1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/c2/barrierSetC2.hpp"
  33 #include "gc/shared/tlab_globals.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/flatArrayKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "opto/addnode.hpp"
  39 #include "opto/arraycopynode.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/convertnode.hpp"
  45 #include "opto/inlinetypenode.hpp"
  46 #include "opto/loopnode.hpp"
  47 #include "opto/machnode.hpp"
  48 #include "opto/matcher.hpp"
  49 #include "opto/memnode.hpp"
  50 #include "opto/mempointer.hpp"
  51 #include "opto/mulnode.hpp"
  52 #include "opto/narrowptrnode.hpp"
  53 #include "opto/phaseX.hpp"
  54 #include "opto/regalloc.hpp"
  55 #include "opto/regmask.hpp"
  56 #include "opto/rootnode.hpp"
  57 #include "opto/traceMergeStoresTag.hpp"
  58 #include "opto/vectornode.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "utilities/align.hpp"
  61 #include "utilities/copy.hpp"
  62 #include "utilities/globalDefinitions.hpp"
  63 #include "utilities/macros.hpp"
  64 #include "utilities/powerOfTwo.hpp"
  65 #include "utilities/vmError.hpp"
  66 
  67 // Portions of code courtesy of Clifford Click
  68 
  69 // Optimization - Graph Style
  70 
  71 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  72 
  73 //=============================================================================
  74 uint MemNode::size_of() const { return sizeof(*this); }
  75 
  76 const TypePtr *MemNode::adr_type() const {
  77   Node* adr = in(Address);
  78   if (adr == nullptr)  return nullptr; // node is dead
  79   const TypePtr* cross_check = nullptr;
  80   DEBUG_ONLY(cross_check = _adr_type);
  81   return calculate_adr_type(adr->bottom_type(), cross_check);
  82 }
  83 
  84 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  85   if (adr != nullptr) {
  86     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  87       return true;
  88     }
  89   }
  90   return false;
  91 }
  92 
  93 #ifndef PRODUCT
  94 void MemNode::dump_spec(outputStream *st) const {
  95   if (in(Address) == nullptr)  return; // node is dead
  96 #ifndef ASSERT
  97   // fake the missing field
  98   const TypePtr* _adr_type = nullptr;
  99   if (in(Address) != nullptr)
 100     _adr_type = in(Address)->bottom_type()->isa_ptr();
 101 #endif
 102   dump_adr_type(_adr_type, st);
 103 
 104   Compile* C = Compile::current();
 105   if (C->alias_type(_adr_type)->is_volatile()) {
 106     st->print(" Volatile!");
 107   }
 108   if (_unaligned_access) {
 109     st->print(" unaligned");
 110   }
 111   if (_mismatched_access) {
 112     st->print(" mismatched");
 113   }
 114   if (_unsafe_access) {
 115     st->print(" unsafe");
 116   }
 117 }
 118 
 119 void MemNode::dump_adr_type(const TypePtr* adr_type, outputStream* st) {
 120   st->print(" @");
 121   if (adr_type == nullptr) {
 122     st->print("null");
 123   } else {
 124     adr_type->dump_on(st);
 125     Compile* C = Compile::current();
 126     Compile::AliasType* atp = nullptr;
 127     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 128     if (atp == nullptr)
 129       st->print(", idx=?\?;");
 130     else if (atp->index() == Compile::AliasIdxBot)
 131       st->print(", idx=Bot;");
 132     else if (atp->index() == Compile::AliasIdxTop)
 133       st->print(", idx=Top;");
 134     else if (atp->index() == Compile::AliasIdxRaw)
 135       st->print(", idx=Raw;");
 136     else {
 137       ciField* field = atp->field();
 138       if (field) {
 139         st->print(", name=");
 140         field->print_name_on(st);
 141       }
 142       st->print(", idx=%d;", atp->index());
 143     }
 144   }
 145 }
 146 
 147 extern void print_alias_types();
 148 
 149 #endif
 150 
 151 // Find the memory output corresponding to the fall-through path of a call
 152 static Node* find_call_fallthrough_mem_output(CallNode* call) {
 153   ResourceMark rm;
 154   CallProjections* projs = call->extract_projections(false, false);
 155   Node* res = projs->fallthrough_memproj;
 156   assert(res != nullptr, "must have a fallthrough mem output");
 157   return res;
 158 }
 159 
 160 // Try to find a better memory input for a load from a strict final field
 161 static Node* try_optimize_strict_final_load_memory(PhaseGVN* phase, Node* adr, ProjNode*& base_local) {
 162   intptr_t offset = 0;
 163   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 164   if (base == nullptr) {
 165     return nullptr;
 166   }
 167 
 168   Node* base_uncasted = base->uncast();
 169   if (base_uncasted->is_Proj()) {
 170     MultiNode* multi = base_uncasted->in(0)->as_Multi();
 171     if (multi->is_Allocate()) {
 172       base_local = base_uncasted->as_Proj();
 173       return nullptr;
 174     } else if (multi->is_Call()) {
 175       // The oop is returned from a call, the memory can be the fallthrough output of the call
 176       return find_call_fallthrough_mem_output(multi->as_Call());
 177     } else if (multi->is_Start()) {
 178       // The oop is a parameter
 179       if (phase->C->method()->is_object_constructor() && base_uncasted->as_Proj()->_con == TypeFunc::Parms) {
 180         // The receiver of a constructor is similar to the result of an AllocateNode
 181         base_local = base_uncasted->as_Proj();
 182         return nullptr;
 183       } else {
 184         // Use the start memory otherwise
 185         return multi->proj_out(TypeFunc::Memory);
 186       }
 187     }
 188   }
 189 
 190   return nullptr;
 191 }
 192 
 193 // Whether a call can modify a strict final field, given that the object is allocated inside the
 194 // current compilation unit, or is the first parameter when the compilation root is a constructor.
 195 // This is equivalent to asking whether 'call' is a constructor invocation and the class declaring
 196 // the target method is a subclass of the class declaring 'field'.
 197 static bool call_can_modify_local_object(ciField* field, CallNode* call) {
 198   if (!call->is_CallJava()) {
 199     return false;
 200   }
 201 
 202   ciMethod* target = call->as_CallJava()->method();
 203   if (target == nullptr || !target->is_object_constructor()) {
 204     return false;
 205   }
 206 
 207   // If 'field' is declared in a class that is a subclass of the one declaring the constructor,
 208   // then the field is set inside the constructor, else the field must be set before the
 209   // constructor invocation. E.g. A field Super.x will be set during the execution of Sub::<init>,
 210   // while a field Sub.y must be set before Super::<init> is invoked.
 211   // We can try to be more heroic and decide if the receiver of the constructor invocation is the
 212   // object from which we are loading from. This, however, may be problematic as deciding if 2
 213   // nodes are definitely different may not be trivial, especially if the graph is not canonical.
 214   // As a result, it is made more conservative for now.
 215   assert(call->req() > TypeFunc::Parms, "constructor must have at least 1 argument");
 216   return target->holder()->is_subclass_of(field->holder());
 217 }
 218 
 219 Node* MemNode::optimize_simple_memory_chain(Node* mchain, const TypeOopPtr* t_oop, Node* load, PhaseGVN* phase) {
 220   assert(t_oop != nullptr, "sanity");
 221   bool is_known_instance = t_oop->is_known_instance_field();
 222   bool is_strict_final_load = false;
 223 
 224   // After macro expansion, an allocation may become a call, changing the memory input to the
 225   // memory output of that call would be illegal. As a result, disallow this transformation after
 226   // macro expansion.
 227   if (phase->is_IterGVN() && phase->C->allow_macro_nodes() && load != nullptr && load->is_Load() && !load->as_Load()->is_mismatched_access()) {
 228     is_strict_final_load = t_oop->is_ptr_to_strict_final_field();
 229 #ifdef ASSERT
 230     if ((t_oop->is_inlinetypeptr() && t_oop->inline_klass()->contains_field_offset(t_oop->offset())) || t_oop->is_ptr_to_boxed_value()) {
 231       assert(is_strict_final_load, "sanity check for basic cases");
 232     }
 233 #endif // ASSERT
 234   }
 235 
 236   if (!is_known_instance && !is_strict_final_load) {
 237     return mchain;
 238   }
 239 
 240   Node* result = mchain;
 241   ProjNode* base_local = nullptr;
 242 
 243   ciField* field = nullptr;
 244   if (is_strict_final_load) {
 245     field = phase->C->alias_type(t_oop)->field();
 246     assert(field != nullptr, "must point to a field");
 247 
 248     Node* adr = load->in(MemNode::Address);
 249     assert(phase->type(adr) == t_oop, "inconsistent type");
 250     Node* tmp = try_optimize_strict_final_load_memory(phase, adr, base_local);
 251     if (tmp != nullptr) {
 252       result = tmp;
 253     }
 254   }
 255 
 256   uint instance_id = t_oop->instance_id();
 257   Node* start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 258   Node* prev = nullptr;
 259   while (prev != result) {
 260     prev = result;
 261     if (result == start_mem) {
 262       // start_mem is the earliest memory possible
 263       break;
 264     }
 265 
 266     // skip over a call which does not affect this memory slice
 267     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 268       Node* proj_in = result->in(0);
 269       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 270         // This is the allocation that creates the object from which we are loading from
 271         break;
 272       } else if (proj_in->is_Call()) {
 273         // ArrayCopyNodes processed here as well
 274         CallNode* call = proj_in->as_Call();
 275         if (!call->may_modify(t_oop, phase)) {
 276           result = call->in(TypeFunc::Memory);
 277         } else if (is_strict_final_load && base_local != nullptr && !call_can_modify_local_object(field, call)) {
 278           result = call->in(TypeFunc::Memory);
 279         }
 280       } else if (proj_in->Opcode() == Op_Tuple) {
 281         // The call will be folded, skip over it.
 282         break;
 283       } else if (proj_in->is_Initialize()) {
 284         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 285         // Stop if this is the initialization for the object instance which
 286         // contains this memory slice, otherwise skip over it.
 287         if ((alloc == nullptr) || (alloc->_idx == instance_id)) {
 288           break;
 289         }
 290         if (is_known_instance) {
 291           result = proj_in->in(TypeFunc::Memory);
 292         } else if (is_strict_final_load) {
 293           Node* klass = alloc->in(AllocateNode::KlassNode);
 294           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 295           if (tklass->klass_is_exact() && !tklass->exact_klass()->equals(t_oop->is_instptr()->exact_klass())) {
 296             // Allocation of another type, must be another object
 297             result = proj_in->in(TypeFunc::Memory);
 298           } else if (base_local != nullptr && (base_local->is_Parm() || base_local->in(0) != alloc)) {
 299             // Allocation of another object
 300             result = proj_in->in(TypeFunc::Memory);
 301           }
 302         }
 303       } else if (proj_in->is_MemBar()) {
 304         ArrayCopyNode* ac = nullptr;
 305         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 306           break;
 307         }
 308         result = proj_in->in(TypeFunc::Memory);
 309       } else if (proj_in->is_LoadFlat() || proj_in->is_StoreFlat()) {
 310         if (is_strict_final_load) {
 311           // LoadFlat and StoreFlat cannot happen to strict final fields
 312           result = proj_in->in(TypeFunc::Memory);
 313         }
 314       } else if (proj_in->is_top()) {
 315         break; // dead code
 316       } else {
 317         assert(false, "unexpected projection of %s", proj_in->Name());
 318       }
 319     } else if (result->is_ClearArray()) {
 320       if (!is_known_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 321         // Can not bypass initialization of the instance
 322         // we are looking for.
 323         break;
 324       }
 325       // Otherwise skip it (the call updated 'result' value).
 326     } else if (result->is_MergeMem()) {
 327       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty);
 328     }
 329   }
 330   return result;
 331 }
 332 
 333 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 334   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 335   if (t_oop == nullptr)
 336     return mchain;  // don't try to optimize non-oop types
 337   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 338   bool is_instance = t_oop->is_known_instance_field();
 339   PhaseIterGVN *igvn = phase->is_IterGVN();
 340   if (is_instance && igvn != nullptr && result->is_Phi()) {
 341     PhiNode *mphi = result->as_Phi();
 342     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 343     const TypePtr *t = mphi->adr_type();
 344     bool do_split = false;
 345     // In the following cases, Load memory input can be further optimized based on
 346     // its precise address type
 347     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ) {
 348       do_split = true;
 349     } else if (t->isa_oopptr() && !t->is_oopptr()->is_known_instance()) {
 350       const TypeOopPtr* mem_t =
 351         t->is_oopptr()->cast_to_exactness(true)
 352         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 353         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id());
 354       if (t_oop->isa_aryptr()) {
 355         mem_t = mem_t->is_aryptr()
 356                      ->cast_to_stable(t_oop->is_aryptr()->is_stable())
 357                      ->cast_to_size(t_oop->is_aryptr()->size())
 358                      ->cast_to_not_flat(t_oop->is_aryptr()->is_not_flat())
 359                      ->cast_to_not_null_free(t_oop->is_aryptr()->is_not_null_free())
 360                      ->with_offset(t_oop->is_aryptr()->offset())
 361                      ->is_aryptr();
 362       }
 363       do_split = mem_t == t_oop;
 364     }
 365     if (do_split) {
 366       // clone the Phi with our address type
 367       result = mphi->split_out_instance(t_adr, igvn);
 368     } else {
 369       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 370     }
 371   }
 372   return result;
 373 }
 374 
 375 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 376   uint alias_idx = phase->C->get_alias_index(tp);
 377   Node *mem = mmem;
 378 #ifdef ASSERT
 379   {
 380     // Check that current type is consistent with the alias index used during graph construction
 381     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 382     bool consistent =  adr_check == nullptr || adr_check->empty() ||
 383                        phase->C->must_alias(adr_check, alias_idx );
 384     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 385     if( !consistent && adr_check != nullptr && !adr_check->empty() &&
 386         tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 387         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 388         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 389           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 390           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 391       // don't assert if it is dead code.
 392       consistent = true;
 393     }
 394     if( !consistent ) {
 395       st->print("alias_idx==%d, adr_check==", alias_idx);
 396       if( adr_check == nullptr ) {
 397         st->print("null");
 398       } else {
 399         adr_check->dump();
 400       }
 401       st->cr();
 402       print_alias_types();
 403       assert(consistent, "adr_check must match alias idx");
 404     }
 405   }
 406 #endif
 407   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 408   // means an array I have not precisely typed yet.  Do not do any
 409   // alias stuff with it any time soon.
 410   const TypeOopPtr *toop = tp->isa_oopptr();
 411   if (tp->base() != Type::AnyPtr &&
 412       !(toop &&
 413         toop->isa_instptr() &&
 414         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
 415         toop->offset() == Type::OffsetBot)) {
 416     // IGVN _delay_transform may be set to true and if that is the case and mmem
 417     // is already a registered node then the validation inside transform will
 418     // complain.
 419     Node* m = mmem;
 420     PhaseIterGVN* igvn = phase->is_IterGVN();
 421     if (igvn == nullptr || !igvn->delay_transform()) {
 422       // compress paths and change unreachable cycles to TOP
 423       // If not, we can update the input infinitely along a MergeMem cycle
 424       // Equivalent code in PhiNode::Ideal
 425       m = phase->transform(mmem);
 426     }
 427     // If transformed to a MergeMem, get the desired slice
 428     // Otherwise the returned node represents memory for every slice
 429     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 430     // Update input if it is progress over what we have now
 431   }
 432   return mem;
 433 }
 434 
 435 //--------------------------Ideal_common---------------------------------------
 436 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 437 // Unhook non-raw memories from complete (macro-expanded) initializations.
 438 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 439   // If our control input is a dead region, kill all below the region
 440   Node *ctl = in(MemNode::Control);
 441   if (ctl && remove_dead_region(phase, can_reshape))
 442     return this;
 443   ctl = in(MemNode::Control);
 444   // Don't bother trying to transform a dead node
 445   if (ctl && ctl->is_top())  return NodeSentinel;
 446 
 447   PhaseIterGVN *igvn = phase->is_IterGVN();
 448   // Wait if control on the worklist.
 449   if (ctl && can_reshape && igvn != nullptr) {
 450     Node* bol = nullptr;
 451     Node* cmp = nullptr;
 452     if (ctl->in(0)->is_If()) {
 453       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 454       bol = ctl->in(0)->in(1);
 455       if (bol->is_Bool())
 456         cmp = ctl->in(0)->in(1)->in(1);
 457     }
 458     if (igvn->_worklist.member(ctl) ||
 459         (bol != nullptr && igvn->_worklist.member(bol)) ||
 460         (cmp != nullptr && igvn->_worklist.member(cmp)) ) {
 461       // This control path may be dead.
 462       // Delay this memory node transformation until the control is processed.
 463       igvn->_worklist.push(this);
 464       return NodeSentinel; // caller will return null
 465     }
 466   }
 467   // Ignore if memory is dead, or self-loop
 468   Node *mem = in(MemNode::Memory);
 469   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null
 470   assert(mem != this, "dead loop in MemNode::Ideal");
 471 
 472   if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) {
 473     // This memory slice may be dead.
 474     // Delay this mem node transformation until the memory is processed.
 475     igvn->_worklist.push(this);
 476     return NodeSentinel; // caller will return null
 477   }
 478 
 479   Node *address = in(MemNode::Address);
 480   const Type *t_adr = phase->type(address);
 481   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return null
 482 
 483   if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) {
 484     // Unsafe off-heap access with zero address. Remove access and other control users
 485     // to not confuse optimizations and add a HaltNode to fail if this is ever executed.
 486     assert(ctl != nullptr, "unsafe accesses should be control dependent");
 487     for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
 488       Node* u = ctl->fast_out(i);
 489       if (u != ctl) {
 490         igvn->rehash_node_delayed(u);
 491         int nb = u->replace_edge(ctl, phase->C->top(), igvn);
 492         --i, imax -= nb;
 493       }
 494     }
 495     Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr));
 496     Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address"));
 497     phase->C->root()->add_req(halt);
 498     return this;
 499   }
 500 
 501   if (can_reshape && igvn != nullptr &&
 502       (igvn->_worklist.member(address) ||
 503        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 504     // The address's base and type may change when the address is processed.
 505     // Delay this mem node transformation until the address is processed.
 506     igvn->_worklist.push(this);
 507     return NodeSentinel; // caller will return null
 508   }
 509 
 510   // Do NOT remove or optimize the next lines: ensure a new alias index
 511   // is allocated for an oop pointer type before Escape Analysis.
 512   // Note: C++ will not remove it since the call has side effect.
 513   if (t_adr->isa_oopptr()) {
 514     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 515   }
 516 
 517   Node* base = nullptr;
 518   if (address->is_AddP()) {
 519     base = address->in(AddPNode::Base);
 520   }
 521   if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 522       !t_adr->isa_rawptr()) {
 523     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 524     // Skip this node optimization if its address has TOP base.
 525     return NodeSentinel; // caller will return null
 526   }
 527 
 528   // Avoid independent memory operations
 529   Node* old_mem = mem;
 530 
 531   // The code which unhooks non-raw memories from complete (macro-expanded)
 532   // initializations was removed. After macro-expansion all stores caught
 533   // by Initialize node became raw stores and there is no information
 534   // which memory slices they modify. So it is unsafe to move any memory
 535   // operation above these stores. Also in most cases hooked non-raw memories
 536   // were already unhooked by using information from detect_ptr_independence()
 537   // and find_previous_store().
 538 
 539   if (mem->is_MergeMem()) {
 540     MergeMemNode* mmem = mem->as_MergeMem();
 541     const TypePtr *tp = t_adr->is_ptr();
 542 
 543     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 544   }
 545 
 546   if (mem != old_mem) {
 547     set_req_X(MemNode::Memory, mem, phase);
 548     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 549     return this;
 550   }
 551 
 552   // let the subclass continue analyzing...
 553   return nullptr;
 554 }
 555 
 556 // Helper function for proving some simple control dominations.
 557 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 558 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 559 // is not a constant (dominated by the method's StartNode).
 560 // Used by MemNode::find_previous_store to prove that the
 561 // control input of a memory operation predates (dominates)
 562 // an allocation it wants to look past.
 563 // Returns 'DomResult::Dominate' if all control inputs of 'dom'
 564 // dominate 'sub', 'DomResult::NotDominate' if not,
 565 // and 'DomResult::EncounteredDeadCode' if we can't decide due to
 566 // dead code, but at the end of IGVN, we know the definite result
 567 // once the dead code is cleaned up.
 568 Node::DomResult MemNode::maybe_all_controls_dominate(Node* dom, Node* sub) {
 569   if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top()) {
 570     return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 571   }
 572 
 573   // Check 'dom'. Skip Proj and CatchProj nodes.
 574   dom = dom->find_exact_control(dom);
 575   if (dom == nullptr || dom->is_top()) {
 576     return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 577   }
 578 
 579   if (dom == sub) {
 580     // For the case when, for example, 'sub' is Initialize and the original
 581     // 'dom' is Proj node of the 'sub'.
 582     return DomResult::NotDominate;
 583   }
 584 
 585   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) {
 586     return DomResult::Dominate;
 587   }
 588 
 589   // 'dom' dominates 'sub' if its control edge and control edges
 590   // of all its inputs dominate or equal to sub's control edge.
 591 
 592   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 593   // Or Region for the check in LoadNode::Ideal();
 594   // 'sub' should have sub->in(0) != nullptr.
 595   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 596          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 597 
 598   // Get control edge of 'sub'.
 599   Node* orig_sub = sub;
 600   sub = sub->find_exact_control(sub->in(0));
 601   if (sub == nullptr || sub->is_top()) {
 602     return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 603   }
 604 
 605   assert(sub->is_CFG(), "expecting control");
 606 
 607   if (sub == dom) {
 608     return DomResult::Dominate;
 609   }
 610 
 611   if (sub->is_Start() || sub->is_Root()) {
 612     return DomResult::NotDominate;
 613   }
 614 
 615   {
 616     // Check all control edges of 'dom'.
 617 
 618     ResourceMark rm;
 619     Node_List nlist;
 620     Unique_Node_List dom_list;
 621 
 622     dom_list.push(dom);
 623     bool only_dominating_controls = false;
 624 
 625     for (uint next = 0; next < dom_list.size(); next++) {
 626       Node* n = dom_list.at(next);
 627       if (n == orig_sub) {
 628         return DomResult::NotDominate; // One of dom's inputs dominated by sub.
 629       }
 630       if (!n->is_CFG() && n->pinned()) {
 631         // Check only own control edge for pinned non-control nodes.
 632         n = n->find_exact_control(n->in(0));
 633         if (n == nullptr || n->is_top()) {
 634           return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 635         }
 636         assert(n->is_CFG(), "expecting control");
 637         dom_list.push(n);
 638       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 639         only_dominating_controls = true;
 640       } else if (n->is_CFG()) {
 641         DomResult dom_result = n->dominates(sub, nlist);
 642         if (dom_result == DomResult::Dominate) {
 643           only_dominating_controls = true;
 644         } else {
 645           return dom_result;
 646         }
 647       } else {
 648         // First, own control edge.
 649         Node* m = n->find_exact_control(n->in(0));
 650         if (m != nullptr) {
 651           if (m->is_top()) {
 652             return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 653           }
 654           dom_list.push(m);
 655         }
 656         // Now, the rest of edges.
 657         uint cnt = n->req();
 658         for (uint i = 1; i < cnt; i++) {
 659           m = n->find_exact_control(n->in(i));
 660           if (m == nullptr || m->is_top()) {
 661             continue;
 662           }
 663           dom_list.push(m);
 664         }
 665       }
 666     }
 667     return only_dominating_controls ? DomResult::Dominate : DomResult::NotDominate;
 668   }
 669 }
 670 
 671 //---------------------detect_ptr_independence---------------------------------
 672 // Used by MemNode::find_previous_store to prove that two base
 673 // pointers are never equal.
 674 // The pointers are accompanied by their associated allocations,
 675 // if any, which have been previously discovered by the caller.
 676 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 677                                       Node* p2, AllocateNode* a2,
 678                                       PhaseTransform* phase) {
 679   // Attempt to prove that these two pointers cannot be aliased.
 680   // They may both manifestly be allocations, and they should differ.
 681   // Or, if they are not both allocations, they can be distinct constants.
 682   // Otherwise, one is an allocation and the other a pre-existing value.
 683   if (a1 == nullptr && a2 == nullptr) {           // neither an allocation
 684     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 685   } else if (a1 != nullptr && a2 != nullptr) {    // both allocations
 686     return (a1 != a2);
 687   } else if (a1 != nullptr) {                  // one allocation a1
 688     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 689     return all_controls_dominate(p2, a1);
 690   } else { //(a2 != null)                   // one allocation a2
 691     return all_controls_dominate(p1, a2);
 692   }
 693   return false;
 694 }
 695 
 696 
 697 // Find an arraycopy ac that produces the memory state represented by parameter mem.
 698 // Return ac if
 699 // (a) can_see_stored_value=true  and ac must have set the value for this load or if
 700 // (b) can_see_stored_value=false and ac could have set the value for this load or if
 701 // (c) can_see_stored_value=false and ac cannot have set the value for this load.
 702 // In case (c) change the parameter mem to the memory input of ac to skip it
 703 // when searching stored value.
 704 // Otherwise return null.
 705 Node* LoadNode::find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 706   ArrayCopyNode* ac = find_array_copy_clone(ld_alloc, mem);
 707   if (ac != nullptr) {
 708     Node* ld_addp = in(MemNode::Address);
 709     Node* src = ac->in(ArrayCopyNode::Src);
 710     const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr();
 711 
 712     // This is a load from a cloned array. The corresponding arraycopy ac must
 713     // have set the value for the load and we can return ac but only if the load
 714     // is known to be within bounds. This is checked below.
 715     if (ary_t != nullptr && ld_addp->is_AddP()) {
 716       Node* ld_offs = ld_addp->in(AddPNode::Offset);
 717       BasicType ary_elem = ary_t->elem()->array_element_basic_type();
 718       jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 719       jlong elemsize = type2aelembytes(ary_elem);
 720 
 721       const TypeX*   ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 722       const TypeInt* sizetype  = ary_t->size();
 723 
 724       if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) {
 725         // The load is known to be within bounds. It receives its value from ac.
 726         return ac;
 727       }
 728       // The load is known to be out-of-bounds.
 729     }
 730     // The load could be out-of-bounds. It must not be hoisted but must remain
 731     // dependent on the runtime range check. This is achieved by returning null.
 732   } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) {
 733     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 734 
 735     if (ac->is_arraycopy_validated() ||
 736         ac->is_copyof_validated() ||
 737         ac->is_copyofrange_validated()) {
 738       Node* ld_addp = in(MemNode::Address);
 739       if (ld_addp->is_AddP()) {
 740         Node* ld_base = ld_addp->in(AddPNode::Address);
 741         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 742 
 743         Node* dest = ac->in(ArrayCopyNode::Dest);
 744 
 745         if (dest == ld_base) {
 746           const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 747           assert(!ld_offs_t->empty(), "dead reference should be checked already");
 748           // Take into account vector or unsafe access size
 749           jlong ld_size_in_bytes = (jlong)memory_size();
 750           jlong offset_hi = ld_offs_t->_hi + ld_size_in_bytes - 1;
 751           offset_hi = MIN2(offset_hi, (jlong)(TypeX::MAX->_hi)); // Take care for overflow in 32-bit VM
 752           if (ac->modifies(ld_offs_t->_lo, (intptr_t)offset_hi, phase, can_see_stored_value)) {
 753             return ac;
 754           }
 755           if (!can_see_stored_value) {
 756             mem = ac->in(TypeFunc::Memory);
 757             return ac;
 758           }
 759         }
 760       }
 761     }
 762   }
 763   return nullptr;
 764 }
 765 
 766 ArrayCopyNode* MemNode::find_array_copy_clone(Node* ld_alloc, Node* mem) const {
 767   if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 768                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 769     if (ld_alloc != nullptr) {
 770       // Check if there is an array copy for a clone
 771       Node* mb = mem->in(0);
 772       ArrayCopyNode* ac = nullptr;
 773       if (mb->in(0) != nullptr && mb->in(0)->is_Proj() &&
 774           mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) {
 775         ac = mb->in(0)->in(0)->as_ArrayCopy();
 776       } else {
 777         // Step over GC barrier when ReduceInitialCardMarks is disabled
 778         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 779         Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0));
 780 
 781         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
 782           ac = control_proj_ac->in(0)->as_ArrayCopy();
 783         }
 784       }
 785 
 786       if (ac != nullptr && ac->is_clonebasic()) {
 787         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest));
 788         if (alloc != nullptr && alloc == ld_alloc) {
 789           return ac;
 790         }
 791       }
 792     }
 793   }
 794   return nullptr;
 795 }
 796 
 797 // The logic for reordering loads and stores uses four steps:
 798 // (a) Walk carefully past stores and initializations which we
 799 //     can prove are independent of this load.
 800 // (b) Observe that the next memory state makes an exact match
 801 //     with self (load or store), and locate the relevant store.
 802 // (c) Ensure that, if we were to wire self directly to the store,
 803 //     the optimizer would fold it up somehow.
 804 // (d) Do the rewiring, and return, depending on some other part of
 805 //     the optimizer to fold up the load.
 806 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 807 // specific to loads and stores, so they are handled by the callers.
 808 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 809 //
 810 Node* MemNode::find_previous_store(PhaseValues* phase) {
 811   Node*         ctrl   = in(MemNode::Control);
 812   Node*         adr    = in(MemNode::Address);
 813   intptr_t      offset = 0;
 814   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 815   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base);
 816 
 817   if (offset == Type::OffsetBot)
 818     return nullptr;            // cannot unalias unless there are precise offsets
 819 
 820   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 821   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 822 
 823   intptr_t size_in_bytes = memory_size();
 824 
 825   Node* mem = in(MemNode::Memory);   // start searching here...
 826 
 827   int cnt = 50;             // Cycle limiter
 828   for (;;) {                // While we can dance past unrelated stores...
