1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "memory/allocation.inline.hpp"
  26 #include "opto/addnode.hpp"
  27 #include "opto/connode.hpp"
  28 #include "opto/convertnode.hpp"
  29 #include "opto/memnode.hpp"
  30 #include "opto/mulnode.hpp"
  31 #include "opto/phaseX.hpp"
  32 #include "opto/subnode.hpp"
  33 #include "utilities/powerOfTwo.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 
  38 //=============================================================================
  39 //------------------------------hash-------------------------------------------
  40 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
  41 // (commute) inputs to MulNodes willy-nilly so the hash function must return
  42 // the same value in the presence of edge swapping.
  43 uint MulNode::hash() const {
  44   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  45 }
  46 
  47 //------------------------------Identity---------------------------------------
  48 // Multiplying a one preserves the other argument
  49 Node* MulNode::Identity(PhaseGVN* phase) {
  50   const Type *one = mul_id();  // The multiplicative identity
  51   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  52   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
  53 
  54   return this;
  55 }
  56 
  57 //------------------------------Ideal------------------------------------------
  58 // We also canonicalize the Node, moving constants to the right input,
  59 // and flatten expressions (so that 1+x+2 becomes x+3).
  60 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  61   Node* in1 = in(1);
  62   Node* in2 = in(2);
  63   Node* progress = nullptr;        // Progress flag
  64 
  65   // This code is used by And nodes too, but some conversions are
  66   // only valid for the actual Mul nodes.
  67   uint op = Opcode();
  68   bool real_mul = (op == Op_MulI) || (op == Op_MulL) ||
  69                   (op == Op_MulF) || (op == Op_MulD) ||
  70                   (op == Op_MulHF);
  71 
  72   // Convert "(-a)*(-b)" into "a*b".
  73   if (real_mul && in1->is_Sub() && in2->is_Sub()) {
  74     if (phase->type(in1->in(1))->is_zero_type() &&
  75         phase->type(in2->in(1))->is_zero_type()) {
  76       set_req_X(1, in1->in(2), phase);
  77       set_req_X(2, in2->in(2), phase);
  78       in1 = in(1);
  79       in2 = in(2);
  80       progress = this;
  81     }
  82   }
  83 
  84   // convert "max(a,b) * min(a,b)" into "a*b".
  85   if ((in(1)->Opcode() == max_opcode() && in(2)->Opcode() == min_opcode())
  86       || (in(1)->Opcode() == min_opcode() && in(2)->Opcode() == max_opcode())) {
  87     Node *in11 = in(1)->in(1);
  88     Node *in12 = in(1)->in(2);
  89 
  90     Node *in21 = in(2)->in(1);
  91     Node *in22 = in(2)->in(2);
  92 
  93     if ((in11 == in21 && in12 == in22) ||
  94         (in11 == in22 && in12 == in21)) {
  95       set_req_X(1, in11, phase);
  96       set_req_X(2, in12, phase);
  97       in1 = in(1);
  98       in2 = in(2);
  99       progress = this;
 100     }
 101   }
 102 
 103   const Type* t1 = phase->type(in1);
 104   const Type* t2 = phase->type(in2);
 105 
 106   // We are OK if right is a constant, or right is a load and
 107   // left is a non-constant.
 108   if( !(t2->singleton() ||
 109         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
 110     if( t1->singleton() ||       // Left input is a constant?
 111         // Otherwise, sort inputs (commutativity) to help value numbering.
 112         (in(1)->_idx > in(2)->_idx) ) {
 113       swap_edges(1, 2);
 114       const Type *t = t1;
 115       t1 = t2;
 116       t2 = t;
 117       progress = this;            // Made progress
 118     }
 119   }
 120 
 121   // If the right input is a constant, and the left input is a product of a
 122   // constant, flatten the expression tree.
 123   if( t2->singleton() &&        // Right input is a constant?
 124       op != Op_MulF &&          // Float & double cannot reassociate
 125       op != Op_MulD &&
 126       op != Op_MulHF) {
 127     if( t2 == Type::TOP ) return nullptr;
 128     Node *mul1 = in(1);
 129 #ifdef ASSERT
 130     // Check for dead loop
 131     int op1 = mul1->Opcode();
 132     if ((mul1 == this) || (in(2) == this) ||
 133         ((op1 == mul_opcode() || op1 == add_opcode()) &&
 134          ((mul1->in(1) == this) || (mul1->in(2) == this) ||
 135           (mul1->in(1) == mul1) || (mul1->in(2) == mul1)))) {
 136       assert(false, "dead loop in MulNode::Ideal");
 137     }
 138 #endif
 139 
 140     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
 141       // Mul of a constant?
 142       const Type *t12 = phase->type( mul1->in(2) );
 143       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
 144         // Compute new constant; check for overflow
 145         const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
 146         if( tcon01->singleton() ) {
 147           // The Mul of the flattened expression
 148           set_req_X(1, mul1->in(1), phase);
 149           set_req_X(2, phase->makecon(tcon01), phase);
 150           t2 = tcon01;
 151           progress = this;      // Made progress
 152         }
 153       }
 154     }
 155     // If the right input is a constant, and the left input is an add of a
 156     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
 157     const Node *add1 = in(1);
 158     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
 159       // Add of a constant?
 160       const Type *t12 = phase->type( add1->in(2) );
 161       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 162         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
 163         // Compute new constant; check for overflow
 164         const Type *tcon01 = mul_ring(t2,t12);
 165         if( tcon01->singleton() ) {
 166 
 167         // Convert (X+con1)*con0 into X*con0
 168           Node *mul = clone();    // mul = ()*con0
 169           mul->set_req(1,add1->in(1));  // mul = X*con0
 170           mul = phase->transform(mul);
 171 
 172           Node *add2 = add1->clone();
 173           add2->set_req(1, mul);        // X*con0 + con0*con1
 174           add2->set_req(2, phase->makecon(tcon01) );
 175           progress = add2;
 176         }
 177       }
 178     } // End of is left input an add
 179   } // End of is right input a Mul
 180 
 181   return progress;
 182 }
 183 
 184 //------------------------------Value-----------------------------------------
 185 const Type* MulNode::Value(PhaseGVN* phase) const {
 186   const Type *t1 = phase->type( in(1) );
 187   const Type *t2 = phase->type( in(2) );
 188   // Either input is TOP ==> the result is TOP
 189   if( t1 == Type::TOP ) return Type::TOP;
 190   if( t2 == Type::TOP ) return Type::TOP;
 191 
 192   // Either input is ZERO ==> the result is ZERO.
 193   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
 194   int op = Opcode();
 195   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
 196     const Type *zero = add_id();        // The multiplicative zero
 197     if( t1->higher_equal( zero ) ) return zero;
 198     if( t2->higher_equal( zero ) ) return zero;
 199   }
 200 
 201   // Either input is BOTTOM ==> the result is the local BOTTOM
 202   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 203     return bottom_type();
 204 
 205   return mul_ring(t1,t2);            // Local flavor of type multiplication
 206 }
 207 
 208 MulNode* MulNode::make(Node* in1, Node* in2, BasicType bt) {
 209   switch (bt) {
 210     case T_INT:
 211       return new MulINode(in1, in2);
 212     case T_LONG:
 213       return new MulLNode(in1, in2);
 214     default:
 215       fatal("Not implemented for %s", type2name(bt));
 216   }
 217   return nullptr;
 218 }
 219 
 220 MulNode* MulNode::make_and(Node* in1, Node* in2, BasicType bt) {
 221   switch (bt) {
 222     case T_INT:
 223       return new AndINode(in1, in2);
 224     case T_LONG:
 225       return new AndLNode(in1, in2);
 226     default:
 227       fatal("Not implemented for %s", type2name(bt));
 228   }
 229   return nullptr;
 230 }
 231 
 232 
 233 //=============================================================================
 234 //------------------------------Ideal------------------------------------------
 235 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 236 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 237   const jint con = in(2)->find_int_con(0);
 238   if (con == 0) {
 239     // If in(2) is not a constant, call Ideal() of the parent class to
 240     // try to move constant to the right side.
 241     return MulNode::Ideal(phase, can_reshape);
 242   }
 243 
 244   // Now we have a constant Node on the right and the constant in con.
 245   if (con == 1) {
 246     // By one is handled by Identity call
 247     return nullptr;
 248   }
 249 
 250   // Check for negative constant; if so negate the final result
 251   bool sign_flip = false;
 252 
 253   unsigned int abs_con = g_uabs(con);
 254   if (abs_con != (unsigned int)con) {
 255     sign_flip = true;
 256   }
 257 
 258   // Get low bit; check for being the only bit
 259   Node *res = nullptr;
 260   unsigned int bit1 = submultiple_power_of_2(abs_con);
 261   if (bit1 == abs_con) {           // Found a power of 2?
 262     res = new LShiftINode(in(1), phase->intcon(log2i_exact(bit1)));
 263   } else {
 264     // Check for constant with 2 bits set
 265     unsigned int bit2 = abs_con - bit1;
 266     bit2 = bit2 & (0 - bit2);          // Extract 2nd bit
 267     if (bit2 + bit1 == abs_con) {    // Found all bits in con?
 268       Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit1))));
 269       Node *n2 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit2))));
 270       res = new AddINode(n2, n1);
 271     } else if (is_power_of_2(abs_con + 1)) {
 272       // Sleezy: power-of-2 - 1.  Next time be generic.
 273       unsigned int temp = abs_con + 1;
 274       Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(temp))));
 275       res = new SubINode(n1, in(1));
 276     } else {
 277       return MulNode::Ideal(phase, can_reshape);
 278     }
 279   }
 280 
 281   if (sign_flip) {             // Need to negate result?
 282     res = phase->transform(res);// Transform, before making the zero con
 283     res = new SubINode(phase->intcon(0),res);
 284   }
 285 
 286   return res;                   // Return final result
 287 }
 288 
 289 // This template class performs type multiplication for MulI/MulLNode. NativeType is either jint or jlong.
 290 // In this class, the inputs of the MulNodes are named left and right with types [left_lo,left_hi] and [right_lo,right_hi].
 291 //
 292 // In general, the multiplication of two x-bit values could produce a result that consumes up to 2x bits if there is
 293 // enough space to hold them all. We can therefore distinguish the following two cases for the product:
 294 // - no overflow (i.e. product fits into x bits)
 295 // - overflow (i.e. product does not fit into x bits)
 296 //
 297 // When multiplying the two x-bit inputs 'left' and 'right' with their x-bit types [left_lo,left_hi] and [right_lo,right_hi]
 298 // we need to find the minimum and maximum of all possible products to define a new type. To do that, we compute the
 299 // cross product of [left_lo,left_hi] and [right_lo,right_hi] in 2x-bit space where no over- or underflow can happen.
 300 // The cross product consists of the following four multiplications with 2x-bit results:
 301 // (1) left_lo * right_lo
 302 // (2) left_lo * right_hi
 303 // (3) left_hi * right_lo
 304 // (4) left_hi * right_hi
 305 //
 306 // Let's define the following two functions:
 307 // - Lx(i): Returns the lower x bits of the 2x-bit number i.
 308 // - Ux(i): Returns the upper x bits of the 2x-bit number i.
