1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_MEMNODE_HPP 27 #define SHARE_OPTO_MEMNODE_HPP 28 29 #include "opto/multnode.hpp" 30 #include "opto/node.hpp" 31 #include "opto/opcodes.hpp" 32 #include "opto/type.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 class MultiNode; 37 class PhaseCCP; 38 class PhaseTransform; 39 40 //------------------------------MemNode---------------------------------------- 41 // Load or Store, possibly throwing a null pointer exception 42 class MemNode : public Node { 43 private: 44 bool _unaligned_access; // Unaligned access from unsafe 45 bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance 46 bool _unsafe_access; // Access of unsafe origin. 47 uint8_t _barrier_data; // Bit field with barrier information 48 49 protected: 50 #ifdef ASSERT 51 const TypePtr* _adr_type; // What kind of memory is being addressed? 52 #endif 53 virtual uint size_of() const; 54 public: 55 enum { Control, // When is it safe to do this load? 56 Memory, // Chunk of memory is being loaded from 57 Address, // Actually address, derived from base 58 ValueIn // Value to store 59 }; 60 typedef enum { unordered = 0, 61 acquire, // Load has to acquire or be succeeded by MemBarAcquire. 62 release, // Store has to release or be preceded by MemBarRelease. 63 seqcst, // LoadStore has to have both acquire and release semantics. 64 unset // The memory ordering is not set (used for testing) 65 } MemOrd; 66 protected: 67 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at ) : 68 Node(c0,c1,c2), 69 _unaligned_access(false), 70 _mismatched_access(false), 71 _unsafe_access(false), 72 _barrier_data(0) { 73 init_class_id(Class_Mem); 74 DEBUG_ONLY(_adr_type=at; adr_type();) 75 } 76 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 ) : 77 Node(c0,c1,c2,c3), 78 _unaligned_access(false), 79 _mismatched_access(false), 80 _unsafe_access(false), 81 _barrier_data(0) { 82 init_class_id(Class_Mem); 83 DEBUG_ONLY(_adr_type=at; adr_type();) 84 } 85 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4) : 86 Node(c0,c1,c2,c3,c4), 87 _unaligned_access(false), 88 _mismatched_access(false), 89 _unsafe_access(false), 90 _barrier_data(0) { 91 init_class_id(Class_Mem); 92 DEBUG_ONLY(_adr_type=at; adr_type();) 93 } 94 95 virtual Node* find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return nullptr; } 96 ArrayCopyNode* find_array_copy_clone(Node* ld_alloc, Node* mem) const; 97 static bool check_if_adr_maybe_raw(Node* adr); 98 99 public: 100 // Helpers for the optimizer. Documented in memnode.cpp. 101 static bool detect_ptr_independence(Node* p1, AllocateNode* a1, 102 Node* p2, AllocateNode* a2, 103 PhaseTransform* phase); 104 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast); 105 106 static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase); 107 static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase); 108 // The following two should probably be phase-specific functions: 109 static DomResult maybe_all_controls_dominate(Node* dom, Node* sub); 110 static bool all_controls_dominate(Node* dom, Node* sub) { 111 DomResult dom_result = maybe_all_controls_dominate(dom, sub); 112 return dom_result == DomResult::Dominate; 113 } 114 115 virtual const class TypePtr *adr_type() const; // returns bottom_type of address 116 117 // Shared code for Ideal methods: 118 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit null. 119 120 // Helper function for adr_type() implementations. 121 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = nullptr); 122 123 // Raw access function, to allow copying of adr_type efficiently in 124 // product builds and retain the debug info for debug builds. 125 const TypePtr *raw_adr_type() const { 126 return DEBUG_ONLY(_adr_type) NOT_DEBUG(nullptr); 127 } 128 129 #ifdef ASSERT 130 void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; } 131 #endif 132 133 // Return the barrier data of n, if available, or 0 otherwise. 134 static uint8_t barrier_data(const Node* n); 135 136 // Map a load or store opcode to its corresponding store opcode. 137 // (Return -1 if unknown.) 138 virtual int store_Opcode() const { return -1; } 139 140 // What is the type of the value in memory? (T_VOID mean "unspecified".) 141 // The returned type is a property of the value that is loaded/stored and 142 // not the memory that is accessed. For mismatched memory accesses 143 // they might differ. For instance, a value of type 'short' may be stored 144 // into an array of elements of type 'long'. 145 virtual BasicType value_basic_type() const = 0; 146 virtual int memory_size() const { 147 #ifdef ASSERT 148 return type2aelembytes(value_basic_type(), true); 149 #else 150 return type2aelembytes(value_basic_type()); 151 #endif 152 } 153 154 uint8_t barrier_data() { return _barrier_data; } 155 void set_barrier_data(uint8_t barrier_data) { _barrier_data = barrier_data; } 156 157 // Search through memory states which precede this node (load or store). 158 // Look for an exact match for the address, with no intervening 159 // aliased stores. 160 Node* find_previous_store(PhaseValues* phase); 161 162 // Can this node (load or store) accurately see a stored value in 163 // the given memory state? (The state may or may not be in(Memory).) 164 Node* can_see_stored_value(Node* st, PhaseValues* phase) const; 165 166 void set_unaligned_access() { _unaligned_access = true; } 167 bool is_unaligned_access() const { return _unaligned_access; } 168 void set_mismatched_access() { _mismatched_access = true; } 169 bool is_mismatched_access() const { return _mismatched_access; } 170 void set_unsafe_access() { _unsafe_access = true; } 171 bool is_unsafe_access() const { return _unsafe_access; } 172 173 #ifndef PRODUCT 174 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st); 175 virtual void dump_spec(outputStream *st) const; 176 #endif 177 }; 178 179 //------------------------------LoadNode--------------------------------------- 180 // Load value; requires Memory and Address 181 class LoadNode : public MemNode { 182 public: 183 // Some loads (from unsafe) should be pinned: they don't depend only 184 // on the dominating test. The field _control_dependency below records 185 // whether that node depends only on the dominating test. 186 // Pinned and UnknownControl are similar, but differ in that Pinned 187 // loads are not allowed to float across safepoints, whereas UnknownControl 188 // loads are allowed to do that. Therefore, Pinned is stricter. 189 enum ControlDependency { 190 Pinned, 191 UnknownControl, 192 DependsOnlyOnTest 193 }; 194 195 private: 196 // LoadNode::hash() doesn't take the _control_dependency field 197 // into account: If the graph already has a non-pinned LoadNode and 198 // we add a pinned LoadNode with the same inputs, it's safe for GVN 199 // to replace the pinned LoadNode with the non-pinned LoadNode, 200 // otherwise it wouldn't be safe to have a non pinned LoadNode with 201 // those inputs in the first place. If the graph already has a 202 // pinned LoadNode and we add a non pinned LoadNode with the same 203 // inputs, it's safe (but suboptimal) for GVN to replace the 204 // non-pinned LoadNode by the pinned LoadNode. 205 ControlDependency _control_dependency; 206 207 // On platforms with weak memory ordering (e.g., PPC) we distinguish 208 // loads that can be reordered, and such requiring acquire semantics to 209 // adhere to the Java specification. The required behaviour is stored in 210 // this field. 211 const MemOrd _mo; 212 213 AllocateNode* is_new_object_mark_load() const; 214 215 protected: 216 virtual bool cmp(const Node &n) const; 217 virtual uint size_of() const; // Size is bigger 218 // Should LoadNode::Ideal() attempt to remove control edges? 219 virtual bool can_remove_control() const; 220 const Type* const _type; // What kind of value is loaded? 221 222 virtual Node* find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const; 223 public: 224 225 LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency) 226 : MemNode(c,mem,adr,at), _control_dependency(control_dependency), _mo(mo), _type(rt) { 227 init_class_id(Class_Load); 228 } 229 inline bool is_unordered() const { return !is_acquire(); } 230 inline bool is_acquire() const { 231 assert(_mo == unordered || _mo == acquire, "unexpected"); 232 return _mo == acquire; 233 } 234 inline bool is_unsigned() const { 235 int lop = Opcode(); 236 return (lop == Op_LoadUB) || (lop == Op_LoadUS); 237 } 238 239 // Polymorphic factory method: 240 static Node* make(PhaseGVN& gvn, Node* c, Node* mem, Node* adr, 241 const TypePtr* at, const Type* rt, BasicType bt, 242 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, 243 bool require_atomic_access = false, bool unaligned = false, bool mismatched = false, bool unsafe = false, 244 uint8_t barrier_data = 0); 245 246 virtual uint hash() const; // Check the type 247 248 // Handle algebraic identities here. If we have an identity, return the Node 249 // we are equivalent to. We look for Load of a Store. 