 829     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 830 
 831     Node* prev = mem;
 832     if (mem->is_Store()) {
 833       Node* st_adr = mem->in(MemNode::Address);
 834       intptr_t st_offset = 0;
 835       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 836       if (st_base == nullptr)
 837         break;              // inscrutable pointer
 838 
 839       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 840       // We need the bases to be the equal in order for the offset check to make sense.
 841       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 842         break;
 843       }
 844 
 845       if (st_offset != offset && st_offset != Type::OffsetBot) {
 846         const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
 847         assert(mem->as_Store()->memory_size() <= MAX_STORE, "");
 848         if (st_offset >= offset + size_in_bytes ||
 849             st_offset <= offset - MAX_STORE ||
 850             st_offset <= offset - mem->as_Store()->memory_size()) {
 851           // Success:  The offsets are provably independent.
 852           // (You may ask, why not just test st_offset != offset and be done?
 853           // The answer is that stores of different sizes can co-exist
 854           // in the same sequence of RawMem effects.  We sometimes initialize
 855           // a whole 'tile' of array elements with a single jint or jlong.)
 856           mem = mem->in(MemNode::Memory);
 857           continue;           // (a) advance through independent store memory
 858         }
 859       }
 860       if (st_base != base &&
 861           detect_ptr_independence(base, alloc,
 862                                   st_base,
 863                                   AllocateNode::Ideal_allocation(st_base),
 864                                   phase)) {
 865         // Success:  The bases are provably independent.
 866         mem = mem->in(MemNode::Memory);
 867         continue;           // (a) advance through independent store memory
 868       }
 869 
 870       // (b) At this point, if the bases or offsets do not agree, we lose,
 871       // since we have not managed to prove 'this' and 'mem' independent.
 872       if (st_base == base && st_offset == offset) {
 873         return mem;         // let caller handle steps (c), (d)
 874       }
 875 
 876     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 877       InitializeNode* st_init = mem->in(0)->as_Initialize();
 878       AllocateNode*  st_alloc = st_init->allocation();
 879       if (st_alloc == nullptr) {
 880         break;              // something degenerated
 881       }
 882       bool known_identical = false;
 883       bool known_independent = false;
 884       if (alloc == st_alloc) {
 885         known_identical = true;
 886       } else if (alloc != nullptr) {
 887         known_independent = true;
 888       } else if (all_controls_dominate(this, st_alloc)) {
 889         known_independent = true;
 890       }
 891 
 892       if (known_independent) {
 893         // The bases are provably independent: Either they are
 894         // manifestly distinct allocations, or else the control
 895         // of this load dominates the store's allocation.
 896         int alias_idx = phase->C->get_alias_index(adr_type());
 897         if (alias_idx == Compile::AliasIdxRaw) {
 898           mem = st_alloc->in(TypeFunc::Memory);
 899         } else {
 900           mem = st_init->memory(alias_idx);
 901         }
 902         continue;           // (a) advance through independent store memory
 903       }
 904 
 905       // (b) at this point, if we are not looking at a store initializing
 906       // the same allocation we are loading from, we lose.
 907       if (known_identical) {
 908         // From caller, can_see_stored_value will consult find_captured_store.
 909         return mem;         // let caller handle steps (c), (d)
 910       }
 911 
 912     } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) {
 913       if (prev != mem) {
 914         // Found an arraycopy but it doesn't affect that load
 915         continue;
 916       }
 917       // Found an arraycopy that may affect that load
 918       return mem;
 919     } else if (addr_t != nullptr && addr_t->is_known_instance_field()) {
 920       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 921       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 922         // ArrayCopyNodes processed here as well.
 923         CallNode *call = mem->in(0)->as_Call();
 924         if (!call->may_modify(addr_t, phase)) {
 925           mem = call->in(TypeFunc::Memory);
 926           continue;         // (a) advance through independent call memory
 927         }
 928       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 929         ArrayCopyNode* ac = nullptr;
 930         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 931           break;
 932         }
 933         mem = mem->in(0)->in(TypeFunc::Memory);
 934         continue;           // (a) advance through independent MemBar memory
 935       } else if (mem->is_ClearArray()) {
 936         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 937           // (the call updated 'mem' value)
 938           continue;         // (a) advance through independent allocation memory
 939         } else {
 940           // Can not bypass initialization of the instance
 941           // we are looking for.
 942           return mem;
 943         }
 944       } else if (mem->is_MergeMem()) {
 945         int alias_idx = phase->C->get_alias_index(adr_type());
 946         mem = mem->as_MergeMem()->memory_at(alias_idx);
 947         continue;           // (a) advance through independent MergeMem memory
 948       }
 949     }
 950 
 951     // Unless there is an explicit 'continue', we must bail out here,
 952     // because 'mem' is an inscrutable memory state (e.g., a call).
 953     break;
 954   }
 955 
 956   return nullptr;              // bail out
 957 }
 958 
 959 //----------------------calculate_adr_type-------------------------------------
 960 // Helper function.  Notices when the given type of address hits top or bottom.
 961 // Also, asserts a cross-check of the type against the expected address type.
 962 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 963   if (t == Type::TOP)  return nullptr; // does not touch memory any more?
 964   #ifdef ASSERT
 965   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = nullptr;
 966   #endif
 967   const TypePtr* tp = t->isa_ptr();
 968   if (tp == nullptr) {
 969     assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 970     return TypePtr::BOTTOM;           // touches lots of memory
 971   } else {
 972     #ifdef ASSERT
 973     // %%%% [phh] We don't check the alias index if cross_check is
 974     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 975     if (cross_check != nullptr &&
 976         cross_check != TypePtr::BOTTOM &&
 977         cross_check != TypeRawPtr::BOTTOM) {
 978       // Recheck the alias index, to see if it has changed (due to a bug).
 979       Compile* C = Compile::current();
 980       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 981              "must stay in the original alias category");
 982       // The type of the address must be contained in the adr_type,
 983       // disregarding "null"-ness.
 984       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 985       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 986       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 987              "real address must not escape from expected memory type");
 988     }
 989     #endif
 990     return tp;
 991   }
 992 }
 993 
 994 uint8_t MemNode::barrier_data(const Node* n) {
 995   if (n->is_LoadStore()) {
 996     return n->as_LoadStore()->barrier_data();
 997   } else if (n->is_Mem()) {
 998     return n->as_Mem()->barrier_data();
 999   }
1000   return 0;
1001 }
1002 
1003 //=============================================================================
1004 // Should LoadNode::Ideal() attempt to remove control edges?
1005 bool LoadNode::can_remove_control() const {
1006   return !has_pinned_control_dependency();
1007 }
1008 uint LoadNode::size_of() const { return sizeof(*this); }
1009 bool LoadNode::cmp(const Node &n) const {
1010   LoadNode& load = (LoadNode &)n;
1011   return Type::equals(_type, load._type) &&
1012          _control_dependency == load._control_dependency &&
1013          _mo == load._mo;
1014 }
1015 const Type *LoadNode::bottom_type() const { return _type; }
1016 uint LoadNode::ideal_reg() const {
1017   return _type->ideal_reg();
1018 }
1019 
1020 #ifndef PRODUCT
1021 void LoadNode::dump_spec(outputStream *st) const {
1022   MemNode::dump_spec(st);
1023   if( !Verbose && !WizardMode ) {
1024     // standard dump does this in Verbose and WizardMode
1025     st->print(" #"); _type->dump_on(st);
1026   }
1027   if (!depends_only_on_test()) {
1028     st->print(" (does not depend only on test, ");
1029     if (control_dependency() == UnknownControl) {
1030       st->print("unknown control");
1031     } else if (control_dependency() == Pinned) {
1032       st->print("pinned");
1033     } else if (adr_type() == TypeRawPtr::BOTTOM) {
1034       st->print("raw access");
1035     } else {
1036       st->print("unknown reason");
1037     }
1038     st->print(")");
1039   }
1040 }
1041 #endif
1042 
1043 #ifdef ASSERT
1044 //----------------------------is_immutable_value-------------------------------
1045 // Helper function to allow a raw load without control edge for some cases
1046 bool LoadNode::is_immutable_value(Node* adr) {
1047   if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
1048       adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal) {
1049 
1050     jlong offset = adr->in(AddPNode::Offset)->find_intptr_t_con(-1);
1051     int offsets[] = {
1052       in_bytes(JavaThread::osthread_offset()),
1053       in_bytes(JavaThread::threadObj_offset()),
1054       in_bytes(JavaThread::vthread_offset()),
1055       in_bytes(JavaThread::scopedValueCache_offset()),
1056     };
1057 
1058     for (size_t i = 0; i < sizeof offsets / sizeof offsets[0]; i++) {
1059       if (offset == offsets[i]) {
1060         return true;
1061       }
1062     }
1063   }
1064 
1065   return false;
1066 }
1067 #endif
1068 
1069 //----------------------------LoadNode::make-----------------------------------
1070 // Polymorphic factory method:
1071 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo,
1072                      ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) {
1073   Compile* C = gvn.C;
1074 
1075   // sanity check the alias category against the created node type
1076   assert(!(adr_type->isa_oopptr() &&
1077            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
1078          "use LoadKlassNode instead");
1079   assert(!(adr_type->isa_aryptr() &&
1080            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
1081          "use LoadRangeNode instead");
1082   // Check control edge of raw loads
1083   assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
1084           // oop will be recorded in oop map if load crosses safepoint
1085           rt->isa_oopptr() || is_immutable_value(adr),
1086           "raw memory operations should have control edge");
1087   LoadNode* load = nullptr;
1088   switch (bt) {
1089   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
1090   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
1091   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
1092   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
1093   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
1094   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break;
1095   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
1096   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency, require_atomic_access); break;
1097   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
1098   case T_ARRAY:
1099   case T_OBJECT:
1100   case T_NARROWOOP:
1101 #ifdef _LP64
1102     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1103       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
1104     } else
1105 #endif
1106     {
1107       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
1108       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
1109     }
1110     break;
1111   default:
1112     assert(false, "unexpected basic type %s", type2name(bt));
1113     break;
1114   }
1115   assert(load != nullptr, "LoadNode should have been created");
1116   if (unaligned) {
1117     load->set_unaligned_access();
1118   }
1119   if (mismatched) {
1120     load->set_mismatched_access();
1121   }
1122   if (unsafe) {
1123     load->set_unsafe_access();
1124   }
1125   load->set_barrier_data(barrier_data);
1126   if (load->Opcode() == Op_LoadN) {
1127     Node* ld = gvn.transform(load);
1128     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
1129   }
1130 
1131   return load;
1132 }
1133 
1134 //------------------------------hash-------------------------------------------
1135 uint LoadNode::hash() const {
1136   // unroll addition of interesting fields
1137   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
1138 }
1139 
1140 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
1141   if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) {
1142     bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile();
1143     bool is_stable_ary = FoldStableValues &&
1144                          (tp != nullptr) && (tp->isa_aryptr() != nullptr) &&
1145                          tp->isa_aryptr()->is_stable();
1146 
1147     return (eliminate_boxing && non_volatile) || is_stable_ary || tp->is_inlinetypeptr();
1148   }
1149 
1150   return false;
1151 }
1152 
1153 LoadNode* LoadNode::pin_array_access_node() const {
1154   const TypePtr* adr_type = this->adr_type();
1155   if (adr_type != nullptr && adr_type->isa_aryptr()) {
1156     return clone_pinned();
1157   }
1158   return nullptr;
1159 }
1160 
1161 // Is the value loaded previously stored by an arraycopy? If so return
1162 // a load node that reads from the source array so we may be able to
1163 // optimize out the ArrayCopy node later.
1164 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
1165   Node* ld_adr = in(MemNode::Address);
1166   intptr_t ld_off = 0;
1167   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
1168   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
1169   if (ac != nullptr) {
1170     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
1171 
1172     Node* mem = ac->in(TypeFunc::Memory);
1173     Node* ctl = ac->in(0);
1174     Node* src = ac->in(ArrayCopyNode::Src);
1175 
1176     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
1177       return nullptr;
1178     }
1179 
1180     // load depends on the tests that validate the arraycopy
1181     LoadNode* ld = clone_pinned();
1182     Node* addp = in(MemNode::Address)->clone();
1183     if (ac->as_ArrayCopy()->is_clonebasic()) {
1184       assert(ld_alloc != nullptr, "need an alloc");
1185       assert(addp->is_AddP(), "address must be addp");
1186       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1187       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern");
1188       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern");
1189       addp->set_req(AddPNode::Base, src);
1190       addp->set_req(AddPNode::Address, src);
1191     } else {
1192       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
1193              ac->as_ArrayCopy()->is_copyof_validated() ||
1194              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
1195       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
1196       addp->set_req(AddPNode::Base, src);
1197       addp->set_req(AddPNode::Address, src);
1198 
1199       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
1200       BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
1201       if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
1202 
1203       uint shift  = ary_t->is_flat() ? ary_t->flat_log_elem_size() : exact_log2(type2aelembytes(ary_elem));
1204 
1205       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
1206 #ifdef _LP64
1207       diff = phase->transform(new ConvI2LNode(diff));
1208 #endif
1209       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
1210 
1211       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
1212       addp->set_req(AddPNode::Offset, offset);
1213     }
1214     addp = phase->transform(addp);
1215 #ifdef ASSERT
1216     const TypePtr* adr_type = phase->type(addp)->is_ptr();
1217     ld->_adr_type = adr_type;
1218 #endif
1219     ld->set_req(MemNode::Address, addp);
1220     ld->set_req(0, ctl);
1221     ld->set_req(MemNode::Memory, mem);
1222     return ld;
1223   }
1224   return nullptr;
1225 }
1226 
1227 static Node* see_through_inline_type(PhaseValues* phase, const MemNode* load, Node* base, int offset) {
1228   if (!load->is_mismatched_access() && base != nullptr && base->is_InlineType() && offset > oopDesc::klass_offset_in_bytes()) {
1229     InlineTypeNode* vt = base->as_InlineType();
1230     Node* value = vt->field_value_by_offset(offset, true);
1231     assert(value != nullptr, "must see some value");
1232     return value;
1233   }
1234 
1235   return nullptr;
1236 }
1237 
1238 //---------------------------can_see_stored_value------------------------------
1239 // This routine exists to make sure this set of tests is done the same
1240 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
1241 // will change the graph shape in a way which makes memory alive twice at the
1242 // same time (uses the Oracle model of aliasing), then some
1243 // LoadXNode::Identity will fold things back to the equivalence-class model
1244 // of aliasing.
1245 // This method may find an unencoded node instead of the corresponding encoded one.
1246 Node* MemNode::can_see_stored_value(Node* st, PhaseValues* phase) const {
1247   Node* ld_adr = in(MemNode::Address);
1248   intptr_t ld_off = 0;
1249   Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off);
1250   // Try to see through an InlineTypeNode
1251   // LoadN is special because the input is not compressed
1252   if (Opcode() != Op_LoadN) {
1253     Node* value = see_through_inline_type(phase, this, ld_base, ld_off);
1254     if (value != nullptr) {
1255       return value;
1256     }
1257   }
1258 
1259   Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base);
1260   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
1261   Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr;
1262   // This is more general than load from boxing objects.
1263   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
1264     uint alias_idx = atp->index();
1265     Node* result = nullptr;
1266     Node* current = st;
1267     // Skip through chains of MemBarNodes checking the MergeMems for
1268     // new states for the slice of this load.  Stop once any other
1269     // kind of node is encountered.  Loads from final memory can skip
1270     // through any kind of MemBar but normal loads shouldn't skip
1271     // through MemBarAcquire since the could allow them to move out of
1272     // a synchronized region. It is not safe to step over MemBarCPUOrder,
1273     // because alias info above them may be inaccurate (e.g., due to
1274     // mixed/mismatched unsafe accesses).
1275     bool is_final_mem = !atp->is_rewritable();
1276     while (current->is_Proj()) {
1277       int opc = current->in(0)->Opcode();
1278       if ((is_final_mem && (opc == Op_MemBarAcquire ||
1279                             opc == Op_MemBarAcquireLock ||
1280                             opc == Op_LoadFence)) ||
1281           opc == Op_MemBarRelease ||
1282           opc == Op_StoreFence ||
1283           opc == Op_MemBarReleaseLock ||
1284           opc == Op_MemBarStoreStore ||
1285           opc == Op_StoreStoreFence) {
1286         Node* mem = current->in(0)->in(TypeFunc::Memory);
1287         if (mem->is_MergeMem()) {
1288           MergeMemNode* merge = mem->as_MergeMem();
1289           Node* new_st = merge->memory_at(alias_idx);
1290           if (new_st == merge->base_memory()) {
1291             // Keep searching
1292             current = new_st;
1293             continue;
1294           }
1295           // Save the new memory state for the slice and fall through
1296           // to exit.
1297           result = new_st;
1298         }
1299       }
1300       break;
1301     }
1302     if (result != nullptr) {
1303       st = result;
1304     }
1305   }
1306 
1307   // Loop around twice in the case Load -> Initialize -> Store.
1308   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1309   for (int trip = 0; trip <= 1; trip++) {
1310 
1311     if (st->is_Store()) {
1312       Node* st_adr = st->in(MemNode::Address);
1313       if (st_adr != ld_adr) {
1314         // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers).
1315         intptr_t st_off = 0;
1316         Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off);
1317         if (ld_base == nullptr)                                return nullptr;
1318         if (st_base == nullptr)                                return nullptr;
1319         if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr;
1320         if (ld_off != st_off)                                  return nullptr;
1321         if (ld_off == Type::OffsetBot)                         return nullptr;
1322         // Same base, same offset.
1323         // Possible improvement for arrays: check index value instead of absolute offset.
1324 
1325         // At this point we have proven something like this setup:
1326         //   B = << base >>
1327         //   L =  LoadQ(AddP(Check/CastPP(B), #Off))
1328         //   S = StoreQ(AddP(             B , #Off), V)
1329         // (Actually, we haven't yet proven the Q's are the same.)
1330         // In other words, we are loading from a casted version of
1331         // the same pointer-and-offset that we stored to.
1332         // Casted version may carry a dependency and it is respected.
1333         // Thus, we are able to replace L by V.
1334       }
1335       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1336       if (store_Opcode() != st->Opcode()) {
1337         return nullptr;
1338       }
1339       // LoadVector/StoreVector needs additional check to ensure the types match.
1340       if (st->is_StoreVector()) {
1341         const TypeVect*  in_vt = st->as_StoreVector()->vect_type();
1342         const TypeVect* out_vt = is_Load() ? as_LoadVector()->vect_type() : as_StoreVector()->vect_type();
1343         if (in_vt != out_vt) {
1344           return nullptr;
1345         }
1346       }
1347       return st->in(MemNode::ValueIn);
1348     }
1349 
1350     // A load from a freshly-created object always returns zero.
1351     // (This can happen after LoadNode::Ideal resets the load's memory input
1352     // to find_captured_store, which returned InitializeNode::zero_memory.)
1353     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1354         (st->in(0) == ld_alloc) &&
1355         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1356       // return a zero value for the load's basic type
1357       // (This is one of the few places where a generic PhaseTransform
1358       // can create new nodes.  Think of it as lazily manifesting
1359       // virtually pre-existing constants.)
1360       Node* init_value = ld_alloc->in(AllocateNode::InitValue);
1361       if (init_value != nullptr) {
1362         const TypeAryPtr* ld_adr_type = phase->type(ld_adr)->isa_aryptr();
1363         if (ld_adr_type == nullptr) {
1364           return nullptr;
1365         }
1366 
1367         // We know that this is not a flat array, the load should return the whole oop
1368         if (ld_adr_type->is_not_flat()) {
1369           return init_value;
1370         }
1371 
1372         // If this is a flat array, try to see through init_value
1373         if (init_value->is_EncodeP()) {
1374           init_value = init_value->in(1);
1375         }
1376         if (!init_value->is_InlineType() || ld_adr_type->field_offset() == Type::Offset::bottom) {
1377           return nullptr;
1378         }
1379 
1380         ciInlineKlass* vk = phase->type(init_value)->inline_klass();
1381         int field_offset_in_payload = ld_adr_type->field_offset().get();
1382         if (field_offset_in_payload == vk->null_marker_offset_in_payload()) {
1383           return init_value->as_InlineType()->get_null_marker();
1384         } else {
1385           return init_value->as_InlineType()->field_value_by_offset(field_offset_in_payload + vk->payload_offset(), true);
1386         }
1387       }
1388       assert(ld_alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null");
1389       if (value_basic_type() != T_VOID) {
1390         if (ReduceBulkZeroing || find_array_copy_clone(ld_alloc, in(MemNode::Memory)) == nullptr) {
1391           // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an
1392           // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done
1393           // by the ArrayCopyNode.
1394           return phase->zerocon(value_basic_type());
1395         }
1396       } else {
1397         // TODO: materialize all-zero vector constant
1398         assert(!isa_Load() || as_Load()->type()->isa_vect(), "");
1399       }
1400     }
1401 
1402     // A load from an initialization barrier can match a captured store.
1403     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1404       InitializeNode* init = st->in(0)->as_Initialize();
1405       AllocateNode* alloc = init->allocation();
1406       if ((alloc != nullptr) && (alloc == ld_alloc)) {
1407         // examine a captured store value
1408         st = init->find_captured_store(ld_off, memory_size(), phase);
1409         if (st != nullptr) {
1410           continue;             // take one more trip around
1411         }
1412       }
1413     }
1414 
1415     // Load boxed value from result of valueOf() call is input parameter.
1416     if (this->is_Load() && ld_adr->is_AddP() &&
1417         (tp != nullptr) && tp->is_ptr_to_boxed_value()) {
1418       intptr_t ignore = 0;
1419       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1420       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1421       base = bs->step_over_gc_barrier(base);
1422       if (base != nullptr && base->is_Proj() &&
1423           base->as_Proj()->_con == TypeFunc::Parms &&
1424           base->in(0)->is_CallStaticJava() &&
1425           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1426         return base->in(0)->in(TypeFunc::Parms);
1427       }
1428     }
1429 
1430     break;
1431   }
1432 
1433   return nullptr;
1434 }
1435 
1436 //----------------------is_instance_field_load_with_local_phi------------------
1437 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1438   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1439       in(Address)->is_AddP() ) {
1440     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1441     // Only known instances and immutable fields
1442     if( t_oop != nullptr &&
1443         (t_oop->is_ptr_to_strict_final_field() ||
1444          t_oop->is_known_instance_field()) &&
1445         t_oop->offset() != Type::OffsetBot &&
1446         t_oop->offset() != Type::OffsetTop) {
1447       return true;
1448     }
1449   }
1450   return false;
1451 }
1452 
1453 //------------------------------Identity---------------------------------------
1454 // Loads are identity if previous store is to same address
1455 Node* LoadNode::Identity(PhaseGVN* phase) {
1456   // If the previous store-maker is the right kind of Store, and the store is
1457   // to the same address, then we are equal to the value stored.
1458   Node* mem = in(Memory);
1459   Node* value = can_see_stored_value(mem, phase);
1460   if( value ) {
1461     // byte, short & char stores truncate naturally.
1462     // A load has to load the truncated value which requires
1463     // some sort of masking operation and that requires an
1464     // Ideal call instead of an Identity call.
1465     if (memory_size() < BytesPerInt) {
1466       // If the input to the store does not fit with the load's result type,
1467       // it must be truncated via an Ideal call.
1468       if (!phase->type(value)->higher_equal(phase->type(this)))
1469         return this;
1470     }
1471 
1472     if (phase->type(value)->isa_ptr() && phase->type(this)->isa_narrowoop()) {
1473       return this;
1474     }
1475     // (This works even when value is a Con, but LoadNode::Value
1476     // usually runs first, producing the singleton type of the Con.)
1477     if (!has_pinned_control_dependency() || value->is_Con()) {
1478       return value;
1479     } else {
1480       return this;
1481     }
1482   }
1483 
1484   if (has_pinned_control_dependency()) {
1485     return this;
1486   }
1487   // Search for an existing data phi which was generated before for the same
1488   // instance's field to avoid infinite generation of phis in a loop.
1489   Node *region = mem->in(0);
1490   if (is_instance_field_load_with_local_phi(region)) {
1491     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1492     int this_index  = phase->C->get_alias_index(addr_t);
1493     int this_offset = addr_t->offset();
1494     int this_iid    = addr_t->instance_id();
1495     if (!addr_t->is_known_instance() &&
1496          addr_t->is_ptr_to_strict_final_field()) {
1497       // Use _idx of address base (could be Phi node) for immutable fields in unknown instances
1498       intptr_t   ignore = 0;
1499       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1500       if (base == nullptr) {
1501         return this;
1502       }
1503       this_iid = base->_idx;
1504     }
1505     const Type* this_type = bottom_type();
1506     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1507       Node* phi = region->fast_out(i);
1508       if (phi->is_Phi() && phi != mem &&
1509           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1510         return phi;
1511       }
1512     }
1513   }
1514 
1515   return this;
1516 }
1517 
1518 // Construct an equivalent unsigned load.
1519 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1520   BasicType bt = T_ILLEGAL;
1521   const Type* rt = nullptr;
1522   switch (Opcode()) {
1523     case Op_LoadUB: return this;
1524     case Op_LoadUS: return this;
1525     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1526     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1527     default:
1528       assert(false, "no unsigned variant: %s", Name());
1529       return nullptr;
1530   }
1531   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1532                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1533                         false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access());
1534 }
1535 
1536 // Construct an equivalent signed load.
1537 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1538   BasicType bt = T_ILLEGAL;
1539   const Type* rt = nullptr;
1540   switch (Opcode()) {
1541     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1542     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1543     case Op_LoadB: // fall through
1544     case Op_LoadS: // fall through
1545     case Op_LoadI: // fall through
1546     case Op_LoadL: return this;
1547     default:
1548       assert(false, "no signed variant: %s", Name());
1549       return nullptr;
1550   }
1551   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1552                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1553                         false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access());
1554 }
1555 
1556 bool LoadNode::has_reinterpret_variant(const Type* rt) {
1557   BasicType bt = rt->basic_type();
1558   switch (Opcode()) {
1559     case Op_LoadI: return (bt == T_FLOAT);
1560     case Op_LoadL: return (bt == T_DOUBLE);
1561     case Op_LoadF: return (bt == T_INT);
1562     case Op_LoadD: return (bt == T_LONG);
1563 
1564     default: return false;
1565   }
1566 }
1567 
1568 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) {
1569   BasicType bt = rt->basic_type();
1570   assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt));
1571   bool is_mismatched = is_mismatched_access();
1572   const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1573   if (raw_type == nullptr) {
1574     is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1575   }
1576   const int op = Opcode();
1577   bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) ||
1578                                (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access());
1579   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1580                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1581                         require_atomic_access, is_unaligned_access(), is_mismatched);
1582 }
1583 
1584 bool StoreNode::has_reinterpret_variant(const Type* vt) {
1585   BasicType bt = vt->basic_type();
1586   switch (Opcode()) {
1587     case Op_StoreI: return (bt == T_FLOAT);
1588     case Op_StoreL: return (bt == T_DOUBLE);
1589     case Op_StoreF: return (bt == T_INT);
1590     case Op_StoreD: return (bt == T_LONG);
1591 
1592     default: return false;
1593   }
1594 }
1595 
1596 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) {
1597   BasicType bt = vt->basic_type();
1598   assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt));
1599   const int op = Opcode();
1600   bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) ||
1601                                (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access());
1602   StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1603                                   raw_adr_type(), val, bt, _mo, require_atomic_access);
1604 
1605   bool is_mismatched = is_mismatched_access();
1606   const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1607   if (raw_type == nullptr) {
1608     is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1609   }
1610   if (is_mismatched) {
1611     st->set_mismatched_access();
1612   }
1613   return st;
1614 }
1615 
1616 // We're loading from an object which has autobox behaviour.
1617 // If this object is result of a valueOf call we'll have a phi
1618 // merging a newly allocated object and a load from the cache.
1619 // We want to replace this load with the original incoming
1620 // argument to the valueOf call.
1621 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) {
1622   assert(igvn->C->eliminate_boxing(), "sanity");
1623   intptr_t ignore = 0;
1624   Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore);
1625   if ((base == nullptr) || base->is_Phi()) {
1626     // Push the loads from the phi that comes from valueOf up
1627     // through it to allow elimination of the loads and the recovery
1628     // of the original value. It is done in split_through_phi().
1629     return nullptr;
1630   } else if (base->is_Load() ||
1631              (base->is_DecodeN() && base->in(1)->is_Load())) {
1632     // Eliminate the load of boxed value for integer types from the cache
1633     // array by deriving the value from the index into the array.
1634     // Capture the offset of the load and then reverse the computation.
1635 
1636     // Get LoadN node which loads a boxing object from 'cache' array.
1637     if (base->is_DecodeN()) {
1638       base = base->in(1);
1639     }
1640     if (!base->in(Address)->is_AddP()) {
1641       return nullptr; // Complex address
1642     }
1643     AddPNode* address = base->in(Address)->as_AddP();
1644     Node* cache_base = address->in(AddPNode::Base);
1645     if ((cache_base != nullptr) && cache_base->is_DecodeN()) {
1646       // Get ConP node which is static 'cache' field.
1647       cache_base = cache_base->in(1);
1648     }
1649     if ((cache_base != nullptr) && cache_base->is_Con()) {
1650       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1651       if ((base_type != nullptr) && base_type->is_autobox_cache()) {
1652         Node* elements[4];
1653         int shift = exact_log2(type2aelembytes(T_OBJECT));
1654         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1655         if (count > 0 && elements[0]->is_Con() &&
1656             (count == 1 ||
1657              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1658                             elements[1]->in(2) == igvn->intcon(shift)))) {
1659           ciObjArray* array = base_type->const_oop()->as_obj_array();
1660           // Fetch the box object cache[0] at the base of the array and get its value
1661           ciInstance* box = array->obj_at(0)->as_instance();
1662           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1663           assert(ik->is_box_klass(), "sanity");
1664           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1665           if (ik->nof_nonstatic_fields() == 1) {
1666             // This should be true nonstatic_field_at requires calling
1667             // nof_nonstatic_fields so check it anyway
1668             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1669             BasicType bt = c.basic_type();
1670             // Only integer types have boxing cache.
