1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "libadt/vectset.hpp" 29 #include "memory/allocation.inline.hpp" 30 #include "memory/resourceArea.hpp" 31 #include "opto/ad.hpp" 32 #include "opto/callGenerator.hpp" 33 #include "opto/castnode.hpp" 34 #include "opto/cfgnode.hpp" 35 #include "opto/connode.hpp" 36 #include "opto/inlinetypenode.hpp" 37 #include "opto/loopnode.hpp" 38 #include "opto/machnode.hpp" 39 #include "opto/matcher.hpp" 40 #include "opto/node.hpp" 41 #include "opto/opcodes.hpp" 42 #include "opto/regmask.hpp" 43 #include "opto/rootnode.hpp" 44 #include "opto/type.hpp" 45 #include "utilities/copy.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "utilities/stringUtils.hpp" 49 50 class RegMask; 51 // #include "phase.hpp" 52 class PhaseTransform; 53 class PhaseGVN; 54 55 // Arena we are currently building Nodes in 56 const uint Node::NotAMachineReg = 0xffff0000; 57 58 #ifndef PRODUCT 59 extern uint nodes_created; 60 #endif 61 #ifdef __clang__ 62 #pragma clang diagnostic push 63 #pragma GCC diagnostic ignored "-Wuninitialized" 64 #endif 65 66 #ifdef ASSERT 67 68 //-------------------------- construct_node------------------------------------ 69 // Set a breakpoint here to identify where a particular node index is built. 70 void Node::verify_construction() { 71 _debug_orig = nullptr; 72 // The decimal digits of _debug_idx are <compile_id> followed by 10 digits of <_idx> 73 Compile* C = Compile::current(); 74 assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX"); 75 uint64_t new_debug_idx = (uint64_t)C->compile_id() * 10000000000 + _idx; 76 set_debug_idx(new_debug_idx); 77 if (!C->phase_optimize_finished()) { 78 // Only check assert during parsing and optimization phase. Skip it while generating code. 79 assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit"); 80 } 81 if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (uint64_t)_idx == BreakAtNode)) { 82 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT, _idx, _debug_idx); 83 BREAKPOINT; 84 } 85 #if OPTO_DU_ITERATOR_ASSERT 86 _last_del = nullptr; 87 _del_tick = 0; 88 #endif 89 _hash_lock = 0; 90 } 91 92 93 // #ifdef ASSERT ... 94 95 #if OPTO_DU_ITERATOR_ASSERT 96 void DUIterator_Common::sample(const Node* node) { 97 _vdui = VerifyDUIterators; 98 _node = node; 99 _outcnt = node->_outcnt; 100 _del_tick = node->_del_tick; 101 _last = nullptr; 102 } 103 104 void DUIterator_Common::verify(const Node* node, bool at_end_ok) { 105 assert(_node == node, "consistent iterator source"); 106 assert(_del_tick == node->_del_tick, "no unexpected deletions allowed"); 107 } 108 109 void DUIterator_Common::verify_resync() { 110 // Ensure that the loop body has just deleted the last guy produced. 111 const Node* node = _node; 112 // Ensure that at least one copy of the last-seen edge was deleted. 113 // Note: It is OK to delete multiple copies of the last-seen edge. 114 // Unfortunately, we have no way to verify that all the deletions delete 115 // that same edge. On this point we must use the Honor System. 116 assert(node->_del_tick >= _del_tick+1, "must have deleted an edge"); 117 assert(node->_last_del == _last, "must have deleted the edge just produced"); 118 // We liked this deletion, so accept the resulting outcnt and tick. 119 _outcnt = node->_outcnt; 120 _del_tick = node->_del_tick; 121 } 122 123 void DUIterator_Common::reset(const DUIterator_Common& that) { 124 if (this == &that) return; // ignore assignment to self 125 if (!_vdui) { 126 // We need to initialize everything, overwriting garbage values. 127 _last = that._last; 128 _vdui = that._vdui; 129 } 130 // Note: It is legal (though odd) for an iterator over some node x 131 // to be reassigned to iterate over another node y. Some doubly-nested 132 // progress loops depend on being able to do this. 133 const Node* node = that._node; 134 // Re-initialize everything, except _last. 135 _node = node; 136 _outcnt = node->_outcnt; 137 _del_tick = node->_del_tick; 138 } 139 140 void DUIterator::sample(const Node* node) { 141 DUIterator_Common::sample(node); // Initialize the assertion data. 142 _refresh_tick = 0; // No refreshes have happened, as yet. 143 } 144 145 void DUIterator::verify(const Node* node, bool at_end_ok) { 146 DUIterator_Common::verify(node, at_end_ok); 147 assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range"); 148 } 149 150 void DUIterator::verify_increment() { 151 if (_refresh_tick & 1) { 152 // We have refreshed the index during this loop. 153 // Fix up _idx to meet asserts. 154 if (_idx > _outcnt) _idx = _outcnt; 155 } 156 verify(_node, true); 157 } 158 159 void DUIterator::verify_resync() { 160 // Note: We do not assert on _outcnt, because insertions are OK here. 161 DUIterator_Common::verify_resync(); 162 // Make sure we are still in sync, possibly with no more out-edges: 163 verify(_node, true); 164 } 165 166 void DUIterator::reset(const DUIterator& that) { 167 if (this == &that) return; // self assignment is always a no-op 168 assert(that._refresh_tick == 0, "assign only the result of Node::outs()"); 169 assert(that._idx == 0, "assign only the result of Node::outs()"); 170 assert(_idx == that._idx, "already assigned _idx"); 171 if (!_vdui) { 172 // We need to initialize everything, overwriting garbage values. 173 sample(that._node); 174 } else { 175 DUIterator_Common::reset(that); 176 if (_refresh_tick & 1) { 177 _refresh_tick++; // Clear the "was refreshed" flag. 178 } 179 assert(_refresh_tick < 2*100000, "DU iteration must converge quickly"); 180 } 181 } 182 183 void DUIterator::refresh() { 184 DUIterator_Common::sample(_node); // Re-fetch assertion data. 185 _refresh_tick |= 1; // Set the "was refreshed" flag. 186 } 187 188 void DUIterator::verify_finish() { 189 // If the loop has killed the node, do not require it to re-run. 190 if (_node->_outcnt == 0) _refresh_tick &= ~1; 191 // If this assert triggers, it means that a loop used refresh_out_pos 192 // to re-synch an iteration index, but the loop did not correctly 193 // re-run itself, using a "while (progress)" construct. 194 // This iterator enforces the rule that you must keep trying the loop 195 // until it "runs clean" without any need for refreshing. 196 assert(!(_refresh_tick & 1), "the loop must run once with no refreshing"); 197 } 198 199 200 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) { 201 DUIterator_Common::verify(node, at_end_ok); 202 Node** out = node->_out; 203 uint cnt = node->_outcnt; 204 assert(cnt == _outcnt, "no insertions allowed"); 205 assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range"); 206 // This last check is carefully designed to work for NO_OUT_ARRAY. 207 } 208 209 void DUIterator_Fast::verify_limit() { 210 const Node* node = _node; 211 verify(node, true); 212 assert(_outp == node->_out + node->_outcnt, "limit still correct"); 213 } 214 215 void DUIterator_Fast::verify_resync() { 216 const Node* node = _node; 217 if (_outp == node->_out + _outcnt) { 218 // Note that the limit imax, not the pointer i, gets updated with the 219 // exact count of deletions. (For the pointer it's always "--i".) 220 assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)"); 221 // This is a limit pointer, with a name like "imax". 222 // Fudge the _last field so that the common assert will be happy. 223 _last = (Node*) node->_last_del; 224 DUIterator_Common::verify_resync(); 225 } else { 226 assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)"); 227 // A normal internal pointer. 228 DUIterator_Common::verify_resync(); 229 // Make sure we are still in sync, possibly with no more out-edges: 230 verify(node, true); 231 } 232 } 233 234 void DUIterator_Fast::verify_relimit(uint n) { 235 const Node* node = _node; 236 assert((int)n > 0, "use imax -= n only with a positive count"); 237 // This must be a limit pointer, with a name like "imax". 238 assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)"); 239 // The reported number of deletions must match what the node saw. 240 assert(node->_del_tick == _del_tick + n, "must have deleted n edges"); 241 // Fudge the _last field so that the common assert will be happy. 242 _last = (Node*) node->_last_del; 243 DUIterator_Common::verify_resync(); 244 } 245 246 void DUIterator_Fast::reset(const DUIterator_Fast& that) { 247 assert(_outp == that._outp, "already assigned _outp"); 248 DUIterator_Common::reset(that); 249 } 250 251 void DUIterator_Last::verify(const Node* node, bool at_end_ok) { 252 // at_end_ok means the _outp is allowed to underflow by 1 253 _outp += at_end_ok; 254 DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc. 255 _outp -= at_end_ok; 256 assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes"); 257 } 258 259 void DUIterator_Last::verify_limit() { 260 // Do not require the limit address to be resynched. 261 //verify(node, true); 262 assert(_outp == _node->_out, "limit still correct"); 263 } 264 265 void DUIterator_Last::verify_step(uint num_edges) { 266 assert((int)num_edges > 0, "need non-zero edge count for loop progress"); 267 _outcnt -= num_edges; 268 _del_tick += num_edges; 269 // Make sure we are still in sync, possibly with no more out-edges: 270 const Node* node = _node; 271 verify(node, true); 272 assert(node->_last_del == _last, "must have deleted the edge just produced"); 273 } 274 275 #endif //OPTO_DU_ITERATOR_ASSERT 276 277 278 #endif //ASSERT 279 280 281 // This constant used to initialize _out may be any non-null value. 282 // The value null is reserved for the top node only. 283 #define NO_OUT_ARRAY ((Node**)-1) 284 285 // Out-of-line code from node constructors. 286 // Executed only when extra debug info. is being passed around. 287 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) { 288 C->set_node_notes_at(idx, nn); 289 } 290 291 // Shared initialization code. 292 inline int Node::Init(int req) { 293 Compile* C = Compile::current(); 294 int idx = C->next_unique(); 295 NOT_PRODUCT(_igv_idx = C->next_igv_idx()); 296 297 // Allocate memory for the necessary number of edges. 298 if (req > 0) { 299 // Allocate space for _in array to have double alignment. 300 _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*)))); 301 } 302 // If there are default notes floating around, capture them: 303 Node_Notes* nn = C->default_node_notes(); 304 if (nn != nullptr) init_node_notes(C, idx, nn); 305 306 // Note: At this point, C is dead, 307 // and we begin to initialize the new Node. 308 309 _cnt = _max = req; 310 _outcnt = _outmax = 0; 311 _class_id = Class_Node; 312 _flags = 0; 313 _out = NO_OUT_ARRAY; 314 return idx; 315 } 316 317 //------------------------------Node------------------------------------------- 318 // Create a Node, with a given number of required edges. 319 Node::Node(uint req) 320 : _idx(Init(req)) 321 #ifdef ASSERT 322 , _parse_idx(_idx) 323 #endif 324 { 325 assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" ); 326 debug_only( verify_construction() ); 327 NOT_PRODUCT(nodes_created++); 328 if (req == 0) { 329 _in = nullptr; 330 } else { 331 Node** to = _in; 332 for(uint i = 0; i < req; i++) { 333 to[i] = nullptr; 334 } 335 } 336 } 337 338 //------------------------------Node------------------------------------------- 339 Node::Node(Node *n0) 340 : _idx(Init(1)) 341 #ifdef ASSERT 342 , _parse_idx(_idx) 343 #endif 344 { 345 debug_only( verify_construction() ); 346 NOT_PRODUCT(nodes_created++); 347 assert( is_not_dead(n0), "can not use dead node"); 348 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 349 } 350 351 //------------------------------Node------------------------------------------- 352 Node::Node(Node *n0, Node *n1) 353 : _idx(Init(2)) 354 #ifdef ASSERT 355 , _parse_idx(_idx) 356 #endif 357 { 358 debug_only( verify_construction() ); 359 NOT_PRODUCT(nodes_created++); 360 assert( is_not_dead(n0), "can not use dead node"); 361 assert( is_not_dead(n1), "can not use dead node"); 362 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 363 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 364 } 365 366 //------------------------------Node------------------------------------------- 367 Node::Node(Node *n0, Node *n1, Node *n2) 368 : _idx(Init(3)) 369 #ifdef ASSERT 370 , _parse_idx(_idx) 371 #endif 372 { 373 debug_only( verify_construction() ); 374 NOT_PRODUCT(nodes_created++); 375 assert( is_not_dead(n0), "can not use dead node"); 376 assert( is_not_dead(n1), "can not use dead node"); 377 assert( is_not_dead(n2), "can not use dead node"); 378 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 379 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 380 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 381 } 382 383 //------------------------------Node------------------------------------------- 384 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3) 385 : _idx(Init(4)) 386 #ifdef ASSERT 387 , _parse_idx(_idx) 388 #endif 389 { 390 debug_only( verify_construction() ); 391 NOT_PRODUCT(nodes_created++); 392 assert( is_not_dead(n0), "can not use dead node"); 393 assert( is_not_dead(n1), "can not use dead node"); 394 assert( is_not_dead(n2), "can not