1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/connode.hpp"
  29 #include "opto/convertnode.hpp"
  30 #include "opto/memnode.hpp"
  31 #include "opto/mulnode.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/subnode.hpp"
  34 #include "utilities/powerOfTwo.hpp"
  35 
  36 // Portions of code courtesy of Clifford Click
  37 
  38 
  39 //=============================================================================
  40 //------------------------------hash-------------------------------------------
  41 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
  42 // (commute) inputs to MulNodes willy-nilly so the hash function must return
  43 // the same value in the presence of edge swapping.
  44 uint MulNode::hash() const {
  45   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  46 }
  47 
  48 //------------------------------Identity---------------------------------------
  49 // Multiplying a one preserves the other argument
  50 Node* MulNode::Identity(PhaseGVN* phase) {
  51   const Type *one = mul_id();  // The multiplicative identity
  52   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  53   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
  54 
  55   return this;
  56 }
  57 
  58 //------------------------------Ideal------------------------------------------
  59 // We also canonicalize the Node, moving constants to the right input,
  60 // and flatten expressions (so that 1+x+2 becomes x+3).
  61 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  62   Node* in1 = in(1);
  63   Node* in2 = in(2);
  64   Node* progress = nullptr;        // Progress flag
  65 
  66   // This code is used by And nodes too, but some conversions are
  67   // only valid for the actual Mul nodes.
  68   uint op = Opcode();
  69   bool real_mul = (op == Op_MulI) || (op == Op_MulL) ||
  70                   (op == Op_MulF) || (op == Op_MulD);
  71 
  72   // Convert "(-a)*(-b)" into "a*b".
  73   if (real_mul && in1->is_Sub() && in2->is_Sub()) {
  74     if (phase->type(in1->in(1))->is_zero_type() &&
  75         phase->type(in2->in(1))->is_zero_type()) {
  76       set_req_X(1, in1->in(2), phase);
  77       set_req_X(2, in2->in(2), phase);
  78       in1 = in(1);
  79       in2 = in(2);
  80       progress = this;
  81     }
  82   }
  83 
  84   // convert "max(a,b) * min(a,b)" into "a*b".
  85   if ((in(1)->Opcode() == max_opcode() && in(2)->Opcode() == min_opcode())
  86       || (in(1)->Opcode() == min_opcode() && in(2)->Opcode() == max_opcode())) {
  87     Node *in11 = in(1)->in(1);
  88     Node *in12 = in(1)->in(2);
  89 
  90     Node *in21 = in(2)->in(1);
  91     Node *in22 = in(2)->in(2);
  92 
  93     if ((in11 == in21 && in12 == in22) ||
  94         (in11 == in22 && in12 == in21)) {
  95       set_req_X(1, in11, phase);
  96       set_req_X(2, in12, phase);
  97       in1 = in(1);
  98       in2 = in(2);
  99       progress = this;
 100     }
 101   }
 102 
 103   const Type* t1 = phase->type(in1);
 104   const Type* t2 = phase->type(in2);
 105 
 106   // We are OK if right is a constant, or right is a load and
 107   // left is a non-constant.
 108   if( !(t2->singleton() ||
 109         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
 110     if( t1->singleton() ||       // Left input is a constant?
 111         // Otherwise, sort inputs (commutativity) to help value numbering.
 112         (in(1)->_idx > in(2)->_idx) ) {
 113       swap_edges(1, 2);
 114       const Type *t = t1;
 115       t1 = t2;
 116       t2 = t;
 117       progress = this;            // Made progress
 118     }
 119   }
 120 
 121   // If the right input is a constant, and the left input is a product of a
 122   // constant, flatten the expression tree.
 123   if( t2->singleton() &&        // Right input is a constant?
 124       op != Op_MulF &&          // Float & double cannot reassociate
 125       op != Op_MulD ) {
 126     if( t2 == Type::TOP ) return nullptr;
 127     Node *mul1 = in(1);
 128 #ifdef ASSERT
 129     // Check for dead loop
 130     int op1 = mul1->Opcode();
 131     if ((mul1 == this) || (in(2) == this) ||
 132         ((op1 == mul_opcode() || op1 == add_opcode()) &&
 133          ((mul1->in(1) == this) || (mul1->in(2) == this) ||
 134           (mul1->in(1) == mul1) || (mul1->in(2) == mul1)))) {
 135       assert(false, "dead loop in MulNode::Ideal");
 136     }
 137 #endif
 138 
 139     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
 140       // Mul of a constant?
 141       const Type *t12 = phase->type( mul1->in(2) );
 142       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
 143         // Compute new constant; check for overflow
 144         const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
 145         if( tcon01->singleton() ) {
 146           // The Mul of the flattened expression
 147           set_req_X(1, mul1->in(1), phase);
 148           set_req_X(2, phase->makecon(tcon01), phase);
 149           t2 = tcon01;
 150           progress = this;      // Made progress
 151         }
 152       }
 153     }
 154     // If the right input is a constant, and the left input is an add of a
 155     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
 156     const Node *add1 = in(1);
 157     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
 158       // Add of a constant?
 159       const Type *t12 = phase->type( add1->in(2) );
 160       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 161         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
 162         // Compute new constant; check for overflow
 163         const Type *tcon01 = mul_ring(t2,t12);
 164         if( tcon01->singleton() ) {
 165 
 166         // Convert (X+con1)*con0 into X*con0
 167           Node *mul = clone();    // mul = ()*con0
 168           mul->set_req(1,add1->in(1));  // mul = X*con0
 169           mul = phase->transform(mul);
 170 
 171           Node *add2 = add1->clone();
 172           add2->set_req(1, mul);        // X*con0 + con0*con1
 173           add2->set_req(2, phase->makecon(tcon01) );
 174           progress = add2;
 175         }
 176       }
 177     } // End of is left input an add
 178   } // End of is right input a Mul
 179 
 180   return progress;
 181 }
 182 
 183 //------------------------------Value-----------------------------------------
 184 const Type* MulNode::Value(PhaseGVN* phase) const {
 185   const Type *t1 = phase->type( in(1) );
 186   const Type *t2 = phase->type( in(2) );
 187   // Either input is TOP ==> the result is TOP
 188   if( t1 == Type::TOP ) return Type::TOP;
 189   if( t2 == Type::TOP ) return Type::TOP;
 190 
 191   // Either input is ZERO ==> the result is ZERO.
 192   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
 193   int op = Opcode();
 194   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
 195     const Type *zero = add_id();        // The multiplicative zero
 196     if( t1->higher_equal( zero ) ) return zero;
 197     if( t2->higher_equal( zero ) ) return zero;
 198   }
 199 
 200   // Code pattern on return from a call that returns an __Value.  Can
 201   // be optimized away if the return value turns out to be an oop.
 202   if (op == Op_AndX &&
 203       in(1) != nullptr &&
 204       in(1)->Opcode() == Op_CastP2X &&
 205       in(1)->in(1) != nullptr &&
 206       phase->type(in(1)->in(1))->isa_oopptr() &&
 207       t2->isa_intptr_t()->_lo >= 0 &&
 208       t2->isa_intptr_t()->_hi <= MinObjAlignmentInBytesMask) {
 209     return add_id();
 210   }
 211 
 212   // Either input is BOTTOM ==> the result is the local BOTTOM
 213   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 214     return bottom_type();
 215 
 216 #if defined(IA32)
 217   // Can't trust native compilers to properly fold strict double
 218   // multiplication with round-to-zero on this platform.
 219   if (op == Op_MulD) {
 220     return TypeD::DOUBLE;
 221   }
 222 #endif
 223 
 224   return mul_ring(t1,t2);            // Local flavor of type multiplication
 225 }
 226 
 227 MulNode* MulNode::make(Node* in1, Node* in2, BasicType bt) {
 228   switch (bt) {
 229     case T_INT:
 230       return new MulINode(in1, in2);
 231     case T_LONG:
 232       return new MulLNode(in1, in2);
 233     default:
 234       fatal("Not implemented for %s", type2name(bt));
 235   }
 236   return nullptr;
 237 }
 238 
 239 
 240 //=============================================================================
 241 //------------------------------Ideal------------------------------------------
 242 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 243 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 244   const jint con = in(2)->find_int_con(0);
 245   if (con == 0) {
 246     // If in(2) is not a constant, call Ideal() of the parent class to
 247     // try to move constant to the right side.
 248     return MulNode::Ideal(phase, can_reshape);
 249   }
 250 
 251   // Now we have a constant Node on the right and the constant in con.
 252   if (con == 1) {
 253     // By one is handled by Identity call
 254     return nullptr;
 255   }
 256 
 257   // Check for negative constant; if so negate the final result
 258   bool sign_flip = false;
 259 
 260   unsigned int abs_con = uabs(con);
 261   if (abs_con != (unsigned int)con) {
 262     sign_flip = true;
 263   }
 264 
 265   // Get low bit; check for being the only bit
 266   Node *res = nullptr;
 267   unsigned int bit1 = submultiple_power_of_2(abs_con);
 268   if (bit1 == abs_con) {           // Found a power of 2?
 269     res = new LShiftINode(in(1), phase->intcon(log2i_exact(bit1)));
 270   } else {
 271     // Check for constant with 2 bits set
 272     unsigned int bit2 = abs_con - bit1;
 273     bit2 = bit2 & (0 - bit2);          // Extract 2nd bit
 274     if (bit2 + bit1 == abs_con) {    // Found all bits in con?
 275       Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit1))));
 276       Node *n2 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit2))));
 277       res = new AddINode(n2, n1);
 278     } else if (is_power_of_2(abs_con + 1)) {
 279       // Sleezy: power-of-2 - 1.  Next time be generic.
 280       unsigned int temp = abs_con + 1;
 281       Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(temp))));
 282       res = new SubINode(n1, in(1));
 283     } else {
 284       return MulNode::Ideal(phase, can_reshape);
 285     }
 286   }
 287 
 288   if (sign_flip) {             // Need to negate result?
 289     res = phase->transform(res);// Transform, before making the zero con
 290     res = new SubINode(phase->intcon(0),res);
 291   }
 292 
 293   return res;                   // Return final result
 294 }
 295 
 296 // This template class performs type multiplication for MulI/MulLNode. NativeType is either jint or jlong.
 297 // In this class, the inputs of the MulNodes are named left and right with types [left_lo,left_hi] and [right_lo,right_hi].
 298 //
 299 // In general, the multiplication of two x-bit values could produce a result that consumes up to 2x bits if there is
 300 // enough space to hold them all. We can therefore distinguish the following two cases for the product:
 301 // - no overflow (i.e. product fits into x bits)
 302 // - overflow (i.e. product does not fit into x bits)
 303 //
 304 // When multiplying the two x-bit inputs 'left' and 'right' with their x-bit types [left_lo,left_hi] and [right_lo,right_hi]
 305 // we need to find the minimum and maximum of all possible products to define a new type. To do that, we compute the
 306 // cross product of [left_lo,left_hi] and [right_lo,right_hi] in 2x-bit space where no over- or underflow can happen.
 307 // The cross product consists of the following four multiplications with 2x-bit results:
 308 // (1) left_lo * right_lo
 309 // (2) left_lo * right_hi
 310 // (3) left_hi * right_lo
 311 // (4) left_hi * right_hi
 312 //
 313 // Let's define the following two functions:
 314 // - Lx(i): Returns the lower x bits of the 2x-bit number i.
