1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_MEMNODE_HPP
  26 #define SHARE_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a null pointer exception
  41 class MemNode : public Node {
  42 private:
  43   bool _unaligned_access; // Unaligned access from unsafe
  44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
  45   bool _unsafe_access;     // Access of unsafe origin.
  46   uint8_t _barrier_data;   // Bit field with barrier information
  47 
  48 protected:
  49 #ifdef ASSERT
  50   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  51 #endif
  52   virtual uint size_of() const;
  53 public:
  54   enum { Control,               // When is it safe to do this load?
  55          Memory,                // Chunk of memory is being loaded from
  56          Address,               // Actually address, derived from base
  57          ValueIn,               // Value to store
  58          OopStore               // Preceding oop store, only in StoreCM
  59   };
  60   typedef enum { unordered = 0,
  61                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  62                  release,       // Store has to release or be preceded by MemBarRelease.
  63                  seqcst,        // LoadStore has to have both acquire and release semantics.
  64                  unset          // The memory ordering is not set (used for testing)
  65   } MemOrd;
  66 protected:
  67   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at ) :
  68       Node(c0,c1,c2),
  69       _unaligned_access(false),
  70       _mismatched_access(false),
  71       _unsafe_access(false),
  72       _barrier_data(0) {
  73     init_class_id(Class_Mem);
  74     debug_only(_adr_type=at; adr_type();)
  75   }
  76   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 ) :
  77       Node(c0,c1,c2,c3),
  78       _unaligned_access(false),
  79       _mismatched_access(false),
  80       _unsafe_access(false),
  81       _barrier_data(0) {
  82     init_class_id(Class_Mem);
  83     debug_only(_adr_type=at; adr_type();)
  84   }
  85   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4) :
  86       Node(c0,c1,c2,c3,c4),
  87       _unaligned_access(false),
  88       _mismatched_access(false),
  89       _unsafe_access(false),
  90       _barrier_data(0) {
  91     init_class_id(Class_Mem);
  92     debug_only(_adr_type=at; adr_type();)
  93   }
  94 
  95   virtual Node* find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return nullptr; }
  96   ArrayCopyNode* find_array_copy_clone(Node* ld_alloc, Node* mem) const;
  97   static bool check_if_adr_maybe_raw(Node* adr);
  98 
  99 public:
 100   // Helpers for the optimizer.  Documented in memnode.cpp.
 101   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
 102                                       Node* p2, AllocateNode* a2,
 103                                       PhaseTransform* phase);
 104   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
 105 
 106   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
 107   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
 108   // This one should probably be a phase-specific function:
 109   static bool all_controls_dominate(Node* dom, Node* sub);
 110 
 111   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
 112 
 113   // Shared code for Ideal methods:
 114   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit null.
 115 
 116   // Helper function for adr_type() implementations.
 117   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = nullptr);
 118 
 119   // Raw access function, to allow copying of adr_type efficiently in
 120   // product builds and retain the debug info for debug builds.
 121   const TypePtr *raw_adr_type() const {
 122 #ifdef ASSERT
 123     return _adr_type;
 124 #else
 125     return 0;
 126 #endif
 127   }
 128 
 129 #ifdef ASSERT
 130   void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; }
 131 #endif
 132 
 133   // Return the barrier data of n, if available, or 0 otherwise.
 134   static uint8_t barrier_data(const Node* n);
 135 
 136   // Map a load or store opcode to its corresponding store opcode.
 137   // (Return -1 if unknown.)
 138   virtual int store_Opcode() const { return -1; }
 139 
 140   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 141   virtual BasicType memory_type() const = 0;
 142   virtual int memory_size() const {
 143 #ifdef ASSERT
 144     return type2aelembytes(memory_type(), true);
 145 #else
 146     return type2aelembytes(memory_type());
 147 #endif
 148   }
 149 
 150   uint8_t barrier_data() { return _barrier_data; }
 151   void set_barrier_data(uint8_t barrier_data) { _barrier_data = barrier_data; }
 152 
 153   // Search through memory states which precede this node (load or store).
 154   // Look for an exact match for the address, with no intervening
 155   // aliased stores.
 156   Node* find_previous_store(PhaseValues* phase);
 157 
 158   // Can this node (load or store) accurately see a stored value in
 159   // the given memory state?  (The state may or may not be in(Memory).)
 160   Node* can_see_stored_value(Node* st, PhaseValues* phase) const;
 161 
 162   void set_unaligned_access() { _unaligned_access = true; }
 163   bool is_unaligned_access() const { return _unaligned_access; }
 164   void set_mismatched_access() { _mismatched_access = true; }
 165   bool is_mismatched_access() const { return _mismatched_access; }
 166   void set_unsafe_access() { _unsafe_access = true; }
 167   bool is_unsafe_access() const { return _unsafe_access; }
 168 
 169 #ifndef PRODUCT
 170   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 171   virtual void dump_spec(outputStream *st) const;
 172 #endif
 173 };
 174 
 175 //------------------------------LoadNode---------------------------------------
 176 // Load value; requires Memory and Address
 177 class LoadNode : public MemNode {
 178 public:
 179   // Some loads (from unsafe) should be pinned: they don't depend only
 180   // on the dominating test.  The field _control_dependency below records
 181   // whether that node depends only on the dominating test.
 182   // Pinned and UnknownControl are similar, but differ in that Pinned
 183   // loads are not allowed to float across safepoints, whereas UnknownControl
 184   // loads are allowed to do that. Therefore, Pinned is stricter.
 185   enum ControlDependency {
 186     Pinned,
 187     UnknownControl,
 188     DependsOnlyOnTest
 189   };
 190 
 191 private:
 192   // LoadNode::hash() doesn't take the _control_dependency field
 193   // into account: If the graph already has a non-pinned LoadNode and
 194   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 195   // to replace the pinned LoadNode with the non-pinned LoadNode,
 196   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 197   // those inputs in the first place. If the graph already has a
 198   // pinned LoadNode and we add a non pinned LoadNode with the same
 199   // inputs, it's safe (but suboptimal) for GVN to replace the
 200   // non-pinned LoadNode by the pinned LoadNode.
 201   ControlDependency _control_dependency;
 202 
 203   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 204   // loads that can be reordered, and such requiring acquire semantics to
 205   // adhere to the Java specification.  The required behaviour is stored in
 206   // this field.
 207   const MemOrd _mo;
 208 
 209   AllocateNode* is_new_object_mark_load() const;
 210 
 211 protected:
 212   virtual bool cmp(const Node &n) const;
 213   virtual uint size_of() const; // Size is bigger
 214   // Should LoadNode::Ideal() attempt to remove control edges?
 215   virtual bool can_remove_control() const;
 216   const Type* const _type;      // What kind of value is loaded?
 217 
 218   virtual Node* find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const;
 219 public:
 220 
 221   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 222     : MemNode(c,mem,adr,at), _control_dependency(control_dependency), _mo(mo), _type(rt) {
 223     init_class_id(Class_Load);
 224   }
 225   inline bool is_unordered() const { return !is_acquire(); }
 226   inline bool is_acquire() const {
 227     assert(_mo == unordered || _mo == acquire, "unexpected");
 228     return _mo == acquire;
 229   }
 230   inline bool is_unsigned() const {
 231     int lop = Opcode();
 232     return (lop == Op_LoadUB) || (lop == Op_LoadUS);
 233   }
 234 
 235   // Polymorphic factory method:
 236   static Node* make(PhaseGVN& gvn, Node* c, Node* mem, Node* adr,
 237                     const TypePtr* at, const Type* rt, BasicType bt,
 238                     MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
 239                     bool require_atomic_access = false, bool unaligned = false, bool mismatched = false, bool unsafe = false,
 240                     uint8_t barrier_data = 0);
 241 
 242   virtual uint hash()   const;  // Check the type
 243 
 244   // Handle algebraic identities here.  If we have an identity, return the Node
 245   // we are equivalent to.  We look for Load of a Store.
