1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/ad.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/connode.hpp"

  36 #include "opto/loopnode.hpp"
  37 #include "opto/machnode.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/regmask.hpp"
  42 #include "opto/rootnode.hpp"
  43 #include "opto/type.hpp"
  44 #include "utilities/copy.hpp"
  45 #include "utilities/macros.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "utilities/stringUtils.hpp"
  48 
  49 class RegMask;
  50 // #include "phase.hpp"
  51 class PhaseTransform;
  52 class PhaseGVN;
  53 
  54 // Arena we are currently building Nodes in
  55 const uint Node::NotAMachineReg = 0xffff0000;
  56 
  57 #ifndef PRODUCT
  58 extern uint nodes_created;
  59 #endif
  60 #ifdef __clang__
  61 #pragma clang diagnostic push
  62 #pragma GCC diagnostic ignored "-Wuninitialized"
  63 #endif
  64 
  65 #ifdef ASSERT
  66 
  67 //-------------------------- construct_node------------------------------------
  68 // Set a breakpoint here to identify where a particular node index is built.
  69 void Node::verify_construction() {
  70   _debug_orig = nullptr;
  71   // The decimal digits of _debug_idx are <compile_id> followed by 10 digits of <_idx>
  72   Compile* C = Compile::current();
  73   assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  74   uint64_t new_debug_idx = (uint64_t)C->compile_id() * 10000000000 + _idx;
  75   set_debug_idx(new_debug_idx);
  76   if (!C->phase_optimize_finished()) {
  77     // Only check assert during parsing and optimization phase. Skip it while generating code.
  78     assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit");
  79   }
  80   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (uint64_t)_idx == BreakAtNode)) {
  81     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT, _idx, _debug_idx);
  82     BREAKPOINT;
  83   }
  84 #if OPTO_DU_ITERATOR_ASSERT
  85   _last_del = nullptr;
  86   _del_tick = 0;
  87 #endif
  88   _hash_lock = 0;
  89 }
  90 
  91 
  92 // #ifdef ASSERT ...
  93 
  94 #if OPTO_DU_ITERATOR_ASSERT
  95 void DUIterator_Common::sample(const Node* node) {
  96   _vdui     = VerifyDUIterators;
  97   _node     = node;
  98   _outcnt   = node->_outcnt;
  99   _del_tick = node->_del_tick;
 100   _last     = nullptr;
 101 }
 102 
 103 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 104   assert(_node     == node, "consistent iterator source");
 105   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 106 }
 107 
 108 void DUIterator_Common::verify_resync() {
 109   // Ensure that the loop body has just deleted the last guy produced.
 110   const Node* node = _node;
 111   // Ensure that at least one copy of the last-seen edge was deleted.
 112   // Note:  It is OK to delete multiple copies of the last-seen edge.
 113   // Unfortunately, we have no way to verify that all the deletions delete
 114   // that same edge.  On this point we must use the Honor System.
 115   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 116   assert(node->_last_del == _last, "must have deleted the edge just produced");
 117   // We liked this deletion, so accept the resulting outcnt and tick.
 118   _outcnt   = node->_outcnt;
 119   _del_tick = node->_del_tick;
 120 }
 121 
 122 void DUIterator_Common::reset(const DUIterator_Common& that) {
 123   if (this == &that)  return;  // ignore assignment to self
 124   if (!_vdui) {
 125     // We need to initialize everything, overwriting garbage values.
 126     _last = that._last;
 127     _vdui = that._vdui;
 128   }
 129   // Note:  It is legal (though odd) for an iterator over some node x
 130   // to be reassigned to iterate over another node y.  Some doubly-nested
 131   // progress loops depend on being able to do this.
 132   const Node* node = that._node;
 133   // Re-initialize everything, except _last.
 134   _node     = node;
 135   _outcnt   = node->_outcnt;
 136   _del_tick = node->_del_tick;
 137 }
 138 
 139 void DUIterator::sample(const Node* node) {
 140   DUIterator_Common::sample(node);      // Initialize the assertion data.
 141   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 142 }
 143 
 144 void DUIterator::verify(const Node* node, bool at_end_ok) {
 145   DUIterator_Common::verify(node, at_end_ok);
 146   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 147 }
 148 
 149 void DUIterator::verify_increment() {
 150   if (_refresh_tick & 1) {
 151     // We have refreshed the index during this loop.
 152     // Fix up _idx to meet asserts.
 153     if (_idx > _outcnt)  _idx = _outcnt;
 154   }
 155   verify(_node, true);
 156 }
 157 
 158 void DUIterator::verify_resync() {
 159   // Note:  We do not assert on _outcnt, because insertions are OK here.
 160   DUIterator_Common::verify_resync();
 161   // Make sure we are still in sync, possibly with no more out-edges:
 162   verify(_node, true);
 163 }
 164 
 165 void DUIterator::reset(const DUIterator& that) {
 166   if (this == &that)  return;  // self assignment is always a no-op
 167   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 168   assert(that._idx          == 0, "assign only the result of Node::outs()");
 169   assert(_idx               == that._idx, "already assigned _idx");
 170   if (!_vdui) {
 171     // We need to initialize everything, overwriting garbage values.
 172     sample(that._node);
 173   } else {
 174     DUIterator_Common::reset(that);
 175     if (_refresh_tick & 1) {
 176       _refresh_tick++;                  // Clear the "was refreshed" flag.
 177     }
 178     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 179   }
 180 }
 181 
 182 void DUIterator::refresh() {
 183   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 184   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 185 }
 186 
 187 void DUIterator::verify_finish() {
 188   // If the loop has killed the node, do not require it to re-run.
 189   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 190   // If this assert triggers, it means that a loop used refresh_out_pos
 191   // to re-synch an iteration index, but the loop did not correctly
 192   // re-run itself, using a "while (progress)" construct.
 193   // This iterator enforces the rule that you must keep trying the loop
 194   // until it "runs clean" without any need for refreshing.
 195   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 196 }
 197 
 198 
 199 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 200   DUIterator_Common::verify(node, at_end_ok);
 201   Node** out    = node->_out;
 202   uint   cnt    = node->_outcnt;
 203   assert(cnt == _outcnt, "no insertions allowed");
 204   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 205   // This last check is carefully designed to work for NO_OUT_ARRAY.
 206 }
 207 
 208 void DUIterator_Fast::verify_limit() {
 209   const Node* node = _node;
 210   verify(node, true);
 211   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 212 }
 213 
 214 void DUIterator_Fast::verify_resync() {
 215   const Node* node = _node;
 216   if (_outp == node->_out + _outcnt) {
 217     // Note that the limit imax, not the pointer i, gets updated with the
 218     // exact count of deletions.  (For the pointer it's always "--i".)
 219     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 220     // This is a limit pointer, with a name like "imax".
 221     // Fudge the _last field so that the common assert will be happy.
 222     _last = (Node*) node->_last_del;
 223     DUIterator_Common::verify_resync();
 224   } else {
 225     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 226     // A normal internal pointer.
 227     DUIterator_Common::verify_resync();
 228     // Make sure we are still in sync, possibly with no more out-edges:
 229     verify(node, true);
 230   }
 231 }
 232 
 233 void DUIterator_Fast::verify_relimit(uint n) {
 234   const Node* node = _node;
 235   assert((int)n > 0, "use imax -= n only with a positive count");
 236   // This must be a limit pointer, with a name like "imax".
 237   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 238   // The reported number of deletions must match what the node saw.
 239   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 240   // Fudge the _last field so that the common assert will be happy.
 241   _last = (Node*) node->_last_del;
 242   DUIterator_Common::verify_resync();
 243 }
 244 
 245 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 246   assert(_outp              == that._outp, "already assigned _outp");
 247   DUIterator_Common::reset(that);
 248 }
 249 
 250 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 251   // at_end_ok means the _outp is allowed to underflow by 1
 252   _outp += at_end_ok;
 253   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 254   _outp -= at_end_ok;
 255   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 256 }
 257 
 258 void DUIterator_Last::verify_limit() {
 259   // Do not require the limit address to be resynched.
 260   //verify(node, true);
 261   assert(_outp == _node->_out, "limit still correct");
 262 }
 263 
 264 void DUIterator_Last::verify_step(uint num_edges) {
 265   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 266   _outcnt   -= num_edges;
 267   _del_tick += num_edges;
 268   // Make sure we are still in sync, possibly with no more out-edges:
 269   const Node* node = _node;
 270   verify(node, true);
 271   assert(node->_last_del == _last, "must have deleted the edge just produced");
 272 }
 273 
 274 #endif //OPTO_DU_ITERATOR_ASSERT
 275 
 276 
 277 #endif //ASSERT
 278 
 279 
 280 // This constant used to initialize _out may be any non-null value.
 281 // The value null is reserved for the top node only.
 282 #define NO_OUT_ARRAY ((Node**)-1)
 283 
 284 // Out-of-line code from node constructors.
 285 // Executed only when extra debug info. is being passed around.
 286 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 287   C->set_node_notes_at(idx, nn);
 288 }
 289 
 290 // Shared initialization code.
 291 inline int Node::Init(int req) {
 292   Compile* C = Compile::current();
 293   int idx = C->next_unique();
 294   NOT_PRODUCT(_igv_idx = C->next_igv_idx());
 295 
 296   // Allocate memory for the necessary number of edges.
 297   if (req > 0) {
 298     // Allocate space for _in array to have double alignment.
 299     _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*))));
 300   }
 301   // If there are default notes floating around, capture them:
 302   Node_Notes* nn = C->default_node_notes();
 303   if (nn != nullptr)  init_node_notes(C, idx, nn);
 304 
 305   // Note:  At this point, C is dead,
 306   // and we begin to initialize the new Node.
 307 
 308   _cnt = _max = req;
 309   _outcnt = _outmax = 0;
 310   _class_id = Class_Node;
 311   _flags = 0;
 312   _out = NO_OUT_ARRAY;
 313   return idx;
 314 }
 315 
 316 //------------------------------Node-------------------------------------------
 317 // Create a Node, with a given number of required edges.
 318 Node::Node(uint req)
 319   : _idx(Init(req))
 320 #ifdef ASSERT
 321   , _parse_idx(_idx)
 322 #endif
 323 {
 324   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 325   DEBUG_ONLY( verify_construction() );
 326   NOT_PRODUCT(nodes_created++);
 327   if (req == 0) {
 328     _in = nullptr;
 329   } else {
 330     Node** to = _in;
 331     for(uint i = 0; i < req; i++) {
 332       to[i] = nullptr;
 333     }
 334   }
 335 }
 336 
 337 //------------------------------Node-------------------------------------------
 338 Node::Node(Node *n0)
 339   : _idx(Init(1))
 340 #ifdef ASSERT
 341   , _parse_idx(_idx)
 342 #endif
 343 {
 344   DEBUG_ONLY( verify_construction() );
 345   NOT_PRODUCT(nodes_created++);
 346   assert( is_not_dead(n0), "can not use dead node");
 347   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 348 }
 349 
 350 //------------------------------Node-------------------------------------------
 351 Node::Node(Node *n0, Node *n1)
 352   : _idx(Init(2))
 353 #ifdef ASSERT
 354   , _parse_idx(_idx)
 355 #endif
 356 {
 357   DEBUG_ONLY( verify_construction() );
 358   NOT_PRODUCT(nodes_created++);
 359   assert( is_not_dead(n0), "can not use dead node");
 360   assert( is_not_dead(n1), "can not use dead node");
 361   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 362   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 363 }
 364 
 365 //------------------------------Node-------------------------------------------
 366 Node::Node(Node *n0, Node *n1, Node *n2)
 367   : _idx(Init(3))
 368 #ifdef ASSERT
 369   , _parse_idx(_idx)
 370 #endif
 371 {
 372   DEBUG_ONLY( verify_construction() );
 373   NOT_PRODUCT(nodes_created++);
 374   assert( is_not_dead(n0), "can not use dead node");
 375   assert( is_not_dead(n1), "can not use dead node");
 376   assert( is_not_dead(n2), "can not use dead node");
 377   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 378   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 379   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 380 }
 381 
 382 //------------------------------Node-------------------------------------------
 383 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 384   : _idx(Init(4))
 385 #ifdef ASSERT
 386   , _parse_idx(_idx)
 387 #endif
 388 {
 389   DEBUG_ONLY( verify_construction() );
 390   NOT_PRODUCT(nodes_created++);
 391   assert( is_not_dead(n0), "can not use dead node");
 392   assert( is_not_dead(n1), "can not use dead node");
 393   assert( is_not_dead(n2), "can not use dead node");
 394   assert( is_not_dead(n3), "can not use dead node");
 395   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 396   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 397   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 398   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 399 }
 400 
 401 //------------------------------Node-------------------------------------------
 402 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 403   : _idx(Init(5))
 404 #ifdef ASSERT
 405   , _parse_idx(_idx)
 406 #endif
 407 {
 408   DEBUG_ONLY( verify_construction() );
 409   NOT_PRODUCT(nodes_created++);
 410   assert( is_not_dead(n0), "can not use dead node");
 411   assert( is_not_dead(n1), "can not use dead node");
 412   assert( is_not_dead(n2), "can not use dead node");
 413   assert( is_not_dead(n3), "can not use dead node");
 414   assert( is_not_dead(n4), "can not use dead node");
 415   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 416   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 417   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 418   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 419   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 420 }
 421 
 422 //------------------------------Node-------------------------------------------
 423 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 424                      Node *n4, Node *n5)
 425   : _idx(Init(6))
 426 #ifdef ASSERT
 427   , _parse_idx(_idx)
 428 #endif
 429 {
 430   DEBUG_ONLY( verify_construction() );
 431   NOT_PRODUCT(nodes_created++);
 432   assert( is_not_dead(n0), "can not use dead node");
 433   assert( is_not_dead(n1), "can not use dead node");
 434   assert( is_not_dead(n2), "can not use dead node");
 435   assert( is_not_dead(n3), "can not use dead node");
 436   assert( is_not_dead(n4), "can not use dead node");
 437   assert( is_not_dead(n5), "can not use dead node");
 438   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 439   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 440   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 441   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 442   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 443   _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this);
 444 }
 445 
 446 //------------------------------Node-------------------------------------------
 447 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 448                      Node *n4, Node *n5, Node *n6)
 449   : _idx(Init(7))
 450 #ifdef ASSERT
 451   , _parse_idx(_idx)
 452 #endif
 453 {
 454   DEBUG_ONLY( verify_construction() );
 455   NOT_PRODUCT(nodes_created++);
 456   assert( is_not_dead(n0), "can not use dead node");
 457   assert( is_not_dead(n1), "can not use dead node");
 458   assert( is_not_dead(n2), "can not use dead node");
 459   assert( is_not_dead(n3), "can not use dead node");
 460   assert( is_not_dead(n4), "can not use dead node");
 461   assert( is_not_dead(n5), "can not use dead node");
 462   assert( is_not_dead(n6), "can not use dead node");
 463   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 464   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 465   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 466   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 467   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 468   _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this);
 469   _in[6] = n6; if (n6 != nullptr) n6->add_out((Node *)this);
 470 }
 471 
 472 #ifdef __clang__
 473 #pragma clang diagnostic pop
 474 #endif
 475 
 476 
 477 //------------------------------clone------------------------------------------
 478 // Clone a Node.
