1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "libadt/vectset.hpp" 29 #include "memory/allocation.inline.hpp" 30 #include "memory/resourceArea.hpp" 31 #include "opto/ad.hpp" 32 #include "opto/callGenerator.hpp" 33 #include "opto/castnode.hpp" 34 #include "opto/cfgnode.hpp" 35 #include "opto/connode.hpp" 36 #include "opto/inlinetypenode.hpp" 37 #include "opto/loopnode.hpp" 38 #include "opto/machnode.hpp" 39 #include "opto/matcher.hpp" 40 #include "opto/node.hpp" 41 #include "opto/opcodes.hpp" 42 #include "opto/regmask.hpp" 43 #include "opto/rootnode.hpp" 44 #include "opto/type.hpp" 45 #include "utilities/copy.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "utilities/stringUtils.hpp" 49 50 class RegMask; 51 // #include "phase.hpp" 52 class PhaseTransform; 53 class PhaseGVN; 54 55 // Arena we are currently building Nodes in 56 const uint Node::NotAMachineReg = 0xffff0000; 57 58 #ifndef PRODUCT 59 extern uint nodes_created; 60 #endif 61 #ifdef __clang__ 62 #pragma clang diagnostic push 63 #pragma GCC diagnostic ignored "-Wuninitialized" 64 #endif 65 66 #ifdef ASSERT 67 68 //-------------------------- construct_node------------------------------------ 69 // Set a breakpoint here to identify where a particular node index is built. 70 void Node::verify_construction() { 71 _debug_orig = nullptr; 72 // The decimal digits of _debug_idx are <compile_id> followed by 10 digits of <_idx> 73 Compile* C = Compile::current(); 74 assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX"); 75 uint64_t new_debug_idx = (uint64_t)C->compile_id() * 10000000000 + _idx; 76 set_debug_idx(new_debug_idx); 77 if (!C->phase_optimize_finished()) { 78 // Only check assert during parsing and optimization phase. Skip it while generating code. 79 assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit"); 80 } 81 if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (uint64_t)_idx == BreakAtNode)) { 82 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT, _idx, _debug_idx); 83 BREAKPOINT; 84 } 85 #if OPTO_DU_ITERATOR_ASSERT 86 _last_del = nullptr; 87 _del_tick = 0; 88 #endif 89 _hash_lock = 0; 90 } 91 92 93 // #ifdef ASSERT ... 94 95 #if OPTO_DU_ITERATOR_ASSERT 96 void DUIterator_Common::sample(const Node* node) { 97 _vdui = VerifyDUIterators; 98 _node = node; 99 _outcnt = node->_outcnt; 100 _del_tick = node->_del_tick; 101 _last = nullptr; 102 } 103 104 void DUIterator_Common::verify(const Node* node, bool at_end_ok) { 105 assert(_node == node, "consistent iterator source"); 106 assert(_del_tick == node->_del_tick, "no unexpected deletions allowed"); 107 } 108 109 void DUIterator_Common::verify_resync() { 110 // Ensure that the loop body has just deleted the last guy produced. 111 const Node* node = _node; 112 // Ensure that at least one copy of the last-seen edge was deleted. 113 // Note: It is OK to delete multiple copies of the last-seen edge. 114 // Unfortunately, we have no way to verify that all the deletions delete 115 // that same edge. On this point we must use the Honor System. 116 assert(node->_del_tick >= _del_tick+1, "must have deleted an edge"); 117 assert(node->_last_del == _last, "must have deleted the edge just produced"); 118 // We liked this deletion, so accept the resulting outcnt and tick. 119 _outcnt = node->_outcnt; 120 _del_tick = node->_del_tick; 121 } 122 123 void DUIterator_Common::reset(const DUIterator_Common& that) { 124 if (this == &that) return; // ignore assignment to self 125 if (!_vdui) { 126 // We need to initialize everything, overwriting garbage values. 127 _last = that._last; 128 _vdui = that._vdui; 129 } 130 // Note: It is legal (though odd) for an iterator over some node x 131 // to be reassigned to iterate over another node y. Some doubly-nested 132 // progress loops depend on being able to do this. 133 const Node* node = that._node; 134 // Re-initialize everything, except _last. 135 _node = node; 136 _outcnt = node->_outcnt; 137 _del_tick = node->_del_tick; 138 } 139 140 void DUIterator::sample(const Node* node) { 141 DUIterator_Common::sample(node); // Initialize the assertion data. 142 _refresh_tick = 0; // No refreshes have happened, as yet. 143 } 144 145 void DUIterator::verify(const Node* node, bool at_end_ok) { 146 DUIterator_Common::verify(node, at_end_ok); 147 assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range"); 148 } 149 150 void DUIterator::verify_increment() { 151 if (_refresh_tick & 1) { 152 // We have refreshed the index during this loop. 153 // Fix up _idx to meet asserts. 154 if (_idx > _outcnt) _idx = _outcnt; 155 } 156 verify(_node, true); 157 } 158 159 void DUIterator::verify_resync() { 160 // Note: We do not assert on _outcnt, because insertions are OK here. 161 DUIterator_Common::verify_resync(); 162 // Make sure we are still in sync, possibly with no more out-edges: 163 verify(_node, true); 164 } 165 166 void DUIterator::reset(const DUIterator& that) { 167 if (this == &that) return; // self assignment is always a no-op 168 assert(that._refresh_tick == 0, "assign only the result of Node::outs()"); 169 assert(that._idx == 0, "assign only the result of Node::outs()"); 170 assert(_idx == that._idx, "already assigned _idx"); 171 if (!_vdui) { 172 // We need to initialize everything, overwriting garbage values. 173 sample(that._node); 174 } else { 175 DUIterator_Common::reset(that); 176 if (_refresh_tick & 1) { 177 _refresh_tick++; // Clear the "was refreshed" flag. 178 } 179 assert(_refresh_tick < 2*100000, "DU iteration must converge quickly"); 180 } 181 } 182 183 void DUIterator::refresh() { 184 DUIterator_Common::sample(_node); // Re-fetch assertion data. 185 _refresh_tick |= 1; // Set the "was refreshed" flag. 186 } 187 188 void DUIterator::verify_finish() { 189 // If the loop has killed the node, do not require it to re-run. 190 if (_node->_outcnt == 0) _refresh_tick &= ~1; 191 // If this assert triggers, it means that a loop used refresh_out_pos 192 // to re-synch an iteration index, but the loop did not correctly 193 // re-run itself, using a "while (progress)" construct. 194 // This iterator enforces the rule that you must keep trying the loop 195 // until it "runs clean" without any need for refreshing. 196 assert(!(_refresh_tick & 1), "the loop must run once with no refreshing"); 197 } 198 199 200 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) { 201 DUIterator_Common::verify(node, at_end_ok); 202 Node** out = node->_out; 203 uint cnt = node->_outcnt; 204 assert(cnt == _outcnt, "no insertions allowed"); 205 assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range"); 206 // This last check is carefully designed to work for NO_OUT_ARRAY. 207 } 208 209 void DUIterator_Fast::verify_limit() { 210 const Node* node = _node; 211 verify(node, true); 212 assert(_outp == node->_out + node->_outcnt, "limit still correct"); 213 } 214 215 void DUIterator_Fast::verify_resync() { 216 const Node* node = _node; 217 if (_outp == node->_out + _outcnt) { 218 // Note that the limit imax, not the pointer i, gets updated with the 219 // exact count of deletions. (For the pointer it's always "--i".) 220 assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)"); 221 // This is a limit pointer, with a name like "imax". 222 // Fudge the _last field so that the common assert will be happy. 223 _last = (Node*) node->_last_del; 224 DUIterator_Common::verify_resync(); 225 } else { 226 assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)"); 227 // A normal internal pointer. 228 DUIterator_Common::verify_resync(); 229 // Make sure we are still in sync, possibly with no more out-edges: 230 verify(node, true); 231 } 232 } 233 234 void DUIterator_Fast::verify_relimit(uint n) { 235 const Node* node = _node; 236 assert((int)n > 0, "use imax -= n only with a positive count"); 237 // This must be a limit pointer, with a name like "imax". 238 assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)"); 239 // The reported number of deletions must match what the node saw. 240 assert(node->_del_tick == _del_tick + n, "must have deleted n edges"); 241 // Fudge the _last field so that the common assert will be happy. 242 _last = (Node*) node->_last_del; 243 DUIterator_Common::verify_resync(); 244 } 245 246 void DUIterator_Fast::reset(const DUIterator_Fast& that) { 247 assert(_outp == that._outp, "already assigned _outp"); 248 DUIterator_Common::reset(that); 249 } 250 251 void DUIterator_Last::verify(const Node* node, bool at_end_ok) { 252 // at_end_ok means the _outp is allowed to underflow by 1 253 _outp += at_end_ok; 254 DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc. 255 _outp -= at_end_ok; 256 assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes"); 257 } 258 259 void DUIterator_Last::verify_limit() { 260 // Do not require the limit address to be resynched. 261 //verify(node, true); 262 assert(_outp == _node->_out, "limit still correct"); 263 } 264 265 void DUIterator_Last::verify_step(uint num_edges) { 266 assert((int)num_edges > 0, "need non-zero edge count for loop progress"); 267 _outcnt -= num_edges; 268 _del_tick += num_edges; 269 // Make sure we are still in sync, possibly with no more out-edges: 270 const Node* node = _node; 271 verify(node, true); 272 assert(node->_last_del == _last, "must have deleted the edge just produced"); 273 } 274 275 #endif //OPTO_DU_ITERATOR_ASSERT 276 277 278 #endif //ASSERT 279 280 281 // This constant used to initialize _out may be any non-null value. 282 // The value null is reserved for the top node only. 283 #define NO_OUT_ARRAY ((Node**)-1) 284 285 // Out-of-line code from node constructors. 286 // Executed only when extra debug info. is being passed around. 287 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) { 288 C->set_node_notes_at(idx, nn); 289 } 290 291 // Shared initialization code. 292 inline int Node::Init(int req) { 293 Compile* C = Compile::current(); 294 int idx = C->next_unique(); 295 NOT_PRODUCT(_igv_idx = C->next_igv_idx()); 296 297 // Allocate memory for the necessary number of edges. 298 if (req > 0) { 299 // Allocate space for _in array to have double alignment. 300 _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*)))); 301 } 302 // If there are default notes floating around, capture them: 303 Node_Notes* nn = C->default_node_notes(); 304 if (nn != nullptr) init_node_notes(C, idx, nn); 305 306 // Note: At this point, C is dead, 307 // and we begin to initialize the new Node. 308 309 _cnt = _max = req; 310 _outcnt = _outmax = 0; 311 _class_id = Class_Node; 312 _flags = 0; 313 _out = NO_OUT_ARRAY; 314 return idx; 315 } 316 317 //------------------------------Node------------------------------------------- 318 // Create a Node, with a given number of required edges. 319 Node::Node(uint req) 320 : _idx(Init(req)) 321 #ifdef ASSERT 322 , _parse_idx(_idx) 323 #endif 324 { 325 assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" ); 326 debug_only( verify_construction() ); 327 NOT_PRODUCT(nodes_created++); 328 if (req == 0) { 329 _in = nullptr; 330 } else { 331 Node** to = _in; 332 for(uint i = 0; i < req; i++) { 333 to[i] = nullptr; 334 } 335 } 336 } 337 338 //------------------------------Node------------------------------------------- 339 Node::Node(Node *n0) 340 : _idx(Init(1)) 341 #ifdef ASSERT 342 , _parse_idx(_idx) 343 #endif 344 { 345 debug_only( verify_construction() ); 346 NOT_PRODUCT(nodes_created++); 347 assert( is_not_dead(n0), "can not use dead node"); 348 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 349 } 350 351 //------------------------------Node------------------------------------------- 352 Node::Node(Node *n0, Node *n1) 353 : _idx(Init(2)) 354 #ifdef ASSERT 355 , _parse_idx(_idx) 356 #endif 357 { 358 debug_only( verify_construction() ); 359 NOT_PRODUCT(nodes_created++); 360 assert( is_not_dead(n0), "can not use dead node"); 361 assert( is_not_dead(n1), "can not use dead node"); 362 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 363 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 364 } 365 366 //------------------------------Node------------------------------------------- 367 Node::Node(Node *n0, Node *n1, Node *n2) 368 : _idx(Init(3)) 369 #ifdef ASSERT 370 , _parse_idx(_idx) 371 #endif 372 { 373 debug_only( verify_construction() ); 374 NOT_PRODUCT(nodes_created++); 375 assert( is_not_dead(n0), "can not use dead node"); 376 assert( is_not_dead(n1), "can not use dead node"); 377 assert( is_not_dead(n2), "can not use dead node"); 378 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 379 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 380 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 381 } 382 383 //------------------------------Node------------------------------------------- 384 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3) 385 : _idx(Init(4)) 386 #ifdef ASSERT 387 , _parse_idx(_idx) 388 #endif 389 { 390 debug_only( verify_construction() ); 391 NOT_PRODUCT(nodes_created++); 392 assert( is_not_dead(n0), "can not use dead node"); 393 assert( is_not_dead(n1), "can not use dead node"); 394 