 246   virtual Node* Identity(PhaseGVN* phase);
 247 
 248   // If the load is from Field memory and the pointer is non-null, it might be possible to
 249   // zero out the control input.
 250   // If the offset is constant and the base is an object allocation,
 251   // try to hook me up to the exact initializing store.
 252   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 253 
 254   // Return true if it's possible to split the Load through a Phi merging the bases
 255   bool can_split_through_phi_base(PhaseGVN *phase);
 256 
 257   // Split instance field load through Phi.
 258   Node* split_through_phi(PhaseGVN *phase, bool ignore_missing_instance_id = false);
 259 
 260   // Recover original value from boxed values
 261   Node *eliminate_autobox(PhaseIterGVN *igvn);
 262 
 263   // Compute a new Type for this node.  Basically we just do the pre-check,
 264   // then call the virtual add() to set the type.
 265   virtual const Type* Value(PhaseGVN* phase) const;
 266 
 267   // Common methods for LoadKlass and LoadNKlass nodes.
 268   const Type* klass_value_common(PhaseGVN* phase) const;
 269   Node* klass_identity_common(PhaseGVN* phase);
 270 
 271   virtual uint ideal_reg() const;
 272   virtual const Type *bottom_type() const;
 273   // Following method is copied from TypeNode:
 274   void set_type(const Type* t) {
 275     assert(t != nullptr, "sanity");
 276     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 277     *(const Type**)&_type = t;   // cast away const-ness
 278     // If this node is in the hash table, make sure it doesn't need a rehash.
 279     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 280   }
 281   const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
 282 
 283   // Do not match memory edge
 284   virtual uint match_edge(uint idx) const;
 285 
 286   // Map a load opcode to its corresponding store opcode.
 287   virtual int store_Opcode() const = 0;
 288 
 289   // Check if the load's memory input is a Phi node with the same control.
 290   bool is_instance_field_load_with_local_phi(Node* ctrl);
 291 
 292   Node* convert_to_unsigned_load(PhaseGVN& gvn);
 293   Node* convert_to_signed_load(PhaseGVN& gvn);
 294 
 295   bool  has_reinterpret_variant(const Type* rt);
 296   Node* convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt);
 297 
 298   ControlDependency control_dependency() const { return _control_dependency; }
 299   bool has_unknown_control_dependency() const  { return _control_dependency == UnknownControl; }
 300   bool has_pinned_control_dependency() const   { return _control_dependency == Pinned; }
 301 
 302   LoadNode* pin_array_access_node() const;
 303 
 304 #ifndef PRODUCT
 305   virtual void dump_spec(outputStream *st) const;
 306 #endif
 307 #ifdef ASSERT
 308   // Helper function to allow a raw load without control edge for some cases
 309   static bool is_immutable_value(Node* adr);
 310 #endif
 311 protected:
 312   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 313                                      ciKlass* klass) const;
 314 
 315   Node* can_see_arraycopy_value(Node* st, PhaseGVN* phase) const;
 316 
 317   // depends_only_on_test is almost always true, and needs to be almost always
 318   // true to enable key hoisting & commoning optimizations.  However, for the
 319   // special case of RawPtr loads from TLS top & end, and other loads performed by
 320   // GC barriers, the control edge carries the dependence preventing hoisting past
 321   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 322   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 323   // which produce results (new raw memory state) inside of loops preventing all
 324   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 325   // See comment in macro.cpp, around line 125 expand_allocate_common().
 326   virtual bool depends_only_on_test() const {
 327     return adr_type() != TypeRawPtr::BOTTOM && _control_dependency == DependsOnlyOnTest;
 328   }
 329 
 330   LoadNode* clone_pinned() const;
 331 };
 332 
 333 //------------------------------LoadBNode--------------------------------------
 334 // Load a byte (8bits signed) from memory
 335 class LoadBNode : public LoadNode {
 336 public:
 337   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 338     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 339   virtual int Opcode() const;
 340   virtual uint ideal_reg() const { return Op_RegI; }
 341   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 342   virtual const Type* Value(PhaseGVN* phase) const;
 343   virtual int store_Opcode() const { return Op_StoreB; }
 344   virtual BasicType memory_type() const { return T_BYTE; }
 345 };
 346 
 347 //------------------------------LoadUBNode-------------------------------------
 348 // Load a unsigned byte (8bits unsigned) from memory
 349 class LoadUBNode : public LoadNode {
 350 public:
 351   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 352     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 353   virtual int Opcode() const;
 354   virtual uint ideal_reg() const { return Op_RegI; }
 355   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 356   virtual const Type* Value(PhaseGVN* phase) const;
 357   virtual int store_Opcode() const { return Op_StoreB; }
 358   virtual BasicType memory_type() const { return T_BYTE; }
 359 };
 360 
 361 //------------------------------LoadUSNode-------------------------------------
 362 // Load an unsigned short/char (16bits unsigned) from memory
 363 class LoadUSNode : public LoadNode {
 364 public:
 365   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 366     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 367   virtual int Opcode() const;
 368   virtual uint ideal_reg() const { return Op_RegI; }
 369   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 370   virtual const Type* Value(PhaseGVN* phase) const;
 371   virtual int store_Opcode() const { return Op_StoreC; }
 372   virtual BasicType memory_type() const { return T_CHAR; }
 373 };
 374 
 375 //------------------------------LoadSNode--------------------------------------
 376 // Load a short (16bits signed) from memory
 377 class LoadSNode : public LoadNode {
 378 public:
 379   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 380     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 381   virtual int Opcode() const;
 382   virtual uint ideal_reg() const { return Op_RegI; }
 383   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 384   virtual const Type* Value(PhaseGVN* phase) const;
 385   virtual int store_Opcode() const { return Op_StoreC; }
 386   virtual BasicType memory_type() const { return T_SHORT; }
 387 };
 388 
 389 //------------------------------LoadINode--------------------------------------
 390 // Load an integer from memory
 391 class LoadINode : public LoadNode {
 392 public:
 393   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 394     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 395   virtual int Opcode() const;
 396   virtual uint ideal_reg() const { return Op_RegI; }
 397   virtual int store_Opcode() const { return Op_StoreI; }
 398   virtual BasicType memory_type() const { return T_INT; }
 399 };
 400 
 401 //------------------------------LoadRangeNode----------------------------------
 402 // Load an array length from the array
 403 class LoadRangeNode : public LoadINode {
 404 public:
 405   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 406     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 407   virtual int Opcode() const;
 408   virtual const Type* Value(PhaseGVN* phase) const;
 409   virtual Node* Identity(PhaseGVN* phase);
 410   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 411 };
 412 
 413 //------------------------------LoadLNode--------------------------------------
 414 // Load a long from memory
 415 class LoadLNode : public LoadNode {
 416   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 417   virtual bool cmp( const Node &n ) const {
 418     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 419       && LoadNode::cmp(n);
 420   }
 421   virtual uint size_of() const { return sizeof(*this); }
 422   const bool _require_atomic_access;  // is piecewise load forbidden?
