1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_NODE_HPP 27 #define SHARE_OPTO_NODE_HPP 28 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 #include "utilities/copy.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 // Optimization - Graph Style 37 38 39 class AbstractLockNode; 40 class AddNode; 41 class AddPNode; 42 class AliasInfo; 43 class AllocateArrayNode; 44 class AllocateNode; 45 class ArrayCopyNode; 46 class BaseCountedLoopNode; 47 class BaseCountedLoopEndNode; 48 class BlackholeNode; 49 class Block; 50 class BoolNode; 51 class BoxLockNode; 52 class CMoveNode; 53 class CallDynamicJavaNode; 54 class CallJavaNode; 55 class CallLeafNode; 56 class CallLeafNoFPNode; 57 class CallNode; 58 class CallRuntimeNode; 59 class CallStaticJavaNode; 60 class CastFFNode; 61 class CastDDNode; 62 class CastVVNode; 63 class CastIINode; 64 class CastLLNode; 65 class CastPPNode; 66 class CatchNode; 67 class CatchProjNode; 68 class CheckCastPPNode; 69 class ClearArrayNode; 70 class CmpNode; 71 class CodeBuffer; 72 class ConstraintCastNode; 73 class ConNode; 74 class ConINode; 75 class ConvertNode; 76 class CompareAndSwapNode; 77 class CompareAndExchangeNode; 78 class CountedLoopNode; 79 class CountedLoopEndNode; 80 class DecodeNarrowPtrNode; 81 class DecodeNNode; 82 class DecodeNKlassNode; 83 class EncodeNarrowPtrNode; 84 class EncodePNode; 85 class EncodePKlassNode; 86 class FastLockNode; 87 class FastUnlockNode; 88 class HaltNode; 89 class IfNode; 90 class IfProjNode; 91 class IfFalseNode; 92 class IfTrueNode; 93 class InitializeNode; 94 class JVMState; 95 class JumpNode; 96 class JumpProjNode; 97 class LoadNode; 98 class LoadStoreNode; 99 class LoadStoreConditionalNode; 100 class LockNode; 101 class LongCountedLoopNode; 102 class LongCountedLoopEndNode; 103 class LoopNode; 104 class LShiftNode; 105 class MachBranchNode; 106 class MachCallDynamicJavaNode; 107 class MachCallJavaNode; 108 class MachCallLeafNode; 109 class MachCallNode; 110 class MachCallRuntimeNode; 111 class MachCallStaticJavaNode; 112 class MachConstantBaseNode; 113 class MachConstantNode; 114 class MachGotoNode; 115 class MachIfNode; 116 class MachJumpNode; 117 class MachNode; 118 class MachNullCheckNode; 119 class MachProjNode; 120 class MachReturnNode; 121 class MachSafePointNode; 122 class MachSpillCopyNode; 123 class MachTempNode; 124 class MachMergeNode; 125 class MachMemBarNode; 126 class Matcher; 127 class MemBarNode; 128 class MemBarStoreStoreNode; 129 class MemNode; 130 class MergeMemNode; 131 class MoveNode; 132 class MulNode; 133 class MultiNode; 134 class MultiBranchNode; 135 class NegNode; 136 class NegVNode; 137 class NeverBranchNode; 138 class Opaque1Node; 139 class OpaqueLoopInitNode; 140 class OpaqueLoopStrideNode; 141 class Opaque4Node; 142 class OpaqueInitializedAssertionPredicateNode; 143 class OuterStripMinedLoopNode; 144 class OuterStripMinedLoopEndNode; 145 class Node; 146 class Node_Array; 147 class Node_List; 148 class Node_Stack; 149 class OopMap; 150 class ParmNode; 151 class ParsePredicateNode; 152 class PCTableNode; 153 class PhaseCCP; 154 class PhaseGVN; 155 class PhaseIterGVN; 156 class PhaseRegAlloc; 157 class PhaseTransform; 158 class PhaseValues; 159 class PhiNode; 160 class Pipeline; 161 class PopulateIndexNode; 162 class ProjNode; 163 class RangeCheckNode; 164 class ReductionNode; 165 class RegMask; 166 class RegionNode; 167 class RootNode; 168 class SafePointNode; 169 class SafePointScalarObjectNode; 170 class SafePointScalarMergeNode; 171 class StartNode; 172 class State; 173 class StoreNode; 174 class SubNode; 175 class SubTypeCheckNode; 176 class Type; 177 class TypeNode; 178 class UnlockNode; 179 class VectorNode; 180 class LoadVectorNode; 181 class LoadVectorMaskedNode; 182 class StoreVectorMaskedNode; 183 class LoadVectorGatherNode; 184 class LoadVectorGatherMaskedNode; 185 class StoreVectorNode; 186 class StoreVectorScatterNode; 187 class StoreVectorScatterMaskedNode; 188 class VerifyVectorAlignmentNode; 189 class VectorMaskCmpNode; 190 class VectorUnboxNode; 191 class VectorSet; 