
2892 
2893   switch (bt) {
2894   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2895   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2896   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2897   case T_CHAR:
2898   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2899   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access);
2900   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2901   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access);
2902   case T_METADATA:
2903   case T_ADDRESS:
2904   case T_OBJECT:
2905 #ifdef _LP64
2906     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2907       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2908       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2909     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2910                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2911                 adr->bottom_type()->isa_rawptr())) {
2912       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2913       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2914     }
2915 #endif
2916     {
2917       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2918     }
2919   default:
2920     ShouldNotReachHere();
2921     return (StoreNode*)nullptr;
2922   }
2923 }
2924 
2925 //--------------------------bottom_type----------------------------------------
2926 const Type *StoreNode::bottom_type() const {
2927   return Type::MEMORY;
2928 }
2929 
2930 //------------------------------hash-------------------------------------------
2931 uint StoreNode::hash() const {
2932   // unroll addition of interesting fields
2933   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2934 
2935   // Since they are not commoned, do not hash them:
2936   return NO_HASH;
2937 }
2938 
2939 // Link together multiple stores (B/S/C/I) into a longer one.
2940 //
2941 // Example: _store = StoreB[i+3]
2942 //
2943 //   RangeCheck[i+0]           RangeCheck[i+0]
2944 //   StoreB[i+0]
2945 //   RangeCheck[i+3]           RangeCheck[i+3]
2946 //   StoreB[i+1]         -->   pass:             fail:
2947 //   StoreB[i+2]               StoreI[i+0]       StoreB[i+0]
2948 //   StoreB[i+3]
2949 //
2950 // The 4 StoreB are merged into a single StoreI node. We have to be careful with RangeCheck[i+1]: before
2951 // the optimization, if this RangeCheck[i+1] fails, then we execute only StoreB[i+0], and then trap. After
2952 // the optimization, the new StoreI[i+0] is on the passing path of RangeCheck[i+3], and StoreB[i+0] on the
2953 // failing path.
2954 //
2955 // Note: For normal array stores, every store at first has a RangeCheck. But they can be removed with:
2956 //       - RCE (RangeCheck Elimination): the RangeChecks in the loop are hoisted out and before the loop,
2957 //                                       and possibly no RangeChecks remain between the stores.
2958 //       - RangeCheck smearing: the earlier RangeChecks are adjusted such that they cover later RangeChecks,
2959 //                              and those later RangeChecks can be removed. Example:
2960 //
2961 //                              RangeCheck[i+0]                         RangeCheck[i+0] <- before first store
2962 //                              StoreB[i+0]                             StoreB[i+0]     <- first store
2963 //                              RangeCheck[i+1]     --> smeared -->     RangeCheck[i+3] <- only RC between first and last store
2964 //                              StoreB[i+1]                             StoreB[i+1]     <- second store
2965 //                              RangeCheck[i+2]     --> removed
2966 //                              StoreB[i+2]                             StoreB[i+2]
2967 //                              RangeCheck[i+3]     --> removed
2968 //                              StoreB[i+3]                             StoreB[i+3]     <- last store
2969 //
2970 //                              Thus, it is a common pattern that between the first and last store in a chain
2971 //                              of adjacent stores there remains exactly one RangeCheck, located between the
2972 //                              first and the second store (e.g. RangeCheck[i+3]).
2973 //
2974 class MergePrimitiveStores : public StackObj {
2975 private:
2976   PhaseGVN* const _phase;
2977   StoreNode* const _store;
2978   // State machine with initial state Unknown
2979   // Allowed transitions:
2980   //   Unknown     -> Const
2981   //   Unknown     -> Platform
2982   //   Unknown     -> Reverse
2983   //   Unknown     -> NotAdjacent
2984   //   Const       -> Const
2985   //   Const       -> NotAdjacent
2986   //   Platform    -> Platform
2987   //   Platform    -> NotAdjacent
2988   //   Reverse     -> Reverse
2989   //   Reverse     -> NotAdjacent
2990   //   NotAdjacent -> NotAdjacent
2991   enum ValueOrder : uint8_t {
2992     Unknown,     // Initial state
2993     Const,       // Input values are const
2994     Platform,    // Platform order
2995     Reverse,     // Reverse platform order
2996     NotAdjacent  // Not adjacent
2997   };
2998   ValueOrder  _value_order;
2999 
3000   NOT_PRODUCT( const CHeapBitMap &_trace_tags; )
3001 
3002 public:
3003   MergePrimitiveStores(PhaseGVN* phase, StoreNode* store) :
3004     _phase(phase), _store(store), _value_order(ValueOrder::Unknown)
3005     NOT_PRODUCT( COMMA _trace_tags(Compile::current()->directive()->trace_merge_stores_tags()) )
3006     {}
3007 
3008   StoreNode* run();
3009 
3010 private:
3011   bool is_compatible_store(const StoreNode* other_store) const;
3012   bool is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const;
3013   bool is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const;
3014   static bool is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out, PhaseGVN* phase);
3015   enum CFGStatus { SuccessNoRangeCheck, SuccessWithRangeCheck, Failure };
3016   static CFGStatus cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store);
3017 
3018   class Status {
3019   private:
3020     StoreNode* _found_store;
3021     bool       _found_range_check;
3022 
3023     Status(StoreNode* found_store, bool found_range_check)
3024       : _found_store(found_store), _found_range_check(found_range_check) {}
3025 
3026   public:
3027     StoreNode* found_store() const { return _found_store; }
3028     bool found_range_check() const { return _found_range_check; }
3029     static Status make_failure() { return Status(nullptr, false); }
3030 
3031     static Status make(StoreNode* found_store, const CFGStatus cfg_status) {
3032       if (cfg_status == CFGStatus::Failure) {
3033         return Status::make_failure();
3034       }
3035       return Status(found_store, cfg_status == CFGStatus::SuccessWithRangeCheck);
3036     }
3037 
3038 #ifndef PRODUCT
3039     void print_on(outputStream* st) const {
3040       if (_found_store == nullptr) {
3041         st->print_cr("None");
3042       } else {
3043         st->print_cr("Found[%d %s, %s]", _found_store->_idx, _found_store->Name(),
3044                                          _found_range_check ? "RC" : "no-RC");
3045       }
3046     }
3047 #endif
3048   };
3049 
3050   enum ValueOrder find_adjacent_input_value_order(const Node* n1, const Node* n2, const int memory_size) const;
3051   Status find_adjacent_use_store(const StoreNode* def_store) const;
3052   Status find_adjacent_def_store(const StoreNode* use_store) const;
3053   Status find_use_store(const StoreNode* def_store) const;
3054   Status find_def_store(const StoreNode* use_store) const;
3055   Status find_use_store_unidirectional(const StoreNode* def_store) const;
3056   Status find_def_store_unidirectional(const StoreNode* use_store) const;
3057 
3058   void collect_merge_list(Node_List& merge_list) const;
3059   Node* make_merged_input_value(const Node_List& merge_list);
3060   StoreNode* make_merged_store(const Node_List& merge_list, Node* merged_input_value);
3061 
3062 #ifndef PRODUCT
3063   // Access to TraceMergeStores tags
3064   bool is_trace(TraceMergeStores::Tag tag) const {
3065     return _trace_tags.at(tag);
3066   }
3067 
3068   bool is_trace_basic() const {
3069     return is_trace(TraceMergeStores::Tag::BASIC);
3070   }
3071 
3072   bool is_trace_pointer_parsing() const {
3073     return is_trace(TraceMergeStores::Tag::POINTER_PARSING);
3074   }
3075 
3076   bool is_trace_pointer_aliasing() const {
3077     return is_trace(TraceMergeStores::Tag::POINTER_ALIASING);
3078   }
3079 
3080   bool is_trace_pointer_adjacency() const {
3081     return is_trace(TraceMergeStores::Tag::POINTER_ADJACENCY);
3082   }
3083 
3084   bool is_trace_success() const {
3085     return is_trace(TraceMergeStores::Tag::SUCCESS);
3086   }
3087 #endif
3088 
3089   NOT_PRODUCT( void trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const; )
3090 };
3091 
3092 StoreNode* MergePrimitiveStores::run() {
3093   // Check for B/S/C/I
3094   int opc = _store->Opcode();
3095   if (opc != Op_StoreB && opc != Op_StoreC && opc != Op_StoreI) {
3096     return nullptr;
3097   }
3098 
3099   NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] MergePrimitiveStores::run: "); _store->dump(); })
3100 
3101   // The _store must be the "last" store in a chain. If we find a use we could merge with
3102   // then that use or a store further down is the "last" store.
3103   Status status_use = find_adjacent_use_store(_store);
3104   NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect no use: "); status_use.print_on(tty); })
3105   if (status_use.found_store() != nullptr) {
3106     return nullptr;
3107   }
3108 
3109   // Check if we can merge with at least one def, so that we have at least 2 stores to merge.
3110   Status status_def = find_adjacent_def_store(_store);
3111   NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect def: "); status_def.print_on(tty); })
3112   Node* def_store = status_def.found_store();
3113   if (def_store == nullptr) {
3114     return nullptr;
3115   }
3116 
3117   // Initialize value order
3118   _value_order = find_adjacent_input_value_order(def_store->in(MemNode::ValueIn),
3119                                                  _store->in(MemNode::ValueIn),
3120                                                  _store->memory_size());
3121   assert(_value_order != ValueOrder::NotAdjacent && _value_order != ValueOrder::Unknown, "Order should be checked");
3122 
3123   ResourceMark rm;
3124   Node_List merge_list;
3125   collect_merge_list(merge_list);
3126 
3127   Node* merged_input_value = make_merged_input_value(merge_list);
3128   if (merged_input_value == nullptr) { return nullptr; }
3129 
3130   StoreNode* merged_store = make_merged_store(merge_list, merged_input_value);
3131 
3132   NOT_PRODUCT( if (is_trace_success()) { trace(merge_list, merged_input_value, merged_store); } )
3133 
3134   return merged_store;
3135 }
3136 
3137 // Check compatibility between _store and other_store.
3138 bool MergePrimitiveStores::is_compatible_store(const StoreNode* other_store) const {
3139   int opc = _store->Opcode();
3140   assert(opc == Op_StoreB || opc == Op_StoreC || opc == Op_StoreI, "precondition");
3141 
3142   if (other_store == nullptr ||
3143       _store->Opcode() != other_store->Opcode()) {
3144     return false;
3145   }
3146 
3147   return true;
3148 }
3149 
3150 bool MergePrimitiveStores::is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const {
3151   if (!is_adjacent_input_pair(def_store->in(MemNode::ValueIn),
3152                               use_store->in(MemNode::ValueIn),
3153                               def_store->memory_size())) {
3154     return false;
3155   }
3156 
3157   ResourceMark rm;
3158 #ifndef PRODUCT
3159   const TraceMemPointer trace(is_trace_pointer_parsing(),
3160                               is_trace_pointer_aliasing(),
3161                               is_trace_pointer_adjacency(),
3162                               true);
3163 #endif
3164   const MemPointer pointer_use(use_store NOT_PRODUCT(COMMA trace));
3165   const MemPointer pointer_def(def_store NOT_PRODUCT(COMMA trace));
3166   return pointer_def.is_adjacent_to_and_before(pointer_use);
3167 }
3168 
3169 // Check input values n1 and n2 can be merged and return the value order
3170 MergePrimitiveStores::ValueOrder MergePrimitiveStores::find_adjacent_input_value_order(const Node* n1, const Node* n2,
3171                                                                                        const int memory_size) const {
3172   // Pattern: [n1 = ConI, n2 = ConI]
3173   if (n1->Opcode() == Op_ConI && n2->Opcode() == Op_ConI) {
3174     return ValueOrder::Const;
3175   }
3176 
3177   Node const *base_n2;
3178   jint shift_n2;
3179   if (!is_con_RShift(n2, base_n2, shift_n2, _phase)) {
3180     return ValueOrder::NotAdjacent;
3181   }
3182   Node const *base_n1;
3183   jint shift_n1;
3184   if (!is_con_RShift(n1, base_n1, shift_n1, _phase)) {
3185     return ValueOrder::NotAdjacent;
3186   }
3187 
3188   int bits_per_store = memory_size * 8;
3189   if (base_n1 != base_n2 ||
3190       abs(shift_n1 - shift_n2) != bits_per_store ||
3191       shift_n1 % bits_per_store != 0) {
3192     // Values are not adjacent
3193     return ValueOrder::NotAdjacent;
3194   }
3195 
3196   // Detect value order
3197 #ifdef VM_LITTLE_ENDIAN
3198   return shift_n1 < shift_n2 ? ValueOrder::Platform     // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)]
3199                              : ValueOrder::Reverse;     // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift]
3200 #else
3201   return shift_n1 > shift_n2 ? ValueOrder::Platform     // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift]
3202                              : ValueOrder::Reverse;     // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)]
3203 #endif
3204 }
3205 
3206 bool MergePrimitiveStores::is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const {
3207   ValueOrder input_value_order = find_adjacent_input_value_order(n1, n2, memory_size);
3208 
3209   switch (input_value_order) {
3210     case ValueOrder::NotAdjacent:
3211       return false;
3212     case ValueOrder::Reverse:
3213       if (memory_size != 1 ||
3214           !Matcher::match_rule_supported(Op_ReverseBytesS) ||
3215           !Matcher::match_rule_supported(Op_ReverseBytesI) ||
3216           !Matcher::match_rule_supported(Op_ReverseBytesL)) {
3217         // ReverseBytes are not supported by platform
3218         return false;
3219       }
3220       // fall-through.
3221     case ValueOrder::Const:
3222     case ValueOrder::Platform:
3223       if (_value_order == ValueOrder::Unknown) {
3224         // Initial state is Unknown, and we find a valid input value order
3225         return true;
3226       }
3227       // The value order can not be changed
3228       return _value_order == input_value_order;
3229     case ValueOrder::Unknown:
3230     default:
3231       ShouldNotReachHere();
3232   }
3233   return false;
3234 }
3235 
3236 // Detect pattern: n = base_out >> shift_out
3237 bool MergePrimitiveStores::is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out, PhaseGVN* phase) {
3238   assert(n != nullptr, "precondition");
3239 
3240   int opc = n->Opcode();
3241   if (opc == Op_ConvL2I) {
3242     n = n->in(1);
3243     opc = n->Opcode();
3244   }
3245 
3246   if ((opc == Op_RShiftI ||
3247        opc == Op_RShiftL ||
3248        opc == Op_URShiftI ||
3249        opc == Op_URShiftL) &&
3250       n->in(2)->is_ConI()) {
3251     base_out = n->in(1);
3252     shift_out = n->in(2)->get_int();
3253     // The shift must be positive:
3254     return shift_out >= 0;
3255   }
3256 
3257   if (phase->type(n)->isa_int()  != nullptr ||
3258       phase->type(n)->isa_long() != nullptr) {
3259     // (base >> 0)
3260     base_out = n;
3261     shift_out = 0;
3262     return true;
3263   }
3264   return false;
3265 }
3266 
3267 // Check if there is nothing between the two stores, except optionally a RangeCheck leading to an uncommon trap.
3268 MergePrimitiveStores::CFGStatus MergePrimitiveStores::cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store) {
3269   assert(use_store->in(MemNode::Memory) == def_store, "use-def relationship");
3270 
3271   Node* ctrl_use = use_store->in(MemNode::Control);
3272   Node* ctrl_def = def_store->in(MemNode::Control);
3273   if (ctrl_use == nullptr || ctrl_def == nullptr) {
3274     return CFGStatus::Failure;
3275   }
3276 
3277   if (ctrl_use == ctrl_def) {
3278     // Same ctrl -> no RangeCheck in between.
3279     // Check: use_store must be the only use of def_store.
3280     if (def_store->outcnt() > 1) {
3281       return CFGStatus::Failure;
3282     }
3283     return CFGStatus::SuccessNoRangeCheck;
3284   }
3285 
3286   // Different ctrl -> could have RangeCheck in between.
3287   // Check: 1. def_store only has these uses: use_store and MergeMem for uncommon trap, and
3288   //        2. ctrl separated by RangeCheck.