 423 
 424 public:
 425   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 426             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 427     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 428   virtual int Opcode() const;
 429   virtual uint ideal_reg() const { return Op_RegL; }
 430   virtual int store_Opcode() const { return Op_StoreL; }
 431   virtual BasicType memory_type() const { return T_LONG; }
 432   bool require_atomic_access() const { return _require_atomic_access; }
 433 
 434 #ifndef PRODUCT
 435   virtual void dump_spec(outputStream *st) const {
 436     LoadNode::dump_spec(st);
 437     if (_require_atomic_access)  st->print(" Atomic!");
 438   }
 439 #endif
 440 };
 441 
 442 //------------------------------LoadL_unalignedNode----------------------------
 443 // Load a long from unaligned memory
 444 class LoadL_unalignedNode : public LoadLNode {
 445 public:
 446   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 447     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 448   virtual int Opcode() const;
 449 };
 450 
 451 //------------------------------LoadFNode--------------------------------------
 452 // Load a float (64 bits) from memory
 453 class LoadFNode : public LoadNode {
 454 public:
 455   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 456     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 457   virtual int Opcode() const;
 458   virtual uint ideal_reg() const { return Op_RegF; }
 459   virtual int store_Opcode() const { return Op_StoreF; }
 460   virtual BasicType memory_type() const { return T_FLOAT; }
 461 };
 462 
 463 //------------------------------LoadDNode--------------------------------------
 464 // Load a double (64 bits) from memory
 465 class LoadDNode : public LoadNode {
 466   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 467   virtual bool cmp( const Node &n ) const {
 468     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 469       && LoadNode::cmp(n);
 470   }
 471   virtual uint size_of() const { return sizeof(*this); }
 472   const bool _require_atomic_access;  // is piecewise load forbidden?
 473 
 474 public:
 475   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 476             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 477     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 478   virtual int Opcode() const;
 479   virtual uint ideal_reg() const { return Op_RegD; }
 480   virtual int store_Opcode() const { return Op_StoreD; }
 481   virtual BasicType memory_type() const { return T_DOUBLE; }
 482   bool require_atomic_access() const { return _require_atomic_access; }
 483 
 484 #ifndef PRODUCT
 485   virtual void dump_spec(outputStream *st) const {
 486     LoadNode::dump_spec(st);
 487     if (_require_atomic_access)  st->print(" Atomic!");
 488   }
 489 #endif
 490 };
 491 
 492 //------------------------------LoadD_unalignedNode----------------------------
 493 // Load a double from unaligned memory
 494 class LoadD_unalignedNode : public LoadDNode {
 495 public:
 496   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 497     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 498   virtual int Opcode() const;
 499 };
 500 
 501 //------------------------------LoadPNode--------------------------------------
 502 // Load a pointer from memory (either object or array)
 503 class LoadPNode : public LoadNode {
 504 public:
 505   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 506     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 507   virtual int Opcode() const;
 508   virtual uint ideal_reg() const { return Op_RegP; }
 509   virtual int store_Opcode() const { return Op_StoreP; }
 510   virtual BasicType memory_type() const { return T_ADDRESS; }
 511 };
 512 
 513 
 514 //------------------------------LoadNNode--------------------------------------
 515 // Load a narrow oop from memory (either object or array)
 516 class LoadNNode : public LoadNode {
 517 public:
 518   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 519     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 520   virtual int Opcode() const;
 521   virtual uint ideal_reg() const { return Op_RegN; }
 522   virtual int store_Opcode() const { return Op_StoreN; }
 523   virtual BasicType memory_type() const { return T_NARROWOOP; }
 524 };
 525 
 526 //------------------------------LoadKlassNode----------------------------------
 527 // Load a Klass from an object
 528 class LoadKlassNode : public LoadPNode {
 529 protected:
 530   // In most cases, LoadKlassNode does not have the control input set. If the control
 531   // input is set, it must not be removed (by LoadNode::Ideal()).
 532   virtual bool can_remove_control() const;
 533 public:
 534   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 535     : LoadPNode(c, mem, adr, at, tk, mo) {}
 536   virtual int Opcode() const;
 537   virtual const Type* Value(PhaseGVN* phase) const;
 538   virtual Node* Identity(PhaseGVN* phase);
 539   virtual bool depends_only_on_test() const { return true; }
 540 
 541   // Polymorphic factory method:
 542   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 543                     const TypeKlassPtr* tk = TypeInstKlassPtr::OBJECT);
 544 };
 545 
 546 //------------------------------LoadNKlassNode---------------------------------
 547 // Load a narrow Klass from an object.
 548 class LoadNKlassNode : public LoadNNode {
 549 public:
 550   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 551     : LoadNNode(c, mem, adr, at, tk, mo) {}
 552   virtual int Opcode() const;
 553   virtual uint ideal_reg() const { return Op_RegN; }
 554   virtual int store_Opcode() const { return Op_StoreNKlass; }
 555   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 556 
 557   virtual const Type* Value(PhaseGVN* phase) const;
 558   virtual Node* Identity(PhaseGVN* phase);
 559   virtual bool depends_only_on_test() const { return true; }
 560 };
 561 
 562 //------------------------------StoreNode--------------------------------------
 563 // Store value; requires Store, Address and Value
 564 class StoreNode : public MemNode {
 565 private:
 566   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 567   // stores that can be reordered, and such requiring release semantics to
 568   // adhere to the Java specification.  The required behaviour is stored in
 569   // this field.
 570   const MemOrd _mo;
 571   // Needed for proper cloning.
 572   virtual uint size_of() const { return sizeof(*this); }
 573 protected:
 574   virtual bool cmp( const Node &n ) const;
 575   virtual bool depends_only_on_test() const { return false; }
 576 
 577   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 578   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 579 
 580 public:
 581   // We must ensure that stores of object references will be visible
 582   // only after the object's initialization. So the callers of this
 583   // procedure must indicate that the store requires `release'
 584   // semantics, if the stored value is an object reference that might
 585   // point to a new object and may become externally visible.
 586   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 587     : MemNode(c, mem, adr, at, val), _mo(mo) {
 588     init_class_id(Class_Store);
 589   }
 590   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 591     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 592     init_class_id(Class_Store);
 593   }
 594 
 595   inline bool is_unordered() const { return !is_release(); }
 596   inline bool is_release() const {
 597     assert((_mo == unordered || _mo == release), "unexpected");
 598     return _mo == release;
 599   }
 600 
 601   // Conservatively release stores of object references in order to
 602   // ensure visibility of object initialization.
 603   static inline MemOrd release_if_reference(const BasicType t) {
 604 #ifdef AARCH64
 605     // AArch64 doesn't need a release store here because object
 606     // initialization contains the necessary barriers.
 607     return unordered;
 608 #else
 609     const MemOrd mo = (t == T_ARRAY ||
 610                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 611                        t == T_OBJECT) ? release : unordered;
 612     return mo;
 613 #endif
 614   }
 615 
 616   // Polymorphic factory method
 617   //
 618   // We must ensure that stores of object references will be visible
 619   // only after the object's initialization. So the callers of this
 620   // procedure must indicate that the store requires `release'
 621   // semantics, if the stored value is an object reference that might
 622   // point to a new object and may become externally visible.
 623   static StoreNode* make(PhaseGVN& gvn, Node* c, Node* mem, Node* adr,
 624                          const TypePtr* at, Node* val, BasicType bt,
 625                          MemOrd mo, bool require_atomic_access = false);
 626 
 627   virtual uint hash() const;    // Check the type
 628 
 629   // If the store is to Field memory and the pointer is non-null, we can
 630   // zero out the control input.
 631   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 632 
 633   // Compute a new Type for this node.  Basically we just do the pre-check,
 634   // then call the virtual add() to set the type.
 635   virtual const Type* Value(PhaseGVN* phase) const;
 636 
 637   // Check for identity function on memory (Load then Store at same address)
 638   virtual Node* Identity(PhaseGVN* phase);
 639 
 640   // Do not match memory edge
 641   virtual uint match_edge(uint idx) const;
 642 
 643   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 644 
 645   // Map a store opcode to its corresponding own opcode, trivially.
