1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "compiler/compileLog.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/c2/barrierSetC2.hpp" 32 #include "gc/shared/tlab_globals.hpp" 33 #include "memory/allocation.inline.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/cfgnode.hpp" 39 #include "opto/regalloc.hpp" 40 #include "opto/compile.hpp" 41 #include "opto/connode.hpp" 42 #include "opto/convertnode.hpp" 43 #include "opto/inlinetypenode.hpp" 44 #include "opto/loopnode.hpp" 45 #include "opto/machnode.hpp" 46 #include "opto/matcher.hpp" 47 #include "opto/memnode.hpp" 48 #include "opto/mempointer.hpp" 49 #include "opto/mulnode.hpp" 50 #include "opto/narrowptrnode.hpp" 51 #include "opto/phaseX.hpp" 52 #include "opto/regmask.hpp" 53 #include "opto/rootnode.hpp" 54 #include "opto/traceMergeStoresTag.hpp" 55 #include "opto/vectornode.hpp" 56 #include "utilities/align.hpp" 57 #include "utilities/copy.hpp" 58 #include "utilities/macros.hpp" 59 #include "utilities/powerOfTwo.hpp" 60 #include "utilities/vmError.hpp" 61 62 // Portions of code courtesy of Clifford Click 63 64 // Optimization - Graph Style 65 66 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st); 67 68 //============================================================================= 69 uint MemNode::size_of() const { return sizeof(*this); } 70 71 const TypePtr *MemNode::adr_type() const { 72 Node* adr = in(Address); 73 if (adr == nullptr) return nullptr; // node is dead 74 const TypePtr* cross_check = nullptr; 75 DEBUG_ONLY(cross_check = _adr_type); 76 return calculate_adr_type(adr->bottom_type(), cross_check); 77 } 78 79 bool MemNode::check_if_adr_maybe_raw(Node* adr) { 80 if (adr != nullptr) { 81 if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) { 82 return true; 83 } 84 } 85 return false; 86 } 87 88 #ifndef PRODUCT 89 void MemNode::dump_spec(outputStream *st) const { 90 if (in(Address) == nullptr) return; // node is dead 91 #ifndef ASSERT 92 // fake the missing field 93 const TypePtr* _adr_type = nullptr; 94 if (in(Address) != nullptr) 95 _adr_type = in(Address)->bottom_type()->isa_ptr(); 96 #endif 97 dump_adr_type(this, _adr_type, st); 98 99 Compile* C = Compile::current(); 100 if (C->alias_type(_adr_type)->is_volatile()) { 101 st->print(" Volatile!"); 102 } 103 if (_unaligned_access) { 104 st->print(" unaligned"); 105 } 106 if (_mismatched_access) { 107 st->print(" mismatched"); 108 } 109 if (_unsafe_access) { 110 st->print(" unsafe"); 111 } 112 } 113 114 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) { 115 st->print(" @"); 116 if (adr_type == nullptr) { 117 st->print("null"); 118 } else { 119 adr_type->dump_on(st); 120 Compile* C = Compile::current(); 121 Compile::AliasType* atp = nullptr; 122 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type); 123 if (atp == nullptr) 124 st->print(", idx=?\?;"); 125 else if (atp->index() == Compile::AliasIdxBot) 126 st->print(", idx=Bot;"); 127 else if (atp->index() == Compile::AliasIdxTop) 128 st->print(", idx=Top;"); 129 else if (atp->index() == Compile::AliasIdxRaw) 130 st->print(", idx=Raw;"); 131 else { 132 ciField* field = atp->field(); 133 if (field) { 134 st->print(", name="); 135 field->print_name_on(st); 136 } 137 st->print(", idx=%d;", atp->index()); 138 } 139 } 140 } 141 142 extern void print_alias_types(); 143 144 #endif 145 146 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) { 147 assert((t_oop != nullptr), "sanity"); 148 bool is_instance = t_oop->is_known_instance_field(); 149 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() && 150 (load != nullptr) && load->is_Load() && 151 (phase->is_IterGVN() != nullptr); 152 if (!(is_instance || is_boxed_value_load)) 153 return mchain; // don't try to optimize non-instance types 154 uint instance_id = t_oop->instance_id(); 155 Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory); 156 Node *prev = nullptr; 157 Node *result = mchain; 158 while (prev != result) { 159 prev = result; 160 if (result == start_mem) 161 break; // hit one of our sentinels 162 // skip over a call which does not affect this memory slice 163 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 164 Node *proj_in = result->in(0); 165 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) { 166 break; // hit one of our sentinels 167 } else if (proj_in->is_Call()) { 168 // ArrayCopyNodes processed here as well 169 CallNode *call = proj_in->as_Call(); 170 if (!call->may_modify(t_oop, phase)) { // returns false for instances 171 result = call->in(TypeFunc::Memory); 172 } 173 } else if (proj_in->is_Initialize()) { 174 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 175 // Stop if this is the initialization for the object instance which 176 // contains this memory slice, otherwise skip over it. 177 if ((alloc == nullptr) || (alloc->_idx == instance_id)) { 178 break; 179 } 180 if (is_instance) { 181 result = proj_in->in(TypeFunc::Memory); 182 } else if (is_boxed_value_load) { 183 Node* klass = alloc->in(AllocateNode::KlassNode); 184 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr(); 185 if (tklass->klass_is_exact() && !tklass->exact_klass()->equals(t_oop->is_instptr()->exact_klass())) { 186 result = proj_in->in(TypeFunc::Memory); // not related allocation 187 } 188 } 189 } else if (proj_in->is_MemBar()) { 190 ArrayCopyNode* ac = nullptr; 191 if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) { 192 break; 193 } 194 result = proj_in->in(TypeFunc::Memory); 195 } else if (proj_in->is_top()) { 196 break; // dead code 197 } else { 198 assert(false, "unexpected projection"); 199 } 200 } else if (result->is_ClearArray()) { 201 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) { 202 // Can not bypass initialization of the instance 203 // we are looking for. 204 break; 205 } 206 // Otherwise skip it (the call updated 'result' value). 207 } else if (result->is_MergeMem()) { 208 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty); 209 } 210 } 211 return result; 212 } 213 214 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) { 215 const TypeOopPtr* t_oop = t_adr->isa_oopptr(); 216 if (t_oop == nullptr) 217 return mchain; // don't try to optimize non-oop types 218 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase); 219 bool is_instance = t_oop->is_known_instance_field(); 220 PhaseIterGVN *igvn = phase->is_IterGVN(); 221 if (is_instance && igvn != nullptr && result->is_Phi()) { 222 PhiNode *mphi = result->as_Phi(); 223 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 224 const TypePtr *t = mphi->adr_type(); 225 bool do_split = false; 226 // In the following cases, Load memory input can be further optimized based on 227 // its precise address type 228 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ) { 229 do_split = true; 230 } else if (t->isa_oopptr() && !t->is_oopptr()->is_known_instance()) { 231 const TypeOopPtr* mem_t = 232 t->is_oopptr()->cast_to_exactness(true) 233 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) 234 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()); 235 if (t_oop->isa_aryptr()) { 236 mem_t = mem_t->is_aryptr() 237 ->cast_to_stable(t_oop->is_aryptr()->is_stable()) 238 ->cast_to_size(t_oop->is_aryptr()->size()) 239 ->cast_to_not_flat(t_oop->is_aryptr()->is_not_flat()) 240 ->cast_to_not_null_free(t_oop->is_aryptr()->is_not_null_free()) 241 ->with_offset(t_oop->is_aryptr()->offset()) 242 ->is_aryptr(); 243 } 244 do_split = mem_t == t_oop; 245 } 246 if (do_split) { 247 // clone the Phi with our address type 248 result = mphi->split_out_instance(t_adr, igvn); 249 } else { 250 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain"); 251 } 252 } 253 return result; 254 } 255 256 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) { 257 uint alias_idx = phase->C->get_alias_index(tp); 258 Node *mem = mmem; 259 #ifdef ASSERT 260 { 261 // Check that current type is consistent with the alias index used during graph construction 262 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx"); 263 bool consistent = adr_check == nullptr || adr_check->empty() || 264 phase->C->must_alias(adr_check, alias_idx ); 265 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3] 266 if( !consistent && adr_check != nullptr && !adr_check->empty() && 267 tp->isa_aryptr() && tp->offset() == Type::OffsetBot && 268 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot && 269 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() || 270 adr_check->offset() == oopDesc::klass_offset_in_bytes() || 271 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) { 272 // don't assert if it is dead code. 273 consistent = true; 274 } 275 if( !consistent ) { 276 st->print("alias_idx==%d, adr_check==", alias_idx); 277 if( adr_check == nullptr ) { 278 st->print("null"); 279 } else { 280 adr_check->dump(); 281 } 282 st->cr(); 283 print_alias_types(); 284 assert(consistent, "adr_check must match alias idx"); 285 } 286 } 287 #endif 288 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 289 // means an array I have not precisely typed yet. Do not do any 290 // alias stuff with it any time soon. 291 const TypeOopPtr *toop = tp->isa_oopptr(); 292 if (tp->base() != Type::AnyPtr && 293 !(toop && 294 toop->isa_instptr() && 295 toop->is_instptr()->instance_klass()->is_java_lang_Object() && 296 toop->offset() == Type::OffsetBot)) { 297 // compress paths and change unreachable cycles to TOP 298 // If not, we can update the input infinitely along a MergeMem cycle 299 // Equivalent code in PhiNode::Ideal 300 Node* m = phase->transform(mmem); 301 // If transformed to a MergeMem, get the desired slice 302 // Otherwise the returned node represents memory for every slice 303 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m; 304 // Update input if it is progress over what we have now 305 } 306 return mem; 307 } 308 309 //--------------------------Ideal_common--------------------------------------- 310 // Look for degenerate control and memory inputs. Bypass MergeMem inputs. 311 // Unhook non-raw memories from complete (macro-expanded) initializations. 312 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) { 313 // If our control input is a dead region, kill all below the region 314 Node *ctl = in(MemNode::Control); 315 if (ctl && remove_dead_region(phase, can_reshape)) 316 return this; 317 ctl = in(MemNode::Control); 318 // Don't bother trying to transform a dead node 319 if (ctl && ctl->is_top()) return NodeSentinel; 320 321 PhaseIterGVN *igvn = phase->is_IterGVN(); 322 // Wait if control on the worklist. 323 if (ctl && can_reshape && igvn != nullptr) { 324 Node* bol = nullptr; 325 Node* cmp = nullptr; 326 if (ctl->in(0)->is_If()) { 327 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity"); 328 bol = ctl->in(0)->in(1); 329 if (bol->is_Bool()) 330 cmp = ctl->in(0)->in(1)->in(1); 331 } 332 if (igvn->_worklist.member(ctl) || 333 (bol != nullptr && igvn->_worklist.member(bol)) || 334 (cmp != nullptr && igvn->_worklist.member(cmp)) ) { 335 // This control path may be dead. 336 // Delay this memory node transformation until the control is processed. 337 igvn->_worklist.push(this); 338 return NodeSentinel; // caller will return null 339 } 340 } 341 // Ignore if memory is dead, or self-loop 342 Node *mem = in(MemNode::Memory); 343 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null 344 assert(mem != this, "dead loop in MemNode::Ideal"); 345 346 if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) { 347 // This memory slice may be dead. 348 // Delay this mem node transformation until the memory is processed. 349 igvn->_worklist.push(this); 350 return NodeSentinel; // caller will return null 351 } 352 353 Node *address = in(MemNode::Address); 354 const Type *t_adr = phase->type(address); 355 if (t_adr == Type::TOP) return NodeSentinel; // caller will return null 356 357 if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) { 358 // Unsafe off-heap access with zero address. Remove access and other control users 359 // to not confuse optimizations and add a HaltNode to fail if this is ever executed. 360 assert(ctl != nullptr, "unsafe accesses should be control dependent"); 361 for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) { 362 Node* u = ctl->fast_out(i); 363 if (u != ctl) { 364 igvn->rehash_node_delayed(u); 365 int nb = u->replace_edge(ctl, phase->C->top(), igvn); 366 --i, imax -= nb; 367 } 368 } 369 Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr)); 370 Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address")); 371 phase->C->root()->add_req(halt); 372 return this; 373 } 374 375 if (can_reshape && igvn != nullptr && 376 (igvn->_worklist.member(address) || 377 (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) { 378 // The address's base and type may change when the address is processed. 379 // Delay this mem node transformation until the address is processed. 380 igvn->_worklist.push(this); 381 return NodeSentinel; // caller will return null 382 } 383 384 // Do NOT remove or optimize the next lines: ensure a new alias index 385 // is allocated for an oop pointer type before Escape Analysis. 386 // Note: C++ will not remove it since the call has side effect. 387 if (t_adr->isa_oopptr()) { 388 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr()); 389 } 390 391 Node* base = nullptr; 392 if (address->is_AddP()) { 393 base = address->in(AddPNode::Base); 394 } 395 if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) && 396 !t_adr->isa_rawptr()) { 397 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true. 398 // Skip this node optimization if its address has TOP base. 399 return NodeSentinel; // caller will return null 400 } 401 402 // Avoid independent memory operations 403 Node* old_mem = mem; 404 405 // The code which unhooks non-raw memories from complete (macro-expanded) 406 // initializations was removed. After macro-expansion all stores caught 407 // by Initialize node became raw stores and there is no information 408 // which memory slices they modify. So it is unsafe to move any memory 409 // operation above these stores. Also in most cases hooked non-raw memories 410 // were already unhooked by using information from detect_ptr_independence() 411 // and find_previous_store(). 412 413 if (mem->is_MergeMem()) { 414 MergeMemNode* mmem = mem->as_MergeMem(); 415 const TypePtr *tp = t_adr->is_ptr(); 416 417 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty); 418 } 419 420 if (mem != old_mem) { 421 set_req_X(MemNode::Memory, mem, phase); 422 if (phase->type(mem) == Type::TOP) return NodeSentinel; 423 return this; 424 } 425 426 // let the subclass continue analyzing... 427 return nullptr; 428 } 429 430 // Helper function for proving some simple control dominations. 431 // Attempt to prove that all control inputs of 'dom' dominate 'sub'. 432 // Already assumes that 'dom' is available at 'sub', and that 'sub' 433 // is not a constant (dominated by the method's StartNode). 434 // Used by MemNode::find_previous_store to prove that the 435 // control input of a memory operation predates (dominates) 436 // an allocation it wants to look past. 437 // Returns 'DomResult::Dominate' if all control inputs of 'dom' 438 // dominate 'sub', 'DomResult::NotDominate' if not, 439 // and 'DomResult::EncounteredDeadCode' if we can't decide due to 440 // dead code, but at the end of IGVN, we know the definite result 441 // once the dead code is cleaned up. 442 Node::DomResult MemNode::maybe_all_controls_dominate(Node* dom, Node* sub) { 443 if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top()) { 444 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 445 } 446 447 // Check 'dom'. Skip Proj and CatchProj nodes. 448 dom = dom->find_exact_control(dom); 449 if (dom == nullptr || dom->is_top()) { 450 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 451 } 452 453 if (dom == sub) { 454 // For the case when, for example, 'sub' is Initialize and the original 455 // 'dom' is Proj node of the 'sub'. 456 return DomResult::NotDominate; 457 } 458 459 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) { 460 return DomResult::Dominate; 461 } 462 463 // 'dom' dominates 'sub' if its control edge and control edges 464 // of all its inputs dominate or equal to sub's control edge. 465 466 // Currently 'sub' is either Allocate, Initialize or Start nodes. 467 // Or Region for the check in LoadNode::Ideal(); 468 // 'sub' should have sub->in(0) != nullptr. 469 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || 470 sub->is_Region() || sub->is_Call(), "expecting only these nodes"); 471 472 // Get control edge of 'sub'. 473 Node* orig_sub = sub; 474 sub = sub->find_exact_control(sub->in(0)); 475 if (sub == nullptr || sub->is_top()) { 476 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 477 } 478 479 assert(sub->is_CFG(), "expecting control"); 480 481 if (sub == dom) { 482 return DomResult::Dominate; 483 } 484 485 if (sub->is_Start() || sub->is_Root()) { 486 return DomResult::NotDominate; 487 } 488 489 { 490 // Check all control edges of 'dom'. 491 492 ResourceMark rm; 493 Node_List nlist; 494 Unique_Node_List dom_list; 495 496 dom_list.push(dom); 497 bool only_dominating_controls = false; 498 499 for (uint next = 0; next < dom_list.size(); next++) { 500 Node* n = dom_list.at(next); 501 if (n == orig_sub) { 502 return DomResult::NotDominate; // One of dom's inputs dominated by sub. 503 } 504 if (!n->is_CFG() && n->pinned()) { 505 // Check only own control edge for pinned non-control nodes. 506 n = n->find_exact_control(n->in(0)); 507 if (n == nullptr || n->is_top()) { 508 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 509 } 510 assert(n->is_CFG(), "expecting control"); 511 dom_list.push(n); 512 } else if (n->is_Con() || n->is_Start() || n->is_Root()) { 513 only_dominating_controls = true; 514 } else if (n->is_CFG()) { 515 DomResult dom_result = n->dominates(sub, nlist); 516 if (dom_result == DomResult::Dominate) { 517 only_dominating_controls = true; 518 } else { 519 return dom_result; 520 } 521 } else { 522 // First, own control edge. 523 Node* m = n->find_exact_control(n->in(0)); 524 if (m != nullptr) { 525 if (m->is_top()) { 526 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 527 } 528 dom_list.push(m); 529 } 530 // Now, the rest of edges. 531 uint cnt = n->req(); 532 for (uint i = 1; i < cnt; i++) { 533 m = n->find_exact_control(n->in(i)); 534 if (m == nullptr || m->is_top()) { 535 continue; 536 } 537 dom_list.push(m); 538 } 539 } 540 } 541 return only_dominating_controls ? DomResult::Dominate : DomResult::NotDominate; 542 } 543 } 544 545 //---------------------detect_ptr_independence--------------------------------- 546 // Used by MemNode::find_previous_store to prove that two base 547 // pointers are never equal. 548 // The pointers are accompanied by their associated allocations, 549 // if any, which have been previously discovered by the caller. 550 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1, 551 Node* p2, AllocateNode* a2, 552 PhaseTransform* phase) { 553 // Attempt to prove that these two pointers cannot be aliased. 554 // They may both manifestly be allocations, and they should differ. 555 // Or, if they are not both allocations, they can be distinct constants. 556 // Otherwise, one is an allocation and the other a pre-existing value. 557 if (a1 == nullptr && a2 == nullptr) { // neither an allocation 558 return (p1 != p2) && p1->is_Con() && p2->is_Con(); 559 } else if (a1 != nullptr && a2 != nullptr) { // both allocations 560 return (a1 != a2); 561 } else if (a1 != nullptr) { // one allocation a1 562 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.) 563 return all_controls_dominate(p2, a1); 564 } else { //(a2 != null) // one allocation a2 565 return all_controls_dominate(p1, a2); 566 } 567 return false; 568 } 569 570 571 // Find an arraycopy ac that produces the memory state represented by parameter mem. 572 // Return ac if 573 // (a) can_see_stored_value=true and ac must have set the value for this load or if 574 // (b) can_see_stored_value=false and ac could have set the value for this load or if 575 // (c) can_see_stored_value=false and ac cannot have set the value for this load. 576 // In case (c) change the parameter mem to the memory input of ac to skip it 577 // when searching stored value. 578 // Otherwise return null. 579 Node* LoadNode::find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { 580 ArrayCopyNode* ac = find_array_copy_clone(ld_alloc, mem); 581 if (ac != nullptr) { 582 Node* ld_addp = in(MemNode::Address); 583 Node* src = ac->in(ArrayCopyNode::Src); 584 const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr(); 585 586 // This is a load from a cloned array. The corresponding arraycopy ac must 587 // have set the value for the load and we can return ac but only if the load 588 // is known to be within bounds. This is checked below. 589 if (ary_t != nullptr && ld_addp->is_AddP()) { 590 Node* ld_offs = ld_addp->in(AddPNode::Offset); 591 BasicType ary_elem = ary_t->elem()->array_element_basic_type(); 592 jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem); 593 jlong elemsize = type2aelembytes(ary_elem); 594 595 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 596 const TypeInt* sizetype = ary_t->size(); 597 598 if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) { 599 // The load is known to be within bounds. It receives its value from ac. 600 return ac; 601 } 602 // The load is known to be out-of-bounds. 603 } 604 // The load could be out-of-bounds. It must not be hoisted but must remain 605 // dependent on the runtime range check. This is achieved by returning null. 606 } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) { 607 ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy(); 608 609 if (ac->is_arraycopy_validated() || 610 ac->is_copyof_validated() || 611 ac->is_copyofrange_validated()) { 612 Node* ld_addp = in(MemNode::Address); 613 if (ld_addp->is_AddP()) { 614 Node* ld_base = ld_addp->in(AddPNode::Address); 615 Node* ld_offs = ld_addp->in(AddPNode::Offset); 616 617 Node* dest = ac->in(ArrayCopyNode::Dest); 618 619 if (dest == ld_base) { 620 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 621 assert(!ld_offs_t->empty(), "dead reference should be checked already"); 622 // Take into account vector or unsafe access size 623 jlong ld_size_in_bytes = (jlong)memory_size(); 624 jlong offset_hi = ld_offs_t->_hi + ld_size_in_bytes - 1; 625 offset_hi = MIN2(offset_hi, (jlong)(TypeX::MAX->_hi)); // Take care for overflow in 32-bit VM 626 if (ac->modifies(ld_offs_t->_lo, (intptr_t)offset_hi, phase, can_see_stored_value)) { 627 return ac; 628 } 629 if (!can_see_stored_value) { 630 mem = ac->in(TypeFunc::Memory); 631 return ac; 632 } 633 } 634 } 635 } 636 } 637 return nullptr; 638 } 639 640 ArrayCopyNode* MemNode::find_array_copy_clone(Node* ld_alloc, Node* mem) const { 641 if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore || 642 mem->in(0)->Opcode() == Op_MemBarCPUOrder)) { 643 if (ld_alloc != nullptr) { 644 // Check if there is an array copy for a clone 645 Node* mb = mem->in(0); 646 ArrayCopyNode* ac = nullptr; 647 if (mb->in(0) != nullptr && mb->in(0)->is_Proj() && 648 mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) { 649 ac = mb->in(0)->in(0)->as_ArrayCopy(); 650 } else { 651 // Step over GC barrier when ReduceInitialCardMarks is disabled 652 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 653 Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0)); 654 655 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { 656 ac = control_proj_ac->in(0)->as_ArrayCopy(); 657 } 658 } 659 660 if (ac != nullptr && ac->is_clonebasic()) { 661 AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest)); 662 if (alloc != nullptr && alloc == ld_alloc) { 663 return ac; 664 } 665 } 666 } 667 } 668 return nullptr; 669 } 670 671 // The logic for reordering loads and stores uses four steps: 672 // (a) Walk carefully past stores and initializations which we 673 // can prove are independent of this load. 674 // (b) Observe that the next memory state makes an exact match 675 // with self (load or store), and locate the relevant store. 676 // (c) Ensure that, if we were to wire self directly to the store, 677 // the optimizer would fold it up somehow. 678 // (d) Do the rewiring, and return, depending on some other part of 679 // the optimizer to fold up the load. 680 // This routine handles steps (a) and (b). Steps (c) and (d) are 681 // specific to loads and stores, so they are handled by the callers. 682 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.) 683 // 684 Node* MemNode::find_previous_store(PhaseValues* phase) { 685 Node* ctrl = in(MemNode::Control); 686 Node* adr = in(MemNode::Address); 687 intptr_t offset = 0; 688 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 689 AllocateNode* alloc = AllocateNode::Ideal_allocation(base); 690 691 if (offset == Type::OffsetBot) 692 return nullptr; // cannot unalias unless there are precise offsets 693 694 const bool adr_maybe_raw = check_if_adr_maybe_raw(adr); 695 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr(); 696 697 intptr_t size_in_bytes = memory_size(); 698 699 Node* mem = in(MemNode::Memory); // start searching here... 700 701 int cnt = 50; // Cycle limiter 702 for (;;) { // While we can dance past unrelated stores... 703 if (--cnt < 0) break; // Caught in cycle or a complicated dance? 704 705 Node* prev = mem; 706 if (mem->is_Store()) { 707 Node* st_adr = mem->in(MemNode::Address); 708 intptr_t st_offset = 0; 709 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 710 if (st_base == nullptr) 711 break; // inscrutable pointer 712 713 // For raw accesses it's not enough to prove that constant offsets don't intersect. 714 // We need the bases to be the equal in order for the offset check to make sense. 715 if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) { 716 break; 717 } 718 719 if (st_offset != offset && st_offset != Type::OffsetBot) { 720 const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 721 assert(mem->as_Store()->memory_size() <= MAX_STORE, ""); 722 if (st_offset >= offset + size_in_bytes || 723 st_offset <= offset - MAX_STORE || 724 st_offset <= offset - mem->as_Store()->memory_size()) { 725 // Success: The offsets are provably independent. 726 // (You may ask, why not just test st_offset != offset and be done? 727 // The answer is that stores of different sizes can co-exist 728 // in the same sequence of RawMem effects. We sometimes initialize 729 // a whole 'tile' of array elements with a single jint or jlong.) 730 mem = mem->in(MemNode::Memory); 731 continue; // (a) advance through independent store memory 732 } 733 } 734 if (st_base != base && 735 detect_ptr_independence(base, alloc, 736 st_base, 737 AllocateNode::Ideal_allocation(st_base), 738 phase)) { 739 // Success: The bases are provably independent. 740 mem = mem->in(MemNode::Memory); 741 continue; // (a) advance through independent store memory 742 } 743 744 // (b) At this point, if the bases or offsets do not agree, we lose, 745 // since we have not managed to prove 'this' and 'mem' independent. 746 if (st_base == base && st_offset == offset) { 747 return mem; // let caller handle steps (c), (d) 748 } 749 750 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 751 InitializeNode* st_init = mem->in(0)->as_Initialize(); 752 AllocateNode* st_alloc = st_init->allocation(); 753 if (st_alloc == nullptr) { 754 break; // something degenerated 755 } 756 bool known_identical = false; 757 bool known_independent = false; 758 if (alloc == st_alloc) { 759 known_identical = true; 760 } else if (alloc != nullptr) { 761 known_independent = true; 762 } else if (all_controls_dominate(this, st_alloc)) { 763 known_independent = true; 764 } 765 766 if (known_independent) { 767 // The bases are provably independent: Either they are 768 // manifestly distinct allocations, or else the control 769 // of this load dominates the store's allocation. 770 int alias_idx = phase->C->get_alias_index(adr_type()); 771 if (alias_idx == Compile::AliasIdxRaw) { 772 mem = st_alloc->in(TypeFunc::Memory); 773 } else { 774 mem = st_init->memory(alias_idx); 775 } 776 continue; // (a) advance through independent store memory 777 } 778 779 // (b) at this point, if we are not looking at a store initializing 780 // the same allocation we are loading from, we lose. 781 if (known_identical) { 782 // From caller, can_see_stored_value will consult find_captured_store. 783 return mem; // let caller handle steps (c), (d) 784 } 785 786 } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) { 787 if (prev != mem) { 788 // Found an arraycopy but it doesn't affect that load 789 continue; 790 } 791 // Found an arraycopy that may affect that load 792 return mem; 793 } else if (addr_t != nullptr && addr_t->is_known_instance_field()) { 794 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN. 795 if (mem->is_Proj() && mem->in(0)->is_Call()) { 796 // ArrayCopyNodes processed here as well. 797 CallNode *call = mem->in(0)->as_Call(); 798 if (!call->may_modify(addr_t, phase)) { 799 mem = call->in(TypeFunc::Memory); 800 continue; // (a) advance through independent call memory 801 } 802 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) { 803 ArrayCopyNode* ac = nullptr; 804 if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) { 805 break; 806 } 807 mem = mem->in(0)->in(TypeFunc::Memory); 808 continue; // (a) advance through independent MemBar memory 809 } else if (mem->is_ClearArray()) { 810 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) { 811 // (the call updated 'mem' value) 812 continue; // (a) advance through independent allocation memory 813 } else { 814 // Can not bypass initialization of the instance 815 // we are looking for. 816 return mem; 817 } 818 } else if (mem->is_MergeMem()) { 819 int alias_idx = phase->C->get_alias_index(adr_type()); 820 mem = mem->as_MergeMem()->memory_at(alias_idx); 821 continue; // (a) advance through independent MergeMem memory 822 } 823 } 824 825 // Unless there is an explicit 'continue', we must bail out here, 826 // because 'mem' is an inscrutable memory state (e.g., a call). 