3289   if (def_store->outcnt() != 2) {
3290     return CFGStatus::Failure; // Cannot have exactly these uses: use_store and MergeMem for uncommon trap.
3291   }
3292   int use_store_out_idx = def_store->raw_out(0) == use_store ? 0 : 1;
3293   Node* merge_mem = def_store->raw_out(1 - use_store_out_idx)->isa_MergeMem();
3294   if (merge_mem == nullptr ||
3295       merge_mem->outcnt() != 1) {
3296     return CFGStatus::Failure; // Does not have MergeMem for uncommon trap.
3297   }
3298   if (!ctrl_use->is_IfProj() ||
3299       !ctrl_use->in(0)->is_RangeCheck() ||
3300       ctrl_use->in(0)->outcnt() != 2) {
3301     return CFGStatus::Failure; // Not RangeCheck.
3302   }
3303   ProjNode* other_proj = ctrl_use->as_IfProj()->other_if_proj();
3304   Node* trap = other_proj->is_uncommon_trap_proj(Deoptimization::Reason_range_check);
3305   if (trap != merge_mem->unique_out() ||
3306       ctrl_use->in(0)->in(0) != ctrl_def) {
3307     return CFGStatus::Failure; // Not RangeCheck with merge_mem leading to uncommon trap.
3308   }
3309 
3310   return CFGStatus::SuccessWithRangeCheck;
3311 }
3312 
3313 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_use_store(const StoreNode* def_store) const {
3314   Status status_use = find_use_store(def_store);
3315   StoreNode* use_store = status_use.found_store();
3316   if (use_store != nullptr && !is_adjacent_pair(use_store, def_store)) {
3317     return Status::make_failure();
3318   }
3319   return status_use;
3320 }
3321 
3322 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_def_store(const StoreNode* use_store) const {
3323   Status status_def = find_def_store(use_store);
3324   StoreNode* def_store = status_def.found_store();
3325   if (def_store != nullptr && !is_adjacent_pair(use_store, def_store)) {
3326     return Status::make_failure();
3327   }
3328   return status_def;
3329 }
3330 
3331 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store(const StoreNode* def_store) const {
3332   Status status_use = find_use_store_unidirectional(def_store);
3333 
3334 #ifdef ASSERT
3335   StoreNode* use_store = status_use.found_store();
3336   if (use_store != nullptr) {
3337     Status status_def = find_def_store_unidirectional(use_store);
3338     assert(status_def.found_store() == def_store &&
3339            status_def.found_range_check() == status_use.found_range_check(),
3340            "find_use_store and find_def_store must be symmetric");
3341   }
3342 #endif
3343 
3344   return status_use;
3345 }
3346 
3347 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store(const StoreNode* use_store) const {
3348   Status status_def = find_def_store_unidirectional(use_store);
3349 
3350 #ifdef ASSERT
3351   StoreNode* def_store = status_def.found_store();
3352   if (def_store != nullptr) {
3353     Status status_use = find_use_store_unidirectional(def_store);
3354     assert(status_use.found_store() == use_store &&
3355            status_use.found_range_check() == status_def.found_range_check(),
3356            "find_use_store and find_def_store must be symmetric");
3357   }
3358 #endif
3359 
3360   return status_def;
3361 }
3362 
3363 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store_unidirectional(const StoreNode* def_store) const {
3364   assert(is_compatible_store(def_store), "precondition: must be compatible with _store");
3365 
3366   for (DUIterator_Fast imax, i = def_store->fast_outs(imax); i < imax; i++) {
3367     StoreNode* use_store = def_store->fast_out(i)->isa_Store();
3368     if (is_compatible_store(use_store)) {
3369       return Status::make(use_store, cfg_status_for_pair(use_store, def_store));
3370     }
3371   }
3372 
3373   return Status::make_failure();
3374 }
3375 
3376 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store_unidirectional(const StoreNode* use_store) const {
3377   assert(is_compatible_store(use_store), "precondition: must be compatible with _store");
3378 
3379   StoreNode* def_store = use_store->in(MemNode::Memory)->isa_Store();
3380   if (!is_compatible_store(def_store)) {
3381     return Status::make_failure();
3382   }
3383 
3384   return Status::make(def_store, cfg_status_for_pair(use_store, def_store));
3385 }
3386 
3387 void MergePrimitiveStores::collect_merge_list(Node_List& merge_list) const {
3388   // The merged store can be at most 8 bytes.
3389   const uint merge_list_max_size = 8 / _store->memory_size();
3390   assert(merge_list_max_size >= 2 &&
3391          merge_list_max_size <= 8 &&
3392          is_power_of_2(merge_list_max_size),
3393          "must be 2, 4 or 8");
3394 
3395   // Traverse up the chain of adjacent def stores.
3396   StoreNode* current = _store;
3397   merge_list.push(current);
3398   while (current != nullptr && merge_list.size() < merge_list_max_size) {
3399     Status status = find_adjacent_def_store(current);
3400     NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] find def: "); status.print_on(tty); })
3401 
3402     current = status.found_store();
3403     if (current != nullptr) {
3404       merge_list.push(current);
3405 
3406       // We can have at most one RangeCheck.
3407       if (status.found_range_check()) {
3408         NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found RangeCheck, stop traversal."); })
3409         break;
3410       }
3411     }
3412   }
3413 
3414   NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found:"); merge_list.dump(); })
3415 
3416   // Truncate the merge_list to a power of 2.
3417   const uint pow2size = round_down_power_of_2(merge_list.size());
3418   assert(pow2size >= 2, "must be merging at least 2 stores");
3419   while (merge_list.size() > pow2size) { merge_list.pop(); }
3420 
3421   NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] truncated:"); merge_list.dump(); })
3422 }
3423 
3424 // Merge the input values of the smaller stores to a single larger input value.
3425 Node* MergePrimitiveStores::make_merged_input_value(const Node_List& merge_list) {
3426   int new_memory_size = _store->memory_size() * merge_list.size();
3427   Node* first = merge_list.at(merge_list.size()-1);
3428   Node* merged_input_value = nullptr;
3429   if (_store->in(MemNode::ValueIn)->Opcode() == Op_ConI) {
3430     assert(_value_order == ValueOrder::Const, "must match");
3431     // Pattern: [ConI, ConI, ...] -> new constant
3432     jlong con = 0;
3433     jlong bits_per_store = _store->memory_size() * 8;
3434     jlong mask = (((jlong)1) << bits_per_store) - 1;
3435     for (uint i = 0; i < merge_list.size(); i++) {
3436       jlong con_i = merge_list.at(i)->in(MemNode::ValueIn)->get_int();
3437 #ifdef VM_LITTLE_ENDIAN
3438       con = con << bits_per_store;
3439       con = con | (mask & con_i);
3440 #else // VM_LITTLE_ENDIAN
3441       con_i = (mask & con_i) << (i * bits_per_store);
3442       con = con | con_i;
3443 #endif // VM_LITTLE_ENDIAN
3444     }
3445     merged_input_value = _phase->longcon(con);
3446   } else {
3447     assert(_value_order == ValueOrder::Platform || _value_order == ValueOrder::Reverse, "must match");
3448     // Pattern: [base >> 24, base >> 16, base >> 8, base] -> base
3449     //             |                                  |
3450     //           _store                             first
3451     //
3452     Node* hi = _store->in(MemNode::ValueIn);
3453     Node* lo = first->in(MemNode::ValueIn);
3454 #ifndef VM_LITTLE_ENDIAN
3455     // `_store` and `first` are swapped in the diagram above
3456     swap(hi, lo);
3457 #endif // !VM_LITTLE_ENDIAN
3458     if (_value_order == ValueOrder::Reverse) {
3459       swap(hi, lo);
3460     }
3461     Node const* hi_base;
3462     jint hi_shift;
3463     merged_input_value = lo;
3464     bool is_true = is_con_RShift(hi, hi_base, hi_shift, _phase);
3465     assert(is_true, "must detect con RShift");
3466     if (merged_input_value != hi_base && merged_input_value->Opcode() == Op_ConvL2I) {
3467       // look through
3468       merged_input_value = merged_input_value->in(1);
3469     }
3470     if (merged_input_value != hi_base) {
3471       // merged_input_value is not the base
3472       return nullptr;
3473     }
3474   }
3475 
3476   if (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size <= 4) {
3477     // Example:
3478     //
3479     //   long base = ...;
3480     //   a[0] = (byte)(base >> 0);
3481     //   a[1] = (byte)(base >> 8);
3482     //
3483     merged_input_value = _phase->transform(new ConvL2INode(merged_input_value));
3484   }
3485 
3486   assert((_phase->type(merged_input_value)->isa_int() != nullptr && new_memory_size <= 4) ||
3487          (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size == 8),
3488          "merged_input_value is either int or long, and new_memory_size is small enough");
3489 
3490   if (_value_order == ValueOrder::Reverse) {
3491     assert(_store->memory_size() == 1, "only implemented for bytes");
3492     if (new_memory_size == 8) {
3493       merged_input_value = _phase->transform(new ReverseBytesLNode(merged_input_value));
3494     } else if (new_memory_size == 4) {
3495       merged_input_value = _phase->transform(new ReverseBytesINode(merged_input_value));
3496     } else {
3497       assert(new_memory_size == 2, "sanity check");
3498       merged_input_value = _phase->transform(new ReverseBytesSNode(merged_input_value));
3499     }
3500   }
3501   return merged_input_value;
3502 }
3503 
3504 //                                                                                                          //
3505 // first_ctrl    first_mem   first_adr                first_ctrl    first_mem         first_adr             //
3506 //  |                |           |                     |                |                 |                 //
3507 //  |                |           |                     |                +---------------+ |                 //
3508 //  |                |           |                     |                |               | |                 //
3509 //  |                | +---------+                     |                | +---------------+                 //
3510 //  |                | |                               |                | |             | |                 //
3511 //  +--------------+ | |  v1                           +------------------------------+ | |  v1             //
3512 //  |              | | |  |                            |                | |           | | |  |              //
3513 // RangeCheck     first_store                         RangeCheck        | |          first_store            //
3514 //  |                |  |                              |                | |                |                //
3515 // last_ctrl         |  +----> unc_trap               last_ctrl         | |                +----> unc_trap  //
3516 //  |                |                       ===>      |                | |                                 //
3517 //  +--------------+ | a2 v2                           |                | |                                 //
3518 //  |              | | |  |                            |                | |                                 //
3519 //  |             second_store                         |                | |                                 //
3520 //  |                |                                 |                | | [v1 v2   ...   vn]              //
3521 // ...              ...                                |                | |         |                       //
3522 //  |                |                                 |                | |         v                       //
3523 //  +--------------+ | an vn                           +--------------+ | | merged_input_value              //
3524 //                 | | |  |                                           | | |  |                              //
3525 //                last_store (= _store)                              merged_store                           //
3526 //                                                                                                          //
3527 StoreNode* MergePrimitiveStores::make_merged_store(const Node_List& merge_list, Node* merged_input_value) {
3528   Node* first_store = merge_list.at(merge_list.size()-1);
3529   Node* last_ctrl   = _store->in(MemNode::Control); // after (optional) RangeCheck
3530   Node* first_mem   = first_store->in(MemNode::Memory);
3531   Node* first_adr   = first_store->in(MemNode::Address);
3532 
3533   const TypePtr* new_adr_type = _store->adr_type();
3534 
3535   int new_memory_size = _store->memory_size() * merge_list.size();
3536   BasicType bt = T_ILLEGAL;
3537   switch (new_memory_size) {
3538     case 2: bt = T_SHORT; break;
3539     case 4: bt = T_INT;   break;
3540     case 8: bt = T_LONG;  break;
3541   }
3542 
3543   StoreNode* merged_store = StoreNode::make(*_phase, last_ctrl, first_mem, first_adr,
3544                                             new_adr_type, merged_input_value, bt, MemNode::unordered);
3545 
3546   // Marking the store mismatched is sufficient to prevent reordering, since array stores
3547   // are all on the same slice. Hence, we need no barriers.
3548   merged_store->set_mismatched_access();
3549 
3550   // Constants above may now also be be packed -> put candidate on worklist
3551   _phase->is_IterGVN()->_worklist.push(first_mem);
3552 
3553   return merged_store;
3554 }
3555 
3556 #ifndef PRODUCT
3557 void MergePrimitiveStores::trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const {
3558   stringStream ss;
3559   ss.print_cr("[TraceMergeStores]: Replace");
3560   for (int i = (int)merge_list.size() - 1; i >= 0; i--) {
3561     merge_list.at(i)->dump("\n", false, &ss);
3562   }
3563   ss.print_cr("[TraceMergeStores]: with");
3564   merged_input_value->dump("\n", false, &ss);
3565   merged_store->dump("\n", false, &ss);
3566   tty->print("%s", ss.as_string());
3567 }
3568 #endif
3569 
3570 //------------------------------Ideal------------------------------------------
3571 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
3572 // When a store immediately follows a relevant allocation/initialization,
3573 // try to capture it into the initialization, or hoist it above.
3574 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3575   Node* p = MemNode::Ideal_common(phase, can_reshape);
3576   if (p)  return (p == NodeSentinel) ? nullptr : p;
3577 
3578   Node* mem     = in(MemNode::Memory);
3579   Node* address = in(MemNode::Address);
3580   Node* value   = in(MemNode::ValueIn);
3581   // Back-to-back stores to same address?  Fold em up.  Generally
3582   // unsafe if I have intervening uses...
3583   if (phase->C->get_adr_type(phase->C->get_alias_index(adr_type())) != TypeAryPtr::INLINES) {
3584     Node* st = mem;
3585     // If Store 'st' has more than one use, we cannot fold 'st' away.
3586     // For example, 'st' might be the final state at a conditional
3587     // return.  Or, 'st' might be used by some node which is live at
3588     // the same time 'st' is live, which might be unschedulable.  So,
3589     // require exactly ONE user until such time as we clone 'mem' for
3590     // each of 'mem's uses (thus making the exactly-1-user-rule hold
3591     // true).
3592     while (st->is_Store() && st->outcnt() == 1) {
3593       // Looking at a dead closed cycle of memory?
3594       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
3595       assert(Opcode() == st->Opcode() ||
3596              st->Opcode() == Op_StoreVector ||
3597              Opcode() == Op_StoreVector ||
3598              st->Opcode() == Op_StoreVectorScatter ||
3599              Opcode() == Op_StoreVectorScatter ||
3600              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
3601              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
3602              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
3603              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreN) ||
3604              (st->adr_type()->isa_aryptr() && st->adr_type()->is_aryptr()->is_flat()) || // TODO 8343835
3605              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
3606              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
3607 
3608       if (st->in(MemNode::Address)->eqv_uncast(address) &&
3609           st->as_Store()->memory_size() <= this->memory_size()) {
3610         Node* use = st->raw_out(0);
3611         if (phase->is_IterGVN()) {
3612           phase->is_IterGVN()->rehash_node_delayed(use);
3613         }
3614         // It's OK to do this in the parser, since DU info is always accurate,
3615         // and the parser always refers to nodes via SafePointNode maps.
3616         use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase);
3617         return this;
3618       }
3619       st = st->in(MemNode::Memory);
3620     }
3621   }
3622 
3623 
3624   // Capture an unaliased, unconditional, simple store into an initializer.
3625   // Or, if it is independent of the allocation, hoist it above the allocation.
3626   if (ReduceFieldZeroing && /*can_reshape &&*/
3627       mem->is_Proj() && mem->in(0)->is_Initialize()) {
3628     InitializeNode* init = mem->in(0)->as_Initialize();
3629     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
3630     if (offset > 0) {
3631       Node* moved = init->capture_store(this, offset, phase, can_reshape);
3632       // If the InitializeNode captured me, it made a raw copy of me,
3633       // and I need to disappear.
