1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_NODE_HPP
  26 #define SHARE_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 #include "utilities/copy.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 class AbstractLockNode;
  39 class AddNode;
  40 class AddPNode;
  41 class AliasInfo;
  42 class AllocateArrayNode;
  43 class AllocateNode;
  44 class ArrayCopyNode;
  45 class BaseCountedLoopNode;
  46 class BaseCountedLoopEndNode;
  47 class BlackholeNode;
  48 class Block;
  49 class BoolNode;
  50 class BoxLockNode;
  51 class CMoveNode;
  52 class CallDynamicJavaNode;
  53 class CallJavaNode;
  54 class CallLeafNode;
  55 class CallLeafNoFPNode;
  56 class CallNode;
  57 class CallRuntimeNode;
  58 class CallStaticJavaNode;
  59 class CastFFNode;
  60 class CastDDNode;
  61 class CastVVNode;
  62 class CastIINode;
  63 class CastLLNode;
  64 class CatchNode;
  65 class CatchProjNode;
  66 class CheckCastPPNode;
  67 class ClearArrayNode;
  68 class CmpNode;
  69 class CodeBuffer;
  70 class ConstraintCastNode;
  71 class ConNode;
  72 class ConINode;
  73 class ConvertNode;
  74 class CompareAndSwapNode;
  75 class CompareAndExchangeNode;
  76 class CountedLoopNode;
  77 class CountedLoopEndNode;
  78 class DecodeNarrowPtrNode;
  79 class DecodeNNode;
  80 class DecodeNKlassNode;
  81 class EncodeNarrowPtrNode;
  82 class EncodePNode;
  83 class EncodePKlassNode;
  84 class FastLockNode;
  85 class FastUnlockNode;
  86 class HaltNode;
  87 class IfNode;
  88 class IfProjNode;
  89 class IfFalseNode;
  90 class IfTrueNode;
  91 class InitializeNode;
  92 class JVMState;
  93 class JumpNode;
  94 class JumpProjNode;
  95 class LoadNode;
  96 class LoadStoreNode;
  97 class LoadStoreConditionalNode;
  98 class LockNode;
  99 class LongCountedLoopNode;
 100 class LongCountedLoopEndNode;
 101 class LoopNode;
 102 class LShiftNode;
 103 class MachBranchNode;
 104 class MachCallDynamicJavaNode;
 105 class MachCallJavaNode;
 106 class MachCallLeafNode;
 107 class MachCallNode;
 108 class MachCallRuntimeNode;
 109 class MachCallStaticJavaNode;
 110 class MachConstantBaseNode;
 111 class MachConstantNode;
 112 class MachGotoNode;
 113 class MachIfNode;
 114 class MachJumpNode;
 115 class MachNode;
 116 class MachNullCheckNode;
 117 class MachProjNode;
 118 class MachReturnNode;
 119 class MachSafePointNode;
 120 class MachSpillCopyNode;
 121 class MachTempNode;
 122 class MachMergeNode;
 123 class MachMemBarNode;
 124 class Matcher;
 125 class MemBarNode;
 126 class MemBarStoreStoreNode;
 127 class MemNode;
 128 class MergeMemNode;
 129 class MoveNode;
 130 class MulNode;
 131 class MultiNode;
 132 class MultiBranchNode;
 133 class NegNode;
 134 class NegVNode;
 135 class NeverBranchNode;
 136 class Opaque1Node;
 137 class OuterStripMinedLoopNode;
 138 class OuterStripMinedLoopEndNode;
 139 class Node;
 140 class Node_Array;
 141 class Node_List;
 142 class Node_Stack;
 143 class OopMap;
 144 class ParmNode;
 145 class ParsePredicateNode;
 146 class PCTableNode;
 147 class PhaseCCP;
 148 class PhaseGVN;
 149 class PhaseIterGVN;
 150 class PhaseRegAlloc;
 151 class PhaseTransform;
 152 class PhaseValues;
 153 class PhiNode;
 154 class Pipeline;
 155 class PopulateIndexNode;
 156 class ProjNode;
 157 class RangeCheckNode;
 158 class ReductionNode;
 159 class RegMask;
 160 class RegionNode;
 161 class RootNode;
 162 class SafePointNode;
 163 class SafePointScalarObjectNode;
 164 class SafePointScalarMergeNode;
 165 class StartNode;
 166 class State;
 167 class StoreNode;
 168 class SubNode;
 169 class SubTypeCheckNode;
 170 class Type;
 171 class TypeNode;
 172 class UnlockNode;
 173 class UnorderedReductionNode;
 174 class VectorNode;
 175 class LoadVectorNode;
 176 class LoadVectorMaskedNode;
 177 class StoreVectorMaskedNode;
 178 class LoadVectorGatherNode;
 179 class StoreVectorNode;
 180 class StoreVectorScatterNode;
 181 class VectorMaskCmpNode;
 182 class VectorUnboxNode;
 183 class VectorSet;
 184 class VectorReinterpretNode;
 185 class ShiftVNode;
 186 class ExpandVNode;
 187 class CompressVNode;
 188 class CompressMNode;
 189 
 190 
 191 #ifndef OPTO_DU_ITERATOR_ASSERT
 192 #ifdef ASSERT
 193 #define OPTO_DU_ITERATOR_ASSERT 1
 194 #else
 195 #define OPTO_DU_ITERATOR_ASSERT 0
 196 #endif
 197 #endif //OPTO_DU_ITERATOR_ASSERT
 198 
 199 #if OPTO_DU_ITERATOR_ASSERT
 200 class DUIterator;
 201 class DUIterator_Fast;
 202 class DUIterator_Last;
 203 #else
 204 typedef uint   DUIterator;
 205 typedef Node** DUIterator_Fast;
 206 typedef Node** DUIterator_Last;
 207 #endif
 208 
 209 // Node Sentinel
 210 #define NodeSentinel (Node*)-1
 211 
 212 // Unknown count frequency
 213 #define COUNT_UNKNOWN (-1.0f)
 214 
 215 //------------------------------Node-------------------------------------------
 216 // Nodes define actions in the program.  They create values, which have types.
 217 // They are both vertices in a directed graph and program primitives.  Nodes
 218 // are labeled; the label is the "opcode", the primitive function in the lambda
 219 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 220 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 221 // the Node's function.  These inputs also define a Type equation for the Node.
 222 // Solving these Type equations amounts to doing dataflow analysis.
 223 // Control and data are uniformly represented in the graph.  Finally, Nodes
 224 // have a unique dense integer index which is used to index into side arrays
 225 // whenever I have phase-specific information.
 226 
 227 class Node {
 228   friend class VMStructs;
 229 
 230   // Lots of restrictions on cloning Nodes
 231   NONCOPYABLE(Node);
 232 
 233 public:
 234   friend class Compile;
 235   #if OPTO_DU_ITERATOR_ASSERT
 236   friend class DUIterator_Common;
 237   friend class DUIterator;
 238   friend class DUIterator_Fast;
 239   friend class DUIterator_Last;
 240   #endif
 241 
 242   // Because Nodes come and go, I define an Arena of Node structures to pull
 243   // from.  This should allow fast access to node creation & deletion.  This
 244   // field is a local cache of a value defined in some "program fragment" for
 245   // which these Nodes are just a part of.
 246 
 247   inline void* operator new(size_t x) throw() {
 248     Compile* C = Compile::current();
 249     Node* n = (Node*)C->node_arena()->AmallocWords(x);
 250     return (void*)n;
 251   }
 252 
 253   // Delete is a NOP
 254   void operator delete( void *ptr ) {}
 255   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 256   void destruct(PhaseValues* phase);
 257 
 258   // Create a new Node.  Required is the number is of inputs required for
 259   // semantic correctness.
 260   Node( uint required );
 261 
 262   // Create a new Node with given input edges.
 263   // This version requires use of the "edge-count" new.
 264   // E.g.  new (C,3) FooNode( C, nullptr, left, right );
 265   Node( Node *n0 );
 266   Node( Node *n0, Node *n1 );
 267   Node( Node *n0, Node *n1, Node *n2 );
 268   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 269   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 270   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 271   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 272             Node *n4, Node *n5, Node *n6 );
 273 
 274   // Clone an inherited Node given only the base Node type.
 275   Node* clone() const;
 276 
 277   // Clone a Node, immediately supplying one or two new edges.
 278   // The first and second arguments, if non-null, replace in(1) and in(2),
 279   // respectively.
 280   Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
 281     Node* nn = clone();
 282     if (in1 != nullptr)  nn->set_req(1, in1);
 283     if (in2 != nullptr)  nn->set_req(2, in2);
 284     return nn;
 285   }
 286 
 287 private:
 288   // Shared setup for the above constructors.
 289   // Handles all interactions with Compile::current.
 290   // Puts initial values in all Node fields except _idx.
 291   // Returns the initial value for _idx, which cannot
 292   // be initialized by assignment.
 293   inline int Init(int req);
 294 
 295 //----------------- input edge handling
 296 protected:
 297   friend class PhaseCFG;        // Access to address of _in array elements
 298   Node **_in;                   // Array of use-def references to Nodes
 299   Node **_out;                  // Array of def-use references to Nodes
 300 
 301   // Input edges are split into two categories.  Required edges are required
 302   // for semantic correctness; order is important and nulls are allowed.