250 virtual Node* Identity(PhaseGVN* phase); 251 252 // If the load is from Field memory and the pointer is non-null, it might be possible to 253 // zero out the control input. 254 // If the offset is constant and the base is an object allocation, 255 // try to hook me up to the exact initializing store. 256 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 257 258 // Return true if it's possible to split the Load through a Phi merging the bases 259 bool can_split_through_phi_base(PhaseGVN *phase); 260 261 // Split instance field load through Phi. 262 Node* split_through_phi(PhaseGVN *phase, bool ignore_missing_instance_id = false); 263 264 // Recover original value from boxed values 265 Node *eliminate_autobox(PhaseIterGVN *igvn); 266 267 // Compute a new Type for this node. Basically we just do the pre-check, 268 // then call the virtual add() to set the type. 269 virtual const Type* Value(PhaseGVN* phase) const; 270 271 // Common methods for LoadKlass and LoadNKlass nodes. 272 const Type* klass_value_common(PhaseGVN* phase) const; 273 Node* klass_identity_common(PhaseGVN* phase); 274 275 virtual uint ideal_reg() const; 276 virtual const Type *bottom_type() const; 277 // Following method is copied from TypeNode: 278 void set_type(const Type* t) { 279 assert(t != nullptr, "sanity"); 280 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 281 *(const Type**)&_type = t; // cast away const-ness 282 // If this node is in the hash table, make sure it doesn't need a rehash. 283 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 284 } 285 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 286 287 // Do not match memory edge 288 virtual uint match_edge(uint idx) const; 289 290 // Map a load opcode to its corresponding store opcode. 291 virtual int store_Opcode() const = 0; 292 293 // Check if the load's memory input is a Phi node with the same control. 294 bool is_instance_field_load_with_local_phi(Node* ctrl); 295 296 Node* convert_to_unsigned_load(PhaseGVN& gvn); 297 Node* convert_to_signed_load(PhaseGVN& gvn); 298 299 bool has_reinterpret_variant(const Type* rt); 300 Node* convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt); 301 302 ControlDependency control_dependency() const { return _control_dependency; } 303 bool has_unknown_control_dependency() const { return _control_dependency == UnknownControl; } 304 bool has_pinned_control_dependency() const { return _control_dependency == Pinned; } 305 306 LoadNode* pin_array_access_node() const; 307 308 #ifndef PRODUCT 309 virtual void dump_spec(outputStream *st) const; 310 #endif 311 #ifdef ASSERT 312 // Helper function to allow a raw load without control edge for some cases 313 static bool is_immutable_value(Node* adr); 314 #endif 315 protected: 316 const Type* load_array_final_field(const TypeKlassPtr *tkls, 317 ciKlass* klass) const; 318 319 Node* can_see_arraycopy_value(Node* st, PhaseGVN* phase) const; 320 321 // depends_only_on_test is almost always true, and needs to be almost always 322 // true to enable key hoisting & commoning optimizations. However, for the 323 // special case of RawPtr loads from TLS top & end, and other loads performed by 324 // GC barriers, the control edge carries the dependence preventing hoisting past 325 // a Safepoint instead of the memory edge. (An unfortunate consequence of having 326 // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes 327 // which produce results (new raw memory state) inside of loops preventing all 328 // manner of other optimizations). Basically, it's ugly but so is the alternative. 329 // See comment in macro.cpp, around line 125 expand_allocate_common(). 330 virtual bool depends_only_on_test() const { 331 return adr_type() != TypeRawPtr::BOTTOM && _control_dependency == DependsOnlyOnTest; 332 } 333 334 LoadNode* clone_pinned() const; 335 }; 336 337 //------------------------------LoadBNode-------------------------------------- 338 // Load a byte (8bits signed) from memory 339 class LoadBNode : public LoadNode { 340 public: 341 LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 342 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {} 343 virtual int Opcode() const; 344 virtual uint ideal_reg() const { return Op_RegI; } 345 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 346 virtual const Type* Value(PhaseGVN* phase) const; 347 virtual int store_Opcode() const { return Op_StoreB; } 348 virtual BasicType value_basic_type() const { return T_BYTE; } 349 }; 350 351 //------------------------------LoadUBNode------------------------------------- 352 // Load a unsigned byte (8bits unsigned) from memory 353 class LoadUBNode : public LoadNode { 354 public: 355 LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 356 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {} 357 virtual int Opcode() const; 358 virtual uint ideal_reg() const { return Op_RegI; } 359 virtual Node* Ideal(PhaseGVN *phase, bool can_reshape); 360 virtual const Type* Value(PhaseGVN* phase) const; 361 virtual int store_Opcode() const { return Op_StoreB; } 362 virtual BasicType value_basic_type() const { return T_BYTE; } 363 }; 364 365 //------------------------------LoadUSNode------------------------------------- 366 // Load an unsigned short/char (16bits unsigned) from memory 367 class LoadUSNode : public LoadNode { 368 public: 369 LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 370 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {} 371 virtual int Opcode() const; 372 virtual uint ideal_reg() const { return Op_RegI; } 373 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 374 virtual const Type* Value(PhaseGVN* phase) const; 375 virtual int store_Opcode() const { return Op_StoreC; } 376 virtual BasicType value_basic_type() const { return T_CHAR; } 377 }; 378 379 //------------------------------LoadSNode-------------------------------------- 380 // Load a short (16bits signed) from memory 381 class LoadSNode : public LoadNode { 382 public: 383 LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 384 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {} 385 virtual int Opcode() const; 386 virtual uint ideal_reg() const { return Op_RegI; } 387 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 388 virtual const Type* Value(PhaseGVN* phase) const; 389 virtual int store_Opcode() const { return Op_StoreC; } 390 virtual BasicType value_basic_type() const { return T_SHORT; } 391 }; 392 393 //------------------------------LoadINode-------------------------------------- 394 // Load an integer from memory 395 class LoadINode : public LoadNode { 396 public: 397 LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 398 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {} 399 virtual int Opcode() const; 400 virtual uint ideal_reg() const { return Op_RegI; } 401 virtual int store_Opcode() const { return Op_StoreI; } 402 virtual BasicType value_basic_type() const { return T_INT; } 403 }; 404 405 //------------------------------LoadRangeNode---------------------------------- 406 // Load an array length from the array 407 class LoadRangeNode : public LoadINode { 408 public: 409 LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS) 410 : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {} 411 virtual int Opcode() const; 412 virtual const Type* Value(PhaseGVN* phase) const; 413 virtual Node* Identity(PhaseGVN* phase); 414 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 415 }; 416 417 //------------------------------LoadLNode-------------------------------------- 418 // Load a long from memory 419 class LoadLNode : public LoadNode { 420 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; } 421 virtual bool cmp( const Node &n ) const { 422 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access 423 && LoadNode::cmp(n); 424 } 425 virtual uint size_of() const { return sizeof(*this); } 426 const bool _require_atomic_access; // is piecewise load forbidden? 