3634       if (moved != nullptr) {
3635         // %%% hack to ensure that Ideal returns a new node:
3636         mem = MergeMemNode::make(mem);
3637         return mem;             // fold me away
3638       }
3639     }
3640   }
3641 
3642   // Fold reinterpret cast into memory operation:
3643   //    StoreX mem (MoveY2X v) => StoreY mem v
3644   if (value->is_Move()) {
3645     const Type* vt = value->in(1)->bottom_type();
3646     if (has_reinterpret_variant(vt)) {
3647       if (phase->C->post_loop_opts_phase()) {
3648         return convert_to_reinterpret_store(*phase, value->in(1), vt);
3649       } else {
3650         phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over
3651       }
3652     }
3653   }
3654 
3655   if (MergeStores && UseUnalignedAccesses) {
3656     if (phase->C->merge_stores_phase()) {
3657       MergePrimitiveStores merge(phase, this);
3658       Node* progress = merge.run();
3659       if (progress != nullptr) { return progress; }
3660     } else {
3661       // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
3662       // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
3663       // the stores, and we merge the wrong sequence of stores.
3664       // Example:
3665       //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
3666       // Apply MergeStores:
3667       //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI
3668       // Remove more RangeChecks:
3669       //   StoreI            [   StoreL  ]            StoreI
3670       // But now it would have been better to do this instead:
3671       //   [         StoreL       ] [       StoreL         ]
3672       phase->C->record_for_merge_stores_igvn(this);
3673     }
3674   }
3675 
3676   return nullptr;                  // No further progress
3677 }
3678 
3679 //------------------------------Value-----------------------------------------
3680 const Type* StoreNode::Value(PhaseGVN* phase) const {
3681   // Either input is TOP ==> the result is TOP
3682   const Type *t1 = phase->type( in(MemNode::Memory) );
3683   if( t1 == Type::TOP ) return Type::TOP;
3684   const Type *t2 = phase->type( in(MemNode::Address) );
3685   if( t2 == Type::TOP ) return Type::TOP;
3686   const Type *t3 = phase->type( in(MemNode::ValueIn) );
3687   if( t3 == Type::TOP ) return Type::TOP;
3688   return Type::MEMORY;
3689 }
3690 
3691 //------------------------------Identity---------------------------------------
3692 // Remove redundant stores:
3693 //   Store(m, p, Load(m, p)) changes to m.
3694 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
3695 Node* StoreNode::Identity(PhaseGVN* phase) {
3696   Node* mem = in(MemNode::Memory);
3697   Node* adr = in(MemNode::Address);
3698   Node* val = in(MemNode::ValueIn);
3699 
3700   Node* result = this;
3701 
3702   // Load then Store?  Then the Store is useless
3703   if (val->is_Load() &&
3704       val->in(MemNode::Address)->eqv_uncast(adr) &&
3705       val->in(MemNode::Memory )->eqv_uncast(mem) &&
3706       val->as_Load()->store_Opcode() == Opcode()) {
3707     // Ensure vector type is the same
3708     if (!is_StoreVector() || (mem->is_LoadVector() && as_StoreVector()->vect_type() == mem->as_LoadVector()->vect_type())) {
3709       result = mem;
3710     }
3711   }
3712 
3713   // Two stores in a row of the same value?
3714   if (result == this &&
3715       mem->is_Store() &&
3716       mem->in(MemNode::Address)->eqv_uncast(adr) &&
3717       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
3718       mem->Opcode() == Opcode()) {
3719     if (!is_StoreVector()) {
3720       result = mem;
3721     } else {
3722       const StoreVectorNode* store_vector = as_StoreVector();
3723       const StoreVectorNode* mem_vector = mem->as_StoreVector();
3724       const Node* store_indices = store_vector->indices();
3725       const Node* mem_indices = mem_vector->indices();
3726       const Node* store_mask = store_vector->mask();
3727       const Node* mem_mask = mem_vector->mask();
3728       // Ensure types, indices, and masks match
3729       if (store_vector->vect_type() == mem_vector->vect_type() &&
3730           ((store_indices == nullptr) == (mem_indices == nullptr) &&
3731            (store_indices == nullptr || store_indices->eqv_uncast(mem_indices))) &&
3732           ((store_mask == nullptr) == (mem_mask == nullptr) &&
3733            (store_mask == nullptr || store_mask->eqv_uncast(mem_mask)))) {
3734         result = mem;
3735       }
3736     }
3737   }
3738 
3739   // Store of zero anywhere into a freshly-allocated object?
3740   // Then the store is useless.
3741   // (It must already have been captured by the InitializeNode.)
3742   if (result == this && ReduceFieldZeroing) {
3743     // a newly allocated object is already all-zeroes everywhere
3744     if (mem->is_Proj() && mem->in(0)->is_Allocate() &&
3745         (phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::InitValue) == val)) {
3746       result = mem;
3747     }
3748 
3749     if (result == this && phase->type(val)->is_zero_type()) {
3750       // the store may also apply to zero-bits in an earlier object
3751       Node* prev_mem = find_previous_store(phase);
3752       // Steps (a), (b):  Walk past independent stores to find an exact match.
3753       if (prev_mem != nullptr) {
3754         Node* prev_val = can_see_stored_value(prev_mem, phase);
3755         if (prev_val != nullptr && prev_val == val) {
3756           // prev_val and val might differ by a cast; it would be good
3757           // to keep the more informative of the two.
3758           result = mem;
3759         }
3760       }
3761     }
3762   }
3763 
3764   PhaseIterGVN* igvn = phase->is_IterGVN();
3765   if (result != this && igvn != nullptr) {
3766     MemBarNode* trailing = trailing_membar();
3767     if (trailing != nullptr) {
3768 #ifdef ASSERT
3769       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
3770       assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects");
3771 #endif
3772       trailing->remove(igvn);
3773     }
3774   }
3775 
3776   return result;
3777 }
3778 
3779 //------------------------------match_edge-------------------------------------
3780 // Do we Match on this edge index or not?  Match only memory & value
3781 uint StoreNode::match_edge(uint idx) const {
3782   return idx == MemNode::Address || idx == MemNode::ValueIn;
3783 }
3784 
3785 //------------------------------cmp--------------------------------------------
3786 // Do not common stores up together.  They generally have to be split
3787 // back up anyways, so do not bother.
3788 bool StoreNode::cmp( const Node &n ) const {
3789   return (&n == this);          // Always fail except on self
3790 }
3791 
3792 //------------------------------Ideal_masked_input-----------------------------
3793 // Check for a useless mask before a partial-word store
3794 // (StoreB ... (AndI valIn conIa) )
3795 // If (conIa & mask == mask) this simplifies to
3796 // (StoreB ... (valIn) )
3797 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
3798   Node *val = in(MemNode::ValueIn);
3799   if( val->Opcode() == Op_AndI ) {
3800     const TypeInt *t = phase->type( val->in(2) )->isa_int();
3801     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
3802       set_req_X(MemNode::ValueIn, val->in(1), phase);
3803       return this;
3804     }
3805   }
3806   return nullptr;
3807 }
3808 
3809 
3810 //------------------------------Ideal_sign_extended_input----------------------
3811 // Check for useless sign-extension before a partial-word store
3812 // (StoreB ... (RShiftI _ (LShiftI _ v conIL) conIR))
3813 // If (conIL == conIR && conIR <= num_rejected_bits) this simplifies to
3814 // (StoreB ... (v))
3815 // If (conIL > conIR) under some conditions, it can be simplified into
3816 // (StoreB ... (LShiftI _ v (conIL - conIR)))
3817 // This case happens when the value of the store was itself a left shift, that
3818 // gets merged into the inner left shift of the sign-extension. For instance,
3819 // if we have
3820 // array_of_shorts[0] = (short)(v << 2)
3821 // We get a structure such as:
3822 // (StoreB ... (RShiftI _ (LShiftI _ (LShiftI _ v 2) 16) 16))
3823 // that is simplified into
3824 // (StoreB ... (RShiftI _ (LShiftI _ v 18) 16)).
3825 // It is thus useful to handle cases where conIL > conIR. But this simplification
3826 // does not always hold. Let's see in which cases it's valid.
3827 //
3828 // Let's assume we have the following 32 bits integer v:
3829 // +----------------------------------+
3830 // |             v[0..31]             |
3831 // +----------------------------------+
3832 //  31                               0
3833 // that will be stuffed in 8 bits byte after a shift left and a shift right of
3834 // potentially different magnitudes.
3835 // We denote num_rejected_bits the number of bits of the discarded part. In this
3836 // case, num_rejected_bits == 24.
3837 //
3838 // Statement (proved further below in case analysis):
3839 //   Given:
3840 //   - 0 <= conIL < BitsPerJavaInteger   (no wrap in shift, enforced by maskShiftAmount)
3841 //   - 0 <= conIR < BitsPerJavaInteger   (no wrap in shift, enforced by maskShiftAmount)
3842 //   - conIL >= conIR
3843 //   - num_rejected_bits >= conIR
3844 //   Then this form:
3845 //      (RShiftI _ (LShiftI _ v conIL) conIR)
3846 //   can be replaced with this form:
3847 //      (LShiftI _ v (conIL-conIR))
3848 //
3849 // Note: We only have to show that the non-rejected lowest bits (8 bits for byte)
3850 //       have to be correct, as the higher bits are rejected / truncated by the store.
3851 //
3852 // The hypotheses
3853 //   0 <= conIL < BitsPerJavaInteger
3854 //   0 <= conIR < BitsPerJavaInteger
3855 // are ensured by maskShiftAmount (called from ::Ideal of shift nodes). Indeed,
3856 // (v << 31) << 2 must be simplified into 0, not into v << 33 (which is equivalent
3857 // to v << 1).
3858 //
3859 //
3860 // If you don't like case analysis, jump after the conclusion.
3861 // ### Case 1 : conIL == conIR
3862 // ###### Case 1.1: conIL == conIR == num_rejected_bits
3863 // If we do the shift left then right by 24 bits, we get:
3864 // after: v << 24
3865 // +---------+------------------------+
3866 // | v[0..7] |           0            |
3867 // +---------+------------------------+
3868 //  31     24 23                      0
3869 // after: (v << 24) >> 24
3870 // +------------------------+---------+
3871 // |        sign bit        | v[0..7] |
3872 // +------------------------+---------+
3873 //  31                     8 7        0
3874 // The non-rejected bits (bits kept by the store, that is the 8 lower bits of the
3875 // result) are the same before and after, so, indeed, simplifying is correct.
3876 
3877 // ###### Case 1.2: conIL == conIR < num_rejected_bits
3878 // If we do the shift left then right by 22 bits, we get:
3879 // after: v << 22
3880 // +---------+------------------------+
3881 // | v[0..9] |           0            |
3882 // +---------+------------------------+
3883 //  31     22 21                      0
3884 // after: (v << 22) >> 22
3885 // +------------------------+---------+
3886 // |        sign bit        | v[0..9] |
3887 // +------------------------+---------+
3888 //  31                    10 9        0
3889 // The non-rejected bits are the 8 lower bits of v. The bits 8 and 9 of v are still
3890 // present in (v << 22) >> 22 but will be dropped by the store. The simplification is
3891 // still correct.
3892 
3893 // ###### But! Case 1.3: conIL == conIR > num_rejected_bits
3894 // If we do the shift left then right by 26 bits, we get:
3895 // after: v << 26
3896 // +---------+------------------------+
3897 // | v[0..5] |           0            |
3898 // +---------+------------------------+
3899 //  31     26 25                      0
3900 // after: (v << 26) >> 26
3901 // +------------------------+---------+
3902 // |        sign bit        | v[0..5] |
3903 // +------------------------+---------+
3904 //  31                     6 5        0
3905 // The non-rejected bits are made of
3906 // - 0-5 => the bits 0 to 5 of v
3907 // - 6-7 => the sign bit of v[0..5] (that is v[5])
3908 // Simplifying this as v is not correct.
3909 // The condition conIR <= num_rejected_bits is indeed necessary in Case 1
3910 //
3911 // ### Case 2: conIL > conIR
3912 // ###### Case 2.1: num_rejected_bits == conIR
3913 // We take conIL == 26 for this example.
3914 // after: v << 26
3915 // +---------+------------------------+
3916 // | v[0..5] |           0            |
3917 // +---------+------------------------+
3918 //  31     26 25                      0
3919 // after: (v << 26) >> 24
3920 // +------------------+---------+-----+
3921 // |     sign bit     | v[0..5] |  0  |
3922 // +------------------+---------+-----+
3923 //  31               8 7       2 1   0
3924 // The non-rejected bits are the 8 lower ones of (v << conIL - conIR).
3925 // The bits 6 and 7 of v have been thrown away after the shift left.
3926 // The simplification is still correct.
3927 //
3928 // ###### Case 2.2: num_rejected_bits > conIR.
3929 // Let's say conIL == 26 and conIR == 22.
3930 // after: v << 26
3931 // +---------+------------------------+
3932 // | v[0..5] |           0            |
3933 // +---------+------------------------+
3934 //  31     26 25                      0
3935 // after: (v << 26) >> 22
3936 // +------------------+---------+-----+
3937 // |     sign bit     | v[0..5] |  0  |
3938 // +------------------+---------+-----+
3939 //  31              10 9       4 3   0
3940 // The bits non-rejected by the store are exactly the 8 lower ones of (v << (conIL - conIR)):
3941 // - 0-3 => 0
3942 // - 4-7 => bits 0 to 3 of v
3943 // The simplification is still correct.
3944 // The bits 4 and 5 of v are still present in (v << (conIL - conIR)) but they don't
3945 // matter as they are not in the 8 lower bits: they will be cut out by the store.
3946 //
3947 // ###### But! Case 2.3: num_rejected_bits < conIR.
3948 // Let's see that this case is not as easy to simplify.
3949 // Let's say conIL == 28 and conIR == 26.
3950 // after: v << 28
3951 // +---------+------------------------+
3952 // | v[0..3] |           0            |
3953 // +---------+------------------------+
3954 //  31     28 27                      0
3955 // after: (v << 28) >> 26
3956 // +------------------+---------+-----+
3957 // |     sign bit     | v[0..3] |  0  |
3958 // +------------------+---------+-----+
3959 //  31               6 5       2 1   0
3960 // The non-rejected bits are made of
3961 // - 0-1 => 0
3962 // - 2-5 => the bits 0 to 3 of v
3963 // - 6-7 => the sign bit of v[0..3] (that is v[3])
3964 // Simplifying this as (v << 2) is not correct.
3965 // The condition conIR <= num_rejected_bits is indeed necessary in Case 2.
3966 //
3967 // ### Conclusion:
3968 // Our hypotheses are indeed sufficient:
3969 //   - 0 <= conIL < BitsPerJavaInteger
3970 //   - 0 <= conIR < BitsPerJavaInteger
3971 //   - conIL >= conIR
3972 //   - num_rejected_bits >= conIR
3973 //
3974 // ### A rationale without case analysis:
3975 // After the shift left, conIL upper  bits of v are discarded and conIL lower bit
3976 // zeroes are added. After the shift right, conIR lower bits of the previous result
3977 // are discarded. If conIL >= conIR, we discard only the zeroes we made up during
3978 // the shift left, but if conIL < conIR, then we discard also lower bits of v. But
3979 // the point of the simplification is to get an expression of the form
3980 // (v << (conIL - conIR)). This expression discard only higher bits of v, thus the
3981 // simplification is not correct if conIL < conIR.
3982 //
3983 // Moreover, after the shift right, the higher bit of (v << conIL) is repeated on the
3984 // conIR higher bits of ((v << conIL) >> conIR), it's the sign-extension. If
3985 // conIR > num_rejected_bits, then at least one artificial copy of this sign bit will
3986 // be in the window of the store. Thus ((v << conIL) >> conIR) is not equivalent to
3987 // (v << (conIL-conIR)) if conIR > num_rejected_bits.
3988 //
3989 // We do not treat the case conIL < conIR here since the point of this function is
3990 // to skip sign-extensions (that is conIL == conIR == num_rejected_bits). The need
3991 // of treating conIL > conIR comes from the cases where the sign-extended value is
3992 // also left-shift expression. Computing the sign-extension of a right-shift expression
3993 // doesn't yield a situation such as
3994 // (StoreB ... (RShiftI _ (LShiftI _ v conIL) conIR))
3995 // where conIL < conIR.