use dead node"); 395 assert( is_not_dead(n3), "can not use dead node"); 396 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 397 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 398 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 399 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 400 } 401 402 //------------------------------Node------------------------------------------- 403 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4) 404 : _idx(Init(5)) 405 #ifdef ASSERT 406 , _parse_idx(_idx) 407 #endif 408 { 409 debug_only( verify_construction() ); 410 NOT_PRODUCT(nodes_created++); 411 assert( is_not_dead(n0), "can not use dead node"); 412 assert( is_not_dead(n1), "can not use dead node"); 413 assert( is_not_dead(n2), "can not use dead node"); 414 assert( is_not_dead(n3), "can not use dead node"); 415 assert( is_not_dead(n4), "can not use dead node"); 416 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 417 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 418 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 419 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 420 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 421 } 422 423 //------------------------------Node------------------------------------------- 424 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 425 Node *n4, Node *n5) 426 : _idx(Init(6)) 427 #ifdef ASSERT 428 , _parse_idx(_idx) 429 #endif 430 { 431 debug_only( verify_construction() ); 432 NOT_PRODUCT(nodes_created++); 433 assert( is_not_dead(n0), "can not use dead node"); 434 assert( is_not_dead(n1), "can not use dead node"); 435 assert( is_not_dead(n2), "can not use dead node"); 436 assert( is_not_dead(n3), "can not use dead node"); 437 assert( is_not_dead(n4), "can not use dead node"); 438 assert( is_not_dead(n5), "can not use dead node"); 439 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 440 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 441 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 442 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 443 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 444 _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this); 445 } 446 447 //------------------------------Node------------------------------------------- 448 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 449 Node *n4, Node *n5, Node *n6) 450 : _idx(Init(7)) 451 #ifdef ASSERT 452 , _parse_idx(_idx) 453 #endif 454 { 455 debug_only( verify_construction() ); 456 NOT_PRODUCT(nodes_created++); 457 assert( is_not_dead(n0), "can not use dead node"); 458 assert( is_not_dead(n1), "can not use dead node"); 459 assert( is_not_dead(n2), "can not use dead node"); 460 assert( is_not_dead(n3), "can not use dead node"); 461 assert( is_not_dead(n4), "can not use dead node"); 462 assert( is_not_dead(n5), "can not use dead node"); 463 assert( is_not_dead(n6), "can not use dead node"); 464 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 465 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 466 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 467 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 468 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 469 _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this); 470 _in[6] = n6; if (n6 != nullptr) n6->add_out((Node *)this); 471 } 472 473 #ifdef __clang__ 474 #pragma clang diagnostic pop 475 #endif 476 477 478 //------------------------------clone------------------------------------------ 479 // Clone a Node. 480 Node *Node::clone() const { 481 Compile* C = Compile::current(); 482 uint s = size_of(); // Size of inherited Node 483 Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*)); 484 Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s); 485 // Set the new input pointer array 486 n->_in = (Node**)(((char*)n)+s); 487 // Cannot share the old output pointer array, so kill it 488 n->_out = NO_OUT_ARRAY; 489 // And reset the counters to 0 490 n->_outcnt = 0; 491 n->_outmax = 0; 492 // Unlock this guy, since he is not in any hash table. 493 debug_only(n->_hash_lock = 0); 494 // Walk the old node's input list to duplicate its edges 495 uint i; 496 for( i = 0; i < len(); i++ ) { 497 Node *x = in(i); 498 n->_in[i] = x; 499 if (x != nullptr) x->add_out(n); 500 } 501 if (is_macro()) { 502 C->add_macro_node(n); 503 } 504 if (is_expensive()) { 505 C->add_expensive_node(n); 506 } 507 if (for_post_loop_opts_igvn()) { 508 // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically. 509 // If it is applicable, it will happen anyway when the cloned node is registered with IGVN. 510 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 511 } 512 if (n->is_ParsePredicate()) { 513 C->add_parse_predicate(n->as_ParsePredicate()); 514 } 515 516 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 517 bs->register_potential_barrier_node(n); 518 519 n->set_idx(C->next_unique()); // Get new unique index as well 520 NOT_PRODUCT(n->_igv_idx = C->next_igv_idx()); 521 debug_only( n->verify_construction() ); 522 NOT_PRODUCT(nodes_created++); 523 // Do not patch over the debug_idx of a clone, because it makes it 524 // impossible to break on the clone's moment of creation. 525 //debug_only( n->set_debug_idx( debug_idx() ) ); 526 527 C->copy_node_notes_to(n, (Node*) this); 528 529 // MachNode clone 530 uint nopnds; 531 if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) { 532 MachNode *mach = n->as_Mach(); 533 MachNode *mthis = this->as_Mach(); 534 // Get address of _opnd_array. 535 // It should be the same offset since it is the clone of this node. 536 MachOper **from = mthis->_opnds; 537 MachOper **to = (MachOper **)((size_t)(&mach->_opnds) + 538 pointer_delta((const void*)from, 539 (const void*)(&mthis->_opnds), 1)); 540 mach->_opnds = to; 541 for ( uint i = 0; i < nopnds; ++i ) { 542 to[i] = from[i]->clone(); 543 } 544 } 545 if (n->is_Call()) { 546 // CallGenerator is linked to the original node. 547 CallGenerator* cg = n->as_Call()->generator(); 548 if (cg != nullptr) { 549 CallGenerator* cloned_cg = cg->with_call_node(n->as_Call()); 550 n->as_Call()->set_generator(cloned_cg); 551 552 C->print_inlining_assert_ready(); 553 C->print_inlining_move_to(cg); 554 C->print_inlining_update(cloned_cg); 555 } 556 } 557 if (n->is_SafePoint()) { 558 // Scalar replacement and macro expansion might modify the JVMState. 559 // Clone it to make sure it's not shared between SafePointNodes. 560 n->as_SafePoint()->clone_jvms(C); 561 n->as_SafePoint()->clone_replaced_nodes(); 562 } 563 if (n->is_InlineType()) { 564 C->add_inline_type(n); 565 } 566 Compile::current()->record_modified_node(n); 567 return n; // Return the clone 568 } 569 570 //---------------------------setup_is_top-------------------------------------- 571 // Call this when changing the top node, to reassert the invariants 572 // required by Node::is_top. See Compile::set_cached_top_node. 573 void Node::setup_is_top() { 574 if (this == (Node*)Compile::current()->top()) { 575 // This node has just become top. Kill its out array. 576 _outcnt = _outmax = 0; 577 _out = nullptr; // marker value for top 578 assert(is_top(), "must be top"); 579 } else { 580 if (_out == nullptr) _out = NO_OUT_ARRAY; 581 assert(!is_top(), "must not be top"); 582 } 583 } 584 585 //------------------------------~Node------------------------------------------ 586 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 587 void Node::destruct(PhaseValues* phase) { 588 Compile* compile = (phase != nullptr) ? phase->C : Compile::current(); 589 if (phase != nullptr && phase->is_IterGVN()) { 590 phase->is_IterGVN()->_worklist.remove(this); 591 } 592 // If this is the most recently created node, reclaim its index. Otherwise, 593 // record the node as dead to keep liveness information accurate. 594 if ((uint)_idx+1 == compile->unique()) { 595 compile->set_unique(compile->unique()-1); 596 } else { 597 compile->record_dead_node(_idx); 598 } 599 // Clear debug info: 600 Node_Notes* nn = compile->node_notes_at(_idx); 601 if (nn != nullptr) nn->clear(); 602 // Walk the input array, freeing the corresponding output edges 603 _cnt = _max; // forget req/prec distinction 604 uint i; 605 for( i = 0; i < _max; i++ ) { 606 set_req(i, nullptr); 607 //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim"); 608 } 609 assert(outcnt() == 0, "deleting a node must not leave a dangling use"); 610 611 if (is_macro()) { 612 compile->remove_macro_node(this); 613 } 614 if (is_expensive()) { 615 compile->remove_expensive_node(this); 616 } 617 if (is_Opaque4()) { 618 compile->remove_template_assertion_predicate_opaq(this); 619 } 620 if (is_ParsePredicate()) { 621 compile->remove_parse_predicate(as_ParsePredicate()); 622 } 623 if (for_post_loop_opts_igvn()) { 624 compile->remove_from_post_loop_opts_igvn(this); 625 } 626 if (is_InlineType()) { 627 compile->remove_inline_type(this); 628 } 629 630 if (is_SafePoint()) { 631 as_SafePoint()->delete_replaced_nodes(); 632 633 if (is_CallStaticJava()) { 634 compile->remove_unstable_if_trap(as_CallStaticJava(), false); 635 } 636 } 637 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 638 bs->unregister_potential_barrier_node(this); 639 640 // See if the input array was allocated just prior to the object 641 int edge_size = _max*sizeof(void*); 642 int out_edge_size = _outmax*sizeof(void*); 643 char *in_array = ((char*)_in); 644 char *edge_end = in_array + edge_size; 645 char *out_array = (char*)(_out == NO_OUT_ARRAY? nullptr: _out); 646 int node_size = size_of(); 647 648 #ifdef ASSERT 649 // We will not actually delete the storage, but we'll make the node unusable. 650 compile->remove_modified_node(this); 651 *(address*)this = badAddress; // smash the C++ vtbl, probably 652 _in = _out = (Node**) badAddress; 653 _max = _cnt = _outmax = _outcnt = 0; 654 #endif 655 656 // Free the output edge array 657 if (out_edge_size > 0) { 658 compile->node_arena()->Afree(out_array, out_edge_size); 659 } 660 661 // Free the input edge array and the node itself 662 if( edge_end == (char*)this ) { 663 // It was; free the input array and object all in one hit 664 #ifndef ASSERT 665 compile->node_arena()->Afree(in_array, edge_size+node_size); 666 #endif 667 } else { 668 // Free just the input array 669 compile->node_arena()->Afree(in_array, edge_size); 670 671 // Free just the object 672 #ifndef ASSERT 673 compile->node_arena()->Afree(this, node_size); 674 #endif 675 } 676 } 677 678 //------------------------------grow------------------------------------------- 679 // Grow the input array, making space for more edges 680 void Node::grow(uint len) { 681 Arena* arena = Compile::current()->node_arena(); 682 uint new_max = _max; 683 if( new_max == 0 ) { 684 _max = 4; 685 _in = (Node**)arena->Amalloc(4*sizeof(Node*)); 686 Node** to = _in; 687 to[0] = nullptr; 688 to[1] = nullptr; 689 to[2] = nullptr; 690 to[3] = nullptr; 691 return; 692 } 693 new_max = next_power_of_2(len); 694 // Trimming to limit allows a uint8 to handle up to 255 edges. 695 // Previously I was using only powers-of-2 which peaked at 128 edges. 696 //if( new_max >= limit ) new_max = limit-1; 697 _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*)); 698 Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // null all new space 699 _max = new_max; // Record new max length 700 // This assertion makes sure that Node::_max is wide enough to 701 // represent the numerical value of new_max. 702 assert(_max == new_max && _max > len, "int width of _max is too small"); 703 } 704 705 //-----------------------------out_grow---------------------------------------- 706 // Grow the input array, making space for more edges 707 void Node::out_grow( uint len ) { 708 assert(!is_top(), "cannot grow a top node's out array"); 709 Arena* arena = Compile::current()->node_arena(); 710 uint new_max = _outmax; 711 if( new_max == 0 ) { 712 _outmax = 4; 713 _out = (Node **)arena->Amalloc(4*sizeof(Node*)); 714 return; 715 } 716 new_max = next_power_of_2(len); 717 // Trimming to limit allows a uint8 to handle up to 255 edges. 718 // Previously I was using only powers-of-2 which peaked at 128 edges. 719 //if( new_max >= limit ) new_max = limit-1; 720 assert(_out != nullptr && _out != NO_OUT_ARRAY, "out must have sensible value"); 721 _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*)); 722 //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // null all new space 723 _outmax = new_max; // Record new max length 724 // This assertion makes sure that Node::_max is wide enough to 725 // represent the numerical value of new_max. 726 assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small"); 727 } 728 729 #ifdef ASSERT 730 //------------------------------is_dead---------------------------------------- 731 bool Node::is_dead() const { 732 // Mach and pinch point nodes may look like dead. 733 if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) ) 734 return false; 735 for( uint i = 0; i < _max; i++ ) 736 if( _in[i] != nullptr ) 737 return false; 738 return true; 739 } 740 741 bool Node::is_not_dead(const Node* n) { 742 return n == nullptr || !PhaseIterGVN::is_verify_def_use() || !