1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "libadt/vectset.hpp" 29 #include "memory/allocation.inline.hpp" 30 #include "memory/resourceArea.hpp" 31 #include "opto/ad.hpp" 32 #include "opto/callGenerator.hpp" 33 #include "opto/castnode.hpp" 34 #include "opto/cfgnode.hpp" 35 #include "opto/connode.hpp" 36 #include "opto/inlinetypenode.hpp" 37 #include "opto/loopnode.hpp" 38 #include "opto/machnode.hpp" 39 #include "opto/matcher.hpp" 40 #include "opto/node.hpp" 41 #include "opto/opcodes.hpp" 42 #include "opto/regmask.hpp" 43 #include "opto/rootnode.hpp" 44 #include "opto/type.hpp" 45 #include "utilities/copy.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "utilities/stringUtils.hpp" 49 50 class RegMask; 51 // #include "phase.hpp" 52 class PhaseTransform; 53 class PhaseGVN; 54 55 // Arena we are currently building Nodes in 56 const uint Node::NotAMachineReg = 0xffff0000; 57 58 #ifndef PRODUCT 59 extern uint nodes_created; 60 #endif 61 #ifdef __clang__ 62 #pragma clang diagnostic push 63 #pragma GCC diagnostic ignored "-Wuninitialized" 64 #endif 65 66 #ifdef ASSERT 67 68 //-------------------------- construct_node------------------------------------ 69 // Set a breakpoint here to identify where a particular node index is built. 70 void Node::verify_construction() { 71 _debug_orig = nullptr; 72 // The decimal digits of _debug_idx are <compile_id> followed by 10 digits of <_idx> 73 Compile* C = Compile::current(); 74 assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX"); 75 uint64_t new_debug_idx = (uint64_t)C->compile_id() * 10000000000 + _idx; 76 set_debug_idx(new_debug_idx); 77 if (!C->phase_optimize_finished()) { 78 // Only check assert during parsing and optimization phase. Skip it while generating code. 79 assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit"); 80 } 81 if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (uint64_t)_idx == BreakAtNode)) { 82 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT, _idx, _debug_idx); 83 BREAKPOINT; 84 } 85 #if OPTO_DU_ITERATOR_ASSERT 86 _last_del = nullptr; 87 _del_tick = 0; 88 #endif 89 _hash_lock = 0; 90 } 91 92 93 // #ifdef ASSERT ... 94 95 #if OPTO_DU_ITERATOR_ASSERT 96 void DUIterator_Common::sample(const Node* node) { 97 _vdui = VerifyDUIterators; 98 _node = node; 99 _outcnt = node->_outcnt; 100 _del_tick = node->_del_tick; 101 _last = nullptr; 102 } 103 104 void DUIterator_Common::verify(const Node* node, bool at_end_ok) { 105 assert(_node == node, "consistent iterator source"); 106 assert(_del_tick == node->_del_tick, "no unexpected deletions allowed"); 107 } 108 109 void DUIterator_Common::verify_resync() { 110 // Ensure that the loop body has just deleted the last guy produced. 111 const Node* node = _node; 112 // Ensure that at least one copy of the last-seen edge was deleted. 113 // Note: It is OK to delete multiple copies of the last-seen edge. 114 // Unfortunately, we have no way to verify that all the deletions delete 115 // that same edge. On this point we must use the Honor System. 116 assert(node->_del_tick >= _del_tick+1, "must have deleted an edge"); 117 assert(node->_last_del == _last, "must have deleted the edge just produced"); 118 // We liked this deletion, so accept the resulting outcnt and tick. 119 _outcnt = node->_outcnt; 120 _del_tick = node->_del_tick; 121 } 122 123 void DUIterator_Common::reset(const DUIterator_Common& that) { 124 if (this == &that) return; // ignore assignment to self 125 if (!_vdui) { 126 // We need to initialize everything, overwriting garbage values. 127 _last = that._last; 128 _vdui = that._vdui; 129 } 130 // Note: It is legal (though odd) for an iterator over some node x 131 // to be reassigned to iterate over another node y. Some doubly-nested 132 // progress loops depend on being able to do this. 133 const Node* node = that._node; 134 // Re-initialize everything, except _last. 135 _node = node; 136 _outcnt = node->_outcnt; 137 _del_tick = node->_del_tick; 138 } 139 140 void DUIterator::sample(const Node* node) { 141 DUIterator_Common::sample(node); // Initialize the assertion data. 142 _refresh_tick = 0; // No refreshes have happened, as yet. 143 } 144 145 void DUIterator::verify(const Node* node, bool at_end_ok) { 146 DUIterator_Common::verify(node, at_end_ok); 147 assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range"); 148 } 149 150 void DUIterator::verify_increment() { 151 if (_refresh_tick & 1) { 152 // We have refreshed the index during this loop. 153 // Fix up _idx to meet asserts. 154 if (_idx > _outcnt) _idx = _outcnt; 155 } 156 verify(_node, true); 157 } 158 159 void DUIterator::verify_resync() { 160 // Note: We do not assert on _outcnt, because insertions are OK here. 161 DUIterator_Common::verify_resync(); 162 // Make sure we are still in sync, possibly with no more out-edges: 163 verify(_node, true); 164 } 165 166 void DUIterator::reset(const DUIterator& that) { 167 if (this == &that) return; // self assignment is always a no-op 168 assert(that._refresh_tick == 0, "assign only the result of Node::outs()"); 169 assert(that._idx == 0, "assign only the result of Node::outs()"); 170 assert(_idx == that._idx, "already assigned _idx"); 171 if (!_vdui) { 172 // We need to initialize everything, overwriting garbage values. 173 sample(that._node); 174 } else { 175 DUIterator_Common::reset(that); 176 if (_refresh_tick & 1) { 177 _refresh_tick++; // Clear the "was refreshed" flag. 178 } 179 assert(_refresh_tick < 2*100000, "DU iteration must converge quickly"); 180 } 181 } 182 183 void DUIterator::refresh() { 184 DUIterator_Common::sample(_node); // Re-fetch assertion data. 185 _refresh_tick |= 1; // Set the "was refreshed" flag. 186 } 187 188 void DUIterator::verify_finish() { 189 // If the loop has killed the node, do not require it to re-run. 190 if (_node->_outcnt == 0) _refresh_tick &= ~1; 191 // If this assert triggers, it means that a loop used refresh_out_pos 192 // to re-synch an iteration index, but the loop did not correctly 193 // re-run itself, using a "while (progress)" construct. 194 // This iterator enforces the rule that you must keep trying the loop 195 // until it "runs clean" without any need for refreshing. 196 assert(!(_refresh_tick & 1), "the loop must run once with no refreshing"); 197 } 198 199 200 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) { 201 DUIterator_Common::verify(node, at_end_ok); 202 Node** out = node->_out; 203 uint cnt = node->_outcnt; 204 assert(cnt == _outcnt, "no insertions allowed"); 205 assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range"); 206 // This last check is carefully designed to work for NO_OUT_ARRAY. 207 } 208 209 void DUIterator_Fast::verify_limit() { 210 const Node* node = _node; 211 verify(node, true); 212 assert(_outp == node->_out + node->_outcnt, "limit still correct"); 213 } 214 215 void DUIterator_Fast::verify_resync() { 216 const Node* node = _node; 217 if (_outp == node->_out + _outcnt) { 218 // Note that the limit imax, not the pointer i, gets updated with the 219 // exact count of deletions. (For the pointer it's always "--i".) 220 assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)"); 221 // This is a limit pointer, with a name like "imax". 222 // Fudge the _last field so that the common assert will be happy. 223 _last = (Node*) node->_last_del; 224 DUIterator_Common::verify_resync(); 225 } else { 226 assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)"); 227 // A normal internal pointer. 228 DUIterator_Common::verify_resync(); 229 // Make sure we are still in sync, possibly with no more out-edges: 230 verify(node, true); 231 } 232 } 233 234 void DUIterator_Fast::verify_relimit(uint n) { 235 const Node* node = _node; 236 assert((int)n > 0, "use imax -= n only with a positive count"); 237 // This must be a limit pointer, with a name like "imax". 238 assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)"); 239 // The reported number of deletions must match what the node saw. 240 assert(node->_del_tick == _del_tick + n, "must have deleted n edges"); 241 // Fudge the _last field so that the common assert will be happy. 242 _last = (Node*) node->_last_del; 243 DUIterator_Common::verify_resync(); 244 } 245 246 void DUIterator_Fast::reset(const DUIterator_Fast& that) { 247 assert(_outp == that._outp, "already assigned _outp"); 248 DUIterator_Common::reset(that); 249 } 250 251 void DUIterator_Last::verify(const Node* node, bool at_end_ok) { 252 // at_end_ok means the _outp is allowed to underflow by 1 253 _outp += at_end_ok; 254 DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc. 255 _outp -= at_end_ok; 256 assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes"); 257 } 258 259 void DUIterator_Last::verify_limit() { 260 // Do not require the limit address to be resynched. 261 //verify(node, true); 262 assert(_outp == _node->_out, "limit still correct"); 263 } 264 265 void DUIterator_Last::verify_step(uint num_edges) { 266 assert((int)num_edges > 0, "need non-zero edge count for loop progress"); 267 _outcnt -= num_edges; 268 _del_tick += num_edges; 269 // Make sure we are still in sync, possibly with no more out-edges: 270 const Node* node = _node; 271 verify(node, true); 272 assert(node->_last_del == _last, "must have deleted the edge just produced"); 273 } 274 275 #endif //OPTO_DU_ITERATOR_ASSERT 276 277 278 #endif //ASSERT 279 280 281 // This constant used to initialize _out may be any non-null value. 282 // The value null is reserved for the top node only. 283 #define NO_OUT_ARRAY ((Node**)-1) 284 285 // Out-of-line code from node constructors. 286 // Executed only when extra debug info. is being passed around. 287 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) { 288 C->set_node_notes_at(idx, nn); 289 } 290 291 // Shared initialization code. 292 inline int Node::Init(int req) { 293 Compile* C = Compile::current(); 294 int idx = C->next_unique(); 295 NOT_PRODUCT(_igv_idx = C->next_igv_idx()); 296 297 // Allocate memory for the necessary number of edges. 298 if (req > 0) { 299 // Allocate space for _in array to have double alignment. 300 _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*)))); 301 } 302 // If there are default notes floating around, capture them: 303 Node_Notes* nn = C->default_node_notes(); 304 if (nn != nullptr) init_node_notes(C, idx, nn); 305 306 // Note: At this point, C is dead, 307 // and we begin to initialize the new Node. 308 309 _cnt = _max = req; 310 _outcnt = _outmax = 0; 311 _class_id = Class_Node; 312 _flags = 0; 313 _out = NO_OUT_ARRAY; 314 return idx; 315 } 316 317 //------------------------------Node------------------------------------------- 318 // Create a Node, with a given number of required edges. 319 Node::Node(uint req) 320 : _idx(Init(req)) 321 #ifdef ASSERT 322 , _parse_idx(_idx) 323 #endif 324 { 325 assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" ); 326 DEBUG_ONLY( verify_construction() ); 327 NOT_PRODUCT(nodes_created++); 328 if (req == 0) { 329 _in = nullptr; 330 } else { 331 Node** to = _in; 332 for(uint i = 0; i < req; i++) { 333 to[i] = nullptr; 334 } 335 } 336 } 337 338 //------------------------------Node------------------------------------------- 339 Node::Node(Node *n0) 340 : _idx(Init(1)) 341 #ifdef ASSERT 342 , _parse_idx(_idx) 343 #endif 344 { 345 DEBUG_ONLY( verify_construction() ); 346 NOT_PRODUCT(nodes_created++); 347 assert( is_not_dead(n0), "can not use dead node"); 348 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 349 } 350 351 //------------------------------Node------------------------------------------- 352 Node::Node(Node *n0, Node *n1) 353 : _idx(Init(2)) 354 #ifdef ASSERT 355 , _parse_idx(_idx) 356 #endif 357 { 358 DEBUG_ONLY( verify_construction() ); 359 NOT_PRODUCT(nodes_created++); 360 assert( is_not_dead(n0), "can not use dead node"); 361 assert( is_not_dead(n1), "can not use dead node"); 362 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 363 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 364 } 365 366 //------------------------------Node------------------------------------------- 367 Node::Node(Node *n0, Node *n1, Node *n2) 368 : _idx(Init(3)) 369 #ifdef ASSERT 370 , _parse_idx(_idx) 371 #endif 372 { 373 DEBUG_ONLY( verify_construction() ); 374 NOT_PRODUCT(nodes_created++); 375 assert( is_not_dead(n0), "can not use dead node"); 376 assert( is_not_dead(n1), "can not use dead node"); 377 assert( is_not_dead(n2), "can not use dead node"); 378 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 379 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 380 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 381 } 382 383 //------------------------------Node------------------------------------------- 384 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3) 385 : _idx(Init(4)) 386 #ifdef ASSERT 387 , _parse_idx(_idx) 388 #endif 389 { 390 DEBUG_ONLY( verify_construction() ); 391 NOT_PRODUCT(nodes_created++); 392 assert( is_not_dead(n0), "can not use dead node"); 393 assert( is_not_dead(n1), "can not use dead node"); 394 assert( is_not_dead(n2), "can not use dead node"); 395 assert( is_not_dead(n3), "can not use dead node"); 396 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 397 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 398 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 399 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 400 } 401 402 //------------------------------Node------------------------------------------- 403 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4) 404 : _idx(Init(5)) 405 #ifdef ASSERT 406 , _parse_idx(_idx) 407 #endif 408 { 409 DEBUG_ONLY( verify_construction() ); 410 NOT_PRODUCT(nodes_created++); 411 assert( is_not_dead(n0), "can not use dead node"); 412 assert( is_not_dead(n1), "can not use dead node"); 413 assert( is_not_dead(n2), "can not use dead node"); 414 assert( is_not_dead(n3), "can not use dead node"); 415 assert( is_not_dead(n4), "can not use