1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_MEMNODE_HPP 27 #define SHARE_OPTO_MEMNODE_HPP 28 29 #include "opto/multnode.hpp" 30 #include "opto/node.hpp" 31 #include "opto/opcodes.hpp" 32 #include "opto/type.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 class MultiNode; 37 class PhaseCCP; 38 class PhaseTransform; 39 40 //------------------------------MemNode---------------------------------------- 41 // Load or Store, possibly throwing a null pointer exception 42 class MemNode : public Node { 43 private: 44 bool _unaligned_access; // Unaligned access from unsafe 45 bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance 46 bool _unsafe_access; // Access of unsafe origin. 47 uint8_t _barrier_data; // Bit field with barrier information 48 49 protected: 50 #ifdef ASSERT 51 const TypePtr* _adr_type; // What kind of memory is being addressed? 52 #endif 53 virtual uint size_of() const; 54 public: 55 enum { Control, // When is it safe to do this load? 56 Memory, // Chunk of memory is being loaded from 57 Address, // Actually address, derived from base 58 ValueIn // Value to store 59 }; 60 typedef enum { unordered = 0, 61 acquire, // Load has to acquire or be succeeded by MemBarAcquire. 62 release, // Store has to release or be preceded by MemBarRelease. 63 seqcst, // LoadStore has to have both acquire and release semantics. 64 unset // The memory ordering is not set (used for testing) 65 } MemOrd; 66 protected: 67 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at ) : 68 Node(c0,c1,c2), 69 _unaligned_access(false), 70 _mismatched_access(false), 71 _unsafe_access(false), 72 _barrier_data(0) { 73 init_class_id(Class_Mem); 74 debug_only(_adr_type=at; adr_type();) 75 } 76 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 ) : 77 Node(c0,c1,c2,c3), 78 _unaligned_access(false), 79 _mismatched_access(false), 80 _unsafe_access(false), 81 _barrier_data(0) { 82 init_class_id(Class_Mem); 83 debug_only(_adr_type=at; adr_type();) 84 } 85 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4) : 86 Node(c0,c1,c2,c3,c4), 87 _unaligned_access(false), 88 _mismatched_access(false), 89 _unsafe_access(false), 90 _barrier_data(0) { 91 init_class_id(Class_Mem); 92 debug_only(_adr_type=at; adr_type();) 93 } 94 95 virtual Node* find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return nullptr; } 96 ArrayCopyNode* find_array_copy_clone(Node* ld_alloc, Node* mem) const; 97 static bool check_if_adr_maybe_raw(Node* adr); 98 99 public: 100 // Helpers for the optimizer. Documented in memnode.cpp. 101 static bool detect_ptr_independence(Node* p1, AllocateNode* a1, 102 Node* p2, AllocateNode* a2, 103 PhaseTransform* phase); 104 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast); 105 106 static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase); 107 static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase); 108 // The following two should probably be phase-specific functions: 109 static DomResult maybe_all_controls_dominate(Node* dom, Node* sub); 110 static bool all_controls_dominate(Node* dom, Node* sub) { 111 DomResult dom_result = maybe_all_controls_dominate(dom, sub); 112 return dom_result == DomResult::Dominate; 113 } 114 115 virtual const class TypePtr *adr_type() const; // returns bottom_type of address 116 117 // Shared code for Ideal methods: 118 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit null. 119 120 // Helper function for adr_type() implementations. 121 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = nullptr); 122 123 // Raw access function, to allow copying of adr_type efficiently in 124 // product builds and retain the debug info for debug builds. 125 const TypePtr *raw_adr_type() const { 126 return DEBUG_ONLY(_adr_type) NOT_DEBUG(nullptr); 127 } 128 129 // Return the barrier data of n, if available, or 0 otherwise. 130 static uint8_t barrier_data(const Node* n); 131 132 // Map a load or store opcode to its corresponding store opcode. 133 // (Return -1 if unknown.) 134 virtual int store_Opcode() const { return -1; } 135 136 // What is the type of the value in memory? (T_VOID mean "unspecified".) 137 virtual BasicType memory_type() const = 0; 138 virtual int memory_size() const { 139 #ifdef ASSERT 140 return type2aelembytes(memory_type(), true); 141 #else 142 return type2aelembytes(memory_type()); 143 #endif 144 } 145 146 uint8_t barrier_data() { return _barrier_data; } 147 void set_barrier_data(uint8_t barrier_data) { _barrier_data = barrier_data; } 148 149 // Search through memory states which precede this node (load or store). 150 // Look for an exact match for the address, with no intervening 151 // aliased stores. 152 Node* find_previous_store(PhaseValues* phase); 153 154 // Can this node (load or store) accurately see a stored value in 155 // the given memory state? (The state may or may not be in(Memory).) 156 Node* can_see_stored_value(Node* st, PhaseValues* phase) const; 157 158 void set_unaligned_access() { _unaligned_access = true; } 159 bool is_unaligned_access() const { return _unaligned_access; } 160 void set_mismatched_access() { _mismatched_access = true; } 161 bool is_mismatched_access() const { return _mismatched_access; } 162 void set_unsafe_access() { _unsafe_access = true; } 163 bool is_unsafe_access() const { return _unsafe_access; } 164 165 #ifndef PRODUCT 166 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st); 167 virtual void dump_spec(outputStream *st) const; 168 #endif 169 }; 170 171 //------------------------------LoadNode--------------------------------------- 172 // Load value; requires Memory and Address 173 class LoadNode : public MemNode { 174 public: 175 // Some loads (from unsafe) should be pinned: they don't depend only 176 // on the dominating test. The field _control_dependency below records 177 // whether that node depends only on the dominating test. 178 // Pinned and UnknownControl are similar, but differ in that Pinned 179 // loads are not allowed to float across safepoints, whereas UnknownControl 180 // loads are allowed to do that. Therefore, Pinned is stricter. 181 enum ControlDependency { 182 Pinned, 183 UnknownControl, 184 DependsOnlyOnTest 185 }; 186 187 private: 188 // LoadNode::hash() doesn't take the _control_dependency field 189 // into account: If the graph already has a non-pinned LoadNode and 190 // we add a pinned LoadNode with the same inputs, it's safe for GVN 191 // to replace the pinned LoadNode with the non-pinned LoadNode, 192 // otherwise it wouldn't be safe to have a non pinned LoadNode with 193 // those inputs in the first place. If the graph already has a 194 // pinned LoadNode and we add a non pinned LoadNode with the same 195 // inputs, it's safe (but suboptimal) for GVN to replace the 196 // non-pinned LoadNode by the pinned LoadNode. 197 ControlDependency _control_dependency; 198 199 // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish 200 // loads that can be reordered, and such requiring acquire semantics to 201 // adhere to the Java specification. The required behaviour is stored in 202 // this field. 203 const MemOrd _mo; 204 205 AllocateNode* is_new_object_mark_load() const; 206 207 protected: 208 virtual bool cmp(const Node &n) const; 209 virtual uint size_of() const; // Size is bigger 210 // Should LoadNode::Ideal() attempt to remove control edges? 211 virtual bool can_remove_control() const; 212 const Type* const _type; // What kind of value is loaded? 213 214 virtual Node* find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const; 215 public: 216 217 LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency) 218 : MemNode(c,mem,adr,at), _control_dependency(control_dependency), _mo(mo), _type(rt) { 219 init_class_id(Class_Load); 220 } 221 inline bool is_unordered() const { return !is_acquire(); } 222 inline bool is_acquire() const { 223 assert(_mo == unordered || _mo == acquire, "unexpected"); 224 return _mo == acquire; 225 } 226 inline bool is_unsigned() const { 227 int lop = Opcode(); 228 return (lop == Op_LoadUB) || (lop == Op_LoadUS); 229 } 230 231 // Polymorphic factory method: 232 static Node* make(PhaseGVN& gvn, Node* c, Node* mem, Node* adr, 233 const TypePtr* at, const Type* rt, BasicType bt, 234 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, 235 bool require_atomic_access = false, bool unaligned = false, bool mismatched = false, bool unsafe = false, 236 uint8_t barrier_data = 0); 237 238 virtual uint hash() const; // Check the type 239 240 // Handle algebraic identities here. If we have an identity, return the Node 241 // we are equivalent to. We look for Load of a Store. 