1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_NODE_HPP 27 #define SHARE_OPTO_NODE_HPP 28 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 #include "utilities/copy.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 // Optimization - Graph Style 37 38 39 class AbstractLockNode; 40 class AddNode; 41 class AddPNode; 42 class AliasInfo; 43 class AllocateArrayNode; 44 class AllocateNode; 45 class ArrayCopyNode; 46 class BaseCountedLoopNode; 47 class BaseCountedLoopEndNode; 48 class BlackholeNode; 49 class Block; 50 class BoolNode; 51 class BoxLockNode; 52 class CMoveNode; 53 class CallDynamicJavaNode; 54 class CallJavaNode; 55 class CallLeafNode; 56 class CallLeafNoFPNode; 57 class CallLeafPureNode; 58 class CallNode; 59 class CallRuntimeNode; 60 class CallStaticJavaNode; 61 class CastFFNode; 62 class CastHHNode; 63 class CastDDNode; 64 class CastVVNode; 65 class CastIINode; 66 class CastLLNode; 67 class CastPPNode; 68 class CatchNode; 69 class CatchProjNode; 70 class CheckCastPPNode; 71 class ClearArrayNode; 72 class CmpNode; 73 class CodeBuffer; 74 class ConstraintCastNode; 75 class ConNode; 76 class ConINode; 77 class ConvertNode; 78 class CompareAndSwapNode; 79 class CompareAndExchangeNode; 80 class CountedLoopNode; 81 class CountedLoopEndNode; 82 class DecodeNarrowPtrNode; 83 class DecodeNNode; 84 class DecodeNKlassNode; 85 class EncodeNarrowPtrNode; 86 class EncodePNode; 87 class EncodePKlassNode; 88 class FastLockNode; 89 class FastUnlockNode; 90 class HaltNode; 91 class IfNode; 92 class IfProjNode; 93 class IfFalseNode; 94 class IfTrueNode; 95 class InitializeNode; 96 class JVMState; 97 class JumpNode; 98 class JumpProjNode; 99 class LoadNode; 100 class LoadStoreNode; 101 class LoadStoreConditionalNode; 102 class LockNode; 103 class LongCountedLoopNode; 104 class LongCountedLoopEndNode; 105 class LoopNode; 106 class LShiftNode; 107 class MachBranchNode; 108 class MachCallDynamicJavaNode; 109 class MachCallJavaNode; 110 class MachCallLeafNode; 111 class MachCallNode; 112 class MachCallRuntimeNode; 113 class MachCallStaticJavaNode; 114 class MachConstantBaseNode; 115 class MachConstantNode; 116 class MachGotoNode; 117 class MachIfNode; 118 class MachJumpNode; 119 class MachNode; 120 class MachNullCheckNode; 121 class MachProjNode; 122 class MachReturnNode; 123 class MachSafePointNode; 124 class MachSpillCopyNode; 125 class MachTempNode; 126 class MachMergeNode; 127 class MachMemBarNode; 128 class Matcher; 129 class MemBarNode; 130 class MemBarStoreStoreNode; 131 class MemNode; 132 class MergeMemNode; 133 class MoveNode; 134 class MulNode; 135 class MultiNode; 136 class MultiBranchNode; 137 class NegNode; 138 class NegVNode; 139 class NeverBranchNode; 140 class Opaque1Node; 141 class OpaqueLoopInitNode; 142 class OpaqueLoopStrideNode; 143 class OpaqueMultiversioningNode; 144 class OpaqueNotNullNode; 145 class OpaqueInitializedAssertionPredicateNode; 146 class OpaqueTemplateAssertionPredicateNode; 147 class OuterStripMinedLoopNode; 148 class OuterStripMinedLoopEndNode; 149 class Node; 150 class Node_Array; 151 class Node_List; 152 class Node_Stack; 153 class OopMap; 154 class ParmNode; 155 class ParsePredicateNode; 156 class PCTableNode; 157 class PhaseCCP; 158 class PhaseGVN; 159 class PhaseIdealLoop; 160 class PhaseIterGVN; 161 class PhaseRegAlloc; 162 class PhaseTransform; 163 class PhaseValues; 164 class PhiNode; 165 class Pipeline; 166 class PopulateIndexNode; 167 class ProjNode; 168 class RangeCheckNode; 169 class ReductionNode; 170 class RegMask; 171 class RegionNode; 172 class RootNode; 173 class SafePointNode; 174 class SafePointScalarObjectNode; 175 class SafePointScalarMergeNode; 176 class SaturatingVectorNode; 177 class StartNode; 178 class State; 179 class StoreNode; 180 class SubNode; 181 class SubTypeCheckNode; 182 class Type; 183 class TypeNode; 184 class UnlockNode; 185 class VectorNode; 186 class LoadVectorNode; 187 class LoadVectorMaskedNode; 188 class StoreVectorMaskedNode; 189 class LoadVectorGatherNode; 190 class LoadVectorGatherMaskedNode; 191 class StoreVectorNode; 192 class StoreVectorScatterNode; 193 class StoreVectorScatterMaskedNode; 194 class VerifyVectorAlignmentNode; 195 class VectorMaskCmpNode; 196 class VectorUnboxNode; 197 class VectorSet; 198 class VectorReinterpretNode; 199 class ShiftVNode; 200 class MulVLNode; 201 class ExpandVNode; 202 class CompressVNode; 203 class CompressMNode; 204 class C2_MacroAssembler; 205 206 207 #ifndef OPTO_DU_ITERATOR_ASSERT 208 #ifdef ASSERT 209 #define OPTO_DU_ITERATOR_ASSERT 1 210 #else 211 #define OPTO_DU_ITERATOR_ASSERT 0 212 #endif 213 #endif //OPTO_DU_ITERATOR_ASSERT 214 215 #if OPTO_DU_ITERATOR_ASSERT 216 class DUIterator; 217 class DUIterator_Fast; 218 class DUIterator_Last; 219 #else 220 typedef uint DUIterator; 221 typedef Node** DUIterator_Fast; 222 typedef Node** DUIterator_Last; 223 #endif 224 225 typedef ResizeableHashTable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable; 226 227 // Node Sentinel 228 #define NodeSentinel (Node*)-1 229 230 // Unknown count frequency 231 #define COUNT_UNKNOWN (-1.0f) 232 233 //------------------------------Node------------------------------------------- 234 // Nodes define actions in the program. They create values, which have types. 235 // They are both vertices in a directed graph and program primitives. Nodes 236 // are labeled; the label is the "opcode", the primitive function in the lambda 237 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 238 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 239 // the Node's function. These inputs also define a Type equation for the Node. 240 // Solving these Type equations amounts to doing dataflow analysis. 241 // Control and data are uniformly represented in the graph. Finally, Nodes 242 // have a unique dense integer index which is used to index into side arrays 243 // whenever I have phase-specific information. 244 245 class Node { 246 247 // Lots of restrictions on cloning Nodes 248 NONCOPYABLE(Node); 249 250 public: 251 friend class Compile; 252 #if OPTO_DU_ITERATOR_ASSERT 253 friend class DUIterator_Common; 254 friend class DUIterator; 255 friend class DUIterator_Fast; 256 friend class DUIterator_Last; 257 #endif 258 259 // Because Nodes come and go, I define an Arena of Node structures to pull 260 // from. This should allow fast access to node creation & deletion. This 261 // field is a local cache of a value defined in some "program fragment" for 262 // which these Nodes are just a part of. 263 264 inline void* operator new(size_t x) throw() { 265 Compile* C = Compile::current(); 266 Node* n = (Node*)C->node_arena()->AmallocWords(x); 267 return (void*)n; 268 } 269 270 // Delete is a NOP 271 void operator delete( void *ptr ) {} 272 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 273 void destruct(PhaseValues* phase); 274 275 // Create a new Node. Required is the number is of inputs required for 276 // semantic correctness. 277 Node( uint required ); 278 279 // Create a new Node with given input edges. 280 // This version requires use of the "edge-count" new. 281 // E.g. new (C,3) FooNode( C, nullptr, left, right ); 282 Node( Node *n0 ); 283 Node( Node *n0, Node *n1 ); 284 Node( Node *n0, Node *n1, Node *n2 ); 285 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 286 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 287 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 288 Node( Node *n0, Node *n1, Node *n2, Node *n3, 289 Node *n4, Node *n5, Node *n6 ); 290 291 // Clone an inherited Node given only the base Node type. 292 Node* clone() const; 293 294 // Clone a Node, immediately supplying one or two new edges. 295 // The first and second arguments, if non-null, replace in(1) and in(2), 296 // respectively. 297 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const { 298 Node* nn = clone(); 299 if (in1 != nullptr) nn->set_req(1, in1); 300 if (in2 != nullptr) nn->set_req(2, in2); 301 return nn; 302 } 303 304 private: 305 // Shared setup for the above constructors. 306 // Handles all interactions with Compile::current. 307 // Puts initial values in all Node fields except _idx. 308 // Returns the initial value for _idx, which cannot 309 // be initialized by assignment. 310 inline int Init(int req); 311 312 //----------------- input edge handling 313 protected: 314 friend class PhaseCFG; // Access to address of _in array elements 315 Node **_in; // Array of use-def references to Nodes 316 Node **_out; // Array of def-use references to Nodes 317 318 // Input edges are split into two categories. Required edges are required 319 // for semantic correctness; order is important and nulls are allowed. 320 // Precedence edges are used to help determine execution order and are 321 // added, e.g., for scheduling purposes. They are unordered and not 322 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1 323 // are required, from _cnt to _max-1 are precedence edges. 324 node_idx_t _cnt; // Total number of required Node inputs. 325 326 node_idx_t _max; // Actual length of input array. 327 328 // Output edges are an unordered list of def-use edges which exactly 329 // correspond to required input edges which point from other nodes 330 // to this one. Thus the count of the output edges is the number of 331 // users of this node. 332 node_idx_t _outcnt; // Total number of Node outputs. 333 334 node_idx_t _outmax; // Actual length of output array. 335 336 // Grow the actual input array to the next larger power-of-2 bigger than len. 337 void grow( uint len ); 338 // Grow the output array to the next larger power-of-2 bigger than len. 339 void out_grow( uint len ); 340 // Resize input or output array to grow it to the next larger power-of-2 341 // bigger than len. 342 void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing); 343 344 public: 345 // Each Node is assigned a unique small/dense number. This number is used 346 // to index into auxiliary arrays of data and bit vectors. 