assert( is_not_dead(n2), "can not use dead node"); 395 assert( is_not_dead(n3), "can not use dead node"); 396 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 397 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 398 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 399 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 400 } 401 402 //------------------------------Node------------------------------------------- 403 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4) 404 : _idx(Init(5)) 405 #ifdef ASSERT 406 , _parse_idx(_idx) 407 #endif 408 { 409 debug_only( verify_construction() ); 410 NOT_PRODUCT(nodes_created++); 411 assert( is_not_dead(n0), "can not use dead node"); 412 assert( is_not_dead(n1), "can not use dead node"); 413 assert( is_not_dead(n2), "can not use dead node"); 414 assert( is_not_dead(n3), "can not use dead node"); 415 assert( is_not_dead(n4), "can not use dead node"); 416 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 417 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 418 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 419 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 420 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 421 } 422 423 //------------------------------Node------------------------------------------- 424 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 425 Node *n4, Node *n5) 426 : _idx(Init(6)) 427 #ifdef ASSERT 428 , _parse_idx(_idx) 429 #endif 430 { 431 debug_only( verify_construction() ); 432 NOT_PRODUCT(nodes_created++); 433 assert( is_not_dead(n0), "can not use dead node"); 434 assert( is_not_dead(n1), "can not use dead node"); 435 assert( is_not_dead(n2), "can not use dead node"); 436 assert( is_not_dead(n3), "can not use dead node"); 437 assert( is_not_dead(n4), "can not use dead node"); 438 assert( is_not_dead(n5), "can not use dead node"); 439 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 440 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 441 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 442 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 443 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 444 _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this); 445 } 446 447 //------------------------------Node------------------------------------------- 448 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 449 Node *n4, Node *n5, Node *n6) 450 : _idx(Init(7)) 451 #ifdef ASSERT 452 , _parse_idx(_idx) 453 #endif 454 { 455 debug_only( verify_construction() ); 456 NOT_PRODUCT(nodes_created++); 457 assert( is_not_dead(n0), "can not use dead node"); 458 assert( is_not_dead(n1), "can not use dead node"); 459 assert( is_not_dead(n2), "can not use dead node"); 460 assert( is_not_dead(n3), "can not use dead node"); 461 assert( is_not_dead(n4), "can not use dead node"); 462 assert( is_not_dead(n5), "can not use dead node"); 463 assert( is_not_dead(n6), "can not use dead node"); 464 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 465 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 466 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 467 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 468 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 469 _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this); 470 _in[6] = n6; if (n6 != nullptr) n6->add_out((Node *)this); 471 } 472 473 #ifdef __clang__ 474 #pragma clang diagnostic pop 475 #endif 476 477 478 //------------------------------clone------------------------------------------ 479 // Clone a Node. 480 Node *Node::clone() const { 481 Compile* C = Compile::current(); 482 uint s = size_of(); // Size of inherited Node 483 Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*)); 484 Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s); 485 // Set the new input pointer array 486 n->_in = (Node**)(((char*)n)+s); 487 // Cannot share the old output pointer array, so kill it 488 n->_out = NO_OUT_ARRAY; 489 // And reset the counters to 0 490 n->_outcnt = 0; 491 n->_outmax = 0; 492 // Unlock this guy, since he is not in any hash table. 493 debug_only(n->_hash_lock = 0); 494 // Walk the old node's input list to duplicate its edges 495 uint i; 496 for( i = 0; i < len(); i++ ) { 497 Node *x = in(i); 498 n->_in[i] = x; 499 if (x != nullptr) x->add_out(n); 500 } 501 if (is_macro()) { 502 C->add_macro_node(n); 503 } 504 if (is_expensive()) { 505 C->add_expensive_node(n); 506 } 507 if (for_post_loop_opts_igvn()) { 508 // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically. 509 // If it is applicable, it will happen anyway when the cloned node is registered with IGVN. 510 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 511 } 512 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 513 bs->register_potential_barrier_node(n); 514 515 n->set_idx(C->next_unique()); // Get new unique index as well 516 NOT_PRODUCT(n->_igv_idx = C->next_igv_idx()); 517 debug_only( n->verify_construction() ); 518 NOT_PRODUCT(nodes_created++); 519 // Do not patch over the debug_idx of a clone, because it makes it 520 // impossible to break on the clone's moment of creation. 521 //debug_only( n->set_debug_idx( debug_idx() ) ); 522 523 C->copy_node_notes_to(n, (Node*) this); 524 525 // MachNode clone 526 uint nopnds; 527 if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) { 528 MachNode *mach = n->as_Mach(); 529 MachNode *mthis = this->as_Mach(); 530 // Get address of _opnd_array. 531 // It should be the same offset since it is the clone of this node. 532 MachOper **from = mthis->_opnds; 533 MachOper **to = (MachOper **)((size_t)(&mach->_opnds) + 534 pointer_delta((const void*)from, 535 (const void*)(&mthis->_opnds), 1)); 536 mach->_opnds = to; 537 for ( uint i = 0; i < nopnds; ++i ) { 538 to[i] = from[i]->clone(); 539 } 540 } 541 if (n->is_Call()) { 542 // CallGenerator is linked to the original node. 543 CallGenerator* cg = n->as_Call()->generator(); 544 if (cg != nullptr) { 545 CallGenerator* cloned_cg = cg->with_call_node(n->as_Call()); 546 n->as_Call()->set_generator(cloned_cg); 547 548 C->print_inlining_assert_ready(); 549 C->print_inlining_move_to(cg); 550 C->print_inlining_update(cloned_cg); 551 } 552 } 553 if (n->is_SafePoint()) { 554 // Scalar replacement and macro expansion might modify the JVMState. 555 // Clone it to make sure it's not shared between SafePointNodes. 556 n->as_SafePoint()->clone_jvms(C); 557 n->as_SafePoint()->clone_replaced_nodes(); 558 } 559 if (n->is_InlineType()) { 560 C->add_inline_type(n); 561 } 562 Compile::current()->record_modified_node(n); 563 return n; // Return the clone 564 } 565 566 //---------------------------setup_is_top-------------------------------------- 567 // Call this when changing the top node, to reassert the invariants 568 // required by Node::is_top. See Compile::set_cached_top_node. 569 void Node::setup_is_top() { 570 if (this == (Node*)Compile::current()->top()) { 571 // This node has just become top. Kill its out array. 572 _outcnt = _outmax = 0; 573 _out = nullptr; // marker value for top 574 assert(is_top(), "must be top"); 575 } else { 576 if (_out == nullptr) _out = NO_OUT_ARRAY; 577 assert(!is_top(), "must not be top"); 578 } 579 } 580 581 //------------------------------~Node------------------------------------------ 582 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 583 void Node::destruct(PhaseValues* phase) { 584 Compile* compile = (phase != nullptr) ? phase->C : Compile::current(); 585 if (phase != nullptr && phase->is_IterGVN()) { 586 phase->is_IterGVN()->_worklist.remove(this); 587 } 588 // If this is the most recently created node, reclaim its index. Otherwise, 589 // record the node as dead to keep liveness information accurate. 590 if ((uint)_idx+1 == compile->unique()) { 591 compile->set_unique(compile->unique()-1); 592 } else { 593 compile->record_dead_node(_idx); 594 } 595 // Clear debug info: 596 Node_Notes* nn = compile->node_notes_at(_idx); 597 if (nn != nullptr) nn->clear(); 598 // Walk the input array, freeing the corresponding output edges 599 _cnt = _max; // forget req/prec distinction 600 uint i; 601 for( i = 0; i < _max; i++ ) { 602 set_req(i, nullptr); 603 //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim"); 604 } 605 assert(outcnt() == 0, "deleting a node must not leave a dangling use"); 606 607 if (is_macro()) { 608 compile->remove_macro_node(this); 609 } 610 if (is_expensive()) { 611 compile->remove_expensive_node(this); 612 } 613 if (Opcode() == Op_Opaque4) { 614 compile->remove_template_assertion_predicate_opaq(this); 615 } 616 if (for_post_loop_opts_igvn()) { 617 compile->remove_from_post_loop_opts_igvn(this); 618 } 619 if (is_InlineType()) { 620 compile->remove_inline_type(this); 621 } 622 623 if (is_SafePoint()) { 624 as_SafePoint()->delete_replaced_nodes(); 625 626 if (is_CallStaticJava()) { 627 compile->remove_unstable_if_trap(as_CallStaticJava(), false); 628 } 629 } 630 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 631 bs->unregister_potential_barrier_node(this); 632 633 // See if the input array was allocated just prior to the object 634 int edge_size = _max*sizeof(void*); 635 int out_edge_size = _outmax*sizeof(void*); 636 char *in_array = ((char*)_in); 637 char *edge_end = in_array + edge_size; 638 char *out_array = (char*)(_out == NO_OUT_ARRAY? nullptr: _out); 639 int node_size = size_of(); 640 641 #ifdef ASSERT 642 // We will not actually delete the storage, but we'll make the node unusable. 643 compile->remove_modified_node(this); 644 *(address*)this = badAddress; // smash the C++ vtbl, probably 645 _in = _out = (Node**) badAddress; 646 _max = _cnt = _outmax = _outcnt = 0; 647 #endif 648 649 // Free the output edge array 650 if (out_edge_size > 0) { 651 compile->node_arena()->Afree(out_array, out_edge_size); 652 } 653 654 // Free the input edge array and the node itself 655 if( edge_end == (char*)this ) { 656 // It was; free the input array and object all in one hit 657 #ifndef ASSERT 658 compile->node_arena()->Afree(in_array, edge_size+node_size); 659 #endif 660 } else { 661 // Free just the input array 662 compile->node_arena()->Afree(in_array, edge_size); 663 664 // Free just the object 665 #ifndef ASSERT 666 compile->node_arena()->Afree(this, node_size); 667 #endif 668 } 669 } 670 671 //------------------------------grow------------------------------------------- 672 // Grow the input array, making space for more edges 673 void Node::grow(uint len) { 674 Arena* arena = Compile::current()->node_arena(); 675 uint new_max = _max; 676 if( new_max == 0 ) { 677 _max = 4; 678 _in = (Node**)arena->Amalloc(4*sizeof(Node*)); 679 Node** to = _in; 680 to[0] = nullptr; 681 to[1] = nullptr; 682 to[2] = nullptr; 683 to[3] = nullptr; 684 return; 685 } 686 new_max = next_power_of_2(len); 687 // Trimming to limit allows a uint8 to handle up to 255 edges. 688 // Previously I was using only powers-of-2 which peaked at 128 edges. 689 //if( new_max >= limit ) new_max = limit-1; 690 _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*)); 691 Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // null all new space 692 _max = new_max; // Record new max length 693 // This assertion makes sure that Node::_max is wide enough to 694 // represent the numerical value of new_max. 695 assert(_max == new_max && _max > len, "int width of _max is too small"); 696 } 697 698 //-----------------------------out_grow---------------------------------------- 699 // Grow the input array, making space for more edges 700 void Node::out_grow( uint len ) { 701 assert(!is_top(), "cannot grow a top node's out array"); 702 Arena* arena = Compile::current()->node_arena(); 703 uint new_max = _outmax; 704 if( new_max == 0 ) { 705 _outmax = 4; 706 _out = (Node **)arena->Amalloc(4*sizeof(Node*)); 707 return; 708 } 709 new_max = next_power_of_2(len); 710 // Trimming to limit allows a uint8 to handle up to 255 edges. 711 // Previously I was using only powers-of-2 which peaked at 128 edges. 712 //if( new_max >= limit ) new_max = limit-1; 713 assert(_out != nullptr && _out != NO_OUT_ARRAY, "out must have sensible value"); 714 _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*)); 715 //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // null all new space 716 _outmax = new_max; // Record new max length 717 // This assertion makes sure that Node::_max is wide enough to 718 // represent the numerical value of new_max. 719 assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small"); 720 } 721 722 #ifdef ASSERT 723 //------------------------------is_dead---------------------------------------- 724 bool Node::is_dead() const { 725 // Mach and pinch point nodes may look like dead. 726 if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) ) 727 return false; 728 for( uint i = 0; i < _max; i++ ) 729 if( _in[i] != nullptr ) 730 return false; 731 return true; 732 } 733 734 bool Node::is_not_dead(const Node* n) { 735 return n == nullptr || !PhaseIterGVN::is_verify_def_use() || !