 315 // - Ux(i): Returns the upper x bits of the 2x-bit number i.
 316 //
 317 // Let's first assume all products are positive where only overflows are possible but no underflows. If there is no
 318 // overflow for a product p, then the upper x bits of the 2x-bit result p are all zero:
 319 //     Ux(p) = 0
 320 //     Lx(p) = p
 321 //
 322 // If none of the multiplications (1)-(4) overflow, we can truncate the upper x bits and use the following result type
 323 // with x bits:
 324 //      [result_lo,result_hi] = [MIN(Lx(1),Lx(2),Lx(3),Lx(4)),MAX(Lx(1),Lx(2),Lx(3),Lx(4))]
 325 //
 326 // If any of these multiplications overflows, we could pessimistically take the bottom type for the x bit result
 327 // (i.e. all values in the x-bit space could be possible):
 328 //      [result_lo,result_hi] = [NativeType_min,NativeType_max]
 329 //
 330 // However, in case of any overflow, we can do better by analyzing the upper x bits of all multiplications (1)-(4) with
 331 // 2x-bit results. The upper x bits tell us something about how many times a multiplication has overflown the lower
 332 // x bits. If the upper x bits of (1)-(4) are all equal, then we know that all of these multiplications overflowed
 333 // the lower x bits the same number of times:
 334 //     Ux((1)) = Ux((2)) = Ux((3)) = Ux((4))
 335 //
 336 // If all upper x bits are equal, we can conclude:
 337 //     Lx(MIN((1),(2),(3),(4))) = MIN(Lx(1),Lx(2),Lx(3),Lx(4)))
 338 //     Lx(MAX((1),(2),(3),(4))) = MAX(Lx(1),Lx(2),Lx(3),Lx(4)))
 339 //
 340 // Therefore, we can use the same precise x-bit result type as for the no-overflow case:
 341 //     [result_lo,result_hi] = [(MIN(Lx(1),Lx(2),Lx(3),Lx(4))),MAX(Lx(1),Lx(2),Lx(3),Lx(4)))]
 342 //
 343 //
 344 // Now let's assume that (1)-(4) are signed multiplications where over- and underflow could occur:
 345 // Negative numbers are all sign extend with ones. Therefore, if a negative product does not underflow, then the
 346 // upper x bits of the 2x-bit result are all set to ones which is minus one in two's complement. If there is an underflow,
 347 // the upper x bits are decremented by the number of times an underflow occurred. The smallest possible negative product
 348 // is NativeType_min*NativeType_max, where the upper x bits are set to NativeType_min / 2 (b11...0). It is therefore
 349 // impossible to underflow the upper x bits. Thus, when having all ones (i.e. minus one) in the upper x bits, we know
 350 // that there is no underflow.
 351 //
 352 // To be able to compare the number of over-/underflows of positive and negative products, respectively, we normalize
 353 // the upper x bits of negative 2x-bit products by adding one. This way a product has no over- or underflow if the
 354 // normalized upper x bits are zero. Now we can use the same improved type as for strictly positive products because we
 355 // can compare the upper x bits in a unified way with N() being the normalization function:
 356 //     N(Ux((1))) = N(Ux((2))) = N(Ux((3)) = N(Ux((4)))
 357 template<typename NativeType>
 358 class IntegerTypeMultiplication {
 359 
 360   NativeType _lo_left;
 361   NativeType _lo_right;
 362   NativeType _hi_left;
 363   NativeType _hi_right;
 364   short _widen_left;
 365   short _widen_right;
 366 
 367   static const Type* overflow_type();
 368   static NativeType multiply_high(NativeType x, NativeType y);
 369   const Type* create_type(NativeType lo, NativeType hi) const;
 370 
 371   static NativeType multiply_high_signed_overflow_value(NativeType x, NativeType y) {
 372     return normalize_overflow_value(x, y, multiply_high(x, y));
 373   }
 374 
 375   bool cross_product_not_same_overflow_value() const {
 376     const NativeType lo_lo_high_product = multiply_high_signed_overflow_value(_lo_left, _lo_right);
 377     const NativeType lo_hi_high_product = multiply_high_signed_overflow_value(_lo_left, _hi_right);
 378     const NativeType hi_lo_high_product = multiply_high_signed_overflow_value(_hi_left, _lo_right);
 379     const NativeType hi_hi_high_product = multiply_high_signed_overflow_value(_hi_left, _hi_right);
 380     return lo_lo_high_product != lo_hi_high_product ||
 381            lo_hi_high_product != hi_lo_high_product ||
 382            hi_lo_high_product != hi_hi_high_product;
 383   }
 384 
 385   bool does_product_overflow(NativeType x, NativeType y) const {
 386     return multiply_high_signed_overflow_value(x, y) != 0;
 387   }
 388 
 389   static NativeType normalize_overflow_value(const NativeType x, const NativeType y, NativeType result) {
 390     return java_multiply(x, y) < 0 ? result + 1 : result;
 391   }
 392 
 393  public:
 394   template<class IntegerType>
 395   IntegerTypeMultiplication(const IntegerType* left, const IntegerType* right)
 396       : _lo_left(left->_lo), _lo_right(right->_lo),
 397         _hi_left(left->_hi), _hi_right(right->_hi),
 398         _widen_left(left->_widen), _widen_right(right->_widen)  {}
 399 
 400   // Compute the product type by multiplying the two input type ranges. We take the minimum and maximum of all possible
 401   // values (requires 4 multiplications of all possible combinations of the two range boundary values). If any of these
 402   // multiplications overflows/underflows, we need to make sure that they all have the same number of overflows/underflows
 403   // If that is not the case, we return the bottom type to cover all values due to the inconsistent overflows/underflows).
 404   const Type* compute() const {
 405     if (cross_product_not_same_overflow_value()) {
 406       return overflow_type();
 407     }
 408 
 409     NativeType lo_lo_product = java_multiply(_lo_left, _lo_right);
 410     NativeType lo_hi_product = java_multiply(_lo_left, _hi_right);
 411     NativeType hi_lo_product = java_multiply(_hi_left, _lo_right);
 412     NativeType hi_hi_product = java_multiply(_hi_left, _hi_right);
 413     const NativeType min = MIN4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product);
 414     const NativeType max = MAX4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product);
 415     return create_type(min, max);
 416   }
 417 
 418   bool does_overflow() const {
 419     return does_product_overflow(_lo_left, _lo_right) ||
 420            does_product_overflow(_lo_left, _hi_right) ||
 421            does_product_overflow(_hi_left, _lo_right) ||
 422            does_product_overflow(_hi_left, _hi_right);
 423   }
 424 };
 425 
 426 template <>
 427 const Type* IntegerTypeMultiplication<jint>::overflow_type() {
 428   return TypeInt::INT;
 429 }
 430 
 431 template <>
 432 jint IntegerTypeMultiplication<jint>::multiply_high(const jint x, const jint y) {
 433   const jlong x_64 = x;
 434   const jlong y_64 = y;
 435   const jlong product = x_64 * y_64;
 436   return (jint)((uint64_t)product >> 32u);
 437 }
 438 
 439 template <>
 440 const Type* IntegerTypeMultiplication<jint>::create_type(jint lo, jint hi) const {
 441   return TypeInt::make(lo, hi, MAX2(_widen_left, _widen_right));
 442 }
 443 
 444 template <>
 445 const Type* IntegerTypeMultiplication<jlong>::overflow_type() {
 446   return TypeLong::LONG;
 447 }
 448 
 449 template <>
 450 jlong IntegerTypeMultiplication<jlong>::multiply_high(const jlong x, const jlong y) {
 451   return multiply_high_signed(x, y);
 452 }
 453 
 454 template <>
 455 const Type* IntegerTypeMultiplication<jlong>::create_type(jlong lo, jlong hi) const {
 456   return TypeLong::make(lo, hi, MAX2(_widen_left, _widen_right));
 457 }
 458 
 459 // Compute the product type of two integer ranges into this node.
 460 const Type* MulINode::mul_ring(const Type* type_left, const Type* type_right) const {
 461   const IntegerTypeMultiplication<jint> integer_multiplication(type_left->is_int(), type_right->is_int());
 462   return integer_multiplication.compute();
 463 }
 464 
 465 bool MulINode::does_overflow(const TypeInt* type_left, const TypeInt* type_right) {
 466   const IntegerTypeMultiplication<jint> integer_multiplication(type_left, type_right);
 467   return integer_multiplication.does_overflow();
 468 }
 469 
 470 // Compute the product type of two long ranges into this node.
 471 const Type* MulLNode::mul_ring(const Type* type_left, const Type* type_right) const {
 472   const IntegerTypeMultiplication<jlong> integer_multiplication(type_left->is_long(), type_right->is_long());
 473   return integer_multiplication.compute();
 474 }
 475 
 476 //=============================================================================
 477 //------------------------------Ideal------------------------------------------
 478 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 479 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 480   const jlong con = in(2)->find_long_con(0);
 481   if (con == 0) {
 482     // If in(2) is not a constant, call Ideal() of the parent class to
 483     // try to move constant to the right side.
 484     return MulNode::Ideal(phase, can_reshape);
 485   }
 486 
 487   // Now we have a constant Node on the right and the constant in con.
 488   if (con == 1) {
 489     // By one is handled by Identity call
 490     return nullptr;
 491   }
 492 
 493   // Check for negative constant; if so negate the final result
 494   bool sign_flip = false;
 495   julong abs_con = uabs(con);
 496   if (abs_con != (julong)con) {
 497     sign_flip = true;
 498   }
 499 
 500   // Get low bit; check for being the only bit
 501   Node *res = nullptr;
 502   julong bit1 = submultiple_power_of_2(abs_con);
 503   if (bit1 == abs_con) {           // Found a power of 2?
 504     res = new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1)));
 505   } else {
 506 
 507     // Check for constant with 2 bits set
 508     julong bit2 = abs_con-bit1;
 509     bit2 = bit2 & (0-bit2);          // Extract 2nd bit
 510     if (bit2 + bit1 == abs_con) {    // Found all bits in con?
 511       Node *n1 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1))));
 512       Node *n2 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit2))));
 513       res = new AddLNode(n2, n1);
 514 
 515     } else if (is_power_of_2(abs_con+1)) {
 516       // Sleezy: power-of-2 -1.  Next time be generic.
 517       julong temp = abs_con + 1;
 518       Node *n1 = phase->transform( new LShiftLNode(in(1), phase->intcon(log2i_exact(temp))));
 519       res = new SubLNode(n1, in(1));
 520     } else {
 521       return MulNode::Ideal(phase, can_reshape);
 522     }
 523   }
 524 
 525   if (sign_flip) {             // Need to negate result?
 526     res = phase->transform(res);// Transform, before making the zero con
 527     res = new SubLNode(phase->longcon(0),res);
 528   }
 529 
 530   return res;                   // Return final result
 531 }
 532 
 533 //=============================================================================
 534 //------------------------------mul_ring---------------------------------------
 535 // Compute the product type of two double ranges into this node.