242 virtual Node* Identity(PhaseGVN* phase); 243 244 // If the load is from Field memory and the pointer is non-null, it might be possible to 245 // zero out the control input. 246 // If the offset is constant and the base is an object allocation, 247 // try to hook me up to the exact initializing store. 248 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 249 250 // Return true if it's possible to split the Load through a Phi merging the bases 251 bool can_split_through_phi_base(PhaseGVN *phase); 252 253 // Split instance field load through Phi. 254 Node* split_through_phi(PhaseGVN *phase, bool ignore_missing_instance_id = false); 255 256 // Recover original value from boxed values 257 Node *eliminate_autobox(PhaseIterGVN *igvn); 258 259 // Compute a new Type for this node. Basically we just do the pre-check, 260 // then call the virtual add() to set the type. 261 virtual const Type* Value(PhaseGVN* phase) const; 262 263 // Common methods for LoadKlass and LoadNKlass nodes. 264 const Type* klass_value_common(PhaseGVN* phase) const; 265 Node* klass_identity_common(PhaseGVN* phase); 266 267 virtual uint ideal_reg() const; 268 virtual const Type *bottom_type() const; 269 // Following method is copied from TypeNode: 270 void set_type(const Type* t) { 271 assert(t != nullptr, "sanity"); 272 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 273 *(const Type**)&_type = t; // cast away const-ness 274 // If this node is in the hash table, make sure it doesn't need a rehash. 275 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 276 } 277 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 278 279 // Do not match memory edge 280 virtual uint match_edge(uint idx) const; 281 282 // Map a load opcode to its corresponding store opcode. 283 virtual int store_Opcode() const = 0; 284 285 // Check if the load's memory input is a Phi node with the same control. 286 bool is_instance_field_load_with_local_phi(Node* ctrl); 287 288 Node* convert_to_unsigned_load(PhaseGVN& gvn); 289 Node* convert_to_signed_load(PhaseGVN& gvn); 290 291 bool has_reinterpret_variant(const Type* rt); 292 Node* convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt); 293 294 ControlDependency control_dependency() const { return _control_dependency; } 295 bool has_unknown_control_dependency() const { return _control_dependency == UnknownControl; } 296 bool has_pinned_control_dependency() const { return _control_dependency == Pinned; } 297 298 LoadNode* pin_array_access_node() const; 299 300 #ifndef PRODUCT 301 virtual void dump_spec(outputStream *st) const; 302 #endif 303 #ifdef ASSERT 304 // Helper function to allow a raw load without control edge for some cases 305 static bool is_immutable_value(Node* adr); 306 #endif 307 protected: 308 const Type* load_array_final_field(const TypeKlassPtr *tkls, 309 ciKlass* klass) const; 310 311 Node* can_see_arraycopy_value(Node* st, PhaseGVN* phase) const; 312 313 // depends_only_on_test is almost always true, and needs to be almost always 314 // true to enable key hoisting & commoning optimizations. However, for the 315 // special case of RawPtr loads from TLS top & end, and other loads performed by 316 // GC barriers, the control edge carries the dependence preventing hoisting past 317 // a Safepoint instead of the memory edge. (An unfortunate consequence of having 318 // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes 319 // which produce results (new raw memory state) inside of loops preventing all 320 // manner of other optimizations). Basically, it's ugly but so is the alternative. 321 // See comment in macro.cpp, around line 125 expand_allocate_common(). 322 virtual bool depends_only_on_test() const { 323 return adr_type() != TypeRawPtr::BOTTOM && _control_dependency == DependsOnlyOnTest; 324 } 325 326 LoadNode* clone_pinned() const; 327 }; 328 329 //------------------------------LoadBNode-------------------------------------- 330 // Load a byte (8bits signed) from memory 331 class LoadBNode : public LoadNode { 332 public: 333 LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 334 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {} 335 virtual int Opcode() const; 336 virtual uint ideal_reg() const { return Op_RegI; } 337 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 338 virtual const Type* Value(PhaseGVN* phase) const; 339 virtual int store_Opcode() const { return Op_StoreB; } 340 virtual BasicType memory_type() const { return T_BYTE; } 341 }; 342 343 //------------------------------LoadUBNode------------------------------------- 344 // Load a unsigned byte (8bits unsigned) from memory 345 class LoadUBNode : public LoadNode { 346 public: 347 LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 348 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {} 349 virtual int Opcode() const; 350 virtual uint ideal_reg() const { return Op_RegI; } 351 virtual Node* Ideal(PhaseGVN *phase, bool can_reshape); 352 virtual const Type* Value(PhaseGVN* phase) const; 353 virtual int store_Opcode() const { return Op_StoreB; } 354 virtual BasicType memory_type() const { return T_BYTE; } 355 }; 356 357 //------------------------------LoadUSNode------------------------------------- 358 // Load an unsigned short/char (16bits unsigned) from memory 359 class LoadUSNode : public LoadNode { 360 public: 361 LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 362 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {} 363 virtual int Opcode() const; 364 virtual uint ideal_reg() const { return Op_RegI; } 365 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 366 virtual const Type* Value(PhaseGVN* phase) const; 367 virtual int store_Opcode() const { return Op_StoreC; } 368 virtual BasicType memory_type() const { return T_CHAR; } 369 }; 370 371 //------------------------------LoadSNode-------------------------------------- 372 // Load a short (16bits signed) from memory 373 class LoadSNode : public LoadNode { 374 public: 375 LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 376 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {} 377 virtual int Opcode() const; 378 virtual uint ideal_reg() const { return Op_RegI; } 379 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 380 virtual const Type* Value(PhaseGVN* phase) const; 381 virtual int store_Opcode() const { return Op_StoreC; } 382 virtual BasicType memory_type() const { return T_SHORT; } 383 }; 384 385 //------------------------------LoadINode-------------------------------------- 386 // Load an integer from memory 387 class LoadINode : public LoadNode { 388 public: 389 LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 390 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {} 391 virtual int Opcode() const; 392 virtual uint ideal_reg() const { return Op_RegI; } 393 virtual int store_Opcode() const { return Op_StoreI; } 394 virtual BasicType memory_type() const { return T_INT; } 395 }; 396 397 //------------------------------LoadRangeNode---------------------------------- 398 // Load an array length from the array 399 class LoadRangeNode : public LoadINode { 400 public: 401 LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS) 402 : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {} 403 virtual int Opcode() const; 404 virtual const Type* Value(PhaseGVN* phase) const; 405 virtual Node* Identity(PhaseGVN* phase); 406 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 407 }; 408 409 //------------------------------LoadLNode-------------------------------------- 410 // Load a long from memory 411 class LoadLNode : public LoadNode { 412 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; } 413 virtual bool cmp( const Node &n ) const { 414 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access 415 && LoadNode::cmp(n); 416 } 417 virtual uint size_of() const { return sizeof(*this); } 418 const bool _require_atomic_access; // is piecewise load forbidden? 