1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/connode.hpp"
  29 #include "opto/convertnode.hpp"
  30 #include "opto/memnode.hpp"
  31 #include "opto/mulnode.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/subnode.hpp"
  34 #include "utilities/powerOfTwo.hpp"
  35 
  36 // Portions of code courtesy of Clifford Click
  37 
  38 
  39 //=============================================================================
  40 //------------------------------hash-------------------------------------------
  41 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
  42 // (commute) inputs to MulNodes willy-nilly so the hash function must return
  43 // the same value in the presence of edge swapping.
  44 uint MulNode::hash() const {
  45   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  46 }
  47 
  48 //------------------------------Identity---------------------------------------
  49 // Multiplying a one preserves the other argument
  50 Node* MulNode::Identity(PhaseGVN* phase) {
  51   const Type *one = mul_id();  // The multiplicative identity
  52   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  53   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
  54 
  55   return this;
  56 }
  57 
  58 //------------------------------Ideal------------------------------------------
  59 // We also canonicalize the Node, moving constants to the right input,
  60 // and flatten expressions (so that 1+x+2 becomes x+3).
  61 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  62   Node* in1 = in(1);
  63   Node* in2 = in(2);
  64   Node* progress = nullptr;        // Progress flag
  65 
  66   // This code is used by And nodes too, but some conversions are
  67   // only valid for the actual Mul nodes.
  68   uint op = Opcode();
  69   bool real_mul = (op == Op_MulI) || (op == Op_MulL) ||
  70                   (op == Op_MulF) || (op == Op_MulD);
  71 
  72   // Convert "(-a)*(-b)" into "a*b".
  73   if (real_mul && in1->is_Sub() && in2->is_Sub()) {
  74     if (phase->type(in1->in(1))->is_zero_type() &&
  75         phase->type(in2->in(1))->is_zero_type()) {
  76       set_req_X(1, in1->in(2), phase);
  77       set_req_X(2, in2->in(2), phase);
  78       in1 = in(1);
  79       in2 = in(2);
  80       progress = this;
  81     }
  82   }
  83 
  84   // convert "max(a,b) * min(a,b)" into "a*b".
  85   if ((in(1)->Opcode() == max_opcode() && in(2)->Opcode() == min_opcode())
  86       || (in(1)->Opcode() == min_opcode() && in(2)->Opcode() == max_opcode())) {
  87     Node *in11 = in(1)->in(1);
  88     Node *in12 = in(1)->in(2);
  89 
  90     Node *in21 = in(2)->in(1);
  91     Node *in22 = in(2)->in(2);
  92 
  93     if ((in11 == in21 && in12 == in22) ||
  94         (in11 == in22 && in12 == in21)) {
  95       set_req_X(1, in11, phase);
  96       set_req_X(2, in12, phase);
  97       in1 = in(1);
  98       in2 = in(2);
  99       progress = this;
 100     }
 101   }
 102 
 103   const Type* t1 = phase->type(in1);
 104   const Type* t2 = phase->type(in2);
 105 
 106   // We are OK if right is a constant, or right is a load and
 107   // left is a non-constant.
 108   if( !(t2->singleton() ||
 109         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
 110     if( t1->singleton() ||       // Left input is a constant?
 111         // Otherwise, sort inputs (commutativity) to help value numbering.
 112         (in(1)->_idx > in(2)->_idx) ) {
 113       swap_edges(1, 2);
 114       const Type *t = t1;
 115       t1 = t2;
 116       t2 = t;
 117       progress = this;            // Made progress
 118     }
 119   }
 120 
 121   // If the right input is a constant, and the left input is a product of a
 122   // constant, flatten the expression tree.
 123   if( t2->singleton() &&        // Right input is a constant?
 124       op != Op_MulF &&          // Float & double cannot reassociate
 125       op != Op_MulD ) {
 126     if( t2 == Type::TOP ) return nullptr;
 127     Node *mul1 = in(1);
 128 #ifdef ASSERT
 129     // Check for dead loop
 130     int op1 = mul1->Opcode();
 131     if ((mul1 == this) || (in(2) == this) ||
 132         ((op1 == mul_opcode() || op1 == add_opcode()) &&
 133          ((mul1->in(1) == this) || (mul1->in(2) == this) ||
 134           (mul1->in(1) == mul1) || (mul1->in(2) == mul1)))) {
 135       assert(false, "dead loop in MulNode::Ideal");
 136     }
 137 #endif
 138 
 139     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
 140       // Mul of a constant?
 141       const Type *t12 = phase->type( mul1->in(2) );
 142       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
 143         // Compute new constant; check for overflow
 144         const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
 145         if( tcon01->singleton() ) {
 146           // The Mul of the flattened expression
 147           set_req_X(1, mul1->in(1), phase);
 148           set_req_X(2, phase->makecon(tcon01), phase);
 149           t2 = tcon01;
 150           progress = this;      // Made progress
 151         }
 152       }
 153     }
 154     // If the right input is a constant, and the left input is an add of a
 155     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
 156     const Node *add1 = in(1);
 157     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
 158       // Add of a constant?
 159       const Type *t12 = phase->type( add1->in(2) );
 160       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 161         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
 162         // Compute new constant; check for overflow
 163         const Type *tcon01 = mul_ring(t2,t12);
 164         if( tcon01->singleton() ) {
 165 
 166         // Convert (X+con1)*con0 into X*con0
 167           Node *mul = clone();    // mul = ()*con0
 168           mul->set_req(1,add1->in(1));  // mul = X*con0
 169           mul = phase->transform(mul);
 170 
 171           Node *add2 = add1->clone();
 172           add2->set_req(1, mul);        // X*con0 + con0*con1
 173           add2->set_req(2, phase->makecon(tcon01) );
 174           progress = add2;
 175         }
 176       }
 177     } // End of is left input an add
 178   } // End of is right input a Mul
 179 
 180   return progress;
 181 }
 182 
 183 //------------------------------Value-----------------------------------------
 184 const Type* MulNode::Value(PhaseGVN* phase) const {
 185   const Type *t1 = phase->type( in(1) );
 186   const Type *t2 = phase->type( in(2) );
 187   // Either input is TOP ==> the result is TOP
 188   if( t1 == Type::TOP ) return Type::TOP;
 189   if( t2 == Type::TOP ) return Type::TOP;
 190 
 191   // Either input is ZERO ==> the result is ZERO.
 192   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
 193   int op = Opcode();
 194   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
 195     const Type *zero = add_id();        // The multiplicative zero
 196     if( t1->higher_equal( zero ) ) return zero;
 197     if( t2->higher_equal( zero ) ) return zero;
 198   }
 199 
 200   // Either input is BOTTOM ==> the result is the local BOTTOM
 201   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 202     return bottom_type();
 203 
 204 #if defined(IA32)
 205   // Can't trust native compilers to properly fold strict double
 206   // multiplication with round-to-zero on this platform.
 207   if (op == Op_MulD) {
 208     return TypeD::DOUBLE;
 209   }
 210 #endif
 211 
 212   return mul_ring(t1,t2);            // Local flavor of type multiplication
 213 }
 214 
 215 MulNode* MulNode::make(Node* in1, Node* in2, BasicType bt) {
 216   switch (bt) {
 217     case T_INT:
 218       return new MulINode(in1, in2);
 219     case T_LONG:
 220       return new MulLNode(in1, in2);
 221     default:
 222       fatal("Not implemented for %s", type2name(bt));
 223   }
 224   return nullptr;
 225 }
 226 
 227 
 228 //=============================================================================
 229 //------------------------------Ideal------------------------------------------
 230 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 231 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 232   const jint con = in(2)->find_int_con(0);
 233   if (con == 0) {
 234     // If in(2) is not a constant, call Ideal() of the parent class to
 235     // try to move constant to the right side.
 236     return MulNode::Ideal(phase, can_reshape);
 237   }
 238 
 239   // Now we have a constant Node on the right and the constant in con.
 240   if (con == 1) {
 241     // By one is handled by Identity call
 242     return nullptr;
 243   }
 244 
 245   // Check for negative constant; if so negate the final result
 246   bool sign_flip = false;
 247 
 248   unsigned int abs_con = uabs(con);
 249   if (abs_con != (unsigned int)con) {
 250     sign_flip = true;
 251   }
 252 
 253   // Get low bit; check for being the only bit
 254   Node *res = nullptr;
 255   unsigned int bit1 = submultiple_power_of_2(abs_con);
 256   if (bit1 == abs_con) {           // Found a power of 2?
 257     res = new LShiftINode(in(1), phase->intcon(log2i_exact(bit1)));
 258   } else {
 259     // Check for constant with 2 bits set
 260     unsigned int bit2 = abs_con - bit1;
 261     bit2 = bit2 & (0 - bit2);          // Extract 2nd bit
 262     if (bit2 + bit1 == abs_con) {    // Found all bits in con?
 263       Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit1))));
 264       Node *n2 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit2))));
 265       res = new AddINode(n2, n1);
 266     } else if (is_power_of_2(abs_con + 1)) {
 267       // Sleezy: power-of-2 - 1.  Next time be generic.
 268       unsigned int temp = abs_con + 1;
 269       Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(temp))));
 270       res = new SubINode(n1, in(1));
 271     } else {
 272       return MulNode::Ideal(phase, can_reshape);
 273     }
 274   }
 275 
 276   if (sign_flip) {             // Need to negate result?
 277     res = phase->transform(res);// Transform, before making the zero con
 278     res = new SubINode(phase->intcon(0),res);
 279   }
 280 
 281   return res;                   // Return final result
 282 }
 283 
 284 // This template class performs type multiplication for MulI/MulLNode. NativeType is either jint or jlong.
 285 // In this class, the inputs of the MulNodes are named left and right with types [left_lo,left_hi] and [right_lo,right_hi].
 286 //
 287 // In general, the multiplication of two x-bit values could produce a result that consumes up to 2x bits if there is
 288 // enough space to hold them all. We can therefore distinguish the following two cases for the product:
 289 // - no overflow (i.e. product fits into x bits)
 290 // - overflow (i.e. product does not fit into x bits)
 291 //
 292 // When multiplying the two x-bit inputs 'left' and 'right' with their x-bit types [left_lo,left_hi] and [right_lo,right_hi]
 293 // we need to find the minimum and maximum of all possible products to define a new type. To do that, we compute the
 294 // cross product of [left_lo,left_hi] and [right_lo,right_hi] in 2x-bit space where no over- or underflow can happen.
 295 // The cross product consists of the following four multiplications with 2x-bit results:
 296 // (1) left_lo * right_lo
 297 // (2) left_lo * right_hi
 298 // (3) left_hi * right_lo
 299 // (4) left_hi * right_hi
 300 //
 301 // Let's define the following two functions:
 302 // - Lx(i): Returns the lower x bits of the 2x-bit number i.
 303 // - Ux(i): Returns the upper x bits of the 2x-bit number i.