 479 Node *Node::clone() const {
 480   Compile* C = Compile::current();
 481   uint s = size_of();           // Size of inherited Node
 482   Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*));
 483   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 484   // Set the new input pointer array
 485   n->_in = (Node**)(((char*)n)+s);
 486   // Cannot share the old output pointer array, so kill it
 487   n->_out = NO_OUT_ARRAY;
 488   // And reset the counters to 0
 489   n->_outcnt = 0;
 490   n->_outmax = 0;
 491   // Unlock this guy, since he is not in any hash table.
 492   DEBUG_ONLY(n->_hash_lock = 0);
 493   // Walk the old node's input list to duplicate its edges
 494   uint i;
 495   for( i = 0; i < len(); i++ ) {
 496     Node *x = in(i);
 497     n->_in[i] = x;
 498     if (x != nullptr) x->add_out(n);
 499   }
 500   if (is_macro()) {
 501     C->add_macro_node(n);
 502   }
 503   if (is_expensive()) {
 504     C->add_expensive_node(n);
 505   }
 506   if (for_post_loop_opts_igvn()) {
 507     // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically.
 508     // If it is applicable, it will happen anyway when the cloned node is registered with IGVN.
 509     n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
 510   }
 511   if (for_merge_stores_igvn()) {
 512     // Don't add cloned node to Compile::_for_merge_stores_igvn list automatically.
 513     // If it is applicable, it will happen anyway when the cloned node is registered with IGVN.
 514     n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
 515   }
 516   if (n->is_ParsePredicate()) {
 517     C->add_parse_predicate(n->as_ParsePredicate());
 518   }
 519   if (n->is_OpaqueTemplateAssertionPredicate()) {
 520     C->add_template_assertion_predicate_opaque(n->as_OpaqueTemplateAssertionPredicate());
 521   }
 522 
 523   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 524   bs->register_potential_barrier_node(n);
 525 
 526   n->set_idx(C->next_unique()); // Get new unique index as well
 527   NOT_PRODUCT(n->_igv_idx = C->next_igv_idx());
 528   DEBUG_ONLY( n->verify_construction() );
 529   NOT_PRODUCT(nodes_created++);
 530   // Do not patch over the debug_idx of a clone, because it makes it
 531   // impossible to break on the clone's moment of creation.
 532   //DEBUG_ONLY( n->set_debug_idx( debug_idx() ) );
 533 
 534   C->copy_node_notes_to(n, (Node*) this);
 535 
 536   // MachNode clone
 537   uint nopnds;
 538   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 539     MachNode *mach  = n->as_Mach();
 540     MachNode *mthis = this->as_Mach();
 541     // Get address of _opnd_array.
 542     // It should be the same offset since it is the clone of this node.
 543     MachOper **from = mthis->_opnds;
 544     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 545                     pointer_delta((const void*)from,
 546                                   (const void*)(&mthis->_opnds), 1));
 547     mach->_opnds = to;
 548     for ( uint i = 0; i < nopnds; ++i ) {
 549       to[i] = from[i]->clone();
 550     }
 551   }
 552   if (this->is_MachProj()) {
 553     // MachProjNodes contain register masks that may contain pointers to
 554     // externally allocated memory. Make sure to use a proper constructor
 555     // instead of just shallowly copying.
 556     MachProjNode* mach = n->as_MachProj();
 557     MachProjNode* mthis = this->as_MachProj();
 558     new (&mach->_rout) RegMask(mthis->_rout);
 559   }
 560   if (n->is_Call()) {
 561     // CallGenerator is linked to the original node.
 562     CallGenerator* cg = n->as_Call()->generator();
 563     if (cg != nullptr) {
 564       CallGenerator* cloned_cg = cg->with_call_node(n->as_Call());
 565       n->as_Call()->set_generator(cloned_cg);
 566     }
 567   }
 568   if (n->is_SafePoint()) {
 569     // Scalar replacement and macro expansion might modify the JVMState.
 570     // Clone it to make sure it's not shared between SafePointNodes.
 571     n->as_SafePoint()->clone_jvms(C);
 572     n->as_SafePoint()->clone_replaced_nodes();
 573   }






 574   Compile::current()->record_modified_node(n);
 575   return n;                     // Return the clone
 576 }
 577 
 578 //---------------------------setup_is_top--------------------------------------
 579 // Call this when changing the top node, to reassert the invariants
 580 // required by Node::is_top.  See Compile::set_cached_top_node.
 581 void Node::setup_is_top() {
 582   if (this == (Node*)Compile::current()->top()) {
 583     // This node has just become top.  Kill its out array.
 584     _outcnt = _outmax = 0;
 585     _out = nullptr;                           // marker value for top
 586     assert(is_top(), "must be top");
 587   } else {
 588     if (_out == nullptr)  _out = NO_OUT_ARRAY;
 589     assert(!is_top(), "must not be top");
 590   }
 591 }
 592 
 593 //------------------------------~Node------------------------------------------
 594 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 595 void Node::destruct(PhaseValues* phase) {
 596   Compile* compile = (phase != nullptr) ? phase->C : Compile::current();
 597   if (phase != nullptr && phase->is_IterGVN()) {
 598     phase->is_IterGVN()->_worklist.remove(this);
 599   }
 600   // If this is the most recently created node, reclaim its index. Otherwise,
 601   // record the node as dead to keep liveness information accurate.
 602   if ((uint)_idx+1 == compile->unique()) {
 603     compile->set_unique(compile->unique()-1);
 604   } else {
 605     compile->record_dead_node(_idx);
 606   }
 607   // Clear debug info:
 608   Node_Notes* nn = compile->node_notes_at(_idx);
 609   if (nn != nullptr)  nn->clear();
 610   // Walk the input array, freeing the corresponding output edges
 611   _cnt = _max;  // forget req/prec distinction
 612   uint i;
 613   for( i = 0; i < _max; i++ ) {
 614     set_req(i, nullptr);
 615     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 616   }
 617   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 618 
 619   if (is_macro()) {
 620     compile->remove_macro_node(this);
 621   }
 622   if (is_expensive()) {
 623     compile->remove_expensive_node(this);
 624   }
 625   if (is_OpaqueTemplateAssertionPredicate()) {
 626     compile->remove_template_assertion_predicate_opaque(as_OpaqueTemplateAssertionPredicate());
 627   }
 628   if (is_ParsePredicate()) {
 629     compile->remove_parse_predicate(as_ParsePredicate());
 630   }
 631   if (for_post_loop_opts_igvn()) {
 632     compile->remove_from_post_loop_opts_igvn(this);
 633   }



 634   if (for_merge_stores_igvn()) {
 635     compile->remove_from_merge_stores_igvn(this);
 636   }
 637 
 638   if (is_SafePoint()) {
 639     as_SafePoint()->delete_replaced_nodes();
 640 
 641     if (is_CallStaticJava()) {
 642       compile->remove_unstable_if_trap(as_CallStaticJava(), false);
 643     }
 644   }
 645   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 646   bs->unregister_potential_barrier_node(this);
 647 
 648   // See if the input array was allocated just prior to the object
 649   int edge_size = _max*sizeof(void*);
 650   int out_edge_size = _outmax*sizeof(void*);
 651   char *in_array = ((char*)_in);
 652   char *edge_end = in_array + edge_size;
 653   char *out_array = (char*)(_out == NO_OUT_ARRAY? nullptr: _out);
 654   int node_size = size_of();
 655 
 656 #ifdef ASSERT
 657   // We will not actually delete the storage, but we'll make the node unusable.
 658   compile->remove_modified_node(this);
 659   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 660   _in = _out = (Node**) badAddress;
 661   _max = _cnt = _outmax = _outcnt = 0;
 662 #endif
 663 
 664   // Free the output edge array
 665   if (out_edge_size > 0) {
 666     compile->node_arena()->Afree(out_array, out_edge_size);
 667   }
 668 
 669   // Free the input edge array and the node itself
 670   if( edge_end == (char*)this ) {
 671     // It was; free the input array and object all in one hit
 672 #ifndef ASSERT
 673     compile->node_arena()->Afree(in_array, edge_size+node_size);
 674 #endif
 675   } else {
 676     // Free just the input array
 677     compile->node_arena()->Afree(in_array, edge_size);
 678 
 679     // Free just the object
 680 #ifndef ASSERT
 681     compile->node_arena()->Afree(this, node_size);
 682 #endif
 683   }
 684 }
 685 
 686 // Resize input or output array to grow it to the next larger power-of-2 bigger
 687 // than len.
 688 void Node::resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing) {
 689   Arena* arena = Compile::current()->node_arena();
 690   uint new_max = max_size;
 691   if (new_max == 0) {
 692     max_size = 4;
 693     array = (Node**)arena->Amalloc(4 * sizeof(Node*));
 694     if (needs_clearing) {
 695       array[0] = nullptr;
 696       array[1] = nullptr;
 697       array[2] = nullptr;
 698       array[3] = nullptr;
 699     }
 700     return;
 701   }
 702   new_max = next_power_of_2(len);
 703   assert(needs_clearing || (array != nullptr && array != NO_OUT_ARRAY), "out must have sensible value");
 704   array = (Node**)arena->Arealloc(array, max_size * sizeof(Node*), new_max * sizeof(Node*));
 705   if (needs_clearing) {
 706     Copy::zero_to_bytes(&array[max_size], (new_max - max_size) * sizeof(Node*)); // null all new space
 707   }
 708   max_size = new_max;               // Record new max length
 709   // This assertion makes sure that Node::_max is wide enough to
 710   // represent the numerical value of new_max.
 711   assert(max_size > len, "int width of _max or _outmax is too small");
 712 }
 713 
 714 //------------------------------grow-------------------------------------------
 715 // Grow the input array, making space for more edges
 716 void Node::grow(uint len) {
 717   resize_array(_in, _max, len, true);
 718 }
 719 
 720 //-----------------------------out_grow----------------------------------------
 721 // Grow the input array, making space for more edges
 722 void Node::out_grow(uint len) {
 723   assert(!is_top(), "cannot grow a top node's out array");
 724   resize_array(_out, _outmax, len, false);
 725 }
 726 
 727 #ifdef ASSERT
 728 //------------------------------is_dead----------------------------------------
 729 bool Node::is_dead() const {
 730   // Mach and pinch point nodes may look like dead.
 731   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 732     return false;
 733   for( uint i = 0; i < _max; i++ )
 734     if( _in[i] != nullptr )
 735       return false;
 736   return true;
 737 }
 738 
 739 bool Node::is_not_dead(const Node* n) {
 740   return n == nullptr || !PhaseIterGVN::is_verify_def_use() || !(n->is_dead());
 741 }
 742 
 743 bool Node::is_reachable_from_root() const {
 744   ResourceMark rm;
 745   Unique_Node_List wq;
 746   wq.push((Node*)this);
 747   RootNode* root = Compile::current()->root();
 748   for (uint i = 0; i < wq.size(); i++) {
 749     Node* m = wq.at(i);
 750     if (m == root) {
 751       return true;
 752     }
 753     for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
 754       Node* u = m->fast_out(j);
 755       wq.push(u);
 756     }
 757   }
 758   return false;
 759 }
 760 #endif
 761 
 762 //------------------------------is_unreachable---------------------------------
 763 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 764   assert(!is_Mach(), "doesn't work with MachNodes");
 765   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != nullptr && in(0)->is_top());
 766 }
 767 
 768 //------------------------------add_req----------------------------------------
 769 // Add a new required input at the end
 770 void Node::add_req( Node *n ) {
 771   assert( is_not_dead(n), "can not use dead node");
 772 
 773   // Look to see if I can move precedence down one without reallocating
 774   if( (_cnt >= _max) || (in(_max-1) != nullptr) )
 775     grow( _max+1 );
 776 
 777   // Find a precedence edge to move
 778   if( in(_cnt) != nullptr ) {   // Next precedence edge is busy?
 779     uint i;
 780     for( i=_cnt; i<_max; i++ )
 781       if( in(i) == nullptr )    // Find the null at end of prec edge list
 782         break;                  // There must be one, since we grew the array
 783     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 784   }
 785   _in[_cnt++] = n;            // Stuff over old prec edge
 786   if (n != nullptr) n->add_out((Node *)this);
 787   Compile::current()->record_modified_node(this);
 788 }
 789 
 790 //---------------------------add_req_batch-------------------------------------
 791 // Add a new required input at the end
 792 void Node::add_req_batch( Node *n, uint m ) {
 793   assert( is_not_dead(n), "can not use dead node");
 794   // check various edge cases
 795   if ((int)m <= 1) {
 796     assert((int)m >= 0, "oob");
 797     if (m != 0)  add_req(n);
 798     return;
 799   }
 800 
 801   // Look to see if I can move precedence down one without reallocating
 802   if( (_cnt+m) > _max || _in[_max-m] )
 803     grow( _max+m );
 804 
 805   // Find a precedence edge to move
 806   if( _in[_cnt] != nullptr ) {  // Next precedence edge is busy?