347 // The value of _idx can be changed using the set_idx() method. 348 // 349 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 350 // Therefore, it updates the value of the _idx field. The parse-time _idx is 351 // preserved in _parse_idx. 352 node_idx_t _idx; 353 DEBUG_ONLY(const node_idx_t _parse_idx;) 354 // IGV node identifier. Two nodes, possibly in different compilation phases, 355 // have the same IGV identifier if (and only if) they are the very same node 356 // (same memory address) or one is "derived" from the other (by e.g. 357 // renumbering or matching). This identifier makes it possible to follow the 358 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 359 NOT_PRODUCT(node_idx_t _igv_idx;) 360 361 // Get the (read-only) number of input edges 362 uint req() const { return _cnt; } 363 uint len() const { return _max; } 364 // Get the (read-only) number of output edges 365 uint outcnt() const { return _outcnt; } 366 367 #if OPTO_DU_ITERATOR_ASSERT 368 // Iterate over the out-edges of this node. Deletions are illegal. 369 inline DUIterator outs() const; 370 // Use this when the out array might have changed to suppress asserts. 371 inline DUIterator& refresh_out_pos(DUIterator& i) const; 372 // Does the node have an out at this position? (Used for iteration.) 373 inline bool has_out(DUIterator& i) const; 374 inline Node* out(DUIterator& i) const; 375 // Iterate over the out-edges of this node. All changes are illegal. 376 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 377 inline Node* fast_out(DUIterator_Fast& i) const; 378 // Iterate over the out-edges of this node, deleting one at a time. 379 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 380 inline Node* last_out(DUIterator_Last& i) const; 381 // The inline bodies of all these methods are after the iterator definitions. 382 #else 383 // Iterate over the out-edges of this node. Deletions are illegal. 384 // This iteration uses integral indexes, to decouple from array reallocations. 385 DUIterator outs() const { return 0; } 386 // Use this when the out array might have changed to suppress asserts. 387 DUIterator refresh_out_pos(DUIterator i) const { return i; } 388 389 // Reference to the i'th output Node. Error if out of bounds. 390 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 391 // Does the node have an out at this position? (Used for iteration.) 392 bool has_out(DUIterator i) const { return i < _outcnt; } 393 394 // Iterate over the out-edges of this node. All changes are illegal. 395 // This iteration uses a pointer internal to the out array. 396 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 397 Node** out = _out; 398 // Assign a limit pointer to the reference argument: 399 max = out + (ptrdiff_t)_outcnt; 400 // Return the base pointer: 401 return out; 402 } 403 Node* fast_out(DUIterator_Fast i) const { return *i; } 404 // Iterate over the out-edges of this node, deleting one at a time. 405 // This iteration uses a pointer internal to the out array. 406 DUIterator_Last last_outs(DUIterator_Last& min) const { 407 Node** out = _out; 408 // Assign a limit pointer to the reference argument: 409 min = out; 410 // Return the pointer to the start of the iteration: 411 return out + (ptrdiff_t)_outcnt - 1; 412 } 413 Node* last_out(DUIterator_Last i) const { return *i; } 414 #endif 415 416 // Reference to the i'th input Node. Error if out of bounds. 417 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 418 // Reference to the i'th input Node. null if out of bounds. 419 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); } 420 // Reference to the i'th output Node. Error if out of bounds. 421 // Use this accessor sparingly. We are going trying to use iterators instead. 422 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 423 // Return the unique out edge. 424 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 425 // Delete out edge at position 'i' by moving last out edge to position 'i' 426 void raw_del_out(uint i) { 427 assert(i < _outcnt,"oob"); 428 assert(_outcnt > 0,"oob"); 429 #if OPTO_DU_ITERATOR_ASSERT 430 // Record that a change happened here. 431 DEBUG_ONLY(_last_del = _out[i]; ++_del_tick); 432 #endif 433 _out[i] = _out[--_outcnt]; 434 // Smash the old edge so it can't be used accidentally. 435 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 436 } 437 438 #ifdef ASSERT 439 bool is_dead() const; 440 static bool is_not_dead(const Node* n); 441 bool is_reachable_from_root() const; 442 #endif 443 // Check whether node has become unreachable 444 bool is_unreachable(PhaseIterGVN &igvn) const; 445 446 // Set a required input edge, also updates corresponding output edge 447 void add_req( Node *n ); // Append a NEW required input 448 void add_req( Node *n0, Node *n1 ) { 449 add_req(n0); add_req(n1); } 450 void add_req( Node *n0, Node *n1, Node *n2 ) { 451 add_req(n0); add_req(n1); add_req(n2); } 452 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 453 void del_req( uint idx ); // Delete required edge & compact 454 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 455 void ins_req( uint i, Node *n ); // Insert a NEW required input 456 void set_req( uint i, Node *n ) { 457 assert( is_not_dead(n), "can not use dead node"); 458 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 459 assert( !VerifyHashTableKeys || _hash_lock == 0, 460 "remove node from hash table before modifying it"); 461 Node** p = &_in[i]; // cache this._in, across the del_out call 462 if (*p != nullptr) (*p)->del_out((Node *)this); 463 (*p) = n; 464 if (n != nullptr) n->add_out((Node *)this); 465 Compile::current()->record_modified_node(this); 466 } 467 // Light version of set_req() to init inputs after node creation. 468 void init_req( uint i, Node *n ) { 469 assert( (i == 0 && this == n) || 470 is_not_dead(n), "can not use dead node"); 471 assert( i < _cnt, "oob"); 472 assert( !VerifyHashTableKeys || _hash_lock == 0, 473 "remove node from hash table before modifying it"); 474 assert( _in[i] == nullptr, "sanity"); 475 _in[i] = n; 476 if (n != nullptr) n->add_out((Node *)this); 477 Compile::current()->record_modified_node(this); 478 } 479 // Find first occurrence of n among my edges: 480 int find_edge(Node* n); 481 int find_prec_edge(Node* n) { 482 for (uint i = req(); i < len(); i++) { 483 if (_in[i] == n) return i; 484 if (_in[i] == nullptr) { 485 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); ) 486 break; 487 } 488 } 489 return -1; 490 } 491 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr); 492 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 493 // null out all inputs to eliminate incoming Def-Use edges. 494 void disconnect_inputs(Compile* C); 495 496 // Quickly, return true if and only if I am Compile::current()->top(). 497 bool is_top() const { 498 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), ""); 499 return (_out == nullptr); 500 } 501 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 502 void setup_is_top(); 503 504 // Strip away casting. (It is depth-limited.) 505 Node* uncast(bool keep_deps = false) const; 506 // Return whether two Nodes are equivalent, after stripping casting. 507 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 508 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 509 } 510 511 // Find out of current node that matches opcode. 512 Node* find_out_with(int opcode); 513 // Return true if the current node has an out that matches opcode. 514 bool has_out_with(int opcode); 515 // Return true if the current node has an out that matches any of the opcodes. 516 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 517 518 private: 519 static Node* uncast_helper(const Node* n, bool keep_deps); 520 521 // Add an output edge to the end of the list 522 void add_out( Node *n ) { 523 if (is_top()) return; 524 if( _outcnt == _outmax ) out_grow(_outcnt); 525 _out[_outcnt++] = n; 526 } 527 // Delete an output edge 528 void del_out( Node *n ) { 529 if (is_top()) return; 530 Node** outp = &_out[_outcnt]; 531 // Find and remove n 532 do { 533 assert(outp > _out, "Missing Def-Use edge"); 534 } while (*--outp != n); 535 *outp = _out[--_outcnt]; 536 // Smash the old edge so it can't be used accidentally. 537 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 538 // Record that a change happened here. 539 #if OPTO_DU_ITERATOR_ASSERT 540 DEBUG_ONLY(_last_del = n; ++_del_tick); 541 #endif 542 } 543 // Close gap after removing edge. 544 void close_prec_gap_at(uint gap) { 545 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 546 uint i = gap; 547 Node *last = nullptr; 548 for (; i < _max-1; ++i) { 549 Node *next = _in[i+1]; 550 if (next == nullptr) break; 551 last = next; 552 } 553 _in[gap] = last; // Move last slot to empty one. 554 _in[i] = nullptr; // null out last slot. 555 } 556 557 public: 558 // Globally replace this node by a given new node, updating all uses. 559 void replace_by(Node* new_node); 560 // Globally replace this node by a given new node, updating all uses 561 // and cutting input edges of old node. 562 void subsume_by(Node* new_node, Compile* c) { 563 replace_by(new_node); 564 disconnect_inputs(c); 565 } 566 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 567 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 568 // Find the one non-null required input. RegionNode only 569 Node *nonnull_req() const; 570 // Add or remove precedence edges 571 void add_prec( Node *n ); 572 void rm_prec( uint i ); 573 574 // Note: prec(i) will not necessarily point to n if edge already exists. 