 309 //
 310 // Let's first assume all products are positive where only overflows are possible but no underflows. If there is no
 311 // overflow for a product p, then the upper x bits of the 2x-bit result p are all zero:
 312 //     Ux(p) = 0
 313 //     Lx(p) = p
 314 //
 315 // If none of the multiplications (1)-(4) overflow, we can truncate the upper x bits and use the following result type
 316 // with x bits:
 317 //      [result_lo,result_hi] = [MIN(Lx(1),Lx(2),Lx(3),Lx(4)),MAX(Lx(1),Lx(2),Lx(3),Lx(4))]
 318 //
 319 // If any of these multiplications overflows, we could pessimistically take the bottom type for the x bit result
 320 // (i.e. all values in the x-bit space could be possible):
 321 //      [result_lo,result_hi] = [NativeType_min,NativeType_max]
 322 //
 323 // However, in case of any overflow, we can do better by analyzing the upper x bits of all multiplications (1)-(4) with
 324 // 2x-bit results. The upper x bits tell us something about how many times a multiplication has overflown the lower
 325 // x bits. If the upper x bits of (1)-(4) are all equal, then we know that all of these multiplications overflowed
 326 // the lower x bits the same number of times:
 327 //     Ux((1)) = Ux((2)) = Ux((3)) = Ux((4))
 328 //
 329 // If all upper x bits are equal, we can conclude:
 330 //     Lx(MIN((1),(2),(3),(4))) = MIN(Lx(1),Lx(2),Lx(3),Lx(4)))
 331 //     Lx(MAX((1),(2),(3),(4))) = MAX(Lx(1),Lx(2),Lx(3),Lx(4)))
 332 //
 333 // Therefore, we can use the same precise x-bit result type as for the no-overflow case:
 334 //     [result_lo,result_hi] = [(MIN(Lx(1),Lx(2),Lx(3),Lx(4))),MAX(Lx(1),Lx(2),Lx(3),Lx(4)))]
 335 //
 336 //
 337 // Now let's assume that (1)-(4) are signed multiplications where over- and underflow could occur:
 338 // Negative numbers are all sign extend with ones. Therefore, if a negative product does not underflow, then the
 339 // upper x bits of the 2x-bit result are all set to ones which is minus one in two's complement. If there is an underflow,
 340 // the upper x bits are decremented by the number of times an underflow occurred. The smallest possible negative product
 341 // is NativeType_min*NativeType_max, where the upper x bits are set to NativeType_min / 2 (b11...0). It is therefore
 342 // impossible to underflow the upper x bits. Thus, when having all ones (i.e. minus one) in the upper x bits, we know
 343 // that there is no underflow.
 344 //
 345 // To be able to compare the number of over-/underflows of positive and negative products, respectively, we normalize
 346 // the upper x bits of negative 2x-bit products by adding one. This way a product has no over- or underflow if the
 347 // normalized upper x bits are zero. Now we can use the same improved type as for strictly positive products because we
 348 // can compare the upper x bits in a unified way with N() being the normalization function:
 349 //     N(Ux((1))) = N(Ux((2))) = N(Ux((3)) = N(Ux((4)))
 350 template<typename NativeType>
 351 class IntegerTypeMultiplication {
 352 
 353   NativeType _lo_left;
 354   NativeType _lo_right;
 355   NativeType _hi_left;
 356   NativeType _hi_right;
 357   short _widen_left;
 358   short _widen_right;
 359 
 360   static const Type* overflow_type();
 361   static NativeType multiply_high(NativeType x, NativeType y);
 362   const Type* create_type(NativeType lo, NativeType hi) const;
 363 
 364   static NativeType multiply_high_signed_overflow_value(NativeType x, NativeType y) {
 365     return normalize_overflow_value(x, y, multiply_high(x, y));
 366   }
 367 
 368   bool cross_product_not_same_overflow_value() const {
 369     const NativeType lo_lo_high_product = multiply_high_signed_overflow_value(_lo_left, _lo_right);
 370     const NativeType lo_hi_high_product = multiply_high_signed_overflow_value(_lo_left, _hi_right);
 371     const NativeType hi_lo_high_product = multiply_high_signed_overflow_value(_hi_left, _lo_right);
 372     const NativeType hi_hi_high_product = multiply_high_signed_overflow_value(_hi_left, _hi_right);
 373     return lo_lo_high_product != lo_hi_high_product ||
 374            lo_hi_high_product != hi_lo_high_product ||
 375            hi_lo_high_product != hi_hi_high_product;
 376   }
 377 
 378   bool does_product_overflow(NativeType x, NativeType y) const {
 379     return multiply_high_signed_overflow_value(x, y) != 0;
 380   }
 381 
 382   static NativeType normalize_overflow_value(const NativeType x, const NativeType y, NativeType result) {
 383     return java_multiply(x, y) < 0 ? result + 1 : result;
 384   }
 385 
 386  public:
 387   template<class IntegerType>
 388   IntegerTypeMultiplication(const IntegerType* left, const IntegerType* right)
 389       : _lo_left(left->_lo), _lo_right(right->_lo),
 390         _hi_left(left->_hi), _hi_right(right->_hi),
 391         _widen_left(left->_widen), _widen_right(right->_widen)  {}
 392 
 393   // Compute the product type by multiplying the two input type ranges. We take the minimum and maximum of all possible
 394   // values (requires 4 multiplications of all possible combinations of the two range boundary values). If any of these
 395   // multiplications overflows/underflows, we need to make sure that they all have the same number of overflows/underflows
 396   // If that is not the case, we return the bottom type to cover all values due to the inconsistent overflows/underflows).
 397   const Type* compute() const {
 398     if (cross_product_not_same_overflow_value()) {
 399       return overflow_type();
 400     }
 401 
 402     NativeType lo_lo_product = java_multiply(_lo_left, _lo_right);
 403     NativeType lo_hi_product = java_multiply(_lo_left, _hi_right);
 404     NativeType hi_lo_product = java_multiply(_hi_left, _lo_right);
 405     NativeType hi_hi_product = java_multiply(_hi_left, _hi_right);
 406     const NativeType min = MIN4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product);
 407     const NativeType max = MAX4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product);
 408     return create_type(min, max);
 409   }
 410 
 411   bool does_overflow() const {
 412     return does_product_overflow(_lo_left, _lo_right) ||
 413            does_product_overflow(_lo_left, _hi_right) ||
 414            does_product_overflow(_hi_left, _lo_right) ||
 415            does_product_overflow(_hi_left, _hi_right);
 416   }
 417 };
 418 
 419 template <>
 420 const Type* IntegerTypeMultiplication<jint>::overflow_type() {
 421   return TypeInt::INT;
 422 }
 423 
 424 template <>
 425 jint IntegerTypeMultiplication<jint>::multiply_high(const jint x, const jint y) {
 426   const jlong x_64 = x;
 427   const jlong y_64 = y;
 428   const jlong product = x_64 * y_64;
 429   return (jint)((uint64_t)product >> 32u);
 430 }
 431 
 432 template <>
 433 const Type* IntegerTypeMultiplication<jint>::create_type(jint lo, jint hi) const {
 434   return TypeInt::make(lo, hi, MAX2(_widen_left, _widen_right));
 435 }
 436 
 437 template <>
 438 const Type* IntegerTypeMultiplication<jlong>::overflow_type() {
 439   return TypeLong::LONG;
 440 }
 441 
 442 template <>
 443 jlong IntegerTypeMultiplication<jlong>::multiply_high(const jlong x, const jlong y) {
 444   return multiply_high_signed(x, y);
 445 }
 446 
 447 template <>
 448 const Type* IntegerTypeMultiplication<jlong>::create_type(jlong lo, jlong hi) const {
 449   return TypeLong::make(lo, hi, MAX2(_widen_left, _widen_right));
 450 }
 451 
 452 // Compute the product type of two integer ranges into this node.
 453 const Type* MulINode::mul_ring(const Type* type_left, const Type* type_right) const {
 454   const IntegerTypeMultiplication<jint> integer_multiplication(type_left->is_int(), type_right->is_int());
 455   return integer_multiplication.compute();
 456 }
 457 
 458 bool MulINode::does_overflow(const TypeInt* type_left, const TypeInt* type_right) {
 459   const IntegerTypeMultiplication<jint> integer_multiplication(type_left, type_right);
 460   return integer_multiplication.does_overflow();
 461 }
 462 
 463 // Compute the product type of two long ranges into this node.
 464 const Type* MulLNode::mul_ring(const Type* type_left, const Type* type_right) const {
 465   const IntegerTypeMultiplication<jlong> integer_multiplication(type_left->is_long(), type_right->is_long());
 466   return integer_multiplication.compute();
 467 }
 468 
 469 //=============================================================================
 470 //------------------------------Ideal------------------------------------------
 471 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 472 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 473   const jlong con = in(2)->find_long_con(0);
 474   if (con == 0) {
 475     // If in(2) is not a constant, call Ideal() of the parent class to
 476     // try to move constant to the right side.
 477     return MulNode::Ideal(phase, can_reshape);
 478   }
 479 
 480   // Now we have a constant Node on the right and the constant in con.
 481   if (con == 1) {
 482     // By one is handled by Identity call
 483     return nullptr;
 484   }
 485 
 486   // Check for negative constant; if so negate the final result
 487   bool sign_flip = false;
 488   julong abs_con = g_uabs(con);
 489   if (abs_con != (julong)con) {
 490     sign_flip = true;
 491   }
 492 
 493   // Get low bit; check for being the only bit
 494   Node *res = nullptr;
 495   julong bit1 = submultiple_power_of_2(abs_con);
 496   if (bit1 == abs_con) {           // Found a power of 2?
 497     res = new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1)));
 498   } else {
 499 
 500     // Check for constant with 2 bits set
 501     julong bit2 = abs_con-bit1;
 502     bit2 = bit2 & (0-bit2);          // Extract 2nd bit
 503     if (bit2 + bit1 == abs_con) {    // Found all bits in con?
 504       Node *n1 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1))));
 505       Node *n2 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit2))));
 506       res = new AddLNode(n2, n1);
 507 
 508     } else if (is_power_of_2(abs_con+1)) {
 509       // Sleezy: power-of-2 -1.  Next time be generic.
 510       julong temp = abs_con + 1;
 511       Node *n1 = phase->transform( new LShiftLNode(in(1), phase->intcon(log2i_exact(temp))));
 512       res = new SubLNode(n1, in(1));
 513     } else {
 514       return MulNode::Ideal(phase, can_reshape);
 515     }
 516   }
 517 
 518   if (sign_flip) {             // Need to negate result?
 519     res = phase->transform(res);// Transform, before making the zero con
 520     res = new SubLNode(phase->longcon(0),res);
 521   }
 522 
 523   return res;                   // Return final result
 524 }
 525 
 526 //=============================================================================
 527 //------------------------------mul_ring---------------------------------------
 528 // Compute the product type of two double ranges into this node.
 529 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
 530   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
 531   return TypeF::make( t0->getf() * t1->getf() );
 532 }
 533 
 534 //------------------------------Ideal---------------------------------------
 535 // Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
 536 Node* MulFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 537   const TypeF *t2 = phase->type(in(2))->isa_float_constant();
 538 
 539   // x * 2 -> x + x
 540   if (t2 != nullptr && t2->getf() == 2) {
 541     Node* base = in(1);
 542     return new AddFNode(base, base);
 543   }
 544   return MulNode::Ideal(phase, can_reshape);
 545 }
 546 
 547 //=============================================================================
 548 //------------------------------Ideal------------------------------------------
 549 // Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
 550 Node* MulHFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 551   const TypeH* t2 = phase->type(in(2))->isa_half_float_constant();
 552 
 553   // x * 2 -> x + x
 554   if (t2 != nullptr && t2->getf() == 2) {
 555     Node* base = in(1);
 556     return new AddHFNode(base, base);
 557   }
 558   return MulNode::Ideal(phase, can_reshape);
 559 }
 560 
 561 // Compute the product type of two half float ranges into this node.
