1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "libadt/vectset.hpp" 29 #include "memory/allocation.inline.hpp" 30 #include "memory/resourceArea.hpp" 31 #include "opto/ad.hpp" 32 #include "opto/callGenerator.hpp" 33 #include "opto/castnode.hpp" 34 #include "opto/cfgnode.hpp" 35 #include "opto/connode.hpp" 36 #include "opto/loopnode.hpp" 37 #include "opto/machnode.hpp" 38 #include "opto/matcher.hpp" 39 #include "opto/node.hpp" 40 #include "opto/opcodes.hpp" 41 #include "opto/regmask.hpp" 42 #include "opto/rootnode.hpp" 43 #include "opto/type.hpp" 44 #include "utilities/copy.hpp" 45 #include "utilities/macros.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 #include "utilities/stringUtils.hpp" 48 49 class RegMask; 50 // #include "phase.hpp" 51 class PhaseTransform; 52 class PhaseGVN; 53 54 // Arena we are currently building Nodes in 55 const uint Node::NotAMachineReg = 0xffff0000; 56 57 #ifndef PRODUCT 58 extern int nodes_created; 59 #endif 60 #ifdef __clang__ 61 #pragma clang diagnostic push 62 #pragma GCC diagnostic ignored "-Wuninitialized" 63 #endif 64 65 #ifdef ASSERT 66 67 //-------------------------- construct_node------------------------------------ 68 // Set a breakpoint here to identify where a particular node index is built. 69 void Node::verify_construction() { 70 _debug_orig = NULL; 71 int old_debug_idx = Compile::debug_idx(); 72 int new_debug_idx = old_debug_idx + 1; 73 if (new_debug_idx > 0) { 74 // Arrange that the lowest five decimal digits of _debug_idx 75 // will repeat those of _idx. In case this is somehow pathological, 76 // we continue to assign negative numbers (!) consecutively. 77 const int mod = 100000; 78 int bump = (int)(_idx - new_debug_idx) % mod; 79 if (bump < 0) { 80 bump += mod; 81 } 82 assert(bump >= 0 && bump < mod, ""); 83 new_debug_idx += bump; 84 } 85 Compile::set_debug_idx(new_debug_idx); 86 set_debug_idx(new_debug_idx); 87 Compile* C = Compile::current(); 88 assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX"); 89 if (!C->phase_optimize_finished()) { 90 // Only check assert during parsing and optimization phase. Skip it while generating code. 91 assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit"); 92 } 93 if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) { 94 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx); 95 BREAKPOINT; 96 } 97 #if OPTO_DU_ITERATOR_ASSERT 98 _last_del = NULL; 99 _del_tick = 0; 100 #endif 101 _hash_lock = 0; 102 } 103 104 105 // #ifdef ASSERT ... 106 107 #if OPTO_DU_ITERATOR_ASSERT 108 void DUIterator_Common::sample(const Node* node) { 109 _vdui = VerifyDUIterators; 110 _node = node; 111 _outcnt = node->_outcnt; 112 _del_tick = node->_del_tick; 113 _last = NULL; 114 } 115 116 void DUIterator_Common::verify(const Node* node, bool at_end_ok) { 117 assert(_node == node, "consistent iterator source"); 118 assert(_del_tick == node->_del_tick, "no unexpected deletions allowed"); 119 } 120 121 void DUIterator_Common::verify_resync() { 122 // Ensure that the loop body has just deleted the last guy produced. 123 const Node* node = _node; 124 // Ensure that at least one copy of the last-seen edge was deleted. 125 // Note: It is OK to delete multiple copies of the last-seen edge. 126 // Unfortunately, we have no way to verify that all the deletions delete 127 // that same edge. On this point we must use the Honor System. 128 assert(node->_del_tick >= _del_tick+1, "must have deleted an edge"); 129 assert(node->_last_del == _last, "must have deleted the edge just produced"); 130 // We liked this deletion, so accept the resulting outcnt and tick. 131 _outcnt = node->_outcnt; 132 _del_tick = node->_del_tick; 133 } 134 135 void DUIterator_Common::reset(const DUIterator_Common& that) { 136 if (this == &that) return; // ignore assignment to self 137 if (!_vdui) { 138 // We need to initialize everything, overwriting garbage values. 139 _last = that._last; 140 _vdui = that._vdui; 141 } 142 // Note: It is legal (though odd) for an iterator over some node x 143 // to be reassigned to iterate over another node y. Some doubly-nested 144 // progress loops depend on being able to do this. 145 const Node* node = that._node; 146 // Re-initialize everything, except _last. 147 _node = node; 148 _outcnt = node->_outcnt; 149 _del_tick = node->_del_tick; 150 } 151 152 void DUIterator::sample(const Node* node) { 153 DUIterator_Common::sample(node); // Initialize the assertion data. 154 _refresh_tick = 0; // No refreshes have happened, as yet. 155 } 156 157 void DUIterator::verify(const Node* node, bool at_end_ok) { 158 DUIterator_Common::verify(node, at_end_ok); 159 assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range"); 160 } 161 162 void DUIterator::verify_increment() { 163 if (_refresh_tick & 1) { 164 // We have refreshed the index during this loop. 165 // Fix up _idx to meet asserts. 166 if (_idx > _outcnt) _idx = _outcnt; 167 } 168 verify(_node, true); 169 } 170 171 void DUIterator::verify_resync() { 172 // Note: We do not assert on _outcnt, because insertions are OK here. 173 DUIterator_Common::verify_resync(); 174 // Make sure we are still in sync, possibly with no more out-edges: 175 verify(_node, true); 176 } 177 178 void DUIterator::reset(const DUIterator& that) { 179 if (this == &that) return; // self assignment is always a no-op 180 assert(that._refresh_tick == 0, "assign only the result of Node::outs()"); 181 assert(that._idx == 0, "assign only the result of Node::outs()"); 182 assert(_idx == that._idx, "already assigned _idx"); 183 if (!_vdui) { 184 // We need to initialize everything, overwriting garbage values. 185 sample(that._node); 186 } else { 187 DUIterator_Common::reset(that); 188 if (_refresh_tick & 1) { 189 _refresh_tick++; // Clear the "was refreshed" flag. 190 } 191 assert(_refresh_tick < 2*100000, "DU iteration must converge quickly"); 192 } 193 } 194 195 void DUIterator::refresh() { 196 DUIterator_Common::sample(_node); // Re-fetch assertion data. 197 _refresh_tick |= 1; // Set the "was refreshed" flag. 198 } 199 200 void DUIterator::verify_finish() { 201 // If the loop has killed the node, do not require it to re-run. 202 if (_node->_outcnt == 0) _refresh_tick &= ~1; 203 // If this assert triggers, it means that a loop used refresh_out_pos 204 // to re-synch an iteration index, but the loop did not correctly 205 // re-run itself, using a "while (progress)" construct. 206 // This iterator enforces the rule that you must keep trying the loop 207 // until it "runs clean" without any need for refreshing. 208 assert(!(_refresh_tick & 1), "the loop must run once with no refreshing"); 209 } 210 211 212 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) { 213 DUIterator_Common::verify(node, at_end_ok); 214 Node** out = node->_out; 215 uint cnt = node->_outcnt; 216 assert(cnt == _outcnt, "no insertions allowed"); 217 assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range"); 218 // This last check is carefully designed to work for NO_OUT_ARRAY. 219 } 220 221 void DUIterator_Fast::verify_limit() { 222 const Node* node = _node; 223 verify(node, true); 224 assert(_outp == node->_out + node->_outcnt, "limit still correct"); 225 } 226 227 void DUIterator_Fast::verify_resync() { 228 const Node* node = _node; 229 if (_outp == node->_out + _outcnt) { 230 // Note that the limit imax, not the pointer i, gets updated with the 231 // exact count of deletions. (For the pointer it's always "--i".) 232 assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)"); 233 // This is a limit pointer, with a name like "imax". 234 // Fudge the _last field so that the common assert will be happy. 235 _last = (Node*) node->_last_del; 236 DUIterator_Common::verify_resync(); 237 } else { 238 assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)"); 239 // A normal internal pointer. 240 DUIterator_Common::verify_resync(); 241 // Make sure we are still in sync, possibly with no more out-edges: 242 verify(node, true); 243 } 244 } 245 246 void DUIterator_Fast::verify_relimit(uint n) { 247 const Node* node = _node; 248 assert((int)n > 0, "use imax -= n only with a positive count"); 249 // This must be a limit pointer, with a name like "imax". 250 assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)"); 251 // The reported number of deletions must match what the node saw. 252 assert(node->_del_tick == _del_tick + n, "must have deleted n edges"); 253 // Fudge the _last field so that the common assert will be happy. 254 _last = (Node*) node->_last_del; 255 DUIterator_Common::verify_resync(); 256 } 257 258 void DUIterator_Fast::reset(const DUIterator_Fast& that) { 259 assert(_outp == that._outp, "already assigned _outp"); 260 DUIterator_Common::reset(that); 261 } 262 263 void DUIterator_Last::verify(const Node* node, bool at_end_ok) { 264 // at_end_ok means the _outp is allowed to underflow by 1 265 _outp += at_end_ok; 266 DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc. 267 _outp -= at_end_ok; 268 assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes"); 269 } 270 271 void DUIterator_Last::verify_limit() { 272 // Do not require the limit address to be resynched. 273 //verify(node, true); 274 assert(_outp == _node->_out, "limit still correct"); 275 } 276 277 void DUIterator_Last::verify_step(uint num_edges) { 278 assert((int)num_edges > 0, "need non-zero edge count for loop progress"); 279 _outcnt -= num_edges; 280 _del_tick += num_edges; 281 // Make sure we are still in sync, possibly with no more out-edges: 282 const Node* node = _node; 283 verify(node, true); 284 assert(node->_last_del == _last, "must have deleted the edge just produced"); 285 } 286 287 #endif //OPTO_DU_ITERATOR_ASSERT 288 289 290 #endif //ASSERT 291 292 293 // This constant used to initialize _out may be any non-null value. 294 // The value NULL is reserved for the top node only. 295 #define NO_OUT_ARRAY ((Node**)-1) 296 297 // Out-of-line code from node constructors. 298 // Executed only when extra debug info. is being passed around. 299 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) { 300 C->set_node_notes_at(idx, nn); 301 } 302 303 // Shared initialization code. 304 inline int Node::Init(int req) { 305 Compile* C = Compile::current(); 306 int idx = C->next_unique(); 307 NOT_PRODUCT(_igv_idx = C->next_igv_idx()); 308 309 // Allocate memory for the necessary number of edges. 310 if (req > 0) { 311 // Allocate space for _in array to have double alignment. 312 _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*)))); 313 } 314 // If there are default notes floating around, capture them: 315 Node_Notes* nn = C->default_node_notes(); 316 if (nn != NULL) init_node_notes(C, idx, nn); 317 318 // Note: At this point, C is dead, 319 // and we begin to initialize the new Node. 320 321 _cnt = _max = req; 322 _outcnt = _outmax = 0; 323 _class_id = Class_Node; 324 _flags = 0; 325 _out = NO_OUT_ARRAY; 326 return idx; 327 } 328 329 //------------------------------Node------------------------------------------- 330 // Create a Node, with a given number of required edges. 