(n->is_dead()); 736 } 737 738 bool Node::is_reachable_from_root() const { 739 ResourceMark rm; 740 Unique_Node_List wq; 741 wq.push((Node*)this); 742 RootNode* root = Compile::current()->root(); 743 for (uint i = 0; i < wq.size(); i++) { 744 Node* m = wq.at(i); 745 if (m == root) { 746 return true; 747 } 748 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 749 Node* u = m->fast_out(j); 750 wq.push(u); 751 } 752 } 753 return false; 754 } 755 #endif 756 757 //------------------------------is_unreachable--------------------------------- 758 bool Node::is_unreachable(PhaseIterGVN &igvn) const { 759 assert(!is_Mach(), "doesn't work with MachNodes"); 760 return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != nullptr && in(0)->is_top()); 761 } 762 763 //------------------------------add_req---------------------------------------- 764 // Add a new required input at the end 765 void Node::add_req( Node *n ) { 766 assert( is_not_dead(n), "can not use dead node"); 767 768 // Look to see if I can move precedence down one without reallocating 769 if( (_cnt >= _max) || (in(_max-1) != nullptr) ) 770 grow( _max+1 ); 771 772 // Find a precedence edge to move 773 if( in(_cnt) != nullptr ) { // Next precedence edge is busy? 774 uint i; 775 for( i=_cnt; i<_max; i++ ) 776 if( in(i) == nullptr ) // Find the null at end of prec edge list 777 break; // There must be one, since we grew the array 778 _in[i] = in(_cnt); // Move prec over, making space for req edge 779 } 780 _in[_cnt++] = n; // Stuff over old prec edge 781 if (n != nullptr) n->add_out((Node *)this); 782 Compile::current()->record_modified_node(this); 783 } 784 785 //---------------------------add_req_batch------------------------------------- 786 // Add a new required input at the end 787 void Node::add_req_batch( Node *n, uint m ) { 788 assert( is_not_dead(n), "can not use dead node"); 789 // check various edge cases 790 if ((int)m <= 1) { 791 assert((int)m >= 0, "oob"); 792 if (m != 0) add_req(n); 793 return; 794 } 795 796 // Look to see if I can move precedence down one without reallocating 797 if( (_cnt+m) > _max || _in[_max-m] ) 798 grow( _max+m ); 799 800 // Find a precedence edge to move 801 if( _in[_cnt] != nullptr ) { // Next precedence edge is busy? 802 uint i; 803 for( i=_cnt; i<_max; i++ ) 804 if( _in[i] == nullptr ) // Find the null at end of prec edge list 805 break; // There must be one, since we grew the array 806 // Slide all the precs over by m positions (assume #prec << m). 807 Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*))); 808 } 809 810 // Stuff over the old prec edges 811 for(uint i=0; i<m; i++ ) { 812 _in[_cnt++] = n; 813 } 814 815 // Insert multiple out edges on the node. 816 if (n != nullptr && !n->is_top()) { 817 for(uint i=0; i<m; i++ ) { 818 n->add_out((Node *)this); 819 } 820 } 821 Compile::current()->record_modified_node(this); 822 } 823 824 //------------------------------del_req---------------------------------------- 825 // Delete the required edge and compact the edge array 826 void Node::del_req( uint idx ) { 827 assert( idx < _cnt, "oob"); 828 assert( !VerifyHashTableKeys || _hash_lock == 0, 829 "remove node from hash table before modifying it"); 830 // First remove corresponding def-use edge 831 Node *n = in(idx); 832 if (n != nullptr) n->del_out((Node *)this); 833 _in[idx] = in(--_cnt); // Compact the array 834 // Avoid spec violation: Gap in prec edges. 835 close_prec_gap_at(_cnt); 836 Compile::current()->record_modified_node(this); 837 } 838 839 //------------------------------del_req_ordered-------------------------------- 840 // Delete the required edge and compact the edge array with preserved order 841 void Node::del_req_ordered( uint idx ) { 842 assert( idx < _cnt, "oob"); 843 assert( !VerifyHashTableKeys || _hash_lock == 0, 844 "remove node from hash table before modifying it"); 845 // First remove corresponding def-use edge 846 Node *n = in(idx); 847 if (n != nullptr) n->del_out((Node *)this); 848 if (idx < --_cnt) { // Not last edge ? 849 Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*))); 850 } 851 // Avoid spec violation: Gap in prec edges. 852 close_prec_gap_at(_cnt); 853 Compile::current()->record_modified_node(this); 854 } 855 856 //------------------------------ins_req---------------------------------------- 857 // Insert a new required input at the end 858 void Node::ins_req( uint idx, Node *n ) { 859 assert( is_not_dead(n), "can not use dead node"); 860 add_req(nullptr); // Make space 861 assert( idx < _max, "Must have allocated enough space"); 862 // Slide over 863 if(_cnt-idx-1 > 0) { 864 Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*))); 865 } 866 _in[idx] = n; // Stuff over old required edge 867 if (n != nullptr) n->add_out((Node *)this); // Add reciprocal def-use edge 868 Compile::current()->record_modified_node(this); 869 } 870 871 //-----------------------------find_edge--------------------------------------- 872 int Node::find_edge(Node* n) { 873 for (uint i = 0; i < len(); i++) { 874 if (_in[i] == n) return i; 875 } 876 return -1; 877 } 878 879 //----------------------------replace_edge------------------------------------- 880 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) { 881 if (old == neww) return 0; // nothing to do 882 uint nrep = 0; 883 for (uint i = 0; i < len(); i++) { 884 if (in(i) == old) { 885 if (i < req()) { 886 if (gvn != nullptr) { 887 set_req_X(i, neww, gvn); 888 } else { 889 set_req(i, neww); 890 } 891 } else { 892 assert(gvn == nullptr || gvn->is_IterGVN() == nullptr, "no support for igvn here"); 893 assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx); 894 set_prec(i, neww); 895 } 896 nrep++; 897 } 898 } 899 return nrep; 900 } 901 902 /** 903 * Replace input edges in the range pointing to 'old' node. 904 */ 905 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) { 906 if (old == neww) return 0; // nothing to do 907 uint nrep = 0; 908 for (int i = start; i < end; i++) { 909 if (in(i) == old) { 910 set_req_X(i, neww, gvn); 911 nrep++; 912 } 913 } 914 return nrep; 915 } 916 917 //-------------------------disconnect_inputs----------------------------------- 918 // null out all inputs to eliminate incoming Def-Use edges. 919 void Node::disconnect_inputs(Compile* C) { 920 // the layout of Node::_in 921 // r: a required input, null is allowed 922 // p: a precedence, null values are all at the end 923 // ----------------------------------- 924 // |r|...|r|p|...|p|null|...|null| 925 // | | 926 // req() len() 927 // ----------------------------------- 928 for (uint i = 0; i < req(); ++i) { 929 if (in(i) != nullptr) { 930 set_req(i, nullptr); 931 } 932 } 933 934 // Remove precedence edges if any exist 935 // Note: Safepoints may have precedence edges, even during parsing 936 for (uint i = len(); i > req(); ) { 937 rm_prec(--i); // no-op if _in[i] is null 938 } 939 940 #ifdef ASSERT 941 // sanity check 942 for (uint i = 0; i < len(); ++i) { 943 assert(_in[i] == nullptr, "disconnect_inputs() failed!"); 944 } 945 #endif 946 947 // Node::destruct requires all out edges be deleted first 948 // debug_only(destruct();) // no reuse benefit expected 949 C->record_dead_node(_idx); 950 } 951 952 //-----------------------------uncast--------------------------------------- 953 // %%% Temporary, until we sort out CheckCastPP vs. CastPP. 954 // Strip away casting. (It is depth-limited.) 955 // Optionally, keep casts with dependencies. 956 Node* Node::uncast(bool keep_deps) const { 957 // Should be inline: 958 //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this; 959 if (is_ConstraintCast()) { 960 return uncast_helper(this, keep_deps); 961 } else { 962 return (Node*) this; 963 } 964 } 965 966 // Find out of current node that matches opcode. 967 Node* Node::find_out_with(int opcode) { 968 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 969 Node* use = fast_out(i); 970 if (use->Opcode() == opcode) { 971 return use; 972 } 973 } 974 return nullptr; 975 } 976 977 // Return true if the current node has an out that matches opcode. 978 bool Node::has_out_with(int opcode) { 979 return (find_out_with(opcode) != nullptr); 980 } 981 982 // Return true if the current node has an out that matches any of the opcodes. 983 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) { 984 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 985 int opcode = fast_out(i)->Opcode(); 986 if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) { 987 return true; 988 } 989 } 990 return false; 991 } 992 993 994 //---------------------------uncast_helper------------------------------------- 995 Node* Node::uncast_helper(const Node* p, bool keep_deps) { 996 #ifdef ASSERT 997 uint depth_count = 0; 998 const Node* orig_p = p; 999 #endif 1000 1001 while (true) { 1002 #ifdef ASSERT 1003 if (depth_count >= K) { 1004 orig_p->dump(4); 1005 if (p != orig_p) 1006 p->dump(1); 1007 } 1008 assert(depth_count++ < K, "infinite loop in Node::uncast_helper"); 1009 #endif 1010 if (p == nullptr || p->req() != 2) { 1011 break; 1012 } else if (p->is_ConstraintCast()) { 1013 if (keep_deps && p->as_ConstraintCast()->carry_dependency()) { 1014 break; // stop at casts with dependencies 1015 } 1016 p = p->in(1); 1017 } else { 1018 break; 1019 } 1020 } 1021 return (Node*) p; 1022 } 1023 1024 //------------------------------add_prec--------------------------------------- 1025 // Add a new precedence input. Precedence inputs are unordered, with 1026 // duplicates removed and nulls packed down at the end. 1027 void Node::add_prec( Node *n ) { 1028 assert( is_not_dead(n), "can not use dead node"); 1029 1030 // Check for null at end 1031 if( _cnt >= _max || in(_max-1) ) 1032 grow( _max+1 ); 1033 1034 // Find a precedence edge to move 1035 uint i = _cnt; 1036 while( in(i) != nullptr ) { 1037 if (in(i) == n) return; // Avoid spec violation: duplicated prec edge. 1038 i++; 1039 } 1040 _in[i] = n; // Stuff prec edge over null 1041 if ( n != nullptr) n->add_out((Node *)this); // Add mirror edge 1042 1043 #ifdef ASSERT 1044 while ((++i)<_max) { assert(_in[i] == nullptr, "spec violation: Gap in prec edges (node %d)", _idx); } 1045 #endif 1046 Compile::current()->record_modified_node(this); 1047 } 1048 1049 //------------------------------rm_prec---------------------------------------- 1050 // Remove a precedence input. Precedence inputs are unordered, with 1051 // duplicates removed and nulls packed down at the end. 1052 void Node::rm_prec( uint j ) { 1053 assert(j < _max, "oob: i=%d, _max=%d", j, _max); 1054 assert(j >= _cnt, "not a precedence edge"); 1055 if (_in[j] == nullptr) return; // Avoid spec violation: Gap in prec edges. 1056 _in[j]->del_out((Node *)this); 1057 close_prec_gap_at(j); 1058 Compile::current()->record_modified_node(this); 1059 } 1060 1061 //------------------------------size_of---------------------------------------- 1062 uint Node::size_of() const { return sizeof(*this); } 1063 1064 //------------------------------ideal_reg-------------------------------------- 1065 uint Node::ideal_reg() const { return 0; } 1066 1067 //------------------------------jvms------------------------------------------- 1068 JVMState* Node::jvms() const { return nullptr; } 1069 1070 #ifdef ASSERT 1071 //------------------------------jvms------------------------------------------- 1072 bool Node::verify_jvms(const JVMState* using_jvms) const { 1073 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1074 if (jvms == using_jvms) return true; 1075 } 1076 return false; 1077 } 1078 1079 //------------------------------init_NodeProperty------------------------------ 1080 void Node::init_NodeProperty() { 1081 assert(_max_classes <= max_juint, "too many NodeProperty classes"); 1082 assert(max_flags() <= max_juint, "too many NodeProperty flags"); 1083 } 1084 1085 //-----------------------------max_flags--------------------------------------- 1086 juint Node::max_flags() { 1087 return (PD::_last_flag << 1) - 1; // allow flags combination 1088 } 1089 #endif 1090 1091 //------------------------------format----------------------------------------- 1092 // Print as assembly 1093 void Node::format( PhaseRegAlloc *, outputStream *st ) const {} 1094 //------------------------------emit------------------------------------------- 1095 // Emit bytes starting at parameter 'ptr'. 1096 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {} 1097 //------------------------------size------------------------------------------- 1098 // Size of instruction in bytes 1099 uint Node::size(PhaseRegAlloc *ra_) const { return 0; } 1100 1101 //------------------------------CFG Construction------------------------------- 1102 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root, 1103 // Goto and Return. 