 303   // Precedence edges are used to help determine execution order and are
 304   // added, e.g., for scheduling purposes.  They are unordered and not
 305   // duplicated; they have no embedded nulls.  Edges from 0 to _cnt-1
 306   // are required, from _cnt to _max-1 are precedence edges.
 307   node_idx_t _cnt;              // Total number of required Node inputs.
 308 
 309   node_idx_t _max;              // Actual length of input array.
 310 
 311   // Output edges are an unordered list of def-use edges which exactly
 312   // correspond to required input edges which point from other nodes
 313   // to this one.  Thus the count of the output edges is the number of
 314   // users of this node.
 315   node_idx_t _outcnt;           // Total number of Node outputs.
 316 
 317   node_idx_t _outmax;           // Actual length of output array.
 318 
 319   // Grow the actual input array to the next larger power-of-2 bigger than len.
 320   void grow( uint len );
 321   // Grow the output array to the next larger power-of-2 bigger than len.
 322   void out_grow( uint len );
 323 
 324  public:
 325   // Each Node is assigned a unique small/dense number.  This number is used
 326   // to index into auxiliary arrays of data and bit vectors.
 327   // The field _idx is declared constant to defend against inadvertent assignments,
 328   // since it is used by clients as a naked field. However, the field's value can be
 329   // changed using the set_idx() method.
 330   //
 331   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 332   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 333   // preserved in _parse_idx.
 334   const node_idx_t _idx;
 335   DEBUG_ONLY(const node_idx_t _parse_idx;)
 336   // IGV node identifier. Two nodes, possibly in different compilation phases,
 337   // have the same IGV identifier if (and only if) they are the very same node
 338   // (same memory address) or one is "derived" from the other (by e.g.
 339   // renumbering or matching). This identifier makes it possible to follow the
 340   // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
 341   NOT_PRODUCT(node_idx_t _igv_idx;)
 342 
 343   // Get the (read-only) number of input edges
 344   uint req() const { return _cnt; }
 345   uint len() const { return _max; }
 346   // Get the (read-only) number of output edges
 347   uint outcnt() const { return _outcnt; }
 348 
 349 #if OPTO_DU_ITERATOR_ASSERT
 350   // Iterate over the out-edges of this node.  Deletions are illegal.
 351   inline DUIterator outs() const;
 352   // Use this when the out array might have changed to suppress asserts.
 353   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 354   // Does the node have an out at this position?  (Used for iteration.)
 355   inline bool has_out(DUIterator& i) const;
 356   inline Node*    out(DUIterator& i) const;
 357   // Iterate over the out-edges of this node.  All changes are illegal.
 358   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 359   inline Node*    fast_out(DUIterator_Fast& i) const;
 360   // Iterate over the out-edges of this node, deleting one at a time.
 361   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 362   inline Node*    last_out(DUIterator_Last& i) const;
 363   // The inline bodies of all these methods are after the iterator definitions.
 364 #else
 365   // Iterate over the out-edges of this node.  Deletions are illegal.
 366   // This iteration uses integral indexes, to decouple from array reallocations.
 367   DUIterator outs() const  { return 0; }
 368   // Use this when the out array might have changed to suppress asserts.
 369   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 370 
 371   // Reference to the i'th output Node.  Error if out of bounds.
 372   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 373   // Does the node have an out at this position?  (Used for iteration.)
 374   bool has_out(DUIterator i) const { return i < _outcnt; }
 375 
 376   // Iterate over the out-edges of this node.  All changes are illegal.
 377   // This iteration uses a pointer internal to the out array.
 378   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 379     Node** out = _out;
 380     // Assign a limit pointer to the reference argument:
 381     max = out + (ptrdiff_t)_outcnt;
 382     // Return the base pointer:
 383     return out;
 384   }
 385   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 386   // Iterate over the out-edges of this node, deleting one at a time.
 387   // This iteration uses a pointer internal to the out array.
 388   DUIterator_Last last_outs(DUIterator_Last& min) const {
 389     Node** out = _out;
 390     // Assign a limit pointer to the reference argument:
 391     min = out;
 392     // Return the pointer to the start of the iteration:
 393     return out + (ptrdiff_t)_outcnt - 1;
 394   }
 395   Node*    last_out(DUIterator_Last i) const  { return *i; }
 396 #endif
 397 
 398   // Reference to the i'th input Node.  Error if out of bounds.
 399   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 400   // Reference to the i'th input Node.  null if out of bounds.
 401   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
 402   // Reference to the i'th output Node.  Error if out of bounds.
 403   // Use this accessor sparingly.  We are going trying to use iterators instead.
 404   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 405   // Return the unique out edge.
 406   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 407   // Delete out edge at position 'i' by moving last out edge to position 'i'
 408   void  raw_del_out(uint i) {
 409     assert(i < _outcnt,"oob");
 410     assert(_outcnt > 0,"oob");
 411     #if OPTO_DU_ITERATOR_ASSERT
 412     // Record that a change happened here.
 413     debug_only(_last_del = _out[i]; ++_del_tick);
 414     #endif
 415     _out[i] = _out[--_outcnt];
 416     // Smash the old edge so it can't be used accidentally.
 417     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 418   }
 419 
 420 #ifdef ASSERT
 421   bool is_dead() const;
 422   static bool is_not_dead(const Node* n);
 423   bool is_reachable_from_root() const;
 424 #endif
 425   // Check whether node has become unreachable
 426   bool is_unreachable(PhaseIterGVN &igvn) const;
 427 
 428   // Set a required input edge, also updates corresponding output edge
 429   void add_req( Node *n ); // Append a NEW required input
 430   void add_req( Node *n0, Node *n1 ) {
 431     add_req(n0); add_req(n1); }
 432   void add_req( Node *n0, Node *n1, Node *n2 ) {
 433     add_req(n0); add_req(n1); add_req(n2); }
 434   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 435   void del_req( uint idx ); // Delete required edge & compact
 436   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 437   void ins_req( uint i, Node *n ); // Insert a NEW required input
 438   void set_req( uint i, Node *n ) {
 439     assert( is_not_dead(n), "can not use dead node");
 440     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 441     assert( !VerifyHashTableKeys || _hash_lock == 0,
 442             "remove node from hash table before modifying it");
 443     Node** p = &_in[i];    // cache this._in, across the del_out call
 444     if (*p != nullptr)  (*p)->del_out((Node *)this);
 445     (*p) = n;
 446     if (n != nullptr)      n->add_out((Node *)this);
 447     Compile::current()->record_modified_node(this);
 448   }
 449   // Light version of set_req() to init inputs after node creation.
 450   void init_req( uint i, Node *n ) {
 451     assert( i == 0 && this == n ||
 452             is_not_dead(n), "can not use dead node");
 453     assert( i < _cnt, "oob");
 454     assert( !VerifyHashTableKeys || _hash_lock == 0,
 455             "remove node from hash table before modifying it");
 456     assert( _in[i] == nullptr, "sanity");
 457     _in[i] = n;
 458     if (n != nullptr)      n->add_out((Node *)this);
 459     Compile::current()->record_modified_node(this);
 460   }
 461   // Find first occurrence of n among my edges:
 462   int find_edge(Node* n);
 463   int find_prec_edge(Node* n) {
 464     for (uint i = req(); i < len(); i++) {
 465       if (_in[i] == n) return i;
 466       if (_in[i] == nullptr) {
 467         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
 468         break;
 469       }
 470     }
 471     return -1;
 472   }
 473   int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
 474   int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
 475   // null out all inputs to eliminate incoming Def-Use edges.
 476   void disconnect_inputs(Compile* C);
 477 
 478   // Quickly, return true if and only if I am Compile::current()->top().
 479   bool is_top() const {
 480     assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
 481     return (_out == nullptr);
 482   }
 483   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 484   void setup_is_top();
 485 
 486   // Strip away casting.  (It is depth-limited.)
 487   Node* uncast(bool keep_deps = false) const;
 488   // Return whether two Nodes are equivalent, after stripping casting.
 489   bool eqv_uncast(const Node* n, bool keep_deps = false) const {
 490     return (this->uncast(keep_deps) == n->uncast(keep_deps));
 491   }
 492 
 493   // Find out of current node that matches opcode.
 494   Node* find_out_with(int opcode);
 495   // Return true if the current node has an out that matches opcode.
 496   bool has_out_with(int opcode);
 497   // Return true if the current node has an out that matches any of the opcodes.
 498   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 499 
 500 private:
 501   static Node* uncast_helper(const Node* n, bool keep_deps);
 502 
 503   // Add an output edge to the end of the list
 504   void add_out( Node *n ) {
 505     if (is_top())  return;
 506     if( _outcnt == _outmax ) out_grow(_outcnt);
 507     _out[_outcnt++] = n;
 508   }
 509   // Delete an output edge
 510   void del_out( Node *n ) {
 511     if (is_top())  return;
 512     Node** outp = &_out[_outcnt];
 513     // Find and remove n
 514     do {
 515       assert(outp > _out, "Missing Def-Use edge");
 516     } while (*--outp != n);
 517     *outp = _out[--_outcnt];
 518     // Smash the old edge so it can't be used accidentally.