192 class VectorReinterpretNode; 193 class ShiftVNode; 194 class ExpandVNode; 195 class CompressVNode; 196 class CompressMNode; 197 class C2_MacroAssembler; 198 199 200 #ifndef OPTO_DU_ITERATOR_ASSERT 201 #ifdef ASSERT 202 #define OPTO_DU_ITERATOR_ASSERT 1 203 #else 204 #define OPTO_DU_ITERATOR_ASSERT 0 205 #endif 206 #endif //OPTO_DU_ITERATOR_ASSERT 207 208 #if OPTO_DU_ITERATOR_ASSERT 209 class DUIterator; 210 class DUIterator_Fast; 211 class DUIterator_Last; 212 #else 213 typedef uint DUIterator; 214 typedef Node** DUIterator_Fast; 215 typedef Node** DUIterator_Last; 216 #endif 217 218 typedef ResizeableResourceHashtable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable; 219 220 // Node Sentinel 221 #define NodeSentinel (Node*)-1 222 223 // Unknown count frequency 224 #define COUNT_UNKNOWN (-1.0f) 225 226 //------------------------------Node------------------------------------------- 227 // Nodes define actions in the program. They create values, which have types. 228 // They are both vertices in a directed graph and program primitives. Nodes 229 // are labeled; the label is the "opcode", the primitive function in the lambda 230 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 231 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 232 // the Node's function. These inputs also define a Type equation for the Node. 233 // Solving these Type equations amounts to doing dataflow analysis. 234 // Control and data are uniformly represented in the graph. Finally, Nodes 235 // have a unique dense integer index which is used to index into side arrays 236 // whenever I have phase-specific information. 237 238 class Node { 239 friend class VMStructs; 240 241 // Lots of restrictions on cloning Nodes 242 NONCOPYABLE(Node); 243 244 public: 245 friend class Compile; 246 #if OPTO_DU_ITERATOR_ASSERT 247 friend class DUIterator_Common; 248 friend class DUIterator; 249 friend class DUIterator_Fast; 250 friend class DUIterator_Last; 251 #endif 252 253 // Because Nodes come and go, I define an Arena of Node structures to pull 254 // from. This should allow fast access to node creation & deletion. This 255 // field is a local cache of a value defined in some "program fragment" for 256 // which these Nodes are just a part of. 257 258 inline void* operator new(size_t x) throw() { 259 Compile* C = Compile::current(); 260 Node* n = (Node*)C->node_arena()->AmallocWords(x); 261 return (void*)n; 262 } 263 264 // Delete is a NOP 265 void operator delete( void *ptr ) {} 266 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 267 void destruct(PhaseValues* phase); 268 269 // Create a new Node. Required is the number is of inputs required for 270 // semantic correctness. 271 Node( uint required ); 272 273 // Create a new Node with given input edges. 274 // This version requires use of the "edge-count" new. 275 // E.g. new (C,3) FooNode( C, nullptr, left, right ); 276 Node( Node *n0 ); 277 Node( Node *n0, Node *n1 ); 278 Node( Node *n0, Node *n1, Node *n2 ); 279 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 280 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 281 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 282 Node( Node *n0, Node *n1, Node *n2, Node *n3, 283 Node *n4, Node *n5, Node *n6 ); 284 285 // Clone an inherited Node given only the base Node type. 286 Node* clone() const; 287 288 // Clone a Node, immediately supplying one or two new edges. 289 // The first and second arguments, if non-null, replace in(1) and in(2), 290 // respectively. 291 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const { 292 Node* nn = clone(); 293 if (in1 != nullptr) nn->set_req(1, in1); 294 if (in2 != nullptr) nn->set_req(2, in2); 295 return nn; 296 } 297 298 private: 299 // Shared setup for the above constructors. 300 // Handles all interactions with Compile::current. 301 // Puts initial values in all Node fields except _idx. 302 // Returns the initial value for _idx, which cannot 303 // be initialized by assignment. 