427 428 public: 429 LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl, 430 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false) 431 : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {} 432 virtual int Opcode() const; 433 virtual uint ideal_reg() const { return Op_RegL; } 434 virtual int store_Opcode() const { return Op_StoreL; } 435 virtual BasicType value_basic_type() const { return T_LONG; } 436 bool require_atomic_access() const { return _require_atomic_access; } 437 438 #ifndef PRODUCT 439 virtual void dump_spec(outputStream *st) const { 440 LoadNode::dump_spec(st); 441 if (_require_atomic_access) st->print(" Atomic!"); 442 } 443 #endif 444 }; 445 446 //------------------------------LoadL_unalignedNode---------------------------- 447 // Load a long from unaligned memory 448 class LoadL_unalignedNode : public LoadLNode { 449 public: 450 LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 451 : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {} 452 virtual int Opcode() const; 453 }; 454 455 //------------------------------LoadFNode-------------------------------------- 456 // Load a float (64 bits) from memory 457 class LoadFNode : public LoadNode { 458 public: 459 LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 460 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {} 461 virtual int Opcode() const; 462 virtual uint ideal_reg() const { return Op_RegF; } 463 virtual int store_Opcode() const { return Op_StoreF; } 464 virtual BasicType value_basic_type() const { return T_FLOAT; } 465 }; 466 467 //------------------------------LoadDNode-------------------------------------- 468 // Load a double (64 bits) from memory 469 class LoadDNode : public LoadNode { 470 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; } 471 virtual bool cmp( const Node &n ) const { 472 return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access 473 && LoadNode::cmp(n); 474 } 475 virtual uint size_of() const { return sizeof(*this); } 476 const bool _require_atomic_access; // is piecewise load forbidden? 477 478 public: 479 LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, 480 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false) 481 : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {} 482 virtual int Opcode() const; 483 virtual uint ideal_reg() const { return Op_RegD; } 484 virtual int store_Opcode() const { return Op_StoreD; } 485 virtual BasicType value_basic_type() const { return T_DOUBLE; } 486 bool require_atomic_access() const { return _require_atomic_access; } 487 488 #ifndef PRODUCT 489 virtual void dump_spec(outputStream *st) const { 490 LoadNode::dump_spec(st); 491 if (_require_atomic_access) st->print(" Atomic!"); 492 } 493 #endif 494 }; 495 496 //------------------------------LoadD_unalignedNode---------------------------- 497 // Load a double from unaligned memory 498 class LoadD_unalignedNode : public LoadDNode { 499 public: 500 LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 501 : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {} 502 virtual int Opcode() const; 503 }; 504 505 //------------------------------LoadPNode-------------------------------------- 506 // Load a pointer from memory (either object or array) 507 class LoadPNode : public LoadNode { 508 public: 509 LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 510 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {} 511 virtual int Opcode() const; 512 virtual uint ideal_reg() const { return Op_RegP; } 513 virtual int store_Opcode() const { return Op_StoreP; } 514 virtual BasicType value_basic_type() const { return T_ADDRESS; } 515 }; 516 517 518 //------------------------------LoadNNode-------------------------------------- 519 // Load a narrow oop from memory (either object or array) 520 class LoadNNode : public LoadNode { 521 public: 522 LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest) 523 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {} 524 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 525 virtual int Opcode() const; 526 virtual uint ideal_reg() const { return Op_RegN; } 527 virtual int store_Opcode() const { return Op_StoreN; } 528 virtual BasicType value_basic_type() const { return T_NARROWOOP; } 529 }; 530 531 //------------------------------LoadKlassNode---------------------------------- 532 // Load a Klass from an object 533 class LoadKlassNode : public LoadPNode { 534 private: 535 LoadKlassNode(Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk, MemOrd mo) 536 : LoadPNode(nullptr, mem, adr, at, tk, mo) {} 537 538 public: 539 virtual int Opcode() const; 540 virtual const Type* Value(PhaseGVN* phase) const; 541 virtual Node* Identity(PhaseGVN* phase); 542 virtual bool depends_only_on_test() const { return true; } 543 544 // Polymorphic factory method: 545 static Node* make(PhaseGVN& gvn, Node* mem, Node* adr, const TypePtr* at, 546 const TypeKlassPtr* tk = TypeInstKlassPtr::OBJECT); 547 }; 548 549 //------------------------------LoadNKlassNode--------------------------------- 550 // Load a narrow Klass from an object. 551 // With compact headers, the input address (adr) does not point at the exact 552 // header position where the (narrow) class pointer is located, but into the 553 // middle of the mark word (see oopDesc::klass_offset_in_bytes()). This node 554 // implicitly shifts the loaded value (markWord::klass_shift_at_offset bits) to 555 // extract the actual class pointer. C2's type system is agnostic on whether the 556 // input address directly points into the class pointer. 557 class LoadNKlassNode : public LoadNNode { 558 private: 559 friend Node* LoadKlassNode::make(PhaseGVN&, Node*, Node*, const TypePtr*, const TypeKlassPtr*); 560 LoadNKlassNode(Node* mem, Node* adr, const TypePtr* at, const TypeNarrowKlass* tk, MemOrd mo) 561 : LoadNNode(nullptr, mem, adr, at, tk, mo) {} 562 563 public: 564 virtual int Opcode() const; 565 virtual uint ideal_reg() const { return Op_RegN; } 566 virtual int store_Opcode() const { return Op_StoreNKlass; } 567 virtual BasicType value_basic_type() const { return T_NARROWKLASS; } 568 569 virtual const Type* Value(PhaseGVN* phase) const; 570 virtual Node* Identity(PhaseGVN* phase); 571 virtual bool depends_only_on_test() const { return true; } 572 }; 573 574 //------------------------------StoreNode-------------------------------------- 575 // Store value; requires Store, Address and Value 576 class StoreNode : public MemNode { 577 private: 578 // On platforms with weak memory ordering (e.g., PPC) we distinguish 579 // stores that can be reordered, and such requiring release semantics to 580 // adhere to the Java specification. The required behaviour is stored in 581 // this field. 582 const MemOrd _mo; 583 // Needed for proper cloning. 584 virtual uint size_of() const { return sizeof(*this); } 585 protected: 586 virtual bool cmp( const Node &n ) const; 587 virtual bool depends_only_on_test() const { return false; } 588 589 Node *Ideal_masked_input (PhaseGVN *phase, uint mask); 590 Node* Ideal_sign_extended_input(PhaseGVN* phase, int num_rejected_bits); 591 592 public: 593 // We must ensure that stores of object references will be visible 594 // only after the object's initialization. So the callers of this 595 // procedure must indicate that the store requires `release' 596 // semantics, if the stored value is an object reference that might 597 // point to a new object and may become externally visible. 598 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 599 : MemNode(c, mem, adr, at, val), _mo(mo) { 600 init_class_id(Class_Store); 601 } 602 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo) 603 : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) { 604 init_class_id(Class_Store); 605 } 606 607 inline bool is_unordered() const { return !is_release(); } 608 inline bool is_release() const { 609 assert((_mo == unordered || _mo == release), "unexpected"); 610 return _mo == release; 611 } 612 613 // Conservatively release stores of object references in order to 614 // ensure visibility of object initialization. 615 static inline MemOrd release_if_reference(const BasicType t) { 616 #ifdef AARCH64 617 // AArch64 doesn't need a release store here because object 618 // initialization contains the necessary barriers. 619 return unordered; 620 #else 621 const MemOrd mo = (t == T_ARRAY || 622 t == T_ADDRESS || // Might be the address of an object reference (`boxing'). 