331 Node::Node(uint req) 332 : _idx(Init(req)) 333 #ifdef ASSERT 334 , _parse_idx(_idx) 335 #endif 336 { 337 assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" ); 338 debug_only( verify_construction() ); 339 NOT_PRODUCT(nodes_created++); 340 if (req == 0) { 341 _in = NULL; 342 } else { 343 Node** to = _in; 344 for(uint i = 0; i < req; i++) { 345 to[i] = NULL; 346 } 347 } 348 } 349 350 //------------------------------Node------------------------------------------- 351 Node::Node(Node *n0) 352 : _idx(Init(1)) 353 #ifdef ASSERT 354 , _parse_idx(_idx) 355 #endif 356 { 357 debug_only( verify_construction() ); 358 NOT_PRODUCT(nodes_created++); 359 assert( is_not_dead(n0), "can not use dead node"); 360 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 361 } 362 363 //------------------------------Node------------------------------------------- 364 Node::Node(Node *n0, Node *n1) 365 : _idx(Init(2)) 366 #ifdef ASSERT 367 , _parse_idx(_idx) 368 #endif 369 { 370 debug_only( verify_construction() ); 371 NOT_PRODUCT(nodes_created++); 372 assert( is_not_dead(n0), "can not use dead node"); 373 assert( is_not_dead(n1), "can not use dead node"); 374 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 375 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 376 } 377 378 //------------------------------Node------------------------------------------- 379 Node::Node(Node *n0, Node *n1, Node *n2) 380 : _idx(Init(3)) 381 #ifdef ASSERT 382 , _parse_idx(_idx) 383 #endif 384 { 385 debug_only( verify_construction() ); 386 NOT_PRODUCT(nodes_created++); 387 assert( is_not_dead(n0), "can not use dead node"); 388 assert( is_not_dead(n1), "can not use dead node"); 389 assert( is_not_dead(n2), "can not use dead node"); 390 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 391 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 392 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); 393 } 394 395 //------------------------------Node------------------------------------------- 396 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3) 397 : _idx(Init(4)) 398 #ifdef ASSERT 399 , _parse_idx(_idx) 400 #endif 401 { 402 debug_only( verify_construction() ); 403 NOT_PRODUCT(nodes_created++); 404 assert( is_not_dead(n0), "can not use dead node"); 405 assert( is_not_dead(n1), "can not use dead node"); 406 assert( is_not_dead(n2), "can not use dead node"); 407 assert( is_not_dead(n3), "can not use dead node"); 408 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 409 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 410 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); 411 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); 412 } 413 414 //------------------------------Node------------------------------------------- 415 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4) 416 : _idx(Init(5)) 417 #ifdef ASSERT 418 , _parse_idx(_idx) 419 #endif 420 { 421 debug_only( verify_construction() ); 422 NOT_PRODUCT(nodes_created++); 423 assert( is_not_dead(n0), "can not use dead node"); 424 assert( is_not_dead(n1), "can not use dead node"); 425 assert( is_not_dead(n2), "can not use dead node"); 426 assert( is_not_dead(n3), "can not use dead node"); 427 assert( is_not_dead(n4), "can not use dead node"); 428 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 429 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 430 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); 431 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); 432 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this); 433 } 434 435 //------------------------------Node------------------------------------------- 436 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 437 Node *n4, Node *n5) 438 : _idx(Init(6)) 439 #ifdef ASSERT 440 , _parse_idx(_idx) 441 #endif 442 { 443 debug_only( verify_construction() ); 444 NOT_PRODUCT(nodes_created++); 445 assert( is_not_dead(n0), "can not use dead node"); 446 assert( is_not_dead(n1), "can not use dead node"); 447 assert( is_not_dead(n2), "can not use dead node"); 448 assert( is_not_dead(n3), "can not use dead node"); 449 assert( is_not_dead(n4), "can not use dead node"); 450 assert( is_not_dead(n5), "can not use dead node"); 451 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 452 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 453 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); 454 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); 455 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this); 456 _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this); 457 } 458 459 //------------------------------Node------------------------------------------- 460 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 461 Node *n4, Node *n5, Node *n6) 462 : _idx(Init(7)) 463 #ifdef ASSERT 464 , _parse_idx(_idx) 465 #endif 466 { 467 debug_only( verify_construction() ); 468 NOT_PRODUCT(nodes_created++); 469 assert( is_not_dead(n0), "can not use dead node"); 470 assert( is_not_dead(n1), "can not use dead node"); 471 assert( is_not_dead(n2), "can not use dead node"); 472 assert( is_not_dead(n3), "can not use dead node"); 473 assert( is_not_dead(n4), "can not use dead node"); 474 assert( is_not_dead(n5), "can not use dead node"); 475 assert( is_not_dead(n6), "can not use dead node"); 476 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 477 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 478 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); 479 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); 480 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this); 481 _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this); 482 _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this); 483 } 484 485 #ifdef __clang__ 486 #pragma clang diagnostic pop 487 #endif 488 489 490 //------------------------------clone------------------------------------------ 491 // Clone a Node. 492 Node *Node::clone() const { 493 Compile* C = Compile::current(); 494 uint s = size_of(); // Size of inherited Node 495 Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*)); 496 Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s); 497 // Set the new input pointer array 498 n->_in = (Node**)(((char*)n)+s); 499 // Cannot share the old output pointer array, so kill it 500 n->_out = NO_OUT_ARRAY; 501 // And reset the counters to 0 502 n->_outcnt = 0; 503 n->_outmax = 0; 504 // Unlock this guy, since he is not in any hash table. 505 debug_only(n->_hash_lock = 0); 506 // Walk the old node's input list to duplicate its edges 507 uint i; 508 for( i = 0; i < len(); i++ ) { 509 Node *x = in(i); 510 n->_in[i] = x; 511 if (x != NULL) x->add_out(n); 512 } 513 if (is_macro()) { 514 C->add_macro_node(n); 515 } 516 if (is_expensive()) { 517 C->add_expensive_node(n); 518 } 519 if (for_post_loop_opts_igvn()) { 520 // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically. 521 // If it is applicable, it will happen anyway when the cloned node is registered with IGVN. 522 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 523 } 524 if (n->is_reduction()) { 525 // Do not copy reduction information. This must be explicitly set by the calling code. 526 n->remove_flag(Node::Flag_is_reduction); 527 } 528 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 529 bs->register_potential_barrier_node(n); 530 531 n->set_idx(C->next_unique()); // Get new unique index as well 532 NOT_PRODUCT(n->_igv_idx = C->next_igv_idx()); 533 debug_only( n->verify_construction() ); 534 NOT_PRODUCT(nodes_created++); 535 // Do not patch over the debug_idx of a clone, because it makes it 536 // impossible to break on the clone's moment of creation. 537 //debug_only( n->set_debug_idx( debug_idx() ) ); 538 539 C->copy_node_notes_to(n, (Node*) this); 540 541 // MachNode clone 542 uint nopnds; 543 if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) { 544 MachNode *mach = n->as_Mach(); 545 MachNode *mthis = this->as_Mach(); 546 // Get address of _opnd_array. 547 // It should be the same offset since it is the clone of this node. 548 MachOper **from = mthis->_opnds; 549 MachOper **to = (MachOper **)((size_t)(&mach->_opnds) + 550 pointer_delta((const void*)from, 551 (const void*)(&mthis->_opnds), 1)); 552 mach->_opnds = to; 553 for ( uint i = 0; i < nopnds; ++i ) { 554 to[i] = from[i]->clone(); 555 } 556 } 557 if (n->is_Call()) { 558 // CallGenerator is linked to the original node. 559 CallGenerator* cg = n->as_Call()->generator(); 560 if (cg != NULL) { 561 CallGenerator* cloned_cg = cg->with_call_node(n->as_Call()); 562 n->as_Call()->set_generator(cloned_cg); 563 564 C->print_inlining_assert_ready(); 565 C->print_inlining_move_to(cg); 566 C->print_inlining_update(cloned_cg); 567 } 568 } 569 if (n->is_SafePoint()) { 570 // Scalar replacement and macro expansion might modify the JVMState. 571 // Clone it to make sure it's not shared between SafePointNodes. 572 n->as_SafePoint()->clone_jvms(C); 573 n->as_SafePoint()->clone_replaced_nodes(); 574 } 575 Compile::current()->record_modified_node(n); 576 return n; // Return the clone 577 } 578 579 //---------------------------setup_is_top-------------------------------------- 580 // Call this when changing the top node, to reassert the invariants 581 // required by Node::is_top. See Compile::set_cached_top_node. 582 void Node::setup_is_top() { 583 if (this == (Node*)Compile::current()->top()) { 584 // This node has just become top. Kill its out array. 585 _outcnt = _outmax = 0; 586 _out = NULL; // marker value for top 587 assert(is_top(), "must be top"); 588 } else { 589 if (_out == NULL) _out = NO_OUT_ARRAY; 590 assert(!is_top(), "must not be top"); 591 } 592 } 593 594 //------------------------------~Node------------------------------------------ 595 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 596 void Node::destruct(PhaseValues* phase) { 597 Compile* compile = (phase != NULL) ? phase->C : Compile::current(); 598 if (phase != NULL && phase->is_IterGVN()) { 599 phase->is_IterGVN()->_worklist.remove(this); 600 } 601 // If this is the most recently created node, reclaim its index. Otherwise, 602 // record the node as dead to keep liveness information accurate. 603 if ((uint)_idx+1 == compile->unique()) { 604 compile->set_unique(compile->unique()-1); 605 } else { 606 compile->record_dead_node(_idx); 607 } 608 // Clear debug info: 609 Node_Notes* nn = compile->node_notes_at(_idx); 610 if (nn != NULL) nn->clear(); 611 // Walk the input array, freeing the corresponding output edges 612 _cnt = _max; // forget req/prec distinction 613 uint i; 614 for( i = 0; i < _max; i++ ) { 615 set_req(i, NULL); 616 //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim"); 617 } 618 assert(outcnt() == 0, "deleting a node must not leave a dangling use"); 619 // See if the input array was allocated just prior to the object 620 int edge_size = _max*sizeof(void*); 621 int out_edge_size = _outmax*sizeof(void*); 622 char *edge_end = ((char*)_in) + edge_size; 623 char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out); 624 int node_size = size_of(); 625 626 // Free the output edge array 627 if (out_edge_size > 0) { 628 compile->node_arena()->Afree(out_array, out_edge_size); 629 } 630 631 // Free the input edge array and the node itself 632 if( edge_end == (char*)this ) { 633 // It was; free the input array and object all in one hit 634 #ifndef ASSERT 635 compile->node_arena()->Afree(_in,edge_size+node_size); 636 #endif 637 } else { 638 // Free just the input array 639 compile->node_arena()->Afree(_in,edge_size); 640 641 // Free just the object 642 #ifndef ASSERT 643 compile->node_arena()->Afree(this,node_size); 644 #endif 645 } 646 if (is_macro()) { 647 compile->remove_macro_node(this); 648 } 649 if (is_expensive()) { 650 compile->remove_expensive_node(this); 651 } 652 if (Opcode() == Op_Opaque4) { 653 compile->remove_skeleton_predicate_opaq(this); 654 } 655 if (for_post_loop_opts_igvn()) { 656 compile->remove_from_post_loop_opts_igvn(this); 657 } 658 659 if (is_SafePoint()) { 660 as_SafePoint()->delete_replaced_nodes(); 661 662 if (is_CallStaticJava()) { 663 compile->remove_unstable_if_trap(as_CallStaticJava(), false); 664 } 665 } 666 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 667 bs->unregister_potential_barrier_node(this); 668 #ifdef ASSERT 669 // We will not actually delete the storage, but we'll make the node unusable. 670 *(address*)this = badAddress; // smash the C++ vtbl, probably 671 _in = _out = (Node**) badAddress; 672 _max = _cnt = _outmax = _outcnt = 0; 673 compile->remove_modified_node(this); 674 #endif 675 } 676 677 //------------------------------grow------------------------------------------- 678 // Grow the input array, making space for more edges 679 void Node::grow(uint len) { 680 Arena* arena = Compile::current()->node_arena(); 681 uint new_max = _max; 682 if( new_max == 0 ) { 683 _max = 4; 684 _in = (Node**)arena->Amalloc(4*sizeof(Node*)); 685 Node** to = _in; 686 to[0] = NULL; 687 to[1] = NULL; 688 to[2] = NULL; 689 to[3] = NULL; 690 return; 691 } 692 new_max = next_power_of_2(len); 693 // Trimming to limit allows a uint8 to handle up to 255 edges. 694 // Previously I was using only powers-of-2 which peaked at 128 edges. 695 //if( new_max >= limit ) new_max = limit-1; 696 _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*)); 697 Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space 698 _max = new_max; // Record new max length 699 // This assertion makes sure that Node::_max is wide enough to 700 // represent the numerical value of new_max. 701 assert(_max == new_max && _max > len, "int width of _max is too small"); 702 } 703 704 //-----------------------------out_grow---------------------------------------- 705 // Grow the input array, making space for more edges 706 void Node::out_grow( uint len ) { 707 assert(!is_top(), "cannot grow a top node's out array"); 708 Arena* arena = Compile::current()->node_arena(); 709 uint new_max = _outmax; 710 if( new_max == 0 ) { 711 _outmax = 4; 712 _out = (Node **)arena->Amalloc(4*sizeof(Node*)); 713 return; 714 } 715 new_max = next_power_of_2(len); 716 // Trimming to limit allows a uint8 to handle up to 255 edges. 717 // Previously I was using only powers-of-2 which peaked at 128 edges. 