(n->is_dead()); 743 } 744 745 bool Node::is_reachable_from_root() const { 746 ResourceMark rm; 747 Unique_Node_List wq; 748 wq.push((Node*)this); 749 RootNode* root = Compile::current()->root(); 750 for (uint i = 0; i < wq.size(); i++) { 751 Node* m = wq.at(i); 752 if (m == root) { 753 return true; 754 } 755 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 756 Node* u = m->fast_out(j); 757 wq.push(u); 758 } 759 } 760 return false; 761 } 762 #endif 763 764 //------------------------------is_unreachable--------------------------------- 765 bool Node::is_unreachable(PhaseIterGVN &igvn) const { 766 assert(!is_Mach(), "doesn't work with MachNodes"); 767 return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != nullptr && in(0)->is_top()); 768 } 769 770 //------------------------------add_req---------------------------------------- 771 // Add a new required input at the end 772 void Node::add_req( Node *n ) { 773 assert( is_not_dead(n), "can not use dead node"); 774 775 // Look to see if I can move precedence down one without reallocating 776 if( (_cnt >= _max) || (in(_max-1) != nullptr) ) 777 grow( _max+1 ); 778 779 // Find a precedence edge to move 780 if( in(_cnt) != nullptr ) { // Next precedence edge is busy? 781 uint i; 782 for( i=_cnt; i<_max; i++ ) 783 if( in(i) == nullptr ) // Find the null at end of prec edge list 784 break; // There must be one, since we grew the array 785 _in[i] = in(_cnt); // Move prec over, making space for req edge 786 } 787 _in[_cnt++] = n; // Stuff over old prec edge 788 if (n != nullptr) n->add_out((Node *)this); 789 Compile::current()->record_modified_node(this); 790 } 791 792 //---------------------------add_req_batch------------------------------------- 793 // Add a new required input at the end 794 void Node::add_req_batch( Node *n, uint m ) { 795 assert( is_not_dead(n), "can not use dead node"); 796 // check various edge cases 797 if ((int)m <= 1) { 798 assert((int)m >= 0, "oob"); 799 if (m != 0) add_req(n); 800 return; 801 } 802 803 // Look to see if I can move precedence down one without reallocating 804 if( (_cnt+m) > _max || _in[_max-m] ) 805 grow( _max+m ); 806 807 // Find a precedence edge to move 808 if( _in[_cnt] != nullptr ) { // Next precedence edge is busy? 809 uint i; 810 for( i=_cnt; i<_max; i++ ) 811 if( _in[i] == nullptr ) // Find the null at end of prec edge list 812 break; // There must be one, since we grew the array 813 // Slide all the precs over by m positions (assume #prec << m). 814 Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*))); 815 } 816 817 // Stuff over the old prec edges 818 for(uint i=0; i<m; i++ ) { 819 _in[_cnt++] = n; 820 } 821 822 // Insert multiple out edges on the node. 823 if (n != nullptr && !n->is_top()) { 824 for(uint i=0; i<m; i++ ) { 825 n->add_out((Node *)this); 826 } 827 } 828 Compile::current()->record_modified_node(this); 829 } 830 831 //------------------------------del_req---------------------------------------- 832 // Delete the required edge and compact the edge array 833 void Node::del_req( uint idx ) { 834 assert( idx < _cnt, "oob"); 835 assert( !VerifyHashTableKeys || _hash_lock == 0, 836 "remove node from hash table before modifying it"); 837 // First remove corresponding def-use edge 838 Node *n = in(idx); 839 if (n != nullptr) n->del_out((Node *)this); 840 _in[idx] = in(--_cnt); // Compact the array 841 // Avoid spec violation: Gap in prec edges. 842 close_prec_gap_at(_cnt); 843 Compile::current()->record_modified_node(this); 844 } 845 846 //------------------------------del_req_ordered-------------------------------- 847 // Delete the required edge and compact the edge array with preserved order 848 void Node::del_req_ordered( uint idx ) { 849 assert( idx < _cnt, "oob"); 850 assert( !VerifyHashTableKeys || _hash_lock == 0, 851 "remove node from hash table before modifying it"); 852 // First remove corresponding def-use edge 853 Node *n = in(idx); 854 if (n != nullptr) n->del_out((Node *)this); 855 if (idx < --_cnt) { // Not last edge ? 856 Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*))); 857 } 858 // Avoid spec violation: Gap in prec edges. 859 close_prec_gap_at(_cnt); 860 Compile::current()->record_modified_node(this); 861 } 862 863 //------------------------------ins_req---------------------------------------- 864 // Insert a new required input at the end 865 void Node::ins_req( uint idx, Node *n ) { 866 assert( is_not_dead(n), "can not use dead node"); 867 add_req(nullptr); // Make space 868 assert( idx < _max, "Must have allocated enough space"); 869 // Slide over 870 if(_cnt-idx-1 > 0) { 871 Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*))); 872 } 873 _in[idx] = n; // Stuff over old required edge 874 if (n != nullptr) n->add_out((Node *)this); // Add reciprocal def-use edge 875 Compile::current()->record_modified_node(this); 876 } 877 878 //-----------------------------find_edge--------------------------------------- 879 int Node::find_edge(Node* n) { 880 for (uint i = 0; i < len(); i++) { 881 if (_in[i] == n) return i; 882 } 883 return -1; 884 } 885 886 //----------------------------replace_edge------------------------------------- 887 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) { 888 if (old == neww) return 0; // nothing to do 889 uint nrep = 0; 890 for (uint i = 0; i < len(); i++) { 891 if (in(i) == old) { 892 if (i < req()) { 893 if (gvn != nullptr) { 894 set_req_X(i, neww, gvn); 895 } else { 896 set_req(i, neww); 897 } 898 } else { 899 assert(gvn == nullptr || gvn->is_IterGVN() == nullptr, "no support for igvn here"); 900 assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx); 901 set_prec(i, neww); 902 } 903 nrep++; 904 } 905 } 906 return nrep; 907 } 908 909 /** 910 * Replace input edges in the range pointing to 'old' node. 911 */ 912 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) { 913 if (old == neww) return 0; // nothing to do 914 uint nrep = 0; 915 for (int i = start; i < end; i++) { 916 if (in(i) == old) { 917 set_req_X(i, neww, gvn); 918 nrep++; 919 } 920 } 921 return nrep; 922 } 923 924 //-------------------------disconnect_inputs----------------------------------- 925 // null out all inputs to eliminate incoming Def-Use edges. 926 void Node::disconnect_inputs(Compile* C) { 927 // the layout of Node::_in 928 // r: a required input, null is allowed 929 // p: a precedence, null values are all at the end 930 // ----------------------------------- 931 // |r|...|r|p|...|p|null|...|null| 932 // | | 933 // req() len() 934 // ----------------------------------- 935 for (uint i = 0; i < req(); ++i) { 936 if (in(i) != nullptr) { 937 set_req(i, nullptr); 938 } 939 } 940 941 // Remove precedence edges if any exist 942 // Note: Safepoints may have precedence edges, even during parsing 943 for (uint i = len(); i > req(); ) { 944 rm_prec(--i); // no-op if _in[i] is null 945 } 946 947 #ifdef ASSERT 948 // sanity check 949 for (uint i = 0; i < len(); ++i) { 950 assert(_in[i] == nullptr, "disconnect_inputs() failed!"); 951 } 952 #endif 953 954 // Node::destruct requires all out edges be deleted first 955 // debug_only(destruct();) // no reuse benefit expected 956 C->record_dead_node(_idx); 957 } 958 959 //-----------------------------uncast--------------------------------------- 960 // %%% Temporary, until we sort out CheckCastPP vs. CastPP. 961 // Strip away casting. (It is depth-limited.) 962 // Optionally, keep casts with dependencies. 963 Node* Node::uncast(bool keep_deps) const { 964 // Should be inline: 965 //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this; 966 if (is_ConstraintCast()) { 967 return uncast_helper(this, keep_deps); 968 } else { 969 return (Node*) this; 970 } 971 } 972 973 // Find out of current node that matches opcode. 974 Node* Node::find_out_with(int opcode) { 975 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 976 Node* use = fast_out(i); 977 if (use->Opcode() == opcode) { 978 return use; 979 } 980 } 981 return nullptr; 982 } 983 984 // Return true if the current node has an out that matches opcode. 985 bool Node::has_out_with(int opcode) { 986 return (find_out_with(opcode) != nullptr); 987 } 988 989 // Return true if the current node has an out that matches any of the opcodes. 990 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) { 991 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 992 int opcode = fast_out(i)->Opcode(); 993 if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) { 994 return true; 995 } 996 } 997 return false; 998 } 999 1000 1001 //---------------------------uncast_helper------------------------------------- 1002 Node* Node::uncast_helper(const Node* p, bool keep_deps) { 1003 #ifdef ASSERT 1004 uint depth_count = 0; 1005 const Node* orig_p = p; 1006 #endif 1007 1008 while (true) { 1009 #ifdef ASSERT 1010 if (depth_count >= K) { 1011 orig_p->dump(4); 1012 if (p != orig_p) 1013 p->dump(1); 1014 } 1015 assert(depth_count++ < K, "infinite loop in Node::uncast_helper"); 1016 #endif 1017 if (p == nullptr || p->req() != 2) { 1018 break; 1019 } else if (p->is_ConstraintCast()) { 1020 if (keep_deps && p->as_ConstraintCast()->carry_dependency()) { 1021 break; // stop at casts with dependencies 1022 } 1023 p = p->in(1); 1024 } else { 1025 break; 1026 } 1027 } 1028 return (Node*) p; 1029 } 1030 1031 //------------------------------add_prec--------------------------------------- 1032 // Add a new precedence input. Precedence inputs are unordered, with 1033 // duplicates removed and nulls packed down at the end. 1034 void Node::add_prec( Node *n ) { 1035 assert( is_not_dead(n), "can not use dead node"); 1036 1037 // Check for null at end 1038 if( _cnt >= _max || in(_max-1) ) 1039 grow( _max+1 ); 1040 1041 // Find a precedence edge to move 1042 uint i = _cnt; 1043 while( in(i) != nullptr ) { 1044 if (in(i) == n) return; // Avoid spec violation: duplicated prec edge. 1045 i++; 1046 } 1047 _in[i] = n; // Stuff prec edge over null 1048 if ( n != nullptr) n->add_out((Node *)this); // Add mirror edge 1049 1050 #ifdef ASSERT 1051 while ((++i)<_max) { assert(_in[i] == nullptr, "spec violation: Gap in prec edges (node %d)", _idx); } 1052 #endif 1053 Compile::current()->record_modified_node(this); 1054 } 1055 1056 //------------------------------rm_prec---------------------------------------- 1057 // Remove a precedence input. Precedence inputs are unordered, with 1058 // duplicates removed and nulls packed down at the end. 1059 void Node::rm_prec( uint j ) { 1060 assert(j < _max, "oob: i=%d, _max=%d", j, _max); 1061 assert(j >= _cnt, "not a precedence edge"); 1062 if (_in[j] == nullptr) return; // Avoid spec violation: Gap in prec edges. 1063 _in[j]->del_out((Node *)this); 1064 close_prec_gap_at(j); 1065 Compile::current()->record_modified_node(this); 1066 } 1067 1068 //------------------------------size_of---------------------------------------- 1069 uint Node::size_of() const { return sizeof(*this); } 1070 1071 //------------------------------ideal_reg-------------------------------------- 1072 uint Node::ideal_reg() const { return 0; } 1073 1074 //------------------------------jvms------------------------------------------- 1075 JVMState* Node::jvms() const { return nullptr; } 1076 1077 #ifdef ASSERT 1078 //------------------------------jvms------------------------------------------- 1079 bool Node::verify_jvms(const JVMState* using_jvms) const { 1080 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1081 if (jvms == using_jvms) return true; 1082 } 1083 return false; 1084 } 1085 1086 //------------------------------init_NodeProperty------------------------------ 1087 void Node::init_NodeProperty() { 1088 assert(_max_classes <= max_juint, "too many NodeProperty classes"); 1089 assert(max_flags() <= max_juint, "too many NodeProperty flags"); 1090 } 1091 1092 //-----------------------------max_flags--------------------------------------- 1093 juint Node::max_flags() { 1094 return (PD::_last_flag << 1) - 1; // allow flags combination 1095 } 1096 #endif 1097 1098 //------------------------------format----------------------------------------- 1099 // Print as assembly 1100 void Node::format( PhaseRegAlloc *, outputStream *st ) const {} 1101 //------------------------------emit------------------------------------------- 1102 // Emit bytes using C2_MacroAssembler 1103 void Node::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {} 1104 //------------------------------size------------------------------------------- 1105 // Size of instruction in bytes 1106 uint Node::size(PhaseRegAlloc *ra_) const { return 0; } 1107 1108 //------------------------------CFG Construction------------------------------- 1109 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root, 1110 // Goto and Return. 