623 t == T_OBJECT) ? release : unordered; 624 return mo; 625 #endif 626 } 627 628 // Polymorphic factory method 629 // 630 // We must ensure that stores of object references will be visible 631 // only after the object's initialization. So the callers of this 632 // procedure must indicate that the store requires `release' 633 // semantics, if the stored value is an object reference that might 634 // point to a new object and may become externally visible. 635 static StoreNode* make(PhaseGVN& gvn, Node* c, Node* mem, Node* adr, 636 const TypePtr* at, Node* val, BasicType bt, 637 MemOrd mo, bool require_atomic_access = false); 638 639 virtual uint hash() const; // Check the type 640 641 // If the store is to Field memory and the pointer is non-null, we can 642 // zero out the control input. 643 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 644 645 // Compute a new Type for this node. Basically we just do the pre-check, 646 // then call the virtual add() to set the type. 647 virtual const Type* Value(PhaseGVN* phase) const; 648 649 // Check for identity function on memory (Load then Store at same address) 650 virtual Node* Identity(PhaseGVN* phase); 651 652 // Do not match memory edge 653 virtual uint match_edge(uint idx) const; 654 655 virtual const Type *bottom_type() const; // returns Type::MEMORY 656 657 // Map a store opcode to its corresponding own opcode, trivially. 658 virtual int store_Opcode() const { return Opcode(); } 659 660 // have all possible loads of the value stored been optimized away? 661 bool value_never_loaded(PhaseValues* phase) const; 662 663 bool has_reinterpret_variant(const Type* vt); 664 Node* convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt); 665 666 MemBarNode* trailing_membar() const; 667 }; 668 669 //------------------------------StoreBNode------------------------------------- 670 // Store byte to memory 671 class StoreBNode : public StoreNode { 672 public: 673 StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 674 : StoreNode(c, mem, adr, at, val, mo) {} 675 virtual int Opcode() const; 676 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 677 virtual BasicType value_basic_type() const { return T_BYTE; } 678 }; 679 680 //------------------------------StoreCNode------------------------------------- 681 // Store char/short to memory 682 class StoreCNode : public StoreNode { 683 public: 684 StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 685 : StoreNode(c, mem, adr, at, val, mo) {} 686 virtual int Opcode() const; 687 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 688 virtual BasicType value_basic_type() const { return T_CHAR; } 689 }; 690 691 //------------------------------StoreINode------------------------------------- 692 // Store int to memory 693 class StoreINode : public StoreNode { 694 public: 695 StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 696 : StoreNode(c, mem, adr, at, val, mo) {} 697 virtual int Opcode() const; 698 virtual BasicType value_basic_type() const { return T_INT; } 699 }; 700 701 //------------------------------StoreLNode------------------------------------- 702 // Store long to memory 703 class StoreLNode : public StoreNode { 704 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; } 705 virtual bool cmp( const Node &n ) const { 706 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access 707 && StoreNode::cmp(n); 708 } 709 virtual uint size_of() const { return sizeof(*this); } 710 const bool _require_atomic_access; // is piecewise store forbidden? 711 712 public: 713 StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false) 714 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {} 715 virtual int Opcode() const; 716 virtual BasicType value_basic_type() const { return T_LONG; } 717 bool require_atomic_access() const { return _require_atomic_access; } 718 719 #ifndef PRODUCT 720 virtual void dump_spec(outputStream *st) const { 721 StoreNode::dump_spec(st); 722 if (_require_atomic_access) st->print(" Atomic!"); 723 } 724 #endif 725 }; 726 727 // Special StoreL for flat stores that emits GC barriers for field at 'oop_off' in the backend 728 class StoreLSpecialNode : public StoreNode { 729 730 public: 731 StoreLSpecialNode(Node* c, Node* mem, Node* adr, const TypePtr* at, Node* val, Node* oop_off, MemOrd mo) 732 : StoreNode(c, mem, adr, at, val, mo) { 733 set_mismatched_access(); 734 if (oop_off != nullptr) { 735 add_req(oop_off); 736 } 737 } 738 virtual int Opcode() const; 739 virtual BasicType value_basic_type() const { return T_LONG; } 740 741 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || 742 idx == MemNode::ValueIn || 743 idx == MemNode::ValueIn + 1; } 744 }; 745 746 //------------------------------StoreFNode------------------------------------- 747 // Store float to memory 748 class StoreFNode : public StoreNode { 749 public: 750 StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 751 : StoreNode(c, mem, adr, at, val, mo) {} 752 virtual int Opcode() const; 753 virtual BasicType value_basic_type() const { return T_FLOAT; } 754 }; 755 756 //------------------------------StoreDNode------------------------------------- 757 // Store double to memory 758 class StoreDNode : public StoreNode { 759 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; } 760 virtual bool cmp( const Node &n ) const { 761 return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access 762 && StoreNode::cmp(n); 763 } 764 virtual uint size_of() const { return sizeof(*this); } 765 const bool _require_atomic_access; // is piecewise store forbidden? 766 public: 767 StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, 768 MemOrd mo, bool require_atomic_access = false) 769 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {} 770 virtual int Opcode() const; 771 virtual BasicType value_basic_type() const { return T_DOUBLE; } 772 bool require_atomic_access() const { return _require_atomic_access; } 773 774 #ifndef PRODUCT 775 virtual void dump_spec(outputStream *st) const { 776 StoreNode::dump_spec(st); 777 if (_require_atomic_access) st->print(" Atomic!"); 778 } 779 #endif 780 781 }; 782 783 //------------------------------StorePNode------------------------------------- 784 // Store pointer to memory 785 class StorePNode : public StoreNode { 786 public: 787 StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 788 : StoreNode(c, mem, adr, at, val, mo) {} 789 virtual int Opcode() const; 790 virtual BasicType value_basic_type() const { return T_ADDRESS; } 791 }; 792 793 //------------------------------StoreNNode------------------------------------- 794 // Store narrow oop to memory 795 class StoreNNode : public StoreNode { 796 public: 797 StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 798 : StoreNode(c, mem, adr, at, val, mo) {} 799 virtual int Opcode() const; 800 virtual BasicType value_basic_type() const { return T_NARROWOOP; } 801 }; 802 803 //------------------------------StoreNKlassNode-------------------------------------- 804 // Store narrow klass to memory 805 class StoreNKlassNode : public StoreNNode { 806 public: 807 StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) 808 : StoreNNode(c, mem, adr, at, val, mo) {} 809 virtual int Opcode() const; 810 virtual BasicType value_basic_type() const { return T_NARROWKLASS; } 811 }; 812 813 //------------------------------SCMemProjNode--------------------------------------- 814 // This class defines a projection of the memory state of a store conditional node. 815 // These nodes return a value, but also update memory. 816 class SCMemProjNode : public ProjNode { 817 public: 818 enum {SCMEMPROJCON = (uint)-2}; 819 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { } 820 virtual int Opcode() const; 821 virtual bool is_CFG() const { return false; } 822 virtual const Type *bottom_type() const {return Type::MEMORY;} 823 virtual const TypePtr *adr_type() const { 824 Node* ctrl = in(0); 825 if (ctrl == nullptr) return nullptr; // node is dead 826 return ctrl->in(MemNode::Memory)->adr_type(); 827 } 828 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register 829 virtual const Type* Value(PhaseGVN* phase) const; 830 #ifndef PRODUCT 831 virtual void dump_spec(outputStream *st) const {}; 832 #endif 833 }; 834 835 //------------------------------LoadStoreNode--------------------------- 836 // Note: is_Mem() method returns 'true' for this class. 837 class LoadStoreNode : public Node { 838 private: 839 const Type* const _type; // What kind of value is loaded? 840 const TypePtr* _adr_type; // What kind of memory is being addressed? 