 807     uint i;
 808     for( i=_cnt; i<_max; i++ )
 809       if( _in[i] == nullptr )   // Find the null at end of prec edge list
 810         break;                  // There must be one, since we grew the array
 811     // Slide all the precs over by m positions (assume #prec << m).
 812     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 813   }
 814 
 815   // Stuff over the old prec edges
 816   for(uint i=0; i<m; i++ ) {
 817     _in[_cnt++] = n;
 818   }
 819 
 820   // Insert multiple out edges on the node.
 821   if (n != nullptr && !n->is_top()) {
 822     for(uint i=0; i<m; i++ ) {
 823       n->add_out((Node *)this);
 824     }
 825   }
 826   Compile::current()->record_modified_node(this);
 827 }
 828 
 829 //------------------------------del_req----------------------------------------
 830 // Delete the required edge and compact the edge array
 831 void Node::del_req( uint idx ) {
 832   assert( idx < _cnt, "oob");
 833   assert( !VerifyHashTableKeys || _hash_lock == 0,
 834           "remove node from hash table before modifying it");
 835   // First remove corresponding def-use edge
 836   Node *n = in(idx);
 837   if (n != nullptr) n->del_out((Node *)this);
 838   _in[idx] = in(--_cnt); // Compact the array
 839   // Avoid spec violation: Gap in prec edges.
 840   close_prec_gap_at(_cnt);
 841   Compile::current()->record_modified_node(this);
 842 }
 843 
 844 //------------------------------del_req_ordered--------------------------------
 845 // Delete the required edge and compact the edge array with preserved order
 846 void Node::del_req_ordered( uint idx ) {
 847   assert( idx < _cnt, "oob");
 848   assert( !VerifyHashTableKeys || _hash_lock == 0,
 849           "remove node from hash table before modifying it");
 850   // First remove corresponding def-use edge
 851   Node *n = in(idx);
 852   if (n != nullptr) n->del_out((Node *)this);
 853   if (idx < --_cnt) {    // Not last edge ?
 854     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 855   }
 856   // Avoid spec violation: Gap in prec edges.
 857   close_prec_gap_at(_cnt);
 858   Compile::current()->record_modified_node(this);
 859 }
 860 
 861 //------------------------------ins_req----------------------------------------
 862 // Insert a new required input at the end
 863 void Node::ins_req( uint idx, Node *n ) {
 864   assert( is_not_dead(n), "can not use dead node");
 865   add_req(nullptr);                // Make space
 866   assert( idx < _max, "Must have allocated enough space");
 867   // Slide over
 868   if(_cnt-idx-1 > 0) {
 869     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 870   }
 871   _in[idx] = n;                            // Stuff over old required edge
 872   if (n != nullptr) n->add_out((Node *)this); // Add reciprocal def-use edge
 873   Compile::current()->record_modified_node(this);
 874 }
 875 
 876 //-----------------------------find_edge---------------------------------------
 877 int Node::find_edge(Node* n) {
 878   for (uint i = 0; i < len(); i++) {
 879     if (_in[i] == n)  return i;
 880   }
 881   return -1;
 882 }
 883 
 884 //----------------------------replace_edge-------------------------------------
 885 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) {
 886   if (old == neww)  return 0;  // nothing to do
 887   uint nrep = 0;
 888   for (uint i = 0; i < len(); i++) {
 889     if (in(i) == old) {
 890       if (i < req()) {
 891         if (gvn != nullptr) {
 892           set_req_X(i, neww, gvn);
 893         } else {
 894           set_req(i, neww);
 895         }
 896       } else {
 897         assert(gvn == nullptr || gvn->is_IterGVN() == nullptr, "no support for igvn here");
 898         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 899         set_prec(i, neww);
 900       }
 901       nrep++;
 902     }
 903   }
 904   return nrep;
 905 }
 906 
 907 /**
 908  * Replace input edges in the range pointing to 'old' node.
 909  */
 910 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) {
 911   if (old == neww)  return 0;  // nothing to do
 912   uint nrep = 0;
 913   for (int i = start; i < end; i++) {
 914     if (in(i) == old) {
 915       set_req_X(i, neww, gvn);
 916       nrep++;
 917     }
 918   }
 919   return nrep;
 920 }
 921 
 922 //-------------------------disconnect_inputs-----------------------------------
 923 // null out all inputs to eliminate incoming Def-Use edges.
 924 void Node::disconnect_inputs(Compile* C) {
 925   // the layout of Node::_in
 926   // r: a required input, null is allowed
 927   // p: a precedence, null values are all at the end
 928   // -----------------------------------
 929   // |r|...|r|p|...|p|null|...|null|
 930   //         |                     |
 931   //         req()                 len()
 932   // -----------------------------------
 933   for (uint i = 0; i < req(); ++i) {
 934     if (in(i) != nullptr) {
 935       set_req(i, nullptr);
 936     }
 937   }
 938 
 939   // Remove precedence edges if any exist
 940   // Note: Safepoints may have precedence edges, even during parsing
 941   for (uint i = len(); i > req(); ) {
 942     rm_prec(--i);  // no-op if _in[i] is null
 943   }
 944 
 945 #ifdef ASSERT
 946   // sanity check
 947   for (uint i = 0; i < len(); ++i) {
 948     assert(_in[i] == nullptr, "disconnect_inputs() failed!");
 949   }
 950 #endif
 951 
 952   // Node::destruct requires all out edges be deleted first
 953   // DEBUG_ONLY(destruct();)   // no reuse benefit expected
 954   C->record_dead_node(_idx);
 955 }
 956 
 957 //-----------------------------uncast---------------------------------------
 958 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 959 // Strip away casting.  (It is depth-limited.)
 960 // Optionally, keep casts with dependencies.
 961 Node* Node::uncast(bool keep_deps) const {
 962   // Should be inline:
 963   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 964   if (is_ConstraintCast()) {
 965     return uncast_helper(this, keep_deps);
 966   } else {
 967     return (Node*) this;
 968   }
 969 }
 970 
 971 // Find out of current node that matches opcode.
 972 Node* Node::find_out_with(int opcode) {
 973   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 974     Node* use = fast_out(i);
 975     if (use->Opcode() == opcode) {
 976       return use;
 977     }
 978   }
 979   return nullptr;
 980 }
 981 
 982 // Return true if the current node has an out that matches opcode.
 983 bool Node::has_out_with(int opcode) {
 984   return (find_out_with(opcode) != nullptr);
 985 }
 986 
 987 // Return true if the current node has an out that matches any of the opcodes.
 988 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 989   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 990       int opcode = fast_out(i)->Opcode();
 991       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 992         return true;
 993       }
 994   }
 995   return false;
 996 }
 997 
 998 
 999 //---------------------------uncast_helper-------------------------------------
1000 Node* Node::uncast_helper(const Node* p, bool keep_deps) {
1001 #ifdef ASSERT
1002   uint depth_count = 0;
1003   const Node* orig_p = p;
1004 #endif
1005 
1006   while (true) {
1007 #ifdef ASSERT
1008     if (depth_count >= K) {
1009       orig_p->dump(4);
1010       if (p != orig_p)
1011         p->dump(1);
1012     }
1013     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
1014 #endif
1015     if (p == nullptr || p->req() != 2) {
1016       break;
1017     } else if (p->is_ConstraintCast()) {
1018       if (keep_deps && p->as_ConstraintCast()->carry_dependency()) {
1019         break; // stop at casts with dependencies
1020       }
1021       p = p->in(1);
1022     } else {
1023       break;
1024     }
1025   }
1026   return (Node*) p;
1027 }
1028 
1029 //------------------------------add_prec---------------------------------------
1030 // Add a new precedence input.  Precedence inputs are unordered, with
1031 // duplicates removed and nulls packed down at the end.
1032 void Node::add_prec( Node *n ) {
1033   assert( is_not_dead(n), "can not use dead node");
1034 
1035   // Check for null at end
1036   if( _cnt >= _max || in(_max-1) )
1037     grow( _max+1 );
1038 
1039   // Find a precedence edge to move
1040   uint i = _cnt;
1041   while( in(i) != nullptr ) {
1042     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
1043     i++;
1044   }
1045   _in[i] = n;                                   // Stuff prec edge over null
1046   if ( n != nullptr) n->add_out((Node *)this);  // Add mirror edge
1047 
1048 #ifdef ASSERT
1049   while ((++i)<_max) { assert(_in[i] == nullptr, "spec violation: Gap in prec edges (node %d)", _idx); }
1050 #endif
1051   Compile::current()->record_modified_node(this);
1052 }
1053 
1054 //------------------------------rm_prec----------------------------------------
1055 // Remove a precedence input.  Precedence inputs are unordered, with
1056 // duplicates removed and nulls packed down at the end.
1057 void Node::rm_prec( uint j ) {
1058   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
1059   assert(j >= _cnt, "not a precedence edge");
1060   if (_in[j] == nullptr) return;   // Avoid spec violation: Gap in prec edges.
1061   _in[j]->del_out((Node *)this);
1062   close_prec_gap_at(j);
1063   Compile::current()->record_modified_node(this);
1064 }
1065 
1066 //------------------------------size_of----------------------------------------
1067 uint Node::size_of() const { return sizeof(*this); }
1068 
1069 //------------------------------ideal_reg--------------------------------------
1070 uint Node::ideal_reg() const { return 0; }
1071 
1072 //------------------------------jvms-------------------------------------------
1073 JVMState* Node::jvms() const { return nullptr; }
1074 
1075 #ifdef ASSERT
1076 //------------------------------jvms-------------------------------------------
1077 bool Node::verify_jvms(const JVMState* using_jvms) const {
1078   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1079     if (jvms == using_jvms)  return true;
1080   }
1081   return false;
1082 }
1083 
1084 //------------------------------init_NodeProperty------------------------------
1085 void Node::init_NodeProperty() {
1086   assert(_max_classes <= max_juint, "too many NodeProperty classes");
1087   assert(max_flags() <= max_juint, "too many NodeProperty flags");
1088 }
1089 
1090 //-----------------------------max_flags---------------------------------------
1091 juint Node::max_flags() {
1092   return (PD::_last_flag << 1) - 1; // allow flags combination
1093 }
1094 #endif
1095 
1096 //------------------------------format-----------------------------------------
1097 // Print as assembly
1098 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1099 //------------------------------emit-------------------------------------------
1100 // Emit bytes using C2_MacroAssembler
1101 void Node::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {}
1102 //------------------------------size-------------------------------------------
1103 // Size of instruction in bytes
1104 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1105 
1106 //------------------------------CFG Construction-------------------------------
1107 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1108 // Goto and Return.
1109 const Node *Node::is_block_proj() const { return nullptr; }
1110 
1111 // Minimum guaranteed type
1112 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1113 
1114 
1115 //------------------------------raise_bottom_type------------------------------
1116 // Get the worst-case Type output for this Node.
1117 void Node::raise_bottom_type(const Type* new_type) {
1118   if (is_Type()) {
1119     TypeNode *n = this->as_Type();
1120     if (VerifyAliases) {
1121       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1122     }
1123     n->set_type(new_type);
1124   } else if (is_Load()) {
1125     LoadNode *n = this->as_Load();
1126     if (VerifyAliases) {
1127       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1128     }
1129     n->set_type(new_type);
1130   }
1131 }
1132 
1133 //------------------------------Identity---------------------------------------
1134 // Return a node that the given node is equivalent to.
1135 Node* Node::Identity(PhaseGVN* phase) {
1136   return this;                  // Default to no identities
1137 }
1138 
1139 //------------------------------Value------------------------------------------
1140 // Compute a new Type for a node using the Type of the inputs.
1141 const Type* Node::Value(PhaseGVN* phase) const {
1142   return bottom_type();         // Default to worst-case Type
1143 }
1144 
1145 //------------------------------Ideal------------------------------------------
1146 //
1147 // 'Idealize' the graph rooted at this Node.
1148 //
1149 // In order to be efficient and flexible there are some subtle invariants
1150 // these Ideal calls need to hold.  Running with '-XX:VerifyIterativeGVN=1' checks
1151 // these invariants, although its too slow to have on by default.  If you are
1152 // hacking an Ideal call, be sure to test with '-XX:VerifyIterativeGVN=1'
1153 //
1154 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1155 // pointer.  If ANY change is made, it must return the root of the reshaped
1156 // graph - even if the root is the same Node.  Example: swapping the inputs
1157 // to an AddINode gives the same answer and same root, but you still have to
1158 // return the 'this' pointer instead of null.
1159 //
1160 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1161 // Identity call to return an old Node; basically if Identity can find
1162 // another Node have the Ideal call make no change and return null.
1163 // Example: AddINode::Ideal must check for add of zero; in this case it
1164 // returns null instead of doing any graph reshaping.
1165 //
1166 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1167 // sharing there may be other users of the old Nodes relying on their current
1168 // semantics.  Modifying them will break the other users.
1169 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1170 // "X+3" unchanged in case it is shared.
1171 //
1172 // If you modify the 'this' pointer's inputs, you should use
1173 // 'set_req'.  If you are making a new Node (either as the new root or
1174 // some new internal piece) you may use 'init_req' to set the initial
1175 // value.  You can make a new Node with either 'new' or 'clone'.  In
1176 // either case, def-use info is correctly maintained.
1177 //
1178 // Example: reshape "(X+3)+4" into "X+7":
1179 //    set_req(1, in(1)->in(1));
1180 //    set_req(2, phase->intcon(7));
1181 //    return this;
1182 // Example: reshape "X*4" into "X<<2"
1183 //    return new LShiftINode(in(1), phase->intcon(2));
1184 //
1185 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1186 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1187 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1188 //    return new AddINode(shift, in(1));
1189 //
1190 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1191 // These forms are faster than 'phase->transform(new ConNode())' and Do
1192 // The Right Thing with def-use info.
1193 //
1194 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1195 // graph uses the 'this' Node it must be the root.  If you want a Node with
1196 // the same Opcode as the 'this' pointer use 'clone'.
1197 //
1198 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1199   return nullptr;                  // Default to being Ideal already
1200 }
1201 
1202 // Some nodes have specific Ideal subgraph transformations only if they are
1203 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1204 // for the transformations to happen.