827 break; 828 } 829 830 return nullptr; // bail out 831 } 832 833 //----------------------calculate_adr_type------------------------------------- 834 // Helper function. Notices when the given type of address hits top or bottom. 835 // Also, asserts a cross-check of the type against the expected address type. 836 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) { 837 if (t == Type::TOP) return nullptr; // does not touch memory any more? 838 #ifdef ASSERT 839 if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump()) cross_check = nullptr; 840 #endif 841 const TypePtr* tp = t->isa_ptr(); 842 if (tp == nullptr) { 843 assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide"); 844 return TypePtr::BOTTOM; // touches lots of memory 845 } else { 846 #ifdef ASSERT 847 // %%%% [phh] We don't check the alias index if cross_check is 848 // TypeRawPtr::BOTTOM. Needs to be investigated. 849 if (cross_check != nullptr && 850 cross_check != TypePtr::BOTTOM && 851 cross_check != TypeRawPtr::BOTTOM) { 852 // Recheck the alias index, to see if it has changed (due to a bug). 853 Compile* C = Compile::current(); 854 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp), 855 "must stay in the original alias category"); 856 // The type of the address must be contained in the adr_type, 857 // disregarding "null"-ness. 858 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.) 859 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr(); 860 assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(), 861 "real address must not escape from expected memory type"); 862 } 863 #endif 864 return tp; 865 } 866 } 867 868 uint8_t MemNode::barrier_data(const Node* n) { 869 if (n->is_LoadStore()) { 870 return n->as_LoadStore()->barrier_data(); 871 } else if (n->is_Mem()) { 872 return n->as_Mem()->barrier_data(); 873 } 874 return 0; 875 } 876 877 //============================================================================= 878 // Should LoadNode::Ideal() attempt to remove control edges? 879 bool LoadNode::can_remove_control() const { 880 return !has_pinned_control_dependency(); 881 } 882 uint LoadNode::size_of() const { return sizeof(*this); } 883 bool LoadNode::cmp(const Node &n) const { 884 LoadNode& load = (LoadNode &)n; 885 return Type::equals(_type, load._type) && 886 _control_dependency == load._control_dependency && 887 _mo == load._mo; 888 } 889 const Type *LoadNode::bottom_type() const { return _type; } 890 uint LoadNode::ideal_reg() const { 891 return _type->ideal_reg(); 892 } 893 894 #ifndef PRODUCT 895 void LoadNode::dump_spec(outputStream *st) const { 896 MemNode::dump_spec(st); 897 if( !Verbose && !WizardMode ) { 898 // standard dump does this in Verbose and WizardMode 899 st->print(" #"); _type->dump_on(st); 900 } 901 if (!depends_only_on_test()) { 902 st->print(" (does not depend only on test, "); 903 if (control_dependency() == UnknownControl) { 904 st->print("unknown control"); 905 } else if (control_dependency() == Pinned) { 906 st->print("pinned"); 907 } else if (adr_type() == TypeRawPtr::BOTTOM) { 908 st->print("raw access"); 909 } else { 910 st->print("unknown reason"); 911 } 912 st->print(")"); 913 } 914 } 915 #endif 916 917 #ifdef ASSERT 918 //----------------------------is_immutable_value------------------------------- 919 // Helper function to allow a raw load without control edge for some cases 920 bool LoadNode::is_immutable_value(Node* adr) { 921 if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() && 922 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal) { 923 924 jlong offset = adr->in(AddPNode::Offset)->find_intptr_t_con(-1); 925 int offsets[] = { 926 in_bytes(JavaThread::osthread_offset()), 927 in_bytes(JavaThread::threadObj_offset()), 928 in_bytes(JavaThread::vthread_offset()), 929 in_bytes(JavaThread::scopedValueCache_offset()), 930 }; 931 932 for (size_t i = 0; i < sizeof offsets / sizeof offsets[0]; i++) { 933 if (offset == offsets[i]) { 934 return true; 935 } 936 } 937 } 938 939 return false; 940 } 941 #endif 942 943 //----------------------------LoadNode::make----------------------------------- 944 // Polymorphic factory method: 945 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo, 946 ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { 947 Compile* C = gvn.C; 948 949 // sanity check the alias category against the created node type 950 assert(!(adr_type->isa_oopptr() && 951 adr_type->offset() == oopDesc::klass_offset_in_bytes()), 952 "use LoadKlassNode instead"); 953 assert(!(adr_type->isa_aryptr() && 954 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()), 955 "use LoadRangeNode instead"); 956 // Check control edge of raw loads 957 assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 958 // oop will be recorded in oop map if load crosses safepoint 959 rt->isa_oopptr() || is_immutable_value(adr), 960 "raw memory operations should have control edge"); 961 LoadNode* load = nullptr; 962 switch (bt) { 963 case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 964 case T_BYTE: load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 965 case T_INT: load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 966 case T_CHAR: load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 967 case T_SHORT: load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 968 case T_LONG: load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break; 969 case T_FLOAT: load = new LoadFNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; 970 case T_DOUBLE: load = new LoadDNode (ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic_access); break; 971 case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); break; 972 case T_OBJECT: 973 case T_NARROWOOP: 974 #ifdef _LP64 975 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 976 load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency); 977 } else 978 #endif 979 { 980 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop"); 981 load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); 982 } 983 break; 984 default: 985 ShouldNotReachHere(); 986 break; 987 } 988 assert(load != nullptr, "LoadNode should have been created"); 989 if (unaligned) { 990 load->set_unaligned_access(); 991 } 992 if (mismatched) { 993 load->set_mismatched_access(); 994 } 995 if (unsafe) { 996 load->set_unsafe_access(); 997 } 998 load->set_barrier_data(barrier_data); 999 if (load->Opcode() == Op_LoadN) { 1000 Node* ld = gvn.transform(load); 1001 return new DecodeNNode(ld, ld->bottom_type()->make_ptr()); 1002 } 1003 1004 return load; 1005 } 1006 1007 //------------------------------hash------------------------------------------- 1008 uint LoadNode::hash() const { 1009 // unroll addition of interesting fields 1010 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address); 1011 } 1012 1013 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) { 1014 if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) { 1015 bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile(); 1016 bool is_stable_ary = FoldStableValues && 1017 (tp != nullptr) && (tp->isa_aryptr() != nullptr) && 1018 tp->isa_aryptr()->is_stable(); 1019 1020 return (eliminate_boxing && non_volatile) || is_stable_ary || tp->is_inlinetypeptr(); 1021 } 1022 1023 return false; 1024 } 1025 1026 LoadNode* LoadNode::pin_array_access_node() const { 1027 const TypePtr* adr_type = this->adr_type(); 1028 if (adr_type != nullptr && adr_type->isa_aryptr()) { 1029 return clone_pinned(); 1030 } 1031 return nullptr; 1032 } 1033 1034 // Is the value loaded previously stored by an arraycopy? If so return 1035 // a load node that reads from the source array so we may be able to 1036 // optimize out the ArrayCopy node later. 1037 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const { 1038 Node* ld_adr = in(MemNode::Address); 1039 intptr_t ld_off = 0; 1040 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); 1041 Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true); 1042 if (ac != nullptr) { 1043 assert(ac->is_ArrayCopy(), "what kind of node can this be?"); 1044 1045 Node* mem = ac->in(TypeFunc::Memory); 1046 Node* ctl = ac->in(0); 1047 Node* src = ac->in(ArrayCopyNode::Src); 1048 1049 if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) { 1050 return nullptr; 1051 } 1052 1053 // load depends on the tests that validate the arraycopy 1054 LoadNode* ld = clone_pinned(); 1055 Node* addp = in(MemNode::Address)->clone(); 1056 if (ac->as_ArrayCopy()->is_clonebasic()) { 1057 assert(ld_alloc != nullptr, "need an alloc"); 1058 assert(addp->is_AddP(), "address must be addp"); 1059 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1060 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 1061 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 1062 addp->set_req(AddPNode::Base, src); 1063 addp->set_req(AddPNode::Address, src); 1064 } else { 1065 assert(ac->as_ArrayCopy()->is_arraycopy_validated() || 1066 ac->as_ArrayCopy()->is_copyof_validated() || 1067 ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases"); 1068 assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be"); 1069 addp->set_req(AddPNode::Base, src); 1070 addp->set_req(AddPNode::Address, src); 1071 1072 const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr(); 1073 BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type(); 1074 if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT; 1075 1076 uint header = arrayOopDesc::base_offset_in_bytes(ary_elem); 1077 uint shift = ary_t->is_flat() ? ary_t->flat_log_elem_size() : exact_log2(type2aelembytes(ary_elem)); 1078 1079 Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 1080 #ifdef _LP64 1081 diff = phase->transform(new ConvI2LNode(diff)); 1082 #endif 1083 diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift))); 1084 1085 Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff)); 1086 addp->set_req(AddPNode::Offset, offset); 1087 } 1088 addp = phase->transform(addp); 1089 #ifdef ASSERT 1090 const TypePtr* adr_type = phase->type(addp)->is_ptr(); 1091 ld->_adr_type = adr_type; 1092 #endif 1093 ld->set_req(MemNode::Address, addp); 1094 ld->set_req(0, ctl); 1095 ld->set_req(MemNode::Memory, mem); 1096 return ld; 1097 } 1098 return nullptr; 1099 } 1100 1101 static Node* see_through_inline_type(PhaseValues* phase, const MemNode* load, Node* base, int offset) { 1102 if (!load->is_mismatched_access() && base != nullptr && base->is_InlineType() && offset > oopDesc::klass_offset_in_bytes()) { 1103 InlineTypeNode* vt = base->as_InlineType(); 1104 assert(!vt->is_larval(), "must not load from a larval object"); 1105 Node* value = vt->field_value_by_offset(offset, true); 1106 assert(value != nullptr, "must see some value"); 1107 return value; 1108 } 1109 1110 return nullptr; 1111 } 1112 1113 //---------------------------can_see_stored_value------------------------------ 1114 // This routine exists to make sure this set of tests is done the same 1115 // everywhere. We need to make a coordinated change: first LoadNode::Ideal 1116 // will change the graph shape in a way which makes memory alive twice at the 1117 // same time (uses the Oracle model of aliasing), then some 1118 // LoadXNode::Identity will fold things back to the equivalence-class model 1119 // of aliasing. 1120 Node* MemNode::can_see_stored_value(Node* st, PhaseValues* phase) const { 1121 Node* ld_adr = in(MemNode::Address); 1122 intptr_t ld_off = 0; 1123 Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off); 1124 // Try to see through an InlineTypeNode 1125 // LoadN is special because the input is not compressed 1126 if (Opcode() != Op_LoadN) { 1127 Node* value = see_through_inline_type(phase, this, ld_base, ld_off); 1128 if (value != nullptr) { 1129 return value; 1130 } 1131 } 1132 1133 Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base); 1134 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); 1135 Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr; 1136 // This is more general than load from boxing objects. 1137 if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) { 1138 uint alias_idx = atp->index(); 1139 Node* result = nullptr; 1140 Node* current = st; 1141 // Skip through chains of MemBarNodes checking the MergeMems for 1142 // new states for the slice of this load. Stop once any other 1143 // kind of node is encountered. Loads from final memory can skip 1144 // through any kind of MemBar but normal loads shouldn't skip 1145 // through MemBarAcquire since the could allow them to move out of 1146 // a synchronized region. It is not safe to step over MemBarCPUOrder, 1147 // because alias info above them may be inaccurate (e.g., due to 1148 // mixed/mismatched unsafe accesses). 1149 bool is_final_mem = !atp->is_rewritable(); 1150 while (current->is_Proj()) { 1151 int opc = current->in(0)->Opcode(); 1152 if ((is_final_mem && (opc == Op_MemBarAcquire || 1153 opc == Op_MemBarAcquireLock || 1154 opc == Op_LoadFence)) || 1155 opc == Op_MemBarRelease || 1156 opc == Op_StoreFence || 1157 opc == Op_MemBarReleaseLock || 1158 opc == Op_MemBarStoreStore || 1159 opc == Op_StoreStoreFence) { 1160 Node* mem = current->in(0)->in(TypeFunc::Memory); 1161 if (mem->is_MergeMem()) { 1162 MergeMemNode* merge = mem->as_MergeMem(); 1163 Node* new_st = merge->memory_at(alias_idx); 1164 if (new_st == merge->base_memory()) { 1165 // Keep searching 1166 current = new_st; 1167 continue; 1168 } 1169 // Save the new memory state for the slice and fall through 1170 // to exit. 1171 result = new_st; 1172 } 1173 } 1174 break; 1175 } 1176 if (result != nullptr) { 1177 st = result; 1178 } 1179 } 1180 1181 // Loop around twice in the case Load -> Initialize -> Store. 1182 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.) 1183 for (int trip = 0; trip <= 1; trip++) { 1184 1185 if (st->is_Store()) { 1186 Node* st_adr = st->in(MemNode::Address); 1187 if (st_adr != ld_adr) { 1188 // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers). 1189 intptr_t st_off = 0; 1190 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off); 1191 if (ld_base == nullptr) return nullptr; 1192 if (st_base == nullptr) return nullptr; 1193 if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr; 1194 if (ld_off != st_off) return nullptr; 1195 if (ld_off == Type::OffsetBot) return nullptr; 1196 // Same base, same offset. 1197 // Possible improvement for arrays: check index value instead of absolute offset. 1198 1199 // At this point we have proven something like this setup: 1200 // B = << base >> 1201 // L = LoadQ(AddP(Check/CastPP(B), #Off)) 1202 // S = StoreQ(AddP( B , #Off), V) 1203 // (Actually, we haven't yet proven the Q's are the same.) 1204 // In other words, we are loading from a casted version of 1205 // the same pointer-and-offset that we stored to. 1206 // Casted version may carry a dependency and it is respected. 1207 // Thus, we are able to replace L by V. 1208 } 1209 // Now prove that we have a LoadQ matched to a StoreQ, for some Q. 1210 if (store_Opcode() != st->Opcode()) { 1211 return nullptr; 1212 } 1213 // LoadVector/StoreVector needs additional check to ensure the types match. 1214 if (st->is_StoreVector()) { 1215 const TypeVect* in_vt = st->as_StoreVector()->vect_type(); 1216 const TypeVect* out_vt = is_Load() ? as_LoadVector()->vect_type() : as_StoreVector()->vect_type(); 1217 if (in_vt != out_vt) { 1218 return nullptr; 1219 } 1220 } 1221 return st->in(MemNode::ValueIn); 1222 } 1223 1224 // A load from a freshly-created object always returns zero. 1225 // (This can happen after LoadNode::Ideal resets the load's memory input 1226 // to find_captured_store, which returned InitializeNode::zero_memory.) 1227 if (st->is_Proj() && st->in(0)->is_Allocate() && 1228 (st->in(0) == ld_alloc) && 1229 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) { 1230 // return a zero value for the load's basic type 1231 // (This is one of the few places where a generic PhaseTransform 1232 // can create new nodes. Think of it as lazily manifesting 1233 // virtually pre-existing constants.) 1234 Node* init_value = ld_alloc->in(AllocateNode::InitValue); 1235 if (init_value != nullptr) { 1236 // TODO 8350865 Is this correct for non-all-zero init values? Don't we need field_value_by_offset? 1237 return init_value; 1238 } 1239 assert(ld_alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null"); 1240 if (memory_type() != T_VOID) { 1241 if (ReduceBulkZeroing || find_array_copy_clone(ld_alloc, in(MemNode::Memory)) == nullptr) { 1242 // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an 1243 // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done 1244 // by the ArrayCopyNode. 1245 return phase->zerocon(memory_type()); 1246 } 1247 } else { 1248 // TODO: materialize all-zero vector constant 1249 assert(!isa_Load() || as_Load()->type()->isa_vect(), ""); 1250 } 1251 } 1252 1253 // A load from an initialization barrier can match a captured store. 1254 if (st->is_Proj() && st->in(0)->is_Initialize()) { 1255 InitializeNode* init = st->in(0)->as_Initialize(); 1256 AllocateNode* alloc = init->allocation(); 1257 if ((alloc != nullptr) && (alloc == ld_alloc)) { 1258 // examine a captured store value 1259 st = init->find_captured_store(ld_off, memory_size(), phase); 1260 if (st != nullptr) { 1261 continue; // take one more trip around 1262 } 1263 } 1264 } 1265 1266 // Load boxed value from result of valueOf() call is input parameter. 1267 if (this->is_Load() && ld_adr->is_AddP() && 1268 (tp != nullptr) && tp->is_ptr_to_boxed_value()) { 1269 intptr_t ignore = 0; 1270 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore); 1271 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1272 base = bs->step_over_gc_barrier(base); 1273 if (base != nullptr && base->is_Proj() && 1274 base->as_Proj()->_con == TypeFunc::Parms && 1275 base->in(0)->is_CallStaticJava() && 1276 base->in(0)->as_CallStaticJava()->is_boxing_method()) { 1277 return base->in(0)->in(TypeFunc::Parms); 1278 } 1279 } 1280 1281 break; 1282 } 1283 1284 return nullptr; 1285 } 1286 1287 //----------------------is_instance_field_load_with_local_phi------------------ 1288 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { 1289 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl && 1290 in(Address)->is_AddP() ) { 1291 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr(); 1292 // Only instances and boxed values. 1293 if( t_oop != nullptr && 1294 (t_oop->is_ptr_to_boxed_value() || 1295 t_oop->is_known_instance_field()) && 1296 t_oop->offset() != Type::OffsetBot && 1297 t_oop->offset() != Type::OffsetTop) { 1298 return true; 1299 } 1300 } 1301 return false; 1302 } 1303 1304 //------------------------------Identity--------------------------------------- 1305 // Loads are identity if previous store is to same address 1306 Node* LoadNode::Identity(PhaseGVN* phase) { 1307 // If the previous store-maker is the right kind of Store, and the store is 1308 // to the same address, then we are equal to the value stored. 1309 Node* mem = in(Memory); 1310 Node* value = can_see_stored_value(mem, phase); 1311 if( value ) { 1312 // byte, short & char stores truncate naturally. 1313 // A load has to load the truncated value which requires 1314 // some sort of masking operation and that requires an 1315 // Ideal call instead of an Identity call. 1316 if (memory_size() < BytesPerInt) { 1317 // If the input to the store does not fit with the load's result type, 1318 // it must be truncated via an Ideal call. 1319 if (!phase->type(value)->higher_equal(phase->type(this))) 1320 return this; 1321 } 1322 // (This works even when value is a Con, but LoadNode::Value 1323 // usually runs first, producing the singleton type of the Con.) 1324 if (!has_pinned_control_dependency() || value->is_Con()) { 1325 return value; 1326 } else { 1327 return this; 1328 } 1329 } 1330 1331 if (has_pinned_control_dependency()) { 1332 return this; 1333 } 1334 // Search for an existing data phi which was generated before for the same 1335 // instance's field to avoid infinite generation of phis in a loop. 1336 Node *region = mem->in(0); 1337 if (is_instance_field_load_with_local_phi(region)) { 1338 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr(); 1339 int this_index = phase->C->get_alias_index(addr_t); 1340 int this_offset = addr_t->offset(); 1341 int this_iid = addr_t->instance_id(); 1342 if (!addr_t->is_known_instance() && 1343 addr_t->is_ptr_to_boxed_value()) { 1344 // Use _idx of address base (could be Phi node) for boxed values. 1345 intptr_t ignore = 0; 1346 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); 1347 if (base == nullptr) { 1348 return this; 1349 } 1350 this_iid = base->_idx; 1351 } 1352 const Type* this_type = bottom_type(); 1353 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1354 Node* phi = region->fast_out(i); 1355 if (phi->is_Phi() && phi != mem && 1356 phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) { 1357 return phi; 1358 } 1359 } 1360 } 1361 1362 return this; 1363 } 1364 1365 // Construct an equivalent unsigned load. 1366 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) { 1367 BasicType bt = T_ILLEGAL; 1368 const Type* rt = nullptr; 1369 switch (Opcode()) { 1370 case Op_LoadUB: return this; 1371 case Op_LoadUS: return this; 1372 case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break; 1373 case Op_LoadS: bt = T_CHAR; rt = TypeInt::CHAR; break; 1374 default: 1375 assert(false, "no unsigned variant: %s", Name()); 1376 return nullptr; 1377 } 1378 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1379 raw_adr_type(), rt, bt, _mo, _control_dependency, 1380 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1381 } 1382 1383 // Construct an equivalent signed load. 1384 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) { 1385 BasicType bt = T_ILLEGAL; 1386 const Type* rt = nullptr; 1387 switch (Opcode()) { 1388 case Op_LoadUB: bt = T_BYTE; rt = TypeInt::BYTE; break; 1389 case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break; 1390 case Op_LoadB: // fall through 1391 case Op_LoadS: // fall through 1392 case Op_LoadI: // fall through 1393 case Op_LoadL: return this; 1394 default: 1395 assert(false, "no signed variant: %s", Name()); 1396 return nullptr; 1397 } 1398 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1399 raw_adr_type(), rt, bt, _mo, _control_dependency, 1400 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1401 } 1402 1403 bool LoadNode::has_reinterpret_variant(const Type* rt) { 1404 BasicType bt = rt->basic_type(); 1405 switch (Opcode()) { 1406 case Op_LoadI: return (bt == T_FLOAT); 1407 case Op_LoadL: return (bt == T_DOUBLE); 1408 case Op_LoadF: return (bt == T_INT); 1409 case Op_LoadD: return (bt == T_LONG); 1410 1411 default: return false; 1412 } 1413 } 1414 1415 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) { 1416 BasicType bt = rt->basic_type(); 1417 assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1418 bool is_mismatched = is_mismatched_access(); 1419 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1420 if (raw_type == nullptr) { 1421 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1422 } 1423 const int op = Opcode(); 1424 bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) || 1425 (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access()); 1426 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1427 raw_adr_type(), rt, bt, _mo, _control_dependency, 1428 require_atomic_access, is_unaligned_access(), is_mismatched); 1429 } 1430 1431 bool StoreNode::has_reinterpret_variant(const Type* vt) { 1432 BasicType bt = vt->basic_type(); 1433 switch (Opcode()) { 1434 case Op_StoreI: return (bt == T_FLOAT); 1435 case Op_StoreL: return (bt == T_DOUBLE); 1436 case Op_StoreF: return (bt == T_INT); 1437 case Op_StoreD: return (bt == T_LONG); 1438 1439 default: return false; 1440 } 1441 } 1442 1443 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) { 1444 BasicType bt = vt->basic_type(); 1445 assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1446 const int op = Opcode(); 1447 bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) || 1448 (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access()); 1449 StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1450 raw_adr_type(), val, bt, _mo, require_atomic_access); 1451 1452 bool is_mismatched = is_mismatched_access(); 1453 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1454 if (raw_type == nullptr) { 1455 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1456 } 1457 if (is_mismatched) { 1458 st->set_mismatched_access(); 1459 } 1460 return st; 1461 } 1462 1463 // We're loading from an object which has autobox behaviour. 1464 // If this object is result of a valueOf call we'll have a phi 1465 // merging a newly allocated object and a load from the cache. 1466 // We want to replace this load with the original incoming 1467 // argument to the valueOf call. 1468 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) { 1469 assert(igvn->C->eliminate_boxing(), "sanity"); 1470 intptr_t ignore = 0; 1471 Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore); 1472 if ((base == nullptr) || base->is_Phi()) { 1473 // Push the loads from the phi that comes from valueOf up 1474 // through it to allow elimination of the loads and the recovery 1475 // of the original value. It is done in split_through_phi(). 1476 return nullptr; 1477 } else if (base->is_Load() || 1478 (base->is_DecodeN() && base->in(1)->is_Load())) { 1479 // Eliminate the load of boxed value for integer types from the cache 1480 // array by deriving the value from the index into the array. 1481 // Capture the offset of the load and then reverse the computation. 1482 1483 // Get LoadN node which loads a boxing object from 'cache' array. 1484 if (base->is_DecodeN()) { 1485 base = base->in(1); 1486 } 1487 if (!base->in(Address)->is_AddP()) { 1488 return nullptr; // Complex address 1489 } 1490 AddPNode* address = base->in(Address)->as_AddP(); 1491 Node* cache_base = address->in(AddPNode::Base); 1492 if ((cache_base != nullptr) && cache_base->is_DecodeN()) { 1493 // Get ConP node which is static 'cache' field. 1494 cache_base = cache_base->in(1); 1495 } 1496 if ((cache_base != nullptr) && cache_base->is_Con()) { 1497 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr(); 1498 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 1499 Node* elements[4]; 1500 int shift = exact_log2(type2aelembytes(T_OBJECT)); 1501 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)); 1502 if (count > 0 && elements[0]->is_Con() && 1503 (count == 1 || 1504 (count == 2 && elements[1]->Opcode() == Op_LShiftX && 1505 elements[1]->in(2) == igvn->intcon(shift)))) { 1506 ciObjArray* array = base_type->const_oop()->as_obj_array(); 1507 // Fetch the box object cache[0] at the base of the array and get its value 1508 ciInstance* box = array->obj_at(0)->as_instance(); 1509 ciInstanceKlass* ik = box->klass()->as_instance_klass(); 1510 assert(ik->is_box_klass(), "sanity"); 1511 assert(ik->nof_nonstatic_fields() == 1, "change following code"); 1512 if (ik->nof_nonstatic_fields() == 1) { 1513 // This should be true nonstatic_field_at requires calling 1514 // nof_nonstatic_fields so check it anyway 1515 ciConstant c = box->field_value(ik->nonstatic_field_at(0)); 1516 BasicType bt = c.basic_type(); 1517 // Only integer types have boxing cache. 1518 assert(bt == T_BOOLEAN || bt == T_CHAR || 1519 bt == T_BYTE || bt == T_SHORT || 1520 bt == T_INT || bt == T_LONG, "wrong type = %s", type2name(bt)); 1521 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int(); 1522 if (cache_low != (int)cache_low) { 1523 return nullptr; // should not happen since cache is array indexed by value 1524 } 1525 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift); 1526 if (offset != (int)offset) { 1527 return nullptr; // should not happen since cache is array indexed by value 1528 } 1529 // Add up all the offsets making of the address of the load 1530 Node* result = elements[0]; 1531 for (int i = 1; i < count; i++) { 1532 result = igvn->transform(new AddXNode(result, elements[i])); 1533 } 1534 // Remove the constant offset from the address and then 1535 result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset))); 1536 // remove the scaling of the offset to recover the original index. 1537 if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) { 1538 // Peel the shift off directly but wrap it in a dummy node 1539 // since Ideal can't return existing nodes 1540 igvn->_worklist.push(result); // remove dead node later 1541 result = new RShiftXNode(result->in(1), igvn->intcon(0)); 1542 } else if (result->is_Add() && result->in(2)->is_Con() && 1543 result->in(1)->Opcode() == Op_LShiftX && 1544 result->in(1)->in(2) == igvn->intcon(shift)) { 1545 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z) 1546 // but for boxing cache access we know that X<<Z will not overflow 1547 // (there is range check) so we do this optimizatrion by hand here. 1548 igvn->_worklist.push(result); // remove dead node later 1549 Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift)); 1550 result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con)); 1551 } else { 1552 result = new RShiftXNode(result, igvn->intcon(shift)); 1553 } 1554 #ifdef _LP64 1555 if (bt != T_LONG) { 1556 result = new ConvL2INode(igvn->transform(result)); 1557 } 1558 #else 1559 if (bt == T_LONG) { 1560 result = new ConvI2LNode(igvn->transform(result)); 1561 } 1562 #endif 1563 // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair). 1564 // Need to preserve unboxing load type if it is unsigned. 