841 uint8_t _barrier_data; // Bit field with barrier information 842 virtual uint size_of() const; // Size is bigger 843 public: 844 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ); 845 virtual bool depends_only_on_test() const { return false; } 846 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; } 847 848 virtual const Type *bottom_type() const { return _type; } 849 virtual uint ideal_reg() const; 850 virtual const class TypePtr *adr_type() const { return _adr_type; } // returns bottom_type of address 851 virtual const Type* Value(PhaseGVN* phase) const; 852 853 bool result_not_used() const; 854 MemBarNode* trailing_membar() const; 855 856 uint8_t barrier_data() { return _barrier_data; } 857 void set_barrier_data(uint8_t barrier_data) { _barrier_data = barrier_data; } 858 }; 859 860 class LoadStoreConditionalNode : public LoadStoreNode { 861 public: 862 enum { 863 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode 864 }; 865 LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex); 866 virtual const Type* Value(PhaseGVN* phase) const; 867 }; 868 869 class CompareAndSwapNode : public LoadStoreConditionalNode { 870 private: 871 const MemNode::MemOrd _mem_ord; 872 public: 873 CompareAndSwapNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : LoadStoreConditionalNode(c, mem, adr, val, ex), _mem_ord(mem_ord) {} 874 MemNode::MemOrd order() const { 875 return _mem_ord; 876 } 877 virtual uint size_of() const { return sizeof(*this); } 878 }; 879 880 class CompareAndExchangeNode : public LoadStoreNode { 881 private: 882 const MemNode::MemOrd _mem_ord; 883 public: 884 enum { 885 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode 886 }; 887 CompareAndExchangeNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord, const TypePtr* at, const Type* t) : 888 LoadStoreNode(c, mem, adr, val, at, t, 5), _mem_ord(mem_ord) { 889 init_req(ExpectedIn, ex ); 890 } 891 892 MemNode::MemOrd order() const { 893 return _mem_ord; 894 } 895 virtual uint size_of() const { return sizeof(*this); } 896 }; 897 898 //------------------------------CompareAndSwapBNode--------------------------- 899 class CompareAndSwapBNode : public CompareAndSwapNode { 900 public: 901 CompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 902 virtual int Opcode() const; 903 }; 904 905 //------------------------------CompareAndSwapSNode--------------------------- 906 class CompareAndSwapSNode : public CompareAndSwapNode { 907 public: 908 CompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 909 virtual int Opcode() const; 910 }; 911 912 //------------------------------CompareAndSwapINode--------------------------- 913 class CompareAndSwapINode : public CompareAndSwapNode { 914 public: 915 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 916 virtual int Opcode() const; 917 }; 918 919 //------------------------------CompareAndSwapLNode--------------------------- 920 class CompareAndSwapLNode : public CompareAndSwapNode { 921 public: 922 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 923 virtual int Opcode() const; 924 }; 925 926 //------------------------------CompareAndSwapPNode--------------------------- 927 class CompareAndSwapPNode : public CompareAndSwapNode { 928 public: 929 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 930 virtual int Opcode() const; 931 }; 932 933 //------------------------------CompareAndSwapNNode--------------------------- 934 class CompareAndSwapNNode : public CompareAndSwapNode { 935 public: 936 CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 937 virtual int Opcode() const; 938 }; 939 940 //------------------------------WeakCompareAndSwapBNode--------------------------- 941 class WeakCompareAndSwapBNode : public CompareAndSwapNode { 942 public: 943 WeakCompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 944 virtual int Opcode() const; 945 }; 946 947 //------------------------------WeakCompareAndSwapSNode--------------------------- 948 class WeakCompareAndSwapSNode : public CompareAndSwapNode { 949 public: 950 WeakCompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 951 virtual int Opcode() const; 952 }; 953 954 //------------------------------WeakCompareAndSwapINode--------------------------- 955 class WeakCompareAndSwapINode : public CompareAndSwapNode { 956 public: 957 WeakCompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 958 virtual int Opcode() const; 959 }; 960 961 //------------------------------WeakCompareAndSwapLNode--------------------------- 962 class WeakCompareAndSwapLNode : public CompareAndSwapNode { 963 public: 964 WeakCompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 965 virtual int Opcode() const; 966 }; 967 968 //------------------------------WeakCompareAndSwapPNode--------------------------- 969 class WeakCompareAndSwapPNode : public CompareAndSwapNode { 970 public: 971 WeakCompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 972 virtual int Opcode() const; 973 }; 974 975 //------------------------------WeakCompareAndSwapNNode--------------------------- 976 class WeakCompareAndSwapNNode : public CompareAndSwapNode { 977 public: 978 WeakCompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { } 979 virtual int Opcode() const; 980 }; 981 982 //------------------------------CompareAndExchangeBNode--------------------------- 983 class CompareAndExchangeBNode : public CompareAndExchangeNode { 984 public: 985 CompareAndExchangeBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::BYTE) { } 986 virtual int Opcode() const; 987 }; 988 989 990 //------------------------------CompareAndExchangeSNode--------------------------- 991 class CompareAndExchangeSNode : public CompareAndExchangeNode { 992 public: 993 CompareAndExchangeSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::SHORT) { } 994 virtual int Opcode() const; 995 }; 996 997 //------------------------------CompareAndExchangeLNode--------------------------- 998 class CompareAndExchangeLNode : public CompareAndExchangeNode { 999 public: 1000 CompareAndExchangeLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeLong::LONG) { } 1001 virtual int Opcode() const; 1002 }; 1003 1004 1005 //------------------------------CompareAndExchangeINode--------------------------- 1006 class CompareAndExchangeINode : public CompareAndExchangeNode { 1007 public: 1008 CompareAndExchangeINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::INT) { } 1009 virtual int Opcode() const; 1010 }; 1011 1012 1013 //------------------------------CompareAndExchangePNode--------------------------- 1014 class CompareAndExchangePNode : public CompareAndExchangeNode { 1015 public: 1016 CompareAndExchangePNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { } 1017 virtual int Opcode() const; 1018 }; 1019 1020 //------------------------------CompareAndExchangeNNode--------------------------- 1021 class CompareAndExchangeNNode : public CompareAndExchangeNode { 1022 public: 1023 CompareAndExchangeNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { } 1024 virtual int Opcode() const; 1025 }; 1026 1027 //------------------------------GetAndAddBNode--------------------------- 1028 class GetAndAddBNode : public LoadStoreNode { 1029 public: 1030 GetAndAddBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { } 1031 virtual int Opcode() const; 1032 }; 1033 1034 //------------------------------GetAndAddSNode--------------------------- 1035 class GetAndAddSNode : public LoadStoreNode { 1036 public: 1037 GetAndAddSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { } 1038 virtual int Opcode() const; 1039 }; 1040 1041 //------------------------------GetAndAddINode--------------------------- 1042 class GetAndAddINode : public LoadStoreNode { 1043 public: 1044 GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { } 1045 virtual int Opcode() const; 1046 }; 1047 1048 //------------------------------GetAndAddLNode--------------------------- 1049 class GetAndAddLNode : public LoadStoreNode { 1050 public: 1051 GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { } 1052 virtual int Opcode() const; 1053 }; 1054 1055 //------------------------------GetAndSetBNode--------------------------- 1056 class GetAndSetBNode : public LoadStoreNode { 1057 public: 1058 GetAndSetBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { } 1059 virtual int Opcode() const; 1060 }; 1061 1062 //------------------------------GetAndSetSNode--------------------------- 1063 class GetAndSetSNode : public LoadStoreNode { 1064 public: 1065 GetAndSetSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { } 1066 virtual int