1671             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1672                    bt == T_BYTE    || bt == T_SHORT ||
1673                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1674             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1675             if (cache_low != (int)cache_low) {
1676               return nullptr; // should not happen since cache is array indexed by value
1677             }
1678             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1679             if (offset != (int)offset) {
1680               return nullptr; // should not happen since cache is array indexed by value
1681             }
1682            // Add up all the offsets making of the address of the load
1683             Node* result = elements[0];
1684             for (int i = 1; i < count; i++) {
1685               result = igvn->transform(new AddXNode(result, elements[i]));
1686             }
1687             // Remove the constant offset from the address and then
1688             result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset)));
1689             // remove the scaling of the offset to recover the original index.
1690             if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) {
1691               // Peel the shift off directly but wrap it in a dummy node
1692               // since Ideal can't return existing nodes
1693               igvn->_worklist.push(result); // remove dead node later
1694               result = new RShiftXNode(result->in(1), igvn->intcon(0));
1695             } else if (result->is_Add() && result->in(2)->is_Con() &&
1696                        result->in(1)->Opcode() == Op_LShiftX &&
1697                        result->in(1)->in(2) == igvn->intcon(shift)) {
1698               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1699               // but for boxing cache access we know that X<<Z will not overflow
1700               // (there is range check) so we do this optimizatrion by hand here.
1701               igvn->_worklist.push(result); // remove dead node later
1702               Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift));
1703               result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con));
1704             } else {
1705               result = new RShiftXNode(result, igvn->intcon(shift));
1706             }
1707 #ifdef _LP64
1708             if (bt != T_LONG) {
1709               result = new ConvL2INode(igvn->transform(result));
1710             }
1711 #else
1712             if (bt == T_LONG) {
1713               result = new ConvI2LNode(igvn->transform(result));
1714             }
1715 #endif
1716             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1717             // Need to preserve unboxing load type if it is unsigned.
1718             switch(this->Opcode()) {
1719               case Op_LoadUB:
1720                 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF));
1721                 break;
1722               case Op_LoadUS:
1723                 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF));
1724                 break;
1725             }
1726             return result;
1727           }
1728         }
1729       }
1730     }
1731   }
1732   return nullptr;
1733 }
1734 
1735 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1736   Node* region = phi->in(0);
1737   if (region == nullptr) {
1738     return false; // Wait stable graph
1739   }
1740   uint cnt = phi->req();
1741   for (uint i = 1; i < cnt; i++) {
1742     Node* rc = region->in(i);
1743     if (rc == nullptr || phase->type(rc) == Type::TOP)
1744       return false; // Wait stable graph
1745     Node* in = phi->in(i);
1746     if (in == nullptr || phase->type(in) == Type::TOP)
1747       return false; // Wait stable graph
1748   }
1749   return true;
1750 }
1751 
1752 //------------------------------split_through_phi------------------------------
1753 // Check whether a call to 'split_through_phi' would split this load through the
1754 // Phi *base*. This method is essentially a copy of the validations performed
1755 // by 'split_through_phi'. The first use of this method was in EA code as part
1756 // of simplification of allocation merges.
1757 // Some differences from original method (split_through_phi):
1758 //  - If base->is_CastPP(): base = base->in(1)
1759 bool LoadNode::can_split_through_phi_base(PhaseGVN* phase) {
1760   Node* mem        = in(Memory);
1761   Node* address    = in(Address);
1762   intptr_t ignore  = 0;
1763   Node*    base    = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1764 
1765   if (base->is_CastPP()) {
1766     base = base->in(1);
1767   }
1768 
1769   if (req() > 3 || base == nullptr || !base->is_Phi()) {
1770     return false;
1771   }
1772 
1773   if (!mem->is_Phi()) {
1774     if (!MemNode::all_controls_dominate(mem, base->in(0))) {
1775       return false;
1776     }
1777   } else if (base->in(0) != mem->in(0)) {
1778     if (!MemNode::all_controls_dominate(mem, base->in(0))) {
1779       return false;
1780     }
1781   }
1782 
1783   return true;
1784 }
1785 
1786 //------------------------------split_through_phi------------------------------
1787 // Split instance or boxed field load through Phi.
1788 Node* LoadNode::split_through_phi(PhaseGVN* phase, bool ignore_missing_instance_id) {
1789   if (req() > 3) {
1790     assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs");
1791     // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account
1792     return nullptr;
1793   }
1794   Node* mem     = in(Memory);
1795   Node* address = in(Address);
1796   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1797 
1798   assert((t_oop != nullptr) &&
1799          (ignore_missing_instance_id ||
1800           t_oop->is_known_instance_field() ||
1801           t_oop->is_ptr_to_boxed_value()), "invalid conditions");
1802 
1803   Compile* C = phase->C;
1804   intptr_t ignore = 0;
1805   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1806   bool base_is_phi = (base != nullptr) && base->is_Phi();
1807   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1808                            (base != nullptr) && (base == address->in(AddPNode::Base)) &&
1809                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1810 
1811   if (!((mem->is_Phi() || base_is_phi) &&
1812         (ignore_missing_instance_id || load_boxed_values || t_oop->is_known_instance_field()))) {
1813     return nullptr; // Neither memory or base are Phi
1814   }
1815 
1816   if (mem->is_Phi()) {
1817     if (!stable_phi(mem->as_Phi(), phase)) {
1818       return nullptr; // Wait stable graph
1819     }
1820     uint cnt = mem->req();
1821     // Check for loop invariant memory.
1822     if (cnt == 3) {
1823       for (uint i = 1; i < cnt; i++) {
1824         Node* in = mem->in(i);
1825         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1826         if (m == mem) {
1827           if (i == 1) {
1828             // if the first edge was a loop, check second edge too.
1829             // If both are replaceable - we are in an infinite loop
1830             Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase);
1831             if (n == mem) {
1832               break;
1833             }
1834           }
1835           set_req(Memory, mem->in(cnt - i));
1836           return this; // made change
1837         }
1838       }
1839     }
1840   }
1841   if (base_is_phi) {
1842     if (!stable_phi(base->as_Phi(), phase)) {
1843       return nullptr; // Wait stable graph
1844     }
1845     uint cnt = base->req();
1846     // Check for loop invariant memory.
1847     if (cnt == 3) {
1848       for (uint i = 1; i < cnt; i++) {
1849         if (base->in(i) == base) {
1850           return nullptr; // Wait stable graph
1851         }
1852       }
1853     }
1854   }
1855 
1856   // Split through Phi (see original code in loopopts.cpp).
1857   assert(ignore_missing_instance_id || C->have_alias_type(t_oop), "instance should have alias type");
1858 
1859   // Do nothing here if Identity will find a value
1860   // (to avoid infinite chain of value phis generation).
1861   if (this != Identity(phase)) {
1862     return nullptr;
1863   }
1864 
1865   // Select Region to split through.
1866   Node* region;
1867   DomResult dom_result = DomResult::Dominate;
1868   if (!base_is_phi) {
1869     assert(mem->is_Phi(), "sanity");
1870     region = mem->in(0);
1871     // Skip if the region dominates some control edge of the address.
1872     // We will check `dom_result` later.
1873     dom_result = MemNode::maybe_all_controls_dominate(address, region);
1874   } else if (!mem->is_Phi()) {
1875     assert(base_is_phi, "sanity");
1876     region = base->in(0);
1877     // Skip if the region dominates some control edge of the memory.
1878     // We will check `dom_result` later.
1879     dom_result = MemNode::maybe_all_controls_dominate(mem, region);
1880   } else if (base->in(0) != mem->in(0)) {
1881     assert(base_is_phi && mem->is_Phi(), "sanity");
1882     dom_result = MemNode::maybe_all_controls_dominate(mem, base->in(0));
1883     if (dom_result == DomResult::Dominate) {
1884       region = base->in(0);
1885     } else {
1886       dom_result = MemNode::maybe_all_controls_dominate(address, mem->in(0));
1887       if (dom_result == DomResult::Dominate) {
1888         region = mem->in(0);
1889       }
1890       // Otherwise we encountered a complex graph.
1891     }
1892   } else {
1893     assert(base->in(0) == mem->in(0), "sanity");
1894     region = mem->in(0);
1895   }
1896 
1897   PhaseIterGVN* igvn = phase->is_IterGVN();
1898   if (dom_result != DomResult::Dominate) {
1899     if (dom_result == DomResult::EncounteredDeadCode) {
1900       // There is some dead code which eventually will be removed in IGVN.
1901       // Once this is the case, we get an unambiguous dominance result.
1902       // Push the node to the worklist again until the dead code is removed.
1903       igvn->_worklist.push(this);
1904     }
1905     return nullptr;
1906   }
1907 
1908   Node* phi = nullptr;
1909   const Type* this_type = this->bottom_type();
1910   if (t_oop != nullptr && (t_oop->is_known_instance_field() || load_boxed_values)) {
1911     int this_index = C->get_alias_index(t_oop);
1912     int this_offset = t_oop->offset();
1913     int this_iid = t_oop->is_known_instance_field() ? t_oop->instance_id() : base->_idx;
1914     phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset);
1915   } else if (ignore_missing_instance_id) {
1916     phi = new PhiNode(region, this_type, nullptr, mem->_idx);
1917   } else {
1918     return nullptr;
1919   }
1920 
1921   for (uint i = 1; i < region->req(); i++) {
1922     Node* x;
1923     Node* the_clone = nullptr;
1924     Node* in = region->in(i);
1925     if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl &&
1926         in != nullptr && in->is_OuterStripMinedLoop()) {
1927       // No node should go in the outer strip mined loop
1928       in = in->in(LoopNode::EntryControl);
1929     }
1930     if (in == nullptr || in == C->top()) {
1931       x = C->top();      // Dead path?  Use a dead data op
1932     } else {
1933       x = this->clone();        // Else clone up the data op
1934       the_clone = x;            // Remember for possible deletion.
1935       // Alter data node to use pre-phi inputs
1936       if (this->in(0) == region) {
1937         x->set_req(0, in);
1938       } else {
1939         x->set_req(0, nullptr);
1940       }
1941       if (mem->is_Phi() && (mem->in(0) == region)) {
1942         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1943       }
1944       if (address->is_Phi() && address->in(0) == region) {
1945         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1946       }
1947       if (base_is_phi && (base->in(0) == region)) {
1948         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1949         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1950         x->set_req(Address, adr_x);
1951       }
1952     }
1953     // Check for a 'win' on some paths
1954     const Type *t = x->Value(igvn);
1955 
1956     bool singleton = t->singleton();
1957 
1958     // See comments in PhaseIdealLoop::split_thru_phi().
1959     if (singleton && t == Type::TOP) {
1960       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1961     }
1962 
1963     if (singleton) {
1964       x = igvn->makecon(t);
1965     } else {
1966       // We now call Identity to try to simplify the cloned node.
1967       // Note that some Identity methods call phase->type(this).
1968       // Make sure that the type array is big enough for
1969       // our new node, even though we may throw the node away.
1970       // (This tweaking with igvn only works because x is a new node.)
1971       igvn->set_type(x, t);
1972       // If x is a TypeNode, capture any more-precise type permanently into Node
1973       // otherwise it will be not updated during igvn->transform since
1974       // igvn->type(x) is set to x->Value() already.
1975       x->raise_bottom_type(t);
1976       Node* y = x->Identity(igvn);
1977       if (y != x) {
1978         x = y;
1979       } else {
1980         y = igvn->hash_find_insert(x);
1981         if (y) {
1982           x = y;
1983         } else {
1984           // Else x is a new node we are keeping
1985           // We do not need register_new_node_with_optimizer
1986           // because set_type has already been called.
1987           igvn->_worklist.push(x);
1988         }
1989       }
1990     }
1991     if (x != the_clone && the_clone != nullptr) {
1992       igvn->remove_dead_node(the_clone);
1993     }
1994     phi->set_req(i, x);
1995   }
1996   // Record Phi
1997   igvn->register_new_node_with_optimizer(phi);
1998   return phi;
1999 }
2000 
2001 AllocateNode* LoadNode::is_new_object_mark_load() const {
2002   if (Opcode() == Op_LoadX) {
2003     Node* address = in(MemNode::Address);
2004     AllocateNode* alloc = AllocateNode::Ideal_allocation(address);
2005     Node* mem = in(MemNode::Memory);
2006     if (alloc != nullptr && mem->is_Proj() &&
2007         mem->in(0) != nullptr &&
2008         mem->in(0) == alloc->initialization() &&
2009         alloc->initialization()->proj_out_or_null(0) != nullptr) {
2010       return alloc;
2011     }
2012   }
2013   return nullptr;
2014 }
2015 
2016 
2017 //------------------------------Ideal------------------------------------------
2018 // If the load is from Field memory and the pointer is non-null, it might be possible to
2019 // zero out the control input.
2020 // If the offset is constant and the base is an object allocation,
2021 // try to hook me up to the exact initializing store.
2022 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2023   if (has_pinned_control_dependency()) {
2024     return nullptr;
2025   }
2026   Node* p = MemNode::Ideal_common(phase, can_reshape);
2027   if (p)  return (p == NodeSentinel) ? nullptr : p;
2028 
2029   Node* ctrl    = in(MemNode::Control);
2030   Node* address = in(MemNode::Address);
2031   bool progress = false;
2032 
2033   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
2034          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
2035 
2036   // Skip up past a SafePoint control.  Cannot do this for Stores because
2037   // pointer stores & cardmarks must stay on the same side of a SafePoint.
2038   if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint &&
2039       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
2040       !addr_mark &&
2041       (depends_only_on_test() || has_unknown_control_dependency())) {
2042     ctrl = ctrl->in(0);
2043     set_req(MemNode::Control,ctrl);
2044     progress = true;
2045   }
2046 
2047   intptr_t ignore = 0;
2048   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
2049   if (base != nullptr
2050       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
2051     // Check for useless control edge in some common special cases
2052     if (in(MemNode::Control) != nullptr
2053         // TODO 8350865 Can we re-enable this?
2054         && !(phase->type(address)->is_inlinetypeptr() && is_mismatched_access())
2055         && can_remove_control()
2056         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
2057         && all_controls_dominate(base, phase->C->start())) {
2058       // A method-invariant, non-null address (constant or 'this' argument).
2059       set_req(MemNode::Control, nullptr);
2060       progress = true;
2061     }
2062   }
2063 
2064   Node* mem = in(MemNode::Memory);
2065   const TypePtr *addr_t = phase->type(address)->isa_ptr();
2066 
2067   if (can_reshape && (addr_t != nullptr)) {
2068     // try to optimize our memory input
2069     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
2070     if (opt_mem != mem) {
2071       set_req_X(MemNode::Memory, opt_mem, phase);
2072       if (phase->type( opt_mem ) == Type::TOP) return nullptr;
2073       return this;
2074     }
2075     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
2076     if ((t_oop != nullptr) &&
2077         (t_oop->is_known_instance_field() ||
2078          t_oop->is_ptr_to_boxed_value())) {
2079       PhaseIterGVN *igvn = phase->is_IterGVN();
2080       assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true");
2081       if (igvn->_worklist.member(opt_mem)) {
2082         // Delay this transformation until memory Phi is processed.
2083         igvn->_worklist.push(this);
2084         return nullptr;
2085       }
2086       // Split instance field load through Phi.
2087       Node* result = split_through_phi(phase);
2088       if (result != nullptr) return result;
2089 
2090       if (t_oop->is_ptr_to_boxed_value()) {
2091         Node* result = eliminate_autobox(igvn);
2092         if (result != nullptr) return result;
2093       }
2094     }
2095   }
2096 
2097   // Is there a dominating load that loads the same value?  Leave
2098   // anything that is not a load of a field/array element (like
2099   // barriers etc.) alone
2100   if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) {
2101     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
2102       Node *use = mem->fast_out(i);
2103       if (use != this &&
2104           use->Opcode() == Opcode() &&
2105           use->in(0) != nullptr &&
2106           use->in(0) != in(0) &&
2107           use->in(Address) == in(Address)) {
2108         Node* ctl = in(0);
2109         for (int i = 0; i < 10 && ctl != nullptr; i++) {
2110           ctl = IfNode::up_one_dom(ctl);
2111           if (ctl == use->in(0)) {
2112             set_req(0, use->in(0));
2113             return this;
2114           }
2115         }
2116       }
2117     }
2118   }
2119 
2120   // Check for prior store with a different base or offset; make Load
2121   // independent.  Skip through any number of them.  Bail out if the stores
2122   // are in an endless dead cycle and report no progress.  This is a key
2123   // transform for Reflection.  However, if after skipping through the Stores
2124   // we can't then fold up against a prior store do NOT do the transform as
2125   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
2126   // array memory alive twice: once for the hoisted Load and again after the
2127   // bypassed Store.  This situation only works if EVERYBODY who does
2128   // anti-dependence work knows how to bypass.  I.e. we need all
2129   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
2130   // the alias index stuff.  So instead, peek through Stores and IFF we can
2131   // fold up, do so.
2132   Node* prev_mem = find_previous_store(phase);
2133   if (prev_mem != nullptr) {
2134     Node* value = can_see_arraycopy_value(prev_mem, phase);
2135     if (value != nullptr) {
2136       return value;
2137     }
2138   }
2139   // Steps (a), (b):  Walk past independent stores to find an exact match.
2140   if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) {
2141     // (c) See if we can fold up on the spot, but don't fold up here.
2142     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
2143     // just return a prior value, which is done by Identity calls.
2144     if (can_see_stored_value(prev_mem, phase)) {
2145       // Make ready for step (d):
2146       set_req_X(MemNode::Memory, prev_mem, phase);
2147       return this;
2148     }
2149   }
2150 
2151   if (progress) {
2152     return this;
2153   }
2154 
2155   if (!can_reshape) {
2156     phase->record_for_igvn(this);
2157   }
2158   return nullptr;
2159 }
2160 
2161 // Helper to recognize certain Klass fields which are invariant across
2162 // some group of array types (e.g., int[] or all T[] where T < Object).
2163 const Type*
2164 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
2165                                  ciKlass* klass) const {
2166   assert(!UseCompactObjectHeaders || tkls->offset() != in_bytes(Klass::prototype_header_offset()),
2167          "must not happen");
2168 
2169   if (tkls->isa_instklassptr() && tkls->offset() == in_bytes(InstanceKlass::access_flags_offset())) {
2170     // The field is InstanceKlass::_access_flags.  Return its (constant) value.
2171     assert(Opcode() == Op_LoadUS, "must load an unsigned short from _access_flags");
2172     ciInstanceKlass* iklass = tkls->is_instklassptr()->instance_klass();
2173     return TypeInt::make(iklass->access_flags());
2174   }
2175   if (tkls->offset() == in_bytes(Klass::misc_flags_offset())) {
2176     // The field is Klass::_misc_flags.  Return its (constant) value.
2177     assert(Opcode() == Op_LoadUB, "must load an unsigned byte from _misc_flags");
2178     return TypeInt::make(klass->misc_flags());
2179   }
2180   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
2181     // The field is Klass::_layout_helper.  Return its constant value if known.
2182     assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
2183     return TypeInt::make(klass->layout_helper());
2184   }
2185 
2186   // No match.
2187   return nullptr;
2188 }
2189 
2190 //------------------------------Value-----------------------------------------
2191 const Type* LoadNode::Value(PhaseGVN* phase) const {
2192   // Either input is TOP ==> the result is TOP
2193   Node* mem = in(MemNode::Memory);
2194   const Type *t1 = phase->type(mem);
2195   if (t1 == Type::TOP)  return Type::TOP;
2196   Node* adr = in(MemNode::Address);
2197   const TypePtr* tp = phase->type(adr)->isa_ptr();
2198   if (tp == nullptr || tp->empty())  return Type::TOP;
2199   int off = tp->offset();
2200   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
2201   Compile* C = phase->C;
2202 
2203   // If load can see a previous constant store, use that.
2204   Node* value = can_see_stored_value(mem, phase);
2205   if (value != nullptr && value->is_Con()) {
2206     if (phase->type(value)->isa_ptr() && _type->isa_narrowoop()) {
2207       return phase->type(value)->make_narrowoop();
2208     } else {
2209       assert(value->bottom_type()->higher_equal(_type), "sanity");
2210       return phase->type(value);
2211     }
2212   }
2213   // Try to guess loaded type from pointer type
2214   if (tp->isa_aryptr()) {
2215     const TypeAryPtr* ary = tp->is_aryptr();
2216     const Type* t = ary->elem();
2217 
2218     // Determine whether the reference is beyond the header or not, by comparing
2219     // the offset against the offset of the start of the array's data.
2220     // Different array types begin at slightly different offsets (12 vs. 16).
2221     // We choose T_BYTE as an example base type that is least restrictive
2222     // as to alignment, which will therefore produce the smallest
2223     // possible base offset.
2224     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
2225     const bool off_beyond_header = (off >= min_base_off);
2226 
2227     // Try to constant-fold a stable array element.
2228     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
2229       // Make sure the reference is not into the header and the offset is constant
2230       ciObject* aobj = ary->const_oop();
2231       if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
2232         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
2233         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
2234                                                                       stable_dimension,
2235                                                                       value_basic_type(), is_unsigned());
2236         if (con_type != nullptr) {
2237           return con_type;
2238         }
2239       }
2240     }
2241 
2242     // Don't do this for integer types. There is only potential profit if
2243     // the element type t is lower than _type; that is, for int types, if _type is
2244     // more restrictive than t.  This only happens here if one is short and the other
2245     // char (both 16 bits), and in those cases we've made an intentional decision
2246     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
2247     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
2248     //
2249     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
2250     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
2251     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
2252     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
2253     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
2254     // In fact, that could have been the original type of p1, and p1 could have
2255     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
2256     // expression (LShiftL quux 3) independently optimized to the constant 8.
2257     if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr)
2258         && (_type->isa_vect() == nullptr)
2259         && !ary->is_flat()
2260         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
2261       // t might actually be lower than _type, if _type is a unique
2262       // concrete subclass of abstract class t.
2263       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
2264         const Type* jt = t->join_speculative(_type);
2265         // In any case, do not allow the join, per se, to empty out the type.
2266         if (jt->empty() && !t->empty()) {
2267           // This can happen if a interface-typed array narrows to a class type.
2268           jt = _type;
2269         }
2270 #ifdef ASSERT
2271         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
2272           // The pointers in the autobox arrays are always non-null
2273           Node* base = adr->in(AddPNode::Base);
2274           if ((base != nullptr) && base->is_DecodeN()) {
2275             // Get LoadN node which loads IntegerCache.cache field
2276             base = base->in(1);
2277           }
2278           if ((base != nullptr) && base->is_Con()) {
2279             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
2280             if ((base_type != nullptr) && base_type->is_autobox_cache()) {
2281               // It could be narrow oop
2282               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
2283             }
2284           }
2285         }
2286 #endif
2287         return jt;
2288       }
2289     }
2290   } else if (tp->base() == Type::InstPtr) {
2291     assert( off != Type::OffsetBot ||
2292             // arrays can be cast to Objects
2293             !tp->isa_instptr() ||
2294             tp->is_instptr()->instance_klass()->is_java_lang_Object() ||
2295             // Default value load
2296             tp->is_instptr()->instance_klass() == ciEnv::current()->Class_klass() ||
2297             // unsafe field access may not have a constant offset
2298             C->has_unsafe_access(),
2299             "Field accesses must be precise" );
2300     // For oop loads, we expect the _type to be precise.
2301 
2302     const TypeInstPtr* tinst = tp->is_instptr();
2303     BasicType bt = value_basic_type();
2304 
2305     // Fold loads of the field map
2306     if (UseAltSubstitutabilityMethod && tinst != nullptr) {
2307       ciInstanceKlass* ik = tinst->instance_klass();
2308       int offset = tinst->offset();
2309       if (ik == phase->C->env()->Class_klass()) {
2310         ciType* t = tinst->java_mirror_type();
2311         if (t != nullptr && t->is_inlinetype() && offset == t->as_inline_klass()->field_map_offset()) {
2312           ciConstant map = t->as_inline_klass()->get_field_map();
2313           bool is_narrow_oop = (bt == T_NARROWOOP);
2314           return Type::make_from_constant(map, true, 1, is_narrow_oop);
2315         }
2316       }
2317     }
2318 
2319     // Optimize loads from constant fields.
2320     ciObject* const_oop = tinst->const_oop();
2321     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) {
2322       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), bt);
2323       if (con_type != nullptr) {
2324         return con_type;
2325       }
2326     }
2327   } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) {
2328     assert(off != Type::OffsetBot ||
2329             !tp->isa_instklassptr() ||
2330            // arrays can be cast to Objects
2331            tp->isa_instklassptr()->instance_klass()->is_java_lang_Object() ||
2332            // also allow array-loading from the primary supertype
2333            // array during subtype checks
2334            Opcode() == Op_LoadKlass,
2335            "Field accesses must be precise");
2336     // For klass/static loads, we expect the _type to be precise
2337   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
2338     /* With mirrors being an indirect in the Klass*
2339      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
2340      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
2341      *
2342      * So check the type and klass of the node before the LoadP.
2343      */
2344     Node* adr2 = adr->in(MemNode::Address);
2345     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2346     if (tkls != nullptr && !StressReflectiveCode) {
2347       if (tkls->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
2348         ciKlass* klass = tkls->exact_klass();
2349         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
2350         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
2351         return TypeInstPtr::make(klass->java_mirror());
2352       }
2353     }
2354   }
2355 
2356   const TypeKlassPtr *tkls = tp->isa_klassptr();
2357   if (tkls != nullptr) {
2358     if (tkls->is_loaded() && tkls->klass_is_exact()) {
2359       ciKlass* klass = tkls->exact_klass();
2360       // We are loading a field from a Klass metaobject whose identity
2361       // is known at compile time (the type is "exact" or "precise").
2362       // Check for fields we know are maintained as constants by the VM.
2363       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
2364         // The field is Klass::_super_check_offset.  Return its (constant) value.
2365         // (Folds up type checking code.)
2366         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
2367         return TypeInt::make(klass->super_check_offset());
2368       }
2369       if (klass->is_inlinetype() && tkls->offset() == in_bytes(InstanceKlass::acmp_maps_offset_offset())) {
2370         return TypeInt::make(klass->as_inline_klass()->field_map_offset());
2371       }
2372       if (klass->is_obj_array_klass() && tkls->offset() == in_bytes(ObjArrayKlass::next_refined_array_klass_offset())) {
2373         // Fold loads from LibraryCallKit::load_default_refined_array_klass
2374         return tkls->is_aryklassptr()->cast_to_refined_array_klass_ptr();
2375       }
2376       if (klass->is_array_klass() && tkls->offset() == in_bytes(ObjArrayKlass::properties_offset())) {
2377         assert(klass->is_type_array_klass() || tkls->is_aryklassptr()->is_refined_type(), "Must be a refined array klass pointer");
2378         return TypeInt::make(klass->as_array_klass()->properties());
2379       }
2380       if (klass->is_flat_array_klass() && tkls->offset() == in_bytes(FlatArrayKlass::layout_kind_offset())) {
2381         assert(Opcode() == Op_LoadI, "must load an int from _layout_kind");
2382         return TypeInt::make(static_cast<jint>(klass->as_flat_array_klass()->layout_kind()));
2383       }
2384       if (UseCompactObjectHeaders && tkls->offset() == in_bytes(Klass::prototype_header_offset())) {
2385         // The field is Klass::_prototype_header. Return its (constant) value.
2386         assert(this->Opcode() == Op_LoadX, "must load a proper type from _prototype_header");
2387         return TypeX::make(klass->prototype_header());
2388       }
2389       // Compute index into primary_supers array
2390       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2391       // Check for overflowing; use unsigned compare to handle the negative case.
2392       if( depth < ciKlass::primary_super_limit() ) {
2393         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2394         // (Folds up type checking code.)
2395         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2396         ciKlass *ss = klass->super_of_depth(depth);
2397         return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR;
2398       }
2399       const Type* aift = load_array_final_field(tkls, klass);
2400       if (aift != nullptr)  return aift;
2401     }
2402 
2403     // We can still check if we are loading from the primary_supers array at a
2404     // shallow enough depth.  Even though the klass is not exact, entries less
2405     // than or equal to its super depth are correct.
2406     if (tkls->is_loaded()) {
2407       ciKlass* klass = nullptr;
2408       if (tkls->isa_instklassptr()) {
2409         klass = tkls->is_instklassptr()->instance_klass();
2410       } else {
2411         int dims;
2412         const Type* inner = tkls->is_aryklassptr()->base_element_type(dims);
2413         if (inner->isa_instklassptr()) {
2414           klass = inner->is_instklassptr()->instance_klass();
2415           klass = ciObjArrayKlass::make(klass, dims);
2416         }
2417       }
2418       if (klass != nullptr) {
2419         // Compute index into primary_supers array
2420         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2421         // Check for overflowing; use unsigned compare to handle the negative case.
2422         if (depth < ciKlass::primary_super_limit() &&
2423             depth <= klass->super_depth()) { // allow self-depth checks to handle self-check case
2424           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2425           // (Folds up type checking code.)
2426           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2427           ciKlass *ss = klass->super_of_depth(depth);
2428           return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR;
2429         }
2430       }
2431     }
2432 
2433     // If the type is enough to determine that the thing is not an array,
2434     // we can give the layout_helper a positive interval type.
2435     // This will help short-circuit some reflective code.
2436     if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) &&
2437         tkls->isa_instklassptr() && // not directly typed as an array
2438         !tkls->is_instklassptr()->might_be_an_array() // not the supertype of all T[] (java.lang.Object) or has an interface that is not Serializable or Cloneable
2439     ) {
2440       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
2441       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
2442       // The key property of this type is that it folds up tests
2443       // for array-ness, since it proves that the layout_helper is positive.
2444       // Thus, a generic value like the basic object layout helper works fine.
2445       return TypeInt::make(min_size, max_jint, Type::WidenMin);
2446     }
2447   }
2448 
2449   // If we are loading from a freshly-allocated object/array, produce a zero.