 646   virtual int store_Opcode() const { return Opcode(); }
 647 
 648   // have all possible loads of the value stored been optimized away?
 649   bool value_never_loaded(PhaseValues* phase) const;
 650 
 651   bool  has_reinterpret_variant(const Type* vt);
 652   Node* convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt);
 653 
 654   MemBarNode* trailing_membar() const;
 655 };
 656 
 657 //------------------------------StoreBNode-------------------------------------
 658 // Store byte to memory
 659 class StoreBNode : public StoreNode {
 660 public:
 661   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 662     : StoreNode(c, mem, adr, at, val, mo) {}
 663   virtual int Opcode() const;
 664   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 665   virtual BasicType memory_type() const { return T_BYTE; }
 666 };
 667 
 668 //------------------------------StoreCNode-------------------------------------
 669 // Store char/short to memory
 670 class StoreCNode : public StoreNode {
 671 public:
 672   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 673     : StoreNode(c, mem, adr, at, val, mo) {}
 674   virtual int Opcode() const;
 675   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 676   virtual BasicType memory_type() const { return T_CHAR; }
 677 };
 678 
 679 //------------------------------StoreINode-------------------------------------
 680 // Store int to memory
 681 class StoreINode : public StoreNode {
 682 public:
 683   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 684     : StoreNode(c, mem, adr, at, val, mo) {}
 685   virtual int Opcode() const;
 686   virtual BasicType memory_type() const { return T_INT; }
 687 };
 688 
 689 //------------------------------StoreLNode-------------------------------------
 690 // Store long to memory
 691 class StoreLNode : public StoreNode {
 692   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 693   virtual bool cmp( const Node &n ) const {
 694     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 695       && StoreNode::cmp(n);
 696   }
 697   virtual uint size_of() const { return sizeof(*this); }
 698   const bool _require_atomic_access;  // is piecewise store forbidden?
 699 
 700 public:
 701   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 702     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 703   virtual int Opcode() const;
 704   virtual BasicType memory_type() const { return T_LONG; }
 705   bool require_atomic_access() const { return _require_atomic_access; }
 706 
 707 #ifndef PRODUCT
 708   virtual void dump_spec(outputStream *st) const {
 709     StoreNode::dump_spec(st);
 710     if (_require_atomic_access)  st->print(" Atomic!");
 711   }
 712 #endif
 713 };
 714 
 715 //------------------------------StoreFNode-------------------------------------
 716 // Store float to memory
 717 class StoreFNode : public StoreNode {
 718 public:
 719   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 720     : StoreNode(c, mem, adr, at, val, mo) {}
 721   virtual int Opcode() const;
 722   virtual BasicType memory_type() const { return T_FLOAT; }
 723 };
 724 
 725 //------------------------------StoreDNode-------------------------------------
 726 // Store double to memory
 727 class StoreDNode : public StoreNode {
 728   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 729   virtual bool cmp( const Node &n ) const {
 730     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 731       && StoreNode::cmp(n);
 732   }
 733   virtual uint size_of() const { return sizeof(*this); }
 734   const bool _require_atomic_access;  // is piecewise store forbidden?
 735 public:
 736   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 737              MemOrd mo, bool require_atomic_access = false)
 738     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 739   virtual int Opcode() const;
 740   virtual BasicType memory_type() const { return T_DOUBLE; }
 741   bool require_atomic_access() const { return _require_atomic_access; }
 742 
 743 #ifndef PRODUCT
 744   virtual void dump_spec(outputStream *st) const {
 745     StoreNode::dump_spec(st);
 746     if (_require_atomic_access)  st->print(" Atomic!");
 747   }
 748 #endif
 749 
 750 };
 751 
 752 //------------------------------StorePNode-------------------------------------
 753 // Store pointer to memory
 754 class StorePNode : public StoreNode {
 755 public:
 756   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 757     : StoreNode(c, mem, adr, at, val, mo) {}
 758   virtual int Opcode() const;
 759   virtual BasicType memory_type() const { return T_ADDRESS; }
 760 };
 761 
 762 //------------------------------StoreNNode-------------------------------------
 763 // Store narrow oop to memory
 764 class StoreNNode : public StoreNode {
 765 public:
 766   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 767     : StoreNode(c, mem, adr, at, val, mo) {}
 768   virtual int Opcode() const;
 769   virtual BasicType memory_type() const { return T_NARROWOOP; }
 770 };
 771 
 772 //------------------------------StoreNKlassNode--------------------------------------
 773 // Store narrow klass to memory
 774 class StoreNKlassNode : public StoreNNode {
 775 public:
 776   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 777     : StoreNNode(c, mem, adr, at, val, mo) {}
 778   virtual int Opcode() const;
 779   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 780 };
 781 
 782 //------------------------------StoreCMNode-----------------------------------
 783 // Store card-mark byte to memory for CM
 784 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 785 // Preceding equivalent StoreCMs may be eliminated.
 786 class StoreCMNode : public StoreNode {
 787  private:
 788   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 789   virtual bool cmp( const Node &n ) const {
 790     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 791       && StoreNode::cmp(n);
 792   }
 793   virtual uint size_of() const { return sizeof(*this); }
 794   int _oop_alias_idx;   // The alias_idx of OopStore
 795 
 796 public:
 797   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 798     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 799     _oop_alias_idx(oop_alias_idx) {
 800     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 801            (_oop_alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing()),
 802            "bad oop alias idx");
 803   }
 804   virtual int Opcode() const;
 805   virtual Node* Identity(PhaseGVN* phase);
 806   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 807   virtual const Type* Value(PhaseGVN* phase) const;
 808   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 809   int oop_alias_idx() const { return _oop_alias_idx; }
 810 };
 811 
 812 //------------------------------SCMemProjNode---------------------------------------
 813 // This class defines a projection of the memory  state of a store conditional node.
 814 // These nodes return a value, but also update memory.
 815 class SCMemProjNode : public ProjNode {
 816 public:
 817   enum {SCMEMPROJCON = (uint)-2};
 818   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 819   virtual int Opcode() const;
 820   virtual bool      is_CFG() const  { return false; }
 821   virtual const Type *bottom_type() const {return Type::MEMORY;}
 822   virtual const TypePtr *adr_type() const {
 823     Node* ctrl = in(0);
 824     if (ctrl == nullptr)  return nullptr; // node is dead
 825     return ctrl->in(MemNode::Memory)->adr_type();
 826   }
 827   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 828   virtual const Type* Value(PhaseGVN* phase) const;
 829 #ifndef PRODUCT
 830   virtual void dump_spec(outputStream *st) const {};
 831 #endif
 832 };
 833 
 834 //------------------------------LoadStoreNode---------------------------
 835 // Note: is_Mem() method returns 'true' for this class.
 836 class LoadStoreNode : public Node {
 837 private:
 838   const Type* const _type;      // What kind of value is loaded?