 562 const Type* MulHFNode::mul_ring(const Type* t0, const Type* t1) const {
 563   if (t0 == Type::HALF_FLOAT || t1 == Type::HALF_FLOAT) {
 564     return Type::HALF_FLOAT;
 565   }
 566   return TypeH::make(t0->getf() * t1->getf());
 567 }
 568 
 569 //=============================================================================
 570 //------------------------------mul_ring---------------------------------------
 571 // Compute the product type of two double ranges into this node.
 572 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
 573   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
 574   // We must be multiplying 2 double constants.
 575   return TypeD::make( t0->getd() * t1->getd() );
 576 }
 577 
 578 //------------------------------Ideal---------------------------------------
 579 // Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
 580 Node* MulDNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 581   const TypeD *t2 = phase->type(in(2))->isa_double_constant();
 582 
 583   // x * 2 -> x + x
 584   if (t2 != nullptr && t2->getd() == 2) {
 585     Node* base = in(1);
 586     return new AddDNode(base, base);
 587   }
 588 
 589   return MulNode::Ideal(phase, can_reshape);
 590 }
 591 
 592 //=============================================================================
 593 //------------------------------Value------------------------------------------
 594 const Type* MulHiLNode::Value(PhaseGVN* phase) const {
 595   const Type *t1 = phase->type( in(1) );
 596   const Type *t2 = phase->type( in(2) );
 597   const Type *bot = bottom_type();
 598   return MulHiValue(t1, t2, bot);
 599 }
 600 
 601 const Type* UMulHiLNode::Value(PhaseGVN* phase) const {
 602   const Type *t1 = phase->type( in(1) );
 603   const Type *t2 = phase->type( in(2) );
 604   const Type *bot = bottom_type();
 605   return MulHiValue(t1, t2, bot);
 606 }
 607 
 608 // A common routine used by UMulHiLNode and MulHiLNode
 609 const Type* MulHiValue(const Type *t1, const Type *t2, const Type *bot) {
 610   // Either input is TOP ==> the result is TOP
 611   if( t1 == Type::TOP ) return Type::TOP;
 612   if( t2 == Type::TOP ) return Type::TOP;
 613 
 614   // Either input is BOTTOM ==> the result is the local BOTTOM
 615   if( (t1 == bot) || (t2 == bot) ||
 616       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 617     return bot;
 618 
 619   // It is not worth trying to constant fold this stuff!
 620   return TypeLong::LONG;
 621 }
 622 
 623 template<typename IntegerType>
 624 static const IntegerType* and_value(const IntegerType* r0, const IntegerType* r1) {
 625   typedef typename IntegerType::NativeType NativeType;
 626   static_assert(std::is_signed<NativeType>::value, "Native type of IntegerType must be signed!");
 627 
 628   int widen = MAX2(r0->_widen, r1->_widen);
 629 
 630   // If both types are constants, we can calculate a constant result.
 631   if (r0->is_con() && r1->is_con()) {
 632     return IntegerType::make(r0->get_con() & r1->get_con());
 633   }
 634 
 635   // If both ranges are positive, the result will range from 0 up to the hi value of the smaller range. The minimum
 636   // of the two constrains the upper bound because any higher value in the other range will see all zeroes, so it will be masked out.
 637   if (r0->_lo >= 0 && r1->_lo >= 0) {
 638     return IntegerType::make(0, MIN2(r0->_hi, r1->_hi), widen);
 639   }
 640 
 641   // If only one range is positive, the result will range from 0 up to that range's maximum value.
 642   // For the operation 'x & C' where C is a positive constant, the result will be in the range [0..C]. With that observation,
 643   // we can say that for any integer c such that 0 <= c <= C will also be in the range [0..C]. Therefore, 'x & [c..C]'
 644   // where c >= 0 will be in the range [0..C].
 645   if (r0->_lo >= 0) {
 646     return IntegerType::make(0, r0->_hi, widen);
 647   }
 648 
 649   if (r1->_lo >= 0) {
 650     return IntegerType::make(0, r1->_hi, widen);
 651   }
 652 
 653   // At this point, all positive ranges will have already been handled, so the only remaining cases will be negative ranges
 654   // and constants.
 655 
 656   assert(r0->_lo < 0 && r1->_lo < 0, "positive ranges should already be handled!");
 657 
 658   // As two's complement means that both numbers will start with leading 1s, the lower bound of both ranges will contain
 659   // the common leading 1s of both minimum values. In order to count them with count_leading_zeros, the bits are inverted.
 660   NativeType sel_val = ~MIN2(r0->_lo, r1->_lo);
 661 
 662   NativeType min;
 663   if (sel_val == 0) {
 664     // Since count_leading_zeros is undefined at 0, we short-circuit the condition where both ranges have a minimum of -1.
 665     min = -1;
 666   } else {
 667     // To get the number of bits to shift, we count the leading 0-bits and then subtract one, as the sign bit is already set.
 668     int shift_bits = count_leading_zeros(sel_val) - 1;
 669     min = std::numeric_limits<NativeType>::min() >> shift_bits;
 670   }
 671 
 672   NativeType max;
 673   if (r0->_hi < 0 && r1->_hi < 0) {
 674     // If both ranges are negative, then the same optimization as both positive ranges will apply, and the smaller hi
 675     // value will mask off any bits set by higher values.
 676     max = MIN2(r0->_hi, r1->_hi);
 677   } else {
 678     // In the case of ranges that cross zero, negative values can cause the higher order bits to be set, so the maximum
 679     // positive value can be as high as the larger hi value.
 680     max = MAX2(r0->_hi, r1->_hi);
 681   }
 682 
 683   return IntegerType::make(min, max, widen);
 684 }
 685 
 686 //=============================================================================
 687 //------------------------------mul_ring---------------------------------------
 688 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 689 // For the logical operations the ring's MUL is really a logical AND function.
 690 // This also type-checks the inputs for sanity.  Guaranteed never to
 691 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 692 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
 693   const TypeInt* r0 = t0->is_int();
 694   const TypeInt* r1 = t1->is_int();
 695 
 696   return and_value<TypeInt>(r0, r1);
 697 }
 698 
 699 static bool AndIL_is_zero_element_under_mask(const PhaseGVN* phase, const Node* expr, const Node* mask, BasicType bt);
 700 
 701 const Type* AndINode::Value(PhaseGVN* phase) const {
 702   if (AndIL_is_zero_element_under_mask(phase, in(1), in(2), T_INT) ||
 703       AndIL_is_zero_element_under_mask(phase, in(2), in(1), T_INT)) {
 704     return TypeInt::ZERO;
 705   }
 706 
 707   return MulNode::Value(phase);
 708 }
 709 
 710 //------------------------------Identity---------------------------------------
 711 // Masking off the high bits of an unsigned load is not required
 712 Node* AndINode::Identity(PhaseGVN* phase) {
 713 
 714   // x & x => x
 715   if (in(1) == in(2)) {
 716     return in(1);
 717   }
 718 
 719   Node* in1 = in(1);
 720   uint op = in1->Opcode();
 721   const TypeInt* t2 = phase->type(in(2))->isa_int();
 722   if (t2 && t2->is_con()) {
 723     int con = t2->get_con();
 724     // Masking off high bits which are always zero is useless.
 725     const TypeInt* t1 = phase->type(in(1))->isa_int();
 726     if (t1 != nullptr && t1->_lo >= 0) {
 727       jint t1_support = right_n_bits(1 + log2i_graceful(t1->_hi));
 728       if ((t1_support & con) == t1_support)
 729         return in1;
 730     }
 731     // Masking off the high bits of a unsigned-shift-right is not
 732     // needed either.
 733     if (op == Op_URShiftI) {
 734       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 735       if (t12 && t12->is_con()) {  // Shift is by a constant
 736         int shift = t12->get_con();
 737         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
 738         int mask = max_juint >> shift;
 739         if ((mask & con) == mask)  // If AND is useless, skip it
 740           return in1;
 741       }
 742     }
 743   }
 744   return MulNode::Identity(phase);
 745 }
 746 
 747 //------------------------------Ideal------------------------------------------
 748 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 749   // Simplify (v1 + v2) & mask to v1 & mask or v2 & mask when possible.
 750   Node* progress = AndIL_sum_and_mask(phase, T_INT);
 751   if (progress != nullptr) {
 752     return progress;
 753   }
 754 
 755   // Convert "(~a) & (~b)" into "~(a | b)"
 756   if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) {
 757     Node* or_a_b = new OrINode(in(1)->in(1), in(2)->in(1));
 758     Node* tn = phase->transform(or_a_b);
 759     return AddNode::make_not(phase, tn, T_INT);
 760   }
 761 
 762   // Special case constant AND mask
 763   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 764   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 765   const int mask = t2->get_con();
 766   Node *load = in(1);
 767   uint lop = load->Opcode();
 768 
 769   // Masking bits off of a Character?  Hi bits are already zero.
 770   if( lop == Op_LoadUS &&
 771       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
 772     return new AndINode(load,phase->intcon(mask&0xFFFF));
 773 
 774   // Masking bits off of a Short?  Loading a Character does some masking
 775   if (can_reshape &&
 776       load->outcnt() == 1 && load->unique_out() == this) {
 777     if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
 778       Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase);
 779       ldus = phase->transform(ldus);
 780       return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
 781     }
 782 
 783     // Masking sign bits off of a Byte?  Do an unsigned byte load plus
 784     // an and.
 785     if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
 786       Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase);
 787       ldub = phase->transform(ldub);
 788       return new AndINode(ldub, phase->intcon(mask));
 789     }
 790   }
 791 
 792   // Masking off sign bits?  Dont make them!
 793   if( lop == Op_RShiftI ) {
 794     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
 795     if( t12 && t12->is_con() ) { // Shift is by a constant
 796       int shift = t12->get_con();
 797       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 798       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
 799       // If the AND'ing of the 2 masks has no bits, then only original shifted
 800       // bits survive.  NO sign-extension bits survive the maskings.
 801       if( (sign_bits_mask & mask) == 0 ) {
 802         // Use zero-fill shift instead
 803         Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
 804         return new AndINode( zshift, in(2) );
 805       }
 806     }
 807   }
 808 
 809   // Check for 'negate/and-1', a pattern emitted when someone asks for
 810   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
 811   // plus 1) and the mask is of the low order bit.  Skip the negate.
 812   if( lop == Op_SubI && mask == 1 && load->in(1) &&
 813       phase->type(load->in(1)) == TypeInt::ZERO )
 814     return new AndINode( load->in(2), in(2) );
 815 
 816   return MulNode::Ideal(phase, can_reshape);
 817 }
 818 
 819 //=============================================================================
 820 //------------------------------mul_ring---------------------------------------
 821 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 822 // For the logical operations the ring's MUL is really a logical AND function.
 823 // This also type-checks the inputs for sanity.  Guaranteed never to
 824 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 825 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
 826   const TypeLong* r0 = t0->is_long();
 827   const TypeLong* r1 = t1->is_long();
 828 
 829   return and_value<TypeLong>(r0, r1);
 830 }
 831 
 832 const Type* AndLNode::Value(PhaseGVN* phase) const {
 833   if (AndIL_is_zero_element_under_mask(phase, in(1), in(2), T_LONG) ||
 834       AndIL_is_zero_element_under_mask(phase, in(2), in(1), T_LONG)) {
 835     return TypeLong::ZERO;
 836   }
 837 
 838   return MulNode::Value(phase);
 839 }
 840 
 841 //------------------------------Identity---------------------------------------
 842 // Masking off the high bits of an unsigned load is not required
 843 Node* AndLNode::Identity(PhaseGVN* phase) {
 844 
 845   // x & x => x
 846   if (in(1) == in(2)) {
 847     return in(1);
 848   }
 849 
 850   Node *usr = in(1);
 851   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 852   if( t2 && t2->is_con() ) {
 853     jlong con = t2->get_con();
 854     // Masking off high bits which are always zero is useless.