 304 //
 305 // Let's first assume all products are positive where only overflows are possible but no underflows. If there is no
 306 // overflow for a product p, then the upper x bits of the 2x-bit result p are all zero:
 307 //     Ux(p) = 0
 308 //     Lx(p) = p
 309 //
 310 // If none of the multiplications (1)-(4) overflow, we can truncate the upper x bits and use the following result type
 311 // with x bits:
 312 //      [result_lo,result_hi] = [MIN(Lx(1),Lx(2),Lx(3),Lx(4)),MAX(Lx(1),Lx(2),Lx(3),Lx(4))]
 313 //
 314 // If any of these multiplications overflows, we could pessimistically take the bottom type for the x bit result
 315 // (i.e. all values in the x-bit space could be possible):
 316 //      [result_lo,result_hi] = [NativeType_min,NativeType_max]
 317 //
 318 // However, in case of any overflow, we can do better by analyzing the upper x bits of all multiplications (1)-(4) with
 319 // 2x-bit results. The upper x bits tell us something about how many times a multiplication has overflown the lower
 320 // x bits. If the upper x bits of (1)-(4) are all equal, then we know that all of these multiplications overflowed
 321 // the lower x bits the same number of times:
 322 //     Ux((1)) = Ux((2)) = Ux((3)) = Ux((4))
 323 //
 324 // If all upper x bits are equal, we can conclude:
 325 //     Lx(MIN((1),(2),(3),(4))) = MIN(Lx(1),Lx(2),Lx(3),Lx(4)))
 326 //     Lx(MAX((1),(2),(3),(4))) = MAX(Lx(1),Lx(2),Lx(3),Lx(4)))
 327 //
 328 // Therefore, we can use the same precise x-bit result type as for the no-overflow case:
 329 //     [result_lo,result_hi] = [(MIN(Lx(1),Lx(2),Lx(3),Lx(4))),MAX(Lx(1),Lx(2),Lx(3),Lx(4)))]
 330 //
 331 //
 332 // Now let's assume that (1)-(4) are signed multiplications where over- and underflow could occur:
 333 // Negative numbers are all sign extend with ones. Therefore, if a negative product does not underflow, then the
 334 // upper x bits of the 2x-bit result are all set to ones which is minus one in two's complement. If there is an underflow,
 335 // the upper x bits are decremented by the number of times an underflow occurred. The smallest possible negative product
 336 // is NativeType_min*NativeType_max, where the upper x bits are set to NativeType_min / 2 (b11...0). It is therefore
 337 // impossible to underflow the upper x bits. Thus, when having all ones (i.e. minus one) in the upper x bits, we know
 338 // that there is no underflow.
 339 //
 340 // To be able to compare the number of over-/underflows of positive and negative products, respectively, we normalize
 341 // the upper x bits of negative 2x-bit products by adding one. This way a product has no over- or underflow if the
 342 // normalized upper x bits are zero. Now we can use the same improved type as for strictly positive products because we
 343 // can compare the upper x bits in a unified way with N() being the normalization function:
 344 //     N(Ux((1))) = N(Ux((2))) = N(Ux((3)) = N(Ux((4)))
 345 template<typename NativeType>
 346 class IntegerTypeMultiplication {
 347 
 348   NativeType _lo_left;
 349   NativeType _lo_right;
 350   NativeType _hi_left;
 351   NativeType _hi_right;
 352   short _widen_left;
 353   short _widen_right;
 354 
 355   static const Type* overflow_type();
 356   static NativeType multiply_high(NativeType x, NativeType y);
 357   const Type* create_type(NativeType lo, NativeType hi) const;
 358 
 359   static NativeType multiply_high_signed_overflow_value(NativeType x, NativeType y) {
 360     return normalize_overflow_value(x, y, multiply_high(x, y));
 361   }
 362 
 363   bool cross_product_not_same_overflow_value() const {
 364     const NativeType lo_lo_high_product = multiply_high_signed_overflow_value(_lo_left, _lo_right);
 365     const NativeType lo_hi_high_product = multiply_high_signed_overflow_value(_lo_left, _hi_right);
 366     const NativeType hi_lo_high_product = multiply_high_signed_overflow_value(_hi_left, _lo_right);
 367     const NativeType hi_hi_high_product = multiply_high_signed_overflow_value(_hi_left, _hi_right);
 368     return lo_lo_high_product != lo_hi_high_product ||
 369            lo_hi_high_product != hi_lo_high_product ||
 370            hi_lo_high_product != hi_hi_high_product;
 371   }
 372 
 373   bool does_product_overflow(NativeType x, NativeType y) const {
 374     return multiply_high_signed_overflow_value(x, y) != 0;
 375   }
 376 
 377   static NativeType normalize_overflow_value(const NativeType x, const NativeType y, NativeType result) {
 378     return java_multiply(x, y) < 0 ? result + 1 : result;
 379   }
 380 
 381  public:
 382   template<class IntegerType>
 383   IntegerTypeMultiplication(const IntegerType* left, const IntegerType* right)
 384       : _lo_left(left->_lo), _lo_right(right->_lo),
 385         _hi_left(left->_hi), _hi_right(right->_hi),
 386         _widen_left(left->_widen), _widen_right(right->_widen)  {}
 387 
 388   // Compute the product type by multiplying the two input type ranges. We take the minimum and maximum of all possible
 389   // values (requires 4 multiplications of all possible combinations of the two range boundary values). If any of these
 390   // multiplications overflows/underflows, we need to make sure that they all have the same number of overflows/underflows
 391   // If that is not the case, we return the bottom type to cover all values due to the inconsistent overflows/underflows).
 392   const Type* compute() const {
 393     if (cross_product_not_same_overflow_value()) {
 394       return overflow_type();
 395     }
 396 
 397     NativeType lo_lo_product = java_multiply(_lo_left, _lo_right);
 398     NativeType lo_hi_product = java_multiply(_lo_left, _hi_right);
 399     NativeType hi_lo_product = java_multiply(_hi_left, _lo_right);
 400     NativeType hi_hi_product = java_multiply(_hi_left, _hi_right);
 401     const NativeType min = MIN4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product);
 402     const NativeType max = MAX4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product);
 403     return create_type(min, max);
 404   }
 405 
 406   bool does_overflow() const {
 407     return does_product_overflow(_lo_left, _lo_right) ||
 408            does_product_overflow(_lo_left, _hi_right) ||
 409            does_product_overflow(_hi_left, _lo_right) ||
 410            does_product_overflow(_hi_left, _hi_right);
 411   }
 412 };
 413 
 414 template <>
 415 const Type* IntegerTypeMultiplication<jint>::overflow_type() {
 416   return TypeInt::INT;
 417 }
 418 
 419 template <>
 420 jint IntegerTypeMultiplication<jint>::multiply_high(const jint x, const jint y) {
 421   const jlong x_64 = x;
 422   const jlong y_64 = y;
 423   const jlong product = x_64 * y_64;
 424   return (jint)((uint64_t)product >> 32u);
 425 }
 426 
 427 template <>
 428 const Type* IntegerTypeMultiplication<jint>::create_type(jint lo, jint hi) const {
 429   return TypeInt::make(lo, hi, MAX2(_widen_left, _widen_right));
 430 }
 431 
 432 template <>
 433 const Type* IntegerTypeMultiplication<jlong>::overflow_type() {
 434   return TypeLong::LONG;
 435 }
 436 
 437 template <>
 438 jlong IntegerTypeMultiplication<jlong>::multiply_high(const jlong x, const jlong y) {
 439   return multiply_high_signed(x, y);
 440 }
 441 
 442 template <>
 443 const Type* IntegerTypeMultiplication<jlong>::create_type(jlong lo, jlong hi) const {
 444   return TypeLong::make(lo, hi, MAX2(_widen_left, _widen_right));
 445 }
 446 
 447 // Compute the product type of two integer ranges into this node.
 448 const Type* MulINode::mul_ring(const Type* type_left, const Type* type_right) const {
 449   const IntegerTypeMultiplication<jint> integer_multiplication(type_left->is_int(), type_right->is_int());
 450   return integer_multiplication.compute();
 451 }
 452 
 453 bool MulINode::does_overflow(const TypeInt* type_left, const TypeInt* type_right) {
 454   const IntegerTypeMultiplication<jint> integer_multiplication(type_left, type_right);
 455   return integer_multiplication.does_overflow();
 456 }
 457 
 458 // Compute the product type of two long ranges into this node.
 459 const Type* MulLNode::mul_ring(const Type* type_left, const Type* type_right) const {
 460   const IntegerTypeMultiplication<jlong> integer_multiplication(type_left->is_long(), type_right->is_long());
 461   return integer_multiplication.compute();
 462 }
 463 
 464 //=============================================================================
 465 //------------------------------Ideal------------------------------------------
 466 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 467 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 468   const jlong con = in(2)->find_long_con(0);
 469   if (con == 0) {
 470     // If in(2) is not a constant, call Ideal() of the parent class to
 471     // try to move constant to the right side.
 472     return MulNode::Ideal(phase, can_reshape);
 473   }
 474 
 475   // Now we have a constant Node on the right and the constant in con.
 476   if (con == 1) {
 477     // By one is handled by Identity call
 478     return nullptr;
 479   }
 480 
 481   // Check for negative constant; if so negate the final result
 482   bool sign_flip = false;
 483   julong abs_con = uabs(con);
 484   if (abs_con != (julong)con) {
 485     sign_flip = true;
 486   }
 487 
 488   // Get low bit; check for being the only bit
 489   Node *res = nullptr;
 490   julong bit1 = submultiple_power_of_2(abs_con);
 491   if (bit1 == abs_con) {           // Found a power of 2?
 492     res = new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1)));
 493   } else {
 494 
 495     // Check for constant with 2 bits set
 496     julong bit2 = abs_con-bit1;
 497     bit2 = bit2 & (0-bit2);          // Extract 2nd bit
 498     if (bit2 + bit1 == abs_con) {    // Found all bits in con?
 499       Node *n1 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1))));
 500       Node *n2 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit2))));
 501       res = new AddLNode(n2, n1);
 502 
 503     } else if (is_power_of_2(abs_con+1)) {
 504       // Sleezy: power-of-2 -1.  Next time be generic.
 505       julong temp = abs_con + 1;
 506       Node *n1 = phase->transform( new LShiftLNode(in(1), phase->intcon(log2i_exact(temp))));
 507       res = new SubLNode(n1, in(1));
 508     } else {
 509       return MulNode::Ideal(phase, can_reshape);
 510     }
 511   }
 512 
 513   if (sign_flip) {             // Need to negate result?
 514     res = phase->transform(res);// Transform, before making the zero con
 515     res = new SubLNode(phase->longcon(0),res);
 516   }
 517 
 518   return res;                   // Return final result
 519 }
 520 
 521 //=============================================================================
 522 //------------------------------mul_ring---------------------------------------
 523 // Compute the product type of two double ranges into this node.
