1 /*
2 * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef SHARE_OPTO_NODE_HPP
27 #define SHARE_OPTO_NODE_HPP
28
29 #include "libadt/vectset.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/type.hpp"
32 #include "utilities/copy.hpp"
33
34 // Portions of code courtesy of Clifford Click
35
36 // Optimization - Graph Style
37
38
39 class AbstractLockNode;
40 class AddNode;
41 class AddPNode;
42 class AliasInfo;
43 class AllocateArrayNode;
44 class AllocateNode;
45 class ArrayCopyNode;
46 class BaseCountedLoopNode;
47 class BaseCountedLoopEndNode;
48 class BlackholeNode;
49 class Block;
50 class BoolNode;
51 class BoxLockNode;
52 class CMoveNode;
53 class CallDynamicJavaNode;
54 class CallJavaNode;
55 class CallLeafNode;
56 class CallLeafNoFPNode;
57 class CallLeafPureNode;
58 class CallNode;
59 class CallRuntimeNode;
60 class CallStaticJavaNode;
61 class CastFFNode;
62 class CastHHNode;
63 class CastDDNode;
64 class CastVVNode;
65 class CastIINode;
66 class CastLLNode;
67 class CastPPNode;
68 class CatchNode;
69 class CatchProjNode;
70 class CheckCastPPNode;
71 class ClearArrayNode;
72 class CmpNode;
73 class CodeBuffer;
74 class ConstraintCastNode;
75 class ConNode;
76 class ConINode;
77 class ConvertNode;
78 class CompareAndSwapNode;
79 class CompareAndExchangeNode;
80 class CountedLoopNode;
81 class CountedLoopEndNode;
82 class DecodeNarrowPtrNode;
83 class DecodeNNode;
84 class DecodeNKlassNode;
85 class EncodeNarrowPtrNode;
86 class EncodePNode;
87 class EncodePKlassNode;
88 class FastLockNode;
89 class FastUnlockNode;
90 class HaltNode;
91 class IfNode;
92 class IfProjNode;
93 class IfFalseNode;
94 class IfTrueNode;
95 class InitializeNode;
96 class JVMState;
97 class JumpNode;
98 class JumpProjNode;
99 class LoadNode;
100 class LoadStoreNode;
101 class LoadStoreConditionalNode;
102 class LockNode;
103 class LongCountedLoopNode;
104 class LongCountedLoopEndNode;
105 class LoopNode;
106 class LShiftNode;
107 class MachBranchNode;
108 class MachCallDynamicJavaNode;
109 class MachCallJavaNode;
110 class MachCallLeafNode;
111 class MachCallNode;
112 class MachCallRuntimeNode;
113 class MachCallStaticJavaNode;
114 class MachConstantBaseNode;
115 class MachConstantNode;
116 class MachGotoNode;
117 class MachIfNode;
118 class MachJumpNode;
119 class MachNode;
120 class MachNullCheckNode;
121 class MachProjNode;
122 class MachReturnNode;
123 class MachSafePointNode;
124 class MachSpillCopyNode;
125 class MachTempNode;
126 class MachMergeNode;
127 class MachMemBarNode;
128 class Matcher;
129 class MemBarNode;
130 class MemBarStoreStoreNode;
131 class MemNode;
132 class MergeMemNode;
133 class MinMaxNode;
134 class MoveNode;
135 class MulNode;
136 class MultiNode;
137 class MultiBranchNode;
138 class NarrowMemProjNode;
139 class NegNode;
140 class NegVNode;
141 class NeverBranchNode;
142 class Opaque1Node;
143 class OpaqueLoopInitNode;
144 class OpaqueLoopStrideNode;
145 class OpaqueMultiversioningNode;
146 class OpaqueNotNullNode;
147 class OpaqueInitializedAssertionPredicateNode;
148 class OpaqueTemplateAssertionPredicateNode;
149 class OuterStripMinedLoopNode;
150 class OuterStripMinedLoopEndNode;
151 class Node;
152 class Node_Array;
153 class Node_List;
154 class Node_Stack;
155 class OopMap;
156 class ParmNode;
157 class ParsePredicateNode;
158 class PCTableNode;
159 class PhaseCCP;
160 class PhaseGVN;
161 class PhaseIdealLoop;
162 class PhaseIterGVN;
163 class PhaseRegAlloc;
164 class PhaseTransform;
165 class PhaseValues;
166 class PhiNode;
167 class Pipeline;
168 class PopulateIndexNode;
169 class ProjNode;
170 class RangeCheckNode;
171 class ReductionNode;
172 class RegMask;
173 class RegionNode;
174 class RootNode;
175 class SafePointNode;
176 class SafePointScalarObjectNode;
177 class SafePointScalarMergeNode;
178 class SaturatingVectorNode;
179 class StartNode;
180 class State;
181 class StoreNode;
182 class SubNode;
183 class SubTypeCheckNode;
184 class Type;
185 class TypeNode;
186 class UnlockNode;
187 class VectorNode;
188 class LoadVectorNode;
189 class LoadVectorMaskedNode;
190 class StoreVectorMaskedNode;
191 class LoadVectorGatherNode;
192 class LoadVectorGatherMaskedNode;
193 class StoreVectorNode;
194 class StoreVectorScatterNode;
195 class StoreVectorScatterMaskedNode;
196 class VerifyVectorAlignmentNode;
197 class VectorMaskCmpNode;
198 class VectorUnboxNode;
199 class VectorSet;
200 class VectorReinterpretNode;
201 class ShiftVNode;
202 class MulVLNode;
203 class ExpandVNode;
204 class CompressVNode;
205 class CompressMNode;
206 class C2_MacroAssembler;
207
208
209 #ifndef OPTO_DU_ITERATOR_ASSERT
210 #ifdef ASSERT
211 #define OPTO_DU_ITERATOR_ASSERT 1
212 #else
213 #define OPTO_DU_ITERATOR_ASSERT 0
214 #endif
215 #endif //OPTO_DU_ITERATOR_ASSERT
216
217 #if OPTO_DU_ITERATOR_ASSERT
218 class DUIterator;
219 class DUIterator_Fast;
220 class DUIterator_Last;
221 #else
222 typedef uint DUIterator;
223 typedef Node** DUIterator_Fast;
224 typedef Node** DUIterator_Last;
225 #endif
226
227 typedef ResizeableHashTable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable;
228
229 // Node Sentinel
230 #define NodeSentinel (Node*)-1
231
232 // Unknown count frequency
233 #define COUNT_UNKNOWN (-1.0f)
234
235 //------------------------------Node-------------------------------------------
236 // Nodes define actions in the program. They create values, which have types.
237 // They are both vertices in a directed graph and program primitives. Nodes
238 // are labeled; the label is the "opcode", the primitive function in the lambda
239 // calculus sense that gives meaning to the Node. Node inputs are ordered (so
240 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
241 // the Node's function. These inputs also define a Type equation for the Node.
242 // Solving these Type equations amounts to doing dataflow analysis.
243 // Control and data are uniformly represented in the graph. Finally, Nodes
244 // have a unique dense integer index which is used to index into side arrays
245 // whenever I have phase-specific information.
246
247 class Node {
248
249 // Lots of restrictions on cloning Nodes
250 NONCOPYABLE(Node);
251
252 public:
253 friend class Compile;
254 #if OPTO_DU_ITERATOR_ASSERT
255 friend class DUIterator_Common;
256 friend class DUIterator;
257 friend class DUIterator_Fast;
258 friend class DUIterator_Last;
259 #endif
260
261 // Because Nodes come and go, I define an Arena of Node structures to pull
262 // from. This should allow fast access to node creation & deletion. This
263 // field is a local cache of a value defined in some "program fragment" for
264 // which these Nodes are just a part of.
265
266 inline void* operator new(size_t x) throw() {
267 Compile* C = Compile::current();
268 Node* n = (Node*)C->node_arena()->AmallocWords(x);
269 return (void*)n;
270 }
271
272 // Delete is a NOP
273 void operator delete( void *ptr ) {}
274 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
275 void destruct(PhaseValues* phase);
276
277 // Create a new Node. Required is the number is of inputs required for
278 // semantic correctness.
279 Node( uint required );
280
281 // Create a new Node with given input edges.
282 // This version requires use of the "edge-count" new.
283 // E.g. new (C,3) FooNode( C, nullptr, left, right );
284 Node( Node *n0 );
285 Node( Node *n0, Node *n1 );
286 Node( Node *n0, Node *n1, Node *n2 );
287 Node( Node *n0, Node *n1, Node *n2, Node *n3 );
288 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
289 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
290 Node( Node *n0, Node *n1, Node *n2, Node *n3,
291 Node *n4, Node *n5, Node *n6 );
292
293 // Clone an inherited Node given only the base Node type.
294 Node* clone() const;
295
296 // Clone a Node, immediately supplying one or two new edges.
297 // The first and second arguments, if non-null, replace in(1) and in(2),
298 // respectively.
299 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
300 Node* nn = clone();
301 if (in1 != nullptr) nn->set_req(1, in1);
302 if (in2 != nullptr) nn->set_req(2, in2);
303 return nn;
304 }
305
306 private:
307 // Shared setup for the above constructors.
308 // Handles all interactions with Compile::current.
309 // Puts initial values in all Node fields except _idx.
310 // Returns the initial value for _idx, which cannot
311 // be initialized by assignment.
312 inline int Init(int req);
313
314 //----------------- input edge handling
315 protected:
316 friend class PhaseCFG; // Access to address of _in array elements
317 Node **_in; // Array of use-def references to Nodes
318 Node **_out; // Array of def-use references to Nodes
319
320 // Input edges are split into two categories. Required edges are required
321 // for semantic correctness; order is important and nulls are allowed.
322 // Precedence edges are used to help determine execution order and are
323 // added, e.g., for scheduling purposes. They are unordered and not
324 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1
325 // are required, from _cnt to _max-1 are precedence edges.
326 node_idx_t _cnt; // Total number of required Node inputs.
327
328 node_idx_t _max; // Actual length of input array.