Opcode() const; 1067 }; 1068 1069 //------------------------------GetAndSetINode--------------------------- 1070 class GetAndSetINode : public LoadStoreNode { 1071 public: 1072 GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { } 1073 virtual int Opcode() const; 1074 }; 1075 1076 //------------------------------GetAndSetLNode--------------------------- 1077 class GetAndSetLNode : public LoadStoreNode { 1078 public: 1079 GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { } 1080 virtual int Opcode() const; 1081 }; 1082 1083 //------------------------------GetAndSetPNode--------------------------- 1084 class GetAndSetPNode : public LoadStoreNode { 1085 public: 1086 GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { } 1087 virtual int Opcode() const; 1088 }; 1089 1090 //------------------------------GetAndSetNNode--------------------------- 1091 class GetAndSetNNode : public LoadStoreNode { 1092 public: 1093 GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { } 1094 virtual int Opcode() const; 1095 }; 1096 1097 //------------------------------ClearArray------------------------------------- 1098 class ClearArrayNode: public Node { 1099 private: 1100 bool _is_large; 1101 bool _word_copy_only; 1102 public: 1103 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base, Node* val, bool is_large) 1104 : Node(ctrl, arymem, word_cnt, base, val), _is_large(is_large), 1105 _word_copy_only(val->bottom_type()->isa_long() && (!val->bottom_type()->is_long()->is_con() || val->bottom_type()->is_long()->get_con() != 0)) { 1106 init_class_id(Class_ClearArray); 1107 } 1108 virtual int Opcode() const; 1109 virtual const Type *bottom_type() const { return Type::MEMORY; } 1110 // ClearArray modifies array elements, and so affects only the 1111 // array memory addressed by the bottom_type of its base address. 1112 virtual const class TypePtr *adr_type() const; 1113 virtual Node* Identity(PhaseGVN* phase); 1114 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1115 virtual uint match_edge(uint idx) const; 1116 bool is_large() const { return _is_large; } 1117 bool word_copy_only() const { return _word_copy_only; } 1118 virtual uint size_of() const { return sizeof(ClearArrayNode); } 1119 virtual uint hash() const { return Node::hash() + _is_large; } 1120 virtual bool cmp(const Node& n) const { 1121 return Node::cmp(n) && _is_large == ((ClearArrayNode&)n).is_large(); 1122 } 1123 1124 // Clear the given area of an object or array. 1125 // The start offset must always be aligned mod BytesPerInt. 1126 // The end offset must always be aligned mod BytesPerLong. 1127 // Return the new memory. 1128 static Node* clear_memory(Node* control, Node* mem, Node* dest, 1129 Node* val, 1130 Node* raw_val, 1131 intptr_t start_offset, 1132 intptr_t end_offset, 1133 PhaseGVN* phase); 1134 static Node* clear_memory(Node* control, Node* mem, Node* dest, 1135 Node* val, 1136 Node* raw_val, 1137 intptr_t start_offset, 1138 Node* end_offset, 1139 PhaseGVN* phase); 1140 static Node* clear_memory(Node* control, Node* mem, Node* dest, 1141 Node* raw_val, 1142 Node* start_offset, 1143 Node* end_offset, 1144 PhaseGVN* phase); 1145 // Return allocation input memory edge if it is different instance 1146 // or itself if it is the one we are looking for. 1147 static bool step_through(Node** np, uint instance_id, PhaseValues* phase); 1148 }; 1149 1150 //------------------------------MemBar----------------------------------------- 1151 // There are different flavors of Memory Barriers to match the Java Memory 1152 // Model. Monitor-enter and volatile-load act as Acquires: no following ref 1153 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or 1154 // volatile-load. Monitor-exit and volatile-store act as Release: no 1155 // preceding ref can be moved to after them. We insert a MemBar-Release 1156 // before a FastUnlock or volatile-store. All volatiles need to be 1157 // serialized, so we follow all volatile-stores with a MemBar-Volatile to 1158 // separate it from any following volatile-load. 1159 class MemBarNode: public MultiNode { 1160 virtual uint hash() const ; // { return NO_HASH; } 1161 virtual bool cmp( const Node &n ) const ; // Always fail, except on self 1162 1163 virtual uint size_of() const { return sizeof(*this); } 1164 // Memory type this node is serializing. Usually either rawptr or bottom. 1165 const TypePtr* _adr_type; 1166 1167 // How is this membar related to a nearby memory access? 1168 enum { 1169 Standalone, 1170 TrailingLoad, 1171 TrailingStore, 1172 LeadingStore, 1173 TrailingLoadStore, 1174 LeadingLoadStore, 1175 TrailingExpandedArrayCopy 1176 } _kind; 1177 1178 #ifdef ASSERT 1179 uint _pair_idx; 1180 #endif 1181 1182 public: 1183 enum { 1184 Precedent = TypeFunc::Parms // optional edge to force precedence 1185 }; 1186 MemBarNode(Compile* C, int alias_idx, Node* precedent); 1187 virtual int Opcode() const = 0; 1188 virtual const class TypePtr *adr_type() const { return _adr_type; } 1189 virtual const Type* Value(PhaseGVN* phase) const; 1190 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1191 virtual uint match_edge(uint idx) const { return 0; } 1192 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; } 1193 virtual Node *match(const ProjNode *proj, const Matcher *m, const RegMask* mask); 1194 // Factory method. Builds a wide or narrow membar. 1195 // Optional 'precedent' becomes an extra edge if not null. 1196 static MemBarNode* make(Compile* C, int opcode, 1197 int alias_idx = Compile::AliasIdxBot, 1198 Node* precedent = nullptr); 1199 1200 MemBarNode* trailing_membar() const; 1201 MemBarNode* leading_membar() const; 1202 1203 void set_trailing_load() { _kind = TrailingLoad; } 1204 bool trailing_load() const { return _kind == TrailingLoad; } 1205 bool trailing_store() const { return _kind == TrailingStore; } 1206 bool leading_store() const { return _kind == LeadingStore; } 1207 bool trailing_load_store() const { return _kind == TrailingLoadStore; } 1208 bool leading_load_store() const { return _kind == LeadingLoadStore; } 1209 bool trailing() const { return _kind == TrailingLoad || _kind == TrailingStore || _kind == TrailingLoadStore; } 1210 bool leading() const { return _kind == LeadingStore || _kind == LeadingLoadStore; } 1211 bool standalone() const { return _kind == Standalone; } 1212 void set_trailing_expanded_array_copy() { _kind = TrailingExpandedArrayCopy; } 1213 bool trailing_expanded_array_copy() const { return _kind == TrailingExpandedArrayCopy; } 1214 1215 static void set_store_pair(MemBarNode* leading, MemBarNode* trailing); 1216 static void set_load_store_pair(MemBarNode* leading, MemBarNode* trailing); 1217 1218 void remove(PhaseIterGVN *igvn); 1219 }; 1220 1221 // "Acquire" - no following ref can move before (but earlier refs can 1222 // follow, like an early Load stalled in cache). Requires multi-cpu 1223 // visibility. Inserted after a volatile load. 1224 class MemBarAcquireNode: public MemBarNode { 1225 public: 1226 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent) 1227 : MemBarNode(C, alias_idx, precedent) {} 1228 virtual int Opcode() const; 1229 }; 1230 1231 // "Acquire" - no following ref can move before (but earlier refs can 1232 // follow, like an early Load stalled in cache). Requires multi-cpu 1233 // visibility. Inserted independent of any load, as required 1234 // for intrinsic Unsafe.loadFence(). 1235 class LoadFenceNode: public MemBarNode { 1236 public: 1237 LoadFenceNode(Compile* C, int alias_idx, Node* precedent) 1238 : MemBarNode(C, alias_idx, precedent) {} 1239 virtual int Opcode() const; 1240 }; 1241 1242 // "Release" - no earlier ref can move after (but later refs can move 1243 // up, like a speculative pipelined cache-hitting Load). Requires 1244 // multi-cpu visibility. Inserted before a volatile store. 1245 class MemBarReleaseNode: public MemBarNode { 1246 public: 1247 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent) 1248 : MemBarNode(C, alias_idx, precedent) {} 1249 virtual int Opcode() const; 1250 }; 1251 1252 // "Release" - no earlier ref can move after (but later refs can move 1253 // up, like a speculative pipelined cache-hitting Load). Requires 1254 // multi-cpu visibility. Inserted independent of any store, as required 1255 // for intrinsic Unsafe.storeFence(). 1256 class StoreFenceNode: public MemBarNode { 1257 public: 1258 StoreFenceNode(Compile* C, int alias_idx, Node* precedent) 1259 : MemBarNode(C, alias_idx, precedent) {} 1260 virtual int Opcode() const; 1261 }; 1262 1263 // "Acquire" - no following ref can move before (but earlier refs can 1264 // follow, like an early Load stalled in cache). Requires multi-cpu 1265 // visibility. Inserted after a FastLock. 