 524 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
 525   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
 526   return TypeF::make( t0->getf() * t1->getf() );
 527 }
 528 
 529 //------------------------------Ideal---------------------------------------
 530 // Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
 531 Node* MulFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 532   const TypeF *t2 = phase->type(in(2))->isa_float_constant();
 533 
 534   // x * 2 -> x + x
 535   if (t2 != nullptr && t2->getf() == 2) {
 536     Node* base = in(1);
 537     return new AddFNode(base, base);
 538   }
 539 
 540   return MulNode::Ideal(phase, can_reshape);
 541 }
 542 
 543 //=============================================================================
 544 //------------------------------mul_ring---------------------------------------
 545 // Compute the product type of two double ranges into this node.
 546 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
 547   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
 548   // We must be multiplying 2 double constants.
 549   return TypeD::make( t0->getd() * t1->getd() );
 550 }
 551 
 552 //------------------------------Ideal---------------------------------------
 553 // Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
 554 Node* MulDNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 555   const TypeD *t2 = phase->type(in(2))->isa_double_constant();
 556 
 557   // x * 2 -> x + x
 558   if (t2 != nullptr && t2->getd() == 2) {
 559     Node* base = in(1);
 560     return new AddDNode(base, base);
 561   }
 562 
 563   return MulNode::Ideal(phase, can_reshape);
 564 }
 565 
 566 //=============================================================================
 567 //------------------------------Value------------------------------------------
 568 const Type* MulHiLNode::Value(PhaseGVN* phase) const {
 569   const Type *t1 = phase->type( in(1) );
 570   const Type *t2 = phase->type( in(2) );
 571   const Type *bot = bottom_type();
 572   return MulHiValue(t1, t2, bot);
 573 }
 574 
 575 const Type* UMulHiLNode::Value(PhaseGVN* phase) const {
 576   const Type *t1 = phase->type( in(1) );
 577   const Type *t2 = phase->type( in(2) );
 578   const Type *bot = bottom_type();
 579   return MulHiValue(t1, t2, bot);
 580 }
 581 
 582 // A common routine used by UMulHiLNode and MulHiLNode
 583 const Type* MulHiValue(const Type *t1, const Type *t2, const Type *bot) {
 584   // Either input is TOP ==> the result is TOP
 585   if( t1 == Type::TOP ) return Type::TOP;
 586   if( t2 == Type::TOP ) return Type::TOP;
 587 
 588   // Either input is BOTTOM ==> the result is the local BOTTOM
 589   if( (t1 == bot) || (t2 == bot) ||
 590       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 591     return bot;
 592 
 593   // It is not worth trying to constant fold this stuff!
 594   return TypeLong::LONG;
 595 }
 596 
 597 template<typename IntegerType>
 598 static const IntegerType* and_value(const IntegerType* r0, const IntegerType* r1) {
 599   typedef typename IntegerType::NativeType NativeType;
 600   static_assert(std::is_signed<NativeType>::value, "Native type of IntegerType must be signed!");
 601 
 602   int widen = MAX2(r0->_widen, r1->_widen);
 603 
 604   // If both types are constants, we can calculate a constant result.
 605   if (r0->is_con() && r1->is_con()) {
 606     return IntegerType::make(r0->get_con() & r1->get_con());
 607   }
 608 
 609   // If both ranges are positive, the result will range from 0 up to the hi value of the smaller range. The minimum
 610   // of the two constrains the upper bound because any higher value in the other range will see all zeroes, so it will be masked out.
 611   if (r0->_lo >= 0 && r1->_lo >= 0) {
 612     return IntegerType::make(0, MIN2(r0->_hi, r1->_hi), widen);
 613   }
 614 
 615   // If only one range is positive, the result will range from 0 up to that range's maximum value.
 616   // For the operation 'x & C' where C is a positive constant, the result will be in the range [0..C]. With that observation,
 617   // we can say that for any integer c such that 0 <= c <= C will also be in the range [0..C]. Therefore, 'x & [c..C]'
 618   // where c >= 0 will be in the range [0..C].
 619   if (r0->_lo >= 0) {
 620     return IntegerType::make(0, r0->_hi, widen);
 621   }
 622 
 623   if (r1->_lo >= 0) {
 624     return IntegerType::make(0, r1->_hi, widen);
 625   }
 626 
 627   // At this point, all positive ranges will have already been handled, so the only remaining cases will be negative ranges
 628   // and constants.
 629 
 630   assert(r0->_lo < 0 && r1->_lo < 0, "positive ranges should already be handled!");
 631 
 632   // As two's complement means that both numbers will start with leading 1s, the lower bound of both ranges will contain
 633   // the common leading 1s of both minimum values. In order to count them with count_leading_zeros, the bits are inverted.
 634   NativeType sel_val = ~MIN2(r0->_lo, r1->_lo);
 635 
 636   NativeType min;
 637   if (sel_val == 0) {
 638     // Since count_leading_zeros is undefined at 0, we short-circuit the condition where both ranges have a minimum of -1.
 639     min = -1;
 640   } else {
 641     // To get the number of bits to shift, we count the leading 0-bits and then subtract one, as the sign bit is already set.
 642     int shift_bits = count_leading_zeros(sel_val) - 1;
 643     min = std::numeric_limits<NativeType>::min() >> shift_bits;
 644   }
 645 
 646   NativeType max;
 647   if (r0->_hi < 0 && r1->_hi < 0) {
 648     // If both ranges are negative, then the same optimization as both positive ranges will apply, and the smaller hi
 649     // value will mask off any bits set by higher values.
 650     max = MIN2(r0->_hi, r1->_hi);
 651   } else {
 652     // In the case of ranges that cross zero, negative values can cause the higher order bits to be set, so the maximum
 653     // positive value can be as high as the larger hi value.
 654     max = MAX2(r0->_hi, r1->_hi);
 655   }
 656 
 657   return IntegerType::make(min, max, widen);
 658 }
 659 
 660 //=============================================================================
 661 //------------------------------mul_ring---------------------------------------
 662 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 663 // For the logical operations the ring's MUL is really a logical AND function.
 664 // This also type-checks the inputs for sanity.  Guaranteed never to
 665 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 666 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
 667   const TypeInt* r0 = t0->is_int();
 668   const TypeInt* r1 = t1->is_int();
 669 
 670   return and_value<TypeInt>(r0, r1);
 671 }
 672 
 673 const Type* AndINode::Value(PhaseGVN* phase) const {
 674   // patterns similar to (v << 2) & 3
 675   if (AndIL_shift_and_mask_is_always_zero(phase, in(1), in(2), T_INT, true)) {
 676     return TypeInt::ZERO;
 677   }
 678 
 679   return MulNode::Value(phase);
 680 }
 681 
 682 //------------------------------Identity---------------------------------------
 683 // Masking off the high bits of an unsigned load is not required
 684 Node* AndINode::Identity(PhaseGVN* phase) {
 685 
 686   // x & x => x
 687   if (in(1) == in(2)) {
 688     return in(1);
 689   }
 690 
 691   Node* in1 = in(1);
 692   uint op = in1->Opcode();
 693   const TypeInt* t2 = phase->type(in(2))->isa_int();
 694   if (t2 && t2->is_con()) {
 695     int con = t2->get_con();
 696     // Masking off high bits which are always zero is useless.
 697     const TypeInt* t1 = phase->type(in(1))->isa_int();
 698     if (t1 != nullptr && t1->_lo >= 0) {
 699       jint t1_support = right_n_bits(1 + log2i_graceful(t1->_hi));
 700       if ((t1_support & con) == t1_support)
 701         return in1;
 702     }
 703     // Masking off the high bits of a unsigned-shift-right is not
 704     // needed either.
 705     if (op == Op_URShiftI) {
 706       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 707       if (t12 && t12->is_con()) {  // Shift is by a constant
 708         int shift = t12->get_con();
 709         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
 710         int mask = max_juint >> shift;
 711         if ((mask & con) == mask)  // If AND is useless, skip it
 712           return in1;
 713       }
 714     }
 715   }
 716   return MulNode::Identity(phase);
 717 }
 718 
 719 //------------------------------Ideal------------------------------------------
 720 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 721   // pattern similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3
 722   Node* progress = AndIL_add_shift_and_mask(phase, T_INT);
 723   if (progress != nullptr) {
 724     return progress;
 725   }
 726 
 727   // Convert "(~a) & (~b)" into "~(a | b)"
 728   if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) {
 729     Node* or_a_b = new OrINode(in(1)->in(1), in(2)->in(1));
 730     Node* tn = phase->transform(or_a_b);
 731     return AddNode::make_not(phase, tn, T_INT);
 732   }
 733 
 734   // Special case constant AND mask
 735   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 736   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 737   const int mask = t2->get_con();
 738   Node *load = in(1);
 739   uint lop = load->Opcode();
 740 
 741   // Masking bits off of a Character?  Hi bits are already zero.
 742   if( lop == Op_LoadUS &&
 743       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
 744     return new AndINode(load,phase->intcon(mask&0xFFFF));
 745 
 746   // Masking bits off of a Short?  Loading a Character does some masking
 747   if (can_reshape &&
 748       load->outcnt() == 1 && load->unique_out() == this) {
 749     if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
 750       Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase);
 751       ldus = phase->transform(ldus);
 752       return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
 753     }
 754 
 755     // Masking sign bits off of a Byte?  Do an unsigned byte load plus
 756     // an and.
 757     if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
 758       Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase);
 759       ldub = phase->transform(ldub);
 760       return new AndINode(ldub, phase->intcon(mask));
 761     }
 762   }
 763 
 764   // Masking off sign bits?  Dont make them!
 765   if( lop == Op_RShiftI ) {
 766     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
 767     if( t12 && t12->is_con() ) { // Shift is by a constant
 768       int shift = t12->get_con();
 769       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 770       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
 771       // If the AND'ing of the 2 masks has no bits, then only original shifted
 772       // bits survive.  NO sign-extension bits survive the maskings.
 773       if( (sign_bits_mask & mask) == 0 ) {
 774         // Use zero-fill shift instead
 775         Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
 776         return new AndINode( zshift, in(2) );
 777       }
 778     }
 779   }
 780 
 781   // Check for 'negate/and-1', a pattern emitted when someone asks for
 782   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
 783   // plus 1) and the mask is of the low order bit.  Skip the negate.
 784   if( lop == Op_SubI && mask == 1 && load->in(1) &&
 785       phase->type(load->in(1)) == TypeInt::ZERO )
 786     return new AndINode( load->in(2), in(2) );
 787 
 788   return MulNode::Ideal(phase, can_reshape);
 789 }
 790 
 791 //=============================================================================
 792 //------------------------------mul_ring---------------------------------------
 793 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 794 // For the logical operations the ring's MUL is really a logical AND function.