 536 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
 537   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
 538   return TypeF::make( t0->getf() * t1->getf() );
 539 }
 540 
 541 //------------------------------Ideal---------------------------------------
 542 // Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
 543 Node* MulFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 544   const TypeF *t2 = phase->type(in(2))->isa_float_constant();
 545 
 546   // x * 2 -> x + x
 547   if (t2 != nullptr && t2->getf() == 2) {
 548     Node* base = in(1);
 549     return new AddFNode(base, base);
 550   }
 551 
 552   return MulNode::Ideal(phase, can_reshape);
 553 }
 554 
 555 //=============================================================================
 556 //------------------------------mul_ring---------------------------------------
 557 // Compute the product type of two double ranges into this node.
 558 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
 559   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
 560   // We must be multiplying 2 double constants.
 561   return TypeD::make( t0->getd() * t1->getd() );
 562 }
 563 
 564 //------------------------------Ideal---------------------------------------
 565 // Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal
 566 Node* MulDNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 567   const TypeD *t2 = phase->type(in(2))->isa_double_constant();
 568 
 569   // x * 2 -> x + x
 570   if (t2 != nullptr && t2->getd() == 2) {
 571     Node* base = in(1);
 572     return new AddDNode(base, base);
 573   }
 574 
 575   return MulNode::Ideal(phase, can_reshape);
 576 }
 577 
 578 //=============================================================================
 579 //------------------------------Value------------------------------------------
 580 const Type* MulHiLNode::Value(PhaseGVN* phase) const {
 581   const Type *t1 = phase->type( in(1) );
 582   const Type *t2 = phase->type( in(2) );
 583   const Type *bot = bottom_type();
 584   return MulHiValue(t1, t2, bot);
 585 }
 586 
 587 const Type* UMulHiLNode::Value(PhaseGVN* phase) const {
 588   const Type *t1 = phase->type( in(1) );
 589   const Type *t2 = phase->type( in(2) );
 590   const Type *bot = bottom_type();
 591   return MulHiValue(t1, t2, bot);
 592 }
 593 
 594 // A common routine used by UMulHiLNode and MulHiLNode
 595 const Type* MulHiValue(const Type *t1, const Type *t2, const Type *bot) {
 596   // Either input is TOP ==> the result is TOP
 597   if( t1 == Type::TOP ) return Type::TOP;
 598   if( t2 == Type::TOP ) return Type::TOP;
 599 
 600   // Either input is BOTTOM ==> the result is the local BOTTOM
 601   if( (t1 == bot) || (t2 == bot) ||
 602       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 603     return bot;
 604 
 605   // It is not worth trying to constant fold this stuff!
 606   return TypeLong::LONG;
 607 }
 608 
 609 template<typename IntegerType>
 610 static const IntegerType* and_value(const IntegerType* r0, const IntegerType* r1) {
 611   typedef typename IntegerType::NativeType NativeType;
 612   static_assert(std::is_signed<NativeType>::value, "Native type of IntegerType must be signed!");
 613 
 614   int widen = MAX2(r0->_widen, r1->_widen);
 615 
 616   // If both types are constants, we can calculate a constant result.
 617   if (r0->is_con() && r1->is_con()) {
 618     return IntegerType::make(r0->get_con() & r1->get_con());
 619   }
 620 
 621   // If both ranges are positive, the result will range from 0 up to the hi value of the smaller range. The minimum
 622   // of the two constrains the upper bound because any higher value in the other range will see all zeroes, so it will be masked out.
 623   if (r0->_lo >= 0 && r1->_lo >= 0) {
 624     return IntegerType::make(0, MIN2(r0->_hi, r1->_hi), widen);
 625   }
 626 
 627   // If only one range is positive, the result will range from 0 up to that range's maximum value.
 628   // For the operation 'x & C' where C is a positive constant, the result will be in the range [0..C]. With that observation,
 629   // we can say that for any integer c such that 0 <= c <= C will also be in the range [0..C]. Therefore, 'x & [c..C]'
 630   // where c >= 0 will be in the range [0..C].
 631   if (r0->_lo >= 0) {
 632     return IntegerType::make(0, r0->_hi, widen);
 633   }
 634 
 635   if (r1->_lo >= 0) {
 636     return IntegerType::make(0, r1->_hi, widen);
 637   }
 638 
 639   // At this point, all positive ranges will have already been handled, so the only remaining cases will be negative ranges
 640   // and constants.
 641 
 642   assert(r0->_lo < 0 && r1->_lo < 0, "positive ranges should already be handled!");
 643 
 644   // As two's complement means that both numbers will start with leading 1s, the lower bound of both ranges will contain
 645   // the common leading 1s of both minimum values. In order to count them with count_leading_zeros, the bits are inverted.
 646   NativeType sel_val = ~MIN2(r0->_lo, r1->_lo);
 647 
 648   NativeType min;
 649   if (sel_val == 0) {
 650     // Since count_leading_zeros is undefined at 0, we short-circuit the condition where both ranges have a minimum of -1.
 651     min = -1;
 652   } else {
 653     // To get the number of bits to shift, we count the leading 0-bits and then subtract one, as the sign bit is already set.
 654     int shift_bits = count_leading_zeros(sel_val) - 1;
 655     min = std::numeric_limits<NativeType>::min() >> shift_bits;
 656   }
 657 
 658   NativeType max;
 659   if (r0->_hi < 0 && r1->_hi < 0) {
 660     // If both ranges are negative, then the same optimization as both positive ranges will apply, and the smaller hi
 661     // value will mask off any bits set by higher values.
 662     max = MIN2(r0->_hi, r1->_hi);
 663   } else {
 664     // In the case of ranges that cross zero, negative values can cause the higher order bits to be set, so the maximum
 665     // positive value can be as high as the larger hi value.
 666     max = MAX2(r0->_hi, r1->_hi);
 667   }
 668 
 669   return IntegerType::make(min, max, widen);
 670 }
 671 
 672 //=============================================================================
 673 //------------------------------mul_ring---------------------------------------
 674 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 675 // For the logical operations the ring's MUL is really a logical AND function.
 676 // This also type-checks the inputs for sanity.  Guaranteed never to
 677 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 678 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
 679   const TypeInt* r0 = t0->is_int();
 680   const TypeInt* r1 = t1->is_int();
 681 
 682   return and_value<TypeInt>(r0, r1);
 683 }
 684 
 685 const Type* AndINode::Value(PhaseGVN* phase) const {
 686   // patterns similar to (v << 2) & 3
 687   if (AndIL_shift_and_mask_is_always_zero(phase, in(1), in(2), T_INT, true)) {
 688     return TypeInt::ZERO;
 689   }
 690 
 691   return MulNode::Value(phase);
 692 }
 693 
 694 //------------------------------Identity---------------------------------------
 695 // Masking off the high bits of an unsigned load is not required
 696 Node* AndINode::Identity(PhaseGVN* phase) {
 697 
 698   // x & x => x
 699   if (in(1) == in(2)) {
 700     return in(1);
 701   }
 702 
 703   Node* in1 = in(1);
 704   uint op = in1->Opcode();
 705   const TypeInt* t2 = phase->type(in(2))->isa_int();
 706   if (t2 && t2->is_con()) {
 707     int con = t2->get_con();
 708     // Masking off high bits which are always zero is useless.
 709     const TypeInt* t1 = phase->type(in(1))->isa_int();
 710     if (t1 != nullptr && t1->_lo >= 0) {
 711       jint t1_support = right_n_bits(1 + log2i_graceful(t1->_hi));
 712       if ((t1_support & con) == t1_support)
 713         return in1;
 714     }
 715     // Masking off the high bits of a unsigned-shift-right is not
 716     // needed either.
 717     if (op == Op_URShiftI) {
 718       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 719       if (t12 && t12->is_con()) {  // Shift is by a constant
 720         int shift = t12->get_con();
 721         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
 722         int mask = max_juint >> shift;
 723         if ((mask & con) == mask)  // If AND is useless, skip it
 724           return in1;
 725       }
 726     }
 727   }
 728   return MulNode::Identity(phase);
 729 }
 730 
 731 //------------------------------Ideal------------------------------------------
 732 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 733   // pattern similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3
 734   Node* progress = AndIL_add_shift_and_mask(phase, T_INT);
 735   if (progress != nullptr) {
 736     return progress;
 737   }
 738 
 739   // Convert "(~a) & (~b)" into "~(a | b)"
 740   if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) {
 741     Node* or_a_b = new OrINode(in(1)->in(1), in(2)->in(1));
 742     Node* tn = phase->transform(or_a_b);
 743     return AddNode::make_not(phase, tn, T_INT);
 744   }
 745 
 746   // Special case constant AND mask
 747   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 748   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 749   const int mask = t2->get_con();
 750   Node *load = in(1);
 751   uint lop = load->Opcode();
 752 
 753   // Masking bits off of a Character?  Hi bits are already zero.
 754   if( lop == Op_LoadUS &&
 755       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
 756     return new AndINode(load,phase->intcon(mask&0xFFFF));
 757 
 758   // Masking bits off of a Short?  Loading a Character does some masking
 759   if (can_reshape &&
 760       load->outcnt() == 1 && load->unique_out() == this) {
 761     if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
 762       Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase);
 763       ldus = phase->transform(ldus);
 764       return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
 765     }
 766 
 767     // Masking sign bits off of a Byte?  Do an unsigned byte load plus
 768     // an and.
 769     if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
 770       Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase);
 771       ldub = phase->transform(ldub);
 772       return new AndINode(ldub, phase->intcon(mask));
 773     }
 774   }
 775 
 776   // Masking off sign bits?  Dont make them!
 777   if( lop == Op_RShiftI ) {
 778     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
 779     if( t12 && t12->is_con() ) { // Shift is by a constant
 780       int shift = t12->get_con();
 781       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 782       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
 783       // If the AND'ing of the 2 masks has no bits, then only original shifted
 784       // bits survive.  NO sign-extension bits survive the maskings.
 785       if( (sign_bits_mask & mask) == 0 ) {
 786         // Use zero-fill shift instead
 787         Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
 788         return new AndINode( zshift, in(2) );
 789       }
 790     }
 791   }
 792 
 793   // Check for 'negate/and-1', a pattern emitted when someone asks for
 794   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
 795   // plus 1) and the mask is of the low order bit.  Skip the negate.
 796   if( lop == Op_SubI && mask == 1 && load->in(1) &&
 797       phase->type(load->in(1)) == TypeInt::ZERO )
 798     return new AndINode( load->in(2), in(2) );
 799 
 800   return MulNode::Ideal(phase, can_reshape);
 801 }
 802 
 803 //=============================================================================
 804 //------------------------------mul_ring---------------------------------------
 805 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 806 // For the logical operations the ring's MUL is really a logical AND function.
 807 // This also type-checks the inputs for sanity.  Guaranteed never to
 808 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 809 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
 810   const TypeLong* r0 = t0->is_long();
 811   const TypeLong* r1 = t1->is_long();
 812 
 813   return and_value<TypeLong>(r0, r1);
 814 }
 815 
 816 const Type* AndLNode::Value(PhaseGVN* phase) const {
 817   // patterns similar to (v << 2) & 3
 818   if (AndIL_shift_and_mask_is_always_zero(phase, in(1), in(2), T_LONG, true)) {
 819     return TypeLong::ZERO;
 820   }
 821 
 822   return MulNode::Value(phase);
 823 }
 824 
 825 //------------------------------Identity---------------------------------------
 826 // Masking off the high bits of an unsigned load is not required
 827 Node* AndLNode::Identity(PhaseGVN* phase) {
 828 
 829   // x & x => x
 830   if (in(1) == in(2)) {
 831     return in(1);
 832   }
 833 
 834   Node *usr = in(1);
 835   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 836   if( t2 && t2->is_con() ) {
 837     jlong con = t2->get_con();
 838     // Masking off high bits which are always zero is useless.