2450   // Things to check:
2451   //   1. Load is beyond the header: headers are not guaranteed to be zero
2452   //   2. Load is not vectorized: vectors have no zero constant
2453   //   3. Load has no matching store, i.e. the input is the initial memory state
2454   const TypeOopPtr* tinst = tp->isa_oopptr();
2455   bool is_not_header = (tinst != nullptr) && tinst->is_known_instance_field();
2456   bool is_not_vect = (_type->isa_vect() == nullptr);
2457   if (is_not_header && is_not_vect) {
2458     Node* mem = in(MemNode::Memory);
2459     if (mem->is_Parm() && mem->in(0)->is_Start()) {
2460       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
2461       // TODO 8350865 Scalar replacement does not work well for flat arrays.
2462       // Escape Analysis assumes that arrays are always zeroed during allocation which is not true for null-free arrays
2463       // ConnectionGraph::split_unique_types will re-wire the memory of loads from such arrays around the allocation
2464       // TestArrays::test6 and test152 and TestBasicFunctionality::test20 are affected by this.
2465       if (tp->isa_aryptr() && tp->is_aryptr()->is_flat() && tp->is_aryptr()->is_null_free()) {
2466         intptr_t offset = 0;
2467         Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2468         AllocateNode* alloc = AllocateNode::Ideal_allocation(base);
2469         if (alloc != nullptr && alloc->is_AllocateArray() && alloc->in(AllocateNode::InitValue) != nullptr) {
2470           return _type;
2471         }
2472       }
2473       return Type::get_zero_type(_type->basic_type());
2474     }
2475   }
2476   if (!UseCompactObjectHeaders) {
2477     Node* alloc = is_new_object_mark_load();
2478     if (alloc != nullptr) {
2479       if (Arguments::is_valhalla_enabled()) {
2480         // The mark word may contain property bits (inline, flat, null-free)
2481         Node* klass_node = alloc->in(AllocateNode::KlassNode);
2482         const TypeKlassPtr* tkls = phase->type(klass_node)->isa_klassptr();
2483         if (tkls != nullptr && tkls->is_loaded() && tkls->klass_is_exact()) {
2484           return TypeX::make(tkls->exact_klass()->prototype_header());
2485         }
2486       } else {
2487         return TypeX::make(markWord::prototype().value());
2488       }
2489     }
2490   }
2491 
2492   return _type;
2493 }
2494 
2495 //------------------------------match_edge-------------------------------------
2496 // Do we Match on this edge index or not?  Match only the address.
2497 uint LoadNode::match_edge(uint idx) const {
2498   return idx == MemNode::Address;
2499 }
2500 
2501 //--------------------------LoadBNode::Ideal--------------------------------------
2502 //
2503 //  If the previous store is to the same address as this load,
2504 //  and the value stored was larger than a byte, replace this load
2505 //  with the value stored truncated to a byte.  If no truncation is
2506 //  needed, the replacement is done in LoadNode::Identity().
2507 //
2508 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2509   Node* mem = in(MemNode::Memory);
2510   Node* value = can_see_stored_value(mem,phase);
2511   if (value != nullptr) {
2512     Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false);
2513     if (narrow != value) {
2514       return narrow;
2515     }
2516   }
2517   // Identity call will handle the case where truncation is not needed.
2518   return LoadNode::Ideal(phase, can_reshape);
2519 }
2520 
2521 const Type* LoadBNode::Value(PhaseGVN* phase) const {
2522   Node* mem = in(MemNode::Memory);
2523   Node* value = can_see_stored_value(mem,phase);
2524   if (value != nullptr && value->is_Con() &&
2525       !value->bottom_type()->higher_equal(_type)) {
2526     // If the input to the store does not fit with the load's result type,
2527     // it must be truncated. We can't delay until Ideal call since
2528     // a singleton Value is needed for split_thru_phi optimization.
2529     int con = value->get_int();
2530     return TypeInt::make((con << 24) >> 24);
2531   }
2532   return LoadNode::Value(phase);
2533 }
2534 
2535 //--------------------------LoadUBNode::Ideal-------------------------------------
2536 //
2537 //  If the previous store is to the same address as this load,
2538 //  and the value stored was larger than a byte, replace this load
2539 //  with the value stored truncated to a byte.  If no truncation is
2540 //  needed, the replacement is done in LoadNode::Identity().
2541 //
2542 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2543   Node* mem = in(MemNode::Memory);
2544   Node* value = can_see_stored_value(mem, phase);
2545   if (value != nullptr) {
2546     Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false);
2547     if (narrow != value) {
2548       return narrow;
2549     }
2550   }
2551   // Identity call will handle the case where truncation is not needed.
2552   return LoadNode::Ideal(phase, can_reshape);
2553 }
2554 
2555 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2556   Node* mem = in(MemNode::Memory);
2557   Node* value = can_see_stored_value(mem,phase);
2558   if (value != nullptr && value->is_Con() &&
2559       !value->bottom_type()->higher_equal(_type)) {
2560     // If the input to the store does not fit with the load's result type,
2561     // it must be truncated. We can't delay until Ideal call since
2562     // a singleton Value is needed for split_thru_phi optimization.
2563     int con = value->get_int();
2564     return TypeInt::make(con & 0xFF);
2565   }
2566   return LoadNode::Value(phase);
2567 }
2568 
2569 //--------------------------LoadUSNode::Ideal-------------------------------------
2570 //
2571 //  If the previous store is to the same address as this load,
2572 //  and the value stored was larger than a char, replace this load
2573 //  with the value stored truncated to a char.  If no truncation is
2574 //  needed, the replacement is done in LoadNode::Identity().
2575 //
2576 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2577   Node* mem = in(MemNode::Memory);
2578   Node* value = can_see_stored_value(mem,phase);
2579   if (value != nullptr) {
2580     Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false);
2581     if (narrow != value) {
2582       return narrow;
2583     }
2584   }
2585   // Identity call will handle the case where truncation is not needed.
2586   return LoadNode::Ideal(phase, can_reshape);
2587 }
2588 
2589 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2590   Node* mem = in(MemNode::Memory);
2591   Node* value = can_see_stored_value(mem,phase);
2592   if (value != nullptr && value->is_Con() &&
2593       !value->bottom_type()->higher_equal(_type)) {
2594     // If the input to the store does not fit with the load's result type,
2595     // it must be truncated. We can't delay until Ideal call since
2596     // a singleton Value is needed for split_thru_phi optimization.
2597     int con = value->get_int();
2598     return TypeInt::make(con & 0xFFFF);
2599   }
2600   return LoadNode::Value(phase);
2601 }
2602 
2603 //--------------------------LoadSNode::Ideal--------------------------------------
2604 //
2605 //  If the previous store is to the same address as this load,
2606 //  and the value stored was larger than a short, replace this load
2607 //  with the value stored truncated to a short.  If no truncation is
2608 //  needed, the replacement is done in LoadNode::Identity().
2609 //
2610 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2611   Node* mem = in(MemNode::Memory);
2612   Node* value = can_see_stored_value(mem,phase);
2613   if (value != nullptr) {
2614     Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false);
2615     if (narrow != value) {
2616       return narrow;
2617     }
2618   }
2619   // Identity call will handle the case where truncation is not needed.
2620   return LoadNode::Ideal(phase, can_reshape);
2621 }
2622 
2623 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2624   Node* mem = in(MemNode::Memory);
2625   Node* value = can_see_stored_value(mem,phase);
2626   if (value != nullptr && value->is_Con() &&
2627       !value->bottom_type()->higher_equal(_type)) {
2628     // If the input to the store does not fit with the load's result type,
2629     // it must be truncated. We can't delay until Ideal call since
2630     // a singleton Value is needed for split_thru_phi optimization.
2631     int con = value->get_int();
2632     return TypeInt::make((con << 16) >> 16);
2633   }
2634   return LoadNode::Value(phase);
2635 }
2636 
2637 Node* LoadNNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2638   // Loading from an InlineType, find the input and make an EncodeP
2639   Node* addr = in(Address);
2640   intptr_t offset;
2641   Node* base = AddPNode::Ideal_base_and_offset(addr, phase, offset);
2642   Node* value = see_through_inline_type(phase, this, base, offset);
2643   if (value != nullptr) {
2644     return new EncodePNode(value, type());
2645   }
2646 
2647   // Can see the corresponding value, may need to add an EncodeP
2648   value = can_see_stored_value(in(Memory), phase);
2649   if (value != nullptr && phase->type(value)->isa_ptr() && type()->isa_narrowoop()) {
2650     return new EncodePNode(value, type());
2651   }
2652 
2653   // Identity call will handle the case where EncodeP is unnecessary
2654   return LoadNode::Ideal(phase, can_reshape);
2655 }
2656 
2657 //=============================================================================
2658 //----------------------------LoadKlassNode::make------------------------------
2659 // Polymorphic factory method:
2660 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2661   // sanity check the alias category against the created node type
2662   const TypePtr* adr_type = adr->bottom_type()->isa_ptr();
2663   assert(adr_type != nullptr, "expecting TypeKlassPtr");
2664 #ifdef _LP64
2665   if (adr_type->is_ptr_to_narrowklass()) {
2666     assert(UseCompressedClassPointers, "no compressed klasses");
2667     Node* load_klass = gvn.transform(new LoadNKlassNode(mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2668     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2669   }
2670 #endif
2671   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2672   return new LoadKlassNode(mem, adr, at, tk, MemNode::unordered);
2673 }
2674 
2675 //------------------------------Value------------------------------------------
2676 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2677   return klass_value_common(phase);
2678 }
2679 
2680 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2681   // Either input is TOP ==> the result is TOP
2682   const Type *t1 = phase->type( in(MemNode::Memory) );
2683   if (t1 == Type::TOP)  return Type::TOP;
2684   Node *adr = in(MemNode::Address);
2685   const Type *t2 = phase->type( adr );
2686   if (t2 == Type::TOP)  return Type::TOP;
2687   const TypePtr *tp = t2->is_ptr();
2688   if (TypePtr::above_centerline(tp->ptr()) ||
2689       tp->ptr() == TypePtr::Null)  return Type::TOP;
2690 
2691   // Return a more precise klass, if possible
2692   const TypeInstPtr *tinst = tp->isa_instptr();
2693   if (tinst != nullptr) {
2694     ciInstanceKlass* ik = tinst->instance_klass();
2695     int offset = tinst->offset();
2696     if (ik == phase->C->env()->Class_klass()
2697         && (offset == java_lang_Class::klass_offset() ||
2698             offset == java_lang_Class::array_klass_offset())) {
2699       // We are loading a special hidden field from a Class mirror object,
2700       // the field which points to the VM's Klass metaobject.
2701       ciType* t = tinst->java_mirror_type();
2702       // java_mirror_type returns non-null for compile-time Class constants.
2703       if (t != nullptr) {
2704         // constant oop => constant klass
2705         if (offset == java_lang_Class::array_klass_offset()) {
2706           if (t->is_void()) {
2707             // We cannot create a void array.  Since void is a primitive type return null
2708             // klass.  Users of this result need to do a null check on the returned klass.
2709             return TypePtr::NULL_PTR;
2710           }
2711           return TypeKlassPtr::make(ciArrayKlass::make(t), Type::trust_interfaces);
2712         }
2713         if (!t->is_klass()) {
2714           // a primitive Class (e.g., int.class) has null for a klass field
2715           return TypePtr::NULL_PTR;
2716         }
2717         // Fold up the load of the hidden field
2718         return TypeKlassPtr::make(t->as_klass(), Type::trust_interfaces);
2719       }
2720       // non-constant mirror, so we can't tell what's going on
2721     }
2722     if (!tinst->is_loaded())
2723       return _type;             // Bail out if not loaded
2724     if (offset == oopDesc::klass_offset_in_bytes()) {
2725       return tinst->as_klass_type(true);
2726     }
2727   }
2728 
2729   // Check for loading klass from an array
2730   const TypeAryPtr* tary = tp->isa_aryptr();
2731   if (tary != nullptr &&
2732       tary->offset() == oopDesc::klass_offset_in_bytes()) {
2733     return tary->as_klass_type(true)->is_aryklassptr();
2734   }
2735 
2736   // Check for loading klass from an array klass
2737   const TypeKlassPtr *tkls = tp->isa_klassptr();
2738   if (tkls != nullptr && !StressReflectiveCode) {
2739     if (!tkls->is_loaded())
2740      return _type;             // Bail out if not loaded
2741     if (tkls->isa_aryklassptr() && tkls->is_aryklassptr()->elem()->isa_klassptr() &&
2742         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2743       // // Always returning precise element type is incorrect,
2744       // // e.g., element type could be object and array may contain strings
2745       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2746 
2747       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2748       // according to the element type's subclassing.
2749       return tkls->is_aryklassptr()->elem()->isa_klassptr()->cast_to_exactness(tkls->klass_is_exact());
2750     }
2751     if (tkls->isa_aryklassptr() != nullptr && tkls->klass_is_exact() &&
2752         !tkls->exact_klass()->is_type_array_klass() &&
2753         tkls->offset() == in_bytes(Klass::super_offset())) {
2754       // We are loading the super klass of a refined array klass, return the non-refined klass pointer
2755       assert(tkls->is_aryklassptr()->is_refined_type(), "Must be a refined array klass pointer");
2756       return tkls->is_aryklassptr()->with_offset(0)->cast_to_non_refined();
2757     }
2758     if (tkls->isa_instklassptr() != nullptr && tkls->klass_is_exact() &&
2759         tkls->offset() == in_bytes(Klass::super_offset())) {
2760       ciKlass* sup = tkls->is_instklassptr()->instance_klass()->super();
2761       // The field is Klass::_super.  Return its (constant) value.
2762       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2763       return sup ? TypeKlassPtr::make(sup, Type::trust_interfaces) : TypePtr::NULL_PTR;
2764     }
2765   }
2766 
2767   if (tkls != nullptr && !UseSecondarySupersCache
2768       && tkls->offset() == in_bytes(Klass::secondary_super_cache_offset()))  {
2769     // Treat Klass::_secondary_super_cache as a constant when the cache is disabled.
2770     return TypePtr::NULL_PTR;
2771   }
2772 
2773   // Bailout case
2774   return LoadNode::Value(phase);
2775 }
2776 
2777 //------------------------------Identity---------------------------------------
2778 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2779 // Also feed through the klass in Allocate(...klass...)._klass.
2780 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2781   return klass_identity_common(phase);
2782 }
2783 
2784 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2785   Node* x = LoadNode::Identity(phase);
2786   if (x != this)  return x;
2787 
2788   // Take apart the address into an oop and offset.
2789   // Return 'this' if we cannot.
2790   Node*    adr    = in(MemNode::Address);
2791   intptr_t offset = 0;
2792   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2793   if (base == nullptr)     return this;
2794   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2795   if (toop == nullptr)     return this;
2796 
2797   // Step over potential GC barrier for OopHandle resolve
2798   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2799   if (bs->is_gc_barrier_node(base)) {
2800     base = bs->step_over_gc_barrier(base);
2801   }
2802 
2803   // We can fetch the klass directly through an AllocateNode.
2804   // This works even if the klass is not constant (clone or newArray).
2805   if (offset == oopDesc::klass_offset_in_bytes()) {
2806     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2807     if (allocated_klass != nullptr) {
2808       return allocated_klass;
2809     }
2810   }
2811 
2812   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2813   // See inline_native_Class_query for occurrences of these patterns.
2814   // Java Example:  x.getClass().isAssignableFrom(y)
2815   //
2816   // This improves reflective code, often making the Class
2817   // mirror go completely dead.  (Current exception:  Class
2818   // mirrors may appear in debug info, but we could clean them out by
2819   // introducing a new debug info operator for Klass.java_mirror).
2820   //
2821   // This optimization does not apply to arrays because if k is not a
2822   // constant, it was obtained via load_klass which returns the VM type
2823   // and '.java_mirror.as_klass' should return the Java type instead.
2824 
2825   if (toop->isa_instptr() && toop->is_instptr()->instance_klass() == phase->C->env()->Class_klass()
2826       && offset == java_lang_Class::klass_offset()) {
2827     if (base->is_Load()) {
2828       Node* base2 = base->in(MemNode::Address);
2829       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2830         Node* adr2 = base2->in(MemNode::Address);
2831         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2832         if (tkls != nullptr && !tkls->empty()
2833             && ((tkls->isa_instklassptr() && !tkls->is_instklassptr()->might_be_an_array()))
2834             && adr2->is_AddP()) {
2835           int mirror_field = in_bytes(Klass::java_mirror_offset());
2836           if (tkls->offset() == mirror_field) {
2837             return adr2->in(AddPNode::Base);
2838           }
2839         }
2840       }
2841     }
2842   }
2843 
2844   return this;
2845 }
2846 
2847 LoadNode* LoadNode::clone_pinned() const {
2848   LoadNode* ld = clone()->as_Load();
2849   ld->_control_dependency = UnknownControl;
2850   return ld;
2851 }
2852 
2853 
2854 //------------------------------Value------------------------------------------
2855 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2856   const Type *t = klass_value_common(phase);
2857   if (t == Type::TOP)
2858     return t;
2859 
2860   return t->make_narrowklass();
2861 }
2862 
2863 //------------------------------Identity---------------------------------------
2864 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2865 // Also feed through the klass in Allocate(...klass...)._klass.
2866 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2867   Node *x = klass_identity_common(phase);
2868 
2869   const Type *t = phase->type( x );
2870   if( t == Type::TOP ) return x;
2871   if( t->isa_narrowklass()) return x;
2872   assert (!t->isa_narrowoop(), "no narrow oop here");
2873 
2874   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2875 }
2876 
2877 //------------------------------Value-----------------------------------------
2878 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2879   // Either input is TOP ==> the result is TOP
2880   const Type *t1 = phase->type( in(MemNode::Memory) );
2881   if( t1 == Type::TOP ) return Type::TOP;
2882   Node *adr = in(MemNode::Address);
2883   const Type *t2 = phase->type( adr );
2884   if( t2 == Type::TOP ) return Type::TOP;
2885   const TypePtr *tp = t2->is_ptr();
2886   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2887   const TypeAryPtr *tap = tp->isa_aryptr();
2888   if( !tap ) return _type;
2889   return tap->size();
2890 }
2891 
2892 //-------------------------------Ideal---------------------------------------
2893 // Feed through the length in AllocateArray(...length...)._length.
2894 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2895   Node* p = MemNode::Ideal_common(phase, can_reshape);
2896   if (p)  return (p == NodeSentinel) ? nullptr : p;
2897 
2898   // Take apart the address into an oop and offset.
2899   // Return 'this' if we cannot.
2900   Node*    adr    = in(MemNode::Address);
2901   intptr_t offset = 0;
2902   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2903   if (base == nullptr)     return nullptr;
2904   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2905   if (tary == nullptr)     return nullptr;
2906 
2907   // We can fetch the length directly through an AllocateArrayNode.
2908   // This works even if the length is not constant (clone or newArray).
2909   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2910     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base);
2911     if (alloc != nullptr) {
2912       Node* allocated_length = alloc->Ideal_length();
2913       Node* len = alloc->make_ideal_length(tary, phase);
2914       if (allocated_length != len) {
2915         // New CastII improves on this.
2916         return len;
2917       }
2918     }
2919   }
2920 
2921   return nullptr;
2922 }
2923 
2924 //------------------------------Identity---------------------------------------
2925 // Feed through the length in AllocateArray(...length...)._length.
2926 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2927   Node* x = LoadINode::Identity(phase);
2928   if (x != this)  return x;
2929 
2930   // Take apart the address into an oop and offset.
2931   // Return 'this' if we cannot.
2932   Node*    adr    = in(MemNode::Address);
2933   intptr_t offset = 0;
2934   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2935   if (base == nullptr)     return this;
2936   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2937   if (tary == nullptr)     return this;
2938 
2939   // We can fetch the length directly through an AllocateArrayNode.
2940   // This works even if the length is not constant (clone or newArray).
2941   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2942     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base);
2943     if (alloc != nullptr) {
2944       Node* allocated_length = alloc->Ideal_length();
2945       // Do not allow make_ideal_length to allocate a CastII node.
2946       Node* len = alloc->make_ideal_length(tary, phase, false);
2947       if (allocated_length == len) {
2948         // Return allocated_length only if it would not be improved by a CastII.
2949         return allocated_length;
2950       }
2951     }
2952   }
2953 
2954   return this;
2955 
2956 }
2957 
2958 //=============================================================================
2959 //---------------------------StoreNode::make-----------------------------------
2960 // Polymorphic factory method:
2961 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) {
2962   assert((mo == unordered || mo == release), "unexpected");
2963   Compile* C = gvn.C;
2964   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2965          ctl != nullptr, "raw memory operations should have control edge");
2966 
2967   switch (bt) {
2968   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2969   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2970   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2971   case T_CHAR:
2972   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2973   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access);
2974   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2975   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access);
2976   case T_METADATA:
2977   case T_ADDRESS:
2978   case T_OBJECT:
2979   case T_ARRAY:
2980 #ifdef _LP64
2981     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2982       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2983       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2984     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2985                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2986                 adr->bottom_type()->isa_rawptr())) {
2987       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2988       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2989     }
2990 #endif
2991     {
2992       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2993     }
2994   default:
2995     assert(false, "unexpected basic type %s", type2name(bt));
2996     return (StoreNode*)nullptr;
2997   }
2998 }
2999 
3000 //--------------------------bottom_type----------------------------------------
3001 const Type *StoreNode::bottom_type() const {
3002   return Type::MEMORY;
3003 }
3004 
3005 //------------------------------hash-------------------------------------------
3006 uint StoreNode::hash() const {
3007   // unroll addition of interesting fields
3008   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
3009 
3010   // Since they are not commoned, do not hash them:
3011   return NO_HASH;
3012 }
3013 
3014 // Link together multiple stores (B/S/C/I) into a longer one.
3015 //
3016 // Example: _store = StoreB[i+3]
3017 //
3018 //   RangeCheck[i+0]           RangeCheck[i+0]
3019 //   StoreB[i+0]
3020 //   RangeCheck[i+3]           RangeCheck[i+3]
3021 //   StoreB[i+1]         -->   pass:             fail:
3022 //   StoreB[i+2]               StoreI[i+0]       StoreB[i+0]
3023 //   StoreB[i+3]
3024 //
3025 // The 4 StoreB are merged into a single StoreI node. We have to be careful with RangeCheck[i+1]: before
3026 // the optimization, if this RangeCheck[i+1] fails, then we execute only StoreB[i+0], and then trap. After
3027 // the optimization, the new StoreI[i+0] is on the passing path of RangeCheck[i+3], and StoreB[i+0] on the
3028 // failing path.
3029 //
3030 // Note: For normal array stores, every store at first has a RangeCheck. But they can be removed with:
3031 //       - RCE (RangeCheck Elimination): the RangeChecks in the loop are hoisted out and before the loop,
3032 //                                       and possibly no RangeChecks remain between the stores.
3033 //       - RangeCheck smearing: the earlier RangeChecks are adjusted such that they cover later RangeChecks,
3034 //                              and those later RangeChecks can be removed. Example:
3035 //
3036 //                              RangeCheck[i+0]                         RangeCheck[i+0] <- before first store
3037 //                              StoreB[i+0]                             StoreB[i+0]     <- first store
3038 //                              RangeCheck[i+1]     --> smeared -->     RangeCheck[i+3] <- only RC between first and last store
3039 //                              StoreB[i+1]                             StoreB[i+1]     <- second store
3040 //                              RangeCheck[i+2]     --> removed
3041 //                              StoreB[i+2]                             StoreB[i+2]
3042 //                              RangeCheck[i+3]     --> removed
3043 //                              StoreB[i+3]                             StoreB[i+3]     <- last store
3044 //
3045 //                              Thus, it is a common pattern that between the first and last store in a chain
3046 //                              of adjacent stores there remains exactly one RangeCheck, located between the
3047 //                              first and the second store (e.g. RangeCheck[i+3]).
3048 //
3049 class MergePrimitiveStores : public StackObj {
3050 private:
3051   PhaseGVN* const _phase;
3052   StoreNode* const _store;
3053   // State machine with initial state Unknown
3054   // Allowed transitions:
3055   //   Unknown     -> Const
3056   //   Unknown     -> Platform
3057   //   Unknown     -> Reverse
3058   //   Unknown     -> NotAdjacent
3059   //   Const       -> Const
3060   //   Const       -> NotAdjacent
3061   //   Platform    -> Platform
3062   //   Platform    -> NotAdjacent
3063   //   Reverse     -> Reverse
3064   //   Reverse     -> NotAdjacent
3065   //   NotAdjacent -> NotAdjacent
3066   enum ValueOrder : uint8_t {
3067     Unknown,     // Initial state
3068     Const,       // Input values are const
3069     Platform,    // Platform order
3070     Reverse,     // Reverse platform order
3071     NotAdjacent  // Not adjacent
3072   };
3073   ValueOrder  _value_order;
3074 
3075   NOT_PRODUCT( const CHeapBitMap &_trace_tags; )
3076 
3077 public:
3078   MergePrimitiveStores(PhaseGVN* phase, StoreNode* store) :
3079     _phase(phase), _store(store), _value_order(ValueOrder::Unknown)
3080     NOT_PRODUCT( COMMA _trace_tags(Compile::current()->directive()->trace_merge_stores_tags()) )
3081     {}
3082 
3083   StoreNode* run();
3084 
3085 private:
3086   bool is_compatible_store(const StoreNode* other_store) const;
3087   bool is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const;
3088   bool is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const;
3089   static bool is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out, PhaseGVN* phase);
3090   enum CFGStatus { SuccessNoRangeCheck, SuccessWithRangeCheck, Failure };
3091   static CFGStatus cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store);
3092 
3093   class Status {
3094   private:
3095     StoreNode* _found_store;
3096     bool       _found_range_check;
3097 
3098     Status(StoreNode* found_store, bool found_range_check)
3099       : _found_store(found_store), _found_range_check(found_range_check) {}
3100 
3101   public:
3102     StoreNode* found_store() const { return _found_store; }
3103     bool found_range_check() const { return _found_range_check; }
3104     static Status make_failure() { return Status(nullptr, false); }
3105 
3106     static Status make(StoreNode* found_store, const CFGStatus cfg_status) {
3107       if (cfg_status == CFGStatus::Failure) {
3108         return Status::make_failure();
3109       }
3110       return Status(found_store, cfg_status == CFGStatus::SuccessWithRangeCheck);
3111     }
3112 
3113 #ifndef PRODUCT
3114     void print_on(outputStream* st) const {
3115       if (_found_store == nullptr) {
3116         st->print_cr("None");
3117       } else {
3118         st->print_cr("Found[%d %s, %s]", _found_store->_idx, _found_store->Name(),
3119                                          _found_range_check ? "RC" : "no-RC");
3120       }
3121     }
3122 #endif
3123   };
3124 
3125   enum ValueOrder find_adjacent_input_value_order(const Node* n1, const Node* n2, const int memory_size) const;
3126   Status find_adjacent_use_store(const StoreNode* def_store) const;
3127   Status find_adjacent_def_store(const StoreNode* use_store) const;
3128   Status find_use_store(const StoreNode* def_store) const;
3129   Status find_def_store(const StoreNode* use_store) const;
3130   Status find_use_store_unidirectional(const StoreNode* def_store) const;
3131   Status find_def_store_unidirectional(const StoreNode* use_store) const;
3132 
3133   void collect_merge_list(Node_List& merge_list) const;
3134   Node* make_merged_input_value(const Node_List& merge_list);
3135   StoreNode* make_merged_store(const Node_List& merge_list, Node* merged_input_value);
3136 
3137 #ifndef PRODUCT
3138   // Access to TraceMergeStores tags
3139   bool is_trace(TraceMergeStores::Tag tag) const {
3140     return _trace_tags.at(tag);
3141   }
3142 
3143   bool is_trace_basic() const {
3144     return is_trace(TraceMergeStores::Tag::BASIC);
3145   }
3146 
3147   bool is_trace_pointer_parsing() const {
3148     return is_trace(TraceMergeStores::Tag::POINTER_PARSING);
3149   }
3150 
3151   bool is_trace_pointer_aliasing() const {
3152     return is_trace(TraceMergeStores::Tag::POINTER_ALIASING);
3153   }
3154 
3155   bool is_trace_pointer_adjacency() const {
3156     return is_trace(TraceMergeStores::Tag::POINTER_ADJACENCY);
3157   }
3158 
3159   bool is_trace_success() const {
3160     return is_trace(TraceMergeStores::Tag::SUCCESS);
3161   }
3162 #endif
3163 
3164   NOT_PRODUCT( void trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const; )
3165 };
3166 
3167 StoreNode* MergePrimitiveStores::run() {
3168   // Check for B/S/C/I
3169   int opc = _store->Opcode();
3170   if (opc != Op_StoreB && opc != Op_StoreC && opc != Op_StoreI) {
3171     return nullptr;
3172   }
3173 
3174   NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] MergePrimitiveStores::run: "); _store->dump(); })
3175 
3176   // The _store must be the "last" store in a chain. If we find a use we could merge with
3177   // then that use or a store further down is the "last" store.
3178   Status status_use = find_adjacent_use_store(_store);
3179   NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect no use: "); status_use.print_on(tty); })
3180   if (status_use.found_store() != nullptr) {
3181     return nullptr;
3182   }
3183 
3184   // Check if we can merge with at least one def, so that we have at least 2 stores to merge.
3185   Status status_def = find_adjacent_def_store(_store);
3186   NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect def: "); status_def.print_on(tty); })
3187   Node* def_store = status_def.found_store();
3188   if (def_store == nullptr) {
3189     return nullptr;
3190   }
3191 
3192   // Initialize value order
3193   _value_order = find_adjacent_input_value_order(def_store->in(MemNode::ValueIn),
3194                                                  _store->in(MemNode::ValueIn),
3195                                                  _store->memory_size());
3196   assert(_value_order != ValueOrder::NotAdjacent && _value_order != ValueOrder::Unknown, "Order should be checked");
3197 
3198   ResourceMark rm;
3199   Node_List merge_list;
3200   collect_merge_list(merge_list);
3201 
3202   Node* merged_input_value = make_merged_input_value(merge_list);
3203   if (merged_input_value == nullptr) { return nullptr; }
3204 
3205   StoreNode* merged_store = make_merged_store(merge_list, merged_input_value);
3206 
3207   NOT_PRODUCT( if (is_trace_success()) { trace(merge_list, merged_input_value, merged_store); } )
3208 
3209   return merged_store;
3210 }
3211 
3212 // Check compatibility between _store and other_store.