1111 const Node *Node::is_block_proj() const { return 0; } 1112 1113 // Minimum guaranteed type 1114 const Type *Node::bottom_type() const { return Type::BOTTOM; } 1115 1116 1117 //------------------------------raise_bottom_type------------------------------ 1118 // Get the worst-case Type output for this Node. 1119 void Node::raise_bottom_type(const Type* new_type) { 1120 if (is_Type()) { 1121 TypeNode *n = this->as_Type(); 1122 if (VerifyAliases) { 1123 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1124 } 1125 n->set_type(new_type); 1126 } else if (is_Load()) { 1127 LoadNode *n = this->as_Load(); 1128 if (VerifyAliases) { 1129 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1130 } 1131 n->set_type(new_type); 1132 } 1133 } 1134 1135 //------------------------------Identity--------------------------------------- 1136 // Return a node that the given node is equivalent to. 1137 Node* Node::Identity(PhaseGVN* phase) { 1138 return this; // Default to no identities 1139 } 1140 1141 //------------------------------Value------------------------------------------ 1142 // Compute a new Type for a node using the Type of the inputs. 1143 const Type* Node::Value(PhaseGVN* phase) const { 1144 return bottom_type(); // Default to worst-case Type 1145 } 1146 1147 //------------------------------Ideal------------------------------------------ 1148 // 1149 // 'Idealize' the graph rooted at this Node. 1150 // 1151 // In order to be efficient and flexible there are some subtle invariants 1152 // these Ideal calls need to hold. Running with '-XX:VerifyIterativeGVN=1' checks 1153 // these invariants, although its too slow to have on by default. If you are 1154 // hacking an Ideal call, be sure to test with '-XX:VerifyIterativeGVN=1' 1155 // 1156 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this' 1157 // pointer. If ANY change is made, it must return the root of the reshaped 1158 // graph - even if the root is the same Node. Example: swapping the inputs 1159 // to an AddINode gives the same answer and same root, but you still have to 1160 // return the 'this' pointer instead of null. 1161 // 1162 // You cannot return an OLD Node, except for the 'this' pointer. Use the 1163 // Identity call to return an old Node; basically if Identity can find 1164 // another Node have the Ideal call make no change and return null. 1165 // Example: AddINode::Ideal must check for add of zero; in this case it 1166 // returns null instead of doing any graph reshaping. 1167 // 1168 // You cannot modify any old Nodes except for the 'this' pointer. Due to 1169 // sharing there may be other users of the old Nodes relying on their current 1170 // semantics. Modifying them will break the other users. 1171 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for 1172 // "X+3" unchanged in case it is shared. 1173 // 1174 // If you modify the 'this' pointer's inputs, you should use 1175 // 'set_req'. If you are making a new Node (either as the new root or 1176 // some new internal piece) you may use 'init_req' to set the initial 1177 // value. You can make a new Node with either 'new' or 'clone'. In 1178 // either case, def-use info is correctly maintained. 1179 // 1180 // Example: reshape "(X+3)+4" into "X+7": 1181 // set_req(1, in(1)->in(1)); 1182 // set_req(2, phase->intcon(7)); 1183 // return this; 1184 // Example: reshape "X*4" into "X<<2" 1185 // return new LShiftINode(in(1), phase->intcon(2)); 1186 // 1187 // You must call 'phase->transform(X)' on any new Nodes X you make, except 1188 // for the returned root node. Example: reshape "X*31" with "(X<<5)-X". 1189 // Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5))); 1190 // return new AddINode(shift, in(1)); 1191 // 1192 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'. 1193 // These forms are faster than 'phase->transform(new ConNode())' and Do 1194 // The Right Thing with def-use info. 1195 // 1196 // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped 1197 // graph uses the 'this' Node it must be the root. If you want a Node with 1198 // the same Opcode as the 'this' pointer use 'clone'. 1199 // 1200 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) { 1201 return nullptr; // Default to being Ideal already 1202 } 1203 1204 // Some nodes have specific Ideal subgraph transformations only if they are 1205 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1206 // for the transformations to happen. 1207 bool Node::has_special_unique_user() const { 1208 assert(outcnt() == 1, "match only for unique out"); 1209 Node* n = unique_out(); 1210 int op = Opcode(); 1211 if (this->is_Store()) { 1212 // Condition for back-to-back stores folding. 1213 return n->Opcode() == op && n->in(MemNode::Memory) == this; 1214 } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) { 1215 // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input 1216 return n->Opcode() == Op_MemBarAcquire; 1217 } else if (op == Op_AddL) { 1218 // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) 1219 return n->Opcode() == Op_ConvL2I && n->in(1) == this; 1220 } else if (op == Op_SubI || op == Op_SubL) { 1221 // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y) 1222 return n->Opcode() == op && n->in(2) == this; 1223 } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) { 1224 // See IfProjNode::Identity() 1225 return true; 1226 } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) { 1227 // See IfNode::fold_compares 1228 return true; 1229 } else { 1230 return false; 1231 } 1232 }; 1233 1234 //--------------------------find_exact_control--------------------------------- 1235 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1236 Node* Node::find_exact_control(Node* ctrl) { 1237 if (ctrl == nullptr && this->is_Region()) 1238 ctrl = this->as_Region()->is_copy(); 1239 1240 if (ctrl != nullptr && ctrl->is_CatchProj()) { 1241 if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index) 1242 ctrl = ctrl->in(0); 1243 if (ctrl != nullptr && !ctrl->is_top()) 1244 ctrl = ctrl->in(0); 1245 } 1246 1247 if (ctrl != nullptr && ctrl->is_Proj()) 1248 ctrl = ctrl->in(0); 1249 1250 return ctrl; 1251 } 1252 1253 //--------------------------dominates------------------------------------------ 1254 // Helper function for MemNode::all_controls_dominate(). 1255 // Check if 'this' control node dominates or equal to 'sub' control node. 1256 // We already know that if any path back to Root or Start reaches 'this', 1257 // then all paths so, so this is a simple search for one example, 1258 // not an exhaustive search for a counterexample. 1259 bool Node::dominates(Node* sub, Node_List &nlist) { 1260 assert(this->is_CFG(), "expecting control"); 1261 assert(sub != nullptr && sub->is_CFG(), "expecting control"); 1262 1263 // detect dead cycle without regions 1264 int iterations_without_region_limit = DominatorSearchLimit; 1265 1266 Node* orig_sub = sub; 1267 Node* dom = this; 1268 bool met_dom = false; 1269 nlist.clear(); 1270 1271 // Walk 'sub' backward up the chain to 'dom', watching for regions. 1272 // After seeing 'dom', continue up to Root or Start. 1273 // If we hit a region (backward split point), it may be a loop head. 1274 // Keep going through one of the region's inputs. If we reach the 1275 // same region again, go through a different input. Eventually we 1276 // will either exit through the loop head, or give up. 1277 // (If we get confused, break out and return a conservative 'false'.) 1278 while (sub != nullptr) { 1279 if (sub->is_top()) break; // Conservative answer for dead code. 1280 if (sub == dom) { 1281 if (nlist.size() == 0) { 1282 // No Region nodes except loops were visited before and the EntryControl 1283 // path was taken for loops: it did not walk in a cycle. 1284 return true; 1285 } else if (met_dom) { 1286 break; // already met before: walk in a cycle 1287 } else { 1288 // Region nodes were visited. Continue walk up to Start or Root 1289 // to make sure that it did not walk in a cycle. 1290 met_dom = true; // first time meet 1291 iterations_without_region_limit = DominatorSearchLimit; // Reset 1292 } 1293 } 1294 if (sub->is_Start() || sub->is_Root()) { 1295 // Success if we met 'dom' along a path to Start or Root. 1296 // We assume there are no alternative paths that avoid 'dom'. 1297 // (This assumption is up to the caller to ensure!) 1298 return met_dom; 1299 } 1300 Node* up = sub->in(0); 1301 // Normalize simple pass-through regions and projections: 1302 up = sub->find_exact_control(up); 1303 // If sub == up, we found a self-loop. Try to push past it. 1304 if (sub == up && sub->is_Loop()) { 1305 // Take loop entry path on the way up to 'dom'. 1306 up = sub->in(1); // in(LoopNode::EntryControl); 1307 } else if (sub == up && sub->is_Region() && sub->req() == 2) { 1308 // Take in(1) path on the way up to 'dom' for regions with only one input 1309 up = sub->in(1); 1310 } else if (sub == up && sub->is_Region()) { 1311 // Try both paths for Regions with 2 input paths (it may be a loop head). 1312 // It could give conservative 'false' answer without information 1313 // which region's input is the entry path. 1314 iterations_without_region_limit = DominatorSearchLimit; // Reset 1315 1316 bool region_was_visited_before = false; 1317 // Was this Region node visited before? 1318 // If so, we have reached it because we accidentally took a 1319 // loop-back edge from 'sub' back into the body of the loop, 1320 // and worked our way up again to the loop header 'sub'. 1321 // So, take the first unexplored path on the way up to 'dom'. 1322 for (int j = nlist.size() - 1; j >= 0; j--) { 1323 intptr_t ni = (intptr_t)nlist.at(j); 1324 Node* visited = (Node*)(ni & ~1); 1325 bool visited_twice_already = ((ni & 1) != 0); 1326 if (visited == sub) { 1327 if (visited_twice_already) { 1328 // Visited 2 paths, but still stuck in loop body. Give up. 1329 return false; 1330 } 1331 // The Region node was visited before only once. 1332 // (We will repush with the low bit set, below.) 1333 nlist.remove(j); 1334 // We will find a new edge and re-insert. 1335 region_was_visited_before = true; 1336 break; 1337 } 1338 } 1339 1340 // Find an incoming edge which has not been seen yet; walk through it. 1341 assert(up == sub, ""); 1342 uint skip = region_was_visited_before ? 1 : 0; 1343 for (uint i = 1; i < sub->req(); i++) { 1344 Node* in = sub->in(i); 1345 if (in != nullptr && !in->is_top() && in != sub) { 1346 if (skip == 0) { 1347 up = in; 1348 break; 1349 } 1350 --skip; // skip this nontrivial input 1351 } 1352 } 1353 1354 // Set 0 bit to indicate that both paths were taken. 1355 nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0))); 1356 } 1357 1358 if (up == sub) { 1359 break; // some kind of tight cycle 1360 } 1361 if (up == orig_sub && met_dom) { 1362 // returned back after visiting 'dom' 1363 break; // some kind of cycle 1364 } 1365 if (--iterations_without_region_limit < 0) { 1366 break; // dead cycle 1367 } 1368 sub = up; 1369 } 1370 1371 // Did not meet Root or Start node in pred. chain. 1372 // Conservative answer for dead code. 1373 return false; 1374 } 1375 1376 //------------------------------remove_dead_region----------------------------- 1377 // This control node is dead. Follow the subgraph below it making everything 1378 // using it dead as well. This will happen normally via the usual IterGVN 1379 // worklist but this call is more efficient. Do not update use-def info 1380 // inside the dead region, just at the borders. 1381 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) { 1382 // Con's are a popular node to re-hit in the hash table again. 1383 if( dead->is_Con() ) return; 1384 1385 ResourceMark rm; 1386 Node_List nstack; 1387 VectorSet dead_set; // notify uses only once 1388 1389 Node *top = igvn->C->top(); 1390 nstack.push(dead); 1391 bool has_irreducible_loop = igvn->C->has_irreducible_loop(); 1392 1393 while (nstack.size() > 0) { 1394 dead = nstack.pop(); 1395 if (!dead_set.test_set(dead->_idx)) { 1396 // If dead has any live uses, those are now still attached. Notify them before we lose them. 1397 igvn->add_users_to_worklist(dead); 1398 } 1399 if (dead->Opcode() == Op_SafePoint) { 1400 dead->as_SafePoint()->disconnect_from_root(igvn); 1401 } 1402 if (dead->outcnt() > 0) { 1403 // Keep dead node on stack until all uses are processed. 1404 nstack.push(dead); 1405 // For all Users of the Dead... ;-) 1406 for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) { 1407 Node* use = dead->last_out(k); 1408 igvn->hash_delete(use); // Yank from hash table prior to mod 1409 if (use->in(0) == dead) { // Found another dead node 1410 assert (!use->is_Con(), "Control for Con node should be Root node."); 1411 use->set_req(0, top); // Cut dead edge to prevent processing 1412 nstack.push(use); // the dead node again. 1413 } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop 1414 use->is_Loop() && !use->is_Root() && // Don't kill Root (RootNode extends LoopNode) 1415 use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead 1416 use->set_req(LoopNode::EntryControl, top); // Cut dead edge to prevent processing 1417 use->set_req(0, top); // Cut self edge 1418 nstack.push(use); 1419 } else { // Else found a not-dead user 1420 // Dead if all inputs are top or null 1421 bool dead_use = !use->is_Root(); // Keep empty graph alive 1422 for (uint j = 1; j < use->req(); j++) { 1423 Node* in = use->in(j); 1424 if (in == dead) { // Turn all dead inputs into TOP 1425 use->set_req(j, top); 1426 } else if (in != nullptr && !in->is_top()) { 1427 dead_use = false; 1428 } 1429 } 1430 if (dead_use) { 1431 if (use->is_Region()) { 1432 use->set_req(0, top); // Cut self edge 1433 } 1434 nstack.push(use); 1435 } else { 1436 igvn->_worklist.push(use); 1437 } 1438 } 1439 // Refresh the iterator, since any number of kills might have happened. 