3996 Node* StoreNode::Ideal_sign_extended_input(PhaseGVN* phase, int num_rejected_bits) {
3997   Node* shr = in(MemNode::ValueIn);
3998   if (shr->Opcode() == Op_RShiftI) {
3999     const TypeInt* conIR = phase->type(shr->in(2))->isa_int();
4000     if (conIR != nullptr && conIR->is_con() && conIR->get_con() >= 0 && conIR->get_con() < BitsPerJavaInteger && conIR->get_con() <= num_rejected_bits) {
4001       Node* shl = shr->in(1);
4002       if (shl->Opcode() == Op_LShiftI) {
4003         const TypeInt* conIL = phase->type(shl->in(2))->isa_int();
4004         if (conIL != nullptr && conIL->is_con() && conIL->get_con() >= 0 && conIL->get_con() < BitsPerJavaInteger) {
4005           if (conIL->get_con() == conIR->get_con()) {
4006             set_req_X(MemNode::ValueIn, shl->in(1), phase);
4007             return this;
4008           }
4009           if (conIL->get_con() > conIR->get_con()) {
4010             Node* new_shl = phase->transform(new LShiftINode(shl->in(1), phase->intcon(conIL->get_con() - conIR->get_con())));
4011             set_req_X(MemNode::ValueIn, new_shl, phase);
4012             return this;
4013           }
4014         }
4015       }
4016     }
4017   }
4018   return nullptr;
4019 }
4020 
4021 //------------------------------value_never_loaded-----------------------------------
4022 // Determine whether there are any possible loads of the value stored.
4023 // For simplicity, we actually check if there are any loads from the
4024 // address stored to, not just for loads of the value stored by this node.
4025 //
4026 bool StoreNode::value_never_loaded(PhaseValues* phase) const {
4027   Node *adr = in(Address);
4028   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
4029   if (adr_oop == nullptr)
4030     return false;
4031   if (!adr_oop->is_known_instance_field())
4032     return false; // if not a distinct instance, there may be aliases of the address
4033   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
4034     Node *use = adr->fast_out(i);
4035     if (use->is_Load() || use->is_LoadStore()) {
4036       return false;
4037     }
4038   }
4039   return true;
4040 }
4041 
4042 MemBarNode* StoreNode::trailing_membar() const {
4043   if (is_release()) {
4044     MemBarNode* trailing_mb = nullptr;
4045     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
4046       Node* u = fast_out(i);
4047       if (u->is_MemBar()) {
4048         if (u->as_MemBar()->trailing_store()) {
4049           assert(u->Opcode() == Op_MemBarVolatile, "");
4050           assert(trailing_mb == nullptr, "only one");
4051           trailing_mb = u->as_MemBar();
4052 #ifdef ASSERT
4053           Node* leading = u->as_MemBar()->leading_membar();
4054           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
4055           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
4056           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
4057 #endif
4058         } else {
4059           assert(u->as_MemBar()->standalone(), "");
4060         }
4061       }
4062     }
4063     return trailing_mb;
4064   }
4065   return nullptr;
4066 }
4067 
4068 
4069 //=============================================================================
4070 //------------------------------Ideal------------------------------------------
4071 // If the store is from an AND mask that leaves the low bits untouched, then
4072 // we can skip the AND operation.  If the store is from a sign-extension
4073 // (a left shift, then right shift) we can skip both.
4074 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
4075   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
4076   if( progress != nullptr ) return progress;
4077 
4078   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
4079   if( progress != nullptr ) return progress;
4080 
4081   // Finally check the default case
4082   return StoreNode::Ideal(phase, can_reshape);
4083 }
4084 
4085 //=============================================================================
4086 //------------------------------Ideal------------------------------------------
4087 // If the store is from an AND mask that leaves the low bits untouched, then
4088 // we can skip the AND operation
4089 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
4090   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
4091   if( progress != nullptr ) return progress;
4092 
4093   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
4094   if( progress != nullptr ) return progress;
4095 
4096   // Finally check the default case
4097   return StoreNode::Ideal(phase, can_reshape);
4098 }
4099 
4100 //=============================================================================
4101 //----------------------------------SCMemProjNode------------------------------
4102 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
4103 {
4104   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
4105     return Type::TOP;
4106   }
4107   return bottom_type();
4108 }
4109 
4110 //=============================================================================
4111 //----------------------------------LoadStoreNode------------------------------
4112 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
4113   : Node(required),
4114     _type(rt),
4115     _adr_type(at),
4116     _barrier_data(0)
4117 {
4118   init_req(MemNode::Control, c  );
4119   init_req(MemNode::Memory , mem);
4120   init_req(MemNode::Address, adr);
4121   init_req(MemNode::ValueIn, val);
4122   init_class_id(Class_LoadStore);
4123 }
4124 
4125 //------------------------------Value-----------------------------------------
4126 const Type* LoadStoreNode::Value(PhaseGVN* phase) const {
4127   // Either input is TOP ==> the result is TOP
4128   if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) {
4129     return Type::TOP;
4130   }
4131   const Type* t = phase->type(in(MemNode::Memory));
4132   if (t == Type::TOP) {
4133     return Type::TOP;
4134   }
4135   t = phase->type(in(MemNode::Address));
4136   if (t == Type::TOP) {
4137     return Type::TOP;
4138   }
4139   t = phase->type(in(MemNode::ValueIn));
4140   if (t == Type::TOP) {
4141     return Type::TOP;
4142   }
4143   return bottom_type();
4144 }
4145 
4146 uint LoadStoreNode::ideal_reg() const {
4147   return _type->ideal_reg();
4148 }
4149 
4150 // This method conservatively checks if the result of a LoadStoreNode is
4151 // used, that is, if it returns true, then it is definitely the case that
4152 // the result of the node is not needed.
4153 // For example, GetAndAdd can be matched into a lock_add instead of a
4154 // lock_xadd if the result of LoadStoreNode::result_not_used() is true
4155 bool LoadStoreNode::result_not_used() const {
4156   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
4157     Node *x = fast_out(i);
4158     if (x->Opcode() == Op_SCMemProj) {
4159       continue;
4160     }
4161     if (x->bottom_type() == TypeTuple::MEMBAR &&
4162         !x->is_Call() &&
4163         x->Opcode() != Op_Blackhole) {
4164       continue;
4165     }
4166     return false;
4167   }
4168   return true;
4169 }
4170 
4171 MemBarNode* LoadStoreNode::trailing_membar() const {
4172   MemBarNode* trailing = nullptr;
4173   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
4174     Node* u = fast_out(i);
4175     if (u->is_MemBar()) {
4176       if (u->as_MemBar()->trailing_load_store()) {
4177         assert(u->Opcode() == Op_MemBarAcquire, "");
4178         assert(trailing == nullptr, "only one");
4179         trailing = u->as_MemBar();
4180 #ifdef ASSERT
4181         Node* leading = trailing->leading_membar();
4182         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
4183         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
4184         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
4185 #endif
4186       } else {
4187         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
4188       }
4189     }
4190   }
4191 
4192   return trailing;
4193 }
4194 
4195 uint LoadStoreNode::size_of() const { return sizeof(*this); }
4196 
4197 //=============================================================================
4198 //----------------------------------LoadStoreConditionalNode--------------------
4199 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) {
4200   init_req(ExpectedIn, ex );
4201 }
4202 
4203 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const {
4204   // Either input is TOP ==> the result is TOP
4205   const Type* t = phase->type(in(ExpectedIn));
4206   if (t == Type::TOP) {
4207     return Type::TOP;
4208   }
4209   return LoadStoreNode::Value(phase);
4210 }
4211 
4212 //=============================================================================
4213 //-------------------------------adr_type--------------------------------------
4214 const TypePtr* ClearArrayNode::adr_type() const {
4215   Node *adr = in(3);
4216   if (adr == nullptr)  return nullptr; // node is dead
4217   return MemNode::calculate_adr_type(adr->bottom_type());
4218 }
4219 
4220 //------------------------------match_edge-------------------------------------
4221 // Do we Match on this edge index or not?  Do not match memory
4222 uint ClearArrayNode::match_edge(uint idx) const {
4223   return idx > 1;
4224 }
4225 
4226 //------------------------------Identity---------------------------------------
4227 // Clearing a zero length array does nothing
4228 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
4229   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
4230 }
4231 
4232 //------------------------------Idealize---------------------------------------
4233 // Clearing a short array is faster with stores
4234 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4235   // Already know this is a large node, do not try to ideal it
4236   if (_is_large) return nullptr;
4237 
4238   const int unit = BytesPerLong;
4239   const TypeX* t = phase->type(in(2))->isa_intptr_t();
4240   if (!t)  return nullptr;
4241   if (!t->is_con())  return nullptr;
4242   intptr_t raw_count = t->get_con();
4243   intptr_t size = raw_count;
4244   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
4245   // Clearing nothing uses the Identity call.
4246   // Negative clears are possible on dead ClearArrays
4247   // (see jck test stmt114.stmt11402.val).
4248   if (size <= 0 || size % unit != 0)  return nullptr;
4249   intptr_t count = size / unit;
4250   // Length too long; communicate this to matchers and assemblers.
4251   // Assemblers are responsible to produce fast hardware clears for it.
4252   if (size > InitArrayShortSize) {
4253     return new ClearArrayNode(in(0), in(1), in(2), in(3), in(4), true);
4254   } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) {
4255     return nullptr;
4256   }
4257   if (!IdealizeClearArrayNode) return nullptr;
4258   Node *mem = in(1);
4259   if( phase->type(mem)==Type::TOP ) return nullptr;
4260   Node *adr = in(3);
4261   const Type* at = phase->type(adr);
4262   if( at==Type::TOP ) return nullptr;
4263   const TypePtr* atp = at->isa_ptr();
4264   // adjust atp to be the correct array element address type
4265   if (atp == nullptr)  atp = TypePtr::BOTTOM;
4266   else              atp = atp->add_offset(Type::OffsetBot);
4267   // Get base for derived pointer purposes
4268   if( adr->Opcode() != Op_AddP ) Unimplemented();
4269   Node *base = adr->in(1);
4270 
4271   Node *val = in(4);
4272   Node *off  = phase->MakeConX(BytesPerLong);
4273   mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
4274   count--;
4275   while( count-- ) {
4276     mem = phase->transform(mem);
4277     adr = phase->transform(new AddPNode(base,adr,off));
4278     mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
4279   }
4280   return mem;
4281 }
4282 
4283 //----------------------------step_through----------------------------------
4284 // Return allocation input memory edge if it is different instance
4285 // or itself if it is the one we are looking for.
4286 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseValues* phase) {
4287   Node* n = *np;
4288   assert(n->is_ClearArray(), "sanity");
4289   intptr_t offset;
4290   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
4291   // This method is called only before Allocate nodes are expanded
4292   // during macro nodes expansion. Before that ClearArray nodes are
4293   // only generated in PhaseMacroExpand::generate_arraycopy() (before
4294   // Allocate nodes are expanded) which follows allocations.
4295   assert(alloc != nullptr, "should have allocation");
4296   if (alloc->_idx == instance_id) {
4297     // Can not bypass initialization of the instance we are looking for.
4298     return false;
4299   }
4300   // Otherwise skip it.
4301   InitializeNode* init = alloc->initialization();
4302   if (init != nullptr)
4303     *np = init->in(TypeFunc::Memory);
4304   else
4305     *np = alloc->in(TypeFunc::Memory);
4306   return true;
4307 }
4308 
4309 //----------------------------clear_memory-------------------------------------
4310 // Generate code to initialize object storage to zero.
4311 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
4312                                    Node* val,
4313                                    Node* raw_val,
4314                                    intptr_t start_offset,
4315                                    Node* end_offset,
4316                                    PhaseGVN* phase) {
4317   intptr_t offset = start_offset;
4318 
4319   int unit = BytesPerLong;
4320   if ((offset % unit) != 0) {
4321     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
4322     adr = phase->transform(adr);
4323     const TypePtr* atp = TypeRawPtr::BOTTOM;
4324     if (val != nullptr) {
4325       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
4326       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
4327     } else {
4328       assert(raw_val == nullptr, "val may not be null");
4329       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
4330     }
4331     mem = phase->transform(mem);
4332     offset += BytesPerInt;
4333   }
4334   assert((offset % unit) == 0, "");
4335 
4336   // Initialize the remaining stuff, if any, with a ClearArray.
4337   return clear_memory(ctl, mem, dest, raw_val, phase->MakeConX(offset), end_offset, phase);
4338 }
4339 
4340 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
4341                                    Node* raw_val,
4342                                    Node* start_offset,
4343                                    Node* end_offset,
4344                                    PhaseGVN* phase) {
4345   if (start_offset == end_offset) {
4346     // nothing to do
4347     return mem;
4348   }
4349 
4350   int unit = BytesPerLong;
4351   Node* zbase = start_offset;
4352   Node* zend  = end_offset;
4353 
4354   // Scale to the unit required by the CPU:
4355   if (!Matcher::init_array_count_is_in_bytes) {
4356     Node* shift = phase->intcon(exact_log2(unit));
4357     zbase = phase->transform(new URShiftXNode(zbase, shift) );
4358     zend  = phase->transform(new URShiftXNode(zend,  shift) );
4359   }
4360 
4361   // Bulk clear double-words
4362   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
4363   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
4364   if (raw_val == nullptr) {
4365     raw_val = phase->MakeConX(0);
4366   }
4367   mem = new ClearArrayNode(ctl, mem, zsize, adr, raw_val, false);
4368   return phase->transform(mem);
4369 }
4370 
4371 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
4372                                    Node* val,
4373                                    Node* raw_val,
4374                                    intptr_t start_offset,
4375                                    intptr_t end_offset,
4376                                    PhaseGVN* phase) {
4377   if (start_offset == end_offset) {
4378     // nothing to do
4379     return mem;
4380   }
4381 
4382   assert((end_offset % BytesPerInt) == 0, "odd end offset");
4383   intptr_t done_offset = end_offset;
4384   if ((done_offset % BytesPerLong) != 0) {
4385     done_offset -= BytesPerInt;
4386   }
4387   if (done_offset > start_offset) {
4388     mem = clear_memory(ctl, mem, dest, val, raw_val,
4389                        start_offset, phase->MakeConX(done_offset), phase);
4390   }
4391   if (done_offset < end_offset) { // emit the final 32-bit store
4392     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
4393     adr = phase->transform(adr);
4394     const TypePtr* atp = TypeRawPtr::BOTTOM;
4395     if (val != nullptr) {
4396       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
4397       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
4398     } else {
4399       assert(raw_val == nullptr, "val may not be null");
4400       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
4401     }
4402     mem = phase->transform(mem);
4403     done_offset += BytesPerInt;
4404   }
4405   assert(done_offset == end_offset, "");
4406   return mem;
4407 }
4408 
4409 //=============================================================================
4410 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
4411   : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)),
4412     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
4413 #ifdef ASSERT
4414   , _pair_idx(0)
4415 #endif
4416 {
4417   init_class_id(Class_MemBar);
4418   Node* top = C->top();
4419   init_req(TypeFunc::I_O,top);
4420   init_req(TypeFunc::FramePtr,top);
4421   init_req(TypeFunc::ReturnAdr,top);
4422   if (precedent != nullptr)
4423     init_req(TypeFunc::Parms, precedent);
4424 }
4425 
4426 //------------------------------cmp--------------------------------------------
4427 uint MemBarNode::hash() const { return NO_HASH; }
4428 bool MemBarNode::cmp( const Node &n ) const {
4429   return (&n == this);          // Always fail except on self
4430 }
4431 
4432 //------------------------------make-------------------------------------------
4433 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
4434   switch (opcode) {
4435   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
4436   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
4437   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
4438   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
4439   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
4440   case Op_StoreStoreFence:   return new StoreStoreFenceNode(C, atp, pn);
4441   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
4442   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
4443   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
4444   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
4445   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
4446   case Op_Initialize:        return new InitializeNode(C, atp, pn);
4447   default: ShouldNotReachHere(); return nullptr;
4448   }
4449 }
4450 
4451 void MemBarNode::remove(PhaseIterGVN *igvn) {
4452   if (outcnt() != 2) {
4453     assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory");
4454     assert(outcnt() == 1, "Only control then");
4455   }
4456   if (trailing_store() || trailing_load_store()) {
4457     MemBarNode* leading = leading_membar();
4458     if (leading != nullptr) {
4459       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
4460       leading->remove(igvn);
4461     }
4462   }
4463   if (proj_out_or_null(TypeFunc::Memory) != nullptr) {
4464     igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
4465   }
4466   if (proj_out_or_null(TypeFunc::Control) != nullptr) {
4467     igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
4468   }
4469 }
4470 
4471 //------------------------------Ideal------------------------------------------
4472 // Return a node which is more "ideal" than the current node.  Strip out
4473 // control copies
4474 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4475   if (remove_dead_region(phase, can_reshape)) return this;
4476   // Don't bother trying to transform a dead node
4477   if (in(0) && in(0)->is_top()) {
4478     return nullptr;
4479   }
4480 
4481   bool progress = false;
4482   // Eliminate volatile MemBars for scalar replaced objects.