3213 bool MergePrimitiveStores::is_compatible_store(const StoreNode* other_store) const {
3214   int opc = _store->Opcode();
3215   assert(opc == Op_StoreB || opc == Op_StoreC || opc == Op_StoreI, "precondition");
3216 
3217   if (other_store == nullptr ||
3218       _store->Opcode() != other_store->Opcode()) {
3219     return false;
3220   }
3221 
3222   return true;
3223 }
3224 
3225 bool MergePrimitiveStores::is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const {
3226   if (!is_adjacent_input_pair(def_store->in(MemNode::ValueIn),
3227                               use_store->in(MemNode::ValueIn),
3228                               def_store->memory_size())) {
3229     return false;
3230   }
3231 
3232   ResourceMark rm;
3233 #ifndef PRODUCT
3234   const TraceMemPointer trace(is_trace_pointer_parsing(),
3235                               is_trace_pointer_aliasing(),
3236                               is_trace_pointer_adjacency(),
3237                               true);
3238 #endif
3239   const MemPointer pointer_use(use_store NOT_PRODUCT(COMMA trace));
3240   const MemPointer pointer_def(def_store NOT_PRODUCT(COMMA trace));
3241   return pointer_def.is_adjacent_to_and_before(pointer_use);
3242 }
3243 
3244 // Check input values n1 and n2 can be merged and return the value order
3245 MergePrimitiveStores::ValueOrder MergePrimitiveStores::find_adjacent_input_value_order(const Node* n1, const Node* n2,
3246                                                                                        const int memory_size) const {
3247   // Pattern: [n1 = ConI, n2 = ConI]
3248   if (n1->Opcode() == Op_ConI && n2->Opcode() == Op_ConI) {
3249     return ValueOrder::Const;
3250   }
3251 
3252   Node const *base_n2;
3253   jint shift_n2;
3254   if (!is_con_RShift(n2, base_n2, shift_n2, _phase)) {
3255     return ValueOrder::NotAdjacent;
3256   }
3257   Node const *base_n1;
3258   jint shift_n1;
3259   if (!is_con_RShift(n1, base_n1, shift_n1, _phase)) {
3260     return ValueOrder::NotAdjacent;
3261   }
3262 
3263   int bits_per_store = memory_size * 8;
3264   if (base_n1 != base_n2 ||
3265       abs(shift_n1 - shift_n2) != bits_per_store ||
3266       shift_n1 % bits_per_store != 0) {
3267     // Values are not adjacent
3268     return ValueOrder::NotAdjacent;
3269   }
3270 
3271   // Detect value order
3272 #ifdef VM_LITTLE_ENDIAN
3273   return shift_n1 < shift_n2 ? ValueOrder::Platform     // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)]
3274                              : ValueOrder::Reverse;     // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift]
3275 #else
3276   return shift_n1 > shift_n2 ? ValueOrder::Platform     // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift]
3277                              : ValueOrder::Reverse;     // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)]
3278 #endif
3279 }
3280 
3281 bool MergePrimitiveStores::is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const {
3282   ValueOrder input_value_order = find_adjacent_input_value_order(n1, n2, memory_size);
3283 
3284   switch (input_value_order) {
3285     case ValueOrder::NotAdjacent:
3286       return false;
3287     case ValueOrder::Reverse:
3288       if (memory_size != 1 ||
3289           !Matcher::match_rule_supported(Op_ReverseBytesS) ||
3290           !Matcher::match_rule_supported(Op_ReverseBytesI) ||
3291           !Matcher::match_rule_supported(Op_ReverseBytesL)) {
3292         // ReverseBytes are not supported by platform
3293         return false;
3294       }
3295       // fall-through.
3296     case ValueOrder::Const:
3297     case ValueOrder::Platform:
3298       if (_value_order == ValueOrder::Unknown) {
3299         // Initial state is Unknown, and we find a valid input value order
3300         return true;
3301       }
3302       // The value order can not be changed
3303       return _value_order == input_value_order;
3304     case ValueOrder::Unknown:
3305     default:
3306       ShouldNotReachHere();
3307   }
3308   return false;
3309 }
3310 
3311 // Detect pattern: n = base_out >> shift_out
3312 bool MergePrimitiveStores::is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out, PhaseGVN* phase) {
3313   assert(n != nullptr, "precondition");
3314 
3315   int opc = n->Opcode();
3316   if (opc == Op_ConvL2I) {
3317     n = n->in(1);
3318     opc = n->Opcode();
3319   }
3320 
3321   if ((opc == Op_RShiftI ||
3322        opc == Op_RShiftL ||
3323        opc == Op_URShiftI ||
3324        opc == Op_URShiftL) &&
3325       n->in(2)->is_ConI()) {
3326     base_out = n->in(1);
3327     shift_out = n->in(2)->get_int();
3328     // The shift must be positive:
3329     return shift_out >= 0;
3330   }
3331 
3332   if (phase->type(n)->isa_int()  != nullptr ||
3333       phase->type(n)->isa_long() != nullptr) {
3334     // (base >> 0)
3335     base_out = n;
3336     shift_out = 0;
3337     return true;
3338   }
3339   return false;
3340 }
3341 
3342 // Check if there is nothing between the two stores, except optionally a RangeCheck leading to an uncommon trap.
3343 MergePrimitiveStores::CFGStatus MergePrimitiveStores::cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store) {
3344   assert(use_store->in(MemNode::Memory) == def_store, "use-def relationship");
3345 
3346   Node* ctrl_use = use_store->in(MemNode::Control);
3347   Node* ctrl_def = def_store->in(MemNode::Control);
3348   if (ctrl_use == nullptr || ctrl_def == nullptr) {
3349     return CFGStatus::Failure;
3350   }
3351 
3352   if (ctrl_use == ctrl_def) {
3353     // Same ctrl -> no RangeCheck in between.
3354     // Check: use_store must be the only use of def_store.
3355     if (def_store->outcnt() > 1) {
3356       return CFGStatus::Failure;
3357     }
3358     return CFGStatus::SuccessNoRangeCheck;
3359   }
3360 
3361   // Different ctrl -> could have RangeCheck in between.
3362   // Check: 1. def_store only has these uses: use_store and MergeMem for uncommon trap, and
3363   //        2. ctrl separated by RangeCheck.
3364   if (def_store->outcnt() != 2) {
3365     return CFGStatus::Failure; // Cannot have exactly these uses: use_store and MergeMem for uncommon trap.
3366   }
3367   int use_store_out_idx = def_store->raw_out(0) == use_store ? 0 : 1;
3368   Node* merge_mem = def_store->raw_out(1 - use_store_out_idx)->isa_MergeMem();
3369   if (merge_mem == nullptr ||
3370       merge_mem->outcnt() != 1) {
3371     return CFGStatus::Failure; // Does not have MergeMem for uncommon trap.
3372   }
3373   if (!ctrl_use->is_IfProj() ||
3374       !ctrl_use->in(0)->is_RangeCheck() ||
3375       ctrl_use->in(0)->outcnt() != 2) {
3376     return CFGStatus::Failure; // Not RangeCheck.
3377   }
3378   IfProjNode* other_proj = ctrl_use->as_IfProj()->other_if_proj();
3379   Node* trap = other_proj->is_uncommon_trap_proj(Deoptimization::Reason_range_check);
3380   if (trap != merge_mem->unique_out() ||
3381       ctrl_use->in(0)->in(0) != ctrl_def) {
3382     return CFGStatus::Failure; // Not RangeCheck with merge_mem leading to uncommon trap.
3383   }
3384 
3385   return CFGStatus::SuccessWithRangeCheck;
3386 }
3387 
3388 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_use_store(const StoreNode* def_store) const {
3389   Status status_use = find_use_store(def_store);
3390   StoreNode* use_store = status_use.found_store();
3391   if (use_store != nullptr && !is_adjacent_pair(use_store, def_store)) {
3392     return Status::make_failure();
3393   }
3394   return status_use;
3395 }
3396 
3397 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_def_store(const StoreNode* use_store) const {
3398   Status status_def = find_def_store(use_store);
3399   StoreNode* def_store = status_def.found_store();
3400   if (def_store != nullptr && !is_adjacent_pair(use_store, def_store)) {
3401     return Status::make_failure();
3402   }
3403   return status_def;
3404 }
3405 
3406 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store(const StoreNode* def_store) const {
3407   Status status_use = find_use_store_unidirectional(def_store);
3408 
3409 #ifdef ASSERT
3410   StoreNode* use_store = status_use.found_store();
3411   if (use_store != nullptr) {
3412     Status status_def = find_def_store_unidirectional(use_store);
3413     assert(status_def.found_store() == def_store &&
3414            status_def.found_range_check() == status_use.found_range_check(),
3415            "find_use_store and find_def_store must be symmetric");
3416   }
3417 #endif
3418 
3419   return status_use;
3420 }
3421 
3422 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store(const StoreNode* use_store) const {
3423   Status status_def = find_def_store_unidirectional(use_store);
3424 
3425 #ifdef ASSERT
3426   StoreNode* def_store = status_def.found_store();
3427   if (def_store != nullptr) {
3428     Status status_use = find_use_store_unidirectional(def_store);
3429     assert(status_use.found_store() == use_store &&
3430            status_use.found_range_check() == status_def.found_range_check(),
3431            "find_use_store and find_def_store must be symmetric");
3432   }
3433 #endif
3434 
3435   return status_def;
3436 }
3437 
3438 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store_unidirectional(const StoreNode* def_store) const {
3439   assert(is_compatible_store(def_store), "precondition: must be compatible with _store");
3440 
3441   for (DUIterator_Fast imax, i = def_store->fast_outs(imax); i < imax; i++) {
3442     StoreNode* use_store = def_store->fast_out(i)->isa_Store();
3443     if (is_compatible_store(use_store)) {
3444       return Status::make(use_store, cfg_status_for_pair(use_store, def_store));
3445     }
3446   }
3447 
3448   return Status::make_failure();
3449 }
3450 
3451 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store_unidirectional(const StoreNode* use_store) const {
3452   assert(is_compatible_store(use_store), "precondition: must be compatible with _store");
3453 
3454   StoreNode* def_store = use_store->in(MemNode::Memory)->isa_Store();
3455   if (!is_compatible_store(def_store)) {
3456     return Status::make_failure();
3457   }
3458 
3459   return Status::make(def_store, cfg_status_for_pair(use_store, def_store));
3460 }
3461 
3462 void MergePrimitiveStores::collect_merge_list(Node_List& merge_list) const {
3463   // The merged store can be at most 8 bytes.
3464   const uint merge_list_max_size = 8 / _store->memory_size();
3465   assert(merge_list_max_size >= 2 &&
3466          merge_list_max_size <= 8 &&
3467          is_power_of_2(merge_list_max_size),
3468          "must be 2, 4 or 8");
3469 
3470   // Traverse up the chain of adjacent def stores.
3471   StoreNode* current = _store;
3472   merge_list.push(current);
3473   while (current != nullptr && merge_list.size() < merge_list_max_size) {
3474     Status status = find_adjacent_def_store(current);
3475     NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] find def: "); status.print_on(tty); })
3476 
3477     current = status.found_store();
3478     if (current != nullptr) {
3479       merge_list.push(current);
3480 
3481       // We can have at most one RangeCheck.
3482       if (status.found_range_check()) {
3483         NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found RangeCheck, stop traversal."); })
3484         break;
3485       }
3486     }
3487   }
3488 
3489   NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found:"); merge_list.dump(); })
3490 
3491   // Truncate the merge_list to a power of 2.
3492   const uint pow2size = round_down_power_of_2(merge_list.size());
3493   assert(pow2size >= 2, "must be merging at least 2 stores");
3494   while (merge_list.size() > pow2size) { merge_list.pop(); }
3495 
3496   NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] truncated:"); merge_list.dump(); })
3497 }
3498 
3499 // Merge the input values of the smaller stores to a single larger input value.
3500 Node* MergePrimitiveStores::make_merged_input_value(const Node_List& merge_list) {
3501   int new_memory_size = _store->memory_size() * merge_list.size();
3502   Node* first = merge_list.at(merge_list.size()-1);
3503   Node* merged_input_value = nullptr;
3504   if (_store->in(MemNode::ValueIn)->Opcode() == Op_ConI) {
3505     assert(_value_order == ValueOrder::Const, "must match");
3506     // Pattern: [ConI, ConI, ...] -> new constant
3507     jlong con = 0;
3508     jlong bits_per_store = _store->memory_size() * 8;
3509     jlong mask = (((jlong)1) << bits_per_store) - 1;
3510     for (uint i = 0; i < merge_list.size(); i++) {
3511       jlong con_i = merge_list.at(i)->in(MemNode::ValueIn)->get_int();
3512 #ifdef VM_LITTLE_ENDIAN
3513       con = con << bits_per_store;
3514       con = con | (mask & con_i);
3515 #else // VM_LITTLE_ENDIAN
3516       con_i = (mask & con_i) << (i * bits_per_store);
3517       con = con | con_i;
3518 #endif // VM_LITTLE_ENDIAN
3519     }
3520     merged_input_value = _phase->longcon(con);
3521   } else {
3522     assert(_value_order == ValueOrder::Platform || _value_order == ValueOrder::Reverse, "must match");
3523     // Pattern: [base >> 24, base >> 16, base >> 8, base] -> base
3524     //             |                                  |
3525     //           _store                             first
3526     //
3527     Node* hi = _store->in(MemNode::ValueIn);
3528     Node* lo = first->in(MemNode::ValueIn);
3529 #ifndef VM_LITTLE_ENDIAN
3530     // `_store` and `first` are swapped in the diagram above
3531     swap(hi, lo);
3532 #endif // !VM_LITTLE_ENDIAN
3533     if (_value_order == ValueOrder::Reverse) {
3534       swap(hi, lo);
3535     }
3536     Node const* hi_base;
3537     jint hi_shift;
3538     merged_input_value = lo;
3539     bool is_true = is_con_RShift(hi, hi_base, hi_shift, _phase);
3540     assert(is_true, "must detect con RShift");
3541     if (merged_input_value != hi_base && merged_input_value->Opcode() == Op_ConvL2I) {
3542       // look through
3543       merged_input_value = merged_input_value->in(1);
3544     }
3545     if (merged_input_value != hi_base) {
3546       // merged_input_value is not the base
3547       return nullptr;
3548     }
3549   }
3550 
3551   if (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size <= 4) {
3552     // Example:
3553     //
3554     //   long base = ...;
3555     //   a[0] = (byte)(base >> 0);
3556     //   a[1] = (byte)(base >> 8);
3557     //
3558     merged_input_value = _phase->transform(new ConvL2INode(merged_input_value));
3559   }
3560 
3561   assert((_phase->type(merged_input_value)->isa_int() != nullptr && new_memory_size <= 4) ||
3562          (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size == 8),
3563          "merged_input_value is either int or long, and new_memory_size is small enough");
3564 
3565   if (_value_order == ValueOrder::Reverse) {
3566     assert(_store->memory_size() == 1, "only implemented for bytes");
3567     if (new_memory_size == 8) {
3568       merged_input_value = _phase->transform(new ReverseBytesLNode(merged_input_value));
3569     } else if (new_memory_size == 4) {
3570       merged_input_value = _phase->transform(new ReverseBytesINode(merged_input_value));
3571     } else {
3572       assert(new_memory_size == 2, "sanity check");
3573       merged_input_value = _phase->transform(new ReverseBytesSNode(merged_input_value));
3574     }
3575   }
3576   return merged_input_value;
3577 }
3578 
3579 //                                                                                                          //
3580 // first_ctrl    first_mem   first_adr                first_ctrl    first_mem         first_adr             //
3581 //  |                |           |                     |                |                 |                 //
3582 //  |                |           |                     |                +---------------+ |                 //
3583 //  |                |           |                     |                |               | |                 //
3584 //  |                | +---------+                     |                | +---------------+                 //
3585 //  |                | |                               |                | |             | |                 //
3586 //  +--------------+ | |  v1                           +------------------------------+ | |  v1             //
3587 //  |              | | |  |                            |                | |           | | |  |              //
3588 // RangeCheck     first_store                         RangeCheck        | |          first_store            //
3589 //  |                |  |                              |                | |                |                //
3590 // last_ctrl         |  +----> unc_trap               last_ctrl         | |                +----> unc_trap  //
3591 //  |                |                       ===>      |                | |                                 //
3592 //  +--------------+ | a2 v2                           |                | |                                 //
3593 //  |              | | |  |                            |                | |                                 //
3594 //  |             second_store                         |                | |                                 //
3595 //  |                |                                 |                | | [v1 v2   ...   vn]              //
3596 // ...              ...                                |                | |         |                       //
3597 //  |                |                                 |                | |         v                       //
3598 //  +--------------+ | an vn                           +--------------+ | | merged_input_value              //
3599 //                 | | |  |                                           | | |  |                              //
3600 //                last_store (= _store)                              merged_store                           //
3601 //                                                                                                          //
3602 StoreNode* MergePrimitiveStores::make_merged_store(const Node_List& merge_list, Node* merged_input_value) {
3603   Node* first_store = merge_list.at(merge_list.size()-1);
3604   Node* last_ctrl   = _store->in(MemNode::Control); // after (optional) RangeCheck
3605   Node* first_mem   = first_store->in(MemNode::Memory);
3606   Node* first_adr   = first_store->in(MemNode::Address);
3607 
3608   const TypePtr* new_adr_type = _store->adr_type();
3609 
3610   int new_memory_size = _store->memory_size() * merge_list.size();
3611   BasicType bt = T_ILLEGAL;
3612   switch (new_memory_size) {
3613     case 2: bt = T_SHORT; break;
3614     case 4: bt = T_INT;   break;
3615     case 8: bt = T_LONG;  break;
3616   }
3617 
3618   StoreNode* merged_store = StoreNode::make(*_phase, last_ctrl, first_mem, first_adr,
3619                                             new_adr_type, merged_input_value, bt, MemNode::unordered);
3620 
3621   // Marking the store mismatched is sufficient to prevent reordering, since array stores
3622   // are all on the same slice. Hence, we need no barriers.
3623   merged_store->set_mismatched_access();
3624 
3625   // Constants above may now also be be packed -> put candidate on worklist
3626   _phase->is_IterGVN()->_worklist.push(first_mem);
3627 
3628   return merged_store;
3629 }
3630 
3631 #ifndef PRODUCT
3632 void MergePrimitiveStores::trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const {
3633   stringStream ss;
3634   ss.print_cr("[TraceMergeStores]: Replace");
3635   for (int i = (int)merge_list.size() - 1; i >= 0; i--) {
3636     merge_list.at(i)->dump("\n", false, &ss);
3637   }
3638   ss.print_cr("[TraceMergeStores]: with");
3639   merged_input_value->dump("\n", false, &ss);
3640   merged_store->dump("\n", false, &ss);
3641   tty->print("%s", ss.as_string());
3642 }
3643 #endif
3644 
3645 //------------------------------Ideal------------------------------------------
3646 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
3647 // When a store immediately follows a relevant allocation/initialization,
3648 // try to capture it into the initialization, or hoist it above.
3649 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3650   Node* p = MemNode::Ideal_common(phase, can_reshape);
3651   if (p)  return (p == NodeSentinel) ? nullptr : p;
3652 
3653   Node* mem     = in(MemNode::Memory);
3654   Node* address = in(MemNode::Address);
3655   Node* value   = in(MemNode::ValueIn);
3656   // Back-to-back stores to same address?  Fold em up.  Generally
3657   // unsafe if I have intervening uses...
3658   if (phase->C->get_adr_type(phase->C->get_alias_index(adr_type())) != TypeAryPtr::INLINES) {
3659     Node* st = mem;
3660     // If Store 'st' has more than one use, we cannot fold 'st' away.
3661     // For example, 'st' might be the final state at a conditional
3662     // return.  Or, 'st' might be used by some node which is live at
3663     // the same time 'st' is live, which might be unschedulable.  So,
3664     // require exactly ONE user until such time as we clone 'mem' for
3665     // each of 'mem's uses (thus making the exactly-1-user-rule hold
3666     // true).
3667     while (st->is_Store() && st->outcnt() == 1) {
3668       // Looking at a dead closed cycle of memory?
3669       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
3670       assert(Opcode() == st->Opcode() ||
3671              st->Opcode() == Op_StoreVector ||
3672              Opcode() == Op_StoreVector ||
3673              st->Opcode() == Op_StoreVectorScatter ||
3674              Opcode() == Op_StoreVectorScatter ||
3675              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
3676              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
3677              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
3678              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreN) ||
3679              (st->adr_type()->isa_aryptr() && st->adr_type()->is_aryptr()->is_flat()) || // TODO 8343835
3680              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
3681              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
3682 
3683       if (st->in(MemNode::Address)->eqv_uncast(address) &&
3684           st->as_Store()->memory_size() <= this->memory_size()) {
3685         Node* use = st->raw_out(0);
3686         if (phase->is_IterGVN()) {
3687           phase->is_IterGVN()->rehash_node_delayed(use);
3688         }
3689         // It's OK to do this in the parser, since DU info is always accurate,
3690         // and the parser always refers to nodes via SafePointNode maps.
3691         use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase);
3692         return this;
3693       }
3694       st = st->in(MemNode::Memory);
3695     }
3696   }
3697 
3698 
3699   // Capture an unaliased, unconditional, simple store into an initializer.
3700   // Or, if it is independent of the allocation, hoist it above the allocation.
3701   if (ReduceFieldZeroing && /*can_reshape &&*/
3702       mem->is_Proj() && mem->in(0)->is_Initialize()) {
3703     InitializeNode* init = mem->in(0)->as_Initialize();
3704     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
3705     if (offset > 0) {
3706       Node* moved = init->capture_store(this, offset, phase, can_reshape);
3707       // If the InitializeNode captured me, it made a raw copy of me,
3708       // and I need to disappear.
3709       if (moved != nullptr) {
3710         // %%% hack to ensure that Ideal returns a new node:
3711         mem = MergeMemNode::make(mem);
3712         return mem;             // fold me away
3713       }
3714     }
3715   }
3716 
3717   // Fold reinterpret cast into memory operation:
3718   //    StoreX mem (MoveY2X v) => StoreY mem v
3719   if (value->is_Move()) {
3720     const Type* vt = value->in(1)->bottom_type();
3721     if (has_reinterpret_variant(vt)) {
3722       if (phase->C->post_loop_opts_phase()) {
3723         return convert_to_reinterpret_store(*phase, value->in(1), vt);
3724       } else {
3725         phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over
3726       }
3727     }
3728   }
3729 
3730   if (MergeStores && UseUnalignedAccesses) {
3731     if (phase->C->merge_stores_phase()) {
3732       MergePrimitiveStores merge(phase, this);
3733       Node* progress = merge.run();
3734       if (progress != nullptr) { return progress; }
3735     } else {
3736       // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
3737       // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
3738       // the stores, and we merge the wrong sequence of stores.
3739       // Example:
3740       //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
3741       // Apply MergeStores:
3742       //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI
3743       // Remove more RangeChecks:
3744       //   StoreI            [   StoreL  ]            StoreI
3745       // But now it would have been better to do this instead:
3746       //   [         StoreL       ] [       StoreL         ]
3747       phase->C->record_for_merge_stores_igvn(this);
3748     }
3749   }
3750 
3751   return nullptr;                  // No further progress
3752 }
3753 
3754 //------------------------------Value-----------------------------------------
3755 const Type* StoreNode::Value(PhaseGVN* phase) const {
3756   // Either input is TOP ==> the result is TOP
3757   const Type *t1 = phase->type( in(MemNode::Memory) );
3758   if( t1 == Type::TOP ) return Type::TOP;
3759   const Type *t2 = phase->type( in(MemNode::Address) );
3760   if( t2 == Type::TOP ) return Type::TOP;
3761   const Type *t3 = phase->type( in(MemNode::ValueIn) );
3762   if( t3 == Type::TOP ) return Type::TOP;
3763   return Type::MEMORY;
3764 }
3765 
3766 //------------------------------Identity---------------------------------------
3767 // Remove redundant stores:
3768 //   Store(m, p, Load(m, p)) changes to m.
3769 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
3770 Node* StoreNode::Identity(PhaseGVN* phase) {
3771   Node* mem = in(MemNode::Memory);
3772   Node* adr = in(MemNode::Address);
3773   Node* val = in(MemNode::ValueIn);
3774 
3775   Node* result = this;
3776 
3777   // Load then Store?  Then the Store is useless
3778   if (val->is_Load() &&
3779       val->in(MemNode::Address)->eqv_uncast(adr) &&
3780       val->in(MemNode::Memory )->eqv_uncast(mem) &&
3781       val->as_Load()->store_Opcode() == Opcode()) {
3782     // Ensure vector type is the same
3783     if (!is_StoreVector() || (mem->is_LoadVector() && as_StoreVector()->vect_type() == mem->as_LoadVector()->vect_type())) {
3784       result = mem;
3785     }
3786   }
3787 
3788   // Two stores in a row of the same value?
3789   if (result == this &&
3790       mem->is_Store() &&
3791       mem->in(MemNode::Address)->eqv_uncast(adr) &&
3792       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
3793       mem->Opcode() == Opcode()) {
3794     if (!is_StoreVector()) {
3795       result = mem;
3796     } else {
3797       const StoreVectorNode* store_vector = as_StoreVector();
3798       const StoreVectorNode* mem_vector = mem->as_StoreVector();
3799       const Node* store_indices = store_vector->indices();
3800       const Node* mem_indices = mem_vector->indices();
3801       const Node* store_mask = store_vector->mask();
3802       const Node* mem_mask = mem_vector->mask();
3803       // Ensure types, indices, and masks match
3804       if (store_vector->vect_type() == mem_vector->vect_type() &&
3805           ((store_indices == nullptr) == (mem_indices == nullptr) &&
3806            (store_indices == nullptr || store_indices->eqv_uncast(mem_indices))) &&
3807           ((store_mask == nullptr) == (mem_mask == nullptr) &&
3808            (store_mask == nullptr || store_mask->eqv_uncast(mem_mask)))) {
3809         result = mem;
3810       }
3811     }
3812   }
3813 
3814   // Store of zero anywhere into a freshly-allocated object?
3815   // Then the store is useless.
3816   // (It must already have been captured by the InitializeNode.)
3817   if (result == this && ReduceFieldZeroing) {
3818     // a newly allocated object is already all-zeroes everywhere
3819     if (mem->is_Proj() && mem->in(0)->is_Allocate() &&
3820         (phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::InitValue) == val)) {
3821       result = mem;
3822     }
3823 
3824     if (result == this && phase->type(val)->is_zero_type()) {
3825       // the store may also apply to zero-bits in an earlier object
3826       Node* prev_mem = find_previous_store(phase);
3827       // Steps (a), (b):  Walk past independent stores to find an exact match.
3828       if (prev_mem != nullptr) {
3829         Node* prev_val = can_see_stored_value(prev_mem, phase);
3830         if (prev_val != nullptr && prev_val == val) {
3831           // prev_val and val might differ by a cast; it would be good
3832           // to keep the more informative of the two.
3833           result = mem;
3834         }
3835       }
3836     }
3837   }
3838 
3839   PhaseIterGVN* igvn = phase->is_IterGVN();
3840   if (result != this && igvn != nullptr) {
3841     MemBarNode* trailing = trailing_membar();
3842     if (trailing != nullptr) {
3843 #ifdef ASSERT
3844       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
3845       assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects");
3846 #endif
3847       trailing->remove(igvn);
3848     }
3849   }
3850 
3851   return result;
3852 }
3853 
3854 //------------------------------match_edge-------------------------------------
3855 // Do we Match on this edge index or not?  Match only memory & value
3856 uint StoreNode::match_edge(uint idx) const {
3857   return idx == MemNode::Address || idx == MemNode::ValueIn;
3858 }
3859 
3860 //------------------------------cmp--------------------------------------------
3861 // Do not common stores up together.  They generally have to be split
3862 // back up anyways, so do not bother.
3863 bool StoreNode::cmp( const Node &n ) const {
3864   return (&n == this);          // Always fail except on self
3865 }
3866 
3867 //------------------------------Ideal_masked_input-----------------------------
3868 // Check for a useless mask before a partial-word store
3869 // (StoreB ... (AndI valIn conIa) )
3870 // If (conIa & mask == mask) this simplifies to
3871 // (StoreB ... (valIn) )
3872 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
3873   Node *val = in(MemNode::ValueIn);
3874   if( val->Opcode() == Op_AndI ) {
3875     const TypeInt *t = phase->type( val->in(2) )->isa_int();
3876     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
3877       set_req_X(MemNode::ValueIn, val->in(1), phase);
3878       return this;
3879     }
3880   }
3881   return nullptr;
3882 }
3883 
3884 
3885 //------------------------------Ideal_sign_extended_input----------------------
3886 // Check for useless sign-extension before a partial-word store
3887 // (StoreB ... (RShiftI _ (LShiftI _ v conIL) conIR))
3888 // If (conIL == conIR && conIR <= num_rejected_bits) this simplifies to
3889 // (StoreB ... (v))
3890 // If (conIL > conIR) under some conditions, it can be simplified into
3891 // (StoreB ... (LShiftI _ v (conIL - conIR)))
3892 // This case happens when the value of the store was itself a left shift, that
3893 // gets merged into the inner left shift of the sign-extension. For instance,
3894 // if we have
3895 // array_of_shorts[0] = (short)(v << 2)
3896 // We get a structure such as:
3897 // (StoreB ... (RShiftI _ (LShiftI _ (LShiftI _ v 2) 16) 16))
3898 // that is simplified into
3899 // (StoreB ... (RShiftI _ (LShiftI _ v 18) 16)).