1440 k = dead->last_outs(kmin); 1441 } 1442 } else { // (dead->outcnt() == 0) 1443 // Done with outputs. 1444 igvn->hash_delete(dead); 1445 igvn->_worklist.remove(dead); 1446 igvn->set_type(dead, Type::TOP); 1447 // Kill all inputs to the dead guy 1448 for (uint i=0; i < dead->req(); i++) { 1449 Node *n = dead->in(i); // Get input to dead guy 1450 if (n != nullptr && !n->is_top()) { // Input is valid? 1451 dead->set_req(i, top); // Smash input away 1452 if (n->outcnt() == 0) { // Input also goes dead? 1453 if (!n->is_Con()) 1454 nstack.push(n); // Clear it out as well 1455 } else if (n->outcnt() == 1 && 1456 n->has_special_unique_user()) { 1457 igvn->add_users_to_worklist( n ); 1458 } else if (n->outcnt() <= 2 && n->is_Store()) { 1459 // Push store's uses on worklist to enable folding optimization for 1460 // store/store and store/load to the same address. 1461 // The restriction (outcnt() <= 2) is the same as in set_req_X() 1462 // and remove_globally_dead_node(). 1463 igvn->add_users_to_worklist( n ); 1464 } else { 1465 BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n); 1466 } 1467 } 1468 } 1469 igvn->C->remove_useless_node(dead); 1470 } // (dead->outcnt() == 0) 1471 } // while (nstack.size() > 0) for outputs 1472 return; 1473 } 1474 1475 //------------------------------remove_dead_region----------------------------- 1476 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) { 1477 Node *n = in(0); 1478 if( !n ) return false; 1479 // Lost control into this guy? I.e., it became unreachable? 1480 // Aggressively kill all unreachable code. 1481 if (can_reshape && n->is_top()) { 1482 kill_dead_code(this, phase->is_IterGVN()); 1483 return false; // Node is dead. 1484 } 1485 1486 if( n->is_Region() && n->as_Region()->is_copy() ) { 1487 Node *m = n->nonnull_req(); 1488 set_req(0, m); 1489 return true; 1490 } 1491 return false; 1492 } 1493 1494 //------------------------------hash------------------------------------------- 1495 // Hash function over Nodes. 1496 uint Node::hash() const { 1497 uint sum = 0; 1498 for( uint i=0; i<_cnt; i++ ) // Add in all inputs 1499 sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded nulls 1500 return (sum>>2) + _cnt + Opcode(); 1501 } 1502 1503 //------------------------------cmp-------------------------------------------- 1504 // Compare special parts of simple Nodes 1505 bool Node::cmp( const Node &n ) const { 1506 return true; // Must be same 1507 } 1508 1509 //------------------------------rematerialize----------------------------------- 1510 // Should we clone rather than spill this instruction? 1511 bool Node::rematerialize() const { 1512 if ( is_Mach() ) 1513 return this->as_Mach()->rematerialize(); 1514 else 1515 return (_flags & Flag_rematerialize) != 0; 1516 } 1517 1518 //------------------------------needs_anti_dependence_check--------------------- 1519 // Nodes which use memory without consuming it, hence need antidependences. 1520 bool Node::needs_anti_dependence_check() const { 1521 if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) { 1522 return false; 1523 } 1524 return in(1)->bottom_type()->has_memory(); 1525 } 1526 1527 // Get an integer constant from a ConNode (or CastIINode). 1528 // Return a default value if there is no apparent constant here. 1529 const TypeInt* Node::find_int_type() const { 1530 if (this->is_Type()) { 1531 return this->as_Type()->type()->isa_int(); 1532 } else if (this->is_Con()) { 1533 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1534 return this->bottom_type()->isa_int(); 1535 } 1536 return nullptr; 1537 } 1538 1539 const TypeInteger* Node::find_integer_type(BasicType bt) const { 1540 if (this->is_Type()) { 1541 return this->as_Type()->type()->isa_integer(bt); 1542 } else if (this->is_Con()) { 1543 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1544 return this->bottom_type()->isa_integer(bt); 1545 } 1546 return nullptr; 1547 } 1548 1549 // Get a pointer constant from a ConstNode. 1550 // Returns the constant if it is a pointer ConstNode 1551 intptr_t Node::get_ptr() const { 1552 assert( Opcode() == Op_ConP, "" ); 1553 return ((ConPNode*)this)->type()->is_ptr()->get_con(); 1554 } 1555 1556 // Get a narrow oop constant from a ConNNode. 1557 intptr_t Node::get_narrowcon() const { 1558 assert( Opcode() == Op_ConN, "" ); 1559 return ((ConNNode*)this)->type()->is_narrowoop()->get_con(); 1560 } 1561 1562 // Get a long constant from a ConNode. 1563 // Return a default value if there is no apparent constant here. 1564 const TypeLong* Node::find_long_type() const { 1565 if (this->is_Type()) { 1566 return this->as_Type()->type()->isa_long(); 1567 } else if (this->is_Con()) { 1568 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1569 return this->bottom_type()->isa_long(); 1570 } 1571 return nullptr; 1572 } 1573 1574 1575 /** 1576 * Return a ptr type for nodes which should have it. 1577 */ 1578 const TypePtr* Node::get_ptr_type() const { 1579 const TypePtr* tp = this->bottom_type()->make_ptr(); 1580 #ifdef ASSERT 1581 if (tp == nullptr) { 1582 this->dump(1); 1583 assert((tp != nullptr), "unexpected node type"); 1584 } 1585 #endif 1586 return tp; 1587 } 1588 1589 // Get a double constant from a ConstNode. 1590 // Returns the constant if it is a double ConstNode 1591 jdouble Node::getd() const { 1592 assert( Opcode() == Op_ConD, "" ); 1593 return ((ConDNode*)this)->type()->is_double_constant()->getd(); 1594 } 1595 1596 // Get a float constant from a ConstNode. 1597 // Returns the constant if it is a float ConstNode 1598 jfloat Node::getf() const { 1599 assert( Opcode() == Op_ConF, "" ); 1600 return ((ConFNode*)this)->type()->is_float_constant()->getf(); 1601 } 1602 1603 #ifndef PRODUCT 1604 1605 // Call this from debugger: 1606 Node* old_root() { 1607 Matcher* matcher = Compile::current()->matcher(); 1608 if (matcher != nullptr) { 1609 Node* new_root = Compile::current()->root(); 1610 Node* old_root = matcher->find_old_node(new_root); 1611 if (old_root != nullptr) { 1612 return old_root; 1613 } 1614 } 1615 tty->print("old_root: not found.\n"); 1616 return nullptr; 1617 } 1618 1619 // BFS traverse all reachable nodes from start, call callback on them 1620 template <typename Callback> 1621 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) { 1622 Unique_Mixed_Node_List worklist; 1623 worklist.add(start); 1624 for (uint i = 0; i < worklist.size(); i++) { 1625 Node* n = worklist[i]; 1626 callback(n); 1627 for (uint i = 0; i < n->len(); i++) { 1628 if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) { 1629 // If only_ctrl is set: Add regions, the root node, or control inputs only 1630 worklist.add(n->in(i)); 1631 } 1632 } 1633 if (traverse_output && !only_ctrl) { 1634 for (uint i = 0; i < n->outcnt(); i++) { 1635 worklist.add(n->raw_out(i)); 1636 } 1637 } 1638 } 1639 } 1640 1641 // BFS traverse from start, return node with idx 1642 static Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) { 1643 ResourceMark rm; 1644 Node* result = nullptr; 1645 auto callback = [&] (Node* n) { 1646 if (n->_idx == idx) { 1647 if (result != nullptr) { 1648 tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n", 1649 (uintptr_t)result, (uintptr_t)n, idx); 1650 } 1651 result = n; 1652 } 1653 }; 1654 visit_nodes(start, callback, traverse_output, only_ctrl); 1655 return result; 1656 } 1657 1658 static int node_idx_cmp(const Node** n1, const Node** n2) { 1659 return (*n1)->_idx - (*n2)->_idx; 1660 } 1661 1662 static void find_nodes_by_name(Node* start, const char* name) { 1663 ResourceMark rm; 1664 GrowableArray<const Node*> ns; 1665 auto callback = [&] (const Node* n) { 1666 if (StringUtils::is_star_match(name, n->Name())) { 1667 ns.push(n); 1668 } 1669 }; 1670 visit_nodes(start, callback, true, false); 1671 ns.sort(node_idx_cmp); 1672 for (int i = 0; i < ns.length(); i++) { 1673 ns.at(i)->dump(); 1674 } 1675 } 1676 1677 static void find_nodes_by_dump(Node* start, const char* pattern) { 1678 ResourceMark rm; 1679 GrowableArray<const Node*> ns; 1680 auto callback = [&] (const Node* n) { 1681 stringStream stream; 1682 n->dump("", false, &stream); 1683 if (StringUtils::is_star_match(pattern, stream.base())) { 1684 ns.push(n); 1685 } 1686 }; 1687 visit_nodes(start, callback, true, false); 1688 ns.sort(node_idx_cmp); 1689 for (int i = 0; i < ns.length(); i++) { 1690 ns.at(i)->dump(); 1691 } 1692 } 1693 1694 // call from debugger: find node with name pattern in new/current graph 1695 // name can contain "*" in match pattern to match any characters 1696 // the matching is case insensitive 1697 void find_nodes_by_name(const char* name) { 1698 Node* root = Compile::current()->root(); 1699 find_nodes_by_name(root, name); 1700 } 1701 1702 // call from debugger: find node with name pattern in old graph 1703 // name can contain "*" in match pattern to match any characters 1704 // the matching is case insensitive 1705 void find_old_nodes_by_name(const char* name) { 1706 Node* root = old_root(); 1707 find_nodes_by_name(root, name); 1708 } 1709 1710 // call from debugger: find node with dump pattern in new/current graph 1711 // can contain "*" in match pattern to match any characters 1712 // the matching is case insensitive 1713 void find_nodes_by_dump(const char* pattern) { 1714 Node* root = Compile::current()->root(); 1715 find_nodes_by_dump(root, pattern); 1716 } 1717 1718 // call from debugger: find node with name pattern in old graph 1719 // can contain "*" in match pattern to match any characters 1720 // the matching is case insensitive 1721 void find_old_nodes_by_dump(const char* pattern) { 1722 Node* root = old_root(); 1723 find_nodes_by_dump(root, pattern); 1724 } 1725 1726 // Call this from debugger, search in same graph as n: 1727 Node* find_node(Node* n, const int idx) { 1728 return n->find(idx); 1729 } 1730 1731 // Call this from debugger, search in new nodes: 1732 Node* find_node(const int idx) { 1733 return Compile::current()->root()->find(idx); 1734 } 1735 1736 // Call this from debugger, search in old nodes: 1737 Node* find_old_node(const int idx) { 1738 Node* root = old_root(); 1739 return (root == nullptr) ? nullptr : root->find(idx); 1740 } 1741 1742 // Call this from debugger, search in same graph as n: 1743 Node* find_ctrl(Node* n, const int idx) { 1744 return n->find_ctrl(idx); 1745 } 1746 1747 // Call this from debugger, search in new nodes: 1748 Node* find_ctrl(const int idx) { 1749 return Compile::current()->root()->find_ctrl(idx); 1750 } 1751 1752 // Call this from debugger, search in old nodes: 1753 Node* find_old_ctrl(const int idx) { 1754 Node* root = old_root(); 1755 return (root == nullptr) ? nullptr : root->find_ctrl(idx); 1756 } 1757 1758 //------------------------------find_ctrl-------------------------------------- 1759 // Find an ancestor to this node in the control history with given _idx 1760 Node* Node::find_ctrl(int idx) { 1761 return find(idx, true); 1762 } 1763 1764 //------------------------------find------------------------------------------- 1765 // Tries to find the node with the index |idx| starting from this node. If idx is negative, 1766 // the search also includes forward (out) edges. Returns null if not found. 1767 // If only_ctrl is set, the search will only be done on control nodes. Returns null if 1768 // not found or if the node to be found is not a control node (search will not find it). 1769 Node* Node::find(const int idx, bool only_ctrl) { 1770 ResourceMark rm; 1771 return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl); 1772 } 1773 1774 class PrintBFS { 1775 public: 1776 PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options, outputStream* st) 1777 : _start(start), _max_distance(max_distance), _target(target), _options(options), _output(st), 1778 _dcc(this), _info_uid(cmpkey, hashkey) {} 1779 1780 void run(); 1781 private: 1782 // pipeline steps 1783 bool configure(); 1784 void collect(); 1785 void select(); 1786 void select_all(); 1787 void select_all_paths(); 1788 void select_shortest_path(); 1789 void sort(); 1790 void print(); 1791 1792 // inputs 1793 const Node* _start; 1794 const int _max_distance; 1795 const Node* _target; 1796 const char* _options; 1797 outputStream* _output; 1798 1799 // options 1800 bool _traverse_inputs = false; 1801 bool _traverse_outputs = false; 1802 struct Filter { 1803 bool _control = false; 1804 bool _memory = false; 1805 bool _data = false; 1806 bool _mixed = false; 1807 bool _other = false; 1808 bool is_empty() const { 1809 return !(_control || _memory || _data || _mixed || _other); 1810 } 1811 void set_all() { 1812 _control = true; 1813 _memory = true; 1814 _data = true; 1815 _mixed = true; 1816 _other = true; 1817 } 1818 // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes 1819 // are considered to have control. 