 795 // This also type-checks the inputs for sanity.  Guaranteed never to
 796 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 797 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
 798   const TypeLong* r0 = t0->is_long();
 799   const TypeLong* r1 = t1->is_long();
 800 
 801   return and_value<TypeLong>(r0, r1);
 802 }
 803 
 804 const Type* AndLNode::Value(PhaseGVN* phase) const {
 805   // patterns similar to (v << 2) & 3
 806   if (AndIL_shift_and_mask_is_always_zero(phase, in(1), in(2), T_LONG, true)) {
 807     return TypeLong::ZERO;
 808   }
 809 
 810   return MulNode::Value(phase);
 811 }
 812 
 813 //------------------------------Identity---------------------------------------
 814 // Masking off the high bits of an unsigned load is not required
 815 Node* AndLNode::Identity(PhaseGVN* phase) {
 816 
 817   // x & x => x
 818   if (in(1) == in(2)) {
 819     return in(1);
 820   }
 821 
 822   Node *usr = in(1);
 823   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 824   if( t2 && t2->is_con() ) {
 825     jlong con = t2->get_con();
 826     // Masking off high bits which are always zero is useless.
 827     const TypeLong* t1 = phase->type( in(1) )->isa_long();
 828     if (t1 != nullptr && t1->_lo >= 0) {
 829       int bit_count = log2i_graceful(t1->_hi) + 1;
 830       jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
 831       if ((t1_support & con) == t1_support)
 832         return usr;
 833     }
 834     uint lop = usr->Opcode();
 835     // Masking off the high bits of a unsigned-shift-right is not
 836     // needed either.
 837     if( lop == Op_URShiftL ) {
 838       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
 839       if( t12 && t12->is_con() ) {  // Shift is by a constant
 840         int shift = t12->get_con();
 841         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 842         jlong mask = max_julong >> shift;
 843         if( (mask&con) == mask )  // If AND is useless, skip it
 844           return usr;
 845       }
 846     }
 847   }
 848   return MulNode::Identity(phase);
 849 }
 850 
 851 //------------------------------Ideal------------------------------------------
 852 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 853   // pattern similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3
 854   Node* progress = AndIL_add_shift_and_mask(phase, T_LONG);
 855   if (progress != nullptr) {
 856     return progress;
 857   }
 858 
 859   // Convert "(~a) & (~b)" into "~(a | b)"
 860   if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) {
 861     Node* or_a_b = new OrLNode(in(1)->in(1), in(2)->in(1));
 862     Node* tn = phase->transform(or_a_b);
 863     return AddNode::make_not(phase, tn, T_LONG);
 864   }
 865 
 866   // Special case constant AND mask
 867   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 868   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 869   const jlong mask = t2->get_con();
 870 
 871   Node* in1 = in(1);
 872   int op = in1->Opcode();
 873 
 874   // Are we masking a long that was converted from an int with a mask
 875   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
 876   // convert masks which would cause a sign extension of the integer
 877   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
 878   // would be optimized away later in Identity.
 879   if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
 880     Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
 881     andi = phase->transform(andi);
 882     return new ConvI2LNode(andi);
 883   }
 884 
 885   // Masking off sign bits?  Dont make them!
 886   if (op == Op_RShiftL) {
 887     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 888     if( t12 && t12->is_con() ) { // Shift is by a constant
 889       int shift = t12->get_con();
 890       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 891       const julong sign_bits_mask = ~(((julong)CONST64(1) << (julong)(BitsPerJavaLong - shift)) -1);
 892       // If the AND'ing of the 2 masks has no bits, then only original shifted
 893       // bits survive.  NO sign-extension bits survive the maskings.
 894       if( (sign_bits_mask & mask) == 0 ) {
 895         // Use zero-fill shift instead
 896         Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
 897         return new AndLNode(zshift, in(2));
 898       }
 899     }
 900   }
 901 
 902   return MulNode::Ideal(phase, can_reshape);
 903 }
 904 
 905 LShiftNode* LShiftNode::make(Node* in1, Node* in2, BasicType bt) {
 906   switch (bt) {
 907     case T_INT:
 908       return new LShiftINode(in1, in2);
 909     case T_LONG:
 910       return new LShiftLNode(in1, in2);
 911     default:
 912       fatal("Not implemented for %s", type2name(bt));
 913   }
 914   return nullptr;
 915 }
 916 
 917 //=============================================================================
 918 
 919 static bool const_shift_count(PhaseGVN* phase, Node* shiftNode, int* count) {
 920   const TypeInt* tcount = phase->type(shiftNode->in(2))->isa_int();
 921   if (tcount != nullptr && tcount->is_con()) {
 922     *count = tcount->get_con();
 923     return true;
 924   }
 925   return false;
 926 }
 927 
 928 static int maskShiftAmount(PhaseGVN* phase, Node* shiftNode, int nBits) {
 929   int count = 0;
 930   if (const_shift_count(phase, shiftNode, &count)) {
 931     int maskedShift = count & (nBits - 1);
 932     if (maskedShift == 0) {
 933       // Let Identity() handle 0 shift count.
 934       return 0;
 935     }
 936 
 937     if (count != maskedShift) {
 938       shiftNode->set_req(2, phase->intcon(maskedShift)); // Replace shift count with masked value.
 939       PhaseIterGVN* igvn = phase->is_IterGVN();
 940       if (igvn) {
 941         igvn->rehash_node_delayed(shiftNode);
 942       }
 943     }
 944     return maskedShift;
 945   }
 946   return 0;
 947 }
 948 
 949 //------------------------------Identity---------------------------------------
 950 Node* LShiftINode::Identity(PhaseGVN* phase) {
 951   int count = 0;
 952   if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) {
 953     // Shift by a multiple of 32 does nothing
 954     return in(1);
 955   }
 956   return this;
 957 }
 958 
 959 //------------------------------Ideal------------------------------------------
 960 // If the right input is a constant, and the left input is an add of a
 961 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 962 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 963   int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
 964   if (con == 0) {
 965     return nullptr;
 966   }
 967 
 968   // Left input is an add?
 969   Node *add1 = in(1);
 970   int add1_op = add1->Opcode();
 971   if( add1_op == Op_AddI ) {    // Left input is an add?
 972     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
 973 
 974     // Transform is legal, but check for profit.  Avoid breaking 'i2s'
 975     // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
 976     if( con < 16 ) {
 977       // Left input is an add of the same number?
 978       if (add1->in(1) == add1->in(2)) {
 979         // Convert "(x + x) << c0" into "x << (c0 + 1)"
 980         // In general, this optimization cannot be applied for c0 == 31 since
 981         // 2x << 31 != x << 32 = x << 0 = x (e.g. x = 1: 2 << 31 = 0 != 1)
 982         return new LShiftINode(add1->in(1), phase->intcon(con + 1));
 983       }
 984 
 985       // Left input is an add of a constant?
 986       const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
 987       if( t12 && t12->is_con() ){ // Left input is an add of a con?
 988         // Compute X << con0
 989         Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
 990         // Compute X<<con0 + (con1<<con0)
 991         return new AddINode( lsh, phase->intcon(t12->get_con() << con));
 992       }
 993     }
 994   }
 995 
 996   // Check for "(x >> C1) << C2"
 997   if (add1_op == Op_RShiftI || add1_op == Op_URShiftI) {
 998     int add1Con = 0;
 999     const_shift_count(phase, add1, &add1Con);
1000 
1001     // Special case C1 == C2, which just masks off low bits
1002     if (add1Con > 0 && con == add1Con) {
1003       // Convert to "(x & -(1 << C2))"
1004       return new AndINode(add1->in(1), phase->intcon(java_negate(jint(1 << con))));
1005     } else {
1006       // Wait until the right shift has been sharpened to the correct count
1007       if (add1Con > 0 && add1Con < BitsPerJavaInteger) {
1008         // As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed
1009         // to apply optimizations, otherwise we can inadvertently stop vectorization opportunities.
1010         if (phase->is_IterGVN()) {
1011           if (con > add1Con) {
1012             // Creates "(x << (C2 - C1)) & -(1 << C2)"
1013             Node* lshift = phase->transform(new LShiftINode(add1->in(1), phase->intcon(con - add1Con)));
1014             return new AndINode(lshift, phase->intcon(java_negate(jint(1 << con))));
1015           } else {
1016             assert(con < add1Con, "must be (%d < %d)", con, add1Con);
1017             // Creates "(x >> (C1 - C2)) & -(1 << C2)"
1018 
1019             // Handle logical and arithmetic shifts
1020             Node* rshift;
1021             if (add1_op == Op_RShiftI) {
1022               rshift = phase->transform(new RShiftINode(add1->in(1), phase->intcon(add1Con - con)));
1023             } else {
1024               rshift = phase->transform(new URShiftINode(add1->in(1), phase->intcon(add1Con - con)));
1025             }
1026 
1027             return new AndINode(rshift, phase->intcon(java_negate(jint(1 << con))));
1028           }
1029         } else {
1030           phase->record_for_igvn(this);
1031         }
1032       }
1033     }
1034   }
1035 
1036   // Check for "((x >> C1) & Y) << C2"
1037   if (add1_op == Op_AndI) {
1038     Node *add2 = add1->in(1);
1039     int add2_op = add2->Opcode();
1040     if (add2_op == Op_RShiftI || add2_op == Op_URShiftI) {
1041       // Special case C1 == C2, which just masks off low bits
1042       if (add2->in(2) == in(2)) {
1043         // Convert to "(x & (Y << C2))"
1044         Node* y_sh = phase->transform(new LShiftINode(add1->in(2), phase->intcon(con)));
1045         return new AndINode(add2->in(1), y_sh);
1046       }
1047 
1048       int add2Con = 0;
1049       const_shift_count(phase, add2, &add2Con);
1050       if (add2Con > 0 && add2Con < BitsPerJavaInteger) {
1051         if (phase->is_IterGVN()) {
1052           // Convert to "((x >> C1) << C2) & (Y << C2)"
1053 
1054           // Make "(x >> C1) << C2", which will get folded away by the rule above
1055           Node* x_sh = phase->transform(new LShiftINode(add2, phase->intcon(con)));
1056           // Make "Y << C2", which will simplify when Y is a constant
1057           Node* y_sh = phase->transform(new LShiftINode(add1->in(2), phase->intcon(con)));
1058 
1059           return new AndINode(x_sh, y_sh);
1060         } else {
1061           phase->record_for_igvn(this);
1062         }
1063       }
1064     }
1065   }
1066 
1067   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
1068   // before shifting them away.
1069   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
1070   if( add1_op == Op_AndI &&
1071       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
1072     return new LShiftINode( add1->in(1), in(2) );
1073 
1074   return nullptr;
1075 }
1076 
1077 //------------------------------Value------------------------------------------
1078 // A LShiftINode shifts its input2 left by input1 amount.
1079 const Type* LShiftINode::Value(PhaseGVN* phase) const {
1080   const Type *t1 = phase->type( in(1) );
1081   const Type *t2 = phase->type( in(2) );
1082   // Either input is TOP ==> the result is TOP
1083   if( t1 == Type::TOP ) return Type::TOP;
1084   if( t2 == Type::TOP ) return Type::TOP;
1085 
1086   // Left input is ZERO ==> the result is ZERO.