dead node"); 416 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 417 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 418 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 419 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 420 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 421 } 422 423 //------------------------------Node------------------------------------------- 424 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 425 Node *n4, Node *n5) 426 : _idx(Init(6)) 427 #ifdef ASSERT 428 , _parse_idx(_idx) 429 #endif 430 { 431 DEBUG_ONLY( verify_construction() ); 432 NOT_PRODUCT(nodes_created++); 433 assert( is_not_dead(n0), "can not use dead node"); 434 assert( is_not_dead(n1), "can not use dead node"); 435 assert( is_not_dead(n2), "can not use dead node"); 436 assert( is_not_dead(n3), "can not use dead node"); 437 assert( is_not_dead(n4), "can not use dead node"); 438 assert( is_not_dead(n5), "can not use dead node"); 439 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 440 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 441 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 442 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 443 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 444 _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this); 445 } 446 447 //------------------------------Node------------------------------------------- 448 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 449 Node *n4, Node *n5, Node *n6) 450 : _idx(Init(7)) 451 #ifdef ASSERT 452 , _parse_idx(_idx) 453 #endif 454 { 455 DEBUG_ONLY( verify_construction() ); 456 NOT_PRODUCT(nodes_created++); 457 assert( is_not_dead(n0), "can not use dead node"); 458 assert( is_not_dead(n1), "can not use dead node"); 459 assert( is_not_dead(n2), "can not use dead node"); 460 assert( is_not_dead(n3), "can not use dead node"); 461 assert( is_not_dead(n4), "can not use dead node"); 462 assert( is_not_dead(n5), "can not use dead node"); 463 assert( is_not_dead(n6), "can not use dead node"); 464 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 465 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 466 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 467 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 468 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 469 _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this); 470 _in[6] = n6; if (n6 != nullptr) n6->add_out((Node *)this); 471 } 472 473 #ifdef __clang__ 474 #pragma clang diagnostic pop 475 #endif 476 477 478 //------------------------------clone------------------------------------------ 479 // Clone a Node. 480 Node *Node::clone() const { 481 Compile* C = Compile::current(); 482 uint s = size_of(); // Size of inherited Node 483 Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*)); 484 Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s); 485 // Set the new input pointer array 486 n->_in = (Node**)(((char*)n)+s); 487 // Cannot share the old output pointer array, so kill it 488 n->_out = NO_OUT_ARRAY; 489 // And reset the counters to 0 490 n->_outcnt = 0; 491 n->_outmax = 0; 492 // Unlock this guy, since he is not in any hash table. 493 DEBUG_ONLY(n->_hash_lock = 0); 494 // Walk the old node's input list to duplicate its edges 495 uint i; 496 for( i = 0; i < len(); i++ ) { 497 Node *x = in(i); 498 n->_in[i] = x; 499 if (x != nullptr) x->add_out(n); 500 } 501 if (is_macro()) { 502 C->add_macro_node(n); 503 } 504 if (is_expensive()) { 505 C->add_expensive_node(n); 506 } 507 if (for_post_loop_opts_igvn()) { 508 // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically. 509 // If it is applicable, it will happen anyway when the cloned node is registered with IGVN. 510 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 511 } 512 if (for_merge_stores_igvn()) { 513 // Don't add cloned node to Compile::_for_merge_stores_igvn list automatically. 514 // If it is applicable, it will happen anyway when the cloned node is registered with IGVN. 515 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 516 } 517 if (n->is_ParsePredicate()) { 518 C->add_parse_predicate(n->as_ParsePredicate()); 519 } 520 if (n->is_OpaqueTemplateAssertionPredicate()) { 521 C->add_template_assertion_predicate_opaque(n->as_OpaqueTemplateAssertionPredicate()); 522 } 523 524 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 525 bs->register_potential_barrier_node(n); 526 527 n->set_idx(C->next_unique()); // Get new unique index as well 528 NOT_PRODUCT(n->_igv_idx = C->next_igv_idx()); 529 DEBUG_ONLY( n->verify_construction() ); 530 NOT_PRODUCT(nodes_created++); 531 // Do not patch over the debug_idx of a clone, because it makes it 532 // impossible to break on the clone's moment of creation. 533 //DEBUG_ONLY( n->set_debug_idx( debug_idx() ) ); 534 535 C->copy_node_notes_to(n, (Node*) this); 536 537 // MachNode clone 538 uint nopnds; 539 if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) { 540 MachNode *mach = n->as_Mach(); 541 MachNode *mthis = this->as_Mach(); 542 // Get address of _opnd_array. 543 // It should be the same offset since it is the clone of this node. 544 MachOper **from = mthis->_opnds; 545 MachOper **to = (MachOper **)((size_t)(&mach->_opnds) + 546 pointer_delta((const void*)from, 547 (const void*)(&mthis->_opnds), 1)); 548 mach->_opnds = to; 549 for ( uint i = 0; i < nopnds; ++i ) { 550 to[i] = from[i]->clone(); 551 } 552 } 553 if (this->is_MachProj()) { 554 // MachProjNodes contain register masks that may contain pointers to 555 // externally allocated memory. Make sure to use a proper constructor 556 // instead of just shallowly copying. 557 MachProjNode* mach = n->as_MachProj(); 558 MachProjNode* mthis = this->as_MachProj(); 559 new (&mach->_rout) RegMask(mthis->_rout); 560 } 561 if (n->is_Call()) { 562 // CallGenerator is linked to the original node. 563 CallGenerator* cg = n->as_Call()->generator(); 564 if (cg != nullptr) { 565 CallGenerator* cloned_cg = cg->with_call_node(n->as_Call()); 566 n->as_Call()->set_generator(cloned_cg); 567 } 568 } 569 if (n->is_SafePoint()) { 570 // Scalar replacement and macro expansion might modify the JVMState. 571 // Clone it to make sure it's not shared between SafePointNodes. 572 n->as_SafePoint()->clone_jvms(C); 573 n->as_SafePoint()->clone_replaced_nodes(); 574 } 575 if (n->is_InlineType()) { 576 C->add_inline_type(n); 577 } 578 if (n->is_LoadFlat() || n->is_StoreFlat()) { 579 C->add_flat_access(n); 580 } 581 Compile::current()->record_modified_node(n); 582 return n; // Return the clone 583 } 584 585 //---------------------------setup_is_top-------------------------------------- 586 // Call this when changing the top node, to reassert the invariants 587 // required by Node::is_top. See Compile::set_cached_top_node. 588 void Node::setup_is_top() { 589 if (this == (Node*)Compile::current()->top()) { 590 // This node has just become top. Kill its out array. 591 _outcnt = _outmax = 0; 592 _out = nullptr; // marker value for top 593 assert(is_top(), "must be top"); 594 } else { 595 if (_out == nullptr) _out = NO_OUT_ARRAY; 596 assert(!is_top(), "must not be top"); 597 } 598 } 599 600 //------------------------------~Node------------------------------------------ 601 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 602 void Node::destruct(PhaseValues* phase) { 603 Compile* compile = (phase != nullptr) ? phase->C : Compile::current(); 604 if (phase != nullptr && phase->is_IterGVN()) { 605 phase->is_IterGVN()->_worklist.remove(this); 606 } 607 // If this is the most recently created node, reclaim its index. Otherwise, 608 // record the node as dead to keep liveness information accurate. 609 if ((uint)_idx+1 == compile->unique()) { 610 compile->set_unique(compile->unique()-1); 611 } else { 612 compile->record_dead_node(_idx); 613 } 614 // Clear debug info: 615 Node_Notes* nn = compile->node_notes_at(_idx); 616 if (nn != nullptr) nn->clear(); 617 // Walk the input array, freeing the corresponding output edges 618 _cnt = _max; // forget req/prec distinction 619 uint i; 620 for( i = 0; i < _max; i++ ) { 621 set_req(i, nullptr); 622 //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim"); 623 } 624 assert(outcnt() == 0, "deleting a node must not leave a dangling use"); 625 626 if (is_macro()) { 627 compile->remove_macro_node(this); 628 } 629 if (is_expensive()) { 630 compile->remove_expensive_node(this); 631 } 632 if (is_OpaqueTemplateAssertionPredicate()) { 633 compile->remove_template_assertion_predicate_opaque(as_OpaqueTemplateAssertionPredicate()); 634 } 635 if (is_ParsePredicate()) { 636 compile->remove_parse_predicate(as_ParsePredicate()); 637 } 638 if (for_post_loop_opts_igvn()) { 639 compile->remove_from_post_loop_opts_igvn(this); 640 } 641 if (is_InlineType()) { 642 compile->remove_inline_type(this); 643 } 644 if (for_merge_stores_igvn()) { 645 compile->remove_from_merge_stores_igvn(this); 646 } 647 648 if (is_SafePoint()) { 649 as_SafePoint()->delete_replaced_nodes(); 650 651 if (is_CallStaticJava()) { 652 compile->remove_unstable_if_trap(as_CallStaticJava(), false); 653 } 654 } 655 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 656 bs->unregister_potential_barrier_node(this); 657 658 // See if the input array was allocated just prior to the object 659 int edge_size = _max*sizeof(void*); 660 int out_edge_size = _outmax*sizeof(void*); 661 char *in_array = ((char*)_in); 662 char *edge_end = in_array + edge_size; 663 char *out_array = (char*)(_out == NO_OUT_ARRAY? nullptr: _out); 664 int node_size = size_of(); 665 666 #ifdef ASSERT 667 // We will not actually delete the storage, but we'll make the node unusable. 668 compile->remove_modified_node(this); 669 *(address*)this = badAddress; // smash the C++ vtbl, probably 670 _in = _out = (Node**) badAddress; 671 _max = _cnt = _outmax = _outcnt = 0; 672 #endif 673 674 // Free the output edge array 675 if (out_edge_size > 0) { 676 compile->node_arena()->Afree(out_array, out_edge_size); 677 } 678 679 // Free the input edge array and the node itself 680 if( edge_end == (char*)this ) { 681 // It was; free the input array and object all in one hit 682 #ifndef ASSERT 683 compile->node_arena()->Afree(in_array, edge_size+node_size); 684 #endif 685 } else { 686 // Free just the input array 687 compile->node_arena()->Afree(in_array, edge_size); 688 689 // Free just the object 690 #ifndef ASSERT 691 compile->node_arena()->Afree(this, node_size); 692 #endif 693 } 694 } 695 696 // Resize input or output array to grow it to the next larger power-of-2 bigger 697 // than len. 698 void Node::resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing) { 699 Arena* arena = Compile::current()->node_arena(); 700 uint new_max = max_size; 701 if (new_max == 0) { 702 max_size = 4; 703 array = (Node**)arena->Amalloc(4 * sizeof(Node*)); 704 if (needs_clearing) { 705 array[0] = nullptr; 706 array[1] = nullptr; 707 array[2] = nullptr; 708 array[3] = nullptr; 709 } 710 return; 711 } 712 new_max = next_power_of_2(len); 713 assert(needs_clearing || (array != nullptr && array != NO_OUT_ARRAY), "out must have sensible value"); 714 array = (Node**)arena->Arealloc(array, max_size * sizeof(Node*), new_max * sizeof(Node*)); 715 if (needs_clearing) { 716 Copy::zero_to_bytes(&array[max_size], (new_max - max_size) * sizeof(Node*)); // null all new space 717 } 718 max_size = new_max; // Record new max length 719 // This assertion makes sure that Node::_max is wide enough to 720 // represent the numerical value of new_max. 721 assert(max_size > len, "int width of _max or _outmax is too small"); 722 } 723 724 //------------------------------grow------------------------------------------- 725 // Grow the input array, making space for more edges 726 void Node::grow(uint len) { 727 resize_array(_in, _max, len, true); 728 } 729 730 //-----------------------------out_grow---------------------------------------- 731 // Grow the input array, making space for more edges 732 void Node::out_grow(uint len) { 733 assert(!is_top(), "cannot grow a top node's out array"); 734 resize_array(_out, _outmax, len, false); 735 } 736 737 #ifdef ASSERT 738 //------------------------------is_dead---------------------------------------- 739 bool Node::is_dead() const { 740 // Mach and pinch point nodes may look like dead. 741 if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) ) 742 return false; 743 for( uint i = 0; i < _max; i++ ) 744 if( _in[i] != nullptr ) 745 return false; 746 return true; 747 } 748 749 bool Node::is_not_dead(const Node* n) { 750 return n == nullptr || !PhaseIterGVN::is_verify_def_use() || !(n->is_dead()); 751 } 752 753 bool Node::is_reachable_from_root() const { 754 ResourceMark rm; 755 Unique_Node_List wq; 756 wq.push((Node*)this); 757 RootNode* root = Compile::current()->root(); 758 for (uint i = 0; i < wq.size(); i++) { 759 Node* m = wq.at(i); 760 if (m == root) { 761 return true; 762 } 763 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 764 Node* u = m->fast_out(j); 765 wq.push(u); 766 } 767 } 768 return false; 769 } 770 #endif 771 772 //------------------------------is_unreachable--------------------------------- 773 bool Node::is_unreachable(PhaseIterGVN &igvn) const { 774 assert(!is_Mach(), "doesn't work with MachNodes"); 775 return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != nullptr && in(0)->is_top()); 776 } 777 778 //------------------------------add_req---------------------------------------- 779 // Add a new required input at the end 780 void Node::add_req( Node *n ) { 781 assert( is_not_dead(n), "can not use dead node"); 782 783 // Look to see if I can move precedence down one without reallocating 784 if( (_cnt >= _max) || (in(_max-1) != nullptr) ) 785 grow( _max+1 ); 786 787 // Find a precedence edge to move 788 if( in(_cnt) != nullptr ) { // Next precedence edge is busy? 789 uint i; 790 for( i=_cnt; i<_max; i++ ) 791 if( in(i) == nullptr ) // Find the null at end of prec edge list 792 break; // There must be one, since we grew the array 793 _in[i] = in(_cnt); // Move prec over, making space for req edge 794 } 795 _in[_cnt++] = n; // Stuff over old prec edge 796 if (n != nullptr) n->add_out((Node *)this); 797 Compile::current()->record_modified_node(this); 798 } 799 800 //---------------------------add_req_batch------------------------------------- 801 // Add a new required input at the end 802 void Node::add_req_batch( Node *n, uint m ) { 803 assert( is_not_dead(n), "can not use dead node"); 804 // check various edge cases 805 if ((int)m <= 1) { 806 assert((int)m >= 0, "oob"); 807 if (m != 0) add_req(n); 808 return; 809 } 810 811 // Look to see if I can move precedence down one without reallocating 812 if( (_cnt+m) > _max || _in[_max-m] ) 813 grow( _max+m ); 814 815 // Find a precedence edge to move 816 if( _in[_cnt] != nullptr ) { // Next precedence edge is busy? 817 uint i; 818 for( i=_cnt; i<_max; i++ ) 819 if( _in[i] == nullptr ) // Find the null at end of prec edge list 820 break; // There must be one, since we grew the array 821 // Slide all the precs over by m positions (assume #prec << m). 822 Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*))); 823 } 824 825 // Stuff over the old prec edges 826 for(uint i=0; i<m; i++ ) { 827 _in[_cnt++] = n; 828 } 829 830 // Insert multiple out edges on the node. 831 if (n != nullptr && !n->is_top()) { 832 for(uint i=0; i<m; i++ ) { 833 n->add_out((Node *)this); 834 } 835 } 836 Compile::current()->record_modified_node(this); 837 } 838 839 //------------------------------del_req---------------------------------------- 840 // Delete the required edge and compact the edge array 841 void Node::del_req( uint idx ) { 842 assert( idx < _cnt, "oob"); 843 assert( !VerifyHashTableKeys || _hash_lock == 0, 844 "remove node from hash table before modifying it"); 845 // First remove corresponding def-use edge 846 Node *n = in(idx); 847 if (n != nullptr) n->del_out((Node *)this); 848 _in[idx] = in(--_cnt); // Compact the array 849 // Avoid spec violation: Gap in prec edges. 850 close_prec_gap_at(_cnt); 851 Compile::current()->record_modified_node(this); 852 } 853 854 //------------------------------del_req_ordered-------------------------------- 855 // Delete the required edge and compact the edge array with preserved order 856 void Node::del_req_ordered( uint idx ) { 857 assert( idx < _cnt, "oob"); 858 assert( !VerifyHashTableKeys || _hash_lock == 0, 859 "remove node from hash table before modifying it"); 860 // First remove corresponding def-use edge 861 Node *n = in(idx); 862 if (n != nullptr) n->del_out((Node *)this); 863 if (idx < --_cnt) { // Not last edge ? 864 Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*))); 865 } 866 // Avoid spec violation: Gap in prec edges. 867 close_prec_gap_at(_cnt); 868 Compile::current()->record_modified_node(this); 869 } 870 871 //------------------------------ins_req---------------------------------------- 872 // Insert a new required input at the end 873 void Node::ins_req( uint idx, Node *n ) { 874 assert( is_not_dead(n), "can not use dead node"); 875 add_req(nullptr); // Make space 876 assert( idx < _max, "Must have allocated enough space"); 877 // Slide over 878 if(_cnt-idx-1 > 0) { 879 Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*))); 880 } 881 _in[idx] = n; // Stuff over old required edge 882 if (n != nullptr) n->add_out((Node *)this); // Add reciprocal def-use edge 883 Compile::current()->record_modified_node(this); 884 } 885 886 //-----------------------------find_edge--------------------------------------- 887 int Node::find_edge(Node* n) { 888 for (uint i = 0; i < len(); i++) { 889 if (_in[i] == n) return i; 890 } 891 return -1; 892 } 893 894 //----------------------------replace_edge------------------------------------- 895 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) { 896 if (old == neww) return 0; // nothing to do 897 uint nrep = 0; 898 for (uint i = 0; i < len(); i++) { 899 if (in(i) == old) { 900 if (i < req()) { 901 if (gvn != nullptr) { 902 set_req_X(i, neww, gvn); 903 } else { 904 set_req(i, neww); 905 } 906 } else { 907 assert(gvn == nullptr || gvn->is_IterGVN() == nullptr, "no support for igvn here"); 908 assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx); 909 set_prec(i, neww); 910 } 911 nrep++; 912 } 913 } 914 return nrep; 915 } 916 917 /** 918 * Replace input edges in the range pointing to 'old' node. 919 */ 920 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) { 921 if (old == neww) return 0; // nothing to do 922 uint nrep = 0; 923 for (int i = start; i < end; i++) { 924 if (in(i) == old) { 925 set_req_X(i, neww, gvn); 926 nrep++; 927 } 928 } 929 return nrep; 930 } 931 932 //-------------------------disconnect_inputs----------------------------------- 933 // null out all inputs to eliminate incoming Def-Use edges. 934 void Node::disconnect_inputs(Compile* C) { 935 // the layout of Node::_in 936 // r: a required input, null is allowed 937 // p: a precedence, null values are all at the end 938 // ----------------------------------- 939 // |r|...|r|p|...|p|null|...|null| 940 // | | 941 // req() len() 942 // ----------------------------------- 943 for (uint i = 0; i < req(); ++i) { 944 if (in(i) != nullptr) { 945 set_req(i, nullptr); 946 } 947 } 948 949 // Remove precedence edges if any exist 950 // Note: Safepoints may have precedence edges, even during parsing 951 for (uint i = len(); i > req(); ) { 952 rm_prec(--i); // no-op if _in[i] is null 953 } 954 955 #ifdef ASSERT 956 // sanity check 957 for (uint i = 0; i < len(); ++i) { 958 assert(_in[i] == nullptr, "disconnect_inputs() failed!"); 959 } 960 #endif 961 962 // Node::destruct requires all out edges be deleted first 963 // DEBUG_ONLY(destruct();) // no reuse benefit expected 964 C->record_dead_node(_idx); 965 } 966 967 //-----------------------------uncast--------------------------------------- 968 // %%% Temporary, until we sort out CheckCastPP vs. CastPP. 969 // Strip away casting. (It is depth-limited.) 970 // Optionally, keep casts with dependencies. 971 Node* Node::uncast(bool keep_deps) const { 972 // Should be inline: 973 //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this; 974 if (is_ConstraintCast()) { 975 return uncast_helper(this, keep_deps); 976 } else { 977 return (Node*) this; 978 } 979 } 980 981 // Find out of current node that matches opcode. 982 Node* Node::find_out_with(int opcode) { 983 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 984 Node* use = fast_out(i); 985 if (use->Opcode() == opcode) { 986 return use; 987 } 988 } 989 return nullptr; 990 } 991 992 // Return true if the current node has an out that matches opcode. 993 bool Node::has_out_with(int opcode) { 994 return (find_out_with(opcode) != nullptr); 995 } 996 997 // Return true if the current node has an out that matches any of the opcodes. 998 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) { 999 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 1000 int opcode = fast_out(i)->Opcode(); 1001 if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) { 1002 return true; 1003 } 1004 } 1005 return false; 1006 } 1007 1008 1009 //---------------------------uncast_helper------------------------------------- 1010 Node* Node::uncast_helper(const Node* p, bool keep_deps) { 1011 #ifdef ASSERT 1012 // If we end up traversing more nodes than we actually have, 1013 // it is definitely an infinite loop. 1014 uint max_depth = Compile::current()->unique(); 1015 uint depth_count = 0; 1016 const Node* orig_p = p; 1017 #endif 1018 1019 while (true) { 1020 #ifdef ASSERT 1021 if (depth_count++ >= max_depth) { 1022 orig_p->dump(4); 1023 if (p != orig_p) { 1024 p->dump(1); 1025 } 1026 fatal("infinite loop in Node::uncast_helper"); 1027 } 1028 #endif 1029 if (p == nullptr || p->req() != 2) { 1030 break; 1031 } else if (p->is_ConstraintCast()) { 1032 if (keep_deps && p->as_ConstraintCast()->carry_dependency()) { 1033 break; // stop at casts with dependencies 1034 } 1035 p = p->in(1); 1036 } else { 1037 break; 1038 } 1039 } 1040 return (Node*) p; 1041 } 1042 1043 //------------------------------add_prec--------------------------------------- 1044 // Add a new precedence input. Precedence inputs are unordered, with 1045 // duplicates removed and nulls packed down at the end. 1046 void Node::add_prec( Node *n ) { 1047 assert( is_not_dead(n), "can not use dead node"); 1048 1049 // Check for null at end 1050 if( _cnt >= _max || in(_max-1) ) 1051 grow( _max+1 ); 1052 1053 // Find a precedence edge to move 1054 uint i = _cnt; 1055 while( in(i) != nullptr ) { 1056 if (in(i) == n) return; // Avoid spec violation: duplicated prec edge. 1057 i++; 1058 } 1059 _in[i] = n; // Stuff prec edge over null 1060 if ( n != nullptr) n->add_out((Node *)this); // Add mirror edge 1061 1062 #ifdef ASSERT 1063 while ((++i)<_max) { assert(_in[i] == nullptr, "spec violation: Gap in prec edges (node %d)", _idx); } 1064 #endif 1065 Compile::current()->record_modified_node(this); 1066 } 1067 1068 //------------------------------rm_prec---------------------------------------- 1069 // Remove a precedence input. Precedence inputs are unordered, with 1070 // duplicates removed and nulls packed down at the end. 1071 void Node::rm_prec( uint j ) { 1072 assert(j < _max, "oob: i=%d, _max=%d", j, _max); 1073 assert(j >= _cnt, "not a precedence edge"); 1074 if (_in[j] == nullptr) return; // Avoid spec violation: Gap in prec edges. 1075 _in[j]->del_out((Node *)this); 1076 close_prec_gap_at(j); 1077 Compile::current()->record_modified_node(this); 1078 } 1079 1080 //------------------------------size_of---------------------------------------- 1081 uint Node::size_of() const { return sizeof(*this); } 1082 1083 //------------------------------ideal_reg-------------------------------------- 1084 uint Node::ideal_reg() const { return 0; } 1085 1086 //------------------------------jvms------------------------------------------- 1087 JVMState* Node::jvms() const { return nullptr; } 1088 1089 #ifdef ASSERT 1090 //------------------------------jvms------------------------------------------- 1091 bool Node::verify_jvms(const JVMState* using_jvms) const { 1092 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1093 if (jvms == using_jvms) return true; 1094 } 1095 return false; 1096 } 1097 1098 //------------------------------init_NodeProperty------------------------------ 1099 void Node::init_NodeProperty() { 1100 assert(_max_classes <= max_juint, "too many NodeProperty classes"); 1101 assert(max_flags() <= max_juint, "too many NodeProperty flags"); 1102 } 1103 1104 //-----------------------------max_flags--------------------------------------- 1105 juint Node::max_flags() { 1106 return (PD::_last_flag << 1) - 1; // allow flags combination 1107 } 1108 #endif 1109 1110 //------------------------------format----------------------------------------- 1111 // Print as assembly 1112 void Node::format( PhaseRegAlloc *, outputStream *st ) const {} 1113 //------------------------------emit------------------------------------------- 1114 // Emit bytes using C2_MacroAssembler 1115 void Node::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {} 1116 //------------------------------size------------------------------------------- 1117 // Size of instruction in bytes 1118 uint Node::size(PhaseRegAlloc *ra_) const { return 0; } 1119 1120 //------------------------------CFG Construction------------------------------- 1121 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root, 1122 // Goto and Return. 1123 const Node *Node::is_block_proj() const { return nullptr; } 1124 1125 // Minimum guaranteed type 1126 const Type *Node::bottom_type() const { return Type::BOTTOM; } 1127 1128 1129 //------------------------------raise_bottom_type------------------------------ 1130 // Get the worst-case Type output for this Node. 1131 void Node::raise_bottom_type(const Type* new_type) { 1132 if (is_Type()) { 1133 TypeNode *n = this->as_Type(); 1134 if (VerifyAliases) { 1135 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1136 } 1137 n->set_type(new_type); 1138 } else if (is_Load()) { 1139 LoadNode *n = this->as_Load(); 1140 if (VerifyAliases) { 1141 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1142 } 1143 n->set_type(new_type); 1144 } 1145 } 1146 1147 //------------------------------Identity--------------------------------------- 1148 // Return a node that the given node is equivalent to. 1149 Node* Node::Identity(PhaseGVN* phase) { 1150 return this; // Default to no identities 1151 } 1152 1153 //------------------------------Value------------------------------------------ 1154 // Compute a new Type for a node using the Type of the inputs. 1155 const Type* Node::Value(PhaseGVN* phase) const { 1156 return bottom_type(); // Default to worst-case Type 1157 } 1158 1159 //------------------------------Ideal------------------------------------------ 1160 // 1161 // 'Idealize' the graph rooted at this Node. 1162 // 1163 // In order to be efficient and flexible there are some subtle invariants 1164 // these Ideal calls need to hold. Running with '-XX:VerifyIterativeGVN=1' checks 1165 // these invariants, although its too slow to have on by default. If you are 1166 // hacking an Ideal call, be sure to test with '-XX:VerifyIterativeGVN=1' 1167 // 1168 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this' 1169 // pointer. If ANY change is made, it must return the root of the reshaped 1170 // graph - even if the root is the same Node. Example: swapping the inputs 1171 // to an AddINode gives the same answer and same root, but you still have to 1172 // return the 'this' pointer instead of null. 1173 // 1174 // You cannot return an OLD Node, except for the 'this' pointer. Use the 1175 // Identity call to return an old Node; basically if Identity can find 1176 // another Node have the Ideal call make no change and return null. 1177 // Example: AddINode::Ideal must check for add of zero; in this case it 1178 // returns null instead of doing any graph reshaping. 