1820 bool accepts(const Node* n) { 1821 const Type* t = n->bottom_type(); 1822 return ( _data && t->has_category(Type::Category::Data) ) || 1823 ( _memory && t->has_category(Type::Category::Memory) ) || 1824 ( _mixed && t->has_category(Type::Category::Mixed) ) || 1825 ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) || 1826 ( _other && t->has_category(Type::Category::Other) ); 1827 } 1828 }; 1829 Filter _filter_visit; 1830 Filter _filter_boundary; 1831 bool _sort_idx = false; 1832 bool _all_paths = false; 1833 bool _use_color = false; 1834 bool _print_blocks = false; 1835 bool _print_old = false; 1836 bool _dump_only = false; 1837 void print_options_help(bool print_examples); 1838 bool parse_options(); 1839 1840 public: 1841 class DumpConfigColored : public Node::DumpConfig { 1842 public: 1843 DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {}; 1844 virtual void pre_dump(outputStream* st, const Node* n); 1845 virtual void post_dump(outputStream* st); 1846 private: 1847 PrintBFS* _bfs; 1848 }; 1849 private: 1850 DumpConfigColored _dcc; 1851 1852 // node info 1853 static Node* old_node(const Node* n); // mach node -> prior IR node 1854 void print_node_idx(const Node* n); 1855 void print_block_id(const Block* b); 1856 void print_node_block(const Node* n); // _pre_order, head idx, _idom, _dom_depth 1857 1858 // traversal data structures 1859 GrowableArray<const Node*> _worklist; // BFS queue 1860 void maybe_traverse(const Node* src, const Node* dst); 1861 1862 // node info annotation 1863 class Info { 1864 public: 1865 Info() : Info(nullptr, 0) {}; 1866 Info(const Node* node, int distance) 1867 : _node(node), _distance_from_start(distance) {}; 1868 const Node* node() const { return _node; }; 1869 int distance() const { return _distance_from_start; }; 1870 int distance_from_target() const { return _distance_from_target; } 1871 void set_distance_from_target(int d) { _distance_from_target = d; } 1872 GrowableArray<const Node*> edge_bwd; // pointing toward _start 1873 bool is_marked() const { return _mark; } // marked to keep during select 1874 void set_mark() { _mark = true; } 1875 private: 1876 const Node* _node; 1877 int _distance_from_start; // distance from _start 1878 int _distance_from_target = 0; // distance from _target if _all_paths 1879 bool _mark = false; 1880 }; 1881 Dict _info_uid; // Node -> uid 1882 GrowableArray<Info> _info; // uid -> info 1883 1884 Info* find_info(const Node* n) { 1885 size_t uid = (size_t)_info_uid[n]; 1886 if (uid == 0) { 1887 return nullptr; 1888 } 1889 return &_info.at((int)uid); 1890 } 1891 1892 void make_info(const Node* node, const int distance) { 1893 assert(find_info(node) == nullptr, "node does not yet have info"); 1894 size_t uid = _info.length() + 1; 1895 _info_uid.Insert((void*)node, (void*)uid); 1896 _info.at_put_grow((int)uid, Info(node, distance)); 1897 assert(find_info(node)->node() == node, "stored correct node"); 1898 }; 1899 1900 // filled by sort, printed by print 1901 GrowableArray<const Node*> _print_list; 1902 1903 // print header + node table 1904 void print_header() const; 1905 void print_node(const Node* n); 1906 }; 1907 1908 void PrintBFS::run() { 1909 if (!configure()) { 1910 return; 1911 } 1912 collect(); 1913 select(); 1914 sort(); 1915 print(); 1916 } 1917 1918 // set up configuration for BFS and print 1919 bool PrintBFS::configure() { 1920 if (_max_distance < 0) { 1921 _output->print_cr("dump_bfs: max_distance must be non-negative!"); 1922 return false; 1923 } 1924 return parse_options(); 1925 } 1926 1927 // BFS traverse according to configuration, fill worklist and info 1928 void PrintBFS::collect() { 1929 maybe_traverse(_start, _start); 1930 int pos = 0; 1931 while (pos < _worklist.length()) { 1932 const Node* n = _worklist.at(pos++); // next node to traverse 1933 Info* info = find_info(n); 1934 if (!_filter_visit.accepts(n) && n != _start) { 1935 continue; // we hit boundary, do not traverse further 1936 } 1937 if (n != _start && n->is_Root()) { 1938 continue; // traversing through root node would lead to unrelated nodes 1939 } 1940 if (_traverse_inputs && _max_distance > info->distance()) { 1941 for (uint i = 0; i < n->req(); i++) { 1942 maybe_traverse(n, n->in(i)); 1943 } 1944 } 1945 if (_traverse_outputs && _max_distance > info->distance()) { 1946 for (uint i = 0; i < n->outcnt(); i++) { 1947 maybe_traverse(n, n->raw_out(i)); 1948 } 1949 } 1950 } 1951 } 1952 1953 // go through work list, mark those that we want to print 1954 void PrintBFS::select() { 1955 if (_target == nullptr ) { 1956 select_all(); 1957 } else { 1958 if (find_info(_target) == nullptr) { 1959 _output->print_cr("Could not find target in BFS."); 1960 return; 1961 } 1962 if (_all_paths) { 1963 select_all_paths(); 1964 } else { 1965 select_shortest_path(); 1966 } 1967 } 1968 } 1969 1970 // take all nodes from BFS 1971 void PrintBFS::select_all() { 1972 for (int i = 0; i < _worklist.length(); i++) { 1973 const Node* n = _worklist.at(i); 1974 Info* info = find_info(n); 1975 info->set_mark(); 1976 } 1977 } 1978 1979 // traverse backward from target, along edges found in BFS 1980 void PrintBFS::select_all_paths() { 1981 int pos = 0; 1982 GrowableArray<const Node*> backtrace; 1983 // start from target 1984 backtrace.push(_target); 1985 find_info(_target)->set_mark(); 1986 // traverse backward 1987 while (pos < backtrace.length()) { 1988 const Node* n = backtrace.at(pos++); 1989 Info* info = find_info(n); 1990 for (int i = 0; i < info->edge_bwd.length(); i++) { 1991 // all backward edges 1992 const Node* back = info->edge_bwd.at(i); 1993 Info* back_info = find_info(back); 1994 if (!back_info->is_marked()) { 1995 // not yet found this on way back. 1996 back_info->set_distance_from_target(info->distance_from_target() + 1); 1997 if (back_info->distance_from_target() + back_info->distance() <= _max_distance) { 1998 // total distance is small enough 1999 back_info->set_mark(); 2000 backtrace.push(back); 2001 } 2002 } 2003 } 2004 } 2005 } 2006 2007 void PrintBFS::select_shortest_path() { 2008 const Node* current = _target; 2009 while (true) { 2010 Info* info = find_info(current); 2011 info->set_mark(); 2012 if (current == _start) { 2013 break; 2014 } 2015 // first edge -> leads us one step closer to _start 2016 current = info->edge_bwd.at(0); 2017 } 2018 } 2019 2020 // go through worklist in desired order, put the marked ones in print list 2021 void PrintBFS::sort() { 2022 if (_traverse_inputs && !_traverse_outputs) { 2023 // reverse order 2024 for (int i = _worklist.length() - 1; i >= 0; i--) { 2025 const Node* n = _worklist.at(i); 2026 Info* info = find_info(n); 2027 if (info->is_marked()) { 2028 _print_list.push(n); 2029 } 2030 } 2031 } else { 2032 // same order as worklist 2033 for (int i = 0; i < _worklist.length(); i++) { 2034 const Node* n = _worklist.at(i); 2035 Info* info = find_info(n); 2036 if (info->is_marked()) { 2037 _print_list.push(n); 2038 } 2039 } 2040 } 2041 if (_sort_idx) { 2042 _print_list.sort(node_idx_cmp); 2043 } 2044 } 2045 2046 // go through printlist and print 2047 void PrintBFS::print() { 2048 if (_print_list.length() > 0 ) { 2049 print_header(); 2050 for (int i = 0; i < _print_list.length(); i++) { 2051 const Node* n = _print_list.at(i); 2052 print_node(n); 2053 } 2054 } else { 2055 _output->print_cr("No nodes to print."); 2056 } 2057 } 2058 2059 void PrintBFS::print_options_help(bool print_examples) { 2060 _output->print_cr("Usage: node->dump_bfs(int max_distance, Node* target, char* options)"); 2061 _output->print_cr(""); 2062 _output->print_cr("Use cases:"); 2063 _output->print_cr(" BFS traversal: no target required"); 2064 _output->print_cr(" shortest path: set target"); 2065 _output->print_cr(" all paths: set target and put 'A' in options"); 2066 _output->print_cr(" detect loop: subcase of all paths, have start==target"); 2067 _output->print_cr(""); 2068 _output->print_cr("Arguments:"); 2069 _output->print_cr(" this/start: staring point of BFS"); 2070 _output->print_cr(" target:"); 2071 _output->print_cr(" if null: simple BFS"); 2072 _output->print_cr(" else: shortest path or all paths between this/start and target"); 2073 _output->print_cr(" options:"); 2074 _output->print_cr(" if null: same as \"cdmox@B\""); 2075 _output->print_cr(" else: use combination of following characters"); 2076 _output->print_cr(" h: display this help info"); 2077 _output->print_cr(" H: display this help info, with examples"); 2078 _output->print_cr(" +: traverse in-edges (on if neither + nor -)"); 2079 _output->print_cr(" -: traverse out-edges"); 2080 _output->print_cr(" c: visit control nodes"); 2081 _output->print_cr(" d: visit data nodes"); 2082 _output->print_cr(" m: visit memory nodes"); 2083 _output->print_cr(" o: visit other nodes"); 2084 _output->print_cr(" x: visit mixed nodes"); 2085 _output->print_cr(" C: boundary control nodes"); 2086 _output->print_cr(" D: boundary data nodes"); 2087 _output->print_cr(" M: boundary memory nodes"); 2088 _output->print_cr(" O: boundary other nodes"); 2089 _output->print_cr(" X: boundary mixed nodes"); 2090 _output->print_cr(" #: display node category in color (not supported in all terminals)"); 2091 _output->print_cr(" S: sort displayed nodes by node idx"); 2092 _output->print_cr(" A: all paths (not just shortest path to target)"); 2093 _output->print_cr(" @: print old nodes - before matching (if available)"); 2094 _output->print_cr(" B: print scheduling blocks (if available)"); 2095 _output->print_cr(" $: dump only, no header, no other columns"); 2096 _output->print_cr(""); 2097 _output->print_cr("recursively follow edges to nodes with permitted visit types,"); 2098 _output->print_cr("on the boundary additionally display nodes allowed in boundary types"); 2099 _output->print_cr("Note: the categories can be overlapping. For example a mixed node"); 2100 _output->print_cr(" can contain control and memory output. Some from the other"); 2101 _output->print_cr(" category are also control (Halt, Return, etc)."); 2102 _output->print_cr(""); 2103 _output->print_cr("output columns:"); 2104 _output->print_cr(" dist: BFS distance to this/start"); 2105 _output->print_cr(" apd: all paths distance (d_outputart + d_target)"); 2106 _output->print_cr(" block: block identifier, based on _pre_order"); 2107 _output->print_cr(" head: first node in block"); 2108 _output->print_cr(" idom: head node of idom block"); 2109 _output->print_cr(" depth: depth of block (_dom_depth)"); 2110 _output->print_cr(" old: old IR node - before matching"); 2111 _output->print_cr(" dump: node->dump()"); 2112 _output->print_cr(""); 2113 _output->print_cr("Note: if none of the \"cmdxo\" characters are in the options string"); 2114 _output->print_cr(" then we set all of them."); 2115 _output->print_cr(" This allows for short strings like \"#\" for colored input traversal"); 2116 _output->print_cr(" or \"-#\" for colored output traversal."); 2117 if (print_examples) { 2118 _output->print_cr(""); 2119 _output->print_cr("Examples:"); 2120 _output->print_cr(" if->dump_bfs(10, 0, \"+cxo\")"); 2121 _output->print_cr(" starting at some if node, traverse inputs recursively"); 2122 _output->print_cr(" only along control (mixed and other can also be control)"); 2123 _output->print_cr(" phi->dump_bfs(5, 0, \"-dxo\")"); 2124 _output->print_cr(" starting at phi node, traverse outputs recursively"); 2125 _output->print_cr(" only along data (mixed and other can also have data flow)"); 2126 _output->print_cr(" find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")"); 2127 _output->print_cr(" find inputs of node 385, up to 3 nodes up (+)"); 2128 _output->print_cr(" traverse all nodes (cdmox), use colors (#)"); 2129 _output->print_cr(" display old nodes and blocks, if they exist"); 2130 _output->print_cr(" useful call to start with"); 2131 _output->print_cr(" find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")"); 2132 _output->print_cr(" find non-data dependencies of a data node"); 2133 _output->print_cr(" follow data node outputs until we find another category"); 2134 _output->print_cr(" node as the boundary"); 2135 _output->print_cr(" x->dump_bfs(10, y, 0)"); 2136 _output->print_cr(" find shortest path from x to y, along any edge or node"); 2137 _output->print_cr(" will not find a path if it is longer than 10"); 2138 _output->print_cr(" useful to find how x and y are related"); 2139 _output->print_cr(" find_node(741)->dump_bfs(20, find_node(746), \"c+\")"); 2140 _output->print_cr(" find shortest control path between two nodes"); 2141 _output->print_cr(" find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")"); 2142 _output->print_cr(" find all paths (A) between two nodes of length at most 8"); 2143 _output->print_cr(" find_node(741)->dump_bfs(7, find_node(741), \"c+A\")"); 2144 _output->print_cr(" find all control loops for this node"); 2145 } 2146 } 2147 2148 bool PrintBFS::parse_options() { 2149 if (_options == nullptr) { 2150 _options = "cdmox@B"; // default options 2151 } 2152 size_t len = strlen(_options); 2153 for (size_t i = 0; i < len; i++) { 2154 switch (_options[i]) { 2155 case '+': 2156 _traverse_inputs = true; 2157 break; 2158 case '-': 2159 _traverse_outputs = true; 2160 break; 2161 case 'c': 2162 _filter_visit._control = true; 2163 break; 2164 case 'm': 2165 _filter_visit._memory = true; 2166 break; 2167 case 'd': 2168 _filter_visit._data = true; 2169 break; 2170 case 'x': 2171 _filter_visit._mixed = true; 2172 break; 2173 case 'o': 2174 _filter_visit._other = true; 2175 break; 2176 case 'C': 2177 _filter_boundary._control = true; 2178 break; 2179 case 'M': 2180 _filter_boundary._memory = true; 2181 break; 2182 case 'D': 2183 _filter_boundary._data = true; 2184 break; 2185 case 'X': 2186 _filter_boundary._mixed = true; 2187 break; 2188 case 'O': 2189 _filter_boundary._other = true; 2190 break; 2191 case 'S': 2192 _sort_idx = true; 2193 break; 2194 case 'A': 2195 _all_paths = true; 2196 break; 2197 case '#': 2198 _use_color = true; 2199 break; 2200 case 'B': 2201 _print_blocks = true; 2202 break; 2203 case '@': 2204 _print_old = true; 2205 break; 2206 case '$': 2207 _dump_only = true; 2208 break; 2209 case 'h': 2210 print_options_help(false); 2211 return false; 2212 case 'H': 2213 print_options_help(true); 2214 return false; 2215 default: 2216 _output->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]); 2217 _output->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")"); 2218 return false; 2219 } 2220 } 2221 if (!