329
330 // Output edges are an unordered list of def-use edges which exactly
331 // correspond to required input edges which point from other nodes
332 // to this one. Thus the count of the output edges is the number of
333 // users of this node.
334 node_idx_t _outcnt; // Total number of Node outputs.
335
336 node_idx_t _outmax; // Actual length of output array.
337
338 // Grow the actual input array to the next larger power-of-2 bigger than len.
339 void grow( uint len );
340 // Grow the output array to the next larger power-of-2 bigger than len.
341 void out_grow( uint len );
342 // Resize input or output array to grow it to the next larger power-of-2
343 // bigger than len.
344 void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing);
345
346 public:
347 // Each Node is assigned a unique small/dense number. This number is used
348 // to index into auxiliary arrays of data and bit vectors.
349 // The value of _idx can be changed using the set_idx() method.
350 //
351 // The PhaseRenumberLive phase renumbers nodes based on liveness information.
352 // Therefore, it updates the value of the _idx field. The parse-time _idx is
353 // preserved in _parse_idx.
354 node_idx_t _idx;
355 DEBUG_ONLY(const node_idx_t _parse_idx;)
356 // IGV node identifier. Two nodes, possibly in different compilation phases,
357 // have the same IGV identifier if (and only if) they are the very same node
358 // (same memory address) or one is "derived" from the other (by e.g.
359 // renumbering or matching). This identifier makes it possible to follow the
360 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
361 NOT_PRODUCT(node_idx_t _igv_idx;)
362
363 // Get the (read-only) number of input edges
364 uint req() const { return _cnt; }
365 uint len() const { return _max; }
366 // Get the (read-only) number of output edges
367 uint outcnt() const { return _outcnt; }
368
369 #if OPTO_DU_ITERATOR_ASSERT
370 // Iterate over the out-edges of this node. Deletions are illegal.
371 inline DUIterator outs() const;
372 // Use this when the out array might have changed to suppress asserts.
373 inline DUIterator& refresh_out_pos(DUIterator& i) const;
374 // Does the node have an out at this position? (Used for iteration.)
375 inline bool has_out(DUIterator& i) const;
376 inline Node* out(DUIterator& i) const;
377 // Iterate over the out-edges of this node. All changes are illegal.
378 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
379 inline Node* fast_out(DUIterator_Fast& i) const;
380 // Iterate over the out-edges of this node, deleting one at a time.
381 inline DUIterator_Last last_outs(DUIterator_Last& min) const;
382 inline Node* last_out(DUIterator_Last& i) const;
383 // The inline bodies of all these methods are after the iterator definitions.
384 #else
385 // Iterate over the out-edges of this node. Deletions are illegal.
386 // This iteration uses integral indexes, to decouple from array reallocations.
387 DUIterator outs() const { return 0; }
388 // Use this when the out array might have changed to suppress asserts.
389 DUIterator refresh_out_pos(DUIterator i) const { return i; }
390
391 // Reference to the i'th output Node. Error if out of bounds.
392 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
393 // Does the node have an out at this position? (Used for iteration.)
394 bool has_out(DUIterator i) const { return i < _outcnt; }
395
396 // Iterate over the out-edges of this node. All changes are illegal.
397 // This iteration uses a pointer internal to the out array.
398 DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
399 Node** out = _out;
400 // Assign a limit pointer to the reference argument:
401 max = out + (ptrdiff_t)_outcnt;
402 // Return the base pointer:
403 return out;
404 }
405 Node* fast_out(DUIterator_Fast i) const { return *i; }
406 // Iterate over the out-edges of this node, deleting one at a time.
407 // This iteration uses a pointer internal to the out array.
408 DUIterator_Last last_outs(DUIterator_Last& min) const {
409 Node** out = _out;
410 // Assign a limit pointer to the reference argument:
411 min = out;
412 // Return the pointer to the start of the iteration:
413 return out + (ptrdiff_t)_outcnt - 1;
414 }
415 Node* last_out(DUIterator_Last i) const { return *i; }
416 #endif
417
418 // Reference to the i'th input Node. Error if out of bounds.
419 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
420 // Reference to the i'th input Node. null if out of bounds.
421 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
422 // Reference to the i'th output Node. Error if out of bounds.
423 // Use this accessor sparingly. We are going trying to use iterators instead.
424 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
425 // Return the unique out edge.
426 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
427
428 // In some cases, a node n is only used by a single use, but the use may use
429 // n once or multiple times:
430 // use = ConvF2I(this)
431 // use = AddI(this, this)
432 Node* unique_multiple_edges_out_or_null() const;
433
434 // Delete out edge at position 'i' by moving last out edge to position 'i'
435 void raw_del_out(uint i) {
436 assert(i < _outcnt,"oob");
437 assert(_outcnt > 0,"oob");
438 #if OPTO_DU_ITERATOR_ASSERT
439 // Record that a change happened here.
440 DEBUG_ONLY(_last_del = _out[i]; ++_del_tick);
441 #endif
442 _out[i] = _out[--_outcnt];
443 // Smash the old edge so it can't be used accidentally.
444 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
445 }
446
447 #ifdef ASSERT
448 bool is_dead() const;
449 static bool is_not_dead(const Node* n);
450 bool is_reachable_from_root() const;
451 #endif
452 // Check whether node has become unreachable
453 bool is_unreachable(PhaseIterGVN &igvn) const;
454
455 // Set a required input edge, also updates corresponding output edge
456 void add_req( Node *n ); // Append a NEW required input
457 void add_req( Node *n0, Node *n1 ) {
458 add_req(n0); add_req(n1); }
459 void add_req( Node *n0, Node *n1, Node *n2 ) {
460 add_req(n0); add_req(n1); add_req(n2); }
461 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
462 void del_req( uint idx ); // Delete required edge & compact
463 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
464 void ins_req( uint i, Node *n ); // Insert a NEW required input
465 void set_req( uint i, Node *n ) {
466 assert( is_not_dead(n), "can not use dead node");
467 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
468 assert( !VerifyHashTableKeys || _hash_lock == 0,
469 "remove node from hash table before modifying it");
470 Node** p = &_in[i]; // cache this._in, across the del_out call
471 if (*p != nullptr) (*p)->del_out((Node *)this);
472 (*p) = n;
473 if (n != nullptr) n->add_out((Node *)this);
474 Compile::current()->record_modified_node(this);
475 }
476 // Light version of set_req() to init inputs after node creation.
477 void init_req( uint i, Node *n ) {
478 assert( (i == 0 && this == n) ||
479 is_not_dead(n), "can not use dead node");
480 assert( i < _cnt, "oob");
481 assert( !VerifyHashTableKeys || _hash_lock == 0,
482 "remove node from hash table before modifying it");
483 assert( _in[i] == nullptr, "sanity");
484 _in[i] = n;
485 if (n != nullptr) n->add_out((Node *)this);
486 Compile::current()->record_modified_node(this);
487 }
488 // Find first occurrence of n among my edges:
489 int find_edge(Node* n);
490 int find_prec_edge(Node* n) {
491 for (uint i = req(); i < len(); i++) {
492 if (_in[i] == n) return i;
493 if (_in[i] == nullptr) {
494 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
495 break;
496 }
497 }
498 return -1;
499 }
500 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
501 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
502 // null out all inputs to eliminate incoming Def-Use edges.
503 void disconnect_inputs(Compile* C);
504
505 // Quickly, return true if and only if I am Compile::current()->top().
506 bool is_top() const {
507 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
508 return (_out == nullptr);
509 }
510 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
511 void setup_is_top();
512
513 // Strip away casting. (It is depth-limited.)
514 Node* uncast(bool keep_deps = false) const;
515 // Return whether two Nodes are equivalent, after stripping casting.
516 bool eqv_uncast(const Node* n, bool keep_deps = false) const {
517 return (this->uncast(keep_deps) == n->uncast(keep_deps));
518 }
519
520 // Find out of current node that matches opcode.
521 Node* find_out_with(int opcode);
522 // Return true if the current node has an out that matches opcode.
523 bool has_out_with(int opcode);
524 // Return true if the current node has an out that matches any of the opcodes.
525 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
526
527 private:
528 static Node* uncast_helper(const Node* n, bool keep_deps);
529
530 // Add an output edge to the end of the list
531 void add_out( Node *n ) {
532 if (is_top()) return;
533 if( _outcnt == _outmax ) out_grow(_outcnt);
534 _out[_outcnt++] = n;
535 }
536 // Delete an output edge
537 void del_out( Node *n ) {
538 if (is_top()) return;
539 Node** outp = &_out[_outcnt];
540 // Find and remove n
541 do {
542 assert(outp > _out, "Missing Def-Use edge");
543 } while (*--outp != n);
544 *outp = _out[--_outcnt];
545 // Smash the old edge so it can't be used accidentally.
546 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
547 // Record that a change happened here.
548 #if OPTO_DU_ITERATOR_ASSERT
549 DEBUG_ONLY(_last_del = n; ++_del_tick);
550 #endif
551 }
552 // Close gap after removing edge.
553 void close_prec_gap_at(uint gap) {
554 assert(_cnt <= gap && gap < _max, "no valid prec edge");
555 uint i = gap;
556 Node *last = nullptr;
557 for (; i < _max-1; ++i) {
558 Node *next = _in[i+1];
559 if (next == nullptr) break;
560 last = next;
561 }
562 _in[gap] = last; // Move last slot to empty one.
563 _in[i] = nullptr; // null out last slot.
564 }
565
566 public:
567 // Globally replace this node by a given new node, updating all uses.
568 void replace_by(Node* new_node);
569 // Globally replace this node by a given new node, updating all uses
570 // and cutting input edges of old node.
571 void subsume_by(Node* new_node, Compile* c) {
572 replace_by(new_node);
573 disconnect_inputs(c);
574 }
575 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
576 void set_req_X(uint i, Node *n, PhaseGVN *gvn);
577 // Find the one non-null required input. RegionNode only
578 Node *nonnull_req() const;
579 // Add or remove precedence edges
580 void add_prec( Node *n );
581 void rm_prec( uint i );
582
583 // Note: prec(i) will not necessarily point to n if edge already exists.