304 inline int Init(int req); 305 306 //----------------- input edge handling 307 protected: 308 friend class PhaseCFG; // Access to address of _in array elements 309 Node **_in; // Array of use-def references to Nodes 310 Node **_out; // Array of def-use references to Nodes 311 312 // Input edges are split into two categories. Required edges are required 313 // for semantic correctness; order is important and nulls are allowed. 314 // Precedence edges are used to help determine execution order and are 315 // added, e.g., for scheduling purposes. They are unordered and not 316 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1 317 // are required, from _cnt to _max-1 are precedence edges. 318 node_idx_t _cnt; // Total number of required Node inputs. 319 320 node_idx_t _max; // Actual length of input array. 321 322 // Output edges are an unordered list of def-use edges which exactly 323 // correspond to required input edges which point from other nodes 324 // to this one. Thus the count of the output edges is the number of 325 // users of this node. 326 node_idx_t _outcnt; // Total number of Node outputs. 327 328 node_idx_t _outmax; // Actual length of output array. 329 330 // Grow the actual input array to the next larger power-of-2 bigger than len. 331 void grow( uint len ); 332 // Grow the output array to the next larger power-of-2 bigger than len. 333 void out_grow( uint len ); 334 335 public: 336 // Each Node is assigned a unique small/dense number. This number is used 337 // to index into auxiliary arrays of data and bit vectors. 338 // The field _idx is declared constant to defend against inadvertent assignments, 339 // since it is used by clients as a naked field. However, the field's value can be 340 // changed using the set_idx() method. 341 // 342 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 343 // Therefore, it updates the value of the _idx field. The parse-time _idx is 344 // preserved in _parse_idx. 345 const node_idx_t _idx; 346 DEBUG_ONLY(const node_idx_t _parse_idx;) 347 // IGV node identifier. Two nodes, possibly in different compilation phases, 348 // have the same IGV identifier if (and only if) they are the very same node 349 // (same memory address) or one is "derived" from the other (by e.g. 350 // renumbering or matching). This identifier makes it possible to follow the 351 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 352 NOT_PRODUCT(node_idx_t _igv_idx;) 353 354 // Get the (read-only) number of input edges 355 uint req() const { return _cnt; } 356 uint len() const { return _max; } 357 // Get the (read-only) number of output edges 358 uint outcnt() const { return _outcnt; } 359 360 #if OPTO_DU_ITERATOR_ASSERT 361 // Iterate over the out-edges of this node. Deletions are illegal. 362 inline DUIterator outs() const; 363 // Use this when the out array might have changed to suppress asserts. 364 inline DUIterator& refresh_out_pos(DUIterator& i) const; 365 // Does the node have an out at this position? (Used for iteration.) 366 inline bool has_out(DUIterator& i) const; 367 inline Node* out(DUIterator& i) const; 368 // Iterate over the out-edges of this node. All changes are illegal. 369 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 370 inline Node* fast_out(DUIterator_Fast& i) const; 371 // Iterate over the out-edges of this node, deleting one at a time. 372 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 373 inline Node* last_out(DUIterator_Last& i) const; 374 // The inline bodies of all these methods are after the iterator definitions. 375 #else 376 // Iterate over the out-edges of this node. Deletions are illegal. 377 // This iteration uses integral indexes, to decouple from array reallocations. 378 DUIterator outs() const { return 0; } 379 // Use this when the out array might have changed to suppress asserts. 380 DUIterator refresh_out_pos(DUIterator i) const { return i; } 381 382 // Reference to the i'th output Node. Error if out of bounds. 383 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 384 // Does the node have an out at this position? (Used for iteration.) 