575 void set_prec( uint i, Node *n ) { 576 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 577 assert(is_not_dead(n), "can not use dead node"); 578 assert(i >= _cnt, "not a precedence edge"); 579 // Avoid spec violation: duplicated prec edge. 580 if (_in[i] == n) return; 581 if (n == nullptr || find_prec_edge(n) != -1) { 582 rm_prec(i); 583 return; 584 } 585 if (_in[i] != nullptr) _in[i]->del_out((Node *)this); 586 _in[i] = n; 587 n->add_out((Node *)this); 588 Compile::current()->record_modified_node(this); 589 } 590 591 // Set this node's index, used by cisc_version to replace current node 592 void set_idx(uint new_idx) { 593 _idx = new_idx; 594 } 595 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 596 void swap_edges(uint i1, uint i2) { 597 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 598 // Def-Use info is unchanged 599 Node* n1 = in(i1); 600 Node* n2 = in(i2); 601 _in[i1] = n2; 602 _in[i2] = n1; 603 // If this node is in the hash table, make sure it doesn't need a rehash. 604 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 605 // Flip swapped edges flag. 606 if (has_swapped_edges()) { 607 remove_flag(Node::Flag_has_swapped_edges); 608 } else { 609 add_flag(Node::Flag_has_swapped_edges); 610 } 611 } 612 613 // Iterators over input Nodes for a Node X are written as: 614 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 615 // NOTE: Required edges can contain embedded null pointers. 616 617 //----------------- Other Node Properties 618 619 // Generate class IDs for (some) ideal nodes so that it is possible to determine 620 // the type of a node using a non-virtual method call (the method is_<Node>() below). 621 // 622 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 623 // the type of the node the ID represents; another subset of an ID's bits are reserved 624 // for the superclasses of the node represented by the ID. 625 // 626 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 627 // returns false. A.is_A() returns true. 628 // 629 // If two classes, A and B, have the same superclass, a different bit of A's class id 630 // is reserved for A's type than for B's type. That bit is specified by the third 631 // parameter in the macro DEFINE_CLASS_ID. 632 // 633 // By convention, classes with deeper hierarchy are declared first. Moreover, 634 // classes with the same hierarchy depth are sorted by usage frequency. 635 // 636 // The query method masks the bits to cut off bits of subclasses and then compares 637 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 638 // 639 // Class_MachCall=30, ClassMask_MachCall=31 640 // 12 8 4 0 641 // 0 0 0 0 0 0 0 0 1 1 1 1 0 642 // | | | | 643 // | | | Bit_Mach=2 644 // | | Bit_MachReturn=4 645 // | Bit_MachSafePoint=8 646 // Bit_MachCall=16 647 // 648 // Class_CountedLoop=56, ClassMask_CountedLoop=63 649 // 12 8 4 0 650 // 0 0 0 0 0 0 0 1 1 1 0 0 0 651 // | | | 652 // | | Bit_Region=8 653 // | Bit_Loop=16 654 // Bit_CountedLoop=32 655 656 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 657 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 658 Class_##cl = Class_##supcl + Bit_##cl , \ 659 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 660 661 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 662 // so that its values fit into 32 bits. 663 enum NodeClasses { 664 Bit_Node = 0x00000000, 665 Class_Node = 0x00000000, 666 ClassMask_Node = 0xFFFFFFFF, 667 668 DEFINE_CLASS_ID(Multi, Node, 0) 669 DEFINE_CLASS_ID(SafePoint, Multi, 0) 670 DEFINE_CLASS_ID(Call, SafePoint, 0) 671 DEFINE_CLASS_ID(CallJava, Call, 0) 672 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 673 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 674 DEFINE_CLASS_ID(CallRuntime, Call, 1) 675 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 676 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 677 DEFINE_CLASS_ID(CallLeafPure, CallLeaf, 1) 678 DEFINE_CLASS_ID(Allocate, Call, 2) 679 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 680 DEFINE_CLASS_ID(AbstractLock, Call, 3) 681 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 682 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 683 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 684 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 685 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 686 DEFINE_CLASS_ID(Catch, PCTable, 0) 687 DEFINE_CLASS_ID(Jump, PCTable, 1) 688 DEFINE_CLASS_ID(If, MultiBranch, 1) 689 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 690 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 691 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 692 DEFINE_CLASS_ID(RangeCheck, If, 1) 693 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 694 DEFINE_CLASS_ID(ParsePredicate, If, 3) 695 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 696 DEFINE_CLASS_ID(Start, Multi, 2) 697 DEFINE_CLASS_ID(MemBar, Multi, 3) 698 DEFINE_CLASS_ID(Initialize, MemBar, 0) 699 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 700 701 DEFINE_CLASS_ID(Mach, Node, 1) 702 DEFINE_CLASS_ID(MachReturn, Mach, 0) 703 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 704 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 705 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 706 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 707 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 708 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 709 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 710 DEFINE_CLASS_ID(MachBranch, Mach, 1) 711 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 712 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 713 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 714 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 715 DEFINE_CLASS_ID(MachTemp, Mach, 3) 716 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 717 DEFINE_CLASS_ID(MachConstant, Mach, 5) 718 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 719 DEFINE_CLASS_ID(MachMerge, Mach, 6) 720 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 721 722 DEFINE_CLASS_ID(Type, Node, 2) 723 DEFINE_CLASS_ID(Phi, Type, 0) 724 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 725 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 726 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 727 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 728 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 729 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 730 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 731 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6) 732 DEFINE_CLASS_ID(CastHH, ConstraintCast, 7) 733 DEFINE_CLASS_ID(CMove, Type, 3) 734 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 735 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 736 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 737 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 738 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 739 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 740 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 741 DEFINE_CLASS_ID(Vector, Type, 7) 742 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 743 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 744 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 745 DEFINE_CLASS_ID(ShiftV, Vector, 3) 746 DEFINE_CLASS_ID(CompressV, Vector, 4) 747 DEFINE_CLASS_ID(ExpandV, Vector, 5) 748 DEFINE_CLASS_ID(CompressM, Vector, 6) 749 DEFINE_CLASS_ID(Reduction, Vector, 7) 750 DEFINE_CLASS_ID(NegV, Vector, 8) 751 DEFINE_CLASS_ID(SaturatingVector, Vector, 9) 752 DEFINE_CLASS_ID(MulVL, Vector, 10) 753 DEFINE_CLASS_ID(Con, Type, 8) 754 DEFINE_CLASS_ID(ConI, Con, 0) 755 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 9) 756 DEFINE_CLASS_ID(Convert, Type, 10) 757 758 759 DEFINE_CLASS_ID(Proj, Node, 3) 760 DEFINE_CLASS_ID(CatchProj, Proj, 0) 761 DEFINE_CLASS_ID(JumpProj, Proj, 1) 762 DEFINE_CLASS_ID(IfProj, Proj, 2) 763 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 764 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 765 DEFINE_CLASS_ID(Parm, Proj, 4) 766 DEFINE_CLASS_ID(MachProj, Proj, 5) 767 768 DEFINE_CLASS_ID(Mem, Node, 4) 769 DEFINE_CLASS_ID(Load, Mem, 0) 770 DEFINE_CLASS_ID(LoadVector, Load, 0) 771 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 772 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1) 773 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2) 774 DEFINE_CLASS_ID(Store, Mem, 1) 775 DEFINE_CLASS_ID(StoreVector, Store, 0) 776 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 777 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1) 778 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2) 779 DEFINE_CLASS_ID(LoadStore, Mem, 2) 780 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 781 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 782 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 783 784 DEFINE_CLASS_ID(Region, Node, 5) 785 DEFINE_CLASS_ID(Loop, Region, 0) 786 DEFINE_CLASS_ID(Root, Loop, 0) 787 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 788 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 789 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 790 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 791 792 DEFINE_CLASS_ID(Sub, Node, 6) 793 DEFINE_CLASS_ID(Cmp, Sub, 0) 794 DEFINE_CLASS_ID(FastLock, Cmp, 0) 795 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 796 DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2) 797 798 DEFINE_CLASS_ID(MergeMem, Node, 7) 799 DEFINE_CLASS_ID(Bool, Node, 8) 800 DEFINE_CLASS_ID(AddP, Node, 9) 801 DEFINE_CLASS_ID(BoxLock, Node, 10) 802 DEFINE_CLASS_ID(Add, Node, 11) 803 DEFINE_CLASS_ID(Mul, Node, 12) 804 DEFINE_CLASS_ID(ClearArray, Node, 14) 805 DEFINE_CLASS_ID(Halt, Node, 15) 806 DEFINE_CLASS_ID(Opaque1, Node, 16) 807 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0) 808 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1) 809 DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2) 810 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17) 811 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18) 812 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19) 813 DEFINE_CLASS_ID(Move, Node, 20) 814 DEFINE_CLASS_ID(LShift, Node, 21) 815 DEFINE_CLASS_ID(Neg, Node, 22) 816 817 _max_classes = ClassMask_Neg 818 }; 819 #undef DEFINE_CLASS_ID 820 821 // Flags are sorted by usage frequency. 