 519     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 520     // Record that a change happened here.
 521     #if OPTO_DU_ITERATOR_ASSERT
 522     debug_only(_last_del = n; ++_del_tick);
 523     #endif
 524   }
 525   // Close gap after removing edge.
 526   void close_prec_gap_at(uint gap) {
 527     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 528     uint i = gap;
 529     Node *last = nullptr;
 530     for (; i < _max-1; ++i) {
 531       Node *next = _in[i+1];
 532       if (next == nullptr) break;
 533       last = next;
 534     }
 535     _in[gap] = last;  // Move last slot to empty one.
 536     _in[i] = nullptr; // null out last slot.
 537   }
 538 
 539 public:
 540   // Globally replace this node by a given new node, updating all uses.
 541   void replace_by(Node* new_node);
 542   // Globally replace this node by a given new node, updating all uses
 543   // and cutting input edges of old node.
 544   void subsume_by(Node* new_node, Compile* c) {
 545     replace_by(new_node);
 546     disconnect_inputs(c);
 547   }
 548   void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
 549   void set_req_X(uint i, Node *n, PhaseGVN *gvn);
 550   // Find the one non-null required input.  RegionNode only
 551   Node *nonnull_req() const;
 552   // Add or remove precedence edges
 553   void add_prec( Node *n );
 554   void rm_prec( uint i );
 555 
 556   // Note: prec(i) will not necessarily point to n if edge already exists.
 557   void set_prec( uint i, Node *n ) {
 558     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 559     assert(is_not_dead(n), "can not use dead node");
 560     assert(i >= _cnt, "not a precedence edge");
 561     // Avoid spec violation: duplicated prec edge.
 562     if (_in[i] == n) return;
 563     if (n == nullptr || find_prec_edge(n) != -1) {
 564       rm_prec(i);
 565       return;
 566     }
 567     if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
 568     _in[i] = n;
 569     n->add_out((Node *)this);
 570     Compile::current()->record_modified_node(this);
 571   }
 572 
 573   // Set this node's index, used by cisc_version to replace current node
 574   void set_idx(uint new_idx) {
 575     const node_idx_t* ref = &_idx;
 576     *(node_idx_t*)ref = new_idx;
 577   }
 578   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 579   void swap_edges(uint i1, uint i2) {
 580     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 581     // Def-Use info is unchanged
 582     Node* n1 = in(i1);
 583     Node* n2 = in(i2);
 584     _in[i1] = n2;
 585     _in[i2] = n1;
 586     // If this node is in the hash table, make sure it doesn't need a rehash.
 587     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 588     // Flip swapped edges flag.
 589     if (has_swapped_edges()) {
 590       remove_flag(Node::Flag_has_swapped_edges);
 591     } else {
 592       add_flag(Node::Flag_has_swapped_edges);
 593     }
 594   }
 595 
 596   // Iterators over input Nodes for a Node X are written as:
 597   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 598   // NOTE: Required edges can contain embedded null pointers.
 599 
 600 //----------------- Other Node Properties
 601 
 602   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 603   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 604   //
 605   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 606   // the type of the node the ID represents; another subset of an ID's bits are reserved
 607   // for the superclasses of the node represented by the ID.
 608   //
 609   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 610   // returns false. A.is_A() returns true.
 611   //
 612   // If two classes, A and B, have the same superclass, a different bit of A's class id
 613   // is reserved for A's type than for B's type. That bit is specified by the third
 614   // parameter in the macro DEFINE_CLASS_ID.
 615   //
 616   // By convention, classes with deeper hierarchy are declared first. Moreover,
 617   // classes with the same hierarchy depth are sorted by usage frequency.
 618   //
 619   // The query method masks the bits to cut off bits of subclasses and then compares
 620   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 621   //
 622   //  Class_MachCall=30, ClassMask_MachCall=31
 623   // 12               8               4               0
 624   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 625   //                                  |   |   |   |
 626   //                                  |   |   |   Bit_Mach=2
 627   //                                  |   |   Bit_MachReturn=4
 628   //                                  |   Bit_MachSafePoint=8
 629   //                                  Bit_MachCall=16
 630   //
 631   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 632   // 12               8               4               0
 633   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 634   //                              |   |   |
 635   //                              |   |   Bit_Region=8
 636   //                              |   Bit_Loop=16
 637   //                              Bit_CountedLoop=32
 638 
 639   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 640   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 641   Class_##cl = Class_##supcl + Bit_##cl , \
 642   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 643 
 644   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 645   // so that its values fit into 32 bits.
 646   enum NodeClasses {
 647     Bit_Node   = 0x00000000,
 648     Class_Node = 0x00000000,
 649     ClassMask_Node = 0xFFFFFFFF,
 650 
 651     DEFINE_CLASS_ID(Multi, Node, 0)
 652       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 653         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 654           DEFINE_CLASS_ID(CallJava,         Call, 0)
 655             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 656             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 657           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 658             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 659               DEFINE_CLASS_ID(CallLeafNoFP,     CallLeaf, 0)
 660           DEFINE_CLASS_ID(Allocate,         Call, 2)
 661             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 662           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 663             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 664             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 665           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 666       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 667         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 668           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 669           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 670         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 671           DEFINE_CLASS_ID(BaseCountedLoopEnd,     If, 0)
 672             DEFINE_CLASS_ID(CountedLoopEnd,       BaseCountedLoopEnd, 0)
 673             DEFINE_CLASS_ID(LongCountedLoopEnd,   BaseCountedLoopEnd, 1)
 674           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 675           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 676           DEFINE_CLASS_ID(ParsePredicate,         If, 3)
 677         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 678       DEFINE_CLASS_ID(Start,       Multi, 2)
 679       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 680         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 681         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 682 
 683     DEFINE_CLASS_ID(Mach,  Node, 1)
 684       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 685         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 686           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 687             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 688               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 689               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 690             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 691               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 692       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 693         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 694         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 695         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 696       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 697       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 698       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 699       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 700         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 701       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 702       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
 703 
 704     DEFINE_CLASS_ID(Type,  Node, 2)
 705       DEFINE_CLASS_ID(Phi,   Type, 0)
 706       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 707         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 708         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
 709         DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
 710         DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
 711         DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
 712         DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
 713       DEFINE_CLASS_ID(CMove, Type, 3)
 714       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 715       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 716         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 717         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 718       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 719         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 720         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 721       DEFINE_CLASS_ID(Vector, Type, 7)
 722         DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
 723         DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
 724         DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
 725         DEFINE_CLASS_ID(ShiftV, Vector, 3)
 726         DEFINE_CLASS_ID(CompressV, Vector, 4)
 727         DEFINE_CLASS_ID(ExpandV, Vector, 5)
 728         DEFINE_CLASS_ID(CompressM, Vector, 6)
 729         DEFINE_CLASS_ID(Reduction, Vector, 7)
 730           DEFINE_CLASS_ID(UnorderedReduction, Reduction, 0)
 731         DEFINE_CLASS_ID(NegV, Vector, 8)
 732       DEFINE_CLASS_ID(Con, Type, 8)
 733           DEFINE_CLASS_ID(ConI, Con, 0)
 734       DEFINE_CLASS_ID(SafePointScalarMerge, Type, 9)
 735       DEFINE_CLASS_ID(Convert, Type, 10)
 736 
 737 
 738     DEFINE_CLASS_ID(Proj,  Node, 3)
 739       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 740       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 741       DEFINE_CLASS_ID(IfProj,    Proj, 2)
 742         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
 743         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
 744       DEFINE_CLASS_ID(Parm,      Proj, 4)
 745       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 746 
 747     DEFINE_CLASS_ID(Mem, Node, 4)
 748       DEFINE_CLASS_ID(Load, Mem, 0)
 749         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 750           DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
 751           DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
 752           DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
 753       DEFINE_CLASS_ID(Store, Mem, 1)
 754         DEFINE_CLASS_ID(StoreVector, Store, 0)
 755           DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
 756           DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
 757           DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
 758       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 759         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 760           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 761         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 762 
 763     DEFINE_CLASS_ID(Region, Node, 5)
 764       DEFINE_CLASS_ID(Loop, Region, 0)
 765         DEFINE_CLASS_ID(Root,                Loop, 0)
 766         DEFINE_CLASS_ID(BaseCountedLoop,     Loop, 1)
 767           DEFINE_CLASS_ID(CountedLoop,       BaseCountedLoop, 0)
 768           DEFINE_CLASS_ID(LongCountedLoop,   BaseCountedLoop, 1)
 769         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 770 
 771     DEFINE_CLASS_ID(Sub,   Node, 6)
 772       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 773         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 774         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 775         DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2)
 776 
 777     DEFINE_CLASS_ID(MergeMem, Node, 7)
 778     DEFINE_CLASS_ID(Bool,     Node, 8)
 779     DEFINE_CLASS_ID(AddP,     Node, 9)
 780     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 781     DEFINE_CLASS_ID(Add,      Node, 11)
 782     DEFINE_CLASS_ID(Mul,      Node, 12)
 783     DEFINE_CLASS_ID(ClearArray, Node, 14)
 784     DEFINE_CLASS_ID(Halt,     Node, 15)
 785     DEFINE_CLASS_ID(Opaque1,  Node, 16)
 786     DEFINE_CLASS_ID(Move,     Node, 17)
 787     DEFINE_CLASS_ID(LShift,   Node, 18)
 788     DEFINE_CLASS_ID(Neg,      Node, 19)
 789 
 790     _max_classes  = ClassMask_Neg
 791   };
 792   #undef DEFINE_CLASS_ID
 793 
 794   // Flags are sorted by usage frequency.