 839     const TypeLong* t1 = phase->type( in(1) )->isa_long();
 840     if (t1 != nullptr && t1->_lo >= 0) {
 841       int bit_count = log2i_graceful(t1->_hi) + 1;
 842       jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
 843       if ((t1_support & con) == t1_support)
 844         return usr;
 845     }
 846     uint lop = usr->Opcode();
 847     // Masking off the high bits of a unsigned-shift-right is not
 848     // needed either.
 849     if( lop == Op_URShiftL ) {
 850       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
 851       if( t12 && t12->is_con() ) {  // Shift is by a constant
 852         int shift = t12->get_con();
 853         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 854         jlong mask = max_julong >> shift;
 855         if( (mask&con) == mask )  // If AND is useless, skip it
 856           return usr;
 857       }
 858     }
 859   }
 860   return MulNode::Identity(phase);
 861 }
 862 
 863 //------------------------------Ideal------------------------------------------
 864 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 865   // pattern similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3
 866   Node* progress = AndIL_add_shift_and_mask(phase, T_LONG);
 867   if (progress != nullptr) {
 868     return progress;
 869   }
 870 
 871   // Convert "(~a) & (~b)" into "~(a | b)"
 872   if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) {
 873     Node* or_a_b = new OrLNode(in(1)->in(1), in(2)->in(1));
 874     Node* tn = phase->transform(or_a_b);
 875     return AddNode::make_not(phase, tn, T_LONG);
 876   }
 877 
 878   // Special case constant AND mask
 879   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 880   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 881   const jlong mask = t2->get_con();
 882 
 883   Node* in1 = in(1);
 884   int op = in1->Opcode();
 885 
 886   // Are we masking a long that was converted from an int with a mask
 887   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
 888   // convert masks which would cause a sign extension of the integer
 889   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
 890   // would be optimized away later in Identity.
 891   if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
 892     Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
 893     andi = phase->transform(andi);
 894     return new ConvI2LNode(andi);
 895   }
 896 
 897   // Masking off sign bits?  Dont make them!
 898   if (op == Op_RShiftL) {
 899     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 900     if( t12 && t12->is_con() ) { // Shift is by a constant
 901       int shift = t12->get_con();
 902       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 903       const julong sign_bits_mask = ~(((julong)CONST64(1) << (julong)(BitsPerJavaLong - shift)) -1);
 904       // If the AND'ing of the 2 masks has no bits, then only original shifted
 905       // bits survive.  NO sign-extension bits survive the maskings.
 906       if( (sign_bits_mask & mask) == 0 ) {
 907         // Use zero-fill shift instead
 908         Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
 909         return new AndLNode(zshift, in(2));
 910       }
 911     }
 912   }
 913 
 914   // Search for GraphKit::mark_word_test patterns and fold the test if the result is statically known
 915   Node* load1 = in(1);
 916   Node* load2 = nullptr;
 917   if (load1->is_Phi() && phase->type(load1)->isa_long()) {
 918     load1 = in(1)->in(1);
 919     load2 = in(1)->in(2);
 920   }
 921   if (load1 != nullptr && load1->is_Load() && phase->type(load1)->isa_long() &&
 922       (load2 == nullptr || (load2->is_Load() && phase->type(load2)->isa_long()))) {
 923     const TypePtr* adr_t1 = phase->type(load1->in(MemNode::Address))->isa_ptr();
 924     const TypePtr* adr_t2 = (load2 != nullptr) ? phase->type(load2->in(MemNode::Address))->isa_ptr() : nullptr;
 925     if (adr_t1 != nullptr && adr_t1->offset() == oopDesc::mark_offset_in_bytes() &&
 926         (load2 == nullptr || (adr_t2 != nullptr && adr_t2->offset() == in_bytes(Klass::prototype_header_offset())))) {
 927       if (mask == markWord::inline_type_pattern) {
 928         if (adr_t1->is_inlinetypeptr()) {
 929           set_req_X(1, in(2), phase);
 930           return this;
 931         } else if (!adr_t1->can_be_inline_type()) {
 932           set_req_X(1, phase->longcon(0), phase);
 933           return this;
 934         }
 935       } else if (mask == markWord::null_free_array_bit_in_place) {
 936         if (adr_t1->is_null_free()) {
 937           set_req_X(1, in(2), phase);
 938           return this;
 939         } else if (adr_t1->is_not_null_free()) {
 940           set_req_X(1, phase->longcon(0), phase);
 941           return this;
 942         }
 943       } else if (mask == markWord::flat_array_bit_in_place) {
 944         if (adr_t1->is_flat()) {
 945           set_req_X(1, in(2), phase);
 946           return this;
 947         } else if (adr_t1->is_not_flat()) {
 948           set_req_X(1, phase->longcon(0), phase);
 949           return this;
 950         }
 951       }
 952     }
 953   }
 954 
 955   return MulNode::Ideal(phase, can_reshape);
 956 }
 957 
 958 LShiftNode* LShiftNode::make(Node* in1, Node* in2, BasicType bt) {
 959   switch (bt) {
 960     case T_INT:
 961       return new LShiftINode(in1, in2);
 962     case T_LONG:
 963       return new LShiftLNode(in1, in2);
 964     default:
 965       fatal("Not implemented for %s", type2name(bt));
 966   }
 967   return nullptr;
 968 }
 969 
 970 //=============================================================================
 971 
 972 static bool const_shift_count(PhaseGVN* phase, Node* shiftNode, int* count) {
 973   const TypeInt* tcount = phase->type(shiftNode->in(2))->isa_int();
 974   if (tcount != nullptr && tcount->is_con()) {
 975     *count = tcount->get_con();
 976     return true;
 977   }
 978   return false;
 979 }
 980 
 981 static int maskShiftAmount(PhaseGVN* phase, Node* shiftNode, int nBits) {
 982   int count = 0;
 983   if (const_shift_count(phase, shiftNode, &count)) {
 984     int maskedShift = count & (nBits - 1);
 985     if (maskedShift == 0) {
 986       // Let Identity() handle 0 shift count.
 987       return 0;
 988     }
 989 
 990     if (count != maskedShift) {
 991       shiftNode->set_req(2, phase->intcon(maskedShift)); // Replace shift count with masked value.
 992       PhaseIterGVN* igvn = phase->is_IterGVN();
 993       if (igvn) {
 994         igvn->rehash_node_delayed(shiftNode);
 995       }
 996     }
 997     return maskedShift;
 998   }
 999   return 0;
1000 }
1001 
1002 //------------------------------Identity---------------------------------------
1003 Node* LShiftINode::Identity(PhaseGVN* phase) {
1004   int count = 0;
1005   if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) {
1006     // Shift by a multiple of 32 does nothing
1007     return in(1);
1008   }
1009   return this;
1010 }
1011 
1012 //------------------------------Ideal------------------------------------------
1013 // If the right input is a constant, and the left input is an add of a
1014 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
1015 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1016   int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
1017   if (con == 0) {
1018     return nullptr;
1019   }
1020 
1021   // Left input is an add?
1022   Node *add1 = in(1);
1023   int add1_op = add1->Opcode();
1024   if( add1_op == Op_AddI ) {    // Left input is an add?
1025     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
1026 
1027     // Transform is legal, but check for profit.  Avoid breaking 'i2s'
1028     // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
1029     if( con < 16 ) {
1030       // Left input is an add of the same number?
1031       if (add1->in(1) == add1->in(2)) {
1032         // Convert "(x + x) << c0" into "x << (c0 + 1)"
1033         // In general, this optimization cannot be applied for c0 == 31 since
1034         // 2x << 31 != x << 32 = x << 0 = x (e.g. x = 1: 2 << 31 = 0 != 1)
1035         return new LShiftINode(add1->in(1), phase->intcon(con + 1));
1036       }
1037 
1038       // Left input is an add of a constant?
1039       const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
1040       if( t12 && t12->is_con() ){ // Left input is an add of a con?
1041         // Compute X << con0
1042         Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
1043         // Compute X<<con0 + (con1<<con0)
1044         return new AddINode( lsh, phase->intcon(t12->get_con() << con));
1045       }
1046     }
1047   }
1048 
1049   // Check for "(x >> C1) << C2"
1050   if (add1_op == Op_RShiftI || add1_op == Op_URShiftI) {
1051     int add1Con = 0;
1052     const_shift_count(phase, add1, &add1Con);
1053 
1054     // Special case C1 == C2, which just masks off low bits
1055     if (add1Con > 0 && con == add1Con) {
1056       // Convert to "(x & -(1 << C2))"
1057       return new AndINode(add1->in(1), phase->intcon(java_negate(jint(1 << con))));
1058     } else {
1059       // Wait until the right shift has been sharpened to the correct count
1060       if (add1Con > 0 && add1Con < BitsPerJavaInteger) {
1061         // As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed
1062         // to apply optimizations, otherwise we can inadvertently stop vectorization opportunities.
1063         if (phase->is_IterGVN()) {
1064           if (con > add1Con) {
1065             // Creates "(x << (C2 - C1)) & -(1 << C2)"
1066             Node* lshift = phase->transform(new LShiftINode(add1->in(1), phase->intcon(con - add1Con)));
1067             return new AndINode(lshift, phase->intcon(java_negate(jint(1 << con))));
1068           } else {
1069             assert(con < add1Con, "must be (%d < %d)", con, add1Con);
1070             // Creates "(x >> (C1 - C2)) & -(1 << C2)"
1071 
1072             // Handle logical and arithmetic shifts
1073             Node* rshift;
1074             if (add1_op == Op_RShiftI) {
1075               rshift = phase->transform(new RShiftINode(add1->in(1), phase->intcon(add1Con - con)));
1076             } else {
1077               rshift = phase->transform(new URShiftINode(add1->in(1), phase->intcon(add1Con - con)));
1078             }
1079 
1080             return new AndINode(rshift, phase->intcon(java_negate(jint(1 << con))));
1081           }
1082         } else {
1083           phase->record_for_igvn(this);
1084         }
1085       }
1086     }
1087   }
1088 
1089   // Check for "((x >> C1) & Y) << C2"
1090   if (add1_op == Op_AndI) {
1091     Node *add2 = add1->in(1);
1092     int add2_op = add2->Opcode();
1093     if (add2_op == Op_RShiftI || add2_op == Op_URShiftI) {
1094       // Special case C1 == C2, which just masks off low bits
1095       if (add2->in(2) == in(2)) {
1096         // Convert to "(x & (Y << C2))"
1097         Node* y_sh = phase->transform(new LShiftINode(add1->in(2), phase->intcon(con)));
1098         return new AndINode(add2->in(1), y_sh);
1099       }
1100 
1101       int add2Con = 0;
1102       const_shift_count(phase, add2, &add2Con);
1103       if (add2Con > 0 && add2Con < BitsPerJavaInteger) {
1104         if (phase->is_IterGVN()) {
1105           // Convert to "((x >> C1) << C2) & (Y << C2)"
1106 
1107           // Make "(x >> C1) << C2", which will get folded away by the rule above
1108           Node* x_sh = phase->transform(new LShiftINode(add2, phase->intcon(con)));
1109           // Make "Y << C2", which will simplify when Y is a constant
1110           Node* y_sh = phase->transform(new LShiftINode(add1->in(2), phase->intcon(con)));
1111 
1112           return new AndINode(x_sh, y_sh);
1113         } else {
1114           phase->record_for_igvn(this);
1115         }
1116       }
1117     }
1118   }
1119 
1120   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
1121   // before shifting them away.