419 420 public: 421 LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl, 422 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false) 423 : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {} 424 virtual int Opcode() const; 425 virtual uint ideal_reg() const { return Op_RegL; } 426 virtual int store_Opcode() const { return Op_StoreL; } 427 virtual BasicType memory_type() const { return T_LONG; } 428 bool require_atomic_access() const { return _require_atomic_access; } 429 430 #ifndef PRODUCT 431 virtual void dump_spec(outputStream *st) const { 432 LoadNode::dump_spec(st); 433 if (_require_atomic_access) st->print(" Atomic!"); 434 } 435 #endif 436 }; 437 438 //------------------------------LoadL_unalignedNode---------------------------- 439 // Load a long from unaligned memory 440 class LoadL_unalignedNode : public LoadLNode { 441 public: 442 LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 443 : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {} 444 virtual int Opcode() const; 445 }; 446 447 //------------------------------LoadFNode-------------------------------------- 448 // Load a float (64 bits) from memory 449 class LoadFNode : public LoadNode { 450 public: 451 LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 452 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {} 453 virtual int Opcode() const; 454 virtual uint ideal_reg() const { return Op_RegF; } 455 virtual int store_Opcode() const { return Op_StoreF; } 456 virtual BasicType memory_type() const { return T_FLOAT; } 457 }; 458 459 //------------------------------LoadDNode-------------------------------------- 460 // Load a double (64 bits) from memory 461 class LoadDNode : public LoadNode { 462 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; } 463 virtual bool cmp( const Node &n ) const { 464 return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access 465 && LoadNode::cmp(n); 466 } 467 virtual uint size_of() const { return sizeof(*this); } 468 const bool _require_atomic_access; // is piecewise load forbidden? 469 470 public: 471 LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, 472 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false) 473 : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {} 474 virtual int Opcode() const; 475 virtual uint ideal_reg() const { return Op_RegD; } 476 virtual int store_Opcode() const { return Op_StoreD; } 477 virtual BasicType memory_type() const { return T_DOUBLE; } 478 bool require_atomic_access() const { return _require_atomic_access; } 479 480 #ifndef PRODUCT 481 virtual void dump_spec(outputStream *st) const { 482 LoadNode::dump_spec(st); 483 if (_require_atomic_access) st->print(" Atomic!"); 484 } 485 #endif 486 }; 487 488 //------------------------------LoadD_unalignedNode---------------------------- 489 // Load a double from unaligned memory 490 class LoadD_unalignedNode : public LoadDNode { 491 public: 492 LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 493 : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {} 494 virtual int Opcode() const; 495 }; 496 497 //------------------------------LoadPNode-------------------------------------- 498 // Load a pointer from memory (either object or array) 499 class LoadPNode : public LoadNode { 500 public: 501 LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 502 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {} 503 virtual int Opcode() const; 504 virtual uint ideal_reg() const { return Op_RegP; } 505 virtual int store_Opcode() const { return Op_StoreP; } 506 virtual BasicType memory_type() const { return T_ADDRESS; } 507 }; 508 509 510 //------------------------------LoadNNode-------------------------------------- 511 // Load a narrow oop from memory (either object or array) 512 class LoadNNode : public LoadNode { 513 public: 514 LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 515 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {} 516 virtual int Opcode() const; 517 virtual uint ideal_reg() const { return Op_RegN; } 518 virtual int store_Opcode() const { return Op_StoreN; } 519 virtual BasicType memory_type() const { return T_NARROWOOP; } 520 }; 521 522 //------------------------------LoadKlassNode---------------------------------- 523 // Load a Klass from an object 524 class LoadKlassNode : public LoadPNode { 525 protected: 526 // In most cases, LoadKlassNode does not have the control input set. If the control 527 // input is set, it must not be removed (by LoadNode::Ideal()). 528 virtual bool can_remove_control() const; 529 public: 530 LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo) 531 : LoadPNode(c, mem, adr, at, tk, mo) {} 532 virtual int Opcode() const; 533 virtual const Type* Value(PhaseGVN* phase) const; 534 virtual Node* Identity(PhaseGVN* phase); 535 virtual bool depends_only_on_test() const { return true; } 536 537 // Polymorphic factory method: 538 static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, 539 const TypeKlassPtr* tk = TypeInstKlassPtr::OBJECT); 540 }; 541 542 //------------------------------LoadNKlassNode--------------------------------- 543 // Load a narrow Klass from an object. 544 class LoadNKlassNode : public LoadNNode { 545 public: 546 LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo) 547 : LoadNNode(c, mem, adr, at, tk, mo) {} 548 virtual int Opcode() const; 549 virtual uint ideal_reg() const { return Op_RegN; } 550 virtual int store_Opcode() const { return Op_StoreNKlass; } 551 virtual BasicType memory_type() const { return T_NARROWKLASS; } 552 553 virtual const Type* Value(PhaseGVN* phase) const; 554 virtual Node* Identity(PhaseGVN* phase); 555 virtual bool depends_only_on_test() const { return true; } 556 }; 557 558 559 //------------------------------StoreNode-------------------------------------- 560 // Store value; requires Store, Address and Value 561 class StoreNode : public MemNode { 562 private: 563 // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish 564 // stores that can be reordered, and such requiring release semantics to 565 // adhere to the Java specification. The required behaviour is stored in 566 // this field. 567 const MemOrd _mo; 568 // Needed for proper cloning. 569 virtual uint size_of() const { return sizeof(*this); } 570 protected: 571 virtual bool cmp( const Node &n ) const; 572 virtual bool depends_only_on_test() const { return false; } 573 574 Node *Ideal_masked_input (PhaseGVN *phase, uint mask); 575 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits); 576 577 public: 578 // We must ensure that stores of object references will be visible 579 // only after the object's initialization. So the callers of this 580 // procedure must indicate that the store requires `release' 581 // semantics, if the stored value is an object reference that might 582 // point to a new object and may become externally visible. 583 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 584 : MemNode(c, mem, adr, at, val), _mo(mo) { 585 init_class_id(Class_Store); 586 } 587 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo) 588 : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) { 589 init_class_id(Class_Store); 590 } 591 592 inline bool is_unordered() const { return !is_release(); } 593 inline bool is_release() const { 594 assert((_mo == unordered || _mo == release), "unexpected"); 595 return _mo == release; 596 } 597 598 // Conservatively release stores of object references in order to 599 // ensure visibility of object initialization. 600 static inline MemOrd release_if_reference(const BasicType t) { 601 #ifdef AARCH64 602 // AArch64 doesn't need a release store here because object 603 // initialization contains the necessary barriers. 604 return unordered; 605 #else 606 const MemOrd mo = (t == T_ARRAY || 607 t == T_ADDRESS || // Might be the address of an object reference (`boxing'). 608 t == T_OBJECT) ? release : unordered; 609 return mo; 610 #endif 611 } 612 613 // Polymorphic factory method 614 // 615 // We must ensure that stores of object references will be visible 616 // only after the object's initialization. So the callers of this 617 // procedure must indicate that the store requires `release' 618 // semantics, if the stored value is an object reference that might 619 // point to a new object and may become externally visible. 