584 void set_prec( uint i, Node *n ) {
585 assert(i < _max, "oob: i=%d, _max=%d", i, _max);
586 assert(is_not_dead(n), "can not use dead node");
587 assert(i >= _cnt, "not a precedence edge");
588 // Avoid spec violation: duplicated prec edge.
589 if (_in[i] == n) return;
590 if (n == nullptr || find_prec_edge(n) != -1) {
591 rm_prec(i);
592 return;
593 }
594 if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
595 _in[i] = n;
596 n->add_out((Node *)this);
597 Compile::current()->record_modified_node(this);
598 }
599
600 // Set this node's index, used by cisc_version to replace current node
601 void set_idx(uint new_idx) {
602 _idx = new_idx;
603 }
604 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
605 void swap_edges(uint i1, uint i2) {
606 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
607 // Def-Use info is unchanged
608 Node* n1 = in(i1);
609 Node* n2 = in(i2);
610 _in[i1] = n2;
611 _in[i2] = n1;
612 // If this node is in the hash table, make sure it doesn't need a rehash.
613 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
614 // Flip swapped edges flag.
615 if (has_swapped_edges()) {
616 remove_flag(Node::Flag_has_swapped_edges);
617 } else {
618 add_flag(Node::Flag_has_swapped_edges);
619 }
620 }
621
622 // Iterators over input Nodes for a Node X are written as:
623 // for( i = 0; i < X.req(); i++ ) ... X[i] ...
624 // NOTE: Required edges can contain embedded null pointers.
625
626 //----------------- Other Node Properties
627
628 // Generate class IDs for (some) ideal nodes so that it is possible to determine
629 // the type of a node using a non-virtual method call (the method is_<Node>() below).
630 //
631 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
632 // the type of the node the ID represents; another subset of an ID's bits are reserved
633 // for the superclasses of the node represented by the ID.
634 //
635 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
636 // returns false. A.is_A() returns true.
637 //
638 // If two classes, A and B, have the same superclass, a different bit of A's class id
639 // is reserved for A's type than for B's type. That bit is specified by the third
640 // parameter in the macro DEFINE_CLASS_ID.
641 //
642 // By convention, classes with deeper hierarchy are declared first. Moreover,
643 // classes with the same hierarchy depth are sorted by usage frequency.
644 //
645 // The query method masks the bits to cut off bits of subclasses and then compares
646 // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
647 //
648 // Class_MachCall=30, ClassMask_MachCall=31
649 // 12 8 4 0
650 // 0 0 0 0 0 0 0 0 1 1 1 1 0
651 // | | | |
652 // | | | Bit_Mach=2
653 // | | Bit_MachReturn=4
654 // | Bit_MachSafePoint=8
655 // Bit_MachCall=16
656 //
657 // Class_CountedLoop=56, ClassMask_CountedLoop=63
658 // 12 8 4 0
659 // 0 0 0 0 0 0 0 1 1 1 0 0 0
660 // | | |
661 // | | Bit_Region=8
662 // | Bit_Loop=16
663 // Bit_CountedLoop=32
664
665 #define DEFINE_CLASS_ID(cl, supcl, subn) \
666 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
667 Class_##cl = Class_##supcl + Bit_##cl , \
668 ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
669
670 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
671 // so that its values fit into 32 bits.
672 enum NodeClasses {
673 Bit_Node = 0x00000000,
674 Class_Node = 0x00000000,
675 ClassMask_Node = 0xFFFFFFFF,
676
677 DEFINE_CLASS_ID(Multi, Node, 0)
678 DEFINE_CLASS_ID(SafePoint, Multi, 0)
679 DEFINE_CLASS_ID(Call, SafePoint, 0)
680 DEFINE_CLASS_ID(CallJava, Call, 0)
681 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
682 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
683 DEFINE_CLASS_ID(CallRuntime, Call, 1)
684 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
685 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0)
686 DEFINE_CLASS_ID(CallLeafPure, CallLeaf, 1)
687 DEFINE_CLASS_ID(Allocate, Call, 2)
688 DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
689 DEFINE_CLASS_ID(AbstractLock, Call, 3)
690 DEFINE_CLASS_ID(Lock, AbstractLock, 0)
691 DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
692 DEFINE_CLASS_ID(ArrayCopy, Call, 4)
693 DEFINE_CLASS_ID(MultiBranch, Multi, 1)
694 DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
695 DEFINE_CLASS_ID(Catch, PCTable, 0)
696 DEFINE_CLASS_ID(Jump, PCTable, 1)
697 DEFINE_CLASS_ID(If, MultiBranch, 1)
698 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0)
699 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0)
700 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1)
701 DEFINE_CLASS_ID(RangeCheck, If, 1)
702 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
703 DEFINE_CLASS_ID(ParsePredicate, If, 3)
704 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
705 DEFINE_CLASS_ID(Start, Multi, 2)
706 DEFINE_CLASS_ID(MemBar, Multi, 3)
707 DEFINE_CLASS_ID(Initialize, MemBar, 0)
708 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
709
710 DEFINE_CLASS_ID(Mach, Node, 1)
711 DEFINE_CLASS_ID(MachReturn, Mach, 0)
712 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
713 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
714 DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
715 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
716 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
717 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
718 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
719 DEFINE_CLASS_ID(MachBranch, Mach, 1)
720 DEFINE_CLASS_ID(MachIf, MachBranch, 0)
721 DEFINE_CLASS_ID(MachGoto, MachBranch, 1)
722 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2)
723 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2)
724 DEFINE_CLASS_ID(MachTemp, Mach, 3)
725 DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
726 DEFINE_CLASS_ID(MachConstant, Mach, 5)
727 DEFINE_CLASS_ID(MachJump, MachConstant, 0)
728 DEFINE_CLASS_ID(MachMerge, Mach, 6)
729 DEFINE_CLASS_ID(MachMemBar, Mach, 7)
730
731 DEFINE_CLASS_ID(Type, Node, 2)
732 DEFINE_CLASS_ID(Phi, Type, 0)
733 DEFINE_CLASS_ID(ConstraintCast, Type, 1)
734 DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
735 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
736 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
737 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
738 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
739 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
740 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6)
741 DEFINE_CLASS_ID(CastHH, ConstraintCast, 7)
742 DEFINE_CLASS_ID(CMove, Type, 3)
743 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
744 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
745 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
746 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
747 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
748 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
749 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
750 DEFINE_CLASS_ID(Vector, Type, 7)
751 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
752 DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
753 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
754 DEFINE_CLASS_ID(ShiftV, Vector, 3)
755 DEFINE_CLASS_ID(CompressV, Vector, 4)
756 DEFINE_CLASS_ID(ExpandV, Vector, 5)
757 DEFINE_CLASS_ID(CompressM, Vector, 6)
758 DEFINE_CLASS_ID(Reduction, Vector, 7)
759 DEFINE_CLASS_ID(NegV, Vector, 8)
760 DEFINE_CLASS_ID(SaturatingVector, Vector, 9)
761 DEFINE_CLASS_ID(MulVL, Vector, 10)
762 DEFINE_CLASS_ID(Con, Type, 8)
763 DEFINE_CLASS_ID(ConI, Con, 0)
764 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 9)
765 DEFINE_CLASS_ID(Convert, Type, 10)
766
767
768 DEFINE_CLASS_ID(Proj, Node, 3)
769 DEFINE_CLASS_ID(CatchProj, Proj, 0)
770 DEFINE_CLASS_ID(JumpProj, Proj, 1)
771 DEFINE_CLASS_ID(IfProj, Proj, 2)
772 DEFINE_CLASS_ID(IfTrue, IfProj, 0)
773 DEFINE_CLASS_ID(IfFalse, IfProj, 1)
774 DEFINE_CLASS_ID(Parm, Proj, 4)
775 DEFINE_CLASS_ID(MachProj, Proj, 5)
776 DEFINE_CLASS_ID(NarrowMemProj, Proj, 6)
777
778 DEFINE_CLASS_ID(Mem, Node, 4)
779 DEFINE_CLASS_ID(Load, Mem, 0)
780 DEFINE_CLASS_ID(LoadVector, Load, 0)
781 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
782 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
783 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
784 DEFINE_CLASS_ID(Store, Mem, 1)
785 DEFINE_CLASS_ID(StoreVector, Store, 0)
786 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
787 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
788 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
789 DEFINE_CLASS_ID(LoadStore, Mem, 2)
790 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
791 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
792 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
793
794 DEFINE_CLASS_ID(Region, Node, 5)
795 DEFINE_CLASS_ID(Loop, Region, 0)
796 DEFINE_CLASS_ID(Root, Loop, 0)
797 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1)
798 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0)
799 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1)
800 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
801
802 DEFINE_CLASS_ID(Sub, Node, 6)
803 DEFINE_CLASS_ID(Cmp, Sub, 0)
804 DEFINE_CLASS_ID(FastLock, Cmp, 0)
805 DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
806 DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2)
807
808 DEFINE_CLASS_ID(MergeMem, Node, 7)
809 DEFINE_CLASS_ID(Bool, Node, 8)
810 DEFINE_CLASS_ID(AddP, Node, 9)
811 DEFINE_CLASS_ID(BoxLock, Node, 10)
812 DEFINE_CLASS_ID(Add, Node, 11)
813 DEFINE_CLASS_ID(MinMax, Add, 0)
814 DEFINE_CLASS_ID(Mul, Node, 12)
815 DEFINE_CLASS_ID(ClearArray, Node, 14)
816 DEFINE_CLASS_ID(Halt, Node, 15)
817 DEFINE_CLASS_ID(Opaque1, Node, 16)
818 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0)
819 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1)
820 DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2)
821 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17)
822 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18)
823 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19)
824 DEFINE_CLASS_ID(Move, Node, 20)
825 DEFINE_CLASS_ID(LShift, Node, 21)
826 DEFINE_CLASS_ID(Neg, Node, 22)
827
828 _max_classes = ClassMask_Neg
829 };
830 #undef DEFINE_CLASS_ID
831
832 // Flags are sorted by usage frequency.