1087   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1088   // Shift by zero does nothing
1089   if( t2 == TypeInt::ZERO ) return t1;
1090 
1091   // Either input is BOTTOM ==> the result is BOTTOM
1092   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
1093       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1094     return TypeInt::INT;
1095 
1096   const TypeInt *r1 = t1->is_int(); // Handy access
1097   const TypeInt *r2 = t2->is_int(); // Handy access
1098 
1099   if (!r2->is_con())
1100     return TypeInt::INT;
1101 
1102   uint shift = r2->get_con();
1103   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1104   // Shift by a multiple of 32 does nothing:
1105   if (shift == 0)  return t1;
1106 
1107   // If the shift is a constant, shift the bounds of the type,
1108   // unless this could lead to an overflow.
1109   if (!r1->is_con()) {
1110     jint lo = r1->_lo, hi = r1->_hi;
1111     if (((lo << shift) >> shift) == lo &&
1112         ((hi << shift) >> shift) == hi) {
1113       // No overflow.  The range shifts up cleanly.
1114       return TypeInt::make((jint)lo << (jint)shift,
1115                            (jint)hi << (jint)shift,
1116                            MAX2(r1->_widen,r2->_widen));
1117     }
1118     return TypeInt::INT;
1119   }
1120 
1121   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
1122 }
1123 
1124 //=============================================================================
1125 //------------------------------Identity---------------------------------------
1126 Node* LShiftLNode::Identity(PhaseGVN* phase) {
1127   int count = 0;
1128   if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) {
1129     // Shift by a multiple of 64 does nothing
1130     return in(1);
1131   }
1132   return this;
1133 }
1134 
1135 //------------------------------Ideal------------------------------------------
1136 // If the right input is a constant, and the left input is an add of a
1137 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
1138 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1139   int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1140   if (con == 0) {
1141     return nullptr;
1142   }
1143 
1144   // Left input is an add?
1145   Node *add1 = in(1);
1146   int add1_op = add1->Opcode();
1147   if( add1_op == Op_AddL ) {    // Left input is an add?
1148     // Avoid dead data cycles from dead loops
1149     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
1150 
1151     // Left input is an add of the same number?
1152     if (con != (BitsPerJavaLong - 1) && add1->in(1) == add1->in(2)) {
1153       // Convert "(x + x) << c0" into "x << (c0 + 1)"
1154       // Can only be applied if c0 != 63 because:
1155       // (x + x) << 63 = 2x << 63, while
1156       // (x + x) << 63 --transform--> x << 64 = x << 0 = x (!= 2x << 63, for example for x = 1)
1157       // According to the Java spec, chapter 15.19, we only consider the six lowest-order bits of the right-hand operand
1158       // (i.e. "right-hand operand" & 0b111111). Therefore, x << 64 is the same as x << 0 (64 = 0b10000000 & 0b0111111 = 0).
1159       return new LShiftLNode(add1->in(1), phase->intcon(con + 1));
1160     }
1161 
1162     // Left input is an add of a constant?
1163     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
1164     if( t12 && t12->is_con() ){ // Left input is an add of a con?
1165       // Compute X << con0
1166       Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
1167       // Compute X<<con0 + (con1<<con0)
1168       return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
1169     }
1170   }
1171 
1172   // Check for "(x >> C1) << C2"
1173   if (add1_op == Op_RShiftL || add1_op == Op_URShiftL) {
1174     int add1Con = 0;
1175     const_shift_count(phase, add1, &add1Con);
1176 
1177     // Special case C1 == C2, which just masks off low bits
1178     if (add1Con > 0 && con == add1Con) {
1179       // Convert to "(x & -(1 << C2))"
1180       return new AndLNode(add1->in(1), phase->longcon(java_negate(jlong(CONST64(1) << con))));
1181     } else {
1182       // Wait until the right shift has been sharpened to the correct count
1183       if (add1Con > 0 && add1Con < BitsPerJavaLong) {
1184         // As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed
1185         // to apply optimizations, otherwise we can inadvertently stop vectorization opportunities.
1186         if (phase->is_IterGVN()) {
1187           if (con > add1Con) {
1188             // Creates "(x << (C2 - C1)) & -(1 << C2)"
1189             Node* lshift = phase->transform(new LShiftLNode(add1->in(1), phase->intcon(con - add1Con)));
1190             return new AndLNode(lshift, phase->longcon(java_negate(jlong(CONST64(1) << con))));
1191           } else {
1192             assert(con < add1Con, "must be (%d < %d)", con, add1Con);
1193             // Creates "(x >> (C1 - C2)) & -(1 << C2)"
1194 
1195             // Handle logical and arithmetic shifts
1196             Node* rshift;
1197             if (add1_op == Op_RShiftL) {
1198               rshift = phase->transform(new RShiftLNode(add1->in(1), phase->intcon(add1Con - con)));
1199             } else {
1200               rshift = phase->transform(new URShiftLNode(add1->in(1), phase->intcon(add1Con - con)));
1201             }
1202 
1203             return new AndLNode(rshift, phase->longcon(java_negate(jlong(CONST64(1) << con))));
1204           }
1205         } else {
1206           phase->record_for_igvn(this);
1207         }
1208       }
1209     }
1210   }
1211 
1212   // Check for "((x >> C1) & Y) << C2"
1213   if (add1_op == Op_AndL) {
1214     Node* add2 = add1->in(1);
1215     int add2_op = add2->Opcode();
1216     if (add2_op == Op_RShiftL || add2_op == Op_URShiftL) {
1217       // Special case C1 == C2, which just masks off low bits
1218       if (add2->in(2) == in(2)) {
1219         // Convert to "(x & (Y << C2))"
1220         Node* y_sh = phase->transform(new LShiftLNode(add1->in(2), phase->intcon(con)));
1221         return new AndLNode(add2->in(1), y_sh);
1222       }
1223 
1224       int add2Con = 0;
1225       const_shift_count(phase, add2, &add2Con);
1226       if (add2Con > 0 && add2Con < BitsPerJavaLong) {
1227         if (phase->is_IterGVN()) {
1228           // Convert to "((x >> C1) << C2) & (Y << C2)"
1229 
1230           // Make "(x >> C1) << C2", which will get folded away by the rule above
1231           Node* x_sh = phase->transform(new LShiftLNode(add2, phase->intcon(con)));
1232           // Make "Y << C2", which will simplify when Y is a constant
1233           Node* y_sh = phase->transform(new LShiftLNode(add1->in(2), phase->intcon(con)));
1234 
1235           return new AndLNode(x_sh, y_sh);
1236         } else {
1237           phase->record_for_igvn(this);
1238         }
1239       }
1240     }
1241   }
1242 
1243   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
1244   // before shifting them away.
1245   const jlong bits_mask = jlong(max_julong >> con);
1246   if( add1_op == Op_AndL &&
1247       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
1248     return new LShiftLNode( add1->in(1), in(2) );
1249 
1250   return nullptr;
1251 }
1252 
1253 //------------------------------Value------------------------------------------
1254 // A LShiftLNode shifts its input2 left by input1 amount.
1255 const Type* LShiftLNode::Value(PhaseGVN* phase) const {
1256   const Type *t1 = phase->type( in(1) );
1257   const Type *t2 = phase->type( in(2) );
1258   // Either input is TOP ==> the result is TOP
1259   if( t1 == Type::TOP ) return Type::TOP;
1260   if( t2 == Type::TOP ) return Type::TOP;
1261 
1262   // Left input is ZERO ==> the result is ZERO.
1263   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1264   // Shift by zero does nothing
1265   if( t2 == TypeInt::ZERO ) return t1;
1266 
1267   // Either input is BOTTOM ==> the result is BOTTOM
1268   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
1269       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1270     return TypeLong::LONG;
1271 
1272   const TypeLong *r1 = t1->is_long(); // Handy access
1273   const TypeInt  *r2 = t2->is_int();  // Handy access
1274 
1275   if (!r2->is_con())
1276     return TypeLong::LONG;
1277 
1278   uint shift = r2->get_con();
1279   shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1280   // Shift by a multiple of 64 does nothing:
1281   if (shift == 0)  return t1;
1282 
1283   // If the shift is a constant, shift the bounds of the type,
1284   // unless this could lead to an overflow.
1285   if (!r1->is_con()) {
1286     jlong lo = r1->_lo, hi = r1->_hi;
1287     if (((lo << shift) >> shift) == lo &&
1288         ((hi << shift) >> shift) == hi) {
1289       // No overflow.  The range shifts up cleanly.
1290       return TypeLong::make((jlong)lo << (jint)shift,
1291                             (jlong)hi << (jint)shift,
1292                             MAX2(r1->_widen,r2->_widen));
1293     }
1294     return TypeLong::LONG;
1295   }
1296 
1297   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
1298 }
1299 
1300 //=============================================================================
1301 //------------------------------Identity---------------------------------------
1302 Node* RShiftINode::Identity(PhaseGVN* phase) {
1303   int count = 0;
1304   if (const_shift_count(phase, this, &count)) {
1305     if ((count & (BitsPerJavaInteger - 1)) == 0) {
1306       // Shift by a multiple of 32 does nothing
1307       return in(1);
1308     }
1309     // Check for useless sign-masking
1310     if (in(1)->Opcode() == Op_LShiftI &&
1311         in(1)->req() == 3 &&
1312         in(1)->in(2) == in(2)) {
1313       count &= BitsPerJavaInteger-1; // semantics of Java shifts
1314       // Compute masks for which this shifting doesn't change
1315       int lo = (-1 << (BitsPerJavaInteger - ((uint)count)-1)); // FFFF8000
1316       int hi = ~lo;               // 00007FFF
1317       const TypeInt* t11 = phase->type(in(1)->in(1))->isa_int();
1318       if (t11 == nullptr) {
1319         return this;
1320       }
1321       // Does actual value fit inside of mask?
1322       if (lo <= t11->_lo && t11->_hi <= hi) {
1323         return in(1)->in(1);      // Then shifting is a nop
1324       }
1325     }
1326   }
1327   return this;
1328 }
1329 
1330 //------------------------------Ideal------------------------------------------
1331 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1332   // Inputs may be TOP if they are dead.
1333   const TypeInt *t1 = phase->type(in(1))->isa_int();
1334   if (!t1) return nullptr;        // Left input is an integer
1335   const TypeInt *t3;  // type of in(1).in(2)
1336   int shift = maskShiftAmount(phase, this, BitsPerJavaInteger);
1337   if (shift == 0) {
1338     return nullptr;
1339   }
1340 
1341   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
1342   // Such expressions arise normally from shift chains like (byte)(x >> 24).