620 static StoreNode* make(PhaseGVN& gvn, Node* c, Node* mem, Node* adr, 621 const TypePtr* at, Node* val, BasicType bt, 622 MemOrd mo, bool require_atomic_access = false); 623 624 virtual uint hash() const; // Check the type 625 626 // If the store is to Field memory and the pointer is non-null, we can 627 // zero out the control input. 628 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 629 630 // Compute a new Type for this node. Basically we just do the pre-check, 631 // then call the virtual add() to set the type. 632 virtual const Type* Value(PhaseGVN* phase) const; 633 634 // Check for identity function on memory (Load then Store at same address) 635 virtual Node* Identity(PhaseGVN* phase); 636 637 // Do not match memory edge 638 virtual uint match_edge(uint idx) const; 639 640 virtual const Type *bottom_type() const; // returns Type::MEMORY 641 642 // Map a store opcode to its corresponding own opcode, trivially. 643 virtual int store_Opcode() const { return Opcode(); } 644 645 // have all possible loads of the value stored been optimized away? 646 bool value_never_loaded(PhaseValues* phase) const; 647 648 bool has_reinterpret_variant(const Type* vt); 649 Node* convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt); 650 651 MemBarNode* trailing_membar() const; 652 }; 653 654 //------------------------------StoreBNode------------------------------------- 655 // Store byte to memory 656 class StoreBNode : public StoreNode { 657 public: 658 StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 659 : StoreNode(c, mem, adr, at, val, mo) {} 660 virtual int Opcode() const; 661 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 662 virtual BasicType memory_type() const { return T_BYTE; } 663 }; 664 665 //------------------------------StoreCNode------------------------------------- 666 // Store char/short to memory 667 class StoreCNode : public StoreNode { 668 public: 669 StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 670 : StoreNode(c, mem, adr, at, val, mo) {} 671 virtual int Opcode() const; 672 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 673 virtual BasicType memory_type() const { return T_CHAR; } 674 }; 675 676 //------------------------------StoreINode------------------------------------- 677 // Store int to memory 678 class StoreINode : public StoreNode { 679 public: 680 StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 681 : StoreNode(c, mem, adr, at, val, mo) {} 682 virtual int Opcode() const; 683 virtual BasicType memory_type() const { return T_INT; } 684 }; 685 686 //------------------------------StoreLNode------------------------------------- 687 // Store long to memory 688 class StoreLNode : public StoreNode { 689 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; } 690 virtual bool cmp( const Node &n ) const { 691 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access 692 && StoreNode::cmp(n); 693 } 694 virtual uint size_of() const { return sizeof(*this); } 695 const bool _require_atomic_access; // is piecewise store forbidden? 696 697 public: 698 StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false) 699 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {} 700 virtual int Opcode() const; 701 virtual BasicType memory_type() const { return T_LONG; } 702 bool require_atomic_access() const { return _require_atomic_access; } 703 704 #ifndef PRODUCT 705 virtual void dump_spec(outputStream *st) const { 706 StoreNode::dump_spec(st); 707 if (_require_atomic_access) st->print(" Atomic!"); 708 } 709 #endif 710 }; 711 712 //------------------------------StoreFNode------------------------------------- 713 // Store float to memory 714 class StoreFNode : public StoreNode { 715 public: 716 StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 717 : StoreNode(c, mem, adr, at, val, mo) {} 718 virtual int Opcode() const; 719 virtual BasicType memory_type() const { return T_FLOAT; } 720 }; 721 722 //------------------------------StoreDNode------------------------------------- 723 // Store double to memory 724 class StoreDNode : public StoreNode { 725 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; } 726 virtual bool cmp( const Node &n ) const { 727 return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access 728 && StoreNode::cmp(n); 729 } 730 virtual uint size_of() const { return sizeof(*this); } 731 const bool _require_atomic_access; // is piecewise store forbidden? 732 public: 733 StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, 734 MemOrd mo, bool require_atomic_access = false) 735 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {} 736 virtual int Opcode() const; 737 virtual BasicType memory_type() const { return T_DOUBLE; } 738 bool require_atomic_access() const { return _require_atomic_access; } 739 740 #ifndef PRODUCT 741 virtual void dump_spec(outputStream *st) const { 742 StoreNode::dump_spec(st); 743 if (_require_atomic_access) st->print(" Atomic!"); 744 } 745 #endif 746 747 }; 748 749 //------------------------------StorePNode------------------------------------- 750 // Store pointer to memory 751 class StorePNode : public StoreNode { 752 public: 753 StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 754 : StoreNode(c, mem, adr, at, val, mo) {} 755 virtual int Opcode() const; 756 virtual BasicType memory_type() const { return T_ADDRESS; } 757 }; 758 759 //------------------------------StoreNNode------------------------------------- 760 // Store narrow oop to memory 761 class StoreNNode : public StoreNode { 762 public: 763 StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 764 : StoreNode(c, mem, adr, at, val, mo) {} 765 virtual int Opcode() const; 766 virtual BasicType memory_type() const { return T_NARROWOOP; } 767 }; 768 769 //------------------------------StoreNKlassNode-------------------------------------- 770 // Store narrow klass to memory 771 class StoreNKlassNode : public StoreNNode { 772 public: 773 StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 774 : StoreNNode(c, mem, adr, at, val, mo) {} 775 virtual int Opcode() const; 776 virtual BasicType memory_type() const { return T_NARROWKLASS; } 777 }; 778 779 //------------------------------SCMemProjNode--------------------------------------- 780 // This class defines a projection of the memory state of a store conditional node. 781 // These nodes return a value, but also update memory. 782 class SCMemProjNode : public ProjNode { 783 public: 784 enum {SCMEMPROJCON = (uint)-2}; 785 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { } 786 virtual int Opcode() const; 787 virtual bool is_CFG() const { return false; } 788 virtual const Type *bottom_type() const {return Type::MEMORY;} 789 virtual const TypePtr *adr_type() const { 790 Node* ctrl = in(0); 791 if (ctrl == nullptr) return nullptr; // node is dead 792 return ctrl->in(MemNode::Memory)->adr_type(); 793 } 794 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register 795 virtual const Type* Value(PhaseGVN* phase) const; 796 #ifndef PRODUCT 797 virtual void dump_spec(outputStream *st) const {}; 798 #endif 799 }; 800 801 //------------------------------LoadStoreNode--------------------------- 802 // Note: is_Mem() method returns 'true' for this class. 803 class LoadStoreNode : public Node { 804 private: 805 const Type* const _type; // What kind of value is loaded? 806 const TypePtr* _adr_type; // What kind of memory is being addressed? 