718 //if( new_max >= limit ) new_max = limit-1; 719 assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value"); 720 _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*)); 721 //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space 722 _outmax = new_max; // Record new max length 723 // This assertion makes sure that Node::_max is wide enough to 724 // represent the numerical value of new_max. 725 assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small"); 726 } 727 728 #ifdef ASSERT 729 //------------------------------is_dead---------------------------------------- 730 bool Node::is_dead() const { 731 // Mach and pinch point nodes may look like dead. 732 if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) ) 733 return false; 734 for( uint i = 0; i < _max; i++ ) 735 if( _in[i] != NULL ) 736 return false; 737 return true; 738 } 739 740 bool Node::is_reachable_from_root() const { 741 ResourceMark rm; 742 Unique_Node_List wq; 743 wq.push((Node*)this); 744 RootNode* root = Compile::current()->root(); 745 for (uint i = 0; i < wq.size(); i++) { 746 Node* m = wq.at(i); 747 if (m == root) { 748 return true; 749 } 750 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 751 Node* u = m->fast_out(j); 752 wq.push(u); 753 } 754 } 755 return false; 756 } 757 #endif 758 759 //------------------------------is_unreachable--------------------------------- 760 bool Node::is_unreachable(PhaseIterGVN &igvn) const { 761 assert(!is_Mach(), "doesn't work with MachNodes"); 762 return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != NULL && in(0)->is_top()); 763 } 764 765 //------------------------------add_req---------------------------------------- 766 // Add a new required input at the end 767 void Node::add_req( Node *n ) { 768 assert( is_not_dead(n), "can not use dead node"); 769 770 // Look to see if I can move precedence down one without reallocating 771 if( (_cnt >= _max) || (in(_max-1) != NULL) ) 772 grow( _max+1 ); 773 774 // Find a precedence edge to move 775 if( in(_cnt) != NULL ) { // Next precedence edge is busy? 776 uint i; 777 for( i=_cnt; i<_max; i++ ) 778 if( in(i) == NULL ) // Find the NULL at end of prec edge list 779 break; // There must be one, since we grew the array 780 _in[i] = in(_cnt); // Move prec over, making space for req edge 781 } 782 _in[_cnt++] = n; // Stuff over old prec edge 783 if (n != NULL) n->add_out((Node *)this); 784 Compile::current()->record_modified_node(this); 785 } 786 787 //---------------------------add_req_batch------------------------------------- 788 // Add a new required input at the end 789 void Node::add_req_batch( Node *n, uint m ) { 790 assert( is_not_dead(n), "can not use dead node"); 791 // check various edge cases 792 if ((int)m <= 1) { 793 assert((int)m >= 0, "oob"); 794 if (m != 0) add_req(n); 795 return; 796 } 797 798 // Look to see if I can move precedence down one without reallocating 799 if( (_cnt+m) > _max || _in[_max-m] ) 800 grow( _max+m ); 801 802 // Find a precedence edge to move 803 if( _in[_cnt] != NULL ) { // Next precedence edge is busy? 804 uint i; 805 for( i=_cnt; i<_max; i++ ) 806 if( _in[i] == NULL ) // Find the NULL at end of prec edge list 807 break; // There must be one, since we grew the array 808 // Slide all the precs over by m positions (assume #prec << m). 809 Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*))); 810 } 811 812 // Stuff over the old prec edges 813 for(uint i=0; i<m; i++ ) { 814 _in[_cnt++] = n; 815 } 816 817 // Insert multiple out edges on the node. 818 if (n != NULL && !n->is_top()) { 819 for(uint i=0; i<m; i++ ) { 820 n->add_out((Node *)this); 821 } 822 } 823 Compile::current()->record_modified_node(this); 824 } 825 826 //------------------------------del_req---------------------------------------- 827 // Delete the required edge and compact the edge array 828 void Node::del_req( uint idx ) { 829 assert( idx < _cnt, "oob"); 830 assert( !VerifyHashTableKeys || _hash_lock == 0, 831 "remove node from hash table before modifying it"); 832 // First remove corresponding def-use edge 833 Node *n = in(idx); 834 if (n != NULL) n->del_out((Node *)this); 835 _in[idx] = in(--_cnt); // Compact the array 836 // Avoid spec violation: Gap in prec edges. 837 close_prec_gap_at(_cnt); 838 Compile::current()->record_modified_node(this); 839 } 840 841 //------------------------------del_req_ordered-------------------------------- 842 // Delete the required edge and compact the edge array with preserved order 843 void Node::del_req_ordered( uint idx ) { 844 assert( idx < _cnt, "oob"); 845 assert( !VerifyHashTableKeys || _hash_lock == 0, 846 "remove node from hash table before modifying it"); 847 // First remove corresponding def-use edge 848 Node *n = in(idx); 849 if (n != NULL) n->del_out((Node *)this); 850 if (idx < --_cnt) { // Not last edge ? 851 Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*))); 852 } 853 // Avoid spec violation: Gap in prec edges. 854 close_prec_gap_at(_cnt); 855 Compile::current()->record_modified_node(this); 856 } 857 858 //------------------------------ins_req---------------------------------------- 859 // Insert a new required input at the end 860 void Node::ins_req( uint idx, Node *n ) { 861 assert( is_not_dead(n), "can not use dead node"); 862 add_req(NULL); // Make space 863 assert( idx < _max, "Must have allocated enough space"); 864 // Slide over 865 if(_cnt-idx-1 > 0) { 866 Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*))); 867 } 868 _in[idx] = n; // Stuff over old required edge 869 if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge 870 Compile::current()->record_modified_node(this); 871 } 872 873 //-----------------------------find_edge--------------------------------------- 874 int Node::find_edge(Node* n) { 875 for (uint i = 0; i < len(); i++) { 876 if (_in[i] == n) return i; 877 } 878 return -1; 879 } 880 881 //----------------------------replace_edge------------------------------------- 882 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) { 883 if (old == neww) return 0; // nothing to do 884 uint nrep = 0; 885 for (uint i = 0; i < len(); i++) { 886 if (in(i) == old) { 887 if (i < req()) { 888 if (gvn != NULL) { 889 set_req_X(i, neww, gvn); 890 } else { 891 set_req(i, neww); 892 } 893 } else { 894 assert(gvn == NULL || gvn->is_IterGVN() == NULL, "no support for igvn here"); 895 assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx); 896 set_prec(i, neww); 897 } 898 nrep++; 899 } 900 } 901 return nrep; 902 } 903 904 /** 905 * Replace input edges in the range pointing to 'old' node. 906 */ 907 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) { 908 if (old == neww) return 0; // nothing to do 909 uint nrep = 0; 910 for (int i = start; i < end; i++) { 911 if (in(i) == old) { 912 set_req_X(i, neww, gvn); 913 nrep++; 914 } 915 } 916 return nrep; 917 } 918 919 //-------------------------disconnect_inputs----------------------------------- 920 // NULL out all inputs to eliminate incoming Def-Use edges. 921 void Node::disconnect_inputs(Compile* C) { 922 // the layout of Node::_in 923 // r: a required input, null is allowed 924 // p: a precedence, null values are all at the end 925 // ----------------------------------- 926 // |r|...|r|p|...|p|null|...|null| 927 // | | 928 // req() len() 929 // ----------------------------------- 930 for (uint i = 0; i < req(); ++i) { 931 if (in(i) != nullptr) { 932 set_req(i, nullptr); 933 } 934 } 935 936 // Remove precedence edges if any exist 937 // Note: Safepoints may have precedence edges, even during parsing 938 for (uint i = len(); i > req(); ) { 939 rm_prec(--i); // no-op if _in[i] is nullptr 940 } 941 942 #ifdef ASSERT 943 // sanity check 944 for (uint i = 0; i < len(); ++i) { 945 assert(_in[i] == nullptr, "disconnect_inputs() failed!"); 946 } 947 #endif 948 949 // Node::destruct requires all out edges be deleted first 950 // debug_only(destruct();) // no reuse benefit expected 951 C->record_dead_node(_idx); 952 } 953 954 //-----------------------------uncast--------------------------------------- 955 // %%% Temporary, until we sort out CheckCastPP vs. CastPP. 956 // Strip away casting. (It is depth-limited.) 957 // Optionally, keep casts with dependencies. 958 Node* Node::uncast(bool keep_deps) const { 959 // Should be inline: 960 //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this; 961 if (is_ConstraintCast()) { 962 return uncast_helper(this, keep_deps); 963 } else { 964 return (Node*) this; 965 } 966 } 967 968 // Find out of current node that matches opcode. 969 Node* Node::find_out_with(int opcode) { 970 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 971 Node* use = fast_out(i); 972 if (use->Opcode() == opcode) { 973 return use; 974 } 975 } 976 return NULL; 977 } 978 979 // Return true if the current node has an out that matches opcode. 980 bool Node::has_out_with(int opcode) { 981 return (find_out_with(opcode) != NULL); 982 } 983 984 // Return true if the current node has an out that matches any of the opcodes. 985 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) { 986 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 987 int opcode = fast_out(i)->Opcode(); 988 if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) { 989 return true; 990 } 991 } 992 return false; 993 } 994 995 996 //---------------------------uncast_helper------------------------------------- 997 Node* Node::uncast_helper(const Node* p, bool keep_deps) { 998 #ifdef ASSERT 999 uint depth_count = 0; 1000 const Node* orig_p = p; 1001 #endif 1002 1003 while (true) { 1004 #ifdef ASSERT 1005 if (depth_count >= K) { 1006 orig_p->dump(4); 1007 if (p != orig_p) 1008 p->dump(1); 1009 } 1010 assert(depth_count++ < K, "infinite loop in Node::uncast_helper"); 1011 #endif 1012 if (p == NULL || p->req() != 2) { 1013 break; 1014 } else if (p->is_ConstraintCast()) { 1015 if (keep_deps && p->as_ConstraintCast()->carry_dependency()) { 1016 break; // stop at casts with dependencies 1017 } 1018 p = p->in(1); 1019 } else { 1020 break; 1021 } 1022 } 1023 return (Node*) p; 1024 } 1025 1026 //------------------------------add_prec--------------------------------------- 1027 // Add a new precedence input. Precedence inputs are unordered, with 1028 // duplicates removed and NULLs packed down at the end. 1029 void Node::add_prec( Node *n ) { 1030 assert( is_not_dead(n), "can not use dead node"); 1031 1032 // Check for NULL at end 1033 if( _cnt >= _max || in(_max-1) ) 1034 grow( _max+1 ); 1035 1036 // Find a precedence edge to move 1037 uint i = _cnt; 1038 while( in(i) != NULL ) { 1039 if (in(i) == n) return; // Avoid spec violation: duplicated prec edge. 1040 i++; 1041 } 1042 _in[i] = n; // Stuff prec edge over NULL 1043 if ( n != NULL) n->add_out((Node *)this); // Add mirror edge 1044 1045 #ifdef ASSERT 1046 while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); } 1047 #endif 1048 Compile::current()->record_modified_node(this); 1049 } 1050 1051 //------------------------------rm_prec---------------------------------------- 1052 // Remove a precedence input. Precedence inputs are unordered, with 1053 // duplicates removed and NULLs packed down at the end. 1054 void Node::rm_prec( uint j ) { 1055 assert(j < _max, "oob: i=%d, _max=%d", j, _max); 1056 assert(j >= _cnt, "not a precedence edge"); 1057 if (_in[j] == NULL) return; // Avoid spec violation: Gap in prec edges. 1058 _in[j]->del_out((Node *)this); 1059 close_prec_gap_at(j); 1060 Compile::current()->record_modified_node(this); 1061 } 1062 1063 //------------------------------size_of---------------------------------------- 1064 uint Node::size_of() const { return sizeof(*this); } 1065 1066 //------------------------------ideal_reg-------------------------------------- 1067 uint Node::ideal_reg() const { return 0; } 1068 1069 //------------------------------jvms------------------------------------------- 1070 JVMState* Node::jvms() const { return NULL; } 1071 1072 #ifdef ASSERT 1073 //------------------------------jvms------------------------------------------- 1074 bool Node::verify_jvms(const JVMState* using_jvms) const { 1075 for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) { 1076 if (jvms == using_jvms) return true; 1077 } 1078 return false; 1079 } 1080 1081 //------------------------------init_NodeProperty------------------------------ 1082 void Node::init_NodeProperty() { 1083 assert(_max_classes <= max_juint, "too many NodeProperty classes"); 1084 assert(max_flags() <= max_juint, "too many NodeProperty flags"); 1085 } 1086 1087 //-----------------------------max_flags--------------------------------------- 1088 juint Node::max_flags() { 1089 return (PD::_last_flag << 1) - 1; // allow flags combination 1090 } 1091 #endif 1092 1093 //------------------------------format----------------------------------------- 1094 // Print as assembly 1095 void Node::format( PhaseRegAlloc *, outputStream *st ) const {} 1096 //------------------------------emit------------------------------------------- 1097 // Emit bytes starting at parameter 'ptr'. 1098 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {} 1099 //------------------------------size------------------------------------------- 1100 // Size of instruction in bytes 1101 uint Node::size(PhaseRegAlloc *ra_) const { return 0; } 1102 1103 //------------------------------CFG Construction------------------------------- 1104 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root, 1105 // Goto and Return. 