385 bool has_out(DUIterator i) const { return i < _outcnt; } 386 387 // Iterate over the out-edges of this node. All changes are illegal. 388 // This iteration uses a pointer internal to the out array. 389 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 390 Node** out = _out; 391 // Assign a limit pointer to the reference argument: 392 max = out + (ptrdiff_t)_outcnt; 393 // Return the base pointer: 394 return out; 395 } 396 Node* fast_out(DUIterator_Fast i) const { return *i; } 397 // Iterate over the out-edges of this node, deleting one at a time. 398 // This iteration uses a pointer internal to the out array. 399 DUIterator_Last last_outs(DUIterator_Last& min) const { 400 Node** out = _out; 401 // Assign a limit pointer to the reference argument: 402 min = out; 403 // Return the pointer to the start of the iteration: 404 return out + (ptrdiff_t)_outcnt - 1; 405 } 406 Node* last_out(DUIterator_Last i) const { return *i; } 407 #endif 408 409 // Reference to the i'th input Node. Error if out of bounds. 410 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 411 // Reference to the i'th input Node. null if out of bounds. 412 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); } 413 // Reference to the i'th output Node. Error if out of bounds. 414 // Use this accessor sparingly. We are going trying to use iterators instead. 415 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 416 // Return the unique out edge. 417 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 418 // Delete out edge at position 'i' by moving last out edge to position 'i' 419 void raw_del_out(uint i) { 420 assert(i < _outcnt,"oob"); 421 assert(_outcnt > 0,"oob"); 422 #if OPTO_DU_ITERATOR_ASSERT 423 // Record that a change happened here. 424 debug_only(_last_del = _out[i]; ++_del_tick); 425 #endif 426 _out[i] = _out[--_outcnt]; 427 // Smash the old edge so it can't be used accidentally. 428 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 429 } 430 431 #ifdef ASSERT 432 bool is_dead() const; 433 static bool is_not_dead(const Node* n); 434 bool is_reachable_from_root() const; 435 #endif 436 // Check whether node has become unreachable 437 bool is_unreachable(PhaseIterGVN &igvn) const; 438 439 // Set a required input edge, also updates corresponding output edge 440 void add_req( Node *n ); // Append a NEW required input 441 void add_req( Node *n0, Node *n1 ) { 442 add_req(n0); add_req(n1); } 443 void add_req( Node *n0, Node *n1, Node *n2 ) { 444 add_req(n0); add_req(n1); add_req(n2); } 445 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 446 void del_req( uint idx ); // Delete required edge & compact 447 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 448 void ins_req( uint i, Node *n ); // Insert a NEW required input 449 void set_req( uint i, Node *n ) { 450 assert( is_not_dead(n), "can not use dead node"); 451 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 452 assert( !VerifyHashTableKeys || _hash_lock == 0, 453 "remove node from hash table before modifying it"); 454 Node** p = &_in[i]; // cache this._in, across the del_out call 455 if (*p != nullptr) (*p)->del_out((Node *)this); 456 (*p) = n; 457 if (n != nullptr) n->add_out((Node *)this); 458 Compile::current()->record_modified_node(this); 459 } 460 // Light version of set_req() to init inputs after node creation. 461 void init_req( uint i, Node *n ) { 462 assert( (i == 0 && this == n) || 463 is_not_dead(n), "can not use dead node"); 464 assert( i < _cnt, "oob"); 465 assert( !VerifyHashTableKeys || _hash_lock == 0, 466 "remove node from hash table before modifying it"); 467 assert( _in[i] == nullptr, "sanity"); 468 _in[i] = n; 469 if (n != nullptr) n->add_out((Node *)this); 470 Compile::current()->record_modified_node(this); 471 } 472 // Find first occurrence of n among my edges: 473 int find_edge(Node* n); 474 int find_prec_edge(Node* n) { 475 for (uint i = req(); i < len(); i++) { 476 if (_in[i] == n) return i; 477 if (_in[i] == nullptr) { 478 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); ) 479 break; 480 } 481 } 482 return -1; 483 } 484 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr); 485 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 486 // null out all inputs to eliminate incoming Def-Use edges. 