833 enum NodeFlags : uint64_t {
834 Flag_is_Copy = 1ULL << 0, // should be first bit to avoid shift
835 Flag_rematerialize = 1ULL << 1,
836 Flag_needs_anti_dependence_check = 1ULL << 2,
837 Flag_is_macro = 1ULL << 3,
838 Flag_is_Con = 1ULL << 4,
839 Flag_is_cisc_alternate = 1ULL << 5,
840 Flag_is_dead_loop_safe = 1ULL << 6,
841 Flag_may_be_short_branch = 1ULL << 7,
842 Flag_avoid_back_to_back_before = 1ULL << 8,
843 Flag_avoid_back_to_back_after = 1ULL << 9,
844 Flag_has_call = 1ULL << 10,
845 Flag_has_swapped_edges = 1ULL << 11,
846 Flag_is_scheduled = 1ULL << 12,
847 Flag_is_expensive = 1ULL << 13,
848 Flag_is_predicated_vector = 1ULL << 14, // Marked on a vector node that has an additional
849 // mask input controlling the lane operations.
850 Flag_for_post_loop_opts_igvn = 1ULL << 15,
851 Flag_for_merge_stores_igvn = 1ULL << 16,
852 Flag_is_removed_by_peephole = 1ULL << 17,
853 Flag_is_predicated_using_blend = 1ULL << 18,
854 _last_flag = Flag_is_predicated_using_blend
855 };
856
857 class PD;
858
859 private:
860 juint _class_id;
861 juint _flags;
862
863 #ifdef ASSERT
864 static juint max_flags();
865 #endif
866
867 protected:
868 // These methods should be called from constructors only.
869 void init_class_id(juint c) {
870 _class_id = c; // cast out const
871 }
872 void init_flags(uint fl) {
873 assert(fl <= max_flags(), "invalid node flag");
874 _flags |= fl;
875 }
876 void clear_flag(uint fl) {
877 assert(fl <= max_flags(), "invalid node flag");
878 _flags &= ~fl;
879 }
880
881 public:
882 juint class_id() const { return _class_id; }
883
884 juint flags() const { return _flags; }
885
886 void add_flag(juint fl) { init_flags(fl); }
887
888 void remove_flag(juint fl) { clear_flag(fl); }
889
890 // Return a dense integer opcode number
891 virtual int Opcode() const;
892
893 // Virtual inherited Node size
894 virtual uint size_of() const;
895
896 // Other interesting Node properties
897 #define DEFINE_CLASS_QUERY(type) \
898 bool is_##type() const { \
899 return ((_class_id & ClassMask_##type) == Class_##type); \
900 } \
901 type##Node *as_##type() const { \
902 assert(is_##type(), "invalid node class: %s", Name()); \
903 return (type##Node*)this; \
904 } \
905 type##Node* isa_##type() const { \
906 return (is_##type()) ? as_##type() : nullptr; \
907 }
908
909 DEFINE_CLASS_QUERY(AbstractLock)
910 DEFINE_CLASS_QUERY(Add)
911 DEFINE_CLASS_QUERY(AddP)
912 DEFINE_CLASS_QUERY(Allocate)
913 DEFINE_CLASS_QUERY(AllocateArray)
914 DEFINE_CLASS_QUERY(ArrayCopy)
915 DEFINE_CLASS_QUERY(BaseCountedLoop)
916 DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
917 DEFINE_CLASS_QUERY(Bool)
918 DEFINE_CLASS_QUERY(BoxLock)
919 DEFINE_CLASS_QUERY(Call)
920 DEFINE_CLASS_QUERY(CallDynamicJava)
921 DEFINE_CLASS_QUERY(CallJava)
922 DEFINE_CLASS_QUERY(CallLeaf)
923 DEFINE_CLASS_QUERY(CallLeafNoFP)
924 DEFINE_CLASS_QUERY(CallLeafPure)
925 DEFINE_CLASS_QUERY(CallRuntime)
926 DEFINE_CLASS_QUERY(CallStaticJava)
927 DEFINE_CLASS_QUERY(Catch)
928 DEFINE_CLASS_QUERY(CatchProj)
929 DEFINE_CLASS_QUERY(CheckCastPP)
930 DEFINE_CLASS_QUERY(CastII)
931 DEFINE_CLASS_QUERY(CastLL)
932 DEFINE_CLASS_QUERY(CastFF)
933 DEFINE_CLASS_QUERY(ConI)
934 DEFINE_CLASS_QUERY(CastPP)
935 DEFINE_CLASS_QUERY(ConstraintCast)
936 DEFINE_CLASS_QUERY(ClearArray)
937 DEFINE_CLASS_QUERY(CMove)
938 DEFINE_CLASS_QUERY(Cmp)
939 DEFINE_CLASS_QUERY(Convert)
940 DEFINE_CLASS_QUERY(CountedLoop)
941 DEFINE_CLASS_QUERY(CountedLoopEnd)
942 DEFINE_CLASS_QUERY(DecodeNarrowPtr)
943 DEFINE_CLASS_QUERY(DecodeN)
944 DEFINE_CLASS_QUERY(DecodeNKlass)
945 DEFINE_CLASS_QUERY(EncodeNarrowPtr)
946 DEFINE_CLASS_QUERY(EncodeP)
947 DEFINE_CLASS_QUERY(EncodePKlass)
948 DEFINE_CLASS_QUERY(FastLock)
949 DEFINE_CLASS_QUERY(FastUnlock)
950 DEFINE_CLASS_QUERY(Halt)
951 DEFINE_CLASS_QUERY(If)
952 DEFINE_CLASS_QUERY(RangeCheck)
953 DEFINE_CLASS_QUERY(IfProj)
954 DEFINE_CLASS_QUERY(IfFalse)
955 DEFINE_CLASS_QUERY(IfTrue)
956 DEFINE_CLASS_QUERY(Initialize)
957 DEFINE_CLASS_QUERY(Jump)
958 DEFINE_CLASS_QUERY(JumpProj)
959 DEFINE_CLASS_QUERY(LongCountedLoop)
960 DEFINE_CLASS_QUERY(LongCountedLoopEnd)
961 DEFINE_CLASS_QUERY(Load)
962 DEFINE_CLASS_QUERY(LoadStore)
963 DEFINE_CLASS_QUERY(LoadStoreConditional)
964 DEFINE_CLASS_QUERY(Lock)
965 DEFINE_CLASS_QUERY(Loop)
966 DEFINE_CLASS_QUERY(LShift)
967 DEFINE_CLASS_QUERY(Mach)
968 DEFINE_CLASS_QUERY(MachBranch)
969 DEFINE_CLASS_QUERY(MachCall)
970 DEFINE_CLASS_QUERY(MachCallDynamicJava)
971 DEFINE_CLASS_QUERY(MachCallJava)
972 DEFINE_CLASS_QUERY(MachCallLeaf)
973 DEFINE_CLASS_QUERY(MachCallRuntime)
974 DEFINE_CLASS_QUERY(MachCallStaticJava)
975 DEFINE_CLASS_QUERY(MachConstantBase)
976 DEFINE_CLASS_QUERY(MachConstant)
977 DEFINE_CLASS_QUERY(MachGoto)
978 DEFINE_CLASS_QUERY(MachIf)
979 DEFINE_CLASS_QUERY(MachJump)
980 DEFINE_CLASS_QUERY(MachNullCheck)
981 DEFINE_CLASS_QUERY(MachProj)
982 DEFINE_CLASS_QUERY(MachReturn)
983 DEFINE_CLASS_QUERY(MachSafePoint)
984 DEFINE_CLASS_QUERY(MachSpillCopy)
985 DEFINE_CLASS_QUERY(MachTemp)
986 DEFINE_CLASS_QUERY(MachMemBar)
987 DEFINE_CLASS_QUERY(MachMerge)
988 DEFINE_CLASS_QUERY(Mem)
989 DEFINE_CLASS_QUERY(MemBar)
990 DEFINE_CLASS_QUERY(MemBarStoreStore)
991 DEFINE_CLASS_QUERY(MergeMem)
992 DEFINE_CLASS_QUERY(MinMax)
993 DEFINE_CLASS_QUERY(Move)
994 DEFINE_CLASS_QUERY(Mul)
995 DEFINE_CLASS_QUERY(Multi)
996 DEFINE_CLASS_QUERY(MultiBranch)
997 DEFINE_CLASS_QUERY(MulVL)
998 DEFINE_CLASS_QUERY(NarrowMemProj)
999 DEFINE_CLASS_QUERY(Neg)
1000 DEFINE_CLASS_QUERY(NegV)
1001 DEFINE_CLASS_QUERY(NeverBranch)
1002 DEFINE_CLASS_QUERY(Opaque1)
1003 DEFINE_CLASS_QUERY(OpaqueNotNull)
1004 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate)
1005 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate)
1006 DEFINE_CLASS_QUERY(OpaqueLoopInit)
1007 DEFINE_CLASS_QUERY(OpaqueLoopStride)
1008 DEFINE_CLASS_QUERY(OpaqueMultiversioning)
1009 DEFINE_CLASS_QUERY(OuterStripMinedLoop)
1010 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
1011 DEFINE_CLASS_QUERY(Parm)
1012 DEFINE_CLASS_QUERY(ParsePredicate)
1013 DEFINE_CLASS_QUERY(PCTable)
1014 DEFINE_CLASS_QUERY(Phi)
1015 DEFINE_CLASS_QUERY(Proj)
1016 DEFINE_CLASS_QUERY(Reduction)
1017 DEFINE_CLASS_QUERY(Region)
1018 DEFINE_CLASS_QUERY(Root)
1019 DEFINE_CLASS_QUERY(SafePoint)
1020 DEFINE_CLASS_QUERY(SafePointScalarObject)
1021 DEFINE_CLASS_QUERY(SafePointScalarMerge)
1022 DEFINE_CLASS_QUERY(Start)
1023 DEFINE_CLASS_QUERY(Store)
1024 DEFINE_CLASS_QUERY(Sub)
1025 DEFINE_CLASS_QUERY(SubTypeCheck)
1026 DEFINE_CLASS_QUERY(Type)
1027 DEFINE_CLASS_QUERY(Vector)
1028 DEFINE_CLASS_QUERY(VectorMaskCmp)
1029 DEFINE_CLASS_QUERY(VectorUnbox)
1030 DEFINE_CLASS_QUERY(VectorReinterpret)
1031 DEFINE_CLASS_QUERY(CompressV)
1032 DEFINE_CLASS_QUERY(ExpandV)
1033 DEFINE_CLASS_QUERY(CompressM)
1034 DEFINE_CLASS_QUERY(LoadVector)
1035 DEFINE_CLASS_QUERY(LoadVectorGather)
1036 DEFINE_CLASS_QUERY(LoadVectorMasked)
1037 DEFINE_CLASS_QUERY(LoadVectorGatherMasked)
1038 DEFINE_CLASS_QUERY(StoreVector)
1039 DEFINE_CLASS_QUERY(StoreVectorScatter)
1040 DEFINE_CLASS_QUERY(StoreVectorMasked)
1041 DEFINE_CLASS_QUERY(StoreVectorScatterMasked)
1042 DEFINE_CLASS_QUERY(SaturatingVector)
1043 DEFINE_CLASS_QUERY(ShiftV)
1044 DEFINE_CLASS_QUERY(Unlock)
1045
1046 #undef DEFINE_CLASS_QUERY
1047
1048 // duplicate of is_MachSpillCopy()
1049 bool is_SpillCopy () const {
1050 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
1051 }
1052
1053 bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
1054 // The data node which is safe to leave in dead loop during IGVN optimization.