1106 const Node *Node::is_block_proj() const { return 0; } 1107 1108 // Minimum guaranteed type 1109 const Type *Node::bottom_type() const { return Type::BOTTOM; } 1110 1111 1112 //------------------------------raise_bottom_type------------------------------ 1113 // Get the worst-case Type output for this Node. 1114 void Node::raise_bottom_type(const Type* new_type) { 1115 if (is_Type()) { 1116 TypeNode *n = this->as_Type(); 1117 if (VerifyAliases) { 1118 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1119 } 1120 n->set_type(new_type); 1121 } else if (is_Load()) { 1122 LoadNode *n = this->as_Load(); 1123 if (VerifyAliases) { 1124 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1125 } 1126 n->set_type(new_type); 1127 } 1128 } 1129 1130 //------------------------------Identity--------------------------------------- 1131 // Return a node that the given node is equivalent to. 1132 Node* Node::Identity(PhaseGVN* phase) { 1133 return this; // Default to no identities 1134 } 1135 1136 //------------------------------Value------------------------------------------ 1137 // Compute a new Type for a node using the Type of the inputs. 1138 const Type* Node::Value(PhaseGVN* phase) const { 1139 return bottom_type(); // Default to worst-case Type 1140 } 1141 1142 //------------------------------Ideal------------------------------------------ 1143 // 1144 // 'Idealize' the graph rooted at this Node. 1145 // 1146 // In order to be efficient and flexible there are some subtle invariants 1147 // these Ideal calls need to hold. Running with '+VerifyIterativeGVN' checks 1148 // these invariants, although its too slow to have on by default. If you are 1149 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN! 1150 // 1151 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this' 1152 // pointer. If ANY change is made, it must return the root of the reshaped 1153 // graph - even if the root is the same Node. Example: swapping the inputs 1154 // to an AddINode gives the same answer and same root, but you still have to 1155 // return the 'this' pointer instead of NULL. 1156 // 1157 // You cannot return an OLD Node, except for the 'this' pointer. Use the 1158 // Identity call to return an old Node; basically if Identity can find 1159 // another Node have the Ideal call make no change and return NULL. 1160 // Example: AddINode::Ideal must check for add of zero; in this case it 1161 // returns NULL instead of doing any graph reshaping. 1162 // 1163 // You cannot modify any old Nodes except for the 'this' pointer. Due to 1164 // sharing there may be other users of the old Nodes relying on their current 1165 // semantics. Modifying them will break the other users. 1166 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for 1167 // "X+3" unchanged in case it is shared. 1168 // 1169 // If you modify the 'this' pointer's inputs, you should use 1170 // 'set_req'. If you are making a new Node (either as the new root or 1171 // some new internal piece) you may use 'init_req' to set the initial 1172 // value. You can make a new Node with either 'new' or 'clone'. In 1173 // either case, def-use info is correctly maintained. 1174 // 1175 // Example: reshape "(X+3)+4" into "X+7": 1176 // set_req(1, in(1)->in(1)); 1177 // set_req(2, phase->intcon(7)); 1178 // return this; 1179 // Example: reshape "X*4" into "X<<2" 1180 // return new LShiftINode(in(1), phase->intcon(2)); 1181 // 1182 // You must call 'phase->transform(X)' on any new Nodes X you make, except 1183 // for the returned root node. Example: reshape "X*31" with "(X<<5)-X". 1184 // Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5))); 1185 // return new AddINode(shift, in(1)); 1186 // 1187 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'. 1188 // These forms are faster than 'phase->transform(new ConNode())' and Do 1189 // The Right Thing with def-use info. 1190 // 1191 // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped 1192 // graph uses the 'this' Node it must be the root. If you want a Node with 1193 // the same Opcode as the 'this' pointer use 'clone'. 1194 // 1195 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) { 1196 return NULL; // Default to being Ideal already 1197 } 1198 1199 // Some nodes have specific Ideal subgraph transformations only if they are 1200 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1201 // for the transformations to happen. 1202 bool Node::has_special_unique_user() const { 1203 assert(outcnt() == 1, "match only for unique out"); 1204 Node* n = unique_out(); 1205 int op = Opcode(); 1206 if (this->is_Store()) { 1207 // Condition for back-to-back stores folding. 1208 return n->Opcode() == op && n->in(MemNode::Memory) == this; 1209 } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) { 1210 // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input 1211 return n->Opcode() == Op_MemBarAcquire; 1212 } else if (op == Op_AddL) { 1213 // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) 1214 return n->Opcode() == Op_ConvL2I && n->in(1) == this; 1215 } else if (op == Op_SubI || op == Op_SubL) { 1216 // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y) 1217 return n->Opcode() == op && n->in(2) == this; 1218 } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) { 1219 // See IfProjNode::Identity() 1220 return true; 1221 } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) { 1222 // See IfNode::fold_compares 1223 return true; 1224 } else { 1225 return false; 1226 } 1227 }; 1228 1229 //--------------------------find_exact_control--------------------------------- 1230 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1231 Node* Node::find_exact_control(Node* ctrl) { 1232 if (ctrl == NULL && this->is_Region()) 1233 ctrl = this->as_Region()->is_copy(); 1234 1235 if (ctrl != NULL && ctrl->is_CatchProj()) { 1236 if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index) 1237 ctrl = ctrl->in(0); 1238 if (ctrl != NULL && !ctrl->is_top()) 1239 ctrl = ctrl->in(0); 1240 } 1241 1242 if (ctrl != NULL && ctrl->is_Proj()) 1243 ctrl = ctrl->in(0); 1244 1245 return ctrl; 1246 } 1247 1248 //--------------------------dominates------------------------------------------ 1249 // Helper function for MemNode::all_controls_dominate(). 1250 // Check if 'this' control node dominates or equal to 'sub' control node. 1251 // We already know that if any path back to Root or Start reaches 'this', 1252 // then all paths so, so this is a simple search for one example, 1253 // not an exhaustive search for a counterexample. 1254 bool Node::dominates(Node* sub, Node_List &nlist) { 1255 assert(this->is_CFG(), "expecting control"); 1256 assert(sub != NULL && sub->is_CFG(), "expecting control"); 1257 1258 // detect dead cycle without regions 1259 int iterations_without_region_limit = DominatorSearchLimit; 1260 1261 Node* orig_sub = sub; 1262 Node* dom = this; 1263 bool met_dom = false; 1264 nlist.clear(); 1265 1266 // Walk 'sub' backward up the chain to 'dom', watching for regions. 1267 // After seeing 'dom', continue up to Root or Start. 1268 // If we hit a region (backward split point), it may be a loop head. 1269 // Keep going through one of the region's inputs. If we reach the 1270 // same region again, go through a different input. Eventually we 1271 // will either exit through the loop head, or give up. 1272 // (If we get confused, break out and return a conservative 'false'.) 1273 while (sub != NULL) { 1274 if (sub->is_top()) break; // Conservative answer for dead code. 1275 if (sub == dom) { 1276 if (nlist.size() == 0) { 1277 // No Region nodes except loops were visited before and the EntryControl 1278 // path was taken for loops: it did not walk in a cycle. 1279 return true; 1280 } else if (met_dom) { 1281 break; // already met before: walk in a cycle 1282 } else { 1283 // Region nodes were visited. Continue walk up to Start or Root 1284 // to make sure that it did not walk in a cycle. 1285 met_dom = true; // first time meet 1286 iterations_without_region_limit = DominatorSearchLimit; // Reset 1287 } 1288 } 1289 if (sub->is_Start() || sub->is_Root()) { 1290 // Success if we met 'dom' along a path to Start or Root. 1291 // We assume there are no alternative paths that avoid 'dom'. 1292 // (This assumption is up to the caller to ensure!) 1293 return met_dom; 1294 } 1295 Node* up = sub->in(0); 1296 // Normalize simple pass-through regions and projections: 1297 up = sub->find_exact_control(up); 1298 // If sub == up, we found a self-loop. Try to push past it. 1299 if (sub == up && sub->is_Loop()) { 1300 // Take loop entry path on the way up to 'dom'. 1301 up = sub->in(1); // in(LoopNode::EntryControl); 1302 } else if (sub == up && sub->is_Region() && sub->req() == 2) { 1303 // Take in(1) path on the way up to 'dom' for regions with only one input 1304 up = sub->in(1); 1305 } else if (sub == up && sub->is_Region() && sub->req() == 3) { 1306 // Try both paths for Regions with 2 input paths (it may be a loop head). 1307 // It could give conservative 'false' answer without information 1308 // which region's input is the entry path. 1309 iterations_without_region_limit = DominatorSearchLimit; // Reset 1310 1311 bool region_was_visited_before = false; 1312 // Was this Region node visited before? 1313 // If so, we have reached it because we accidentally took a 1314 // loop-back edge from 'sub' back into the body of the loop, 1315 // and worked our way up again to the loop header 'sub'. 1316 // So, take the first unexplored path on the way up to 'dom'. 1317 for (int j = nlist.size() - 1; j >= 0; j--) { 1318 intptr_t ni = (intptr_t)nlist.at(j); 1319 Node* visited = (Node*)(ni & ~1); 1320 bool visited_twice_already = ((ni & 1) != 0); 1321 if (visited == sub) { 1322 if (visited_twice_already) { 1323 // Visited 2 paths, but still stuck in loop body. Give up. 1324 return false; 1325 } 1326 // The Region node was visited before only once. 1327 // (We will repush with the low bit set, below.) 1328 nlist.remove(j); 1329 // We will find a new edge and re-insert. 1330 region_was_visited_before = true; 1331 break; 1332 } 1333 } 1334 1335 // Find an incoming edge which has not been seen yet; walk through it. 1336 assert(up == sub, ""); 1337 uint skip = region_was_visited_before ? 1 : 0; 1338 for (uint i = 1; i < sub->req(); i++) { 1339 Node* in = sub->in(i); 1340 if (in != NULL && !in->is_top() && in != sub) { 1341 if (skip == 0) { 1342 up = in; 1343 break; 1344 } 1345 --skip; // skip this nontrivial input 1346 } 1347 } 1348 1349 // Set 0 bit to indicate that both paths were taken. 1350 nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0))); 1351 } 1352 1353 if (up == sub) { 1354 break; // some kind of tight cycle 1355 } 1356 if (up == orig_sub && met_dom) { 1357 // returned back after visiting 'dom' 1358 break; // some kind of cycle 1359 } 1360 if (--iterations_without_region_limit < 0) { 1361 break; // dead cycle 1362 } 1363 sub = up; 1364 } 1365 1366 // Did not meet Root or Start node in pred. chain. 1367 // Conservative answer for dead code. 1368 return false; 1369 } 1370 1371 //------------------------------remove_dead_region----------------------------- 1372 // This control node is dead. Follow the subgraph below it making everything 1373 // using it dead as well. This will happen normally via the usual IterGVN 1374 // worklist but this call is more efficient. Do not update use-def info 1375 // inside the dead region, just at the borders. 1376 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) { 1377 // Con's are a popular node to re-hit in the hash table again. 1378 if( dead->is_Con() ) return; 1379 1380 ResourceMark rm; 1381 Node_List nstack; 1382 1383 Node *top = igvn->C->top(); 1384 nstack.push(dead); 1385 bool has_irreducible_loop = igvn->C->has_irreducible_loop(); 1386 1387 while (nstack.size() > 0) { 1388 dead = nstack.pop(); 1389 if (dead->Opcode() == Op_SafePoint) { 1390 dead->as_SafePoint()->disconnect_from_root(igvn); 1391 } 1392 if (dead->outcnt() > 0) { 1393 // Keep dead node on stack until all uses are processed. 1394 nstack.push(dead); 1395 // For all Users of the Dead... ;-) 1396 for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) { 1397 Node* use = dead->last_out(k); 1398 igvn->hash_delete(use); // Yank from hash table prior to mod 1399 if (use->in(0) == dead) { // Found another dead node 1400 assert (!use->is_Con(), "Control for Con node should be Root node."); 1401 use->set_req(0, top); // Cut dead edge to prevent processing 1402 nstack.push(use); // the dead node again. 