1205 bool Node::has_special_unique_user() const {
1206   assert(outcnt() == 1, "match only for unique out");
1207   Node* n = unique_out();
1208   int op  = Opcode();
1209   if (this->is_Store()) {
1210     // Condition for back-to-back stores folding.
1211     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1212   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1213     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1214     return n->Opcode() == Op_MemBarAcquire;
1215   } else if (op == Op_AddL) {
1216     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1217     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1218   } else if (op == Op_SubI || op == Op_SubL) {
1219     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1220     return n->Opcode() == op && n->in(2) == this;
1221   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1222     // See IfProjNode::Identity()
1223     return true;
1224   } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) {
1225     // See IfNode::fold_compares
1226     return true;
1227   } else if (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) {
1228     // Condition for XorVMask(VectorMaskCmp(x,y,cond), MaskAll(true)) ==> VectorMaskCmp(x,y,ncond)
1229     return true;
1230   } else {
1231     return false;
1232   }
1233 };
1234 
1235 //--------------------------find_exact_control---------------------------------
1236 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1237 Node* Node::find_exact_control(Node* ctrl) {
1238   if (ctrl == nullptr && this->is_Region())
1239     ctrl = this->as_Region()->is_copy();
1240 
1241   if (ctrl != nullptr && ctrl->is_CatchProj()) {
1242     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1243       ctrl = ctrl->in(0);
1244     if (ctrl != nullptr && !ctrl->is_top())
1245       ctrl = ctrl->in(0);
1246   }
1247 
1248   if (ctrl != nullptr && ctrl->is_Proj())
1249     ctrl = ctrl->in(0);
1250 
1251   return ctrl;
1252 }
1253 
1254 //--------------------------dominates------------------------------------------
1255 // Helper function for MemNode::all_controls_dominate().
1256 // Check if 'this' control node dominates or equal to 'sub' control node.
1257 // We already know that if any path back to Root or Start reaches 'this',
1258 // then all paths so, so this is a simple search for one example,
1259 // not an exhaustive search for a counterexample.
1260 Node::DomResult Node::dominates(Node* sub, Node_List &nlist) {
1261   assert(this->is_CFG(), "expecting control");
1262   assert(sub != nullptr && sub->is_CFG(), "expecting control");
1263 
1264   // detect dead cycle without regions
1265   int iterations_without_region_limit = DominatorSearchLimit;
1266 
1267   Node* orig_sub = sub;
1268   Node* dom      = this;
1269   bool  met_dom  = false;
1270   nlist.clear();
1271 
1272   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1273   // After seeing 'dom', continue up to Root or Start.
1274   // If we hit a region (backward split point), it may be a loop head.
1275   // Keep going through one of the region's inputs.  If we reach the
1276   // same region again, go through a different input.  Eventually we
1277   // will either exit through the loop head, or give up.
1278   // (If we get confused, break out and return a conservative 'false'.)
1279   while (sub != nullptr) {
1280     if (sub->is_top()) {
1281       // Conservative answer for dead code.
1282       return DomResult::EncounteredDeadCode;
1283     }
1284     if (sub == dom) {
1285       if (nlist.size() == 0) {
1286         // No Region nodes except loops were visited before and the EntryControl
1287         // path was taken for loops: it did not walk in a cycle.
1288         return DomResult::Dominate;
1289       } else if (met_dom) {
1290         break;          // already met before: walk in a cycle
1291       } else {
1292         // Region nodes were visited. Continue walk up to Start or Root
1293         // to make sure that it did not walk in a cycle.
1294         met_dom = true; // first time meet
1295         iterations_without_region_limit = DominatorSearchLimit; // Reset
1296      }
1297     }
1298     if (sub->is_Start() || sub->is_Root()) {
1299       // Success if we met 'dom' along a path to Start or Root.
1300       // We assume there are no alternative paths that avoid 'dom'.
1301       // (This assumption is up to the caller to ensure!)
1302       return met_dom ? DomResult::Dominate : DomResult::NotDominate;
1303     }
1304     Node* up = sub->in(0);
1305     // Normalize simple pass-through regions and projections:
1306     up = sub->find_exact_control(up);
1307     // If sub == up, we found a self-loop.  Try to push past it.
1308     if (sub == up && sub->is_Loop()) {
1309       // Take loop entry path on the way up to 'dom'.
1310       up = sub->in(1); // in(LoopNode::EntryControl);
1311     } else if (sub == up && sub->is_Region() && sub->req() == 2) {
1312       // Take in(1) path on the way up to 'dom' for regions with only one input
1313       up = sub->in(1);
1314     } else if (sub == up && sub->is_Region()) {
1315       // Try both paths for Regions with 2 input paths (it may be a loop head).
1316       // It could give conservative 'false' answer without information
1317       // which region's input is the entry path.
1318       iterations_without_region_limit = DominatorSearchLimit; // Reset
1319 
1320       bool region_was_visited_before = false;
1321       // Was this Region node visited before?
1322       // If so, we have reached it because we accidentally took a
1323       // loop-back edge from 'sub' back into the body of the loop,
1324       // and worked our way up again to the loop header 'sub'.
1325       // So, take the first unexplored path on the way up to 'dom'.
1326       for (int j = nlist.size() - 1; j >= 0; j--) {
1327         intptr_t ni = (intptr_t)nlist.at(j);
1328         Node* visited = (Node*)(ni & ~1);
1329         bool  visited_twice_already = ((ni & 1) != 0);
1330         if (visited == sub) {
1331           if (visited_twice_already) {
1332             // Visited 2 paths, but still stuck in loop body.  Give up.
1333             return DomResult::NotDominate;
1334           }
1335           // The Region node was visited before only once.
1336           // (We will repush with the low bit set, below.)
1337           nlist.remove(j);
1338           // We will find a new edge and re-insert.
1339           region_was_visited_before = true;
1340           break;
1341         }
1342       }
1343 
1344       // Find an incoming edge which has not been seen yet; walk through it.
1345       assert(up == sub, "");
1346       uint skip = region_was_visited_before ? 1 : 0;
1347       for (uint i = 1; i < sub->req(); i++) {
1348         Node* in = sub->in(i);
1349         if (in != nullptr && !in->is_top() && in != sub) {
1350           if (skip == 0) {
1351             up = in;
1352             break;
1353           }
1354           --skip;               // skip this nontrivial input
1355         }
1356       }
1357 
1358       // Set 0 bit to indicate that both paths were taken.
1359       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1360     }
1361 
1362     if (up == sub) {
1363       break;    // some kind of tight cycle
1364     }
1365     if (up == orig_sub && met_dom) {
1366       // returned back after visiting 'dom'
1367       break;    // some kind of cycle
1368     }
1369     if (--iterations_without_region_limit < 0) {
1370       break;    // dead cycle
1371     }
1372     sub = up;
1373   }
1374 
1375   // Did not meet Root or Start node in pred. chain.
1376   return DomResult::NotDominate;
1377 }
1378 
1379 //------------------------------remove_dead_region-----------------------------
1380 // This control node is dead.  Follow the subgraph below it making everything
1381 // using it dead as well.  This will happen normally via the usual IterGVN
1382 // worklist but this call is more efficient.  Do not update use-def info
1383 // inside the dead region, just at the borders.
1384 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1385   // Con's are a popular node to re-hit in the hash table again.
1386   if( dead->is_Con() ) return;
1387 
1388   ResourceMark rm;
1389   Node_List nstack;
1390   VectorSet dead_set; // notify uses only once
1391 
1392   Node *top = igvn->C->top();
1393   nstack.push(dead);
1394   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1395 
1396   while (nstack.size() > 0) {
1397     dead = nstack.pop();
1398     if (!dead_set.test_set(dead->_idx)) {
1399       // If dead has any live uses, those are now still attached. Notify them before we lose them.
1400       igvn->add_users_to_worklist(dead);
1401     }
1402     if (dead->Opcode() == Op_SafePoint) {
1403       dead->as_SafePoint()->disconnect_from_root(igvn);
1404     }
1405     if (dead->outcnt() > 0) {
1406       // Keep dead node on stack until all uses are processed.
1407       nstack.push(dead);
1408       // For all Users of the Dead...    ;-)
1409       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1410         Node* use = dead->last_out(k);
1411         igvn->hash_delete(use);       // Yank from hash table prior to mod
1412         if (use->in(0) == dead) {     // Found another dead node
1413           assert (!use->is_Con(), "Control for Con node should be Root node.");
1414           use->set_req(0, top);       // Cut dead edge to prevent processing
1415           nstack.push(use);           // the dead node again.
1416         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1417                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1418                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1419           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1420           use->set_req(0, top);       // Cut self edge
1421           nstack.push(use);
1422         } else {                      // Else found a not-dead user
1423           // Dead if all inputs are top or null
1424           bool dead_use = !use->is_Root(); // Keep empty graph alive
1425           for (uint j = 1; j < use->req(); j++) {
1426             Node* in = use->in(j);
1427             if (in == dead) {         // Turn all dead inputs into TOP
1428               use->set_req(j, top);
1429             } else if (in != nullptr && !in->is_top()) {
1430               dead_use = false;
1431             }
1432           }
1433           if (dead_use) {
1434             if (use->is_Region()) {
1435               use->set_req(0, top);   // Cut self edge
1436             }
1437             nstack.push(use);
1438           } else {
1439             igvn->_worklist.push(use);
1440           }
1441         }
1442         // Refresh the iterator, since any number of kills might have happened.
1443         k = dead->last_outs(kmin);
1444       }
1445     } else { // (dead->outcnt() == 0)
1446       // Done with outputs.
1447       igvn->hash_delete(dead);
1448       igvn->_worklist.remove(dead);
1449       igvn->set_type(dead, Type::TOP);
1450       // Kill all inputs to the dead guy
1451       for (uint i=0; i < dead->req(); i++) {
1452         Node *n = dead->in(i);      // Get input to dead guy
1453         if (n != nullptr && !n->is_top()) { // Input is valid?
1454           dead->set_req(i, top);    // Smash input away
1455           if (n->outcnt() == 0) {   // Input also goes dead?
1456             if (!n->is_Con())
1457               nstack.push(n);       // Clear it out as well
1458           } else if (n->outcnt() == 1 &&
1459                      n->has_special_unique_user()) {
1460             igvn->add_users_to_worklist( n );
1461           } else if (n->outcnt() <= 2 && n->is_Store()) {
1462             // Push store's uses on worklist to enable folding optimization for
1463             // store/store and store/load to the same address.
1464             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1465             // and remove_globally_dead_node().
1466             igvn->add_users_to_worklist( n );
1467           } else if (dead->is_data_proj_of_pure_function(n)) {
1468             igvn->_worklist.push(n);
1469           } else {
1470             BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n);
1471           }
1472         }
1473       }
1474       igvn->C->remove_useless_node(dead);
1475     } // (dead->outcnt() == 0)
1476   }   // while (nstack.size() > 0) for outputs
1477   return;
1478 }
1479 
1480 //------------------------------remove_dead_region-----------------------------
1481 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1482   Node *n = in(0);
1483   if( !n ) return false;
1484   // Lost control into this guy?  I.e., it became unreachable?
1485   // Aggressively kill all unreachable code.
1486   if (can_reshape && n->is_top()) {
1487     kill_dead_code(this, phase->is_IterGVN());
1488     return false; // Node is dead.
1489   }
1490 
1491   if( n->is_Region() && n->as_Region()->is_copy() ) {
1492     Node *m = n->nonnull_req();
1493     set_req(0, m);
1494     return true;
1495   }
1496   return false;
1497 }
1498 
1499 //------------------------------hash-------------------------------------------
1500 // Hash function over Nodes.
1501 uint Node::hash() const {
1502   uint sum = 0;
1503   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1504     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded nulls
1505   return (sum>>2) + _cnt + Opcode();
1506 }
1507 
1508 //------------------------------cmp--------------------------------------------
1509 // Compare special parts of simple Nodes
1510 bool Node::cmp( const Node &n ) const {
1511   return true;                  // Must be same
1512 }
1513 
1514 //------------------------------rematerialize-----------------------------------
1515 // Should we clone rather than spill this instruction?
1516 bool Node::rematerialize() const {
1517   if ( is_Mach() )
1518     return this->as_Mach()->rematerialize();
1519   else
1520     return (_flags & Flag_rematerialize) != 0;
1521 }
1522 
1523 //------------------------------needs_anti_dependence_check---------------------
1524 // Nodes which use memory without consuming it, hence need antidependences.
1525 bool Node::needs_anti_dependence_check() const {
1526   if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) {
1527     return false;
1528   }
1529   return in(1)->bottom_type()->has_memory();
1530 }
1531 
1532 // Get an integer constant from a ConNode (or CastIINode).
1533 // Return a default value if there is no apparent constant here.
1534 const TypeInt* Node::find_int_type() const {
1535   if (this->is_Type()) {
1536     return this->as_Type()->type()->isa_int();
1537   } else if (this->is_Con()) {
1538     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1539     return this->bottom_type()->isa_int();
1540   }
1541   return nullptr;
1542 }
1543 
1544 const TypeInteger* Node::find_integer_type(BasicType bt) const {
1545   if (this->is_Type()) {
1546     return this->as_Type()->type()->isa_integer(bt);
1547   } else if (this->is_Con()) {
1548     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1549     return this->bottom_type()->isa_integer(bt);
1550   }
1551   return nullptr;
1552 }
1553 
1554 // Get a pointer constant from a ConstNode.
1555 // Returns the constant if it is a pointer ConstNode
1556 intptr_t Node::get_ptr() const {
1557   assert( Opcode() == Op_ConP, "" );
1558   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1559 }
1560 
1561 // Get a narrow oop constant from a ConNNode.
1562 intptr_t Node::get_narrowcon() const {
1563   assert( Opcode() == Op_ConN, "" );
1564   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1565 }
1566 
1567 // Get a long constant from a ConNode.
1568 // Return a default value if there is no apparent constant here.
1569 const TypeLong* Node::find_long_type() const {
1570   if (this->is_Type()) {
1571     return this->as_Type()->type()->isa_long();
1572   } else if (this->is_Con()) {
1573     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1574     return this->bottom_type()->isa_long();
1575   }
1576   return nullptr;
1577 }
1578 
1579 
1580 /**
1581  * Return a ptr type for nodes which should have it.