822 enum NodeFlags { 823 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 824 Flag_rematerialize = 1 << 1, 825 Flag_needs_anti_dependence_check = 1 << 2, 826 Flag_is_macro = 1 << 3, 827 Flag_is_Con = 1 << 4, 828 Flag_is_cisc_alternate = 1 << 5, 829 Flag_is_dead_loop_safe = 1 << 6, 830 Flag_may_be_short_branch = 1 << 7, 831 Flag_avoid_back_to_back_before = 1 << 8, 832 Flag_avoid_back_to_back_after = 1 << 9, 833 Flag_has_call = 1 << 10, 834 Flag_has_swapped_edges = 1 << 11, 835 Flag_is_scheduled = 1 << 12, 836 Flag_is_expensive = 1 << 13, 837 Flag_is_predicated_vector = 1 << 14, 838 Flag_for_post_loop_opts_igvn = 1 << 15, 839 Flag_for_merge_stores_igvn = 1 << 16, 840 Flag_is_removed_by_peephole = 1 << 17, 841 Flag_is_predicated_using_blend = 1 << 18, 842 _last_flag = Flag_is_predicated_using_blend 843 }; 844 845 class PD; 846 847 private: 848 juint _class_id; 849 juint _flags; 850 851 #ifdef ASSERT 852 static juint max_flags(); 853 #endif 854 855 protected: 856 // These methods should be called from constructors only. 857 void init_class_id(juint c) { 858 _class_id = c; // cast out const 859 } 860 void init_flags(uint fl) { 861 assert(fl <= max_flags(), "invalid node flag"); 862 _flags |= fl; 863 } 864 void clear_flag(uint fl) { 865 assert(fl <= max_flags(), "invalid node flag"); 866 _flags &= ~fl; 867 } 868 869 public: 870 juint class_id() const { return _class_id; } 871 872 juint flags() const { return _flags; } 873 874 void add_flag(juint fl) { init_flags(fl); } 875 876 void remove_flag(juint fl) { clear_flag(fl); } 877 878 // Return a dense integer opcode number 879 virtual int Opcode() const; 880 881 // Virtual inherited Node size 882 virtual uint size_of() const; 883 884 // Other interesting Node properties 885 #define DEFINE_CLASS_QUERY(type) \ 886 bool is_##type() const { \ 887 return ((_class_id & ClassMask_##type) == Class_##type); \ 888 } \ 889 type##Node *as_##type() const { \ 890 assert(is_##type(), "invalid node class: %s", Name()); \ 891 return (type##Node*)this; \ 892 } \ 893 type##Node* isa_##type() const { \ 894 return (is_##type()) ? as_##type() : nullptr; \ 895 } 896 897 DEFINE_CLASS_QUERY(AbstractLock) 898 DEFINE_CLASS_QUERY(Add) 899 DEFINE_CLASS_QUERY(AddP) 900 DEFINE_CLASS_QUERY(Allocate) 901 DEFINE_CLASS_QUERY(AllocateArray) 902 DEFINE_CLASS_QUERY(ArrayCopy) 903 DEFINE_CLASS_QUERY(BaseCountedLoop) 904 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 905 DEFINE_CLASS_QUERY(Bool) 906 DEFINE_CLASS_QUERY(BoxLock) 907 DEFINE_CLASS_QUERY(Call) 908 DEFINE_CLASS_QUERY(CallDynamicJava) 909 DEFINE_CLASS_QUERY(CallJava) 910 DEFINE_CLASS_QUERY(CallLeaf) 911 DEFINE_CLASS_QUERY(CallLeafNoFP) 912 DEFINE_CLASS_QUERY(CallLeafPure) 913 DEFINE_CLASS_QUERY(CallRuntime) 914 DEFINE_CLASS_QUERY(CallStaticJava) 915 DEFINE_CLASS_QUERY(Catch) 916 DEFINE_CLASS_QUERY(CatchProj) 917 DEFINE_CLASS_QUERY(CheckCastPP) 918 DEFINE_CLASS_QUERY(CastII) 919 DEFINE_CLASS_QUERY(CastLL) 920 DEFINE_CLASS_QUERY(CastFF) 921 DEFINE_CLASS_QUERY(ConI) 922 DEFINE_CLASS_QUERY(CastPP) 923 DEFINE_CLASS_QUERY(ConstraintCast) 924 DEFINE_CLASS_QUERY(ClearArray) 925 DEFINE_CLASS_QUERY(CMove) 926 DEFINE_CLASS_QUERY(Cmp) 927 DEFINE_CLASS_QUERY(Convert) 928 DEFINE_CLASS_QUERY(CountedLoop) 929 DEFINE_CLASS_QUERY(CountedLoopEnd) 930 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 931 DEFINE_CLASS_QUERY(DecodeN) 932 DEFINE_CLASS_QUERY(DecodeNKlass) 933 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 934 DEFINE_CLASS_QUERY(EncodeP) 935 DEFINE_CLASS_QUERY(EncodePKlass) 936 DEFINE_CLASS_QUERY(FastLock) 937 DEFINE_CLASS_QUERY(FastUnlock) 938 DEFINE_CLASS_QUERY(Halt) 939 DEFINE_CLASS_QUERY(If) 940 DEFINE_CLASS_QUERY(RangeCheck) 941 DEFINE_CLASS_QUERY(IfProj) 942 DEFINE_CLASS_QUERY(IfFalse) 943 DEFINE_CLASS_QUERY(IfTrue) 944 DEFINE_CLASS_QUERY(Initialize) 945 DEFINE_CLASS_QUERY(Jump) 946 DEFINE_CLASS_QUERY(JumpProj) 947 DEFINE_CLASS_QUERY(LongCountedLoop) 948 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 949 DEFINE_CLASS_QUERY(Load) 950 DEFINE_CLASS_QUERY(LoadStore) 951 DEFINE_CLASS_QUERY(LoadStoreConditional) 952 DEFINE_CLASS_QUERY(Lock) 953 DEFINE_CLASS_QUERY(Loop) 954 DEFINE_CLASS_QUERY(LShift) 955 DEFINE_CLASS_QUERY(Mach) 956 DEFINE_CLASS_QUERY(MachBranch) 957 DEFINE_CLASS_QUERY(MachCall) 958 DEFINE_CLASS_QUERY(MachCallDynamicJava) 959 DEFINE_CLASS_QUERY(MachCallJava) 960 DEFINE_CLASS_QUERY(MachCallLeaf) 961 DEFINE_CLASS_QUERY(MachCallRuntime) 962 DEFINE_CLASS_QUERY(MachCallStaticJava) 963 DEFINE_CLASS_QUERY(MachConstantBase) 964 DEFINE_CLASS_QUERY(MachConstant) 965 DEFINE_CLASS_QUERY(MachGoto) 966 DEFINE_CLASS_QUERY(MachIf) 967 DEFINE_CLASS_QUERY(MachJump) 968 DEFINE_CLASS_QUERY(MachNullCheck) 969 DEFINE_CLASS_QUERY(MachProj) 970 DEFINE_CLASS_QUERY(MachReturn) 971 DEFINE_CLASS_QUERY(MachSafePoint) 972 DEFINE_CLASS_QUERY(MachSpillCopy) 973 DEFINE_CLASS_QUERY(MachTemp) 974 DEFINE_CLASS_QUERY(MachMemBar) 975 DEFINE_CLASS_QUERY(MachMerge) 976 DEFINE_CLASS_QUERY(Mem) 977 DEFINE_CLASS_QUERY(MemBar) 978 DEFINE_CLASS_QUERY(MemBarStoreStore) 979 DEFINE_CLASS_QUERY(MergeMem) 980 DEFINE_CLASS_QUERY(Move) 981 DEFINE_CLASS_QUERY(Mul) 982 DEFINE_CLASS_QUERY(Multi) 983 DEFINE_CLASS_QUERY(MultiBranch) 984 DEFINE_CLASS_QUERY(MulVL) 985 DEFINE_CLASS_QUERY(Neg) 986 DEFINE_CLASS_QUERY(NegV) 987 DEFINE_CLASS_QUERY(NeverBranch) 988 DEFINE_CLASS_QUERY(Opaque1) 989 DEFINE_CLASS_QUERY(OpaqueNotNull) 990 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate) 991 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate) 992 DEFINE_CLASS_QUERY(OpaqueLoopInit) 993 DEFINE_CLASS_QUERY(OpaqueLoopStride) 994 DEFINE_CLASS_QUERY(OpaqueMultiversioning) 995 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 996 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 997 DEFINE_CLASS_QUERY(Parm) 998 DEFINE_CLASS_QUERY(ParsePredicate) 999 DEFINE_CLASS_QUERY(PCTable) 1000 DEFINE_CLASS_QUERY(Phi) 1001 DEFINE_CLASS_QUERY(Proj) 1002 DEFINE_CLASS_QUERY(Reduction) 1003 DEFINE_CLASS_QUERY(Region) 1004 DEFINE_CLASS_QUERY(Root) 1005 DEFINE_CLASS_QUERY(SafePoint) 1006 DEFINE_CLASS_QUERY(SafePointScalarObject) 1007 DEFINE_CLASS_QUERY(SafePointScalarMerge) 1008 DEFINE_CLASS_QUERY(Start) 1009 DEFINE_CLASS_QUERY(Store) 1010 DEFINE_CLASS_QUERY(Sub) 1011 DEFINE_CLASS_QUERY(SubTypeCheck) 1012 DEFINE_CLASS_QUERY(Type) 1013 DEFINE_CLASS_QUERY(Vector) 1014 DEFINE_CLASS_QUERY(VectorMaskCmp) 1015 DEFINE_CLASS_QUERY(VectorUnbox) 1016 DEFINE_CLASS_QUERY(VectorReinterpret) 1017 DEFINE_CLASS_QUERY(CompressV) 1018 DEFINE_CLASS_QUERY(ExpandV) 1019 DEFINE_CLASS_QUERY(CompressM) 1020 DEFINE_CLASS_QUERY(LoadVector) 1021 DEFINE_CLASS_QUERY(LoadVectorGather) 1022 DEFINE_CLASS_QUERY(LoadVectorMasked) 1023 DEFINE_CLASS_QUERY(LoadVectorGatherMasked) 1024 DEFINE_CLASS_QUERY(StoreVector) 1025 DEFINE_CLASS_QUERY(StoreVectorScatter) 1026 DEFINE_CLASS_QUERY(StoreVectorMasked) 1027 DEFINE_CLASS_QUERY(StoreVectorScatterMasked) 1028 DEFINE_CLASS_QUERY(SaturatingVector) 1029 DEFINE_CLASS_QUERY(ShiftV) 1030 DEFINE_CLASS_QUERY(Unlock) 1031 1032 #undef DEFINE_CLASS_QUERY 1033 1034 // duplicate of is_MachSpillCopy() 1035 bool is_SpillCopy () const { 1036 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 1037 } 1038 1039 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 1040 // The data node which is safe to leave in dead loop during IGVN optimization. 1041 bool is_dead_loop_safe() const; 1042 1043 // is_Copy() returns copied edge index (0 or 1) 1044 uint is_Copy() const { return (_flags & Flag_is_Copy); } 1045 1046 virtual bool is_CFG() const { return false; } 1047 1048 // If this node is control-dependent on a test, can it be 1049 // rerouted to a dominating equivalent test? This is usually 1050 // true of non-CFG nodes, but can be false for operations which 1051 // depend for their correct sequencing on more than one test. 1052 // (In that case, hoisting to a dominating test may silently 1053 // skip some other important test.) 1054 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 1055 1056 // When building basic blocks, I need to have a notion of block beginning 1057 // Nodes, next block selector Nodes (block enders), and next block 1058 // projections. These calls need to work on their machine equivalents. The 1059 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 1060 bool is_block_start() const { 1061 if ( is_Region() ) 1062 return this == (const Node*)in(0); 1063 else 1064 return is_Start(); 1065 } 1066 1067 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 1068 // Goto and Return. This call also returns the block ending Node. 1069 virtual const Node *is_block_proj() const; 1070 1071 // The node is a "macro" node which needs to be expanded before matching 1072 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 1073 // The node is expensive: the best control is set during loop opts 1074 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; } 1075 // The node's original edge position is swapped. 