_traverse_inputs && !_traverse_outputs) { 2222 _traverse_inputs = true; 2223 } 2224 if (_filter_visit.is_empty()) { 2225 _filter_visit.set_all(); 2226 } 2227 Compile* C = Compile::current(); 2228 _print_old &= (C->matcher() != nullptr); // only show old if there are new 2229 _print_blocks &= (C->cfg() != nullptr); // only show blocks if available 2230 return true; 2231 } 2232 2233 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) { 2234 if (!_bfs->_use_color) { 2235 return; 2236 } 2237 Info* info = _bfs->find_info(n); 2238 if (info == nullptr || !info->is_marked()) { 2239 return; 2240 } 2241 2242 const Type* t = n->bottom_type(); 2243 switch (t->category()) { 2244 case Type::Category::Data: 2245 st->print("\u001b[34m"); 2246 break; 2247 case Type::Category::Memory: 2248 st->print("\u001b[32m"); 2249 break; 2250 case Type::Category::Mixed: 2251 st->print("\u001b[35m"); 2252 break; 2253 case Type::Category::Control: 2254 st->print("\u001b[31m"); 2255 break; 2256 case Type::Category::Other: 2257 st->print("\u001b[33m"); 2258 break; 2259 case Type::Category::Undef: 2260 n->dump(); 2261 assert(false, "category undef ??"); 2262 break; 2263 default: 2264 n->dump(); 2265 assert(false, "not covered"); 2266 break; 2267 } 2268 } 2269 2270 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) { 2271 if (!_bfs->_use_color) { 2272 return; 2273 } 2274 st->print("\u001b[0m"); // white 2275 } 2276 2277 Node* PrintBFS::old_node(const Node* n) { 2278 Compile* C = Compile::current(); 2279 if (C->matcher() == nullptr || !C->node_arena()->contains(n)) { 2280 return (Node*)nullptr; 2281 } else { 2282 return C->matcher()->find_old_node(n); 2283 } 2284 } 2285 2286 void PrintBFS::print_node_idx(const Node* n) { 2287 Compile* C = Compile::current(); 2288 char buf[30]; 2289 if (n == nullptr) { 2290 os::snprintf_checked(buf, sizeof(buf), "_"); // null 2291 } else if (C->node_arena()->contains(n)) { 2292 os::snprintf_checked(buf, sizeof(buf), "%d", n->_idx); // new node 2293 } else { 2294 os::snprintf_checked(buf, sizeof(buf), "o%d", n->_idx); // old node 2295 } 2296 _output->print("%6s", buf); 2297 } 2298 2299 void PrintBFS::print_block_id(const Block* b) { 2300 Compile* C = Compile::current(); 2301 char buf[30]; 2302 os::snprintf_checked(buf, sizeof(buf), "B%d", b->_pre_order); 2303 _output->print("%7s", buf); 2304 } 2305 2306 void PrintBFS::print_node_block(const Node* n) { 2307 Compile* C = Compile::current(); 2308 Block* b = C->node_arena()->contains(n) 2309 ? C->cfg()->get_block_for_node(n) 2310 : nullptr; // guard against old nodes 2311 if (b == nullptr) { 2312 _output->print(" _"); // Block 2313 _output->print(" _"); // head 2314 _output->print(" _"); // idom 2315 _output->print(" _"); // depth 2316 } else { 2317 print_block_id(b); 2318 print_node_idx(b->head()); 2319 if (b->_idom) { 2320 print_node_idx(b->_idom->head()); 2321 } else { 2322 _output->print(" _"); // idom 2323 } 2324 _output->print("%6d ", b->_dom_depth); 2325 } 2326 } 2327 2328 // filter, and add to worklist, add info, note traversal edges 2329 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) { 2330 if (dst != nullptr && 2331 (_filter_visit.accepts(dst) || 2332 _filter_boundary.accepts(dst) || 2333 dst == _start)) { // correct category or start? 2334 if (find_info(dst) == nullptr) { 2335 // never visited - set up info 2336 _worklist.push(dst); 2337 int d = 0; 2338 if (dst != _start) { 2339 d = find_info(src)->distance() + 1; 2340 } 2341 make_info(dst, d); 2342 } 2343 if (src != dst) { 2344 // traversal edges useful during select 2345 find_info(dst)->edge_bwd.push(src); 2346 } 2347 } 2348 } 2349 2350 void PrintBFS::print_header() const { 2351 if (_dump_only) { 2352 return; // no header in dump only mode 2353 } 2354 _output->print("dist"); // distance 2355 if (_all_paths) { 2356 _output->print(" apd"); // all paths distance 2357 } 2358 if (_print_blocks) { 2359 _output->print(" [block head idom depth]"); // block 2360 } 2361 if (_print_old) { 2362 _output->print(" old"); // old node 2363 } 2364 _output->print(" dump\n"); // node dump 2365 _output->print_cr("---------------------------------------------"); 2366 } 2367 2368 void PrintBFS::print_node(const Node* n) { 2369 if (_dump_only) { 2370 n->dump("\n", false, _output, &_dcc); 2371 return; 2372 } 2373 _output->print("%4d", find_info(n)->distance());// distance 2374 if (_all_paths) { 2375 Info* info = find_info(n); 2376 int apd = info->distance() + info->distance_from_target(); 2377 _output->print("%4d", apd); // all paths distance 2378 } 2379 if (_print_blocks) { 2380 print_node_block(n); // block 2381 } 2382 if (_print_old) { 2383 print_node_idx(old_node(n)); // old node 2384 } 2385 _output->print(" "); 2386 n->dump("\n", false, _output, &_dcc); // node dump 2387 } 2388 2389 //------------------------------dump_bfs-------------------------------------- 2390 // Call this from debugger 2391 // Useful for BFS traversal, shortest path, all path, loop detection, etc 2392 // Designed to be more readable, and provide additional info 2393 // To find all options, run: 2394 // find_node(0)->dump_bfs(0,0,"H") 2395 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const { 2396 dump_bfs(max_distance, target, options, tty); 2397 } 2398 2399 // Used to dump to stream. 2400 void Node::dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const { 2401 PrintBFS bfs(this, max_distance, target, options, st); 2402 bfs.run(); 2403 } 2404 2405 // Call this from debugger, with default arguments 2406 void Node::dump_bfs(const int max_distance) const { 2407 dump_bfs(max_distance, nullptr, nullptr); 2408 } 2409 2410 // -----------------------------dump_idx--------------------------------------- 2411 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const { 2412 if (dc != nullptr) { 2413 dc->pre_dump(st, this); 2414 } 2415 Compile* C = Compile::current(); 2416 bool is_new = C->node_arena()->contains(this); 2417 if (align) { // print prefix empty spaces$ 2418 // +1 for leading digit, +1 for "o" 2419 uint max_width = static_cast<uint>(log10(static_cast<double>(C->unique()))) + 2; 2420 // +1 for leading digit, maybe +1 for "o" 2421 uint width = static_cast<uint>(log10(static_cast<double>(_idx))) + 1 + (is_new ? 0 : 1); 2422 while (max_width > width) { 2423 st->print(" "); 2424 width++; 2425 } 2426 } 2427 if (!is_new) { 2428 st->print("o"); 2429 } 2430 st->print("%d", _idx); 2431 if (dc != nullptr) { 2432 dc->post_dump(st); 2433 } 2434 } 2435 2436 // -----------------------------dump_name-------------------------------------- 2437 void Node::dump_name(outputStream* st, DumpConfig* dc) const { 2438 if (dc != nullptr) { 2439 dc->pre_dump(st, this); 2440 } 2441 st->print("%s", Name()); 2442 if (dc != nullptr) { 2443 dc->post_dump(st); 2444 } 2445 } 2446 2447 // -----------------------------Name------------------------------------------- 2448 extern const char *NodeClassNames[]; 2449 const char *Node::Name() const { return NodeClassNames[Opcode()]; } 2450 2451 static bool is_disconnected(const Node* n) { 2452 for (uint i = 0; i < n->req(); i++) { 2453 if (n->in(i) != nullptr) return false; 2454 } 2455 return true; 2456 } 2457 2458 #ifdef ASSERT 2459 void Node::dump_orig(outputStream *st, bool print_key) const { 2460 Compile* C = Compile::current(); 2461 Node* orig = _debug_orig; 2462 if (not_a_node(orig)) orig = nullptr; 2463 if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr; 2464 if (orig == nullptr) return; 2465 if (print_key) { 2466 st->print(" !orig="); 2467 } 2468 Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops 2469 if (not_a_node(fast)) fast = nullptr; 2470 while (orig != nullptr) { 2471 bool discon = is_disconnected(orig); // if discon, print [123] else 123 2472 if (discon) st->print("["); 2473 if (!Compile::current()->node_arena()->contains(orig)) 2474 st->print("o"); 2475 st->print("%d", orig->_idx); 2476 if (discon) st->print("]"); 2477 orig = orig->debug_orig(); 2478 if (not_a_node(orig)) orig = nullptr; 2479 if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr; 2480 if (orig != nullptr) st->print(","); 2481 if (fast != nullptr) { 2482 // Step fast twice for each single step of orig: 2483 fast = fast->debug_orig(); 2484 if (not_a_node(fast)) fast = nullptr; 2485 if (fast != nullptr && fast != orig) { 2486 fast = fast->debug_orig(); 2487 if (not_a_node(fast)) fast = nullptr; 2488 } 2489 if (fast == orig) { 2490 st->print("..."); 2491 break; 2492 } 2493 } 2494 } 2495 } 2496 2497 void Node::set_debug_orig(Node* orig) { 2498 _debug_orig = orig; 2499 if (BreakAtNode == 0) return; 2500 if (not_a_node(orig)) orig = nullptr; 2501 int trip = 10; 2502 while (orig != nullptr) { 2503 if (orig->debug_idx() == BreakAtNode || (uintx)orig->_idx == BreakAtNode) { 2504 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT " orig._idx=%d orig._debug_idx=" UINT64_FORMAT, 2505 this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx()); 2506 BREAKPOINT; 2507 } 2508 orig = orig->debug_orig(); 2509 if (not_a_node(orig)) orig = nullptr; 2510 if (trip-- <= 0) break; 2511 } 2512 } 2513 #endif //ASSERT 2514 2515 //------------------------------dump------------------------------------------ 2516 // Dump a Node 2517 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const { 2518 Compile* C = Compile::current(); 2519 bool is_new = C->node_arena()->contains(this); 2520 C->_in_dump_cnt++; 2521 2522 // idx mark name === 2523 dump_idx(true, st, dc); 2524 st->print(mark ? " >" : " "); 2525 dump_name(st, dc); 2526 st->print(" === "); 2527 2528 // Dump the required and precedence inputs 2529 dump_req(st, dc); 2530 dump_prec(st, dc); 2531 // Dump the outputs 2532 dump_out(st, dc); 2533 2534 if (is_disconnected(this)) { 2535 #ifdef ASSERT 2536 st->print(" [" UINT64_FORMAT "]", debug_idx()); 2537 dump_orig(st); 2538 #endif 2539 st->cr(); 2540 C->_in_dump_cnt--; 2541 return; // don't process dead nodes 2542 } 2543 2544 if (C->clone_map().value(_idx) != 0) { 2545 C->clone_map().dump(_idx, st); 2546 } 2547 // Dump node-specific info 2548 dump_spec(st); 2549 #ifdef ASSERT 2550 // Dump the non-reset _debug_idx 2551 if (Verbose && WizardMode) { 2552 st->print(" [" UINT64_FORMAT "]", debug_idx()); 2553 } 2554 #endif 2555 2556 const Type *t = bottom_type(); 2557 2558 if (t != nullptr && (t->isa_instptr() || t->isa_instklassptr())) { 2559 const TypeInstPtr *toop = t->isa_instptr(); 2560 const TypeInstKlassPtr *tkls = t->isa_instklassptr(); 2561 if (toop) { 2562 st->print(" Oop:"); 2563 } else if (tkls) { 2564 st->print(" Klass:"); 2565 } 2566 t->dump_on(st); 2567 } else if (t == Type::MEMORY) { 2568 st->print(" Memory:"); 2569 MemNode::dump_adr_type(this, adr_type(), st); 2570 } else if (Verbose || WizardMode) { 2571 st->print(" Type:"); 2572 if (t) { 2573 t->dump_on(st); 2574 } else { 2575 st->print("no type"); 2576 } 2577 } else if (t->isa_vect() && this->is_MachSpillCopy()) { 2578 // Dump MachSpillcopy vector type. 2579 t->dump_on(st); 2580 } 2581 if (is_new) { 2582 DEBUG_ONLY(dump_orig(st)); 2583 Node_Notes* nn = C->node_notes_at(_idx); 2584 if (nn != nullptr && !nn->is_clear()) { 2585 if (nn->jvms() != nullptr) { 2586 st->print(" !jvms:"); 2587 nn->jvms()->dump_spec(st); 2588 } 2589 } 2590 } 2591 if (suffix) st->print("%s", suffix); 2592 C->_in_dump_cnt--; 2593 } 2594 2595 // call from debugger: dump node to tty with newline 2596 void Node::dump() const { 2597 dump("\n"); 2598 } 2599 2600 //------------------------------dump_req-------------------------------------- 2601 void Node::dump_req(outputStream* st, DumpConfig* dc) const { 2602 // Dump the required