1582  */
1583 const TypePtr* Node::get_ptr_type() const {
1584   const TypePtr* tp = this->bottom_type()->make_ptr();
1585 #ifdef ASSERT
1586   if (tp == nullptr) {
1587     this->dump(1);
1588     assert((tp != nullptr), "unexpected node type");
1589   }
1590 #endif
1591   return tp;
1592 }
1593 
1594 // Get a double constant from a ConstNode.
1595 // Returns the constant if it is a double ConstNode
1596 jdouble Node::getd() const {
1597   assert( Opcode() == Op_ConD, "" );
1598   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1599 }
1600 
1601 // Get a float constant from a ConstNode.
1602 // Returns the constant if it is a float ConstNode
1603 jfloat Node::getf() const {
1604   assert( Opcode() == Op_ConF, "" );
1605   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1606 }
1607 
1608 // Get a half float constant from a ConstNode.
1609 // Returns the constant if it is a float ConstNode
1610 jshort Node::geth() const {
1611   assert( Opcode() == Op_ConH, "" );
1612   return ((ConHNode*)this)->type()->is_half_float_constant()->geth();
1613 }
1614 
1615 #ifndef PRODUCT
1616 
1617 // Call this from debugger:
1618 Node* old_root() {
1619   Matcher* matcher = Compile::current()->matcher();
1620   if (matcher != nullptr) {
1621     Node* new_root = Compile::current()->root();
1622     Node* old_root = matcher->find_old_node(new_root);
1623     if (old_root != nullptr) {
1624       return old_root;
1625     }
1626   }
1627   tty->print("old_root: not found.\n");
1628   return nullptr;
1629 }
1630 
1631 // BFS traverse all reachable nodes from start, call callback on them
1632 template <typename Callback>
1633 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) {
1634   Unique_Mixed_Node_List worklist;
1635   worklist.add(start);
1636   for (uint i = 0; i < worklist.size(); i++) {
1637     Node* n = worklist[i];
1638     callback(n);
1639     for (uint i = 0; i < n->len(); i++) {
1640       if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) {
1641         // If only_ctrl is set: Add regions, the root node, or control inputs only
1642         worklist.add(n->in(i));
1643       }
1644     }
1645     if (traverse_output && !only_ctrl) {
1646       for (uint i = 0; i < n->outcnt(); i++) {
1647         worklist.add(n->raw_out(i));
1648       }
1649     }
1650   }
1651 }
1652 
1653 // BFS traverse from start, return node with idx
1654 static Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) {
1655   ResourceMark rm;
1656   Node* result = nullptr;
1657   auto callback = [&] (Node* n) {
1658     if (n->_idx == idx) {
1659       if (result != nullptr) {
1660         tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1661           (uintptr_t)result, (uintptr_t)n, idx);
1662       }
1663       result = n;
1664     }
1665   };
1666   visit_nodes(start, callback, traverse_output, only_ctrl);
1667   return result;
1668 }
1669 
1670 static int node_idx_cmp(const Node** n1, const Node** n2) {
1671   return (*n1)->_idx - (*n2)->_idx;
1672 }
1673 
1674 static void find_nodes_by_name(Node* start, const char* name) {
1675   ResourceMark rm;
1676   GrowableArray<const Node*> ns;
1677   auto callback = [&] (const Node* n) {
1678     if (StringUtils::is_star_match(name, n->Name())) {
1679       ns.push(n);
1680     }
1681   };
1682   visit_nodes(start, callback, true, false);
1683   ns.sort(node_idx_cmp);
1684   for (int i = 0; i < ns.length(); i++) {
1685     ns.at(i)->dump();
1686   }
1687 }
1688 
1689 static void find_nodes_by_dump(Node* start, const char* pattern) {
1690   ResourceMark rm;
1691   GrowableArray<const Node*> ns;
1692   auto callback = [&] (const Node* n) {
1693     stringStream stream;
1694     n->dump("", false, &stream);
1695     if (StringUtils::is_star_match(pattern, stream.base())) {
1696       ns.push(n);
1697     }
1698   };
1699   visit_nodes(start, callback, true, false);
1700   ns.sort(node_idx_cmp);
1701   for (int i = 0; i < ns.length(); i++) {
1702     ns.at(i)->dump();
1703   }
1704 }
1705 
1706 // call from debugger: find node with name pattern in new/current graph
1707 // name can contain "*" in match pattern to match any characters
1708 // the matching is case insensitive
1709 void find_nodes_by_name(const char* name) {
1710   Node* root = Compile::current()->root();
1711   find_nodes_by_name(root, name);
1712 }
1713 
1714 // call from debugger: find node with name pattern in old graph
1715 // name can contain "*" in match pattern to match any characters
1716 // the matching is case insensitive
1717 void find_old_nodes_by_name(const char* name) {
1718   Node* root = old_root();
1719   find_nodes_by_name(root, name);
1720 }
1721 
1722 // call from debugger: find node with dump pattern in new/current graph
1723 // can contain "*" in match pattern to match any characters
1724 // the matching is case insensitive
1725 void find_nodes_by_dump(const char* pattern) {
1726   Node* root = Compile::current()->root();
1727   find_nodes_by_dump(root, pattern);
1728 }
1729 
1730 // call from debugger: find node with name pattern in old graph
1731 // can contain "*" in match pattern to match any characters
1732 // the matching is case insensitive
1733 void find_old_nodes_by_dump(const char* pattern) {
1734   Node* root = old_root();
1735   find_nodes_by_dump(root, pattern);
1736 }
1737 
1738 // Call this from debugger, search in same graph as n:
1739 Node* find_node(Node* n, const int idx) {
1740   return n->find(idx);
1741 }
1742 
1743 // Call this from debugger, search in new nodes:
1744 Node* find_node(const int idx) {
1745   return Compile::current()->root()->find(idx);
1746 }
1747 
1748 // Call this from debugger, search in old nodes:
1749 Node* find_old_node(const int idx) {
1750   Node* root = old_root();
1751   return (root == nullptr) ? nullptr : root->find(idx);
1752 }
1753 
1754 // Call this from debugger, search in same graph as n:
1755 Node* find_ctrl(Node* n, const int idx) {
1756   return n->find_ctrl(idx);
1757 }
1758 
1759 // Call this from debugger, search in new nodes:
1760 Node* find_ctrl(const int idx) {
1761   return Compile::current()->root()->find_ctrl(idx);
1762 }
1763 
1764 // Call this from debugger, search in old nodes:
1765 Node* find_old_ctrl(const int idx) {
1766   Node* root = old_root();
1767   return (root == nullptr) ? nullptr : root->find_ctrl(idx);
1768 }
1769 
1770 //------------------------------find_ctrl--------------------------------------
1771 // Find an ancestor to this node in the control history with given _idx
1772 Node* Node::find_ctrl(int idx) {
1773   return find(idx, true);
1774 }
1775 
1776 //------------------------------find-------------------------------------------
1777 // Tries to find the node with the index |idx| starting from this node. If idx is negative,
1778 // the search also includes forward (out) edges. Returns null if not found.
1779 // If only_ctrl is set, the search will only be done on control nodes. Returns null if
1780 // not found or if the node to be found is not a control node (search will not find it).
1781 Node* Node::find(const int idx, bool only_ctrl) {
1782   ResourceMark rm;
1783   return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl);
1784 }
1785 
1786 class PrintBFS {
1787 public:
1788   PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options, outputStream* st, const frame* fr)
1789     : _start(start), _max_distance(max_distance), _target(target), _options(options), _output(st), _frame(fr),
1790     _dcc(this), _info_uid(cmpkey, hashkey) {}
1791 
1792   void run();
1793 private:
1794   // pipeline steps
1795   bool configure();
1796   void collect();
1797   void select();
1798   void select_all();
1799   void select_all_paths();
1800   void select_shortest_path();
1801   void sort();
1802   void print();
1803 
1804   // inputs
1805   const Node* _start;
1806   const int _max_distance;
1807   const Node* _target;
1808   const char* _options;
1809   outputStream* _output;
1810   const frame* _frame;
1811 
1812   // options
1813   bool _traverse_inputs = false;
1814   bool _traverse_outputs = false;
1815   struct Filter {
1816     bool _control = false;
1817     bool _memory = false;
1818     bool _data = false;
1819     bool _mixed = false;
1820     bool _other = false;
1821     bool is_empty() const {
1822       return !(_control || _memory || _data || _mixed || _other);
1823     }
1824     void set_all() {
1825       _control = true;
1826       _memory = true;
1827       _data = true;
1828       _mixed = true;
1829       _other = true;
1830     }
1831     // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes
1832     // are considered to have control.
1833     bool accepts(const Node* n) {
1834       const Type* t = n->bottom_type();
1835       return ( _data    &&  t->has_category(Type::Category::Data)                    ) ||
1836              ( _memory  &&  t->has_category(Type::Category::Memory)                  ) ||
1837              ( _mixed   &&  t->has_category(Type::Category::Mixed)                   ) ||
1838              ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) ||
1839              ( _other   &&  t->has_category(Type::Category::Other)                   );
1840     }
1841   };
1842   Filter _filter_visit;
1843   Filter _filter_boundary;
1844   bool _sort_idx = false;
1845   bool _all_paths = false;
1846   bool _use_color = false;
1847   bool _print_blocks = false;
1848   bool _print_old = false;
1849   bool _dump_only = false;
1850   bool _print_igv = false;
1851 
1852   void print_options_help(bool print_examples);
1853   bool parse_options();
1854 
1855 public:
1856   class DumpConfigColored : public Node::DumpConfig {
1857   public:
1858     DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {};
1859     virtual void pre_dump(outputStream* st, const Node* n);
1860     virtual void post_dump(outputStream* st);
1861   private:
1862     PrintBFS* _bfs;
1863   };
1864 private:
1865   DumpConfigColored _dcc;
1866 
1867   // node info
1868   static Node* old_node(const Node* n); // mach node -> prior IR node
1869   void print_node_idx(const Node* n);
1870   void print_block_id(const Block* b);
1871   void print_node_block(const Node* n); // _pre_order, head idx, _idom, _dom_depth
1872 
1873   // traversal data structures
1874   GrowableArray<const Node*> _worklist; // BFS queue
1875   void maybe_traverse(const Node* src, const Node* dst);
1876 
1877   // node info annotation
1878   class Info {
1879   public:
1880     Info() : Info(nullptr, 0) {};
1881     Info(const Node* node, int distance)
1882       : _node(node), _distance_from_start(distance) {};
1883     const Node* node() const { return _node; };
1884     int distance() const { return _distance_from_start; };
1885     int distance_from_target() const { return _distance_from_target; }
1886     void set_distance_from_target(int d) { _distance_from_target = d; }
1887     GrowableArray<const Node*> edge_bwd; // pointing toward _start
1888     bool is_marked() const { return _mark; } // marked to keep during select
1889     void set_mark() { _mark = true; }
1890   private:
1891     const Node* _node;
1892     int _distance_from_start; // distance from _start
1893     int _distance_from_target = 0; // distance from _target if _all_paths
1894     bool _mark = false;
1895   };
1896   Dict _info_uid;            // Node -> uid
1897   GrowableArray<Info> _info; // uid  -> info
1898 
1899   Info* find_info(const Node* n) {
1900     size_t uid = (size_t)_info_uid[n];
1901     if (uid == 0) {
1902       return nullptr;
1903     }
1904     return &_info.at((int)uid);
1905   }
1906 
1907   void make_info(const Node* node, const int distance) {
1908     assert(find_info(node) == nullptr, "node does not yet have info");
1909     size_t uid = _info.length() + 1;
1910     _info_uid.Insert((void*)node, (void*)uid);
1911     _info.at_put_grow((int)uid, Info(node, distance));
1912     assert(find_info(node)->node() == node, "stored correct node");
1913   };
1914 
1915   // filled by sort, printed by print
1916   GrowableArray<const Node*> _print_list;
1917 
1918   // print header + node table
1919   void print_header() const;
1920   void print_node(const Node* n);
1921 };
1922 
1923 void PrintBFS::run() {
1924   if (!configure()) {
1925     return;
1926   }
1927   collect();
1928   select();
1929   sort();
1930   print();
1931 }
1932 
1933 // set up configuration for BFS and print
1934 bool PrintBFS::configure() {
1935   if (_max_distance < 0) {
1936     _output->print_cr("dump_bfs: max_distance must be non-negative!");
1937     return false;
1938   }
1939   return parse_options();
1940 }
1941 
1942 // BFS traverse according to configuration, fill worklist and info
1943 void PrintBFS::collect() {
1944   maybe_traverse(_start, _start);
1945   int pos = 0;
1946   while (pos < _worklist.length()) {
1947     const Node* n = _worklist.at(pos++); // next node to traverse
1948     Info* info = find_info(n);
1949     if (!_filter_visit.accepts(n) && n != _start) {
1950       continue; // we hit boundary, do not traverse further
1951     }
1952     if (n != _start && n->is_Root()) {
1953       continue; // traversing through root node would lead to unrelated nodes
1954     }
1955     if (_traverse_inputs && _max_distance > info->distance()) {
1956       for (uint i = 0; i < n->req(); i++) {
1957         maybe_traverse(n, n->in(i));
1958       }
1959     }
1960     if (_traverse_outputs && _max_distance > info->distance()) {
1961       for (uint i = 0; i < n->outcnt(); i++) {
1962         maybe_traverse(n, n->raw_out(i));
1963       }
1964     }
1965   }
1966 }
1967 
1968 // go through work list, mark those that we want to print
1969 void PrintBFS::select() {
1970   if (_target == nullptr ) {
1971     select_all();
1972   } else {
1973     if (find_info(_target) == nullptr) {
1974       _output->print_cr("Could not find target in BFS.");
1975       return;
1976     }
1977     if (_all_paths) {
1978       select_all_paths();
1979     } else {
1980       select_shortest_path();
1981     }
1982   }
1983 }
1984 
1985 // take all nodes from BFS
1986 void PrintBFS::select_all() {
1987   for (int i = 0; i < _worklist.length(); i++) {
1988     const Node* n = _worklist.at(i);
1989     Info* info = find_info(n);
1990     info->set_mark();
1991   }
1992 }
1993 
1994 // traverse backward from target, along edges found in BFS
1995 void PrintBFS::select_all_paths() {
1996   int pos = 0;
1997   GrowableArray<const Node*> backtrace;
1998   // start from target
1999   backtrace.push(_target);
2000   find_info(_target)->set_mark();
2001   // traverse backward
2002   while (pos < backtrace.length()) {
2003     const Node* n = backtrace.at(pos++);
2004     Info* info = find_info(n);
2005     for (int i = 0; i < info->edge_bwd.length(); i++) {
2006       // all backward edges
2007       const Node* back = info->edge_bwd.at(i);
2008       Info* back_info = find_info(back);
2009       if (!back_info->is_marked()) {
2010         // not yet found this on way back.