1179 // 1180 // You cannot modify any old Nodes except for the 'this' pointer. Due to 1181 // sharing there may be other users of the old Nodes relying on their current 1182 // semantics. Modifying them will break the other users. 1183 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for 1184 // "X+3" unchanged in case it is shared. 1185 // 1186 // If you modify the 'this' pointer's inputs, you should use 1187 // 'set_req'. If you are making a new Node (either as the new root or 1188 // some new internal piece) you may use 'init_req' to set the initial 1189 // value. You can make a new Node with either 'new' or 'clone'. In 1190 // either case, def-use info is correctly maintained. 1191 // 1192 // Example: reshape "(X+3)+4" into "X+7": 1193 // set_req(1, in(1)->in(1)); 1194 // set_req(2, phase->intcon(7)); 1195 // return this; 1196 // Example: reshape "X*4" into "X<<2" 1197 // return new LShiftINode(in(1), phase->intcon(2)); 1198 // 1199 // You must call 'phase->transform(X)' on any new Nodes X you make, except 1200 // for the returned root node. Example: reshape "X*31" with "(X<<5)-X". 1201 // Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5))); 1202 // return new AddINode(shift, in(1)); 1203 // 1204 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'. 1205 // These forms are faster than 'phase->transform(new ConNode())' and Do 1206 // The Right Thing with def-use info. 1207 // 1208 // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped 1209 // graph uses the 'this' Node it must be the root. If you want a Node with 1210 // the same Opcode as the 'this' pointer use 'clone'. 1211 // 1212 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) { 1213 return nullptr; // Default to being Ideal already 1214 } 1215 1216 // Some nodes have specific Ideal subgraph transformations only if they are 1217 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1218 // for the transformations to happen. 1219 bool Node::has_special_unique_user() const { 1220 assert(outcnt() == 1, "match only for unique out"); 1221 Node* n = unique_out(); 1222 int op = Opcode(); 1223 if (this->is_Store()) { 1224 // Condition for back-to-back stores folding. 1225 return n->Opcode() == op && n->in(MemNode::Memory) == this; 1226 } else if ((this->is_Load() || this->is_DecodeN() || this->is_Phi()) && n->Opcode() == Op_MemBarAcquire) { 1227 // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input 1228 return true; 1229 } else if (this->is_Load() && n->is_Move()) { 1230 // Condition for MoveX2Y (LoadX mem) => LoadY mem 1231 return true; 1232 } else if (op == Op_AddL) { 1233 // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) 1234 return n->Opcode() == Op_ConvL2I && n->in(1) == this; 1235 } else if (op == Op_SubI || op == Op_SubL) { 1236 // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y) 1237 return n->Opcode() == op && n->in(2) == this; 1238 } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) { 1239 // See IfProjNode::Identity() 1240 return true; 1241 } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) { 1242 // See IfNode::fold_compares 1243 return true; 1244 } else if (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) { 1245 // Condition for XorVMask(VectorMaskCmp(x,y,cond), MaskAll(true)) ==> VectorMaskCmp(x,y,ncond) 1246 return true; 1247 } else { 1248 return false; 1249 } 1250 }; 1251 1252 //--------------------------find_exact_control--------------------------------- 1253 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1254 Node* Node::find_exact_control(Node* ctrl) { 1255 if (ctrl == nullptr && this->is_Region()) 1256 ctrl = this->as_Region()->is_copy(); 1257 1258 if (ctrl != nullptr && ctrl->is_CatchProj()) { 1259 if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index) 1260 ctrl = ctrl->in(0); 1261 if (ctrl != nullptr && !ctrl->is_top()) 1262 ctrl = ctrl->in(0); 1263 } 1264 1265 if (ctrl != nullptr && ctrl->is_Proj()) 1266 ctrl = ctrl->in(0); 1267 1268 return ctrl; 1269 } 1270 1271 //--------------------------dominates------------------------------------------ 1272 // Helper function for MemNode::all_controls_dominate(). 1273 // Check if 'this' control node dominates or equal to 'sub' control node. 1274 // We already know that if any path back to Root or Start reaches 'this', 1275 // then all paths so, so this is a simple search for one example, 1276 // not an exhaustive search for a counterexample. 1277 Node::DomResult Node::dominates(Node* sub, Node_List &nlist) { 1278 assert(this->is_CFG(), "expecting control"); 1279 assert(sub != nullptr && sub->is_CFG(), "expecting control"); 1280 1281 // detect dead cycle without regions 1282 int iterations_without_region_limit = DominatorSearchLimit; 1283 1284 Node* orig_sub = sub; 1285 Node* dom = this; 1286 bool met_dom = false; 1287 nlist.clear(); 1288 1289 // Walk 'sub' backward up the chain to 'dom', watching for regions. 1290 // After seeing 'dom', continue up to Root or Start. 1291 // If we hit a region (backward split point), it may be a loop head. 1292 // Keep going through one of the region's inputs. If we reach the 1293 // same region again, go through a different input. Eventually we 1294 // will either exit through the loop head, or give up. 1295 // (If we get confused, break out and return a conservative 'false'.) 1296 while (sub != nullptr) { 1297 if (sub->is_top()) { 1298 // Conservative answer for dead code. 1299 return DomResult::EncounteredDeadCode; 1300 } 1301 if (sub == dom) { 1302 if (nlist.size() == 0) { 1303 // No Region nodes except loops were visited before and the EntryControl 1304 // path was taken for loops: it did not walk in a cycle. 1305 return DomResult::Dominate; 1306 } else if (met_dom) { 1307 break; // already met before: walk in a cycle 1308 } else { 1309 // Region nodes were visited. Continue walk up to Start or Root 1310 // to make sure that it did not walk in a cycle. 1311 met_dom = true; // first time meet 1312 iterations_without_region_limit = DominatorSearchLimit; // Reset 1313 } 1314 } 1315 if (sub->is_Start() || sub->is_Root()) { 1316 // Success if we met 'dom' along a path to Start or Root. 1317 // We assume there are no alternative paths that avoid 'dom'. 1318 // (This assumption is up to the caller to ensure!) 1319 return met_dom ? DomResult::Dominate : DomResult::NotDominate; 1320 } 1321 Node* up = sub->in(0); 1322 // Normalize simple pass-through regions and projections: 1323 up = sub->find_exact_control(up); 1324 // If sub == up, we found a self-loop. Try to push past it. 1325 if (sub == up && sub->is_Loop()) { 1326 // Take loop entry path on the way up to 'dom'. 1327 up = sub->in(1); // in(LoopNode::EntryControl); 1328 } else if (sub == up && sub->is_Region() && sub->req() == 2) { 1329 // Take in(1) path on the way up to 'dom' for regions with only one input 1330 up = sub->in(1); 1331 } else if (sub == up && sub->is_Region()) { 1332 // Try both paths for Regions with 2 input paths (it may be a loop head). 1333 // It could give conservative 'false' answer without information 1334 // which region's input is the entry path. 1335 iterations_without_region_limit = DominatorSearchLimit; // Reset 1336 1337 bool region_was_visited_before = false; 1338 // Was this Region node visited before? 1339 // If so, we have reached it because we accidentally took a 1340 // loop-back edge from 'sub' back into the body of the loop, 1341 // and worked our way up again to the loop header 'sub'. 1342 // So, take the first unexplored path on the way up to 'dom'. 1343 for (int j = nlist.size() - 1; j >= 0; j--) { 1344 intptr_t ni = (intptr_t)nlist.at(j); 1345 Node* visited = (Node*)(ni & ~1); 1346 bool visited_twice_already = ((ni & 1) != 0); 1347 if (visited == sub) { 1348 if (visited_twice_already) { 1349 // Visited 2 paths, but still stuck in loop body. Give up. 1350 return DomResult::NotDominate; 1351 } 1352 // The Region node was visited before only once. 1353 // (We will repush with the low bit set, below.) 1354 nlist.remove(j); 1355 // We will find a new edge and re-insert. 1356 region_was_visited_before = true; 1357 break; 1358 } 1359 } 1360 1361 // Find an incoming edge which has not been seen yet; walk through it. 1362 assert(up == sub, ""); 1363 uint skip = region_was_visited_before ? 1 : 0; 1364 for (uint i = 1; i < sub->req(); i++) { 1365 Node* in = sub->in(i); 1366 if (in != nullptr && !in->is_top() && in != sub) { 1367 if (skip == 0) { 1368 up = in; 1369 break; 1370 } 1371 --skip; // skip this nontrivial input 1372 } 1373 } 1374 1375 // Set 0 bit to indicate that both paths were taken. 1376 nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0))); 1377 } 1378 1379 if (up == sub) { 1380 break; // some kind of tight cycle 1381 } 1382 if (up == orig_sub && met_dom) { 1383 // returned back after visiting 'dom' 1384 break; // some kind of cycle 1385 } 1386 if (--iterations_without_region_limit < 0) { 1387 break; // dead cycle 1388 } 1389 sub = up; 1390 } 1391 1392 // Did not meet Root or Start node in pred. chain. 1393 return DomResult::NotDominate; 1394 } 1395 1396 //------------------------------remove_dead_region----------------------------- 1397 // This control node is dead. Follow the subgraph below it making everything 1398 // using it dead as well. This will happen normally via the usual IterGVN 1399 // worklist but this call is more efficient. Do not update use-def info 1400 // inside the dead region, just at the borders. 1401 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) { 1402 // Con's are a popular node to re-hit in the hash table again. 1403 if( dead->is_Con() ) return; 1404 1405 ResourceMark rm; 1406 Node_List nstack; 1407 VectorSet dead_set; // notify uses only once 1408 1409 Node *top = igvn->C->top(); 1410 nstack.push(dead); 1411 bool has_irreducible_loop = igvn->C->has_irreducible_loop(); 1412 1413 while (nstack.size() > 0) { 1414 dead = nstack.pop(); 1415 if (!dead_set.test_set(dead->_idx)) { 1416 // If dead has any live uses, those are now still attached. Notify them before we lose them. 1417 igvn->add_users_to_worklist(dead); 1418 } 1419 if (dead->Opcode() == Op_SafePoint) { 1420 dead->as_SafePoint()->disconnect_from_root(igvn); 1421 } 1422 if (dead->outcnt() > 0) { 1423 // Keep dead node on stack until all uses are processed. 1424 nstack.push(dead); 1425 // For all Users of the Dead... ;-) 1426 for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) { 1427 Node* use = dead->last_out(k); 1428 igvn->hash_delete(use); // Yank from hash table prior to mod 1429 if (use->in(0) == dead) { // Found another dead node 1430 assert (!use->is_Con(), "Control for Con node should be Root node."); 1431 use->set_req(0, top); // Cut dead edge to prevent processing 1432 nstack.push(use); // the dead node again. 1433 } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop 1434 use->is_Loop() && !use->is_Root() && // Don't kill Root (RootNode extends LoopNode) 1435 use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead 1436 use->set_req(LoopNode::EntryControl, top); // Cut dead edge to prevent processing 1437 use->set_req(0, top); // Cut self edge 1438 nstack.push(use); 1439 } else { // Else found a not-dead user 1440 // Dead if all inputs are top or null 1441 bool dead_use = !use->is_Root(); // Keep empty graph alive 1442 for (uint j = 1; j < use->req(); j++) { 1443 Node* in = use->in(j); 1444 if (in == dead) { // Turn all dead inputs into TOP 1445 use->set_req(j, top); 1446 } else if (in != nullptr && !in->is_top()) { 1447 dead_use = false; 1448 } 1449 } 1450 if (dead_use) { 1451 if (use->is_Region()) { 1452 use->set_req(0, top); // Cut self edge 1453 } 1454 nstack.push(use); 1455 } else { 1456 igvn->_worklist.push(use); 1457 } 1458 } 1459 // Refresh the iterator, since any number of kills might have happened. 1460 k = dead->last_outs(kmin); 1461 } 1462 } else { // (dead->outcnt() == 0) 1463 // Done with outputs. 1464 igvn->hash_delete(dead); 1465 igvn->_worklist.remove(dead); 1466 igvn->set_type(dead, Type::TOP); 1467 // Kill all inputs to the dead guy 1468 for (uint i=0; i < dead->req(); i++) { 1469 Node *n = dead->in(i); // Get input to dead guy 1470 if (n != nullptr && !n->is_top()) { // Input is valid? 1471 dead->set_req(i, top); // Smash input away 1472 if (n->outcnt() == 0) { // Input also goes dead? 1473 if (!n->is_Con()) 1474 nstack.push(n); // Clear it out as well 1475 } else if (n->outcnt() == 1 && 1476 n->has_special_unique_user()) { 1477 igvn->add_users_to_worklist( n ); 1478 } else if (n->outcnt() <= 2 && n->is_Store()) { 1479 // Push store's uses on worklist to enable folding optimization for 1480 // store/store and store/load to the same address. 1481 // The restriction (outcnt() <= 2) is the same as in set_req_X() 1482 // and remove_globally_dead_node(). 1483 igvn->add_users_to_worklist( n ); 1484 } else if (dead->is_data_proj_of_pure_function(n)) { 1485 igvn->_worklist.push(n); 1486 } else { 1487 BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n); 1488 } 1489 } 1490 } 1491 igvn->C->remove_useless_node(dead); 1492 } // (dead->outcnt() == 0) 1493 } // while (nstack.size() > 0) for outputs 1494 return; 1495 } 1496 1497 //------------------------------remove_dead_region----------------------------- 1498 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) { 1499 Node *n = in(0); 1500 if( !n ) return false; 1501 // Lost control into this guy? I.e., it became unreachable? 1502 // Aggressively kill all unreachable code. 1503 if (can_reshape && n->is_top()) { 1504 kill_dead_code(this, phase->is_IterGVN()); 1505 return false; // Node is dead. 1506 } 1507 1508 if( n->is_Region() && n->as_Region()->is_copy() ) { 1509 Node *m = n->nonnull_req(); 1510 set_req(0, m); 1511 return true; 1512 } 1513 return false; 1514 } 1515 1516 //------------------------------hash------------------------------------------- 1517 // Hash function over Nodes. 