1104 const Node *Node::is_block_proj() const { return 0; } 1105 1106 // Minimum guaranteed type 1107 const Type *Node::bottom_type() const { return Type::BOTTOM; } 1108 1109 1110 //------------------------------raise_bottom_type------------------------------ 1111 // Get the worst-case Type output for this Node. 1112 void Node::raise_bottom_type(const Type* new_type) { 1113 if (is_Type()) { 1114 TypeNode *n = this->as_Type(); 1115 if (VerifyAliases) { 1116 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1117 } 1118 n->set_type(new_type); 1119 } else if (is_Load()) { 1120 LoadNode *n = this->as_Load(); 1121 if (VerifyAliases) { 1122 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1123 } 1124 n->set_type(new_type); 1125 } 1126 } 1127 1128 //------------------------------Identity--------------------------------------- 1129 // Return a node that the given node is equivalent to. 1130 Node* Node::Identity(PhaseGVN* phase) { 1131 return this; // Default to no identities 1132 } 1133 1134 //------------------------------Value------------------------------------------ 1135 // Compute a new Type for a node using the Type of the inputs. 1136 const Type* Node::Value(PhaseGVN* phase) const { 1137 return bottom_type(); // Default to worst-case Type 1138 } 1139 1140 //------------------------------Ideal------------------------------------------ 1141 // 1142 // 'Idealize' the graph rooted at this Node. 1143 // 1144 // In order to be efficient and flexible there are some subtle invariants 1145 // these Ideal calls need to hold. Running with '-XX:VerifyIterativeGVN=1' checks 1146 // these invariants, although its too slow to have on by default. If you are 1147 // hacking an Ideal call, be sure to test with '-XX:VerifyIterativeGVN=1' 1148 // 1149 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this' 1150 // pointer. If ANY change is made, it must return the root of the reshaped 1151 // graph - even if the root is the same Node. Example: swapping the inputs 1152 // to an AddINode gives the same answer and same root, but you still have to 1153 // return the 'this' pointer instead of null. 1154 // 1155 // You cannot return an OLD Node, except for the 'this' pointer. Use the 1156 // Identity call to return an old Node; basically if Identity can find 1157 // another Node have the Ideal call make no change and return null. 1158 // Example: AddINode::Ideal must check for add of zero; in this case it 1159 // returns null instead of doing any graph reshaping. 1160 // 1161 // You cannot modify any old Nodes except for the 'this' pointer. Due to 1162 // sharing there may be other users of the old Nodes relying on their current 1163 // semantics. Modifying them will break the other users. 1164 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for 1165 // "X+3" unchanged in case it is shared. 1166 // 1167 // If you modify the 'this' pointer's inputs, you should use 1168 // 'set_req'. If you are making a new Node (either as the new root or 1169 // some new internal piece) you may use 'init_req' to set the initial 1170 // value. You can make a new Node with either 'new' or 'clone'. In 1171 // either case, def-use info is correctly maintained. 1172 // 1173 // Example: reshape "(X+3)+4" into "X+7": 1174 // set_req(1, in(1)->in(1)); 1175 // set_req(2, phase->intcon(7)); 1176 // return this; 1177 // Example: reshape "X*4" into "X<<2" 1178 // return new LShiftINode(in(1), phase->intcon(2)); 1179 // 1180 // You must call 'phase->transform(X)' on any new Nodes X you make, except 1181 // for the returned root node. Example: reshape "X*31" with "(X<<5)-X". 1182 // Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5))); 1183 // return new AddINode(shift, in(1)); 1184 // 1185 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'. 1186 // These forms are faster than 'phase->transform(new ConNode())' and Do 1187 // The Right Thing with def-use info. 1188 // 1189 // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped 1190 // graph uses the 'this' Node it must be the root. If you want a Node with 1191 // the same Opcode as the 'this' pointer use 'clone'. 1192 // 1193 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) { 1194 return nullptr; // Default to being Ideal already 1195 } 1196 1197 // Some nodes have specific Ideal subgraph transformations only if they are 1198 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1199 // for the transformations to happen. 1200 bool Node::has_special_unique_user() const { 1201 assert(outcnt() == 1, "match only for unique out"); 1202 Node* n = unique_out(); 1203 int op = Opcode(); 1204 if (this->is_Store()) { 1205 // Condition for back-to-back stores folding. 1206 return n->Opcode() == op && n->in(MemNode::Memory) == this; 1207 } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) { 1208 // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input 1209 return n->Opcode() == Op_MemBarAcquire; 1210 } else if (op == Op_AddL) { 1211 // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) 1212 return n->Opcode() == Op_ConvL2I && n->in(1) == this; 1213 } else if (op == Op_SubI || op == Op_SubL) { 1214 // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y) 1215 return n->Opcode() == op && n->in(2) == this; 1216 } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) { 1217 // See IfProjNode::Identity() 1218 return true; 1219 } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) { 1220 // See IfNode::fold_compares 1221 return true; 1222 } else { 1223 return false; 1224 } 1225 }; 1226 1227 //--------------------------find_exact_control--------------------------------- 1228 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1229 Node* Node::find_exact_control(Node* ctrl) { 1230 if (ctrl == nullptr && this->is_Region()) 1231 ctrl = this->as_Region()->is_copy(); 1232 1233 if (ctrl != nullptr && ctrl->is_CatchProj()) { 1234 if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index) 1235 ctrl = ctrl->in(0); 1236 if (ctrl != nullptr && !ctrl->is_top()) 1237 ctrl = ctrl->in(0); 1238 } 1239 1240 if (ctrl != nullptr && ctrl->is_Proj()) 1241 ctrl = ctrl->in(0); 1242 1243 return ctrl; 1244 } 1245 1246 //--------------------------dominates------------------------------------------ 1247 // Helper function for MemNode::all_controls_dominate(). 1248 // Check if 'this' control node dominates or equal to 'sub' control node. 1249 // We already know that if any path back to Root or Start reaches 'this', 1250 // then all paths so, so this is a simple search for one example, 1251 // not an exhaustive search for a counterexample. 1252 bool Node::dominates(Node* sub, Node_List &nlist) { 1253 assert(this->is_CFG(), "expecting control"); 1254 assert(sub != nullptr && sub->is_CFG(), "expecting control"); 1255 1256 // detect dead cycle without regions 1257 int iterations_without_region_limit = DominatorSearchLimit; 1258 1259 Node* orig_sub = sub; 1260 Node* dom = this; 1261 bool met_dom = false; 1262 nlist.clear(); 1263 1264 // Walk 'sub' backward up the chain to 'dom', watching for regions. 1265 // After seeing 'dom', continue up to Root or Start. 1266 // If we hit a region (backward split point), it may be a loop head. 1267 // Keep going through one of the region's inputs. If we reach the 1268 // same region again, go through a different input. Eventually we 1269 // will either exit through the loop head, or give up. 1270 // (If we get confused, break out and return a conservative 'false'.) 1271 while (sub != nullptr) { 1272 if (sub->is_top()) break; // Conservative answer for dead code. 1273 if (sub == dom) { 1274 if (nlist.size() == 0) { 1275 // No Region nodes except loops were visited before and the EntryControl 1276 // path was taken for loops: it did not walk in a cycle. 1277 return true; 1278 } else if (met_dom) { 1279 break; // already met before: walk in a cycle 1280 } else { 1281 // Region nodes were visited. Continue walk up to Start or Root 1282 // to make sure that it did not walk in a cycle. 1283 met_dom = true; // first time meet 1284 iterations_without_region_limit = DominatorSearchLimit; // Reset 1285 } 1286 } 1287 if (sub->is_Start() || sub->is_Root()) { 1288 // Success if we met 'dom' along a path to Start or Root. 1289 // We assume there are no alternative paths that avoid 'dom'. 1290 // (This assumption is up to the caller to ensure!) 1291 return met_dom; 1292 } 1293 Node* up = sub->in(0); 1294 // Normalize simple pass-through regions and projections: 1295 up = sub->find_exact_control(up); 1296 // If sub == up, we found a self-loop. Try to push past it. 1297 if (sub == up && sub->is_Loop()) { 1298 // Take loop entry path on the way up to 'dom'. 1299 up = sub->in(1); // in(LoopNode::EntryControl); 1300 } else if (sub == up && sub->is_Region() && sub->req() == 2) { 1301 // Take in(1) path on the way up to 'dom' for regions with only one input 1302 up = sub->in(1); 1303 } else if (sub == up && sub->is_Region()) { 1304 // Try both paths for Regions with 2 input paths (it may be a loop head). 1305 // It could give conservative 'false' answer without information 1306 // which region's input is the entry path. 1307 iterations_without_region_limit = DominatorSearchLimit; // Reset 1308 1309 bool region_was_visited_before = false; 1310 // Was this Region node visited before? 1311 // If so, we have reached it because we accidentally took a 1312 // loop-back edge from 'sub' back into the body of the loop, 1313 // and worked our way up again to the loop header 'sub'. 1314 // So, take the first unexplored path on the way up to 'dom'. 1315 for (int j = nlist.size() - 1; j >= 0; j--) { 1316 intptr_t ni = (intptr_t)nlist.at(j); 1317 Node* visited = (Node*)(ni & ~1); 1318 bool visited_twice_already = ((ni & 1) != 0); 1319 if (visited == sub) { 1320 if (visited_twice_already) { 1321 // Visited 2 paths, but still stuck in loop body. Give up. 1322 return false; 1323 } 1324 // The Region node was visited before only once. 1325 // (We will repush with the low bit set, below.) 1326 nlist.remove(j); 1327 // We will find a new edge and re-insert. 1328 region_was_visited_before = true; 1329 break; 1330 } 1331 } 1332 1333 // Find an incoming edge which has not been seen yet; walk through it. 1334 assert(up == sub, ""); 1335 uint skip = region_was_visited_before ? 1 : 0; 1336 for (uint i = 1; i < sub->req(); i++) { 1337 Node* in = sub->in(i); 1338 if (in != nullptr && !in->is_top() && in != sub) { 1339 if (skip == 0) { 1340 up = in; 1341 break; 1342 } 1343 --skip; // skip this nontrivial input 1344 } 1345 } 1346 1347 // Set 0 bit to indicate that both paths were taken. 1348 nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0))); 1349 } 1350 1351 if (up == sub) { 1352 break; // some kind of tight cycle 1353 } 1354 if (up == orig_sub && met_dom) { 1355 // returned back after visiting 'dom' 1356 break; // some kind of cycle 1357 } 1358 if (--iterations_without_region_limit < 0) { 1359 break; // dead cycle 1360 } 1361 sub = up; 1362 } 1363 1364 // Did not meet Root or Start node in pred. chain. 1365 // Conservative answer for dead code. 1366 return false; 1367 } 1368 1369 //------------------------------remove_dead_region----------------------------- 1370 // This control node is dead. Follow the subgraph below it making everything 1371 // using it dead as well. This will happen normally via the usual IterGVN 1372 // worklist but this call is more efficient. Do not update use-def info 1373 // inside the dead region, just at the borders. 1374 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) { 1375 // Con's are a popular node to re-hit in the hash table again. 1376 if( dead->is_Con() ) return; 1377 1378 ResourceMark rm; 1379 Node_List nstack; 1380 VectorSet dead_set; // notify uses only once 1381 1382 Node *top = igvn->C->top(); 1383 nstack.push(dead); 1384 bool has_irreducible_loop = igvn->C->has_irreducible_loop(); 1385 1386 while (nstack.size() > 0) { 1387 dead = nstack.pop(); 1388 if (!dead_set.test_set(dead->_idx)) { 1389 // If dead has any live uses, those are now still attached. Notify them before we lose them. 1390 igvn->add_users_to_worklist(dead); 1391 } 1392 if (dead->Opcode() == Op_SafePoint) { 1393 dead->as_SafePoint()->disconnect_from_root(igvn); 1394 } 1395 if (dead->outcnt() > 0) { 1396 // Keep dead node on stack until all uses are processed. 1397 nstack.push(dead); 1398 // For all Users of the Dead... ;-) 1399 for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) { 1400 Node* use = dead->last_out(k); 1401 igvn->hash_delete(use); // Yank from hash table prior to mod 1402 if (use->in(0) == dead) { // Found another dead node 1403 assert (!use->is_Con(), "Control for Con node should be Root node."); 1404 use->set_req(0, top); // Cut dead edge to prevent processing 1405 nstack.push(use); // the dead node again. 1406 } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop 1407 use->is_Loop() && !use->is_Root() && // Don't kill Root (RootNode extends LoopNode) 1408 use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead 1409 use->set_req(LoopNode::EntryControl, top); // Cut dead edge to prevent processing 1410 use->set_req(0, top); // Cut self edge 1411 nstack.push(use); 1412 } else { // Else found a not-dead user 1413 // Dead if all inputs are top or null 1414 bool dead_use = !use->is_Root(); // Keep empty graph alive 1415 for (uint j = 1; j < use->req(); j++) { 1416 Node* in = use->in(j); 1417 if (in == dead) { // Turn all dead inputs into TOP 1418 use->set_req(j, top); 1419 } else if (in != nullptr && !in->is_top()) { 1420 dead_use = false; 1421 } 1422 } 1423 if (dead_use) { 1424 if (use->is_Region()) { 1425 use->set_req(0, top); // Cut self edge 1426 } 1427 nstack.push(use); 1428 } else { 1429 igvn->_worklist.push(use); 1430 } 1431 } 1432 // Refresh the iterator, since any number of kills might have happened. 