2011         back_info->set_distance_from_target(info->distance_from_target() + 1);
2012         if (back_info->distance_from_target() + back_info->distance() <= _max_distance) {
2013           // total distance is small enough
2014           back_info->set_mark();
2015           backtrace.push(back);
2016         }
2017       }
2018     }
2019   }
2020 }
2021 
2022 void PrintBFS::select_shortest_path() {
2023   const Node* current = _target;
2024   while (true) {
2025     Info* info = find_info(current);
2026     info->set_mark();
2027     if (current == _start) {
2028       break;
2029     }
2030     // first edge -> leads us one step closer to _start
2031     current = info->edge_bwd.at(0);
2032   }
2033 }
2034 
2035 // go through worklist in desired order, put the marked ones in print list
2036 void PrintBFS::sort() {
2037   if (_traverse_inputs && !_traverse_outputs) {
2038     // reverse order
2039     for (int i = _worklist.length() - 1; i >= 0; i--) {
2040       const Node* n = _worklist.at(i);
2041       Info* info = find_info(n);
2042       if (info->is_marked()) {
2043         _print_list.push(n);
2044       }
2045     }
2046   } else {
2047     // same order as worklist
2048     for (int i = 0; i < _worklist.length(); i++) {
2049       const Node* n = _worklist.at(i);
2050       Info* info = find_info(n);
2051       if (info->is_marked()) {
2052         _print_list.push(n);
2053       }
2054     }
2055   }
2056   if (_sort_idx) {
2057     _print_list.sort(node_idx_cmp);
2058   }
2059 }
2060 
2061 // go through printlist and print
2062 void PrintBFS::print() {
2063   if (_print_list.length() > 0 ) {
2064     print_header();
2065     for (int i = 0; i < _print_list.length(); i++) {
2066       const Node* n = _print_list.at(i);
2067       print_node(n);
2068     }
2069     if (_print_igv) {
2070       Compile* C = Compile::current();
2071       C->init_igv();
2072       C->igv_print_graph_to_network(nullptr, _print_list, _frame);
2073     }
2074   } else {
2075     _output->print_cr("No nodes to print.");
2076   }
2077 }
2078 
2079 void PrintBFS::print_options_help(bool print_examples) {
2080   _output->print_cr("Usage: node->dump_bfs(int max_distance, Node* target, char* options)");
2081   _output->print_cr("");
2082   _output->print_cr("Use cases:");
2083   _output->print_cr("  BFS traversal: no target required");
2084   _output->print_cr("  shortest path: set target");
2085   _output->print_cr("  all paths: set target and put 'A' in options");
2086   _output->print_cr("  detect loop: subcase of all paths, have start==target");
2087   _output->print_cr("");
2088   _output->print_cr("Arguments:");
2089   _output->print_cr("  this/start: staring point of BFS");
2090   _output->print_cr("  target:");
2091   _output->print_cr("    if null: simple BFS");
2092   _output->print_cr("    else: shortest path or all paths between this/start and target");
2093   _output->print_cr("  options:");
2094   _output->print_cr("    if null: same as \"cdmox@B\"");
2095   _output->print_cr("    else: use combination of following characters");
2096   _output->print_cr("      h: display this help info");
2097   _output->print_cr("      H: display this help info, with examples");
2098   _output->print_cr("      +: traverse in-edges (on if neither + nor -)");
2099   _output->print_cr("      -: traverse out-edges");
2100   _output->print_cr("      c: visit control nodes");
2101   _output->print_cr("      d: visit data nodes");
2102   _output->print_cr("      m: visit memory nodes");
2103   _output->print_cr("      o: visit other nodes");
2104   _output->print_cr("      x: visit mixed nodes");
2105   _output->print_cr("      C: boundary control nodes");
2106   _output->print_cr("      D: boundary data nodes");
2107   _output->print_cr("      M: boundary memory nodes");
2108   _output->print_cr("      O: boundary other nodes");
2109   _output->print_cr("      X: boundary mixed nodes");
2110   _output->print_cr("      #: display node category in color (not supported in all terminals)");
2111   _output->print_cr("      S: sort displayed nodes by node idx");
2112   _output->print_cr("      A: all paths (not just shortest path to target)");
2113   _output->print_cr("      @: print old nodes - before matching (if available)");
2114   _output->print_cr("      B: print scheduling blocks (if available)");
2115   _output->print_cr("      $: dump only, no header, no other columns");
2116   _output->print_cr("      !: show nodes on IGV (sent over network stream)");
2117   _output->print_cr("        (use preferably with dump_bfs(int, Node*, char*, void*, void*, void*)");
2118   _output->print_cr("         to produce a C2 stack trace along with the graph dump, see examples below)");
2119   _output->print_cr("");
2120   _output->print_cr("recursively follow edges to nodes with permitted visit types,");
2121   _output->print_cr("on the boundary additionally display nodes allowed in boundary types");
2122   _output->print_cr("Note: the categories can be overlapping. For example a mixed node");
2123   _output->print_cr("      can contain control and memory output. Some from the other");
2124   _output->print_cr("      category are also control (Halt, Return, etc).");
2125   _output->print_cr("");
2126   _output->print_cr("output columns:");
2127   _output->print_cr("  dist:  BFS distance to this/start");
2128   _output->print_cr("  apd:   all paths distance (d_outputart + d_target)");
2129   _output->print_cr("  block: block identifier, based on _pre_order");
2130   _output->print_cr("  head:  first node in block");
2131   _output->print_cr("  idom:  head node of idom block");
2132   _output->print_cr("  depth: depth of block (_dom_depth)");
2133   _output->print_cr("  old:   old IR node - before matching");
2134   _output->print_cr("  dump:  node->dump()");
2135   _output->print_cr("");
2136   _output->print_cr("Note: if none of the \"cmdxo\" characters are in the options string");
2137   _output->print_cr("      then we set all of them.");
2138   _output->print_cr("      This allows for short strings like \"#\" for colored input traversal");
2139   _output->print_cr("      or \"-#\" for colored output traversal.");
2140   if (print_examples) {
2141     _output->print_cr("");
2142     _output->print_cr("Examples:");
2143     _output->print_cr("  if->dump_bfs(10, 0, \"+cxo\")");
2144     _output->print_cr("    starting at some if node, traverse inputs recursively");
2145     _output->print_cr("    only along control (mixed and other can also be control)");
2146     _output->print_cr("  phi->dump_bfs(5, 0, \"-dxo\")");
2147     _output->print_cr("    starting at phi node, traverse outputs recursively");
2148     _output->print_cr("    only along data (mixed and other can also have data flow)");
2149     _output->print_cr("  find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")");
2150     _output->print_cr("    find inputs of node 385, up to 3 nodes up (+)");
2151     _output->print_cr("    traverse all nodes (cdmox), use colors (#)");
2152     _output->print_cr("    display old nodes and blocks, if they exist");
2153     _output->print_cr("    useful call to start with");
2154     _output->print_cr("  find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")");
2155     _output->print_cr("    find non-data dependencies of a data node");
2156     _output->print_cr("    follow data node outputs until we find another category");
2157     _output->print_cr("    node as the boundary");
2158     _output->print_cr("  x->dump_bfs(10, y, 0)");
2159     _output->print_cr("    find shortest path from x to y, along any edge or node");
2160     _output->print_cr("    will not find a path if it is longer than 10");
2161     _output->print_cr("    useful to find how x and y are related");
2162     _output->print_cr("  find_node(741)->dump_bfs(20, find_node(746), \"c+\")");
2163     _output->print_cr("    find shortest control path between two nodes");
2164     _output->print_cr("  find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")");
2165     _output->print_cr("    find all paths (A) between two nodes of length at most 8");
2166     _output->print_cr("  find_node(741)->dump_bfs(7, find_node(741), \"c+A\")");
2167     _output->print_cr("    find all control loops for this node");
2168     _output->print_cr("  find_node(741)->dump_bfs(7, find_node(741), \"c+A!\", $sp, $fp, $pc)");
2169     _output->print_cr("    same as above, but printing the resulting subgraph");
2170     _output->print_cr("    along with a C2 stack trace on IGV");
2171   }
2172 }
2173 
2174 bool PrintBFS::parse_options() {
2175   if (_options == nullptr) {
2176     _options = "cdmox@B"; // default options
2177   }
2178   size_t len = strlen(_options);
2179   for (size_t i = 0; i < len; i++) {
2180     switch (_options[i]) {
2181       case '+':
2182         _traverse_inputs = true;
2183         break;
2184       case '-':
2185         _traverse_outputs = true;
2186         break;
2187       case 'c':
2188         _filter_visit._control = true;
2189         break;
2190       case 'm':
2191         _filter_visit._memory = true;
2192         break;
2193       case 'd':
2194         _filter_visit._data = true;
2195         break;
2196       case 'x':
2197         _filter_visit._mixed = true;
2198         break;
2199       case 'o':
2200         _filter_visit._other = true;
2201         break;
2202       case 'C':
2203         _filter_boundary._control = true;
2204         break;
2205       case 'M':
2206         _filter_boundary._memory = true;
2207         break;
2208       case 'D':
2209         _filter_boundary._data = true;
2210         break;
2211       case 'X':
2212         _filter_boundary._mixed = true;
2213         break;
2214       case 'O':
2215         _filter_boundary._other = true;
2216         break;
2217       case 'S':
2218         _sort_idx = true;
2219         break;
2220       case 'A':
2221         _all_paths = true;
2222         break;
2223       case '#':
2224         _use_color = true;
2225         break;
2226       case 'B':
2227         _print_blocks = true;
2228         break;
2229       case '@':
2230         _print_old = true;
2231         break;
2232       case '$':
2233         _dump_only = true;
2234         break;
2235       case '!':
2236         _print_igv = true;
2237         break;
2238       case 'h':
2239         print_options_help(false);
2240         return false;
2241        case 'H':
2242         print_options_help(true);
2243         return false;
2244       default:
2245         _output->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]);
2246         _output->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")");
2247         return false;
2248     }
2249   }
2250   if (!_traverse_inputs && !_traverse_outputs) {
2251     _traverse_inputs = true;
2252   }
2253   if (_filter_visit.is_empty()) {
2254     _filter_visit.set_all();
2255   }
2256   Compile* C = Compile::current();
2257   _print_old &= (C->matcher() != nullptr); // only show old if there are new
2258   _print_blocks &= (C->cfg() != nullptr); // only show blocks if available
2259   return true;
2260 }
2261 
2262 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) {
2263   if (!_bfs->_use_color) {
2264     return;
2265   }
2266   Info* info = _bfs->find_info(n);
2267   if (info == nullptr || !info->is_marked()) {
2268     return;
2269   }
2270 
2271   const Type* t = n->bottom_type();
2272   switch (t->category()) {
2273     case Type::Category::Data:
2274       st->print("\u001b[34m");
2275       break;
2276     case Type::Category::Memory:
2277       st->print("\u001b[32m");
2278       break;
2279     case Type::Category::Mixed:
2280       st->print("\u001b[35m");
2281       break;
2282     case Type::Category::Control:
2283       st->print("\u001b[31m");
2284       break;
2285     case Type::Category::Other:
2286       st->print("\u001b[33m");
2287       break;
2288     case Type::Category::Undef:
2289       n->dump();
2290       assert(false, "category undef ??");
2291       break;
2292     default:
2293       n->dump();
2294       assert(false, "not covered");
2295       break;
2296   }
2297 }
2298 
2299 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) {
2300   if (!_bfs->_use_color) {
2301     return;
2302   }
2303   st->print("\u001b[0m"); // white
2304 }
2305 
2306 Node* PrintBFS::old_node(const Node* n) {
2307   Compile* C = Compile::current();
2308   if (C->matcher() == nullptr || !C->node_arena()->contains(n)) {
2309     return (Node*)nullptr;
2310   } else {
2311     return C->matcher()->find_old_node(n);
2312   }
2313 }
2314 
2315 void PrintBFS::print_node_idx(const Node* n) {
2316   Compile* C = Compile::current();
2317   char buf[30];
2318   if (n == nullptr) {
2319     os::snprintf_checked(buf, sizeof(buf), "_");           // null
2320   } else if (C->node_arena()->contains(n)) {
2321     os::snprintf_checked(buf, sizeof(buf), "%d", n->_idx);  // new node
2322   } else {
2323     os::snprintf_checked(buf, sizeof(buf), "o%d", n->_idx); // old node
2324   }
2325   _output->print("%6s", buf);
2326 }
2327 
2328 void PrintBFS::print_block_id(const Block* b) {
2329   Compile* C = Compile::current();
2330   char buf[30];
2331   os::snprintf_checked(buf, sizeof(buf), "B%d", b->_pre_order);
2332   _output->print("%7s", buf);
2333 }
2334 
2335 void PrintBFS::print_node_block(const Node* n) {
2336   Compile* C = Compile::current();
2337   Block* b = C->node_arena()->contains(n)
2338              ? C->cfg()->get_block_for_node(n)
2339              : nullptr; // guard against old nodes
2340   if (b == nullptr) {
2341     _output->print("      _"); // Block
2342     _output->print("     _");  // head
2343     _output->print("     _");  // idom
2344     _output->print("      _"); // depth
2345   } else {
2346     print_block_id(b);
2347     print_node_idx(b->head());
2348     if (b->_idom) {
2349       print_node_idx(b->_idom->head());
2350     } else {
2351       _output->print("     _"); // idom
2352     }
2353     _output->print("%6d ", b->_dom_depth);
2354   }
2355 }
2356 
2357 // filter, and add to worklist, add info, note traversal edges
2358 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) {
2359   if (dst != nullptr &&
2360      (_filter_visit.accepts(dst) ||
2361       _filter_boundary.accepts(dst) ||
2362       dst == _start)) { // correct category or start?