487 void disconnect_inputs(Compile* C); 488 489 // Quickly, return true if and only if I am Compile::current()->top(). 490 bool is_top() const { 491 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), ""); 492 return (_out == nullptr); 493 } 494 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 495 void setup_is_top(); 496 497 // Strip away casting. (It is depth-limited.) 498 Node* uncast(bool keep_deps = false) const; 499 // Return whether two Nodes are equivalent, after stripping casting. 500 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 501 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 502 } 503 504 // Find out of current node that matches opcode. 505 Node* find_out_with(int opcode); 506 // Return true if the current node has an out that matches opcode. 507 bool has_out_with(int opcode); 508 // Return true if the current node has an out that matches any of the opcodes. 509 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 510 511 private: 512 static Node* uncast_helper(const Node* n, bool keep_deps); 513 514 // Add an output edge to the end of the list 515 void add_out( Node *n ) { 516 if (is_top()) return; 517 if( _outcnt == _outmax ) out_grow(_outcnt); 518 _out[_outcnt++] = n; 519 } 520 // Delete an output edge 521 void del_out( Node *n ) { 522 if (is_top()) return; 523 Node** outp = &_out[_outcnt]; 524 // Find and remove n 525 do { 526 assert(outp > _out, "Missing Def-Use edge"); 527 } while (*--outp != n); 528 *outp = _out[--_outcnt]; 529 // Smash the old edge so it can't be used accidentally. 530 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 531 // Record that a change happened here. 532 #if OPTO_DU_ITERATOR_ASSERT 533 debug_only(_last_del = n; ++_del_tick); 534 #endif 535 } 536 // Close gap after removing edge. 537 void close_prec_gap_at(uint gap) { 538 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 539 uint i = gap; 540 Node *last = nullptr; 541 for (; i < _max-1; ++i) { 542 Node *next = _in[i+1]; 543 if (next == nullptr) break; 544 last = next; 545 } 546 _in[gap] = last; // Move last slot to empty one. 547 _in[i] = nullptr; // null out last slot. 548 } 549 550 public: 551 // Globally replace this node by a given new node, updating all uses. 552 void replace_by(Node* new_node); 553 // Globally replace this node by a given new node, updating all uses 554 // and cutting input edges of old node. 555 void subsume_by(Node* new_node, Compile* c) { 556 replace_by(new_node); 557 disconnect_inputs(c); 558 } 559 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 560 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 561 // Find the one non-null required input. RegionNode only 562 Node *nonnull_req() const; 563 // Add or remove precedence edges 564 void add_prec( Node *n ); 565 void rm_prec( uint i ); 566 567 // Note: prec(i) will not necessarily point to n if edge already exists. 568 void set_prec( uint i, Node *n ) { 569 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 570 assert(is_not_dead(n), "can not use dead node"); 571 assert(i >= _cnt, "not a precedence edge"); 572 // Avoid spec violation: duplicated prec edge. 573 if (_in[i] == n) return; 574 if (n == nullptr || find_prec_edge(n) != -1) { 575 rm_prec(i); 576 return; 577 } 578 if (_in[i] != nullptr) _in[i]->del_out((Node *)this); 579 _in[i] = n; 580 n->add_out((Node *)this); 581 Compile::current()->record_modified_node(this); 582 } 583 584 // Set this node's index, used by cisc_version to replace current node 585 void set_idx(uint new_idx) { 586 const node_idx_t* ref = &_idx; 587 *(node_idx_t*)ref = new_idx; 588 } 589 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 590 void swap_edges(uint i1, uint i2) { 591 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 592 // Def-Use info is unchanged 593 Node* n1 = in(i1); 594 Node* n2 = in(i2); 595 _in[i1] = n2; 596 _in[i2] = n1; 597 // If this node is in the hash table, make sure it doesn't need a rehash. 