 855     const TypeLong* t1 = phase->type( in(1) )->isa_long();
 856     if (t1 != nullptr && t1->_lo >= 0) {
 857       int bit_count = log2i_graceful(t1->_hi) + 1;
 858       jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
 859       if ((t1_support & con) == t1_support)
 860         return usr;
 861     }
 862     uint lop = usr->Opcode();
 863     // Masking off the high bits of a unsigned-shift-right is not
 864     // needed either.
 865     if( lop == Op_URShiftL ) {
 866       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
 867       if( t12 && t12->is_con() ) {  // Shift is by a constant
 868         int shift = t12->get_con();
 869         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 870         jlong mask = max_julong >> shift;
 871         if( (mask&con) == mask )  // If AND is useless, skip it
 872           return usr;
 873       }
 874     }
 875   }
 876   return MulNode::Identity(phase);
 877 }
 878 
 879 //------------------------------Ideal------------------------------------------
 880 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 881   // Simplify (v1 + v2) & mask to v1 & mask or v2 & mask when possible.
 882   Node* progress = AndIL_sum_and_mask(phase, T_LONG);
 883   if (progress != nullptr) {
 884     return progress;
 885   }
 886 
 887   // Convert "(~a) & (~b)" into "~(a | b)"
 888   if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) {
 889     Node* or_a_b = new OrLNode(in(1)->in(1), in(2)->in(1));
 890     Node* tn = phase->transform(or_a_b);
 891     return AddNode::make_not(phase, tn, T_LONG);
 892   }
 893 
 894   // Special case constant AND mask
 895   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 896   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 897   const jlong mask = t2->get_con();
 898 
 899   Node* in1 = in(1);
 900   int op = in1->Opcode();
 901 
 902   // Are we masking a long that was converted from an int with a mask
 903   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
 904   // convert masks which would cause a sign extension of the integer
 905   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
 906   // would be optimized away later in Identity.
 907   if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
 908     Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
 909     andi = phase->transform(andi);
 910     return new ConvI2LNode(andi);
 911   }
 912 
 913   // Masking off sign bits?  Dont make them!
 914   if (op == Op_RShiftL) {
 915     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 916     if( t12 && t12->is_con() ) { // Shift is by a constant
 917       int shift = t12->get_con();
 918       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 919       if (shift != 0) {
 920         const julong sign_bits_mask = ~(((julong)CONST64(1) << (julong)(BitsPerJavaLong - shift)) -1);
 921         // If the AND'ing of the 2 masks has no bits, then only original shifted
 922         // bits survive.  NO sign-extension bits survive the maskings.
 923         if( (sign_bits_mask & mask) == 0 ) {
 924           // Use zero-fill shift instead
 925           Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
 926           return new AndLNode(zshift, in(2));
 927         }
 928       }
 929     }
 930   }
 931 
 932   return MulNode::Ideal(phase, can_reshape);
 933 }
 934 
 935 LShiftNode* LShiftNode::make(Node* in1, Node* in2, BasicType bt) {
 936   switch (bt) {
 937     case T_INT:
 938       return new LShiftINode(in1, in2);
 939     case T_LONG:
 940       return new LShiftLNode(in1, in2);
 941     default:
 942       fatal("Not implemented for %s", type2name(bt));
 943   }
 944   return nullptr;
 945 }
 946 
 947 // Returns whether the shift amount is constant. If so, sets count.
 948 static bool const_shift_count(PhaseGVN* phase, const Node* shift_node, int* count) {
 949   const TypeInt* tcount = phase->type(shift_node->in(2))->isa_int();
 950   if (tcount != nullptr && tcount->is_con()) {
 951     *count = tcount->get_con();
 952     return true;
 953   }
 954   return false;
 955 }
 956 
 957 // Returns whether the shift amount is constant. If so, sets real_shift and masked_shift.
 958 static bool mask_shift_amount(PhaseGVN* phase, const Node* shift_node, uint nBits, int& real_shift, uint& masked_shift) {
 959   if (const_shift_count(phase, shift_node, &real_shift)) {
 960     masked_shift = real_shift & (nBits - 1);
 961     return true;
 962   }
 963   return false;
 964 }
 965 
 966 // Convenience for when we don't care about the real amount
 967 static bool mask_shift_amount(PhaseGVN* phase, const Node* shift_node, uint nBits, uint& masked_shift) {
 968   int real_shift;
 969   return mask_shift_amount(phase, shift_node, nBits, real_shift, masked_shift);
 970 }
 971 
 972 // Use this in ::Ideal only with shiftNode == this!
 973 // Returns the masked shift amount if constant or 0 if not constant.
 974 static uint mask_and_replace_shift_amount(PhaseGVN* phase, Node* shift_node, uint nBits) {
 975   int real_shift;
 976   uint masked_shift;
 977   if (mask_shift_amount(phase, shift_node, nBits, real_shift, masked_shift)) {
 978     if (masked_shift == 0) {
 979       // Let Identity() handle 0 shift count.
 980       return 0;
 981     }
 982 
 983     if (real_shift != (int)masked_shift) {
 984       PhaseIterGVN* igvn = phase->is_IterGVN();
 985       if (igvn != nullptr) {
 986         igvn->_worklist.push(shift_node);
 987       }
 988       shift_node->set_req(2, phase->intcon(masked_shift)); // Replace shift count with masked value.
 989     }
 990     return masked_shift;
 991   }
 992   // Not a shift by a constant.
 993   return 0;
 994 }
 995 
 996 // Called with
 997 //   outer_shift = (_ << rhs_outer)
 998 // We are looking for the pattern:
 999 //   outer_shift = ((X << rhs_inner) << rhs_outer)
1000 //   where rhs_outer and rhs_inner are constant
1001 //   we denote inner_shift the nested expression (X << rhs_inner)
1002 //   con_inner = rhs_inner % nbits and con_outer = rhs_outer % nbits
1003 //   where nbits is the number of bits of the shifts
1004 //
1005 // There are 2 cases:
1006 // if con_outer + con_inner >= nbits => 0
1007 // if con_outer + con_inner < nbits => X << (con_outer + con_inner)
1008 static Node* collapse_nested_shift_left(PhaseGVN* phase, const Node* outer_shift, uint con_outer, BasicType bt) {
1009   assert(bt == T_LONG || bt == T_INT, "Unexpected type");
1010   const Node* inner_shift = outer_shift->in(1);
1011   if (inner_shift->Opcode() != Op_LShift(bt)) {
1012     return nullptr;
1013   }
1014 
1015   uint nbits = bits_per_java_integer(bt);
1016   uint con_inner;
1017   if (!mask_shift_amount(phase, inner_shift, nbits, con_inner)) {
1018     return nullptr;
1019   }
1020 
1021   if (con_inner == 0) {
1022     // We let the Identity() of the inner shift do its job.
1023     return nullptr;
1024   }
1025 
1026   if (con_outer + con_inner >= nbits) {
1027     // While it might be tempting to use
1028     // phase->zerocon(bt);
1029     // it would be incorrect: zerocon caches nodes, while Ideal is only allowed
1030     // to return a new node, this or nullptr, but not an old (cached) node.
1031     return ConNode::make(TypeInteger::zero(bt));
1032   }
1033 
1034   // con0 + con1 < nbits ==> actual shift happens now
1035   Node* con0_plus_con1 = phase->intcon(con_outer + con_inner);
1036   return LShiftNode::make(inner_shift->in(1), con0_plus_con1, bt);
1037 }
1038 
1039 //------------------------------Identity---------------------------------------
1040 Node* LShiftINode::Identity(PhaseGVN* phase) {
1041   return IdentityIL(phase, T_INT);
1042 }
1043 
1044 Node* LShiftNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) {
1045   uint con = mask_and_replace_shift_amount(phase, this, bits_per_java_integer(bt));
1046   if (con == 0) {
1047     return nullptr;
1048   }
1049 
1050   // If the right input is a constant, and the left input is an add of a
1051   // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
1052   Node* add1 = in(1);
1053   int add1_op = add1->Opcode();
1054   if (add1_op == Op_Add(bt)) {    // Left input is an add?
1055     assert(add1 != add1->in(1), "dead loop in LShiftINode::Ideal");
1056 
1057     // Transform is legal, but check for profit.  Avoid breaking 'i2s'
1058     // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
1059     if (bt != T_INT || con < 16) {
1060       // Left input is an add of the same number?
1061       if (con != (bits_per_java_integer(bt) - 1) && add1->in(1) == add1->in(2)) {
1062         // Convert "(x + x) << c0" into "x << (c0 + 1)"
1063         // In general, this optimization cannot be applied for c0 == 31 (for LShiftI) since
1064         // 2x << 31 != x << 32 = x << 0 = x (e.g. x = 1: 2 << 31 = 0 != 1)
1065         // or c0 != 63 (for LShiftL) because:
1066         // (x + x) << 63 = 2x << 63, while
1067         // (x + x) << 63 --transform--> x << 64 = x << 0 = x (!= 2x << 63, for example for x = 1)
1068         // According to the Java spec, chapter 15.19, we only consider the six lowest-order bits of the right-hand operand
1069         // (i.e. "right-hand operand" & 0b111111). Therefore, x << 64 is the same as x << 0 (64 = 0b10000000 & 0b0111111 = 0).
1070         return LShiftNode::make(add1->in(1), phase->intcon(con + 1), bt);
1071       }
1072 
1073       // Left input is an add of a constant?
1074       const TypeInteger* t12 = phase->type(add1->in(2))->isa_integer(bt);
1075       if (t12 != nullptr && t12->is_con()) { // Left input is an add of a con?
1076         // Compute X << con0
1077         Node* lsh = phase->transform(LShiftNode::make(add1->in(1), in(2), bt));
1078         // Compute X<<con0 + (con1<<con0)
1079         return AddNode::make(lsh, phase->integercon(java_shift_left(t12->get_con_as_long(bt), con, bt), bt), bt);
1080       }
1081     }
1082   }
1083 
1084   // Check for "(x >> C1) << C2"
1085   if (add1_op == Op_RShift(bt) || add1_op == Op_URShift(bt)) {
1086     int add1Con = 0;
1087     const_shift_count(phase, add1, &add1Con);
1088 
1089     // Special case C1 == C2, which just masks off low bits
1090     if (add1Con > 0 && con == (uint)add1Con) {
1091       // Convert to "(x & -(1 << C2))"
1092       return  MulNode::make_and(add1->in(1), phase->integercon(java_negate(java_shift_left(1, con, bt), bt), bt), bt);
1093     } else {
1094       // Wait until the right shift has been sharpened to the correct count
1095       if (add1Con > 0 && (uint)add1Con < bits_per_java_integer(bt)) {
1096         // As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed
1097         // to apply optimizations, otherwise we can inadvertently stop vectorization opportunities.