 795   enum NodeFlags {
 796     Flag_is_Copy                     = 1 << 0, // should be first bit to avoid shift
 797     Flag_rematerialize               = 1 << 1,
 798     Flag_needs_anti_dependence_check = 1 << 2,
 799     Flag_is_macro                    = 1 << 3,
 800     Flag_is_Con                      = 1 << 4,
 801     Flag_is_cisc_alternate           = 1 << 5,
 802     Flag_is_dead_loop_safe           = 1 << 6,
 803     Flag_may_be_short_branch         = 1 << 7,
 804     Flag_avoid_back_to_back_before   = 1 << 8,
 805     Flag_avoid_back_to_back_after    = 1 << 9,
 806     Flag_has_call                    = 1 << 10,
 807     Flag_has_swapped_edges           = 1 << 11,
 808     Flag_is_scheduled                = 1 << 12,
 809     Flag_is_expensive                = 1 << 13,
 810     Flag_is_predicated_vector        = 1 << 14,
 811     Flag_for_post_loop_opts_igvn     = 1 << 15,
 812     Flag_is_removed_by_peephole      = 1 << 16,
 813     Flag_is_predicated_using_blend   = 1 << 17,
 814     _last_flag                       = Flag_is_predicated_using_blend
 815   };
 816 
 817   class PD;
 818 
 819 private:
 820   juint _class_id;
 821   juint _flags;
 822 
 823   static juint max_flags();
 824 
 825 protected:
 826   // These methods should be called from constructors only.
 827   void init_class_id(juint c) {
 828     _class_id = c; // cast out const
 829   }
 830   void init_flags(uint fl) {
 831     assert(fl <= max_flags(), "invalid node flag");
 832     _flags |= fl;
 833   }
 834   void clear_flag(uint fl) {
 835     assert(fl <= max_flags(), "invalid node flag");
 836     _flags &= ~fl;
 837   }
 838 
 839 public:
 840   juint class_id() const { return _class_id; }
 841 
 842   juint flags() const { return _flags; }
 843 
 844   void add_flag(juint fl) { init_flags(fl); }
 845 
 846   void remove_flag(juint fl) { clear_flag(fl); }
 847 
 848   // Return a dense integer opcode number
 849   virtual int Opcode() const;
 850 
 851   // Virtual inherited Node size
 852   virtual uint size_of() const;
 853 
 854   // Other interesting Node properties
 855   #define DEFINE_CLASS_QUERY(type)                           \
 856   bool is_##type() const {                                   \
 857     return ((_class_id & ClassMask_##type) == Class_##type); \
 858   }                                                          \
 859   type##Node *as_##type() const {                            \
 860     assert(is_##type(), "invalid node class: %s", Name());   \
 861     return (type##Node*)this;                                \
 862   }                                                          \
 863   type##Node* isa_##type() const {                           \
 864     return (is_##type()) ? as_##type() : nullptr;            \
 865   }
 866 
 867   DEFINE_CLASS_QUERY(AbstractLock)
 868   DEFINE_CLASS_QUERY(Add)
 869   DEFINE_CLASS_QUERY(AddP)
 870   DEFINE_CLASS_QUERY(Allocate)
 871   DEFINE_CLASS_QUERY(AllocateArray)
 872   DEFINE_CLASS_QUERY(ArrayCopy)
 873   DEFINE_CLASS_QUERY(BaseCountedLoop)
 874   DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
 875   DEFINE_CLASS_QUERY(Bool)
 876   DEFINE_CLASS_QUERY(BoxLock)
 877   DEFINE_CLASS_QUERY(Call)
 878   DEFINE_CLASS_QUERY(CallDynamicJava)
 879   DEFINE_CLASS_QUERY(CallJava)
 880   DEFINE_CLASS_QUERY(CallLeaf)
 881   DEFINE_CLASS_QUERY(CallLeafNoFP)
 882   DEFINE_CLASS_QUERY(CallRuntime)
 883   DEFINE_CLASS_QUERY(CallStaticJava)
 884   DEFINE_CLASS_QUERY(Catch)
 885   DEFINE_CLASS_QUERY(CatchProj)
 886   DEFINE_CLASS_QUERY(CheckCastPP)
 887   DEFINE_CLASS_QUERY(CastII)
 888   DEFINE_CLASS_QUERY(CastLL)
 889   DEFINE_CLASS_QUERY(ConI)
 890   DEFINE_CLASS_QUERY(ConstraintCast)
 891   DEFINE_CLASS_QUERY(ClearArray)
 892   DEFINE_CLASS_QUERY(CMove)
 893   DEFINE_CLASS_QUERY(Cmp)
 894   DEFINE_CLASS_QUERY(Convert)
 895   DEFINE_CLASS_QUERY(CountedLoop)
 896   DEFINE_CLASS_QUERY(CountedLoopEnd)
 897   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 898   DEFINE_CLASS_QUERY(DecodeN)
 899   DEFINE_CLASS_QUERY(DecodeNKlass)
 900   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 901   DEFINE_CLASS_QUERY(EncodeP)
 902   DEFINE_CLASS_QUERY(EncodePKlass)
 903   DEFINE_CLASS_QUERY(FastLock)
 904   DEFINE_CLASS_QUERY(FastUnlock)
 905   DEFINE_CLASS_QUERY(Halt)
 906   DEFINE_CLASS_QUERY(If)
 907   DEFINE_CLASS_QUERY(RangeCheck)
 908   DEFINE_CLASS_QUERY(IfProj)
 909   DEFINE_CLASS_QUERY(IfFalse)
 910   DEFINE_CLASS_QUERY(IfTrue)
 911   DEFINE_CLASS_QUERY(Initialize)
 912   DEFINE_CLASS_QUERY(Jump)
 913   DEFINE_CLASS_QUERY(JumpProj)
 914   DEFINE_CLASS_QUERY(LongCountedLoop)
 915   DEFINE_CLASS_QUERY(LongCountedLoopEnd)
 916   DEFINE_CLASS_QUERY(Load)
 917   DEFINE_CLASS_QUERY(LoadStore)
 918   DEFINE_CLASS_QUERY(LoadStoreConditional)
 919   DEFINE_CLASS_QUERY(Lock)
 920   DEFINE_CLASS_QUERY(Loop)
 921   DEFINE_CLASS_QUERY(LShift)
 922   DEFINE_CLASS_QUERY(Mach)
 923   DEFINE_CLASS_QUERY(MachBranch)
 924   DEFINE_CLASS_QUERY(MachCall)
 925   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 926   DEFINE_CLASS_QUERY(MachCallJava)
 927   DEFINE_CLASS_QUERY(MachCallLeaf)
 928   DEFINE_CLASS_QUERY(MachCallRuntime)
 929   DEFINE_CLASS_QUERY(MachCallStaticJava)
 930   DEFINE_CLASS_QUERY(MachConstantBase)
 931   DEFINE_CLASS_QUERY(MachConstant)
 932   DEFINE_CLASS_QUERY(MachGoto)
 933   DEFINE_CLASS_QUERY(MachIf)
 934   DEFINE_CLASS_QUERY(MachJump)
 935   DEFINE_CLASS_QUERY(MachNullCheck)
 936   DEFINE_CLASS_QUERY(MachProj)
 937   DEFINE_CLASS_QUERY(MachReturn)
 938   DEFINE_CLASS_QUERY(MachSafePoint)
 939   DEFINE_CLASS_QUERY(MachSpillCopy)
 940   DEFINE_CLASS_QUERY(MachTemp)
 941   DEFINE_CLASS_QUERY(MachMemBar)
 942   DEFINE_CLASS_QUERY(MachMerge)
 943   DEFINE_CLASS_QUERY(Mem)
 944   DEFINE_CLASS_QUERY(MemBar)
 945   DEFINE_CLASS_QUERY(MemBarStoreStore)
 946   DEFINE_CLASS_QUERY(MergeMem)
 947   DEFINE_CLASS_QUERY(Move)
 948   DEFINE_CLASS_QUERY(Mul)
 949   DEFINE_CLASS_QUERY(Multi)
 950   DEFINE_CLASS_QUERY(MultiBranch)
 951   DEFINE_CLASS_QUERY(Neg)
 952   DEFINE_CLASS_QUERY(NegV)
 953   DEFINE_CLASS_QUERY(NeverBranch)
 954   DEFINE_CLASS_QUERY(Opaque1)
 955   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
 956   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
 957   DEFINE_CLASS_QUERY(Parm)
 958   DEFINE_CLASS_QUERY(ParsePredicate)
 959   DEFINE_CLASS_QUERY(PCTable)
 960   DEFINE_CLASS_QUERY(Phi)
 961   DEFINE_CLASS_QUERY(Proj)
 962   DEFINE_CLASS_QUERY(Reduction)
 963   DEFINE_CLASS_QUERY(Region)
 964   DEFINE_CLASS_QUERY(Root)
 965   DEFINE_CLASS_QUERY(SafePoint)
 966   DEFINE_CLASS_QUERY(SafePointScalarObject)
 967   DEFINE_CLASS_QUERY(SafePointScalarMerge)
 968   DEFINE_CLASS_QUERY(Start)
 969   DEFINE_CLASS_QUERY(Store)
 970   DEFINE_CLASS_QUERY(Sub)
 971   DEFINE_CLASS_QUERY(SubTypeCheck)
 972   DEFINE_CLASS_QUERY(Type)
 973   DEFINE_CLASS_QUERY(UnorderedReduction)
 974   DEFINE_CLASS_QUERY(Vector)
 975   DEFINE_CLASS_QUERY(VectorMaskCmp)
 976   DEFINE_CLASS_QUERY(VectorUnbox)
 977   DEFINE_CLASS_QUERY(VectorReinterpret)
 978   DEFINE_CLASS_QUERY(CompressV)
 979   DEFINE_CLASS_QUERY(ExpandV)
 980   DEFINE_CLASS_QUERY(CompressM)
 981   DEFINE_CLASS_QUERY(LoadVector)
 982   DEFINE_CLASS_QUERY(LoadVectorGather)
 983   DEFINE_CLASS_QUERY(StoreVector)
 984   DEFINE_CLASS_QUERY(StoreVectorScatter)
 985   DEFINE_CLASS_QUERY(ShiftV)
 986   DEFINE_CLASS_QUERY(Unlock)
 987 
 988   #undef DEFINE_CLASS_QUERY
 989 
 990   // duplicate of is_MachSpillCopy()
 991   bool is_SpillCopy () const {
 992     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 993   }
 994 
 995   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 996   // The data node which is safe to leave in dead loop during IGVN optimization.