807 uint8_t _barrier_data; // Bit field with barrier information 808 virtual uint size_of() const; // Size is bigger 809 public: 810 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ); 811 virtual bool depends_only_on_test() const { return false; } 812 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; } 813 814 virtual const Type *bottom_type() const { return _type; } 815 virtual uint ideal_reg() const; 816 virtual const class TypePtr *adr_type() const { return _adr_type; } // returns bottom_type of address 817 virtual const Type* Value(PhaseGVN* phase) const; 818 819 bool result_not_used() const; 820 MemBarNode* trailing_membar() const; 821 822 uint8_t barrier_data() { return _barrier_data; } 823 void set_barrier_data(uint8_t barrier_data) { _barrier_data = barrier_data; } 824 }; 825 826 class LoadStoreConditionalNode : public LoadStoreNode { 827 public: 828 enum { 829 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode 830 }; 831 LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex); 832 virtual const Type* Value(PhaseGVN* phase) const; 833 }; 834 835 class CompareAndSwapNode : public LoadStoreConditionalNode { 836 private: 837 const MemNode::MemOrd _mem_ord; 838 public: 839 CompareAndSwapNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : LoadStoreConditionalNode(c, mem, adr, val, ex), _mem_ord(mem_ord) {} 840 MemNode::MemOrd order() const { 841 return _mem_ord; 842 } 843 virtual uint size_of() const { return sizeof(*this); } 844 }; 845 846 class CompareAndExchangeNode : public LoadStoreNode { 847 private: 848 const MemNode::MemOrd _mem_ord; 849 public: 850 enum { 851 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode 852 }; 853 CompareAndExchangeNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord, const TypePtr* at, const Type* t) : 854 LoadStoreNode(c, mem, adr, val, at, t, 5), _mem_ord(mem_ord) { 855 init_req(ExpectedIn, ex ); 856 } 857 858 MemNode::MemOrd order() const { 859 return _mem_ord; 860 } 861 virtual uint size_of() const { return sizeof(*this); } 862 }; 863 864 //------------------------------CompareAndSwapBNode--------------------------- 865 class CompareAndSwapBNode : public CompareAndSwapNode { 866 public: 867 CompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 868 virtual int Opcode() const; 869 }; 870 871 //------------------------------CompareAndSwapSNode--------------------------- 872 class CompareAndSwapSNode : public CompareAndSwapNode { 873 public: 874 CompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 875 virtual int Opcode() const; 876 }; 877 878 //------------------------------CompareAndSwapINode--------------------------- 879 class CompareAndSwapINode : public CompareAndSwapNode { 880 public: 881 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 882 virtual int Opcode() const; 883 }; 884 885 //------------------------------CompareAndSwapLNode--------------------------- 886 class CompareAndSwapLNode : public CompareAndSwapNode { 887 public: 888 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 889 virtual int Opcode() const; 890 }; 891 892 //------------------------------CompareAndSwapPNode--------------------------- 893 class CompareAndSwapPNode : public CompareAndSwapNode { 894 public: 895 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 896 virtual int Opcode() const; 897 }; 898 899 //------------------------------CompareAndSwapNNode--------------------------- 900 class CompareAndSwapNNode : public CompareAndSwapNode { 901 public: 902 CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 903 virtual int Opcode() const; 904 }; 905 906 //------------------------------WeakCompareAndSwapBNode--------------------------- 907 class WeakCompareAndSwapBNode : public CompareAndSwapNode { 908 public: 909 WeakCompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 910 virtual int Opcode() const; 911 }; 912 913 //------------------------------WeakCompareAndSwapSNode--------------------------- 914 class WeakCompareAndSwapSNode : public CompareAndSwapNode { 915 public: 916 WeakCompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 917 virtual int Opcode() const; 918 }; 919 920 //------------------------------WeakCompareAndSwapINode--------------------------- 921 class WeakCompareAndSwapINode : public CompareAndSwapNode { 922 public: 923 WeakCompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 924 virtual int Opcode() const; 925 }; 926 927 //------------------------------WeakCompareAndSwapLNode--------------------------- 928 class WeakCompareAndSwapLNode : public CompareAndSwapNode { 929 public: 930 WeakCompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 931 virtual int Opcode() const; 932 }; 933 934 //------------------------------WeakCompareAndSwapPNode--------------------------- 935 class WeakCompareAndSwapPNode : public CompareAndSwapNode { 936 public: 937 WeakCompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 938 virtual int Opcode() const; 939 }; 940 941 //------------------------------WeakCompareAndSwapNNode--------------------------- 942 class WeakCompareAndSwapNNode : public CompareAndSwapNode { 943 public: 944 WeakCompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 945 virtual int Opcode() const; 946 }; 947 948 //------------------------------CompareAndExchangeBNode--------------------------- 949 class CompareAndExchangeBNode : public CompareAndExchangeNode { 950 public: 951 CompareAndExchangeBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::BYTE) { } 952 virtual int Opcode() const; 953 }; 954 955 956 //------------------------------CompareAndExchangeSNode--------------------------- 957 class CompareAndExchangeSNode : public CompareAndExchangeNode { 958 public: 959 CompareAndExchangeSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::SHORT) { } 960 virtual int Opcode() const; 961 }; 962 963 //------------------------------CompareAndExchangeLNode--------------------------- 964 class CompareAndExchangeLNode : public CompareAndExchangeNode { 965 public: 966 CompareAndExchangeLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeLong::LONG) { } 967 virtual int Opcode() const; 968 }; 969 970 971 //------------------------------CompareAndExchangeINode--------------------------- 972 class CompareAndExchangeINode : public CompareAndExchangeNode { 973 public: 974 CompareAndExchangeINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::INT) { } 975 virtual int Opcode() const; 976 }; 977 978 979 //------------------------------CompareAndExchangePNode--------------------------- 980 class CompareAndExchangePNode : public CompareAndExchangeNode { 981 public: 982 CompareAndExchangePNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { } 983 virtual int Opcode() const; 984 }; 985 986 //------------------------------CompareAndExchangeNNode--------------------------- 987 class CompareAndExchangeNNode : public CompareAndExchangeNode { 988 public: 989 CompareAndExchangeNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { } 990 virtual int Opcode() const; 991 }; 992 993 //------------------------------GetAndAddBNode--------------------------- 994 class GetAndAddBNode : public LoadStoreNode { 995 public: 996 GetAndAddBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { } 997 virtual int Opcode() const; 998 }; 999 1000 //------------------------------GetAndAddSNode--------------------------- 1001 class GetAndAddSNode : public LoadStoreNode { 1002 public: 1003 GetAndAddSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { } 1004 virtual int Opcode() const; 1005 }; 1006 1007 //------------------------------GetAndAddINode--------------------------- 1008 class GetAndAddINode : public LoadStoreNode { 1009 public: 1010 GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { } 1011 virtual int Opcode() const; 1012 }; 1013 1014 //------------------------------GetAndAddLNode--------------------------- 1015 class GetAndAddLNode : public LoadStoreNode { 1016 public: 1017 GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { } 1018 virtual int Opcode() const; 1019 }; 1020 1021 //------------------------------GetAndSetBNode--------------------------- 1022 class GetAndSetBNode : public LoadStoreNode { 1023 public: 1024 GetAndSetBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { } 1025 virtual int Opcode() const; 1026 }; 1027 1028 //------------------------------GetAndSetSNode--------------------------- 1029 class GetAndSetSNode : public LoadStoreNode { 1030 public: 1031 GetAndSetSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { } 1032 virtual int Opcode() const; 1033 }; 1034 1035 //------------------------------GetAndSetINode--------------------------- 1036 class GetAndSetINode : public LoadStoreNode { 1037 public: 1038 GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { } 1039 virtual int