1343   const Node *mask = in(1);
1344   if( mask->Opcode() == Op_AndI &&
1345       (t3 = phase->type(mask->in(2))->isa_int()) &&
1346       t3->is_con() ) {
1347     Node *x = mask->in(1);
1348     jint maskbits = t3->get_con();
1349     // Convert to "(x >> shift) & (mask >> shift)"
1350     Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
1351     return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
1352   }
1353 
1354   // Check for "(short[i] <<16)>>16" which simply sign-extends
1355   const Node *shl = in(1);
1356   if( shl->Opcode() != Op_LShiftI ) return nullptr;
1357 
1358   if( shift == 16 &&
1359       (t3 = phase->type(shl->in(2))->isa_int()) &&
1360       t3->is_con(16) ) {
1361     Node *ld = shl->in(1);
1362     if( ld->Opcode() == Op_LoadS ) {
1363       // Sign extension is just useless here.  Return a RShiftI of zero instead
1364       // returning 'ld' directly.  We cannot return an old Node directly as
1365       // that is the job of 'Identity' calls and Identity calls only work on
1366       // direct inputs ('ld' is an extra Node removed from 'this').  The
1367       // combined optimization requires Identity only return direct inputs.
1368       set_req_X(1, ld, phase);
1369       set_req_X(2, phase->intcon(0), phase);
1370       return this;
1371     }
1372     else if (can_reshape &&
1373              ld->Opcode() == Op_LoadUS &&
1374              ld->outcnt() == 1 && ld->unique_out() == shl)
1375       // Replace zero-extension-load with sign-extension-load
1376       return ld->as_Load()->convert_to_signed_load(*phase);
1377   }
1378 
1379   // Check for "(byte[i] <<24)>>24" which simply sign-extends
1380   if( shift == 24 &&
1381       (t3 = phase->type(shl->in(2))->isa_int()) &&
1382       t3->is_con(24) ) {
1383     Node *ld = shl->in(1);
1384     if (ld->Opcode() == Op_LoadB) {
1385       // Sign extension is just useless here
1386       set_req_X(1, ld, phase);
1387       set_req_X(2, phase->intcon(0), phase);
1388       return this;
1389     }
1390   }
1391 
1392   return nullptr;
1393 }
1394 
1395 //------------------------------Value------------------------------------------
1396 // A RShiftINode shifts its input2 right by input1 amount.
1397 const Type* RShiftINode::Value(PhaseGVN* phase) const {
1398   const Type *t1 = phase->type( in(1) );
1399   const Type *t2 = phase->type( in(2) );
1400   // Either input is TOP ==> the result is TOP
1401   if( t1 == Type::TOP ) return Type::TOP;
1402   if( t2 == Type::TOP ) return Type::TOP;
1403 
1404   // Left input is ZERO ==> the result is ZERO.
1405   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1406   // Shift by zero does nothing
1407   if( t2 == TypeInt::ZERO ) return t1;
1408 
1409   // Either input is BOTTOM ==> the result is BOTTOM
1410   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1411     return TypeInt::INT;
1412 
1413   const TypeInt *r1 = t1->is_int(); // Handy access
1414   const TypeInt *r2 = t2->is_int(); // Handy access
1415 
1416   // If the shift is a constant, just shift the bounds of the type.
1417   // For example, if the shift is 31, we just propagate sign bits.
1418   if (!r1->is_con() && r2->is_con()) {
1419     uint shift = r2->get_con();
1420     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1421     // Shift by a multiple of 32 does nothing:
1422     if (shift == 0)  return t1;
1423     // Calculate reasonably aggressive bounds for the result.
1424     // This is necessary if we are to correctly type things
1425     // like (x<<24>>24) == ((byte)x).
1426     jint lo = (jint)r1->_lo >> (jint)shift;
1427     jint hi = (jint)r1->_hi >> (jint)shift;
1428     assert(lo <= hi, "must have valid bounds");
1429     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1430 #ifdef ASSERT
1431     // Make sure we get the sign-capture idiom correct.
1432     if (shift == BitsPerJavaInteger-1) {
1433       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
1434       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1435     }
1436 #endif
1437     return ti;
1438   }
1439 
1440   if (!r1->is_con() || !r2->is_con()) {
1441     // If the left input is non-negative the result must also be non-negative, regardless of what the right input is.
1442     if (r1->_lo >= 0) {
1443       return TypeInt::make(0, r1->_hi, MAX2(r1->_widen, r2->_widen));
1444     }
1445 
1446     // Conversely, if the left input is negative then the result must be negative.
1447     if (r1->_hi <= -1) {
1448       return TypeInt::make(r1->_lo, -1, MAX2(r1->_widen, r2->_widen));
1449     }
1450 
1451     return TypeInt::INT;
1452   }
1453 
1454   // Signed shift right
1455   return TypeInt::make(r1->get_con() >> (r2->get_con() & 31));
1456 }
1457 
1458 //=============================================================================
1459 //------------------------------Identity---------------------------------------
1460 Node* RShiftLNode::Identity(PhaseGVN* phase) {
1461   const TypeInt *ti = phase->type(in(2))->isa_int(); // Shift count is an int.
1462   return (ti && ti->is_con() && (ti->get_con() & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
1463 }
1464 
1465 //------------------------------Value------------------------------------------
1466 // A RShiftLNode shifts its input2 right by input1 amount.
1467 const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1468   const Type *t1 = phase->type( in(1) );
1469   const Type *t2 = phase->type( in(2) );
1470   // Either input is TOP ==> the result is TOP
1471   if( t1 == Type::TOP ) return Type::TOP;
1472   if( t2 == Type::TOP ) return Type::TOP;
1473 
1474   // Left input is ZERO ==> the result is ZERO.
1475   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1476   // Shift by zero does nothing
1477   if( t2 == TypeInt::ZERO ) return t1;
1478 
1479   // Either input is BOTTOM ==> the result is BOTTOM
1480   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1481     return TypeLong::LONG;
1482 
1483   const TypeLong *r1 = t1->is_long(); // Handy access
1484   const TypeInt  *r2 = t2->is_int (); // Handy access
1485 
1486   // If the shift is a constant, just shift the bounds of the type.
1487   // For example, if the shift is 63, we just propagate sign bits.
1488   if (!r1->is_con() && r2->is_con()) {
1489     uint shift = r2->get_con();
1490     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1491     // Shift by a multiple of 64 does nothing:
1492     if (shift == 0)  return t1;
1493     // Calculate reasonably aggressive bounds for the result.
1494     // This is necessary if we are to correctly type things
1495     // like (x<<24>>24) == ((byte)x).
1496     jlong lo = (jlong)r1->_lo >> (jlong)shift;
1497     jlong hi = (jlong)r1->_hi >> (jlong)shift;
1498     assert(lo <= hi, "must have valid bounds");
1499     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1500     #ifdef ASSERT
1501     // Make sure we get the sign-capture idiom correct.
1502     if (shift == (2*BitsPerJavaInteger)-1) {
1503       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1504       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1505     }
1506     #endif
1507     return tl;
1508   }
1509 
1510   if (!r1->is_con() || !r2->is_con()) {
1511     // If the left input is non-negative the result must also be non-negative, regardless of what the right input is.
1512     if (r1->_lo >= 0) {
1513       return TypeLong::make(0, r1->_hi, MAX2(r1->_widen, r2->_widen));
1514     }
1515 
1516     // Conversely, if the left input is negative then the result must be negative.
1517     if (r1->_hi <= -1) {
1518       return TypeLong::make(r1->_lo, -1, MAX2(r1->_widen, r2->_widen));
1519     }
1520 
1521     return TypeLong::LONG;
1522   }
1523 
1524   return TypeLong::make(r1->get_con() >> (r2->get_con() & 63));
1525 }
1526 
1527 //=============================================================================
1528 //------------------------------Identity---------------------------------------
1529 Node* URShiftINode::Identity(PhaseGVN* phase) {
1530   int count = 0;
1531   if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) {
1532     // Shift by a multiple of 32 does nothing
1533     return in(1);
1534   }
1535 
1536   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1537   // Happens during new-array length computation.
1538   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1539   Node *add = in(1);
1540   if (add->Opcode() == Op_AddI) {
1541     const TypeInt *t2 = phase->type(add->in(2))->isa_int();
1542     if (t2 && t2->is_con(wordSize - 1) &&
1543         add->in(1)->Opcode() == Op_LShiftI) {
1544       // Check that shift_counts are LogBytesPerWord.
1545       Node          *lshift_count   = add->in(1)->in(2);
1546       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1547       if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1548           t_lshift_count == phase->type(in(2))) {
1549         Node          *x   = add->in(1)->in(1);
1550         const TypeInt *t_x = phase->type(x)->isa_int();
1551         if (t_x != nullptr && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) {
1552           return x;
1553         }
1554       }
1555     }
1556   }
1557 
1558   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1559 }
1560 
1561 //------------------------------Ideal------------------------------------------
1562 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1563   int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
1564   if (con == 0) {
1565     return nullptr;
1566   }
1567 
1568   // We'll be wanting the right-shift amount as a mask of that many bits
1569   const int mask = right_n_bits(BitsPerJavaInteger - con);
1570 
1571   int in1_op = in(1)->Opcode();
1572 
1573   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1574   if( in1_op == Op_URShiftI ) {
1575     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1576     if( t12 && t12->is_con() ) { // Right input is a constant
1577       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1578       const int con2 = t12->get_con() & 31; // Shift count is always masked
1579       const int con3 = con+con2;
1580       if( con3 < 32 )           // Only merge shifts if total is < 32
1581         return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1582     }
1583   }
1584 
1585   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1586   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1587   // If Q is "X << z" the rounding is useless.  Look for patterns like
1588   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1589   Node *add = in(1);
1590   const TypeInt *t2 = phase->type(in(2))->isa_int();
1591   if (in1_op == Op_AddI) {
1592     Node *lshl = add->in(1);
1593     if( lshl->Opcode() == Op_LShiftI &&
1594         phase->type(lshl->in(2)) == t2 ) {
1595       Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1596       Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1597       return new AndINode( sum, phase->intcon(mask) );
1598     }
1599   }
1600 
1601   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1602   // This shortens the mask.  Also, if we are extracting a high byte and
1603   // storing it to a buffer, the mask will be removed completely.
1604   Node *andi = in(1);
1605   if( in1_op == Op_AndI ) {
1606     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1607     if( t3 && t3->is_con() ) { // Right input is a constant
1608       jint mask2 = t3->get_con();
1609       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1610       Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1611       return new AndINode(newshr, phase->intcon(mask2));
1612       // The negative values are easier to materialize than positive ones.
1613       // A typical case from address arithmetic is ((x & ~15) >> 4).
1614       // It's better to change that to ((x >> 4) & ~0) versus
1615       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1616     }
1617   }
1618 
1619   // Check for "(X << z ) >>> z" which simply zero-extends
1620   Node *shl = in(1);
1621   if( in1_op == Op_LShiftI &&
1622       phase->type(shl->in(2)) == t2 )
1623     return new AndINode( shl->in(1), phase->intcon(mask) );
1624 
1625   // Check for (x >> n) >>> 31. Replace with (x >>> 31)
1626   Node *shr = in(1);
1627   if ( in1_op == Op_RShiftI ) {
1628     Node *in11 = shr->in(1);
1629     Node *in12 = shr->in(2);
1630     const TypeInt *t11 = phase->type(in11)->isa_int();
1631     const TypeInt *t12 = phase->type(in12)->isa_int();
1632     if ( t11 && t2 && t2->is_con(31) && t12 && t12->is_con() ) {
1633       return new URShiftINode(in11, phase->intcon(31));
1634     }
1635   }
1636 
1637   return nullptr;
1638 }
1639 
1640 //------------------------------Value------------------------------------------
1641 // A URShiftINode shifts its input2 right by input1 amount.