3900 // It is thus useful to handle cases where conIL > conIR. But this simplification
3901 // does not always hold. Let's see in which cases it's valid.
3902 //
3903 // Let's assume we have the following 32 bits integer v:
3904 // +----------------------------------+
3905 // |             v[0..31]             |
3906 // +----------------------------------+
3907 //  31                               0
3908 // that will be stuffed in 8 bits byte after a shift left and a shift right of
3909 // potentially different magnitudes.
3910 // We denote num_rejected_bits the number of bits of the discarded part. In this
3911 // case, num_rejected_bits == 24.
3912 //
3913 // Statement (proved further below in case analysis):
3914 //   Given:
3915 //   - 0 <= conIL < BitsPerJavaInteger   (no wrap in shift, enforced by maskShiftAmount)
3916 //   - 0 <= conIR < BitsPerJavaInteger   (no wrap in shift, enforced by maskShiftAmount)
3917 //   - conIL >= conIR
3918 //   - num_rejected_bits >= conIR
3919 //   Then this form:
3920 //      (RShiftI _ (LShiftI _ v conIL) conIR)
3921 //   can be replaced with this form:
3922 //      (LShiftI _ v (conIL-conIR))
3923 //
3924 // Note: We only have to show that the non-rejected lowest bits (8 bits for byte)
3925 //       have to be correct, as the higher bits are rejected / truncated by the store.
3926 //
3927 // The hypotheses
3928 //   0 <= conIL < BitsPerJavaInteger
3929 //   0 <= conIR < BitsPerJavaInteger
3930 // are ensured by maskShiftAmount (called from ::Ideal of shift nodes). Indeed,
3931 // (v << 31) << 2 must be simplified into 0, not into v << 33 (which is equivalent
3932 // to v << 1).
3933 //
3934 //
3935 // If you don't like case analysis, jump after the conclusion.
3936 // ### Case 1 : conIL == conIR
3937 // ###### Case 1.1: conIL == conIR == num_rejected_bits
3938 // If we do the shift left then right by 24 bits, we get:
3939 // after: v << 24
3940 // +---------+------------------------+
3941 // | v[0..7] |           0            |
3942 // +---------+------------------------+
3943 //  31     24 23                      0
3944 // after: (v << 24) >> 24
3945 // +------------------------+---------+
3946 // |        sign bit        | v[0..7] |
3947 // +------------------------+---------+
3948 //  31                     8 7        0
3949 // The non-rejected bits (bits kept by the store, that is the 8 lower bits of the
3950 // result) are the same before and after, so, indeed, simplifying is correct.
3951 
3952 // ###### Case 1.2: conIL == conIR < num_rejected_bits
3953 // If we do the shift left then right by 22 bits, we get:
3954 // after: v << 22
3955 // +---------+------------------------+
3956 // | v[0..9] |           0            |
3957 // +---------+------------------------+
3958 //  31     22 21                      0
3959 // after: (v << 22) >> 22
3960 // +------------------------+---------+
3961 // |        sign bit        | v[0..9] |
3962 // +------------------------+---------+
3963 //  31                    10 9        0
3964 // The non-rejected bits are the 8 lower bits of v. The bits 8 and 9 of v are still
3965 // present in (v << 22) >> 22 but will be dropped by the store. The simplification is
3966 // still correct.
3967 
3968 // ###### But! Case 1.3: conIL == conIR > num_rejected_bits
3969 // If we do the shift left then right by 26 bits, we get:
3970 // after: v << 26
3971 // +---------+------------------------+
3972 // | v[0..5] |           0            |
3973 // +---------+------------------------+
3974 //  31     26 25                      0
3975 // after: (v << 26) >> 26
3976 // +------------------------+---------+
3977 // |        sign bit        | v[0..5] |
3978 // +------------------------+---------+
3979 //  31                     6 5        0
3980 // The non-rejected bits are made of
3981 // - 0-5 => the bits 0 to 5 of v
3982 // - 6-7 => the sign bit of v[0..5] (that is v[5])
3983 // Simplifying this as v is not correct.
3984 // The condition conIR <= num_rejected_bits is indeed necessary in Case 1
3985 //
3986 // ### Case 2: conIL > conIR
3987 // ###### Case 2.1: num_rejected_bits == conIR
3988 // We take conIL == 26 for this example.
3989 // after: v << 26
3990 // +---------+------------------------+
3991 // | v[0..5] |           0            |
3992 // +---------+------------------------+
3993 //  31     26 25                      0
3994 // after: (v << 26) >> 24
3995 // +------------------+---------+-----+
3996 // |     sign bit     | v[0..5] |  0  |
3997 // +------------------+---------+-----+
3998 //  31               8 7       2 1   0
3999 // The non-rejected bits are the 8 lower ones of (v << conIL - conIR).
4000 // The bits 6 and 7 of v have been thrown away after the shift left.
4001 // The simplification is still correct.
4002 //
4003 // ###### Case 2.2: num_rejected_bits > conIR.
4004 // Let's say conIL == 26 and conIR == 22.
4005 // after: v << 26
4006 // +---------+------------------------+
4007 // | v[0..5] |           0            |
4008 // +---------+------------------------+
4009 //  31     26 25                      0
4010 // after: (v << 26) >> 22
4011 // +------------------+---------+-----+
4012 // |     sign bit     | v[0..5] |  0  |
4013 // +------------------+---------+-----+
4014 //  31              10 9       4 3   0
4015 // The bits non-rejected by the store are exactly the 8 lower ones of (v << (conIL - conIR)):
4016 // - 0-3 => 0
4017 // - 4-7 => bits 0 to 3 of v
4018 // The simplification is still correct.
4019 // The bits 4 and 5 of v are still present in (v << (conIL - conIR)) but they don't
4020 // matter as they are not in the 8 lower bits: they will be cut out by the store.
4021 //
4022 // ###### But! Case 2.3: num_rejected_bits < conIR.
4023 // Let's see that this case is not as easy to simplify.
4024 // Let's say conIL == 28 and conIR == 26.
4025 // after: v << 28
4026 // +---------+------------------------+
4027 // | v[0..3] |           0            |
4028 // +---------+------------------------+
4029 //  31     28 27                      0
4030 // after: (v << 28) >> 26
4031 // +------------------+---------+-----+
4032 // |     sign bit     | v[0..3] |  0  |
4033 // +------------------+---------+-----+
4034 //  31               6 5       2 1   0
4035 // The non-rejected bits are made of
4036 // - 0-1 => 0
4037 // - 2-5 => the bits 0 to 3 of v
4038 // - 6-7 => the sign bit of v[0..3] (that is v[3])
4039 // Simplifying this as (v << 2) is not correct.
4040 // The condition conIR <= num_rejected_bits is indeed necessary in Case 2.
4041 //
4042 // ### Conclusion:
4043 // Our hypotheses are indeed sufficient:
4044 //   - 0 <= conIL < BitsPerJavaInteger
4045 //   - 0 <= conIR < BitsPerJavaInteger
4046 //   - conIL >= conIR
4047 //   - num_rejected_bits >= conIR
4048 //
4049 // ### A rationale without case analysis:
4050 // After the shift left, conIL upper  bits of v are discarded and conIL lower bit
4051 // zeroes are added. After the shift right, conIR lower bits of the previous result
4052 // are discarded. If conIL >= conIR, we discard only the zeroes we made up during
4053 // the shift left, but if conIL < conIR, then we discard also lower bits of v. But
4054 // the point of the simplification is to get an expression of the form
4055 // (v << (conIL - conIR)). This expression discard only higher bits of v, thus the
4056 // simplification is not correct if conIL < conIR.
4057 //
4058 // Moreover, after the shift right, the higher bit of (v << conIL) is repeated on the
4059 // conIR higher bits of ((v << conIL) >> conIR), it's the sign-extension. If
4060 // conIR > num_rejected_bits, then at least one artificial copy of this sign bit will
4061 // be in the window of the store. Thus ((v << conIL) >> conIR) is not equivalent to
4062 // (v << (conIL-conIR)) if conIR > num_rejected_bits.
4063 //
4064 // We do not treat the case conIL < conIR here since the point of this function is
4065 // to skip sign-extensions (that is conIL == conIR == num_rejected_bits). The need
4066 // of treating conIL > conIR comes from the cases where the sign-extended value is
4067 // also left-shift expression. Computing the sign-extension of a right-shift expression
4068 // doesn't yield a situation such as
4069 // (StoreB ... (RShiftI _ (LShiftI _ v conIL) conIR))
4070 // where conIL < conIR.
4071 Node* StoreNode::Ideal_sign_extended_input(PhaseGVN* phase, int num_rejected_bits) {
4072   Node* shr = in(MemNode::ValueIn);
4073   if (shr->Opcode() == Op_RShiftI) {
4074     const TypeInt* conIR = phase->type(shr->in(2))->isa_int();
4075     if (conIR != nullptr && conIR->is_con() && conIR->get_con() >= 0 && conIR->get_con() < BitsPerJavaInteger && conIR->get_con() <= num_rejected_bits) {
4076       Node* shl = shr->in(1);
4077       if (shl->Opcode() == Op_LShiftI) {
4078         const TypeInt* conIL = phase->type(shl->in(2))->isa_int();
4079         if (conIL != nullptr && conIL->is_con() && conIL->get_con() >= 0 && conIL->get_con() < BitsPerJavaInteger) {
4080           if (conIL->get_con() == conIR->get_con()) {
4081             set_req_X(MemNode::ValueIn, shl->in(1), phase);
4082             return this;
4083           }
4084           if (conIL->get_con() > conIR->get_con()) {
4085             Node* new_shl = phase->transform(new LShiftINode(shl->in(1), phase->intcon(conIL->get_con() - conIR->get_con())));
4086             set_req_X(MemNode::ValueIn, new_shl, phase);
4087             return this;
4088           }
4089         }
4090       }
4091     }
4092   }
4093   return nullptr;
4094 }
4095 
4096 //------------------------------value_never_loaded-----------------------------------
4097 // Determine whether there are any possible loads of the value stored.
4098 // For simplicity, we actually check if there are any loads from the
4099 // address stored to, not just for loads of the value stored by this node.
4100 //
4101 bool StoreNode::value_never_loaded(PhaseValues* phase) const {
4102   Node *adr = in(Address);
4103   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
4104   if (adr_oop == nullptr)
4105     return false;
4106   if (!adr_oop->is_known_instance_field())
4107     return false; // if not a distinct instance, there may be aliases of the address
4108   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
4109     Node *use = adr->fast_out(i);
4110     if (use->is_Load() || use->is_LoadStore()) {
4111       return false;
4112     }
4113   }
4114   return true;
4115 }
4116 
4117 MemBarNode* StoreNode::trailing_membar() const {
4118   if (is_release()) {
4119     MemBarNode* trailing_mb = nullptr;
4120     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
4121       Node* u = fast_out(i);
4122       if (u->is_MemBar()) {
4123         if (u->as_MemBar()->trailing_store()) {
4124           assert(u->Opcode() == Op_MemBarVolatile, "");
4125           assert(trailing_mb == nullptr, "only one");
4126           trailing_mb = u->as_MemBar();
4127 #ifdef ASSERT
4128           Node* leading = u->as_MemBar()->leading_membar();
4129           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
4130           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
4131           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
4132 #endif
4133         } else {
4134           assert(u->as_MemBar()->standalone(), "");
4135         }
4136       }
4137     }
4138     return trailing_mb;
4139   }
4140   return nullptr;
4141 }
4142 
4143 
4144 //=============================================================================
4145 //------------------------------Ideal------------------------------------------
4146 // If the store is from an AND mask that leaves the low bits untouched, then
4147 // we can skip the AND operation.  If the store is from a sign-extension
4148 // (a left shift, then right shift) we can skip both.
4149 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
4150   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
4151   if( progress != nullptr ) return progress;
4152 
4153   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
4154   if( progress != nullptr ) return progress;
4155 
4156   // Finally check the default case
4157   return StoreNode::Ideal(phase, can_reshape);
4158 }
4159 
4160 //=============================================================================
4161 //------------------------------Ideal------------------------------------------
4162 // If the store is from an AND mask that leaves the low bits untouched, then
4163 // we can skip the AND operation
4164 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
4165   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
4166   if( progress != nullptr ) return progress;
4167 
4168   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
4169   if( progress != nullptr ) return progress;
4170 
4171   // Finally check the default case
4172   return StoreNode::Ideal(phase, can_reshape);
4173 }
4174 
4175 //=============================================================================
4176 //----------------------------------SCMemProjNode------------------------------
4177 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
4178 {
4179   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
4180     return Type::TOP;
4181   }
4182   return bottom_type();
4183 }
4184 
4185 //=============================================================================
4186 //----------------------------------LoadStoreNode------------------------------
4187 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
4188   : Node(required),
4189     _type(rt),
4190     _adr_type(at),
4191     _barrier_data(0)
4192 {
4193   init_req(MemNode::Control, c  );
4194   init_req(MemNode::Memory , mem);
4195   init_req(MemNode::Address, adr);
4196   init_req(MemNode::ValueIn, val);
4197   init_class_id(Class_LoadStore);
4198 }
4199 
4200 //------------------------------Value-----------------------------------------
4201 const Type* LoadStoreNode::Value(PhaseGVN* phase) const {
4202   // Either input is TOP ==> the result is TOP
4203   if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) {
4204     return Type::TOP;
4205   }
4206   const Type* t = phase->type(in(MemNode::Memory));
4207   if (t == Type::TOP) {
4208     return Type::TOP;
4209   }
4210   t = phase->type(in(MemNode::Address));
4211   if (t == Type::TOP) {
4212     return Type::TOP;
4213   }
4214   t = phase->type(in(MemNode::ValueIn));
4215   if (t == Type::TOP) {
4216     return Type::TOP;
4217   }
4218   return bottom_type();
4219 }
4220 
4221 uint LoadStoreNode::ideal_reg() const {
4222   return _type->ideal_reg();
4223 }
4224 
4225 // This method conservatively checks if the result of a LoadStoreNode is
4226 // used, that is, if it returns true, then it is definitely the case that
4227 // the result of the node is not needed.
4228 // For example, GetAndAdd can be matched into a lock_add instead of a
4229 // lock_xadd if the result of LoadStoreNode::result_not_used() is true
4230 bool LoadStoreNode::result_not_used() const {
4231   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
4232     Node *x = fast_out(i);
4233     if (x->Opcode() == Op_SCMemProj) {
4234       continue;
4235     }
4236     if (x->bottom_type() == TypeTuple::MEMBAR &&
4237         !x->is_Call() &&
4238         x->Opcode() != Op_Blackhole) {
4239       continue;
4240     }
4241     return false;
4242   }
4243   return true;
4244 }
4245 
4246 MemBarNode* LoadStoreNode::trailing_membar() const {
4247   MemBarNode* trailing = nullptr;
4248   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
4249     Node* u = fast_out(i);
4250     if (u->is_MemBar()) {
4251       if (u->as_MemBar()->trailing_load_store()) {
4252         assert(u->Opcode() == Op_MemBarAcquire, "");
4253         assert(trailing == nullptr, "only one");
4254         trailing = u->as_MemBar();
4255 #ifdef ASSERT
4256         Node* leading = trailing->leading_membar();
4257         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
4258         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
4259         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
4260 #endif
4261       } else {
4262         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
4263       }
4264     }
4265   }
4266 
4267   return trailing;
4268 }
4269 
4270 uint LoadStoreNode::size_of() const { return sizeof(*this); }
4271 
4272 //=============================================================================
4273 //----------------------------------LoadStoreConditionalNode--------------------
4274 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) {
4275   init_req(ExpectedIn, ex );
4276 }
4277 
4278 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const {
4279   // Either input is TOP ==> the result is TOP
4280   const Type* t = phase->type(in(ExpectedIn));
4281   if (t == Type::TOP) {
4282     return Type::TOP;
4283   }
4284   return LoadStoreNode::Value(phase);
4285 }
4286 
4287 //=============================================================================
4288 //-------------------------------adr_type--------------------------------------
4289 const TypePtr* ClearArrayNode::adr_type() const {
4290   Node *adr = in(3);
4291   if (adr == nullptr)  return nullptr; // node is dead
4292   return MemNode::calculate_adr_type(adr->bottom_type());
4293 }
4294 
4295 //------------------------------match_edge-------------------------------------
4296 // Do we Match on this edge index or not?  Do not match memory
4297 uint ClearArrayNode::match_edge(uint idx) const {
4298   return idx > 1;
4299 }
4300 
4301 //------------------------------Identity---------------------------------------
4302 // Clearing a zero length array does nothing
4303 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
4304   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
4305 }
4306 
4307 //------------------------------Idealize---------------------------------------
4308 // Clearing a short array is faster with stores
4309 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4310   // Already know this is a large node, do not try to ideal it
4311   if (_is_large) return nullptr;
4312 
4313   const int unit = BytesPerLong;
4314   const TypeX* t = phase->type(in(2))->isa_intptr_t();
4315   if (!t)  return nullptr;
4316   if (!t->is_con())  return nullptr;
4317   intptr_t raw_count = t->get_con();
4318   intptr_t size = raw_count;
4319   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
4320   // Clearing nothing uses the Identity call.
4321   // Negative clears are possible on dead ClearArrays
4322   // (see jck test stmt114.stmt11402.val).
4323   if (size <= 0 || size % unit != 0)  return nullptr;
4324   intptr_t count = size / unit;
4325   // Length too long; communicate this to matchers and assemblers.
4326   // Assemblers are responsible to produce fast hardware clears for it.
4327   if (size > InitArrayShortSize) {
4328     return new ClearArrayNode(in(0), in(1), in(2), in(3), in(4), true);
4329   } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) {
4330     return nullptr;
4331   }
4332   if (!IdealizeClearArrayNode) return nullptr;
4333   Node *mem = in(1);
4334   if( phase->type(mem)==Type::TOP ) return nullptr;
4335   Node *adr = in(3);
4336   const Type* at = phase->type(adr);
4337   if( at==Type::TOP ) return nullptr;
4338   const TypePtr* atp = at->isa_ptr();
4339   // adjust atp to be the correct array element address type
4340   if (atp == nullptr)  atp = TypePtr::BOTTOM;
4341   else              atp = atp->add_offset(Type::OffsetBot);
4342   // Get base for derived pointer purposes
4343   if( adr->Opcode() != Op_AddP ) Unimplemented();
4344   Node *base = adr->in(1);
4345 
4346   Node *val = in(4);
4347   Node *off  = phase->MakeConX(BytesPerLong);
4348   mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
4349   count--;
4350   while( count-- ) {
4351     mem = phase->transform(mem);
4352     adr = phase->transform(new AddPNode(base,adr,off));
4353     mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
4354   }
4355   return mem;
4356 }
4357 
4358 //----------------------------step_through----------------------------------
4359 // Return allocation input memory edge if it is different instance
4360 // or itself if it is the one we are looking for.
4361 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseValues* phase) {
4362   Node* n = *np;
4363   assert(n->is_ClearArray(), "sanity");
4364   intptr_t offset;
4365   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
4366   // This method is called only before Allocate nodes are expanded
4367   // during macro nodes expansion. Before that ClearArray nodes are
4368   // only generated in PhaseMacroExpand::generate_arraycopy() (before
4369   // Allocate nodes are expanded) which follows allocations.
4370   assert(alloc != nullptr, "should have allocation");
4371   if (alloc->_idx == instance_id) {
4372     // Can not bypass initialization of the instance we are looking for.
4373     return false;
4374   }
4375   // Otherwise skip it.
4376   InitializeNode* init = alloc->initialization();
4377   if (init != nullptr)
4378     *np = init->in(TypeFunc::Memory);
4379   else
4380     *np = alloc->in(TypeFunc::Memory);
4381   return true;
4382 }
4383 
4384 //----------------------------clear_memory-------------------------------------
4385 // Generate code to initialize object storage to zero.
4386 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
4387                                    Node* val,
4388                                    Node* raw_val,
4389                                    intptr_t start_offset,
4390                                    Node* end_offset,
4391                                    PhaseGVN* phase) {
4392   intptr_t offset = start_offset;
4393 
4394   int unit = BytesPerLong;
4395   if ((offset % unit) != 0) {
4396     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
4397     adr = phase->transform(adr);
4398     const TypePtr* atp = TypeRawPtr::BOTTOM;
4399     if (val != nullptr) {
4400       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
4401       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
4402     } else {
4403       assert(raw_val == nullptr, "val may not be null");
4404       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
4405     }
4406     mem = phase->transform(mem);
4407     offset += BytesPerInt;
4408   }
4409   assert((offset % unit) == 0, "");
4410 
4411   // Initialize the remaining stuff, if any, with a ClearArray.
4412   return clear_memory(ctl, mem, dest, raw_val, phase->MakeConX(offset), end_offset, phase);
4413 }
4414 
4415 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
4416                                    Node* raw_val,
4417                                    Node* start_offset,
4418                                    Node* end_offset,
4419                                    PhaseGVN* phase) {
4420   if (start_offset == end_offset) {
4421     // nothing to do
4422     return mem;
4423   }
4424 
4425   int unit = BytesPerLong;
4426   Node* zbase = start_offset;
4427   Node* zend  = end_offset;
4428 
4429   // Scale to the unit required by the CPU:
4430   if (!Matcher::init_array_count_is_in_bytes) {
4431     Node* shift = phase->intcon(exact_log2(unit));
4432     zbase = phase->transform(new URShiftXNode(zbase, shift) );
4433     zend  = phase->transform(new URShiftXNode(zend,  shift) );
4434   }
4435 
4436   // Bulk clear double-words
4437   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
4438   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
4439   if (raw_val == nullptr) {
4440     raw_val = phase->MakeConX(0);
4441   }
4442   mem = new ClearArrayNode(ctl, mem, zsize, adr, raw_val, false);
4443   return phase->transform(mem);
4444 }
4445 
4446 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
4447                                    Node* val,
4448                                    Node* raw_val,
4449                                    intptr_t start_offset,
4450                                    intptr_t end_offset,
4451                                    PhaseGVN* phase) {
4452   if (start_offset == end_offset) {
4453     // nothing to do
4454     return mem;
4455   }
4456 
4457   assert((end_offset % BytesPerInt) == 0, "odd end offset");
4458   intptr_t done_offset = end_offset;
4459   if ((done_offset % BytesPerLong) != 0) {
4460     done_offset -= BytesPerInt;
4461   }
4462   if (done_offset > start_offset) {
4463     mem = clear_memory(ctl, mem, dest, val, raw_val,
4464                        start_offset, phase->MakeConX(done_offset), phase);
4465   }
4466   if (done_offset < end_offset) { // emit the final 32-bit store
4467     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
4468     adr = phase->transform(adr);
4469     const TypePtr* atp = TypeRawPtr::BOTTOM;
4470     if (val != nullptr) {
4471       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
4472       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
4473     } else {
4474       assert(raw_val == nullptr, "val may not be null");
4475       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
4476     }
4477     mem = phase->transform(mem);
4478     done_offset += BytesPerInt;
4479   }
4480   assert(done_offset == end_offset, "");
4481   return mem;
4482 }
4483 
4484 //=============================================================================
4485 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
4486   : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)),
4487     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
4488 #ifdef ASSERT
4489   , _pair_idx(0)
4490 #endif
4491 {
4492   init_class_id(Class_MemBar);
4493   Node* top = C->top();
4494   init_req(TypeFunc::I_O,top);
4495   init_req(TypeFunc::FramePtr,top);
4496   init_req(TypeFunc::ReturnAdr,top);
4497   if (precedent != nullptr)
4498     init_req(TypeFunc::Parms, precedent);
4499 }
4500 
4501 //------------------------------cmp--------------------------------------------
4502 uint MemBarNode::hash() const { return NO_HASH; }
4503 bool MemBarNode::cmp( const Node &n ) const {
4504   return (&n == this);          // Always fail except on self
4505 }
4506 
4507 //------------------------------make-------------------------------------------
4508 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
4509   switch (opcode) {
4510   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
4511   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
4512   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
4513   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
4514   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
4515   case Op_StoreStoreFence:   return new StoreStoreFenceNode(C, atp, pn);
4516   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
4517   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
4518   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
4519   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
4520   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
4521   case Op_Initialize:        return new InitializeNode(C, atp, pn);
4522   default: ShouldNotReachHere(); return nullptr;
4523   }
4524 }
4525 
4526 void MemBarNode::remove(PhaseIterGVN *igvn) {
4527   assert(outcnt() > 0 && (outcnt() <= 2 || Opcode() == Op_Initialize), "Only one or two out edges allowed");
4528   if (trailing_store() || trailing_load_store()) {
4529     MemBarNode* leading = leading_membar();
4530     if (leading != nullptr) {
4531       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
4532       leading->remove(igvn);
4533     }
4534   }
4535   if (proj_out_or_null(TypeFunc::Control) != nullptr) {
4536     igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
4537   }
4538   if (is_Initialize()) {
4539     as_Initialize()->replace_mem_projs_by(in(TypeFunc::Memory), igvn);
4540   } else {
4541     if (proj_out_or_null(TypeFunc::Memory) != nullptr) {
4542       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
4543     }
4544   }
4545 }
4546 
4547 //------------------------------Ideal------------------------------------------
4548 // Return a node which is more "ideal" than the current node.  Strip out
4549 // control copies
4550 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4551   if (remove_dead_region(phase, can_reshape)) return this;
4552   // Don't bother trying to transform a dead node
4553   if (in(0) && in(0)->is_top()) {
4554     return nullptr;
4555   }
4556 
4557   bool progress = false;
4558   // Eliminate volatile MemBars for scalar replaced objects.
4559   if (can_reshape && req() == (Precedent+1)) {
4560     bool eliminate = false;
4561     int opc = Opcode();
4562     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
4563       // Volatile field loads and stores.
4564       Node* my_mem = in(MemBarNode::Precedent);
4565       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
4566       if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
4567         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
4568         // replace this Precedent (decodeN) with the Load instead.
4569         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
4570           Node* load_node = my_mem->in(1);
4571           set_req(MemBarNode::Precedent, load_node);
4572           phase->is_IterGVN()->_worklist.push(my_mem);
4573           my_mem = load_node;
4574         } else {
4575           assert(my_mem->unique_out() == this, "sanity");
4576           assert(!trailing_load_store(), "load store node can't be eliminated");
4577           del_req(Precedent);
4578           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
4579           my_mem = nullptr;
4580         }
4581         progress = true;
4582       }
4583       if (my_mem != nullptr && my_mem->is_Mem()) {
4584         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
4585         // Check for scalar replaced object reference.
4586         if( t_oop != nullptr && t_oop->is_known_instance_field() &&
4587             t_oop->offset() != Type::OffsetBot &&
4588             t_oop->offset() != Type::OffsetTop) {
4589           eliminate = true;
4590         }
4591       }
4592     } else if (opc == Op_MemBarRelease || (UseStoreStoreForCtor && opc == Op_MemBarStoreStore)) {
4593       // Final field stores.
4594       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent));
4595       if ((alloc != nullptr) && alloc->is_Allocate() &&
4596           alloc->as_Allocate()->does_not_escape_thread()) {
4597         // The allocated object does not escape.
4598         eliminate = true;
4599       }
4600     }
4601     if (eliminate) {
4602       // Replace MemBar projections by its inputs.
4603       PhaseIterGVN* igvn = phase->is_IterGVN();
4604       remove(igvn);
4605       // Must return either the original node (now dead) or a new node
4606       // (Do not return a top here, since that would break the uniqueness of top.)
4607       return new ConINode(TypeInt::ZERO);
4608     }
4609   }
4610   return progress ? this : nullptr;
4611 }
4612 
4613 //------------------------------Value------------------------------------------
4614 const Type* MemBarNode::Value(PhaseGVN* phase) const {
4615   if( !in(0) ) return Type::TOP;
4616   if( phase->type(in(0)) == Type::TOP )
4617     return Type::TOP;
4618   return TypeTuple::MEMBAR;
4619 }
4620 
4621 //------------------------------match------------------------------------------
4622 // Construct projections for memory.