Opcode() const; 1040 }; 1041 1042 //------------------------------GetAndSetLNode--------------------------- 1043 class GetAndSetLNode : public LoadStoreNode { 1044 public: 1045 GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { } 1046 virtual int Opcode() const; 1047 }; 1048 1049 //------------------------------GetAndSetPNode--------------------------- 1050 class GetAndSetPNode : public LoadStoreNode { 1051 public: 1052 GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { } 1053 virtual int Opcode() const; 1054 }; 1055 1056 //------------------------------GetAndSetNNode--------------------------- 1057 class GetAndSetNNode : public LoadStoreNode { 1058 public: 1059 GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { } 1060 virtual int Opcode() const; 1061 }; 1062 1063 //------------------------------ClearArray------------------------------------- 1064 class ClearArrayNode: public Node { 1065 private: 1066 bool _is_large; 1067 public: 1068 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base, bool is_large) 1069 : Node(ctrl,arymem,word_cnt,base), _is_large(is_large) { 1070 init_class_id(Class_ClearArray); 1071 } 1072 virtual int Opcode() const; 1073 virtual const Type *bottom_type() const { return Type::MEMORY; } 1074 // ClearArray modifies array elements, and so affects only the 1075 // array memory addressed by the bottom_type of its base address. 1076 virtual const class TypePtr *adr_type() const; 1077 virtual Node* Identity(PhaseGVN* phase); 1078 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1079 virtual uint match_edge(uint idx) const; 1080 bool is_large() const { return _is_large; } 1081 1082 // Clear the given area of an object or array. 1083 // The start offset must always be aligned mod BytesPerInt. 1084 // The end offset must always be aligned mod BytesPerLong. 1085 // Return the new memory. 1086 static Node* clear_memory(Node* control, Node* mem, Node* dest, 1087 intptr_t start_offset, 1088 intptr_t end_offset, 1089 PhaseGVN* phase); 1090 static Node* clear_memory(Node* control, Node* mem, Node* dest, 1091 intptr_t start_offset, 1092 Node* end_offset, 1093 PhaseGVN* phase); 1094 static Node* clear_memory(Node* control, Node* mem, Node* dest, 1095 Node* start_offset, 1096 Node* end_offset, 1097 PhaseGVN* phase); 1098 // Return allocation input memory edge if it is different instance 1099 // or itself if it is the one we are looking for. 1100 static bool step_through(Node** np, uint instance_id, PhaseValues* phase); 1101 }; 1102 1103 //------------------------------MemBar----------------------------------------- 1104 // There are different flavors of Memory Barriers to match the Java Memory 1105 // Model. Monitor-enter and volatile-load act as Acquires: no following ref 1106 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or 1107 // volatile-load. Monitor-exit and volatile-store act as Release: no 1108 // preceding ref can be moved to after them. We insert a MemBar-Release 1109 // before a FastUnlock or volatile-store. All volatiles need to be 1110 // serialized, so we follow all volatile-stores with a MemBar-Volatile to 1111 // separate it from any following volatile-load. 1112 class MemBarNode: public MultiNode { 1113 virtual uint hash() const ; // { return NO_HASH; } 1114 virtual bool cmp( const Node &n ) const ; // Always fail, except on self 1115 1116 virtual uint size_of() const { return sizeof(*this); } 1117 // Memory type this node is serializing. Usually either rawptr or bottom. 1118 const TypePtr* _adr_type; 1119 1120 // How is this membar related to a nearby memory access? 1121 enum { 1122 Standalone, 1123 TrailingLoad, 1124 TrailingStore, 1125 LeadingStore, 1126 TrailingLoadStore, 1127 LeadingLoadStore, 1128 TrailingPartialArrayCopy 1129 } _kind; 1130 1131 #ifdef ASSERT 1132 uint _pair_idx; 1133 #endif 1134 1135 public: 1136 enum { 1137 Precedent = TypeFunc::Parms // optional edge to force precedence 1138 }; 1139 MemBarNode(Compile* C, int alias_idx, Node* precedent); 1140 virtual int Opcode() const = 0; 1141 virtual const class TypePtr *adr_type() const { return _adr_type; } 1142 virtual const Type* Value(PhaseGVN* phase) const; 1143 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1144 virtual uint match_edge(uint idx) const { return 0; } 1145 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; } 1146 virtual Node *match( const ProjNode *proj, const Matcher *m ); 1147 // Factory method. Builds a wide or narrow membar. 1148 // Optional 'precedent' becomes an extra edge if not null. 1149 static MemBarNode* make(Compile* C, int opcode, 1150 int alias_idx = Compile::AliasIdxBot, 1151 Node* precedent = nullptr); 1152 1153 MemBarNode* trailing_membar() const; 1154 MemBarNode* leading_membar() const; 1155 1156 void set_trailing_load() { _kind = TrailingLoad; } 1157 bool trailing_load() const { return _kind == TrailingLoad; } 1158 bool trailing_store() const { return _kind == TrailingStore; } 1159 bool leading_store() const { return _kind == LeadingStore; } 1160 bool trailing_load_store() const { return _kind == TrailingLoadStore; } 1161 bool leading_load_store() const { return _kind == LeadingLoadStore; } 1162 bool trailing() const { return _kind == TrailingLoad || _kind == TrailingStore || _kind == TrailingLoadStore; } 1163 bool leading() const { return _kind == LeadingStore || _kind == LeadingLoadStore; } 1164 bool standalone() const { return _kind == Standalone; } 1165 void set_trailing_partial_array_copy() { _kind = TrailingPartialArrayCopy; } 1166 bool trailing_partial_array_copy() const { return _kind == TrailingPartialArrayCopy; } 1167 1168 static void set_store_pair(MemBarNode* leading, MemBarNode* trailing); 1169 static void set_load_store_pair(MemBarNode* leading, MemBarNode* trailing); 1170 1171 void remove(PhaseIterGVN *igvn); 1172 }; 1173 1174 // "Acquire" - no following ref can move before (but earlier refs can 1175 // follow, like an early Load stalled in cache). Requires multi-cpu 1176 // visibility. Inserted after a volatile load. 1177 class MemBarAcquireNode: public MemBarNode { 1178 public: 1179 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent) 1180 : MemBarNode(C, alias_idx, precedent) {} 1181 virtual int Opcode() const; 1182 }; 1183 1184 // "Acquire" - no following ref can move before (but earlier refs can 1185 // follow, like an early Load stalled in cache). Requires multi-cpu 1186 // visibility. Inserted independent of any load, as required 1187 // for intrinsic Unsafe.loadFence(). 1188 class LoadFenceNode: public MemBarNode { 1189 public: 1190 LoadFenceNode(Compile* C, int alias_idx, Node* precedent) 1191 : MemBarNode(C, alias_idx, precedent) {} 1192 virtual int Opcode() const; 1193 }; 1194 1195 // "Release" - no earlier ref can move after (but later refs can move 1196 // up, like a speculative pipelined cache-hitting Load). Requires 1197 // multi-cpu visibility. Inserted before a volatile store. 1198 class MemBarReleaseNode: public MemBarNode { 1199 public: 1200 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent) 1201 : MemBarNode(C, alias_idx, precedent) {} 1202 virtual int Opcode() const; 1203 }; 1204 1205 // "Release" - no earlier ref can move after (but later refs can move 1206 // up, like a speculative pipelined cache-hitting Load). Requires 1207 // multi-cpu visibility. Inserted independent of any store, as required 1208 // for intrinsic Unsafe.storeFence(). 1209 class StoreFenceNode: public MemBarNode { 1210 public: 1211 StoreFenceNode(Compile* C, int alias_idx, Node* precedent) 1212 : MemBarNode(C, alias_idx, precedent) {} 1213 virtual int Opcode() const; 1214 }; 1215 1216 // "Acquire" - no following ref can move before (but earlier refs can 1217 // follow, like an early Load stalled in cache). Requires multi-cpu 1218 // visibility. Inserted after a FastLock. 1219 class MemBarAcquireLockNode: public MemBarNode { 1220 public: 1221 MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent) 1222 : MemBarNode(C, alias_idx, precedent) {} 1223 virtual int Opcode() const; 1224 }; 1225 1226 // "Release" - no earlier ref can move after (but later refs can move 1227 // up, like a speculative pipelined cache-hitting Load). Requires 1228 // multi-cpu visibility. Inserted before a FastUnLock. 