1642 const Type* URShiftINode::Value(PhaseGVN* phase) const {
1643   // (This is a near clone of RShiftINode::Value.)
1644   const Type *t1 = phase->type( in(1) );
1645   const Type *t2 = phase->type( in(2) );
1646   // Either input is TOP ==> the result is TOP
1647   if( t1 == Type::TOP ) return Type::TOP;
1648   if( t2 == Type::TOP ) return Type::TOP;
1649 
1650   // Left input is ZERO ==> the result is ZERO.
1651   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1652   // Shift by zero does nothing
1653   if( t2 == TypeInt::ZERO ) return t1;
1654 
1655   // Either input is BOTTOM ==> the result is BOTTOM
1656   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1657     return TypeInt::INT;
1658 
1659   if (t2 == TypeInt::INT)
1660     return TypeInt::INT;
1661 
1662   const TypeInt *r1 = t1->is_int();     // Handy access
1663   const TypeInt *r2 = t2->is_int();     // Handy access
1664 
1665   if (r2->is_con()) {
1666     uint shift = r2->get_con();
1667     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1668     // Shift by a multiple of 32 does nothing:
1669     if (shift == 0)  return t1;
1670     // Calculate reasonably aggressive bounds for the result.
1671     jint lo = (juint)r1->_lo >> (juint)shift;
1672     jint hi = (juint)r1->_hi >> (juint)shift;
1673     if (r1->_hi >= 0 && r1->_lo < 0) {
1674       // If the type has both negative and positive values,
1675       // there are two separate sub-domains to worry about:
1676       // The positive half and the negative half.
1677       jint neg_lo = lo;
1678       jint neg_hi = (juint)-1 >> (juint)shift;
1679       jint pos_lo = (juint) 0 >> (juint)shift;
1680       jint pos_hi = hi;
1681       lo = MIN2(neg_lo, pos_lo);  // == 0
1682       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1683     }
1684     assert(lo <= hi, "must have valid bounds");
1685     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1686     #ifdef ASSERT
1687     // Make sure we get the sign-capture idiom correct.
1688     if (shift == BitsPerJavaInteger-1) {
1689       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1690       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1691     }
1692     #endif
1693     return ti;
1694   }
1695 
1696   //
1697   // Do not support shifted oops in info for GC
1698   //
1699   // else if( t1->base() == Type::InstPtr ) {
1700   //
1701   //   const TypeInstPtr *o = t1->is_instptr();
1702   //   if( t1->singleton() )
1703   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1704   // }
1705   // else if( t1->base() == Type::KlassPtr ) {
1706   //   const TypeKlassPtr *o = t1->is_klassptr();
1707   //   if( t1->singleton() )
1708   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1709   // }
1710 
1711   return TypeInt::INT;
1712 }
1713 
1714 //=============================================================================
1715 //------------------------------Identity---------------------------------------
1716 Node* URShiftLNode::Identity(PhaseGVN* phase) {
1717   int count = 0;
1718   if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) {
1719     // Shift by a multiple of 64 does nothing
1720     return in(1);
1721   }
1722   return this;
1723 }
1724 
1725 //------------------------------Ideal------------------------------------------
1726 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1727   int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1728   if (con == 0) {
1729     return nullptr;
1730   }
1731 
1732   // We'll be wanting the right-shift amount as a mask of that many bits
1733   const jlong mask = jlong(max_julong >> con);
1734 
1735   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1736   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1737   // If Q is "X << z" the rounding is useless.  Look for patterns like
1738   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1739   Node *add = in(1);
1740   const TypeInt *t2 = phase->type(in(2))->isa_int();
1741   if (add->Opcode() == Op_AddL) {
1742     Node *lshl = add->in(1);
1743     if( lshl->Opcode() == Op_LShiftL &&
1744         phase->type(lshl->in(2)) == t2 ) {
1745       Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1746       Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1747       return new AndLNode( sum, phase->longcon(mask) );
1748     }
1749   }
1750 
1751   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1752   // This shortens the mask.  Also, if we are extracting a high byte and
1753   // storing it to a buffer, the mask will be removed completely.
1754   Node *andi = in(1);
1755   if( andi->Opcode() == Op_AndL ) {
1756     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1757     if( t3 && t3->is_con() ) { // Right input is a constant
1758       jlong mask2 = t3->get_con();
1759       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1760       Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1761       return new AndLNode(newshr, phase->longcon(mask2));
1762     }
1763   }
1764 
1765   // Check for "(X << z ) >>> z" which simply zero-extends
1766   Node *shl = in(1);
1767   if( shl->Opcode() == Op_LShiftL &&
1768       phase->type(shl->in(2)) == t2 )
1769     return new AndLNode( shl->in(1), phase->longcon(mask) );
1770 
1771   // Check for (x >> n) >>> 63. Replace with (x >>> 63)
1772   Node *shr = in(1);
1773   if ( shr->Opcode() == Op_RShiftL ) {
1774     Node *in11 = shr->in(1);
1775     Node *in12 = shr->in(2);
1776     const TypeLong *t11 = phase->type(in11)->isa_long();
1777     const TypeInt *t12 = phase->type(in12)->isa_int();
1778     if ( t11 && t2 && t2->is_con(63) && t12 && t12->is_con() ) {
1779       return new URShiftLNode(in11, phase->intcon(63));
1780     }
1781   }
1782   return nullptr;
1783 }
1784 
1785 //------------------------------Value------------------------------------------
1786 // A URShiftINode shifts its input2 right by input1 amount.
1787 const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1788   // (This is a near clone of RShiftLNode::Value.)
1789   const Type *t1 = phase->type( in(1) );
1790   const Type *t2 = phase->type( in(2) );
1791   // Either input is TOP ==> the result is TOP
1792   if( t1 == Type::TOP ) return Type::TOP;
1793   if( t2 == Type::TOP ) return Type::TOP;
1794 
1795   // Left input is ZERO ==> the result is ZERO.
1796   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1797   // Shift by zero does nothing
1798   if( t2 == TypeInt::ZERO ) return t1;
1799 
1800   // Either input is BOTTOM ==> the result is BOTTOM
1801   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1802     return TypeLong::LONG;
1803 
1804   if (t2 == TypeInt::INT)
1805     return TypeLong::LONG;
1806 
1807   const TypeLong *r1 = t1->is_long(); // Handy access
1808   const TypeInt  *r2 = t2->is_int (); // Handy access
1809 
1810   if (r2->is_con()) {
1811     uint shift = r2->get_con();
1812     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1813     // Shift by a multiple of 64 does nothing:
1814     if (shift == 0)  return t1;
1815     // Calculate reasonably aggressive bounds for the result.
1816     jlong lo = (julong)r1->_lo >> (juint)shift;
1817     jlong hi = (julong)r1->_hi >> (juint)shift;
1818     if (r1->_hi >= 0 && r1->_lo < 0) {
1819       // If the type has both negative and positive values,
1820       // there are two separate sub-domains to worry about:
1821       // The positive half and the negative half.
1822       jlong neg_lo = lo;
1823       jlong neg_hi = (julong)-1 >> (juint)shift;
1824       jlong pos_lo = (julong) 0 >> (juint)shift;
1825       jlong pos_hi = hi;
1826       //lo = MIN2(neg_lo, pos_lo);  // == 0
1827       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1828       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1829       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1830     }
1831     assert(lo <= hi, "must have valid bounds");
1832     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1833     #ifdef ASSERT
1834     // Make sure we get the sign-capture idiom correct.
1835     if (shift == BitsPerJavaLong - 1) {
1836       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1837       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1838     }
1839     #endif
1840     return tl;
1841   }
1842 
1843   return TypeLong::LONG;                // Give up
1844 }
1845 
1846 //=============================================================================
1847 //------------------------------Ideal------------------------------------------
1848 Node* FmaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1849   // We canonicalize the node by converting "(-a)*b+c" into "b*(-a)+c"
1850   // This reduces the number of rules in the matcher, as we only need to check
1851   // for negations on the second argument, and not the symmetric case where
1852   // the first argument is negated.
1853   if (in(1)->is_Neg() && !in(2)->is_Neg()) {
1854     swap_edges(1, 2);
1855     return this;
1856   }
1857   return nullptr;
1858 }
1859 
1860 //=============================================================================
1861 //------------------------------Value------------------------------------------
1862 const Type* FmaDNode::Value(PhaseGVN* phase) const {
1863   const Type *t1 = phase->type(in(1));
1864   if (t1 == Type::TOP) return Type::TOP;
1865   if (t1->base() != Type::DoubleCon) return Type::DOUBLE;
1866   const Type *t2 = phase->type(in(2));
1867   if (t2 == Type::TOP) return Type::TOP;
1868   if (t2->base() != Type::DoubleCon) return Type::DOUBLE;
1869   const Type *t3 = phase->type(in(3));
1870   if (t3 == Type::TOP) return Type::TOP;
1871   if (t3->base() != Type::DoubleCon) return Type::DOUBLE;
1872 #ifndef __STDC_IEC_559__
1873   return Type::DOUBLE;
1874 #else
1875   double d1 = t1->getd();
1876   double d2 = t2->getd();
1877   double d3 = t3->getd();
1878   return TypeD::make(fma(d1, d2, d3));
1879 #endif
1880 }
1881 
1882 //=============================================================================
1883 //------------------------------Value------------------------------------------
1884 const Type* FmaFNode::Value(PhaseGVN* phase) const {
1885   const Type *t1 = phase->type(in(1));
1886   if (t1 == Type::TOP) return Type::TOP;
1887   if (t1->base() != Type::FloatCon) return Type::FLOAT;
1888   const Type *t2 = phase->type(in(2));
1889   if (t2 == Type::TOP) return Type::TOP;
1890   if (t2->base() != Type::FloatCon) return Type::FLOAT;
1891   const Type *t3 = phase->type(in(3));
1892   if (t3 == Type::TOP) return Type::TOP;
1893   if (t3->base() != Type::FloatCon) return Type::FLOAT;
1894 #ifndef __STDC_IEC_559__
1895   return Type::FLOAT;
1896 #else
1897   float f1 = t1->getf();
1898   float f2 = t2->getf();
1899   float f3 = t3->getf();
1900   return TypeF::make(fma(f1, f2, f3));
1901 #endif
1902 }
1903 
1904 //=============================================================================
1905 //------------------------------hash-------------------------------------------
1906 // Hash function for MulAddS2INode.  Operation is commutative with commutative pairs.
1907 // The hash function must return the same value when edge swapping is performed.