1518 uint Node::hash() const { 1519 uint sum = 0; 1520 for( uint i=0; i<_cnt; i++ ) // Add in all inputs 1521 sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded nulls 1522 return (sum>>2) + _cnt + Opcode(); 1523 } 1524 1525 //------------------------------cmp-------------------------------------------- 1526 // Compare special parts of simple Nodes 1527 bool Node::cmp( const Node &n ) const { 1528 return true; // Must be same 1529 } 1530 1531 //------------------------------rematerialize----------------------------------- 1532 // Should we clone rather than spill this instruction? 1533 bool Node::rematerialize() const { 1534 if ( is_Mach() ) 1535 return this->as_Mach()->rematerialize(); 1536 else 1537 return (_flags & Flag_rematerialize) != 0; 1538 } 1539 1540 //------------------------------needs_anti_dependence_check--------------------- 1541 // Nodes which use memory without consuming it, hence need antidependences. 1542 bool Node::needs_anti_dependence_check() const { 1543 if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) { 1544 return false; 1545 } 1546 return in(1)->bottom_type()->has_memory(); 1547 } 1548 1549 // Get an integer constant from a ConNode (or CastIINode). 1550 // Return a default value if there is no apparent constant here. 1551 const TypeInt* Node::find_int_type() const { 1552 if (this->is_Type()) { 1553 return this->as_Type()->type()->isa_int(); 1554 } else if (this->is_Con()) { 1555 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1556 return this->bottom_type()->isa_int(); 1557 } 1558 return nullptr; 1559 } 1560 1561 const TypeInteger* Node::find_integer_type(BasicType bt) const { 1562 if (this->is_Type()) { 1563 return this->as_Type()->type()->isa_integer(bt); 1564 } else if (this->is_Con()) { 1565 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1566 return this->bottom_type()->isa_integer(bt); 1567 } 1568 return nullptr; 1569 } 1570 1571 // Get a pointer constant from a ConstNode. 1572 // Returns the constant if it is a pointer ConstNode 1573 intptr_t Node::get_ptr() const { 1574 assert( Opcode() == Op_ConP, "" ); 1575 return ((ConPNode*)this)->type()->is_ptr()->get_con(); 1576 } 1577 1578 // Get a narrow oop constant from a ConNNode. 1579 intptr_t Node::get_narrowcon() const { 1580 assert( Opcode() == Op_ConN, "" ); 1581 return ((ConNNode*)this)->type()->is_narrowoop()->get_con(); 1582 } 1583 1584 // Get a long constant from a ConNode. 1585 // Return a default value if there is no apparent constant here. 1586 const TypeLong* Node::find_long_type() const { 1587 if (this->is_Type()) { 1588 return this->as_Type()->type()->isa_long(); 1589 } else if (this->is_Con()) { 1590 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1591 return this->bottom_type()->isa_long(); 1592 } 1593 return nullptr; 1594 } 1595 1596 1597 /** 1598 * Return a ptr type for nodes which should have it. 1599 */ 1600 const TypePtr* Node::get_ptr_type() const { 1601 const TypePtr* tp = this->bottom_type()->make_ptr(); 1602 #ifdef ASSERT 1603 if (tp == nullptr) { 1604 this->dump(1); 1605 assert((tp != nullptr), "unexpected node type"); 1606 } 1607 #endif 1608 return tp; 1609 } 1610 1611 // Get a double constant from a ConstNode. 1612 // Returns the constant if it is a double ConstNode 1613 jdouble Node::getd() const { 1614 assert( Opcode() == Op_ConD, "" ); 1615 return ((ConDNode*)this)->type()->is_double_constant()->getd(); 1616 } 1617 1618 // Get a float constant from a ConstNode. 1619 // Returns the constant if it is a float ConstNode 1620 jfloat Node::getf() const { 1621 assert( Opcode() == Op_ConF, "" ); 1622 return ((ConFNode*)this)->type()->is_float_constant()->getf(); 1623 } 1624 1625 // Get a half float constant from a ConstNode. 1626 // Returns the constant if it is a float ConstNode 1627 jshort Node::geth() const { 1628 assert( Opcode() == Op_ConH, "" ); 1629 return ((ConHNode*)this)->type()->is_half_float_constant()->geth(); 1630 } 1631 1632 #ifndef PRODUCT 1633 1634 // Call this from debugger: 1635 Node* old_root() { 1636 Matcher* matcher = Compile::current()->matcher(); 1637 if (matcher != nullptr) { 1638 Node* new_root = Compile::current()->root(); 1639 Node* old_root = matcher->find_old_node(new_root); 1640 if (old_root != nullptr) { 1641 return old_root; 1642 } 1643 } 1644 tty->print("old_root: not found.\n"); 1645 return nullptr; 1646 } 1647 1648 // BFS traverse all reachable nodes from start, call callback on them 1649 template <typename Callback> 1650 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) { 1651 Unique_Mixed_Node_List worklist; 1652 worklist.add(start); 1653 for (uint i = 0; i < worklist.size(); i++) { 1654 Node* n = worklist[i]; 1655 callback(n); 1656 for (uint i = 0; i < n->len(); i++) { 1657 if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) { 1658 // If only_ctrl is set: Add regions, the root node, or control inputs only 1659 worklist.add(n->in(i)); 1660 } 1661 } 1662 if (traverse_output && !only_ctrl) { 1663 for (uint i = 0; i < n->outcnt(); i++) { 1664 worklist.add(n->raw_out(i)); 1665 } 1666 } 1667 } 1668 } 1669 1670 // BFS traverse from start, return node with idx 1671 static Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) { 1672 ResourceMark rm; 1673 Node* result = nullptr; 1674 auto callback = [&] (Node* n) { 1675 if (n->_idx == idx) { 1676 if (result != nullptr) { 1677 tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n", 1678 (uintptr_t)result, (uintptr_t)n, idx); 1679 } 1680 result = n; 1681 } 1682 }; 1683 visit_nodes(start, callback, traverse_output, only_ctrl); 1684 return result; 1685 } 1686 1687 static int node_idx_cmp(const Node** n1, const Node** n2) { 1688 return (*n1)->_idx - (*n2)->_idx; 1689 } 1690 1691 static void find_nodes_by_name(Node* start, const char* name) { 1692 ResourceMark rm; 1693 GrowableArray<const Node*> ns; 1694 auto callback = [&] (const Node* n) { 1695 if (StringUtils::is_star_match(name, n->Name())) { 1696 ns.push(n); 1697 } 1698 }; 1699 visit_nodes(start, callback, true, false); 1700 ns.sort(node_idx_cmp); 1701 for (int i = 0; i < ns.length(); i++) { 1702 ns.at(i)->dump(); 1703 } 1704 } 1705 1706 static void find_nodes_by_dump(Node* start, const char* pattern) { 1707 ResourceMark rm; 1708 GrowableArray<const Node*> ns; 1709 auto callback = [&] (const Node* n) { 1710 stringStream stream; 1711 n->dump("", false, &stream); 1712 if (StringUtils::is_star_match(pattern, stream.base())) { 1713 ns.push(n); 1714 } 1715 }; 1716 visit_nodes(start, callback, true, false); 1717 ns.sort(node_idx_cmp); 1718 for (int i = 0; i < ns.length(); i++) { 1719 ns.at(i)->dump(); 1720 } 1721 } 1722 1723 // call from debugger: find node with name pattern in new/current graph 1724 // name can contain "*" in match pattern to match any characters 1725 // the matching is case insensitive 1726 void find_nodes_by_name(const char* name) { 1727 Node* root = Compile::current()->root(); 1728 find_nodes_by_name(root, name); 1729 } 1730 1731 // call from debugger: find node with name pattern in old graph 1732 // name can contain "*" in match pattern to match any characters 1733 // the matching is case insensitive 1734 void find_old_nodes_by_name(const char* name) { 1735 Node* root = old_root(); 1736 find_nodes_by_name(root, name); 1737 } 1738 1739 // call from debugger: find node with dump pattern in new/current graph 1740 // can contain "*" in match pattern to match any characters 1741 // the matching is case insensitive 1742 void find_nodes_by_dump(const char* pattern) { 1743 Node* root = Compile::current()->root(); 1744 find_nodes_by_dump(root, pattern); 1745 } 1746 1747 // call from debugger: find node with name pattern in old graph 1748 // can contain "*" in match pattern to match any characters 1749 // the matching is case insensitive 1750 void find_old_nodes_by_dump(const char* pattern) { 1751 Node* root = old_root(); 1752 find_nodes_by_dump(root, pattern); 1753 } 1754 1755 // Call this from debugger, search in same graph as n: 1756 Node* find_node(Node* n, const int idx) { 1757 return n->find(idx); 1758 } 1759 1760 // Call this from debugger, search in new nodes: 1761 Node* find_node(const int idx) { 1762 return Compile::current()->root()->find(idx); 1763 } 1764 1765 // Call this from debugger, search in old nodes: 1766 Node* find_old_node(const int idx) { 1767 Node* root = old_root(); 1768 return (root == nullptr) ? nullptr : root->find(idx); 1769 } 1770 1771 // Call this from debugger, search in same graph as n: 1772 Node* find_ctrl(Node* n, const int idx) { 1773 return n->find_ctrl(idx); 1774 } 1775 1776 // Call this from debugger, search in new nodes: 1777 Node* find_ctrl(const int idx) { 1778 return Compile::current()->root()->find_ctrl(idx); 1779 } 1780 1781 // Call this from debugger, search in old nodes: 1782 Node* find_old_ctrl(const int idx) { 1783 Node* root = old_root(); 1784 return (root == nullptr) ? nullptr : root->find_ctrl(idx); 1785 } 1786 1787 //------------------------------find_ctrl-------------------------------------- 1788 // Find an ancestor to this node in the control history with given _idx 1789 Node* Node::find_ctrl(int idx) { 1790 return find(idx, true); 1791 } 1792 1793 //------------------------------find------------------------------------------- 1794 // Tries to find the node with the index |idx| starting from this node. If idx is negative, 1795 // the search also includes forward (out) edges. Returns null if not found. 1796 // If only_ctrl is set, the search will only be done on control nodes. Returns null if 1797 // not found or if the node to be found is not a control node (search will not find it). 1798 Node* Node::find(const int idx, bool only_ctrl) { 1799 ResourceMark rm; 1800 return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl); 1801 } 1802 1803 class PrintBFS { 1804 public: 1805 PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options, outputStream* st, const frame* fr) 1806 : _start(start), _max_distance(max_distance), _target(target), _options(options), _output(st), _frame(fr), 1807 _dcc(this), _info_uid(cmpkey, hashkey) {} 1808 1809 void run(); 1810 private: 1811 // pipeline steps 1812 bool configure(); 1813 void collect(); 1814 void select(); 1815 void select_all(); 1816 void select_all_paths(); 1817 void select_shortest_path(); 1818 void sort(); 1819 void print(); 1820 1821 // inputs 1822 const Node* _start; 1823 const int _max_distance; 1824 const Node* _target; 1825 const char* _options; 1826 outputStream* _output; 1827 const frame* _frame; 1828 1829 // options 1830 bool _traverse_inputs = false; 1831 bool _traverse_outputs = false; 1832 struct Filter { 1833 bool _control = false; 1834 bool _memory = false; 1835 bool _data = false; 1836 bool _mixed = false; 1837 bool _other = false; 1838 bool is_empty() const { 1839 return !(_control || _memory || _data || _mixed || _other); 1840 } 1841 void set_all() { 1842 _control = true; 1843 _memory = true; 1844 _data = true; 1845 _mixed = true; 1846 _other = true; 1847 } 1848 // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes 1849 // are considered to have control. 1850 bool accepts(const Node* n) { 1851 const Type* t = n->bottom_type(); 1852 return ( _data && t->has_category(Type::Category::Data) ) || 1853 ( _memory && t->has_category(Type::Category::Memory) ) || 1854 ( _mixed && t->has_category(Type::Category::Mixed) ) || 1855 ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) || 1856 ( _other && t->has_category(Type::Category::Other) ); 1857 } 1858 }; 1859 Filter _filter_visit; 1860 Filter _filter_boundary; 1861 bool _sort_idx = false; 1862 bool _all_paths = false; 1863 bool _use_color = false; 1864 bool _print_blocks = false; 1865 bool _print_old = false; 1866 bool _dump_only = false; 1867 bool _print_igv = false; 1868 1869 void print_options_help(bool print_examples); 1870 bool parse_options(); 1871 1872 public: 1873 class DumpConfigColored : public Node::DumpConfig { 1874 public: 1875 DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {}; 1876 virtual void pre_dump(outputStream* st, const Node* n); 1877 virtual void post_dump(outputStream* st); 1878 private: 1879 PrintBFS* _bfs; 1880 }; 1881 private: 1882 DumpConfigColored _dcc; 1883 1884 // node info 1885 static Node* old_node(const Node* n); // mach node -> prior IR node 1886 void print_node_idx(const Node* n); 1887 void print_block_id(const Block* b); 1888 void print_node_block(const Node* n); // _pre_order, head idx, _idom, _dom_depth 1889 1890 // traversal data structures 1891 GrowableArray<const Node*> _worklist; // BFS queue 1892 void maybe_traverse(const Node* src, const Node* dst); 1893 1894 // node info annotation 1895 class Info { 1896 public: 1897 Info() : Info(nullptr, 0) {}; 1898 Info(const Node* node, int distance) 1899 : _node(node), _distance_from_start(distance) {}; 1900 const Node* node() const { return _node; }; 1901 int distance() const { return _distance_from_start; }; 1902 int distance_from_target() const { return _distance_from_target; } 1903 void set_distance_from_target(int d) { _distance_from_target = d; } 1904 GrowableArray<const Node*> edge_bwd; // pointing toward _start 1905 bool is_marked() const { return _mark; } // marked to keep during select 1906 void set_mark() { _mark = true; } 1907 private: 1908 const Node* _node; 1909 int _distance_from_start; // distance from _start 1910 int _distance_from_target = 0; // distance from _target if _all_paths 1911 bool _mark = false; 1912 }; 1913 Dict _info_uid; // Node -> uid 1914 GrowableArray<Info> _info; // uid -> info 1915 1916 Info* find_info(const Node* n) { 1917 size_t uid = (size_t)_info_uid[n]; 1918 if (uid == 0) { 1919 return nullptr; 1920 } 1921 return &_info.at((int)uid); 1922 } 1923 1924 void make_info(const Node* node, const int distance) { 1925 assert(find_info(node) == nullptr, "node does not yet have info"); 1926 size_t uid = _info.length() + 1; 1927 _info_uid.Insert((void*)node, (void*)uid); 1928 _info.at_put_grow((int)uid, Info(node, distance)); 1929 assert(find_info(node)->node() == node, "stored correct node"); 1930 }; 1931 1932 // filled by sort, printed by print 1933 GrowableArray<const Node*> _print_list; 1934 1935 // print header + node table 1936 void print_header() const; 1937 void print_node(const Node* n); 1938 }; 1939 1940 void PrintBFS::run() { 1941 if (!configure()) { 1942 return; 1943 } 1944 collect(); 1945 select(); 1946 sort(); 1947 print(); 1948 } 1949 1950 // set up configuration for BFS and print 1951 bool PrintBFS::configure() { 1952 if (_max_distance < 0) { 1953 _output->print_cr("dump_bfs: max_distance must be non-negative!"); 1954 return false; 1955 } 1956 return parse_options(); 1957 } 1958 1959 // BFS traverse according to configuration, fill worklist and info 1960 void PrintBFS::collect() { 1961 maybe_traverse(_start, _start); 1962 int pos = 0; 1963 while (pos < _worklist.length()) { 1964 const Node* n = _worklist.at(pos++); // next node to traverse 1965 Info* info = find_info(n); 1966 if (!