input edges 2603 for (uint i = 0; i < req(); i++) { // For all required inputs 2604 Node* d = in(i); 2605 if (d == nullptr) { 2606 st->print("_ "); 2607 } else if (not_a_node(d)) { 2608 st->print("not_a_node "); // uninitialized, sentinel, garbage, etc. 2609 } else { 2610 d->dump_idx(false, st, dc); 2611 st->print(" "); 2612 } 2613 } 2614 } 2615 2616 2617 //------------------------------dump_prec------------------------------------- 2618 void Node::dump_prec(outputStream* st, DumpConfig* dc) const { 2619 // Dump the precedence edges 2620 int any_prec = 0; 2621 for (uint i = req(); i < len(); i++) { // For all precedence inputs 2622 Node* p = in(i); 2623 if (p != nullptr) { 2624 if (!any_prec++) st->print(" |"); 2625 if (not_a_node(p)) { st->print("not_a_node "); continue; } 2626 p->dump_idx(false, st, dc); 2627 st->print(" "); 2628 } 2629 } 2630 } 2631 2632 //------------------------------dump_out-------------------------------------- 2633 void Node::dump_out(outputStream* st, DumpConfig* dc) const { 2634 // Delimit the output edges 2635 st->print(" [[ "); 2636 // Dump the output edges 2637 for (uint i = 0; i < _outcnt; i++) { // For all outputs 2638 Node* u = _out[i]; 2639 if (u == nullptr) { 2640 st->print("_ "); 2641 } else if (not_a_node(u)) { 2642 st->print("not_a_node "); 2643 } else { 2644 u->dump_idx(false, st, dc); 2645 st->print(" "); 2646 } 2647 } 2648 st->print("]] "); 2649 } 2650 2651 //------------------------------dump------------------------------------------- 2652 // call from debugger: dump Node's inputs (or outputs if d negative) 2653 void Node::dump(int d) const { 2654 dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$"); 2655 } 2656 2657 //------------------------------dump_ctrl-------------------------------------- 2658 // call from debugger: dump Node's control inputs (or outputs if d negative) 2659 void Node::dump_ctrl(int d) const { 2660 dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c"); 2661 } 2662 2663 //-----------------------------dump_compact------------------------------------ 2664 void Node::dump_comp() const { 2665 this->dump_comp("\n"); 2666 } 2667 2668 //-----------------------------dump_compact------------------------------------ 2669 // Dump a Node in compact representation, i.e., just print its name and index. 2670 // Nodes can specify additional specifics to print in compact representation by 2671 // implementing dump_compact_spec. 2672 void Node::dump_comp(const char* suffix, outputStream *st) const { 2673 Compile* C = Compile::current(); 2674 C->_in_dump_cnt++; 2675 st->print("%s(%d)", Name(), _idx); 2676 this->dump_compact_spec(st); 2677 if (suffix) { 2678 st->print("%s", suffix); 2679 } 2680 C->_in_dump_cnt--; 2681 } 2682 2683 // VERIFICATION CODE 2684 // Verify all nodes if verify_depth is negative 2685 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) { 2686 assert(verify_depth != 0, "depth should not be 0"); 2687 Compile* C = Compile::current(); 2688 uint last_index_on_current_depth = worklist.size() - 1; 2689 verify_depth--; // Visiting the first node on depth 1 2690 // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0 2691 bool add_to_worklist = verify_depth != 0; 2692 2693 for (uint list_index = 0; list_index < worklist.size(); list_index++) { 2694 Node* n = worklist[list_index]; 2695 2696 if (n->is_Con() && n->bottom_type() == Type::TOP) { 2697 if (C->cached_top_node() == nullptr) { 2698 C->set_cached_top_node((Node*)n); 2699 } 2700 assert(C->cached_top_node() == n, "TOP node must be unique"); 2701 } 2702 2703 uint in_len = n->len(); 2704 for (uint i = 0; i < in_len; i++) { 2705 Node* x = n->_in[i]; 2706 if (!x || x->is_top()) { 2707 continue; 2708 } 2709 2710 // Verify my input has a def-use edge to me 2711 // Count use-def edges from n to x 2712 int cnt = 1; 2713 for (uint j = 0; j < i; j++) { 2714 if (n->_in[j] == x) { 2715 cnt++; 2716 break; 2717 } 2718 } 2719 if (cnt == 2) { 2720 // x is already checked as n's previous input, skip its duplicated def-use count checking 2721 continue; 2722 } 2723 for (uint j = i + 1; j < in_len; j++) { 2724 if (n->_in[j] == x) { 2725 cnt++; 2726 } 2727 } 2728 2729 // Count def-use edges from x to n 2730 uint max = x->_outcnt; 2731 for (uint k = 0; k < max; k++) { 2732 if (x->_out[k] == n) { 2733 cnt--; 2734 } 2735 } 2736 assert(cnt == 0, "mismatched def-use edge counts"); 2737 2738 if (add_to_worklist && !visited.test_set(x->_idx)) { 2739 worklist.push(x); 2740 } 2741 } 2742 2743 if (verify_depth > 0 && list_index == last_index_on_current_depth) { 2744 // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and 2745 // store the current last list index which is the last node in the list with the new depth. All nodes 2746 // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0). 2747 verify_depth--; 2748 if (verify_depth == 0) { 2749 add_to_worklist = false; 2750 } 2751 last_index_on_current_depth = worklist.size() - 1; 2752 } 2753 } 2754 } 2755 #endif // not PRODUCT 2756 2757 //------------------------------Registers-------------------------------------- 2758 // Do we Match on this edge index or not? Generally false for Control 2759 // and true for everything else. Weird for calls & returns. 2760 uint Node::match_edge(uint idx) const { 2761 return idx; // True for other than index 0 (control) 2762 } 2763 2764 // Register classes are defined for specific machines 2765 const RegMask &Node::out_RegMask() const { 2766 ShouldNotCallThis(); 2767 return RegMask::Empty; 2768 } 2769 2770 const RegMask &Node::in_RegMask(uint) const { 2771 ShouldNotCallThis(); 2772 return RegMask::Empty; 2773 } 2774 2775 void Node_Array::grow(uint i) { 2776 assert(_max > 0, "invariant"); 2777 uint old = _max; 2778 _max = next_power_of_2(i); 2779 _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*)); 2780 Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) ); 2781 } 2782 2783 void Node_Array::insert(uint i, Node* n) { 2784 if (_nodes[_max - 1]) { 2785 grow(_max); 2786 } 2787 Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*))); 2788 _nodes[i] = n; 2789 } 2790 2791 void Node_Array::remove(uint i) { 2792 Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*))); 2793 _nodes[_max - 1] = nullptr; 2794 } 2795 2796 void Node_Array::dump() const { 2797 #ifndef PRODUCT 2798 for (uint i = 0; i < _max; i++) { 2799 Node* nn = _nodes[i]; 2800 if (nn != nullptr) { 2801 tty->print("%5d--> ",i); nn->dump(); 2802 } 2803 } 2804 #endif 2805 } 2806 2807 //--------------------------is_iteratively_computed------------------------------ 2808 // Operation appears to be iteratively computed (such as an induction variable) 2809 // It is possible for this operation to return false for a loop-varying 2810 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 2811 bool Node::is_iteratively_computed() { 2812 if (ideal_reg()) { // does operation have a result register? 2813 for (uint i = 1; i < req(); i++) { 2814 Node* n = in(i); 2815 if (n != nullptr && n->is_Phi()) { 2816 for (uint j = 1; j < n->req(); j++) { 2817 if (n->in(j) == this) { 2818 return true; 2819 } 2820 } 2821 } 2822 } 2823 } 2824 return false; 2825 } 2826 2827 //--------------------------find_similar------------------------------ 2828 // Return a node with opcode "opc" and same inputs as "this" if one can 2829 // be found; Otherwise return null; 2830 Node* Node::find_similar(int opc) { 2831 if (req() >= 2) { 2832 Node* def = in(1); 2833 if (def && def->outcnt() >= 2) { 2834 for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) { 2835 Node* use = def->fast_out(i); 2836 if (use != this && 2837 use->Opcode() == opc && 2838 use->req() == req()) { 2839 uint j; 2840 for (j = 0; j < use->req(); j++) { 2841 if (use->in(j) != in(j)) { 2842 break; 2843 } 2844 } 2845 if (j == use->req()) { 2846 return use; 2847 } 2848 } 2849 } 2850 } 2851 } 2852 return nullptr; 2853 } 2854 2855 2856 //--------------------------unique_ctrl_out_or_null------------------------- 2857 // Return the unique control out if only one. Null if none or more than one. 2858 Node* Node::unique_ctrl_out_or_null() const { 2859 Node* found = nullptr; 2860 for (uint i = 0; i < outcnt(); i++) { 2861 Node* use = raw_out(i); 2862 if (use->is_CFG() && use != this) { 2863 if (found != nullptr) { 2864 return nullptr; 2865 } 2866 found = use; 2867 } 2868 } 2869 return found; 2870 } 2871 2872 //--------------------------unique_ctrl_out------------------------------ 2873 // Return the unique control out. Asserts if none or more than one control out. 2874 Node* Node::unique_ctrl_out() const { 2875 Node* ctrl = unique_ctrl_out_or_null(); 2876 assert(ctrl != nullptr, "control out is assumed to be unique"); 2877 return ctrl; 2878 } 2879 2880 void Node::ensure_control_or_add_prec(Node* c) { 2881 if (in(0) == nullptr) { 2882 set_req(0, c); 2883 } else if (in(0) != c) { 2884 add_prec(c); 2885 } 2886 } 2887 2888 bool Node::is_dead_loop_safe() const { 2889 if (is_Phi()) { 2890 return true; 2891 } 2892 if (is_Proj() && in(0) == nullptr) { 2893 return true; 2894 } 2895 if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) { 2896 if (!is_Proj()) { 2897 return true; 2898 } 2899 if (in(0)->is_Allocate()) { 2900 return false; 2901 } 2902 // MemNode::can_see_stored_value() peeks through the boxing call 2903 if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) { 2904 return false; 2905 } 2906 return true; 2907 } 2908 return false; 2909 } 2910 2911 //============================================================================= 2912 //------------------------------yank------------------------------------------- 2913 // Find and remove 2914 void Node_List::yank( Node *n ) { 2915 uint i; 2916 for (i = 0; i < _cnt; i++) { 2917 if (_nodes[i] == n) { 2918 break; 2919 } 2920 } 2921 2922 if (i < _cnt) { 2923 _nodes[i] = _nodes[--_cnt]; 2924 } 2925 } 2926 2927 //------------------------------dump------------------------------------------- 2928 void Node_List::dump() const { 2929 #ifndef PRODUCT 2930 for (uint i = 0; i < _cnt; i++) { 2931 if (_nodes[i]) { 2932 tty->print("%5d--> ", i); 2933 _nodes[i]->dump(); 2934 } 2935 } 2936 #endif 2937 } 2938 2939 void Node_List::dump_simple() const { 2940 #ifndef PRODUCT 2941 for (uint i = 0; i < _cnt; i++) { 2942 if( _nodes[i] ) { 2943 tty->print(" %d", _nodes[i]->_idx); 2944 } else { 2945 tty->print(" null"); 2946 } 2947 } 2948 #endif 2949 } 2950 2951 //============================================================================= 2952 //------------------------------remove----------------------------------------- 2953 void Unique_Node_List::remove(Node* n) { 2954 if (_in_worklist.test(n->_idx)) { 2955 for (uint i = 0; i < size(); i++) { 2956 if (_nodes[i] == n) { 2957 map(i, Node_List::pop()); 2958 _in_worklist.remove(n->_idx); 2959 return; 2960 } 2961 } 2962 ShouldNotReachHere(); 2963 } 2964 } 2965 2966 //-----------------------remove_useless_nodes---------------------------------- 2967 // Remove useless nodes from worklist 2968 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) { 2969 for (uint i = 0; i < size(); ++i) { 2970 Node *n = at(i); 2971 assert( n != nullptr, "Did not expect null entries in worklist"); 2972 if (!useful.test(n->_idx)) { 2973 _in_worklist.remove(n->_idx); 2974 map(i, Node_List::pop()); 2975 --i; // Visit popped node 2976 // If it was last entry, loop terminates since size() was also reduced 2977 } 2978 } 2979 } 2980 2981 //============================================================================= 2982 void Node_Stack::grow() { 2983 size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top 2984 size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode)); 2985 size_t max = old_max << 1; // max * 2 2986 _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max); 2987 _inode_max = _inodes + max; 2988 _inode_top = _inodes + old_top; // restore _top 2989 } 2990 2991 // Node_Stack is used to map nodes. 2992 Node* Node_Stack::find(uint idx) const { 2993 uint sz = size(); 2994 for (uint i = 0; i < sz; i++) { 2995 if (idx == index_at(i)) { 2996 return node_at(i); 2997 } 2998 } 2999 return nullptr; 3000 } 3001 3002 //============================================================================= 3003 uint TypeNode::size_of() const { return sizeof(*this); } 3004 #ifndef PRODUCT 3005 void TypeNode::dump_spec(outputStream *st) const { 3006 if (!Verbose && !WizardMode) { 3007 // standard dump does this in Verbose and WizardMode 3008 st->print(" #"); _type->dump_on(st); 3009 } 3010 } 3011 3012 void TypeNode::dump_compact_spec(outputStream *st) const { 3013 st->print("#"); 3014 _type->dump_on(st); 3015 } 3016 #endif 3017 uint TypeNode::hash() const { 3018 return Node::hash() + _type->hash(); 3019 } 3020 bool TypeNode::cmp(const Node& n) const { 3021 return Type::equals(_type, n.as_Type()->_type); 3022 } 3023 const Type* TypeNode::bottom_type() const { return _type; } 3024 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; } 3025 3026 //------------------------------ideal_reg-------------------------------------- 3027 uint TypeNode::ideal_reg() const { 3028 return _type->ideal_reg(); 3029 }