1565 switch(this->Opcode()) { 1566 case Op_LoadUB: 1567 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF)); 1568 break; 1569 case Op_LoadUS: 1570 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF)); 1571 break; 1572 } 1573 return result; 1574 } 1575 } 1576 } 1577 } 1578 } 1579 return nullptr; 1580 } 1581 1582 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) { 1583 Node* region = phi->in(0); 1584 if (region == nullptr) { 1585 return false; // Wait stable graph 1586 } 1587 uint cnt = phi->req(); 1588 for (uint i = 1; i < cnt; i++) { 1589 Node* rc = region->in(i); 1590 if (rc == nullptr || phase->type(rc) == Type::TOP) 1591 return false; // Wait stable graph 1592 Node* in = phi->in(i); 1593 if (in == nullptr || phase->type(in) == Type::TOP) 1594 return false; // Wait stable graph 1595 } 1596 return true; 1597 } 1598 1599 //------------------------------split_through_phi------------------------------ 1600 // Check whether a call to 'split_through_phi' would split this load through the 1601 // Phi *base*. This method is essentially a copy of the validations performed 1602 // by 'split_through_phi'. The first use of this method was in EA code as part 1603 // of simplification of allocation merges. 1604 // Some differences from original method (split_through_phi): 1605 // - If base->is_CastPP(): base = base->in(1) 1606 bool LoadNode::can_split_through_phi_base(PhaseGVN* phase) { 1607 Node* mem = in(Memory); 1608 Node* address = in(Address); 1609 intptr_t ignore = 0; 1610 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1611 1612 if (base->is_CastPP()) { 1613 base = base->in(1); 1614 } 1615 1616 if (req() > 3 || base == nullptr || !base->is_Phi()) { 1617 return false; 1618 } 1619 1620 if (!mem->is_Phi()) { 1621 if (!MemNode::all_controls_dominate(mem, base->in(0))) { 1622 return false; 1623 } 1624 } else if (base->in(0) != mem->in(0)) { 1625 if (!MemNode::all_controls_dominate(mem, base->in(0))) { 1626 return false; 1627 } 1628 } 1629 1630 return true; 1631 } 1632 1633 //------------------------------split_through_phi------------------------------ 1634 // Split instance or boxed field load through Phi. 1635 Node* LoadNode::split_through_phi(PhaseGVN* phase, bool ignore_missing_instance_id) { 1636 if (req() > 3) { 1637 assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs"); 1638 // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account 1639 return nullptr; 1640 } 1641 Node* mem = in(Memory); 1642 Node* address = in(Address); 1643 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr(); 1644 1645 assert((t_oop != nullptr) && 1646 (ignore_missing_instance_id || 1647 t_oop->is_known_instance_field() || 1648 t_oop->is_ptr_to_boxed_value()), "invalid conditions"); 1649 1650 Compile* C = phase->C; 1651 intptr_t ignore = 0; 1652 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1653 bool base_is_phi = (base != nullptr) && base->is_Phi(); 1654 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() && 1655 (base != nullptr) && (base == address->in(AddPNode::Base)) && 1656 phase->type(base)->higher_equal(TypePtr::NOTNULL); 1657 1658 if (!((mem->is_Phi() || base_is_phi) && 1659 (ignore_missing_instance_id || load_boxed_values || t_oop->is_known_instance_field()))) { 1660 return nullptr; // Neither memory or base are Phi 1661 } 1662 1663 if (mem->is_Phi()) { 1664 if (!stable_phi(mem->as_Phi(), phase)) { 1665 return nullptr; // Wait stable graph 1666 } 1667 uint cnt = mem->req(); 1668 // Check for loop invariant memory. 1669 if (cnt == 3) { 1670 for (uint i = 1; i < cnt; i++) { 1671 Node* in = mem->in(i); 1672 Node* m = optimize_memory_chain(in, t_oop, this, phase); 1673 if (m == mem) { 1674 if (i == 1) { 1675 // if the first edge was a loop, check second edge too. 1676 // If both are replaceable - we are in an infinite loop 1677 Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase); 1678 if (n == mem) { 1679 break; 1680 } 1681 } 1682 set_req(Memory, mem->in(cnt - i)); 1683 return this; // made change 1684 } 1685 } 1686 } 1687 } 1688 if (base_is_phi) { 1689 if (!stable_phi(base->as_Phi(), phase)) { 1690 return nullptr; // Wait stable graph 1691 } 1692 uint cnt = base->req(); 1693 // Check for loop invariant memory. 1694 if (cnt == 3) { 1695 for (uint i = 1; i < cnt; i++) { 1696 if (base->in(i) == base) { 1697 return nullptr; // Wait stable graph 1698 } 1699 } 1700 } 1701 } 1702 1703 // Split through Phi (see original code in loopopts.cpp). 1704 assert(ignore_missing_instance_id || C->have_alias_type(t_oop), "instance should have alias type"); 1705 1706 // Do nothing here if Identity will find a value 1707 // (to avoid infinite chain of value phis generation). 1708 if (this != Identity(phase)) { 1709 return nullptr; 1710 } 1711 1712 // Select Region to split through. 1713 Node* region; 1714 DomResult dom_result = DomResult::Dominate; 1715 if (!base_is_phi) { 1716 assert(mem->is_Phi(), "sanity"); 1717 region = mem->in(0); 1718 // Skip if the region dominates some control edge of the address. 1719 // We will check `dom_result` later. 1720 dom_result = MemNode::maybe_all_controls_dominate(address, region); 1721 } else if (!mem->is_Phi()) { 1722 assert(base_is_phi, "sanity"); 1723 region = base->in(0); 1724 // Skip if the region dominates some control edge of the memory. 1725 // We will check `dom_result` later. 1726 dom_result = MemNode::maybe_all_controls_dominate(mem, region); 1727 } else if (base->in(0) != mem->in(0)) { 1728 assert(base_is_phi && mem->is_Phi(), "sanity"); 1729 dom_result = MemNode::maybe_all_controls_dominate(mem, base->in(0)); 1730 if (dom_result == DomResult::Dominate) { 1731 region = base->in(0); 1732 } else { 1733 dom_result = MemNode::maybe_all_controls_dominate(address, mem->in(0)); 1734 if (dom_result == DomResult::Dominate) { 1735 region = mem->in(0); 1736 } 1737 // Otherwise we encountered a complex graph. 1738 } 1739 } else { 1740 assert(base->in(0) == mem->in(0), "sanity"); 1741 region = mem->in(0); 1742 } 1743 1744 PhaseIterGVN* igvn = phase->is_IterGVN(); 1745 if (dom_result != DomResult::Dominate) { 1746 if (dom_result == DomResult::EncounteredDeadCode) { 1747 // There is some dead code which eventually will be removed in IGVN. 1748 // Once this is the case, we get an unambiguous dominance result. 1749 // Push the node to the worklist again until the dead code is removed. 1750 igvn->_worklist.push(this); 1751 } 1752 return nullptr; 1753 } 1754 1755 Node* phi = nullptr; 1756 const Type* this_type = this->bottom_type(); 1757 if (t_oop != nullptr && (t_oop->is_known_instance_field() || load_boxed_values)) { 1758 int this_index = C->get_alias_index(t_oop); 1759 int this_offset = t_oop->offset(); 1760 int this_iid = t_oop->is_known_instance_field() ? t_oop->instance_id() : base->_idx; 1761 phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset); 1762 } else if (ignore_missing_instance_id) { 1763 phi = new PhiNode(region, this_type, nullptr, mem->_idx); 1764 } else { 1765 return nullptr; 1766 } 1767 1768 for (uint i = 1; i < region->req(); i++) { 1769 Node* x; 1770 Node* the_clone = nullptr; 1771 Node* in = region->in(i); 1772 if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl && 1773 in != nullptr && in->is_OuterStripMinedLoop()) { 1774 // No node should go in the outer strip mined loop 1775 in = in->in(LoopNode::EntryControl); 1776 } 1777 if (in == nullptr || in == C->top()) { 1778 x = C->top(); // Dead path? Use a dead data op 1779 } else { 1780 x = this->clone(); // Else clone up the data op 1781 the_clone = x; // Remember for possible deletion. 1782 // Alter data node to use pre-phi inputs 1783 if (this->in(0) == region) { 1784 x->set_req(0, in); 1785 } else { 1786 x->set_req(0, nullptr); 1787 } 1788 if (mem->is_Phi() && (mem->in(0) == region)) { 1789 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone. 1790 } 1791 if (address->is_Phi() && address->in(0) == region) { 1792 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone 1793 } 1794 if (base_is_phi && (base->in(0) == region)) { 1795 Node* base_x = base->in(i); // Clone address for loads from boxed objects. 1796 Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset))); 1797 x->set_req(Address, adr_x); 1798 } 1799 } 1800 // Check for a 'win' on some paths 1801 const Type *t = x->Value(igvn); 1802 1803 bool singleton = t->singleton(); 1804 1805 // See comments in PhaseIdealLoop::split_thru_phi(). 1806 if (singleton && t == Type::TOP) { 1807 singleton &= region->is_Loop() && (i != LoopNode::EntryControl); 1808 } 1809 1810 if (singleton) { 1811 x = igvn->makecon(t); 1812 } else { 1813 // We now call Identity to try to simplify the cloned node. 1814 // Note that some Identity methods call phase->type(this). 1815 // Make sure that the type array is big enough for 1816 // our new node, even though we may throw the node away. 1817 // (This tweaking with igvn only works because x is a new node.) 1818 igvn->set_type(x, t); 1819 // If x is a TypeNode, capture any more-precise type permanently into Node 1820 // otherwise it will be not updated during igvn->transform since 1821 // igvn->type(x) is set to x->Value() already. 1822 x->raise_bottom_type(t); 1823 Node* y = x->Identity(igvn); 1824 if (y != x) { 1825 x = y; 1826 } else { 1827 y = igvn->hash_find_insert(x); 1828 if (y) { 1829 x = y; 1830 } else { 1831 // Else x is a new node we are keeping 1832 // We do not need register_new_node_with_optimizer 1833 // because set_type has already been called. 1834 igvn->_worklist.push(x); 1835 } 1836 } 1837 } 1838 if (x != the_clone && the_clone != nullptr) { 1839 igvn->remove_dead_node(the_clone); 1840 } 1841 phi->set_req(i, x); 1842 } 1843 // Record Phi 1844 igvn->register_new_node_with_optimizer(phi); 1845 return phi; 1846 } 1847 1848 AllocateNode* LoadNode::is_new_object_mark_load() const { 1849 if (Opcode() == Op_LoadX) { 1850 Node* address = in(MemNode::Address); 1851 AllocateNode* alloc = AllocateNode::Ideal_allocation(address); 1852 Node* mem = in(MemNode::Memory); 1853 if (alloc != nullptr && mem->is_Proj() && 1854 mem->in(0) != nullptr && 1855 mem->in(0) == alloc->initialization() && 1856 alloc->initialization()->proj_out_or_null(0) != nullptr) { 1857 return alloc; 1858 } 1859 } 1860 return nullptr; 1861 } 1862 1863 1864 //------------------------------Ideal------------------------------------------ 1865 // If the load is from Field memory and the pointer is non-null, it might be possible to 1866 // zero out the control input. 1867 // If the offset is constant and the base is an object allocation, 1868 // try to hook me up to the exact initializing store. 1869 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1870 if (has_pinned_control_dependency()) { 1871 return nullptr; 1872 } 1873 Node* p = MemNode::Ideal_common(phase, can_reshape); 1874 if (p) return (p == NodeSentinel) ? nullptr : p; 1875 1876 Node* ctrl = in(MemNode::Control); 1877 Node* address = in(MemNode::Address); 1878 bool progress = false; 1879 1880 bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) && 1881 phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes()); 1882 1883 // Skip up past a SafePoint control. Cannot do this for Stores because 1884 // pointer stores & cardmarks must stay on the same side of a SafePoint. 1885 if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint && 1886 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw && 1887 !addr_mark && 1888 (depends_only_on_test() || has_unknown_control_dependency())) { 1889 ctrl = ctrl->in(0); 1890 set_req(MemNode::Control,ctrl); 1891 progress = true; 1892 } 1893 1894 intptr_t ignore = 0; 1895 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1896 if (base != nullptr 1897 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) { 1898 // Check for useless control edge in some common special cases 1899 if (in(MemNode::Control) != nullptr 1900 && !(phase->type(address)->is_inlinetypeptr() && is_mismatched_access()) 1901 && can_remove_control() 1902 && phase->type(base)->higher_equal(TypePtr::NOTNULL) 1903 && all_controls_dominate(base, phase->C->start())) { 1904 // A method-invariant, non-null address (constant or 'this' argument). 1905 set_req(MemNode::Control, nullptr); 1906 progress = true; 1907 } 1908 } 1909 1910 Node* mem = in(MemNode::Memory); 1911 const TypePtr *addr_t = phase->type(address)->isa_ptr(); 1912 1913 if (can_reshape && (addr_t != nullptr)) { 1914 // try to optimize our memory input 1915 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase); 1916 if (opt_mem != mem) { 1917 set_req_X(MemNode::Memory, opt_mem, phase); 1918 if (phase->type( opt_mem ) == Type::TOP) return nullptr; 1919 return this; 1920 } 1921 const TypeOopPtr *t_oop = addr_t->isa_oopptr(); 1922 if ((t_oop != nullptr) && 1923 (t_oop->is_known_instance_field() || 1924 t_oop->is_ptr_to_boxed_value())) { 1925 PhaseIterGVN *igvn = phase->is_IterGVN(); 1926 assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true"); 1927 if (igvn->_worklist.member(opt_mem)) { 1928 // Delay this transformation until memory Phi is processed. 1929 igvn->_worklist.push(this); 1930 return nullptr; 1931 } 1932 // Split instance field load through Phi. 1933 Node* result = split_through_phi(phase); 1934 if (result != nullptr) return result; 1935 1936 if (t_oop->is_ptr_to_boxed_value()) { 1937 Node* result = eliminate_autobox(igvn); 1938 if (result != nullptr) return result; 1939 } 1940 } 1941 } 1942 1943 // Is there a dominating load that loads the same value? Leave 1944 // anything that is not a load of a field/array element (like 1945 // barriers etc.) alone 1946 if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) { 1947 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 1948 Node *use = mem->fast_out(i); 1949 if (use != this && 1950 use->Opcode() == Opcode() && 1951 use->in(0) != nullptr && 1952 use->in(0) != in(0) && 1953 use->in(Address) == in(Address)) { 1954 Node* ctl = in(0); 1955 for (int i = 0; i < 10 && ctl != nullptr; i++) { 1956 ctl = IfNode::up_one_dom(ctl); 1957 if (ctl == use->in(0)) { 1958 set_req(0, use->in(0)); 1959 return this; 1960 } 1961 } 1962 } 1963 } 1964 } 1965 1966 // Check for prior store with a different base or offset; make Load 1967 // independent. Skip through any number of them. Bail out if the stores 1968 // are in an endless dead cycle and report no progress. This is a key 1969 // transform for Reflection. However, if after skipping through the Stores 1970 // we can't then fold up against a prior store do NOT do the transform as 1971 // this amounts to using the 'Oracle' model of aliasing. It leaves the same 1972 // array memory alive twice: once for the hoisted Load and again after the 1973 // bypassed Store. This situation only works if EVERYBODY who does 1974 // anti-dependence work knows how to bypass. I.e. we need all 1975 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is 1976 // the alias index stuff. So instead, peek through Stores and IFF we can 1977 // fold up, do so. 1978 Node* prev_mem = find_previous_store(phase); 1979 if (prev_mem != nullptr) { 1980 Node* value = can_see_arraycopy_value(prev_mem, phase); 1981 if (value != nullptr) { 1982 return value; 1983 } 1984 } 1985 // Steps (a), (b): Walk past independent stores to find an exact match. 1986 if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) { 1987 // (c) See if we can fold up on the spot, but don't fold up here. 1988 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or 1989 // just return a prior value, which is done by Identity calls. 1990 if (can_see_stored_value(prev_mem, phase)) { 1991 // Make ready for step (d): 1992 set_req_X(MemNode::Memory, prev_mem, phase); 1993 return this; 1994 } 1995 } 1996 1997 return progress ? this : nullptr; 1998 } 1999 2000 // Helper to recognize certain Klass fields which are invariant across 2001 // some group of array types (e.g., int[] or all T[] where T < Object). 2002 const Type* 2003 LoadNode::load_array_final_field(const TypeKlassPtr *tkls, 2004 ciKlass* klass) const { 2005 assert(!UseCompactObjectHeaders || tkls->offset() != in_bytes(Klass::prototype_header_offset()), 2006 "must not happen"); 2007 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) { 2008 // The field is Klass::_access_flags. Return its (constant) value. 2009 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 2010 assert(Opcode() == Op_LoadUS, "must load an unsigned short from _access_flags"); 2011 return TypeInt::make(klass->access_flags()); 2012 } 2013 if (tkls->offset() == in_bytes(Klass::misc_flags_offset())) { 2014 // The field is Klass::_misc_flags. Return its (constant) value. 2015 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 2016 assert(Opcode() == Op_LoadUB, "must load an unsigned byte from _misc_flags"); 2017 return TypeInt::make(klass->misc_flags()); 2018 } 2019 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) { 2020 // The field is Klass::_layout_helper. Return its constant value if known. 2021 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper"); 2022 return TypeInt::make(klass->layout_helper()); 2023 } 2024 2025 // No match. 2026 return nullptr; 2027 } 2028 2029 //------------------------------Value----------------------------------------- 2030 const Type* LoadNode::Value(PhaseGVN* phase) const { 2031 // Either input is TOP ==> the result is TOP 2032 Node* mem = in(MemNode::Memory); 2033 const Type *t1 = phase->type(mem); 2034 if (t1 == Type::TOP) return Type::TOP; 2035 Node* adr = in(MemNode::Address); 2036 const TypePtr* tp = phase->type(adr)->isa_ptr(); 2037 if (tp == nullptr || tp->empty()) return Type::TOP; 2038 int off = tp->offset(); 2039 assert(off != Type::OffsetTop, "case covered by TypePtr::empty"); 2040 Compile* C = phase->C; 2041 2042 // If we are loading from a freshly-allocated object, produce a zero, 2043 // if the load is provably beyond the header of the object. 2044 // (Also allow a variable load from a fresh array to produce zero.) 2045 const TypeOopPtr* tinst = tp->isa_oopptr(); 2046 bool is_instance = (tinst != nullptr) && tinst->is_known_instance_field(); 2047 Node* value = can_see_stored_value(mem, phase); 2048 if (value != nullptr && value->is_Con()) { 2049 assert(value->bottom_type()->higher_equal(_type), "sanity"); 2050 return value->bottom_type(); 2051 } 2052 2053 // Try to guess loaded type from pointer type 2054 if (tp->isa_aryptr()) { 2055 const TypeAryPtr* ary = tp->is_aryptr(); 2056 const Type* t = ary->elem(); 2057 2058 // Determine whether the reference is beyond the header or not, by comparing 2059 // the offset against the offset of the start of the array's data. 2060 // Different array types begin at slightly different offsets (12 vs. 16). 2061 // We choose T_BYTE as an example base type that is least restrictive 2062 // as to alignment, which will therefore produce the smallest 2063 // possible base offset. 2064 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE); 2065 const bool off_beyond_header = (off >= min_base_off); 2066 2067 // Try to constant-fold a stable array element. 2068 if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) { 2069 // Make sure the reference is not into the header and the offset is constant 2070 ciObject* aobj = ary->const_oop(); 2071 if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) { 2072 int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0); 2073 const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off, 2074 stable_dimension, 2075 memory_type(), is_unsigned()); 2076 if (con_type != nullptr) { 2077 return con_type; 2078 } 2079 } 2080 } 2081 2082 // Don't do this for integer types. There is only potential profit if 2083 // the element type t is lower than _type; that is, for int types, if _type is 2084 // more restrictive than t. This only happens here if one is short and the other 2085 // char (both 16 bits), and in those cases we've made an intentional decision 2086 // to use one kind of load over the other. See AndINode::Ideal and 4965907. 2087 // Also, do not try to narrow the type for a LoadKlass, regardless of offset. 2088 // 2089 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8)) 2090 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier 2091 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been 2092 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed, 2093 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any. 2094 // In fact, that could have been the original type of p1, and p1 could have 2095 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the 2096 // expression (LShiftL quux 3) independently optimized to the constant 8. 2097 if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr) 2098 && (_type->isa_vect() == nullptr) 2099 && !ary->is_flat() 2100 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) { 2101 // t might actually be lower than _type, if _type is a unique 2102 // concrete subclass of abstract class t. 2103 if (off_beyond_header || off == Type::OffsetBot) { // is the offset beyond the header? 2104 const Type* jt = t->join_speculative(_type); 2105 // In any case, do not allow the join, per se, to empty out the type. 2106 if (jt->empty() && !t->empty()) { 2107 // This can happen if a interface-typed array narrows to a class type. 2108 jt = _type; 2109 } 2110 #ifdef ASSERT 2111 if (phase->C->eliminate_boxing() && adr->is_AddP()) { 2112 // The pointers in the autobox arrays are always non-null 2113 Node* base = adr->in(AddPNode::Base); 2114 if ((base != nullptr) && base->is_DecodeN()) { 2115 // Get LoadN node which loads IntegerCache.cache field 2116 base = base->in(1); 2117 } 2118 if ((base != nullptr) && base->is_Con()) { 2119 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr(); 2120 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 2121 // It could be narrow oop 2122 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity"); 2123 } 2124 } 2125 } 2126 #endif 2127 return jt; 2128 } 2129 } 2130 } else if (tp->base() == Type::InstPtr) { 2131 assert( off != Type::OffsetBot || 2132 // arrays can be cast to Objects 2133 !tp->isa_instptr() || 2134 tp->is_instptr()->instance_klass()->is_java_lang_Object() || 2135 // Default value load 2136 tp->is_instptr()->instance_klass() == ciEnv::current()->Class_klass() || 2137 // unsafe field access may not have a constant offset 2138 C->has_unsafe_access(), 2139 "Field accesses must be precise" ); 2140 // For oop loads, we expect the _type to be precise. 2141 2142 const TypeInstPtr* tinst = tp->is_instptr(); 2143 BasicType bt = memory_type(); 2144 2145 // Optimize loads from constant fields. 2146 ciObject* const_oop = tinst->const_oop(); 2147 if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) { 2148 const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), bt); 2149 if (con_type != nullptr) { 2150 return con_type; 2151 } 2152 } 2153 } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) { 2154 assert(off != Type::OffsetBot || 2155 !tp->isa_instklassptr() || 2156 // arrays can be cast to Objects 2157 tp->isa_instklassptr()->instance_klass()->is_java_lang_Object() || 2158 // also allow array-loading from the primary supertype 2159 // array during subtype checks 2160 Opcode() == Op_LoadKlass, 2161 "Field accesses must be precise"); 2162 // For klass/static loads, we expect the _type to be precise 2163 } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) { 2164 /* With mirrors being an indirect in the Klass* 2165 * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset)) 2166 * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass). 2167 * 2168 * So check the type and klass of the node before the LoadP. 2169 */ 2170 Node* adr2 = adr->in(MemNode::Address); 2171 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2172 if (tkls != nullptr && !StressReflectiveCode) { 2173 if (tkls->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) { 2174 ciKlass* klass = tkls->exact_klass(); 2175 assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2176 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2177 return TypeInstPtr::make(klass->java_mirror()); 2178 } 2179 } 2180 } 2181 2182 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2183 if (tkls != nullptr) { 2184 if (tkls->is_loaded() && tkls->klass_is_exact()) { 2185 ciKlass* klass = tkls->exact_klass(); 2186 // We are loading a field from a Klass metaobject whose identity 2187 // is known at compile time (the type is "exact" or "precise"). 2188 // Check for fields we know are maintained as constants by the VM. 2189 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) { 2190 // The field is Klass::_super_check_offset. Return its (constant) value. 2191 // (Folds up type checking code.) 2192 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset"); 2193 return TypeInt::make(klass->super_check_offset()); 2194 } 2195 if (UseCompactObjectHeaders) { // TODO: Should EnableValhalla also take this path ? 2196 if (tkls->offset() == in_bytes(Klass::prototype_header_offset())) { 2197 // The field is Klass::_prototype_header. Return its (constant) value. 2198 assert(this->Opcode() == Op_LoadX, "must load a proper type from _prototype_header"); 2199 return TypeX::make(klass->prototype_header()); 2200 } 2201 } 2202 // Compute index into primary_supers array 2203 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2204 // Check for overflowing; use unsigned compare to handle the negative case. 2205 if( depth < ciKlass::primary_super_limit() ) { 2206 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2207 // (Folds up type checking code.) 2208 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2209 ciKlass *ss = klass->super_of_depth(depth); 2210 return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR; 2211 } 2212 const Type* aift = load_array_final_field(tkls, klass); 2213 if (aift != nullptr) return aift; 2214 } 2215 2216 // We can still check if we are loading from the primary_supers array at a 2217 // shallow enough depth. Even though the klass is not exact, entries less 2218 // than or equal to its super depth are correct. 2219 if (tkls->is_loaded()) { 2220 ciKlass* klass = nullptr; 2221 if (tkls->isa_instklassptr()) { 2222 klass = tkls->is_instklassptr()->instance_klass(); 2223 } else { 2224 int dims; 2225 const Type* inner = tkls->is_aryklassptr()->base_element_type(dims); 2226 if (inner->isa_instklassptr()) { 2227 klass = inner->is_instklassptr()->instance_klass(); 2228 klass = ciObjArrayKlass::make(klass, dims); 2229 } 2230 } 2231 if (klass != nullptr) { 2232 // Compute index into primary_supers array 2233 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2234 // Check for overflowing; use unsigned compare to handle the negative case. 2235 if (depth < ciKlass::primary_super_limit() && 2236 depth <= klass->super_depth()) { // allow self-depth checks to handle self-check case 2237 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2238 // (Folds up type checking code.) 2239 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2240 ciKlass *ss = klass->super_of_depth(depth); 2241 return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR; 2242 } 2243 } 2244 } 2245 2246 // If the type is enough to determine that the thing is not an array, 2247 // we can give the layout_helper a positive interval type. 2248 // This will help short-circuit some reflective code. 2249 if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) && 2250 tkls->isa_instklassptr() && // not directly typed as an array 2251 !tkls->is_instklassptr()->instance_klass()->is_java_lang_Object() // not the supertype of all T[] and specifically not Serializable & Cloneable 2252 ) { 2253 // Note: When interfaces are reliable, we can narrow the interface 2254 // test to (klass != Serializable && klass != Cloneable). 2255 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper"); 2256 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false); 2257 // The key property of this type is that it folds up tests 2258 // for array-ness, since it proves that the layout_helper is positive. 2259 // Thus, a generic value like the basic object layout helper works fine. 2260 return TypeInt::make(min_size, max_jint, Type::WidenMin); 2261 } 2262 } 2263 2264 bool is_vect = (_type->isa_vect() != nullptr); 2265 if (is_instance && !is_vect) { 2266 // If we have an instance type and our memory input is the 2267 // programs's initial memory state, there is no matching store, 2268 // so just return a zero of the appropriate type - 2269 // except if it is vectorized - then we have no zero constant. 2270 Node *mem = in(MemNode::Memory); 2271 if (mem->is_Parm() && mem->in(0)->is_Start()) { 2272 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm"); 2273 // TODO 8350865 This is needed for flat array accesses, somehow the memory of the loads bypasses the intrinsic 2274 // Run TestArrays.test6 in Scenario4, we need more tests for this. TestBasicFunctionality::test20 also needs this. 2275 if (tp->isa_aryptr() && tp->is_aryptr()->is_flat() && !UseFieldFlattening) { 2276 return _type; 2277 } 2278 return Type::get_zero_type(_type->basic_type()); 2279 } 2280 } 2281 if (!UseCompactObjectHeaders) { 2282 Node* alloc = is_new_object_mark_load(); 2283 if (alloc != nullptr) { 2284 if (EnableValhalla) { 2285 // The mark word may contain property bits (inline, flat, null-free) 2286 Node* klass_node = alloc->in(AllocateNode::KlassNode); 2287 const TypeKlassPtr* tkls = phase->type(klass_node)->isa_klassptr(); 2288 if (tkls != nullptr && tkls->is_loaded() && tkls->klass_is_exact()) { 2289 return TypeX::make(tkls->exact_klass()->prototype_header()); 2290 } 2291 } else { 2292 return TypeX::make(markWord::prototype().value()); 2293 } 2294 } 2295 } 2296 2297 return _type; 2298 } 2299 2300 //------------------------------match_edge------------------------------------- 2301 // Do we Match on this edge index or not? Match only the address. 2302 uint LoadNode::match_edge(uint idx) const { 2303 return idx == MemNode::Address; 2304 } 2305 2306 //--------------------------LoadBNode::Ideal-------------------------------------- 2307 // 2308 // If the previous store is to the same address as this load, 2309 // and the value stored was larger than a byte, replace this load 2310 // with the value stored truncated to a byte. If no truncation is 2311 // needed, the replacement is done in LoadNode::Identity(). 