1055 bool is_dead_loop_safe() const;
1056
1057 // is_Copy() returns copied edge index (0 or 1)
1058 uint is_Copy() const { return (_flags & Flag_is_Copy); }
1059
1060 virtual bool is_CFG() const { return false; }
1061
1062 // If this node is control-dependent on a test, can it be
1063 // rerouted to a dominating equivalent test? This is usually
1064 // true of non-CFG nodes, but can be false for operations which
1065 // depend for their correct sequencing on more than one test.
1066 // (In that case, hoisting to a dominating test may silently
1067 // skip some other important test.)
1068 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1069
1070 // When building basic blocks, I need to have a notion of block beginning
1071 // Nodes, next block selector Nodes (block enders), and next block
1072 // projections. These calls need to work on their machine equivalents. The
1073 // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1074 bool is_block_start() const {
1075 if ( is_Region() )
1076 return this == (const Node*)in(0);
1077 else
1078 return is_Start();
1079 }
1080
1081 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1082 // Goto and Return. This call also returns the block ending Node.
1083 virtual const Node *is_block_proj() const;
1084
1085 // The node is a "macro" node which needs to be expanded before matching
1086 bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1087 // The node is expensive: the best control is set during loop opts
1088 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1089 // The node's original edge position is swapped.
1090 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1091
1092 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1093
1094 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1095
1096 // Used in lcm to mark nodes that have scheduled
1097 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1098
1099 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1100 bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; }
1101
1102 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1103 static bool may_be_loop_entry(Node* n) {
1104 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1105 }
1106
1107 //----------------- Optimization
1108
1109 // Get the worst-case Type output for this Node.
1110 virtual const class Type *bottom_type() const;
1111
1112 // If we find a better type for a node, try to record it permanently.
1113 // Return true if this node actually changed.
1114 // Be sure to do the hash_delete game in the "rehash" variant.
1115 void raise_bottom_type(const Type* new_type);
1116
1117 // Get the address type with which this node uses and/or defs memory,
1118 // or null if none. The address type is conservatively wide.
1119 // Returns non-null for calls, membars, loads, stores, etc.
1120 // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1121 virtual const class TypePtr *adr_type() const { return nullptr; }
1122
1123 // Return an existing node which computes the same function as this node.
1124 // The optimistic combined algorithm requires this to return a Node which
1125 // is a small number of steps away (e.g., one of my inputs).
1126 virtual Node* Identity(PhaseGVN* phase);
1127
1128 // Return the set of values this Node can take on at runtime.
1129 virtual const Type* Value(PhaseGVN* phase) const;
1130
1131 // Return a node which is more "ideal" than the current node.
1132 // The invariants on this call are subtle. If in doubt, read the
1133 // treatise in node.cpp above the default implementation AND TEST WITH
1134 // -XX:VerifyIterativeGVN=1
1135 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1136
1137 // Some nodes have specific Ideal subgraph transformations only if they are
1138 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1139 // for the transformations to happen.
1140 bool has_special_unique_user() const;
1141
1142 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1143 Node* find_exact_control(Node* ctrl);
1144
1145 // Results of the dominance analysis.
1146 enum class DomResult {
1147 NotDominate, // 'this' node does not dominate 'sub'.
1148 Dominate, // 'this' node dominates or is equal to 'sub'.
1149 EncounteredDeadCode // Result is undefined due to encountering dead code.
1150 };
1151 // Check if 'this' node dominates or equal to 'sub'.
1152 DomResult dominates(Node* sub, Node_List &nlist);
1153
1154 bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1155 public:
1156
1157 // See if there is valid pipeline info
1158 static const Pipeline *pipeline_class();
1159 virtual const Pipeline *pipeline() const;
1160
1161 // Compute the latency from the def to this instruction of the ith input node
1162 uint latency(uint i);
1163
1164 // Hash & compare functions, for pessimistic value numbering
1165
1166 // If the hash function returns the special sentinel value NO_HASH,
1167 // the node is guaranteed never to compare equal to any other node.
1168 // If we accidentally generate a hash with value NO_HASH the node
1169 // won't go into the table and we'll lose a little optimization.
1170 static const uint NO_HASH = 0;
1171 virtual uint hash() const;
1172 virtual bool cmp( const Node &n ) const;
1173
1174 // Operation appears to be iteratively computed (such as an induction variable)
1175 // It is possible for this operation to return false for a loop-varying
1176 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1177 bool is_iteratively_computed();
1178
1179 // Determine if a node is a counted loop induction variable.
1180 // NOTE: The method is defined in "loopnode.cpp".
1181 bool is_cloop_ind_var() const;
1182
1183 // Return a node with opcode "opc" and same inputs as "this" if one can
1184 // be found; Otherwise return null;
1185 Node* find_similar(int opc);
1186 bool has_same_inputs_as(const Node* other) const;
1187
1188 // Return the unique control out if only one. Null if none or more than one.
1189 Node* unique_ctrl_out_or_null() const;
1190 // Return the unique control out. Asserts if none or more than one control out.
1191 Node* unique_ctrl_out() const;
1192
1193 // Set control or add control as precedence edge
1194 void ensure_control_or_add_prec(Node* c);
1195 void add_prec_from(Node* n);
1196
1197 // Visit boundary uses of the node and apply a callback function for each.
1198 // Recursively traverse uses, stopping and applying the callback when
1199 // reaching a boundary node, defined by is_boundary. Note: the function
1200 // definition appears after the complete type definition of Node_List.
1201 template <typename Callback, typename Check>
1202 void visit_uses(Callback callback, Check is_boundary) const;
1203
1204 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses
1205 // (Load and range check CastII nodes).
1206 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication).
1207 virtual Node* pin_array_access_node() const {
1208 return nullptr;
1209 }
1210
1211 //----------------- Code Generation
1212
1213 // Ideal register class for Matching. Zero means unmatched instruction
1214 // (these are cloned instead of converted to machine nodes).
1215 virtual uint ideal_reg() const;
1216
1217 static const uint NotAMachineReg; // must be > max. machine register
1218
1219 // Do we Match on this edge index or not? Generally false for Control
1220 // and true for everything else. Weird for calls & returns.
1221 virtual uint match_edge(uint idx) const;
1222
1223 // Register class output is returned in
1224 virtual const RegMask &out_RegMask() const;
1225 // Register class input is expected in
1226 virtual const RegMask &in_RegMask(uint) const;
1227 // Should we clone rather than spill this instruction?
1228 bool rematerialize() const;
1229
1230 // Return JVM State Object if this Node carries debug info, or null otherwise
1231 virtual JVMState* jvms() const;
1232
1233 // Print as assembly
1234 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1235 // Emit bytes using C2_MacroAssembler
1236 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const;
1237 // Size of instruction in bytes
1238 virtual uint size(PhaseRegAlloc *ra_) const;
1239
1240 // Convenience function to extract an integer constant from a node.
1241 // If it is not an integer constant (either Con, CastII, or Mach),
1242 // return value_if_unknown.
1243 jint find_int_con(jint value_if_unknown) const {
1244 const TypeInt* t = find_int_type();
1245 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1246 }
1247 // Return the constant, knowing it is an integer constant already
1248 jint get_int() const {
1249 const TypeInt* t = find_int_type();
1250 guarantee(t != nullptr, "must be con");
1251 return t->get_con();
1252 }
1253 // Here's where the work is done. Can produce non-constant int types too.
1254 const TypeInt* find_int_type() const;
1255 const TypeInteger* find_integer_type(BasicType bt) const;
1256
1257 // Same thing for long (and intptr_t, via type.hpp):
1258 jlong get_long() const {
1259 const TypeLong* t = find_long_type();
1260 guarantee(t != nullptr, "must be con");
1261 return t->get_con();
1262 }
1263 jlong find_long_con(jint value_if_unknown) const {
1264 const TypeLong* t = find_long_type();
1265 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1266 }
1267 const TypeLong* find_long_type() const;
1268
1269 jlong get_integer_as_long(BasicType bt) const {
1270 const TypeInteger* t = find_integer_type(bt);
1271 guarantee(t != nullptr && t->is_con(), "must be con");
1272 return t->get_con_as_long(bt);
1273 }
1274 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1275 const TypeInteger* t = find_integer_type(bt);
1276 if (t == nullptr || !t->is_con()) return value_if_unknown;
1277 return t->get_con_as_long(bt);
1278 }
1279 const TypePtr* get_ptr_type() const;
1280
1281 // These guys are called by code generated by ADLC:
1282 intptr_t get_ptr() const;
1283 intptr_t get_narrowcon() const;
1284 jdouble getd() const;
1285 jfloat getf() const;
1286 jshort geth() const;
1287
1288 // Nodes which are pinned into basic blocks
1289 virtual bool pinned() const { return false; }
1290
1291 // Nodes which use memory without consuming it, hence need antidependences
1292 // More specifically, needs_anti_dependence_check returns true iff the node
1293 // (a) does a load, and (b) does not perform a store (except perhaps to a
1294 // stack slot or some other unaliased location).