_filter_visit.accepts(n) && n != _start) { 1967 continue; // we hit boundary, do not traverse further 1968 } 1969 if (n != _start && n->is_Root()) { 1970 continue; // traversing through root node would lead to unrelated nodes 1971 } 1972 if (_traverse_inputs && _max_distance > info->distance()) { 1973 for (uint i = 0; i < n->req(); i++) { 1974 maybe_traverse(n, n->in(i)); 1975 } 1976 } 1977 if (_traverse_outputs && _max_distance > info->distance()) { 1978 for (uint i = 0; i < n->outcnt(); i++) { 1979 maybe_traverse(n, n->raw_out(i)); 1980 } 1981 } 1982 } 1983 } 1984 1985 // go through work list, mark those that we want to print 1986 void PrintBFS::select() { 1987 if (_target == nullptr ) { 1988 select_all(); 1989 } else { 1990 if (find_info(_target) == nullptr) { 1991 _output->print_cr("Could not find target in BFS."); 1992 return; 1993 } 1994 if (_all_paths) { 1995 select_all_paths(); 1996 } else { 1997 select_shortest_path(); 1998 } 1999 } 2000 } 2001 2002 // take all nodes from BFS 2003 void PrintBFS::select_all() { 2004 for (int i = 0; i < _worklist.length(); i++) { 2005 const Node* n = _worklist.at(i); 2006 Info* info = find_info(n); 2007 info->set_mark(); 2008 } 2009 } 2010 2011 // traverse backward from target, along edges found in BFS 2012 void PrintBFS::select_all_paths() { 2013 int pos = 0; 2014 GrowableArray<const Node*> backtrace; 2015 // start from target 2016 backtrace.push(_target); 2017 find_info(_target)->set_mark(); 2018 // traverse backward 2019 while (pos < backtrace.length()) { 2020 const Node* n = backtrace.at(pos++); 2021 Info* info = find_info(n); 2022 for (int i = 0; i < info->edge_bwd.length(); i++) { 2023 // all backward edges 2024 const Node* back = info->edge_bwd.at(i); 2025 Info* back_info = find_info(back); 2026 if (!back_info->is_marked()) { 2027 // not yet found this on way back. 2028 back_info->set_distance_from_target(info->distance_from_target() + 1); 2029 if (back_info->distance_from_target() + back_info->distance() <= _max_distance) { 2030 // total distance is small enough 2031 back_info->set_mark(); 2032 backtrace.push(back); 2033 } 2034 } 2035 } 2036 } 2037 } 2038 2039 void PrintBFS::select_shortest_path() { 2040 const Node* current = _target; 2041 while (true) { 2042 Info* info = find_info(current); 2043 info->set_mark(); 2044 if (current == _start) { 2045 break; 2046 } 2047 // first edge -> leads us one step closer to _start 2048 current = info->edge_bwd.at(0); 2049 } 2050 } 2051 2052 // go through worklist in desired order, put the marked ones in print list 2053 void PrintBFS::sort() { 2054 if (_traverse_inputs && !_traverse_outputs) { 2055 // reverse order 2056 for (int i = _worklist.length() - 1; i >= 0; i--) { 2057 const Node* n = _worklist.at(i); 2058 Info* info = find_info(n); 2059 if (info->is_marked()) { 2060 _print_list.push(n); 2061 } 2062 } 2063 } else { 2064 // same order as worklist 2065 for (int i = 0; i < _worklist.length(); i++) { 2066 const Node* n = _worklist.at(i); 2067 Info* info = find_info(n); 2068 if (info->is_marked()) { 2069 _print_list.push(n); 2070 } 2071 } 2072 } 2073 if (_sort_idx) { 2074 _print_list.sort(node_idx_cmp); 2075 } 2076 } 2077 2078 // go through printlist and print 2079 void PrintBFS::print() { 2080 if (_print_list.length() > 0 ) { 2081 print_header(); 2082 for (int i = 0; i < _print_list.length(); i++) { 2083 const Node* n = _print_list.at(i); 2084 print_node(n); 2085 } 2086 if (_print_igv) { 2087 Compile* C = Compile::current(); 2088 C->init_igv(); 2089 C->igv_print_graph_to_network(nullptr, _print_list, _frame); 2090 } 2091 } else { 2092 _output->print_cr("No nodes to print."); 2093 } 2094 } 2095 2096 void PrintBFS::print_options_help(bool print_examples) { 2097 _output->print_cr("Usage: node->dump_bfs(int max_distance, Node* target, char* options)"); 2098 _output->print_cr(""); 2099 _output->print_cr("Use cases:"); 2100 _output->print_cr(" BFS traversal: no target required"); 2101 _output->print_cr(" shortest path: set target"); 2102 _output->print_cr(" all paths: set target and put 'A' in options"); 2103 _output->print_cr(" detect loop: subcase of all paths, have start==target"); 2104 _output->print_cr(""); 2105 _output->print_cr("Arguments:"); 2106 _output->print_cr(" this/start: staring point of BFS"); 2107 _output->print_cr(" target:"); 2108 _output->print_cr(" if null: simple BFS"); 2109 _output->print_cr(" else: shortest path or all paths between this/start and target"); 2110 _output->print_cr(" options:"); 2111 _output->print_cr(" if null: same as \"cdmox@B\""); 2112 _output->print_cr(" else: use combination of following characters"); 2113 _output->print_cr(" h: display this help info"); 2114 _output->print_cr(" H: display this help info, with examples"); 2115 _output->print_cr(" +: traverse in-edges (on if neither + nor -)"); 2116 _output->print_cr(" -: traverse out-edges"); 2117 _output->print_cr(" c: visit control nodes"); 2118 _output->print_cr(" d: visit data nodes"); 2119 _output->print_cr(" m: visit memory nodes"); 2120 _output->print_cr(" o: visit other nodes"); 2121 _output->print_cr(" x: visit mixed nodes"); 2122 _output->print_cr(" C: boundary control nodes"); 2123 _output->print_cr(" D: boundary data nodes"); 2124 _output->print_cr(" M: boundary memory nodes"); 2125 _output->print_cr(" O: boundary other nodes"); 2126 _output->print_cr(" X: boundary mixed nodes"); 2127 _output->print_cr(" #: display node category in color (not supported in all terminals)"); 2128 _output->print_cr(" S: sort displayed nodes by node idx"); 2129 _output->print_cr(" A: all paths (not just shortest path to target)"); 2130 _output->print_cr(" @: print old nodes - before matching (if available)"); 2131 _output->print_cr(" B: print scheduling blocks (if available)"); 2132 _output->print_cr(" $: dump only, no header, no other columns"); 2133 _output->print_cr(" !: show nodes on IGV (sent over network stream)"); 2134 _output->print_cr(" (use preferably with dump_bfs(int, Node*, char*, void*, void*, void*)"); 2135 _output->print_cr(" to produce a C2 stack trace along with the graph dump, see examples below)"); 2136 _output->print_cr(""); 2137 _output->print_cr("recursively follow edges to nodes with permitted visit types,"); 2138 _output->print_cr("on the boundary additionally display nodes allowed in boundary types"); 2139 _output->print_cr("Note: the categories can be overlapping. For example a mixed node"); 2140 _output->print_cr(" can contain control and memory output. Some from the other"); 2141 _output->print_cr(" category are also control (Halt, Return, etc)."); 2142 _output->print_cr(""); 2143 _output->print_cr("output columns:"); 2144 _output->print_cr(" dist: BFS distance to this/start"); 2145 _output->print_cr(" apd: all paths distance (d_outputart + d_target)"); 2146 _output->print_cr(" block: block identifier, based on _pre_order"); 2147 _output->print_cr(" head: first node in block"); 2148 _output->print_cr(" idom: head node of idom block"); 2149 _output->print_cr(" depth: depth of block (_dom_depth)"); 2150 _output->print_cr(" old: old IR node - before matching"); 2151 _output->print_cr(" dump: node->dump()"); 2152 _output->print_cr(""); 2153 _output->print_cr("Note: if none of the \"cmdxo\" characters are in the options string"); 2154 _output->print_cr(" then we set all of them."); 2155 _output->print_cr(" This allows for short strings like \"#\" for colored input traversal"); 2156 _output->print_cr(" or \"-#\" for colored output traversal."); 2157 if (print_examples) { 2158 _output->print_cr(""); 2159 _output->print_cr("Examples:"); 2160 _output->print_cr(" if->dump_bfs(10, 0, \"+cxo\")"); 2161 _output->print_cr(" starting at some if node, traverse inputs recursively"); 2162 _output->print_cr(" only along control (mixed and other can also be control)"); 2163 _output->print_cr(" phi->dump_bfs(5, 0, \"-dxo\")"); 2164 _output->print_cr(" starting at phi node, traverse outputs recursively"); 2165 _output->print_cr(" only along data (mixed and other can also have data flow)"); 2166 _output->print_cr(" find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")"); 2167 _output->print_cr(" find inputs of node 385, up to 3 nodes up (+)"); 2168 _output->print_cr(" traverse all nodes (cdmox), use colors (#)"); 2169 _output->print_cr(" display old nodes and blocks, if they exist"); 2170 _output->print_cr(" useful call to start with"); 2171 _output->print_cr(" find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")"); 2172 _output->print_cr(" find non-data dependencies of a data node"); 2173 _output->print_cr(" follow data node outputs until we find another category"); 2174 _output->print_cr(" node as the boundary"); 2175 _output->print_cr(" x->dump_bfs(10, y, 0)"); 2176 _output->print_cr(" find shortest path from x to y, along any edge or node"); 2177 _output->print_cr(" will not find a path if it is longer than 10"); 2178 _output->print_cr(" useful to find how x and y are related"); 2179 _output->print_cr(" find_node(741)->dump_bfs(20, find_node(746), \"c+\")"); 2180 _output->print_cr(" find shortest control path between two nodes"); 2181 _output->print_cr(" find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")"); 2182 _output->print_cr(" find all paths (A) between two nodes of length at most 8"); 2183 _output->print_cr(" find_node(741)->dump_bfs(7, find_node(741), \"c+A\")"); 2184 _output->print_cr(" find all control loops for this node"); 2185 _output->print_cr(" find_node(741)->dump_bfs(7, find_node(741), \"c+A!\", $sp, $fp, $pc)"); 2186 _output->print_cr(" same as above, but printing the resulting subgraph"); 2187 _output->print_cr(" along with a C2 stack trace on IGV"); 2188 } 2189 } 2190 2191 bool PrintBFS::parse_options() { 2192 if (_options == nullptr) { 2193 _options = "cdmox@B"; // default options 2194 } 2195 size_t len = strlen(_options); 2196 for (size_t i = 0; i < len; i++) { 2197 switch (_options[i]) { 2198 case '+': 2199 _traverse_inputs = true; 2200 break; 2201 case '-': 2202 _traverse_outputs = true; 2203 break; 2204 case 'c': 2205 _filter_visit._control = true; 2206 break; 2207 case 'm': 2208 _filter_visit._memory = true; 2209 break; 2210 case 'd': 2211 _filter_visit._data = true; 2212 break; 2213 case 'x': 2214 _filter_visit._mixed = true; 2215 break; 2216 case 'o': 2217 _filter_visit._other = true; 2218 break; 2219 case 'C': 2220 _filter_boundary._control = true; 2221 break; 2222 case 'M': 2223 _filter_boundary._memory = true; 2224 break; 2225 case 'D': 2226 _filter_boundary._data = true; 2227 break; 2228 case 'X': 2229 _filter_boundary._mixed = true; 2230 break; 2231 case 'O': 2232 _filter_boundary._other = true; 2233 break; 2234 case 'S': 2235 _sort_idx = true; 2236 break; 2237 case 'A': 2238 _all_paths = true; 2239 break; 2240 case '#': 2241 _use_color = true; 2242 break; 2243 case 'B': 2244 _print_blocks = true; 2245 break; 2246 case '@': 2247 _print_old = true; 2248 break; 2249 case '$': 2250 _dump_only = true; 2251 break; 2252 case '!': 2253 _print_igv = true; 2254 break; 2255 case 'h': 2256 print_options_help(false); 2257 return false; 2258 case 'H': 2259 print_options_help(true); 2260 return false; 2261 default: 2262 _output->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]); 2263 _output->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")"); 2264 return false; 2265 } 2266 } 2267 if (!_traverse_inputs && !_traverse_outputs) { 2268 _traverse_inputs = true; 2269 } 2270 if (_filter_visit.is_empty()) { 2271 _filter_visit.set_all(); 2272 } 2273 Compile* C = Compile::current(); 2274 _print_old &= (C->matcher() != nullptr); // only show old if there are new 2275 _print_blocks &= (C->cfg() != nullptr); // only show blocks if available 2276 return true; 2277 } 2278 2279 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) { 2280 if (!_bfs->_use_color) { 2281 return; 2282 } 2283 Info* info = _bfs->find_info(n); 2284 if (info == nullptr || !info->is_marked()) { 2285 return; 2286 } 2287 2288 const Type* t = n->bottom_type(); 2289 switch (t->category()) { 2290 case Type::Category::Data: 2291 st->print("\u001b[34m"); 2292 break; 2293 case Type::Category::Memory: 2294 st->print("\u001b[32m"); 2295 break; 2296 case Type::Category::Mixed: 2297 st->print("\u001b[35m"); 2298 break; 2299 case Type::Category::Control: 2300 st->print("\u001b[31m"); 2301 break; 2302 case Type::Category::Other: 2303 st->print("\u001b[33m"); 2304 break; 2305 case Type::Category::Undef: 2306 n->dump(); 2307 assert(false, "category undef ??"); 2308 break; 2309 default: 2310 n->dump(); 2311 assert(false, "not covered"); 2312 break; 2313 } 2314 } 2315 2316 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) { 2317 if (!