2312 // 2313 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2314 Node* mem = in(MemNode::Memory); 2315 Node* value = can_see_stored_value(mem,phase); 2316 if (value != nullptr) { 2317 Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false); 2318 if (narrow != value) { 2319 return narrow; 2320 } 2321 } 2322 // Identity call will handle the case where truncation is not needed. 2323 return LoadNode::Ideal(phase, can_reshape); 2324 } 2325 2326 const Type* LoadBNode::Value(PhaseGVN* phase) const { 2327 Node* mem = in(MemNode::Memory); 2328 Node* value = can_see_stored_value(mem,phase); 2329 if (value != nullptr && value->is_Con() && 2330 !value->bottom_type()->higher_equal(_type)) { 2331 // If the input to the store does not fit with the load's result type, 2332 // it must be truncated. We can't delay until Ideal call since 2333 // a singleton Value is needed for split_thru_phi optimization. 2334 int con = value->get_int(); 2335 return TypeInt::make((con << 24) >> 24); 2336 } 2337 return LoadNode::Value(phase); 2338 } 2339 2340 //--------------------------LoadUBNode::Ideal------------------------------------- 2341 // 2342 // If the previous store is to the same address as this load, 2343 // and the value stored was larger than a byte, replace this load 2344 // with the value stored truncated to a byte. If no truncation is 2345 // needed, the replacement is done in LoadNode::Identity(). 2346 // 2347 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2348 Node* mem = in(MemNode::Memory); 2349 Node* value = can_see_stored_value(mem, phase); 2350 if (value != nullptr) { 2351 Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false); 2352 if (narrow != value) { 2353 return narrow; 2354 } 2355 } 2356 // Identity call will handle the case where truncation is not needed. 2357 return LoadNode::Ideal(phase, can_reshape); 2358 } 2359 2360 const Type* LoadUBNode::Value(PhaseGVN* phase) const { 2361 Node* mem = in(MemNode::Memory); 2362 Node* value = can_see_stored_value(mem,phase); 2363 if (value != nullptr && value->is_Con() && 2364 !value->bottom_type()->higher_equal(_type)) { 2365 // If the input to the store does not fit with the load's result type, 2366 // it must be truncated. We can't delay until Ideal call since 2367 // a singleton Value is needed for split_thru_phi optimization. 2368 int con = value->get_int(); 2369 return TypeInt::make(con & 0xFF); 2370 } 2371 return LoadNode::Value(phase); 2372 } 2373 2374 //--------------------------LoadUSNode::Ideal------------------------------------- 2375 // 2376 // If the previous store is to the same address as this load, 2377 // and the value stored was larger than a char, replace this load 2378 // with the value stored truncated to a char. If no truncation is 2379 // needed, the replacement is done in LoadNode::Identity(). 2380 // 2381 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2382 Node* mem = in(MemNode::Memory); 2383 Node* value = can_see_stored_value(mem,phase); 2384 if (value != nullptr) { 2385 Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false); 2386 if (narrow != value) { 2387 return narrow; 2388 } 2389 } 2390 // Identity call will handle the case where truncation is not needed. 2391 return LoadNode::Ideal(phase, can_reshape); 2392 } 2393 2394 const Type* LoadUSNode::Value(PhaseGVN* phase) const { 2395 Node* mem = in(MemNode::Memory); 2396 Node* value = can_see_stored_value(mem,phase); 2397 if (value != nullptr && value->is_Con() && 2398 !value->bottom_type()->higher_equal(_type)) { 2399 // If the input to the store does not fit with the load's result type, 2400 // it must be truncated. We can't delay until Ideal call since 2401 // a singleton Value is needed for split_thru_phi optimization. 2402 int con = value->get_int(); 2403 return TypeInt::make(con & 0xFFFF); 2404 } 2405 return LoadNode::Value(phase); 2406 } 2407 2408 //--------------------------LoadSNode::Ideal-------------------------------------- 2409 // 2410 // If the previous store is to the same address as this load, 2411 // and the value stored was larger than a short, replace this load 2412 // with the value stored truncated to a short. If no truncation is 2413 // needed, the replacement is done in LoadNode::Identity(). 2414 // 2415 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2416 Node* mem = in(MemNode::Memory); 2417 Node* value = can_see_stored_value(mem,phase); 2418 if (value != nullptr) { 2419 Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false); 2420 if (narrow != value) { 2421 return narrow; 2422 } 2423 } 2424 // Identity call will handle the case where truncation is not needed. 2425 return LoadNode::Ideal(phase, can_reshape); 2426 } 2427 2428 const Type* LoadSNode::Value(PhaseGVN* phase) const { 2429 Node* mem = in(MemNode::Memory); 2430 Node* value = can_see_stored_value(mem,phase); 2431 if (value != nullptr && value->is_Con() && 2432 !value->bottom_type()->higher_equal(_type)) { 2433 // If the input to the store does not fit with the load's result type, 2434 // it must be truncated. We can't delay until Ideal call since 2435 // a singleton Value is needed for split_thru_phi optimization. 2436 int con = value->get_int(); 2437 return TypeInt::make((con << 16) >> 16); 2438 } 2439 return LoadNode::Value(phase); 2440 } 2441 2442 Node* LoadNNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2443 // Loading from an InlineType, find the input and make an EncodeP 2444 Node* addr = in(Address); 2445 intptr_t offset; 2446 Node* base = AddPNode::Ideal_base_and_offset(addr, phase, offset); 2447 Node* value = see_through_inline_type(phase, this, base, offset); 2448 if (value != nullptr) { 2449 return new EncodePNode(value, type()); 2450 } 2451 2452 return LoadNode::Ideal(phase, can_reshape); 2453 } 2454 2455 //============================================================================= 2456 //----------------------------LoadKlassNode::make------------------------------ 2457 // Polymorphic factory method: 2458 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) { 2459 // sanity check the alias category against the created node type 2460 const TypePtr* adr_type = adr->bottom_type()->isa_ptr(); 2461 assert(adr_type != nullptr, "expecting TypeKlassPtr"); 2462 #ifdef _LP64 2463 if (adr_type->is_ptr_to_narrowklass()) { 2464 assert(UseCompressedClassPointers, "no compressed klasses"); 2465 Node* load_klass = gvn.transform(new LoadNKlassNode(mem, adr, at, tk->make_narrowklass(), MemNode::unordered)); 2466 return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr()); 2467 } 2468 #endif 2469 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop"); 2470 return new LoadKlassNode(mem, adr, at, tk, MemNode::unordered); 2471 } 2472 2473 //------------------------------Value------------------------------------------ 2474 const Type* LoadKlassNode::Value(PhaseGVN* phase) const { 2475 return klass_value_common(phase); 2476 } 2477 2478 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const { 2479 // Either input is TOP ==> the result is TOP 2480 const Type *t1 = phase->type( in(MemNode::Memory) ); 2481 if (t1 == Type::TOP) return Type::TOP; 2482 Node *adr = in(MemNode::Address); 2483 const Type *t2 = phase->type( adr ); 2484 if (t2 == Type::TOP) return Type::TOP; 2485 const TypePtr *tp = t2->is_ptr(); 2486 if (TypePtr::above_centerline(tp->ptr()) || 2487 tp->ptr() == TypePtr::Null) return Type::TOP; 2488 2489 // Return a more precise klass, if possible 2490 const TypeInstPtr *tinst = tp->isa_instptr(); 2491 if (tinst != nullptr) { 2492 ciInstanceKlass* ik = tinst->instance_klass(); 2493 int offset = tinst->offset(); 2494 if (ik == phase->C->env()->Class_klass() 2495 && (offset == java_lang_Class::klass_offset() || 2496 offset == java_lang_Class::array_klass_offset())) { 2497 // We are loading a special hidden field from a Class mirror object, 2498 // the field which points to the VM's Klass metaobject. 2499 bool is_null_free_array = false; 2500 ciType* t = tinst->java_mirror_type(&is_null_free_array); 2501 // java_mirror_type returns non-null for compile-time Class constants. 2502 if (t != nullptr) { 2503 // constant oop => constant klass 2504 if (offset == java_lang_Class::array_klass_offset()) { 2505 if (t->is_void()) { 2506 // We cannot create a void array. Since void is a primitive type return null 2507 // klass. Users of this result need to do a null check on the returned klass. 2508 return TypePtr::NULL_PTR; 2509 } 2510 const TypeKlassPtr* tklass = TypeKlassPtr::make(ciArrayKlass::make(t), Type::trust_interfaces); 2511 if (is_null_free_array) { 2512 tklass = tklass->is_aryklassptr()->cast_to_null_free(); 2513 } 2514 return tklass; 2515 } 2516 if (!t->is_klass()) { 2517 // a primitive Class (e.g., int.class) has null for a klass field 2518 return TypePtr::NULL_PTR; 2519 } 2520 // Fold up the load of the hidden field 2521 const TypeKlassPtr* tklass = TypeKlassPtr::make(t->as_klass(), Type::trust_interfaces); 2522 if (is_null_free_array) { 2523 tklass = tklass->is_aryklassptr()->cast_to_null_free(); 2524 } 2525 return tklass; 2526 } 2527 // non-constant mirror, so we can't tell what's going on 2528 } 2529 if (!tinst->is_loaded()) 2530 return _type; // Bail out if not loaded 2531 if (offset == oopDesc::klass_offset_in_bytes()) { 2532 return tinst->as_klass_type(true); 2533 } 2534 } 2535 2536 // Check for loading klass from an array 2537 const TypeAryPtr* tary = tp->isa_aryptr(); 2538 if (tary != nullptr && 2539 tary->offset() == oopDesc::klass_offset_in_bytes()) { 2540 return tary->as_klass_type(true); 2541 } 2542 2543 // Check for loading klass from an array klass 2544 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2545 if (tkls != nullptr && !StressReflectiveCode) { 2546 if (!tkls->is_loaded()) 2547 return _type; // Bail out if not loaded 2548 if (tkls->isa_aryklassptr() && tkls->is_aryklassptr()->elem()->isa_klassptr() && 2549 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) { 2550 // // Always returning precise element type is incorrect, 2551 // // e.g., element type could be object and array may contain strings 2552 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0); 2553 2554 // The array's TypeKlassPtr was declared 'precise' or 'not precise' 2555 // according to the element type's subclassing. 2556 return tkls->is_aryklassptr()->elem()->isa_klassptr()->cast_to_exactness(tkls->klass_is_exact()); 2557 } 2558 if (tkls->isa_instklassptr() != nullptr && tkls->klass_is_exact() && 2559 tkls->offset() == in_bytes(Klass::super_offset())) { 2560 ciKlass* sup = tkls->is_instklassptr()->instance_klass()->super(); 2561 // The field is Klass::_super. Return its (constant) value. 2562 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().) 2563 return sup ? TypeKlassPtr::make(sup, Type::trust_interfaces) : TypePtr::NULL_PTR; 2564 } 2565 } 2566 2567 if (tkls != nullptr && !UseSecondarySupersCache 2568 && tkls->offset() == in_bytes(Klass::secondary_super_cache_offset())) { 2569 // Treat Klass::_secondary_super_cache as a constant when the cache is disabled. 2570 return TypePtr::NULL_PTR; 2571 } 2572 2573 // Bailout case 2574 return LoadNode::Value(phase); 2575 } 2576 2577 //------------------------------Identity--------------------------------------- 2578 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k. 2579 // Also feed through the klass in Allocate(...klass...)._klass. 2580 Node* LoadKlassNode::Identity(PhaseGVN* phase) { 2581 return klass_identity_common(phase); 2582 } 2583 2584 Node* LoadNode::klass_identity_common(PhaseGVN* phase) { 2585 Node* x = LoadNode::Identity(phase); 2586 if (x != this) return x; 2587 2588 // Take apart the address into an oop and offset. 2589 // Return 'this' if we cannot. 2590 Node* adr = in(MemNode::Address); 2591 intptr_t offset = 0; 2592 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2593 if (base == nullptr) return this; 2594 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr(); 2595 if (toop == nullptr) return this; 2596 2597 // Step over potential GC barrier for OopHandle resolve 2598 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2599 if (bs->is_gc_barrier_node(base)) { 2600 base = bs->step_over_gc_barrier(base); 2601 } 2602 2603 // We can fetch the klass directly through an AllocateNode. 2604 // This works even if the klass is not constant (clone or newArray). 2605 if (offset == oopDesc::klass_offset_in_bytes()) { 2606 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase); 2607 if (allocated_klass != nullptr) { 2608 return allocated_klass; 2609 } 2610 } 2611 2612 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*. 2613 // See inline_native_Class_query for occurrences of these patterns. 2614 // Java Example: x.getClass().isAssignableFrom(y) 2615 // 2616 // This improves reflective code, often making the Class 2617 // mirror go completely dead. (Current exception: Class 2618 // mirrors may appear in debug info, but we could clean them out by 2619 // introducing a new debug info operator for Klass.java_mirror). 2620 2621 if (toop->isa_instptr() && toop->is_instptr()->instance_klass() == phase->C->env()->Class_klass() 2622 && offset == java_lang_Class::klass_offset()) { 2623 if (base->is_Load()) { 2624 Node* base2 = base->in(MemNode::Address); 2625 if (base2->is_Load()) { /* direct load of a load which is the OopHandle */ 2626 Node* adr2 = base2->in(MemNode::Address); 2627 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2628 if (tkls != nullptr && !tkls->empty() 2629 && (tkls->isa_instklassptr() || tkls->isa_aryklassptr()) 2630 && adr2->is_AddP() 2631 ) { 2632 int mirror_field = in_bytes(Klass::java_mirror_offset()); 2633 if (tkls->offset() == mirror_field) { 2634 return adr2->in(AddPNode::Base); 2635 } 2636 } 2637 } 2638 } 2639 } 2640 2641 return this; 2642 } 2643 2644 LoadNode* LoadNode::clone_pinned() const { 2645 LoadNode* ld = clone()->as_Load(); 2646 ld->_control_dependency = UnknownControl; 2647 return ld; 2648 } 2649 2650 2651 //------------------------------Value------------------------------------------ 2652 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const { 2653 const Type *t = klass_value_common(phase); 2654 if (t == Type::TOP) 2655 return t; 2656 2657 return t->make_narrowklass(); 2658 } 2659 2660 //------------------------------Identity--------------------------------------- 2661 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k. 2662 // Also feed through the klass in Allocate(...klass...)._klass. 2663 Node* LoadNKlassNode::Identity(PhaseGVN* phase) { 2664 Node *x = klass_identity_common(phase); 2665 2666 const Type *t = phase->type( x ); 2667 if( t == Type::TOP ) return x; 2668 if( t->isa_narrowklass()) return x; 2669 assert (!t->isa_narrowoop(), "no narrow oop here"); 2670 2671 return phase->transform(new EncodePKlassNode(x, t->make_narrowklass())); 2672 } 2673 2674 //------------------------------Value----------------------------------------- 2675 const Type* LoadRangeNode::Value(PhaseGVN* phase) const { 2676 // Either input is TOP ==> the result is TOP 2677 const Type *t1 = phase->type( in(MemNode::Memory) ); 2678 if( t1 == Type::TOP ) return Type::TOP; 2679 Node *adr = in(MemNode::Address); 2680 const Type *t2 = phase->type( adr ); 2681 if( t2 == Type::TOP ) return Type::TOP; 2682 const TypePtr *tp = t2->is_ptr(); 2683 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP; 2684 const TypeAryPtr *tap = tp->isa_aryptr(); 2685 if( !tap ) return _type; 2686 return tap->size(); 2687 } 2688 2689 //-------------------------------Ideal--------------------------------------- 2690 // Feed through the length in AllocateArray(...length...)._length. 2691 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2692 Node* p = MemNode::Ideal_common(phase, can_reshape); 2693 if (p) return (p == NodeSentinel) ? nullptr : p; 2694 2695 // Take apart the address into an oop and offset. 2696 // Return 'this' if we cannot. 2697 Node* adr = in(MemNode::Address); 2698 intptr_t offset = 0; 2699 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2700 if (base == nullptr) return nullptr; 2701 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2702 if (tary == nullptr) return nullptr; 2703 2704 // We can fetch the length directly through an AllocateArrayNode. 2705 // This works even if the length is not constant (clone or newArray). 2706 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2707 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base); 2708 if (alloc != nullptr) { 2709 Node* allocated_length = alloc->Ideal_length(); 2710 Node* len = alloc->make_ideal_length(tary, phase); 2711 if (allocated_length != len) { 2712 // New CastII improves on this. 2713 return len; 2714 } 2715 } 2716 } 2717 2718 return nullptr; 2719 } 2720 2721 //------------------------------Identity--------------------------------------- 2722 // Feed through the length in AllocateArray(...length...)._length. 2723 Node* LoadRangeNode::Identity(PhaseGVN* phase) { 2724 Node* x = LoadINode::Identity(phase); 2725 if (x != this) return x; 2726 2727 // Take apart the address into an oop and offset. 2728 // Return 'this' if we cannot. 2729 Node* adr = in(MemNode::Address); 2730 intptr_t offset = 0; 2731 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2732 if (base == nullptr) return this; 2733 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2734 if (tary == nullptr) return this; 2735 2736 // We can fetch the length directly through an AllocateArrayNode. 2737 // This works even if the length is not constant (clone or newArray). 2738 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2739 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base); 2740 if (alloc != nullptr) { 2741 Node* allocated_length = alloc->Ideal_length(); 2742 // Do not allow make_ideal_length to allocate a CastII node. 2743 Node* len = alloc->make_ideal_length(tary, phase, false); 2744 if (allocated_length == len) { 2745 // Return allocated_length only if it would not be improved by a CastII. 2746 return allocated_length; 2747 } 2748 } 2749 } 2750 2751 return this; 2752 2753 } 2754 2755 //============================================================================= 2756 //---------------------------StoreNode::make----------------------------------- 2757 // Polymorphic factory method: 2758 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) { 2759 assert((mo == unordered || mo == release), "unexpected"); 2760 Compile* C = gvn.C; 2761 assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 2762 ctl != nullptr, "raw memory operations should have control edge"); 2763 2764 switch (bt) { 2765 case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case 2766 case T_BYTE: return new StoreBNode(ctl, mem, adr, adr_type, val, mo); 2767 case T_INT: return new StoreINode(ctl, mem, adr, adr_type, val, mo); 2768 case T_CHAR: 2769 case T_SHORT: return new StoreCNode(ctl, mem, adr, adr_type, val, mo); 2770 case T_LONG: return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2771 case T_FLOAT: return new StoreFNode(ctl, mem, adr, adr_type, val, mo); 2772 case T_DOUBLE: return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2773 case T_METADATA: 2774 case T_ADDRESS: 2775 case T_OBJECT: 2776 #ifdef _LP64 2777 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 2778 val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop())); 2779 return new StoreNNode(ctl, mem, adr, adr_type, val, mo); 2780 } else if (adr->bottom_type()->is_ptr_to_narrowklass() || 2781 (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() && 2782 adr->bottom_type()->isa_rawptr())) { 2783 val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass())); 2784 return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo); 2785 } 2786 #endif 2787 { 2788 return new StorePNode(ctl, mem, adr, adr_type, val, mo); 2789 } 2790 default: 2791 ShouldNotReachHere(); 2792 return (StoreNode*)nullptr; 2793 } 2794 } 2795 2796 //--------------------------bottom_type---------------------------------------- 2797 const Type *StoreNode::bottom_type() const { 2798 return Type::MEMORY; 2799 } 2800 2801 //------------------------------hash------------------------------------------- 2802 uint StoreNode::hash() const { 2803 // unroll addition of interesting fields 2804 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn); 2805 2806 // Since they are not commoned, do not hash them: 2807 return NO_HASH; 2808 } 2809 2810 // Link together multiple stores (B/S/C/I) into a longer one. 2811 // 2812 // Example: _store = StoreB[i+3] 2813 // 2814 // RangeCheck[i+0] RangeCheck[i+0] 2815 // StoreB[i+0] 2816 // RangeCheck[i+3] RangeCheck[i+3] 2817 // StoreB[i+1] --> pass: fail: 2818 // StoreB[i+2] StoreI[i+0] StoreB[i+0] 2819 // StoreB[i+3] 2820 // 2821 // The 4 StoreB are merged into a single StoreI node. We have to be careful with RangeCheck[i+1]: before 2822 // the optimization, if this RangeCheck[i+1] fails, then we execute only StoreB[i+0], and then trap. After 2823 // the optimization, the new StoreI[i+0] is on the passing path of RangeCheck[i+3], and StoreB[i+0] on the 2824 // failing path. 2825 // 2826 // Note: For normal array stores, every store at first has a RangeCheck. But they can be removed with: 2827 // - RCE (RangeCheck Elimination): the RangeChecks in the loop are hoisted out and before the loop, 2828 // and possibly no RangeChecks remain between the stores. 2829 // - RangeCheck smearing: the earlier RangeChecks are adjusted such that they cover later RangeChecks, 2830 // and those later RangeChecks can be removed. Example: 2831 // 2832 // RangeCheck[i+0] RangeCheck[i+0] <- before first store 2833 // StoreB[i+0] StoreB[i+0] <- first store 2834 // RangeCheck[i+1] --> smeared --> RangeCheck[i+3] <- only RC between first and last store 2835 // StoreB[i+1] StoreB[i+1] <- second store 2836 // RangeCheck[i+2] --> removed 2837 // StoreB[i+2] StoreB[i+2] 2838 // RangeCheck[i+3] --> removed 2839 // StoreB[i+3] StoreB[i+3] <- last store 2840 // 2841 // Thus, it is a common pattern that between the first and last store in a chain 2842 // of adjacent stores there remains exactly one RangeCheck, located between the 2843 // first and the second store (e.g. RangeCheck[i+3]). 2844 // 2845 class MergePrimitiveStores : public StackObj { 2846 private: 2847 PhaseGVN* const _phase; 2848 StoreNode* const _store; 2849 // State machine with initial state Unknown 2850 // Allowed transitions: 2851 // Unknown -> Const 2852 // Unknown -> Platform 2853 // Unknown -> Reverse 2854 // Unknown -> NotAdjacent 2855 // Const -> Const 2856 // Const -> NotAdjacent 2857 // Platform -> Platform 2858 // Platform -> NotAdjacent 2859 // Reverse -> Reverse 2860 // Reverse -> NotAdjacent 2861 // NotAdjacent -> NotAdjacent 2862 enum ValueOrder : uint8_t { 2863 Unknown, // Initial state 2864 Const, // Input values are const 2865 Platform, // Platform order 2866 Reverse, // Reverse platform order 2867 NotAdjacent // Not adjacent 2868 }; 2869 ValueOrder _value_order; 2870 2871 NOT_PRODUCT( const CHeapBitMap &_trace_tags; ) 2872 2873 public: 2874 MergePrimitiveStores(PhaseGVN* phase, StoreNode* store) : 2875 _phase(phase), _store(store), _value_order(ValueOrder::Unknown) 2876 NOT_PRODUCT( COMMA _trace_tags(Compile::current()->directive()->trace_merge_stores_tags()) ) 2877 {} 2878 2879 StoreNode* run(); 2880 2881 private: 2882 bool is_compatible_store(const StoreNode* other_store) const; 2883 bool is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const; 2884 bool is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const; 2885 static bool is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out, PhaseGVN* phase); 2886 enum CFGStatus { SuccessNoRangeCheck, SuccessWithRangeCheck, Failure }; 2887 static CFGStatus cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store); 2888 2889 class Status { 2890 private: 2891 StoreNode* _found_store; 2892 bool _found_range_check; 2893 2894 Status(StoreNode* found_store, bool found_range_check) 2895 : _found_store(found_store), _found_range_check(found_range_check) {} 2896 2897 public: 2898 StoreNode* found_store() const { return _found_store; } 2899 bool found_range_check() const { return _found_range_check; } 2900 static Status make_failure() { return Status(nullptr, false); } 2901 2902 static Status make(StoreNode* found_store, const CFGStatus cfg_status) { 2903 if (cfg_status == CFGStatus::Failure) { 2904 return Status::make_failure(); 2905 } 2906 return Status(found_store, cfg_status == CFGStatus::SuccessWithRangeCheck); 2907 } 2908 2909 #ifndef PRODUCT 2910 void print_on(outputStream* st) const { 2911 if (_found_store == nullptr) { 2912 st->print_cr("None"); 2913 } else { 2914 st->print_cr("Found[%d %s, %s]", _found_store->_idx, _found_store->Name(), 2915 _found_range_check ? "RC" : "no-RC"); 2916 } 2917 } 2918 #endif 2919 }; 2920 2921 enum ValueOrder find_adjacent_input_value_order(const Node* n1, const Node* n2, const int memory_size) const; 2922 Status find_adjacent_use_store(const StoreNode* def_store) const; 2923 Status find_adjacent_def_store(const StoreNode* use_store) const; 2924 Status find_use_store(const StoreNode* def_store) const; 2925 Status find_def_store(const StoreNode* use_store) const; 2926 Status find_use_store_unidirectional(const StoreNode* def_store) const; 2927 Status find_def_store_unidirectional(const StoreNode* use_store) const; 2928 2929 void collect_merge_list(Node_List& merge_list) const; 2930 Node* make_merged_input_value(const Node_List& merge_list); 2931 StoreNode* make_merged_store(const Node_List& merge_list, Node* merged_input_value); 2932 2933 #ifndef PRODUCT 2934 // Access to TraceMergeStores tags 2935 bool is_trace(TraceMergeStores::Tag tag) const { 2936 return _trace_tags.at(tag); 2937 } 2938 2939 bool is_trace_basic() const { 2940 return is_trace(TraceMergeStores::Tag::BASIC); 2941 } 2942 2943 bool is_trace_pointer_parsing() const { 2944 return is_trace(TraceMergeStores::Tag::POINTER_PARSING); 2945 } 2946 2947 bool is_trace_pointer_aliasing() const { 2948 return is_trace(TraceMergeStores::Tag::POINTER_ALIASING); 2949 } 2950 2951 bool is_trace_pointer_adjacency() const { 2952 return is_trace(TraceMergeStores::Tag::POINTER_ADJACENCY); 2953 } 2954 2955 bool is_trace_success() const { 2956 return is_trace(TraceMergeStores::Tag::SUCCESS); 2957 } 2958 #endif 2959 2960 NOT_PRODUCT( void trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const; ) 2961 }; 2962 2963 StoreNode* MergePrimitiveStores::run() { 2964 // Check for B/S/C/I 2965 int opc = _store->Opcode(); 2966 if (opc != Op_StoreB && opc != Op_StoreC && opc != Op_StoreI) { 2967 return nullptr; 2968 } 2969 2970 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] MergePrimitiveStores::run: "); _store->dump(); }) 2971 2972 // The _store must be the "last" store in a chain. If we find a use we could merge with 2973 // then that use or a store further down is the "last" store. 2974 Status status_use = find_adjacent_use_store(_store); 2975 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect no use: "); status_use.print_on(tty); }) 2976 if (status_use.found_store() != nullptr) { 2977 return nullptr; 2978 } 2979 2980 // Check if we can merge with at least one def, so that we have at least 2 stores to merge. 2981 Status status_def = find_adjacent_def_store(_store); 2982 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect def: "); status_def.print_on(tty); }) 2983 Node* def_store = status_def.found_store(); 2984 if (def_store == nullptr) { 2985 return nullptr; 2986 } 2987 2988 // Initialize value order 2989 _value_order = find_adjacent_input_value_order(def_store->in(MemNode::ValueIn), 2990 _store->in(MemNode::ValueIn), 2991 _store->memory_size()); 2992 assert(_value_order != ValueOrder::NotAdjacent && _value_order != ValueOrder::Unknown, "Order should be checked"); 2993 2994 ResourceMark rm; 2995 Node_List merge_list; 2996 collect_merge_list(merge_list); 2997 2998 Node* merged_input_value = make_merged_input_value(merge_list); 2999 if (merged_input_value == nullptr) { return nullptr; } 3000 3001 StoreNode* merged_store = make_merged_store(merge_list, merged_input_value); 3002 3003 NOT_PRODUCT( if (is_trace_success()) { trace(merge_list, merged_input_value, merged_store); } ) 3004 3005 return merged_store; 3006 } 3007 3008 // Check compatibility between _store and other_store. 3009 bool MergePrimitiveStores::is_compatible_store(const StoreNode* other_store) const { 3010 int opc = _store->Opcode(); 3011 assert(opc == Op_StoreB || opc == Op_StoreC || opc == Op_StoreI, "precondition"); 3012 3013 if (other_store == nullptr || 3014 _store->Opcode() != other_store->Opcode()) { 3015 return false; 3016 } 3017 3018 return true; 3019 } 3020 3021 bool MergePrimitiveStores::is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const { 3022 if (!is_adjacent_input_pair(def_store->in(MemNode::ValueIn), 3023 use_store->in(MemNode::ValueIn), 3024 def_store->memory_size())) { 3025 return false; 3026 } 3027 3028 ResourceMark rm; 3029 #ifndef PRODUCT 3030 const TraceMemPointer trace(is_trace_pointer_parsing(), 3031 is_trace_pointer_aliasing(), 3032 is_trace_pointer_adjacency(), 3033 true); 3034 #endif 3035 const MemPointer pointer_use(use_store NOT_PRODUCT(COMMA trace)); 3036 const MemPointer pointer_def(def_store NOT_PRODUCT(COMMA trace)); 3037 return pointer_def.is_adjacent_to_and_before(pointer_use); 3038 } 3039 3040 // Check input values n1 and n2 can be merged and return the value order 3041 MergePrimitiveStores::ValueOrder MergePrimitiveStores::find_adjacent_input_value_order(const Node* n1, const Node* n2, 3042 const int memory_size) const { 3043 // Pattern: [n1 = ConI, n2 = ConI] 3044 if (n1->Opcode() == Op_ConI && n2->Opcode() == Op_ConI) { 3045 return ValueOrder::Const; 3046 } 3047 3048 Node const *base_n2; 3049 jint shift_n2; 3050 if (!is_con_RShift(n2, base_n2, shift_n2, _phase)) { 3051 return ValueOrder::NotAdjacent; 3052 } 3053 Node const *base_n1; 3054 jint shift_n1; 3055 if (!is_con_RShift(n1, base_n1, shift_n1, _phase)) { 3056 return ValueOrder::NotAdjacent; 3057 } 3058 3059 int bits_per_store = memory_size * 8; 3060 if (base_n1 != base_n2 || 3061 abs(shift_n1 - shift_n2) != bits_per_store || 3062 shift_n1 % bits_per_store != 0) { 3063 // Values are not adjacent 3064 return ValueOrder::NotAdjacent; 3065 } 3066 3067 // Detect value order 3068 #ifdef VM_LITTLE_ENDIAN 3069 return shift_n1 < shift_n2 ? ValueOrder::Platform // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)] 3070 : ValueOrder::Reverse; // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift] 3071 #else 3072 return shift_n1 > shift_n2 ? ValueOrder::Platform // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift] 3073 : ValueOrder::Reverse; // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)] 3074 #endif 3075 } 3076 3077 bool MergePrimitiveStores::is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const { 3078 ValueOrder input_value_order = find_adjacent_input_value_order(n1, n2, memory_size); 3079 3080 switch (input_value_order) { 3081 case ValueOrder::NotAdjacent: 3082 return false; 3083 case ValueOrder::Reverse: 3084 if (memory_size != 1 || 3085 !Matcher::match_rule_supported(Op_ReverseBytesS) || 3086 !Matcher::match_rule_supported(Op_ReverseBytesI) || 3087 !Matcher::match_rule_supported(Op_ReverseBytesL)) { 3088 // ReverseBytes are not supported by platform 3089 return false; 3090 } 3091 // fall-through. 