1403 } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop 1404 use->is_Loop() && !use->is_Root() && // Don't kill Root (RootNode extends LoopNode) 1405 use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead 1406 use->set_req(LoopNode::EntryControl, top); // Cut dead edge to prevent processing 1407 use->set_req(0, top); // Cut self edge 1408 nstack.push(use); 1409 } else { // Else found a not-dead user 1410 // Dead if all inputs are top or null 1411 bool dead_use = !use->is_Root(); // Keep empty graph alive 1412 for (uint j = 1; j < use->req(); j++) { 1413 Node* in = use->in(j); 1414 if (in == dead) { // Turn all dead inputs into TOP 1415 use->set_req(j, top); 1416 } else if (in != NULL && !in->is_top()) { 1417 dead_use = false; 1418 } 1419 } 1420 if (dead_use) { 1421 if (use->is_Region()) { 1422 use->set_req(0, top); // Cut self edge 1423 } 1424 nstack.push(use); 1425 } else { 1426 igvn->_worklist.push(use); 1427 } 1428 } 1429 // Refresh the iterator, since any number of kills might have happened. 1430 k = dead->last_outs(kmin); 1431 } 1432 } else { // (dead->outcnt() == 0) 1433 // Done with outputs. 1434 igvn->hash_delete(dead); 1435 igvn->_worklist.remove(dead); 1436 igvn->set_type(dead, Type::TOP); 1437 // Kill all inputs to the dead guy 1438 for (uint i=0; i < dead->req(); i++) { 1439 Node *n = dead->in(i); // Get input to dead guy 1440 if (n != NULL && !n->is_top()) { // Input is valid? 1441 dead->set_req(i, top); // Smash input away 1442 if (n->outcnt() == 0) { // Input also goes dead? 1443 if (!n->is_Con()) 1444 nstack.push(n); // Clear it out as well 1445 } else if (n->outcnt() == 1 && 1446 n->has_special_unique_user()) { 1447 igvn->add_users_to_worklist( n ); 1448 } else if (n->outcnt() <= 2 && n->is_Store()) { 1449 // Push store's uses on worklist to enable folding optimization for 1450 // store/store and store/load to the same address. 1451 // The restriction (outcnt() <= 2) is the same as in set_req_X() 1452 // and remove_globally_dead_node(). 1453 igvn->add_users_to_worklist( n ); 1454 } else { 1455 BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n); 1456 } 1457 } 1458 } 1459 igvn->C->remove_useless_node(dead); 1460 } // (dead->outcnt() == 0) 1461 } // while (nstack.size() > 0) for outputs 1462 return; 1463 } 1464 1465 //------------------------------remove_dead_region----------------------------- 1466 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) { 1467 Node *n = in(0); 1468 if( !n ) return false; 1469 // Lost control into this guy? I.e., it became unreachable? 1470 // Aggressively kill all unreachable code. 1471 if (can_reshape && n->is_top()) { 1472 kill_dead_code(this, phase->is_IterGVN()); 1473 return false; // Node is dead. 1474 } 1475 1476 if( n->is_Region() && n->as_Region()->is_copy() ) { 1477 Node *m = n->nonnull_req(); 1478 set_req(0, m); 1479 return true; 1480 } 1481 return false; 1482 } 1483 1484 //------------------------------hash------------------------------------------- 1485 // Hash function over Nodes. 1486 uint Node::hash() const { 1487 uint sum = 0; 1488 for( uint i=0; i<_cnt; i++ ) // Add in all inputs 1489 sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded NULLs 1490 return (sum>>2) + _cnt + Opcode(); 1491 } 1492 1493 //------------------------------cmp-------------------------------------------- 1494 // Compare special parts of simple Nodes 1495 bool Node::cmp( const Node &n ) const { 1496 return true; // Must be same 1497 } 1498 1499 //------------------------------rematerialize----------------------------------- 1500 // Should we clone rather than spill this instruction? 1501 bool Node::rematerialize() const { 1502 if ( is_Mach() ) 1503 return this->as_Mach()->rematerialize(); 1504 else 1505 return (_flags & Flag_rematerialize) != 0; 1506 } 1507 1508 //------------------------------needs_anti_dependence_check--------------------- 1509 // Nodes which use memory without consuming it, hence need antidependences. 1510 bool Node::needs_anti_dependence_check() const { 1511 if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) { 1512 return false; 1513 } 1514 return in(1)->bottom_type()->has_memory(); 1515 } 1516 1517 // Get an integer constant from a ConNode (or CastIINode). 1518 // Return a default value if there is no apparent constant here. 1519 const TypeInt* Node::find_int_type() const { 1520 if (this->is_Type()) { 1521 return this->as_Type()->type()->isa_int(); 1522 } else if (this->is_Con()) { 1523 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1524 return this->bottom_type()->isa_int(); 1525 } 1526 return NULL; 1527 } 1528 1529 const TypeInteger* Node::find_integer_type(BasicType bt) const { 1530 if (this->is_Type()) { 1531 return this->as_Type()->type()->isa_integer(bt); 1532 } else if (this->is_Con()) { 1533 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1534 return this->bottom_type()->isa_integer(bt); 1535 } 1536 return NULL; 1537 } 1538 1539 // Get a pointer constant from a ConstNode. 1540 // Returns the constant if it is a pointer ConstNode 1541 intptr_t Node::get_ptr() const { 1542 assert( Opcode() == Op_ConP, "" ); 1543 return ((ConPNode*)this)->type()->is_ptr()->get_con(); 1544 } 1545 1546 // Get a narrow oop constant from a ConNNode. 1547 intptr_t Node::get_narrowcon() const { 1548 assert( Opcode() == Op_ConN, "" ); 1549 return ((ConNNode*)this)->type()->is_narrowoop()->get_con(); 1550 } 1551 1552 // Get a long constant from a ConNode. 1553 // Return a default value if there is no apparent constant here. 1554 const TypeLong* Node::find_long_type() const { 1555 if (this->is_Type()) { 1556 return this->as_Type()->type()->isa_long(); 1557 } else if (this->is_Con()) { 1558 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1559 return this->bottom_type()->isa_long(); 1560 } 1561 return NULL; 1562 } 1563 1564 1565 /** 1566 * Return a ptr type for nodes which should have it. 1567 */ 1568 const TypePtr* Node::get_ptr_type() const { 1569 const TypePtr* tp = this->bottom_type()->make_ptr(); 1570 #ifdef ASSERT 1571 if (tp == NULL) { 1572 this->dump(1); 1573 assert((tp != NULL), "unexpected node type"); 1574 } 1575 #endif 1576 return tp; 1577 } 1578 1579 // Get a double constant from a ConstNode. 1580 // Returns the constant if it is a double ConstNode 1581 jdouble Node::getd() const { 1582 assert( Opcode() == Op_ConD, "" ); 1583 return ((ConDNode*)this)->type()->is_double_constant()->getd(); 1584 } 1585 1586 // Get a float constant from a ConstNode. 1587 // Returns the constant if it is a float ConstNode 1588 jfloat Node::getf() const { 1589 assert( Opcode() == Op_ConF, "" ); 1590 return ((ConFNode*)this)->type()->is_float_constant()->getf(); 1591 } 1592 1593 #ifndef PRODUCT 1594 1595 // Call this from debugger: 1596 Node* old_root() { 1597 Matcher* matcher = Compile::current()->matcher(); 1598 if (matcher != nullptr) { 1599 Node* new_root = Compile::current()->root(); 1600 Node* old_root = matcher->find_old_node(new_root); 1601 if (old_root != nullptr) { 1602 return old_root; 1603 } 1604 } 1605 tty->print("old_root: not found.\n"); 1606 return nullptr; 1607 } 1608 1609 // BFS traverse all reachable nodes from start, call callback on them 1610 template <typename Callback> 1611 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) { 1612 Unique_Mixed_Node_List worklist; 1613 worklist.add(start); 1614 for (uint i = 0; i < worklist.size(); i++) { 1615 Node* n = worklist[i]; 1616 callback(n); 1617 for (uint i = 0; i < n->len(); i++) { 1618 if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) { 1619 // If only_ctrl is set: Add regions, the root node, or control inputs only 1620 worklist.add(n->in(i)); 1621 } 1622 } 1623 if (traverse_output && !only_ctrl) { 1624 for (uint i = 0; i < n->outcnt(); i++) { 1625 worklist.add(n->raw_out(i)); 1626 } 1627 } 1628 } 1629 } 1630 1631 // BFS traverse from start, return node with idx 1632 Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) { 1633 ResourceMark rm; 1634 Node* result = nullptr; 1635 auto callback = [&] (Node* n) { 1636 if (n->_idx == idx) { 1637 if (result != nullptr) { 1638 tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n", 1639 (uintptr_t)result, (uintptr_t)n, idx); 1640 } 1641 result = n; 1642 } 1643 }; 1644 visit_nodes(start, callback, traverse_output, only_ctrl); 1645 return result; 1646 } 1647 1648 int node_idx_cmp(const Node** n1, const Node** n2) { 1649 return (*n1)->_idx - (*n2)->_idx; 1650 } 1651 1652 void find_nodes_by_name(Node* start, const char* name) { 1653 ResourceMark rm; 1654 GrowableArray<const Node*> ns; 1655 auto callback = [&] (const Node* n) { 1656 if (StringUtils::is_star_match(name, n->Name())) { 1657 ns.push(n); 1658 } 1659 }; 1660 visit_nodes(start, callback, true, false); 1661 ns.sort(node_idx_cmp); 1662 for (int i = 0; i < ns.length(); i++) { 1663 ns.at(i)->dump(); 1664 } 1665 } 1666 1667 void find_nodes_by_dump(Node* start, const char* pattern) { 1668 ResourceMark rm; 1669 GrowableArray<const Node*> ns; 1670 auto callback = [&] (const Node* n) { 1671 stringStream stream; 1672 n->dump("", false, &stream); 1673 if (StringUtils::is_star_match(pattern, stream.base())) { 1674 ns.push(n); 1675 } 1676 }; 1677 visit_nodes(start, callback, true, false); 1678 ns.sort(node_idx_cmp); 1679 for (int i = 0; i < ns.length(); i++) { 1680 ns.at(i)->dump(); 1681 } 1682 } 1683 1684 // call from debugger: find node with name pattern in new/current graph 1685 // name can contain "*" in match pattern to match any characters 1686 // the matching is case insensitive 1687 void find_nodes_by_name(const char* name) { 1688 Node* root = Compile::current()->root(); 1689 find_nodes_by_name(root, name); 1690 } 1691 1692 // call from debugger: find node with name pattern in old graph 1693 // name can contain "*" in match pattern to match any characters 1694 // the matching is case insensitive 1695 void find_old_nodes_by_name(const char* name) { 1696 Node* root = old_root(); 1697 find_nodes_by_name(root, name); 1698 } 1699 1700 // call from debugger: find node with dump pattern in new/current graph 1701 // can contain "*" in match pattern to match any characters 1702 // the matching is case insensitive 1703 void find_nodes_by_dump(const char* pattern) { 1704 Node* root = Compile::current()->root(); 1705 find_nodes_by_dump(root, pattern); 1706 } 1707 1708 // call from debugger: find node with name pattern in old graph 1709 // can contain "*" in match pattern to match any characters 1710 // the matching is case insensitive 1711 void find_old_nodes_by_dump(const char* pattern) { 1712 Node* root = old_root(); 1713 find_nodes_by_dump(root, pattern); 1714 } 1715 1716 // Call this from debugger, search in same graph as n: 1717 Node* find_node(Node* n, const int idx) { 1718 return n->find(idx); 1719 } 1720 1721 // Call this from debugger, search in new nodes: 1722 Node* find_node(const int idx) { 1723 return Compile::current()->root()->find(idx); 1724 } 1725 1726 // Call this from debugger, search in old nodes: 1727 Node* find_old_node(const int idx) { 1728 Node* root = old_root(); 1729 return (root == nullptr) ? nullptr : root->find(idx); 1730 } 1731 1732 // Call this from debugger, search in same graph as n: 1733 Node* find_ctrl(Node* n, const int idx) { 1734 return n->find_ctrl(idx); 1735 } 1736 1737 // Call this from debugger, search in new nodes: 1738 Node* find_ctrl(const int idx) { 1739 return Compile::current()->root()->find_ctrl(idx); 1740 } 1741 1742 // Call this from debugger, search in old nodes: 1743 Node* find_old_ctrl(const int idx) { 1744 Node* root = old_root(); 1745 return (root == nullptr) ? nullptr : root->find_ctrl(idx); 1746 } 1747 1748 //------------------------------find_ctrl-------------------------------------- 1749 // Find an ancestor to this node in the control history with given _idx 1750 Node* Node::find_ctrl(int idx) { 1751 return find(idx, true); 1752 } 1753 1754 //------------------------------find------------------------------------------- 1755 // Tries to find the node with the index |idx| starting from this node. If idx is negative, 1756 // the search also includes forward (out) edges. Returns NULL if not found. 1757 // If only_ctrl is set, the search will only be done on control nodes. Returns NULL if 1758 // not found or if the node to be found is not a control node (search will not find it). 1759 Node* Node::find(const int idx, bool only_ctrl) { 1760 ResourceMark rm; 1761 return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl); 1762 } 1763 1764 class PrintBFS { 1765 public: 1766 PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options) 1767 : _start(start), _max_distance(max_distance), _target(target), _options(options), 1768 _dcc(this), _info_uid(cmpkey, hashkey) {} 1769 1770 void run(); 1771 private: 1772 // pipeline steps 1773 bool configure(); 1774 void collect(); 1775 void select(); 1776 void select_all(); 1777 void select_all_paths(); 1778 void select_shortest_path(); 1779 void sort(); 1780 void print(); 1781 1782 // inputs 1783 const Node* _start; 1784 const int _max_distance; 1785 const Node* _target; 1786 const char* _options; 1787 1788 // options 1789 bool _traverse_inputs = false; 1790 bool _traverse_outputs = false; 1791 struct Filter { 1792 bool _control = false; 1793 bool _memory = false; 1794 bool _data = false; 1795 bool _mixed = false; 1796 bool _other = false; 1797 bool is_empty() const { 1798 return !