1122   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
1123   if( add1_op == Op_AndI &&
1124       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
1125     return new LShiftINode( add1->in(1), in(2) );
1126 
1127   return nullptr;
1128 }
1129 
1130 //------------------------------Value------------------------------------------
1131 // A LShiftINode shifts its input2 left by input1 amount.
1132 const Type* LShiftINode::Value(PhaseGVN* phase) const {
1133   const Type *t1 = phase->type( in(1) );
1134   const Type *t2 = phase->type( in(2) );
1135   // Either input is TOP ==> the result is TOP
1136   if( t1 == Type::TOP ) return Type::TOP;
1137   if( t2 == Type::TOP ) return Type::TOP;
1138 
1139   // Left input is ZERO ==> the result is ZERO.
1140   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1141   // Shift by zero does nothing
1142   if( t2 == TypeInt::ZERO ) return t1;
1143 
1144   // Either input is BOTTOM ==> the result is BOTTOM
1145   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
1146       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1147     return TypeInt::INT;
1148 
1149   const TypeInt *r1 = t1->is_int(); // Handy access
1150   const TypeInt *r2 = t2->is_int(); // Handy access
1151 
1152   if (!r2->is_con())
1153     return TypeInt::INT;
1154 
1155   uint shift = r2->get_con();
1156   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1157   // Shift by a multiple of 32 does nothing:
1158   if (shift == 0)  return t1;
1159 
1160   // If the shift is a constant, shift the bounds of the type,
1161   // unless this could lead to an overflow.
1162   if (!r1->is_con()) {
1163     jint lo = r1->_lo, hi = r1->_hi;
1164     if (((lo << shift) >> shift) == lo &&
1165         ((hi << shift) >> shift) == hi) {
1166       // No overflow.  The range shifts up cleanly.
1167       return TypeInt::make((jint)lo << (jint)shift,
1168                            (jint)hi << (jint)shift,
1169                            MAX2(r1->_widen,r2->_widen));
1170     }
1171     return TypeInt::INT;
1172   }
1173 
1174   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
1175 }
1176 
1177 //=============================================================================
1178 //------------------------------Identity---------------------------------------
1179 Node* LShiftLNode::Identity(PhaseGVN* phase) {
1180   int count = 0;
1181   if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) {
1182     // Shift by a multiple of 64 does nothing
1183     return in(1);
1184   }
1185   return this;
1186 }
1187 
1188 //------------------------------Ideal------------------------------------------
1189 // If the right input is a constant, and the left input is an add of a
1190 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
1191 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1192   int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1193   if (con == 0) {
1194     return nullptr;
1195   }
1196 
1197   // Left input is an add?
1198   Node *add1 = in(1);
1199   int add1_op = add1->Opcode();
1200   if( add1_op == Op_AddL ) {    // Left input is an add?
1201     // Avoid dead data cycles from dead loops
1202     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
1203 
1204     // Left input is an add of the same number?
1205     if (con != (BitsPerJavaLong - 1) && add1->in(1) == add1->in(2)) {
1206       // Convert "(x + x) << c0" into "x << (c0 + 1)"
1207       // Can only be applied if c0 != 63 because:
1208       // (x + x) << 63 = 2x << 63, while
1209       // (x + x) << 63 --transform--> x << 64 = x << 0 = x (!= 2x << 63, for example for x = 1)
1210       // According to the Java spec, chapter 15.19, we only consider the six lowest-order bits of the right-hand operand
1211       // (i.e. "right-hand operand" & 0b111111). Therefore, x << 64 is the same as x << 0 (64 = 0b10000000 & 0b0111111 = 0).
1212       return new LShiftLNode(add1->in(1), phase->intcon(con + 1));
1213     }
1214 
1215     // Left input is an add of a constant?
1216     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
1217     if( t12 && t12->is_con() ){ // Left input is an add of a con?
1218       // Compute X << con0
1219       Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
1220       // Compute X<<con0 + (con1<<con0)
1221       return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
1222     }
1223   }
1224 
1225   // Check for "(x >> C1) << C2"
1226   if (add1_op == Op_RShiftL || add1_op == Op_URShiftL) {
1227     int add1Con = 0;
1228     const_shift_count(phase, add1, &add1Con);
1229 
1230     // Special case C1 == C2, which just masks off low bits
1231     if (add1Con > 0 && con == add1Con) {
1232       // Convert to "(x & -(1 << C2))"
1233       return new AndLNode(add1->in(1), phase->longcon(java_negate(jlong(CONST64(1) << con))));
1234     } else {
1235       // Wait until the right shift has been sharpened to the correct count
1236       if (add1Con > 0 && add1Con < BitsPerJavaLong) {
1237         // As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed
1238         // to apply optimizations, otherwise we can inadvertently stop vectorization opportunities.
1239         if (phase->is_IterGVN()) {
1240           if (con > add1Con) {
1241             // Creates "(x << (C2 - C1)) & -(1 << C2)"
1242             Node* lshift = phase->transform(new LShiftLNode(add1->in(1), phase->intcon(con - add1Con)));
1243             return new AndLNode(lshift, phase->longcon(java_negate(jlong(CONST64(1) << con))));
1244           } else {
1245             assert(con < add1Con, "must be (%d < %d)", con, add1Con);
1246             // Creates "(x >> (C1 - C2)) & -(1 << C2)"
1247 
1248             // Handle logical and arithmetic shifts
1249             Node* rshift;
1250             if (add1_op == Op_RShiftL) {
1251               rshift = phase->transform(new RShiftLNode(add1->in(1), phase->intcon(add1Con - con)));
1252             } else {
1253               rshift = phase->transform(new URShiftLNode(add1->in(1), phase->intcon(add1Con - con)));
1254             }
1255 
1256             return new AndLNode(rshift, phase->longcon(java_negate(jlong(CONST64(1) << con))));
1257           }
1258         } else {
1259           phase->record_for_igvn(this);
1260         }
1261       }
1262     }
1263   }
1264 
1265   // Check for "((x >> C1) & Y) << C2"
1266   if (add1_op == Op_AndL) {
1267     Node* add2 = add1->in(1);
1268     int add2_op = add2->Opcode();
1269     if (add2_op == Op_RShiftL || add2_op == Op_URShiftL) {
1270       // Special case C1 == C2, which just masks off low bits
1271       if (add2->in(2) == in(2)) {
1272         // Convert to "(x & (Y << C2))"
1273         Node* y_sh = phase->transform(new LShiftLNode(add1->in(2), phase->intcon(con)));
1274         return new AndLNode(add2->in(1), y_sh);
1275       }
1276 
1277       int add2Con = 0;
1278       const_shift_count(phase, add2, &add2Con);
1279       if (add2Con > 0 && add2Con < BitsPerJavaLong) {
1280         if (phase->is_IterGVN()) {
1281           // Convert to "((x >> C1) << C2) & (Y << C2)"
1282 
1283           // Make "(x >> C1) << C2", which will get folded away by the rule above
1284           Node* x_sh = phase->transform(new LShiftLNode(add2, phase->intcon(con)));
1285           // Make "Y << C2", which will simplify when Y is a constant
1286           Node* y_sh = phase->transform(new LShiftLNode(add1->in(2), phase->intcon(con)));
1287 
1288           return new AndLNode(x_sh, y_sh);
1289         } else {
1290           phase->record_for_igvn(this);
1291         }
1292       }
1293     }
1294   }
1295 
1296   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
1297   // before shifting them away.
1298   const jlong bits_mask = jlong(max_julong >> con);
1299   if( add1_op == Op_AndL &&
1300       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
1301     return new LShiftLNode( add1->in(1), in(2) );
1302 
1303   return nullptr;
1304 }
1305 
1306 //------------------------------Value------------------------------------------
1307 // A LShiftLNode shifts its input2 left by input1 amount.
1308 const Type* LShiftLNode::Value(PhaseGVN* phase) const {
1309   const Type *t1 = phase->type( in(1) );
1310   const Type *t2 = phase->type( in(2) );
1311   // Either input is TOP ==> the result is TOP
1312   if( t1 == Type::TOP ) return Type::TOP;
1313   if( t2 == Type::TOP ) return Type::TOP;
1314 
1315   // Left input is ZERO ==> the result is ZERO.
1316   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1317   // Shift by zero does nothing
1318   if( t2 == TypeInt::ZERO ) return t1;
1319 
1320   // Either input is BOTTOM ==> the result is BOTTOM
1321   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
1322       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1323     return TypeLong::LONG;
1324 
1325   const TypeLong *r1 = t1->is_long(); // Handy access
1326   const TypeInt  *r2 = t2->is_int();  // Handy access
1327 
1328   if (!r2->is_con())
1329     return TypeLong::LONG;
1330 
1331   uint shift = r2->get_con();
1332   shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1333   // Shift by a multiple of 64 does nothing:
1334   if (shift == 0)  return t1;
1335 
1336   // If the shift is a constant, shift the bounds of the type,
1337   // unless this could lead to an overflow.
1338   if (!r1->is_con()) {
1339     jlong lo = r1->_lo, hi = r1->_hi;
1340     if (((lo << shift) >> shift) == lo &&
1341         ((hi << shift) >> shift) == hi) {
1342       // No overflow.  The range shifts up cleanly.
1343       return TypeLong::make((jlong)lo << (jint)shift,
1344                             (jlong)hi << (jint)shift,
1345                             MAX2(r1->_widen,r2->_widen));
1346     }
1347     return TypeLong::LONG;
1348   }
1349 
1350   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
1351 }
1352 
1353 //=============================================================================
1354 //------------------------------Identity---------------------------------------
1355 Node* RShiftINode::Identity(PhaseGVN* phase) {
1356   int count = 0;
1357   if (const_shift_count(phase, this, &count)) {
1358     if ((count & (BitsPerJavaInteger - 1)) == 0) {
1359       // Shift by a multiple of 32 does nothing
1360       return in(1);
1361     }
1362     // Check for useless sign-masking
1363     if (in(1)->Opcode() == Op_LShiftI &&
1364         in(1)->req() == 3 &&
1365         in(1)->in(2) == in(2)) {
1366       count &= BitsPerJavaInteger-1; // semantics of Java shifts
1367       // Compute masks for which this shifting doesn't change
1368       int lo = (-1 << (BitsPerJavaInteger - ((uint)count)-1)); // FFFF8000
1369       int hi = ~lo;               // 00007FFF
1370       const TypeInt* t11 = phase->type(in(1)->in(1))->isa_int();
1371       if (t11 == nullptr) {
1372         return this;
1373       }
1374       // Does actual value fit inside of mask?
1375       if (lo <= t11->_lo && t11->_hi <= hi) {
1376         return in(1)->in(1);      // Then shifting is a nop
1377       }
1378     }
1379   }
1380   return this;
1381 }
1382 
1383 //------------------------------Ideal------------------------------------------
1384 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1385   // Inputs may be TOP if they are dead.