3092 case ValueOrder::Const: 3093 case ValueOrder::Platform: 3094 if (_value_order == ValueOrder::Unknown) { 3095 // Initial state is Unknown, and we find a valid input value order 3096 return true; 3097 } 3098 // The value order can not be changed 3099 return _value_order == input_value_order; 3100 case ValueOrder::Unknown: 3101 default: 3102 ShouldNotReachHere(); 3103 } 3104 return false; 3105 } 3106 3107 // Detect pattern: n = base_out >> shift_out 3108 bool MergePrimitiveStores::is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out, PhaseGVN* phase) { 3109 assert(n != nullptr, "precondition"); 3110 3111 int opc = n->Opcode(); 3112 if (opc == Op_ConvL2I) { 3113 n = n->in(1); 3114 opc = n->Opcode(); 3115 } 3116 3117 if ((opc == Op_RShiftI || 3118 opc == Op_RShiftL || 3119 opc == Op_URShiftI || 3120 opc == Op_URShiftL) && 3121 n->in(2)->is_ConI()) { 3122 base_out = n->in(1); 3123 shift_out = n->in(2)->get_int(); 3124 // The shift must be positive: 3125 return shift_out >= 0; 3126 } 3127 3128 if (phase->type(n)->isa_int() != nullptr || 3129 phase->type(n)->isa_long() != nullptr) { 3130 // (base >> 0) 3131 base_out = n; 3132 shift_out = 0; 3133 return true; 3134 } 3135 return false; 3136 } 3137 3138 // Check if there is nothing between the two stores, except optionally a RangeCheck leading to an uncommon trap. 3139 MergePrimitiveStores::CFGStatus MergePrimitiveStores::cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store) { 3140 assert(use_store->in(MemNode::Memory) == def_store, "use-def relationship"); 3141 3142 Node* ctrl_use = use_store->in(MemNode::Control); 3143 Node* ctrl_def = def_store->in(MemNode::Control); 3144 if (ctrl_use == nullptr || ctrl_def == nullptr) { 3145 return CFGStatus::Failure; 3146 } 3147 3148 if (ctrl_use == ctrl_def) { 3149 // Same ctrl -> no RangeCheck in between. 3150 // Check: use_store must be the only use of def_store. 3151 if (def_store->outcnt() > 1) { 3152 return CFGStatus::Failure; 3153 } 3154 return CFGStatus::SuccessNoRangeCheck; 3155 } 3156 3157 // Different ctrl -> could have RangeCheck in between. 3158 // Check: 1. def_store only has these uses: use_store and MergeMem for uncommon trap, and 3159 // 2. ctrl separated by RangeCheck. 3160 if (def_store->outcnt() != 2) { 3161 return CFGStatus::Failure; // Cannot have exactly these uses: use_store and MergeMem for uncommon trap. 3162 } 3163 int use_store_out_idx = def_store->raw_out(0) == use_store ? 0 : 1; 3164 Node* merge_mem = def_store->raw_out(1 - use_store_out_idx)->isa_MergeMem(); 3165 if (merge_mem == nullptr || 3166 merge_mem->outcnt() != 1) { 3167 return CFGStatus::Failure; // Does not have MergeMem for uncommon trap. 3168 } 3169 if (!ctrl_use->is_IfProj() || 3170 !ctrl_use->in(0)->is_RangeCheck() || 3171 ctrl_use->in(0)->outcnt() != 2) { 3172 return CFGStatus::Failure; // Not RangeCheck. 3173 } 3174 ProjNode* other_proj = ctrl_use->as_IfProj()->other_if_proj(); 3175 Node* trap = other_proj->is_uncommon_trap_proj(Deoptimization::Reason_range_check); 3176 if (trap != merge_mem->unique_out() || 3177 ctrl_use->in(0)->in(0) != ctrl_def) { 3178 return CFGStatus::Failure; // Not RangeCheck with merge_mem leading to uncommon trap. 3179 } 3180 3181 return CFGStatus::SuccessWithRangeCheck; 3182 } 3183 3184 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_use_store(const StoreNode* def_store) const { 3185 Status status_use = find_use_store(def_store); 3186 StoreNode* use_store = status_use.found_store(); 3187 if (use_store != nullptr && !is_adjacent_pair(use_store, def_store)) { 3188 return Status::make_failure(); 3189 } 3190 return status_use; 3191 } 3192 3193 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_def_store(const StoreNode* use_store) const { 3194 Status status_def = find_def_store(use_store); 3195 StoreNode* def_store = status_def.found_store(); 3196 if (def_store != nullptr && !is_adjacent_pair(use_store, def_store)) { 3197 return Status::make_failure(); 3198 } 3199 return status_def; 3200 } 3201 3202 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store(const StoreNode* def_store) const { 3203 Status status_use = find_use_store_unidirectional(def_store); 3204 3205 #ifdef ASSERT 3206 StoreNode* use_store = status_use.found_store(); 3207 if (use_store != nullptr) { 3208 Status status_def = find_def_store_unidirectional(use_store); 3209 assert(status_def.found_store() == def_store && 3210 status_def.found_range_check() == status_use.found_range_check(), 3211 "find_use_store and find_def_store must be symmetric"); 3212 } 3213 #endif 3214 3215 return status_use; 3216 } 3217 3218 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store(const StoreNode* use_store) const { 3219 Status status_def = find_def_store_unidirectional(use_store); 3220 3221 #ifdef ASSERT 3222 StoreNode* def_store = status_def.found_store(); 3223 if (def_store != nullptr) { 3224 Status status_use = find_use_store_unidirectional(def_store); 3225 assert(status_use.found_store() == use_store && 3226 status_use.found_range_check() == status_def.found_range_check(), 3227 "find_use_store and find_def_store must be symmetric"); 3228 } 3229 #endif 3230 3231 return status_def; 3232 } 3233 3234 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store_unidirectional(const StoreNode* def_store) const { 3235 assert(is_compatible_store(def_store), "precondition: must be compatible with _store"); 3236 3237 for (DUIterator_Fast imax, i = def_store->fast_outs(imax); i < imax; i++) { 3238 StoreNode* use_store = def_store->fast_out(i)->isa_Store(); 3239 if (is_compatible_store(use_store)) { 3240 return Status::make(use_store, cfg_status_for_pair(use_store, def_store)); 3241 } 3242 } 3243 3244 return Status::make_failure(); 3245 } 3246 3247 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store_unidirectional(const StoreNode* use_store) const { 3248 assert(is_compatible_store(use_store), "precondition: must be compatible with _store"); 3249 3250 StoreNode* def_store = use_store->in(MemNode::Memory)->isa_Store(); 3251 if (!is_compatible_store(def_store)) { 3252 return Status::make_failure(); 3253 } 3254 3255 return Status::make(def_store, cfg_status_for_pair(use_store, def_store)); 3256 } 3257 3258 void MergePrimitiveStores::collect_merge_list(Node_List& merge_list) const { 3259 // The merged store can be at most 8 bytes. 3260 const uint merge_list_max_size = 8 / _store->memory_size(); 3261 assert(merge_list_max_size >= 2 && 3262 merge_list_max_size <= 8 && 3263 is_power_of_2(merge_list_max_size), 3264 "must be 2, 4 or 8"); 3265 3266 // Traverse up the chain of adjacent def stores. 3267 StoreNode* current = _store; 3268 merge_list.push(current); 3269 while (current != nullptr && merge_list.size() < merge_list_max_size) { 3270 Status status = find_adjacent_def_store(current); 3271 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] find def: "); status.print_on(tty); }) 3272 3273 current = status.found_store(); 3274 if (current != nullptr) { 3275 merge_list.push(current); 3276 3277 // We can have at most one RangeCheck. 3278 if (status.found_range_check()) { 3279 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found RangeCheck, stop traversal."); }) 3280 break; 3281 } 3282 } 3283 } 3284 3285 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found:"); merge_list.dump(); }) 3286 3287 // Truncate the merge_list to a power of 2. 3288 const uint pow2size = round_down_power_of_2(merge_list.size()); 3289 assert(pow2size >= 2, "must be merging at least 2 stores"); 3290 while (merge_list.size() > pow2size) { merge_list.pop(); } 3291 3292 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] truncated:"); merge_list.dump(); }) 3293 } 3294 3295 // Merge the input values of the smaller stores to a single larger input value. 3296 Node* MergePrimitiveStores::make_merged_input_value(const Node_List& merge_list) { 3297 int new_memory_size = _store->memory_size() * merge_list.size(); 3298 Node* first = merge_list.at(merge_list.size()-1); 3299 Node* merged_input_value = nullptr; 3300 if (_store->in(MemNode::ValueIn)->Opcode() == Op_ConI) { 3301 assert(_value_order == ValueOrder::Const, "must match"); 3302 // Pattern: [ConI, ConI, ...] -> new constant 3303 jlong con = 0; 3304 jlong bits_per_store = _store->memory_size() * 8; 3305 jlong mask = (((jlong)1) << bits_per_store) - 1; 3306 for (uint i = 0; i < merge_list.size(); i++) { 3307 jlong con_i = merge_list.at(i)->in(MemNode::ValueIn)->get_int(); 3308 #ifdef VM_LITTLE_ENDIAN 3309 con = con << bits_per_store; 3310 con = con | (mask & con_i); 3311 #else // VM_LITTLE_ENDIAN 3312 con_i = (mask & con_i) << (i * bits_per_store); 3313 con = con | con_i; 3314 #endif // VM_LITTLE_ENDIAN 3315 } 3316 merged_input_value = _phase->longcon(con); 3317 } else { 3318 assert(_value_order == ValueOrder::Platform || _value_order == ValueOrder::Reverse, "must match"); 3319 // Pattern: [base >> 24, base >> 16, base >> 8, base] -> base 3320 // | | 3321 // _store first 3322 // 3323 Node* hi = _store->in(MemNode::ValueIn); 3324 Node* lo = first->in(MemNode::ValueIn); 3325 #ifndef VM_LITTLE_ENDIAN 3326 // `_store` and `first` are swapped in the diagram above 3327 swap(hi, lo); 3328 #endif // !VM_LITTLE_ENDIAN 3329 if (_value_order == ValueOrder::Reverse) { 3330 swap(hi, lo); 3331 } 3332 Node const* hi_base; 3333 jint hi_shift; 3334 merged_input_value = lo; 3335 bool is_true = is_con_RShift(hi, hi_base, hi_shift, _phase); 3336 assert(is_true, "must detect con RShift"); 3337 if (merged_input_value != hi_base && merged_input_value->Opcode() == Op_ConvL2I) { 3338 // look through 3339 merged_input_value = merged_input_value->in(1); 3340 } 3341 if (merged_input_value != hi_base) { 3342 // merged_input_value is not the base 3343 return nullptr; 3344 } 3345 } 3346 3347 if (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size <= 4) { 3348 // Example: 3349 // 3350 // long base = ...; 3351 // a[0] = (byte)(base >> 0); 3352 // a[1] = (byte)(base >> 8); 3353 // 3354 merged_input_value = _phase->transform(new ConvL2INode(merged_input_value)); 3355 } 3356 3357 assert((_phase->type(merged_input_value)->isa_int() != nullptr && new_memory_size <= 4) || 3358 (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size == 8), 3359 "merged_input_value is either int or long, and new_memory_size is small enough"); 3360 3361 if (_value_order == ValueOrder::Reverse) { 3362 assert(_store->memory_size() == 1, "only implemented for bytes"); 3363 if (new_memory_size == 8) { 3364 merged_input_value = _phase->transform(new ReverseBytesLNode(merged_input_value)); 3365 } else if (new_memory_size == 4) { 3366 merged_input_value = _phase->transform(new ReverseBytesINode(merged_input_value)); 3367 } else { 3368 assert(new_memory_size == 2, "sanity check"); 3369 merged_input_value = _phase->transform(new ReverseBytesSNode(merged_input_value)); 3370 } 3371 } 3372 return merged_input_value; 3373 } 3374 3375 // // 3376 // first_ctrl first_mem first_adr first_ctrl first_mem first_adr // 3377 // | | | | | | // 3378 // | | | | +---------------+ | // 3379 // | | | | | | | // 3380 // | | +---------+ | | +---------------+ // 3381 // | | | | | | | | // 3382 // +--------------+ | | v1 +------------------------------+ | | v1 // 3383 // | | | | | | | | | | | | // 3384 // RangeCheck first_store RangeCheck | | first_store // 3385 // | | | | | | | // 3386 // last_ctrl | +----> unc_trap last_ctrl | | +----> unc_trap // 3387 // | | ===> | | | // 3388 // +--------------+ | a2 v2 | | | // 3389 // | | | | | | | | // 3390 // | second_store | | | // 3391 // | | | | | [v1 v2 ... vn] // 3392 // ... ... | | | | // 3393 // | | | | | v // 3394 // +--------------+ | an vn +--------------+ | | merged_input_value // 3395 // | | | | | | | | // 3396 // last_store (= _store) merged_store // 3397 // // 3398 StoreNode* MergePrimitiveStores::make_merged_store(const Node_List& merge_list, Node* merged_input_value) { 3399 Node* first_store = merge_list.at(merge_list.size()-1); 3400 Node* last_ctrl = _store->in(MemNode::Control); // after (optional) RangeCheck 3401 Node* first_mem = first_store->in(MemNode::Memory); 3402 Node* first_adr = first_store->in(MemNode::Address); 3403 3404 const TypePtr* new_adr_type = _store->adr_type(); 3405 3406 int new_memory_size = _store->memory_size() * merge_list.size(); 3407 BasicType bt = T_ILLEGAL; 3408 switch (new_memory_size) { 3409 case 2: bt = T_SHORT; break; 3410 case 4: bt = T_INT; break; 3411 case 8: bt = T_LONG; break; 3412 } 3413 3414 StoreNode* merged_store = StoreNode::make(*_phase, last_ctrl, first_mem, first_adr, 3415 new_adr_type, merged_input_value, bt, MemNode::unordered); 3416 3417 // Marking the store mismatched is sufficient to prevent reordering, since array stores 3418 // are all on the same slice. Hence, we need no barriers. 3419 merged_store->set_mismatched_access(); 3420 3421 // Constants above may now also be be packed -> put candidate on worklist 3422 _phase->is_IterGVN()->_worklist.push(first_mem); 3423 3424 return merged_store; 3425 } 3426 3427 #ifndef PRODUCT 3428 void MergePrimitiveStores::trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const { 3429 stringStream ss; 3430 ss.print_cr("[TraceMergeStores]: Replace"); 3431 for (int i = (int)merge_list.size() - 1; i >= 0; i--) { 3432 merge_list.at(i)->dump("\n", false, &ss); 3433 } 3434 ss.print_cr("[TraceMergeStores]: with"); 3435 merged_input_value->dump("\n", false, &ss); 3436 merged_store->dump("\n", false, &ss); 3437 tty->print("%s", ss.as_string()); 3438 } 3439 #endif 3440 3441 //------------------------------Ideal------------------------------------------ 3442 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x). 3443 // When a store immediately follows a relevant allocation/initialization, 3444 // try to capture it into the initialization, or hoist it above. 3445 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3446 Node* p = MemNode::Ideal_common(phase, can_reshape); 3447 if (p) return (p == NodeSentinel) ? nullptr : p; 3448 3449 Node* mem = in(MemNode::Memory); 3450 Node* address = in(MemNode::Address); 3451 Node* value = in(MemNode::ValueIn); 3452 // Back-to-back stores to same address? Fold em up. Generally 3453 // unsafe if I have intervening uses... 3454 if (phase->C->get_adr_type(phase->C->get_alias_index(adr_type())) != TypeAryPtr::INLINES) { 3455 Node* st = mem; 3456 // If Store 'st' has more than one use, we cannot fold 'st' away. 3457 // For example, 'st' might be the final state at a conditional 3458 // return. Or, 'st' might be used by some node which is live at 3459 // the same time 'st' is live, which might be unschedulable. So, 3460 // require exactly ONE user until such time as we clone 'mem' for 3461 // each of 'mem's uses (thus making the exactly-1-user-rule hold 3462 // true). 3463 while (st->is_Store() && st->outcnt() == 1) { 3464 // Looking at a dead closed cycle of memory? 3465 assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal"); 3466 assert(Opcode() == st->Opcode() || 3467 st->Opcode() == Op_StoreVector || 3468 Opcode() == Op_StoreVector || 3469 st->Opcode() == Op_StoreVectorScatter || 3470 Opcode() == Op_StoreVectorScatter || 3471 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || 3472 (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode 3473 (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy 3474 (Opcode() == Op_StoreL && st->Opcode() == Op_StoreN) || 3475 (st->adr_type()->isa_aryptr() && st->adr_type()->is_aryptr()->is_flat()) || // TODO 8343835 3476 (is_mismatched_access() || st->as_Store()->is_mismatched_access()), 3477 "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); 3478 3479 if (st->in(MemNode::Address)->eqv_uncast(address) && 3480 st->as_Store()->memory_size() <= this->memory_size()) { 3481 Node* use = st->raw_out(0); 3482 if (phase->is_IterGVN()) { 3483 phase->is_IterGVN()->rehash_node_delayed(use); 3484 } 3485 // It's OK to do this in the parser, since DU info is always accurate, 3486 // and the parser always refers to nodes via SafePointNode maps. 3487 use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase); 3488 return this; 3489 } 3490 st = st->in(MemNode::Memory); 3491 } 3492 } 3493 3494 3495 // Capture an unaliased, unconditional, simple store into an initializer. 3496 // Or, if it is independent of the allocation, hoist it above the allocation. 3497 if (ReduceFieldZeroing && /*can_reshape &&*/ 3498 mem->is_Proj() && mem->in(0)->is_Initialize()) { 3499 InitializeNode* init = mem->in(0)->as_Initialize(); 3500 intptr_t offset = init->can_capture_store(this, phase, can_reshape); 3501 if (offset > 0) { 3502 Node* moved = init->capture_store(this, offset, phase, can_reshape); 3503 // If the InitializeNode captured me, it made a raw copy of me, 3504 // and I need to disappear. 3505 if (moved != nullptr) { 3506 // %%% hack to ensure that Ideal returns a new node: 3507 mem = MergeMemNode::make(mem); 3508 return mem; // fold me away 3509 } 3510 } 3511 } 3512 3513 // Fold reinterpret cast into memory operation: 3514 // StoreX mem (MoveY2X v) => StoreY mem v 3515 if (value->is_Move()) { 3516 const Type* vt = value->in(1)->bottom_type(); 3517 if (has_reinterpret_variant(vt)) { 3518 if (phase->C->post_loop_opts_phase()) { 3519 return convert_to_reinterpret_store(*phase, value->in(1), vt); 3520 } else { 3521 phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over 3522 } 3523 } 3524 } 3525 3526 if (MergeStores && UseUnalignedAccesses) { 3527 if (phase->C->merge_stores_phase()) { 3528 MergePrimitiveStores merge(phase, this); 3529 Node* progress = merge.run(); 3530 if (progress != nullptr) { return progress; } 3531 } else { 3532 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 3533 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 3534 // the stores, and we merge the wrong sequence of stores. 3535 // Example: 3536 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 3537 // Apply MergeStores: 3538 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 3539 // Remove more RangeChecks: 3540 // StoreI [ StoreL ] StoreI 3541 // But now it would have been better to do this instead: 3542 // [ StoreL ] [ StoreL ] 3543 phase->C->record_for_merge_stores_igvn(this); 3544 } 3545 } 3546 3547 return nullptr; // No further progress 3548 } 3549 3550 //------------------------------Value----------------------------------------- 3551 const Type* StoreNode::Value(PhaseGVN* phase) const { 3552 // Either input is TOP ==> the result is TOP 3553 const Type *t1 = phase->type( in(MemNode::Memory) ); 3554 if( t1 == Type::TOP ) return Type::TOP; 3555 const Type *t2 = phase->type( in(MemNode::Address) ); 3556 if( t2 == Type::TOP ) return Type::TOP; 3557 const Type *t3 = phase->type( in(MemNode::ValueIn) ); 3558 if( t3 == Type::TOP ) return Type::TOP; 3559 return Type::MEMORY; 3560 } 3561 3562 //------------------------------Identity--------------------------------------- 3563 // Remove redundant stores: 3564 // Store(m, p, Load(m, p)) changes to m. 3565 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x). 3566 Node* StoreNode::Identity(PhaseGVN* phase) { 3567 Node* mem = in(MemNode::Memory); 3568 Node* adr = in(MemNode::Address); 3569 Node* val = in(MemNode::ValueIn); 3570 3571 Node* result = this; 3572 3573 // Load then Store? Then the Store is useless 3574 if (val->is_Load() && 3575 val->in(MemNode::Address)->eqv_uncast(adr) && 3576 val->in(MemNode::Memory )->eqv_uncast(mem) && 3577 val->as_Load()->store_Opcode() == Opcode()) { 3578 // Ensure vector type is the same 3579 if (!is_StoreVector() || (mem->is_LoadVector() && as_StoreVector()->vect_type() == mem->as_LoadVector()->vect_type())) { 3580 result = mem; 3581 } 3582 } 3583 3584 // Two stores in a row of the same value? 3585 if (result == this && 3586 mem->is_Store() && 3587 mem->in(MemNode::Address)->eqv_uncast(adr) && 3588 mem->in(MemNode::ValueIn)->eqv_uncast(val) && 3589 mem->Opcode() == Opcode()) { 3590 if (!is_StoreVector()) { 3591 result = mem; 3592 } else { 3593 const StoreVectorNode* store_vector = as_StoreVector(); 3594 const StoreVectorNode* mem_vector = mem->as_StoreVector(); 3595 const Node* store_indices = store_vector->indices(); 3596 const Node* mem_indices = mem_vector->indices(); 3597 const Node* store_mask = store_vector->mask(); 3598 const Node* mem_mask = mem_vector->mask(); 3599 // Ensure types, indices, and masks match 3600 if (store_vector->vect_type() == mem_vector->vect_type() && 3601 ((store_indices == nullptr) == (mem_indices == nullptr) && 3602 (store_indices == nullptr || store_indices->eqv_uncast(mem_indices))) && 3603 ((store_mask == nullptr) == (mem_mask == nullptr) && 3604 (store_mask == nullptr || store_mask->eqv_uncast(mem_mask)))) { 3605 result = mem; 3606 } 3607 } 3608 } 3609 3610 // Store of zero anywhere into a freshly-allocated object? 3611 // Then the store is useless. 3612 // (It must already have been captured by the InitializeNode.) 3613 if (result == this && ReduceFieldZeroing) { 3614 // a newly allocated object is already all-zeroes everywhere 3615 if (mem->is_Proj() && mem->in(0)->is_Allocate() && 3616 (phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::InitValue) == val)) { 3617 result = mem; 3618 } 3619 3620 if (result == this && phase->type(val)->is_zero_type()) { 3621 // the store may also apply to zero-bits in an earlier object 3622 Node* prev_mem = find_previous_store(phase); 3623 // Steps (a), (b): Walk past independent stores to find an exact match. 3624 if (prev_mem != nullptr) { 3625 Node* prev_val = can_see_stored_value(prev_mem, phase); 3626 if (prev_val != nullptr && prev_val == val) { 3627 // prev_val and val might differ by a cast; it would be good 3628 // to keep the more informative of the two. 3629 result = mem; 3630 } 3631 } 3632 } 3633 } 3634 3635 PhaseIterGVN* igvn = phase->is_IterGVN(); 3636 if (result != this && igvn != nullptr) { 3637 MemBarNode* trailing = trailing_membar(); 3638 if (trailing != nullptr) { 3639 #ifdef ASSERT 3640 const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr(); 3641 assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects"); 3642 #endif 3643 trailing->remove(igvn); 3644 } 3645 } 3646 3647 return result; 3648 } 3649 3650 //------------------------------match_edge------------------------------------- 3651 // Do we Match on this edge index or not? Match only memory & value 3652 uint StoreNode::match_edge(uint idx) const { 3653 return idx == MemNode::Address || idx == MemNode::ValueIn; 3654 } 3655 3656 //------------------------------cmp-------------------------------------------- 3657 // Do not common stores up together. They generally have to be split 3658 // back up anyways, so do not bother. 3659 bool StoreNode::cmp( const Node &n ) const { 3660 return (&n == this); // Always fail except on self 3661 } 3662 3663 //------------------------------Ideal_masked_input----------------------------- 3664 // Check for a useless mask before a partial-word store 3665 // (StoreB ... (AndI valIn conIa) ) 3666 // If (conIa & mask == mask) this simplifies to 3667 // (StoreB ... (valIn) ) 3668 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) { 3669 Node *val = in(MemNode::ValueIn); 3670 if( val->Opcode() == Op_AndI ) { 3671 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 3672 if( t && t->is_con() && (t->get_con() & mask) == mask ) { 3673 set_req_X(MemNode::ValueIn, val->in(1), phase); 3674 return this; 3675 } 3676 } 3677 return nullptr; 3678 } 3679 3680 3681 //------------------------------Ideal_sign_extended_input---------------------- 3682 // Check for useless sign-extension before a partial-word store 3683 // (StoreB ... (RShiftI _ (LShiftI _ v conIL) conIR)) 3684 // If (conIL == conIR && conIR <= num_rejected_bits) this simplifies to 3685 // (StoreB ... (v)) 3686 // If (conIL > conIR) under some conditions, it can be simplified into 3687 // (StoreB ... (LShiftI _ v (conIL - conIR))) 3688 // This case happens when the value of the store was itself a left shift, that 3689 // gets merged into the inner left shift of the sign-extension. For instance, 3690 // if we have 3691 // array_of_shorts[0] = (short)(v << 2) 3692 // We get a structure such as: 3693 // (StoreB ... (RShiftI _ (LShiftI _ (LShiftI _ v 2) 16) 16)) 3694 // that is simplified into 3695 // (StoreB ... (RShiftI _ (LShiftI _ v 18) 16)). 3696 // It is thus useful to handle cases where conIL > conIR. But this simplification 3697 // does not always hold. Let's see in which cases it's valid. 3698 // 3699 // Let's assume we have the following 32 bits integer v: 3700 // +----------------------------------+ 3701 // | v[0..31] | 3702 // +----------------------------------+ 3703 // 31 0 3704 // that will be stuffed in 8 bits byte after a shift left and a shift right of 3705 // potentially different magnitudes. 3706 // We denote num_rejected_bits the number of bits of the discarded part. In this 3707 // case, num_rejected_bits == 24. 3708 // 3709 // Statement (proved further below in case analysis): 3710 // Given: 3711 // - 0 <= conIL < BitsPerJavaInteger (no wrap in shift, enforced by maskShiftAmount) 3712 // - 0 <= conIR < BitsPerJavaInteger (no wrap in shift, enforced by maskShiftAmount) 3713 // - conIL >= conIR 3714 // - num_rejected_bits >= conIR 3715 // Then this form: 3716 // (RShiftI _ (LShiftI _ v conIL) conIR) 3717 // can be replaced with this form: 3718 // (LShiftI _ v (conIL-conIR)) 3719 // 3720 // Note: We only have to show that the non-rejected lowest bits (8 bits for byte) 3721 // have to be correct, as the higher bits are rejected / truncated by the store. 3722 // 3723 // The hypotheses 3724 // 0 <= conIL < BitsPerJavaInteger 3725 // 0 <= conIR < BitsPerJavaInteger 3726 // are ensured by maskShiftAmount (called from ::Ideal of shift nodes). Indeed, 3727 // (v << 31) << 2 must be simplified into 0, not into v << 33 (which is equivalent 3728 // to v << 1). 3729 // 3730 // 3731 // If you don't like case analysis, jump after the conclusion. 3732 // ### Case 1 : conIL == conIR 3733 // ###### Case 1.1: conIL == conIR == num_rejected_bits 3734 // If we do the shift left then right by 24 bits, we get: 3735 // after: v << 24 3736 // +---------+------------------------+ 3737 // | v[0..7] | 0 | 3738 // +---------+------------------------+ 3739 // 31 24 23 0 3740 // after: (v << 24) >> 24 3741 // +------------------------+---------+ 3742 // | sign bit | v[0..7] | 3743 // +------------------------+---------+ 3744 // 31 8 7 0 3745 // The non-rejected bits (bits kept by the store, that is the 8 lower bits of the 3746 // result) are the same before and after, so, indeed, simplifying is correct. 3747 3748 // ###### Case 1.2: conIL == conIR < num_rejected_bits 3749 // If we do the shift left then right by 22 bits, we get: 3750 // after: v << 22 3751 // +---------+------------------------+ 3752 // | v[0..9] | 0 | 3753 // +---------+------------------------+ 3754 // 31 22 21 0 3755 // after: (v << 22) >> 22 3756 // +------------------------+---------+ 3757 // | sign bit | v[0..9] | 3758 // +------------------------+---------+ 3759 // 31 10 9 0 3760 // The non-rejected bits are the 8 lower bits of v. The bits 8 and 9 of v are still 3761 // present in (v << 22) >> 22 but will be dropped by the store. The simplification is 3762 // still correct. 3763 3764 // ###### But! Case 1.3: conIL == conIR > num_rejected_bits 3765 // If we do the shift left then right by 26 bits, we get: 3766 // after: v << 26 3767 // +---------+------------------------+ 3768 // | v[0..5] | 0 | 3769 // +---------+------------------------+ 3770 // 31 26 25 0 3771 // after: (v << 26) >> 26 3772 // +------------------------+---------+ 3773 // | sign bit | v[0..5] | 3774 // +------------------------+---------+ 3775 // 31 6 5 0 3776 // The non-rejected bits are made of 3777 // - 0-5 => the bits 0 to 5 of v 3778 // - 6-7 => the sign bit of v[0..5] (that is v[5]) 3779 // Simplifying this as v is not correct. 3780 // The condition conIR <= num_rejected_bits is indeed necessary in Case 1 3781 // 3782 // ### Case 2: conIL > conIR 3783 // ###### Case 2.1: num_rejected_bits == conIR 3784 // We take conIL == 26 for this example. 3785 // after: v << 26 3786 // +---------+------------------------+ 3787 // | v[0..5] | 0 | 3788 // +---------+------------------------+ 3789 // 31 26 25 0 3790 // after: (v << 26) >> 24 3791 // +------------------+---------+-----+ 3792 // | sign bit | v[0..5] | 0 | 3793 // +------------------+---------+-----+ 3794 // 31 8 7 2 1 0 3795 // The non-rejected bits are the 8 lower ones of (v << conIL - conIR). 3796 // The bits 6 and 7 of v have been thrown away after the shift left. 3797 // The simplification is still correct. 3798 // 3799 // ###### Case 2.2: num_rejected_bits > conIR. 3800 // Let's say conIL == 26 and conIR == 22. 