 839   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 840   uint8_t _barrier_data;        // Bit field with barrier information
 841   virtual uint size_of() const; // Size is bigger
 842 public:
 843   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 844   virtual bool depends_only_on_test() const { return false; }
 845   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 846 
 847   virtual const Type *bottom_type() const { return _type; }
 848   virtual uint ideal_reg() const;
 849   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 850   virtual const Type* Value(PhaseGVN* phase) const;
 851 
 852   bool result_not_used() const;
 853   MemBarNode* trailing_membar() const;
 854 
 855   uint8_t barrier_data() { return _barrier_data; }
 856   void set_barrier_data(uint8_t barrier_data) { _barrier_data = barrier_data; }
 857 };
 858 
 859 class LoadStoreConditionalNode : public LoadStoreNode {
 860 public:
 861   enum {
 862     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 863   };
 864   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 865   virtual const Type* Value(PhaseGVN* phase) const;
 866 };
 867 
 868 class CompareAndSwapNode : public LoadStoreConditionalNode {
 869 private:
 870   const MemNode::MemOrd _mem_ord;
 871 public:
 872   CompareAndSwapNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : LoadStoreConditionalNode(c, mem, adr, val, ex), _mem_ord(mem_ord) {}
 873   MemNode::MemOrd order() const {
 874     return _mem_ord;
 875   }
 876   virtual uint size_of() const { return sizeof(*this); }
 877 };
 878 
 879 class CompareAndExchangeNode : public LoadStoreNode {
 880 private:
 881   const MemNode::MemOrd _mem_ord;
 882 public:
 883   enum {
 884     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 885   };
 886   CompareAndExchangeNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord, const TypePtr* at, const Type* t) :
 887     LoadStoreNode(c, mem, adr, val, at, t, 5), _mem_ord(mem_ord) {
 888      init_req(ExpectedIn, ex );
 889   }
 890 
 891   MemNode::MemOrd order() const {
 892     return _mem_ord;
 893   }
 894   virtual uint size_of() const { return sizeof(*this); }
 895 };
 896 
 897 //------------------------------CompareAndSwapBNode---------------------------
 898 class CompareAndSwapBNode : public CompareAndSwapNode {
 899 public:
 900   CompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 901   virtual int Opcode() const;
 902 };
 903 
 904 //------------------------------CompareAndSwapSNode---------------------------
 905 class CompareAndSwapSNode : public CompareAndSwapNode {
 906 public:
 907   CompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 908   virtual int Opcode() const;
 909 };
 910 
 911 //------------------------------CompareAndSwapINode---------------------------
 912 class CompareAndSwapINode : public CompareAndSwapNode {
 913 public:
 914   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 915   virtual int Opcode() const;
 916 };
 917 
 918 //------------------------------CompareAndSwapLNode---------------------------
 919 class CompareAndSwapLNode : public CompareAndSwapNode {
 920 public:
 921   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 922   virtual int Opcode() const;
 923 };
 924 
 925 //------------------------------CompareAndSwapPNode---------------------------
 926 class CompareAndSwapPNode : public CompareAndSwapNode {
 927 public:
 928   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 929   virtual int Opcode() const;
 930 };
 931 
 932 //------------------------------CompareAndSwapNNode---------------------------
 933 class CompareAndSwapNNode : public CompareAndSwapNode {
 934 public:
 935   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 936   virtual int Opcode() const;
 937 };
 938 
 939 //------------------------------WeakCompareAndSwapBNode---------------------------
 940 class WeakCompareAndSwapBNode : public CompareAndSwapNode {
 941 public:
 942   WeakCompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 943   virtual int Opcode() const;
 944 };
 945 
 946 //------------------------------WeakCompareAndSwapSNode---------------------------
 947 class WeakCompareAndSwapSNode : public CompareAndSwapNode {
 948 public:
 949   WeakCompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 950   virtual int Opcode() const;
 951 };
 952 
 953 //------------------------------WeakCompareAndSwapINode---------------------------
 954 class WeakCompareAndSwapINode : public CompareAndSwapNode {
 955 public:
 956   WeakCompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 957   virtual int Opcode() const;
 958 };
 959 
 960 //------------------------------WeakCompareAndSwapLNode---------------------------
 961 class WeakCompareAndSwapLNode : public CompareAndSwapNode {
 962 public:
 963   WeakCompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 964   virtual int Opcode() const;
 965 };
 966 
 967 //------------------------------WeakCompareAndSwapPNode---------------------------
 968 class WeakCompareAndSwapPNode : public CompareAndSwapNode {
 969 public:
 970   WeakCompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 971   virtual int Opcode() const;
 972 };
 973 
 974 //------------------------------WeakCompareAndSwapNNode---------------------------
 975 class WeakCompareAndSwapNNode : public CompareAndSwapNode {
 976 public:
 977   WeakCompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 978   virtual int Opcode() const;
 979 };
 980 
 981 //------------------------------CompareAndExchangeBNode---------------------------
 982 class CompareAndExchangeBNode : public CompareAndExchangeNode {
 983 public:
 984   CompareAndExchangeBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::BYTE) { }
 985   virtual int Opcode() const;
 986 };
 987 
 988 
 989 //------------------------------CompareAndExchangeSNode---------------------------
 990 class CompareAndExchangeSNode : public CompareAndExchangeNode {
 991 public:
 992   CompareAndExchangeSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::SHORT) { }
 993   virtual int Opcode() const;
 994 };
 995 
 996 //------------------------------CompareAndExchangeLNode---------------------------
 997 class CompareAndExchangeLNode : public CompareAndExchangeNode {
 998 public:
 999   CompareAndExchangeLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeLong::LONG) { }
1000   virtual int Opcode() const;
1001 };
1002 
1003 
1004 //------------------------------CompareAndExchangeINode---------------------------
1005 class CompareAndExchangeINode : public CompareAndExchangeNode {
1006 public:
1007   CompareAndExchangeINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::INT) { }
1008   virtual int Opcode() const;
1009 };
1010 
1011 
1012 //------------------------------CompareAndExchangePNode---------------------------
1013 class CompareAndExchangePNode : public CompareAndExchangeNode {
1014 public:
1015   CompareAndExchangePNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
1016   virtual int Opcode() const;
1017 };
1018 
1019 //------------------------------CompareAndExchangeNNode---------------------------
1020 class CompareAndExchangeNNode : public CompareAndExchangeNode {
1021 public:
1022   CompareAndExchangeNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
1023   virtual int Opcode() const;
1024 };
1025 
1026 //------------------------------GetAndAddBNode---------------------------
1027 class GetAndAddBNode : public LoadStoreNode {
1028 public:
1029   GetAndAddBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { }
1030   virtual int Opcode() const;
1031 };
1032 
1033 //------------------------------GetAndAddSNode---------------------------
1034 class GetAndAddSNode : public LoadStoreNode {
1035 public:
1036   GetAndAddSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { }
1037   virtual int Opcode() const;
1038 };
1039 
1040 //------------------------------GetAndAddINode---------------------------
1041 class GetAndAddINode : public LoadStoreNode {
1042 public:
1043   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
1044   virtual int Opcode() const;
1045 };
1046 
1047 //------------------------------GetAndAddLNode---------------------------
1048 class GetAndAddLNode : public LoadStoreNode {
1049 public:
1050   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
1051   virtual int Opcode() const;
1052 };
1053 
1054 //------------------------------GetAndSetBNode---------------------------
1055 class GetAndSetBNode : public LoadStoreNode {
1056 public:
1057   GetAndSetBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { }
1058   virtual int Opcode() const;
1059 };
1060 
1061 //------------------------------GetAndSetSNode---------------------------
1062 class GetAndSetSNode : public LoadStoreNode {
1063 public:
1064   GetAndSetSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { }
1065   virtual int Opcode() const;
1066 };
1067 
1068 //------------------------------GetAndSetINode---------------------------
1069 class GetAndSetINode : public LoadStoreNode {
1070 public:
1071   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
1072   virtual int Opcode() const;
1073 };
1074 
1075 //------------------------------GetAndSetLNode---------------------------
1076 class GetAndSetLNode : public LoadStoreNode {
1077 public:
1078   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
1079   virtual int Opcode() const;
1080 };
1081 
1082 //------------------------------GetAndSetPNode---------------------------
1083 class GetAndSetPNode : public LoadStoreNode {
1084 public:
1085   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1086   virtual int Opcode() const;
1087 };
1088 
1089 //------------------------------GetAndSetNNode---------------------------
1090 class GetAndSetNNode : public LoadStoreNode {
1091 public:
1092   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1093   virtual int Opcode() const;
1094 };
1095 
1096 //------------------------------ClearArray-------------------------------------
1097 class ClearArrayNode: public Node {
1098 private:
1099   bool _is_large;
1100   bool _word_copy_only;
1101 public:
1102   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base, Node* val, bool is_large)
1103     : Node(ctrl, arymem, word_cnt, base, val), _is_large(is_large),
1104       _word_copy_only(val->bottom_type()->isa_long() && (!val->bottom_type()->is_long()->is_con() || val->bottom_type()->is_long()->get_con() != 0)) {
1105     init_class_id(Class_ClearArray);
1106   }
1107   virtual int         Opcode() const;
1108   virtual const Type *bottom_type() const { return Type::MEMORY; }
1109   // ClearArray modifies array elements, and so affects only the
1110   // array memory addressed by the bottom_type of its base address.