1098         if (phase->is_IterGVN()) {
1099           if (con > (uint)add1Con) {
1100             // Creates "(x << (C2 - C1)) & -(1 << C2)"
1101             Node* lshift = phase->transform(LShiftNode::make(add1->in(1), phase->intcon(con - add1Con), bt));
1102             return MulNode::make_and(lshift, phase->integercon(java_negate(java_shift_left(1, con, bt), bt), bt), bt);
1103           } else {
1104             assert(con < (uint)add1Con, "must be (%d < %d)", con, add1Con);
1105             // Creates "(x >> (C1 - C2)) & -(1 << C2)"
1106 
1107             // Handle logical and arithmetic shifts
1108             Node* rshift;
1109             if (add1_op == Op_RShift(bt)) {
1110               rshift = phase->transform(RShiftNode::make(add1->in(1), phase->intcon(add1Con - con), bt));
1111             } else {
1112               rshift = phase->transform(URShiftNode::make(add1->in(1), phase->intcon(add1Con - con), bt));
1113             }
1114 
1115             return MulNode::make_and(rshift, phase->integercon(java_negate(java_shift_left(1,  con, bt)), bt), bt);
1116           }
1117         } else {
1118           phase->record_for_igvn(this);
1119         }
1120       }
1121     }
1122   }
1123 
1124   // Check for "((x >> C1) & Y) << C2"
1125   if (add1_op == Op_And(bt)) {
1126     Node* add2 = add1->in(1);
1127     int add2_op = add2->Opcode();
1128     if (add2_op == Op_RShift(bt) || add2_op == Op_URShift(bt)) {
1129       // Special case C1 == C2, which just masks off low bits
1130       if (add2->in(2) == in(2)) {
1131         // Convert to "(x & (Y << C2))"
1132         Node* y_sh = phase->transform(LShiftNode::make(add1->in(2), phase->intcon(con), bt));
1133         return MulNode::make_and(add2->in(1), y_sh, bt);
1134       }
1135 
1136       int add2Con = 0;
1137       const_shift_count(phase, add2, &add2Con);
1138       if (add2Con > 0 && (uint)add2Con < bits_per_java_integer(bt)) {
1139         if (phase->is_IterGVN()) {
1140           // Convert to "((x >> C1) << C2) & (Y << C2)"
1141 
1142           // Make "(x >> C1) << C2", which will get folded away by the rule above
1143           Node* x_sh = phase->transform(LShiftNode::make(add2, phase->intcon(con), bt));
1144           // Make "Y << C2", which will simplify when Y is a constant
1145           Node* y_sh = phase->transform(LShiftNode::make(add1->in(2), phase->intcon(con), bt));
1146 
1147           return MulNode::make_and(x_sh, y_sh, bt);
1148         } else {
1149           phase->record_for_igvn(this);
1150         }
1151       }
1152     }
1153   }
1154 
1155   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
1156   // before shifting them away.
1157   const jlong bits_mask = max_unsigned_integer(bt) >> con;
1158   assert(bt != T_INT || bits_mask == right_n_bits(bits_per_java_integer(bt)-con), "inconsistent");
1159   if (add1_op == Op_And(bt) &&
1160       phase->type(add1->in(2)) == TypeInteger::make(bits_mask, bt)) {
1161     return LShiftNode::make(add1->in(1), in(2), bt);
1162   }
1163 
1164   // Collapse nested left-shifts with constant rhs:
1165   // (X << con1) << con2 ==> X << (con1 + con2)
1166   Node* doubleShift = collapse_nested_shift_left(phase, this, con, bt);
1167   if (doubleShift != nullptr) {
1168     return doubleShift;
1169   }
1170 
1171   return nullptr;
1172 }
1173 
1174 //------------------------------Ideal------------------------------------------
1175 Node* LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1176   return IdealIL(phase, can_reshape, T_INT);
1177 }
1178 
1179 const Type* LShiftNode::ValueIL(PhaseGVN* phase, BasicType bt) const {
1180   const Type* t1 = phase->type(in(1));
1181   const Type* t2 = phase->type(in(2));
1182   // Either input is TOP ==> the result is TOP
1183   if (t1 == Type::TOP) {
1184     return Type::TOP;
1185   }
1186   if (t2 == Type::TOP) {
1187     return Type::TOP;
1188   }
1189 
1190   // Left input is ZERO ==> the result is ZERO.
1191   if (t1 == TypeInteger::zero(bt)) {
1192     return TypeInteger::zero(bt);
1193   }
1194   // Shift by zero does nothing
1195   if (t2 == TypeInt::ZERO) {
1196     return t1;
1197   }
1198 
1199   // Either input is BOTTOM ==> the result is BOTTOM
1200   if ((t1 == TypeInteger::bottom(bt)) || (t2 == TypeInt::INT) ||
1201       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM)) {
1202     return TypeInteger::bottom(bt);
1203   }
1204 
1205   const TypeInteger* r1 = t1->is_integer(bt); // Handy access
1206   const TypeInt* r2 = t2->is_int(); // Handy access
1207 
1208   if (!r2->is_con()) {
1209     return TypeInteger::bottom(bt);
1210   }
1211 
1212   uint shift = r2->get_con();
1213   shift &= bits_per_java_integer(bt) - 1;  // semantics of Java shifts
1214   // Shift by a multiple of 32/64 does nothing:
1215   if (shift == 0) {
1216     return t1;
1217   }
1218 
1219   // If the shift is a constant, shift the bounds of the type,
1220   // unless this could lead to an overflow.
1221   if (!r1->is_con()) {
1222     jlong lo = r1->lo_as_long(), hi = r1->hi_as_long();
1223 #ifdef ASSERT
1224     if (bt == T_INT) {
1225       jint lo_int = r1->is_int()->_lo, hi_int = r1->is_int()->_hi;
1226       assert((java_shift_right(java_shift_left(lo, shift, bt),  shift, bt) == lo) == (((lo_int << shift) >> shift) == lo_int), "inconsistent");
1227       assert((java_shift_right(java_shift_left(hi, shift, bt),  shift, bt) == hi) == (((hi_int << shift) >> shift) == hi_int), "inconsistent");
1228     }
1229 #endif
1230     if (java_shift_right(java_shift_left(lo, shift, bt),  shift, bt) == lo &&
1231         java_shift_right(java_shift_left(hi, shift, bt), shift, bt) == hi) {
1232       // No overflow.  The range shifts up cleanly.
1233       return TypeInteger::make(java_shift_left(lo, shift, bt),
1234                                java_shift_left(hi,  shift, bt),
1235                                MAX2(r1->_widen, r2->_widen), bt);
1236     }
1237     return TypeInteger::bottom(bt);
1238   }
1239 
1240   return TypeInteger::make(java_shift_left(r1->get_con_as_long(bt), shift, bt), bt);
1241 }
1242 
1243 //------------------------------Value------------------------------------------
1244 const Type* LShiftINode::Value(PhaseGVN* phase) const {
1245   return ValueIL(phase, T_INT);
1246 }
1247 
1248 Node* LShiftNode::IdentityIL(PhaseGVN* phase, BasicType bt) {
1249   int count = 0;
1250   if (const_shift_count(phase, this, &count) && (count & (bits_per_java_integer(bt) - 1)) == 0) {
1251     // Shift by a multiple of 32/64 does nothing
1252     return in(1);
1253   }
1254   return this;
1255 }
1256 
1257 //=============================================================================
1258 //------------------------------Identity---------------------------------------
1259 Node* LShiftLNode::Identity(PhaseGVN* phase) {
1260   return IdentityIL(phase, T_LONG);
1261 }
1262 
1263 //------------------------------Ideal------------------------------------------
1264 Node* LShiftLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1265   return IdealIL(phase, can_reshape, T_LONG);
1266 }
1267 
1268 //------------------------------Value------------------------------------------
1269 const Type* LShiftLNode::Value(PhaseGVN* phase) const {
1270   return ValueIL(phase, T_LONG);
1271 }
1272 
1273 RShiftNode* RShiftNode::make(Node* in1, Node* in2, BasicType bt) {
1274   switch (bt) {
1275     case T_INT:
1276       return new RShiftINode(in1, in2);
1277     case T_LONG:
1278       return new RShiftLNode(in1, in2);
1279     default:
1280       fatal("Not implemented for %s", type2name(bt));
1281   }
1282   return nullptr;
1283 }
1284 
1285 
1286 //=============================================================================
1287 //------------------------------Identity---------------------------------------
1288 Node* RShiftNode::IdentityIL(PhaseGVN* phase, BasicType bt) {
1289   int count = 0;
1290   if (const_shift_count(phase, this, &count)) {
1291     if ((count & (bits_per_java_integer(bt) - 1)) == 0) {
1292       // Shift by a multiple of 32/64 does nothing
1293       return in(1);
1294     }
1295     // Check for useless sign-masking
1296     if (in(1)->Opcode() == Op_LShift(bt) &&
1297         in(1)->req() == 3 &&
1298         in(1)->in(2) == in(2)) {
1299       count &= bits_per_java_integer(bt) - 1; // semantics of Java shifts
1300       // Compute masks for which this shifting doesn't change
1301       jlong lo = (CONST64(-1) << (bits_per_java_integer(bt) - ((uint)count)-1)); // FFFF8000
1302       jlong hi = ~lo;                                                            // 00007FFF
1303       const TypeInteger* t11 = phase->type(in(1)->in(1))->isa_integer(bt);
1304       if (t11 == nullptr) {
1305         return this;
1306       }
1307       // Does actual value fit inside of mask?
1308       if (lo <= t11->lo_as_long() && t11->hi_as_long() <= hi) {
1309         return in(1)->in(1);      // Then shifting is a nop
1310       }
1311     }
1312   }
1313   return this;
1314 }
1315 
1316 Node* RShiftINode::Identity(PhaseGVN* phase) {
1317   return IdentityIL(phase, T_INT);
1318 }
1319 
1320 Node* RShiftNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) {
1321   // Inputs may be TOP if they are dead.
1322   const TypeInteger* t1 = phase->type(in(1))->isa_integer(bt);
1323   if (t1 == nullptr) {
1324     return NodeSentinel;        // Left input is an integer
1325   }
1326   int shift = mask_and_replace_shift_amount(phase, this, bits_per_java_integer(bt));
1327   if (shift == 0) {
1328     return NodeSentinel;
1329   }
1330 
1331   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
1332   // and convert to (x >> 24) & (0xFF000000 >> 24) = x >> 24
1333   // Such expressions arise normally from shift chains like (byte)(x >> 24).
1334   const Node* and_node = in(1);
1335   if (and_node->Opcode() != Op_And(bt)) {
1336     return nullptr;
1337   }
1338   const TypeInteger* mask_t = phase->type(and_node->in(2))->isa_integer(bt);
1339   if (mask_t != nullptr && mask_t->is_con()) {
1340     jlong maskbits = mask_t->get_con_as_long(bt);
1341     // Convert to "(x >> shift) & (mask >> shift)"
1342     Node* shr_nomask = phase->transform(RShiftNode::make(and_node->in(1), in(2), bt));
1343     return MulNode::make_and(shr_nomask, phase->integercon(maskbits >> shift, bt), bt);
1344   }
1345   return nullptr;
1346 }
1347 
1348 Node* RShiftINode::Ideal(PhaseGVN* phase, bool can_reshape) {
1349   Node* progress = IdealIL(phase, can_reshape, T_INT);
1350   if (progress == NodeSentinel) {
1351     return nullptr;
1352   }
1353   if (progress != nullptr) {
1354     return progress;
1355   }
1356   int shift = mask_and_replace_shift_amount(phase, this, BitsPerJavaInteger);
1357   assert(shift != 0, "handled by IdealIL");
1358 
1359   // Check for "(short[i] <<16)>>16" which simply sign-extends
1360   const Node *shl = in(1);
1361   if (shl->Opcode() != Op_LShiftI) {
1362     return nullptr;
1363   }
1364 
1365   const TypeInt* left_shift_t = phase->type(shl->in(2))->isa_int();
1366   if (left_shift_t == nullptr) {
1367     return nullptr;
1368   }
1369   if (shift == 16 && left_shift_t->is_con(16)) {
1370     Node *ld = shl->in(1);
1371     if (ld->Opcode() == Op_LoadS) {
1372       // Sign extension is just useless here.  Return a RShiftI of zero instead
1373       // returning 'ld' directly.  We cannot return an old Node directly as
1374       // that is the job of 'Identity' calls and Identity calls only work on
1375       // direct inputs ('ld' is an extra Node removed from 'this').  The
1376       // combined optimization requires Identity only return direct inputs.