3801 // after: v << 26 3802 // +---------+------------------------+ 3803 // | v[0..5] | 0 | 3804 // +---------+------------------------+ 3805 // 31 26 25 0 3806 // after: (v << 26) >> 22 3807 // +------------------+---------+-----+ 3808 // | sign bit | v[0..5] | 0 | 3809 // +------------------+---------+-----+ 3810 // 31 10 9 4 3 0 3811 // The bits non-rejected by the store are exactly the 8 lower ones of (v << (conIL - conIR)): 3812 // - 0-3 => 0 3813 // - 4-7 => bits 0 to 3 of v 3814 // The simplification is still correct. 3815 // The bits 4 and 5 of v are still present in (v << (conIL - conIR)) but they don't 3816 // matter as they are not in the 8 lower bits: they will be cut out by the store. 3817 // 3818 // ###### But! Case 2.3: num_rejected_bits < conIR. 3819 // Let's see that this case is not as easy to simplify. 3820 // Let's say conIL == 28 and conIR == 26. 3821 // after: v << 28 3822 // +---------+------------------------+ 3823 // | v[0..3] | 0 | 3824 // +---------+------------------------+ 3825 // 31 28 27 0 3826 // after: (v << 28) >> 26 3827 // +------------------+---------+-----+ 3828 // | sign bit | v[0..3] | 0 | 3829 // +------------------+---------+-----+ 3830 // 31 6 5 2 1 0 3831 // The non-rejected bits are made of 3832 // - 0-1 => 0 3833 // - 2-5 => the bits 0 to 3 of v 3834 // - 6-7 => the sign bit of v[0..3] (that is v[3]) 3835 // Simplifying this as (v << 2) is not correct. 3836 // The condition conIR <= num_rejected_bits is indeed necessary in Case 2. 3837 // 3838 // ### Conclusion: 3839 // Our hypotheses are indeed sufficient: 3840 // - 0 <= conIL < BitsPerJavaInteger 3841 // - 0 <= conIR < BitsPerJavaInteger 3842 // - conIL >= conIR 3843 // - num_rejected_bits >= conIR 3844 // 3845 // ### A rationale without case analysis: 3846 // After the shift left, conIL upper bits of v are discarded and conIL lower bit 3847 // zeroes are added. After the shift right, conIR lower bits of the previous result 3848 // are discarded. If conIL >= conIR, we discard only the zeroes we made up during 3849 // the shift left, but if conIL < conIR, then we discard also lower bits of v. But 3850 // the point of the simplification is to get an expression of the form 3851 // (v << (conIL - conIR)). This expression discard only higher bits of v, thus the 3852 // simplification is not correct if conIL < conIR. 3853 // 3854 // Moreover, after the shift right, the higher bit of (v << conIL) is repeated on the 3855 // conIR higher bits of ((v << conIL) >> conIR), it's the sign-extension. If 3856 // conIR > num_rejected_bits, then at least one artificial copy of this sign bit will 3857 // be in the window of the store. Thus ((v << conIL) >> conIR) is not equivalent to 3858 // (v << (conIL-conIR)) if conIR > num_rejected_bits. 3859 // 3860 // We do not treat the case conIL < conIR here since the point of this function is 3861 // to skip sign-extensions (that is conIL == conIR == num_rejected_bits). The need 3862 // of treating conIL > conIR comes from the cases where the sign-extended value is 3863 // also left-shift expression. Computing the sign-extension of a right-shift expression 3864 // doesn't yield a situation such as 3865 // (StoreB ... (RShiftI _ (LShiftI _ v conIL) conIR)) 3866 // where conIL < conIR. 3867 Node* StoreNode::Ideal_sign_extended_input(PhaseGVN* phase, int num_rejected_bits) { 3868 Node* shr = in(MemNode::ValueIn); 3869 if (shr->Opcode() == Op_RShiftI) { 3870 const TypeInt* conIR = phase->type(shr->in(2))->isa_int(); 3871 if (conIR != nullptr && conIR->is_con() && conIR->get_con() >= 0 && conIR->get_con() < BitsPerJavaInteger && conIR->get_con() <= num_rejected_bits) { 3872 Node* shl = shr->in(1); 3873 if (shl->Opcode() == Op_LShiftI) { 3874 const TypeInt* conIL = phase->type(shl->in(2))->isa_int(); 3875 if (conIL != nullptr && conIL->is_con() && conIL->get_con() >= 0 && conIL->get_con() < BitsPerJavaInteger) { 3876 if (conIL->get_con() == conIR->get_con()) { 3877 set_req_X(MemNode::ValueIn, shl->in(1), phase); 3878 return this; 3879 } 3880 if (conIL->get_con() > conIR->get_con()) { 3881 Node* new_shl = phase->transform(new LShiftINode(shl->in(1), phase->intcon(conIL->get_con() - conIR->get_con()))); 3882 set_req_X(MemNode::ValueIn, new_shl, phase); 3883 return this; 3884 } 3885 } 3886 } 3887 } 3888 } 3889 return nullptr; 3890 } 3891 3892 //------------------------------value_never_loaded----------------------------------- 3893 // Determine whether there are any possible loads of the value stored. 3894 // For simplicity, we actually check if there are any loads from the 3895 // address stored to, not just for loads of the value stored by this node. 3896 // 3897 bool StoreNode::value_never_loaded(PhaseValues* phase) const { 3898 Node *adr = in(Address); 3899 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr(); 3900 if (adr_oop == nullptr) 3901 return false; 3902 if (!adr_oop->is_known_instance_field()) 3903 return false; // if not a distinct instance, there may be aliases of the address 3904 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) { 3905 Node *use = adr->fast_out(i); 3906 if (use->is_Load() || use->is_LoadStore()) { 3907 return false; 3908 } 3909 } 3910 return true; 3911 } 3912 3913 MemBarNode* StoreNode::trailing_membar() const { 3914 if (is_release()) { 3915 MemBarNode* trailing_mb = nullptr; 3916 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3917 Node* u = fast_out(i); 3918 if (u->is_MemBar()) { 3919 if (u->as_MemBar()->trailing_store()) { 3920 assert(u->Opcode() == Op_MemBarVolatile, ""); 3921 assert(trailing_mb == nullptr, "only one"); 3922 trailing_mb = u->as_MemBar(); 3923 #ifdef ASSERT 3924 Node* leading = u->as_MemBar()->leading_membar(); 3925 assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 3926 assert(leading->as_MemBar()->leading_store(), "incorrect membar pair"); 3927 assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair"); 3928 #endif 3929 } else { 3930 assert(u->as_MemBar()->standalone(), ""); 3931 } 3932 } 3933 } 3934 return trailing_mb; 3935 } 3936 return nullptr; 3937 } 3938 3939 3940 //============================================================================= 3941 //------------------------------Ideal------------------------------------------ 3942 // If the store is from an AND mask that leaves the low bits untouched, then 3943 // we can skip the AND operation. If the store is from a sign-extension 3944 // (a left shift, then right shift) we can skip both. 3945 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){ 3946 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF); 3947 if( progress != nullptr ) return progress; 3948 3949 progress = StoreNode::Ideal_sign_extended_input(phase, 24); 3950 if( progress != nullptr ) return progress; 3951 3952 // Finally check the default case 3953 return StoreNode::Ideal(phase, can_reshape); 3954 } 3955 3956 //============================================================================= 3957 //------------------------------Ideal------------------------------------------ 3958 // If the store is from an AND mask that leaves the low bits untouched, then 3959 // we can skip the AND operation 3960 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){ 3961 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF); 3962 if( progress != nullptr ) return progress; 3963 3964 progress = StoreNode::Ideal_sign_extended_input(phase, 16); 3965 if( progress != nullptr ) return progress; 3966 3967 // Finally check the default case 3968 return StoreNode::Ideal(phase, can_reshape); 3969 } 3970 3971 //============================================================================= 3972 //----------------------------------SCMemProjNode------------------------------ 3973 const Type* SCMemProjNode::Value(PhaseGVN* phase) const 3974 { 3975 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) { 3976 return Type::TOP; 3977 } 3978 return bottom_type(); 3979 } 3980 3981 //============================================================================= 3982 //----------------------------------LoadStoreNode------------------------------ 3983 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ) 3984 : Node(required), 3985 _type(rt), 3986 _adr_type(at), 3987 _barrier_data(0) 3988 { 3989 init_req(MemNode::Control, c ); 3990 init_req(MemNode::Memory , mem); 3991 init_req(MemNode::Address, adr); 3992 init_req(MemNode::ValueIn, val); 3993 init_class_id(Class_LoadStore); 3994 } 3995 3996 //------------------------------Value----------------------------------------- 3997 const Type* LoadStoreNode::Value(PhaseGVN* phase) const { 3998 // Either input is TOP ==> the result is TOP 3999 if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) { 4000 return Type::TOP; 4001 } 4002 const Type* t = phase->type(in(MemNode::Memory)); 4003 if (t == Type::TOP) { 4004 return Type::TOP; 4005 } 4006 t = phase->type(in(MemNode::Address)); 4007 if (t == Type::TOP) { 4008 return Type::TOP; 4009 } 4010 t = phase->type(in(MemNode::ValueIn)); 4011 if (t == Type::TOP) { 4012 return Type::TOP; 4013 } 4014 return bottom_type(); 4015 } 4016 4017 uint LoadStoreNode::ideal_reg() const { 4018 return _type->ideal_reg(); 4019 } 4020 4021 // This method conservatively checks if the result of a LoadStoreNode is 4022 // used, that is, if it returns true, then it is definitely the case that 4023 // the result of the node is not needed. 4024 // For example, GetAndAdd can be matched into a lock_add instead of a 4025 // lock_xadd if the result of LoadStoreNode::result_not_used() is true 4026 bool LoadStoreNode::result_not_used() const { 4027 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 4028 Node *x = fast_out(i); 4029 if (x->Opcode() == Op_SCMemProj) { 4030 continue; 4031 } 4032 if (x->bottom_type() == TypeTuple::MEMBAR && 4033 !x->is_Call() && 4034 x->Opcode() != Op_Blackhole) { 4035 continue; 4036 } 4037 return false; 4038 } 4039 return true; 4040 } 4041 4042 MemBarNode* LoadStoreNode::trailing_membar() const { 4043 MemBarNode* trailing = nullptr; 4044 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 4045 Node* u = fast_out(i); 4046 if (u->is_MemBar()) { 4047 if (u->as_MemBar()->trailing_load_store()) { 4048 assert(u->Opcode() == Op_MemBarAcquire, ""); 4049 assert(trailing == nullptr, "only one"); 4050 trailing = u->as_MemBar(); 4051 #ifdef ASSERT 4052 Node* leading = trailing->leading_membar(); 4053 assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 4054 assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair"); 4055 assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair"); 4056 #endif 4057 } else { 4058 assert(u->as_MemBar()->standalone(), "wrong barrier kind"); 4059 } 4060 } 4061 } 4062 4063 return trailing; 4064 } 4065 4066 uint LoadStoreNode::size_of() const { return sizeof(*this); } 4067 4068 //============================================================================= 4069 //----------------------------------LoadStoreConditionalNode-------------------- 4070 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) { 4071 init_req(ExpectedIn, ex ); 4072 } 4073 4074 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const { 4075 // Either input is TOP ==> the result is TOP 4076 const Type* t = phase->type(in(ExpectedIn)); 4077 if (t == Type::TOP) { 4078 return Type::TOP; 4079 } 4080 return LoadStoreNode::Value(phase); 4081 } 4082 4083 //============================================================================= 4084 //-------------------------------adr_type-------------------------------------- 4085 const TypePtr* ClearArrayNode::adr_type() const { 4086 Node *adr = in(3); 4087 if (adr == nullptr) return nullptr; // node is dead 4088 return MemNode::calculate_adr_type(adr->bottom_type()); 4089 } 4090 4091 //------------------------------match_edge------------------------------------- 4092 // Do we Match on this edge index or not? Do not match memory 4093 uint ClearArrayNode::match_edge(uint idx) const { 4094 return idx > 1; 4095 } 4096 4097 //------------------------------Identity--------------------------------------- 4098 // Clearing a zero length array does nothing 4099 Node* ClearArrayNode::Identity(PhaseGVN* phase) { 4100 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this; 4101 } 4102 4103 //------------------------------Idealize--------------------------------------- 4104 // Clearing a short array is faster with stores 4105 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { 4106 // Already know this is a large node, do not try to ideal it 4107 if (_is_large) return nullptr; 4108 4109 const int unit = BytesPerLong; 4110 const TypeX* t = phase->type(in(2))->isa_intptr_t(); 4111 if (!t) return nullptr; 4112 if (!t->is_con()) return nullptr; 4113 intptr_t raw_count = t->get_con(); 4114 intptr_t size = raw_count; 4115 if (!Matcher::init_array_count_is_in_bytes) size *= unit; 4116 // Clearing nothing uses the Identity call. 4117 // Negative clears are possible on dead ClearArrays 4118 // (see jck test stmt114.stmt11402.val). 4119 if (size <= 0 || size % unit != 0) return nullptr; 4120 intptr_t count = size / unit; 4121 // Length too long; communicate this to matchers and assemblers. 4122 // Assemblers are responsible to produce fast hardware clears for it. 4123 if (size > InitArrayShortSize) { 4124 return new ClearArrayNode(in(0), in(1), in(2), in(3), in(4), true); 4125 } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) { 4126 return nullptr; 4127 } 4128 if (!IdealizeClearArrayNode) return nullptr; 4129 Node *mem = in(1); 4130 if( phase->type(mem)==Type::TOP ) return nullptr; 4131 Node *adr = in(3); 4132 const Type* at = phase->type(adr); 4133 if( at==Type::TOP ) return nullptr; 4134 const TypePtr* atp = at->isa_ptr(); 4135 // adjust atp to be the correct array element address type 4136 if (atp == nullptr) atp = TypePtr::BOTTOM; 4137 else atp = atp->add_offset(Type::OffsetBot); 4138 // Get base for derived pointer purposes 4139 if( adr->Opcode() != Op_AddP ) Unimplemented(); 4140 Node *base = adr->in(1); 4141 4142 Node *val = in(4); 4143 Node *off = phase->MakeConX(BytesPerLong); 4144 mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false); 4145 count--; 4146 while( count-- ) { 4147 mem = phase->transform(mem); 4148 adr = phase->transform(new AddPNode(base,adr,off)); 4149 mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false); 4150 } 4151 return mem; 4152 } 4153 4154 //----------------------------step_through---------------------------------- 4155 // Return allocation input memory edge if it is different instance 4156 // or itself if it is the one we are looking for. 4157 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseValues* phase) { 4158 Node* n = *np; 4159 assert(n->is_ClearArray(), "sanity"); 4160 intptr_t offset; 4161 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset); 4162 // This method is called only before Allocate nodes are expanded 4163 // during macro nodes expansion. Before that ClearArray nodes are 4164 // only generated in PhaseMacroExpand::generate_arraycopy() (before 4165 // Allocate nodes are expanded) which follows allocations. 4166 assert(alloc != nullptr, "should have allocation"); 4167 if (alloc->_idx == instance_id) { 4168 // Can not bypass initialization of the instance we are looking for. 4169 return false; 4170 } 4171 // Otherwise skip it. 4172 InitializeNode* init = alloc->initialization(); 4173 if (init != nullptr) 4174 *np = init->in(TypeFunc::Memory); 4175 else 4176 *np = alloc->in(TypeFunc::Memory); 4177 return true; 4178 } 4179 4180 //----------------------------clear_memory------------------------------------- 4181 // Generate code to initialize object storage to zero. 4182 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 4183 Node* val, 4184 Node* raw_val, 4185 intptr_t start_offset, 4186 Node* end_offset, 4187 PhaseGVN* phase) { 4188 intptr_t offset = start_offset; 4189 4190 int unit = BytesPerLong; 4191 if ((offset % unit) != 0) { 4192 Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset)); 4193 adr = phase->transform(adr); 4194 const TypePtr* atp = TypeRawPtr::BOTTOM; 4195 if (val != nullptr) { 4196 assert(phase->type(val)->isa_narrowoop(), "should be narrow oop"); 4197 mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered); 4198 } else { 4199 assert(raw_val == nullptr, "val may not be null"); 4200 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 4201 } 4202 mem = phase->transform(mem); 4203 offset += BytesPerInt; 4204 } 4205 assert((offset % unit) == 0, ""); 4206 4207 // Initialize the remaining stuff, if any, with a ClearArray. 4208 return clear_memory(ctl, mem, dest, raw_val, phase->MakeConX(offset), end_offset, phase); 4209 } 4210 4211 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 4212 Node* raw_val, 4213 Node* start_offset, 4214 Node* end_offset, 4215 PhaseGVN* phase) { 4216 if (start_offset == end_offset) { 4217 // nothing to do 4218 return mem; 4219 } 4220 4221 int unit = BytesPerLong; 4222 Node* zbase = start_offset; 4223 Node* zend = end_offset; 4224 4225 // Scale to the unit required by the CPU: 4226 if (!Matcher::init_array_count_is_in_bytes) { 4227 Node* shift = phase->intcon(exact_log2(unit)); 4228 zbase = phase->transform(new URShiftXNode(zbase, shift) ); 4229 zend = phase->transform(new URShiftXNode(zend, shift) ); 4230 } 4231 4232 // Bulk clear double-words 4233 Node* zsize = phase->transform(new SubXNode(zend, zbase) ); 4234 Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) ); 4235 if (raw_val == nullptr) { 4236 raw_val = phase->MakeConX(0); 4237 } 4238 mem = new ClearArrayNode(ctl, mem, zsize, adr, raw_val, false); 4239 return phase->transform(mem); 4240 } 4241 4242 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 4243 Node* val, 4244 Node* raw_val, 4245 intptr_t start_offset, 4246 intptr_t end_offset, 4247 PhaseGVN* phase) { 4248 if (start_offset == end_offset) { 4249 // nothing to do 4250 return mem; 4251 } 4252 4253 assert((end_offset % BytesPerInt) == 0, "odd end offset"); 4254 intptr_t done_offset = end_offset; 4255 if ((done_offset % BytesPerLong) != 0) { 4256 done_offset -= BytesPerInt; 4257 } 4258 if (done_offset > start_offset) { 4259 mem = clear_memory(ctl, mem, dest, val, raw_val, 4260 start_offset, phase->MakeConX(done_offset), phase); 4261 } 4262 if (done_offset < end_offset) { // emit the final 32-bit store 4263 Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset)); 4264 adr = phase->transform(adr); 4265 const TypePtr* atp = TypeRawPtr::BOTTOM; 4266 if (val != nullptr) { 4267 assert(phase->type(val)->isa_narrowoop(), "should be narrow oop"); 4268 mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered); 4269 } else { 4270 assert(raw_val == nullptr, "val may not be null"); 4271 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 4272 } 4273 mem = phase->transform(mem); 4274 done_offset += BytesPerInt; 4275 } 4276 assert(done_offset == end_offset, ""); 4277 return mem; 4278 } 4279 4280 //============================================================================= 4281 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent) 4282 : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)), 4283 _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone) 4284 #ifdef ASSERT 4285 , _pair_idx(0) 4286 #endif 4287 { 4288 init_class_id(Class_MemBar); 4289 Node* top = C->top(); 4290 init_req(TypeFunc::I_O,top); 4291 init_req(TypeFunc::FramePtr,top); 4292 init_req(TypeFunc::ReturnAdr,top); 4293 if (precedent != nullptr) 4294 init_req(TypeFunc::Parms, precedent); 4295 } 4296 4297 //------------------------------cmp-------------------------------------------- 4298 uint MemBarNode::hash() const { return NO_HASH; } 4299 bool MemBarNode::cmp( const Node &n ) const { 4300 return (&n == this); // Always fail except on self 4301 } 4302 4303 //------------------------------make------------------------------------------- 4304 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) { 4305 switch (opcode) { 4306 case Op_MemBarAcquire: return new MemBarAcquireNode(C, atp, pn); 4307 case Op_LoadFence: return new LoadFenceNode(C, atp, pn); 4308 case Op_MemBarRelease: return new MemBarReleaseNode(C, atp, pn); 4309 case Op_StoreFence: return new StoreFenceNode(C, atp, pn); 4310 case Op_MemBarStoreStore: return new MemBarStoreStoreNode(C, atp, pn); 4311 case Op_StoreStoreFence: return new StoreStoreFenceNode(C, atp, pn); 4312 case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn); 4313 case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn); 4314 case Op_MemBarVolatile: return new MemBarVolatileNode(C, atp, pn); 4315 case Op_MemBarCPUOrder: return new MemBarCPUOrderNode(C, atp, pn); 4316 case Op_OnSpinWait: return new OnSpinWaitNode(C, atp, pn); 4317 case Op_Initialize: return new InitializeNode(C, atp, pn); 4318 default: ShouldNotReachHere(); return nullptr; 4319 } 4320 } 4321 4322 void MemBarNode::remove(PhaseIterGVN *igvn) { 4323 if (outcnt() != 2) { 4324 assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory"); 4325 assert(outcnt() == 1, "Only control then"); 4326 } 4327 if (trailing_store() || trailing_load_store()) { 4328 MemBarNode* leading = leading_membar(); 4329 if (leading != nullptr) { 4330 assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars"); 4331 leading->remove(igvn); 4332 } 4333 } 4334 if (proj_out_or_null(TypeFunc::Memory) != nullptr) { 4335 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); 4336 } 4337 if (proj_out_or_null(TypeFunc::Control) != nullptr) { 4338 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); 4339 } 4340 } 4341 4342 //------------------------------Ideal------------------------------------------ 4343 // Return a node which is more "ideal" than the current node. Strip out 4344 // control copies 4345 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) { 4346 if (remove_dead_region(phase, can_reshape)) return this; 4347 // Don't bother trying to transform a dead node 4348 if (in(0) && in(0)->is_top()) { 4349 return nullptr; 4350 } 4351 4352 bool progress = false; 4353 // Eliminate volatile MemBars for scalar replaced objects. 4354 if (can_reshape && req() == (Precedent+1)) { 4355 bool eliminate = false; 4356 int opc = Opcode(); 4357 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) { 4358 // Volatile field loads and stores. 4359 Node* my_mem = in(MemBarNode::Precedent); 4360 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge 4361 if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) { 4362 // if the Precedent is a decodeN and its input (a Load) is used at more than one place, 4363 // replace this Precedent (decodeN) with the Load instead. 4364 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) { 4365 Node* load_node = my_mem->in(1); 4366 set_req(MemBarNode::Precedent, load_node); 4367 phase->is_IterGVN()->_worklist.push(my_mem); 4368 my_mem = load_node; 4369 } else { 4370 assert(my_mem->unique_out() == this, "sanity"); 4371 assert(!trailing_load_store(), "load store node can't be eliminated"); 4372 del_req(Precedent); 4373 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later 4374 my_mem = nullptr; 4375 } 4376 progress = true; 4377 } 4378 if (my_mem != nullptr && my_mem->is_Mem()) { 4379 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); 4380 // Check for scalar replaced object reference. 4381 if( t_oop != nullptr && t_oop->is_known_instance_field() && 4382 t_oop->offset() != Type::OffsetBot && 4383 t_oop->offset() != Type::OffsetTop) { 4384 eliminate = true; 4385 } 4386 } 4387 } else if (opc == Op_MemBarRelease || (UseStoreStoreForCtor && opc == Op_MemBarStoreStore)) { 4388 // Final field stores. 4389 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent)); 4390 if ((alloc != nullptr) && alloc->is_Allocate() && 4391 alloc->as_Allocate()->does_not_escape_thread()) { 4392 // The allocated object does not escape. 4393 eliminate = true; 4394 } 4395 } 4396 if (eliminate) { 4397 // Replace MemBar projections by its inputs. 4398 PhaseIterGVN* igvn = phase->is_IterGVN(); 4399 remove(igvn); 4400 // Must return either the original node (now dead) or a new node 4401 // (Do not return a top here, since that would break the uniqueness of top.) 4402 return new ConINode(TypeInt::ZERO); 4403 } 4404 } 4405 return progress ? this : nullptr; 4406 } 4407 4408 //------------------------------Value------------------------------------------ 4409 const Type* MemBarNode::Value(PhaseGVN* phase) const { 4410 if( !in(0) ) return Type::TOP; 4411 if( phase->type(in(0)) == Type::TOP ) 4412 return Type::TOP; 4413 return TypeTuple::MEMBAR; 4414 } 4415 4416 //------------------------------match------------------------------------------ 4417 // Construct projections for memory. 4418 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) { 4419 switch (proj->_con) { 4420 case TypeFunc::Control: 4421 case TypeFunc::Memory: 4422 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 4423 } 4424 ShouldNotReachHere(); 4425 return nullptr; 4426 } 4427 4428 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) { 4429 trailing->_kind = TrailingStore; 4430 leading->_kind = LeadingStore; 4431 #ifdef ASSERT 4432 trailing->_pair_idx = leading->_idx; 4433 leading->_pair_idx = leading->_idx; 4434 #endif 4435 } 4436 4437 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) { 4438 trailing->_kind = TrailingLoadStore; 4439 leading->_kind = LeadingLoadStore; 4440 #ifdef ASSERT 4441 trailing->_pair_idx = leading->_idx; 4442 leading->_pair_idx = leading->_idx; 4443 #endif 4444 } 4445 4446 MemBarNode* MemBarNode::trailing_membar() const { 4447 ResourceMark rm; 4448 Node* trailing = (Node*)this; 4449 VectorSet seen; 4450 Node_Stack multis(0); 4451 do { 4452 Node* c = trailing; 4453 uint i = 0; 4454 do { 4455 trailing = nullptr; 4456 for (; i < c->outcnt(); i++) { 4457 Node* next = c->raw_out(i); 4458 if (next != c && next->is_CFG()) { 4459 if (c->is_MultiBranch()) { 4460 if (multis.node() == c) { 4461 multis.set_index(i+1); 4462 } else { 4463 multis.push(c, i+1); 4464 } 4465 } 4466 trailing = next; 4467 break; 4468 } 4469 } 4470 if (trailing != nullptr && !seen.test_set(trailing->_idx)) { 4471 break; 4472 } 4473 while (multis.size() > 0) { 4474 c = multis.node(); 4475 i = multis.index(); 4476 if (i < c->req()) { 4477 break; 4478 } 4479 multis.pop(); 4480 } 4481 } while (multis.size() > 0); 4482 } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()); 4483 4484 MemBarNode* mb = trailing->as_MemBar(); 4485 assert((mb->_kind == TrailingStore && _kind == LeadingStore) || 4486 (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar"); 4487 assert(mb->_pair_idx == _pair_idx, "bad trailing membar"); 4488 return mb; 4489 } 4490 4491 MemBarNode* MemBarNode::leading_membar() const { 4492 ResourceMark rm; 4493 VectorSet seen; 4494 Node_Stack regions(0); 4495 Node* leading = in(0); 4496 while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) { 4497 while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) { 4498 leading = nullptr; 4499 while (regions.size() > 0 && leading == nullptr) { 4500 Node* r = regions.node(); 4501 uint i = regions.index(); 4502 if (i < r->req()) { 4503 leading = r->in(i); 4504 regions.set_index(i+1); 4505 } else { 4506 regions.pop(); 4507 } 4508 } 4509 if (leading == nullptr) { 4510 assert(regions.size() == 0, "all paths should have been tried"); 4511 return nullptr; 4512 } 4513 } 4514 if (leading->is_Region()) { 4515 regions.push(leading, 2); 4516 leading = leading->in(1); 4517 } else { 4518 leading = leading->in(0); 4519 } 4520 } 4521 #ifdef ASSERT 4522 Unique_Node_List wq; 4523 wq.push((Node*)this); 4524 uint found = 0; 4525 for (uint i = 0; i < wq.size(); i++) { 4526 Node* n = wq.at(i); 4527 if (n->is_Region()) { 4528 for (uint j = 1; j < n->req(); j++) { 4529 Node* in = n->in(j); 4530 if (in != nullptr && !in->is_top()) { 4531 wq.push(in); 4532 } 4533 } 4534 } else { 4535 if (n->is_MemBar() && n->as_MemBar()->leading()) { 4536 assert(n == leading, "consistency check failed"); 4537 found++; 4538 } else { 4539 Node* in = n->in(0); 4540 if (in != nullptr && !in->is_top()) { 4541 wq.push(in); 4542 } 4543 } 4544 } 4545 } 4546 assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed"); 4547 #endif 4548 if (leading == nullptr) { 4549 return nullptr; 4550 } 4551 MemBarNode* mb = leading->as_MemBar(); 4552 assert((mb->_kind == LeadingStore && _kind == TrailingStore) || 4553 (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar"); 4554 assert(mb->_pair_idx == _pair_idx, "bad leading membar"); 4555 return mb; 4556 } 4557 4558 4559 //===========================InitializeNode==================================== 4560 // SUMMARY: 4561 // This node acts as a memory barrier on raw memory, after some raw stores. 4562 // The 'cooked' oop value feeds from the Initialize, not the Allocation. 4563 // The Initialize can 'capture' suitably constrained stores as raw inits. 4564 // It can coalesce related raw stores into larger units (called 'tiles'). 4565 // It can avoid zeroing new storage for memory units which have raw inits. 4566 // At macro-expansion, it is marked 'complete', and does not optimize further. 4567 // 4568 // EXAMPLE: 4569 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine. 4570 // ctl = incoming control; mem* = incoming memory 4571 // (Note: A star * on a memory edge denotes I/O and other standard edges.) 4572 // First allocate uninitialized memory and fill in the header: 4573 // alloc = (Allocate ctl mem* 16 #short[].klass ...) 4574 // ctl := alloc.Control; mem* := alloc.Memory* 4575 // rawmem = alloc.Memory; rawoop = alloc.RawAddress 4576 // Then initialize to zero the non-header parts of the raw memory block: 4577 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress) 4578 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory 4579 // After the initialize node executes, the object is ready for service: 4580 // oop := (CheckCastPP init.Control alloc.RawAddress #short[]) 4581 // Suppose its body is immediately initialized as {1,2}: 4582 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 4583 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 4584 // mem.SLICE(#short[*]) := store2 4585 // 4586 // DETAILS: 4587 // An InitializeNode collects and isolates object initialization after 4588 // an AllocateNode and before the next possible safepoint. As a 4589 // memory barrier (MemBarNode), it keeps critical stores from drifting 4590 // down past any safepoint or any publication of the allocation. 