4483   if (can_reshape && req() == (Precedent+1)) {
4484     bool eliminate = false;
4485     int opc = Opcode();
4486     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
4487       // Volatile field loads and stores.
4488       Node* my_mem = in(MemBarNode::Precedent);
4489       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
4490       if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
4491         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
4492         // replace this Precedent (decodeN) with the Load instead.
4493         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
4494           Node* load_node = my_mem->in(1);
4495           set_req(MemBarNode::Precedent, load_node);
4496           phase->is_IterGVN()->_worklist.push(my_mem);
4497           my_mem = load_node;
4498         } else {
4499           assert(my_mem->unique_out() == this, "sanity");
4500           assert(!trailing_load_store(), "load store node can't be eliminated");
4501           del_req(Precedent);
4502           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
4503           my_mem = nullptr;
4504         }
4505         progress = true;
4506       }
4507       if (my_mem != nullptr && my_mem->is_Mem()) {
4508         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
4509         // Check for scalar replaced object reference.
4510         if( t_oop != nullptr && t_oop->is_known_instance_field() &&
4511             t_oop->offset() != Type::OffsetBot &&
4512             t_oop->offset() != Type::OffsetTop) {
4513           eliminate = true;
4514         }
4515       }
4516     } else if (opc == Op_MemBarRelease || (UseStoreStoreForCtor && opc == Op_MemBarStoreStore)) {
4517       // Final field stores.
4518       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent));
4519       if ((alloc != nullptr) && alloc->is_Allocate() &&
4520           alloc->as_Allocate()->does_not_escape_thread()) {
4521         // The allocated object does not escape.
4522         eliminate = true;
4523       }
4524     }
4525     if (eliminate) {
4526       // Replace MemBar projections by its inputs.
4527       PhaseIterGVN* igvn = phase->is_IterGVN();
4528       remove(igvn);
4529       // Must return either the original node (now dead) or a new node
4530       // (Do not return a top here, since that would break the uniqueness of top.)
4531       return new ConINode(TypeInt::ZERO);
4532     }
4533   }
4534   return progress ? this : nullptr;
4535 }
4536 
4537 //------------------------------Value------------------------------------------
4538 const Type* MemBarNode::Value(PhaseGVN* phase) const {
4539   if( !in(0) ) return Type::TOP;
4540   if( phase->type(in(0)) == Type::TOP )
4541     return Type::TOP;
4542   return TypeTuple::MEMBAR;
4543 }
4544 
4545 //------------------------------match------------------------------------------
4546 // Construct projections for memory.
4547 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) {
4548   switch (proj->_con) {
4549   case TypeFunc::Control:
4550   case TypeFunc::Memory:
4551     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
4552   }
4553   ShouldNotReachHere();
4554   return nullptr;
4555 }
4556 
4557 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
4558   trailing->_kind = TrailingStore;
4559   leading->_kind = LeadingStore;
4560 #ifdef ASSERT
4561   trailing->_pair_idx = leading->_idx;
4562   leading->_pair_idx = leading->_idx;
4563 #endif
4564 }
4565 
4566 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
4567   trailing->_kind = TrailingLoadStore;
4568   leading->_kind = LeadingLoadStore;
4569 #ifdef ASSERT
4570   trailing->_pair_idx = leading->_idx;
4571   leading->_pair_idx = leading->_idx;
4572 #endif
4573 }
4574 
4575 MemBarNode* MemBarNode::trailing_membar() const {
4576   ResourceMark rm;
4577   Node* trailing = (Node*)this;
4578   VectorSet seen;
4579   Node_Stack multis(0);
4580   do {
4581     Node* c = trailing;
4582     uint i = 0;
4583     do {
4584       trailing = nullptr;
4585       for (; i < c->outcnt(); i++) {
4586         Node* next = c->raw_out(i);
4587         if (next != c && next->is_CFG()) {
4588           if (c->is_MultiBranch()) {
4589             if (multis.node() == c) {
4590               multis.set_index(i+1);
4591             } else {
4592               multis.push(c, i+1);
4593             }
4594           }
4595           trailing = next;
4596           break;
4597         }
4598       }
4599       if (trailing != nullptr && !seen.test_set(trailing->_idx)) {
4600         break;
4601       }
4602       while (multis.size() > 0) {
4603         c = multis.node();
4604         i = multis.index();
4605         if (i < c->req()) {
4606           break;
4607         }
4608         multis.pop();
4609       }
4610     } while (multis.size() > 0);
4611   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
4612 
4613   MemBarNode* mb = trailing->as_MemBar();
4614   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
4615          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
4616   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
4617   return mb;
4618 }
4619 
4620 MemBarNode* MemBarNode::leading_membar() const {
4621   ResourceMark rm;
4622   VectorSet seen;
4623   Node_Stack regions(0);
4624   Node* leading = in(0);
4625   while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
4626     while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) {
4627       leading = nullptr;
4628       while (regions.size() > 0 && leading == nullptr) {
4629         Node* r = regions.node();
4630         uint i = regions.index();
4631         if (i < r->req()) {
4632           leading = r->in(i);
4633           regions.set_index(i+1);
4634         } else {
4635           regions.pop();
4636         }
4637       }
4638       if (leading == nullptr) {
4639         assert(regions.size() == 0, "all paths should have been tried");
4640         return nullptr;
4641       }
4642     }
4643     if (leading->is_Region()) {
4644       regions.push(leading, 2);
4645       leading = leading->in(1);
4646     } else {
4647       leading = leading->in(0);
4648     }
4649   }
4650 #ifdef ASSERT
4651   Unique_Node_List wq;
4652   wq.push((Node*)this);
4653   uint found = 0;
4654   for (uint i = 0; i < wq.size(); i++) {
4655     Node* n = wq.at(i);
4656     if (n->is_Region()) {
4657       for (uint j = 1; j < n->req(); j++) {
4658         Node* in = n->in(j);
4659         if (in != nullptr && !in->is_top()) {
4660           wq.push(in);
4661         }
4662       }
4663     } else {
4664       if (n->is_MemBar() && n->as_MemBar()->leading()) {
4665         assert(n == leading, "consistency check failed");
4666         found++;
4667       } else {
4668         Node* in = n->in(0);
4669         if (in != nullptr && !in->is_top()) {
4670           wq.push(in);
4671         }
4672       }
4673     }
4674   }
4675   assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed");
4676 #endif
4677   if (leading == nullptr) {
4678     return nullptr;
4679   }
4680   MemBarNode* mb = leading->as_MemBar();
4681   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
4682          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
4683   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
4684   return mb;
4685 }
4686 
4687 
4688 //===========================InitializeNode====================================
4689 // SUMMARY:
4690 // This node acts as a memory barrier on raw memory, after some raw stores.
4691 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
4692 // The Initialize can 'capture' suitably constrained stores as raw inits.
4693 // It can coalesce related raw stores into larger units (called 'tiles').
4694 // It can avoid zeroing new storage for memory units which have raw inits.
4695 // At macro-expansion, it is marked 'complete', and does not optimize further.
4696 //
4697 // EXAMPLE:
4698 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
4699 //   ctl = incoming control; mem* = incoming memory
4700 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
4701 // First allocate uninitialized memory and fill in the header:
4702 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
4703 //   ctl := alloc.Control; mem* := alloc.Memory*
4704 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
4705 // Then initialize to zero the non-header parts of the raw memory block:
4706 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
4707 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
4708 // After the initialize node executes, the object is ready for service:
4709 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
4710 // Suppose its body is immediately initialized as {1,2}:
4711 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
4712 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
4713 //   mem.SLICE(#short[*]) := store2
4714 //
4715 // DETAILS:
4716 // An InitializeNode collects and isolates object initialization after
4717 // an AllocateNode and before the next possible safepoint.  As a
4718 // memory barrier (MemBarNode), it keeps critical stores from drifting
4719 // down past any safepoint or any publication of the allocation.
4720 // Before this barrier, a newly-allocated object may have uninitialized bits.
4721 // After this barrier, it may be treated as a real oop, and GC is allowed.
4722 //
4723 // The semantics of the InitializeNode include an implicit zeroing of
4724 // the new object from object header to the end of the object.
4725 // (The object header and end are determined by the AllocateNode.)
4726 //
4727 // Certain stores may be added as direct inputs to the InitializeNode.
4728 // These stores must update raw memory, and they must be to addresses
4729 // derived from the raw address produced by AllocateNode, and with
4730 // a constant offset.  They must be ordered by increasing offset.
4731 // The first one is at in(RawStores), the last at in(req()-1).
4732 // Unlike most memory operations, they are not linked in a chain,
4733 // but are displayed in parallel as users of the rawmem output of
4734 // the allocation.
4735 //
4736 // (See comments in InitializeNode::capture_store, which continue
4737 // the example given above.)
4738 //
4739 // When the associated Allocate is macro-expanded, the InitializeNode
4740 // may be rewritten to optimize collected stores.  A ClearArrayNode
4741 // may also be created at that point to represent any required zeroing.
4742 // The InitializeNode is then marked 'complete', prohibiting further
4743 // capturing of nearby memory operations.
4744 //
4745 // During macro-expansion, all captured initializations which store
4746 // constant values of 32 bits or smaller are coalesced (if advantageous)
4747 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
4748 // initialized in fewer memory operations.  Memory words which are
4749 // covered by neither tiles nor non-constant stores are pre-zeroed
4750 // by explicit stores of zero.  (The code shape happens to do all
4751 // zeroing first, then all other stores, with both sequences occurring
4752 // in order of ascending offsets.)
4753 //
4754 // Alternatively, code may be inserted between an AllocateNode and its
4755 // InitializeNode, to perform arbitrary initialization of the new object.
4756 // E.g., the object copying intrinsics insert complex data transfers here.
4757 // The initialization must then be marked as 'complete' disable the
4758 // built-in zeroing semantics and the collection of initializing stores.
4759 //
4760 // While an InitializeNode is incomplete, reads from the memory state
4761 // produced by it are optimizable if they match the control edge and
4762 // new oop address associated with the allocation/initialization.
4763 // They return a stored value (if the offset matches) or else zero.
4764 // A write to the memory state, if it matches control and address,
4765 // and if it is to a constant offset, may be 'captured' by the
4766 // InitializeNode.  It is cloned as a raw memory operation and rewired
4767 // inside the initialization, to the raw oop produced by the allocation.
4768 // Operations on addresses which are provably distinct (e.g., to
4769 // other AllocateNodes) are allowed to bypass the initialization.
4770 //
4771 // The effect of all this is to consolidate object initialization
4772 // (both arrays and non-arrays, both piecewise and bulk) into a
4773 // single location, where it can be optimized as a unit.
4774 //
4775 // Only stores with an offset less than TrackedInitializationLimit words
4776 // will be considered for capture by an InitializeNode.  This puts a
4777 // reasonable limit on the complexity of optimized initializations.
4778 
4779 //---------------------------InitializeNode------------------------------------
4780 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
4781   : MemBarNode(C, adr_type, rawoop),
4782     _is_complete(Incomplete), _does_not_escape(false)
4783 {
4784   init_class_id(Class_Initialize);
4785 
4786   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
4787   assert(in(RawAddress) == rawoop, "proper init");
4788   // Note:  allocation() can be null, for secondary initialization barriers
4789 }
4790 
4791 // Since this node is not matched, it will be processed by the
4792 // register allocator.  Declare that there are no constraints
4793 // on the allocation of the RawAddress edge.
4794 const RegMask &InitializeNode::in_RegMask(uint idx) const {
4795   // This edge should be set to top, by the set_complete.  But be conservative.
4796   if (idx == InitializeNode::RawAddress)
4797     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
4798   return RegMask::Empty;
4799 }
4800 
4801 Node* InitializeNode::memory(uint alias_idx) {
4802   Node* mem = in(Memory);
4803   if (mem->is_MergeMem()) {
4804     return mem->as_MergeMem()->memory_at(alias_idx);
4805   } else {
4806     // incoming raw memory is not split
4807     return mem;
4808   }
4809 }
4810 
4811 bool InitializeNode::is_non_zero() {
4812   if (is_complete())  return false;
4813   remove_extra_zeroes();
4814   return (req() > RawStores);
4815 }
4816 
4817 void InitializeNode::set_complete(PhaseGVN* phase) {
4818   assert(!is_complete(), "caller responsibility");
4819   _is_complete = Complete;
4820 
4821   // After this node is complete, it contains a bunch of
4822   // raw-memory initializations.  There is no need for
4823   // it to have anything to do with non-raw memory effects.
4824   // Therefore, tell all non-raw users to re-optimize themselves,
4825   // after skipping the memory effects of this initialization.
4826   PhaseIterGVN* igvn = phase->is_IterGVN();
4827   if (igvn)  igvn->add_users_to_worklist(this);
4828 }
4829 
4830 // convenience function
4831 // return false if the init contains any stores already
4832 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
4833   InitializeNode* init = initialization();
4834   if (init == nullptr || init->is_complete()) {
4835     return false;
4836   }
4837   init->remove_extra_zeroes();
4838   // for now, if this allocation has already collected any inits, bail:
4839   if (init->is_non_zero())  return false;
4840   init->set_complete(phase);
4841   return true;
4842 }
4843 
4844 void InitializeNode::remove_extra_zeroes() {
4845   if (req() == RawStores)  return;
4846   Node* zmem = zero_memory();
4847   uint fill = RawStores;
4848   for (uint i = fill; i < req(); i++) {
4849     Node* n = in(i);
4850     if (n->is_top() || n == zmem)  continue;  // skip
4851     if (fill < i)  set_req(fill, n);          // compact
4852     ++fill;
4853   }
4854   // delete any empty spaces created:
4855   while (fill < req()) {
4856     del_req(fill);
4857   }
4858 }
4859 
4860 // Helper for remembering which stores go with which offsets.
4861 intptr_t InitializeNode::get_store_offset(Node* st, PhaseValues* phase) {
4862   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
4863   intptr_t offset = -1;
4864   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
4865                                                phase, offset);
4866   if (base == nullptr)  return -1;  // something is dead,
4867   if (offset < 0)       return -1;  //        dead, dead
4868   return offset;
4869 }
4870 
4871 // Helper for proving that an initialization expression is
4872 // "simple enough" to be folded into an object initialization.
4873 // Attempts to prove that a store's initial value 'n' can be captured
4874 // within the initialization without creating a vicious cycle, such as:
4875 //     { Foo p = new Foo(); p.next = p; }
4876 // True for constants and parameters and small combinations thereof.
4877 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) {
4878   ResourceMark rm;
4879   Unique_Node_List worklist;
4880   worklist.push(value);
4881 
4882   uint complexity_limit = 20;
4883   for (uint j = 0; j < worklist.size(); j++) {
4884     if (j >= complexity_limit) {
4885       return false;  // Bail out if processed too many nodes
4886     }
4887 
4888     Node* n = worklist.at(j);
4889     if (n == nullptr)   continue;   // (can this really happen?)