1229 class MemBarReleaseLockNode: public MemBarNode { 1230 public: 1231 MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent) 1232 : MemBarNode(C, alias_idx, precedent) {} 1233 virtual int Opcode() const; 1234 }; 1235 1236 class MemBarStoreStoreNode: public MemBarNode { 1237 public: 1238 MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent) 1239 : MemBarNode(C, alias_idx, precedent) { 1240 init_class_id(Class_MemBarStoreStore); 1241 } 1242 virtual int Opcode() const; 1243 }; 1244 1245 class StoreStoreFenceNode: public MemBarNode { 1246 public: 1247 StoreStoreFenceNode(Compile* C, int alias_idx, Node* precedent) 1248 : MemBarNode(C, alias_idx, precedent) {} 1249 virtual int Opcode() const; 1250 }; 1251 1252 // Ordering between a volatile store and a following volatile load. 1253 // Requires multi-CPU visibility? 1254 class MemBarVolatileNode: public MemBarNode { 1255 public: 1256 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent) 1257 : MemBarNode(C, alias_idx, precedent) {} 1258 virtual int Opcode() const; 1259 }; 1260 1261 // Ordering within the same CPU. Used to order unsafe memory references 1262 // inside the compiler when we lack alias info. Not needed "outside" the 1263 // compiler because the CPU does all the ordering for us. 1264 class MemBarCPUOrderNode: public MemBarNode { 1265 public: 1266 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent) 1267 : MemBarNode(C, alias_idx, precedent) {} 1268 virtual int Opcode() const; 1269 virtual uint ideal_reg() const { return 0; } // not matched in the AD file 1270 }; 1271 1272 class OnSpinWaitNode: public MemBarNode { 1273 public: 1274 OnSpinWaitNode(Compile* C, int alias_idx, Node* precedent) 1275 : MemBarNode(C, alias_idx, precedent) {} 1276 virtual int Opcode() const; 1277 }; 1278 1279 // Isolation of object setup after an AllocateNode and before next safepoint. 1280 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.) 1281 class InitializeNode: public MemBarNode { 1282 friend class AllocateNode; 1283 1284 enum { 1285 Incomplete = 0, 1286 Complete = 1, 1287 WithArraycopy = 2 1288 }; 1289 int _is_complete; 1290 1291 bool _does_not_escape; 1292 1293 public: 1294 enum { 1295 Control = TypeFunc::Control, 1296 Memory = TypeFunc::Memory, // MergeMem for states affected by this op 1297 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address 1298 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP) 1299 }; 1300 1301 InitializeNode(Compile* C, int adr_type, Node* rawoop); 1302 virtual int Opcode() const; 1303 virtual uint size_of() const { return sizeof(*this); } 1304 virtual uint ideal_reg() const { return 0; } // not matched in the AD file 1305 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress 1306 1307 // Manage incoming memory edges via a MergeMem on in(Memory): 1308 Node* memory(uint alias_idx); 1309 1310 // The raw memory edge coming directly from the Allocation. 1311 // The contents of this memory are *always* all-zero-bits. 1312 Node* zero_memory() { return memory(Compile::AliasIdxRaw); } 1313 1314 // Return the corresponding allocation for this initialization (or null if none). 1315 // (Note: Both InitializeNode::allocation and AllocateNode::initialization 1316 // are defined in graphKit.cpp, which sets up the bidirectional relation.) 1317 AllocateNode* allocation(); 1318 1319 // Anything other than zeroing in this init? 1320 bool is_non_zero(); 1321 1322 // An InitializeNode must completed before macro expansion is done. 1323 // Completion requires that the AllocateNode must be followed by 1324 // initialization of the new memory to zero, then to any initializers. 1325 bool is_complete() { return _is_complete != Incomplete; } 1326 bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; } 1327 1328 // Mark complete. (Must not yet be complete.) 1329 void set_complete(PhaseGVN* phase); 1330 void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; } 1331 1332 bool does_not_escape() { return _does_not_escape; } 1333 void set_does_not_escape() { _does_not_escape = true; } 1334 1335 #ifdef ASSERT 1336 // ensure all non-degenerate stores are ordered and non-overlapping 1337 bool stores_are_sane(PhaseValues* phase); 1338 #endif //ASSERT 1339 1340 // See if this store can be captured; return offset where it initializes. 1341 // Return 0 if the store cannot be moved (any sort of problem). 1342 intptr_t can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape); 1343 1344 // Capture another store; reformat it to write my internal raw memory. 1345 // Return the captured copy, else null if there is some sort of problem. 1346 Node* capture_store(StoreNode* st, intptr_t start, PhaseGVN* phase, bool can_reshape); 1347 1348 // Find captured store which corresponds to the range [start..start+size). 1349 // Return my own memory projection (meaning the initial zero bits) 1350 // if there is no such store. Return null if there is a problem. 1351 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseValues* phase); 1352 1353 // Called when the associated AllocateNode is expanded into CFG. 1354 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, 1355 intptr_t header_size, Node* size_in_bytes, 1356 PhaseIterGVN* phase); 1357 1358 private: 1359 void remove_extra_zeroes(); 1360 1361 // Find out where a captured store should be placed (or already is placed). 1362 int captured_store_insertion_point(intptr_t start, int size_in_bytes, 1363 PhaseValues* phase); 1364 1365 static intptr_t get_store_offset(Node* st, PhaseValues* phase); 1366 1367 Node* make_raw_address(intptr_t offset, PhaseGVN* phase); 1368 1369 bool detect_init_independence(Node* value, PhaseGVN* phase); 1370 1371 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes, 1372 PhaseGVN* phase); 1373 1374 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase); 1375 }; 1376 1377 //------------------------------MergeMem--------------------------------------- 1378 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.) 1379 class MergeMemNode: public Node { 1380 virtual uint hash() const ; // { return NO_HASH; } 1381 virtual bool cmp( const Node &n ) const ; // Always fail, except on self 1382 friend class MergeMemStream; 1383 MergeMemNode(Node* def); // clients use MergeMemNode::make 1384 1385 public: 1386 // If the input is a whole memory state, clone it with all its slices intact. 1387 // Otherwise, make a new memory state with just that base memory input. 1388 // In either case, the result is a newly created MergeMem. 1389 static MergeMemNode* make(Node* base_memory); 1390 1391 virtual int Opcode() const; 1392 virtual Node* Identity(PhaseGVN* phase); 1393 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1394 virtual uint ideal_reg() const { return NotAMachineReg; } 1395 virtual uint match_edge(uint idx) const { return 0; } 1396 virtual const RegMask &out_RegMask() const; 1397 virtual const Type *bottom_type() const { return Type::MEMORY; } 1398 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 1399 // sparse accessors 1400 // Fetch the previously stored "set_memory_at", or else the base memory. 1401 // (Caller should clone it if it is a phi-nest.) 1402 Node* memory_at(uint alias_idx) const; 1403 // set the memory, regardless of its previous value 1404 void set_memory_at(uint alias_idx, Node* n); 1405 // the "base" is the memory that provides the non-finite support 1406 Node* base_memory() const { return in(Compile::AliasIdxBot); } 1407 // warning: setting the base can implicitly set any of the other slices too 1408 void set_base_memory(Node* def); 1409 // sentinel value which denotes a copy of the base memory: 1410 Node* empty_memory() const { return in(Compile::AliasIdxTop); } 1411 static Node* make_empty_memory(); // where the sentinel comes from 1412 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); } 1413 // hook for the iterator, to perform any necessary setup 1414 void iteration_setup(const MergeMemNode* other = nullptr); 1415 // push sentinels until I am at least as long as the other (semantic no-op) 1416 void grow_to_match(const MergeMemNode* other); 1417 bool verify_sparse() const PRODUCT_RETURN0; 1418 #ifndef PRODUCT 1419 virtual void dump_spec(outputStream *st) const; 1420 #endif 1421 }; 1422 1423 class MergeMemStream : public StackObj { 1424 private: 1425 MergeMemNode* _mm; 1426 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations 1427 Node* _mm_base; // loop-invariant base memory of _mm 1428 int _idx; 1429 int _cnt; 1430 Node* _mem; 1431 Node* _mem2; 1432 int _cnt2; 1433 1434 void init(MergeMemNode* mm, const MergeMemNode* mm2 = nullptr) { 1435 // subsume_node will break sparseness at times, whenever a memory slice 1436 // folds down to a copy of the base ("fat") memory. In such a case, 1437 // the raw edge will update to base, although it should be top. 1438 // This iterator will recognize either top or base_memory as an 1439 // "empty" slice. See is_empty, is_empty2, and next below. 