(_control || _memory || _data || _mixed || _other); 1799 } 1800 void set_all() { 1801 _control = true; 1802 _memory = true; 1803 _data = true; 1804 _mixed = true; 1805 _other = true; 1806 } 1807 // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes 1808 // are considered to have control. 1809 bool accepts(const Node* n) { 1810 const Type* t = n->bottom_type(); 1811 return ( _data && t->has_category(Type::Category::Data) ) || 1812 ( _memory && t->has_category(Type::Category::Memory) ) || 1813 ( _mixed && t->has_category(Type::Category::Mixed) ) || 1814 ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) || 1815 ( _other && t->has_category(Type::Category::Other) ); 1816 } 1817 }; 1818 Filter _filter_visit; 1819 Filter _filter_boundary; 1820 bool _sort_idx = false; 1821 bool _all_paths = false; 1822 bool _use_color = false; 1823 bool _print_blocks = false; 1824 bool _print_old = false; 1825 bool _dump_only = false; 1826 static void print_options_help(bool print_examples); 1827 bool parse_options(); 1828 1829 public: 1830 class DumpConfigColored : public Node::DumpConfig { 1831 public: 1832 DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {}; 1833 virtual void pre_dump(outputStream* st, const Node* n); 1834 virtual void post_dump(outputStream* st); 1835 private: 1836 PrintBFS* _bfs; 1837 }; 1838 private: 1839 DumpConfigColored _dcc; 1840 1841 // node info 1842 static Node* old_node(const Node* n); // mach node -> prior IR node 1843 static void print_node_idx(const Node* n); // to tty 1844 static void print_block_id(const Block* b); // to tty 1845 static void print_node_block(const Node* n); // to tty: _pre_order, head idx, _idom, _dom_depth 1846 1847 // traversal data structures 1848 GrowableArray<const Node*> _worklist; // BFS queue 1849 void maybe_traverse(const Node* src, const Node* dst); 1850 1851 // node info annotation 1852 class Info { 1853 public: 1854 Info() : Info(nullptr, 0) {}; 1855 Info(const Node* node, int distance) 1856 : _node(node), _distance_from_start(distance) {}; 1857 const Node* node() const { return _node; }; 1858 int distance() const { return _distance_from_start; }; 1859 int distance_from_target() const { return _distance_from_target; } 1860 void set_distance_from_target(int d) { _distance_from_target = d; } 1861 GrowableArray<const Node*> edge_bwd; // pointing toward _start 1862 bool is_marked() const { return _mark; } // marked to keep during select 1863 void set_mark() { _mark = true; } 1864 private: 1865 const Node* _node; 1866 int _distance_from_start; // distance from _start 1867 int _distance_from_target = 0; // distance from _target if _all_paths 1868 bool _mark = false; 1869 }; 1870 Dict _info_uid; // Node -> uid 1871 GrowableArray<Info> _info; // uid -> info 1872 1873 Info* find_info(const Node* n) { 1874 size_t uid = (size_t)_info_uid[n]; 1875 if (uid == 0) { 1876 return nullptr; 1877 } 1878 return &_info.at((int)uid); 1879 } 1880 1881 void make_info(const Node* node, const int distance) { 1882 assert(find_info(node) == nullptr, "node does not yet have info"); 1883 size_t uid = _info.length() + 1; 1884 _info_uid.Insert((void*)node, (void*)uid); 1885 _info.at_put_grow((int)uid, Info(node, distance)); 1886 assert(find_info(node)->node() == node, "stored correct node"); 1887 }; 1888 1889 // filled by sort, printed by print 1890 GrowableArray<const Node*> _print_list; 1891 1892 // print header + node table 1893 void print_header() const; 1894 void print_node(const Node* n); 1895 }; 1896 1897 void PrintBFS::run() { 1898 if (!configure()) { 1899 return; 1900 } 1901 collect(); 1902 select(); 1903 sort(); 1904 print(); 1905 } 1906 1907 // set up configuration for BFS and print 1908 bool PrintBFS::configure() { 1909 if (_max_distance < 0) { 1910 tty->print("dump_bfs: max_distance must be non-negative!\n"); 1911 return false; 1912 } 1913 return parse_options(); 1914 } 1915 1916 // BFS traverse according to configuration, fill worklist and info 1917 void PrintBFS::collect() { 1918 maybe_traverse(_start, _start); 1919 int pos = 0; 1920 while (pos < _worklist.length()) { 1921 const Node* n = _worklist.at(pos++); // next node to traverse 1922 Info* info = find_info(n); 1923 if (!_filter_visit.accepts(n) && n != _start) { 1924 continue; // we hit boundary, do not traverse further 1925 } 1926 if (n != _start && n->is_Root()) { 1927 continue; // traversing through root node would lead to unrelated nodes 1928 } 1929 if (_traverse_inputs && _max_distance > info->distance()) { 1930 for (uint i = 0; i < n->req(); i++) { 1931 maybe_traverse(n, n->in(i)); 1932 } 1933 } 1934 if (_traverse_outputs && _max_distance > info->distance()) { 1935 for (uint i = 0; i < n->outcnt(); i++) { 1936 maybe_traverse(n, n->raw_out(i)); 1937 } 1938 } 1939 } 1940 } 1941 1942 // go through work list, mark those that we want to print 1943 void PrintBFS::select() { 1944 if (_target == nullptr ) { 1945 select_all(); 1946 } else { 1947 if (find_info(_target) == nullptr) { 1948 tty->print("Could not find target in BFS.\n"); 1949 return; 1950 } 1951 if (_all_paths) { 1952 select_all_paths(); 1953 } else { 1954 select_shortest_path(); 1955 } 1956 } 1957 } 1958 1959 // take all nodes from BFS 1960 void PrintBFS::select_all() { 1961 for (int i = 0; i < _worklist.length(); i++) { 1962 const Node* n = _worklist.at(i); 1963 Info* info = find_info(n); 1964 info->set_mark(); 1965 } 1966 } 1967 1968 // traverse backward from target, along edges found in BFS 1969 void PrintBFS::select_all_paths() { 1970 int pos = 0; 1971 GrowableArray<const Node*> backtrace; 1972 // start from target 1973 backtrace.push(_target); 1974 find_info(_target)->set_mark(); 1975 // traverse backward 1976 while (pos < backtrace.length()) { 1977 const Node* n = backtrace.at(pos++); 1978 Info* info = find_info(n); 1979 for (int i = 0; i < info->edge_bwd.length(); i++) { 1980 // all backward edges 1981 const Node* back = info->edge_bwd.at(i); 1982 Info* back_info = find_info(back); 1983 if (!back_info->is_marked()) { 1984 // not yet found this on way back. 1985 back_info->set_distance_from_target(info->distance_from_target() + 1); 1986 if (back_info->distance_from_target() + back_info->distance() <= _max_distance) { 1987 // total distance is small enough 1988 back_info->set_mark(); 1989 backtrace.push(back); 1990 } 1991 } 1992 } 1993 } 1994 } 1995 1996 void PrintBFS::select_shortest_path() { 1997 const Node* current = _target; 1998 while (true) { 1999 Info* info = find_info(current); 2000 info->set_mark(); 2001 if (current == _start) { 2002 break; 2003 } 2004 // first edge -> leads us one step closer to _start 2005 current = info->edge_bwd.at(0); 2006 } 2007 } 2008 2009 // go through worklist in desired order, put the marked ones in print list 2010 void PrintBFS::sort() { 2011 if (_traverse_inputs && !_traverse_outputs) { 2012 // reverse order 2013 for (int i = _worklist.length() - 1; i >= 0; i--) { 2014 const Node* n = _worklist.at(i); 2015 Info* info = find_info(n); 2016 if (info->is_marked()) { 2017 _print_list.push(n); 2018 } 2019 } 2020 } else { 2021 // same order as worklist 2022 for (int i = 0; i < _worklist.length(); i++) { 2023 const Node* n = _worklist.at(i); 2024 Info* info = find_info(n); 2025 if (info->is_marked()) { 2026 _print_list.push(n); 2027 } 2028 } 2029 } 2030 if (_sort_idx) { 2031 _print_list.sort(node_idx_cmp); 2032 } 2033 } 2034 2035 // go through printlist and print 2036 void PrintBFS::print() { 2037 if (_print_list.length() > 0 ) { 2038 print_header(); 2039 for (int i = 0; i < _print_list.length(); i++) { 2040 const Node* n = _print_list.at(i); 2041 print_node(n); 2042 } 2043 } else { 2044 tty->print("No nodes to print.\n"); 2045 } 2046 } 2047 2048 void PrintBFS::print_options_help(bool print_examples) { 2049 tty->print("Usage: node->dump_bfs(int max_distance, Node* target, char* options)\n"); 2050 tty->print("\n"); 2051 tty->print("Use cases:\n"); 2052 tty->print(" BFS traversal: no target required\n"); 2053 tty->print(" shortest path: set target\n"); 2054 tty->print(" all paths: set target and put 'A' in options\n"); 2055 tty->print(" detect loop: subcase of all paths, have start==target\n"); 2056 tty->print("\n"); 2057 tty->print("Arguments:\n"); 2058 tty->print(" this/start: staring point of BFS\n"); 2059 tty->print(" target:\n"); 2060 tty->print(" if nullptr: simple BFS\n"); 2061 tty->print(" else: shortest path or all paths between this/start and target\n"); 2062 tty->print(" options:\n"); 2063 tty->print(" if nullptr: same as \"cdmox@B\"\n"); 2064 tty->print(" else: use combination of following characters\n"); 2065 tty->print(" h: display this help info\n"); 2066 tty->print(" H: display this help info, with examples\n"); 2067 tty->print(" +: traverse in-edges (on if neither + nor -)\n"); 2068 tty->print(" -: traverse out-edges\n"); 2069 tty->print(" c: visit control nodes\n"); 2070 tty->print(" d: visit data nodes\n"); 2071 tty->print(" m: visit memory nodes\n"); 2072 tty->print(" o: visit other nodes\n"); 2073 tty->print(" x: visit mixed nodes\n"); 2074 tty->print(" C: boundary control nodes\n"); 2075 tty->print(" D: boundary data nodes\n"); 2076 tty->print(" M: boundary memory nodes\n"); 2077 tty->print(" O: boundary other nodes\n"); 2078 tty->print(" X: boundary mixed nodes\n"); 2079 tty->print(" #: display node category in color (not supported in all terminals)\n"); 2080 tty->print(" S: sort displayed nodes by node idx\n"); 2081 tty->print(" A: all paths (not just shortest path to target)\n"); 2082 tty->print(" @: print old nodes - before matching (if available)\n"); 2083 tty->print(" B: print scheduling blocks (if available)\n"); 2084 tty->print(" $: dump only, no header, no other columns\n"); 2085 tty->print("\n"); 2086 tty->print("recursively follow edges to nodes with permitted visit types,\n"); 2087 tty->print("on the boundary additionally display nodes allowed in boundary types\n"); 2088 tty->print("Note: the categories can be overlapping. For example a mixed node\n"); 2089 tty->print(" can contain control and memory output. Some from the other\n"); 2090 tty->print(" category are also control (Halt, Return, etc).\n"); 2091 tty->print("\n"); 2092 tty->print("output columns:\n"); 2093 tty->print(" dist: BFS distance to this/start\n"); 2094 tty->print(" apd: all paths distance (d_start + d_target)\n"); 2095 tty->print(" block: block identifier, based on _pre_order\n"); 2096 tty->print(" head: first node in block\n"); 2097 tty->print(" idom: head node of idom block\n"); 2098 tty->print(" depth: depth of block (_dom_depth)\n"); 2099 tty->print(" old: old IR node - before matching\n"); 2100 tty->print(" dump: node->dump()\n"); 2101 tty->print("\n"); 2102 tty->print("Note: if none of the \"cmdxo\" characters are in the options string\n"); 2103 tty->print(" then we set all of them.\n"); 2104 tty->print(" This allows for short strings like \"#\" for colored input traversal\n"); 2105 tty->print(" or \"-#\" for colored output traversal.\n"); 2106 if (print_examples) { 2107 tty->print("\n"); 2108 tty->print("Examples:\n"); 2109 tty->print(" if->dump_bfs(10, 0, \"+cxo\")\n"); 2110 tty->print(" starting at some if node, traverse inputs recursively\n"); 2111 tty->print(" only along control (mixed and other can also be control)\n"); 2112 tty->print(" phi->dump_bfs(5, 0, \"-dxo\")\n"); 2113 tty->print(" starting at phi node, traverse outputs recursively\n"); 2114 tty->print(" only along data (mixed and other can also have data flow)\n"); 2115 tty->print(" find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")\n"); 2116 tty->print(" find inputs of node 385, up to 3 nodes up (+)\n"); 2117 tty->print(" traverse all nodes (cdmox), use colors (#)\n"); 2118 tty->print(" display old nodes and blocks, if they exist\n"); 2119 tty->print(" useful call to start with\n"); 2120 tty->print(" find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")\n"); 2121 tty->print(" find non-data dependencies of a data node\n"); 2122 tty->print(" follow data node outputs until we find another category\n"); 2123 tty->print(" node as the boundary\n"); 2124 tty->print(" x->dump_bfs(10, y, 0)\n"); 2125 tty->print(" find shortest path from x to y, along any edge or node\n"); 2126 tty->print(" will not find a path if it is longer than 10\n"); 2127 tty->print(" useful to find how x and y are related\n"); 2128 tty->print(" find_node(741)->dump_bfs(20, find_node(746), \"c+\")\n"); 2129 tty->print(" find shortest control path between two nodes\n"); 2130 tty->print(" find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")\n"); 2131 tty->print(" find all paths (A) between two nodes of length at most 8\n"); 2132 tty->print(" find_node(741)->dump_bfs(7, find_node(741), \"c+A\")\n"); 2133 tty->print(" find all control loops for this node\n"); 2134 } 2135 } 2136 2137 bool PrintBFS::parse_options() { 2138 if (_options == nullptr) { 2139 _options = "cdmox@B"; // default options 2140 } 2141 size_t len = strlen(_options); 2142 for (size_t i = 0; i < len; i++) { 2143 switch (_options[i]) { 2144 case '+': 2145 _traverse_inputs = true; 2146 break; 2147 case '-': 2148 _traverse_outputs = true; 2149 break; 2150 case 'c': 2151 _filter_visit._control = true; 2152 break; 2153 case 'm': 2154 _filter_visit._memory = true; 2155 break; 2156 case 'd': 2157 _filter_visit._data = true; 2158 break; 2159 case 'x': 2160 _filter_visit._mixed = true; 2161 break; 2162 case 'o': 2163 _filter_visit._other = true; 2164 break; 2165 case 'C': 2166 _filter_boundary._control = true; 2167 break; 2168 case 'M': 2169 _filter_boundary._memory = true; 2170 break; 2171 case 'D': 2172 _filter_boundary._data = true; 2173 break; 2174 case 'X': 2175 _filter_boundary._mixed = true; 2176 break; 2177 case 'O': 2178 _filter_boundary._other = true; 2179 break; 2180 case 'S': 2181 _sort_idx = true; 2182 break; 2183 case 'A': 2184 _all_paths = true; 2185 break; 2186 case '#': 2187 _use_color = true; 2188 break; 2189 case 'B': 2190 _print_blocks = true; 2191 break; 2192 case '@': 2193 _print_old = true; 2194 break; 2195 case '$': 2196 _dump_only = true; 2197 break; 2198 case 'h': 2199 print_options_help(false); 2200 return false; 2201 case 'H': 2202 print_options_help(true); 2203 return false; 2204 default: 2205 tty->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]); 2206 tty->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")"); 2207 return false; 2208 } 2209 } 2210 if (!