1111   virtual const class TypePtr *adr_type() const;
1112   virtual Node* Identity(PhaseGVN* phase);
1113   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1114   virtual uint match_edge(uint idx) const;
1115   bool is_large() const { return _is_large; }
1116   bool word_copy_only() const { return _word_copy_only; }
1117 
1118   // Clear the given area of an object or array.
1119   // The start offset must always be aligned mod BytesPerInt.
1120   // The end offset must always be aligned mod BytesPerLong.
1121   // Return the new memory.
1122   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1123                             Node* val,
1124                             Node* raw_val,
1125                             intptr_t start_offset,
1126                             intptr_t end_offset,
1127                             PhaseGVN* phase);
1128   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1129                             Node* val,
1130                             Node* raw_val,
1131                             intptr_t start_offset,
1132                             Node* end_offset,
1133                             PhaseGVN* phase);
1134   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1135                             Node* raw_val,
1136                             Node* start_offset,
1137                             Node* end_offset,
1138                             PhaseGVN* phase);
1139   // Return allocation input memory edge if it is different instance
1140   // or itself if it is the one we are looking for.
1141   static bool step_through(Node** np, uint instance_id, PhaseValues* phase);
1142 };
1143 
1144 //------------------------------MemBar-----------------------------------------
1145 // There are different flavors of Memory Barriers to match the Java Memory
1146 // Model.  Monitor-enter and volatile-load act as Acquires: no following ref
1147 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
1148 // volatile-load.  Monitor-exit and volatile-store act as Release: no
1149 // preceding ref can be moved to after them.  We insert a MemBar-Release
1150 // before a FastUnlock or volatile-store.  All volatiles need to be
1151 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
1152 // separate it from any following volatile-load.
1153 class MemBarNode: public MultiNode {
1154   virtual uint hash() const ;                  // { return NO_HASH; }
1155   virtual bool cmp( const Node &n ) const ;    // Always fail, except on self
1156 
1157   virtual uint size_of() const { return sizeof(*this); }
1158   // Memory type this node is serializing.  Usually either rawptr or bottom.
1159   const TypePtr* _adr_type;
1160 
1161   // How is this membar related to a nearby memory access?
1162   enum {
1163     Standalone,
1164     TrailingLoad,
1165     TrailingStore,
1166     LeadingStore,
1167     TrailingLoadStore,
1168     LeadingLoadStore,
1169     TrailingPartialArrayCopy
1170   } _kind;
1171 
1172 #ifdef ASSERT
1173   uint _pair_idx;
1174 #endif
1175 
1176 public:
1177   enum {
1178     Precedent = TypeFunc::Parms  // optional edge to force precedence
1179   };
1180   MemBarNode(Compile* C, int alias_idx, Node* precedent);
1181   virtual int Opcode() const = 0;
1182   virtual const class TypePtr *adr_type() const { return _adr_type; }
1183   virtual const Type* Value(PhaseGVN* phase) const;
1184   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1185   virtual uint match_edge(uint idx) const { return 0; }
1186   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1187   virtual Node *match(const ProjNode *proj, const Matcher *m, const RegMask* mask);
1188   // Factory method.  Builds a wide or narrow membar.
1189   // Optional 'precedent' becomes an extra edge if not null.
1190   static MemBarNode* make(Compile* C, int opcode,
1191                           int alias_idx = Compile::AliasIdxBot,
1192                           Node* precedent = nullptr);
1193 
1194   MemBarNode* trailing_membar() const;
1195   MemBarNode* leading_membar() const;
1196 
1197   void set_trailing_load() { _kind = TrailingLoad; }
1198   bool trailing_load() const { return _kind == TrailingLoad; }
1199   bool trailing_store() const { return _kind == TrailingStore; }
1200   bool leading_store() const { return _kind == LeadingStore; }
1201   bool trailing_load_store() const { return _kind == TrailingLoadStore; }
1202   bool leading_load_store() const { return _kind == LeadingLoadStore; }
1203   bool trailing() const { return _kind == TrailingLoad || _kind == TrailingStore || _kind == TrailingLoadStore; }
1204   bool leading() const { return _kind == LeadingStore || _kind == LeadingLoadStore; }
1205   bool standalone() const { return _kind == Standalone; }
1206   void set_trailing_partial_array_copy() { _kind = TrailingPartialArrayCopy; }
1207   bool trailing_partial_array_copy() const { return _kind == TrailingPartialArrayCopy; }
1208 
1209   static void set_store_pair(MemBarNode* leading, MemBarNode* trailing);
1210   static void set_load_store_pair(MemBarNode* leading, MemBarNode* trailing);
1211 
1212   void remove(PhaseIterGVN *igvn);
1213 };
1214 
1215 // "Acquire" - no following ref can move before (but earlier refs can
1216 // follow, like an early Load stalled in cache).  Requires multi-cpu
1217 // visibility.  Inserted after a volatile load.
1218 class MemBarAcquireNode: public MemBarNode {
1219 public:
1220   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1221     : MemBarNode(C, alias_idx, precedent) {}
1222   virtual int Opcode() const;
1223 };
1224 
1225 // "Acquire" - no following ref can move before (but earlier refs can
1226 // follow, like an early Load stalled in cache).  Requires multi-cpu
1227 // visibility.  Inserted independent of any load, as required
1228 // for intrinsic Unsafe.loadFence().
1229 class LoadFenceNode: public MemBarNode {
1230 public:
1231   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1232     : MemBarNode(C, alias_idx, precedent) {}
1233   virtual int Opcode() const;
1234 };
1235 
1236 // "Release" - no earlier ref can move after (but later refs can move
1237 // up, like a speculative pipelined cache-hitting Load).  Requires
1238 // multi-cpu visibility.  Inserted before a volatile store.
1239 class MemBarReleaseNode: public MemBarNode {
1240 public:
1241   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1242     : MemBarNode(C, alias_idx, precedent) {}
1243   virtual int Opcode() const;
1244 };
1245 
1246 // "Release" - no earlier ref can move after (but later refs can move
1247 // up, like a speculative pipelined cache-hitting Load).  Requires
1248 // multi-cpu visibility.  Inserted independent of any store, as required
1249 // for intrinsic Unsafe.storeFence().
1250 class StoreFenceNode: public MemBarNode {
1251 public:
1252   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1253     : MemBarNode(C, alias_idx, precedent) {}
1254   virtual int Opcode() const;
1255 };
1256 
1257 // "Acquire" - no following ref can move before (but earlier refs can
1258 // follow, like an early Load stalled in cache).  Requires multi-cpu
1259 // visibility.  Inserted after a FastLock.