1266 class MemBarAcquireLockNode: public MemBarNode { 1267 public: 1268 MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent) 1269 : MemBarNode(C, alias_idx, precedent) {} 1270 virtual int Opcode() const; 1271 }; 1272 1273 // "Release" - no earlier ref can move after (but later refs can move 1274 // up, like a speculative pipelined cache-hitting Load). Requires 1275 // multi-cpu visibility. Inserted before a FastUnLock. 1276 class MemBarReleaseLockNode: public MemBarNode { 1277 public: 1278 MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent) 1279 : MemBarNode(C, alias_idx, precedent) {} 1280 virtual int Opcode() const; 1281 }; 1282 1283 class MemBarStoreStoreNode: public MemBarNode { 1284 public: 1285 MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent) 1286 : MemBarNode(C, alias_idx, precedent) { 1287 init_class_id(Class_MemBarStoreStore); 1288 } 1289 virtual int Opcode() const; 1290 }; 1291 1292 class StoreStoreFenceNode: public MemBarNode { 1293 public: 1294 StoreStoreFenceNode(Compile* C, int alias_idx, Node* precedent) 1295 : MemBarNode(C, alias_idx, precedent) {} 1296 virtual int Opcode() const; 1297 }; 1298 1299 // Ordering between a volatile store and a following volatile load. 1300 // Requires multi-CPU visibility? 1301 class MemBarVolatileNode: public MemBarNode { 1302 public: 1303 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent) 1304 : MemBarNode(C, alias_idx, precedent) {} 1305 virtual int Opcode() const; 1306 }; 1307 1308 // Ordering within the same CPU. Used to order unsafe memory references 1309 // inside the compiler when we lack alias info. Not needed "outside" the 1310 // compiler because the CPU does all the ordering for us. 1311 class MemBarCPUOrderNode: public MemBarNode { 1312 public: 1313 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent) 1314 : MemBarNode(C, alias_idx, precedent) {} 1315 virtual int Opcode() const; 1316 virtual uint ideal_reg() const { return 0; } // not matched in the AD file 1317 }; 1318 1319 class OnSpinWaitNode: public MemBarNode { 1320 public: 1321 OnSpinWaitNode(Compile* C, int alias_idx, Node* precedent) 1322 : MemBarNode(C, alias_idx, precedent) {} 1323 virtual int Opcode() const; 1324 }; 1325 1326 // Isolation of object setup after an AllocateNode and before next safepoint. 1327 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.) 1328 class InitializeNode: public MemBarNode { 1329 friend class AllocateNode; 1330 1331 enum { 1332 Incomplete = 0, 1333 Complete = 1, 1334 WithArraycopy = 2 1335 }; 1336 int _is_complete; 1337 1338 bool _does_not_escape; 1339 1340 public: 1341 enum { 1342 Control = TypeFunc::Control, 1343 Memory = TypeFunc::Memory, // MergeMem for states affected by this op 1344 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address 1345 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP) 1346 }; 1347 1348 InitializeNode(Compile* C, int adr_type, Node* rawoop); 1349 virtual int Opcode() const; 1350 virtual uint size_of() const { return sizeof(*this); } 1351 virtual uint ideal_reg() const { return 0; } // not matched in the AD file 1352 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress 1353 1354 // Manage incoming memory edges via a MergeMem on in(Memory): 1355 Node* memory(uint alias_idx); 1356 1357 // The raw memory edge coming directly from the Allocation. 1358 // The contents of this memory are *always* all-zero-bits. 1359 Node* zero_memory() { return memory(Compile::AliasIdxRaw); } 1360 1361 // Return the corresponding allocation for this initialization (or null if none). 1362 // (Note: Both InitializeNode::allocation and AllocateNode::initialization 1363 // are defined in graphKit.cpp, which sets up the bidirectional relation.) 1364 AllocateNode* allocation(); 1365 1366 // Anything other than zeroing in this init? 1367 bool is_non_zero(); 1368 1369 // An InitializeNode must completed before macro expansion is done. 1370 // Completion requires that the AllocateNode must be followed by 1371 // initialization of the new memory to zero, then to any initializers. 1372 bool is_complete() { return _is_complete != Incomplete; } 1373 bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; } 1374 1375 // Mark complete. (Must not yet be complete.) 1376 void set_complete(PhaseGVN* phase); 1377 void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; } 1378 1379 bool does_not_escape() { return _does_not_escape; } 1380 void set_does_not_escape() { _does_not_escape = true; } 1381 1382 #ifdef ASSERT 1383 // ensure all non-degenerate stores are ordered and non-overlapping 1384 bool stores_are_sane(PhaseValues* phase); 1385 #endif //ASSERT 1386 1387 // See if this store can be captured; return offset where it initializes. 1388 // Return 0 if the store cannot be moved (any sort of problem). 1389 intptr_t can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape); 1390 1391 // Capture another store; reformat it to write my internal raw memory. 1392 // Return the captured copy, else null if there is some sort of problem. 1393 Node* capture_store(StoreNode* st, intptr_t start, PhaseGVN* phase, bool can_reshape); 1394 1395 // Find captured store which corresponds to the range [start..start+size). 1396 // Return my own memory projection (meaning the initial zero bits) 1397 // if there is no such store. Return null if there is a problem. 1398 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseValues* phase); 1399 1400 // Called when the associated AllocateNode is expanded into CFG. 1401 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, 1402 intptr_t header_size, Node* size_in_bytes, 1403 PhaseIterGVN* phase); 1404 1405 private: 1406 void remove_extra_zeroes(); 1407 1408 // Find out where a captured store should be placed (or already is placed). 1409 int captured_store_insertion_point(intptr_t start, int size_in_bytes, 1410 PhaseValues* phase); 1411 1412 static intptr_t get_store_offset(Node* st, PhaseValues* phase); 1413 1414 Node* make_raw_address(intptr_t offset, PhaseGVN* phase); 1415 1416 bool detect_init_independence(Node* value, PhaseGVN* phase); 1417 1418 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes, 1419 PhaseGVN* phase); 1420 1421 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase); 1422 }; 1423 1424 //------------------------------MergeMem--------------------------------------- 1425 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.) 1426 class MergeMemNode: public Node { 1427 virtual uint hash() const ; // { return NO_HASH; } 1428 virtual bool cmp( const Node &n ) const ; // Always fail, except on self 1429 friend class MergeMemStream; 1430 MergeMemNode(Node* def); // clients use MergeMemNode::make 1431 1432 public: 1433 // If the input is a whole memory state, clone it with all its slices intact. 1434 // Otherwise, make a new memory state with just that base memory input. 1435 // In either case, the result is a newly created MergeMem. 1436 static MergeMemNode* make(Node* base_memory); 1437 1438 virtual int Opcode() const; 1439 virtual Node* Identity(PhaseGVN* phase); 1440 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1441 virtual uint ideal_reg() const { return NotAMachineReg; } 1442 virtual uint match_edge(uint idx) const { return 0; } 1443 virtual const RegMask &out_RegMask() const; 1444 virtual const Type *bottom_type() const { return Type::MEMORY; } 1445 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 1446 // sparse accessors 1447 // Fetch the previously stored "set_memory_at", or else the base memory. 