 997   bool is_dead_loop_safe() const;
 998 
 999   // is_Copy() returns copied edge index (0 or 1)
1000   uint is_Copy() const { return (_flags & Flag_is_Copy); }
1001 
1002   virtual bool is_CFG() const { return false; }
1003 
1004   // If this node is control-dependent on a test, can it be
1005   // rerouted to a dominating equivalent test?  This is usually
1006   // true of non-CFG nodes, but can be false for operations which
1007   // depend for their correct sequencing on more than one test.
1008   // (In that case, hoisting to a dominating test may silently
1009   // skip some other important test.)
1010   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1011 
1012   // When building basic blocks, I need to have a notion of block beginning
1013   // Nodes, next block selector Nodes (block enders), and next block
1014   // projections.  These calls need to work on their machine equivalents.  The
1015   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1016   bool is_block_start() const {
1017     if ( is_Region() )
1018       return this == (const Node*)in(0);
1019     else
1020       return is_Start();
1021   }
1022 
1023   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1024   // Goto and Return.  This call also returns the block ending Node.
1025   virtual const Node *is_block_proj() const;
1026 
1027   // The node is a "macro" node which needs to be expanded before matching
1028   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1029   // The node is expensive: the best control is set during loop opts
1030   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1031   // The node's original edge position is swapped.
1032   bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1033 
1034   bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1035 
1036   bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1037 
1038   // Used in lcm to mark nodes that have scheduled
1039   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1040 
1041   bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1042 
1043   // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1044   static bool may_be_loop_entry(Node* n) {
1045     return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1046   }
1047 
1048 //----------------- Optimization
1049 
1050   // Get the worst-case Type output for this Node.
1051   virtual const class Type *bottom_type() const;
1052 
1053   // If we find a better type for a node, try to record it permanently.
1054   // Return true if this node actually changed.
1055   // Be sure to do the hash_delete game in the "rehash" variant.
1056   void raise_bottom_type(const Type* new_type);
1057 
1058   // Get the address type with which this node uses and/or defs memory,
1059   // or null if none.  The address type is conservatively wide.
1060   // Returns non-null for calls, membars, loads, stores, etc.
1061   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1062   virtual const class TypePtr *adr_type() const { return nullptr; }
1063 
1064   // Return an existing node which computes the same function as this node.
1065   // The optimistic combined algorithm requires this to return a Node which
1066   // is a small number of steps away (e.g., one of my inputs).
1067   virtual Node* Identity(PhaseGVN* phase);
1068 
1069   // Return the set of values this Node can take on at runtime.
1070   virtual const Type* Value(PhaseGVN* phase) const;
1071 
1072   // Return a node which is more "ideal" than the current node.
1073   // The invariants on this call are subtle.  If in doubt, read the
1074   // treatise in node.cpp above the default implementation AND TEST WITH
1075   // -XX:VerifyIterativeGVN=1
1076   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1077 
1078   // Some nodes have specific Ideal subgraph transformations only if they are
1079   // unique users of specific nodes. Such nodes should be put on IGVN worklist
1080   // for the transformations to happen.
1081   bool has_special_unique_user() const;
1082 
1083   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1084   Node* find_exact_control(Node* ctrl);
1085 
1086   // Check if 'this' node dominates or equal to 'sub'.
1087   bool dominates(Node* sub, Node_List &nlist);
1088 
1089 protected:
1090   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1091 public:
1092 
1093   // See if there is valid pipeline info
1094   static  const Pipeline *pipeline_class();
1095   virtual const Pipeline *pipeline() const;
1096 
1097   // Compute the latency from the def to this instruction of the ith input node
1098   uint latency(uint i);
1099 
1100   // Hash & compare functions, for pessimistic value numbering
1101 
1102   // If the hash function returns the special sentinel value NO_HASH,
1103   // the node is guaranteed never to compare equal to any other node.
1104   // If we accidentally generate a hash with value NO_HASH the node
1105   // won't go into the table and we'll lose a little optimization.
1106   static const uint NO_HASH = 0;
1107   virtual uint hash() const;
1108   virtual bool cmp( const Node &n ) const;
1109 
1110   // Operation appears to be iteratively computed (such as an induction variable)
1111   // It is possible for this operation to return false for a loop-varying
1112   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1113   bool is_iteratively_computed();
1114 
1115   // Determine if a node is a counted loop induction variable.
1116   // NOTE: The method is defined in "loopnode.cpp".
1117   bool is_cloop_ind_var() const;
1118 
1119   // Return a node with opcode "opc" and same inputs as "this" if one can
1120   // be found; Otherwise return null;
1121   Node* find_similar(int opc);
1122 
1123   // Return the unique control out if only one. Null if none or more than one.
1124   Node* unique_ctrl_out_or_null() const;
1125   // Return the unique control out. Asserts if none or more than one control out.
1126   Node* unique_ctrl_out() const;
1127 
1128   // Set control or add control as precedence edge
1129   void ensure_control_or_add_prec(Node* c);
1130 
1131   // Visit boundary uses of the node and apply a callback function for each.
1132   // Recursively traverse uses, stopping and applying the callback when
1133   // reaching a boundary node, defined by is_boundary. Note: the function
1134   // definition appears after the complete type definition of Node_List.
1135   template <typename Callback, typename Check>
1136   void visit_uses(Callback callback, Check is_boundary) const;
1137 
1138 //----------------- Code Generation
1139 
1140   // Ideal register class for Matching.  Zero means unmatched instruction
1141   // (these are cloned instead of converted to machine nodes).
1142   virtual uint ideal_reg() const;
1143 
1144   static const uint NotAMachineReg;   // must be > max. machine register
1145 
1146   // Do we Match on this edge index or not?  Generally false for Control
1147   // and true for everything else.  Weird for calls & returns.
1148   virtual uint match_edge(uint idx) const;
1149 
1150   // Register class output is returned in
1151   virtual const RegMask &out_RegMask() const;
1152   // Register class input is expected in
1153   virtual const RegMask &in_RegMask(uint) const;
1154   // Should we clone rather than spill this instruction?
1155   bool rematerialize() const;
1156 
1157   // Return JVM State Object if this Node carries debug info, or null otherwise
1158   virtual JVMState* jvms() const;
1159 
1160   // Print as assembly
1161   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1162   // Emit bytes starting at parameter 'ptr'
1163   // Bump 'ptr' by the number of output bytes
1164   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
1165   // Size of instruction in bytes
1166   virtual uint size(PhaseRegAlloc *ra_) const;
1167 
1168   // Convenience function to extract an integer constant from a node.
1169   // If it is not an integer constant (either Con, CastII, or Mach),
1170   // return value_if_unknown.