1076 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; } 1077 1078 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1079 1080 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1081 1082 // Used in lcm to mark nodes that have scheduled 1083 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1084 1085 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1086 bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; } 1087 1088 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)? 1089 static bool may_be_loop_entry(Node* n) { 1090 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate(); 1091 } 1092 1093 //----------------- Optimization 1094 1095 // Get the worst-case Type output for this Node. 1096 virtual const class Type *bottom_type() const; 1097 1098 // If we find a better type for a node, try to record it permanently. 1099 // Return true if this node actually changed. 1100 // Be sure to do the hash_delete game in the "rehash" variant. 1101 void raise_bottom_type(const Type* new_type); 1102 1103 // Get the address type with which this node uses and/or defs memory, 1104 // or null if none. The address type is conservatively wide. 1105 // Returns non-null for calls, membars, loads, stores, etc. 1106 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1107 virtual const class TypePtr *adr_type() const { return nullptr; } 1108 1109 // Return an existing node which computes the same function as this node. 1110 // The optimistic combined algorithm requires this to return a Node which 1111 // is a small number of steps away (e.g., one of my inputs). 1112 virtual Node* Identity(PhaseGVN* phase); 1113 1114 // Return the set of values this Node can take on at runtime. 1115 virtual const Type* Value(PhaseGVN* phase) const; 1116 1117 // Return a node which is more "ideal" than the current node. 1118 // The invariants on this call are subtle. If in doubt, read the 1119 // treatise in node.cpp above the default implementation AND TEST WITH 1120 // -XX:VerifyIterativeGVN=1 1121 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1122 1123 // Some nodes have specific Ideal subgraph transformations only if they are 1124 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1125 // for the transformations to happen. 1126 bool has_special_unique_user() const; 1127 1128 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1129 Node* find_exact_control(Node* ctrl); 1130 1131 // Results of the dominance analysis. 1132 enum class DomResult { 1133 NotDominate, // 'this' node does not dominate 'sub'. 1134 Dominate, // 'this' node dominates or is equal to 'sub'. 1135 EncounteredDeadCode // Result is undefined due to encountering dead code. 1136 }; 1137 // Check if 'this' node dominates or equal to 'sub'. 1138 DomResult dominates(Node* sub, Node_List &nlist); 1139 1140 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1141 public: 1142 1143 // See if there is valid pipeline info 1144 static const Pipeline *pipeline_class(); 1145 virtual const Pipeline *pipeline() const; 1146 1147 // Compute the latency from the def to this instruction of the ith input node 1148 uint latency(uint i); 1149 1150 // Hash & compare functions, for pessimistic value numbering 1151 1152 // If the hash function returns the special sentinel value NO_HASH, 1153 // the node is guaranteed never to compare equal to any other node. 1154 // If we accidentally generate a hash with value NO_HASH the node 1155 // won't go into the table and we'll lose a little optimization. 1156 static const uint NO_HASH = 0; 1157 virtual uint hash() const; 1158 virtual bool cmp( const Node &n ) const; 1159 1160 // Operation appears to be iteratively computed (such as an induction variable) 1161 // It is possible for this operation to return false for a loop-varying 1162 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1163 bool is_iteratively_computed(); 1164 1165 // Determine if a node is a counted loop induction variable. 1166 // NOTE: The method is defined in "loopnode.cpp". 1167 bool is_cloop_ind_var() const; 1168 1169 // Return a node with opcode "opc" and same inputs as "this" if one can 1170 // be found; Otherwise return null; 1171 Node* find_similar(int opc); 1172 1173 // Return the unique control out if only one. Null if none or more than one. 1174 Node* unique_ctrl_out_or_null() const; 1175 // Return the unique control out. Asserts if none or more than one control out. 1176 Node* unique_ctrl_out() const; 1177 1178 // Set control or add control as precedence edge 1179 void ensure_control_or_add_prec(Node* c); 1180 void add_prec_from(Node* n); 1181 1182 // Visit boundary uses of the node and apply a callback function for each. 1183 // Recursively traverse uses, stopping and applying the callback when 1184 // reaching a boundary node, defined by is_boundary. Note: the function 1185 // definition appears after the complete type definition of Node_List. 1186 template <typename Callback, typename Check> 1187 void visit_uses(Callback callback, Check is_boundary) const; 1188 1189 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses 1190 // (Load and range check CastII nodes). 1191 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication). 1192 virtual Node* pin_array_access_node() const { 1193 return nullptr; 1194 } 1195 1196 //----------------- Code Generation 1197 1198 // Ideal register class for Matching. Zero means unmatched instruction 1199 // (these are cloned instead of converted to machine nodes). 1200 virtual uint ideal_reg() const; 1201 1202 static const uint NotAMachineReg; // must be > max. machine register 1203 1204 // Do we Match on this edge index or not? Generally false for Control 1205 // and true for everything else. Weird for calls & returns. 1206 virtual uint match_edge(uint idx) const; 1207 1208 // Register class output is returned in 1209 virtual const RegMask &out_RegMask() const; 1210 // Register class input is expected in 1211 virtual const RegMask &in_RegMask(uint) const; 1212 // Should we clone rather than spill this instruction? 1213 bool rematerialize() const; 1214 1215 // Return JVM State Object if this Node carries debug info, or null otherwise 1216 virtual JVMState* jvms() const; 1217 1218 // Print as assembly 1219 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1220 // Emit bytes using C2_MacroAssembler 1221 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const; 1222 // Size of instruction in bytes 1223 virtual uint size(PhaseRegAlloc *ra_) const; 1224 1225 // Convenience function to extract an integer constant from a node. 1226 // If it is not an integer constant (either Con, CastII, or Mach), 1227 // return value_if_unknown. 1228 jint find_int_con(jint value_if_unknown) const { 1229 const TypeInt* t = find_int_type(); 1230 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1231 } 1232 // Return the constant, knowing it is an integer constant already 1233 jint get_int() const { 1234 const TypeInt* t = find_int_type(); 1235 guarantee(t != nullptr, "must be con"); 1236 return t->get_con(); 1237 } 1238 // Here's where the work is done. Can produce non-constant int types too. 1239 const TypeInt* find_int_type() const; 1240 const TypeInteger* find_integer_type(BasicType bt) const; 1241 1242 // Same thing for long (and intptr_t, via type.hpp): 1243 jlong get_long() const { 1244 const TypeLong* t = find_long_type(); 1245 guarantee(t != nullptr, "must be con"); 1246 return t->get_con(); 1247 } 1248 jlong find_long_con(jint value_if_unknown) const { 1249 const TypeLong* t = find_long_type(); 1250 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1251 } 1252 const TypeLong* find_long_type() const; 1253 1254 jlong get_integer_as_long(BasicType bt) const { 1255 const TypeInteger* t = find_integer_type(bt); 1256 guarantee(t != nullptr && t->is_con(), "must be con"); 1257 return t->get_con_as_long(bt); 1258 } 1259 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1260 const TypeInteger* t = find_integer_type(bt); 1261 if (t == nullptr || !t->is_con()) return value_if_unknown; 1262 return t->get_con_as_long(bt); 1263 } 1264 const TypePtr* get_ptr_type() const; 1265 1266 // These guys are called by code generated by ADLC: 1267 intptr_t get_ptr() const; 1268 intptr_t get_narrowcon() const; 1269 jdouble getd() const; 1270 jfloat getf() const; 1271 jshort geth() const; 1272 1273 // Nodes which are pinned into basic blocks 1274 virtual bool pinned() const { return false; } 1275 1276 // Nodes which use memory without consuming it, hence need antidependences 1277 // More specifically, needs_anti_dependence_check returns true iff the node 1278 // (a) does a load, and (b) does not perform a store (except perhaps to a 1279 // stack slot or some other unaliased location). 1280 bool needs_anti_dependence_check() const; 1281 1282 // Return which operand this instruction may cisc-spill. In other words, 1283 // return operand position that can convert from reg to memory access 1284 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1285 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1286 1287 // Whether this is a memory-writing machine node. 1288 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1289 1290 // Whether this is a memory phi node 1291 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; } 1292 1293 bool is_div_or_mod(BasicType bt) const; 1294 1295 bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const; 1296 1297 //----------------- Printing, etc 1298 #ifndef PRODUCT 1299 public: 1300 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1301 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1302 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr = nullptr) const; 1303 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty 1304 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr) 1305 void dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const; 1306 class DumpConfig { 1307 public: 1308 // overridden to implement coloring of node idx 1309 virtual void pre_dump(outputStream *st, const Node* n) = 0; 1310 virtual void post_dump(outputStream *st) = 0; 1311 }; 1312 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; 1313 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const; 1314 void dump() const; // print node with newline 1315 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node. 1316 void dump(int depth) const; // Print this node, recursively to depth d 1317 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1318 void dump_comp() const; // Print this node in compact representation. 