1433 k = dead->last_outs(kmin); 1434 } 1435 } else { // (dead->outcnt() == 0) 1436 // Done with outputs. 1437 igvn->hash_delete(dead); 1438 igvn->_worklist.remove(dead); 1439 igvn->set_type(dead, Type::TOP); 1440 // Kill all inputs to the dead guy 1441 for (uint i=0; i < dead->req(); i++) { 1442 Node *n = dead->in(i); // Get input to dead guy 1443 if (n != nullptr && !n->is_top()) { // Input is valid? 1444 dead->set_req(i, top); // Smash input away 1445 if (n->outcnt() == 0) { // Input also goes dead? 1446 if (!n->is_Con()) 1447 nstack.push(n); // Clear it out as well 1448 } else if (n->outcnt() == 1 && 1449 n->has_special_unique_user()) { 1450 igvn->add_users_to_worklist( n ); 1451 } else if (n->outcnt() <= 2 && n->is_Store()) { 1452 // Push store's uses on worklist to enable folding optimization for 1453 // store/store and store/load to the same address. 1454 // The restriction (outcnt() <= 2) is the same as in set_req_X() 1455 // and remove_globally_dead_node(). 1456 igvn->add_users_to_worklist( n ); 1457 } else { 1458 BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n); 1459 } 1460 } 1461 } 1462 igvn->C->remove_useless_node(dead); 1463 } // (dead->outcnt() == 0) 1464 } // while (nstack.size() > 0) for outputs 1465 return; 1466 } 1467 1468 //------------------------------remove_dead_region----------------------------- 1469 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) { 1470 Node *n = in(0); 1471 if( !n ) return false; 1472 // Lost control into this guy? I.e., it became unreachable? 1473 // Aggressively kill all unreachable code. 1474 if (can_reshape && n->is_top()) { 1475 kill_dead_code(this, phase->is_IterGVN()); 1476 return false; // Node is dead. 1477 } 1478 1479 if( n->is_Region() && n->as_Region()->is_copy() ) { 1480 Node *m = n->nonnull_req(); 1481 set_req(0, m); 1482 return true; 1483 } 1484 return false; 1485 } 1486 1487 //------------------------------hash------------------------------------------- 1488 // Hash function over Nodes. 1489 uint Node::hash() const { 1490 uint sum = 0; 1491 for( uint i=0; i<_cnt; i++ ) // Add in all inputs 1492 sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded nulls 1493 return (sum>>2) + _cnt + Opcode(); 1494 } 1495 1496 //------------------------------cmp-------------------------------------------- 1497 // Compare special parts of simple Nodes 1498 bool Node::cmp( const Node &n ) const { 1499 return true; // Must be same 1500 } 1501 1502 //------------------------------rematerialize----------------------------------- 1503 // Should we clone rather than spill this instruction? 1504 bool Node::rematerialize() const { 1505 if ( is_Mach() ) 1506 return this->as_Mach()->rematerialize(); 1507 else 1508 return (_flags & Flag_rematerialize) != 0; 1509 } 1510 1511 //------------------------------needs_anti_dependence_check--------------------- 1512 // Nodes which use memory without consuming it, hence need antidependences. 1513 bool Node::needs_anti_dependence_check() const { 1514 if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) { 1515 return false; 1516 } 1517 return in(1)->bottom_type()->has_memory(); 1518 } 1519 1520 // Get an integer constant from a ConNode (or CastIINode). 1521 // Return a default value if there is no apparent constant here. 1522 const TypeInt* Node::find_int_type() const { 1523 if (this->is_Type()) { 1524 return this->as_Type()->type()->isa_int(); 1525 } else if (this->is_Con()) { 1526 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1527 return this->bottom_type()->isa_int(); 1528 } 1529 return nullptr; 1530 } 1531 1532 const TypeInteger* Node::find_integer_type(BasicType bt) const { 1533 if (this->is_Type()) { 1534 return this->as_Type()->type()->isa_integer(bt); 1535 } else if (this->is_Con()) { 1536 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1537 return this->bottom_type()->isa_integer(bt); 1538 } 1539 return nullptr; 1540 } 1541 1542 // Get a pointer constant from a ConstNode. 1543 // Returns the constant if it is a pointer ConstNode 1544 intptr_t Node::get_ptr() const { 1545 assert( Opcode() == Op_ConP, "" ); 1546 return ((ConPNode*)this)->type()->is_ptr()->get_con(); 1547 } 1548 1549 // Get a narrow oop constant from a ConNNode. 1550 intptr_t Node::get_narrowcon() const { 1551 assert( Opcode() == Op_ConN, "" ); 1552 return ((ConNNode*)this)->type()->is_narrowoop()->get_con(); 1553 } 1554 1555 // Get a long constant from a ConNode. 1556 // Return a default value if there is no apparent constant here. 1557 const TypeLong* Node::find_long_type() const { 1558 if (this->is_Type()) { 1559 return this->as_Type()->type()->isa_long(); 1560 } else if (this->is_Con()) { 1561 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1562 return this->bottom_type()->isa_long(); 1563 } 1564 return nullptr; 1565 } 1566 1567 1568 /** 1569 * Return a ptr type for nodes which should have it. 1570 */ 1571 const TypePtr* Node::get_ptr_type() const { 1572 const TypePtr* tp = this->bottom_type()->make_ptr(); 1573 #ifdef ASSERT 1574 if (tp == nullptr) { 1575 this->dump(1); 1576 assert((tp != nullptr), "unexpected node type"); 1577 } 1578 #endif 1579 return tp; 1580 } 1581 1582 // Get a double constant from a ConstNode. 1583 // Returns the constant if it is a double ConstNode 1584 jdouble Node::getd() const { 1585 assert( Opcode() == Op_ConD, "" ); 1586 return ((ConDNode*)this)->type()->is_double_constant()->getd(); 1587 } 1588 1589 // Get a float constant from a ConstNode. 1590 // Returns the constant if it is a float ConstNode 1591 jfloat Node::getf() const { 1592 assert( Opcode() == Op_ConF, "" ); 1593 return ((ConFNode*)this)->type()->is_float_constant()->getf(); 1594 } 1595 1596 #ifndef PRODUCT 1597 1598 // Call this from debugger: 1599 Node* old_root() { 1600 Matcher* matcher = Compile::current()->matcher(); 1601 if (matcher != nullptr) { 1602 Node* new_root = Compile::current()->root(); 1603 Node* old_root = matcher->find_old_node(new_root); 1604 if (old_root != nullptr) { 1605 return old_root; 1606 } 1607 } 1608 tty->print("old_root: not found.\n"); 1609 return nullptr; 1610 } 1611 1612 // BFS traverse all reachable nodes from start, call callback on them 1613 template <typename Callback> 1614 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) { 1615 Unique_Mixed_Node_List worklist; 1616 worklist.add(start); 1617 for (uint i = 0; i < worklist.size(); i++) { 1618 Node* n = worklist[i]; 1619 callback(n); 1620 for (uint i = 0; i < n->len(); i++) { 1621 if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) { 1622 // If only_ctrl is set: Add regions, the root node, or control inputs only 1623 worklist.add(n->in(i)); 1624 } 1625 } 1626 if (traverse_output && !only_ctrl) { 1627 for (uint i = 0; i < n->outcnt(); i++) { 1628 worklist.add(n->raw_out(i)); 1629 } 1630 } 1631 } 1632 } 1633 1634 // BFS traverse from start, return node with idx 1635 Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) { 1636 ResourceMark rm; 1637 Node* result = nullptr; 1638 auto callback = [&] (Node* n) { 1639 if (n->_idx == idx) { 1640 if (result != nullptr) { 1641 tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n", 1642 (uintptr_t)result, (uintptr_t)n, idx); 1643 } 1644 result = n; 1645 } 1646 }; 1647 visit_nodes(start, callback, traverse_output, only_ctrl); 1648 return result; 1649 } 1650 1651 int node_idx_cmp(const Node** n1, const Node** n2) { 1652 return (*n1)->_idx - (*n2)->_idx; 1653 } 1654 1655 void find_nodes_by_name(Node* start, const char* name) { 1656 ResourceMark rm; 1657 GrowableArray<const Node*> ns; 1658 auto callback = [&] (const Node* n) { 1659 if (StringUtils::is_star_match(name, n->Name())) { 1660 ns.push(n); 1661 } 1662 }; 1663 visit_nodes(start, callback, true, false); 1664 ns.sort(node_idx_cmp); 1665 for (int i = 0; i < ns.length(); i++) { 1666 ns.at(i)->dump(); 1667 } 1668 } 1669 1670 void find_nodes_by_dump(Node* start, const char* pattern) { 1671 ResourceMark rm; 1672 GrowableArray<const Node*> ns; 1673 auto callback = [&] (const Node* n) { 1674 stringStream stream; 1675 n->dump("", false, &stream); 1676 if (StringUtils::is_star_match(pattern, stream.base())) { 1677 ns.push(n); 1678 } 1679 }; 1680 visit_nodes(start, callback, true, false); 1681 ns.sort(node_idx_cmp); 1682 for (int i = 0; i < ns.length(); i++) { 1683 ns.at(i)->dump(); 1684 } 1685 } 1686 1687 // call from debugger: find node with name pattern in new/current graph 1688 // name can contain "*" in match pattern to match any characters 1689 // the matching is case insensitive 1690 void find_nodes_by_name(const char* name) { 1691 Node* root = Compile::current()->root(); 1692 find_nodes_by_name(root, name); 1693 } 1694 1695 // call from debugger: find node with name pattern in old graph 1696 // name can contain "*" in match pattern to match any characters 1697 // the matching is case insensitive 1698 void find_old_nodes_by_name(const char* name) { 1699 Node* root = old_root(); 1700 find_nodes_by_name(root, name); 1701 } 1702 1703 // call from debugger: find node with dump pattern in new/current graph 1704 // can contain "*" in match pattern to match any characters 1705 // the matching is case insensitive 1706 void find_nodes_by_dump(const char* pattern) { 1707 Node* root = Compile::current()->root(); 1708 find_nodes_by_dump(root, pattern); 1709 } 1710 1711 // call from debugger: find node with name pattern in old graph 1712 // can contain "*" in match pattern to match any characters 1713 // the matching is case insensitive 1714 void find_old_nodes_by_dump(const char* pattern) { 1715 Node* root = old_root(); 1716 find_nodes_by_dump(root, pattern); 1717 } 1718 1719 // Call this from debugger, search in same graph as n: 1720 Node* find_node(Node* n, const int idx) { 1721 return n->find(idx); 1722 } 1723 1724 // Call this from debugger, search in new nodes: 1725 Node* find_node(const int idx) { 1726 return Compile::current()->root()->find(idx); 1727 } 1728 1729 // Call this from debugger, search in old nodes: 1730 Node* find_old_node(const int idx) { 1731 Node* root = old_root(); 1732 return (root == nullptr) ? nullptr : root->find(idx); 1733 } 1734 1735 // Call this from debugger, search in same graph as n: 1736 Node* find_ctrl(Node* n, const int idx) { 1737 return n->find_ctrl(idx); 1738 } 1739 1740 // Call this from debugger, search in new nodes: 1741 Node* find_ctrl(const int idx) { 1742 return Compile::current()->root()->find_ctrl(idx); 1743 } 1744 1745 // Call this from debugger, search in old nodes: 1746 Node* find_old_ctrl(const int idx) { 1747 Node* root = old_root(); 1748 return (root == nullptr) ? nullptr : root->find_ctrl(idx); 1749 } 1750 1751 //------------------------------find_ctrl-------------------------------------- 1752 // Find an ancestor to this node in the control history with given _idx 1753 Node* Node::find_ctrl(int idx) { 1754 return find(idx, true); 1755 } 1756 1757 //------------------------------find------------------------------------------- 1758 // Tries to find the node with the index |idx| starting from this node. If idx is negative, 1759 // the search also includes forward (out) edges. Returns null if not found. 1760 // If only_ctrl is set, the search will only be done on control nodes. Returns null if 1761 // not found or if the node to be found is not a control node (search will not find it). 1762 Node* Node::find(const int idx, bool only_ctrl) { 1763 ResourceMark rm; 1764 return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl); 1765 } 1766 1767 class PrintBFS { 1768 public: 1769 PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options, outputStream* st) 1770 : _start(start), _max_distance(max_distance), _target(target), _options(options), _output(st), 1771 _dcc(this), _info_uid(cmpkey, hashkey) {} 1772 1773 void run(); 1774 private: 1775 // pipeline steps 1776 bool configure(); 1777 void collect(); 1778 void select(); 1779 void select_all(); 1780 void select_all_paths(); 1781 void select_shortest_path(); 1782 void sort(); 1783 void print(); 1784 1785 // inputs 1786 const Node* _start; 1787 const int _max_distance; 1788 const Node* _target; 1789 const char* _options; 1790 outputStream* _output; 1791 1792 // options 1793 bool _traverse_inputs = false; 1794 bool _traverse_outputs = false; 1795 struct Filter { 1796 bool _control = false; 1797 bool _memory = false; 1798 bool _data = false; 1799 bool _mixed = false; 1800 bool _other = false; 1801 bool is_empty() const { 1802 return !(_control || _memory || _data || _mixed || _other); 1803 } 1804 void set_all() { 1805 _control = true; 1806 _memory = true; 1807 _data = true; 1808 _mixed = true; 1809 _other = true; 1810 } 1811 // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes 1812 // are considered to have control. 