4591 // Before this barrier, a newly-allocated object may have uninitialized bits. 4592 // After this barrier, it may be treated as a real oop, and GC is allowed. 4593 // 4594 // The semantics of the InitializeNode include an implicit zeroing of 4595 // the new object from object header to the end of the object. 4596 // (The object header and end are determined by the AllocateNode.) 4597 // 4598 // Certain stores may be added as direct inputs to the InitializeNode. 4599 // These stores must update raw memory, and they must be to addresses 4600 // derived from the raw address produced by AllocateNode, and with 4601 // a constant offset. They must be ordered by increasing offset. 4602 // The first one is at in(RawStores), the last at in(req()-1). 4603 // Unlike most memory operations, they are not linked in a chain, 4604 // but are displayed in parallel as users of the rawmem output of 4605 // the allocation. 4606 // 4607 // (See comments in InitializeNode::capture_store, which continue 4608 // the example given above.) 4609 // 4610 // When the associated Allocate is macro-expanded, the InitializeNode 4611 // may be rewritten to optimize collected stores. A ClearArrayNode 4612 // may also be created at that point to represent any required zeroing. 4613 // The InitializeNode is then marked 'complete', prohibiting further 4614 // capturing of nearby memory operations. 4615 // 4616 // During macro-expansion, all captured initializations which store 4617 // constant values of 32 bits or smaller are coalesced (if advantageous) 4618 // into larger 'tiles' 32 or 64 bits. This allows an object to be 4619 // initialized in fewer memory operations. Memory words which are 4620 // covered by neither tiles nor non-constant stores are pre-zeroed 4621 // by explicit stores of zero. (The code shape happens to do all 4622 // zeroing first, then all other stores, with both sequences occurring 4623 // in order of ascending offsets.) 4624 // 4625 // Alternatively, code may be inserted between an AllocateNode and its 4626 // InitializeNode, to perform arbitrary initialization of the new object. 4627 // E.g., the object copying intrinsics insert complex data transfers here. 4628 // The initialization must then be marked as 'complete' disable the 4629 // built-in zeroing semantics and the collection of initializing stores. 4630 // 4631 // While an InitializeNode is incomplete, reads from the memory state 4632 // produced by it are optimizable if they match the control edge and 4633 // new oop address associated with the allocation/initialization. 4634 // They return a stored value (if the offset matches) or else zero. 4635 // A write to the memory state, if it matches control and address, 4636 // and if it is to a constant offset, may be 'captured' by the 4637 // InitializeNode. It is cloned as a raw memory operation and rewired 4638 // inside the initialization, to the raw oop produced by the allocation. 4639 // Operations on addresses which are provably distinct (e.g., to 4640 // other AllocateNodes) are allowed to bypass the initialization. 4641 // 4642 // The effect of all this is to consolidate object initialization 4643 // (both arrays and non-arrays, both piecewise and bulk) into a 4644 // single location, where it can be optimized as a unit. 4645 // 4646 // Only stores with an offset less than TrackedInitializationLimit words 4647 // will be considered for capture by an InitializeNode. This puts a 4648 // reasonable limit on the complexity of optimized initializations. 4649 4650 //---------------------------InitializeNode------------------------------------ 4651 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop) 4652 : MemBarNode(C, adr_type, rawoop), 4653 _is_complete(Incomplete), _does_not_escape(false) 4654 { 4655 init_class_id(Class_Initialize); 4656 4657 assert(adr_type == Compile::AliasIdxRaw, "only valid atp"); 4658 assert(in(RawAddress) == rawoop, "proper init"); 4659 // Note: allocation() can be null, for secondary initialization barriers 4660 } 4661 4662 // Since this node is not matched, it will be processed by the 4663 // register allocator. Declare that there are no constraints 4664 // on the allocation of the RawAddress edge. 4665 const RegMask &InitializeNode::in_RegMask(uint idx) const { 4666 // This edge should be set to top, by the set_complete. But be conservative. 4667 if (idx == InitializeNode::RawAddress) 4668 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]); 4669 return RegMask::Empty; 4670 } 4671 4672 Node* InitializeNode::memory(uint alias_idx) { 4673 Node* mem = in(Memory); 4674 if (mem->is_MergeMem()) { 4675 return mem->as_MergeMem()->memory_at(alias_idx); 4676 } else { 4677 // incoming raw memory is not split 4678 return mem; 4679 } 4680 } 4681 4682 bool InitializeNode::is_non_zero() { 4683 if (is_complete()) return false; 4684 remove_extra_zeroes(); 4685 return (req() > RawStores); 4686 } 4687 4688 void InitializeNode::set_complete(PhaseGVN* phase) { 4689 assert(!is_complete(), "caller responsibility"); 4690 _is_complete = Complete; 4691 4692 // After this node is complete, it contains a bunch of 4693 // raw-memory initializations. There is no need for 4694 // it to have anything to do with non-raw memory effects. 4695 // Therefore, tell all non-raw users to re-optimize themselves, 4696 // after skipping the memory effects of this initialization. 4697 PhaseIterGVN* igvn = phase->is_IterGVN(); 4698 if (igvn) igvn->add_users_to_worklist(this); 4699 } 4700 4701 // convenience function 4702 // return false if the init contains any stores already 4703 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) { 4704 InitializeNode* init = initialization(); 4705 if (init == nullptr || init->is_complete()) { 4706 return false; 4707 } 4708 init->remove_extra_zeroes(); 4709 // for now, if this allocation has already collected any inits, bail: 4710 if (init->is_non_zero()) return false; 4711 init->set_complete(phase); 4712 return true; 4713 } 4714 4715 void InitializeNode::remove_extra_zeroes() { 4716 if (req() == RawStores) return; 4717 Node* zmem = zero_memory(); 4718 uint fill = RawStores; 4719 for (uint i = fill; i < req(); i++) { 4720 Node* n = in(i); 4721 if (n->is_top() || n == zmem) continue; // skip 4722 if (fill < i) set_req(fill, n); // compact 4723 ++fill; 4724 } 4725 // delete any empty spaces created: 4726 while (fill < req()) { 4727 del_req(fill); 4728 } 4729 } 4730 4731 // Helper for remembering which stores go with which offsets. 4732 intptr_t InitializeNode::get_store_offset(Node* st, PhaseValues* phase) { 4733 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node 4734 intptr_t offset = -1; 4735 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address), 4736 phase, offset); 4737 if (base == nullptr) return -1; // something is dead, 4738 if (offset < 0) return -1; // dead, dead 4739 return offset; 4740 } 4741 4742 // Helper for proving that an initialization expression is 4743 // "simple enough" to be folded into an object initialization. 4744 // Attempts to prove that a store's initial value 'n' can be captured 4745 // within the initialization without creating a vicious cycle, such as: 4746 // { Foo p = new Foo(); p.next = p; } 4747 // True for constants and parameters and small combinations thereof. 4748 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) { 4749 ResourceMark rm; 4750 Unique_Node_List worklist; 4751 worklist.push(value); 4752 4753 uint complexity_limit = 20; 4754 for (uint j = 0; j < worklist.size(); j++) { 4755 if (j >= complexity_limit) { 4756 return false; // Bail out if processed too many nodes 4757 } 4758 4759 Node* n = worklist.at(j); 4760 if (n == nullptr) continue; // (can this really happen?) 4761 if (n->is_Proj()) n = n->in(0); 4762 if (n == this) return false; // found a cycle 4763 if (n->is_Con()) continue; 4764 if (n->is_Start()) continue; // params, etc., are OK 4765 if (n->is_Root()) continue; // even better 4766 4767 // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation 4768 if (n->is_CFG() && phase->is_dominator(n, allocation())) { 4769 continue; 4770 } 4771 4772 Node* ctl = n->in(0); 4773 if (ctl != nullptr && !ctl->is_top()) { 4774 if (ctl->is_Proj()) ctl = ctl->in(0); 4775 if (ctl == this) return false; 4776 4777 // If we already know that the enclosing memory op is pinned right after 4778 // the init, then any control flow that the store has picked up 4779 // must have preceded the init, or else be equal to the init. 4780 // Even after loop optimizations (which might change control edges) 4781 // a store is never pinned *before* the availability of its inputs. 4782 if (!MemNode::all_controls_dominate(n, this)) { 4783 return false; // failed to prove a good control 4784 } 4785 } 4786 4787 // Check data edges for possible dependencies on 'this'. 4788 for (uint i = 1; i < n->req(); i++) { 4789 Node* m = n->in(i); 4790 if (m == nullptr || m == n || m->is_top()) continue; 4791 4792 // Only process data inputs once 4793 worklist.push(m); 4794 } 4795 } 4796 4797 return true; 4798 } 4799 4800 // Here are all the checks a Store must pass before it can be moved into 4801 // an initialization. Returns zero if a check fails. 4802 // On success, returns the (constant) offset to which the store applies, 4803 // within the initialized memory. 4804 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) { 4805 const int FAIL = 0; 4806 if (st->req() != MemNode::ValueIn + 1) 4807 return FAIL; // an inscrutable StoreNode (card mark?) 4808 Node* ctl = st->in(MemNode::Control); 4809 if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this)) 4810 return FAIL; // must be unconditional after the initialization 4811 Node* mem = st->in(MemNode::Memory); 4812 if (!(mem->is_Proj() && mem->in(0) == this)) 4813 return FAIL; // must not be preceded by other stores 4814 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4815 if ((st->Opcode() == Op_StoreP || st->Opcode() == Op_StoreN) && 4816 !bs->can_initialize_object(st)) { 4817 return FAIL; 4818 } 4819 Node* adr = st->in(MemNode::Address); 4820 intptr_t offset; 4821 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset); 4822 if (alloc == nullptr) 4823 return FAIL; // inscrutable address 4824 if (alloc != allocation()) 4825 return FAIL; // wrong allocation! (store needs to float up) 4826 int size_in_bytes = st->memory_size(); 4827 if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) { 4828 return FAIL; // mismatched access 4829 } 4830 Node* val = st->in(MemNode::ValueIn); 4831 4832 if (!detect_init_independence(val, phase)) 4833 return FAIL; // stored value must be 'simple enough' 4834 4835 // The Store can be captured only if nothing after the allocation 4836 // and before the Store is using the memory location that the store 4837 // overwrites. 4838 bool failed = false; 4839 // If is_complete_with_arraycopy() is true the shape of the graph is 4840 // well defined and is safe so no need for extra checks. 4841 if (!is_complete_with_arraycopy()) { 4842 // We are going to look at each use of the memory state following 4843 // the allocation to make sure nothing reads the memory that the 4844 // Store writes. 4845 const TypePtr* t_adr = phase->type(adr)->isa_ptr(); 4846 int alias_idx = phase->C->get_alias_index(t_adr); 4847 ResourceMark rm; 4848 Unique_Node_List mems; 4849 mems.push(mem); 4850 Node* unique_merge = nullptr; 4851 for (uint next = 0; next < mems.size(); ++next) { 4852 Node *m = mems.at(next); 4853 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 4854 Node *n = m->fast_out(j); 4855 if (n->outcnt() == 0) { 4856 continue; 4857 } 4858 if (n == st) { 4859 continue; 4860 } else if (n->in(0) != nullptr && n->in(0) != ctl) { 4861 // If the control of this use is different from the control 4862 // of the Store which is right after the InitializeNode then 4863 // this node cannot be between the InitializeNode and the 4864 // Store. 4865 continue; 4866 } else if (n->is_MergeMem()) { 4867 if (n->as_MergeMem()->memory_at(alias_idx) == m) { 4868 // We can hit a MergeMemNode (that will likely go away 4869 // later) that is a direct use of the memory state 4870 // following the InitializeNode on the same slice as the 4871 // store node that we'd like to capture. We need to check 4872 // the uses of the MergeMemNode. 4873 mems.push(n); 4874 } 4875 } else if (n->is_Mem()) { 4876 Node* other_adr = n->in(MemNode::Address); 4877 if (other_adr == adr) { 4878 failed = true; 4879 break; 4880 } else { 4881 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr(); 4882 if (other_t_adr != nullptr) { 4883 int other_alias_idx = phase->C->get_alias_index(other_t_adr); 4884 if (other_alias_idx == alias_idx) { 4885 // A load from the same memory slice as the store right 4886 // after the InitializeNode. We check the control of the 4887 // object/array that is loaded from. If it's the same as 4888 // the store control then we cannot capture the store. 4889 assert(!n->is_Store(), "2 stores to same slice on same control?"); 4890 Node* base = other_adr; 4891 if (base->is_Phi()) { 4892 // In rare case, base may be a PhiNode and it may read 4893 // the same memory slice between InitializeNode and store. 4894 failed = true; 4895 break; 4896 } 4897 assert(base->is_AddP(), "should be addp but is %s", base->Name()); 4898 base = base->in(AddPNode::Base); 4899 if (base != nullptr) { 4900 base = base->uncast(); 4901 if (base->is_Proj() && base->in(0) == alloc) { 4902 failed = true; 4903 break; 4904 } 4905 } 4906 } 4907 } 4908 } 4909 } else { 4910 failed = true; 4911 break; 4912 } 4913 } 4914 } 4915 } 4916 if (failed) { 4917 if (!can_reshape) { 4918 // We decided we couldn't capture the store during parsing. We 4919 // should try again during the next IGVN once the graph is 4920 // cleaner. 4921 phase->C->record_for_igvn(st); 4922 } 4923 return FAIL; 4924 } 4925 4926 return offset; // success 4927 } 4928 4929 // Find the captured store in(i) which corresponds to the range 4930 // [start..start+size) in the initialized object. 4931 // If there is one, return its index i. If there isn't, return the 4932 // negative of the index where it should be inserted. 4933 // Return 0 if the queried range overlaps an initialization boundary 4934 // or if dead code is encountered. 4935 // If size_in_bytes is zero, do not bother with overlap checks. 4936 int InitializeNode::captured_store_insertion_point(intptr_t start, 4937 int size_in_bytes, 4938 PhaseValues* phase) { 4939 const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 4940 4941 if (is_complete()) 4942 return FAIL; // arraycopy got here first; punt 4943 4944 assert(allocation() != nullptr, "must be present"); 4945 4946 // no negatives, no header fields: 4947 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL; 4948 4949 // after a certain size, we bail out on tracking all the stores: 4950 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 4951 if (start >= ti_limit) return FAIL; 4952 4953 for (uint i = InitializeNode::RawStores, limit = req(); ; ) { 4954 if (i >= limit) return -(int)i; // not found; here is where to put it 4955 4956 Node* st = in(i); 4957 intptr_t st_off = get_store_offset(st, phase); 4958 if (st_off < 0) { 4959 if (st != zero_memory()) { 4960 return FAIL; // bail out if there is dead garbage 4961 } 4962 } else if (st_off > start) { 4963 // ...we are done, since stores are ordered 4964 if (st_off < start + size_in_bytes) { 4965 return FAIL; // the next store overlaps 4966 } 4967 return -(int)i; // not found; here is where to put it 4968 } else if (st_off < start) { 4969 assert(st->as_Store()->memory_size() <= MAX_STORE, ""); 4970 if (size_in_bytes != 0 && 4971 start < st_off + MAX_STORE && 4972 start < st_off + st->as_Store()->memory_size()) { 4973 return FAIL; // the previous store overlaps 4974 } 4975 } else { 4976 if (size_in_bytes != 0 && 4977 st->as_Store()->memory_size() != size_in_bytes) { 4978 return FAIL; // mismatched store size 4979 } 4980 return i; 4981 } 4982 4983 ++i; 4984 } 4985 } 4986 4987 // Look for a captured store which initializes at the offset 'start' 4988 // with the given size. If there is no such store, and no other 4989 // initialization interferes, then return zero_memory (the memory 4990 // projection of the AllocateNode). 4991 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes, 4992 PhaseValues* phase) { 4993 assert(stores_are_sane(phase), ""); 4994 int i = captured_store_insertion_point(start, size_in_bytes, phase); 4995 if (i == 0) { 4996 return nullptr; // something is dead 4997 } else if (i < 0) { 4998 return zero_memory(); // just primordial zero bits here 4999 } else { 5000 Node* st = in(i); // here is the store at this position 5001 assert(get_store_offset(st->as_Store(), phase) == start, "sanity"); 5002 return st; 5003 } 5004 } 5005 5006 // Create, as a raw pointer, an address within my new object at 'offset'. 5007 Node* InitializeNode::make_raw_address(intptr_t offset, 5008 PhaseGVN* phase) { 5009 Node* addr = in(RawAddress); 5010 if (offset != 0) { 5011 Compile* C = phase->C; 5012 addr = phase->transform( new AddPNode(C->top(), addr, 5013 phase->MakeConX(offset)) ); 5014 } 5015 return addr; 5016 } 5017 5018 // Clone the given store, converting it into a raw store 5019 // initializing a field or element of my new object. 5020 // Caller is responsible for retiring the original store, 5021 // with subsume_node or the like. 5022 // 5023 // From the example above InitializeNode::InitializeNode, 5024 // here are the old stores to be captured: 5025 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 5026 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 5027 // 5028 // Here is the changed code; note the extra edges on init: 5029 // alloc = (Allocate ...) 5030 // rawoop = alloc.RawAddress 5031 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1) 5032 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2) 5033 // init = (Initialize alloc.Control alloc.Memory rawoop 5034 // rawstore1 rawstore2) 5035 // 5036 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start, 5037 PhaseGVN* phase, bool can_reshape) { 5038 assert(stores_are_sane(phase), ""); 5039 5040 if (start < 0) return nullptr; 5041 assert(can_capture_store(st, phase, can_reshape) == start, "sanity"); 5042 5043 Compile* C = phase->C; 5044 int size_in_bytes = st->memory_size(); 5045 int i = captured_store_insertion_point(start, size_in_bytes, phase); 5046 if (i == 0) return nullptr; // bail out 5047 Node* prev_mem = nullptr; // raw memory for the captured store 5048 if (i > 0) { 5049 prev_mem = in(i); // there is a pre-existing store under this one 5050 set_req(i, C->top()); // temporarily disconnect it 5051 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect. 5052 } else { 5053 i = -i; // no pre-existing store 5054 prev_mem = zero_memory(); // a slice of the newly allocated object 5055 if (i > InitializeNode::RawStores && in(i-1) == prev_mem) 5056 set_req(--i, C->top()); // reuse this edge; it has been folded away 5057 else 5058 ins_req(i, C->top()); // build a new edge 5059 } 5060 Node* new_st = st->clone(); 5061 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5062 new_st->set_req(MemNode::Control, in(Control)); 5063 new_st->set_req(MemNode::Memory, prev_mem); 5064 new_st->set_req(MemNode::Address, make_raw_address(start, phase)); 5065 bs->eliminate_gc_barrier_data(new_st); 5066 new_st = phase->transform(new_st); 5067 5068 // At this point, new_st might have swallowed a pre-existing store 5069 // at the same offset, or perhaps new_st might have disappeared, 5070 // if it redundantly stored the same value (or zero to fresh memory). 5071 5072 // In any case, wire it in: 5073 PhaseIterGVN* igvn = phase->is_IterGVN(); 5074 if (igvn) { 5075 igvn->rehash_node_delayed(this); 5076 } 5077 set_req(i, new_st); 5078 5079 // The caller may now kill the old guy. 5080 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase)); 5081 assert(check_st == new_st || check_st == nullptr, "must be findable"); 5082 assert(!is_complete(), ""); 5083 return new_st; 5084 } 5085 5086 static bool store_constant(jlong* tiles, int num_tiles, 5087 intptr_t st_off, int st_size, 5088 jlong con) { 5089 if ((st_off & (st_size-1)) != 0) 5090 return false; // strange store offset (assume size==2**N) 5091 address addr = (address)tiles + st_off; 5092 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob"); 5093 switch (st_size) { 5094 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break; 5095 case sizeof(jchar): *(jchar*) addr = (jchar) con; break; 5096 case sizeof(jint): *(jint*) addr = (jint) con; break; 5097 case sizeof(jlong): *(jlong*) addr = (jlong) con; break; 5098 default: return false; // strange store size (detect size!=2**N here) 5099 } 5100 return true; // return success to caller 5101 } 5102 5103 // Coalesce subword constants into int constants and possibly 5104 // into long constants. The goal, if the CPU permits, 5105 // is to initialize the object with a small number of 64-bit tiles. 5106 // Also, convert floating-point constants to bit patterns. 5107 // Non-constants are not relevant to this pass. 5108 // 5109 // In terms of the running example on InitializeNode::InitializeNode 5110 // and InitializeNode::capture_store, here is the transformation 5111 // of rawstore1 and rawstore2 into rawstore12: 5112 // alloc = (Allocate ...) 5113 // rawoop = alloc.RawAddress 5114 // tile12 = 0x00010002 5115 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12) 5116 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12) 5117 // 5118 void 5119 InitializeNode::coalesce_subword_stores(intptr_t header_size, 5120 Node* size_in_bytes, 5121 PhaseGVN* phase) { 5122 Compile* C = phase->C; 5123 5124 assert(stores_are_sane(phase), ""); 5125 // Note: After this pass, they are not completely sane, 5126 // since there may be some overlaps. 5127 5128 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0; 5129 5130 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 5131 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit); 5132 size_limit = MIN2(size_limit, ti_limit); 5133 size_limit = align_up(size_limit, BytesPerLong); 5134 int num_tiles = size_limit / BytesPerLong; 5135 5136 // allocate space for the tile map: 5137 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small 5138 jlong tiles_buf[small_len]; 5139 Node* nodes_buf[small_len]; 5140 jlong inits_buf[small_len]; 5141 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0] 5142 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 5143 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0] 5144 : NEW_RESOURCE_ARRAY(Node*, num_tiles)); 5145 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0] 5146 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 5147 // tiles: exact bitwise model of all primitive constants 5148 // nodes: last constant-storing node subsumed into the tiles model 5149 // inits: which bytes (in each tile) are touched by any initializations 5150 5151 //// Pass A: Fill in the tile model with any relevant stores. 5152 5153 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles); 5154 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles); 5155 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles); 5156 Node* zmem = zero_memory(); // initially zero memory state 5157 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 5158 Node* st = in(i); 5159 intptr_t st_off = get_store_offset(st, phase); 5160 5161 // Figure out the store's offset and constant value: 5162 if (st_off < header_size) continue; //skip (ignore header) 5163 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain) 5164 int st_size = st->as_Store()->memory_size(); 5165 if (st_off + st_size > size_limit) break; 5166 5167 // Record which bytes are touched, whether by constant or not. 5168 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1)) 5169 continue; // skip (strange store size) 5170 5171 const Type* val = phase->type(st->in(MemNode::ValueIn)); 5172 if (!val->singleton()) continue; //skip (non-con store) 5173 BasicType type = val->basic_type(); 5174 5175 jlong con = 0; 5176 switch (type) { 5177 case T_INT: con = val->is_int()->get_con(); break; 5178 case T_LONG: con = val->is_long()->get_con(); break; 5179 case T_FLOAT: con = jint_cast(val->getf()); break; 5180 case T_DOUBLE: con = jlong_cast(val->getd()); break; 5181 default: continue; //skip (odd store type) 5182 } 5183 5184 if (type == T_LONG && Matcher::isSimpleConstant64(con) && 5185 st->Opcode() == Op_StoreL) { 5186 continue; // This StoreL is already optimal. 5187 } 5188 5189 // Store down the constant. 5190 store_constant(tiles, num_tiles, st_off, st_size, con); 5191 5192 intptr_t j = st_off >> LogBytesPerLong; 5193 5194 if (type == T_INT && st_size == BytesPerInt 5195 && (st_off & BytesPerInt) == BytesPerInt) { 5196 jlong lcon = tiles[j]; 5197 if (!Matcher::isSimpleConstant64(lcon) && 5198 st->Opcode() == Op_StoreI) { 5199 // This StoreI is already optimal by itself. 5200 jint* intcon = (jint*) &tiles[j]; 5201 intcon[1] = 0; // undo the store_constant() 5202 5203 // If the previous store is also optimal by itself, back up and 5204 // undo the action of the previous loop iteration... if we can. 5205 // But if we can't, just let the previous half take care of itself. 5206 st = nodes[j]; 5207 st_off -= BytesPerInt; 5208 con = intcon[0]; 5209 if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) { 5210 assert(st_off >= header_size, "still ignoring header"); 5211 assert(get_store_offset(st, phase) == st_off, "must be"); 5212 assert(in(i-1) == zmem, "must be"); 5213 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn))); 5214 assert(con == tcon->is_int()->get_con(), "must be"); 5215 // Undo the effects of the previous loop trip, which swallowed st: 5216 intcon[0] = 0; // undo store_constant() 5217 set_req(i-1, st); // undo set_req(i, zmem) 5218 nodes[j] = nullptr; // undo nodes[j] = st 5219 --old_subword; // undo ++old_subword 5220 } 5221 continue; // This StoreI is already optimal. 5222 } 5223 } 5224 5225 // This store is not needed. 5226 set_req(i, zmem); 5227 nodes[j] = st; // record for the moment 5228 if (st_size < BytesPerLong) // something has changed 5229 ++old_subword; // includes int/float, but who's counting... 5230 else ++old_long; 5231 } 5232 5233 if ((old_subword + old_long) == 0) 5234 return; // nothing more to do 5235 5236 //// Pass B: Convert any non-zero tiles into optimal constant stores. 5237 // Be sure to insert them before overlapping non-constant stores. 5238 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.) 5239 for (int j = 0; j < num_tiles; j++) { 5240 jlong con = tiles[j]; 5241 jlong init = inits[j]; 5242 if (con == 0) continue; 5243 jint con0, con1; // split the constant, address-wise 5244 jint init0, init1; // split the init map, address-wise 5245 { union { jlong con; jint intcon[2]; } u; 5246 u.con = con; 5247 con0 = u.intcon[0]; 5248 con1 = u.intcon[1]; 5249 u.con = init; 5250 init0 = u.intcon[0]; 5251 init1 = u.intcon[1]; 5252 } 5253 5254 Node* old = nodes[j]; 5255 assert(old != nullptr, "need the prior store"); 5256 intptr_t offset = (j * BytesPerLong); 5257 5258 bool split = !Matcher::isSimpleConstant64(con); 5259 5260 if (offset < header_size) { 5261 assert(offset + BytesPerInt >= header_size, "second int counts"); 5262 assert(*(jint*)&tiles[j] == 0, "junk in header"); 5263 split = true; // only the second word counts 5264 // Example: int a[] = { 42 ... } 5265 } else if (con0 == 0 && init0 == -1) { 5266 split = true; // first word is covered by full inits 5267 // Example: int a[] = { ... foo(), 42 ... } 5268 } else if (con1 == 0 && init1 == -1) { 5269 split = true; // second word is covered by full inits 5270 // Example: int a[] = { ... 42, foo() ... } 5271 } 5272 5273 // Here's a case where init0 is neither 0 nor -1: 5274 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... } 5275 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF. 5276 // In this case the tile is not split; it is (jlong)42. 5277 // The big tile is stored down, and then the foo() value is inserted. 5278 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.) 5279 5280 Node* ctl = old->in(MemNode::Control); 5281 Node* adr = make_raw_address(offset, phase); 5282 const TypePtr* atp = TypeRawPtr::BOTTOM; 5283 5284 // One or two coalesced stores to plop down. 5285 Node* st[2]; 5286 intptr_t off[2]; 5287 int nst = 0; 5288 if (!split) { 5289 ++new_long; 5290 off[nst] = offset; 5291 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 5292 phase->longcon(con), T_LONG, MemNode::unordered); 5293 } else { 5294 // Omit either if it is a zero. 5295 if (con0 != 0) { 5296 ++new_int; 5297 off[nst] = offset; 5298 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 5299 phase->intcon(con0), T_INT, MemNode::unordered); 5300 } 5301 if (con1 != 0) { 5302 ++new_int; 5303 offset += BytesPerInt; 5304 adr = make_raw_address(offset, phase); 5305 off[nst] = offset; 5306 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 5307 phase->intcon(con1), T_INT, MemNode::unordered); 5308 } 5309 } 5310 5311 // Insert second store first, then the first before the second. 5312 // Insert each one just before any overlapping non-constant stores. 