_bfs->_use_color) { 2318 return; 2319 } 2320 st->print("\u001b[0m"); // white 2321 } 2322 2323 Node* PrintBFS::old_node(const Node* n) { 2324 Compile* C = Compile::current(); 2325 if (C->matcher() == nullptr || !C->node_arena()->contains(n)) { 2326 return (Node*)nullptr; 2327 } else { 2328 return C->matcher()->find_old_node(n); 2329 } 2330 } 2331 2332 void PrintBFS::print_node_idx(const Node* n) { 2333 Compile* C = Compile::current(); 2334 char buf[30]; 2335 if (n == nullptr) { 2336 os::snprintf_checked(buf, sizeof(buf), "_"); // null 2337 } else if (C->node_arena()->contains(n)) { 2338 os::snprintf_checked(buf, sizeof(buf), "%d", n->_idx); // new node 2339 } else { 2340 os::snprintf_checked(buf, sizeof(buf), "o%d", n->_idx); // old node 2341 } 2342 _output->print("%6s", buf); 2343 } 2344 2345 void PrintBFS::print_block_id(const Block* b) { 2346 Compile* C = Compile::current(); 2347 char buf[30]; 2348 os::snprintf_checked(buf, sizeof(buf), "B%d", b->_pre_order); 2349 _output->print("%7s", buf); 2350 } 2351 2352 void PrintBFS::print_node_block(const Node* n) { 2353 Compile* C = Compile::current(); 2354 Block* b = C->node_arena()->contains(n) 2355 ? C->cfg()->get_block_for_node(n) 2356 : nullptr; // guard against old nodes 2357 if (b == nullptr) { 2358 _output->print(" _"); // Block 2359 _output->print(" _"); // head 2360 _output->print(" _"); // idom 2361 _output->print(" _"); // depth 2362 } else { 2363 print_block_id(b); 2364 print_node_idx(b->head()); 2365 if (b->_idom) { 2366 print_node_idx(b->_idom->head()); 2367 } else { 2368 _output->print(" _"); // idom 2369 } 2370 _output->print("%6d ", b->_dom_depth); 2371 } 2372 } 2373 2374 // filter, and add to worklist, add info, note traversal edges 2375 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) { 2376 if (dst != nullptr && 2377 (_filter_visit.accepts(dst) || 2378 _filter_boundary.accepts(dst) || 2379 dst == _start)) { // correct category or start? 2380 if (find_info(dst) == nullptr) { 2381 // never visited - set up info 2382 _worklist.push(dst); 2383 int d = 0; 2384 if (dst != _start) { 2385 d = find_info(src)->distance() + 1; 2386 } 2387 make_info(dst, d); 2388 } 2389 if (src != dst) { 2390 // traversal edges useful during select 2391 find_info(dst)->edge_bwd.push(src); 2392 } 2393 } 2394 } 2395 2396 void PrintBFS::print_header() const { 2397 if (_dump_only) { 2398 return; // no header in dump only mode 2399 } 2400 _output->print("dist"); // distance 2401 if (_all_paths) { 2402 _output->print(" apd"); // all paths distance 2403 } 2404 if (_print_blocks) { 2405 _output->print(" [block head idom depth]"); // block 2406 } 2407 if (_print_old) { 2408 _output->print(" old"); // old node 2409 } 2410 _output->print(" dump\n"); // node dump 2411 _output->print_cr("---------------------------------------------"); 2412 } 2413 2414 void PrintBFS::print_node(const Node* n) { 2415 if (_dump_only) { 2416 n->dump("\n", false, _output, &_dcc); 2417 return; 2418 } 2419 _output->print("%4d", find_info(n)->distance());// distance 2420 if (_all_paths) { 2421 Info* info = find_info(n); 2422 int apd = info->distance() + info->distance_from_target(); 2423 _output->print("%4d", apd); // all paths distance 2424 } 2425 if (_print_blocks) { 2426 print_node_block(n); // block 2427 } 2428 if (_print_old) { 2429 print_node_idx(old_node(n)); // old node 2430 } 2431 _output->print(" "); 2432 n->dump("\n", false, _output, &_dcc); // node dump 2433 } 2434 2435 //------------------------------dump_bfs-------------------------------------- 2436 // Call this from debugger 2437 // Useful for BFS traversal, shortest path, all path, loop detection, etc 2438 // Designed to be more readable, and provide additional info 2439 // To find all options, run: 2440 // find_node(0)->dump_bfs(0,0,"H") 2441 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const { 2442 dump_bfs(max_distance, target, options, tty); 2443 } 2444 2445 // Used to dump to stream. 2446 void Node::dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr) const { 2447 PrintBFS bfs(this, max_distance, target, options, st, fr); 2448 bfs.run(); 2449 } 2450 2451 // Call this from debugger, with default arguments 2452 void Node::dump_bfs(const int max_distance) const { 2453 dump_bfs(max_distance, nullptr, nullptr); 2454 } 2455 2456 // Call this from debugger, with stack handling register arguments for IGV dumps. 2457 // Example: p find_node(741)->dump_bfs(7, find_node(741), "c+A!", $sp, $fp, $pc). 2458 void Node::dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const { 2459 frame fr(sp, fp, pc); 2460 dump_bfs(max_distance, target, options, tty, &fr); 2461 } 2462 2463 // -----------------------------dump_idx--------------------------------------- 2464 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const { 2465 if (dc != nullptr) { 2466 dc->pre_dump(st, this); 2467 } 2468 Compile* C = Compile::current(); 2469 bool is_new = C->node_arena()->contains(this); 2470 if (align) { // print prefix empty spaces$ 2471 // +1 for leading digit, +1 for "o" 2472 uint max_width = (C->unique() == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(C->unique())))) + 2; 2473 // +1 for leading digit, maybe +1 for "o" 2474 uint width = (_idx == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(_idx)))) + 1 + (is_new ? 0 : 1); 2475 while (max_width > width) { 2476 st->print(" "); 2477 width++; 2478 } 2479 } 2480 if (!is_new) { 2481 st->print("o"); 2482 } 2483 st->print("%d", _idx); 2484 if (dc != nullptr) { 2485 dc->post_dump(st); 2486 } 2487 } 2488 2489 // -----------------------------dump_name-------------------------------------- 2490 void Node::dump_name(outputStream* st, DumpConfig* dc) const { 2491 if (dc != nullptr) { 2492 dc->pre_dump(st, this); 2493 } 2494 st->print("%s", Name()); 2495 if (dc != nullptr) { 2496 dc->post_dump(st); 2497 } 2498 } 2499 2500 // -----------------------------Name------------------------------------------- 2501 extern const char *NodeClassNames[]; 2502 const char *Node::Name() const { return NodeClassNames[Opcode()]; } 2503 2504 static bool is_disconnected(const Node* n) { 2505 for (uint i = 0; i < n->req(); i++) { 2506 if (n->in(i) != nullptr) return false; 2507 } 2508 return true; 2509 } 2510 2511 #ifdef ASSERT 2512 void Node::dump_orig(outputStream *st, bool print_key) const { 2513 Compile* C = Compile::current(); 2514 Node* orig = _debug_orig; 2515 if (not_a_node(orig)) orig = nullptr; 2516 if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr; 2517 if (orig == nullptr) return; 2518 if (print_key) { 2519 st->print(" !orig="); 2520 } 2521 Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops 2522 if (not_a_node(fast)) fast = nullptr; 2523 while (orig != nullptr) { 2524 bool discon = is_disconnected(orig); // if discon, print [123] else 123 2525 if (discon) st->print("["); 2526 if (!Compile::current()->node_arena()->contains(orig)) 2527 st->print("o"); 2528 st->print("%d", orig->_idx); 2529 if (discon) st->print("]"); 2530 orig = orig->debug_orig(); 2531 if (not_a_node(orig)) orig = nullptr; 2532 if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr; 2533 if (orig != nullptr) st->print(","); 2534 if (fast != nullptr) { 2535 // Step fast twice for each single step of orig: 2536 fast = fast->debug_orig(); 2537 if (not_a_node(fast)) fast = nullptr; 2538 if (fast != nullptr && fast != orig) { 2539 fast = fast->debug_orig(); 2540 if (not_a_node(fast)) fast = nullptr; 2541 } 2542 if (fast == orig) { 2543 st->print("..."); 2544 break; 2545 } 2546 } 2547 } 2548 } 2549 2550 void Node::set_debug_orig(Node* orig) { 2551 _debug_orig = orig; 2552 if (BreakAtNode == 0) return; 2553 if (not_a_node(orig)) orig = nullptr; 2554 int trip = 10; 2555 while (orig != nullptr) { 2556 if (orig->debug_idx() == BreakAtNode || (uintx)orig->_idx == BreakAtNode) { 2557 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT " orig._idx=%d orig._debug_idx=" UINT64_FORMAT, 2558 this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx()); 2559 BREAKPOINT; 2560 } 2561 orig = orig->debug_orig(); 2562 if (not_a_node(orig)) orig = nullptr; 2563 if (trip-- <= 0) break; 2564 } 2565 } 2566 #endif //ASSERT 2567 2568 //------------------------------dump------------------------------------------ 2569 // Dump a Node 2570 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const { 2571 Compile* C = Compile::current(); 2572 bool is_new = C->node_arena()->contains(this); 2573 C->_in_dump_cnt++; 2574 2575 // idx mark name === 2576 dump_idx(true, st, dc); 2577 st->print(mark ? " >" : " "); 2578 dump_name(st, dc); 2579 st->print(" === "); 2580 2581 // Dump the required and precedence inputs 2582 dump_req(st, dc); 2583 dump_prec(st, dc); 2584 // Dump the outputs 2585 dump_out(st, dc); 2586 2587 if (is_disconnected(this)) { 2588 #ifdef ASSERT 2589 st->print(" [" UINT64_FORMAT "]", debug_idx()); 2590 dump_orig(st); 2591 #endif 2592 st->cr(); 2593 C->_in_dump_cnt--; 2594 return; // don't process dead nodes 2595 } 2596 2597 if (C->clone_map().value(_idx) != 0) { 2598 C->clone_map().dump(_idx, st); 2599 } 2600 // Dump node-specific info 2601 dump_spec(st); 2602 #ifdef ASSERT 2603 // Dump the non-reset _debug_idx 2604 if (Verbose && WizardMode) { 2605 st->print(" [" UINT64_FORMAT "]", debug_idx()); 2606 } 2607 #endif 2608 2609 const Type *t = bottom_type(); 2610 2611 if (t != nullptr && (t->isa_instptr() || t->isa_instklassptr())) { 2612 const TypeInstPtr *toop = t->isa_instptr(); 2613 const TypeInstKlassPtr *tkls = t->isa_instklassptr(); 2614 if (toop) { 2615 st->print(" Oop:"); 2616 } else if (tkls) { 2617 st->print(" Klass:"); 2618 } 2619 t->dump_on(st); 2620 } else if (t == Type::MEMORY) { 2621 st->print(" Memory:"); 2622 MemNode::dump_adr_type(adr_type(), st); 2623 } else if (Verbose || WizardMode) { 2624 st->print(" Type:"); 2625 if (t) { 2626 t->dump_on(st); 2627 } else { 2628 st->print("no type"); 2629 } 2630 } else if (t->isa_vect() && this->is_MachSpillCopy()) { 2631 // Dump MachSpillcopy vector type. 2632 t->dump_on(st); 2633 } 2634 if (is_new) { 2635 DEBUG_ONLY(dump_orig(st)); 2636 Node_Notes* nn = C->node_notes_at(_idx); 2637 if (nn != nullptr && !nn->is_clear()) { 2638 if (nn->jvms() != nullptr) { 2639 st->print(" !jvms:"); 2640 nn->jvms()->dump_spec(st); 2641 } 2642 } 2643 } 2644 if (suffix) st->print("%s", suffix); 2645 C->_in_dump_cnt--; 2646 } 2647 2648 // call from debugger: dump node to tty with newline 2649 void Node::dump() const { 2650 dump("\n"); 2651 } 2652 2653 //------------------------------dump_req-------------------------------------- 2654 void Node::dump_req(outputStream* st, DumpConfig* dc) const { 2655 // Dump the required input edges 2656 for (uint i = 0; i < req(); i++) { // For all required inputs 2657 Node* d = in(i); 2658 if (d == nullptr) { 2659 st->print("_ "); 2660 } else if (not_a_node(d)) { 2661 st->print("not_a_node "); // uninitialized, sentinel, garbage, etc. 2662 } else { 2663 d->dump_idx(false, st, dc); 2664 st->print(" "); 2665 } 2666 } 2667 } 2668 2669 2670 //------------------------------dump_prec------------------------------------- 2671 void Node::dump_prec(outputStream* st, DumpConfig* dc) const { 2672 // Dump the precedence edges 2673 int any_prec = 0; 2674 for (uint i = req(); i < len(); i++) { // For all precedence inputs 2675 Node* p = in(i); 2676 if (p != nullptr) { 2677 if (!any_prec++) st->print(" |"); 2678 if (not_a_node(p)) { st->print("not_a_node "); continue; } 2679 p->dump_idx(false, st, dc); 2680 st->print(" "); 2681 } 2682 } 2683 } 2684 2685 //------------------------------dump_out-------------------------------------- 2686 void Node::dump_out(outputStream* st, DumpConfig* dc) const { 2687 // Delimit the output edges 2688 st->print(" [[ "); 2689 // Dump the output edges 2690 for (uint i = 0; i < _outcnt; i++) { // For all outputs 2691 Node* u = _out[i]; 2692 if (u == nullptr) { 2693 st->print("_ "); 2694 } else if (not_a_node(u)) { 2695 st->print("not_a_node "); 2696 } else { 2697 u->dump_idx(false, st, dc); 2698 st->print(" "); 2699 } 2700 } 2701 st->print("]] "); 2702 } 2703 2704 //------------------------------dump------------------------------------------- 2705 // call from debugger: dump Node's inputs (or outputs if d negative) 2706 void Node::dump(int d) const { 2707 dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$"); 2708 } 2709 2710 //------------------------------dump_ctrl-------------------------------------- 2711 // call from debugger: dump Node's control inputs (or outputs if d negative) 2712 void Node::dump_ctrl(int d) const { 2713 dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c"); 2714 } 2715 2716 //-----------------------------dump_compact------------------------------------ 2717 void Node::dump_comp() const { 2718 this->dump_comp("\n"); 2719 } 2720 2721 //-----------------------------dump_compact------------------------------------ 2722 // Dump a Node in compact representation, i.e., just print its name and index. 2723 // Nodes can specify additional specifics to print in compact representation by 2724 // implementing dump_compact_spec. 2725 void Node::dump_comp(const char* suffix, outputStream *st) const { 2726 Compile* C = Compile::current(); 2727 C->_in_dump_cnt++; 2728 st->print("%s(%d)", Name(), _idx); 2729 this->dump_compact_spec(st); 2730 if (suffix) { 2731 st->print("%s", suffix); 2732 } 2733 C->_in_dump_cnt--; 2734 } 2735 2736 // VERIFICATION CODE 2737 // Verify all nodes if verify_depth is negative 2738 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) { 2739 assert(verify_depth != 0, "depth should not be 0"); 2740 Compile* C = Compile::current(); 2741 uint last_index_on_current_depth = worklist.size() - 1; 2742 verify_depth--; // Visiting the first node on depth 1 2743 // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0 2744 bool add_to_worklist = verify_depth != 0; 2745 2746 for (uint list_index = 0; list_index < worklist.size(); list_index++) { 2747 Node* n = worklist[list_index]; 2748 2749 if (n->is_Con() && n->bottom_type() == Type::TOP) { 2750 if (C->cached_top_node() == nullptr) { 2751 C->set_cached_top_node((Node*)n); 2752 } 2753 assert(C->cached_top_node() == n, "TOP node must be unique"); 2754 } 2755 2756 uint in_len = n->len(); 2757 for (uint i = 0; i < in_len; i++) { 2758 Node* x = n->_in[i]; 2759 if (!x || x->is_top()) { 2760 continue; 2761 } 2762 2763 // Verify my input has a def-use edge to me 2764 // Count use-def edges from n to x 2765 int cnt = 1; 2766 for (uint j = 0; j < i; j++) { 2767 if (n->_in[j] == x) { 2768 cnt++; 2769 break; 2770 } 2771 } 2772 if (cnt == 2) { 2773 // x is already checked as n's previous input, skip its duplicated def-use count checking 2774 continue; 2775 } 2776 for (uint j = i + 1; j < in_len; j++) { 2777 if (n->_in[j] == x) { 2778 cnt++; 2779 } 2780 } 2781 2782 // Count def-use edges from x to n 2783 uint max = x->_outcnt; 2784 for (uint k = 0; k < max; k++) { 2785 if (x->_out[k] == n) { 2786 cnt--; 2787 } 2788 } 2789 assert(cnt == 0, "mismatched def-use edge counts"); 2790 2791 if (add_to_worklist && !visited.test_set(x->_idx)) { 2792 worklist.push(x); 2793 } 2794 } 2795 2796 if (verify_depth > 0 && list_index == last_index_on_current_depth) { 2797 // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and 2798 // store the current last list index which is the last node in the list with the new depth. All nodes 2799 // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0). 