1386   const TypeInt *t1 = phase->type(in(1))->isa_int();
1387   if (!t1) return nullptr;        // Left input is an integer
1388   const TypeInt *t3;  // type of in(1).in(2)
1389   int shift = maskShiftAmount(phase, this, BitsPerJavaInteger);
1390   if (shift == 0) {
1391     return nullptr;
1392   }
1393 
1394   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
1395   // Such expressions arise normally from shift chains like (byte)(x >> 24).
1396   const Node *mask = in(1);
1397   if( mask->Opcode() == Op_AndI &&
1398       (t3 = phase->type(mask->in(2))->isa_int()) &&
1399       t3->is_con() ) {
1400     Node *x = mask->in(1);
1401     jint maskbits = t3->get_con();
1402     // Convert to "(x >> shift) & (mask >> shift)"
1403     Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
1404     return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
1405   }
1406 
1407   // Check for "(short[i] <<16)>>16" which simply sign-extends
1408   const Node *shl = in(1);
1409   if( shl->Opcode() != Op_LShiftI ) return nullptr;
1410 
1411   if( shift == 16 &&
1412       (t3 = phase->type(shl->in(2))->isa_int()) &&
1413       t3->is_con(16) ) {
1414     Node *ld = shl->in(1);
1415     if( ld->Opcode() == Op_LoadS ) {
1416       // Sign extension is just useless here.  Return a RShiftI of zero instead
1417       // returning 'ld' directly.  We cannot return an old Node directly as
1418       // that is the job of 'Identity' calls and Identity calls only work on
1419       // direct inputs ('ld' is an extra Node removed from 'this').  The
1420       // combined optimization requires Identity only return direct inputs.
1421       set_req_X(1, ld, phase);
1422       set_req_X(2, phase->intcon(0), phase);
1423       return this;
1424     }
1425     else if (can_reshape &&
1426              ld->Opcode() == Op_LoadUS &&
1427              ld->outcnt() == 1 && ld->unique_out() == shl)
1428       // Replace zero-extension-load with sign-extension-load
1429       return ld->as_Load()->convert_to_signed_load(*phase);
1430   }
1431 
1432   // Check for "(byte[i] <<24)>>24" which simply sign-extends
1433   if( shift == 24 &&
1434       (t3 = phase->type(shl->in(2))->isa_int()) &&
1435       t3->is_con(24) ) {
1436     Node *ld = shl->in(1);
1437     if (ld->Opcode() == Op_LoadB) {
1438       // Sign extension is just useless here
1439       set_req_X(1, ld, phase);
1440       set_req_X(2, phase->intcon(0), phase);
1441       return this;
1442     }
1443   }
1444 
1445   return nullptr;
1446 }
1447 
1448 //------------------------------Value------------------------------------------
1449 // A RShiftINode shifts its input2 right by input1 amount.
1450 const Type* RShiftINode::Value(PhaseGVN* phase) const {
1451   const Type *t1 = phase->type( in(1) );
1452   const Type *t2 = phase->type( in(2) );
1453   // Either input is TOP ==> the result is TOP
1454   if( t1 == Type::TOP ) return Type::TOP;
1455   if( t2 == Type::TOP ) return Type::TOP;
1456 
1457   // Left input is ZERO ==> the result is ZERO.
1458   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1459   // Shift by zero does nothing
1460   if( t2 == TypeInt::ZERO ) return t1;
1461 
1462   // Either input is BOTTOM ==> the result is BOTTOM
1463   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1464     return TypeInt::INT;
1465 
1466   const TypeInt *r1 = t1->is_int(); // Handy access
1467   const TypeInt *r2 = t2->is_int(); // Handy access
1468 
1469   // If the shift is a constant, just shift the bounds of the type.
1470   // For example, if the shift is 31, we just propagate sign bits.
1471   if (!r1->is_con() && r2->is_con()) {
1472     uint shift = r2->get_con();
1473     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1474     // Shift by a multiple of 32 does nothing:
1475     if (shift == 0)  return t1;
1476     // Calculate reasonably aggressive bounds for the result.
1477     // This is necessary if we are to correctly type things
1478     // like (x<<24>>24) == ((byte)x).
1479     jint lo = (jint)r1->_lo >> (jint)shift;
1480     jint hi = (jint)r1->_hi >> (jint)shift;
1481     assert(lo <= hi, "must have valid bounds");
1482     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1483 #ifdef ASSERT
1484     // Make sure we get the sign-capture idiom correct.
1485     if (shift == BitsPerJavaInteger-1) {
1486       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
1487       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1488     }
1489 #endif
1490     return ti;
1491   }
1492 
1493   if (!r1->is_con() || !r2->is_con()) {
1494     // If the left input is non-negative the result must also be non-negative, regardless of what the right input is.
1495     if (r1->_lo >= 0) {
1496       return TypeInt::make(0, r1->_hi, MAX2(r1->_widen, r2->_widen));
1497     }
1498 
1499     // Conversely, if the left input is negative then the result must be negative.
1500     if (r1->_hi <= -1) {
1501       return TypeInt::make(r1->_lo, -1, MAX2(r1->_widen, r2->_widen));
1502     }
1503 
1504     return TypeInt::INT;
1505   }
1506 
1507   // Signed shift right
1508   return TypeInt::make(r1->get_con() >> (r2->get_con() & 31));
1509 }
1510 
1511 //=============================================================================
1512 //------------------------------Identity---------------------------------------
1513 Node* RShiftLNode::Identity(PhaseGVN* phase) {
1514   const TypeInt *ti = phase->type(in(2))->isa_int(); // Shift count is an int.
1515   return (ti && ti->is_con() && (ti->get_con() & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
1516 }
1517 
1518 //------------------------------Value------------------------------------------
1519 // A RShiftLNode shifts its input2 right by input1 amount.
1520 const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1521   const Type *t1 = phase->type( in(1) );
1522   const Type *t2 = phase->type( in(2) );
1523   // Either input is TOP ==> the result is TOP
1524   if( t1 == Type::TOP ) return Type::TOP;
1525   if( t2 == Type::TOP ) return Type::TOP;
1526 
1527   // Left input is ZERO ==> the result is ZERO.
1528   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1529   // Shift by zero does nothing
1530   if( t2 == TypeInt::ZERO ) return t1;
1531 
1532   // Either input is BOTTOM ==> the result is BOTTOM
1533   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1534     return TypeLong::LONG;
1535 
1536   const TypeLong *r1 = t1->is_long(); // Handy access
1537   const TypeInt  *r2 = t2->is_int (); // Handy access
1538 
1539   // If the shift is a constant, just shift the bounds of the type.
1540   // For example, if the shift is 63, we just propagate sign bits.
1541   if (!r1->is_con() && r2->is_con()) {
1542     uint shift = r2->get_con();
1543     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1544     // Shift by a multiple of 64 does nothing:
1545     if (shift == 0)  return t1;
1546     // Calculate reasonably aggressive bounds for the result.
1547     // This is necessary if we are to correctly type things
1548     // like (x<<24>>24) == ((byte)x).
1549     jlong lo = (jlong)r1->_lo >> (jlong)shift;
1550     jlong hi = (jlong)r1->_hi >> (jlong)shift;
1551     assert(lo <= hi, "must have valid bounds");
1552     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1553     #ifdef ASSERT
1554     // Make sure we get the sign-capture idiom correct.
1555     if (shift == (2*BitsPerJavaInteger)-1) {
1556       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1557       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1558     }
1559     #endif
1560     return tl;
1561   }
1562 
1563   if (!r1->is_con() || !r2->is_con()) {
1564     // If the left input is non-negative the result must also be non-negative, regardless of what the right input is.
1565     if (r1->_lo >= 0) {
1566       return TypeLong::make(0, r1->_hi, MAX2(r1->_widen, r2->_widen));
1567     }
1568 
1569     // Conversely, if the left input is negative then the result must be negative.
1570     if (r1->_hi <= -1) {
1571       return TypeLong::make(r1->_lo, -1, MAX2(r1->_widen, r2->_widen));
1572     }
1573 
1574     return TypeLong::LONG;
1575   }
1576 
1577   return TypeLong::make(r1->get_con() >> (r2->get_con() & 63));
1578 }
1579 
1580 //=============================================================================
1581 //------------------------------Identity---------------------------------------
1582 Node* URShiftINode::Identity(PhaseGVN* phase) {
1583   int count = 0;
1584   if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) {
1585     // Shift by a multiple of 32 does nothing
1586     return in(1);
1587   }
1588 
1589   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1590   // Happens during new-array length computation.
1591   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1592   Node *add = in(1);
1593   if (add->Opcode() == Op_AddI) {
1594     const TypeInt *t2 = phase->type(add->in(2))->isa_int();
1595     if (t2 && t2->is_con(wordSize - 1) &&
1596         add->in(1)->Opcode() == Op_LShiftI) {
1597       // Check that shift_counts are LogBytesPerWord.
1598       Node          *lshift_count   = add->in(1)->in(2);
1599       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1600       if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1601           t_lshift_count == phase->type(in(2))) {
1602         Node          *x   = add->in(1)->in(1);
1603         const TypeInt *t_x = phase->type(x)->isa_int();
1604         if (t_x != nullptr && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) {
1605           return x;
1606         }
1607       }
1608     }
1609   }
1610 
1611   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1612 }
1613 
1614 //------------------------------Ideal------------------------------------------
1615 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1616   int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
1617   if (con == 0) {
1618     return nullptr;
1619   }
1620 
1621   // We'll be wanting the right-shift amount as a mask of that many bits
1622   const int mask = right_n_bits(BitsPerJavaInteger - con);
1623 
1624   int in1_op = in(1)->Opcode();
1625 
1626   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1627   if( in1_op == Op_URShiftI ) {
1628     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1629     if( t12 && t12->is_con() ) { // Right input is a constant
1630       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1631       const int con2 = t12->get_con() & 31; // Shift count is always masked
1632       const int con3 = con+con2;
1633       if( con3 < 32 )           // Only merge shifts if total is < 32
1634         return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1635     }
1636   }
1637 
1638   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1639   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1640   // If Q is "X << z" the rounding is useless.  Look for patterns like
1641   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1642   Node *add = in(1);
1643   const TypeInt *t2 = phase->type(in(2))->isa_int();
1644   if (in1_op == Op_AddI) {
1645     Node *lshl = add->in(1);
1646     if( lshl->Opcode() == Op_LShiftI &&
1647         phase->type(lshl->in(2)) == t2 ) {
1648       Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1649       Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1650       return new AndINode( sum, phase->intcon(mask) );
1651     }
1652   }
1653 
1654   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1655   // This shortens the mask.  Also, if we are extracting a high byte and
1656   // storing it to a buffer, the mask will be removed completely.
1657   Node *andi = in(1);
1658   if( in1_op == Op_AndI ) {
1659     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1660     if( t3 && t3->is_con() ) { // Right input is a constant
1661       jint mask2 = t3->get_con();
1662       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1663       Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1664       return new AndINode(newshr, phase->intcon(mask2));
1665       // The negative values are easier to materialize than positive ones.
1666       // A typical case from address arithmetic is ((x & ~15) >> 4).