1319 // Print this node in compact representation. 1320 void dump_comp(const char* suffix, outputStream *st = tty) const; 1321 private: 1322 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info 1323 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info 1324 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info 1325 public: 1326 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1327 // Print compact per-node info 1328 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1329 1330 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1331 1332 // This call defines a class-unique string used to identify class instances 1333 virtual const char *Name() const; 1334 1335 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1336 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call 1337 #endif 1338 #ifdef ASSERT 1339 void verify_construction(); 1340 bool verify_jvms(const JVMState* jvms) const; 1341 1342 Node* _debug_orig; // Original version of this, if any. 1343 Node* debug_orig() const { return _debug_orig; } 1344 void set_debug_orig(Node* orig); // _debug_orig = orig 1345 void dump_orig(outputStream *st, bool print_key = true) const; 1346 1347 uint64_t _debug_idx; // Unique value assigned to every node. 1348 uint64_t debug_idx() const { return _debug_idx; } 1349 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; } 1350 1351 int _hash_lock; // Barrier to modifications of nodes in the hash table 1352 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1353 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1354 1355 static void init_NodeProperty(); 1356 1357 #if OPTO_DU_ITERATOR_ASSERT 1358 const Node* _last_del; // The last deleted node. 1359 uint _del_tick; // Bumped when a deletion happens.. 1360 #endif 1361 #endif 1362 }; 1363 1364 inline bool not_a_node(const Node* n) { 1365 if (n == nullptr) return true; 1366 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1367 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1368 return false; 1369 } 1370 1371 //----------------------------------------------------------------------------- 1372 // Iterators over DU info, and associated Node functions. 1373 1374 #if OPTO_DU_ITERATOR_ASSERT 1375 1376 // Common code for assertion checking on DU iterators. 1377 class DUIterator_Common { 1378 #ifdef ASSERT 1379 protected: 1380 bool _vdui; // cached value of VerifyDUIterators 1381 const Node* _node; // the node containing the _out array 1382 uint _outcnt; // cached node->_outcnt 1383 uint _del_tick; // cached node->_del_tick 1384 Node* _last; // last value produced by the iterator 1385 1386 void sample(const Node* node); // used by c'tor to set up for verifies 1387 void verify(const Node* node, bool at_end_ok = false); 1388 void verify_resync(); 1389 void reset(const DUIterator_Common& that); 1390 1391 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1392 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1393 #else 1394 #define I_VDUI_ONLY(i,x) { } 1395 #endif //ASSERT 1396 }; 1397 1398 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1399 1400 // Default DU iterator. Allows appends onto the out array. 1401 // Allows deletion from the out array only at the current point. 1402 // Usage: 1403 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1404 // Node* y = x->out(i); 1405 // ... 1406 // } 1407 // Compiles in product mode to a unsigned integer index, which indexes 1408 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1409 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1410 // before continuing the loop. You must delete only the last-produced 1411 // edge. You must delete only a single copy of the last-produced edge, 1412 // or else you must delete all copies at once (the first time the edge 1413 // is produced by the iterator). 1414 class DUIterator : public DUIterator_Common { 1415 friend class Node; 1416 1417 // This is the index which provides the product-mode behavior. 1418 // Whatever the product-mode version of the system does to the 1419 // DUI index is done to this index. All other fields in 1420 // this class are used only for assertion checking. 1421 uint _idx; 1422 1423 #ifdef ASSERT 1424 uint _refresh_tick; // Records the refresh activity. 1425 1426 void sample(const Node* node); // Initialize _refresh_tick etc. 1427 void verify(const Node* node, bool at_end_ok = false); 1428 void verify_increment(); // Verify an increment operation. 1429 void verify_resync(); // Verify that we can back up over a deletion. 1430 void verify_finish(); // Verify that the loop terminated properly. 1431 void refresh(); // Resample verification info. 1432 void reset(const DUIterator& that); // Resample after assignment. 1433 #endif 1434 1435 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1436 { _idx = 0; DEBUG_ONLY(sample(node)); } 1437 1438 public: 1439 // initialize to garbage; clear _vdui to disable asserts 1440 DUIterator() 1441 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); } 1442 1443 DUIterator(const DUIterator& that) 1444 { _idx = that._idx; DEBUG_ONLY(_vdui = false; reset(that)); } 1445 1446 void operator++(int dummy_to_specify_postfix_op) 1447 { _idx++; VDUI_ONLY(verify_increment()); } 1448 1449 void operator--() 1450 { VDUI_ONLY(verify_resync()); --_idx; } 1451 1452 ~DUIterator() 1453 { VDUI_ONLY(verify_finish()); } 1454 1455 void operator=(const DUIterator& that) 1456 { _idx = that._idx; DEBUG_ONLY(reset(that)); } 1457 }; 1458 1459 DUIterator Node::outs() const 1460 { return DUIterator(this, 0); } 1461 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1462 { I_VDUI_ONLY(i, i.refresh()); return i; } 1463 bool Node::has_out(DUIterator& i) const 1464 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1465 Node* Node::out(DUIterator& i) const 1466 { I_VDUI_ONLY(i, i.verify(this)); return DEBUG_ONLY(i._last=) _out[i._idx]; } 1467 1468 1469 // Faster DU iterator. Disallows insertions into the out array. 1470 // Allows deletion from the out array only at the current point. 1471 // Usage: 1472 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1473 // Node* y = x->fast_out(i); 1474 // ... 1475 // } 1476 // Compiles in product mode to raw Node** pointer arithmetic, with 1477 // no reloading of pointers from the original node x. If you delete, 1478 // you must perform "--i; --imax" just before continuing the loop. 1479 // If you delete multiple copies of the same edge, you must decrement 1480 // imax, but not i, multiple times: "--i, imax -= num_edges". 1481 class DUIterator_Fast : public DUIterator_Common { 1482 friend class Node; 1483 friend class DUIterator_Last; 1484 1485 // This is the pointer which provides the product-mode behavior. 1486 // Whatever the product-mode version of the system does to the 1487 // DUI pointer is done to this pointer. All other fields in 1488 // this class are used only for assertion checking. 1489 Node** _outp; 1490 1491 #ifdef ASSERT 1492 void verify(const Node* node, bool at_end_ok = false); 1493 void verify_limit(); 1494 void verify_resync(); 1495 void verify_relimit(uint n); 1496 void reset(const DUIterator_Fast& that); 1497 #endif 1498 1499 // Note: offset must be signed, since -1 is sometimes passed 1500 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1501 { _outp = node->_out + offset; DEBUG_ONLY(sample(node)); } 1502 1503 public: 1504 // initialize to garbage; clear _vdui to disable asserts 1505 DUIterator_Fast() 1506 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); } 1507 1508 DUIterator_Fast(const DUIterator_Fast& that) 1509 { _outp = that._outp; DEBUG_ONLY(_vdui = false; reset(that)); } 1510 1511 void operator++(int dummy_to_specify_postfix_op) 1512 { _outp++; VDUI_ONLY(verify(_node, true)); } 1513 1514 void operator--() 1515 { VDUI_ONLY(verify_resync()); --_outp; } 1516 1517 void operator-=(uint n) // applied to the limit only 1518 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1519 1520 bool operator<(DUIterator_Fast& limit) { 1521 I_VDUI_ONLY(*this, this->verify(_node, true)); 1522 I_VDUI_ONLY(limit, limit.verify_limit()); 1523 return _outp < limit._outp; 1524 } 1525 1526 void operator=(const DUIterator_Fast& that) 1527 { _outp = that._outp; DEBUG_ONLY(reset(that)); } 1528 }; 1529 1530 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1531 // Assign a limit pointer to the reference argument: 1532 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1533 // Return the base pointer: 1534 return DUIterator_Fast(this, 0); 1535 } 1536 Node* Node::fast_out(DUIterator_Fast& i) const { 1537 I_VDUI_ONLY(i, i.verify(this)); 1538 return DEBUG_ONLY(i._last=) *i._outp; 1539 } 1540 1541 1542 // Faster DU iterator. Requires each successive edge to be removed. 1543 // Does not allow insertion of any edges. 1544 // Usage: 1545 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1546 // Node* y = x->last_out(i); 1547 // ... 