1440 // 1441 // The sparseness property is repaired in MergeMemNode::Ideal. 1442 // As long as access to a MergeMem goes through this iterator 1443 // or the memory_at accessor, flaws in the sparseness will 1444 // never be observed. 1445 // 1446 // Also, iteration_setup repairs sparseness. 1447 assert(mm->verify_sparse(), "please, no dups of base"); 1448 assert(mm2==nullptr || mm2->verify_sparse(), "please, no dups of base"); 1449 1450 _mm = mm; 1451 _mm_base = mm->base_memory(); 1452 _mm2 = mm2; 1453 _cnt = mm->req(); 1454 _idx = Compile::AliasIdxBot-1; // start at the base memory 1455 _mem = nullptr; 1456 _mem2 = nullptr; 1457 } 1458 1459 #ifdef ASSERT 1460 Node* check_memory() const { 1461 if (at_base_memory()) 1462 return _mm->base_memory(); 1463 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top()) 1464 return _mm->memory_at(_idx); 1465 else 1466 return _mm_base; 1467 } 1468 Node* check_memory2() const { 1469 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx); 1470 } 1471 #endif 1472 1473 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0; 1474 void assert_synch() const { 1475 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx), 1476 "no side-effects except through the stream"); 1477 } 1478 1479 public: 1480 1481 // expected usages: 1482 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... } 1483 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... } 1484 1485 // iterate over one merge 1486 MergeMemStream(MergeMemNode* mm) { 1487 mm->iteration_setup(); 1488 init(mm); 1489 debug_only(_cnt2 = 999); 1490 } 1491 // iterate in parallel over two merges 1492 // only iterates through non-empty elements of mm2 1493 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) { 1494 assert(mm2, "second argument must be a MergeMem also"); 1495 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state 1496 mm->iteration_setup(mm2); 1497 init(mm, mm2); 1498 _cnt2 = mm2->req(); 1499 } 1500 #ifdef ASSERT 1501 ~MergeMemStream() { 1502 assert_synch(); 1503 } 1504 #endif 1505 1506 MergeMemNode* all_memory() const { 1507 return _mm; 1508 } 1509 Node* base_memory() const { 1510 assert(_mm_base == _mm->base_memory(), "no update to base memory, please"); 1511 return _mm_base; 1512 } 1513 const MergeMemNode* all_memory2() const { 1514 assert(_mm2 != nullptr, ""); 1515 return _mm2; 1516 } 1517 bool at_base_memory() const { 1518 return _idx == Compile::AliasIdxBot; 1519 } 1520 int alias_idx() const { 1521 assert(_mem, "must call next 1st"); 1522 return _idx; 1523 } 1524 1525 const TypePtr* adr_type() const { 1526 return Compile::current()->get_adr_type(alias_idx()); 1527 } 1528 1529 const TypePtr* adr_type(Compile* C) const { 1530 return C->get_adr_type(alias_idx()); 1531 } 1532 bool is_empty() const { 1533 assert(_mem, "must call next 1st"); 1534 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel"); 1535 return _mem->is_top(); 1536 } 1537 bool is_empty2() const { 1538 assert(_mem2, "must call next 1st"); 1539 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel"); 1540 return _mem2->is_top(); 1541 } 1542 Node* memory() const { 1543 assert(!is_empty(), "must not be empty"); 1544 assert_synch(); 1545 return _mem; 1546 } 1547 // get the current memory, regardless of empty or non-empty status 1548 Node* force_memory() const { 1549 assert(!is_empty() || !at_base_memory(), ""); 1550 // Use _mm_base to defend against updates to _mem->base_memory(). 1551 Node *mem = _mem->is_top() ? _mm_base : _mem; 1552 assert(mem == check_memory(), ""); 1553 return mem; 1554 } 1555 Node* memory2() const { 1556 assert(_mem2 == check_memory2(), ""); 1557 return _mem2; 1558 } 1559 void set_memory(Node* mem) { 1560 if (at_base_memory()) { 1561 // Note that this does not change the invariant _mm_base. 1562 _mm->set_base_memory(mem); 1563 } else { 1564 _mm->set_memory_at(_idx, mem); 1565 } 1566 _mem = mem; 1567 assert_synch(); 1568 } 1569 1570 // Recover from a side effect to the MergeMemNode. 1571 void set_memory() { 1572 _mem = _mm->in(_idx); 1573 } 1574 1575 bool next() { return next(false); } 1576 bool next2() { return next(true); } 1577 1578 bool next_non_empty() { return next_non_empty(false); } 1579 bool next_non_empty2() { return next_non_empty(true); } 1580 // next_non_empty2 can yield states where is_empty() is true 1581 1582 private: 1583 // find the next item, which might be empty 1584 bool next(bool have_mm2) { 1585 assert((_mm2 != nullptr) == have_mm2, "use other next"); 1586 assert_synch(); 1587 if (++_idx < _cnt) { 1588 // Note: This iterator allows _mm to be non-sparse. 1589 // It behaves the same whether _mem is top or base_memory. 1590 _mem = _mm->in(_idx); 1591 if (have_mm2) 1592 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop); 1593 return true; 1594 } 1595 return false; 1596 } 1597 1598 // find the next non-empty item 1599 bool next_non_empty(bool have_mm2) { 1600 while (next(have_mm2)) { 1601 if (!is_empty()) { 1602 // make sure _mem2 is filled in sensibly 1603 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory(); 1604 return true; 1605 } else if (have_mm2 && !is_empty2()) { 1606 return true; // is_empty() == true 1607 } 1608 } 1609 return false; 1610 } 1611 }; 1612 1613 // cachewb node for guaranteeing writeback of the cache line at a 1614 // given address to (non-volatile) RAM 1615 class CacheWBNode : public Node { 1616 public: 1617 CacheWBNode(Node *ctrl, Node *mem, Node *addr) : Node(ctrl, mem, addr) {} 1618 virtual int Opcode() const; 1619 virtual uint ideal_reg() const { return NotAMachineReg; } 1620 virtual uint match_edge(uint idx) const { return (idx == 2); } 1621 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 1622 virtual const Type *bottom_type() const { return Type::MEMORY; } 1623 }; 1624 1625 // cachewb pre sync node for ensuring that writebacks are serialised 1626 // relative to preceding or following stores 1627 class CacheWBPreSyncNode : public Node { 1628 public: 1629 CacheWBPreSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {} 1630 virtual int Opcode() const; 1631 virtual uint ideal_reg() const { return NotAMachineReg; } 1632 virtual uint match_edge(uint idx) const { return false; } 1633 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 1634 virtual const Type *bottom_type() const { return Type::MEMORY; } 1635 }; 1636 1637 // cachewb pre sync node for ensuring that writebacks are serialised 1638 // relative to preceding or following stores 1639 class CacheWBPostSyncNode : public Node { 1640 public: 1641 CacheWBPostSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {} 1642 virtual int Opcode() const; 1643 virtual uint ideal_reg() const { return NotAMachineReg; } 1644 virtual uint match_edge(uint idx) const { return false; } 1645 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 1646 virtual const Type *bottom_type() const { return Type::MEMORY; } 1647 }; 1648 1649 //------------------------------Prefetch--------------------------------------- 1650 1651 // Allocation prefetch which may fault, TLAB size have to be adjusted. 1652 class PrefetchAllocationNode : public Node { 1653 public: 1654 PrefetchAllocationNode(Node *mem, Node *adr) : Node(nullptr,mem,adr) {} 1655 virtual int Opcode() const; 1656 virtual uint ideal_reg() const { return NotAMachineReg; } 1657 virtual uint match_edge(uint idx) const { return idx==2; } 1658 virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; } 1659 }; 1660 1661 #endif // SHARE_OPTO_MEMNODE_HPP