1448 // (Caller should clone it if it is a phi-nest.) 1449 Node* memory_at(uint alias_idx) const; 1450 // set the memory, regardless of its previous value 1451 void set_memory_at(uint alias_idx, Node* n); 1452 // the "base" is the memory that provides the non-finite support 1453 Node* base_memory() const { return in(Compile::AliasIdxBot); } 1454 // warning: setting the base can implicitly set any of the other slices too 1455 void set_base_memory(Node* def); 1456 // sentinel value which denotes a copy of the base memory: 1457 Node* empty_memory() const { return in(Compile::AliasIdxTop); } 1458 static Node* make_empty_memory(); // where the sentinel comes from 1459 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); } 1460 // hook for the iterator, to perform any necessary setup 1461 void iteration_setup(const MergeMemNode* other = nullptr); 1462 // push sentinels until I am at least as long as the other (semantic no-op) 1463 void grow_to_match(const MergeMemNode* other); 1464 bool verify_sparse() const PRODUCT_RETURN0; 1465 #ifndef PRODUCT 1466 virtual void dump_spec(outputStream *st) const; 1467 #endif 1468 }; 1469 1470 class MergeMemStream : public StackObj { 1471 private: 1472 MergeMemNode* _mm; 1473 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations 1474 Node* _mm_base; // loop-invariant base memory of _mm 1475 int _idx; 1476 int _cnt; 1477 Node* _mem; 1478 Node* _mem2; 1479 int _cnt2; 1480 1481 void init(MergeMemNode* mm, const MergeMemNode* mm2 = nullptr) { 1482 // subsume_node will break sparseness at times, whenever a memory slice 1483 // folds down to a copy of the base ("fat") memory. In such a case, 1484 // the raw edge will update to base, although it should be top. 1485 // This iterator will recognize either top or base_memory as an 1486 // "empty" slice. See is_empty, is_empty2, and next below. 1487 // 1488 // The sparseness property is repaired in MergeMemNode::Ideal. 1489 // As long as access to a MergeMem goes through this iterator 1490 // or the memory_at accessor, flaws in the sparseness will 1491 // never be observed. 1492 // 1493 // Also, iteration_setup repairs sparseness. 1494 assert(mm->verify_sparse(), "please, no dups of base"); 1495 assert(mm2==nullptr || mm2->verify_sparse(), "please, no dups of base"); 1496 1497 _mm = mm; 1498 _mm_base = mm->base_memory(); 1499 _mm2 = mm2; 1500 _cnt = mm->req(); 1501 _idx = Compile::AliasIdxBot-1; // start at the base memory 1502 _mem = nullptr; 1503 _mem2 = nullptr; 1504 } 1505 1506 #ifdef ASSERT 1507 Node* check_memory() const { 1508 if (at_base_memory()) 1509 return _mm->base_memory(); 1510 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top()) 1511 return _mm->memory_at(_idx); 1512 else 1513 return _mm_base; 1514 } 1515 Node* check_memory2() const { 1516 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx); 1517 } 1518 #endif 1519 1520 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0; 1521 void assert_synch() const { 1522 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx), 1523 "no side-effects except through the stream"); 1524 } 1525 1526 public: 1527 1528 // expected usages: 1529 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... } 1530 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... } 1531 1532 // iterate over one merge 1533 MergeMemStream(MergeMemNode* mm) { 1534 mm->iteration_setup(); 1535 init(mm); 1536 DEBUG_ONLY(_cnt2 = 999); 1537 } 1538 // iterate in parallel over two merges 1539 // only iterates through non-empty elements of mm2 1540 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) { 1541 assert(mm2, "second argument must be a MergeMem also"); 1542 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state 1543 mm->iteration_setup(mm2); 1544 init(mm, mm2); 1545 _cnt2 = mm2->req(); 1546 } 1547 #ifdef ASSERT 1548 ~MergeMemStream() { 1549 assert_synch(); 1550 } 1551 #endif 1552 1553 MergeMemNode* all_memory() const { 1554 return _mm; 1555 } 1556 Node* base_memory() const { 1557 assert(_mm_base == _mm->base_memory(), "no update to base memory, please"); 1558 return _mm_base; 1559 } 1560 const MergeMemNode* all_memory2() const { 1561 assert(_mm2 != nullptr, ""); 1562 return _mm2; 1563 } 1564 bool at_base_memory() const { 1565 return _idx == Compile::AliasIdxBot; 1566 } 1567 int alias_idx() const { 1568 assert(_mem, "must call next 1st"); 1569 return _idx; 1570 } 1571 1572 const TypePtr* adr_type() const { 1573 return Compile::current()->get_adr_type(alias_idx()); 1574 } 1575 1576 const TypePtr* adr_type(Compile* C) const { 1577 return C->get_adr_type(alias_idx()); 1578 } 1579 bool is_empty() const { 1580 assert(_mem, "must call next 1st"); 1581 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel"); 1582 return _mem->is_top(); 1583 } 1584 bool is_empty2() const { 1585 assert(_mem2, "must call next 1st"); 1586 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel"); 1587 return _mem2->is_top(); 1588 } 1589 Node* memory() const { 1590 assert(!is_empty(), "must not be empty"); 1591 assert_synch(); 1592 return _mem; 1593 } 1594 // get the current memory, regardless of empty or non-empty status 1595 Node* force_memory() const { 1596 assert(!is_empty() || !at_base_memory(), ""); 1597 // Use _mm_base to defend against updates to _mem->base_memory(). 1598 Node *mem = _mem->is_top() ? _mm_base : _mem; 1599 assert(mem == check_memory(), ""); 1600 return mem; 1601 } 1602 Node* memory2() const { 1603 assert(_mem2 == check_memory2(), ""); 1604 return _mem2; 1605 } 1606 void set_memory(Node* mem) { 1607 if (at_base_memory()) { 1608 // Note that this does not change the invariant _mm_base. 1609 _mm->set_base_memory(mem); 1610 } else { 1611 _mm->set_memory_at(_idx, mem); 1612 } 1613 _mem = mem; 1614 assert_synch(); 1615 } 1616 1617 // Recover from a side effect to the MergeMemNode. 1618 void set_memory() { 1619 _mem = _mm->in(_idx); 1620 } 1621 1622 bool next() { return next(false); } 1623 bool next2() { return next(true); } 1624 1625 bool next_non_empty() { return next_non_empty(false); } 1626 bool next_non_empty2() { return next_non_empty(true); } 1627 // next_non_empty2 can yield states where is_empty() is true 1628 1629 private: 1630 // find the next item, which might be empty 1631 bool next(bool have_mm2) { 1632 assert((_mm2 != nullptr) == have_mm2, "use other next"); 1633 assert_synch(); 1634 if (++_idx < _cnt) { 1635 // Note: This iterator allows _mm to be non-sparse. 1636 // It behaves the same whether _mem is top or base_memory. 1637 _mem = _mm->in(_idx); 1638 if (have_mm2) 1639 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop); 1640 return true; 1641 } 1642 return false; 1643 } 1644 1645 // find the next non-empty item 1646 bool next_non_empty(bool have_mm2) { 1647 while (next(have_mm2)) { 1648 if (!is_empty()) { 1649 // make sure _mem2 is filled in sensibly 1650 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory(); 1651 return true; 1652 } else if (have_mm2 && !is_empty2()) { 1653 return true; // is_empty() == true 1654 } 1655 } 1656 return false; 1657 } 1658 }; 1659 1660 // cachewb node for guaranteeing writeback of the cache line at a 1661 // given address to (non-volatile) RAM 1662 class CacheWBNode : public Node { 1663 public: 1664 CacheWBNode(Node *ctrl, Node *mem, Node *addr) : Node(ctrl, mem, addr) {} 1665 virtual int Opcode() const; 1666 virtual uint ideal_reg() const { return NotAMachineReg; } 1667 virtual uint match_edge(uint idx) const { return (idx == 2); } 1668 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 1669 virtual const Type *bottom_type() const { return Type::MEMORY; } 1670 }; 1671 1672 // cachewb pre sync node for ensuring that writebacks are serialised 1673 // relative to preceding or following stores 1674 class CacheWBPreSyncNode : public Node { 1675 public: 1676 CacheWBPreSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {} 1677 virtual int Opcode() const; 1678 virtual uint ideal_reg() const { return NotAMachineReg; } 1679 virtual uint match_edge(uint idx) const { return false; } 1680 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 1681 virtual const Type *bottom_type() const { return Type::MEMORY; } 1682 }; 1683 1684 // cachewb pre sync node for ensuring that writebacks are serialised 1685 // relative to preceding or following stores 1686 class CacheWBPostSyncNode : public Node { 1687 public: 1688 CacheWBPostSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {} 1689 virtual int Opcode() const; 1690 virtual uint ideal_reg() const { return NotAMachineReg; } 1691 virtual uint match_edge(uint idx) const { return false; } 1692 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 1693 virtual const Type *bottom_type() const { return Type::MEMORY; } 1694 }; 1695 1696 //------------------------------Prefetch--------------------------------------- 1697 1698 // Allocation prefetch which may fault, TLAB size have to be adjusted. 1699 class PrefetchAllocationNode : public Node { 1700 public: 1701 PrefetchAllocationNode(Node *mem, Node *adr) : Node(nullptr,mem,adr) {} 1702 virtual int Opcode() const; 1703 virtual uint ideal_reg() const { return NotAMachineReg; } 1704 virtual uint match_edge(uint idx) const { return idx==2; } 1705 virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; } 1706 }; 1707 1708 #endif // SHARE_OPTO_MEMNODE_HPP