1548 // } 1549 // Compiles in product mode to raw Node** pointer arithmetic, with 1550 // no reloading of pointers from the original node x. 1551 class DUIterator_Last : private DUIterator_Fast { 1552 friend class Node; 1553 1554 #ifdef ASSERT 1555 void verify(const Node* node, bool at_end_ok = false); 1556 void verify_limit(); 1557 void verify_step(uint num_edges); 1558 #endif 1559 1560 // Note: offset must be signed, since -1 is sometimes passed 1561 DUIterator_Last(const Node* node, ptrdiff_t offset) 1562 : DUIterator_Fast(node, offset) { } 1563 1564 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1565 void operator<(int) {} // do not use 1566 1567 public: 1568 DUIterator_Last() { } 1569 // initialize to garbage 1570 1571 DUIterator_Last(const DUIterator_Last& that) = default; 1572 1573 void operator--() 1574 { _outp--; VDUI_ONLY(verify_step(1)); } 1575 1576 void operator-=(uint n) 1577 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1578 1579 bool operator>=(DUIterator_Last& limit) { 1580 I_VDUI_ONLY(*this, this->verify(_node, true)); 1581 I_VDUI_ONLY(limit, limit.verify_limit()); 1582 return _outp >= limit._outp; 1583 } 1584 1585 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1586 }; 1587 1588 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1589 // Assign a limit pointer to the reference argument: 1590 imin = DUIterator_Last(this, 0); 1591 // Return the initial pointer: 1592 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1593 } 1594 Node* Node::last_out(DUIterator_Last& i) const { 1595 I_VDUI_ONLY(i, i.verify(this)); 1596 return DEBUG_ONLY(i._last=) *i._outp; 1597 } 1598 1599 #endif //OPTO_DU_ITERATOR_ASSERT 1600 1601 #undef I_VDUI_ONLY 1602 #undef VDUI_ONLY 1603 1604 // An Iterator that truly follows the iterator pattern. Doesn't 1605 // support deletion but could be made to. 1606 // 1607 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1608 // Node* m = i.get(); 1609 // 1610 class SimpleDUIterator : public StackObj { 1611 private: 1612 Node* node; 1613 DUIterator_Fast imax; 1614 DUIterator_Fast i; 1615 public: 1616 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1617 bool has_next() { return i < imax; } 1618 void next() { i++; } 1619 Node* get() { return node->fast_out(i); } 1620 }; 1621 1622 1623 //----------------------------------------------------------------------------- 1624 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1625 // Abstractly provides an infinite array of Node*'s, initialized to null. 1626 // Note that the constructor just zeros things, and since I use Arena 1627 // allocation I do not need a destructor to reclaim storage. 1628 class Node_Array : public AnyObj { 1629 protected: 1630 Arena* _a; // Arena to allocate in 1631 uint _max; 1632 Node** _nodes; 1633 ReallocMark _nesting; // Safety checks for arena reallocation 1634 1635 // Grow array to required capacity 1636 void maybe_grow(uint i) { 1637 _nesting.check(_a); // Check if a potential reallocation in the arena is safe 1638 if (i >= _max) { 1639 grow(i); 1640 } 1641 } 1642 void grow(uint i); 1643 1644 public: 1645 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1646 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1647 clear(); 1648 } 1649 Node_Array() : Node_Array(Thread::current()->resource_area()) {} 1650 1651 NONCOPYABLE(Node_Array); 1652 Node_Array& operator=(Node_Array&&) = delete; 1653 // Allow move constructor for && (eg. capture return of function) 1654 Node_Array(Node_Array&&) = default; 1655 1656 Node *operator[] ( uint i ) const // Lookup, or null for not mapped 1657 { return (i<_max) ? _nodes[i] : (Node*)nullptr; } 1658 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1659 Node** adr() { return _nodes; } 1660 // Extend the mapping: index i maps to Node *n. 1661 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; } 1662 void insert( uint i, Node *n ); 1663 void remove( uint i ); // Remove, preserving order 1664 // Clear all entries in _nodes to null but keep storage 1665 void clear() { 1666 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1667 } 1668 1669 uint max() const { return _max; } 1670 void dump() const; 1671 }; 1672 1673 class Node_List : public Node_Array { 1674 uint _cnt; 1675 public: 1676 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1677 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1678 1679 NONCOPYABLE(Node_List); 1680 Node_List& operator=(Node_List&&) = delete; 1681 // Allow move constructor for && (eg. capture return of function) 1682 Node_List(Node_List&&) = default; 1683 1684 bool contains(const Node* n) const { 1685 for (uint e = 0; e < size(); e++) { 1686 if (at(e) == n) return true; 1687 } 1688 return false; 1689 } 1690 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1691 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1692 void push( Node *b ) { map(_cnt++,b); } 1693 void yank( Node *n ); // Find and remove 1694 Node *pop() { return _nodes[--_cnt]; } 1695 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1696 void copy(const Node_List& from) { 1697 if (from._max > _max) { 1698 grow(from._max); 1699 } 1700 _cnt = from._cnt; 1701 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1702 } 1703 1704 uint size() const { return _cnt; } 1705 void dump() const; 1706 void dump_simple() const; 1707 }; 1708 1709 // Definition must appear after complete type definition of Node_List 1710 template <typename Callback, typename Check> 1711 void Node::visit_uses(Callback callback, Check is_boundary) const { 1712 ResourceMark rm; 1713 VectorSet visited; 1714 Node_List worklist; 1715 1716 // The initial worklist consists of the direct uses 1717 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) { 1718 Node* out = fast_out(k); 1719 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1720 } 1721 1722 while (worklist.size() > 0) { 1723 Node* use = worklist.pop(); 1724 // Apply callback on boundary nodes 1725 if (is_boundary(use)) { 1726 callback(use); 1727 } else { 1728 // Not a boundary node, continue search 1729 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1730 Node* out = use->fast_out(k); 1731 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1732 } 1733 } 1734 } 1735 } 1736 1737 1738 //------------------------------Unique_Node_List------------------------------- 1739 class Unique_Node_List : public Node_List { 1740 VectorSet _in_worklist; 1741 uint _clock_index; // Index in list where to pop from next 1742 public: 1743 Unique_Node_List() : Node_List(), _clock_index(0) {} 1744 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1745 1746 NONCOPYABLE(Unique_Node_List); 1747 Unique_Node_List& operator=(Unique_Node_List&&) = delete; 1748 // Allow move constructor for && (eg. capture return of function) 1749 Unique_Node_List(Unique_Node_List&&) = default; 1750 1751 void remove( Node *n ); 1752 bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; } 1753 VectorSet& member_set(){ return _in_worklist; } 1754 1755 void push(Node* b) { 1756 if( !_in_worklist.test_set(b->_idx) ) 1757 Node_List::push(b); 1758 } 1759 void push_non_cfg_inputs_of(const Node* node) { 1760 for (uint i = 1; i < node->req(); i++) { 1761 Node* input = node->in(i); 1762 if (input != nullptr && !input->is_CFG()) { 1763 push(input); 1764 } 1765 } 1766 } 1767 1768 void push_outputs_of(const Node* node) { 1769 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) { 1770 Node* output = node->fast_out(i); 1771 push(output); 1772 } 1773 } 1774 1775 Node *pop() { 1776 if( _clock_index >= size() ) _clock_index = 0; 1777 Node *b = at(_clock_index); 1778 map( _clock_index, Node_List::pop()); 1779 if (size() != 0) _clock_index++; // Always start from 0 1780 _in_worklist.remove(b->_idx); 1781 return b; 1782 } 1783 Node *remove(uint i) { 1784 Node *b = Node_List::at(i); 1785 _in_worklist.remove(b->_idx); 1786 map(i,Node_List::pop()); 1787 return b; 1788 } 1789 void yank(Node *n) { 1790 _in_worklist.remove(n->_idx); 1791 Node_List::yank(n); 1792 } 1793 void clear() { 1794 _in_worklist.clear(); // Discards storage but grows automatically 1795 Node_List::clear(); 1796 _clock_index = 0; 1797 } 1798 void ensure_empty() { 1799 assert(size() == 0, "must be empty"); 1800 clear(); // just in case 1801 } 1802 1803 // Used after parsing to remove useless nodes before Iterative GVN 1804 void remove_useless_nodes(VectorSet& useful); 1805 1806 // If the idx of the Nodes change, we must recompute the VectorSet 1807 void recompute_idx_set() { 1808 _in_worklist.clear(); 1809 for (uint i = 0; i < size(); i++) { 1810 Node* n = at(i); 1811 _in_worklist.set(n->_idx); 1812 } 1813 } 1814 1815 #ifdef ASSERT 1816 bool is_subset_of(Unique_Node_List& other) { 1817 for (uint i = 0; i < size(); i++) { 1818 Node* n = at(i); 1819 if (!other.member(n)) { 1820 return false; 1821 } 1822 } 1823 return true; 1824 } 1825 #endif 1826 1827 bool contains(const Node* n) const { 1828 fatal("use faster member() instead"); 1829 return false; 1830 } 1831 1832 #ifndef PRODUCT 1833 void print_set() const { _in_worklist.print(); } 1834 #endif 1835 }; 1836 1837 // Unique_Mixed_Node_List 1838 // unique: nodes are added only once 1839 // mixed: allow new and old nodes 1840 class Unique_Mixed_Node_List : public ResourceObj { 1841 public: 1842 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {} 1843 1844 void add(Node* node) { 1845 if (not_a_node(node)) { 1846 return; // Gracefully handle null, -1, 0xabababab, etc. 1847 } 1848 if (_visited_set[node] == nullptr) { 1849 _visited_set.Insert(node, node); 1850 _worklist.push(node); 1851 } 1852 } 1853 1854 Node* operator[] (uint i) const { 1855 return _worklist[i]; 1856 } 1857 1858 size_t size() { 1859 return _worklist.size(); 1860 } 1861 1862 private: 1863 Dict _visited_set; 1864 Node_List _worklist; 1865 }; 1866 1867 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1868 inline void Compile::record_for_igvn(Node* n) { 1869 _igvn_worklist->push(n); 1870 } 1871 1872 // Inline definition of Compile::remove_for_igvn must be deferred to this point. 