2363     if (find_info(dst) == nullptr) {
2364       // never visited - set up info
2365       _worklist.push(dst);
2366       int d = 0;
2367       if (dst != _start) {
2368         d = find_info(src)->distance() + 1;
2369       }
2370       make_info(dst, d);
2371     }
2372     if (src != dst) {
2373       // traversal edges useful during select
2374       find_info(dst)->edge_bwd.push(src);
2375     }
2376   }
2377 }
2378 
2379 void PrintBFS::print_header() const {
2380   if (_dump_only) {
2381     return; // no header in dump only mode
2382   }
2383   _output->print("dist");                         // distance
2384   if (_all_paths) {
2385     _output->print(" apd");                       // all paths distance
2386   }
2387   if (_print_blocks) {
2388     _output->print(" [block  head  idom depth]"); // block
2389   }
2390   if (_print_old) {
2391     _output->print("   old");                     // old node
2392   }
2393   _output->print(" dump\n");                      // node dump
2394   _output->print_cr("---------------------------------------------");
2395 }
2396 
2397 void PrintBFS::print_node(const Node* n) {
2398   if (_dump_only) {
2399     n->dump("\n", false, _output, &_dcc);
2400     return;
2401   }
2402   _output->print("%4d", find_info(n)->distance());// distance
2403   if (_all_paths) {
2404     Info* info = find_info(n);
2405     int apd = info->distance() + info->distance_from_target();
2406     _output->print("%4d", apd);                   // all paths distance
2407   }
2408   if (_print_blocks) {
2409     print_node_block(n);                          // block
2410   }
2411   if (_print_old) {
2412     print_node_idx(old_node(n));                  // old node
2413   }
2414   _output->print(" ");
2415   n->dump("\n", false, _output, &_dcc);           // node dump
2416 }
2417 
2418 //------------------------------dump_bfs--------------------------------------
2419 // Call this from debugger
2420 // Useful for BFS traversal, shortest path, all path, loop detection, etc
2421 // Designed to be more readable, and provide additional info
2422 // To find all options, run:
2423 //   find_node(0)->dump_bfs(0,0,"H")
2424 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const {
2425   dump_bfs(max_distance, target, options, tty);
2426 }
2427 
2428 // Used to dump to stream.
2429 void Node::dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr) const {
2430   PrintBFS bfs(this, max_distance, target, options, st, fr);
2431   bfs.run();
2432 }
2433 
2434 // Call this from debugger, with default arguments
2435 void Node::dump_bfs(const int max_distance) const {
2436   dump_bfs(max_distance, nullptr, nullptr);
2437 }
2438 
2439 // Call this from debugger, with stack handling register arguments for IGV dumps.
2440 // Example: p find_node(741)->dump_bfs(7, find_node(741), "c+A!", $sp, $fp, $pc).
2441 void Node::dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const {
2442   frame fr(sp, fp, pc);
2443   dump_bfs(max_distance, target, options, tty, &fr);
2444 }
2445 
2446 // -----------------------------dump_idx---------------------------------------
2447 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const {
2448   if (dc != nullptr) {
2449     dc->pre_dump(st, this);
2450   }
2451   Compile* C = Compile::current();
2452   bool is_new = C->node_arena()->contains(this);
2453   if (align) { // print prefix empty spaces$
2454     // +1 for leading digit, +1 for "o"
2455     uint max_width = (C->unique() == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(C->unique())))) + 2;
2456     // +1 for leading digit, maybe +1 for "o"
2457     uint width = (_idx == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(_idx)))) + 1 + (is_new ? 0 : 1);
2458     while (max_width > width) {
2459       st->print(" ");
2460       width++;
2461     }
2462   }
2463   if (!is_new) {
2464     st->print("o");
2465   }
2466   st->print("%d", _idx);
2467   if (dc != nullptr) {
2468     dc->post_dump(st);
2469   }
2470 }
2471 
2472 // -----------------------------dump_name--------------------------------------
2473 void Node::dump_name(outputStream* st, DumpConfig* dc) const {
2474   if (dc != nullptr) {
2475     dc->pre_dump(st, this);
2476   }
2477   st->print("%s", Name());
2478   if (dc != nullptr) {
2479     dc->post_dump(st);
2480   }
2481 }
2482 
2483 // -----------------------------Name-------------------------------------------
2484 extern const char *NodeClassNames[];
2485 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
2486 
2487 static bool is_disconnected(const Node* n) {
2488   for (uint i = 0; i < n->req(); i++) {
2489     if (n->in(i) != nullptr)  return false;
2490   }
2491   return true;
2492 }
2493 
2494 #ifdef ASSERT
2495 void Node::dump_orig(outputStream *st, bool print_key) const {
2496   Compile* C = Compile::current();
2497   Node* orig = _debug_orig;
2498   if (not_a_node(orig)) orig = nullptr;
2499   if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr;
2500   if (orig == nullptr) return;
2501   if (print_key) {
2502     st->print(" !orig=");
2503   }
2504   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
2505   if (not_a_node(fast)) fast = nullptr;
2506   while (orig != nullptr) {
2507     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
2508     if (discon) st->print("[");
2509     if (!Compile::current()->node_arena()->contains(orig))
2510       st->print("o");
2511     st->print("%d", orig->_idx);
2512     if (discon) st->print("]");
2513     orig = orig->debug_orig();
2514     if (not_a_node(orig)) orig = nullptr;
2515     if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr;
2516     if (orig != nullptr) st->print(",");
2517     if (fast != nullptr) {
2518       // Step fast twice for each single step of orig:
2519       fast = fast->debug_orig();
2520       if (not_a_node(fast)) fast = nullptr;
2521       if (fast != nullptr && fast != orig) {
2522         fast = fast->debug_orig();
2523         if (not_a_node(fast)) fast = nullptr;
2524       }
2525       if (fast == orig) {
2526         st->print("...");
2527         break;
2528       }
2529     }
2530   }
2531 }
2532 
2533 void Node::set_debug_orig(Node* orig) {
2534   _debug_orig = orig;
2535   if (BreakAtNode == 0)  return;
2536   if (not_a_node(orig))  orig = nullptr;
2537   int trip = 10;
2538   while (orig != nullptr) {
2539     if (orig->debug_idx() == BreakAtNode || (uintx)orig->_idx == BreakAtNode) {
2540       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT " orig._idx=%d orig._debug_idx=" UINT64_FORMAT,
2541                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
2542       BREAKPOINT;
2543     }
2544     orig = orig->debug_orig();
2545     if (not_a_node(orig))  orig = nullptr;
2546     if (trip-- <= 0)  break;
2547   }
2548 }
2549 #endif //ASSERT
2550 
2551 //------------------------------dump------------------------------------------
2552 // Dump a Node
2553 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const {
2554   Compile* C = Compile::current();
2555   bool is_new = C->node_arena()->contains(this);
2556   C->_in_dump_cnt++;
2557 
2558   // idx mark name ===
2559   dump_idx(true, st, dc);
2560   st->print(mark ? " >" : "  ");
2561   dump_name(st, dc);
2562   st->print("  === ");
2563 
2564   // Dump the required and precedence inputs
2565   dump_req(st, dc);
2566   dump_prec(st, dc);
2567   // Dump the outputs
2568   dump_out(st, dc);
2569 
2570   if (is_disconnected(this)) {
2571 #ifdef ASSERT
2572     st->print("  [" UINT64_FORMAT "]", debug_idx());
2573     dump_orig(st);
2574 #endif
2575     st->cr();
2576     C->_in_dump_cnt--;
2577     return;                     // don't process dead nodes
2578   }
2579 
2580   if (C->clone_map().value(_idx) != 0) {
2581     C->clone_map().dump(_idx, st);
2582   }
2583   // Dump node-specific info
2584   dump_spec(st);
2585 #ifdef ASSERT
2586   // Dump the non-reset _debug_idx
2587   if (Verbose && WizardMode) {
2588     st->print("  [" UINT64_FORMAT "]", debug_idx());
2589   }
2590 #endif
2591 
2592   const Type *t = bottom_type();
2593 
2594   if (t != nullptr && (t->isa_instptr() || t->isa_instklassptr())) {
2595     const TypeInstPtr  *toop = t->isa_instptr();
2596     const TypeInstKlassPtr *tkls = t->isa_instklassptr();
2597     if (toop) {
2598       st->print("  Oop:");
2599     } else if (tkls) {
2600       st->print("  Klass:");
2601     }
2602     t->dump_on(st);
2603   } else if (t == Type::MEMORY) {
2604     st->print("  Memory:");
2605     MemNode::dump_adr_type(this, adr_type(), st);
2606   } else if (Verbose || WizardMode) {
2607     st->print("  Type:");
2608     if (t) {
2609       t->dump_on(st);
2610     } else {
2611       st->print("no type");
2612     }
2613   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
2614     // Dump MachSpillcopy vector type.
2615     t->dump_on(st);
2616   }
2617   if (is_new) {
2618     DEBUG_ONLY(dump_orig(st));
2619     Node_Notes* nn = C->node_notes_at(_idx);
2620     if (nn != nullptr && !nn->is_clear()) {
2621       if (nn->jvms() != nullptr) {
2622         st->print(" !jvms:");
2623         nn->jvms()->dump_spec(st);
2624       }
2625     }
2626   }
2627   if (suffix) st->print("%s", suffix);
2628   C->_in_dump_cnt--;
2629 }
2630 
2631 // call from debugger: dump node to tty with newline
2632 void Node::dump() const {
2633   dump("\n");
2634 }
2635 
2636 //------------------------------dump_req--------------------------------------
2637 void Node::dump_req(outputStream* st, DumpConfig* dc) const {
2638   // Dump the required input edges
2639   for (uint i = 0; i < req(); i++) {    // For all required inputs
2640     Node* d = in(i);
2641     if (d == nullptr) {
2642       st->print("_ ");
2643     } else if (not_a_node(d)) {
2644       st->print("not_a_node ");  // uninitialized, sentinel, garbage, etc.
2645     } else {
2646       d->dump_idx(false, st, dc);
2647       st->print(" ");
2648     }
2649   }
2650 }
2651 
2652 
2653 //------------------------------dump_prec-------------------------------------
2654 void Node::dump_prec(outputStream* st, DumpConfig* dc) const {
2655   // Dump the precedence edges
2656   int any_prec = 0;
2657   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
2658     Node* p = in(i);
2659     if (p != nullptr) {
2660       if (!any_prec++) st->print(" |");
2661       if (not_a_node(p)) { st->print("not_a_node "); continue; }
2662       p->dump_idx(false, st, dc);
2663       st->print(" ");
2664     }
2665   }
2666 }
2667 
2668 //------------------------------dump_out--------------------------------------
2669 void Node::dump_out(outputStream* st, DumpConfig* dc) const {
2670   // Delimit the output edges
2671   st->print(" [[ ");
2672   // Dump the output edges
2673   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
2674     Node* u = _out[i];
2675     if (u == nullptr) {
2676       st->print("_ ");
2677     } else if (not_a_node(u)) {
2678       st->print("not_a_node ");
2679     } else {
2680       u->dump_idx(false, st, dc);
2681       st->print(" ");
2682     }
2683   }
2684   st->print("]] ");
2685 }
2686 
2687 //------------------------------dump-------------------------------------------
2688 // call from debugger: dump Node's inputs (or outputs if d negative)
2689 void Node::dump(int d) const {
2690   dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$");
2691 }
2692 
2693 //------------------------------dump_ctrl--------------------------------------
2694 // call from debugger: dump Node's control inputs (or outputs if d negative)
2695 void Node::dump_ctrl(int d) const {
2696   dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c");
2697 }
2698 
2699 //-----------------------------dump_compact------------------------------------
2700 void Node::dump_comp() const {
2701   this->dump_comp("\n");
2702 }
2703 
2704 //-----------------------------dump_compact------------------------------------
2705 // Dump a Node in compact representation, i.e., just print its name and index.
2706 // Nodes can specify additional specifics to print in compact representation by
2707 // implementing dump_compact_spec.
2708 void Node::dump_comp(const char* suffix, outputStream *st) const {
2709   Compile* C = Compile::current();
2710   C->_in_dump_cnt++;
2711   st->print("%s(%d)", Name(), _idx);
2712   this->dump_compact_spec(st);
2713   if (suffix) {
2714     st->print("%s", suffix);
2715   }
2716   C->_in_dump_cnt--;
2717 }
2718 
2719 // VERIFICATION CODE
2720 // Verify all nodes if verify_depth is negative
2721 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) {
2722   assert(verify_depth != 0, "depth should not be 0");
2723   Compile* C = Compile::current();
2724   uint last_index_on_current_depth = worklist.size() - 1;
2725   verify_depth--; // Visiting the first node on depth 1
2726   // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0
2727   bool add_to_worklist = verify_depth != 0;
2728 
2729   for (uint list_index = 0; list_index < worklist.size(); list_index++) {
2730     Node* n = worklist[list_index];
2731 
2732     if (n->is_Con() && n->bottom_type() == Type::TOP) {
2733       if (C->cached_top_node() == nullptr) {
2734         C->set_cached_top_node((Node*)n);
2735       }
2736       assert(C->cached_top_node() == n, "TOP node must be unique");
2737     }
2738 
2739     uint in_len = n->len();
2740     for (uint i = 0; i < in_len; i++) {
2741       Node* x = n->_in[i];
2742       if (!x || x->is_top()) {
2743         continue;
2744       }
2745 
2746       // Verify my input has a def-use edge to me
2747       // Count use-def edges from n to x
2748       int cnt = 1;
2749       for (uint j = 0; j < i; j++) {
2750         if (n->_in[j] == x) {
2751           cnt++;
2752           break;
2753         }
2754       }
2755       if (cnt == 2) {
2756         // x is already checked as n's previous input, skip its duplicated def-use count checking
2757         continue;
2758       }
2759       for (uint j = i + 1; j < in_len; j++) {
2760         if (n->_in[j] == x) {
2761           cnt++;
2762         }
2763       }
2764 
2765       // Count def-use edges from x to n
2766       uint max = x->_outcnt;
2767       for (uint k = 0; k < max; k++) {
2768         if (x->_out[k] == n) {
2769           cnt--;
2770         }
2771       }
2772       assert(cnt == 0, "mismatched def-use edge counts");
2773 
2774       if (add_to_worklist && !visited.test_set(x->_idx)) {
2775         worklist.push(x);
2776       }
2777     }
2778 
2779     if (verify_depth > 0 && list_index == last_index_on_current_depth) {
2780       // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and
2781       // store the current last list index which is the last node in the list with the new depth. All nodes
2782       // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0).