1908 uint MulAddS2INode::hash() const {
1909   return (uintptr_t)in(1) + (uintptr_t)in(2) + (uintptr_t)in(3) + (uintptr_t)in(4) + Opcode();
1910 }
1911 
1912 //------------------------------Rotate Operations ------------------------------
1913 
1914 Node* RotateLeftNode::Identity(PhaseGVN* phase) {
1915   const Type* t1 = phase->type(in(1));
1916   if (t1 == Type::TOP) {
1917     return this;
1918   }
1919   int count = 0;
1920   assert(t1->isa_int() || t1->isa_long(), "Unexpected type");
1921   int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1;
1922   if (const_shift_count(phase, this, &count) && (count & mask) == 0) {
1923     // Rotate by a multiple of 32/64 does nothing
1924     return in(1);
1925   }
1926   return this;
1927 }
1928 
1929 const Type* RotateLeftNode::Value(PhaseGVN* phase) const {
1930   const Type* t1 = phase->type(in(1));
1931   const Type* t2 = phase->type(in(2));
1932   // Either input is TOP ==> the result is TOP
1933   if (t1 == Type::TOP || t2 == Type::TOP) {
1934     return Type::TOP;
1935   }
1936 
1937   if (t1->isa_int()) {
1938     const TypeInt* r1 = t1->is_int();
1939     const TypeInt* r2 = t2->is_int();
1940 
1941     // Left input is ZERO ==> the result is ZERO.
1942     if (r1 == TypeInt::ZERO) {
1943       return TypeInt::ZERO;
1944     }
1945     // Rotate by zero does nothing
1946     if (r2 == TypeInt::ZERO) {
1947       return r1;
1948     }
1949     if (r1->is_con() && r2->is_con()) {
1950       juint r1_con = (juint)r1->get_con();
1951       juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts
1952       return TypeInt::make((r1_con << shift) | (r1_con >> (32 - shift)));
1953     }
1954     return TypeInt::INT;
1955   } else {
1956     assert(t1->isa_long(), "Type must be a long");
1957     const TypeLong* r1 = t1->is_long();
1958     const TypeInt*  r2 = t2->is_int();
1959 
1960     // Left input is ZERO ==> the result is ZERO.
1961     if (r1 == TypeLong::ZERO) {
1962       return TypeLong::ZERO;
1963     }
1964     // Rotate by zero does nothing
1965     if (r2 == TypeInt::ZERO) {
1966       return r1;
1967     }
1968     if (r1->is_con() && r2->is_con()) {
1969       julong r1_con = (julong)r1->get_con();
1970       julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts
1971       return TypeLong::make((r1_con << shift) | (r1_con >> (64 - shift)));
1972     }
1973     return TypeLong::LONG;
1974   }
1975 }
1976 
1977 Node* RotateLeftNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1978   const Type* t1 = phase->type(in(1));
1979   const Type* t2 = phase->type(in(2));
1980   if (t2->isa_int() && t2->is_int()->is_con()) {
1981     if (t1->isa_int()) {
1982       int lshift = t2->is_int()->get_con() & 31;
1983       return new RotateRightNode(in(1), phase->intcon(32 - (lshift & 31)), TypeInt::INT);
1984     } else if (t1 != Type::TOP) {
1985       assert(t1->isa_long(), "Type must be a long");
1986       int lshift = t2->is_int()->get_con() & 63;
1987       return new RotateRightNode(in(1), phase->intcon(64 - (lshift & 63)), TypeLong::LONG);
1988     }
1989   }
1990   return nullptr;
1991 }
1992 
1993 Node* RotateRightNode::Identity(PhaseGVN* phase) {
1994   const Type* t1 = phase->type(in(1));
1995   if (t1 == Type::TOP) {
1996     return this;
1997   }
1998   int count = 0;
1999   assert(t1->isa_int() || t1->isa_long(), "Unexpected type");
2000   int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1;
2001   if (const_shift_count(phase, this, &count) && (count & mask) == 0) {
2002     // Rotate by a multiple of 32/64 does nothing
2003     return in(1);
2004   }
2005   return this;
2006 }
2007 
2008 const Type* RotateRightNode::Value(PhaseGVN* phase) const {
2009   const Type* t1 = phase->type(in(1));
2010   const Type* t2 = phase->type(in(2));
2011   // Either input is TOP ==> the result is TOP
2012   if (t1 == Type::TOP || t2 == Type::TOP) {
2013     return Type::TOP;
2014   }
2015 
2016   if (t1->isa_int()) {
2017     const TypeInt* r1 = t1->is_int();
2018     const TypeInt* r2 = t2->is_int();
2019 
2020     // Left input is ZERO ==> the result is ZERO.
2021     if (r1 == TypeInt::ZERO) {
2022       return TypeInt::ZERO;
2023     }
2024     // Rotate by zero does nothing
2025     if (r2 == TypeInt::ZERO) {
2026       return r1;
2027     }
2028     if (r1->is_con() && r2->is_con()) {
2029       juint r1_con = (juint)r1->get_con();
2030       juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts
2031       return TypeInt::make((r1_con >> shift) | (r1_con << (32 - shift)));
2032     }
2033     return TypeInt::INT;
2034   } else {
2035     assert(t1->isa_long(), "Type must be a long");
2036     const TypeLong* r1 = t1->is_long();
2037     const TypeInt*  r2 = t2->is_int();
2038     // Left input is ZERO ==> the result is ZERO.
2039     if (r1 == TypeLong::ZERO) {
2040       return TypeLong::ZERO;
2041     }
2042     // Rotate by zero does nothing
2043     if (r2 == TypeInt::ZERO) {
2044       return r1;
2045     }
2046     if (r1->is_con() && r2->is_con()) {
2047       julong r1_con = (julong)r1->get_con();
2048       julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts
2049       return TypeLong::make((r1_con >> shift) | (r1_con << (64 - shift)));
2050     }
2051     return TypeLong::LONG;
2052   }
2053 }
2054 
2055 // Given an expression (AndX shift mask) or (AndX mask shift),
2056 // determine if the AndX must always produce zero, because the
2057 // the shift (x<<N) is bitwise disjoint from the mask #M.
2058 // The X in AndX must be I or L, depending on bt.
2059 // Specifically, the following cases fold to zero,
2060 // when the shift value N is large enough to zero out
2061 // all the set positions of the and-mask M.
2062 //   (AndI (LShiftI _ #N) #M) => #0
2063 //   (AndL (LShiftL _ #N) #M) => #0
2064 //   (AndL (ConvI2L (LShiftI _ #N)) #M) => #0
2065 // The M and N values must satisfy ((-1 << N) & M) == 0.
2066 // Because the optimization might work for a non-constant
2067 // mask M, we check the AndX for both operand orders.
2068 bool MulNode::AndIL_shift_and_mask_is_always_zero(PhaseGVN* phase, Node* shift, Node* mask, BasicType bt, bool check_reverse) {
2069   if (mask == nullptr || shift == nullptr) {
2070     return false;
2071   }
2072   const TypeInteger* mask_t = phase->type(mask)->isa_integer(bt);
2073   if (mask_t == nullptr || phase->type(shift)->isa_integer(bt) == nullptr) {
2074     return false;
2075   }
2076   shift = shift->uncast();
2077   if (shift == nullptr) {
2078     return false;
2079   }
2080   if (phase->type(shift)->isa_integer(bt) == nullptr) {
2081     return false;
2082   }
2083   BasicType shift_bt = bt;
2084   if (bt == T_LONG && shift->Opcode() == Op_ConvI2L) {
2085     bt = T_INT;
2086     Node* val = shift->in(1);
2087     if (val == nullptr) {
2088       return false;
2089     }
2090     val = val->uncast();
2091     if (val == nullptr) {
2092       return false;
2093     }
2094     if (val->Opcode() == Op_LShiftI) {
2095       shift_bt = T_INT;
2096       shift = val;
2097       if (phase->type(shift)->isa_integer(bt) == nullptr) {
2098         return false;
2099       }
2100     }
2101   }
2102   if (shift->Opcode() != Op_LShift(shift_bt)) {
2103     if (check_reverse &&
2104         (mask->Opcode() == Op_LShift(bt) ||
2105          (bt == T_LONG && mask->Opcode() == Op_ConvI2L))) {
2106       // try it the other way around
2107       return AndIL_shift_and_mask_is_always_zero(phase, mask, shift, bt, false);
2108     }
2109     return false;
2110   }
2111   Node* shift2 = shift->in(2);
2112   if (shift2 == nullptr) {
2113     return false;
2114   }
2115   const Type* shift2_t = phase->type(shift2);
2116   if (!shift2_t->isa_int() || !shift2_t->is_int()->is_con()) {
2117     return false;
2118   }
2119 
2120   jint shift_con = shift2_t->is_int()->get_con() & ((shift_bt == T_INT ? BitsPerJavaInteger : BitsPerJavaLong) - 1);
2121   if ((((jlong)1) << shift_con) > mask_t->hi_as_long() && mask_t->lo_as_long() >= 0) {
2122     return true;
2123   }
2124 
2125   return false;
2126 }
2127 
2128 // Given an expression (AndX (AddX v1 (LShiftX v2 #N)) #M)
2129 // determine if the AndX must always produce (AndX v1 #M),
2130 // because the shift (v2<<N) is bitwise disjoint from the mask #M.
2131 // The X in AndX will be I or L, depending on bt.
2132 // Specifically, the following cases fold,
2133 // when the shift value N is large enough to zero out
2134 // all the set positions of the and-mask M.
2135 //   (AndI (AddI v1 (LShiftI _ #N)) #M) => (AndI v1 #M)
2136 //   (AndL (AddI v1 (LShiftL _ #N)) #M) => (AndL v1 #M)
2137 //   (AndL (AddL v1 (ConvI2L (LShiftI _ #N))) #M) => (AndL v1 #M)
2138 // The M and N values must satisfy ((-1 << N) & M) == 0.
2139 // Because the optimization might work for a non-constant
2140 // mask M, and because the AddX operands can come in either
2141 // order, we check for every operand order.
2142 Node* MulNode::AndIL_add_shift_and_mask(PhaseGVN* phase, BasicType bt) {
2143   Node* add = in(1);
2144   Node* mask = in(2);
2145   if (add == nullptr || mask == nullptr) {
2146     return nullptr;
2147   }
2148   int addidx = 0;
2149   if (add->Opcode() == Op_Add(bt)) {
2150     addidx = 1;
2151   } else if (mask->Opcode() == Op_Add(bt)) {
2152     mask = add;
2153     addidx = 2;
2154     add = in(addidx);
2155   }
2156   if (addidx > 0) {
2157     Node* add1 = add->in(1);
2158     Node* add2 = add->in(2);
2159     if (add1 != nullptr && add2 != nullptr) {
2160       if (AndIL_shift_and_mask_is_always_zero(phase, add1, mask, bt, false)) {
2161         set_req_X(addidx, add2, phase);
2162         return this;
2163       } else if (AndIL_shift_and_mask_is_always_zero(phase, add2, mask, bt, false)) {
2164         set_req_X(addidx, add1, phase);
2165         return this;
2166       }
2167     }
2168   }
2169   return nullptr;
2170 }