1171   jint find_int_con(jint value_if_unknown) const {
1172     const TypeInt* t = find_int_type();
1173     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1174   }
1175   // Return the constant, knowing it is an integer constant already
1176   jint get_int() const {
1177     const TypeInt* t = find_int_type();
1178     guarantee(t != nullptr, "must be con");
1179     return t->get_con();
1180   }
1181   // Here's where the work is done.  Can produce non-constant int types too.
1182   const TypeInt* find_int_type() const;
1183   const TypeInteger* find_integer_type(BasicType bt) const;
1184 
1185   // Same thing for long (and intptr_t, via type.hpp):
1186   jlong get_long() const {
1187     const TypeLong* t = find_long_type();
1188     guarantee(t != nullptr, "must be con");
1189     return t->get_con();
1190   }
1191   jlong find_long_con(jint value_if_unknown) const {
1192     const TypeLong* t = find_long_type();
1193     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1194   }
1195   const TypeLong* find_long_type() const;
1196 
1197   jlong get_integer_as_long(BasicType bt) const {
1198     const TypeInteger* t = find_integer_type(bt);
1199     guarantee(t != nullptr && t->is_con(), "must be con");
1200     return t->get_con_as_long(bt);
1201   }
1202   jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1203     const TypeInteger* t = find_integer_type(bt);
1204     if (t == nullptr || !t->is_con())  return value_if_unknown;
1205     return t->get_con_as_long(bt);
1206   }
1207   const TypePtr* get_ptr_type() const;
1208 
1209   // These guys are called by code generated by ADLC:
1210   intptr_t get_ptr() const;
1211   intptr_t get_narrowcon() const;
1212   jdouble getd() const;
1213   jfloat getf() const;
1214 
1215   // Nodes which are pinned into basic blocks
1216   virtual bool pinned() const { return false; }
1217 
1218   // Nodes which use memory without consuming it, hence need antidependences
1219   // More specifically, needs_anti_dependence_check returns true iff the node
1220   // (a) does a load, and (b) does not perform a store (except perhaps to a
1221   // stack slot or some other unaliased location).
1222   bool needs_anti_dependence_check() const;
1223 
1224   // Return which operand this instruction may cisc-spill. In other words,
1225   // return operand position that can convert from reg to memory access
1226   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1227   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1228 
1229   // Whether this is a memory-writing machine node.
1230   bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1231 
1232   // Whether this is a memory phi node
1233   bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1234 
1235 //----------------- Printing, etc
1236 #ifndef PRODUCT
1237  public:
1238   Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1239   Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1240   void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const;
1241   void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1242   void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1243   class DumpConfig {
1244    public:
1245     // overridden to implement coloring of node idx
1246     virtual void pre_dump(outputStream *st, const Node* n) = 0;
1247     virtual void post_dump(outputStream *st) = 0;
1248   };
1249   void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1250   void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1251   void dump() const; // print node with newline
1252   void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1253   void dump(int depth) const;        // Print this node, recursively to depth d
1254   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1255   void dump_comp() const;            // Print this node in compact representation.
1256   // Print this node in compact representation.
1257   void dump_comp(const char* suffix, outputStream *st = tty) const;
1258  private:
1259   virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print required-edge info
1260   virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const;   // Print precedence-edge info
1261   virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print the output edge info
1262  public:
1263   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1264   // Print compact per-node info
1265   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1266 
1267   static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1268 
1269   // This call defines a class-unique string used to identify class instances
1270   virtual const char *Name() const;
1271 
1272   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1273   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1274 #endif
1275 #ifdef ASSERT
1276   void verify_construction();
1277   bool verify_jvms(const JVMState* jvms) const;
1278 
1279   Node* _debug_orig;                   // Original version of this, if any.
1280   Node*  debug_orig() const            { return _debug_orig; }
1281   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1282   void   dump_orig(outputStream *st, bool print_key = true) const;
1283 
1284   uint64_t _debug_idx;                 // Unique value assigned to every node.
1285   uint64_t debug_idx() const           { return _debug_idx; }
1286   void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1287 
1288   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1289   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1290   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1291 
1292   static void init_NodeProperty();
1293 
1294   #if OPTO_DU_ITERATOR_ASSERT
1295   const Node* _last_del;               // The last deleted node.
1296   uint        _del_tick;               // Bumped when a deletion happens..
1297   #endif
1298 #endif
1299 };
1300 
1301 inline bool not_a_node(const Node* n) {
1302   if (n == nullptr)                return true;
1303   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1304   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1305   return false;
1306 }
1307 
1308 //-----------------------------------------------------------------------------
1309 // Iterators over DU info, and associated Node functions.
1310 
1311 #if OPTO_DU_ITERATOR_ASSERT
1312 
1313 // Common code for assertion checking on DU iterators.
1314 class DUIterator_Common {
1315 #ifdef ASSERT
1316  protected:
1317   bool         _vdui;               // cached value of VerifyDUIterators
1318   const Node*  _node;               // the node containing the _out array
1319   uint         _outcnt;             // cached node->_outcnt
1320   uint         _del_tick;           // cached node->_del_tick
1321   Node*        _last;               // last value produced by the iterator
1322 
1323   void sample(const Node* node);    // used by c'tor to set up for verifies
1324   void verify(const Node* node, bool at_end_ok = false);
1325   void verify_resync();
1326   void reset(const DUIterator_Common& that);
1327 
1328 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1329   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1330 #else
1331   #define I_VDUI_ONLY(i,x) { }
1332 #endif //ASSERT
1333 };
1334 
1335 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1336 
1337 // Default DU iterator.  Allows appends onto the out array.
1338 // Allows deletion from the out array only at the current point.
1339 // Usage:
1340 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1341 //    Node* y = x->out(i);
1342 //    ...
1343 //  }
1344 // Compiles in product mode to a unsigned integer index, which indexes
1345 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1346 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1347 // before continuing the loop.  You must delete only the last-produced
1348 // edge.  You must delete only a single copy of the last-produced edge,
1349 // or else you must delete all copies at once (the first time the edge
1350 // is produced by the iterator).
1351 class DUIterator : public DUIterator_Common {
1352   friend class Node;
1353 
1354   // This is the index which provides the product-mode behavior.
1355   // Whatever the product-mode version of the system does to the
1356   // DUI index is done to this index.  All other fields in
1357   // this class are used only for assertion checking.
1358   uint         _idx;
1359 
1360   #ifdef ASSERT
1361   uint         _refresh_tick;    // Records the refresh activity.
1362 
1363   void sample(const Node* node); // Initialize _refresh_tick etc.
1364   void verify(const Node* node, bool at_end_ok = false);
1365   void verify_increment();       // Verify an increment operation.
1366   void verify_resync();          // Verify that we can back up over a deletion.
1367   void verify_finish();          // Verify that the loop terminated properly.
1368   void refresh();                // Resample verification info.
1369   void reset(const DUIterator& that);  // Resample after assignment.
1370   #endif
1371 
1372   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1373     { _idx = 0;                         debug_only(sample(node)); }
1374 
1375  public:
1376   // initialize to garbage; clear _vdui to disable asserts
1377   DUIterator()
1378     { /*initialize to garbage*/         debug_only(_vdui = false); }
1379 
1380   DUIterator(const DUIterator& that)
1381     { _idx = that._idx;                 debug_only(_vdui = false; reset(that)); }
1382 
1383   void operator++(int dummy_to_specify_postfix_op)
1384     { _idx++;                           VDUI_ONLY(verify_increment()); }
1385 
1386   void operator--()
1387     { VDUI_ONLY(verify_resync());       --_idx; }
1388 
1389   ~DUIterator()
1390     { VDUI_ONLY(verify_finish()); }
1391 
1392   void operator=(const DUIterator& that)
1393     { _idx = that._idx;                 debug_only(reset(that)); }
1394 };
1395 
1396 DUIterator Node::outs() const
1397   { return DUIterator(this, 0); }
1398 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1399   { I_VDUI_ONLY(i, i.refresh());        return i; }
1400 bool Node::has_out(DUIterator& i) const
1401   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1402 Node*    Node::out(DUIterator& i) const
1403   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1404 
1405 
1406 // Faster DU iterator.  Disallows insertions into the out array.
1407 // Allows deletion from the out array only at the current point.
1408 // Usage:
1409 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1410 //    Node* y = x->fast_out(i);
1411 //    ...
1412 //  }
1413 // Compiles in product mode to raw Node** pointer arithmetic, with
1414 // no reloading of pointers from the original node x.  If you delete,
1415 // you must perform "--i; --imax" just before continuing the loop.
1416 // If you delete multiple copies of the same edge, you must decrement
1417 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1418 class DUIterator_Fast : public DUIterator_Common {
1419   friend class Node;
1420   friend class DUIterator_Last;
1421 
1422   // This is the pointer which provides the product-mode behavior.
1423   // Whatever the product-mode version of the system does to the
1424   // DUI pointer is done to this pointer.  All other fields in
1425   // this class are used only for assertion checking.