1377       set_req_X(1, ld, phase);
1378       set_req_X(2, phase->intcon(0), phase);
1379       return this;
1380     }
1381     else if (can_reshape &&
1382              ld->Opcode() == Op_LoadUS &&
1383              ld->outcnt() == 1 && ld->unique_out() == shl)
1384       // Replace zero-extension-load with sign-extension-load
1385       return ld->as_Load()->convert_to_signed_load(*phase);
1386   }
1387 
1388   // Check for "(byte[i] <<24)>>24" which simply sign-extends
1389   if (shift == 24 && left_shift_t->is_con(24)) {
1390     Node *ld = shl->in(1);
1391     if (ld->Opcode() == Op_LoadB) {
1392       // Sign extension is just useless here
1393       set_req_X(1, ld, phase);
1394       set_req_X(2, phase->intcon(0), phase);
1395       return this;
1396     }
1397   }
1398 
1399   return nullptr;
1400 }
1401 
1402 const Type* RShiftNode::ValueIL(PhaseGVN* phase, BasicType bt) const {
1403   const Type* t1 = phase->type(in(1));
1404   const Type* t2 = phase->type(in(2));
1405   // Either input is TOP ==> the result is TOP
1406   if (t1 == Type::TOP) {
1407     return Type::TOP;
1408   }
1409   if (t2 == Type::TOP) {
1410     return Type::TOP;
1411   }
1412 
1413   // Left input is ZERO ==> the result is ZERO.
1414   if (t1 == TypeInteger::zero(bt)) {
1415     return TypeInteger::zero(bt);
1416   }
1417   // Shift by zero does nothing
1418   if (t2 == TypeInt::ZERO) {
1419     return t1;
1420   }
1421 
1422   // Either input is BOTTOM ==> the result is BOTTOM
1423   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) {
1424     return TypeInteger::bottom(bt);
1425   }
1426 
1427   const TypeInteger* r1 = t1->isa_integer(bt);
1428   const TypeInt* r2 = t2->isa_int();
1429 
1430   // If the shift is a constant, just shift the bounds of the type.
1431   // For example, if the shift is 31/63, we just propagate sign bits.
1432   if (!r1->is_con() && r2->is_con()) {
1433     uint shift = r2->get_con();
1434     shift &= bits_per_java_integer(bt) - 1;  // semantics of Java shifts
1435     // Shift by a multiple of 32/64 does nothing:
1436     if (shift == 0) {
1437       return t1;
1438     }
1439     // Calculate reasonably aggressive bounds for the result.
1440     // This is necessary if we are to correctly type things
1441     // like (x<<24>>24) == ((byte)x).
1442     jlong lo = r1->lo_as_long() >> (jint)shift;
1443     jlong hi = r1->hi_as_long() >> (jint)shift;
1444     assert(lo <= hi, "must have valid bounds");
1445 #ifdef ASSERT
1446    if (bt == T_INT) {
1447      jint lo_verify = checked_cast<jint>(r1->lo_as_long()) >> (jint)shift;
1448      jint hi_verify = checked_cast<jint>(r1->hi_as_long()) >> (jint)shift;
1449      assert((checked_cast<jint>(lo) == lo_verify) && (checked_cast<jint>(hi) == hi_verify), "inconsistent");
1450    }
1451 #endif
1452     const TypeInteger* ti = TypeInteger::make(lo, hi, MAX2(r1->_widen,r2->_widen), bt);
1453 #ifdef ASSERT
1454     // Make sure we get the sign-capture idiom correct.
1455     if (shift == bits_per_java_integer(bt) - 1) {
1456       if (r1->lo_as_long() >= 0) {
1457         assert(ti == TypeInteger::zero(bt),    ">>31/63 of + is  0");
1458       }
1459       if (r1->hi_as_long() <  0) {
1460         assert(ti == TypeInteger::minus_1(bt), ">>31/63 of - is -1");
1461       }
1462     }
1463 #endif
1464     return ti;
1465   }
1466 
1467   if (!r1->is_con() || !r2->is_con()) {
1468     // If the left input is non-negative the result must also be non-negative, regardless of what the right input is.
1469     if (r1->lo_as_long() >= 0) {
1470       return TypeInteger::make(0, r1->hi_as_long(), MAX2(r1->_widen, r2->_widen), bt);
1471     }
1472 
1473     // Conversely, if the left input is negative then the result must be negative.
1474     if (r1->hi_as_long() <= -1) {
1475       return TypeInteger::make(r1->lo_as_long(), -1, MAX2(r1->_widen, r2->_widen), bt);
1476     }
1477 
1478     return TypeInteger::bottom(bt);
1479   }
1480 
1481   // Signed shift right
1482   return TypeInteger::make(r1->get_con_as_long(bt) >> (r2->get_con() & (bits_per_java_integer(bt) - 1)), bt);
1483 }
1484 
1485 const Type* RShiftINode::Value(PhaseGVN* phase) const {
1486   return ValueIL(phase, T_INT);
1487 }
1488 
1489 //=============================================================================
1490 //------------------------------Identity---------------------------------------
1491 Node* RShiftLNode::Identity(PhaseGVN* phase) {
1492   return IdentityIL(phase, T_LONG);
1493 }
1494 
1495 Node* RShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1496   Node* progress = IdealIL(phase, can_reshape, T_LONG);
1497   if (progress == NodeSentinel) {
1498     return nullptr;
1499   }
1500   return progress;
1501 }
1502 
1503 const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1504   return ValueIL(phase, T_LONG);
1505 }
1506 
1507 URShiftNode* URShiftNode::make(Node* in1, Node* in2, BasicType bt) {
1508   switch (bt) {
1509     case T_INT:
1510       return new URShiftINode(in1, in2);
1511     case T_LONG:
1512       return new URShiftLNode(in1, in2);
1513     default:
1514       fatal("Not implemented for %s", type2name(bt));
1515   }
1516   return nullptr;
1517 }
1518 
1519 //=============================================================================
1520 //------------------------------Identity---------------------------------------
1521 Node* URShiftINode::Identity(PhaseGVN* phase) {
1522   int count = 0;
1523   if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) {
1524     // Shift by a multiple of 32 does nothing
1525     return in(1);
1526   }
1527 
1528   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1529   // Happens during new-array length computation.
1530   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1531   Node *add = in(1);
1532   if (add->Opcode() == Op_AddI) {
1533     const TypeInt *t2 = phase->type(add->in(2))->isa_int();
1534     if (t2 && t2->is_con(wordSize - 1) &&
1535         add->in(1)->Opcode() == Op_LShiftI) {
1536       // Check that shift_counts are LogBytesPerWord.
1537       Node          *lshift_count   = add->in(1)->in(2);
1538       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1539       if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1540           t_lshift_count == phase->type(in(2))) {
1541         Node          *x   = add->in(1)->in(1);
1542         const TypeInt *t_x = phase->type(x)->isa_int();
1543         if (t_x != nullptr && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) {
1544           return x;
1545         }
1546       }
1547     }
1548   }
1549 
1550   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1551 }
1552 
1553 //------------------------------Ideal------------------------------------------
1554 Node* URShiftINode::Ideal(PhaseGVN* phase, bool can_reshape) {
1555   int con = mask_and_replace_shift_amount(phase, this, BitsPerJavaInteger);
1556   if (con == 0) {
1557     return nullptr;
1558   }
1559 
1560   // We'll be wanting the right-shift amount as a mask of that many bits
1561   const int mask = right_n_bits(BitsPerJavaInteger - con);
1562 
1563   int in1_op = in(1)->Opcode();
1564 
1565   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1566   if( in1_op == Op_URShiftI ) {
1567     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1568     if( t12 && t12->is_con() ) { // Right input is a constant
1569       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1570       const int con2 = t12->get_con() & 31; // Shift count is always masked
1571       const int con3 = con+con2;
1572       if( con3 < 32 )           // Only merge shifts if total is < 32
1573         return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1574     }
1575   }
1576 
1577   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1578   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1579   // If Q is "X << z" the rounding is useless.  Look for patterns like
1580   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1581   Node *add = in(1);
1582   const TypeInt *t2 = phase->type(in(2))->isa_int();
1583   if (in1_op == Op_AddI) {
1584     Node *lshl = add->in(1);
1585     if( lshl->Opcode() == Op_LShiftI &&
1586         phase->type(lshl->in(2)) == t2 ) {
1587       Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1588       Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1589       return new AndINode( sum, phase->intcon(mask) );
1590     }
1591   }
1592 
1593   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1594   // This shortens the mask.  Also, if we are extracting a high byte and
1595   // storing it to a buffer, the mask will be removed completely.
1596   Node *andi = in(1);
1597   if( in1_op == Op_AndI ) {
1598     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1599     if( t3 && t3->is_con() ) { // Right input is a constant
1600       jint mask2 = t3->get_con();
1601       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1602       Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1603       return new AndINode(newshr, phase->intcon(mask2));
1604       // The negative values are easier to materialize than positive ones.
1605       // A typical case from address arithmetic is ((x & ~15) >> 4).
1606       // It's better to change that to ((x >> 4) & ~0) versus
1607       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1608     }
1609   }
1610 
1611   // Check for "(X << z ) >>> z" which simply zero-extends
1612   Node *shl = in(1);
1613   if( in1_op == Op_LShiftI &&
1614       phase->type(shl->in(2)) == t2 )
1615     return new AndINode( shl->in(1), phase->intcon(mask) );
1616 
1617   // Check for (x >> n) >>> 31. Replace with (x >>> 31)
1618   Node *shr = in(1);
1619   if ( in1_op == Op_RShiftI ) {
1620     Node *in11 = shr->in(1);
1621     Node *in12 = shr->in(2);
1622     const TypeInt *t11 = phase->type(in11)->isa_int();
1623     const TypeInt *t12 = phase->type(in12)->isa_int();
1624     if ( t11 && t2 && t2->is_con(31) && t12 && t12->is_con() ) {
1625       return new URShiftINode(in11, phase->intcon(31));
1626     }
1627   }
1628 
1629   return nullptr;
1630 }
1631 
1632 //------------------------------Value------------------------------------------
1633 // A URShiftINode shifts its input2 right by input1 amount.
1634 const Type* URShiftINode::Value(PhaseGVN* phase) const {
1635   // (This is a near clone of RShiftINode::Value.)
1636   const Type *t1 = phase->type( in(1) );
1637   const Type *t2 = phase->type( in(2) );
1638   // Either input is TOP ==> the result is TOP
1639   if( t1 == Type::TOP ) return Type::TOP;
1640   if( t2 == Type::TOP ) return Type::TOP;
1641 
1642   // Left input is ZERO ==> the result is ZERO.