5313 while (nst > 0) { 5314 Node* st1 = st[--nst]; 5315 C->copy_node_notes_to(st1, old); 5316 st1 = phase->transform(st1); 5317 offset = off[nst]; 5318 assert(offset >= header_size, "do not smash header"); 5319 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase); 5320 guarantee(ins_idx != 0, "must re-insert constant store"); 5321 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap 5322 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem) 5323 set_req(--ins_idx, st1); 5324 else 5325 ins_req(ins_idx, st1); 5326 } 5327 } 5328 5329 if (PrintCompilation && WizardMode) 5330 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long", 5331 old_subword, old_long, new_int, new_long); 5332 if (C->log() != nullptr) 5333 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'", 5334 old_subword, old_long, new_int, new_long); 5335 5336 // Clean up any remaining occurrences of zmem: 5337 remove_extra_zeroes(); 5338 } 5339 5340 // Explore forward from in(start) to find the first fully initialized 5341 // word, and return its offset. Skip groups of subword stores which 5342 // together initialize full words. If in(start) is itself part of a 5343 // fully initialized word, return the offset of in(start). If there 5344 // are no following full-word stores, or if something is fishy, return 5345 // a negative value. 5346 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) { 5347 int int_map = 0; 5348 intptr_t int_map_off = 0; 5349 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for 5350 5351 for (uint i = start, limit = req(); i < limit; i++) { 5352 Node* st = in(i); 5353 5354 intptr_t st_off = get_store_offset(st, phase); 5355 if (st_off < 0) break; // return conservative answer 5356 5357 int st_size = st->as_Store()->memory_size(); 5358 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) { 5359 return st_off; // we found a complete word init 5360 } 5361 5362 // update the map: 5363 5364 intptr_t this_int_off = align_down(st_off, BytesPerInt); 5365 if (this_int_off != int_map_off) { 5366 // reset the map: 5367 int_map = 0; 5368 int_map_off = this_int_off; 5369 } 5370 5371 int subword_off = st_off - this_int_off; 5372 int_map |= right_n_bits(st_size) << subword_off; 5373 if ((int_map & FULL_MAP) == FULL_MAP) { 5374 return this_int_off; // we found a complete word init 5375 } 5376 5377 // Did this store hit or cross the word boundary? 5378 intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt); 5379 if (next_int_off == this_int_off + BytesPerInt) { 5380 // We passed the current int, without fully initializing it. 5381 int_map_off = next_int_off; 5382 int_map >>= BytesPerInt; 5383 } else if (next_int_off > this_int_off + BytesPerInt) { 5384 // We passed the current and next int. 5385 return this_int_off + BytesPerInt; 5386 } 5387 } 5388 5389 return -1; 5390 } 5391 5392 5393 // Called when the associated AllocateNode is expanded into CFG. 5394 // At this point, we may perform additional optimizations. 5395 // Linearize the stores by ascending offset, to make memory 5396 // activity as coherent as possible. 5397 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, 5398 intptr_t header_size, 5399 Node* size_in_bytes, 5400 PhaseIterGVN* phase) { 5401 assert(!is_complete(), "not already complete"); 5402 assert(stores_are_sane(phase), ""); 5403 assert(allocation() != nullptr, "must be present"); 5404 5405 remove_extra_zeroes(); 5406 5407 if (ReduceFieldZeroing || ReduceBulkZeroing) 5408 // reduce instruction count for common initialization patterns 5409 coalesce_subword_stores(header_size, size_in_bytes, phase); 5410 5411 Node* zmem = zero_memory(); // initially zero memory state 5412 Node* inits = zmem; // accumulating a linearized chain of inits 5413 #ifdef ASSERT 5414 intptr_t first_offset = allocation()->minimum_header_size(); 5415 intptr_t last_init_off = first_offset; // previous init offset 5416 intptr_t last_init_end = first_offset; // previous init offset+size 5417 intptr_t last_tile_end = first_offset; // previous tile offset+size 5418 #endif 5419 intptr_t zeroes_done = header_size; 5420 5421 bool do_zeroing = true; // we might give up if inits are very sparse 5422 int big_init_gaps = 0; // how many large gaps have we seen? 5423 5424 if (UseTLAB && ZeroTLAB) do_zeroing = false; 5425 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false; 5426 5427 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 5428 Node* st = in(i); 5429 intptr_t st_off = get_store_offset(st, phase); 5430 if (st_off < 0) 5431 break; // unknown junk in the inits 5432 if (st->in(MemNode::Memory) != zmem) 5433 break; // complicated store chains somehow in list 5434 5435 int st_size = st->as_Store()->memory_size(); 5436 intptr_t next_init_off = st_off + st_size; 5437 5438 if (do_zeroing && zeroes_done < next_init_off) { 5439 // See if this store needs a zero before it or under it. 5440 intptr_t zeroes_needed = st_off; 5441 5442 if (st_size < BytesPerInt) { 5443 // Look for subword stores which only partially initialize words. 5444 // If we find some, we must lay down some word-level zeroes first, 5445 // underneath the subword stores. 5446 // 5447 // Examples: 5448 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s 5449 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y 5450 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z 5451 // 5452 // Note: coalesce_subword_stores may have already done this, 5453 // if it was prompted by constant non-zero subword initializers. 5454 // But this case can still arise with non-constant stores. 5455 5456 intptr_t next_full_store = find_next_fullword_store(i, phase); 5457 5458 // In the examples above: 5459 // in(i) p q r s x y z 5460 // st_off 12 13 14 15 12 13 14 5461 // st_size 1 1 1 1 1 1 1 5462 // next_full_s. 12 16 16 16 16 16 16 5463 // z's_done 12 16 16 16 12 16 12 5464 // z's_needed 12 16 16 16 16 16 16 5465 // zsize 0 0 0 0 4 0 4 5466 if (next_full_store < 0) { 5467 // Conservative tack: Zero to end of current word. 5468 zeroes_needed = align_up(zeroes_needed, BytesPerInt); 5469 } else { 5470 // Zero to beginning of next fully initialized word. 5471 // Or, don't zero at all, if we are already in that word. 5472 assert(next_full_store >= zeroes_needed, "must go forward"); 5473 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary"); 5474 zeroes_needed = next_full_store; 5475 } 5476 } 5477 5478 if (zeroes_needed > zeroes_done) { 5479 intptr_t zsize = zeroes_needed - zeroes_done; 5480 // Do some incremental zeroing on rawmem, in parallel with inits. 5481 zeroes_done = align_down(zeroes_done, BytesPerInt); 5482 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 5483 allocation()->in(AllocateNode::InitValue), 5484 allocation()->in(AllocateNode::RawInitValue), 5485 zeroes_done, zeroes_needed, 5486 phase); 5487 zeroes_done = zeroes_needed; 5488 if (zsize > InitArrayShortSize && ++big_init_gaps > 2) 5489 do_zeroing = false; // leave the hole, next time 5490 } 5491 } 5492 5493 // Collect the store and move on: 5494 phase->replace_input_of(st, MemNode::Memory, inits); 5495 inits = st; // put it on the linearized chain 5496 set_req(i, zmem); // unhook from previous position 5497 5498 if (zeroes_done == st_off) 5499 zeroes_done = next_init_off; 5500 5501 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any"); 5502 5503 #ifdef ASSERT 5504 // Various order invariants. Weaker than stores_are_sane because 5505 // a large constant tile can be filled in by smaller non-constant stores. 5506 assert(st_off >= last_init_off, "inits do not reverse"); 5507 last_init_off = st_off; 5508 const Type* val = nullptr; 5509 if (st_size >= BytesPerInt && 5510 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() && 5511 (int)val->basic_type() < (int)T_OBJECT) { 5512 assert(st_off >= last_tile_end, "tiles do not overlap"); 5513 assert(st_off >= last_init_end, "tiles do not overwrite inits"); 5514 last_tile_end = MAX2(last_tile_end, next_init_off); 5515 } else { 5516 intptr_t st_tile_end = align_up(next_init_off, BytesPerLong); 5517 assert(st_tile_end >= last_tile_end, "inits stay with tiles"); 5518 assert(st_off >= last_init_end, "inits do not overlap"); 5519 last_init_end = next_init_off; // it's a non-tile 5520 } 5521 #endif //ASSERT 5522 } 5523 5524 remove_extra_zeroes(); // clear out all the zmems left over 5525 add_req(inits); 5526 5527 if (!(UseTLAB && ZeroTLAB)) { 5528 // If anything remains to be zeroed, zero it all now. 5529 zeroes_done = align_down(zeroes_done, BytesPerInt); 5530 // if it is the last unused 4 bytes of an instance, forget about it 5531 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint); 5532 if (zeroes_done + BytesPerLong >= size_limit) { 5533 AllocateNode* alloc = allocation(); 5534 assert(alloc != nullptr, "must be present"); 5535 if (alloc != nullptr && alloc->Opcode() == Op_Allocate) { 5536 Node* klass_node = alloc->in(AllocateNode::KlassNode); 5537 ciKlass* k = phase->type(klass_node)->is_instklassptr()->instance_klass(); 5538 if (zeroes_done == k->layout_helper()) 5539 zeroes_done = size_limit; 5540 } 5541 } 5542 if (zeroes_done < size_limit) { 5543 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 5544 allocation()->in(AllocateNode::InitValue), 5545 allocation()->in(AllocateNode::RawInitValue), 5546 zeroes_done, size_in_bytes, phase); 5547 } 5548 } 5549 5550 set_complete(phase); 5551 return rawmem; 5552 } 5553 5554 5555 #ifdef ASSERT 5556 bool InitializeNode::stores_are_sane(PhaseValues* phase) { 5557 if (is_complete()) 5558 return true; // stores could be anything at this point 5559 assert(allocation() != nullptr, "must be present"); 5560 intptr_t last_off = allocation()->minimum_header_size(); 5561 for (uint i = InitializeNode::RawStores; i < req(); i++) { 5562 Node* st = in(i); 5563 intptr_t st_off = get_store_offset(st, phase); 5564 if (st_off < 0) continue; // ignore dead garbage 5565 if (last_off > st_off) { 5566 tty->print_cr("*** bad store offset at %d: %zd > %zd", i, last_off, st_off); 5567 this->dump(2); 5568 assert(false, "ascending store offsets"); 5569 return false; 5570 } 5571 last_off = st_off + st->as_Store()->memory_size(); 5572 } 5573 return true; 5574 } 5575 #endif //ASSERT 5576 5577 5578 5579 5580 //============================MergeMemNode===================================== 5581 // 5582 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several 5583 // contributing store or call operations. Each contributor provides the memory 5584 // state for a particular "alias type" (see Compile::alias_type). For example, 5585 // if a MergeMem has an input X for alias category #6, then any memory reference 5586 // to alias category #6 may use X as its memory state input, as an exact equivalent 5587 // to using the MergeMem as a whole. 5588 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p) 5589 // 5590 // (Here, the <N> notation gives the index of the relevant adr_type.) 5591 // 5592 // In one special case (and more cases in the future), alias categories overlap. 5593 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory 5594 // states. Therefore, if a MergeMem has only one contributing input W for Bot, 5595 // it is exactly equivalent to that state W: 5596 // MergeMem(<Bot>: W) <==> W 5597 // 5598 // Usually, the merge has more than one input. In that case, where inputs 5599 // overlap (i.e., one is Bot), the narrower alias type determines the memory 5600 // state for that type, and the wider alias type (Bot) fills in everywhere else: 5601 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p) 5602 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p) 5603 // 5604 // A merge can take a "wide" memory state as one of its narrow inputs. 5605 // This simply means that the merge observes out only the relevant parts of 5606 // the wide input. That is, wide memory states arriving at narrow merge inputs 5607 // are implicitly "filtered" or "sliced" as necessary. (This is rare.) 5608 // 5609 // These rules imply that MergeMem nodes may cascade (via their <Bot> links), 5610 // and that memory slices "leak through": 5611 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y) 5612 // 5613 // But, in such a cascade, repeated memory slices can "block the leak": 5614 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y') 5615 // 5616 // In the last example, Y is not part of the combined memory state of the 5617 // outermost MergeMem. The system must, of course, prevent unschedulable 5618 // memory states from arising, so you can be sure that the state Y is somehow 5619 // a precursor to state Y'. 5620 // 5621 // 5622 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array 5623 // of each MergeMemNode array are exactly the numerical alias indexes, including 5624 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions 5625 // Compile::alias_type (and kin) produce and manage these indexes. 5626 // 5627 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node. 5628 // (Note that this provides quick access to the top node inside MergeMem methods, 5629 // without the need to reach out via TLS to Compile::current.) 5630 // 5631 // As a consequence of what was just described, a MergeMem that represents a full 5632 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state, 5633 // containing all alias categories. 5634 // 5635 // MergeMem nodes never (?) have control inputs, so in(0) is null. 5636 // 5637 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either 5638 // a memory state for the alias type <N>, or else the top node, meaning that 5639 // there is no particular input for that alias type. Note that the length of 5640 // a MergeMem is variable, and may be extended at any time to accommodate new 5641 // memory states at larger alias indexes. When merges grow, they are of course 5642 // filled with "top" in the unused in() positions. 5643 // 5644 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable. 5645 // (Top was chosen because it works smoothly with passes like GCM.) 5646 // 5647 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is 5648 // the type of random VM bits like TLS references.) Since it is always the 5649 // first non-Bot memory slice, some low-level loops use it to initialize an 5650 // index variable: for (i = AliasIdxRaw; i < req(); i++). 5651 // 5652 // 5653 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns 5654 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns 5655 // the memory state for alias type <N>, or (if there is no particular slice at <N>, 5656 // it returns the base memory. To prevent bugs, memory_at does not accept <Top> 5657 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over 5658 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited. 5659 // 5660 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't 5661 // really that different from the other memory inputs. An abbreviation called 5662 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy. 5663 // 5664 // 5665 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent 5666 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi 5667 // that "emerges though" the base memory will be marked as excluding the alias types 5668 // of the other (narrow-memory) copies which "emerged through" the narrow edges: 5669 // 5670 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y)) 5671 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y)) 5672 // 5673 // This strange "subtraction" effect is necessary to ensure IGVN convergence. 5674 // (It is currently unimplemented.) As you can see, the resulting merge is 5675 // actually a disjoint union of memory states, rather than an overlay. 5676 // 5677 5678 //------------------------------MergeMemNode----------------------------------- 5679 Node* MergeMemNode::make_empty_memory() { 5680 Node* empty_memory = (Node*) Compile::current()->top(); 5681 assert(empty_memory->is_top(), "correct sentinel identity"); 5682 return empty_memory; 5683 } 5684 5685 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) { 5686 init_class_id(Class_MergeMem); 5687 // all inputs are nullified in Node::Node(int) 5688 // set_input(0, nullptr); // no control input 5689 5690 // Initialize the edges uniformly to top, for starters. 5691 Node* empty_mem = make_empty_memory(); 5692 for (uint i = Compile::AliasIdxTop; i < req(); i++) { 5693 init_req(i,empty_mem); 5694 } 5695 assert(empty_memory() == empty_mem, ""); 5696 5697 if( new_base != nullptr && new_base->is_MergeMem() ) { 5698 MergeMemNode* mdef = new_base->as_MergeMem(); 5699 assert(mdef->empty_memory() == empty_mem, "consistent sentinels"); 5700 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) { 5701 mms.set_memory(mms.memory2()); 5702 } 5703 assert(base_memory() == mdef->base_memory(), ""); 5704 } else { 5705 set_base_memory(new_base); 5706 } 5707 } 5708 5709 // Make a new, untransformed MergeMem with the same base as 'mem'. 5710 // If mem is itself a MergeMem, populate the result with the same edges. 5711 MergeMemNode* MergeMemNode::make(Node* mem) { 5712 return new MergeMemNode(mem); 5713 } 5714 5715 //------------------------------cmp-------------------------------------------- 5716 uint MergeMemNode::hash() const { return NO_HASH; } 5717 bool MergeMemNode::cmp( const Node &n ) const { 5718 return (&n == this); // Always fail except on self 5719 } 5720 5721 //------------------------------Identity--------------------------------------- 5722 Node* MergeMemNode::Identity(PhaseGVN* phase) { 5723 // Identity if this merge point does not record any interesting memory 5724 // disambiguations. 5725 Node* base_mem = base_memory(); 5726 Node* empty_mem = empty_memory(); 5727 if (base_mem != empty_mem) { // Memory path is not dead? 5728 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5729 Node* mem = in(i); 5730 if (mem != empty_mem && mem != base_mem) { 5731 return this; // Many memory splits; no change 5732 } 5733 } 5734 } 5735 return base_mem; // No memory splits; ID on the one true input 5736 } 5737 5738 //------------------------------Ideal------------------------------------------ 5739 // This method is invoked recursively on chains of MergeMem nodes 5740 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) { 5741 // Remove chain'd MergeMems 5742 // 5743 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted 5744 // relative to the "in(Bot)". Since we are patching both at the same time, 5745 // we have to be careful to read each "in(i)" relative to the old "in(Bot)", 5746 // but rewrite each "in(i)" relative to the new "in(Bot)". 5747 Node *progress = nullptr; 5748 5749 5750 Node* old_base = base_memory(); 5751 Node* empty_mem = empty_memory(); 5752 if (old_base == empty_mem) 5753 return nullptr; // Dead memory path. 5754 5755 MergeMemNode* old_mbase; 5756 if (old_base != nullptr && old_base->is_MergeMem()) 5757 old_mbase = old_base->as_MergeMem(); 5758 else 5759 old_mbase = nullptr; 5760 Node* new_base = old_base; 5761 5762 // simplify stacked MergeMems in base memory 5763 if (old_mbase) new_base = old_mbase->base_memory(); 5764 5765 // the base memory might contribute new slices beyond my req() 5766 if (old_mbase) grow_to_match(old_mbase); 5767 5768 // Note: We do not call verify_sparse on entry, because inputs 5769 // can normalize to the base_memory via subsume_node or similar 5770 // mechanisms. This method repairs that damage. 5771 5772 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels"); 5773 5774 // Look at each slice. 5775 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5776 Node* old_in = in(i); 5777 // calculate the old memory value 5778 Node* old_mem = old_in; 5779 if (old_mem == empty_mem) old_mem = old_base; 5780 assert(old_mem == memory_at(i), ""); 5781 5782 // maybe update (reslice) the old memory value 5783 5784 // simplify stacked MergeMems 5785 Node* new_mem = old_mem; 5786 MergeMemNode* old_mmem; 5787 if (old_mem != nullptr && old_mem->is_MergeMem()) 5788 old_mmem = old_mem->as_MergeMem(); 5789 else 5790 old_mmem = nullptr; 5791 if (old_mmem == this) { 5792 // This can happen if loops break up and safepoints disappear. 5793 // A merge of BotPtr (default) with a RawPtr memory derived from a 5794 // safepoint can be rewritten to a merge of the same BotPtr with 5795 // the BotPtr phi coming into the loop. If that phi disappears 5796 // also, we can end up with a self-loop of the mergemem. 5797 // In general, if loops degenerate and memory effects disappear, 5798 // a mergemem can be left looking at itself. This simply means 5799 // that the mergemem's default should be used, since there is 5800 // no longer any apparent effect on this slice. 5801 // Note: If a memory slice is a MergeMem cycle, it is unreachable 5802 // from start. Update the input to TOP. 5803 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base; 5804 } 5805 else if (old_mmem != nullptr) { 5806 new_mem = old_mmem->memory_at(i); 5807 } 5808 // else preceding memory was not a MergeMem 5809 5810 // maybe store down a new value 5811 Node* new_in = new_mem; 5812 if (new_in == new_base) new_in = empty_mem; 5813 5814 if (new_in != old_in) { 5815 // Warning: Do not combine this "if" with the previous "if" 5816 // A memory slice might have be be rewritten even if it is semantically 5817 // unchanged, if the base_memory value has changed. 5818 set_req_X(i, new_in, phase); 5819 progress = this; // Report progress 5820 } 5821 } 5822 5823 if (new_base != old_base) { 5824 set_req_X(Compile::AliasIdxBot, new_base, phase); 5825 // Don't use set_base_memory(new_base), because we need to update du. 5826 assert(base_memory() == new_base, ""); 5827 progress = this; 5828 } 5829 5830 if( base_memory() == this ) { 5831 // a self cycle indicates this memory path is dead 5832 set_req(Compile::AliasIdxBot, empty_mem); 5833 } 5834 5835 // Resolve external cycles by calling Ideal on a MergeMem base_memory 5836 // Recursion must occur after the self cycle check above 5837 if( base_memory()->is_MergeMem() ) { 5838 MergeMemNode *new_mbase = base_memory()->as_MergeMem(); 5839 Node *m = phase->transform(new_mbase); // Rollup any cycles 5840 if( m != nullptr && 5841 (m->is_top() || 5842 (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) { 5843 // propagate rollup of dead cycle to self 5844 set_req(Compile::AliasIdxBot, empty_mem); 5845 } 5846 } 5847 5848 if( base_memory() == empty_mem ) { 5849 progress = this; 5850 // Cut inputs during Parse phase only. 5851 // During Optimize phase a dead MergeMem node will be subsumed by Top. 5852 if( !can_reshape ) { 5853 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5854 if( in(i) != empty_mem ) { set_req(i, empty_mem); } 5855 } 5856 } 5857 } 5858 5859 if( !progress && base_memory()->is_Phi() && can_reshape ) { 5860 // Check if PhiNode::Ideal's "Split phis through memory merges" 5861 // transform should be attempted. Look for this->phi->this cycle. 5862 uint merge_width = req(); 5863 if (merge_width > Compile::AliasIdxRaw) { 5864 PhiNode* phi = base_memory()->as_Phi(); 5865 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in 5866 if (phi->in(i) == this) { 5867 phase->is_IterGVN()->_worklist.push(phi); 5868 break; 5869 } 5870 } 5871 } 5872 } 5873 5874 assert(progress || verify_sparse(), "please, no dups of base"); 5875 return progress; 5876 } 5877 5878 //-------------------------set_base_memory------------------------------------- 5879 void MergeMemNode::set_base_memory(Node *new_base) { 5880 Node* empty_mem = empty_memory(); 5881 set_req(Compile::AliasIdxBot, new_base); 5882 assert(memory_at(req()) == new_base, "must set default memory"); 5883 // Clear out other occurrences of new_base: 5884 if (new_base != empty_mem) { 5885 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5886 if (in(i) == new_base) set_req(i, empty_mem); 5887 } 5888 } 5889 } 5890 5891 //------------------------------out_RegMask------------------------------------ 5892 const RegMask &MergeMemNode::out_RegMask() const { 5893 return RegMask::Empty; 5894 } 5895 5896 //------------------------------dump_spec-------------------------------------- 5897 #ifndef PRODUCT 5898 void MergeMemNode::dump_spec(outputStream *st) const { 5899 st->print(" {"); 5900 Node* base_mem = base_memory(); 5901 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) { 5902 Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem; 5903 if (mem == base_mem) { st->print(" -"); continue; } 5904 st->print( " N%d:", mem->_idx ); 5905 Compile::current()->get_adr_type(i)->dump_on(st); 5906 } 5907 st->print(" }"); 5908 } 5909 #endif // !PRODUCT 5910 5911 5912 #ifdef ASSERT 5913 static bool might_be_same(Node* a, Node* b) { 5914 if (a == b) return true; 5915 if (!(a->is_Phi() || b->is_Phi())) return false; 5916 // phis shift around during optimization 5917 return true; // pretty stupid... 5918 } 5919 5920 // verify a narrow slice (either incoming or outgoing) 5921 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) { 5922 if (!VerifyAliases) return; // don't bother to verify unless requested 5923 if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error 5924 if (Node::in_dump()) return; // muzzle asserts when printing 5925 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel"); 5926 assert(n != nullptr, ""); 5927 // Elide intervening MergeMem's 5928 while (n->is_MergeMem()) { 5929 n = n->as_MergeMem()->memory_at(alias_idx); 5930 } 5931 Compile* C = Compile::current(); 5932 const TypePtr* n_adr_type = n->adr_type(); 5933 if (n == m->empty_memory()) { 5934 // Implicit copy of base_memory() 5935 } else if (n_adr_type != TypePtr::BOTTOM) { 5936 assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type"); 5937 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice"); 5938 } else { 5939 // A few places like make_runtime_call "know" that VM calls are narrow, 5940 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM. 5941 bool expected_wide_mem = false; 5942 if (n == m->base_memory()) { 5943 expected_wide_mem = true; 5944 } else if (alias_idx == Compile::AliasIdxRaw || 5945 n == m->memory_at(Compile::AliasIdxRaw)) { 5946 expected_wide_mem = true; 5947 } else if (!C->alias_type(alias_idx)->is_rewritable()) { 5948 // memory can "leak through" calls on channels that 5949 // are write-once. Allow this also. 5950 expected_wide_mem = true; 5951 } 5952 assert(expected_wide_mem, "expected narrow slice replacement"); 5953 } 5954 } 5955 #else // !ASSERT 5956 #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op 5957 #endif 5958 5959 5960 //-----------------------------memory_at--------------------------------------- 5961 Node* MergeMemNode::memory_at(uint alias_idx) const { 5962 assert(alias_idx >= Compile::AliasIdxRaw || 5963 (alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing()), 5964 "must avoid base_memory and AliasIdxTop"); 5965 5966 // Otherwise, it is a narrow slice. 5967 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory(); 5968 if (is_empty_memory(n)) { 5969 // the array is sparse; empty slots are the "top" node 5970 n = base_memory(); 5971 assert(Node::in_dump() 5972 || n == nullptr || n->bottom_type() == Type::TOP 5973 || n->adr_type() == nullptr // address is TOP 5974 || n->adr_type() == TypePtr::BOTTOM 5975 || n->adr_type() == TypeRawPtr::BOTTOM 5976 || !Compile::current()->do_aliasing(), 5977 "must be a wide memory"); 5978 // do_aliasing == false if we are organizing the memory states manually. 5979 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM. 5980 } else { 5981 // make sure the stored slice is sane 5982 #ifdef ASSERT 5983 if (VMError::is_error_reported() || Node::in_dump()) { 5984 } else if (might_be_same(n, base_memory())) { 5985 // Give it a pass: It is a mostly harmless repetition of the base. 5986 // This can arise normally from node subsumption during optimization. 5987 } else { 5988 verify_memory_slice(this, alias_idx, n); 5989 } 5990 #endif 5991 } 5992 return n; 5993 } 5994 5995 //---------------------------set_memory_at------------------------------------- 5996 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) { 5997 verify_memory_slice(this, alias_idx, n); 5998 Node* empty_mem = empty_memory(); 5999 if (n == base_memory()) n = empty_mem; // collapse default 6000 uint need_req = alias_idx+1; 6001 if (req() < need_req) { 6002 if (n == empty_mem) return; // already the default, so do not grow me 6003 // grow the sparse array 6004 do { 6005 add_req(empty_mem); 6006 } while (req() < need_req); 6007 } 6008 set_req( alias_idx, n ); 6009 } 6010 6011 6012 6013 //--------------------------iteration_setup------------------------------------ 6014 void MergeMemNode::iteration_setup(const MergeMemNode* other) { 6015 if (other != nullptr) { 6016 grow_to_match(other); 6017 // invariant: the finite support of mm2 is within mm->req() 6018 #ifdef ASSERT 6019 for (uint i = req(); i < other->req(); i++) { 6020 assert(other->is_empty_memory(other->in(i)), "slice left uncovered"); 6021 } 6022 #endif 6023 } 6024 // Replace spurious copies of base_memory by top. 6025 Node* base_mem = base_memory(); 6026 if (base_mem != nullptr && !base_mem->is_top()) { 6027 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) { 6028 if (in(i) == base_mem) 6029 set_req(i, empty_memory()); 6030 } 6031 } 6032 } 6033 6034 //---------------------------grow_to_match------------------------------------- 6035 void MergeMemNode::grow_to_match(const MergeMemNode* other) { 6036 Node* empty_mem = empty_memory(); 6037 assert(other->is_empty_memory(empty_mem), "consistent sentinels"); 6038 // look for the finite support of the other memory 6039 for (uint i = other->req(); --i >= req(); ) { 6040 if (other->in(i) != empty_mem) { 6041 uint new_len = i+1; 6042 while (req() < new_len) add_req(empty_mem); 6043 break; 6044 } 6045 } 6046 } 6047 6048 //---------------------------verify_sparse------------------------------------- 6049 #ifndef PRODUCT 6050 bool MergeMemNode::verify_sparse() const { 6051 assert(is_empty_memory(make_empty_memory()), "sane sentinel"); 6052 Node* base_mem = base_memory(); 6053 // The following can happen in degenerate cases, since empty==top. 6054 if (is_empty_memory(base_mem)) return true; 6055 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 6056 assert(in(i) != nullptr, "sane slice"); 6057 if (in(i) == base_mem) return false; // should have been the sentinel value! 6058 } 6059 return true; 6060 } 6061 6062 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) { 6063 Node* n; 6064 n = mm->in(idx); 6065 if (mem == n) return true; // might be empty_memory() 6066 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx); 6067 if (mem == n) return true; 6068 return false; 6069 } 6070 #endif // !PRODUCT