1426   Node**       _outp;
1427 
1428   #ifdef ASSERT
1429   void verify(const Node* node, bool at_end_ok = false);
1430   void verify_limit();
1431   void verify_resync();
1432   void verify_relimit(uint n);
1433   void reset(const DUIterator_Fast& that);
1434   #endif
1435 
1436   // Note:  offset must be signed, since -1 is sometimes passed
1437   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1438     { _outp = node->_out + offset;      debug_only(sample(node)); }
1439 
1440  public:
1441   // initialize to garbage; clear _vdui to disable asserts
1442   DUIterator_Fast()
1443     { /*initialize to garbage*/         debug_only(_vdui = false); }
1444 
1445   DUIterator_Fast(const DUIterator_Fast& that)
1446     { _outp = that._outp;               debug_only(_vdui = false; reset(that)); }
1447 
1448   void operator++(int dummy_to_specify_postfix_op)
1449     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1450 
1451   void operator--()
1452     { VDUI_ONLY(verify_resync());       --_outp; }
1453 
1454   void operator-=(uint n)   // applied to the limit only
1455     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1456 
1457   bool operator<(DUIterator_Fast& limit) {
1458     I_VDUI_ONLY(*this, this->verify(_node, true));
1459     I_VDUI_ONLY(limit, limit.verify_limit());
1460     return _outp < limit._outp;
1461   }
1462 
1463   void operator=(const DUIterator_Fast& that)
1464     { _outp = that._outp;               debug_only(reset(that)); }
1465 };
1466 
1467 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1468   // Assign a limit pointer to the reference argument:
1469   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1470   // Return the base pointer:
1471   return DUIterator_Fast(this, 0);
1472 }
1473 Node* Node::fast_out(DUIterator_Fast& i) const {
1474   I_VDUI_ONLY(i, i.verify(this));
1475   return debug_only(i._last=) *i._outp;
1476 }
1477 
1478 
1479 // Faster DU iterator.  Requires each successive edge to be removed.
1480 // Does not allow insertion of any edges.
1481 // Usage:
1482 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1483 //    Node* y = x->last_out(i);
1484 //    ...
1485 //  }
1486 // Compiles in product mode to raw Node** pointer arithmetic, with
1487 // no reloading of pointers from the original node x.
1488 class DUIterator_Last : private DUIterator_Fast {
1489   friend class Node;
1490 
1491   #ifdef ASSERT
1492   void verify(const Node* node, bool at_end_ok = false);
1493   void verify_limit();
1494   void verify_step(uint num_edges);
1495   #endif
1496 
1497   // Note:  offset must be signed, since -1 is sometimes passed
1498   DUIterator_Last(const Node* node, ptrdiff_t offset)
1499     : DUIterator_Fast(node, offset) { }
1500 
1501   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1502   void operator<(int)                              {} // do not use
1503 
1504  public:
1505   DUIterator_Last() { }
1506   // initialize to garbage
1507 
1508   DUIterator_Last(const DUIterator_Last& that) = default;
1509 
1510   void operator--()
1511     { _outp--;              VDUI_ONLY(verify_step(1));  }
1512 
1513   void operator-=(uint n)
1514     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1515 
1516   bool operator>=(DUIterator_Last& limit) {
1517     I_VDUI_ONLY(*this, this->verify(_node, true));
1518     I_VDUI_ONLY(limit, limit.verify_limit());
1519     return _outp >= limit._outp;
1520   }
1521 
1522   DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1523 };
1524 
1525 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1526   // Assign a limit pointer to the reference argument:
1527   imin = DUIterator_Last(this, 0);
1528   // Return the initial pointer:
1529   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1530 }
1531 Node* Node::last_out(DUIterator_Last& i) const {
1532   I_VDUI_ONLY(i, i.verify(this));
1533   return debug_only(i._last=) *i._outp;
1534 }
1535 
1536 #endif //OPTO_DU_ITERATOR_ASSERT
1537 
1538 #undef I_VDUI_ONLY
1539 #undef VDUI_ONLY
1540 
1541 // An Iterator that truly follows the iterator pattern.  Doesn't
1542 // support deletion but could be made to.
1543 //
1544 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1545 //     Node* m = i.get();
1546 //
1547 class SimpleDUIterator : public StackObj {
1548  private:
1549   Node* node;
1550   DUIterator_Fast i;
1551   DUIterator_Fast imax;
1552  public:
1553   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1554   bool has_next() { return i < imax; }
1555   void next() { i++; }
1556   Node* get() { return node->fast_out(i); }
1557 };
1558 
1559 
1560 //-----------------------------------------------------------------------------
1561 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1562 // Abstractly provides an infinite array of Node*'s, initialized to null.
1563 // Note that the constructor just zeros things, and since I use Arena
1564 // allocation I do not need a destructor to reclaim storage.
1565 class Node_Array : public AnyObj {
1566   friend class VMStructs;
1567 protected:
1568   Arena* _a;                    // Arena to allocate in
1569   uint   _max;
1570   Node** _nodes;
1571   void   grow( uint i );        // Grow array node to fit
1572 public:
1573   Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1574     _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1575     clear();
1576   }
1577   Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1578 
1579   NONCOPYABLE(Node_Array);
1580   Node_Array& operator=(Node_Array&&) = delete;
1581   // Allow move constructor for && (eg. capture return of function)
1582   Node_Array(Node_Array&&) = default;
1583 
1584   Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1585   { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1586   Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1587   Node** adr() { return _nodes; }
1588   // Extend the mapping: index i maps to Node *n.
1589   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1590   void insert( uint i, Node *n );
1591   void remove( uint i );        // Remove, preserving order
1592   // Clear all entries in _nodes to null but keep storage
1593   void clear() {
1594     Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1595   }
1596 
1597   uint max() const { return _max; }
1598   void dump() const;
1599 };
1600 
1601 class Node_List : public Node_Array {
1602   friend class VMStructs;
1603   uint _cnt;
1604 public:
1605   Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1606   Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1607 
1608   NONCOPYABLE(Node_List);
1609   Node_List& operator=(Node_List&&) = delete;
1610   // Allow move constructor for && (eg. capture return of function)
1611   Node_List(Node_List&&) = default;
1612 
1613   bool contains(const Node* n) const {
1614     for (uint e = 0; e < size(); e++) {
1615       if (at(e) == n) return true;
1616     }
1617     return false;
1618   }
1619   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1620   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1621   void push( Node *b ) { map(_cnt++,b); }
1622   void yank( Node *n );         // Find and remove
1623   Node *pop() { return _nodes[--_cnt]; }
1624   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1625   void copy(const Node_List& from) {
1626     if (from._max > _max) {
1627       grow(from._max);
1628     }
1629     _cnt = from._cnt;
1630     Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1631   }
1632 
1633   uint size() const { return _cnt; }
1634   void dump() const;
1635   void dump_simple() const;
1636 };
1637 
1638 // Definition must appear after complete type definition of Node_List
1639 template <typename Callback, typename Check>
1640 void Node::visit_uses(Callback callback, Check is_boundary) const {
1641   ResourceMark rm;
1642   VectorSet visited;
1643   Node_List worklist;
1644 
1645   // The initial worklist consists of the direct uses
1646   for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1647     Node* out = fast_out(k);
1648     if (!visited.test_set(out->_idx)) { worklist.push(out); }
1649   }
1650 
1651   while (worklist.size() > 0) {
1652     Node* use = worklist.pop();
1653     // Apply callback on boundary nodes
1654     if (is_boundary(use)) {
1655       callback(use);
1656     } else {
1657       // Not a boundary node, continue search
1658       for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1659         Node* out = use->fast_out(k);
1660         if (!visited.test_set(out->_idx)) { worklist.push(out); }
1661       }
1662     }
1663   }
1664 }
1665 
1666 
1667 //------------------------------Unique_Node_List-------------------------------
1668 class Unique_Node_List : public Node_List {
1669   friend class VMStructs;
1670   VectorSet _in_worklist;
1671   uint _clock_index;            // Index in list where to pop from next
1672 public:
1673   Unique_Node_List() : Node_List(), _clock_index(0) {}
1674   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1675 
1676   NONCOPYABLE(Unique_Node_List);
1677   Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1678   // Allow move constructor for && (eg. capture return of function)
1679   Unique_Node_List(Unique_Node_List&&) = default;
1680 
1681   void remove( Node *n );
1682   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1683   VectorSet& member_set(){ return _in_worklist; }
1684 
1685   void push(Node* b) {
1686     if( !_in_worklist.test_set(b->_idx) )
1687       Node_List::push(b);
1688   }
1689   Node *pop() {
1690     if( _clock_index >= size() ) _clock_index = 0;
1691     Node *b = at(_clock_index);
1692     map( _clock_index, Node_List::pop());
1693     if (size() != 0) _clock_index++; // Always start from 0
1694     _in_worklist.remove(b->_idx);
1695     return b;
1696   }
1697   Node *remove(uint i) {
1698     Node *b = Node_List::at(i);
1699     _in_worklist.remove(b->_idx);
1700     map(i,Node_List::pop());
1701     return b;
1702   }
1703   void yank(Node *n) {
1704     _in_worklist.remove(n->_idx);
1705     Node_List::yank(n);
1706   }
1707   void  clear() {
1708     _in_worklist.clear();        // Discards storage but grows automatically
1709     Node_List::clear();
1710     _clock_index = 0;
1711   }
1712   void ensure_empty() {
1713     assert(size() == 0, "must be empty");
1714     clear(); // just in case
1715   }
1716 
1717   // Used after parsing to remove useless nodes before Iterative GVN
1718   void remove_useless_nodes(VectorSet& useful);
1719 
1720   // If the idx of the Nodes change, we must recompute the VectorSet
1721   void recompute_idx_set() {
1722     _in_worklist.clear();
1723     for (uint i = 0; i < size(); i++) {
1724       Node* n = at(i);
1725       _in_worklist.set(n->_idx);
1726     }
1727   }
1728 
1729 #ifdef ASSERT
1730   bool is_subset_of(Unique_Node_List& other) {
1731     for (uint i = 0; i < size(); i++) {
1732       Node* n = at(i);
1733       if (!other.member(n)) {
1734         return false;
1735       }
1736     }
1737     return true;
1738   }
1739 #endif
1740 
1741   bool contains(const Node* n) const {
1742     fatal("use faster member() instead");
1743     return false;
1744   }
1745 
1746 #ifndef PRODUCT
1747   void print_set() const { _in_worklist.print(); }
1748 #endif
1749 };
1750 
1751 // Unique_Mixed_Node_List
1752 // unique: nodes are added only once
1753 // mixed: allow new and old nodes
1754 class Unique_Mixed_Node_List : public ResourceObj {
1755 public:
1756   Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1757 
1758   void add(Node* node) {
1759     if (not_a_node(node)) {
1760       return; // Gracefully handle null, -1, 0xabababab, etc.