1260 class MemBarAcquireLockNode: public MemBarNode {
1261 public:
1262   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1263     : MemBarNode(C, alias_idx, precedent) {}
1264   virtual int Opcode() const;
1265 };
1266 
1267 // "Release" - no earlier ref can move after (but later refs can move
1268 // up, like a speculative pipelined cache-hitting Load).  Requires
1269 // multi-cpu visibility.  Inserted before a FastUnLock.
1270 class MemBarReleaseLockNode: public MemBarNode {
1271 public:
1272   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1273     : MemBarNode(C, alias_idx, precedent) {}
1274   virtual int Opcode() const;
1275 };
1276 
1277 class MemBarStoreStoreNode: public MemBarNode {
1278 public:
1279   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1280     : MemBarNode(C, alias_idx, precedent) {
1281     init_class_id(Class_MemBarStoreStore);
1282   }
1283   virtual int Opcode() const;
1284 };
1285 
1286 class StoreStoreFenceNode: public MemBarNode {
1287 public:
1288   StoreStoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1289     : MemBarNode(C, alias_idx, precedent) {}
1290   virtual int Opcode() const;
1291 };
1292 
1293 // Ordering between a volatile store and a following volatile load.
1294 // Requires multi-CPU visibility?
1295 class MemBarVolatileNode: public MemBarNode {
1296 public:
1297   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1298     : MemBarNode(C, alias_idx, precedent) {}
1299   virtual int Opcode() const;
1300 };
1301 
1302 // Ordering within the same CPU.  Used to order unsafe memory references
1303 // inside the compiler when we lack alias info.  Not needed "outside" the
1304 // compiler because the CPU does all the ordering for us.
1305 class MemBarCPUOrderNode: public MemBarNode {
1306 public:
1307   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1308     : MemBarNode(C, alias_idx, precedent) {}
1309   virtual int Opcode() const;
1310   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1311 };
1312 
1313 class OnSpinWaitNode: public MemBarNode {
1314 public:
1315   OnSpinWaitNode(Compile* C, int alias_idx, Node* precedent)
1316     : MemBarNode(C, alias_idx, precedent) {}
1317   virtual int Opcode() const;
1318 };
1319 
1320 // Isolation of object setup after an AllocateNode and before next safepoint.
1321 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1322 class InitializeNode: public MemBarNode {
1323   friend class AllocateNode;
1324 
1325   enum {
1326     Incomplete    = 0,
1327     Complete      = 1,
1328     WithArraycopy = 2
1329   };
1330   int _is_complete;
1331 
1332   bool _does_not_escape;
1333 
1334 public:
1335   enum {
1336     Control    = TypeFunc::Control,
1337     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1338     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1339     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1340   };
1341 
1342   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1343   virtual int Opcode() const;
1344   virtual uint size_of() const { return sizeof(*this); }
1345   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1346   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1347 
1348   // Manage incoming memory edges via a MergeMem on in(Memory):
1349   Node* memory(uint alias_idx);
1350 
1351   // The raw memory edge coming directly from the Allocation.
1352   // The contents of this memory are *always* all-zero-bits.
1353   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1354 
1355   // Return the corresponding allocation for this initialization (or null if none).
1356   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1357   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1358   AllocateNode* allocation();
1359 
1360   // Anything other than zeroing in this init?
1361   bool is_non_zero();
1362 
1363   // An InitializeNode must completed before macro expansion is done.
1364   // Completion requires that the AllocateNode must be followed by
1365   // initialization of the new memory to zero, then to any initializers.
1366   bool is_complete() { return _is_complete != Incomplete; }
1367   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1368 
1369   // Mark complete.  (Must not yet be complete.)
1370   void set_complete(PhaseGVN* phase);
1371   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1372 
1373   bool does_not_escape() { return _does_not_escape; }
1374   void set_does_not_escape() { _does_not_escape = true; }
1375 
1376 #ifdef ASSERT
1377   // ensure all non-degenerate stores are ordered and non-overlapping
1378   bool stores_are_sane(PhaseValues* phase);
1379 #endif //ASSERT
1380 
1381   // See if this store can be captured; return offset where it initializes.
1382   // Return 0 if the store cannot be moved (any sort of problem).
1383   intptr_t can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape);
1384 
1385   // Capture another store; reformat it to write my internal raw memory.
1386   // Return the captured copy, else null if there is some sort of problem.
1387   Node* capture_store(StoreNode* st, intptr_t start, PhaseGVN* phase, bool can_reshape);
1388 
1389   // Find captured store which corresponds to the range [start..start+size).
1390   // Return my own memory projection (meaning the initial zero bits)
1391   // if there is no such store.  Return null if there is a problem.
1392   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseValues* phase);
1393 
1394   // Called when the associated AllocateNode is expanded into CFG.
1395   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1396                         intptr_t header_size, Node* size_in_bytes,
1397                         PhaseIterGVN* phase);
1398 
1399  private:
1400   void remove_extra_zeroes();
1401 
1402   // Find out where a captured store should be placed (or already is placed).
1403   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1404                                      PhaseValues* phase);
1405 
1406   static intptr_t get_store_offset(Node* st, PhaseValues* phase);
1407 
1408   Node* make_raw_address(intptr_t offset, PhaseGVN* phase);
1409 
1410   bool detect_init_independence(Node* value, PhaseGVN* phase);
1411 
1412   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1413                                PhaseGVN* phase);
1414 
1415   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1416 };
1417 
1418 //------------------------------MergeMem---------------------------------------
1419 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1420 class MergeMemNode: public Node {
1421   virtual uint hash() const ;                  // { return NO_HASH; }
1422   virtual bool cmp( const Node &n ) const ;    // Always fail, except on self
1423   friend class MergeMemStream;
1424   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1425 
1426 public:
1427   // If the input is a whole memory state, clone it with all its slices intact.
1428   // Otherwise, make a new memory state with just that base memory input.
1429   // In either case, the result is a newly created MergeMem.
1430   static MergeMemNode* make(Node* base_memory);
1431 
1432   virtual int Opcode() const;
1433   virtual Node* Identity(PhaseGVN* phase);
1434   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1435   virtual uint ideal_reg() const { return NotAMachineReg; }
1436   virtual uint match_edge(uint idx) const { return 0; }
1437   virtual const RegMask &out_RegMask() const;
1438   virtual const Type *bottom_type() const { return Type::MEMORY; }
1439   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1440   // sparse accessors
1441   // Fetch the previously stored "set_memory_at", or else the base memory.
1442   // (Caller should clone it if it is a phi-nest.)
1443   Node* memory_at(uint alias_idx) const;
1444   // set the memory, regardless of its previous value
1445   void set_memory_at(uint alias_idx, Node* n);
1446   // the "base" is the memory that provides the non-finite support
1447   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1448   // warning: setting the base can implicitly set any of the other slices too
1449   void set_base_memory(Node* def);
1450   // sentinel value which denotes a copy of the base memory:
1451   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1452   static Node* make_empty_memory(); // where the sentinel comes from
1453   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1454   // hook for the iterator, to perform any necessary setup
1455   void iteration_setup(const MergeMemNode* other = nullptr);
1456   // push sentinels until I am at least as long as the other (semantic no-op)
1457   void grow_to_match(const MergeMemNode* other);
1458   bool verify_sparse() const PRODUCT_RETURN0;
1459 #ifndef PRODUCT
1460   virtual void dump_spec(outputStream *st) const;
1461 #endif
1462 };
1463 
1464 class MergeMemStream : public StackObj {
1465  private:
1466   MergeMemNode*       _mm;
1467   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1468   Node*               _mm_base;  // loop-invariant base memory of _mm
1469   int                 _idx;
1470   int                 _cnt;
1471   Node*               _mem;
1472   Node*               _mem2;
1473   int                 _cnt2;
1474 
1475   void init(MergeMemNode* mm, const MergeMemNode* mm2 = nullptr) {
1476     // subsume_node will break sparseness at times, whenever a memory slice
1477     // folds down to a copy of the base ("fat") memory.  In such a case,
1478     // the raw edge will update to base, although it should be top.