4623 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) {
4624   switch (proj->_con) {
4625   case TypeFunc::Control:
4626   case TypeFunc::Memory:
4627     return new MachProjNode(this, proj->_con, RegMask::EMPTY, MachProjNode::unmatched_proj);
4628   }
4629   ShouldNotReachHere();
4630   return nullptr;
4631 }
4632 
4633 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
4634   trailing->_kind = TrailingStore;
4635   leading->_kind = LeadingStore;
4636 #ifdef ASSERT
4637   trailing->_pair_idx = leading->_idx;
4638   leading->_pair_idx = leading->_idx;
4639 #endif
4640 }
4641 
4642 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
4643   trailing->_kind = TrailingLoadStore;
4644   leading->_kind = LeadingLoadStore;
4645 #ifdef ASSERT
4646   trailing->_pair_idx = leading->_idx;
4647   leading->_pair_idx = leading->_idx;
4648 #endif
4649 }
4650 
4651 MemBarNode* MemBarNode::trailing_membar() const {
4652   ResourceMark rm;
4653   Node* trailing = (Node*)this;
4654   VectorSet seen;
4655   Node_Stack multis(0);
4656   do {
4657     Node* c = trailing;
4658     uint i = 0;
4659     do {
4660       trailing = nullptr;
4661       for (; i < c->outcnt(); i++) {
4662         Node* next = c->raw_out(i);
4663         if (next != c && next->is_CFG()) {
4664           if (c->is_MultiBranch()) {
4665             if (multis.node() == c) {
4666               multis.set_index(i+1);
4667             } else {
4668               multis.push(c, i+1);
4669             }
4670           }
4671           trailing = next;
4672           break;
4673         }
4674       }
4675       if (trailing != nullptr && !seen.test_set(trailing->_idx)) {
4676         break;
4677       }
4678       while (multis.size() > 0) {
4679         c = multis.node();
4680         i = multis.index();
4681         if (i < c->req()) {
4682           break;
4683         }
4684         multis.pop();
4685       }
4686     } while (multis.size() > 0);
4687   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
4688 
4689   MemBarNode* mb = trailing->as_MemBar();
4690   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
4691          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
4692   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
4693   return mb;
4694 }
4695 
4696 MemBarNode* MemBarNode::leading_membar() const {
4697   ResourceMark rm;
4698   VectorSet seen;
4699   Node_Stack regions(0);
4700   Node* leading = in(0);
4701   while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
4702     while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) {
4703       leading = nullptr;
4704       while (regions.size() > 0 && leading == nullptr) {
4705         Node* r = regions.node();
4706         uint i = regions.index();
4707         if (i < r->req()) {
4708           leading = r->in(i);
4709           regions.set_index(i+1);
4710         } else {
4711           regions.pop();
4712         }
4713       }
4714       if (leading == nullptr) {
4715         assert(regions.size() == 0, "all paths should have been tried");
4716         return nullptr;
4717       }
4718     }
4719     if (leading->is_Region()) {
4720       regions.push(leading, 2);
4721       leading = leading->in(1);
4722     } else {
4723       leading = leading->in(0);
4724     }
4725   }
4726 #ifdef ASSERT
4727   Unique_Node_List wq;
4728   wq.push((Node*)this);
4729   uint found = 0;
4730   for (uint i = 0; i < wq.size(); i++) {
4731     Node* n = wq.at(i);
4732     if (n->is_Region()) {
4733       for (uint j = 1; j < n->req(); j++) {
4734         Node* in = n->in(j);
4735         if (in != nullptr && !in->is_top()) {
4736           wq.push(in);
4737         }
4738       }
4739     } else {
4740       if (n->is_MemBar() && n->as_MemBar()->leading()) {
4741         assert(n == leading, "consistency check failed");
4742         found++;
4743       } else {
4744         Node* in = n->in(0);
4745         if (in != nullptr && !in->is_top()) {
4746           wq.push(in);
4747         }
4748       }
4749     }
4750   }
4751   assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed");
4752 #endif
4753   if (leading == nullptr) {
4754     return nullptr;
4755   }
4756   MemBarNode* mb = leading->as_MemBar();
4757   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
4758          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
4759   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
4760   return mb;
4761 }
4762 
4763 
4764 //===========================InitializeNode====================================
4765 // SUMMARY:
4766 // This node acts as a memory barrier on raw memory, after some raw stores.
4767 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
4768 // The Initialize can 'capture' suitably constrained stores as raw inits.
4769 // It can coalesce related raw stores into larger units (called 'tiles').
4770 // It can avoid zeroing new storage for memory units which have raw inits.
4771 // At macro-expansion, it is marked 'complete', and does not optimize further.
4772 //
4773 // EXAMPLE:
4774 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
4775 //   ctl = incoming control; mem* = incoming memory
4776 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
4777 // First allocate uninitialized memory and fill in the header:
4778 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
4779 //   ctl := alloc.Control; mem* := alloc.Memory*
4780 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
4781 // Then initialize to zero the non-header parts of the raw memory block:
4782 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
4783 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
4784 // After the initialize node executes, the object is ready for service:
4785 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
4786 // Suppose its body is immediately initialized as {1,2}:
4787 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
4788 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
4789 //   mem.SLICE(#short[*]) := store2
4790 //
4791 // DETAILS:
4792 // An InitializeNode collects and isolates object initialization after
4793 // an AllocateNode and before the next possible safepoint.  As a
4794 // memory barrier (MemBarNode), it keeps critical stores from drifting
4795 // down past any safepoint or any publication of the allocation.
4796 // Before this barrier, a newly-allocated object may have uninitialized bits.
4797 // After this barrier, it may be treated as a real oop, and GC is allowed.
4798 //
4799 // The semantics of the InitializeNode include an implicit zeroing of
4800 // the new object from object header to the end of the object.
4801 // (The object header and end are determined by the AllocateNode.)
4802 //
4803 // Certain stores may be added as direct inputs to the InitializeNode.
4804 // These stores must update raw memory, and they must be to addresses
4805 // derived from the raw address produced by AllocateNode, and with
4806 // a constant offset.  They must be ordered by increasing offset.
4807 // The first one is at in(RawStores), the last at in(req()-1).
4808 // Unlike most memory operations, they are not linked in a chain,
4809 // but are displayed in parallel as users of the rawmem output of
4810 // the allocation.
4811 //
4812 // (See comments in InitializeNode::capture_store, which continue
4813 // the example given above.)
4814 //
4815 // When the associated Allocate is macro-expanded, the InitializeNode
4816 // may be rewritten to optimize collected stores.  A ClearArrayNode
4817 // may also be created at that point to represent any required zeroing.
4818 // The InitializeNode is then marked 'complete', prohibiting further
4819 // capturing of nearby memory operations.
4820 //
4821 // During macro-expansion, all captured initializations which store
4822 // constant values of 32 bits or smaller are coalesced (if advantageous)
4823 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
4824 // initialized in fewer memory operations.  Memory words which are
4825 // covered by neither tiles nor non-constant stores are pre-zeroed
4826 // by explicit stores of zero.  (The code shape happens to do all
4827 // zeroing first, then all other stores, with both sequences occurring
4828 // in order of ascending offsets.)
4829 //
4830 // Alternatively, code may be inserted between an AllocateNode and its
4831 // InitializeNode, to perform arbitrary initialization of the new object.
4832 // E.g., the object copying intrinsics insert complex data transfers here.
4833 // The initialization must then be marked as 'complete' disable the
4834 // built-in zeroing semantics and the collection of initializing stores.
4835 //
4836 // While an InitializeNode is incomplete, reads from the memory state
4837 // produced by it are optimizable if they match the control edge and
4838 // new oop address associated with the allocation/initialization.
4839 // They return a stored value (if the offset matches) or else zero.
4840 // A write to the memory state, if it matches control and address,
4841 // and if it is to a constant offset, may be 'captured' by the
4842 // InitializeNode.  It is cloned as a raw memory operation and rewired
4843 // inside the initialization, to the raw oop produced by the allocation.
4844 // Operations on addresses which are provably distinct (e.g., to
4845 // other AllocateNodes) are allowed to bypass the initialization.
4846 //
4847 // The effect of all this is to consolidate object initialization
4848 // (both arrays and non-arrays, both piecewise and bulk) into a
4849 // single location, where it can be optimized as a unit.
4850 //
4851 // Only stores with an offset less than TrackedInitializationLimit words
4852 // will be considered for capture by an InitializeNode.  This puts a
4853 // reasonable limit on the complexity of optimized initializations.
4854 
4855 //---------------------------InitializeNode------------------------------------
4856 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
4857   : MemBarNode(C, adr_type, rawoop),
4858     _is_complete(Incomplete), _does_not_escape(false)
4859 {
4860   init_class_id(Class_Initialize);
4861 
4862   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
4863   assert(in(RawAddress) == rawoop, "proper init");
4864   // Note:  allocation() can be null, for secondary initialization barriers
4865 }
4866 
4867 // Since this node is not matched, it will be processed by the
4868 // register allocator.  Declare that there are no constraints
4869 // on the allocation of the RawAddress edge.
4870 const RegMask &InitializeNode::in_RegMask(uint idx) const {
4871   // This edge should be set to top, by the set_complete.  But be conservative.
4872   if (idx == InitializeNode::RawAddress)
4873     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
4874   return RegMask::EMPTY;
4875 }
4876 
4877 Node* InitializeNode::memory(uint alias_idx) {
4878   Node* mem = in(Memory);
4879   if (mem->is_MergeMem()) {
4880     return mem->as_MergeMem()->memory_at(alias_idx);
4881   } else {
4882     // incoming raw memory is not split
4883     return mem;
4884   }
4885 }
4886 
4887 bool InitializeNode::is_non_zero() {
4888   if (is_complete())  return false;
4889   remove_extra_zeroes();
4890   return (req() > RawStores);
4891 }
4892 
4893 void InitializeNode::set_complete(PhaseGVN* phase) {
4894   assert(!is_complete(), "caller responsibility");
4895   _is_complete = Complete;
4896 
4897   // After this node is complete, it contains a bunch of
4898   // raw-memory initializations.  There is no need for
4899   // it to have anything to do with non-raw memory effects.
4900   // Therefore, tell all non-raw users to re-optimize themselves,
4901   // after skipping the memory effects of this initialization.
4902   PhaseIterGVN* igvn = phase->is_IterGVN();
4903   if (igvn)  igvn->add_users_to_worklist(this);
4904 }
4905 
4906 // convenience function
4907 // return false if the init contains any stores already
4908 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
4909   InitializeNode* init = initialization();
4910   if (init == nullptr || init->is_complete()) {
4911     return false;
4912   }
4913   init->remove_extra_zeroes();
4914   // for now, if this allocation has already collected any inits, bail:
4915   if (init->is_non_zero())  return false;
4916   init->set_complete(phase);
4917   return true;
4918 }
4919 
4920 void InitializeNode::remove_extra_zeroes() {
4921   if (req() == RawStores)  return;
4922   Node* zmem = zero_memory();
4923   uint fill = RawStores;
4924   for (uint i = fill; i < req(); i++) {
4925     Node* n = in(i);
4926     if (n->is_top() || n == zmem)  continue;  // skip
4927     if (fill < i)  set_req(fill, n);          // compact
4928     ++fill;
4929   }
4930   // delete any empty spaces created:
4931   while (fill < req()) {
4932     del_req(fill);
4933   }
4934 }
4935 
4936 // Helper for remembering which stores go with which offsets.
4937 intptr_t InitializeNode::get_store_offset(Node* st, PhaseValues* phase) {
4938   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
4939   intptr_t offset = -1;
4940   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
4941                                                phase, offset);
4942   if (base == nullptr)  return -1;  // something is dead,
4943   if (offset < 0)       return -1;  //        dead, dead
4944   return offset;
4945 }
4946 
4947 // Helper for proving that an initialization expression is
4948 // "simple enough" to be folded into an object initialization.
4949 // Attempts to prove that a store's initial value 'n' can be captured
4950 // within the initialization without creating a vicious cycle, such as:
4951 //     { Foo p = new Foo(); p.next = p; }
4952 // True for constants and parameters and small combinations thereof.
4953 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) {
4954   ResourceMark rm;
4955   Unique_Node_List worklist;
4956   worklist.push(value);
4957 
4958   uint complexity_limit = 20;
4959   for (uint j = 0; j < worklist.size(); j++) {
4960     if (j >= complexity_limit) {
4961       return false;  // Bail out if processed too many nodes
4962     }
4963 
4964     Node* n = worklist.at(j);
4965     if (n == nullptr)   continue;   // (can this really happen?)
4966     if (n->is_Proj())   n = n->in(0);
4967     if (n == this)      return false;  // found a cycle
4968     if (n->is_Con())    continue;
4969     if (n->is_Start())  continue;   // params, etc., are OK
4970     if (n->is_Root())   continue;   // even better
4971 
4972     // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation
4973     if (n->is_CFG() && phase->is_dominator(n, allocation())) {
4974       continue;
4975     }
4976 
4977     Node* ctl = n->in(0);
4978     if (ctl != nullptr && !ctl->is_top()) {
4979       if (ctl->is_Proj())  ctl = ctl->in(0);
4980       if (ctl == this)  return false;
4981 
4982       // If we already know that the enclosing memory op is pinned right after
4983       // the init, then any control flow that the store has picked up
4984       // must have preceded the init, or else be equal to the init.
4985       // Even after loop optimizations (which might change control edges)
4986       // a store is never pinned *before* the availability of its inputs.
4987       if (!MemNode::all_controls_dominate(n, this)) {
4988         return false;                  // failed to prove a good control
4989       }
4990     }
4991 
4992     // Check data edges for possible dependencies on 'this'.
4993     for (uint i = 1; i < n->req(); i++) {
4994       Node* m = n->in(i);
4995       if (m == nullptr || m == n || m->is_top())  continue;
4996 
4997       // Only process data inputs once
4998       worklist.push(m);
4999     }
5000   }
5001 
5002   return true;
5003 }
5004 
5005 // Here are all the checks a Store must pass before it can be moved into
5006 // an initialization.  Returns zero if a check fails.
5007 // On success, returns the (constant) offset to which the store applies,
5008 // within the initialized memory.
5009 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) {
5010   const int FAIL = 0;
5011   if (st->req() != MemNode::ValueIn + 1)
5012     return FAIL;                // an inscrutable StoreNode (card mark?)
5013   Node* ctl = st->in(MemNode::Control);
5014   if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this))
5015     return FAIL;                // must be unconditional after the initialization
5016   Node* mem = st->in(MemNode::Memory);
5017   if (!(mem->is_Proj() && mem->in(0) == this))
5018     return FAIL;                // must not be preceded by other stores
5019   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5020   if ((st->Opcode() == Op_StoreP || st->Opcode() == Op_StoreN) &&
5021       !bs->can_initialize_object(st)) {
5022     return FAIL;
5023   }
5024   Node* adr = st->in(MemNode::Address);
5025   intptr_t offset;
5026   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
5027   if (alloc == nullptr)
5028     return FAIL;                // inscrutable address
5029   if (alloc != allocation())
5030     return FAIL;                // wrong allocation!  (store needs to float up)
5031   int size_in_bytes = st->memory_size();
5032   if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) {
5033     return FAIL;                // mismatched access
5034   }
5035   Node* val = st->in(MemNode::ValueIn);
5036 
5037   if (!detect_init_independence(val, phase))
5038     return FAIL;                // stored value must be 'simple enough'
5039 
5040   // The Store can be captured only if nothing after the allocation
5041   // and before the Store is using the memory location that the store
5042   // overwrites.
5043   bool failed = false;
5044   // If is_complete_with_arraycopy() is true the shape of the graph is
5045   // well defined and is safe so no need for extra checks.
5046   if (!is_complete_with_arraycopy()) {
5047     // We are going to look at each use of the memory state following
5048     // the allocation to make sure nothing reads the memory that the
5049     // Store writes.
5050     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
5051     int alias_idx = phase->C->get_alias_index(t_adr);
5052     ResourceMark rm;
5053     Unique_Node_List mems;
5054     mems.push(mem);
5055     Node* unique_merge = nullptr;
5056     for (uint next = 0; next < mems.size(); ++next) {
5057       Node *m  = mems.at(next);
5058       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5059         Node *n = m->fast_out(j);
5060         if (n->outcnt() == 0) {
5061           continue;
5062         }
5063         if (n == st) {
5064           continue;
5065         } else if (n->in(0) != nullptr && n->in(0) != ctl) {
5066           // If the control of this use is different from the control
5067           // of the Store which is right after the InitializeNode then
5068           // this node cannot be between the InitializeNode and the
5069           // Store.
5070           continue;
5071         } else if (n->is_MergeMem()) {
5072           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
5073             // We can hit a MergeMemNode (that will likely go away
5074             // later) that is a direct use of the memory state
5075             // following the InitializeNode on the same slice as the
5076             // store node that we'd like to capture. We need to check
5077             // the uses of the MergeMemNode.
5078             mems.push(n);
5079           }
5080         } else if (n->is_Mem()) {
5081           Node* other_adr = n->in(MemNode::Address);
5082           if (other_adr == adr) {
5083             failed = true;
5084             break;
5085           } else {
5086             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
5087             if (other_t_adr != nullptr) {
5088               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
5089               if (other_alias_idx == alias_idx) {
5090                 // A load from the same memory slice as the store right
5091                 // after the InitializeNode. We check the control of the
5092                 // object/array that is loaded from. If it's the same as
5093                 // the store control then we cannot capture the store.
5094                 assert(!n->is_Store(), "2 stores to same slice on same control?");
5095                 Node* base = other_adr;
5096                 if (base->is_Phi()) {
5097                   // In rare case, base may be a PhiNode and it may read
5098                   // the same memory slice between InitializeNode and store.
5099                   failed = true;
5100                   break;
5101                 }
5102                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
5103                 base = base->in(AddPNode::Base);
5104                 if (base != nullptr) {
5105                   base = base->uncast();
5106                   if (base->is_Proj() && base->in(0) == alloc) {
5107                     failed = true;
5108                     break;
5109                   }
5110                 }
5111               }
5112             }
5113           }
5114         } else {
5115           failed = true;
5116           break;
5117         }
5118       }
5119     }
5120   }
5121   if (failed) {
5122     if (!can_reshape) {
5123       // We decided we couldn't capture the store during parsing. We
5124       // should try again during the next IGVN once the graph is
5125       // cleaner.
5126       phase->C->record_for_igvn(st);
5127     }
5128     return FAIL;
5129   }
5130 
5131   return offset;                // success
5132 }
5133 
5134 // Find the captured store in(i) which corresponds to the range
5135 // [start..start+size) in the initialized object.
5136 // If there is one, return its index i.  If there isn't, return the
5137 // negative of the index where it should be inserted.
5138 // Return 0 if the queried range overlaps an initialization boundary
5139 // or if dead code is encountered.
5140 // If size_in_bytes is zero, do not bother with overlap checks.
5141 int InitializeNode::captured_store_insertion_point(intptr_t start,
5142                                                    int size_in_bytes,
5143                                                    PhaseValues* phase) {
5144   const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
5145 
5146   if (is_complete())
5147     return FAIL;                // arraycopy got here first; punt
5148 
5149   assert(allocation() != nullptr, "must be present");
5150 
5151   // no negatives, no header fields:
5152   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
5153 
5154   // after a certain size, we bail out on tracking all the stores:
5155   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
5156   if (start >= ti_limit)  return FAIL;
5157 
5158   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
5159     if (i >= limit)  return -(int)i; // not found; here is where to put it
5160 
5161     Node*    st     = in(i);
5162     intptr_t st_off = get_store_offset(st, phase);
5163     if (st_off < 0) {
5164       if (st != zero_memory()) {
5165         return FAIL;            // bail out if there is dead garbage
5166       }
5167     } else if (st_off > start) {
5168       // ...we are done, since stores are ordered
5169       if (st_off < start + size_in_bytes) {
5170         return FAIL;            // the next store overlaps
5171       }
5172       return -(int)i;           // not found; here is where to put it
5173     } else if (st_off < start) {
5174       assert(st->as_Store()->memory_size() <= MAX_STORE, "");
5175       if (size_in_bytes != 0 &&
5176           start < st_off + MAX_STORE &&
5177           start < st_off + st->as_Store()->memory_size()) {
5178         return FAIL;            // the previous store overlaps
5179       }
5180     } else {
5181       if (size_in_bytes != 0 &&
5182           st->as_Store()->memory_size() != size_in_bytes) {
5183         return FAIL;            // mismatched store size
5184       }
5185       return i;
5186     }
5187 
5188     ++i;
5189   }
5190 }
5191 
5192 // Look for a captured store which initializes at the offset 'start'
5193 // with the given size.  If there is no such store, and no other
5194 // initialization interferes, then return zero_memory (the memory
5195 // projection of the AllocateNode).
5196 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
5197                                           PhaseValues* phase) {
5198   assert(stores_are_sane(phase), "");
5199   int i = captured_store_insertion_point(start, size_in_bytes, phase);
5200   if (i == 0) {
5201     return nullptr;              // something is dead
5202   } else if (i < 0) {
5203     return zero_memory();       // just primordial zero bits here
5204   } else {
5205     Node* st = in(i);           // here is the store at this position
5206     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
5207     return st;
5208   }
5209 }
5210 
5211 // Create, as a raw pointer, an address within my new object at 'offset'.
5212 Node* InitializeNode::make_raw_address(intptr_t offset,
5213                                        PhaseGVN* phase) {
5214   Node* addr = in(RawAddress);
5215   if (offset != 0) {
5216     Compile* C = phase->C;
5217     addr = phase->transform( new AddPNode(C->top(), addr,
5218                                                  phase->MakeConX(offset)) );
5219   }
5220   return addr;
5221 }
5222 
5223 // Clone the given store, converting it into a raw store
5224 // initializing a field or element of my new object.
5225 // Caller is responsible for retiring the original store,
5226 // with subsume_node or the like.
5227 //
5228 // From the example above InitializeNode::InitializeNode,
5229 // here are the old stores to be captured:
5230 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
5231 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
5232 //
5233 // Here is the changed code; note the extra edges on init:
5234 //   alloc = (Allocate ...)
5235 //   rawoop = alloc.RawAddress
5236 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
5237 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
5238 //   init = (Initialize alloc.Control alloc.Memory rawoop
5239 //                      rawstore1 rawstore2)
5240 //
5241 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
5242                                     PhaseGVN* phase, bool can_reshape) {
5243   assert(stores_are_sane(phase), "");
5244 
5245   if (start < 0)  return nullptr;
5246   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
5247 
5248   Compile* C = phase->C;
5249   int size_in_bytes = st->memory_size();
5250   int i = captured_store_insertion_point(start, size_in_bytes, phase);
5251   if (i == 0)  return nullptr;  // bail out
5252   Node* prev_mem = nullptr;     // raw memory for the captured store
5253   if (i > 0) {
5254     prev_mem = in(i);           // there is a pre-existing store under this one
5255     set_req(i, C->top());       // temporarily disconnect it
5256     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
5257   } else {
5258     i = -i;                     // no pre-existing store
5259     prev_mem = zero_memory();   // a slice of the newly allocated object
5260     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
5261       set_req(--i, C->top());   // reuse this edge; it has been folded away
5262     else
5263       ins_req(i, C->top());     // build a new edge
5264   }
5265   Node* new_st = st->clone();
5266   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5267   new_st->set_req(MemNode::Control, in(Control));
5268   new_st->set_req(MemNode::Memory,  prev_mem);
5269   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
5270   bs->eliminate_gc_barrier_data(new_st);
5271   new_st = phase->transform(new_st);
5272 
5273   // At this point, new_st might have swallowed a pre-existing store
5274   // at the same offset, or perhaps new_st might have disappeared,
5275   // if it redundantly stored the same value (or zero to fresh memory).
5276 
5277   // In any case, wire it in:
5278   PhaseIterGVN* igvn = phase->is_IterGVN();
5279   if (igvn) {
5280     igvn->rehash_node_delayed(this);
5281   }
5282   set_req(i, new_st);
5283 
5284   // The caller may now kill the old guy.
5285   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
5286   assert(check_st == new_st || check_st == nullptr, "must be findable");
5287   assert(!is_complete(), "");
5288   return new_st;
5289 }
5290 
5291 static bool store_constant(jlong* tiles, int num_tiles,
5292                            intptr_t st_off, int st_size,
5293                            jlong con) {
5294   if ((st_off & (st_size-1)) != 0)
5295     return false;               // strange store offset (assume size==2**N)
5296   address addr = (address)tiles + st_off;
5297   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
5298   switch (st_size) {
5299   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
5300   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
5301   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
5302   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
5303   default: return false;        // strange store size (detect size!=2**N here)
5304   }
5305   return true;                  // return success to caller
5306 }
5307 
5308 // Coalesce subword constants into int constants and possibly
5309 // into long constants.  The goal, if the CPU permits,
5310 // is to initialize the object with a small number of 64-bit tiles.
5311 // Also, convert floating-point constants to bit patterns.
5312 // Non-constants are not relevant to this pass.
5313 //
5314 // In terms of the running example on InitializeNode::InitializeNode
5315 // and InitializeNode::capture_store, here is the transformation
5316 // of rawstore1 and rawstore2 into rawstore12:
5317 //   alloc = (Allocate ...)
5318 //   rawoop = alloc.RawAddress
5319 //   tile12 = 0x00010002
5320 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
5321 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
5322 //
5323 void
5324 InitializeNode::coalesce_subword_stores(intptr_t header_size,
5325                                         Node* size_in_bytes,
5326                                         PhaseGVN* phase) {
5327   Compile* C = phase->C;
5328 
5329   assert(stores_are_sane(phase), "");
5330   // Note:  After this pass, they are not completely sane,
5331   // since there may be some overlaps.
5332 
5333   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
5334 
5335   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
5336   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
5337   size_limit = MIN2(size_limit, ti_limit);
5338   size_limit = align_up(size_limit, BytesPerLong);
5339   int num_tiles = size_limit / BytesPerLong;
5340 
5341   // allocate space for the tile map:
5342   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
5343   jlong  tiles_buf[small_len];
5344   Node*  nodes_buf[small_len];
5345   jlong  inits_buf[small_len];
5346   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
5347                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
5348   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
5349                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
5350   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
5351                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
5352   // tiles: exact bitwise model of all primitive constants
5353   // nodes: last constant-storing node subsumed into the tiles model
5354   // inits: which bytes (in each tile) are touched by any initializations
5355 
5356   //// Pass A: Fill in the tile model with any relevant stores.
5357 
5358   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
5359   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
5360   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
5361   Node* zmem = zero_memory(); // initially zero memory state
5362   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
5363     Node* st = in(i);
5364     intptr_t st_off = get_store_offset(st, phase);
5365 
5366     // Figure out the store's offset and constant value:
5367     if (st_off < header_size)             continue; //skip (ignore header)
5368     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
5369     int st_size = st->as_Store()->memory_size();
5370     if (st_off + st_size > size_limit)    break;
5371 
5372     // Record which bytes are touched, whether by constant or not.
5373     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
5374       continue;                 // skip (strange store size)
5375 
5376     const Type* val = phase->type(st->in(MemNode::ValueIn));
5377     if (!val->singleton())                continue; //skip (non-con store)
5378     BasicType type = val->basic_type();
5379 
5380     jlong con = 0;
5381     switch (type) {
5382     case T_INT:    con = val->is_int()->get_con();  break;
5383     case T_LONG:   con = val->is_long()->get_con(); break;
5384     case T_FLOAT:  con = jint_cast(val->getf());    break;
5385     case T_DOUBLE: con = jlong_cast(val->getd());   break;
5386     default:                              continue; //skip (odd store type)
5387     }
5388 
5389     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
5390         st->Opcode() == Op_StoreL) {
5391       continue;                 // This StoreL is already optimal.
5392     }
5393 
5394     // Store down the constant.
5395     store_constant(tiles, num_tiles, st_off, st_size, con);
5396 
5397     intptr_t j = st_off >> LogBytesPerLong;
5398 
5399     if (type == T_INT && st_size == BytesPerInt
5400         && (st_off & BytesPerInt) == BytesPerInt) {
5401       jlong lcon = tiles[j];
5402       if (!Matcher::isSimpleConstant64(lcon) &&
5403           st->Opcode() == Op_StoreI) {
5404         // This StoreI is already optimal by itself.
5405         jint* intcon = (jint*) &tiles[j];
5406         intcon[1] = 0;  // undo the store_constant()
5407 
5408         // If the previous store is also optimal by itself, back up and
5409         // undo the action of the previous loop iteration... if we can.
5410         // But if we can't, just let the previous half take care of itself.
5411         st = nodes[j];
5412         st_off -= BytesPerInt;
5413         con = intcon[0];
5414         if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) {
5415           assert(st_off >= header_size, "still ignoring header");
5416           assert(get_store_offset(st, phase) == st_off, "must be");
5417           assert(in(i-1) == zmem, "must be");
5418           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
5419           assert(con == tcon->is_int()->get_con(), "must be");
5420           // Undo the effects of the previous loop trip, which swallowed st:
5421           intcon[0] = 0;        // undo store_constant()
5422           set_req(i-1, st);     // undo set_req(i, zmem)
5423           nodes[j] = nullptr;   // undo nodes[j] = st
5424           --old_subword;        // undo ++old_subword
5425         }
5426         continue;               // This StoreI is already optimal.
5427       }
5428     }
5429 
5430     // This store is not needed.
5431     set_req(i, zmem);
5432     nodes[j] = st;              // record for the moment
5433     if (st_size < BytesPerLong) // something has changed
5434           ++old_subword;        // includes int/float, but who's counting...
5435     else  ++old_long;
5436   }
5437 
5438   if ((old_subword + old_long) == 0)
5439     return;                     // nothing more to do
5440 
5441   //// Pass B: Convert any non-zero tiles into optimal constant stores.
5442   // Be sure to insert them before overlapping non-constant stores.
5443   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
5444   for (int j = 0; j < num_tiles; j++) {
5445     jlong con  = tiles[j];
5446     jlong init = inits[j];
5447     if (con == 0)  continue;
5448     jint con0,  con1;           // split the constant, address-wise
5449     jint init0, init1;          // split the init map, address-wise
5450     { union { jlong con; jint intcon[2]; } u;
5451       u.con = con;
5452       con0  = u.intcon[0];
5453       con1  = u.intcon[1];
5454       u.con = init;
5455       init0 = u.intcon[0];
5456       init1 = u.intcon[1];
5457     }
5458 
5459     Node* old = nodes[j];
5460     assert(old != nullptr, "need the prior store");
5461     intptr_t offset = (j * BytesPerLong);
5462 
5463     bool split = !Matcher::isSimpleConstant64(con);
5464 
5465     if (offset < header_size) {
5466       assert(offset + BytesPerInt >= header_size, "second int counts");
5467       assert(*(jint*)&tiles[j] == 0, "junk in header");
5468       split = true;             // only the second word counts
5469       // Example:  int a[] = { 42 ... }
5470     } else if (con0 == 0 && init0 == -1) {
5471       split = true;             // first word is covered by full inits
5472       // Example:  int a[] = { ... foo(), 42 ... }
5473     } else if (con1 == 0 && init1 == -1) {
5474       split = true;             // second word is covered by full inits
5475       // Example:  int a[] = { ... 42, foo() ... }
5476     }
5477 
5478     // Here's a case where init0 is neither 0 nor -1:
5479     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
5480     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
5481     // In this case the tile is not split; it is (jlong)42.
5482     // The big tile is stored down, and then the foo() value is inserted.
5483     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
5484 
5485     Node* ctl = old->in(MemNode::Control);
5486     Node* adr = make_raw_address(offset, phase);
5487     const TypePtr* atp = TypeRawPtr::BOTTOM;
5488 
5489     // One or two coalesced stores to plop down.
5490     Node*    st[2];
5491     intptr_t off[2];
5492     int  nst = 0;
5493     if (!split) {
5494       ++new_long;
5495       off[nst] = offset;
5496       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
5497                                   phase->longcon(con), T_LONG, MemNode::unordered);
5498     } else {
5499       // Omit either if it is a zero.