1643   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1644   // Shift by zero does nothing
1645   if( t2 == TypeInt::ZERO ) return t1;
1646 
1647   // Either input is BOTTOM ==> the result is BOTTOM
1648   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1649     return TypeInt::INT;
1650 
1651   if (t2 == TypeInt::INT)
1652     return TypeInt::INT;
1653 
1654   const TypeInt *r1 = t1->is_int();     // Handy access
1655   const TypeInt *r2 = t2->is_int();     // Handy access
1656 
1657   if (r2->is_con()) {
1658     uint shift = r2->get_con();
1659     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1660     // Shift by a multiple of 32 does nothing:
1661     if (shift == 0)  return t1;
1662     // Calculate reasonably aggressive bounds for the result.
1663     jint lo = (juint)r1->_lo >> (juint)shift;
1664     jint hi = (juint)r1->_hi >> (juint)shift;
1665     if (r1->_hi >= 0 && r1->_lo < 0) {
1666       // If the type has both negative and positive values,
1667       // there are two separate sub-domains to worry about:
1668       // The positive half and the negative half.
1669       jint neg_lo = lo;
1670       jint neg_hi = (juint)-1 >> (juint)shift;
1671       jint pos_lo = (juint) 0 >> (juint)shift;
1672       jint pos_hi = hi;
1673       lo = MIN2(neg_lo, pos_lo);  // == 0
1674       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1675     }
1676     assert(lo <= hi, "must have valid bounds");
1677     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1678     #ifdef ASSERT
1679     // Make sure we get the sign-capture idiom correct.
1680     if (shift == BitsPerJavaInteger-1) {
1681       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1682       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1683     }
1684     #endif
1685     return ti;
1686   }
1687 
1688   //
1689   // Do not support shifted oops in info for GC
1690   //
1691   // else if( t1->base() == Type::InstPtr ) {
1692   //
1693   //   const TypeInstPtr *o = t1->is_instptr();
1694   //   if( t1->singleton() )
1695   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1696   // }
1697   // else if( t1->base() == Type::KlassPtr ) {
1698   //   const TypeKlassPtr *o = t1->is_klassptr();
1699   //   if( t1->singleton() )
1700   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1701   // }
1702 
1703   return TypeInt::INT;
1704 }
1705 
1706 //=============================================================================
1707 //------------------------------Identity---------------------------------------
1708 Node* URShiftLNode::Identity(PhaseGVN* phase) {
1709   int count = 0;
1710   if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) {
1711     // Shift by a multiple of 64 does nothing
1712     return in(1);
1713   }
1714   return this;
1715 }
1716 
1717 //------------------------------Ideal------------------------------------------
1718 Node* URShiftLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1719   int con = mask_and_replace_shift_amount(phase, this, BitsPerJavaLong);
1720   if (con == 0) {
1721     return nullptr;
1722   }
1723 
1724   // We'll be wanting the right-shift amount as a mask of that many bits
1725   const jlong mask = jlong(max_julong >> con);
1726 
1727   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1728   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1729   // If Q is "X << z" the rounding is useless.  Look for patterns like
1730   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1731   Node *add = in(1);
1732   const TypeInt *t2 = phase->type(in(2))->isa_int();
1733   if (add->Opcode() == Op_AddL) {
1734     Node *lshl = add->in(1);
1735     if( lshl->Opcode() == Op_LShiftL &&
1736         phase->type(lshl->in(2)) == t2 ) {
1737       Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1738       Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1739       return new AndLNode( sum, phase->longcon(mask) );
1740     }
1741   }
1742 
1743   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1744   // This shortens the mask.  Also, if we are extracting a high byte and
1745   // storing it to a buffer, the mask will be removed completely.
1746   Node *andi = in(1);
1747   if( andi->Opcode() == Op_AndL ) {
1748     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1749     if( t3 && t3->is_con() ) { // Right input is a constant
1750       jlong mask2 = t3->get_con();
1751       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1752       Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1753       return new AndLNode(newshr, phase->longcon(mask2));
1754     }
1755   }
1756 
1757   // Check for "(X << z ) >>> z" which simply zero-extends
1758   Node *shl = in(1);
1759   if( shl->Opcode() == Op_LShiftL &&
1760       phase->type(shl->in(2)) == t2 )
1761     return new AndLNode( shl->in(1), phase->longcon(mask) );
1762 
1763   // Check for (x >> n) >>> 63. Replace with (x >>> 63)
1764   Node *shr = in(1);
1765   if ( shr->Opcode() == Op_RShiftL ) {
1766     Node *in11 = shr->in(1);
1767     Node *in12 = shr->in(2);
1768     const TypeLong *t11 = phase->type(in11)->isa_long();
1769     const TypeInt *t12 = phase->type(in12)->isa_int();
1770     if ( t11 && t2 && t2->is_con(63) && t12 && t12->is_con() ) {
1771       return new URShiftLNode(in11, phase->intcon(63));
1772     }
1773   }
1774   return nullptr;
1775 }
1776 
1777 //------------------------------Value------------------------------------------
1778 // A URShiftINode shifts its input2 right by input1 amount.
1779 const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1780   // (This is a near clone of RShiftLNode::Value.)
1781   const Type *t1 = phase->type( in(1) );
1782   const Type *t2 = phase->type( in(2) );
1783   // Either input is TOP ==> the result is TOP
1784   if( t1 == Type::TOP ) return Type::TOP;
1785   if( t2 == Type::TOP ) return Type::TOP;
1786 
1787   // Left input is ZERO ==> the result is ZERO.
1788   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1789   // Shift by zero does nothing
1790   if( t2 == TypeInt::ZERO ) return t1;
1791 
1792   // Either input is BOTTOM ==> the result is BOTTOM
1793   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1794     return TypeLong::LONG;
1795 
1796   if (t2 == TypeInt::INT)
1797     return TypeLong::LONG;
1798 
1799   const TypeLong *r1 = t1->is_long(); // Handy access
1800   const TypeInt  *r2 = t2->is_int (); // Handy access
1801 
1802   if (r2->is_con()) {
1803     uint shift = r2->get_con();
1804     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1805     // Shift by a multiple of 64 does nothing:
1806     if (shift == 0)  return t1;
1807     // Calculate reasonably aggressive bounds for the result.
1808     jlong lo = (julong)r1->_lo >> (juint)shift;
1809     jlong hi = (julong)r1->_hi >> (juint)shift;
1810     if (r1->_hi >= 0 && r1->_lo < 0) {
1811       // If the type has both negative and positive values,
1812       // there are two separate sub-domains to worry about:
1813       // The positive half and the negative half.
1814       jlong neg_lo = lo;
1815       jlong neg_hi = (julong)-1 >> (juint)shift;
1816       jlong pos_lo = (julong) 0 >> (juint)shift;
1817       jlong pos_hi = hi;
1818       //lo = MIN2(neg_lo, pos_lo);  // == 0
1819       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1820       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1821       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1822     }
1823     assert(lo <= hi, "must have valid bounds");
1824     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1825     #ifdef ASSERT
1826     // Make sure we get the sign-capture idiom correct.
1827     if (shift == BitsPerJavaLong - 1) {
1828       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1829       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1830     }
1831     #endif
1832     return tl;
1833   }
1834 
1835   return TypeLong::LONG;                // Give up
1836 }
1837 
1838 //=============================================================================
1839 //------------------------------Ideal------------------------------------------
1840 Node* FmaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1841   // We canonicalize the node by converting "(-a)*b+c" into "b*(-a)+c"
1842   // This reduces the number of rules in the matcher, as we only need to check
1843   // for negations on the second argument, and not the symmetric case where
1844   // the first argument is negated.
1845   if (in(1)->is_Neg() && !in(2)->is_Neg()) {
1846     swap_edges(1, 2);
1847     return this;
1848   }
1849   return nullptr;
1850 }
1851 
1852 //=============================================================================
1853 //------------------------------Value------------------------------------------
1854 const Type* FmaDNode::Value(PhaseGVN* phase) const {
1855   const Type *t1 = phase->type(in(1));
1856   if (t1 == Type::TOP) return Type::TOP;
1857   if (t1->base() != Type::DoubleCon) return Type::DOUBLE;
1858   const Type *t2 = phase->type(in(2));
1859   if (t2 == Type::TOP) return Type::TOP;
1860   if (t2->base() != Type::DoubleCon) return Type::DOUBLE;
1861   const Type *t3 = phase->type(in(3));
1862   if (t3 == Type::TOP) return Type::TOP;
1863   if (t3->base() != Type::DoubleCon) return Type::DOUBLE;
1864 #ifndef __STDC_IEC_559__
1865   return Type::DOUBLE;
1866 #else
1867   double d1 = t1->getd();
1868   double d2 = t2->getd();
1869   double d3 = t3->getd();
1870   return TypeD::make(fma(d1, d2, d3));
1871 #endif
1872 }
1873 
1874 //=============================================================================
1875 //------------------------------Value------------------------------------------
1876 const Type* FmaFNode::Value(PhaseGVN* phase) const {
1877   const Type *t1 = phase->type(in(1));
1878   if (t1 == Type::TOP) return Type::TOP;
1879   if (t1->base() != Type::FloatCon) return Type::FLOAT;
1880   const Type *t2 = phase->type(in(2));
1881   if (t2 == Type::TOP) return Type::TOP;
1882   if (t2->base() != Type::FloatCon) return Type::FLOAT;
1883   const Type *t3 = phase->type(in(3));
1884   if (t3 == Type::TOP) return Type::TOP;
1885   if (t3->base() != Type::FloatCon) return Type::FLOAT;
1886 #ifndef __STDC_IEC_559__
1887   return Type::FLOAT;
1888 #else
1889   float f1 = t1->getf();
1890   float f2 = t2->getf();
1891   float f3 = t3->getf();
1892   return TypeF::make(fma(f1, f2, f3));
1893 #endif
1894 }
1895 
1896 //=============================================================================
1897 //------------------------------Value------------------------------------------
1898 const Type* FmaHFNode::Value(PhaseGVN* phase) const {
1899   const Type* t1 = phase->type(in(1));
1900   if (t1 == Type::TOP) { return Type::TOP; }
1901   if (t1->base() != Type::HalfFloatCon) { return Type::HALF_FLOAT; }
1902   const Type* t2 = phase->type(in(2));
1903   if (t2 == Type::TOP) { return Type::TOP; }
1904   if (t2->base() != Type::HalfFloatCon) { return Type::HALF_FLOAT; }
1905   const Type* t3 = phase->type(in(3));
1906   if (t3 == Type::TOP) { return Type::TOP; }
1907   if (t3->base() != Type::HalfFloatCon) { return Type::HALF_FLOAT; }
1908 #ifndef __STDC_IEC_559__
1909   return Type::HALF_FLOAT;
1910 #else
1911   float f1 = t1->getf();
1912   float f2 = t2->getf();
1913   float f3 = t3->getf();
1914   return TypeH::make(fma(f1, f2, f3));
1915 #endif
1916 }
1917 
1918 //=============================================================================
1919 //------------------------------hash-------------------------------------------
1920 // Hash function for MulAddS2INode.  Operation is commutative with commutative pairs.
1921 // The hash function must return the same value when edge swapping is performed.