4890     if (n->is_Proj())   n = n->in(0);
4891     if (n == this)      return false;  // found a cycle
4892     if (n->is_Con())    continue;
4893     if (n->is_Start())  continue;   // params, etc., are OK
4894     if (n->is_Root())   continue;   // even better
4895 
4896     // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation
4897     if (n->is_CFG() && phase->is_dominator(n, allocation())) {
4898       continue;
4899     }
4900 
4901     Node* ctl = n->in(0);
4902     if (ctl != nullptr && !ctl->is_top()) {
4903       if (ctl->is_Proj())  ctl = ctl->in(0);
4904       if (ctl == this)  return false;
4905 
4906       // If we already know that the enclosing memory op is pinned right after
4907       // the init, then any control flow that the store has picked up
4908       // must have preceded the init, or else be equal to the init.
4909       // Even after loop optimizations (which might change control edges)
4910       // a store is never pinned *before* the availability of its inputs.
4911       if (!MemNode::all_controls_dominate(n, this)) {
4912         return false;                  // failed to prove a good control
4913       }
4914     }
4915 
4916     // Check data edges for possible dependencies on 'this'.
4917     for (uint i = 1; i < n->req(); i++) {
4918       Node* m = n->in(i);
4919       if (m == nullptr || m == n || m->is_top())  continue;
4920 
4921       // Only process data inputs once
4922       worklist.push(m);
4923     }
4924   }
4925 
4926   return true;
4927 }
4928 
4929 // Here are all the checks a Store must pass before it can be moved into
4930 // an initialization.  Returns zero if a check fails.
4931 // On success, returns the (constant) offset to which the store applies,
4932 // within the initialized memory.
4933 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) {
4934   const int FAIL = 0;
4935   if (st->req() != MemNode::ValueIn + 1)
4936     return FAIL;                // an inscrutable StoreNode (card mark?)
4937   Node* ctl = st->in(MemNode::Control);
4938   if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this))
4939     return FAIL;                // must be unconditional after the initialization
4940   Node* mem = st->in(MemNode::Memory);
4941   if (!(mem->is_Proj() && mem->in(0) == this))
4942     return FAIL;                // must not be preceded by other stores
4943   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4944   if ((st->Opcode() == Op_StoreP || st->Opcode() == Op_StoreN) &&
4945       !bs->can_initialize_object(st)) {
4946     return FAIL;
4947   }
4948   Node* adr = st->in(MemNode::Address);
4949   intptr_t offset;
4950   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
4951   if (alloc == nullptr)
4952     return FAIL;                // inscrutable address
4953   if (alloc != allocation())
4954     return FAIL;                // wrong allocation!  (store needs to float up)
4955   int size_in_bytes = st->memory_size();
4956   if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) {
4957     return FAIL;                // mismatched access
4958   }
4959   Node* val = st->in(MemNode::ValueIn);
4960 
4961   if (!detect_init_independence(val, phase))
4962     return FAIL;                // stored value must be 'simple enough'
4963 
4964   // The Store can be captured only if nothing after the allocation
4965   // and before the Store is using the memory location that the store
4966   // overwrites.
4967   bool failed = false;
4968   // If is_complete_with_arraycopy() is true the shape of the graph is
4969   // well defined and is safe so no need for extra checks.
4970   if (!is_complete_with_arraycopy()) {
4971     // We are going to look at each use of the memory state following
4972     // the allocation to make sure nothing reads the memory that the
4973     // Store writes.
4974     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
4975     int alias_idx = phase->C->get_alias_index(t_adr);
4976     ResourceMark rm;
4977     Unique_Node_List mems;
4978     mems.push(mem);
4979     Node* unique_merge = nullptr;
4980     for (uint next = 0; next < mems.size(); ++next) {
4981       Node *m  = mems.at(next);
4982       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
4983         Node *n = m->fast_out(j);
4984         if (n->outcnt() == 0) {
4985           continue;
4986         }
4987         if (n == st) {
4988           continue;
4989         } else if (n->in(0) != nullptr && n->in(0) != ctl) {
4990           // If the control of this use is different from the control
4991           // of the Store which is right after the InitializeNode then
4992           // this node cannot be between the InitializeNode and the
4993           // Store.
4994           continue;
4995         } else if (n->is_MergeMem()) {
4996           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
4997             // We can hit a MergeMemNode (that will likely go away
4998             // later) that is a direct use of the memory state
4999             // following the InitializeNode on the same slice as the
5000             // store node that we'd like to capture. We need to check
5001             // the uses of the MergeMemNode.
5002             mems.push(n);
5003           }
5004         } else if (n->is_Mem()) {
5005           Node* other_adr = n->in(MemNode::Address);
5006           if (other_adr == adr) {
5007             failed = true;
5008             break;
5009           } else {
5010             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
5011             if (other_t_adr != nullptr) {
5012               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
5013               if (other_alias_idx == alias_idx) {
5014                 // A load from the same memory slice as the store right
5015                 // after the InitializeNode. We check the control of the
5016                 // object/array that is loaded from. If it's the same as
5017                 // the store control then we cannot capture the store.
5018                 assert(!n->is_Store(), "2 stores to same slice on same control?");
5019                 Node* base = other_adr;
5020                 if (base->is_Phi()) {
5021                   // In rare case, base may be a PhiNode and it may read
5022                   // the same memory slice between InitializeNode and store.
5023                   failed = true;
5024                   break;
5025                 }
5026                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
5027                 base = base->in(AddPNode::Base);
5028                 if (base != nullptr) {
5029                   base = base->uncast();
5030                   if (base->is_Proj() && base->in(0) == alloc) {
5031                     failed = true;
5032                     break;
5033                   }
5034                 }
5035               }
5036             }
5037           }
5038         } else {
5039           failed = true;
5040           break;
5041         }
5042       }
5043     }
5044   }
5045   if (failed) {
5046     if (!can_reshape) {
5047       // We decided we couldn't capture the store during parsing. We
5048       // should try again during the next IGVN once the graph is
5049       // cleaner.
5050       phase->C->record_for_igvn(st);
5051     }
5052     return FAIL;
5053   }
5054 
5055   return offset;                // success
5056 }
5057 
5058 // Find the captured store in(i) which corresponds to the range
5059 // [start..start+size) in the initialized object.
5060 // If there is one, return its index i.  If there isn't, return the
5061 // negative of the index where it should be inserted.
5062 // Return 0 if the queried range overlaps an initialization boundary
5063 // or if dead code is encountered.
5064 // If size_in_bytes is zero, do not bother with overlap checks.
5065 int InitializeNode::captured_store_insertion_point(intptr_t start,
5066                                                    int size_in_bytes,
5067                                                    PhaseValues* phase) {
5068   const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
5069 
5070   if (is_complete())
5071     return FAIL;                // arraycopy got here first; punt
5072 
5073   assert(allocation() != nullptr, "must be present");
5074 
5075   // no negatives, no header fields:
5076   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
5077 
5078   // after a certain size, we bail out on tracking all the stores:
5079   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
5080   if (start >= ti_limit)  return FAIL;
5081 
5082   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
5083     if (i >= limit)  return -(int)i; // not found; here is where to put it
5084 
5085     Node*    st     = in(i);
5086     intptr_t st_off = get_store_offset(st, phase);
5087     if (st_off < 0) {
5088       if (st != zero_memory()) {
5089         return FAIL;            // bail out if there is dead garbage
5090       }
5091     } else if (st_off > start) {
5092       // ...we are done, since stores are ordered
5093       if (st_off < start + size_in_bytes) {
5094         return FAIL;            // the next store overlaps
5095       }
5096       return -(int)i;           // not found; here is where to put it
5097     } else if (st_off < start) {
5098       assert(st->as_Store()->memory_size() <= MAX_STORE, "");
5099       if (size_in_bytes != 0 &&
5100           start < st_off + MAX_STORE &&
5101           start < st_off + st->as_Store()->memory_size()) {
5102         return FAIL;            // the previous store overlaps
5103       }
5104     } else {
5105       if (size_in_bytes != 0 &&
5106           st->as_Store()->memory_size() != size_in_bytes) {
5107         return FAIL;            // mismatched store size
5108       }
5109       return i;
5110     }
5111 
5112     ++i;
5113   }
5114 }
5115 
5116 // Look for a captured store which initializes at the offset 'start'
5117 // with the given size.  If there is no such store, and no other
5118 // initialization interferes, then return zero_memory (the memory
5119 // projection of the AllocateNode).
5120 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
5121                                           PhaseValues* phase) {
5122   assert(stores_are_sane(phase), "");
5123   int i = captured_store_insertion_point(start, size_in_bytes, phase);
5124   if (i == 0) {
5125     return nullptr;              // something is dead
5126   } else if (i < 0) {
5127     return zero_memory();       // just primordial zero bits here
5128   } else {
5129     Node* st = in(i);           // here is the store at this position
5130     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
5131     return st;
5132   }
5133 }
5134 
5135 // Create, as a raw pointer, an address within my new object at 'offset'.
5136 Node* InitializeNode::make_raw_address(intptr_t offset,
5137                                        PhaseGVN* phase) {
5138   Node* addr = in(RawAddress);
5139   if (offset != 0) {
5140     Compile* C = phase->C;
5141     addr = phase->transform( new AddPNode(C->top(), addr,
5142                                                  phase->MakeConX(offset)) );
5143   }
5144   return addr;
5145 }
5146 
5147 // Clone the given store, converting it into a raw store
5148 // initializing a field or element of my new object.
5149 // Caller is responsible for retiring the original store,
5150 // with subsume_node or the like.
5151 //
5152 // From the example above InitializeNode::InitializeNode,
5153 // here are the old stores to be captured:
5154 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
5155 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
5156 //
5157 // Here is the changed code; note the extra edges on init:
5158 //   alloc = (Allocate ...)
5159 //   rawoop = alloc.RawAddress
5160 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
5161 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
5162 //   init = (Initialize alloc.Control alloc.Memory rawoop
5163 //                      rawstore1 rawstore2)
5164 //
5165 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
5166                                     PhaseGVN* phase, bool can_reshape) {
5167   assert(stores_are_sane(phase), "");
5168 
5169   if (start < 0)  return nullptr;
5170   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
5171 
5172   Compile* C = phase->C;
5173   int size_in_bytes = st->memory_size();
5174   int i = captured_store_insertion_point(start, size_in_bytes, phase);
5175   if (i == 0)  return nullptr;  // bail out
5176   Node* prev_mem = nullptr;     // raw memory for the captured store
5177   if (i > 0) {
5178     prev_mem = in(i);           // there is a pre-existing store under this one
5179     set_req(i, C->top());       // temporarily disconnect it
5180     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
5181   } else {
5182     i = -i;                     // no pre-existing store
5183     prev_mem = zero_memory();   // a slice of the newly allocated object
5184     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
5185       set_req(--i, C->top());   // reuse this edge; it has been folded away
5186     else
5187       ins_req(i, C->top());     // build a new edge
5188   }
5189   Node* new_st = st->clone();
5190   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5191   new_st->set_req(MemNode::Control, in(Control));
5192   new_st->set_req(MemNode::Memory,  prev_mem);
5193   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
5194   bs->eliminate_gc_barrier_data(new_st);
5195   new_st = phase->transform(new_st);
5196 
5197   // At this point, new_st might have swallowed a pre-existing store
5198   // at the same offset, or perhaps new_st might have disappeared,
5199   // if it redundantly stored the same value (or zero to fresh memory).
5200 
5201   // In any case, wire it in:
5202   PhaseIterGVN* igvn = phase->is_IterGVN();
5203   if (igvn) {
5204     igvn->rehash_node_delayed(this);
5205   }
5206   set_req(i, new_st);
5207 
5208   // The caller may now kill the old guy.
5209   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
5210   assert(check_st == new_st || check_st == nullptr, "must be findable");
5211   assert(!is_complete(), "");
5212   return new_st;
5213 }
5214 
5215 static bool store_constant(jlong* tiles, int num_tiles,
5216                            intptr_t st_off, int st_size,
5217                            jlong con) {
5218   if ((st_off & (st_size-1)) != 0)
5219     return false;               // strange store offset (assume size==2**N)
5220   address addr = (address)tiles + st_off;
5221   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
5222   switch (st_size) {
5223   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
5224   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
5225   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
5226   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
5227   default: return false;        // strange store size (detect size!=2**N here)
5228   }
5229   return true;                  // return success to caller
5230 }
5231 
5232 // Coalesce subword constants into int constants and possibly
5233 // into long constants.  The goal, if the CPU permits,
5234 // is to initialize the object with a small number of 64-bit tiles.
5235 // Also, convert floating-point constants to bit patterns.
5236 // Non-constants are not relevant to this pass.
5237 //
5238 // In terms of the running example on InitializeNode::InitializeNode
5239 // and InitializeNode::capture_store, here is the transformation
5240 // of rawstore1 and rawstore2 into rawstore12:
5241 //   alloc = (Allocate ...)
5242 //   rawoop = alloc.RawAddress
5243 //   tile12 = 0x00010002
5244 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
5245 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
5246 //
5247 void
5248 InitializeNode::coalesce_subword_stores(intptr_t header_size,
5249                                         Node* size_in_bytes,
5250                                         PhaseGVN* phase) {
5251   Compile* C = phase->C;
5252 
5253   assert(stores_are_sane(phase), "");
5254   // Note:  After this pass, they are not completely sane,
5255   // since there may be some overlaps.
5256 
5257   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
5258 
5259   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
5260   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
5261   size_limit = MIN2(size_limit, ti_limit);
5262   size_limit = align_up(size_limit, BytesPerLong);
5263   int num_tiles = size_limit / BytesPerLong;
5264 
5265   // allocate space for the tile map:
5266   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
5267   jlong  tiles_buf[small_len];
5268   Node*  nodes_buf[small_len];
5269   jlong  inits_buf[small_len];
5270   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
5271                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
5272   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
5273                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
5274   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
5275                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
5276   // tiles: exact bitwise model of all primitive constants
5277   // nodes: last constant-storing node subsumed into the tiles model
5278   // inits: which bytes (in each tile) are touched by any initializations
5279 
5280   //// Pass A: Fill in the tile model with any relevant stores.
5281 
5282   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
5283   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
5284   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
5285   Node* zmem = zero_memory(); // initially zero memory state
5286   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
5287     Node* st = in(i);
5288     intptr_t st_off = get_store_offset(st, phase);
5289 
5290     // Figure out the store's offset and constant value:
5291     if (st_off < header_size)             continue; //skip (ignore header)
5292     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
5293     int st_size = st->as_Store()->memory_size();
5294     if (st_off + st_size > size_limit)    break;
5295 
5296     // Record which bytes are touched, whether by constant or not.
5297     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
5298       continue;                 // skip (strange store size)
5299 
5300     const Type* val = phase->type(st->in(MemNode::ValueIn));
5301     if (!val->singleton())                continue; //skip (non-con store)
5302     BasicType type = val->basic_type();
5303 
5304     jlong con = 0;
5305     switch (type) {
5306     case T_INT:    con = val->is_int()->get_con();  break;
5307     case T_LONG:   con = val->is_long()->get_con(); break;
5308     case T_FLOAT:  con = jint_cast(val->getf());    break;
5309     case T_DOUBLE: con = jlong_cast(val->getd());   break;
5310     default:                              continue; //skip (odd store type)
5311     }
5312 
5313     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
5314         st->Opcode() == Op_StoreL) {
5315       continue;                 // This StoreL is already optimal.
5316     }
5317 
5318     // Store down the constant.
5319     store_constant(tiles, num_tiles, st_off, st_size, con);
5320 
5321     intptr_t j = st_off >> LogBytesPerLong;
5322 
5323     if (type == T_INT && st_size == BytesPerInt
5324         && (st_off & BytesPerInt) == BytesPerInt) {
5325       jlong lcon = tiles[j];
5326       if (!Matcher::isSimpleConstant64(lcon) &&
5327           st->Opcode() == Op_StoreI) {
5328         // This StoreI is already optimal by itself.