1295 bool needs_anti_dependence_check() const;
1296
1297 // Return which operand this instruction may cisc-spill. In other words,
1298 // return operand position that can convert from reg to memory access
1299 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1300 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1301
1302 // Whether this is a memory-writing machine node.
1303 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1304
1305 // Whether this is a memory phi node
1306 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1307
1308 bool is_div_or_mod(BasicType bt) const;
1309
1310 bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const;
1311
1312 //----------------- Printing, etc
1313 #ifndef PRODUCT
1314 public:
1315 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1316 Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1317 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr = nullptr) const;
1318 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1319 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1320 void dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const;
1321 class DumpConfig {
1322 public:
1323 // overridden to implement coloring of node idx
1324 virtual void pre_dump(outputStream *st, const Node* n) = 0;
1325 virtual void post_dump(outputStream *st) = 0;
1326 };
1327 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1328 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1329 void dump() const; // print node with newline
1330 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1331 void dump(int depth) const; // Print this node, recursively to depth d
1332 void dump_ctrl(int depth) const; // Print control nodes, to depth d
1333 void dump_comp() const; // Print this node in compact representation.
1334 // Print this node in compact representation.
1335 void dump_comp(const char* suffix, outputStream *st = tty) const;
1336 private:
1337 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info
1338 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info
1339 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info
1340 public:
1341 virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1342 // Print compact per-node info
1343 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1344
1345 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1346
1347 // This call defines a class-unique string used to identify class instances
1348 virtual const char *Name() const;
1349
1350 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1351 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1352 #endif
1353 #ifdef ASSERT
1354 void verify_construction();
1355 bool verify_jvms(const JVMState* jvms) const;
1356
1357 Node* _debug_orig; // Original version of this, if any.
1358 Node* debug_orig() const { return _debug_orig; }
1359 void set_debug_orig(Node* orig); // _debug_orig = orig
1360 void dump_orig(outputStream *st, bool print_key = true) const;
1361
1362 uint64_t _debug_idx; // Unique value assigned to every node.
1363 uint64_t debug_idx() const { return _debug_idx; }
1364 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1365
1366 int _hash_lock; // Barrier to modifications of nodes in the hash table
1367 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1368 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1369
1370 static void init_NodeProperty();
1371
1372 #if OPTO_DU_ITERATOR_ASSERT
1373 const Node* _last_del; // The last deleted node.
1374 uint _del_tick; // Bumped when a deletion happens..
1375 #endif
1376 #endif
1377 };
1378
1379 inline bool not_a_node(const Node* n) {
1380 if (n == nullptr) return true;
1381 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
1382 if (*(address*)n == badAddress) return true; // kill by Node::destruct
1383 return false;
1384 }
1385
1386 //-----------------------------------------------------------------------------
1387 // Iterators over DU info, and associated Node functions.
1388
1389 #if OPTO_DU_ITERATOR_ASSERT
1390
1391 // Common code for assertion checking on DU iterators.
1392 class DUIterator_Common {
1393 #ifdef ASSERT
1394 protected:
1395 bool _vdui; // cached value of VerifyDUIterators
1396 const Node* _node; // the node containing the _out array
1397 uint _outcnt; // cached node->_outcnt
1398 uint _del_tick; // cached node->_del_tick
1399 Node* _last; // last value produced by the iterator
1400
1401 void sample(const Node* node); // used by c'tor to set up for verifies
1402 void verify(const Node* node, bool at_end_ok = false);
1403 void verify_resync();
1404 void reset(const DUIterator_Common& that);
1405
1406 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1407 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1408 #else
1409 #define I_VDUI_ONLY(i,x) { }
1410 #endif //ASSERT
1411 };
1412
1413 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
1414
1415 // Default DU iterator. Allows appends onto the out array.
1416 // Allows deletion from the out array only at the current point.
1417 // Usage:
1418 // for (DUIterator i = x->outs(); x->has_out(i); i++) {
1419 // Node* y = x->out(i);
1420 // ...
1421 // }
1422 // Compiles in product mode to a unsigned integer index, which indexes
1423 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate
1424 // also reloads x->_outcnt. If you delete, you must perform "--i" just
1425 // before continuing the loop. You must delete only the last-produced
1426 // edge. You must delete only a single copy of the last-produced edge,
1427 // or else you must delete all copies at once (the first time the edge
1428 // is produced by the iterator).
1429 class DUIterator : public DUIterator_Common {
1430 friend class Node;
1431
1432 // This is the index which provides the product-mode behavior.
1433 // Whatever the product-mode version of the system does to the
1434 // DUI index is done to this index. All other fields in
1435 // this class are used only for assertion checking.
1436 uint _idx;
1437
1438 #ifdef ASSERT
1439 uint _refresh_tick; // Records the refresh activity.
1440
1441 void sample(const Node* node); // Initialize _refresh_tick etc.
1442 void verify(const Node* node, bool at_end_ok = false);
1443 void verify_increment(); // Verify an increment operation.
1444 void verify_resync(); // Verify that we can back up over a deletion.
1445 void verify_finish(); // Verify that the loop terminated properly.
1446 void refresh(); // Resample verification info.
1447 void reset(const DUIterator& that); // Resample after assignment.
1448 #endif
1449
1450 DUIterator(const Node* node, int dummy_to_avoid_conversion)
1451 { _idx = 0; DEBUG_ONLY(sample(node)); }
1452
1453 public:
1454 // initialize to garbage; clear _vdui to disable asserts
1455 DUIterator()
1456 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); }
1457
1458 DUIterator(const DUIterator& that)
1459 { _idx = that._idx; DEBUG_ONLY(_vdui = false; reset(that)); }
1460
1461 void operator++(int dummy_to_specify_postfix_op)
1462 { _idx++; VDUI_ONLY(verify_increment()); }
1463
1464 void operator--()
1465 { VDUI_ONLY(verify_resync()); --_idx; }
1466
1467 ~DUIterator()
1468 { VDUI_ONLY(verify_finish()); }
1469
1470 void operator=(const DUIterator& that)
1471 { _idx = that._idx; DEBUG_ONLY(reset(that)); }
1472 };
1473
1474 DUIterator Node::outs() const
1475 { return DUIterator(this, 0); }
1476 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1477 { I_VDUI_ONLY(i, i.refresh()); return i; }
1478 bool Node::has_out(DUIterator& i) const
1479 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1480 Node* Node::out(DUIterator& i) const
1481 { I_VDUI_ONLY(i, i.verify(this)); return DEBUG_ONLY(i._last=) _out[i._idx]; }
1482
1483
1484 // Faster DU iterator. Disallows insertions into the out array.
1485 // Allows deletion from the out array only at the current point.
1486 // Usage:
1487 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1488 // Node* y = x->fast_out(i);
1489 // ...
1490 // }
1491 // Compiles in product mode to raw Node** pointer arithmetic, with
1492 // no reloading of pointers from the original node x. If you delete,
1493 // you must perform "--i; --imax" just before continuing the loop.
1494 // If you delete multiple copies of the same edge, you must decrement
1495 // imax, but not i, multiple times: "--i, imax -= num_edges".
1496 class DUIterator_Fast : public DUIterator_Common {
1497 friend class Node;
1498 friend class DUIterator_Last;
1499
1500 // This is the pointer which provides the product-mode behavior.
1501 // Whatever the product-mode version of the system does to the
1502 // DUI pointer is done to this pointer. All other fields in
1503 // this class are used only for assertion checking.
1504 Node** _outp;
1505
1506 #ifdef ASSERT
1507 void verify(const Node* node, bool at_end_ok = false);
1508 void verify_limit();
1509 void verify_resync();
1510 void verify_relimit(uint n);
1511 void reset(const DUIterator_Fast& that);
1512 #endif
1513
1514 // Note: offset must be signed, since -1 is sometimes passed
1515 DUIterator_Fast(const Node* node, ptrdiff_t offset)
1516 { _outp = node->_out + offset; DEBUG_ONLY(sample(node)); }
1517
1518 public:
1519 // initialize to garbage; clear _vdui to disable asserts
1520 DUIterator_Fast()
1521 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); }
1522
1523 DUIterator_Fast(const DUIterator_Fast& that)
1524 { _outp = that._outp; DEBUG_ONLY(_vdui = false; reset(that)); }
1525
1526 void operator++(int dummy_to_specify_postfix_op)
1527 { _outp++; VDUI_ONLY(verify(_node, true)); }
1528
1529 void operator--()
1530 { VDUI_ONLY(verify_resync()); --_outp; }
1531
1532 void operator-=(uint n) // applied to the limit only
1533 { _outp -= n; VDUI_ONLY(verify_relimit(n)); }
1534
1535 bool operator<(DUIterator_Fast& limit) {
1536 I_VDUI_ONLY(*this, this->verify(_node, true));
1537 I_VDUI_ONLY(limit, limit.verify_limit());
1538 return _outp < limit._outp;
1539 }
1540
1541 void operator=(const DUIterator_Fast& that)
1542 { _outp = that._outp; DEBUG_ONLY(reset(that)); }
1543 };
1544
1545 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1546 // Assign a limit pointer to the reference argument:
1547 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1548 // Return the base pointer:
1549 return DUIterator_Fast(this, 0);
1550 }
1551 Node* Node::fast_out(DUIterator_Fast& i) const {
1552 I_VDUI_ONLY(i, i.verify(this));
1553 return DEBUG_ONLY(i._last=) *i._outp;
1554 }
1555
1556
1557 // Faster DU iterator. Requires each successive edge to be removed.
1558 // Does not allow insertion of any edges.
1559 // Usage:
1560 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1561 // Node* y = x->last_out(i);
1562 // ...
1563 // }
1564 // Compiles in product mode to raw Node** pointer arithmetic, with
1565 // no reloading of pointers from the original node x.