1922 uint MulAddS2INode::hash() const {
1923   return (uintptr_t)in(1) + (uintptr_t)in(2) + (uintptr_t)in(3) + (uintptr_t)in(4) + Opcode();
1924 }
1925 
1926 //------------------------------Rotate Operations ------------------------------
1927 
1928 Node* RotateLeftNode::Identity(PhaseGVN* phase) {
1929   const Type* t1 = phase->type(in(1));
1930   if (t1 == Type::TOP) {
1931     return this;
1932   }
1933   int count = 0;
1934   assert(t1->isa_int() || t1->isa_long(), "Unexpected type");
1935   int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1;
1936   if (const_shift_count(phase, this, &count) && (count & mask) == 0) {
1937     // Rotate by a multiple of 32/64 does nothing
1938     return in(1);
1939   }
1940   return this;
1941 }
1942 
1943 const Type* RotateLeftNode::Value(PhaseGVN* phase) const {
1944   const Type* t1 = phase->type(in(1));
1945   const Type* t2 = phase->type(in(2));
1946   // Either input is TOP ==> the result is TOP
1947   if (t1 == Type::TOP || t2 == Type::TOP) {
1948     return Type::TOP;
1949   }
1950 
1951   if (t1->isa_int()) {
1952     const TypeInt* r1 = t1->is_int();
1953     const TypeInt* r2 = t2->is_int();
1954 
1955     // Left input is ZERO ==> the result is ZERO.
1956     if (r1 == TypeInt::ZERO) {
1957       return TypeInt::ZERO;
1958     }
1959     // Rotate by zero does nothing
1960     if (r2 == TypeInt::ZERO) {
1961       return r1;
1962     }
1963     if (r1->is_con() && r2->is_con()) {
1964       juint r1_con = (juint)r1->get_con();
1965       juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts
1966       return TypeInt::make((r1_con << shift) | (r1_con >> (32 - shift)));
1967     }
1968     return TypeInt::INT;
1969   } else {
1970     assert(t1->isa_long(), "Type must be a long");
1971     const TypeLong* r1 = t1->is_long();
1972     const TypeInt*  r2 = t2->is_int();
1973 
1974     // Left input is ZERO ==> the result is ZERO.
1975     if (r1 == TypeLong::ZERO) {
1976       return TypeLong::ZERO;
1977     }
1978     // Rotate by zero does nothing
1979     if (r2 == TypeInt::ZERO) {
1980       return r1;
1981     }
1982     if (r1->is_con() && r2->is_con()) {
1983       julong r1_con = (julong)r1->get_con();
1984       julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts
1985       return TypeLong::make((r1_con << shift) | (r1_con >> (64 - shift)));
1986     }
1987     return TypeLong::LONG;
1988   }
1989 }
1990 
1991 Node* RotateLeftNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1992   const Type* t1 = phase->type(in(1));
1993   const Type* t2 = phase->type(in(2));
1994   if (t2->isa_int() && t2->is_int()->is_con()) {
1995     if (t1->isa_int()) {
1996       int lshift = t2->is_int()->get_con() & 31;
1997       return new RotateRightNode(in(1), phase->intcon(32 - (lshift & 31)), TypeInt::INT);
1998     } else if (t1 != Type::TOP) {
1999       assert(t1->isa_long(), "Type must be a long");
2000       int lshift = t2->is_int()->get_con() & 63;
2001       return new RotateRightNode(in(1), phase->intcon(64 - (lshift & 63)), TypeLong::LONG);
2002     }
2003   }
2004   return nullptr;
2005 }
2006 
2007 Node* RotateRightNode::Identity(PhaseGVN* phase) {
2008   const Type* t1 = phase->type(in(1));
2009   if (t1 == Type::TOP) {
2010     return this;
2011   }
2012   int count = 0;
2013   assert(t1->isa_int() || t1->isa_long(), "Unexpected type");
2014   int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1;
2015   if (const_shift_count(phase, this, &count) && (count & mask) == 0) {
2016     // Rotate by a multiple of 32/64 does nothing
2017     return in(1);
2018   }
2019   return this;
2020 }
2021 
2022 const Type* RotateRightNode::Value(PhaseGVN* phase) const {
2023   const Type* t1 = phase->type(in(1));
2024   const Type* t2 = phase->type(in(2));
2025   // Either input is TOP ==> the result is TOP
2026   if (t1 == Type::TOP || t2 == Type::TOP) {
2027     return Type::TOP;
2028   }
2029 
2030   if (t1->isa_int()) {
2031     const TypeInt* r1 = t1->is_int();
2032     const TypeInt* r2 = t2->is_int();
2033 
2034     // Left input is ZERO ==> the result is ZERO.
2035     if (r1 == TypeInt::ZERO) {
2036       return TypeInt::ZERO;
2037     }
2038     // Rotate by zero does nothing
2039     if (r2 == TypeInt::ZERO) {
2040       return r1;
2041     }
2042     if (r1->is_con() && r2->is_con()) {
2043       juint r1_con = (juint)r1->get_con();
2044       juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts
2045       return TypeInt::make((r1_con >> shift) | (r1_con << (32 - shift)));
2046     }
2047     return TypeInt::INT;
2048   } else {
2049     assert(t1->isa_long(), "Type must be a long");
2050     const TypeLong* r1 = t1->is_long();
2051     const TypeInt*  r2 = t2->is_int();
2052     // Left input is ZERO ==> the result is ZERO.
2053     if (r1 == TypeLong::ZERO) {
2054       return TypeLong::ZERO;
2055     }
2056     // Rotate by zero does nothing
2057     if (r2 == TypeInt::ZERO) {
2058       return r1;
2059     }
2060     if (r1->is_con() && r2->is_con()) {
2061       julong r1_con = (julong)r1->get_con();
2062       julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts
2063       return TypeLong::make((r1_con >> shift) | (r1_con << (64 - shift)));
2064     }
2065     return TypeLong::LONG;
2066   }
2067 }
2068 
2069 //------------------------------ Sum & Mask ------------------------------
2070 
2071 // Returns a lower bound on the number of trailing zeros in expr.
2072 static jint AndIL_min_trailing_zeros(const PhaseGVN* phase, const Node* expr, BasicType bt) {
2073   const TypeInteger* type = phase->type(expr)->isa_integer(bt);
2074   if (type == nullptr) {
2075     return 0;
2076   }
2077 
2078   expr = expr->uncast();
2079   type = phase->type(expr)->isa_integer(bt);
2080   if (type == nullptr) {
2081     return 0;
2082   }
2083 
2084   if (type->is_con()) {
2085     jlong con = type->get_con_as_long(bt);
2086     return con == 0L ? (type2aelembytes(bt) * BitsPerByte) : count_trailing_zeros(con);
2087   }
2088 
2089   if (expr->Opcode() == Op_ConvI2L) {
2090     expr = expr->in(1)->uncast();
2091     bt = T_INT;
2092     type = phase->type(expr)->isa_int();
2093   }
2094 
2095   // Pattern: expr = (x << shift)
2096   if (expr->Opcode() == Op_LShift(bt)) {
2097     const TypeInt* shift_t = phase->type(expr->in(2))->isa_int();
2098     if (shift_t == nullptr || !shift_t->is_con()) {
2099       return 0;
2100     }
2101     // We need to truncate the shift, as it may not have been canonicalized yet.
2102     // T_INT:  0..31 -> shift_mask = 4 * 8 - 1 = 31
2103     // T_LONG: 0..63 -> shift_mask = 8 * 8 - 1 = 63
2104     // (JLS: "Shift Operators")
2105     jint shift_mask = type2aelembytes(bt) * BitsPerByte - 1;
2106     return shift_t->get_con() & shift_mask;
2107   }
2108 
2109   return 0;
2110 }
2111 
2112 // Checks whether expr is neutral additive element (zero) under mask,
2113 // i.e. whether an expression of the form:
2114 //   (AndX (AddX (expr addend) mask)
2115 //   (expr + addend) & mask
2116 // is equivalent to
2117 //   (AndX addend mask)
2118 //   addend & mask
2119 // for any addend.
2120 // (The X in AndX must be I or L, depending on bt).
2121 //
2122 // We check for the sufficient condition when the lowest set bit in expr is higher than
2123 // the highest set bit in mask, i.e.:
2124 // expr: eeeeee0000000000000
2125 // mask: 000000mmmmmmmmmmmmm
2126 //             <--w bits--->
2127 // We do not test for other cases.
2128 //
2129 // Correctness:
2130 //   Given "expr" with at least "w" trailing zeros,
2131 //   let "mod = 2^w", "suffix_mask = mod - 1"
2132 //
2133 //   Since "mask" only has bits set where "suffix_mask" does, we have:
2134 //     mask = suffix_mask & mask     (SUFFIX_MASK)
2135 //
2136 //   And since expr only has bits set above w, and suffix_mask only below:
2137 //     expr & suffix_mask == 0     (NO_BIT_OVERLAP)
2138 //
2139 //   From unsigned modular arithmetic (with unsigned modulo %), and since mod is
2140 //   a power of 2, and we are computing in a ring of powers of 2, we know that
2141 //     (x + y) % mod         = (x % mod         + y) % mod
2142 //     (x + y) & suffix_mask = (x & suffix_mask + y) & suffix_mask       (MOD_ARITH)
2143 //
2144 //   We can now prove the equality:
2145 //     (expr               + addend)               & mask
2146 //   = (expr               + addend) & suffix_mask & mask    (SUFFIX_MASK)
2147 //   = (expr & suffix_mask + addend) & suffix_mask & mask    (MOD_ARITH)
2148 //   = (0                  + addend) & suffix_mask & mask    (NO_BIT_OVERLAP)
2149 //   =                       addend                & mask    (SUFFIX_MASK)
2150 //
2151 // Hence, an expr with at least w trailing zeros is a neutral additive element under any mask with bit width w.
2152 static bool AndIL_is_zero_element_under_mask(const PhaseGVN* phase, const Node* expr, const Node* mask, BasicType bt) {
2153   // When the mask is negative, it has the most significant bit set.
2154   const TypeInteger* mask_t = phase->type(mask)->isa_integer(bt);
2155   if (mask_t == nullptr || mask_t->lo_as_long() < 0) {
2156     return false;
2157   }
2158 
2159   // When the mask is constant zero, we defer to MulNode::Value to eliminate the entire AndX operation.
2160   if (mask_t->hi_as_long() == 0) {
2161     assert(mask_t->lo_as_long() == 0, "checked earlier");
2162     return false;
2163   }
2164 
2165   jint mask_bit_width = BitsPerLong - count_leading_zeros(mask_t->hi_as_long());
2166   jint expr_trailing_zeros = AndIL_min_trailing_zeros(phase, expr, bt);
2167   return expr_trailing_zeros >= mask_bit_width;
2168 }
2169 
2170 // Reduces the pattern:
2171 //   (AndX (AddX add1 add2) mask)
2172 // to
2173 //   (AndX add1 mask), if add2 is neutral wrt mask (see above), and vice versa.
2174 Node* MulNode::AndIL_sum_and_mask(PhaseGVN* phase, BasicType bt) {
2175   Node* add = in(1);
2176   Node* mask = in(2);
2177   int addidx = 0;
2178   if (add->Opcode() == Op_Add(bt)) {
2179     addidx = 1;
2180   } else if (mask->Opcode() == Op_Add(bt)) {
2181     mask = add;
2182     addidx = 2;
2183     add = in(addidx);
2184   }
2185   if (addidx > 0) {
2186     Node* add1 = add->in(1);
2187     Node* add2 = add->in(2);
2188     if (AndIL_is_zero_element_under_mask(phase, add1, mask, bt)) {
2189       set_req_X(addidx, add2, phase);
2190       return this;
2191     } else if (AndIL_is_zero_element_under_mask(phase, add2, mask, bt)) {
2192       set_req_X(addidx, add1, phase);
2193       return this;
2194     }
2195   }
2196   return nullptr;
2197 }