2800 verify_depth--; 2801 if (verify_depth == 0) { 2802 add_to_worklist = false; 2803 } 2804 last_index_on_current_depth = worklist.size() - 1; 2805 } 2806 } 2807 } 2808 #endif // not PRODUCT 2809 2810 //------------------------------Registers-------------------------------------- 2811 // Do we Match on this edge index or not? Generally false for Control 2812 // and true for everything else. Weird for calls & returns. 2813 uint Node::match_edge(uint idx) const { 2814 return idx; // True for other than index 0 (control) 2815 } 2816 2817 // Register classes are defined for specific machines 2818 const RegMask &Node::out_RegMask() const { 2819 ShouldNotCallThis(); 2820 return RegMask::EMPTY; 2821 } 2822 2823 const RegMask &Node::in_RegMask(uint) const { 2824 ShouldNotCallThis(); 2825 return RegMask::EMPTY; 2826 } 2827 2828 void Node_Array::grow(uint i) { 2829 assert(i >= _max, "Should have been checked before, use maybe_grow?"); 2830 assert(_max > 0, "invariant"); 2831 uint old = _max; 2832 _max = next_power_of_2(i); 2833 _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*)); 2834 Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) ); 2835 } 2836 2837 void Node_Array::insert(uint i, Node* n) { 2838 if (_nodes[_max - 1]) { 2839 grow(_max); 2840 } 2841 Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*))); 2842 _nodes[i] = n; 2843 } 2844 2845 void Node_Array::remove(uint i) { 2846 Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*))); 2847 _nodes[_max - 1] = nullptr; 2848 } 2849 2850 void Node_Array::dump() const { 2851 #ifndef PRODUCT 2852 for (uint i = 0; i < _max; i++) { 2853 Node* nn = _nodes[i]; 2854 if (nn != nullptr) { 2855 tty->print("%5d--> ",i); nn->dump(); 2856 } 2857 } 2858 #endif 2859 } 2860 2861 //--------------------------is_iteratively_computed------------------------------ 2862 // Operation appears to be iteratively computed (such as an induction variable) 2863 // It is possible for this operation to return false for a loop-varying 2864 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 2865 bool Node::is_iteratively_computed() { 2866 if (ideal_reg()) { // does operation have a result register? 2867 for (uint i = 1; i < req(); i++) { 2868 Node* n = in(i); 2869 if (n != nullptr && n->is_Phi()) { 2870 for (uint j = 1; j < n->req(); j++) { 2871 if (n->in(j) == this) { 2872 return true; 2873 } 2874 } 2875 } 2876 } 2877 } 2878 return false; 2879 } 2880 2881 //--------------------------find_similar------------------------------ 2882 // Return a node with opcode "opc" and same inputs as "this" if one can 2883 // be found; Otherwise return null; 2884 Node* Node::find_similar(int opc) { 2885 if (req() >= 2) { 2886 Node* def = in(1); 2887 if (def && def->outcnt() >= 2) { 2888 for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) { 2889 Node* use = def->fast_out(i); 2890 if (use != this && 2891 use->Opcode() == opc && 2892 use->req() == req()) { 2893 uint j; 2894 for (j = 0; j < use->req(); j++) { 2895 if (use->in(j) != in(j)) { 2896 break; 2897 } 2898 } 2899 if (j == use->req()) { 2900 return use; 2901 } 2902 } 2903 } 2904 } 2905 } 2906 return nullptr; 2907 } 2908 2909 Node* Node::unique_multiple_edges_out_or_null() const { 2910 Node* use = nullptr; 2911 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) { 2912 Node* u = fast_out(k); 2913 if (use == nullptr) { 2914 use = u; // first use 2915 } else if (u != use) { 2916 return nullptr; // not unique 2917 } else { 2918 // secondary use 2919 } 2920 } 2921 return use; 2922 } 2923 2924 //--------------------------unique_ctrl_out_or_null------------------------- 2925 // Return the unique control out if only one. Null if none or more than one. 2926 Node* Node::unique_ctrl_out_or_null() const { 2927 Node* found = nullptr; 2928 for (uint i = 0; i < outcnt(); i++) { 2929 Node* use = raw_out(i); 2930 if (use->is_CFG() && use != this) { 2931 if (found != nullptr) { 2932 return nullptr; 2933 } 2934 found = use; 2935 } 2936 } 2937 return found; 2938 } 2939 2940 //--------------------------unique_ctrl_out------------------------------ 2941 // Return the unique control out. Asserts if none or more than one control out. 2942 Node* Node::unique_ctrl_out() const { 2943 Node* ctrl = unique_ctrl_out_or_null(); 2944 assert(ctrl != nullptr, "control out is assumed to be unique"); 2945 return ctrl; 2946 } 2947 2948 void Node::ensure_control_or_add_prec(Node* c) { 2949 if (in(0) == nullptr) { 2950 set_req(0, c); 2951 } else if (in(0) != c) { 2952 add_prec(c); 2953 } 2954 } 2955 2956 void Node::add_prec_from(Node* n) { 2957 for (uint i = n->req(); i < n->len(); i++) { 2958 Node* prec = n->in(i); 2959 if (prec != nullptr) { 2960 add_prec(prec); 2961 } 2962 } 2963 } 2964 2965 bool Node::is_dead_loop_safe() const { 2966 if (is_Phi()) { 2967 return true; 2968 } 2969 if (is_Proj() && in(0) == nullptr) { 2970 return true; 2971 } 2972 if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) { 2973 if (!is_Proj()) { 2974 return true; 2975 } 2976 if (in(0)->is_Allocate()) { 2977 return false; 2978 } 2979 // MemNode::can_see_stored_value() peeks through the boxing call 2980 if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) { 2981 return false; 2982 } 2983 return true; 2984 } 2985 return false; 2986 } 2987 2988 bool Node::is_div_or_mod(BasicType bt) const { return Opcode() == Op_Div(bt) || Opcode() == Op_Mod(bt) || 2989 Opcode() == Op_UDiv(bt) || Opcode() == Op_UMod(bt); } 2990 2991 // `maybe_pure_function` is assumed to be the input of `this`. This is a bit redundant, 2992 // but we already have and need maybe_pure_function in all the call sites, so 2993 // it makes it obvious that the `maybe_pure_function` is the same node as in the caller, 2994 // while it takes more thinking to realize that a locally computed in(0) must be equal to 2995 // the local in the caller. 2996 bool Node::is_data_proj_of_pure_function(const Node* maybe_pure_function) const { 2997 return Opcode() == Op_Proj && as_Proj()->_con == TypeFunc::Parms && maybe_pure_function->is_CallLeafPure(); 2998 } 2999 3000 //============================================================================= 3001 //------------------------------yank------------------------------------------- 3002 // Find and remove 3003 void Node_List::yank( Node *n ) { 3004 uint i; 3005 for (i = 0; i < _cnt; i++) { 3006 if (_nodes[i] == n) { 3007 break; 3008 } 3009 } 3010 3011 if (i < _cnt) { 3012 _nodes[i] = _nodes[--_cnt]; 3013 } 3014 } 3015 3016 //------------------------------dump------------------------------------------- 3017 void Node_List::dump() const { 3018 #ifndef PRODUCT 3019 for (uint i = 0; i < _cnt; i++) { 3020 if (_nodes[i]) { 3021 tty->print("%5d--> ", i); 3022 _nodes[i]->dump(); 3023 } 3024 } 3025 #endif 3026 } 3027 3028 void Node_List::dump_simple() const { 3029 #ifndef PRODUCT 3030 for (uint i = 0; i < _cnt; i++) { 3031 if( _nodes[i] ) { 3032 tty->print(" %d", _nodes[i]->_idx); 3033 } else { 3034 tty->print(" null"); 3035 } 3036 } 3037 #endif 3038 } 3039 3040 //============================================================================= 3041 //------------------------------remove----------------------------------------- 3042 void Unique_Node_List::remove(Node* n) { 3043 if (_in_worklist.test(n->_idx)) { 3044 for (uint i = 0; i < size(); i++) { 3045 if (_nodes[i] == n) { 3046 map(i, Node_List::pop()); 3047 _in_worklist.remove(n->_idx); 3048 return; 3049 } 3050 } 3051 ShouldNotReachHere(); 3052 } 3053 } 3054 3055 //-----------------------remove_useless_nodes---------------------------------- 3056 // Remove useless nodes from worklist 3057 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) { 3058 for (uint i = 0; i < size(); ++i) { 3059 Node *n = at(i); 3060 assert( n != nullptr, "Did not expect null entries in worklist"); 3061 if (!useful.test(n->_idx)) { 3062 _in_worklist.remove(n->_idx); 3063 map(i, Node_List::pop()); 3064 --i; // Visit popped node 3065 // If it was last entry, loop terminates since size() was also reduced 3066 } 3067 } 3068 } 3069 3070 //============================================================================= 3071 void Node_Stack::grow() { 3072 size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top 3073 size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode)); 3074 size_t max = old_max << 1; // max * 2 3075 _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max); 3076 _inode_max = _inodes + max; 3077 _inode_top = _inodes + old_top; // restore _top 3078 } 3079 3080 // Node_Stack is used to map nodes. 3081 Node* Node_Stack::find(uint idx) const { 3082 uint sz = size(); 3083 for (uint i = 0; i < sz; i++) { 3084 if (idx == index_at(i)) { 3085 return node_at(i); 3086 } 3087 } 3088 return nullptr; 3089 } 3090 3091 //============================================================================= 3092 uint TypeNode::size_of() const { return sizeof(*this); } 3093 #ifndef PRODUCT 3094 void TypeNode::dump_spec(outputStream *st) const { 3095 if (!Verbose && !WizardMode) { 3096 // standard dump does this in Verbose and WizardMode 3097 st->print(" #"); _type->dump_on(st); 3098 } 3099 } 3100 3101 void TypeNode::dump_compact_spec(outputStream *st) const { 3102 st->print("#"); 3103 _type->dump_on(st); 3104 } 3105 #endif 3106 uint TypeNode::hash() const { 3107 return Node::hash() + _type->hash(); 3108 } 3109 bool TypeNode::cmp(const Node& n) const { 3110 return Type::equals(_type, n.as_Type()->_type); 3111 } 3112 const Type* TypeNode::bottom_type() const { return _type; } 3113 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; } 3114 3115 //------------------------------ideal_reg-------------------------------------- 3116 uint TypeNode::ideal_reg() const { 3117 return _type->ideal_reg(); 3118 } 3119 3120 void TypeNode::make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str) { 3121 Node* c = ctrl_use->in(j); 3122 if (igvn->type(c) != Type::TOP) { 3123 igvn->replace_input_of(ctrl_use, j, igvn->C->top()); 3124 create_halt_path(igvn, c, loop, phase_str); 3125 } 3126 } 3127 3128 // This Type node is dead. It could be because the type that it captures and the type of the node computed from its 3129 // inputs do not intersect anymore. That node has some uses along some control flow paths. Those control flow paths must 3130 // be unreachable as using a dead value makes no sense. For the Type node to capture a narrowed down type, some control 3131 // flow construct must guard the Type node (an If node usually). When the Type node becomes dead, the guard usually 3132 // constant folds and the control flow that leads to the Type node becomes unreachable. There are cases where that 3133 // doesn't happen, however. They are handled here by following uses of the Type node until a CFG or a Phi to find dead 3134 // paths. The dead paths are then replaced by a Halt node. 3135 void TypeNode::make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str) { 3136 Unique_Node_List wq; 3137 wq.push(this); 3138 for (uint i = 0; i < wq.size(); ++i) { 3139 Node* n = wq.at(i); 3140 for (DUIterator_Fast kmax, k = n->fast_outs(kmax); k < kmax; k++) { 3141 Node* u = n->fast_out(k); 3142 if (u->is_CFG()) { 3143 assert(!u->is_Region(), "Can't reach a Region without going through a Phi"); 3144 make_path_dead(igvn, loop, u, 0, phase_str); 3145 } else if (u->is_Phi()) { 3146 Node* r = u->in(0); 3147 assert(r->is_Region() || r->is_top(), "unexpected Phi's control"); 3148 if (r->is_Region()) { 3149 for (uint j = 1; j < u->req(); ++j) { 3150 if (u->in(j) == n && r->in(j) != nullptr) { 3151 make_path_dead(igvn, loop, r, j, phase_str); 3152 } 3153 } 3154 } 3155 } else { 3156 wq.push(u); 3157 } 3158 } 3159 } 3160 } 3161 3162 void TypeNode::create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const { 3163 Node* frame = new ParmNode(igvn->C->start(), TypeFunc::FramePtr); 3164 if (loop == nullptr) { 3165 igvn->register_new_node_with_optimizer(frame); 3166 } else { 3167 loop->register_new_node(frame, igvn->C->start()); 3168 } 3169 3170 stringStream ss; 3171 ss.print("dead path discovered by TypeNode during %s", phase_str); 3172 3173 Node* halt = new HaltNode(c, frame, ss.as_string(igvn->C->comp_arena())); 3174 if (loop == nullptr) { 3175 igvn->register_new_node_with_optimizer(halt); 3176 } else { 3177 loop->register_control(halt, loop->ltree_root(), c); 3178 } 3179 igvn->add_input_to(igvn->C->root(), halt); 3180 } 3181 3182 Node* TypeNode::Ideal(PhaseGVN* phase, bool can_reshape) { 3183 if (KillPathsReachableByDeadTypeNode && can_reshape && Value(phase) == Type::TOP) { 3184 PhaseIterGVN* igvn = phase->is_IterGVN(); 3185 Node* top = igvn->C->top(); 3186 ResourceMark rm; 3187 make_paths_from_here_dead(igvn, nullptr, "igvn"); 3188 return top; 3189 } 3190 3191 return Node::Ideal(phase, can_reshape); 3192 } 3193 --- EOF ---