598 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 599 // Flip swapped edges flag. 600 if (has_swapped_edges()) { 601 remove_flag(Node::Flag_has_swapped_edges); 602 } else { 603 add_flag(Node::Flag_has_swapped_edges); 604 } 605 } 606 607 // Iterators over input Nodes for a Node X are written as: 608 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 609 // NOTE: Required edges can contain embedded null pointers. 610 611 //----------------- Other Node Properties 612 613 // Generate class IDs for (some) ideal nodes so that it is possible to determine 614 // the type of a node using a non-virtual method call (the method is_<Node>() below). 615 // 616 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 617 // the type of the node the ID represents; another subset of an ID's bits are reserved 618 // for the superclasses of the node represented by the ID. 619 // 620 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 621 // returns false. A.is_A() returns true. 622 // 623 // If two classes, A and B, have the same superclass, a different bit of A's class id 624 // is reserved for A's type than for B's type. That bit is specified by the third 625 // parameter in the macro DEFINE_CLASS_ID. 626 // 627 // By convention, classes with deeper hierarchy are declared first. Moreover, 628 // classes with the same hierarchy depth are sorted by usage frequency. 629 // 630 // The query method masks the bits to cut off bits of subclasses and then compares 631 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 632 // 633 // Class_MachCall=30, ClassMask_MachCall=31 634 // 12 8 4 0 635 // 0 0 0 0 0 0 0 0 1 1 1 1 0 636 // | | | | 637 // | | | Bit_Mach=2 638 // | | Bit_MachReturn=4 639 // | Bit_MachSafePoint=8 640 // Bit_MachCall=16 641 // 642 // Class_CountedLoop=56, ClassMask_CountedLoop=63 643 // 12 8 4 0 644 // 0 0 0 0 0 0 0 1 1 1 0 0 0 645 // | | | 646 // | | Bit_Region=8 647 // | Bit_Loop=16 648 // Bit_CountedLoop=32 649 650 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 651 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 652 Class_##cl = Class_##supcl + Bit_##cl , \ 653 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 654 655 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 656 // so that its values fit into 32 bits. 657 enum NodeClasses { 658 Bit_Node = 0x00000000, 659 Class_Node = 0x00000000, 660 ClassMask_Node = 0xFFFFFFFF, 661 662 DEFINE_CLASS_ID(Multi, Node, 0) 663 DEFINE_CLASS_ID(SafePoint, Multi, 0) 664 DEFINE_CLASS_ID(Call, SafePoint, 0) 665 DEFINE_CLASS_ID(CallJava, Call, 0) 666 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 667 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 668 DEFINE_CLASS_ID(CallRuntime, Call, 1) 669 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 670 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 671 DEFINE_CLASS_ID(Allocate, Call, 2) 672 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 673 DEFINE_CLASS_ID(AbstractLock, Call, 3) 674 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 675 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 676 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 677 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 678 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 679 DEFINE_CLASS_ID(Catch, PCTable, 0) 680 DEFINE_CLASS_ID(Jump, PCTable, 1) 681 DEFINE_CLASS_ID(If, MultiBranch, 1) 682 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 683 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 684 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 685 DEFINE_CLASS_ID(RangeCheck, If, 1) 686 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 687 DEFINE_CLASS_ID(ParsePredicate, If, 3) 688 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 689 DEFINE_CLASS_ID(Start, Multi, 2) 690 DEFINE_CLASS_ID(MemBar, Multi, 3) 691 DEFINE_CLASS_ID(Initialize, MemBar, 0) 692 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 693 694 DEFINE_CLASS_ID(Mach, Node, 1) 695 DEFINE_CLASS_ID(MachReturn, Mach, 0) 696 