1566 class DUIterator_Last : private DUIterator_Fast {
1567 friend class Node;
1568
1569 #ifdef ASSERT
1570 void verify(const Node* node, bool at_end_ok = false);
1571 void verify_limit();
1572 void verify_step(uint num_edges);
1573 #endif
1574
1575 // Note: offset must be signed, since -1 is sometimes passed
1576 DUIterator_Last(const Node* node, ptrdiff_t offset)
1577 : DUIterator_Fast(node, offset) { }
1578
1579 void operator++(int dummy_to_specify_postfix_op) {} // do not use
1580 void operator<(int) {} // do not use
1581
1582 public:
1583 DUIterator_Last() { }
1584 // initialize to garbage
1585
1586 DUIterator_Last(const DUIterator_Last& that) = default;
1587
1588 void operator--()
1589 { _outp--; VDUI_ONLY(verify_step(1)); }
1590
1591 void operator-=(uint n)
1592 { _outp -= n; VDUI_ONLY(verify_step(n)); }
1593
1594 bool operator>=(DUIterator_Last& limit) {
1595 I_VDUI_ONLY(*this, this->verify(_node, true));
1596 I_VDUI_ONLY(limit, limit.verify_limit());
1597 return _outp >= limit._outp;
1598 }
1599
1600 DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1601 };
1602
1603 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1604 // Assign a limit pointer to the reference argument:
1605 imin = DUIterator_Last(this, 0);
1606 // Return the initial pointer:
1607 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1608 }
1609 Node* Node::last_out(DUIterator_Last& i) const {
1610 I_VDUI_ONLY(i, i.verify(this));
1611 return DEBUG_ONLY(i._last=) *i._outp;
1612 }
1613
1614 #endif //OPTO_DU_ITERATOR_ASSERT
1615
1616 #undef I_VDUI_ONLY
1617 #undef VDUI_ONLY
1618
1619 // An Iterator that truly follows the iterator pattern. Doesn't
1620 // support deletion but could be made to.
1621 //
1622 // for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1623 // Node* m = i.get();
1624 //
1625 class SimpleDUIterator : public StackObj {
1626 private:
1627 Node* node;
1628 DUIterator_Fast imax;
1629 DUIterator_Fast i;
1630 public:
1631 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1632 bool has_next() { return i < imax; }
1633 void next() { i++; }
1634 Node* get() { return node->fast_out(i); }
1635 };
1636
1637
1638 //-----------------------------------------------------------------------------
1639 // Map dense integer indices to Nodes. Uses classic doubling-array trick.
1640 // Abstractly provides an infinite array of Node*'s, initialized to null.
1641 // Note that the constructor just zeros things, and since I use Arena
1642 // allocation I do not need a destructor to reclaim storage.
1643 class Node_Array : public AnyObj {
1644 protected:
1645 Arena* _a; // Arena to allocate in
1646 uint _max;
1647 Node** _nodes;
1648 ReallocMark _nesting; // Safety checks for arena reallocation
1649
1650 // Grow array to required capacity
1651 void maybe_grow(uint i) {
1652 _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1653 if (i >= _max) {
1654 grow(i);
1655 }
1656 }
1657 void grow(uint i);
1658
1659 public:
1660 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1661 _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1662 clear();
1663 }
1664 Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1665
1666 NONCOPYABLE(Node_Array);
1667 Node_Array& operator=(Node_Array&&) = delete;
1668 // Allow move constructor for && (eg. capture return of function)
1669 Node_Array(Node_Array&&) = default;
1670
1671 Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1672 { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1673 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1674 Node** adr() { return _nodes; }
1675 // Extend the mapping: index i maps to Node *n.
1676 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; }
1677 void insert( uint i, Node *n );
1678 void remove( uint i ); // Remove, preserving order
1679 // Clear all entries in _nodes to null but keep storage
1680 void clear() {
1681 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1682 }
1683
1684 uint max() const { return _max; }
1685 void dump() const;
1686 };
1687
1688 class Node_List : public Node_Array {
1689 uint _cnt;
1690 public:
1691 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1692 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1693
1694 NONCOPYABLE(Node_List);
1695 Node_List& operator=(Node_List&&) = delete;
1696 // Allow move constructor for && (eg. capture return of function)
1697 Node_List(Node_List&&) = default;
1698
1699 bool contains(const Node* n) const {
1700 for (uint e = 0; e < size(); e++) {
1701 if (at(e) == n) return true;
1702 }
1703 return false;
1704 }
1705 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1706 void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1707 void push( Node *b ) { map(_cnt++,b); }
1708 void yank( Node *n ); // Find and remove
1709 Node *pop() { return _nodes[--_cnt]; }
1710 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1711 void copy(const Node_List& from) {
1712 if (from._max > _max) {
1713 grow(from._max);
1714 }
1715 _cnt = from._cnt;
1716 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1717 }
1718
1719 uint size() const { return _cnt; }
1720 void dump() const;
1721 void dump_simple() const;
1722 };
1723
1724 // Definition must appear after complete type definition of Node_List
1725 template <typename Callback, typename Check>
1726 void Node::visit_uses(Callback callback, Check is_boundary) const {
1727 ResourceMark rm;
1728 VectorSet visited;
1729 Node_List worklist;
1730
1731 // The initial worklist consists of the direct uses
1732 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1733 Node* out = fast_out(k);
1734 if (!visited.test_set(out->_idx)) { worklist.push(out); }
1735 }
1736
1737 while (worklist.size() > 0) {
1738 Node* use = worklist.pop();
1739 // Apply callback on boundary nodes
1740 if (is_boundary(use)) {
1741 callback(use);
1742 } else {
1743 // Not a boundary node, continue search
1744 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1745 Node* out = use->fast_out(k);
1746 if (!visited.test_set(out->_idx)) { worklist.push(out); }
1747 }
1748 }
1749 }
1750 }
1751
1752
1753 //------------------------------Unique_Node_List-------------------------------
1754 class Unique_Node_List : public Node_List {
1755 VectorSet _in_worklist;
1756 uint _clock_index; // Index in list where to pop from next
1757 public:
1758 Unique_Node_List() : Node_List(), _clock_index(0) {}
1759 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1760
1761 NONCOPYABLE(Unique_Node_List);
1762 Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1763 // Allow move constructor for && (eg. capture return of function)
1764 Unique_Node_List(Unique_Node_List&&) = default;
1765
1766 void remove( Node *n );
1767 bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; }
1768 VectorSet& member_set(){ return _in_worklist; }
1769
1770 void push(Node* b) {
1771 if( !_in_worklist.test_set(b->_idx) )
1772 Node_List::push(b);
1773 }
1774 void push_non_cfg_inputs_of(const Node* node) {
1775 for (uint i = 1; i < node->req(); i++) {
1776 Node* input = node->in(i);
1777 if (input != nullptr && !input->is_CFG()) {
1778 push(input);
1779 }
1780 }
1781 }
1782
1783 void push_outputs_of(const Node* node) {
1784 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) {
1785 Node* output = node->fast_out(i);
1786 push(output);
1787 }
1788 }
1789
1790 Node *pop() {
1791 if( _clock_index >= size() ) _clock_index = 0;
1792 Node *b = at(_clock_index);
1793 map( _clock_index, Node_List::pop());
1794 if (size() != 0) _clock_index++; // Always start from 0
1795 _in_worklist.remove(b->_idx);
1796 return b;
1797 }
1798 Node *remove(uint i) {
1799 Node *b = Node_List::at(i);
1800 _in_worklist.remove(b->_idx);
1801 map(i,Node_List::pop());
1802 return b;
1803 }
1804 void yank(Node *n) {
1805 _in_worklist.remove(n->_idx);
1806 Node_List::yank(n);
1807 }
1808 void clear() {
1809 _in_worklist.clear(); // Discards storage but grows automatically
1810 Node_List::clear();
1811 _clock_index = 0;
1812 }
1813 void ensure_empty() {
1814 assert(size() == 0, "must be empty");
1815 clear(); // just in case
1816 }
1817
1818 // Used after parsing to remove useless nodes before Iterative GVN
1819 void remove_useless_nodes(VectorSet& useful);
1820
1821 // If the idx of the Nodes change, we must recompute the VectorSet
1822 void recompute_idx_set() {
1823 _in_worklist.clear();
1824 for (uint i = 0; i < size(); i++) {
1825 Node* n = at(i);
1826 _in_worklist.set(n->_idx);
1827 }
1828 }
1829
1830 #ifdef ASSERT
1831 bool is_subset_of(Unique_Node_List& other) {
1832 for (uint i = 0; i < size(); i++) {
1833 Node* n = at(i);
1834 if (!other.member(n)) {
1835 return false;
1836 }
1837 }
1838 return true;
1839 }
1840 #endif
1841
1842 bool contains(const Node* n) const {
1843 fatal("use faster member() instead");
1844 return false;
1845 }
1846
1847 #ifndef PRODUCT
1848 void print_set() const { _in_worklist.print(); }
1849 #endif
1850 };
1851
1852 // Unique_Mixed_Node_List
1853 // unique: nodes are added only once
1854 // mixed: allow new and old nodes
1855 class Unique_Mixed_Node_List : public ResourceObj {
1856 public:
1857 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1858
1859 void add(Node* node) {
1860 if (not_a_node(node)) {
1861 return; // Gracefully handle null, -1, 0xabababab, etc.