_traverse_inputs && !_traverse_outputs) { 2211 _traverse_inputs = true; 2212 } 2213 if (_filter_visit.is_empty()) { 2214 _filter_visit.set_all(); 2215 } 2216 Compile* C = Compile::current(); 2217 _print_old &= (C->matcher() != nullptr); // only show old if there are new 2218 _print_blocks &= (C->cfg() != nullptr); // only show blocks if available 2219 return true; 2220 } 2221 2222 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) { 2223 if (!_bfs->_use_color) { 2224 return; 2225 } 2226 Info* info = _bfs->find_info(n); 2227 if (info == nullptr || !info->is_marked()) { 2228 return; 2229 } 2230 2231 const Type* t = n->bottom_type(); 2232 switch (t->category()) { 2233 case Type::Category::Data: 2234 st->print("\u001b[34m"); 2235 break; 2236 case Type::Category::Memory: 2237 st->print("\u001b[32m"); 2238 break; 2239 case Type::Category::Mixed: 2240 st->print("\u001b[35m"); 2241 break; 2242 case Type::Category::Control: 2243 st->print("\u001b[31m"); 2244 break; 2245 case Type::Category::Other: 2246 st->print("\u001b[33m"); 2247 break; 2248 case Type::Category::Undef: 2249 n->dump(); 2250 assert(false, "category undef ??"); 2251 break; 2252 default: 2253 n->dump(); 2254 assert(false, "not covered"); 2255 break; 2256 } 2257 } 2258 2259 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) { 2260 if (!_bfs->_use_color) { 2261 return; 2262 } 2263 st->print("\u001b[0m"); // white 2264 } 2265 2266 Node* PrintBFS::old_node(const Node* n) { 2267 Compile* C = Compile::current(); 2268 if (C->matcher() == nullptr || !C->node_arena()->contains(n)) { 2269 return (Node*)nullptr; 2270 } else { 2271 return C->matcher()->find_old_node(n); 2272 } 2273 } 2274 2275 void PrintBFS::print_node_idx(const Node* n) { 2276 Compile* C = Compile::current(); 2277 char buf[30]; 2278 if (n == nullptr) { 2279 sprintf(buf,"_"); // null 2280 } else if (C->node_arena()->contains(n)) { 2281 sprintf(buf, "%d", n->_idx); // new node 2282 } else { 2283 sprintf(buf, "o%d", n->_idx); // old node 2284 } 2285 tty->print("%6s", buf); 2286 } 2287 2288 void PrintBFS::print_block_id(const Block* b) { 2289 Compile* C = Compile::current(); 2290 char buf[30]; 2291 sprintf(buf, "B%d", b->_pre_order); 2292 tty->print("%7s", buf); 2293 } 2294 2295 void PrintBFS::print_node_block(const Node* n) { 2296 Compile* C = Compile::current(); 2297 Block* b = C->node_arena()->contains(n) 2298 ? C->cfg()->get_block_for_node(n) 2299 : nullptr; // guard against old nodes 2300 if (b == nullptr) { 2301 tty->print(" _"); // Block 2302 tty->print(" _"); // head 2303 tty->print(" _"); // idom 2304 tty->print(" _"); // depth 2305 } else { 2306 print_block_id(b); 2307 print_node_idx(b->head()); 2308 if (b->_idom) { 2309 print_node_idx(b->_idom->head()); 2310 } else { 2311 tty->print(" _"); // idom 2312 } 2313 tty->print("%6d ", b->_dom_depth); 2314 } 2315 } 2316 2317 // filter, and add to worklist, add info, note traversal edges 2318 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) { 2319 if (dst != nullptr && 2320 (_filter_visit.accepts(dst) || 2321 _filter_boundary.accepts(dst) || 2322 dst == _start)) { // correct category or start? 2323 if (find_info(dst) == nullptr) { 2324 // never visited - set up info 2325 _worklist.push(dst); 2326 int d = 0; 2327 if (dst != _start) { 2328 d = find_info(src)->distance() + 1; 2329 } 2330 make_info(dst, d); 2331 } 2332 if (src != dst) { 2333 // traversal edges useful during select 2334 find_info(dst)->edge_bwd.push(src); 2335 } 2336 } 2337 } 2338 2339 void PrintBFS::print_header() const { 2340 if (_dump_only) { 2341 return; // no header in dump only mode 2342 } 2343 tty->print("dist"); // distance 2344 if (_all_paths) { 2345 tty->print(" apd"); // all paths distance 2346 } 2347 if (_print_blocks) { 2348 tty->print(" [block head idom depth]"); // block 2349 } 2350 if (_print_old) { 2351 tty->print(" old"); // old node 2352 } 2353 tty->print(" dump\n"); // node dump 2354 tty->print("---------------------------------------------\n"); 2355 } 2356 2357 void PrintBFS::print_node(const Node* n) { 2358 if (_dump_only) { 2359 n->dump("\n", false, tty, &_dcc); 2360 return; 2361 } 2362 tty->print("%4d", find_info(n)->distance());// distance 2363 if (_all_paths) { 2364 Info* info = find_info(n); 2365 int apd = info->distance() + info->distance_from_target(); 2366 tty->print("%4d", apd); // all paths distance 2367 } 2368 if (_print_blocks) { 2369 print_node_block(n); // block 2370 } 2371 if (_print_old) { 2372 print_node_idx(old_node(n)); // old node 2373 } 2374 tty->print(" "); 2375 n->dump("\n", false, tty, &_dcc); // node dump 2376 } 2377 2378 //------------------------------dump_bfs-------------------------------------- 2379 // Call this from debugger 2380 // Useful for BFS traversal, shortest path, all path, loop detection, etc 2381 // Designed to be more readable, and provide additional info 2382 // To find all options, run: 2383 // find_node(0)->dump_bfs(0,0,"H") 2384 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const { 2385 PrintBFS bfs(this, max_distance, target, options); 2386 bfs.run(); 2387 } 2388 2389 // Call this from debugger, with default arguments 2390 void Node::dump_bfs(const int max_distance) const { 2391 dump_bfs(max_distance, nullptr, nullptr); 2392 } 2393 2394 // -----------------------------dump_idx--------------------------------------- 2395 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const { 2396 if (dc != nullptr) { 2397 dc->pre_dump(st, this); 2398 } 2399 Compile* C = Compile::current(); 2400 bool is_new = C->node_arena()->contains(this); 2401 if (align) { // print prefix empty spaces$ 2402 // +1 for leading digit, +1 for "o" 2403 uint max_width = static_cast<uint>(log10(static_cast<double>(C->unique()))) + 2; 2404 // +1 for leading digit, maybe +1 for "o" 2405 uint width = static_cast<uint>(log10(static_cast<double>(_idx))) + 1 + (is_new ? 0 : 1); 2406 while (max_width > width) { 2407 st->print(" "); 2408 width++; 2409 } 2410 } 2411 if (!is_new) { 2412 st->print("o"); 2413 } 2414 st->print("%d", _idx); 2415 if (dc != nullptr) { 2416 dc->post_dump(st); 2417 } 2418 } 2419 2420 // -----------------------------dump_name-------------------------------------- 2421 void Node::dump_name(outputStream* st, DumpConfig* dc) const { 2422 if (dc != nullptr) { 2423 dc->pre_dump(st, this); 2424 } 2425 st->print("%s", Name()); 2426 if (dc != nullptr) { 2427 dc->post_dump(st); 2428 } 2429 } 2430 2431 // -----------------------------Name------------------------------------------- 2432 extern const char *NodeClassNames[]; 2433 const char *Node::Name() const { return NodeClassNames[Opcode()]; } 2434 2435 static bool is_disconnected(const Node* n) { 2436 for (uint i = 0; i < n->req(); i++) { 2437 if (n->in(i) != NULL) return false; 2438 } 2439 return true; 2440 } 2441 2442 #ifdef ASSERT 2443 void Node::dump_orig(outputStream *st, bool print_key) const { 2444 Compile* C = Compile::current(); 2445 Node* orig = _debug_orig; 2446 if (not_a_node(orig)) orig = NULL; 2447 if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL; 2448 if (orig == NULL) return; 2449 if (print_key) { 2450 st->print(" !orig="); 2451 } 2452 Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops 2453 if (not_a_node(fast)) fast = NULL; 2454 while (orig != NULL) { 2455 bool discon = is_disconnected(orig); // if discon, print [123] else 123 2456 if (discon) st->print("["); 2457 if (!Compile::current()->node_arena()->contains(orig)) 2458 st->print("o"); 2459 st->print("%d", orig->_idx); 2460 if (discon) st->print("]"); 2461 orig = orig->debug_orig(); 2462 if (not_a_node(orig)) orig = NULL; 2463 if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL; 2464 if (orig != NULL) st->print(","); 2465 if (fast != NULL) { 2466 // Step fast twice for each single step of orig: 2467 fast = fast->debug_orig(); 2468 if (not_a_node(fast)) fast = NULL; 2469 if (fast != NULL && fast != orig) { 2470 fast = fast->debug_orig(); 2471 if (not_a_node(fast)) fast = NULL; 2472 } 2473 if (fast == orig) { 2474 st->print("..."); 2475 break; 2476 } 2477 } 2478 } 2479 } 2480 2481 void Node::set_debug_orig(Node* orig) { 2482 _debug_orig = orig; 2483 if (BreakAtNode == 0) return; 2484 if (not_a_node(orig)) orig = NULL; 2485 int trip = 10; 2486 while (orig != NULL) { 2487 if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) { 2488 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d", 2489 this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx()); 2490 BREAKPOINT; 2491 } 2492 orig = orig->debug_orig(); 2493 if (not_a_node(orig)) orig = NULL; 2494 if (trip-- <= 0) break; 2495 } 2496 } 2497 #endif //ASSERT 2498 2499 //------------------------------dump------------------------------------------ 2500 // Dump a Node 2501 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const { 2502 Compile* C = Compile::current(); 2503 bool is_new = C->node_arena()->contains(this); 2504 C->_in_dump_cnt++; 2505 2506 // idx mark name === 2507 dump_idx(true, st, dc); 2508 st->print(mark ? " >" : " "); 2509 dump_name(st, dc); 2510 st->print(" === "); 2511 2512 // Dump the required and precedence inputs 2513 dump_req(st, dc); 2514 dump_prec(st, dc); 2515 // Dump the outputs 2516 dump_out(st, dc); 2517 2518 if (is_disconnected(this)) { 2519 #ifdef ASSERT 2520 st->print(" [%d]",debug_idx()); 2521 dump_orig(st); 2522 #endif 2523 st->cr(); 2524 C->_in_dump_cnt--; 2525 return; // don't process dead nodes 2526 } 2527 2528 if (C->clone_map().value(_idx) != 0) { 2529 C->clone_map().dump(_idx); 2530 } 2531 // Dump node-specific info 2532 dump_spec(st); 2533 #ifdef ASSERT 2534 // Dump the non-reset _debug_idx 2535 if (Verbose && WizardMode) { 2536 st->print(" [%d]",debug_idx()); 2537 } 2538 #endif 2539 2540 const Type *t = bottom_type(); 2541 2542 if (t != NULL && (t->isa_instptr() || t->isa_instklassptr())) { 2543 const TypeInstPtr *toop = t->isa_instptr(); 2544 const TypeInstKlassPtr *tkls = t->isa_instklassptr(); 2545 if (toop) { 2546 st->print(" Oop:"); 2547 } else if (tkls) { 2548 st->print(" Klass:"); 2549 } 2550 t->dump_on(st); 2551 } else if (t == Type::MEMORY) { 2552 st->print(" Memory:"); 2553 MemNode::dump_adr_type(this, adr_type(), st); 2554 } else if (Verbose || WizardMode) { 2555 st->print(" Type:"); 2556 if (t) { 2557 t->dump_on(st); 2558 } else { 2559 st->print("no type"); 2560 } 2561 } else if (t->isa_vect() && this->is_MachSpillCopy()) { 2562 // Dump MachSpillcopy vector type. 2563 t->dump_on(st); 2564 } 2565 if (is_new) { 2566 DEBUG_ONLY(dump_orig(st)); 2567 Node_Notes* nn = C->node_notes_at(_idx); 2568 if (nn != NULL && !nn->is_clear()) { 2569 if (nn->jvms() != NULL) { 2570 st->print(" !jvms:"); 2571 nn->jvms()->dump_spec(st); 2572 } 2573 } 2574 } 2575 if (suffix) st->print("%s", suffix); 2576 C->_in_dump_cnt--; 2577 } 2578 2579 // call from debugger: dump node to tty with newline 2580 void Node::dump() const { 2581 dump("\n"); 2582 } 2583 2584 //------------------------------dump_req-------------------------------------- 2585 void Node::dump_req(outputStream* st, DumpConfig* dc) const { 2586 // Dump the required input edges 2587 for (uint i = 0; i < req(); i++) { // For all required inputs 2588 Node* d = in(i); 2589 if (d == NULL) { 2590 st->print("_ "); 2591 } else if (not_a_node(d)) { 2592 st->print("not_a_node "); // uninitialized, sentinel, garbage, etc. 2593 } else { 2594 d->dump_idx(false, st, dc); 2595 st->print(" "); 2596 } 2597 } 2598 } 2599 2600 2601 //------------------------------dump_prec------------------------------------- 2602 void Node::dump_prec(outputStream* st, DumpConfig* dc) const { 2603 // Dump the precedence edges 2604 int any_prec = 0; 2605 for (uint i = req(); i < len(); i++) { // For all precedence inputs 2606 Node* p = in(i); 2607 if (p != NULL) { 2608 if (!any_prec++) st->print(" |"); 2609 if (not_a_node(p)) { st->print("not_a_node "); continue; } 2610 p->dump_idx(false, st, dc); 2611 st->print(" "); 2612 } 2613 } 2614 } 2615 2616 //------------------------------dump_out-------------------------------------- 2617 void Node::dump_out(outputStream* st, DumpConfig* dc) const { 2618 // Delimit the output edges 2619 st->print(" [[ "); 2620 // Dump the output edges 2621 for (uint i = 0; i < _outcnt; i++) { // For all outputs 2622 Node* u = _out[i]; 2623 if (u == NULL) { 2624 st->print("_ "); 2625 } else if (not_a_node(u)) { 2626 st->print("not_a_node "); 2627 } else { 2628 u->dump_idx(false, st, dc); 2629 st->print(" "); 2630 } 2631 } 2632 st->print("]] "); 2633 } 2634 2635 //------------------------------dump------------------------------------------- 2636 // call from debugger: dump Node's inputs (or outputs if d negative) 2637 void Node::dump(int d) const { 2638 dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$"); 2639 } 2640 2641 //------------------------------dump_ctrl-------------------------------------- 2642 // call from debugger: dump Node's control inputs (or outputs if d negative) 2643 void Node::dump_ctrl(int d) const { 2644 dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c"); 2645 } 2646 2647 //-----------------------------dump_compact------------------------------------ 2648 void Node::dump_comp() const { 2649 this->dump_comp("\n"); 2650 } 2651 2652 //-----------------------------dump_compact------------------------------------ 2653 // Dump a Node in compact representation, i.e., just print its name and index. 2654 // Nodes can specify additional specifics to print in compact representation by 2655 // implementing dump_compact_spec. 2656 void Node::dump_comp(const char* suffix, outputStream *st) const { 2657 Compile* C = Compile::current(); 2658 C->_in_dump_cnt++; 2659 st->print("%s(%d)", Name(), _idx); 2660 this->dump_compact_spec(st); 2661 if (suffix) { 2662 st->print("%s", suffix); 2663 } 2664 C->_in_dump_cnt--; 2665 } 2666 2667 // VERIFICATION CODE 2668 // Verify all nodes if verify_depth is negative 2669 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) { 2670 assert(verify_depth != 0, "depth should not be 0"); 2671 Compile* C = Compile::current(); 2672 uint last_index_on_current_depth = worklist.size() - 1; 2673 verify_depth--; // Visiting the first node on depth 1 2674 // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0 2675 bool add_to_worklist = verify_depth != 0; 2676 2677 for (uint list_index = 0; list_index < worklist.size(); list_index++) { 2678 Node* n = worklist[list_index]; 2679 2680 if (n->is_Con() && n->bottom_type() == Type::TOP) { 2681 if (C->cached_top_node() == NULL) { 2682 C->set_cached_top_node((Node*)n); 2683 } 2684 assert(C->cached_top_node() == n, "TOP node must be unique"); 2685 } 2686 2687 uint in_len = n->len(); 2688 for (uint i = 0; i < in_len; i++) { 2689 Node* x = n->_in[i]; 2690 if (!x || x->is_top()) { 2691 continue; 2692 } 2693 2694 // Verify my input has a def-use edge to me 2695 // Count use-def edges from n to x 2696 int cnt = 1; 2697 for (uint j = 0; j < i; j++) { 2698 if (n->_in[j] == x) { 2699 cnt++; 2700 break; 2701 } 2702 } 2703 if (cnt == 2) { 2704 // x is already checked as n's previous input, skip its duplicated def-use count checking 2705 continue; 2706 } 2707 for (uint j = i + 1; j < in_len; j++) { 2708 if (n->_in[j] == x) { 2709 cnt++; 2710 } 2711 } 2712 2713 // Count def-use edges from x to n 2714 uint max = x->_outcnt; 2715 for (uint k = 0; k < max; k++) { 2716 if (x->_out[k] == n) { 2717 cnt--; 2718 } 2719 } 2720 assert(cnt == 0, "mismatched def-use edge counts"); 2721 2722 if (add_to_worklist && !visited.test_set(x->_idx)) { 2723 worklist.push(x); 2724 } 2725 } 2726 2727 if (verify_depth > 0 && list_index == last_index_on_current_depth) { 2728 // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and 2729 // store the current last list index which is the last node in the list with the new depth. All nodes 2730 // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0). 2731 verify_depth--; 2732 if (verify_depth == 0) { 2733 add_to_worklist = false; 2734 } 2735 last_index_on_current_depth = worklist.size() - 1; 2736 } 2737 } 2738 } 2739 #endif // not PRODUCT 2740 2741 //------------------------------Registers-------------------------------------- 2742 // Do we Match on this edge index or not? Generally false for Control 2743 // and true for everything else. Weird for calls & returns. 2744 uint Node::match_edge(uint idx) const { 2745 return idx; // True for other than index 0 (control) 2746 } 2747 2748 // Register classes are defined for specific machines 2749 const RegMask &Node::out_RegMask() const { 2750 ShouldNotCallThis(); 2751 return RegMask::Empty; 2752 } 2753 2754 const RegMask &Node::in_RegMask(uint) const { 2755 ShouldNotCallThis(); 2756 return RegMask::Empty; 2757 } 2758 2759 void Node_Array::grow(uint i) { 2760 assert(_max > 0, "invariant"); 2761 uint old = _max; 2762 _max = next_power_of_2(i); 2763 _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*)); 2764 Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) ); 2765 } 2766 2767 void Node_Array::insert(uint i, Node* n) { 2768 if (_nodes[_max - 1]) { 2769 grow(_max); 2770 } 2771 Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*))); 2772 _nodes[i] = n; 2773 } 2774 2775 void Node_Array::remove(uint i) { 2776 Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*))); 2777 _nodes[_max - 1] = NULL; 2778 } 2779 2780 void Node_Array::dump() const { 2781 #ifndef PRODUCT 2782 for (uint i = 0; i < _max; i++) { 2783 Node* nn = _nodes[i]; 2784 if (nn != NULL) { 2785 tty->print("%5d--> ",i); nn->dump(); 2786 } 2787 } 2788 #endif 2789 } 2790 2791 //--------------------------is_iteratively_computed------------------------------ 2792 // Operation appears to be iteratively computed (such as an induction variable) 2793 // It is possible for this operation to return false for a loop-varying 2794 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 2795 bool Node::is_iteratively_computed() { 2796 if (ideal_reg()) { // does operation have a result register? 2797 for (uint i = 1; i < req(); i++) { 2798 Node* n = in(i); 2799 if (n != NULL && n->is_Phi()) { 2800 for (uint j = 1; j < n->req(); j++) { 2801 if (n->in(j) == this) { 2802 return true; 2803 } 2804 } 2805 } 2806 } 2807 } 2808 return false; 2809 } 2810 2811 //--------------------------find_similar------------------------------ 2812 // Return a node with opcode "opc" and same inputs as "this" if one can 2813 // be found; Otherwise return NULL; 2814 Node* Node::find_similar(int opc) { 2815 if (req() >= 2) { 2816 Node* def = in(1); 2817 if (def && def->outcnt() >= 2) { 2818 for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) { 2819 Node* use = def->fast_out(i); 2820 if (use != this && 2821 use->Opcode() == opc && 2822 use->req() == req()) { 2823 uint j; 2824 for (j = 0; j < use->req(); j++) { 2825 if (use->in(j) != in(j)) { 2826 break; 2827 } 2828 } 2829 if (j == use->req()) { 2830 return use; 2831 } 2832 } 2833 } 2834 } 2835 } 2836 return NULL; 2837 } 2838 2839 2840 //--------------------------unique_ctrl_out_or_null------------------------- 2841 // Return the unique control out if only one. Null if none or more than one. 2842 Node* Node::unique_ctrl_out_or_null() const { 2843 Node* found = NULL; 2844 for (uint i = 0; i < outcnt(); i++) { 2845 Node* use = raw_out(i); 2846 if (use->is_CFG() && use != this) { 2847 if (found != NULL) { 2848 return NULL; 2849 } 2850 found = use; 2851 } 2852 } 2853 return found; 2854 } 2855 2856 //--------------------------unique_ctrl_out------------------------------ 2857 // Return the unique control out. Asserts if none or more than one control out. 2858 Node* Node::unique_ctrl_out() const { 2859 Node* ctrl = unique_ctrl_out_or_null(); 2860 assert(ctrl != NULL, "control out is assumed to be unique"); 2861 return ctrl; 2862 } 2863 2864 void Node::ensure_control_or_add_prec(Node* c) { 2865 if (in(0) == NULL) { 2866 set_req(0, c); 2867 } else if (in(0) != c) { 2868 add_prec(c); 2869 } 2870 } 2871 2872 bool Node::is_dead_loop_safe() const { 2873 if (is_Phi()) { 2874 return true; 2875 } 2876 if (is_Proj() && in(0) == NULL) { 2877 return true; 2878 } 2879 if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) { 2880 if (!is_Proj()) { 2881 return true; 2882 } 2883 if (in(0)->is_Allocate()) { 2884 return false; 2885 } 2886 // MemNode::can_see_stored_value() peeks through the boxing call 2887 if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) { 2888 return false; 2889 } 2890 return true; 2891 } 2892 return false; 2893 } 2894 2895 //============================================================================= 2896 //------------------------------yank------------------------------------------- 2897 // Find and remove 2898 void Node_List::yank( Node *n ) { 2899 uint i; 2900 for (i = 0; i < _cnt; i++) { 2901 if (_nodes[i] == n) { 2902 break; 2903 } 2904 } 2905 2906 if (i < _cnt) { 2907 _nodes[i] = _nodes[--_cnt]; 2908 } 2909 } 2910 2911 //------------------------------dump------------------------------------------- 2912 void Node_List::dump() const { 2913 #ifndef PRODUCT 2914 for (uint i = 0; i < _cnt; i++) { 2915 if (_nodes[i]) { 2916 tty->print("%5d--> ", i); 2917 _nodes[i]->dump(); 2918 } 2919 } 2920 #endif 2921 } 2922 2923 void Node_List::dump_simple() const { 2924 #ifndef PRODUCT 2925 for (uint i = 0; i < _cnt; i++) { 2926 if( _nodes[i] ) { 2927 tty->print(" %d", _nodes[i]->_idx); 2928 } else { 2929 tty->print(" NULL"); 2930 } 2931 } 2932 #endif 2933 } 2934 2935 //============================================================================= 2936 //------------------------------remove----------------------------------------- 2937 void Unique_Node_List::remove(Node* n) { 2938 if (_in_worklist.test(n->_idx)) { 2939 for (uint i = 0; i < size(); i++) { 2940 if (_nodes[i] == n) { 2941 map(i, Node_List::pop()); 2942 _in_worklist.remove(n->_idx); 2943 return; 2944 } 2945 } 2946 ShouldNotReachHere(); 2947 } 2948 } 2949 2950 //-----------------------remove_useless_nodes---------------------------------- 2951 // Remove useless nodes from worklist 2952 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) { 2953 for (uint i = 0; i < size(); ++i) { 2954 Node *n = at(i); 2955 assert( n != NULL, "Did not expect null entries in worklist"); 2956 if (!useful.test(n->_idx)) { 2957 _in_worklist.remove(n->_idx); 2958 map(i, Node_List::pop()); 2959 --i; // Visit popped node 2960 // If it was last entry, loop terminates since size() was also reduced 2961 } 2962 } 2963 } 2964 2965 //============================================================================= 2966 void Node_Stack::grow() { 2967 size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top 2968 size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode)); 2969 size_t max = old_max << 1; // max * 2 2970 _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max); 2971 _inode_max = _inodes + max; 2972 _inode_top = _inodes + old_top; // restore _top 2973 } 2974 2975 // Node_Stack is used to map nodes. 2976 Node* Node_Stack::find(uint idx) const { 2977 uint sz = size(); 2978 for (uint i = 0; i < sz; i++) { 2979 if (idx == index_at(i)) { 2980 return node_at(i); 2981 } 2982 } 2983 return NULL; 2984 } 2985 2986 //============================================================================= 2987 uint TypeNode::size_of() const { return sizeof(*this); } 2988 #ifndef PRODUCT 2989 void TypeNode::dump_spec(outputStream *st) const { 2990 if (!Verbose && !WizardMode) { 2991 // standard dump does this in Verbose and WizardMode 2992 st->print(" #"); _type->dump_on(st); 2993 } 2994 } 2995 2996 void TypeNode::dump_compact_spec(outputStream *st) const { 2997 st->print("#"); 2998 _type->dump_on(st); 2999 } 3000 #endif 3001 uint TypeNode::hash() const { 3002 return Node::hash() + _type->hash(); 3003 } 3004 bool TypeNode::cmp(const Node& n) const { 3005 return !Type::cmp(_type, ((TypeNode&)n)._type); 3006 } 3007 const Type* TypeNode::bottom_type() const { return _type; } 3008 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; } 3009 3010 //------------------------------ideal_reg-------------------------------------- 3011 uint TypeNode::ideal_reg() const { 3012 return _type->ideal_reg(); 3013 }