5500       if (con0 != 0) {
5501         ++new_int;
5502         off[nst]  = offset;
5503         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
5504                                     phase->intcon(con0), T_INT, MemNode::unordered);
5505       }
5506       if (con1 != 0) {
5507         ++new_int;
5508         offset += BytesPerInt;
5509         adr = make_raw_address(offset, phase);
5510         off[nst]  = offset;
5511         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
5512                                     phase->intcon(con1), T_INT, MemNode::unordered);
5513       }
5514     }
5515 
5516     // Insert second store first, then the first before the second.
5517     // Insert each one just before any overlapping non-constant stores.
5518     while (nst > 0) {
5519       Node* st1 = st[--nst];
5520       C->copy_node_notes_to(st1, old);
5521       st1 = phase->transform(st1);
5522       offset = off[nst];
5523       assert(offset >= header_size, "do not smash header");
5524       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
5525       guarantee(ins_idx != 0, "must re-insert constant store");
5526       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
5527       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
5528         set_req(--ins_idx, st1);
5529       else
5530         ins_req(ins_idx, st1);
5531     }
5532   }
5533 
5534   if (PrintCompilation && WizardMode)
5535     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
5536                   old_subword, old_long, new_int, new_long);
5537   if (C->log() != nullptr)
5538     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
5539                    old_subword, old_long, new_int, new_long);
5540 
5541   // Clean up any remaining occurrences of zmem:
5542   remove_extra_zeroes();
5543 }
5544 
5545 // Explore forward from in(start) to find the first fully initialized
5546 // word, and return its offset.  Skip groups of subword stores which
5547 // together initialize full words.  If in(start) is itself part of a
5548 // fully initialized word, return the offset of in(start).  If there
5549 // are no following full-word stores, or if something is fishy, return
5550 // a negative value.
5551 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
5552   int       int_map = 0;
5553   intptr_t  int_map_off = 0;
5554   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
5555 
5556   for (uint i = start, limit = req(); i < limit; i++) {
5557     Node* st = in(i);
5558 
5559     intptr_t st_off = get_store_offset(st, phase);
5560     if (st_off < 0)  break;  // return conservative answer
5561 
5562     int st_size = st->as_Store()->memory_size();
5563     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
5564       return st_off;            // we found a complete word init
5565     }
5566 
5567     // update the map:
5568 
5569     intptr_t this_int_off = align_down(st_off, BytesPerInt);
5570     if (this_int_off != int_map_off) {
5571       // reset the map:
5572       int_map = 0;
5573       int_map_off = this_int_off;
5574     }
5575 
5576     int subword_off = st_off - this_int_off;
5577     int_map |= right_n_bits(st_size) << subword_off;
5578     if ((int_map & FULL_MAP) == FULL_MAP) {
5579       return this_int_off;      // we found a complete word init
5580     }
5581 
5582     // Did this store hit or cross the word boundary?
5583     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
5584     if (next_int_off == this_int_off + BytesPerInt) {
5585       // We passed the current int, without fully initializing it.
5586       int_map_off = next_int_off;
5587       int_map >>= BytesPerInt;
5588     } else if (next_int_off > this_int_off + BytesPerInt) {
5589       // We passed the current and next int.
5590       return this_int_off + BytesPerInt;
5591     }
5592   }
5593 
5594   return -1;
5595 }
5596 
5597 
5598 // Called when the associated AllocateNode is expanded into CFG.
5599 // At this point, we may perform additional optimizations.
5600 // Linearize the stores by ascending offset, to make memory
5601 // activity as coherent as possible.
5602 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
5603                                       intptr_t header_size,
5604                                       Node* size_in_bytes,
5605                                       PhaseIterGVN* phase) {
5606   assert(!is_complete(), "not already complete");
5607   assert(stores_are_sane(phase), "");
5608   assert(allocation() != nullptr, "must be present");
5609 
5610   remove_extra_zeroes();
5611 
5612   if (ReduceFieldZeroing || ReduceBulkZeroing)
5613     // reduce instruction count for common initialization patterns
5614     coalesce_subword_stores(header_size, size_in_bytes, phase);
5615 
5616   Node* zmem = zero_memory();   // initially zero memory state
5617   Node* inits = zmem;           // accumulating a linearized chain of inits
5618   #ifdef ASSERT
5619   intptr_t first_offset = allocation()->minimum_header_size();
5620   intptr_t last_init_off = first_offset;  // previous init offset
5621   intptr_t last_init_end = first_offset;  // previous init offset+size
5622   intptr_t last_tile_end = first_offset;  // previous tile offset+size
5623   #endif
5624   intptr_t zeroes_done = header_size;
5625 
5626   bool do_zeroing = true;       // we might give up if inits are very sparse
5627   int  big_init_gaps = 0;       // how many large gaps have we seen?
5628 
5629   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
5630   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
5631 
5632   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
5633     Node* st = in(i);
5634     intptr_t st_off = get_store_offset(st, phase);
5635     if (st_off < 0)
5636       break;                    // unknown junk in the inits
5637     if (st->in(MemNode::Memory) != zmem)
5638       break;                    // complicated store chains somehow in list
5639 
5640     int st_size = st->as_Store()->memory_size();
5641     intptr_t next_init_off = st_off + st_size;
5642 
5643     if (do_zeroing && zeroes_done < next_init_off) {
5644       // See if this store needs a zero before it or under it.
5645       intptr_t zeroes_needed = st_off;
5646 
5647       if (st_size < BytesPerInt) {
5648         // Look for subword stores which only partially initialize words.
5649         // If we find some, we must lay down some word-level zeroes first,
5650         // underneath the subword stores.
5651         //
5652         // Examples:
5653         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
5654         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
5655         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
5656         //
5657         // Note:  coalesce_subword_stores may have already done this,
5658         // if it was prompted by constant non-zero subword initializers.
5659         // But this case can still arise with non-constant stores.
5660 
5661         intptr_t next_full_store = find_next_fullword_store(i, phase);
5662 
5663         // In the examples above:
5664         //   in(i)          p   q   r   s     x   y     z
5665         //   st_off        12  13  14  15    12  13    14
5666         //   st_size        1   1   1   1     1   1     1
5667         //   next_full_s.  12  16  16  16    16  16    16
5668         //   z's_done      12  16  16  16    12  16    12
5669         //   z's_needed    12  16  16  16    16  16    16
5670         //   zsize          0   0   0   0     4   0     4
5671         if (next_full_store < 0) {
5672           // Conservative tack:  Zero to end of current word.
5673           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
5674         } else {
5675           // Zero to beginning of next fully initialized word.
5676           // Or, don't zero at all, if we are already in that word.
5677           assert(next_full_store >= zeroes_needed, "must go forward");
5678           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
5679           zeroes_needed = next_full_store;
5680         }
5681       }
5682 
5683       if (zeroes_needed > zeroes_done) {
5684         intptr_t zsize = zeroes_needed - zeroes_done;
5685         // Do some incremental zeroing on rawmem, in parallel with inits.
5686         zeroes_done = align_down(zeroes_done, BytesPerInt);
5687         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
5688                                               allocation()->in(AllocateNode::InitValue),
5689                                               allocation()->in(AllocateNode::RawInitValue),
5690                                               zeroes_done, zeroes_needed,
5691                                               phase);
5692         zeroes_done = zeroes_needed;
5693         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
5694           do_zeroing = false;   // leave the hole, next time
5695       }
5696     }
5697 
5698     // Collect the store and move on:
5699     phase->replace_input_of(st, MemNode::Memory, inits);
5700     inits = st;                 // put it on the linearized chain
5701     set_req(i, zmem);           // unhook from previous position
5702 
5703     if (zeroes_done == st_off)
5704       zeroes_done = next_init_off;
5705 
5706     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
5707 
5708     #ifdef ASSERT
5709     // Various order invariants.  Weaker than stores_are_sane because
5710     // a large constant tile can be filled in by smaller non-constant stores.
5711     assert(st_off >= last_init_off, "inits do not reverse");
5712     last_init_off = st_off;
5713     const Type* val = nullptr;
5714     if (st_size >= BytesPerInt &&
5715         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
5716         (int)val->basic_type() < (int)T_OBJECT) {
5717       assert(st_off >= last_tile_end, "tiles do not overlap");
5718       assert(st_off >= last_init_end, "tiles do not overwrite inits");
5719       last_tile_end = MAX2(last_tile_end, next_init_off);
5720     } else {
5721       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
5722       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
5723       assert(st_off      >= last_init_end, "inits do not overlap");
5724       last_init_end = next_init_off;  // it's a non-tile
5725     }
5726     #endif //ASSERT
5727   }
5728 
5729   remove_extra_zeroes();        // clear out all the zmems left over
5730   add_req(inits);
5731 
5732   if (!(UseTLAB && ZeroTLAB)) {
5733     // If anything remains to be zeroed, zero it all now.
5734     zeroes_done = align_down(zeroes_done, BytesPerInt);
5735     // if it is the last unused 4 bytes of an instance, forget about it
5736     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
5737     if (zeroes_done + BytesPerLong >= size_limit) {
5738       AllocateNode* alloc = allocation();
5739       assert(alloc != nullptr, "must be present");
5740       if (alloc != nullptr && alloc->Opcode() == Op_Allocate) {
5741         Node* klass_node = alloc->in(AllocateNode::KlassNode);
5742         ciKlass* k = phase->type(klass_node)->is_instklassptr()->instance_klass();
5743         if (zeroes_done == k->layout_helper())
5744           zeroes_done = size_limit;
5745       }
5746     }
5747     if (zeroes_done < size_limit) {
5748       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
5749                                             allocation()->in(AllocateNode::InitValue),
5750                                             allocation()->in(AllocateNode::RawInitValue),
5751                                             zeroes_done, size_in_bytes, phase);
5752     }
5753   }
5754 
5755   set_complete(phase);
5756   return rawmem;
5757 }
5758 
5759 void InitializeNode::replace_mem_projs_by(Node* mem, Compile* C) {
5760   auto replace_proj = [&](ProjNode* proj) {
5761     C->gvn_replace_by(proj, mem);
5762     return CONTINUE;
5763   };
5764   apply_to_projs(replace_proj, TypeFunc::Memory);
5765 }
5766 
5767 void InitializeNode::replace_mem_projs_by(Node* mem, PhaseIterGVN* igvn) {
5768   DUIterator_Fast imax, i = fast_outs(imax);
5769   auto replace_proj = [&](ProjNode* proj) {
5770     igvn->replace_node(proj, mem);
5771     --i; --imax;
5772     return CONTINUE;
5773   };
5774   apply_to_projs(imax, i, replace_proj, TypeFunc::Memory);
5775 }
5776 
5777 bool InitializeNode::already_has_narrow_mem_proj_with_adr_type(const TypePtr* adr_type) const {
5778   auto find_proj = [&](ProjNode* proj) {
5779     if (proj->adr_type() == adr_type) {
5780       return BREAK_AND_RETURN_CURRENT_PROJ;
5781     }
5782     return CONTINUE;
5783   };
5784   DUIterator_Fast imax, i = fast_outs(imax);
5785   return apply_to_narrow_mem_projs_any_iterator(UsesIteratorFast(imax, i, this), find_proj) != nullptr;
5786 }
5787 
5788 MachProjNode* InitializeNode::mem_mach_proj() const {
5789   auto find_proj = [](ProjNode* proj) {
5790     if (proj->is_MachProj()) {
5791       return BREAK_AND_RETURN_CURRENT_PROJ;
5792     }
5793     return CONTINUE;
5794   };
5795   ProjNode* proj = apply_to_projs(find_proj, TypeFunc::Memory);
5796   if (proj == nullptr) {
5797     return nullptr;
5798   }
5799   return proj->as_MachProj();
5800 }
5801 
5802 #ifdef ASSERT
5803 bool InitializeNode::stores_are_sane(PhaseValues* phase) {
5804   if (is_complete())
5805     return true;                // stores could be anything at this point
5806   assert(allocation() != nullptr, "must be present");
5807   intptr_t last_off = allocation()->minimum_header_size();
5808   for (uint i = InitializeNode::RawStores; i < req(); i++) {
5809     Node* st = in(i);
5810     intptr_t st_off = get_store_offset(st, phase);
5811     if (st_off < 0)  continue;  // ignore dead garbage
5812     if (last_off > st_off) {
5813       tty->print_cr("*** bad store offset at %d: %zd > %zd", i, last_off, st_off);
5814       this->dump(2);
5815       assert(false, "ascending store offsets");
5816       return false;
5817     }
5818     last_off = st_off + st->as_Store()->memory_size();
5819   }
5820   return true;
5821 }
5822 #endif //ASSERT
5823 
5824 
5825 
5826 
5827 //============================MergeMemNode=====================================
5828 //
5829 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
5830 // contributing store or call operations.  Each contributor provides the memory
5831 // state for a particular "alias type" (see Compile::alias_type).  For example,
5832 // if a MergeMem has an input X for alias category #6, then any memory reference
5833 // to alias category #6 may use X as its memory state input, as an exact equivalent
5834 // to using the MergeMem as a whole.
5835 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
5836 //
5837 // (Here, the <N> notation gives the index of the relevant adr_type.)
5838 //
5839 // In one special case (and more cases in the future), alias categories overlap.
5840 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
5841 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
5842 // it is exactly equivalent to that state W:
5843 //   MergeMem(<Bot>: W) <==> W
5844 //
5845 // Usually, the merge has more than one input.  In that case, where inputs
5846 // overlap (i.e., one is Bot), the narrower alias type determines the memory
5847 // state for that type, and the wider alias type (Bot) fills in everywhere else:
5848 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
5849 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
5850 //
5851 // A merge can take a "wide" memory state as one of its narrow inputs.
5852 // This simply means that the merge observes out only the relevant parts of
5853 // the wide input.  That is, wide memory states arriving at narrow merge inputs
5854 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
5855 //
5856 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
5857 // and that memory slices "leak through":
5858 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
5859 //
5860 // But, in such a cascade, repeated memory slices can "block the leak":
5861 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
5862 //
5863 // In the last example, Y is not part of the combined memory state of the
5864 // outermost MergeMem.  The system must, of course, prevent unschedulable
5865 // memory states from arising, so you can be sure that the state Y is somehow
5866 // a precursor to state Y'.
5867 //
5868 //
5869 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
5870 // of each MergeMemNode array are exactly the numerical alias indexes, including
5871 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
5872 // Compile::alias_type (and kin) produce and manage these indexes.
5873 //
5874 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
5875 // (Note that this provides quick access to the top node inside MergeMem methods,
5876 // without the need to reach out via TLS to Compile::current.)
5877 //
5878 // As a consequence of what was just described, a MergeMem that represents a full
5879 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
5880 // containing all alias categories.
5881 //
5882 // MergeMem nodes never (?) have control inputs, so in(0) is null.
5883 //
5884 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
5885 // a memory state for the alias type <N>, or else the top node, meaning that
5886 // there is no particular input for that alias type.  Note that the length of
5887 // a MergeMem is variable, and may be extended at any time to accommodate new
5888 // memory states at larger alias indexes.  When merges grow, they are of course
5889 // filled with "top" in the unused in() positions.
5890 //
5891 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
5892 // (Top was chosen because it works smoothly with passes like GCM.)
5893 //
5894 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
5895 // the type of random VM bits like TLS references.)  Since it is always the
5896 // first non-Bot memory slice, some low-level loops use it to initialize an
5897 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
5898 //
5899 //
5900 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
5901 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
5902 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
5903 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
5904 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
5905 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
5906 //
5907 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
5908 // really that different from the other memory inputs.  An abbreviation called
5909 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
5910 //
5911 //
5912 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
5913 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
5914 // that "emerges though" the base memory will be marked as excluding the alias types
5915 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
5916 //
5917 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
5918 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
5919 //
5920 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
5921 // (It is currently unimplemented.)  As you can see, the resulting merge is
5922 // actually a disjoint union of memory states, rather than an overlay.
5923 //
5924 
5925 //------------------------------MergeMemNode-----------------------------------
5926 Node* MergeMemNode::make_empty_memory() {
5927   Node* empty_memory = (Node*) Compile::current()->top();
5928   assert(empty_memory->is_top(), "correct sentinel identity");
5929   return empty_memory;
5930 }
5931 
5932 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
5933   init_class_id(Class_MergeMem);
5934   // all inputs are nullified in Node::Node(int)
5935   // set_input(0, nullptr);  // no control input
5936 
5937   // Initialize the edges uniformly to top, for starters.
5938   Node* empty_mem = make_empty_memory();
5939   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
5940     init_req(i,empty_mem);
5941   }
5942   assert(empty_memory() == empty_mem, "");
5943 
5944   if( new_base != nullptr && new_base->is_MergeMem() ) {
5945     MergeMemNode* mdef = new_base->as_MergeMem();
5946     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
5947     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
5948       mms.set_memory(mms.memory2());
5949     }
5950     assert(base_memory() == mdef->base_memory(), "");
5951   } else {
5952     set_base_memory(new_base);
5953   }
5954 }
5955 
5956 // Make a new, untransformed MergeMem with the same base as 'mem'.
5957 // If mem is itself a MergeMem, populate the result with the same edges.
5958 MergeMemNode* MergeMemNode::make(Node* mem) {
5959   return new MergeMemNode(mem);
5960 }
5961 
5962 //------------------------------cmp--------------------------------------------
5963 uint MergeMemNode::hash() const { return NO_HASH; }
5964 bool MergeMemNode::cmp( const Node &n ) const {
5965   return (&n == this);          // Always fail except on self
5966 }
5967 
5968 //------------------------------Identity---------------------------------------
5969 Node* MergeMemNode::Identity(PhaseGVN* phase) {
5970   // Identity if this merge point does not record any interesting memory
5971   // disambiguations.
5972   Node* base_mem = base_memory();
5973   Node* empty_mem = empty_memory();
5974   if (base_mem != empty_mem) {  // Memory path is not dead?
5975     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5976       Node* mem = in(i);
5977       if (mem != empty_mem && mem != base_mem) {
5978         return this;            // Many memory splits; no change
5979       }
5980     }
5981   }
5982   return base_mem;              // No memory splits; ID on the one true input
5983 }
5984 
5985 //------------------------------Ideal------------------------------------------
5986 // This method is invoked recursively on chains of MergeMem nodes
5987 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
5988   // Remove chain'd MergeMems
5989   //
5990   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
5991   // relative to the "in(Bot)".  Since we are patching both at the same time,
5992   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
5993   // but rewrite each "in(i)" relative to the new "in(Bot)".
5994   Node *progress = nullptr;
5995 
5996 
5997   Node* old_base = base_memory();
5998   Node* empty_mem = empty_memory();
5999   if (old_base == empty_mem)
6000     return nullptr; // Dead memory path.
6001 
6002   MergeMemNode* old_mbase;
6003   if (old_base != nullptr && old_base->is_MergeMem())
6004     old_mbase = old_base->as_MergeMem();
6005   else
6006     old_mbase = nullptr;
6007   Node* new_base = old_base;
6008 
6009   // simplify stacked MergeMems in base memory
6010   if (old_mbase)  new_base = old_mbase->base_memory();
6011 
6012   // the base memory might contribute new slices beyond my req()
6013   if (old_mbase)  grow_to_match(old_mbase);
6014 
6015   // Note:  We do not call verify_sparse on entry, because inputs
6016   // can normalize to the base_memory via subsume_node or similar
6017   // mechanisms.  This method repairs that damage.
6018 
6019   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
6020 
6021   // Look at each slice.
6022   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
6023     Node* old_in = in(i);
6024     // calculate the old memory value
6025     Node* old_mem = old_in;
6026     if (old_mem == empty_mem)  old_mem = old_base;
6027     assert(old_mem == memory_at(i), "");
6028 
6029     // maybe update (reslice) the old memory value
6030 
6031     // simplify stacked MergeMems
6032     Node* new_mem = old_mem;
6033     MergeMemNode* old_mmem;
6034     if (old_mem != nullptr && old_mem->is_MergeMem())
6035       old_mmem = old_mem->as_MergeMem();
6036     else
6037       old_mmem = nullptr;
6038     if (old_mmem == this) {
6039       // This can happen if loops break up and safepoints disappear.
6040       // A merge of BotPtr (default) with a RawPtr memory derived from a
6041       // safepoint can be rewritten to a merge of the same BotPtr with
6042       // the BotPtr phi coming into the loop.  If that phi disappears
6043       // also, we can end up with a self-loop of the mergemem.
6044       // In general, if loops degenerate and memory effects disappear,
6045       // a mergemem can be left looking at itself.  This simply means
6046       // that the mergemem's default should be used, since there is
6047       // no longer any apparent effect on this slice.
6048       // Note: If a memory slice is a MergeMem cycle, it is unreachable
6049       //       from start.  Update the input to TOP.
6050       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
6051     }
6052     else if (old_mmem != nullptr) {
6053       new_mem = old_mmem->memory_at(i);
6054     }
6055     // else preceding memory was not a MergeMem
6056 
6057     // maybe store down a new value
6058     Node* new_in = new_mem;
6059     if (new_in == new_base)  new_in = empty_mem;
6060 
6061     if (new_in != old_in) {
6062       // Warning:  Do not combine this "if" with the previous "if"
6063       // A memory slice might have be be rewritten even if it is semantically
6064       // unchanged, if the base_memory value has changed.
6065       set_req_X(i, new_in, phase);
6066       progress = this;          // Report progress
6067     }
6068   }
6069 
6070   if (new_base != old_base) {
6071     set_req_X(Compile::AliasIdxBot, new_base, phase);
6072     // Don't use set_base_memory(new_base), because we need to update du.
6073     assert(base_memory() == new_base, "");
6074     progress = this;
6075   }
6076 
6077   if( base_memory() == this ) {
6078     // a self cycle indicates this memory path is dead
6079     set_req(Compile::AliasIdxBot, empty_mem);
6080   }
6081 
6082   // Resolve external cycles by calling Ideal on a MergeMem base_memory
6083   // Recursion must occur after the self cycle check above
6084   if( base_memory()->is_MergeMem() ) {
6085     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
6086     Node *m = phase->transform(new_mbase);  // Rollup any cycles
6087     if( m != nullptr &&
6088         (m->is_top() ||
6089          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
6090       // propagate rollup of dead cycle to self
6091       set_req(Compile::AliasIdxBot, empty_mem);
6092     }
6093   }
6094 
6095   if( base_memory() == empty_mem ) {
6096     progress = this;
6097     // Cut inputs during Parse phase only.
6098     // During Optimize phase a dead MergeMem node will be subsumed by Top.
6099     if( !can_reshape ) {
6100       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
6101         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
6102       }
6103     }
6104   }
6105 
6106   if( !progress && base_memory()->is_Phi() && can_reshape ) {
6107     // Check if PhiNode::Ideal's "Split phis through memory merges"
6108     // transform should be attempted. Look for this->phi->this cycle.
6109     uint merge_width = req();
6110     if (merge_width > Compile::AliasIdxRaw) {
6111       PhiNode* phi = base_memory()->as_Phi();
6112       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
6113         if (phi->in(i) == this) {
6114           phase->is_IterGVN()->_worklist.push(phi);
6115           break;
6116         }
6117       }
6118     }
6119   }
6120 
6121   assert(progress || verify_sparse(), "please, no dups of base");
6122   return progress;
6123 }
6124 
6125 //-------------------------set_base_memory-------------------------------------
6126 void MergeMemNode::set_base_memory(Node *new_base) {
6127   Node* empty_mem = empty_memory();
6128   set_req(Compile::AliasIdxBot, new_base);
6129   assert(memory_at(req()) == new_base, "must set default memory");
6130   // Clear out other occurrences of new_base:
6131   if (new_base != empty_mem) {
6132     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
6133       if (in(i) == new_base)  set_req(i, empty_mem);
6134     }
6135   }
6136 }
6137 
6138 //------------------------------out_RegMask------------------------------------
6139 const RegMask &MergeMemNode::out_RegMask() const {
6140   return RegMask::EMPTY;
6141 }
6142 
6143 //------------------------------dump_spec--------------------------------------
6144 #ifndef PRODUCT
6145 void MergeMemNode::dump_spec(outputStream *st) const {
6146   st->print(" {");
6147   Node* base_mem = base_memory();
6148   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
6149     Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem;
6150     if (mem == base_mem) { st->print(" -"); continue; }
6151     st->print( " N%d:", mem->_idx );
6152     Compile::current()->get_adr_type(i)->dump_on(st);
6153   }
6154   st->print(" }");
6155 }
6156 #endif // !PRODUCT
6157 
6158 
6159 #ifdef ASSERT
6160 static bool might_be_same(Node* a, Node* b) {
6161   if (a == b)  return true;
6162   if (!(a->is_Phi() || b->is_Phi()))  return false;
6163   // phis shift around during optimization
6164   return true;  // pretty stupid...
6165 }
6166 
6167 // verify a narrow slice (either incoming or outgoing)
6168 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
6169   if (!VerifyAliases)                return;  // don't bother to verify unless requested
6170   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
6171   if (Node::in_dump())               return;  // muzzle asserts when printing
6172   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
6173   assert(n != nullptr, "");
6174   // Elide intervening MergeMem's
6175   while (n->is_MergeMem()) {
6176     n = n->as_MergeMem()->memory_at(alias_idx);
6177   }
6178   Compile* C = Compile::current();
6179   const TypePtr* n_adr_type = n->adr_type();
6180   if (n == m->empty_memory()) {
6181     // Implicit copy of base_memory()
6182   } else if (n_adr_type != TypePtr::BOTTOM) {
6183     assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type");
6184     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
6185   } else {
6186     // A few places like make_runtime_call "know" that VM calls are narrow,
6187     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
6188     bool expected_wide_mem = false;
6189     if (n == m->base_memory()) {
6190       expected_wide_mem = true;
6191     } else if (alias_idx == Compile::AliasIdxRaw ||
6192                n == m->memory_at(Compile::AliasIdxRaw)) {
6193       expected_wide_mem = true;
6194     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
6195       // memory can "leak through" calls on channels that
6196       // are write-once.  Allow this also.
6197       expected_wide_mem = true;
6198     }
6199     assert(expected_wide_mem, "expected narrow slice replacement");
6200   }
6201 }
6202 #else // !ASSERT
6203 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
6204 #endif
6205 
6206 
6207 //-----------------------------memory_at---------------------------------------
6208 Node* MergeMemNode::memory_at(uint alias_idx) const {
6209   assert(alias_idx >= Compile::AliasIdxRaw ||
6210          (alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing()),
6211          "must avoid base_memory and AliasIdxTop");
6212 
6213   // Otherwise, it is a narrow slice.
6214   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
6215   if (is_empty_memory(n)) {
6216     // the array is sparse; empty slots are the "top" node
6217     n = base_memory();
6218     assert(Node::in_dump()
6219            || n == nullptr || n->bottom_type() == Type::TOP
6220            || n->adr_type() == nullptr // address is TOP
6221            || n->adr_type() == TypePtr::BOTTOM
6222            || n->adr_type() == TypeRawPtr::BOTTOM
6223            || n->is_NarrowMemProj()
6224            || !Compile::current()->do_aliasing(),
6225            "must be a wide memory");
6226     // do_aliasing == false if we are organizing the memory states manually.
6227     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
6228   } else {
6229     // make sure the stored slice is sane
6230     #ifdef ASSERT
6231     if (VMError::is_error_reported() || Node::in_dump()) {
6232     } else if (might_be_same(n, base_memory())) {
6233       // Give it a pass:  It is a mostly harmless repetition of the base.
6234       // This can arise normally from node subsumption during optimization.
6235     } else {
6236       verify_memory_slice(this, alias_idx, n);
6237     }
6238     #endif
6239   }
6240   return n;
6241 }
6242 
6243 //---------------------------set_memory_at-------------------------------------
6244 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
6245   verify_memory_slice(this, alias_idx, n);
6246   Node* empty_mem = empty_memory();
6247   if (n == base_memory())  n = empty_mem;  // collapse default
6248   uint need_req = alias_idx+1;
6249   if (req() < need_req) {
6250     if (n == empty_mem)  return;  // already the default, so do not grow me
6251     // grow the sparse array
6252     do {
6253       add_req(empty_mem);
6254     } while (req() < need_req);
6255   }
6256   set_req( alias_idx, n );
6257 }
6258 
6259 
6260 
6261 //--------------------------iteration_setup------------------------------------
6262 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
6263   if (other != nullptr) {
6264     grow_to_match(other);
6265     // invariant:  the finite support of mm2 is within mm->req()
6266     #ifdef ASSERT
6267     for (uint i = req(); i < other->req(); i++) {
6268       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
6269     }
6270     #endif
6271   }
6272   // Replace spurious copies of base_memory by top.
6273   Node* base_mem = base_memory();
6274   if (base_mem != nullptr && !base_mem->is_top()) {
6275     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
6276       if (in(i) == base_mem)
6277         set_req(i, empty_memory());
6278     }
6279   }
6280 }
6281 
6282 //---------------------------grow_to_match-------------------------------------
6283 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
6284   Node* empty_mem = empty_memory();
6285   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
6286   // look for the finite support of the other memory
6287   for (uint i = other->req(); --i >= req(); ) {
6288     if (other->in(i) != empty_mem) {
6289       uint new_len = i+1;
6290       while (req() < new_len)  add_req(empty_mem);
6291       break;
6292     }
6293   }
6294 }
6295 
6296 //---------------------------verify_sparse-------------------------------------
6297 #ifndef PRODUCT
6298 bool MergeMemNode::verify_sparse() const {
6299   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
6300   Node* base_mem = base_memory();
6301   // The following can happen in degenerate cases, since empty==top.
6302   if (is_empty_memory(base_mem))  return true;
6303   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
6304     assert(in(i) != nullptr, "sane slice");
6305     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
6306   }
6307   return true;
6308 }
6309 
6310 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
6311   Node* n;
6312   n = mm->in(idx);
6313   if (mem == n)  return true;  // might be empty_memory()
6314   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
6315   if (mem == n)  return true;
6316   return false;
6317 }
6318 #endif // !PRODUCT