1862 }
1863 if (_visited_set[node] == nullptr) {
1864 _visited_set.Insert(node, node);
1865 _worklist.push(node);
1866 }
1867 }
1868
1869 Node* operator[] (uint i) const {
1870 return _worklist[i];
1871 }
1872
1873 size_t size() {
1874 return _worklist.size();
1875 }
1876
1877 private:
1878 Dict _visited_set;
1879 Node_List _worklist;
1880 };
1881
1882 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1883 inline void Compile::record_for_igvn(Node* n) {
1884 _igvn_worklist->push(n);
1885 }
1886
1887 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1888 inline void Compile::remove_for_igvn(Node* n) {
1889 _igvn_worklist->remove(n);
1890 }
1891
1892 //------------------------------Node_Stack-------------------------------------
1893 class Node_Stack {
1894 protected:
1895 struct INode {
1896 Node *node; // Processed node
1897 uint indx; // Index of next node's child
1898 };
1899 INode *_inode_top; // tos, stack grows up
1900 INode *_inode_max; // End of _inodes == _inodes + _max
1901 INode *_inodes; // Array storage for the stack
1902 Arena *_a; // Arena to allocate in
1903 ReallocMark _nesting; // Safety checks for arena reallocation
1904
1905 void maybe_grow() {
1906 _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1907 if (_inode_top >= _inode_max) {
1908 grow();
1909 }
1910 }
1911 void grow();
1912
1913 public:
1914 Node_Stack(int size) {
1915 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1916 _a = Thread::current()->resource_area();
1917 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1918 _inode_max = _inodes + max;
1919 _inode_top = _inodes - 1; // stack is empty
1920 }
1921
1922 Node_Stack(Arena *a, int size) : _a(a) {
1923 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1924 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1925 _inode_max = _inodes + max;
1926 _inode_top = _inodes - 1; // stack is empty
1927 }
1928
1929 void pop() {
1930 assert(_inode_top >= _inodes, "node stack underflow");
1931 --_inode_top;
1932 }
1933 void push(Node *n, uint i) {
1934 ++_inode_top;
1935 maybe_grow();
1936 INode *top = _inode_top; // optimization
1937 top->node = n;
1938 top->indx = i;
1939 }
1940 Node *node() const {
1941 return _inode_top->node;
1942 }
1943 Node* node_at(uint i) const {
1944 assert(_inodes + i <= _inode_top, "in range");
1945 return _inodes[i].node;
1946 }
1947 uint index() const {
1948 return _inode_top->indx;
1949 }
1950 uint index_at(uint i) const {
1951 assert(_inodes + i <= _inode_top, "in range");
1952 return _inodes[i].indx;
1953 }
1954 void set_node(Node *n) {
1955 _inode_top->node = n;
1956 }
1957 void set_index(uint i) {
1958 _inode_top->indx = i;
1959 }
1960 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
1961 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
1962 bool is_nonempty() const { return (_inode_top >= _inodes); }
1963 bool is_empty() const { return (_inode_top < _inodes); }
1964 void clear() { _inode_top = _inodes - 1; } // retain storage
1965
1966 // Node_Stack is used to map nodes.
1967 Node* find(uint idx) const;
1968
1969 NONCOPYABLE(Node_Stack);
1970 };
1971
1972
1973 //-----------------------------Node_Notes--------------------------------------
1974 // Debugging or profiling annotations loosely and sparsely associated
1975 // with some nodes. See Compile::node_notes_at for the accessor.
1976 class Node_Notes {
1977 JVMState* _jvms;
1978
1979 public:
1980 Node_Notes(JVMState* jvms = nullptr) {
1981 _jvms = jvms;
1982 }
1983
1984 JVMState* jvms() { return _jvms; }
1985 void set_jvms(JVMState* x) { _jvms = x; }
1986
1987 // True if there is nothing here.
1988 bool is_clear() {
1989 return (_jvms == nullptr);
1990 }
1991
1992 // Make there be nothing here.
1993 void clear() {
1994 _jvms = nullptr;
1995 }
1996
1997 // Make a new, clean node notes.
1998 static Node_Notes* make(Compile* C) {
1999 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
2000 nn->clear();
2001 return nn;
2002 }
2003
2004 Node_Notes* clone(Compile* C) {
2005 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
2006 (*nn) = (*this);
2007 return nn;
2008 }
2009
2010 // Absorb any information from source.
2011 bool update_from(Node_Notes* source) {
2012 bool changed = false;
2013 if (source != nullptr) {
2014 if (source->jvms() != nullptr) {
2015 set_jvms(source->jvms());
2016 changed = true;
2017 }
2018 }
2019 return changed;
2020 }
2021 };
2022
2023 // Inlined accessors for Compile::node_nodes that require the preceding class:
2024 inline Node_Notes*
2025 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
2026 int idx, bool can_grow) {
2027 assert(idx >= 0, "oob");
2028 int block_idx = (idx >> _log2_node_notes_block_size);
2029 int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
2030 if (grow_by >= 0) {
2031 if (!can_grow) return nullptr;
2032 grow_node_notes(arr, grow_by + 1);
2033 }
2034 if (arr == nullptr) return nullptr;
2035 // (Every element of arr is a sub-array of length _node_notes_block_size.)
2036 return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
2037 }
2038
2039 inline Node_Notes* Compile::node_notes_at(int idx) {
2040 return locate_node_notes(_node_note_array, idx, false);
2041 }
2042
2043 inline bool
2044 Compile::set_node_notes_at(int idx, Node_Notes* value) {
2045 if (value == nullptr || value->is_clear())
2046 return false; // nothing to write => write nothing
2047 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
2048 assert(loc != nullptr, "");
2049 return loc->update_from(value);
2050 }
2051
2052
2053 //------------------------------TypeNode---------------------------------------
2054 // Node with a Type constant.
2055 class TypeNode : public Node {
2056 protected:
2057 virtual uint hash() const; // Check the type
2058 virtual bool cmp( const Node &n ) const;
2059 virtual uint size_of() const; // Size is bigger
2060 const Type* const _type;
2061 public:
2062 void set_type(const Type* t) {
2063 assert(t != nullptr, "sanity");
2064 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
2065 *(const Type**)&_type = t; // cast away const-ness
2066 // If this node is in the hash table, make sure it doesn't need a rehash.
2067 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
2068 }
2069 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
2070 TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
2071 init_class_id(Class_Type);
2072 }
2073 virtual const Type* Value(PhaseGVN* phase) const;
2074 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
2075 virtual const Type *bottom_type() const;
2076 virtual uint ideal_reg() const;
2077
2078 void make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str);
2079 #ifndef PRODUCT
2080 virtual void dump_spec(outputStream *st) const;
2081 virtual void dump_compact_spec(outputStream *st) const;
2082 #endif
2083 void make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str);
2084 void create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const;
2085 };
2086
2087 #include "opto/opcodes.hpp"
2088
2089 #define Op_IL(op) \
2090 inline int Op_ ## op(BasicType bt) { \
2091 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
2092 if (bt == T_INT) { \
2093 return Op_## op ## I; \
2094 } \
2095 return Op_## op ## L; \
2096 }
2097
2098 Op_IL(Add)
2099 Op_IL(And)
2100 Op_IL(Sub)
2101 Op_IL(Mul)
2102 Op_IL(URShift)
2103 Op_IL(LShift)
2104 Op_IL(RShift)
2105 Op_IL(Xor)
2106 Op_IL(Cmp)
2107 Op_IL(Div)
2108 Op_IL(Mod)
2109 Op_IL(UDiv)
2110 Op_IL(UMod)
2111
2112 inline int Op_ConIL(BasicType bt) {
2113 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2114 if (bt == T_INT) {
2115 return Op_ConI;
2116 }
2117 return Op_ConL;
2118 }
2119
2120 inline int Op_Cmp_unsigned(BasicType bt) {
2121 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2122 if (bt == T_INT) {
2123 return Op_CmpU;
2124 }
2125 return Op_CmpUL;
2126 }
2127
2128 inline int Op_Cast(BasicType bt) {
2129 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2130 if (bt == T_INT) {
2131 return Op_CastII;
2132 }
2133 return Op_CastLL;
2134 }
2135
2136 inline int Op_DivIL(BasicType bt, bool is_unsigned) {
2137 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2138 if (bt == T_INT) {
2139 if (is_unsigned) {
2140 return Op_UDivI;
2141 } else {
2142 return Op_DivI;
2143 }
2144 }
2145 if (is_unsigned) {
2146 return Op_UDivL;
2147 } else {
2148 return Op_DivL;
2149 }
2150 }
2151
2152 inline int Op_DivModIL(BasicType bt, bool is_unsigned) {
2153 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2154 if (bt == T_INT) {
2155 if (is_unsigned) {
2156 return Op_UDivModI;
2157 } else {
2158 return Op_DivModI;
2159 }
2160 }
2161 if (is_unsigned) {
2162 return Op_UDivModL;
2163 } else {
2164 return Op_DivModL;
2165 }
2166 }
2167
2168 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify
2169 // a customized BFS.
2170 class BFSActions : public StackObj {
2171 public:
2172 // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this
2173 // method to provide a custom filter.
2174 virtual bool should_visit(Node* node) const {
2175 // By default, visit all inputs.
2176 return true;
2177 };
2178
2179 // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further
2180 // but the BFS will continue to visit all unvisited nodes in the queue.
2181 virtual bool is_target_node(Node* node) const = 0;
2182
2183 // Defines an action that should be taken when we visit a target node in the BFS traversal.
2184 // To give more freedom, we pass the direct child node to the target node such that
2185 // child->in(i) == target node. This allows to also directly replace the target node instead
2186 // of only updating its inputs.
2187 virtual void target_node_action(Node* child, uint i) = 0;
2188 };
2189
2190 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which
2191 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes.
2192 class DataNodeBFS : public StackObj {
2193 BFSActions& _bfs_actions;
2194
2195 public:
2196 explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {}
2197
2198 // Run the BFS starting from 'start_node' and apply the actions provided to this class.
2199 void run(Node* start_node) {
2200 ResourceMark rm;
2201 Unique_Node_List _nodes_to_visit;
2202 _nodes_to_visit.push(start_node);
2203 for (uint i = 0; i < _nodes_to_visit.size(); i++) {
2204 Node* next = _nodes_to_visit[i];
2205 for (uint j = 1; j < next->req(); j++) {
2206 Node* input = next->in(j);
2207 if (_bfs_actions.is_target_node(input)) {
2208 assert(_bfs_actions.should_visit(input), "must also pass node filter");
2209 _bfs_actions.target_node_action(next, j);
2210 } else if (_bfs_actions.should_visit(input)) {
2211 _nodes_to_visit.push(input);
2212 }
2213 }
2214 }
2215 }
2216 };
2217
2218 #endif // SHARE_OPTO_NODE_HPP