5329         jint* intcon = (jint*) &tiles[j];
5330         intcon[1] = 0;  // undo the store_constant()
5331 
5332         // If the previous store is also optimal by itself, back up and
5333         // undo the action of the previous loop iteration... if we can.
5334         // But if we can't, just let the previous half take care of itself.
5335         st = nodes[j];
5336         st_off -= BytesPerInt;
5337         con = intcon[0];
5338         if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) {
5339           assert(st_off >= header_size, "still ignoring header");
5340           assert(get_store_offset(st, phase) == st_off, "must be");
5341           assert(in(i-1) == zmem, "must be");
5342           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
5343           assert(con == tcon->is_int()->get_con(), "must be");
5344           // Undo the effects of the previous loop trip, which swallowed st:
5345           intcon[0] = 0;        // undo store_constant()
5346           set_req(i-1, st);     // undo set_req(i, zmem)
5347           nodes[j] = nullptr;   // undo nodes[j] = st
5348           --old_subword;        // undo ++old_subword
5349         }
5350         continue;               // This StoreI is already optimal.
5351       }
5352     }
5353 
5354     // This store is not needed.
5355     set_req(i, zmem);
5356     nodes[j] = st;              // record for the moment
5357     if (st_size < BytesPerLong) // something has changed
5358           ++old_subword;        // includes int/float, but who's counting...
5359     else  ++old_long;
5360   }
5361 
5362   if ((old_subword + old_long) == 0)
5363     return;                     // nothing more to do
5364 
5365   //// Pass B: Convert any non-zero tiles into optimal constant stores.
5366   // Be sure to insert them before overlapping non-constant stores.
5367   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
5368   for (int j = 0; j < num_tiles; j++) {
5369     jlong con  = tiles[j];
5370     jlong init = inits[j];
5371     if (con == 0)  continue;
5372     jint con0,  con1;           // split the constant, address-wise
5373     jint init0, init1;          // split the init map, address-wise
5374     { union { jlong con; jint intcon[2]; } u;
5375       u.con = con;
5376       con0  = u.intcon[0];
5377       con1  = u.intcon[1];
5378       u.con = init;
5379       init0 = u.intcon[0];
5380       init1 = u.intcon[1];
5381     }
5382 
5383     Node* old = nodes[j];
5384     assert(old != nullptr, "need the prior store");
5385     intptr_t offset = (j * BytesPerLong);
5386 
5387     bool split = !Matcher::isSimpleConstant64(con);
5388 
5389     if (offset < header_size) {
5390       assert(offset + BytesPerInt >= header_size, "second int counts");
5391       assert(*(jint*)&tiles[j] == 0, "junk in header");
5392       split = true;             // only the second word counts
5393       // Example:  int a[] = { 42 ... }
5394     } else if (con0 == 0 && init0 == -1) {
5395       split = true;             // first word is covered by full inits
5396       // Example:  int a[] = { ... foo(), 42 ... }
5397     } else if (con1 == 0 && init1 == -1) {
5398       split = true;             // second word is covered by full inits
5399       // Example:  int a[] = { ... 42, foo() ... }
5400     }
5401 
5402     // Here's a case where init0 is neither 0 nor -1:
5403     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
5404     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
5405     // In this case the tile is not split; it is (jlong)42.
5406     // The big tile is stored down, and then the foo() value is inserted.
5407     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
5408 
5409     Node* ctl = old->in(MemNode::Control);
5410     Node* adr = make_raw_address(offset, phase);
5411     const TypePtr* atp = TypeRawPtr::BOTTOM;
5412 
5413     // One or two coalesced stores to plop down.
5414     Node*    st[2];
5415     intptr_t off[2];
5416     int  nst = 0;
5417     if (!split) {
5418       ++new_long;
5419       off[nst] = offset;
5420       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
5421                                   phase->longcon(con), T_LONG, MemNode::unordered);
5422     } else {
5423       // Omit either if it is a zero.
5424       if (con0 != 0) {
5425         ++new_int;
5426         off[nst]  = offset;
5427         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
5428                                     phase->intcon(con0), T_INT, MemNode::unordered);
5429       }
5430       if (con1 != 0) {
5431         ++new_int;
5432         offset += BytesPerInt;
5433         adr = make_raw_address(offset, phase);
5434         off[nst]  = offset;
5435         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
5436                                     phase->intcon(con1), T_INT, MemNode::unordered);
5437       }
5438     }
5439 
5440     // Insert second store first, then the first before the second.
5441     // Insert each one just before any overlapping non-constant stores.
5442     while (nst > 0) {
5443       Node* st1 = st[--nst];
5444       C->copy_node_notes_to(st1, old);
5445       st1 = phase->transform(st1);
5446       offset = off[nst];
5447       assert(offset >= header_size, "do not smash header");
5448       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
5449       guarantee(ins_idx != 0, "must re-insert constant store");
5450       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
5451       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
5452         set_req(--ins_idx, st1);
5453       else
5454         ins_req(ins_idx, st1);
5455     }
5456   }
5457 
5458   if (PrintCompilation && WizardMode)
5459     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
5460                   old_subword, old_long, new_int, new_long);
5461   if (C->log() != nullptr)
5462     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
5463                    old_subword, old_long, new_int, new_long);
5464 
5465   // Clean up any remaining occurrences of zmem:
5466   remove_extra_zeroes();
5467 }
5468 
5469 // Explore forward from in(start) to find the first fully initialized
5470 // word, and return its offset.  Skip groups of subword stores which
5471 // together initialize full words.  If in(start) is itself part of a
5472 // fully initialized word, return the offset of in(start).  If there
5473 // are no following full-word stores, or if something is fishy, return
5474 // a negative value.
5475 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
5476   int       int_map = 0;
5477   intptr_t  int_map_off = 0;
5478   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
5479 
5480   for (uint i = start, limit = req(); i < limit; i++) {
5481     Node* st = in(i);
5482 
5483     intptr_t st_off = get_store_offset(st, phase);
5484     if (st_off < 0)  break;  // return conservative answer
5485 
5486     int st_size = st->as_Store()->memory_size();
5487     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
5488       return st_off;            // we found a complete word init
5489     }
5490 
5491     // update the map:
5492 
5493     intptr_t this_int_off = align_down(st_off, BytesPerInt);
5494     if (this_int_off != int_map_off) {
5495       // reset the map:
5496       int_map = 0;
5497       int_map_off = this_int_off;
5498     }
5499 
5500     int subword_off = st_off - this_int_off;
5501     int_map |= right_n_bits(st_size) << subword_off;
5502     if ((int_map & FULL_MAP) == FULL_MAP) {
5503       return this_int_off;      // we found a complete word init
5504     }
5505 
5506     // Did this store hit or cross the word boundary?
5507     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
5508     if (next_int_off == this_int_off + BytesPerInt) {
5509       // We passed the current int, without fully initializing it.
5510       int_map_off = next_int_off;
5511       int_map >>= BytesPerInt;
5512     } else if (next_int_off > this_int_off + BytesPerInt) {
5513       // We passed the current and next int.
5514       return this_int_off + BytesPerInt;
5515     }
5516   }
5517 
5518   return -1;
5519 }
5520 
5521 
5522 // Called when the associated AllocateNode is expanded into CFG.
5523 // At this point, we may perform additional optimizations.
5524 // Linearize the stores by ascending offset, to make memory
5525 // activity as coherent as possible.
5526 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
5527                                       intptr_t header_size,
5528                                       Node* size_in_bytes,
5529                                       PhaseIterGVN* phase) {
5530   assert(!is_complete(), "not already complete");
5531   assert(stores_are_sane(phase), "");
5532   assert(allocation() != nullptr, "must be present");
5533 
5534   remove_extra_zeroes();
5535 
5536   if (ReduceFieldZeroing || ReduceBulkZeroing)
5537     // reduce instruction count for common initialization patterns
5538     coalesce_subword_stores(header_size, size_in_bytes, phase);
5539 
5540   Node* zmem = zero_memory();   // initially zero memory state
5541   Node* inits = zmem;           // accumulating a linearized chain of inits
5542   #ifdef ASSERT
5543   intptr_t first_offset = allocation()->minimum_header_size();
5544   intptr_t last_init_off = first_offset;  // previous init offset
5545   intptr_t last_init_end = first_offset;  // previous init offset+size
5546   intptr_t last_tile_end = first_offset;  // previous tile offset+size
5547   #endif
5548   intptr_t zeroes_done = header_size;
5549 
5550   bool do_zeroing = true;       // we might give up if inits are very sparse
5551   int  big_init_gaps = 0;       // how many large gaps have we seen?
5552 
5553   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
5554   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
5555 
5556   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
5557     Node* st = in(i);
5558     intptr_t st_off = get_store_offset(st, phase);
5559     if (st_off < 0)
5560       break;                    // unknown junk in the inits
5561     if (st->in(MemNode::Memory) != zmem)
5562       break;                    // complicated store chains somehow in list
5563 
5564     int st_size = st->as_Store()->memory_size();
5565     intptr_t next_init_off = st_off + st_size;
5566 
5567     if (do_zeroing && zeroes_done < next_init_off) {
5568       // See if this store needs a zero before it or under it.
5569       intptr_t zeroes_needed = st_off;
5570 
5571       if (st_size < BytesPerInt) {
5572         // Look for subword stores which only partially initialize words.
5573         // If we find some, we must lay down some word-level zeroes first,
5574         // underneath the subword stores.
5575         //
5576         // Examples:
5577         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
5578         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
5579         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
5580         //
5581         // Note:  coalesce_subword_stores may have already done this,
5582         // if it was prompted by constant non-zero subword initializers.
5583         // But this case can still arise with non-constant stores.
5584 
5585         intptr_t next_full_store = find_next_fullword_store(i, phase);
5586 
5587         // In the examples above:
5588         //   in(i)          p   q   r   s     x   y     z
5589         //   st_off        12  13  14  15    12  13    14
5590         //   st_size        1   1   1   1     1   1     1
5591         //   next_full_s.  12  16  16  16    16  16    16
5592         //   z's_done      12  16  16  16    12  16    12
5593         //   z's_needed    12  16  16  16    16  16    16
5594         //   zsize          0   0   0   0     4   0     4
5595         if (next_full_store < 0) {
5596           // Conservative tack:  Zero to end of current word.
5597           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
5598         } else {
5599           // Zero to beginning of next fully initialized word.
5600           // Or, don't zero at all, if we are already in that word.
5601           assert(next_full_store >= zeroes_needed, "must go forward");
5602           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
5603           zeroes_needed = next_full_store;
5604         }
5605       }
5606 
5607       if (zeroes_needed > zeroes_done) {
5608         intptr_t zsize = zeroes_needed - zeroes_done;
5609         // Do some incremental zeroing on rawmem, in parallel with inits.
5610         zeroes_done = align_down(zeroes_done, BytesPerInt);
5611         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
5612                                               allocation()->in(AllocateNode::InitValue),
5613                                               allocation()->in(AllocateNode::RawInitValue),
5614                                               zeroes_done, zeroes_needed,
5615                                               phase);
5616         zeroes_done = zeroes_needed;
5617         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
5618           do_zeroing = false;   // leave the hole, next time
5619       }
5620     }
5621 
5622     // Collect the store and move on:
5623     phase->replace_input_of(st, MemNode::Memory, inits);
5624     inits = st;                 // put it on the linearized chain
5625     set_req(i, zmem);           // unhook from previous position
5626 
5627     if (zeroes_done == st_off)
5628       zeroes_done = next_init_off;
5629 
5630     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
5631 
5632     #ifdef ASSERT
5633     // Various order invariants.  Weaker than stores_are_sane because
5634     // a large constant tile can be filled in by smaller non-constant stores.
5635     assert(st_off >= last_init_off, "inits do not reverse");
5636     last_init_off = st_off;
5637     const Type* val = nullptr;
5638     if (st_size >= BytesPerInt &&
5639         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
5640         (int)val->basic_type() < (int)T_OBJECT) {
5641       assert(st_off >= last_tile_end, "tiles do not overlap");
5642       assert(st_off >= last_init_end, "tiles do not overwrite inits");
5643       last_tile_end = MAX2(last_tile_end, next_init_off);
5644     } else {
5645       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
5646       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
5647       assert(st_off      >= last_init_end, "inits do not overlap");
5648       last_init_end = next_init_off;  // it's a non-tile
5649     }
5650     #endif //ASSERT
5651   }
5652 
5653   remove_extra_zeroes();        // clear out all the zmems left over
5654   add_req(inits);
5655 
5656   if (!(UseTLAB && ZeroTLAB)) {
5657     // If anything remains to be zeroed, zero it all now.
5658     zeroes_done = align_down(zeroes_done, BytesPerInt);
5659     // if it is the last unused 4 bytes of an instance, forget about it
5660     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
5661     if (zeroes_done + BytesPerLong >= size_limit) {
5662       AllocateNode* alloc = allocation();
5663       assert(alloc != nullptr, "must be present");
5664       if (alloc != nullptr && alloc->Opcode() == Op_Allocate) {
5665         Node* klass_node = alloc->in(AllocateNode::KlassNode);
5666         ciKlass* k = phase->type(klass_node)->is_instklassptr()->instance_klass();
5667         if (zeroes_done == k->layout_helper())
5668           zeroes_done = size_limit;
5669       }
5670     }
5671     if (zeroes_done < size_limit) {
5672       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
5673                                             allocation()->in(AllocateNode::InitValue),
5674                                             allocation()->in(AllocateNode::RawInitValue),
5675                                             zeroes_done, size_in_bytes, phase);
5676     }
5677   }
5678 
5679   set_complete(phase);
5680   return rawmem;
5681 }
5682 
5683 
5684 #ifdef ASSERT
5685 bool InitializeNode::stores_are_sane(PhaseValues* phase) {
5686   if (is_complete())
5687     return true;                // stores could be anything at this point
5688   assert(allocation() != nullptr, "must be present");
5689   intptr_t last_off = allocation()->minimum_header_size();
5690   for (uint i = InitializeNode::RawStores; i < req(); i++) {
5691     Node* st = in(i);
5692     intptr_t st_off = get_store_offset(st, phase);
5693     if (st_off < 0)  continue;  // ignore dead garbage
5694     if (last_off > st_off) {
5695       tty->print_cr("*** bad store offset at %d: %zd > %zd", i, last_off, st_off);
5696       this->dump(2);
5697       assert(false, "ascending store offsets");
5698       return false;
5699     }
5700     last_off = st_off + st->as_Store()->memory_size();
5701   }
5702   return true;
5703 }
5704 #endif //ASSERT
5705 
5706 
5707 
5708 
5709 //============================MergeMemNode=====================================
5710 //
5711 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
5712 // contributing store or call operations.  Each contributor provides the memory
5713 // state for a particular "alias type" (see Compile::alias_type).  For example,
5714 // if a MergeMem has an input X for alias category #6, then any memory reference
5715 // to alias category #6 may use X as its memory state input, as an exact equivalent
5716 // to using the MergeMem as a whole.
5717 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
5718 //
5719 // (Here, the <N> notation gives the index of the relevant adr_type.)
5720 //
5721 // In one special case (and more cases in the future), alias categories overlap.
5722 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
5723 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
5724 // it is exactly equivalent to that state W:
5725 //   MergeMem(<Bot>: W) <==> W
5726 //
5727 // Usually, the merge has more than one input.  In that case, where inputs
5728 // overlap (i.e., one is Bot), the narrower alias type determines the memory
5729 // state for that type, and the wider alias type (Bot) fills in everywhere else:
5730 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
5731 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
5732 //
5733 // A merge can take a "wide" memory state as one of its narrow inputs.
5734 // This simply means that the merge observes out only the relevant parts of
5735 // the wide input.  That is, wide memory states arriving at narrow merge inputs
5736 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
5737 //
5738 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
5739 // and that memory slices "leak through":
5740 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
5741 //
5742 // But, in such a cascade, repeated memory slices can "block the leak":
5743 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
5744 //
5745 // In the last example, Y is not part of the combined memory state of the
5746 // outermost MergeMem.  The system must, of course, prevent unschedulable
5747 // memory states from arising, so you can be sure that the state Y is somehow
5748 // a precursor to state Y'.