1813 bool accepts(const Node* n) { 1814 const Type* t = n->bottom_type(); 1815 return ( _data && t->has_category(Type::Category::Data) ) || 1816 ( _memory && t->has_category(Type::Category::Memory) ) || 1817 ( _mixed && t->has_category(Type::Category::Mixed) ) || 1818 ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) || 1819 ( _other && t->has_category(Type::Category::Other) ); 1820 } 1821 }; 1822 Filter _filter_visit; 1823 Filter _filter_boundary; 1824 bool _sort_idx = false; 1825 bool _all_paths = false; 1826 bool _use_color = false; 1827 bool _print_blocks = false; 1828 bool _print_old = false; 1829 bool _dump_only = false; 1830 void print_options_help(bool print_examples); 1831 bool parse_options(); 1832 1833 public: 1834 class DumpConfigColored : public Node::DumpConfig { 1835 public: 1836 DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {}; 1837 virtual void pre_dump(outputStream* st, const Node* n); 1838 virtual void post_dump(outputStream* st); 1839 private: 1840 PrintBFS* _bfs; 1841 }; 1842 private: 1843 DumpConfigColored _dcc; 1844 1845 // node info 1846 static Node* old_node(const Node* n); // mach node -> prior IR node 1847 void print_node_idx(const Node* n); 1848 void print_block_id(const Block* b); 1849 void print_node_block(const Node* n); // _pre_order, head idx, _idom, _dom_depth 1850 1851 // traversal data structures 1852 GrowableArray<const Node*> _worklist; // BFS queue 1853 void maybe_traverse(const Node* src, const Node* dst); 1854 1855 // node info annotation 1856 class Info { 1857 public: 1858 Info() : Info(nullptr, 0) {}; 1859 Info(const Node* node, int distance) 1860 : _node(node), _distance_from_start(distance) {}; 1861 const Node* node() const { return _node; }; 1862 int distance() const { return _distance_from_start; }; 1863 int distance_from_target() const { return _distance_from_target; } 1864 void set_distance_from_target(int d) { _distance_from_target = d; } 1865 GrowableArray<const Node*> edge_bwd; // pointing toward _start 1866 bool is_marked() const { return _mark; } // marked to keep during select 1867 void set_mark() { _mark = true; } 1868 private: 1869 const Node* _node; 1870 int _distance_from_start; // distance from _start 1871 int _distance_from_target = 0; // distance from _target if _all_paths 1872 bool _mark = false; 1873 }; 1874 Dict _info_uid; // Node -> uid 1875 GrowableArray<Info> _info; // uid -> info 1876 1877 Info* find_info(const Node* n) { 1878 size_t uid = (size_t)_info_uid[n]; 1879 if (uid == 0) { 1880 return nullptr; 1881 } 1882 return &_info.at((int)uid); 1883 } 1884 1885 void make_info(const Node* node, const int distance) { 1886 assert(find_info(node) == nullptr, "node does not yet have info"); 1887 size_t uid = _info.length() + 1; 1888 _info_uid.Insert((void*)node, (void*)uid); 1889 _info.at_put_grow((int)uid, Info(node, distance)); 1890 assert(find_info(node)->node() == node, "stored correct node"); 1891 }; 1892 1893 // filled by sort, printed by print 1894 GrowableArray<const Node*> _print_list; 1895 1896 // print header + node table 1897 void print_header() const; 1898 void print_node(const Node* n); 1899 }; 1900 1901 void PrintBFS::run() { 1902 if (!configure()) { 1903 return; 1904 } 1905 collect(); 1906 select(); 1907 sort(); 1908 print(); 1909 } 1910 1911 // set up configuration for BFS and print 1912 bool PrintBFS::configure() { 1913 if (_max_distance < 0) { 1914 _output->print_cr("dump_bfs: max_distance must be non-negative!"); 1915 return false; 1916 } 1917 return parse_options(); 1918 } 1919 1920 // BFS traverse according to configuration, fill worklist and info 1921 void PrintBFS::collect() { 1922 maybe_traverse(_start, _start); 1923 int pos = 0; 1924 while (pos < _worklist.length()) { 1925 const Node* n = _worklist.at(pos++); // next node to traverse 1926 Info* info = find_info(n); 1927 if (!_filter_visit.accepts(n) && n != _start) { 1928 continue; // we hit boundary, do not traverse further 1929 } 1930 if (n != _start && n->is_Root()) { 1931 continue; // traversing through root node would lead to unrelated nodes 1932 } 1933 if (_traverse_inputs && _max_distance > info->distance()) { 1934 for (uint i = 0; i < n->req(); i++) { 1935 maybe_traverse(n, n->in(i)); 1936 } 1937 } 1938 if (_traverse_outputs && _max_distance > info->distance()) { 1939 for (uint i = 0; i < n->outcnt(); i++) { 1940 maybe_traverse(n, n->raw_out(i)); 1941 } 1942 } 1943 } 1944 } 1945 1946 // go through work list, mark those that we want to print 1947 void PrintBFS::select() { 1948 if (_target == nullptr ) { 1949 select_all(); 1950 } else { 1951 if (find_info(_target) == nullptr) { 1952 _output->print_cr("Could not find target in BFS."); 1953 return; 1954 } 1955 if (_all_paths) { 1956 select_all_paths(); 1957 } else { 1958 select_shortest_path(); 1959 } 1960 } 1961 } 1962 1963 // take all nodes from BFS 1964 void PrintBFS::select_all() { 1965 for (int i = 0; i < _worklist.length(); i++) { 1966 const Node* n = _worklist.at(i); 1967 Info* info = find_info(n); 1968 info->set_mark(); 1969 } 1970 } 1971 1972 // traverse backward from target, along edges found in BFS 1973 void PrintBFS::select_all_paths() { 1974 int pos = 0; 1975 GrowableArray<const Node*> backtrace; 1976 // start from target 1977 backtrace.push(_target); 1978 find_info(_target)->set_mark(); 1979 // traverse backward 1980 while (pos < backtrace.length()) { 1981 const Node* n = backtrace.at(pos++); 1982 Info* info = find_info(n); 1983 for (int i = 0; i < info->edge_bwd.length(); i++) { 1984 // all backward edges 1985 const Node* back = info->edge_bwd.at(i); 1986 Info* back_info = find_info(back); 1987 if (!back_info->is_marked()) { 1988 // not yet found this on way back. 1989 back_info->set_distance_from_target(info->distance_from_target() + 1); 1990 if (back_info->distance_from_target() + back_info->distance() <= _max_distance) { 1991 // total distance is small enough 1992 back_info->set_mark(); 1993 backtrace.push(back); 1994 } 1995 } 1996 } 1997 } 1998 } 1999 2000 void PrintBFS::select_shortest_path() { 2001 const Node* current = _target; 2002 while (true) { 2003 Info* info = find_info(current); 2004 info->set_mark(); 2005 if (current == _start) { 2006 break; 2007 } 2008 // first edge -> leads us one step closer to _start 2009 current = info->edge_bwd.at(0); 2010 } 2011 } 2012 2013 // go through worklist in desired order, put the marked ones in print list 2014 void PrintBFS::sort() { 2015 if (_traverse_inputs && !_traverse_outputs) { 2016 // reverse order 2017 for (int i = _worklist.length() - 1; i >= 0; i--) { 2018 const Node* n = _worklist.at(i); 2019 Info* info = find_info(n); 2020 if (info->is_marked()) { 2021 _print_list.push(n); 2022 } 2023 } 2024 } else { 2025 // same order as worklist 2026 for (int i = 0; i < _worklist.length(); i++) { 2027 const Node* n = _worklist.at(i); 2028 Info* info = find_info(n); 2029 if (info->is_marked()) { 2030 _print_list.push(n); 2031 } 2032 } 2033 } 2034 if (_sort_idx) { 2035 _print_list.sort(node_idx_cmp); 2036 } 2037 } 2038 2039 // go through printlist and print 2040 void PrintBFS::print() { 2041 if (_print_list.length() > 0 ) { 2042 print_header(); 2043 for (int i = 0; i < _print_list.length(); i++) { 2044 const Node* n = _print_list.at(i); 2045 print_node(n); 2046 } 2047 } else { 2048 _output->print_cr("No nodes to print."); 2049 } 2050 } 2051 2052 void PrintBFS::print_options_help(bool print_examples) { 2053 _output->print_cr("Usage: node->dump_bfs(int max_distance, Node* target, char* options)"); 2054 _output->print_cr(""); 2055 _output->print_cr("Use cases:"); 2056 _output->print_cr(" BFS traversal: no target required"); 2057 _output->print_cr(" shortest path: set target"); 2058 _output->print_cr(" all paths: set target and put 'A' in options"); 2059 _output->print_cr(" detect loop: subcase of all paths, have start==target"); 2060 _output->print_cr(""); 2061 _output->print_cr("Arguments:"); 2062 _output->print_cr(" this/start: staring point of BFS"); 2063 _output->print_cr(" target:"); 2064 _output->print_cr(" if null: simple BFS"); 2065 _output->print_cr(" else: shortest path or all paths between this/start and target"); 2066 _output->print_cr(" options:"); 2067 _output->print_cr(" if null: same as \"cdmox@B\""); 2068 _output->print_cr(" else: use combination of following characters"); 2069 _output->print_cr(" h: display this help info"); 2070 _output->print_cr(" H: display this help info, with examples"); 2071 _output->print_cr(" +: traverse in-edges (on if neither + nor -)"); 2072 _output->print_cr(" -: traverse out-edges"); 2073 _output->print_cr(" c: visit control nodes"); 2074 _output->print_cr(" d: visit data nodes"); 2075 _output->print_cr(" m: visit memory nodes"); 2076 _output->print_cr(" o: visit other nodes"); 2077 _output->print_cr(" x: visit mixed nodes"); 2078 _output->print_cr(" C: boundary control nodes"); 2079 _output->print_cr(" D: boundary data nodes"); 2080 _output->print_cr(" M: boundary memory nodes"); 2081 _output->print_cr(" O: boundary other nodes"); 2082 _output->print_cr(" X: boundary mixed nodes"); 2083 _output->print_cr(" #: display node category in color (not supported in all terminals)"); 2084 _output->print_cr(" S: sort displayed nodes by node idx"); 2085 _output->print_cr(" A: all paths (not just shortest path to target)"); 2086 _output->print_cr(" @: print old nodes - before matching (if available)"); 2087 _output->print_cr(" B: print scheduling blocks (if available)"); 2088 _output->print_cr(" $: dump only, no header, no other columns"); 2089 _output->print_cr(""); 2090 _output->print_cr("recursively follow edges to nodes with permitted visit types,"); 2091 _output->print_cr("on the boundary additionally display nodes allowed in boundary types"); 2092 _output->print_cr("Note: the categories can be overlapping. For example a mixed node"); 2093 _output->print_cr(" can contain control and memory output. Some from the other"); 2094 _output->print_cr(" category are also control (Halt, Return, etc)."); 2095 _output->print_cr(""); 2096 _output->print_cr("output columns:"); 2097 _output->print_cr(" dist: BFS distance to this/start"); 2098 _output->print_cr(" apd: all paths distance (d_outputart + d_target)"); 2099 _output->print_cr(" block: block identifier, based on _pre_order"); 2100 _output->print_cr(" head: first node in block"); 2101 _output->print_cr(" idom: head node of idom block"); 2102 _output->print_cr(" depth: depth of block (_dom_depth)"); 2103 _output->print_cr(" old: old IR node - before matching"); 2104 _output->print_cr(" dump: node->dump()"); 2105 _output->print_cr(""); 2106 _output->print_cr("Note: if none of the \"cmdxo\" characters are in the options string"); 2107 _output->print_cr(" then we set all of them."); 2108 _output->print_cr(" This allows for short strings like \"#\" for colored input traversal"); 2109 _output->print_cr(" or \"-#\" for colored output traversal."); 2110 if (print_examples) { 2111 _output->print_cr(""); 2112 _output->print_cr("Examples:"); 2113 _output->print_cr(" if->dump_bfs(10, 0, \"+cxo\")"); 2114 _output->print_cr(" starting at some if node, traverse inputs recursively"); 2115 _output->print_cr(" only along control (mixed and other can also be control)"); 2116 _output->print_cr(" phi->dump_bfs(5, 0, \"-dxo\")"); 2117 _output->print_cr(" starting at phi node, traverse outputs recursively"); 2118 _output->print_cr(" only along data (mixed and other can also have data flow)"); 2119 _output->print_cr(" find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")"); 2120 _output->print_cr(" find inputs of node 385, up to 3 nodes up (+)"); 2121 _output->print_cr(" traverse all nodes (cdmox), use colors (#)"); 2122 _output->print_cr(" display old nodes and blocks, if they exist"); 2123 _output->print_cr(" useful call to start with"); 2124 _output->print_cr(" find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")"); 2125 _output->print_cr(" find non-data dependencies of a data node"); 2126 _output->print_cr(" follow data node outputs until we find another category"); 2127 _output->print_cr(" node as the boundary"); 2128 _output->print_cr(" x->dump_bfs(10, y, 0)"); 2129 _output->print_cr(" find shortest path from x to y, along any edge or node"); 2130 _output->print_cr(" will not find a path if it is longer than 10"); 2131 _output->print_cr(" useful to find how x and y are related"); 2132 _output->print_cr(" find_node(741)->dump_bfs(20, find_node(746), \"c+\")"); 2133 _output->print_cr(" find shortest control path between two nodes"); 2134 _output->print_cr(" find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")"); 2135 _output->print_cr(" find all paths (A) between two nodes of length at most 8"); 2136 _output->print_cr(" find_node(741)->dump_bfs(7, find_node(741), \"c+A\")"); 2137 _output->print_cr(" find all control loops for this node"); 2138 } 2139 } 2140 2141 bool PrintBFS::parse_options() { 2142 if (_options == nullptr) { 2143 _options = "cdmox@B"; // default options 2144 } 2145 size_t len = strlen(_options); 2146 for (size_t i = 0; i < len; i++) { 2147 switch (_options[i]) { 2148 case '+': 2149 _traverse_inputs = true; 2150 break; 2151 case '-': 2152 _traverse_outputs = true; 2153 break; 2154 case 'c': 2155 _filter_visit._control = true; 2156 break; 2157 case 'm': 2158 _filter_visit._memory = true; 2159 break; 2160 case 'd': 2161 _filter_visit._data = true; 2162 break; 2163 case 'x': 2164 _filter_visit._mixed = true; 2165 break; 2166 case 'o': 2167 _filter_visit._other = true; 2168 break; 2169 case 'C': 2170 _filter_boundary._control = true; 2171 break; 2172 case 'M': 2173 _filter_boundary._memory = true; 2174 break; 2175 case 'D': 2176 _filter_boundary._data = true; 2177 break; 2178 case 'X': 2179 _filter_boundary._mixed = true; 2180 break; 2181 case 'O': 2182 _filter_boundary._other = true; 2183 break; 2184 case 'S': 2185 _sort_idx = true; 2186 break; 2187 case 'A': 2188 _all_paths = true; 2189 break; 2190 case '#': 2191 _use_color = true; 2192 break; 2193 case 'B': 2194 _print_blocks = true; 2195 break; 2196 case '@': 2197 _print_old = true; 2198 break; 2199 case '$': 2200 _dump_only = true; 2201 break; 2202 case 'h': 2203 print_options_help(false); 2204 return false; 2205 case 'H': 2206 print_options_help(true); 2207 return false; 2208 default: 2209 _output->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]); 2210 _output->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")"); 2211 return false; 2212 } 2213 } 2214 if (!