1873 inline void Compile::remove_for_igvn(Node* n) { 1874 _igvn_worklist->remove(n); 1875 } 1876 1877 //------------------------------Node_Stack------------------------------------- 1878 class Node_Stack { 1879 protected: 1880 struct INode { 1881 Node *node; // Processed node 1882 uint indx; // Index of next node's child 1883 }; 1884 INode *_inode_top; // tos, stack grows up 1885 INode *_inode_max; // End of _inodes == _inodes + _max 1886 INode *_inodes; // Array storage for the stack 1887 Arena *_a; // Arena to allocate in 1888 ReallocMark _nesting; // Safety checks for arena reallocation 1889 1890 void maybe_grow() { 1891 _nesting.check(_a); // Check if a potential reallocation in the arena is safe 1892 if (_inode_top >= _inode_max) { 1893 grow(); 1894 } 1895 } 1896 void grow(); 1897 1898 public: 1899 Node_Stack(int size) { 1900 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1901 _a = Thread::current()->resource_area(); 1902 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1903 _inode_max = _inodes + max; 1904 _inode_top = _inodes - 1; // stack is empty 1905 } 1906 1907 Node_Stack(Arena *a, int size) : _a(a) { 1908 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1909 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1910 _inode_max = _inodes + max; 1911 _inode_top = _inodes - 1; // stack is empty 1912 } 1913 1914 void pop() { 1915 assert(_inode_top >= _inodes, "node stack underflow"); 1916 --_inode_top; 1917 } 1918 void push(Node *n, uint i) { 1919 ++_inode_top; 1920 maybe_grow(); 1921 INode *top = _inode_top; // optimization 1922 top->node = n; 1923 top->indx = i; 1924 } 1925 Node *node() const { 1926 return _inode_top->node; 1927 } 1928 Node* node_at(uint i) const { 1929 assert(_inodes + i <= _inode_top, "in range"); 1930 return _inodes[i].node; 1931 } 1932 uint index() const { 1933 return _inode_top->indx; 1934 } 1935 uint index_at(uint i) const { 1936 assert(_inodes + i <= _inode_top, "in range"); 1937 return _inodes[i].indx; 1938 } 1939 void set_node(Node *n) { 1940 _inode_top->node = n; 1941 } 1942 void set_index(uint i) { 1943 _inode_top->indx = i; 1944 } 1945 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1946 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1947 bool is_nonempty() const { return (_inode_top >= _inodes); } 1948 bool is_empty() const { return (_inode_top < _inodes); } 1949 void clear() { _inode_top = _inodes - 1; } // retain storage 1950 1951 // Node_Stack is used to map nodes. 1952 Node* find(uint idx) const; 1953 1954 NONCOPYABLE(Node_Stack); 1955 }; 1956 1957 1958 //-----------------------------Node_Notes-------------------------------------- 1959 // Debugging or profiling annotations loosely and sparsely associated 1960 // with some nodes. See Compile::node_notes_at for the accessor. 1961 class Node_Notes { 1962 JVMState* _jvms; 1963 1964 public: 1965 Node_Notes(JVMState* jvms = nullptr) { 1966 _jvms = jvms; 1967 } 1968 1969 JVMState* jvms() { return _jvms; } 1970 void set_jvms(JVMState* x) { _jvms = x; } 1971 1972 // True if there is nothing here. 1973 bool is_clear() { 1974 return (_jvms == nullptr); 1975 } 1976 1977 // Make there be nothing here. 1978 void clear() { 1979 _jvms = nullptr; 1980 } 1981 1982 // Make a new, clean node notes. 1983 static Node_Notes* make(Compile* C) { 1984 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1985 nn->clear(); 1986 return nn; 1987 } 1988 1989 Node_Notes* clone(Compile* C) { 1990 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1991 (*nn) = (*this); 1992 return nn; 1993 } 1994 1995 // Absorb any information from source. 1996 bool update_from(Node_Notes* source) { 1997 bool changed = false; 1998 if (source != nullptr) { 1999 if (source->jvms() != nullptr) { 2000 set_jvms(source->jvms()); 2001 changed = true; 2002 } 2003 } 2004 return changed; 2005 } 2006 }; 2007 2008 // Inlined accessors for Compile::node_nodes that require the preceding class: 2009 inline Node_Notes* 2010 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 2011 int idx, bool can_grow) { 2012 assert(idx >= 0, "oob"); 2013 int block_idx = (idx >> _log2_node_notes_block_size); 2014 int grow_by = (block_idx - (arr == nullptr? 0: arr->length())); 2015 if (grow_by >= 0) { 2016 if (!can_grow) return nullptr; 2017 grow_node_notes(arr, grow_by + 1); 2018 } 2019 if (arr == nullptr) return nullptr; 2020 // (Every element of arr is a sub-array of length _node_notes_block_size.) 2021 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 2022 } 2023 2024 inline Node_Notes* Compile::node_notes_at(int idx) { 2025 return locate_node_notes(_node_note_array, idx, false); 2026 } 2027 2028 inline bool 2029 Compile::set_node_notes_at(int idx, Node_Notes* value) { 2030 if (value == nullptr || value->is_clear()) 2031 return false; // nothing to write => write nothing 2032 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 2033 assert(loc != nullptr, ""); 2034 return loc->update_from(value); 2035 } 2036 2037 2038 //------------------------------TypeNode--------------------------------------- 2039 // Node with a Type constant. 2040 class TypeNode : public Node { 2041 protected: 2042 virtual uint hash() const; // Check the type 2043 virtual bool cmp( const Node &n ) const; 2044 virtual uint size_of() const; // Size is bigger 2045 const Type* const _type; 2046 public: 2047 void set_type(const Type* t) { 2048 assert(t != nullptr, "sanity"); 2049 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 2050 *(const Type**)&_type = t; // cast away const-ness 2051 // If this node is in the hash table, make sure it doesn't need a rehash. 2052 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 2053 } 2054 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 2055 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 2056 init_class_id(Class_Type); 2057 } 2058 virtual const Type* Value(PhaseGVN* phase) const; 2059 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 2060 virtual const Type *bottom_type() const; 2061 virtual uint ideal_reg() const; 2062 2063 void make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str); 2064 #ifndef PRODUCT 2065 virtual void dump_spec(outputStream *st) const; 2066 virtual void dump_compact_spec(outputStream *st) const; 2067 #endif 2068 void make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str); 2069 void create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const; 2070 }; 2071 2072 #include "opto/opcodes.hpp" 2073 2074 #define Op_IL(op) \ 2075 inline int Op_ ## op(BasicType bt) { \ 2076 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 2077 if (bt == T_INT) { \ 2078 return Op_## op ## I; \ 2079 } \ 2080 return Op_## op ## L; \ 2081 } 2082 2083 Op_IL(Add) 2084 Op_IL(And) 2085 Op_IL(Sub) 2086 Op_IL(Mul) 2087 Op_IL(URShift) 2088 Op_IL(LShift) 2089 Op_IL(Xor) 2090 Op_IL(Cmp) 2091 Op_IL(Div) 2092 Op_IL(Mod) 2093 Op_IL(UDiv) 2094 Op_IL(UMod) 2095 2096 inline int Op_ConIL(BasicType bt) { 2097 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2098 if (bt == T_INT) { 2099 return Op_ConI; 2100 } 2101 return Op_ConL; 2102 } 2103 2104 inline int Op_Cmp_unsigned(BasicType bt) { 2105 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2106 if (bt == T_INT) { 2107 return Op_CmpU; 2108 } 2109 return Op_CmpUL; 2110 } 2111 2112 inline int Op_Cast(BasicType bt) { 2113 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2114 if (bt == T_INT) { 2115 return Op_CastII; 2116 } 2117 return Op_CastLL; 2118 } 2119 2120 inline int Op_DivIL(BasicType bt, bool is_unsigned) { 2121 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2122 if (bt == T_INT) { 2123 if (is_unsigned) { 2124 return Op_UDivI; 2125 } else { 2126 return Op_DivI; 2127 } 2128 } 2129 if (is_unsigned) { 2130 return Op_UDivL; 2131 } else { 2132 return Op_DivL; 2133 } 2134 } 2135 2136 inline int Op_DivModIL(BasicType bt, bool is_unsigned) { 2137 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2138 if (bt == T_INT) { 2139 if (is_unsigned) { 2140 return Op_UDivModI; 2141 } else { 2142 return Op_DivModI; 2143 } 2144 } 2145 if (is_unsigned) { 2146 return Op_UDivModL; 2147 } else { 2148 return Op_DivModL; 2149 } 2150 } 2151 2152 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify 2153 // a customized BFS. 2154 class BFSActions : public StackObj { 2155 public: 2156 // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this 2157 // method to provide a custom filter. 2158 virtual bool should_visit(Node* node) const { 2159 // By default, visit all inputs. 2160 return true; 2161 }; 2162 2163 // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further 2164 // but the BFS will continue to visit all unvisited nodes in the queue. 2165 virtual bool is_target_node(Node* node) const = 0; 2166 2167 // Defines an action that should be taken when we visit a target node in the BFS traversal. 2168 virtual void target_node_action(Node* target_node) = 0; 2169 }; 2170 2171 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which 2172 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes. 2173 class DataNodeBFS : public StackObj { 2174 BFSActions& _bfs_actions; 2175 2176 public: 2177 explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {} 2178 2179 // Run the BFS starting from 'start_node' and apply the actions provided to this class. 2180 void run(Node* start_node) { 2181 ResourceMark rm; 2182 Unique_Node_List _nodes_to_visit; 2183 _nodes_to_visit.push(start_node); 2184 for (uint i = 0; i < _nodes_to_visit.size(); i++) { 2185 Node* next = _nodes_to_visit[i]; 2186 for (uint j = 1; j < next->req(); j++) { 2187 Node* input = next->in(j); 2188 if (_bfs_actions.is_target_node(input)) { 2189 assert(_bfs_actions.should_visit(input), "must also pass node filter"); 2190 _bfs_actions.target_node_action(input); 2191 } else if (_bfs_actions.should_visit(input)) { 2192 _nodes_to_visit.push(input); 2193 } 2194 } 2195 } 2196 } 2197 }; 2198 2199 #endif // SHARE_OPTO_NODE_HPP