5749 //
5750 //
5751 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
5752 // of each MergeMemNode array are exactly the numerical alias indexes, including
5753 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
5754 // Compile::alias_type (and kin) produce and manage these indexes.
5755 //
5756 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
5757 // (Note that this provides quick access to the top node inside MergeMem methods,
5758 // without the need to reach out via TLS to Compile::current.)
5759 //
5760 // As a consequence of what was just described, a MergeMem that represents a full
5761 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
5762 // containing all alias categories.
5763 //
5764 // MergeMem nodes never (?) have control inputs, so in(0) is null.
5765 //
5766 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
5767 // a memory state for the alias type <N>, or else the top node, meaning that
5768 // there is no particular input for that alias type.  Note that the length of
5769 // a MergeMem is variable, and may be extended at any time to accommodate new
5770 // memory states at larger alias indexes.  When merges grow, they are of course
5771 // filled with "top" in the unused in() positions.
5772 //
5773 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
5774 // (Top was chosen because it works smoothly with passes like GCM.)
5775 //
5776 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
5777 // the type of random VM bits like TLS references.)  Since it is always the
5778 // first non-Bot memory slice, some low-level loops use it to initialize an
5779 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
5780 //
5781 //
5782 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
5783 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
5784 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
5785 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
5786 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
5787 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
5788 //
5789 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
5790 // really that different from the other memory inputs.  An abbreviation called
5791 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
5792 //
5793 //
5794 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
5795 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
5796 // that "emerges though" the base memory will be marked as excluding the alias types
5797 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
5798 //
5799 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
5800 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
5801 //
5802 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
5803 // (It is currently unimplemented.)  As you can see, the resulting merge is
5804 // actually a disjoint union of memory states, rather than an overlay.
5805 //
5806 
5807 //------------------------------MergeMemNode-----------------------------------
5808 Node* MergeMemNode::make_empty_memory() {
5809   Node* empty_memory = (Node*) Compile::current()->top();
5810   assert(empty_memory->is_top(), "correct sentinel identity");
5811   return empty_memory;
5812 }
5813 
5814 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
5815   init_class_id(Class_MergeMem);
5816   // all inputs are nullified in Node::Node(int)
5817   // set_input(0, nullptr);  // no control input
5818 
5819   // Initialize the edges uniformly to top, for starters.
5820   Node* empty_mem = make_empty_memory();
5821   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
5822     init_req(i,empty_mem);
5823   }
5824   assert(empty_memory() == empty_mem, "");
5825 
5826   if( new_base != nullptr && new_base->is_MergeMem() ) {
5827     MergeMemNode* mdef = new_base->as_MergeMem();
5828     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
5829     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
5830       mms.set_memory(mms.memory2());
5831     }
5832     assert(base_memory() == mdef->base_memory(), "");
5833   } else {
5834     set_base_memory(new_base);
5835   }
5836 }
5837 
5838 // Make a new, untransformed MergeMem with the same base as 'mem'.
5839 // If mem is itself a MergeMem, populate the result with the same edges.
5840 MergeMemNode* MergeMemNode::make(Node* mem) {
5841   return new MergeMemNode(mem);
5842 }
5843 
5844 //------------------------------cmp--------------------------------------------
5845 uint MergeMemNode::hash() const { return NO_HASH; }
5846 bool MergeMemNode::cmp( const Node &n ) const {
5847   return (&n == this);          // Always fail except on self
5848 }
5849 
5850 //------------------------------Identity---------------------------------------
5851 Node* MergeMemNode::Identity(PhaseGVN* phase) {
5852   // Identity if this merge point does not record any interesting memory
5853   // disambiguations.
5854   Node* base_mem = base_memory();
5855   Node* empty_mem = empty_memory();
5856   if (base_mem != empty_mem) {  // Memory path is not dead?
5857     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5858       Node* mem = in(i);
5859       if (mem != empty_mem && mem != base_mem) {
5860         return this;            // Many memory splits; no change
5861       }
5862     }
5863   }
5864   return base_mem;              // No memory splits; ID on the one true input
5865 }
5866 
5867 //------------------------------Ideal------------------------------------------
5868 // This method is invoked recursively on chains of MergeMem nodes
5869 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
5870   // Remove chain'd MergeMems
5871   //
5872   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
5873   // relative to the "in(Bot)".  Since we are patching both at the same time,
5874   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
5875   // but rewrite each "in(i)" relative to the new "in(Bot)".
5876   Node *progress = nullptr;
5877 
5878 
5879   Node* old_base = base_memory();
5880   Node* empty_mem = empty_memory();
5881   if (old_base == empty_mem)
5882     return nullptr; // Dead memory path.
5883 
5884   MergeMemNode* old_mbase;
5885   if (old_base != nullptr && old_base->is_MergeMem())
5886     old_mbase = old_base->as_MergeMem();
5887   else
5888     old_mbase = nullptr;
5889   Node* new_base = old_base;
5890 
5891   // simplify stacked MergeMems in base memory
5892   if (old_mbase)  new_base = old_mbase->base_memory();
5893 
5894   // the base memory might contribute new slices beyond my req()
5895   if (old_mbase)  grow_to_match(old_mbase);
5896 
5897   // Note:  We do not call verify_sparse on entry, because inputs
5898   // can normalize to the base_memory via subsume_node or similar
5899   // mechanisms.  This method repairs that damage.
5900 
5901   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
5902 
5903   // Look at each slice.
5904   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5905     Node* old_in = in(i);
5906     // calculate the old memory value
5907     Node* old_mem = old_in;
5908     if (old_mem == empty_mem)  old_mem = old_base;
5909     assert(old_mem == memory_at(i), "");
5910 
5911     // maybe update (reslice) the old memory value
5912 
5913     // simplify stacked MergeMems
5914     Node* new_mem = old_mem;
5915     MergeMemNode* old_mmem;
5916     if (old_mem != nullptr && old_mem->is_MergeMem())
5917       old_mmem = old_mem->as_MergeMem();
5918     else
5919       old_mmem = nullptr;
5920     if (old_mmem == this) {
5921       // This can happen if loops break up and safepoints disappear.
5922       // A merge of BotPtr (default) with a RawPtr memory derived from a
5923       // safepoint can be rewritten to a merge of the same BotPtr with
5924       // the BotPtr phi coming into the loop.  If that phi disappears
5925       // also, we can end up with a self-loop of the mergemem.
5926       // In general, if loops degenerate and memory effects disappear,
5927       // a mergemem can be left looking at itself.  This simply means
5928       // that the mergemem's default should be used, since there is
5929       // no longer any apparent effect on this slice.
5930       // Note: If a memory slice is a MergeMem cycle, it is unreachable
5931       //       from start.  Update the input to TOP.
5932       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
5933     }
5934     else if (old_mmem != nullptr) {
5935       new_mem = old_mmem->memory_at(i);
5936     }
5937     // else preceding memory was not a MergeMem
5938 
5939     // maybe store down a new value
5940     Node* new_in = new_mem;
5941     if (new_in == new_base)  new_in = empty_mem;
5942 
5943     if (new_in != old_in) {
5944       // Warning:  Do not combine this "if" with the previous "if"
5945       // A memory slice might have be be rewritten even if it is semantically
5946       // unchanged, if the base_memory value has changed.
5947       set_req_X(i, new_in, phase);
5948       progress = this;          // Report progress
5949     }
5950   }
5951 
5952   if (new_base != old_base) {
5953     set_req_X(Compile::AliasIdxBot, new_base, phase);
5954     // Don't use set_base_memory(new_base), because we need to update du.
5955     assert(base_memory() == new_base, "");
5956     progress = this;
5957   }
5958 
5959   if( base_memory() == this ) {
5960     // a self cycle indicates this memory path is dead
5961     set_req(Compile::AliasIdxBot, empty_mem);
5962   }
5963 
5964   // Resolve external cycles by calling Ideal on a MergeMem base_memory
5965   // Recursion must occur after the self cycle check above
5966   if( base_memory()->is_MergeMem() ) {
5967     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
5968     Node *m = phase->transform(new_mbase);  // Rollup any cycles
5969     if( m != nullptr &&
5970         (m->is_top() ||
5971          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
5972       // propagate rollup of dead cycle to self
5973       set_req(Compile::AliasIdxBot, empty_mem);
5974     }
5975   }
5976 
5977   if( base_memory() == empty_mem ) {
5978     progress = this;
5979     // Cut inputs during Parse phase only.
5980     // During Optimize phase a dead MergeMem node will be subsumed by Top.
5981     if( !can_reshape ) {
5982       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5983         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
5984       }
5985     }
5986   }
5987 
5988   if( !progress && base_memory()->is_Phi() && can_reshape ) {
5989     // Check if PhiNode::Ideal's "Split phis through memory merges"
5990     // transform should be attempted. Look for this->phi->this cycle.
5991     uint merge_width = req();
5992     if (merge_width > Compile::AliasIdxRaw) {
5993       PhiNode* phi = base_memory()->as_Phi();
5994       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
5995         if (phi->in(i) == this) {
5996           phase->is_IterGVN()->_worklist.push(phi);
5997           break;
5998         }
5999       }
6000     }
6001   }
6002 
6003   assert(progress || verify_sparse(), "please, no dups of base");
6004   return progress;
6005 }
6006 
6007 //-------------------------set_base_memory-------------------------------------
6008 void MergeMemNode::set_base_memory(Node *new_base) {
6009   Node* empty_mem = empty_memory();
6010   set_req(Compile::AliasIdxBot, new_base);
6011   assert(memory_at(req()) == new_base, "must set default memory");
6012   // Clear out other occurrences of new_base:
6013   if (new_base != empty_mem) {
6014     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
6015       if (in(i) == new_base)  set_req(i, empty_mem);
6016     }
6017   }
6018 }
6019 
6020 //------------------------------out_RegMask------------------------------------
6021 const RegMask &MergeMemNode::out_RegMask() const {
6022   return RegMask::Empty;
6023 }
6024 
6025 //------------------------------dump_spec--------------------------------------
6026 #ifndef PRODUCT
6027 void MergeMemNode::dump_spec(outputStream *st) const {
6028   st->print(" {");
6029   Node* base_mem = base_memory();
6030   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
6031     Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem;
6032     if (mem == base_mem) { st->print(" -"); continue; }
6033     st->print( " N%d:", mem->_idx );
6034     Compile::current()->get_adr_type(i)->dump_on(st);
6035   }
6036   st->print(" }");
6037 }
6038 #endif // !PRODUCT
6039 
6040 
6041 #ifdef ASSERT
6042 static bool might_be_same(Node* a, Node* b) {
6043   if (a == b)  return true;
6044   if (!(a->is_Phi() || b->is_Phi()))  return false;
6045   // phis shift around during optimization
6046   return true;  // pretty stupid...
6047 }
6048 
6049 // verify a narrow slice (either incoming or outgoing)
6050 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
6051   if (!VerifyAliases)                return;  // don't bother to verify unless requested
6052   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
6053   if (Node::in_dump())               return;  // muzzle asserts when printing
6054   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
6055   assert(n != nullptr, "");
6056   // Elide intervening MergeMem's
6057   while (n->is_MergeMem()) {
6058     n = n->as_MergeMem()->memory_at(alias_idx);
6059   }
6060   Compile* C = Compile::current();
6061   const TypePtr* n_adr_type = n->adr_type();
6062   if (n == m->empty_memory()) {
6063     // Implicit copy of base_memory()
6064   } else if (n_adr_type != TypePtr::BOTTOM) {
6065     assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type");
6066     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
6067   } else {
6068     // A few places like make_runtime_call "know" that VM calls are narrow,
6069     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
6070     bool expected_wide_mem = false;
6071     if (n == m->base_memory()) {
6072       expected_wide_mem = true;
6073     } else if (alias_idx == Compile::AliasIdxRaw ||
6074                n == m->memory_at(Compile::AliasIdxRaw)) {
6075       expected_wide_mem = true;
6076     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
6077       // memory can "leak through" calls on channels that
6078       // are write-once.  Allow this also.
6079       expected_wide_mem = true;
6080     }
6081     assert(expected_wide_mem, "expected narrow slice replacement");
6082   }
6083 }
6084 #else // !ASSERT
6085 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
6086 #endif
6087 
6088 
6089 //-----------------------------memory_at---------------------------------------
6090 Node* MergeMemNode::memory_at(uint alias_idx) const {
6091   assert(alias_idx >= Compile::AliasIdxRaw ||
6092          (alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing()),
6093          "must avoid base_memory and AliasIdxTop");
6094 
6095   // Otherwise, it is a narrow slice.
6096   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
6097   if (is_empty_memory(n)) {
6098     // the array is sparse; empty slots are the "top" node
6099     n = base_memory();
6100     assert(Node::in_dump()
6101            || n == nullptr || n->bottom_type() == Type::TOP
6102            || n->adr_type() == nullptr // address is TOP
6103            || n->adr_type() == TypePtr::BOTTOM
6104            || n->adr_type() == TypeRawPtr::BOTTOM
6105            || !Compile::current()->do_aliasing(),
6106            "must be a wide memory");
6107     // do_aliasing == false if we are organizing the memory states manually.
6108     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
6109   } else {
6110     // make sure the stored slice is sane
6111     #ifdef ASSERT
6112     if (VMError::is_error_reported() || Node::in_dump()) {
6113     } else if (might_be_same(n, base_memory())) {
6114       // Give it a pass:  It is a mostly harmless repetition of the base.
6115       // This can arise normally from node subsumption during optimization.
6116     } else {
6117       verify_memory_slice(this, alias_idx, n);
6118     }
6119     #endif
6120   }
6121   return n;
6122 }
6123 
6124 //---------------------------set_memory_at-------------------------------------
6125 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
6126   verify_memory_slice(this, alias_idx, n);
6127   Node* empty_mem = empty_memory();
6128   if (n == base_memory())  n = empty_mem;  // collapse default
6129   uint need_req = alias_idx+1;
6130   if (req() < need_req) {
6131     if (n == empty_mem)  return;  // already the default, so do not grow me
6132     // grow the sparse array
6133     do {
6134       add_req(empty_mem);
6135     } while (req() < need_req);
6136   }
6137   set_req( alias_idx, n );
6138 }
6139 
6140 
6141 
6142 //--------------------------iteration_setup------------------------------------
6143 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
6144   if (other != nullptr) {
6145     grow_to_match(other);
6146     // invariant:  the finite support of mm2 is within mm->req()
6147     #ifdef ASSERT
6148     for (uint i = req(); i < other->req(); i++) {
6149       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
6150     }
6151     #endif
6152   }
6153   // Replace spurious copies of base_memory by top.
6154   Node* base_mem = base_memory();
6155   if (base_mem != nullptr && !base_mem->is_top()) {
6156     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
6157       if (in(i) == base_mem)
6158         set_req(i, empty_memory());
6159     }
6160   }
6161 }
6162 
6163 //---------------------------grow_to_match-------------------------------------
6164 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
6165   Node* empty_mem = empty_memory();
6166   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
6167   // look for the finite support of the other memory
6168   for (uint i = other->req(); --i >= req(); ) {
6169     if (other->in(i) != empty_mem) {
6170       uint new_len = i+1;
6171       while (req() < new_len)  add_req(empty_mem);
6172       break;
6173     }
6174   }
6175 }
6176 
6177 //---------------------------verify_sparse-------------------------------------
6178 #ifndef PRODUCT
6179 bool MergeMemNode::verify_sparse() const {
6180   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
6181   Node* base_mem = base_memory();
6182   // The following can happen in degenerate cases, since empty==top.
6183   if (is_empty_memory(base_mem))  return true;
6184   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
6185     assert(in(i) != nullptr, "sane slice");
6186     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
6187   }
6188   return true;
6189 }
6190 
6191 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
6192   Node* n;
6193   n = mm->in(idx);
6194   if (mem == n)  return true;  // might be empty_memory()
6195   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
6196   if (mem == n)  return true;
6197   return false;
6198 }
6199 #endif // !PRODUCT