_traverse_inputs && !_traverse_outputs) { 2215 _traverse_inputs = true; 2216 } 2217 if (_filter_visit.is_empty()) { 2218 _filter_visit.set_all(); 2219 } 2220 Compile* C = Compile::current(); 2221 _print_old &= (C->matcher() != nullptr); // only show old if there are new 2222 _print_blocks &= (C->cfg() != nullptr); // only show blocks if available 2223 return true; 2224 } 2225 2226 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) { 2227 if (!_bfs->_use_color) { 2228 return; 2229 } 2230 Info* info = _bfs->find_info(n); 2231 if (info == nullptr || !info->is_marked()) { 2232 return; 2233 } 2234 2235 const Type* t = n->bottom_type(); 2236 switch (t->category()) { 2237 case Type::Category::Data: 2238 st->print("\u001b[34m"); 2239 break; 2240 case Type::Category::Memory: 2241 st->print("\u001b[32m"); 2242 break; 2243 case Type::Category::Mixed: 2244 st->print("\u001b[35m"); 2245 break; 2246 case Type::Category::Control: 2247 st->print("\u001b[31m"); 2248 break; 2249 case Type::Category::Other: 2250 st->print("\u001b[33m"); 2251 break; 2252 case Type::Category::Undef: 2253 n->dump(); 2254 assert(false, "category undef ??"); 2255 break; 2256 default: 2257 n->dump(); 2258 assert(false, "not covered"); 2259 break; 2260 } 2261 } 2262 2263 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) { 2264 if (!_bfs->_use_color) { 2265 return; 2266 } 2267 st->print("\u001b[0m"); // white 2268 } 2269 2270 Node* PrintBFS::old_node(const Node* n) { 2271 Compile* C = Compile::current(); 2272 if (C->matcher() == nullptr || !C->node_arena()->contains(n)) { 2273 return (Node*)nullptr; 2274 } else { 2275 return C->matcher()->find_old_node(n); 2276 } 2277 } 2278 2279 void PrintBFS::print_node_idx(const Node* n) { 2280 Compile* C = Compile::current(); 2281 char buf[30]; 2282 if (n == nullptr) { 2283 os::snprintf_checked(buf, sizeof(buf), "_"); // null 2284 } else if (C->node_arena()->contains(n)) { 2285 os::snprintf_checked(buf, sizeof(buf), "%d", n->_idx); // new node 2286 } else { 2287 os::snprintf_checked(buf, sizeof(buf), "o%d", n->_idx); // old node 2288 } 2289 _output->print("%6s", buf); 2290 } 2291 2292 void PrintBFS::print_block_id(const Block* b) { 2293 Compile* C = Compile::current(); 2294 char buf[30]; 2295 os::snprintf_checked(buf, sizeof(buf), "B%d", b->_pre_order); 2296 _output->print("%7s", buf); 2297 } 2298 2299 void PrintBFS::print_node_block(const Node* n) { 2300 Compile* C = Compile::current(); 2301 Block* b = C->node_arena()->contains(n) 2302 ? C->cfg()->get_block_for_node(n) 2303 : nullptr; // guard against old nodes 2304 if (b == nullptr) { 2305 _output->print(" _"); // Block 2306 _output->print(" _"); // head 2307 _output->print(" _"); // idom 2308 _output->print(" _"); // depth 2309 } else { 2310 print_block_id(b); 2311 print_node_idx(b->head()); 2312 if (b->_idom) { 2313 print_node_idx(b->_idom->head()); 2314 } else { 2315 _output->print(" _"); // idom 2316 } 2317 _output->print("%6d ", b->_dom_depth); 2318 } 2319 } 2320 2321 // filter, and add to worklist, add info, note traversal edges 2322 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) { 2323 if (dst != nullptr && 2324 (_filter_visit.accepts(dst) || 2325 _filter_boundary.accepts(dst) || 2326 dst == _start)) { // correct category or start? 2327 if (find_info(dst) == nullptr) { 2328 // never visited - set up info 2329 _worklist.push(dst); 2330 int d = 0; 2331 if (dst != _start) { 2332 d = find_info(src)->distance() + 1; 2333 } 2334 make_info(dst, d); 2335 } 2336 if (src != dst) { 2337 // traversal edges useful during select 2338 find_info(dst)->edge_bwd.push(src); 2339 } 2340 } 2341 } 2342 2343 void PrintBFS::print_header() const { 2344 if (_dump_only) { 2345 return; // no header in dump only mode 2346 } 2347 _output->print("dist"); // distance 2348 if (_all_paths) { 2349 _output->print(" apd"); // all paths distance 2350 } 2351 if (_print_blocks) { 2352 _output->print(" [block head idom depth]"); // block 2353 } 2354 if (_print_old) { 2355 _output->print(" old"); // old node 2356 } 2357 _output->print(" dump\n"); // node dump 2358 _output->print_cr("---------------------------------------------"); 2359 } 2360 2361 void PrintBFS::print_node(const Node* n) { 2362 if (_dump_only) { 2363 n->dump("\n", false, _output, &_dcc); 2364 return; 2365 } 2366 _output->print("%4d", find_info(n)->distance());// distance 2367 if (_all_paths) { 2368 Info* info = find_info(n); 2369 int apd = info->distance() + info->distance_from_target(); 2370 _output->print("%4d", apd); // all paths distance 2371 } 2372 if (_print_blocks) { 2373 print_node_block(n); // block 2374 } 2375 if (_print_old) { 2376 print_node_idx(old_node(n)); // old node 2377 } 2378 _output->print(" "); 2379 n->dump("\n", false, _output, &_dcc); // node dump 2380 } 2381 2382 //------------------------------dump_bfs-------------------------------------- 2383 // Call this from debugger 2384 // Useful for BFS traversal, shortest path, all path, loop detection, etc 2385 // Designed to be more readable, and provide additional info 2386 // To find all options, run: 2387 // find_node(0)->dump_bfs(0,0,"H") 2388 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const { 2389 dump_bfs(max_distance, target, options, tty); 2390 } 2391 2392 // Used to dump to stream. 2393 void Node::dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const { 2394 PrintBFS bfs(this, max_distance, target, options, st); 2395 bfs.run(); 2396 } 2397 2398 // Call this from debugger, with default arguments 2399 void Node::dump_bfs(const int max_distance) const { 2400 dump_bfs(max_distance, nullptr, nullptr); 2401 } 2402 2403 // -----------------------------dump_idx--------------------------------------- 2404 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const { 2405 if (dc != nullptr) { 2406 dc->pre_dump(st, this); 2407 } 2408 Compile* C = Compile::current(); 2409 bool is_new = C->node_arena()->contains(this); 2410 if (align) { // print prefix empty spaces$ 2411 // +1 for leading digit, +1 for "o" 2412 uint max_width = static_cast<uint>(log10(static_cast<double>(C->unique()))) + 2; 2413 // +1 for leading digit, maybe +1 for "o" 2414 uint width = static_cast<uint>(log10(static_cast<double>(_idx))) + 1 + (is_new ? 0 : 1); 2415 while (max_width > width) { 2416 st->print(" "); 2417 width++; 2418 } 2419 } 2420 if (!is_new) { 2421 st->print("o"); 2422 } 2423 st->print("%d", _idx); 2424 if (dc != nullptr) { 2425 dc->post_dump(st); 2426 } 2427 } 2428 2429 // -----------------------------dump_name-------------------------------------- 2430 void Node::dump_name(outputStream* st, DumpConfig* dc) const { 2431 if (dc != nullptr) { 2432 dc->pre_dump(st, this); 2433 } 2434 st->print("%s", Name()); 2435 if (dc != nullptr) { 2436 dc->post_dump(st); 2437 } 2438 } 2439 2440 // -----------------------------Name------------------------------------------- 2441 extern const char *NodeClassNames[]; 2442 const char *Node::Name() const { return NodeClassNames[Opcode()]; } 2443 2444 static bool is_disconnected(const Node* n) { 2445 for (uint i = 0; i < n->req(); i++) { 2446 if (n->in(i) != nullptr) return false; 2447 } 2448 return true; 2449 } 2450 2451 #ifdef ASSERT 2452 void Node::dump_orig(outputStream *st, bool print_key) const { 2453 Compile* C = Compile::current(); 2454 Node* orig = _debug_orig; 2455 if (not_a_node(orig)) orig = nullptr; 2456 if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr; 2457 if (orig == nullptr) return; 2458 if (print_key) { 2459 st->print(" !orig="); 2460 } 2461 Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops 2462 if (not_a_node(fast)) fast = nullptr; 2463 while (orig != nullptr) { 2464 bool discon = is_disconnected(orig); // if discon, print [123] else 123 2465 if (discon) st->print("["); 2466 if (!Compile::current()->node_arena()->contains(orig)) 2467 st->print("o"); 2468 st->print("%d", orig->_idx); 2469 if (discon) st->print("]"); 2470 orig = orig->debug_orig(); 2471 if (not_a_node(orig)) orig = nullptr; 2472 if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr; 2473 if (orig != nullptr) st->print(","); 2474 if (fast != nullptr) { 2475 // Step fast twice for each single step of orig: 2476 fast = fast->debug_orig(); 2477 if (not_a_node(fast)) fast = nullptr; 2478 if (fast != nullptr && fast != orig) { 2479 fast = fast->debug_orig(); 2480 if (not_a_node(fast)) fast = nullptr; 2481 } 2482 if (fast == orig) { 2483 st->print("..."); 2484 break; 2485 } 2486 } 2487 } 2488 } 2489 2490 void Node::set_debug_orig(Node* orig) { 2491 _debug_orig = orig; 2492 if (BreakAtNode == 0) return; 2493 if (not_a_node(orig)) orig = nullptr; 2494 int trip = 10; 2495 while (orig != nullptr) { 2496 if (orig->debug_idx() == BreakAtNode || (uintx)orig->_idx == BreakAtNode) { 2497 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT " orig._idx=%d orig._debug_idx=" UINT64_FORMAT, 2498 this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx()); 2499 BREAKPOINT; 2500 } 2501 orig = orig->debug_orig(); 2502 if (not_a_node(orig)) orig = nullptr; 2503 if (trip-- <= 0) break; 2504 } 2505 } 2506 #endif //ASSERT 2507 2508 //------------------------------dump------------------------------------------ 2509 // Dump a Node 2510 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const { 2511 Compile* C = Compile::current(); 2512 bool is_new = C->node_arena()->contains(this); 2513 C->_in_dump_cnt++; 2514 2515 // idx mark name === 2516 dump_idx(true, st, dc); 2517 st->print(mark ? " >" : " "); 2518 dump_name(st, dc); 2519 st->print(" === "); 2520 2521 // Dump the required and precedence inputs 2522 dump_req(st, dc); 2523 dump_prec(st, dc); 2524 // Dump the outputs 2525 dump_out(st, dc); 2526 2527 if (is_disconnected(this)) { 2528 #ifdef ASSERT 2529 st->print(" [" UINT64_FORMAT "]", debug_idx()); 2530 dump_orig(st); 2531 #endif 2532 st->cr(); 2533 C->_in_dump_cnt--; 2534 return; // don't process dead nodes 2535 } 2536 2537 if (C->clone_map().value(_idx) != 0) { 2538 C->clone_map().dump(_idx, st); 2539 } 2540 // Dump node-specific info 2541 dump_spec(st); 2542 #ifdef ASSERT 2543 // Dump the non-reset _debug_idx 2544 if (Verbose && WizardMode) { 2545 st->print(" [" UINT64_FORMAT "]", debug_idx()); 2546 } 2547 #endif 2548 2549 const Type *t = bottom_type(); 2550 2551 if (t != nullptr && (t->isa_instptr() || t->isa_instklassptr())) { 2552 const TypeInstPtr *toop = t->isa_instptr(); 2553 const TypeInstKlassPtr *tkls = t->isa_instklassptr(); 2554 if (toop) { 2555 st->print(" Oop:"); 2556 } else if (tkls) { 2557 st->print(" Klass:"); 2558 } 2559 t->dump_on(st); 2560 } else if (t == Type::MEMORY) { 2561 st->print(" Memory:"); 2562 MemNode::dump_adr_type(this, adr_type(), st); 2563 } else if (Verbose || WizardMode) { 2564 st->print(" Type:"); 2565 if (t) { 2566 t->dump_on(st); 2567 } else { 2568 st->print("no type"); 2569 } 2570 } else if (t->isa_vect() && this->is_MachSpillCopy()) { 2571 // Dump MachSpillcopy vector type. 2572 t->dump_on(st); 2573 } 2574 if (is_new) { 2575 DEBUG_ONLY(dump_orig(st)); 2576 Node_Notes* nn = C->node_notes_at(_idx); 2577 if (nn != nullptr && !nn->is_clear()) { 2578 if (nn->jvms() != nullptr) { 2579 st->print(" !jvms:"); 2580 nn->jvms()->dump_spec(st); 2581 } 2582 } 2583 } 2584 if (suffix) st->print("%s", suffix); 2585 C->_in_dump_cnt--; 2586 } 2587 2588 // call from debugger: dump node to tty with newline 2589 void Node::dump() const { 2590 dump("\n"); 2591 } 2592 2593 //------------------------------dump_req-------------------------------------- 2594 void Node::dump_req(outputStream* st, DumpConfig* dc) const { 2595 // Dump the required input edges 2596 for (uint