1667       // It's better to change that to ((x >> 4) & ~0) versus
1668       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1669     }
1670   }
1671 
1672   // Check for "(X << z ) >>> z" which simply zero-extends
1673   Node *shl = in(1);
1674   if( in1_op == Op_LShiftI &&
1675       phase->type(shl->in(2)) == t2 )
1676     return new AndINode( shl->in(1), phase->intcon(mask) );
1677 
1678   // Check for (x >> n) >>> 31. Replace with (x >>> 31)
1679   Node *shr = in(1);
1680   if ( in1_op == Op_RShiftI ) {
1681     Node *in11 = shr->in(1);
1682     Node *in12 = shr->in(2);
1683     const TypeInt *t11 = phase->type(in11)->isa_int();
1684     const TypeInt *t12 = phase->type(in12)->isa_int();
1685     if ( t11 && t2 && t2->is_con(31) && t12 && t12->is_con() ) {
1686       return new URShiftINode(in11, phase->intcon(31));
1687     }
1688   }
1689 
1690   return nullptr;
1691 }
1692 
1693 //------------------------------Value------------------------------------------
1694 // A URShiftINode shifts its input2 right by input1 amount.
1695 const Type* URShiftINode::Value(PhaseGVN* phase) const {
1696   // (This is a near clone of RShiftINode::Value.)
1697   const Type *t1 = phase->type( in(1) );
1698   const Type *t2 = phase->type( in(2) );
1699   // Either input is TOP ==> the result is TOP
1700   if( t1 == Type::TOP ) return Type::TOP;
1701   if( t2 == Type::TOP ) return Type::TOP;
1702 
1703   // Left input is ZERO ==> the result is ZERO.
1704   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1705   // Shift by zero does nothing
1706   if( t2 == TypeInt::ZERO ) return t1;
1707 
1708   // Either input is BOTTOM ==> the result is BOTTOM
1709   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1710     return TypeInt::INT;
1711 
1712   if (t2 == TypeInt::INT)
1713     return TypeInt::INT;
1714 
1715   const TypeInt *r1 = t1->is_int();     // Handy access
1716   const TypeInt *r2 = t2->is_int();     // Handy access
1717 
1718   if (r2->is_con()) {
1719     uint shift = r2->get_con();
1720     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1721     // Shift by a multiple of 32 does nothing:
1722     if (shift == 0)  return t1;
1723     // Calculate reasonably aggressive bounds for the result.
1724     jint lo = (juint)r1->_lo >> (juint)shift;
1725     jint hi = (juint)r1->_hi >> (juint)shift;
1726     if (r1->_hi >= 0 && r1->_lo < 0) {
1727       // If the type has both negative and positive values,
1728       // there are two separate sub-domains to worry about:
1729       // The positive half and the negative half.
1730       jint neg_lo = lo;
1731       jint neg_hi = (juint)-1 >> (juint)shift;
1732       jint pos_lo = (juint) 0 >> (juint)shift;
1733       jint pos_hi = hi;
1734       lo = MIN2(neg_lo, pos_lo);  // == 0
1735       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1736     }
1737     assert(lo <= hi, "must have valid bounds");
1738     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1739     #ifdef ASSERT
1740     // Make sure we get the sign-capture idiom correct.
1741     if (shift == BitsPerJavaInteger-1) {
1742       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1743       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1744     }
1745     #endif
1746     return ti;
1747   }
1748 
1749   //
1750   // Do not support shifted oops in info for GC
1751   //
1752   // else if( t1->base() == Type::InstPtr ) {
1753   //
1754   //   const TypeInstPtr *o = t1->is_instptr();
1755   //   if( t1->singleton() )
1756   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1757   // }
1758   // else if( t1->base() == Type::KlassPtr ) {
1759   //   const TypeKlassPtr *o = t1->is_klassptr();
1760   //   if( t1->singleton() )
1761   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1762   // }
1763 
1764   return TypeInt::INT;
1765 }
1766 
1767 //=============================================================================
1768 //------------------------------Identity---------------------------------------
1769 Node* URShiftLNode::Identity(PhaseGVN* phase) {
1770   int count = 0;
1771   if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) {
1772     // Shift by a multiple of 64 does nothing
1773     return in(1);
1774   }
1775   return this;
1776 }
1777 
1778 //------------------------------Ideal------------------------------------------
1779 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1780   int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1781   if (con == 0) {
1782     return nullptr;
1783   }
1784 
1785   // We'll be wanting the right-shift amount as a mask of that many bits
1786   const jlong mask = jlong(max_julong >> con);
1787 
1788   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1789   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1790   // If Q is "X << z" the rounding is useless.  Look for patterns like
1791   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1792   Node *add = in(1);
1793   const TypeInt *t2 = phase->type(in(2))->isa_int();
1794   if (add->Opcode() == Op_AddL) {
1795     Node *lshl = add->in(1);
1796     if( lshl->Opcode() == Op_LShiftL &&
1797         phase->type(lshl->in(2)) == t2 ) {
1798       Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1799       Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1800       return new AndLNode( sum, phase->longcon(mask) );
1801     }
1802   }
1803 
1804   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1805   // This shortens the mask.  Also, if we are extracting a high byte and
1806   // storing it to a buffer, the mask will be removed completely.
1807   Node *andi = in(1);
1808   if( andi->Opcode() == Op_AndL ) {
1809     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1810     if( t3 && t3->is_con() ) { // Right input is a constant
1811       jlong mask2 = t3->get_con();
1812       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1813       Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1814       return new AndLNode(newshr, phase->longcon(mask2));
1815     }
1816   }
1817 
1818   // Check for "(X << z ) >>> z" which simply zero-extends
1819   Node *shl = in(1);
1820   if( shl->Opcode() == Op_LShiftL &&
1821       phase->type(shl->in(2)) == t2 )
1822     return new AndLNode( shl->in(1), phase->longcon(mask) );
1823 
1824   // Check for (x >> n) >>> 63. Replace with (x >>> 63)
1825   Node *shr = in(1);
1826   if ( shr->Opcode() == Op_RShiftL ) {
1827     Node *in11 = shr->in(1);
1828     Node *in12 = shr->in(2);
1829     const TypeLong *t11 = phase->type(in11)->isa_long();
1830     const TypeInt *t12 = phase->type(in12)->isa_int();
1831     if ( t11 && t2 && t2->is_con(63) && t12 && t12->is_con() ) {
1832       return new URShiftLNode(in11, phase->intcon(63));
1833     }
1834   }
1835   return nullptr;
1836 }
1837 
1838 //------------------------------Value------------------------------------------
1839 // A URShiftINode shifts its input2 right by input1 amount.
1840 const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1841   // (This is a near clone of RShiftLNode::Value.)
1842   const Type *t1 = phase->type( in(1) );
1843   const Type *t2 = phase->type( in(2) );
1844   // Either input is TOP ==> the result is TOP
1845   if( t1 == Type::TOP ) return Type::TOP;
1846   if( t2 == Type::TOP ) return Type::TOP;
1847 
1848   // Left input is ZERO ==> the result is ZERO.
1849   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1850   // Shift by zero does nothing
1851   if( t2 == TypeInt::ZERO ) return t1;
1852 
1853   // Either input is BOTTOM ==> the result is BOTTOM
1854   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1855     return TypeLong::LONG;
1856 
1857   if (t2 == TypeInt::INT)
1858     return TypeLong::LONG;
1859 
1860   const TypeLong *r1 = t1->is_long(); // Handy access
1861   const TypeInt  *r2 = t2->is_int (); // Handy access
1862 
1863   if (r2->is_con()) {
1864     uint shift = r2->get_con();
1865     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1866     // Shift by a multiple of 64 does nothing:
1867     if (shift == 0)  return t1;
1868     // Calculate reasonably aggressive bounds for the result.
1869     jlong lo = (julong)r1->_lo >> (juint)shift;
1870     jlong hi = (julong)r1->_hi >> (juint)shift;
1871     if (r1->_hi >= 0 && r1->_lo < 0) {
1872       // If the type has both negative and positive values,
1873       // there are two separate sub-domains to worry about:
1874       // The positive half and the negative half.
1875       jlong neg_lo = lo;
1876       jlong neg_hi = (julong)-1 >> (juint)shift;
1877       jlong pos_lo = (julong) 0 >> (juint)shift;
1878       jlong pos_hi = hi;
1879       //lo = MIN2(neg_lo, pos_lo);  // == 0
1880       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1881       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1882       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1883     }
1884     assert(lo <= hi, "must have valid bounds");
1885     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1886     #ifdef ASSERT
1887     // Make sure we get the sign-capture idiom correct.
1888     if (shift == BitsPerJavaLong - 1) {
1889       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1890       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1891     }
1892     #endif
1893     return tl;
1894   }
1895 
1896   return TypeLong::LONG;                // Give up
1897 }
1898 
1899 //=============================================================================
1900 //------------------------------Ideal------------------------------------------
1901 Node* FmaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1902   // We canonicalize the node by converting "(-a)*b+c" into "b*(-a)+c"
1903   // This reduces the number of rules in the matcher, as we only need to check
1904   // for negations on the second argument, and not the symmetric case where
1905   // the first argument is negated.
1906   if (in(1)->is_Neg() && !in(2)->is_Neg()) {
1907     swap_edges(1, 2);
1908     return this;
1909   }
1910   return nullptr;
1911 }
1912 
1913 //=============================================================================
1914 //------------------------------Value------------------------------------------
1915 const Type* FmaDNode::Value(PhaseGVN* phase) const {
1916   const Type *t1 = phase->type(in(1));
1917   if (t1 == Type::TOP) return Type::TOP;
1918   if (t1->base() != Type::DoubleCon) return Type::DOUBLE;
1919   const Type *t2 = phase->type(in(2));
1920   if (t2 == Type::TOP) return Type::TOP;
1921   if (t2->base() != Type::DoubleCon) return Type::DOUBLE;
1922   const Type *t3 = phase->type(in(3));
1923   if (t3 == Type::TOP) return Type::TOP;
1924   if (t3->base() != Type::DoubleCon) return Type::DOUBLE;
1925 #ifndef __STDC_IEC_559__
1926   return Type::DOUBLE;
1927 #else
1928   double d1 = t1->getd();
1929   double d2 = t2->getd();
1930   double d3 = t3->getd();
1931   return TypeD::make(fma(d1, d2, d3));
1932 #endif
1933 }
1934 
1935 //=============================================================================
1936 //------------------------------Value------------------------------------------
1937 const Type* FmaFNode::Value(PhaseGVN* phase) const {
1938   const Type *t1 = phase->type(in(1));
1939   if (t1 == Type::TOP) return Type::TOP;
1940   if (t1->base() != Type::FloatCon) return Type::FLOAT;
1941   const Type *t2 = phase->type(in(2));
1942   if (t2 == Type::TOP) return Type::TOP;
1943   if (t2->base() != Type::FloatCon) return Type::FLOAT;
1944   const Type *t3 = phase->type(in(3));
1945   if (t3 == Type::TOP) return Type::TOP;
1946   if (t3->base() != Type::FloatCon) return Type::FLOAT;
1947 #ifndef __STDC_IEC_559__
1948   return Type::FLOAT;
1949 #else
1950   float f1 = t1->getf();
1951   float f2 = t2->getf();
1952   float f3 = t3->getf();
1953   return TypeF::make(fma(f1, f2, f3));
1954 #endif
1955 }
1956 
1957 //=============================================================================
1958 //------------------------------hash-------------------------------------------
1959 // Hash function for MulAddS2INode.  Operation is commutative with commutative pairs.