1479     // This iterator will recognize either top or base_memory as an
1480     // "empty" slice.  See is_empty, is_empty2, and next below.
1481     //
1482     // The sparseness property is repaired in MergeMemNode::Ideal.
1483     // As long as access to a MergeMem goes through this iterator
1484     // or the memory_at accessor, flaws in the sparseness will
1485     // never be observed.
1486     //
1487     // Also, iteration_setup repairs sparseness.
1488     assert(mm->verify_sparse(), "please, no dups of base");
1489     assert(mm2==nullptr || mm2->verify_sparse(), "please, no dups of base");
1490 
1491     _mm  = mm;
1492     _mm_base = mm->base_memory();
1493     _mm2 = mm2;
1494     _cnt = mm->req();
1495     _idx = Compile::AliasIdxBot-1; // start at the base memory
1496     _mem = nullptr;
1497     _mem2 = nullptr;
1498   }
1499 
1500 #ifdef ASSERT
1501   Node* check_memory() const {
1502     if (at_base_memory())
1503       return _mm->base_memory();
1504     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1505       return _mm->memory_at(_idx);
1506     else
1507       return _mm_base;
1508   }
1509   Node* check_memory2() const {
1510     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1511   }
1512 #endif
1513 
1514   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1515   void assert_synch() const {
1516     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1517            "no side-effects except through the stream");
1518   }
1519 
1520  public:
1521 
1522   // expected usages:
1523   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1524   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1525 
1526   // iterate over one merge
1527   MergeMemStream(MergeMemNode* mm) {
1528     mm->iteration_setup();
1529     init(mm);
1530     debug_only(_cnt2 = 999);
1531   }
1532   // iterate in parallel over two merges
1533   // only iterates through non-empty elements of mm2
1534   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1535     assert(mm2, "second argument must be a MergeMem also");
1536     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1537     mm->iteration_setup(mm2);
1538     init(mm, mm2);
1539     _cnt2 = mm2->req();
1540   }
1541 #ifdef ASSERT
1542   ~MergeMemStream() {
1543     assert_synch();
1544   }
1545 #endif
1546 
1547   MergeMemNode* all_memory() const {
1548     return _mm;
1549   }
1550   Node* base_memory() const {
1551     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1552     return _mm_base;
1553   }
1554   const MergeMemNode* all_memory2() const {
1555     assert(_mm2 != nullptr, "");
1556     return _mm2;
1557   }
1558   bool at_base_memory() const {
1559     return _idx == Compile::AliasIdxBot;
1560   }
1561   int alias_idx() const {
1562     assert(_mem, "must call next 1st");
1563     return _idx;
1564   }
1565 
1566   const TypePtr* adr_type() const {
1567     return Compile::current()->get_adr_type(alias_idx());
1568   }
1569 
1570   const TypePtr* adr_type(Compile* C) const {
1571     return C->get_adr_type(alias_idx());
1572   }
1573   bool is_empty() const {
1574     assert(_mem, "must call next 1st");
1575     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1576     return _mem->is_top();
1577   }
1578   bool is_empty2() const {
1579     assert(_mem2, "must call next 1st");
1580     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1581     return _mem2->is_top();
1582   }
1583   Node* memory() const {
1584     assert(!is_empty(), "must not be empty");
1585     assert_synch();
1586     return _mem;
1587   }
1588   // get the current memory, regardless of empty or non-empty status
1589   Node* force_memory() const {
1590     assert(!is_empty() || !at_base_memory(), "");
1591     // Use _mm_base to defend against updates to _mem->base_memory().
1592     Node *mem = _mem->is_top() ? _mm_base : _mem;
1593     assert(mem == check_memory(), "");
1594     return mem;
1595   }
1596   Node* memory2() const {
1597     assert(_mem2 == check_memory2(), "");
1598     return _mem2;
1599   }
1600   void set_memory(Node* mem) {
1601     if (at_base_memory()) {
1602       // Note that this does not change the invariant _mm_base.
1603       _mm->set_base_memory(mem);
1604     } else {
1605       _mm->set_memory_at(_idx, mem);
1606     }
1607     _mem = mem;
1608     assert_synch();
1609   }
1610 
1611   // Recover from a side effect to the MergeMemNode.
1612   void set_memory() {
1613     _mem = _mm->in(_idx);
1614   }
1615 
1616   bool next()  { return next(false); }
1617   bool next2() { return next(true); }
1618 
1619   bool next_non_empty()  { return next_non_empty(false); }
1620   bool next_non_empty2() { return next_non_empty(true); }
1621   // next_non_empty2 can yield states where is_empty() is true
1622 
1623  private:
1624   // find the next item, which might be empty
1625   bool next(bool have_mm2) {
1626     assert((_mm2 != nullptr) == have_mm2, "use other next");
1627     assert_synch();
1628     if (++_idx < _cnt) {
1629       // Note:  This iterator allows _mm to be non-sparse.
1630       // It behaves the same whether _mem is top or base_memory.
1631       _mem = _mm->in(_idx);
1632       if (have_mm2)
1633         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1634       return true;
1635     }
1636     return false;
1637   }
1638 
1639   // find the next non-empty item
1640   bool next_non_empty(bool have_mm2) {
1641     while (next(have_mm2)) {
1642       if (!is_empty()) {
1643         // make sure _mem2 is filled in sensibly
1644         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1645         return true;
1646       } else if (have_mm2 && !is_empty2()) {
1647         return true;   // is_empty() == true
1648       }
1649     }
1650     return false;
1651   }
1652 };
1653 
1654 // cachewb node for guaranteeing writeback of the cache line at a
1655 // given address to (non-volatile) RAM
1656 class CacheWBNode : public Node {
1657 public:
1658   CacheWBNode(Node *ctrl, Node *mem, Node *addr) : Node(ctrl, mem, addr) {}
1659   virtual int Opcode() const;
1660   virtual uint ideal_reg() const { return NotAMachineReg; }
1661   virtual uint match_edge(uint idx) const { return (idx == 2); }
1662   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1663   virtual const Type *bottom_type() const { return Type::MEMORY; }
1664 };
1665 
1666 // cachewb pre sync node for ensuring that writebacks are serialised
1667 // relative to preceding or following stores
1668 class CacheWBPreSyncNode : public Node {
1669 public:
1670   CacheWBPreSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {}
1671   virtual int Opcode() const;
1672   virtual uint ideal_reg() const { return NotAMachineReg; }
1673   virtual uint match_edge(uint idx) const { return false; }
1674   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1675   virtual const Type *bottom_type() const { return Type::MEMORY; }
1676 };
1677 
1678 // cachewb pre sync node for ensuring that writebacks are serialised
1679 // relative to preceding or following stores
1680 class CacheWBPostSyncNode : public Node {
1681 public:
1682   CacheWBPostSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {}
1683   virtual int Opcode() const;
1684   virtual uint ideal_reg() const { return NotAMachineReg; }
1685   virtual uint match_edge(uint idx) const { return false; }
1686   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1687   virtual const Type *bottom_type() const { return Type::MEMORY; }
1688 };
1689 
1690 //------------------------------Prefetch---------------------------------------
1691 
1692 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1693 class PrefetchAllocationNode : public Node {
1694 public:
1695   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1696   virtual int Opcode() const;
1697   virtual uint ideal_reg() const { return NotAMachineReg; }
1698   virtual uint match_edge(uint idx) const { return idx==2; }
1699   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1700 };
1701 
1702 #endif // SHARE_OPTO_MEMNODE_HPP