i = 0; i < req(); i++) { // For all required inputs 2597 Node* d = in(i); 2598 if (d == nullptr) { 2599 st->print("_ "); 2600 } else if (not_a_node(d)) { 2601 st->print("not_a_node "); // uninitialized, sentinel, garbage, etc. 2602 } else { 2603 d->dump_idx(false, st, dc); 2604 st->print(" "); 2605 } 2606 } 2607 } 2608 2609 2610 //------------------------------dump_prec------------------------------------- 2611 void Node::dump_prec(outputStream* st, DumpConfig* dc) const { 2612 // Dump the precedence edges 2613 int any_prec = 0; 2614 for (uint i = req(); i < len(); i++) { // For all precedence inputs 2615 Node* p = in(i); 2616 if (p != nullptr) { 2617 if (!any_prec++) st->print(" |"); 2618 if (not_a_node(p)) { st->print("not_a_node "); continue; } 2619 p->dump_idx(false, st, dc); 2620 st->print(" "); 2621 } 2622 } 2623 } 2624 2625 //------------------------------dump_out-------------------------------------- 2626 void Node::dump_out(outputStream* st, DumpConfig* dc) const { 2627 // Delimit the output edges 2628 st->print(" [[ "); 2629 // Dump the output edges 2630 for (uint i = 0; i < _outcnt; i++) { // For all outputs 2631 Node* u = _out[i]; 2632 if (u == nullptr) { 2633 st->print("_ "); 2634 } else if (not_a_node(u)) { 2635 st->print("not_a_node "); 2636 } else { 2637 u->dump_idx(false, st, dc); 2638 st->print(" "); 2639 } 2640 } 2641 st->print("]] "); 2642 } 2643 2644 //------------------------------dump------------------------------------------- 2645 // call from debugger: dump Node's inputs (or outputs if d negative) 2646 void Node::dump(int d) const { 2647 dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$"); 2648 } 2649 2650 //------------------------------dump_ctrl-------------------------------------- 2651 // call from debugger: dump Node's control inputs (or outputs if d negative) 2652 void Node::dump_ctrl(int d) const { 2653 dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c"); 2654 } 2655 2656 //-----------------------------dump_compact------------------------------------ 2657 void Node::dump_comp() const { 2658 this->dump_comp("\n"); 2659 } 2660 2661 //-----------------------------dump_compact------------------------------------ 2662 // Dump a Node in compact representation, i.e., just print its name and index. 2663 // Nodes can specify additional specifics to print in compact representation by 2664 // implementing dump_compact_spec. 2665 void Node::dump_comp(const char* suffix, outputStream *st) const { 2666 Compile* C = Compile::current(); 2667 C->_in_dump_cnt++; 2668 st->print("%s(%d)", Name(), _idx); 2669 this->dump_compact_spec(st); 2670 if (suffix) { 2671 st->print("%s", suffix); 2672 } 2673 C->_in_dump_cnt--; 2674 } 2675 2676 // VERIFICATION CODE 2677 // Verify all nodes if verify_depth is negative 2678 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) { 2679 assert(verify_depth != 0, "depth should not be 0"); 2680 Compile* C = Compile::current(); 2681 uint last_index_on_current_depth = worklist.size() - 1; 2682 verify_depth--; // Visiting the first node on depth 1 2683 // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0 2684 bool add_to_worklist = verify_depth != 0; 2685 2686 for (uint list_index = 0; list_index < worklist.size(); list_index++) { 2687 Node* n = worklist[list_index]; 2688 2689 if (n->is_Con() && n->bottom_type() == Type::TOP) { 2690 if (C->cached_top_node() == nullptr) { 2691 C->set_cached_top_node((Node*)n); 2692 } 2693 assert(C->cached_top_node() == n, "TOP node must be unique"); 2694 } 2695 2696 uint in_len = n->len(); 2697 for (uint i = 0; i < in_len; i++) { 2698 Node* x = n->_in[i]; 2699 if (!x || x->is_top()) { 2700 continue; 2701 } 2702 2703 // Verify my input has a def-use edge to me 2704 // Count use-def edges from n to x 2705 int cnt = 1; 2706 for (uint j = 0; j < i; j++) { 2707 if (n->_in[j] == x) { 2708 cnt++; 2709 break; 2710 } 2711 } 2712 if (cnt == 2) { 2713 // x is already checked as n's previous input, skip its duplicated def-use count checking 2714 continue; 2715 } 2716 for (uint j = i + 1; j < in_len; j++) { 2717 if (n->_in[j] == x) { 2718 cnt++; 2719 } 2720 } 2721 2722 // Count def-use edges from x to n 2723 uint max = x->_outcnt; 2724 for (uint k = 0; k < max; k++) { 2725 if (x->_out[k] == n) { 2726 cnt--; 2727 } 2728 } 2729 assert(cnt == 0, "mismatched def-use edge counts"); 2730 2731 if (add_to_worklist && !visited.test_set(x->_idx)) { 2732 worklist.push(x); 2733 } 2734 } 2735 2736 if (verify_depth > 0 && list_index == last_index_on_current_depth) { 2737 // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and 2738 // store the current last list index which is the last node in the list with the new depth. All nodes 2739 // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0). 2740 verify_depth--; 2741 if (verify_depth == 0) { 2742 add_to_worklist = false; 2743 } 2744 last_index_on_current_depth = worklist.size() - 1; 2745 } 2746 } 2747 } 2748 #endif // not PRODUCT 2749 2750 //------------------------------Registers-------------------------------------- 2751 // Do we Match on this edge index or not? Generally false for Control 2752 // and true for everything else. Weird for calls & returns. 2753 uint Node::match_edge(uint idx) const { 2754 return idx; // True for other than index 0 (control) 2755 } 2756 2757 // Register classes are defined for specific machines 2758 const RegMask &Node::out_RegMask() const { 2759 ShouldNotCallThis(); 2760 return RegMask::Empty; 2761 } 2762 2763 const RegMask &Node::in_RegMask(uint) const { 2764 ShouldNotCallThis(); 2765 return RegMask::Empty; 2766 } 2767 2768 void Node_Array::grow(uint i) { 2769 assert(_max > 0, "invariant"); 2770 uint old = _max; 2771 _max = next_power_of_2(i); 2772 _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*)); 2773 Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) ); 2774 } 2775 2776 void Node_Array::insert(uint i, Node* n) { 2777 if (_nodes[_max - 1]) { 2778 grow(_max); 2779 } 2780 Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*))); 2781 _nodes[i] = n; 2782 } 2783 2784 void Node_Array::remove(uint i) { 2785 Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*))); 2786 _nodes[_max - 1] = nullptr; 2787 } 2788 2789 void Node_Array::dump() const { 2790 #ifndef PRODUCT 2791 for (uint i = 0; i < _max; i++) { 2792 Node* nn = _nodes[i]; 2793 if (nn != nullptr) { 2794 tty->print("%5d--> ",i); nn->dump(); 2795 } 2796 } 2797 #endif 2798 } 2799 2800 //--------------------------is_iteratively_computed------------------------------ 2801 // Operation appears to be iteratively computed (such as an induction variable) 2802 // It is possible for this operation to return false for a loop-varying 2803 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 2804 bool Node::is_iteratively_computed() { 2805 if (ideal_reg()) { // does operation have a result register? 2806 for (uint i = 1; i < req(); i++) { 2807 Node* n = in(i); 2808 if (n != nullptr && n->is_Phi()) { 2809 for (uint j = 1; j < n->req(); j++) { 2810 if (n->in(j) == this) { 2811 return true; 2812 } 2813 } 2814 } 2815 } 2816 } 2817 return false; 2818 } 2819 2820 //--------------------------find_similar------------------------------ 2821 // Return a node with opcode "opc" and same inputs as "this" if one can 2822 // be found; Otherwise return null; 2823 Node* Node::find_similar(int opc) { 2824 if (req() >= 2) { 2825 Node* def = in(1); 2826 if (def && def->outcnt() >= 2) { 2827 for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) { 2828 Node* use = def->fast_out(i); 2829 if (use != this && 2830 use->Opcode() == opc && 2831 use->req() == req()) { 2832 uint j; 2833 for (j = 0; j < use->req(); j++) { 2834 if (use->in(j) != in(j)) { 2835 break; 2836 } 2837 } 2838 if (j == use->req()) { 2839 return use; 2840 } 2841 } 2842 } 2843 } 2844 } 2845 return nullptr; 2846 } 2847 2848 2849 //--------------------------unique_ctrl_out_or_null------------------------- 2850 // Return the unique control out if only one. Null if none or more than one. 2851 Node* Node::unique_ctrl_out_or_null() const { 2852 Node* found = nullptr; 2853 for (uint i = 0; i < outcnt(); i++) { 2854 Node* use = raw_out(i); 2855 if (use->is_CFG() && use != this) { 2856 if (found != nullptr) { 2857 return nullptr; 2858 } 2859 found = use; 2860 } 2861 } 2862 return found; 2863 } 2864 2865 //--------------------------unique_ctrl_out------------------------------ 2866 // Return the unique control out. Asserts if none or more than one control out. 2867 Node* Node::unique_ctrl_out() const { 2868 Node* ctrl = unique_ctrl_out_or_null(); 2869 assert(ctrl != nullptr, "control out is assumed to be unique"); 2870 return ctrl; 2871 } 2872 2873 void Node::ensure_control_or_add_prec(Node* c) { 2874 if (in(0) == nullptr) { 2875 set_req(0, c); 2876 } else if (in(0) != c) { 2877 add_prec(c); 2878 } 2879 } 2880 2881 bool Node::is_dead_loop_safe() const { 2882 if (is_Phi()) { 2883 return true; 2884 } 2885 if (is_Proj() && in(0) == nullptr) { 2886 return true; 2887 } 2888 if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) { 2889 if (!is_Proj()) { 2890 return true; 2891 } 2892 if (in(0)->is_Allocate()) { 2893 return false; 2894 } 2895 // MemNode::can_see_stored_value() peeks through the boxing call 2896 if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) { 2897 return false; 2898 } 2899 return true; 2900 } 2901 return false; 2902 } 2903 2904 //============================================================================= 2905 //------------------------------yank------------------------------------------- 2906 // Find and remove 2907 void Node_List::yank( Node *n ) { 2908 uint i; 2909 for (i = 0; i < _cnt; i++) { 2910 if (_nodes[i] == n) { 2911 break; 2912 } 2913 } 2914 2915 if (i < _cnt) { 2916 _nodes[i] = _nodes[--_cnt]; 2917 } 2918 } 2919 2920 //------------------------------dump------------------------------------------- 2921 void Node_List::dump() const { 2922 #ifndef PRODUCT 2923 for (uint i = 0; i < _cnt; i++) { 2924 if (_nodes[i]) { 2925 tty->print("%5d--> ", i); 2926 _nodes[i]->dump(); 2927 } 2928 } 2929 #endif 2930 } 2931 2932 void Node_List::dump_simple() const { 2933 #ifndef PRODUCT 2934 for (uint i = 0; i < _cnt; i++) { 2935 if( _nodes[i] ) { 2936 tty->print(" %d", _nodes[i]->_idx); 2937 } else { 2938 tty->print(" null"); 2939 } 2940 } 2941 #endif 2942 } 2943 2944 //============================================================================= 2945 //------------------------------remove----------------------------------------- 2946 void Unique_Node_List::remove(Node* n) { 2947 if (_in_worklist.test(n->_idx)) { 2948 for (uint i = 0; i < size(); i++) { 2949 if (_nodes[i] == n) { 2950 map(i, Node_List::pop()); 2951 _in_worklist.remove(n->_idx); 2952 return; 2953 } 2954 } 2955 ShouldNotReachHere(); 2956 } 2957 } 2958 2959 //-----------------------remove_useless_nodes---------------------------------- 2960 // Remove useless nodes from worklist 2961 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) { 2962 for (uint i = 0; i < size(); ++i) { 2963 Node *n = at(i); 2964 assert( n != nullptr, "Did not expect null entries in worklist"); 2965 if (!useful.test(n->_idx)) { 2966 _in_worklist.remove(n->_idx); 2967 map(i, Node_List::pop()); 2968 --i; // Visit popped node 2969 // If it was last entry, loop terminates since size() was also reduced 2970 } 2971 } 2972 } 2973 2974 //============================================================================= 2975 void Node_Stack::grow() { 2976 size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top 2977 size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode)); 2978 size_t max = old_max << 1; // max * 2 2979 _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max); 2980 _inode_max = _inodes + max; 2981 _inode_top = _inodes + old_top; // restore _top 2982 } 2983 2984 // Node_Stack is used to map nodes. 2985 Node* Node_Stack::find(uint idx) const { 2986 uint sz = size(); 2987 for (uint i = 0; i < sz; i++) { 2988 if (idx == index_at(i)) { 2989 return node_at(i); 2990 } 2991 } 2992 return nullptr; 2993 } 2994 2995 //============================================================================= 2996 uint TypeNode::size_of() const { return sizeof(*this); } 2997 #ifndef PRODUCT 2998 void TypeNode::dump_spec(outputStream *st) const { 2999 if (!Verbose && !WizardMode) { 3000 // standard dump does this in Verbose and WizardMode 3001 st->print(" #"); _type->dump_on(st); 3002 } 3003 } 3004 3005 void TypeNode::dump_compact_spec(outputStream *st) const { 3006 st->print("#"); 3007 _type->dump_on(st); 3008 } 3009 #endif 3010 uint TypeNode::hash() const { 3011 return Node::hash() + _type->hash(); 3012 } 3013 bool TypeNode::cmp(const Node& n) const { 3014 return !Type::cmp(_type, ((TypeNode&)n)._type); 3015 } 3016 const Type* TypeNode::bottom_type() const { return _type; } 3017 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; } 3018 3019 //------------------------------ideal_reg-------------------------------------- 3020 uint TypeNode::ideal_reg() const { 3021 return _type->ideal_reg(); 3022 }