1960 // The hash function must return the same value when edge swapping is performed.
1961 uint MulAddS2INode::hash() const {
1962   return (uintptr_t)in(1) + (uintptr_t)in(2) + (uintptr_t)in(3) + (uintptr_t)in(4) + Opcode();
1963 }
1964 
1965 //------------------------------Rotate Operations ------------------------------
1966 
1967 Node* RotateLeftNode::Identity(PhaseGVN* phase) {
1968   const Type* t1 = phase->type(in(1));
1969   if (t1 == Type::TOP) {
1970     return this;
1971   }
1972   int count = 0;
1973   assert(t1->isa_int() || t1->isa_long(), "Unexpected type");
1974   int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1;
1975   if (const_shift_count(phase, this, &count) && (count & mask) == 0) {
1976     // Rotate by a multiple of 32/64 does nothing
1977     return in(1);
1978   }
1979   return this;
1980 }
1981 
1982 const Type* RotateLeftNode::Value(PhaseGVN* phase) const {
1983   const Type* t1 = phase->type(in(1));
1984   const Type* t2 = phase->type(in(2));
1985   // Either input is TOP ==> the result is TOP
1986   if (t1 == Type::TOP || t2 == Type::TOP) {
1987     return Type::TOP;
1988   }
1989 
1990   if (t1->isa_int()) {
1991     const TypeInt* r1 = t1->is_int();
1992     const TypeInt* r2 = t2->is_int();
1993 
1994     // Left input is ZERO ==> the result is ZERO.
1995     if (r1 == TypeInt::ZERO) {
1996       return TypeInt::ZERO;
1997     }
1998     // Rotate by zero does nothing
1999     if (r2 == TypeInt::ZERO) {
2000       return r1;
2001     }
2002     if (r1->is_con() && r2->is_con()) {
2003       juint r1_con = (juint)r1->get_con();
2004       juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts
2005       return TypeInt::make((r1_con << shift) | (r1_con >> (32 - shift)));
2006     }
2007     return TypeInt::INT;
2008   } else {
2009     assert(t1->isa_long(), "Type must be a long");
2010     const TypeLong* r1 = t1->is_long();
2011     const TypeInt*  r2 = t2->is_int();
2012 
2013     // Left input is ZERO ==> the result is ZERO.
2014     if (r1 == TypeLong::ZERO) {
2015       return TypeLong::ZERO;
2016     }
2017     // Rotate by zero does nothing
2018     if (r2 == TypeInt::ZERO) {
2019       return r1;
2020     }
2021     if (r1->is_con() && r2->is_con()) {
2022       julong r1_con = (julong)r1->get_con();
2023       julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts
2024       return TypeLong::make((r1_con << shift) | (r1_con >> (64 - shift)));
2025     }
2026     return TypeLong::LONG;
2027   }
2028 }
2029 
2030 Node* RotateLeftNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2031   const Type* t1 = phase->type(in(1));
2032   const Type* t2 = phase->type(in(2));
2033   if (t2->isa_int() && t2->is_int()->is_con()) {
2034     if (t1->isa_int()) {
2035       int lshift = t2->is_int()->get_con() & 31;
2036       return new RotateRightNode(in(1), phase->intcon(32 - (lshift & 31)), TypeInt::INT);
2037     } else if (t1 != Type::TOP) {
2038       assert(t1->isa_long(), "Type must be a long");
2039       int lshift = t2->is_int()->get_con() & 63;
2040       return new RotateRightNode(in(1), phase->intcon(64 - (lshift & 63)), TypeLong::LONG);
2041     }
2042   }
2043   return nullptr;
2044 }
2045 
2046 Node* RotateRightNode::Identity(PhaseGVN* phase) {
2047   const Type* t1 = phase->type(in(1));
2048   if (t1 == Type::TOP) {
2049     return this;
2050   }
2051   int count = 0;
2052   assert(t1->isa_int() || t1->isa_long(), "Unexpected type");
2053   int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1;
2054   if (const_shift_count(phase, this, &count) && (count & mask) == 0) {
2055     // Rotate by a multiple of 32/64 does nothing
2056     return in(1);
2057   }
2058   return this;
2059 }
2060 
2061 const Type* RotateRightNode::Value(PhaseGVN* phase) const {
2062   const Type* t1 = phase->type(in(1));
2063   const Type* t2 = phase->type(in(2));
2064   // Either input is TOP ==> the result is TOP
2065   if (t1 == Type::TOP || t2 == Type::TOP) {
2066     return Type::TOP;
2067   }
2068 
2069   if (t1->isa_int()) {
2070     const TypeInt* r1 = t1->is_int();
2071     const TypeInt* r2 = t2->is_int();
2072 
2073     // Left input is ZERO ==> the result is ZERO.
2074     if (r1 == TypeInt::ZERO) {
2075       return TypeInt::ZERO;
2076     }
2077     // Rotate by zero does nothing
2078     if (r2 == TypeInt::ZERO) {
2079       return r1;
2080     }
2081     if (r1->is_con() && r2->is_con()) {
2082       juint r1_con = (juint)r1->get_con();
2083       juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts
2084       return TypeInt::make((r1_con >> shift) | (r1_con << (32 - shift)));
2085     }
2086     return TypeInt::INT;
2087   } else {
2088     assert(t1->isa_long(), "Type must be a long");
2089     const TypeLong* r1 = t1->is_long();
2090     const TypeInt*  r2 = t2->is_int();
2091     // Left input is ZERO ==> the result is ZERO.
2092     if (r1 == TypeLong::ZERO) {
2093       return TypeLong::ZERO;
2094     }
2095     // Rotate by zero does nothing
2096     if (r2 == TypeInt::ZERO) {
2097       return r1;
2098     }
2099     if (r1->is_con() && r2->is_con()) {
2100       julong r1_con = (julong)r1->get_con();
2101       julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts
2102       return TypeLong::make((r1_con >> shift) | (r1_con << (64 - shift)));
2103     }
2104     return TypeLong::LONG;
2105   }
2106 }
2107 
2108 // Given an expression (AndX shift mask) or (AndX mask shift),
2109 // determine if the AndX must always produce zero, because the
2110 // the shift (x<<N) is bitwise disjoint from the mask #M.
2111 // The X in AndX must be I or L, depending on bt.
2112 // Specifically, the following cases fold to zero,
2113 // when the shift value N is large enough to zero out
2114 // all the set positions of the and-mask M.
2115 //   (AndI (LShiftI _ #N) #M) => #0
2116 //   (AndL (LShiftL _ #N) #M) => #0
2117 //   (AndL (ConvI2L (LShiftI _ #N)) #M) => #0
2118 // The M and N values must satisfy ((-1 << N) & M) == 0.
2119 // Because the optimization might work for a non-constant
2120 // mask M, we check the AndX for both operand orders.
2121 bool MulNode::AndIL_shift_and_mask_is_always_zero(PhaseGVN* phase, Node* shift, Node* mask, BasicType bt, bool check_reverse) {
2122   if (mask == nullptr || shift == nullptr) {
2123     return false;
2124   }
2125   const TypeInteger* mask_t = phase->type(mask)->isa_integer(bt);
2126   if (mask_t == nullptr || phase->type(shift)->isa_integer(bt) == nullptr) {
2127     return false;
2128   }
2129   shift = shift->uncast();
2130   if (shift == nullptr) {
2131     return false;
2132   }
2133   if (phase->type(shift)->isa_integer(bt) == nullptr) {
2134     return false;
2135   }
2136   BasicType shift_bt = bt;
2137   if (bt == T_LONG && shift->Opcode() == Op_ConvI2L) {
2138     bt = T_INT;
2139     Node* val = shift->in(1);
2140     if (val == nullptr) {
2141       return false;
2142     }
2143     val = val->uncast();
2144     if (val == nullptr) {
2145       return false;
2146     }
2147     if (val->Opcode() == Op_LShiftI) {
2148       shift_bt = T_INT;
2149       shift = val;
2150       if (phase->type(shift)->isa_integer(bt) == nullptr) {
2151         return false;
2152       }
2153     }
2154   }
2155   if (shift->Opcode() != Op_LShift(shift_bt)) {
2156     if (check_reverse &&
2157         (mask->Opcode() == Op_LShift(bt) ||
2158          (bt == T_LONG && mask->Opcode() == Op_ConvI2L))) {
2159       // try it the other way around
2160       return AndIL_shift_and_mask_is_always_zero(phase, mask, shift, bt, false);
2161     }
2162     return false;
2163   }
2164   Node* shift2 = shift->in(2);
2165   if (shift2 == nullptr) {
2166     return false;
2167   }
2168   const Type* shift2_t = phase->type(shift2);
2169   if (!shift2_t->isa_int() || !shift2_t->is_int()->is_con()) {
2170     return false;
2171   }
2172 
2173   jint shift_con = shift2_t->is_int()->get_con() & ((shift_bt == T_INT ? BitsPerJavaInteger : BitsPerJavaLong) - 1);
2174   if ((((jlong)1) << shift_con) > mask_t->hi_as_long() && mask_t->lo_as_long() >= 0) {
2175     return true;
2176   }
2177 
2178   return false;
2179 }
2180 
2181 // Given an expression (AndX (AddX v1 (LShiftX v2 #N)) #M)
2182 // determine if the AndX must always produce (AndX v1 #M),
2183 // because the shift (v2<<N) is bitwise disjoint from the mask #M.
2184 // The X in AndX will be I or L, depending on bt.
2185 // Specifically, the following cases fold,
2186 // when the shift value N is large enough to zero out
2187 // all the set positions of the and-mask M.
2188 //   (AndI (AddI v1 (LShiftI _ #N)) #M) => (AndI v1 #M)
2189 //   (AndL (AddI v1 (LShiftL _ #N)) #M) => (AndL v1 #M)
2190 //   (AndL (AddL v1 (ConvI2L (LShiftI _ #N))) #M) => (AndL v1 #M)
2191 // The M and N values must satisfy ((-1 << N) & M) == 0.
2192 // Because the optimization might work for a non-constant
2193 // mask M, and because the AddX operands can come in either
2194 // order, we check for every operand order.
2195 Node* MulNode::AndIL_add_shift_and_mask(PhaseGVN* phase, BasicType bt) {
2196   Node* add = in(1);
2197   Node* mask = in(2);
2198   if (add == nullptr || mask == nullptr) {
2199     return nullptr;
2200   }
2201   int addidx = 0;
2202   if (add->Opcode() == Op_Add(bt)) {
2203     addidx = 1;
2204   } else if (mask->Opcode() == Op_Add(bt)) {
2205     mask = add;
2206     addidx = 2;
2207     add = in(addidx);
2208   }
2209   if (addidx > 0) {
2210     Node* add1 = add->in(1);
2211     Node* add2 = add->in(2);
2212     if (add1 != nullptr && add2 != nullptr) {
2213       if (AndIL_shift_and_mask_is_always_zero(phase, add1, mask, bt, false)) {
2214         set_req_X(addidx, add2, phase);
2215         return this;
2216       } else if (AndIL_shift_and_mask_is_always_zero(phase, add2, mask, bt, false)) {
2217         set_req_X(addidx, add1, phase);
2218         return this;
2219       }
2220     }
2221   }
2222   return nullptr;
2223 }