2783       verify_depth--;
2784       if (verify_depth == 0) {
2785         add_to_worklist = false;
2786       }
2787       last_index_on_current_depth = worklist.size() - 1;
2788     }
2789   }
2790 }
2791 #endif // not PRODUCT
2792 
2793 //------------------------------Registers--------------------------------------
2794 // Do we Match on this edge index or not?  Generally false for Control
2795 // and true for everything else.  Weird for calls & returns.
2796 uint Node::match_edge(uint idx) const {
2797   return idx;                   // True for other than index 0 (control)
2798 }
2799 
2800 // Register classes are defined for specific machines
2801 const RegMask &Node::out_RegMask() const {
2802   ShouldNotCallThis();
2803   return RegMask::Empty;
2804 }
2805 
2806 const RegMask &Node::in_RegMask(uint) const {
2807   ShouldNotCallThis();
2808   return RegMask::Empty;
2809 }
2810 
2811 void Node_Array::grow(uint i) {
2812   assert(i >= _max, "Should have been checked before, use maybe_grow?");
2813   assert(_max > 0, "invariant");
2814   uint old = _max;
2815   _max = next_power_of_2(i);
2816   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2817   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2818 }
2819 
2820 void Node_Array::insert(uint i, Node* n) {
2821   if (_nodes[_max - 1]) {
2822     grow(_max);
2823   }
2824   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*)));
2825   _nodes[i] = n;
2826 }
2827 
2828 void Node_Array::remove(uint i) {
2829   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*)));
2830   _nodes[_max - 1] = nullptr;
2831 }
2832 
2833 void Node_Array::dump() const {
2834 #ifndef PRODUCT
2835   for (uint i = 0; i < _max; i++) {
2836     Node* nn = _nodes[i];
2837     if (nn != nullptr) {
2838       tty->print("%5d--> ",i); nn->dump();
2839     }
2840   }
2841 #endif
2842 }
2843 
2844 //--------------------------is_iteratively_computed------------------------------
2845 // Operation appears to be iteratively computed (such as an induction variable)
2846 // It is possible for this operation to return false for a loop-varying
2847 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2848 bool Node::is_iteratively_computed() {
2849   if (ideal_reg()) { // does operation have a result register?
2850     for (uint i = 1; i < req(); i++) {
2851       Node* n = in(i);
2852       if (n != nullptr && n->is_Phi()) {
2853         for (uint j = 1; j < n->req(); j++) {
2854           if (n->in(j) == this) {
2855             return true;
2856           }
2857         }
2858       }
2859     }
2860   }
2861   return false;
2862 }
2863 
2864 //--------------------------find_similar------------------------------
2865 // Return a node with opcode "opc" and same inputs as "this" if one can
2866 // be found; Otherwise return null;
2867 Node* Node::find_similar(int opc) {
2868   if (req() >= 2) {
2869     Node* def = in(1);
2870     if (def && def->outcnt() >= 2) {
2871       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2872         Node* use = def->fast_out(i);
2873         if (use != this &&
2874             use->Opcode() == opc &&
2875             use->req() == req()) {
2876           uint j;
2877           for (j = 0; j < use->req(); j++) {
2878             if (use->in(j) != in(j)) {
2879               break;
2880             }
2881           }
2882           if (j == use->req()) {
2883             return use;
2884           }
2885         }
2886       }
2887     }
2888   }
2889   return nullptr;
2890 }
2891 
2892 
2893 //--------------------------unique_ctrl_out_or_null-------------------------
2894 // Return the unique control out if only one. Null if none or more than one.
2895 Node* Node::unique_ctrl_out_or_null() const {
2896   Node* found = nullptr;
2897   for (uint i = 0; i < outcnt(); i++) {
2898     Node* use = raw_out(i);
2899     if (use->is_CFG() && use != this) {
2900       if (found != nullptr) {
2901         return nullptr;
2902       }
2903       found = use;
2904     }
2905   }
2906   return found;
2907 }
2908 
2909 //--------------------------unique_ctrl_out------------------------------
2910 // Return the unique control out. Asserts if none or more than one control out.
2911 Node* Node::unique_ctrl_out() const {
2912   Node* ctrl = unique_ctrl_out_or_null();
2913   assert(ctrl != nullptr, "control out is assumed to be unique");
2914   return ctrl;
2915 }
2916 
2917 void Node::ensure_control_or_add_prec(Node* c) {
2918   if (in(0) == nullptr) {
2919     set_req(0, c);
2920   } else if (in(0) != c) {
2921     add_prec(c);
2922   }
2923 }
2924 
2925 void Node::add_prec_from(Node* n) {
2926   for (uint i = n->req(); i < n->len(); i++) {
2927     Node* prec = n->in(i);
2928     if (prec != nullptr) {
2929       add_prec(prec);
2930     }
2931   }
2932 }
2933 
2934 bool Node::is_dead_loop_safe() const {
2935   if (is_Phi()) {
2936     return true;
2937   }
2938   if (is_Proj() && in(0) == nullptr)  {
2939     return true;
2940   }
2941   if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) {
2942     if (!is_Proj()) {
2943       return true;
2944     }
2945     if (in(0)->is_Allocate()) {
2946       return false;
2947     }
2948     // MemNode::can_see_stored_value() peeks through the boxing call
2949     if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) {
2950       return false;
2951     }
2952     return true;
2953   }
2954   return false;
2955 }
2956 
2957 bool Node::is_div_or_mod(BasicType bt) const { return Opcode() == Op_Div(bt) || Opcode() == Op_Mod(bt) ||
2958                                                       Opcode() == Op_UDiv(bt) || Opcode() == Op_UMod(bt); }
2959 
2960 // `maybe_pure_function` is assumed to be the input of `this`. This is a bit redundant,
2961 // but we already have and need maybe_pure_function in all the call sites, so
2962 // it makes it obvious that the `maybe_pure_function` is the same node as in the caller,
2963 // while it takes more thinking to realize that a locally computed in(0) must be equal to
2964 // the local in the caller.
2965 bool Node::is_data_proj_of_pure_function(const Node* maybe_pure_function) const {
2966   return Opcode() == Op_Proj && as_Proj()->_con == TypeFunc::Parms && maybe_pure_function->is_CallLeafPure();
2967 }
2968 
2969 //=============================================================================
2970 //------------------------------yank-------------------------------------------
2971 // Find and remove
2972 void Node_List::yank( Node *n ) {
2973   uint i;
2974   for (i = 0; i < _cnt; i++) {
2975     if (_nodes[i] == n) {
2976       break;
2977     }
2978   }
2979 
2980   if (i < _cnt) {
2981     _nodes[i] = _nodes[--_cnt];
2982   }
2983 }
2984 
2985 //------------------------------dump-------------------------------------------
2986 void Node_List::dump() const {
2987 #ifndef PRODUCT
2988   for (uint i = 0; i < _cnt; i++) {
2989     if (_nodes[i]) {
2990       tty->print("%5d--> ", i);
2991       _nodes[i]->dump();
2992     }
2993   }
2994 #endif
2995 }
2996 
2997 void Node_List::dump_simple() const {
2998 #ifndef PRODUCT
2999   for (uint i = 0; i < _cnt; i++) {
3000     if( _nodes[i] ) {
3001       tty->print(" %d", _nodes[i]->_idx);
3002     } else {
3003       tty->print(" null");
3004     }
3005   }
3006 #endif
3007 }
3008 
3009 //=============================================================================
3010 //------------------------------remove-----------------------------------------
3011 void Unique_Node_List::remove(Node* n) {
3012   if (_in_worklist.test(n->_idx)) {
3013     for (uint i = 0; i < size(); i++) {
3014       if (_nodes[i] == n) {
3015         map(i, Node_List::pop());
3016         _in_worklist.remove(n->_idx);
3017         return;
3018       }
3019     }
3020     ShouldNotReachHere();
3021   }
3022 }
3023 
3024 //-----------------------remove_useless_nodes----------------------------------
3025 // Remove useless nodes from worklist
3026 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
3027   for (uint i = 0; i < size(); ++i) {
3028     Node *n = at(i);
3029     assert( n != nullptr, "Did not expect null entries in worklist");
3030     if (!useful.test(n->_idx)) {
3031       _in_worklist.remove(n->_idx);
3032       map(i, Node_List::pop());
3033       --i;  // Visit popped node
3034       // If it was last entry, loop terminates since size() was also reduced
3035     }
3036   }
3037 }
3038 
3039 //=============================================================================
3040 void Node_Stack::grow() {
3041   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
3042   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
3043   size_t max = old_max << 1;             // max * 2
3044   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
3045   _inode_max = _inodes + max;
3046   _inode_top = _inodes + old_top;        // restore _top
3047 }
3048 
3049 // Node_Stack is used to map nodes.
3050 Node* Node_Stack::find(uint idx) const {
3051   uint sz = size();
3052   for (uint i = 0; i < sz; i++) {
3053     if (idx == index_at(i)) {
3054       return node_at(i);
3055     }
3056   }
3057   return nullptr;
3058 }
3059 
3060 //=============================================================================
3061 uint TypeNode::size_of() const { return sizeof(*this); }
3062 #ifndef PRODUCT
3063 void TypeNode::dump_spec(outputStream *st) const {
3064   if (!Verbose && !WizardMode) {
3065     // standard dump does this in Verbose and WizardMode
3066     st->print(" #"); _type->dump_on(st);
3067   }
3068 }
3069 
3070 void TypeNode::dump_compact_spec(outputStream *st) const {
3071   st->print("#");
3072   _type->dump_on(st);
3073 }
3074 #endif
3075 uint TypeNode::hash() const {
3076   return Node::hash() + _type->hash();
3077 }
3078 bool TypeNode::cmp(const Node& n) const {
3079   return Type::equals(_type, n.as_Type()->_type);
3080 }
3081 const Type* TypeNode::bottom_type() const { return _type; }
3082 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
3083 
3084 //------------------------------ideal_reg--------------------------------------
3085 uint TypeNode::ideal_reg() const {
3086   return _type->ideal_reg();
3087 }
3088 
3089 void TypeNode::make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str) {
3090   Node* c = ctrl_use->in(j);
3091   if (igvn->type(c) != Type::TOP) {
3092     igvn->replace_input_of(ctrl_use, j, igvn->C->top());
3093     create_halt_path(igvn, c, loop, phase_str);
3094   }
3095 }
3096 
3097 // This Type node is dead. It could be because the type that it captures and the type of the node computed from its
3098 // inputs do not intersect anymore. That node has some uses along some control flow paths. Those control flow paths must
3099 // be unreachable as using a dead value makes no sense. For the Type node to capture a narrowed down type, some control
3100 // flow construct must guard the Type node (an If node usually). When the Type node becomes dead, the guard usually
3101 // constant folds and the control flow that leads to the Type node becomes unreachable. There are cases where that
3102 // doesn't happen, however. They are handled here by following uses of the Type node until a CFG or a Phi to find dead
3103 // paths. The dead paths are then replaced by a Halt node.
3104 void TypeNode::make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str) {
3105   Unique_Node_List wq;
3106   wq.push(this);
3107   for (uint i = 0; i < wq.size(); ++i) {
3108     Node* n = wq.at(i);
3109     for (DUIterator_Fast kmax, k = n->fast_outs(kmax); k < kmax; k++) {
3110       Node* u = n->fast_out(k);
3111       if (u->is_CFG()) {
3112         assert(!u->is_Region(), "Can't reach a Region without going through a Phi");
3113         make_path_dead(igvn, loop, u, 0, phase_str);
3114       } else if (u->is_Phi()) {
3115         Node* r = u->in(0);
3116         assert(r->is_Region() || r->is_top(), "unexpected Phi's control");
3117         if (r->is_Region()) {
3118           for (uint j = 1; j < u->req(); ++j) {
3119             if (u->in(j) == n && r->in(j) != nullptr) {
3120               make_path_dead(igvn, loop, r, j, phase_str);
3121             }
3122           }
3123         }
3124       } else {
3125         wq.push(u);
3126       }
3127     }
3128   }
3129 }
3130 
3131 void TypeNode::create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const {
3132   Node* frame = new ParmNode(igvn->C->start(), TypeFunc::FramePtr);
3133   if (loop == nullptr) {
3134     igvn->register_new_node_with_optimizer(frame);
3135   } else {
3136     loop->register_new_node(frame, igvn->C->start());
3137   }
3138 
3139   stringStream ss;
3140   ss.print("dead path discovered by TypeNode during %s", phase_str);
3141 
3142   Node* halt = new HaltNode(c, frame, ss.as_string(igvn->C->comp_arena()));
3143   if (loop == nullptr) {
3144     igvn->register_new_node_with_optimizer(halt);
3145   } else {
3146     loop->register_control(halt, loop->ltree_root(), c);
3147   }
3148   igvn->add_input_to(igvn->C->root(), halt);
3149 }
3150 
3151 Node* TypeNode::Ideal(PhaseGVN* phase, bool can_reshape) {
3152   if (KillPathsReachableByDeadTypeNode && can_reshape && Value(phase) == Type::TOP) {
3153     PhaseIterGVN* igvn = phase->is_IterGVN();
3154     Node* top = igvn->C->top();
3155     ResourceMark rm;
3156     make_paths_from_here_dead(igvn, nullptr, "igvn");
3157     return top;
3158   }
3159 
3160   return Node::Ideal(phase, can_reshape);
3161 }
3162 
--- EOF ---