1761     }
1762     if (_visited_set[node] == nullptr) {
1763       _visited_set.Insert(node, node);
1764       _worklist.push(node);
1765     }
1766   }
1767 
1768   Node* operator[] (uint i) const {
1769     return _worklist[i];
1770   }
1771 
1772   size_t size() {
1773     return _worklist.size();
1774   }
1775 
1776 private:
1777   Dict _visited_set;
1778   Node_List _worklist;
1779 };
1780 
1781 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1782 inline void Compile::record_for_igvn(Node* n) {
1783   _igvn_worklist->push(n);
1784 }
1785 
1786 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1787 inline void Compile::remove_for_igvn(Node* n) {
1788   _igvn_worklist->remove(n);
1789 }
1790 
1791 //------------------------------Node_Stack-------------------------------------
1792 class Node_Stack {
1793   friend class VMStructs;
1794 protected:
1795   struct INode {
1796     Node *node; // Processed node
1797     uint  indx; // Index of next node's child
1798   };
1799   INode *_inode_top; // tos, stack grows up
1800   INode *_inode_max; // End of _inodes == _inodes + _max
1801   INode *_inodes;    // Array storage for the stack
1802   Arena *_a;         // Arena to allocate in
1803   void grow();
1804 public:
1805   Node_Stack(int size) {
1806     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1807     _a = Thread::current()->resource_area();
1808     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1809     _inode_max = _inodes + max;
1810     _inode_top = _inodes - 1; // stack is empty
1811   }
1812 
1813   Node_Stack(Arena *a, int size) : _a(a) {
1814     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1815     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1816     _inode_max = _inodes + max;
1817     _inode_top = _inodes - 1; // stack is empty
1818   }
1819 
1820   void pop() {
1821     assert(_inode_top >= _inodes, "node stack underflow");
1822     --_inode_top;
1823   }
1824   void push(Node *n, uint i) {
1825     ++_inode_top;
1826     if (_inode_top >= _inode_max) grow();
1827     INode *top = _inode_top; // optimization
1828     top->node = n;
1829     top->indx = i;
1830   }
1831   Node *node() const {
1832     return _inode_top->node;
1833   }
1834   Node* node_at(uint i) const {
1835     assert(_inodes + i <= _inode_top, "in range");
1836     return _inodes[i].node;
1837   }
1838   uint index() const {
1839     return _inode_top->indx;
1840   }
1841   uint index_at(uint i) const {
1842     assert(_inodes + i <= _inode_top, "in range");
1843     return _inodes[i].indx;
1844   }
1845   void set_node(Node *n) {
1846     _inode_top->node = n;
1847   }
1848   void set_index(uint i) {
1849     _inode_top->indx = i;
1850   }
1851   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1852   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1853   bool is_nonempty() const { return (_inode_top >= _inodes); }
1854   bool is_empty() const { return (_inode_top < _inodes); }
1855   void clear() { _inode_top = _inodes - 1; } // retain storage
1856 
1857   // Node_Stack is used to map nodes.
1858   Node* find(uint idx) const;
1859 
1860   NONCOPYABLE(Node_Stack);
1861 };
1862 
1863 
1864 //-----------------------------Node_Notes--------------------------------------
1865 // Debugging or profiling annotations loosely and sparsely associated
1866 // with some nodes.  See Compile::node_notes_at for the accessor.
1867 class Node_Notes {
1868   friend class VMStructs;
1869   JVMState* _jvms;
1870 
1871 public:
1872   Node_Notes(JVMState* jvms = nullptr) {
1873     _jvms = jvms;
1874   }
1875 
1876   JVMState* jvms()            { return _jvms; }
1877   void  set_jvms(JVMState* x) {        _jvms = x; }
1878 
1879   // True if there is nothing here.
1880   bool is_clear() {
1881     return (_jvms == nullptr);
1882   }
1883 
1884   // Make there be nothing here.
1885   void clear() {
1886     _jvms = nullptr;
1887   }
1888 
1889   // Make a new, clean node notes.
1890   static Node_Notes* make(Compile* C) {
1891     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1892     nn->clear();
1893     return nn;
1894   }
1895 
1896   Node_Notes* clone(Compile* C) {
1897     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1898     (*nn) = (*this);
1899     return nn;
1900   }
1901 
1902   // Absorb any information from source.
1903   bool update_from(Node_Notes* source) {
1904     bool changed = false;
1905     if (source != nullptr) {
1906       if (source->jvms() != nullptr) {
1907         set_jvms(source->jvms());
1908         changed = true;
1909       }
1910     }
1911     return changed;
1912   }
1913 };
1914 
1915 // Inlined accessors for Compile::node_nodes that require the preceding class:
1916 inline Node_Notes*
1917 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1918                            int idx, bool can_grow) {
1919   assert(idx >= 0, "oob");
1920   int block_idx = (idx >> _log2_node_notes_block_size);
1921   int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
1922   if (grow_by >= 0) {
1923     if (!can_grow) return nullptr;
1924     grow_node_notes(arr, grow_by + 1);
1925   }
1926   if (arr == nullptr) return nullptr;
1927   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1928   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1929 }
1930 
1931 inline bool
1932 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1933   if (value == nullptr || value->is_clear())
1934     return false;  // nothing to write => write nothing
1935   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1936   assert(loc != nullptr, "");
1937   return loc->update_from(value);
1938 }
1939 
1940 
1941 //------------------------------TypeNode---------------------------------------
1942 // Node with a Type constant.
1943 class TypeNode : public Node {
1944 protected:
1945   virtual uint hash() const;    // Check the type
1946   virtual bool cmp( const Node &n ) const;
1947   virtual uint size_of() const; // Size is bigger
1948   const Type* const _type;
1949 public:
1950   void set_type(const Type* t) {
1951     assert(t != nullptr, "sanity");
1952     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1953     *(const Type**)&_type = t;   // cast away const-ness
1954     // If this node is in the hash table, make sure it doesn't need a rehash.
1955     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1956   }
1957   const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
1958   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1959     init_class_id(Class_Type);
1960   }
1961   virtual const Type* Value(PhaseGVN* phase) const;
1962   virtual const Type *bottom_type() const;
1963   virtual       uint  ideal_reg() const;
1964 #ifndef PRODUCT
1965   virtual void dump_spec(outputStream *st) const;
1966   virtual void dump_compact_spec(outputStream *st) const;
1967 #endif
1968 };
1969 
1970 #include "opto/opcodes.hpp"
1971 
1972 #define Op_IL(op) \
1973   inline int Op_ ## op(BasicType bt) { \
1974   assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
1975   if (bt == T_INT) { \
1976     return Op_## op ## I; \
1977   } \
1978   return Op_## op ## L; \
1979 }
1980 
1981 Op_IL(Add)
1982 Op_IL(Sub)
1983 Op_IL(Mul)
1984 Op_IL(URShift)
1985 Op_IL(LShift)
1986 Op_IL(Xor)
1987 Op_IL(Cmp)
1988 
1989 inline int Op_ConIL(BasicType bt) {
1990   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
1991   if (bt == T_INT) {
1992     return Op_ConI;
1993   }
1994   return Op_ConL;
1995 }
1996 
1997 inline int Op_Cmp_unsigned(BasicType bt) {
1998   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
1999   if (bt == T_INT) {
2000     return Op_CmpU;
2001   }
2002   return Op_CmpUL;
2003 }
2004 
2005 inline int Op_Cast(BasicType bt) {
2006   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2007   if (bt == T_INT) {
2008     return Op_CastII;
2009   }
2010   return Op_CastLL;
2011 }
2012 
2013 #endif // SHARE_OPTO_NODE_HPP