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 697 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 698 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 699 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 700 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 701 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 702 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 703 DEFINE_CLASS_ID(MachBranch, Mach, 1) 704 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 705 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 706 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 707 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 708 DEFINE_CLASS_ID(MachTemp, Mach, 3) 709 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 710 DEFINE_CLASS_ID(MachConstant, Mach, 5) 711 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 712 DEFINE_CLASS_ID(MachMerge, Mach, 6) 713 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 714 715 DEFINE_CLASS_ID(Type, Node, 2) 716 DEFINE_CLASS_ID(Phi, Type, 0) 717 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 718 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 719 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 720 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 721 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 722 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 723 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 724 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6) 725 DEFINE_CLASS_ID(CMove, Type, 3) 726 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 727 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 728 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 729 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 730 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 731 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 732 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 733 DEFINE_CLASS_ID(Vector, Type, 7) 734 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 735 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 736 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 737 DEFINE_CLASS_ID(ShiftV, Vector, 3) 738 DEFINE_CLASS_ID(CompressV, Vector, 4) 739 DEFINE_CLASS_ID(ExpandV, Vector, 5) 740 DEFINE_CLASS_ID(CompressM, Vector, 6) 741 DEFINE_CLASS_ID(Reduction, Vector, 7) 742 DEFINE_CLASS_ID(NegV, Vector, 8) 743 DEFINE_CLASS_ID(Con, Type, 8) 744 DEFINE_CLASS_ID(ConI, Con, 0) 745 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 9) 746 DEFINE_CLASS_ID(Convert, Type, 10) 747 748 749 DEFINE_CLASS_ID(Proj, Node, 3) 750 DEFINE_CLASS_ID(CatchProj, Proj, 0) 751 DEFINE_CLASS_ID(JumpProj, Proj, 1) 752 DEFINE_CLASS_ID(IfProj, Proj, 2) 753 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 754 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 755 DEFINE_CLASS_ID(Parm, Proj, 4) 756 DEFINE_CLASS_ID(MachProj, Proj, 5) 757 758 DEFINE_CLASS_ID(Mem, Node, 4) 759 DEFINE_CLASS_ID(Load, Mem, 0) 760 DEFINE_CLASS_ID(LoadVector, Load, 0) 761 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 762 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1) 763 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2) 764 DEFINE_CLASS_ID(Store, Mem, 1) 765 DEFINE_CLASS_ID(StoreVector, Store, 0) 766 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 767 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1) 768 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2) 769 DEFINE_CLASS_ID(LoadStore, Mem, 2) 770 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 771 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 772 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 773 774 DEFINE_CLASS_ID(Region, Node, 5) 775 DEFINE_CLASS_ID(Loop, Region, 0) 776 DEFINE_CLASS_ID(Root, Loop, 0) 777 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 778 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 779 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 780 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 781 782 DEFINE_CLASS_ID(Sub, Node, 6) 783 DEFINE_CLASS_ID(Cmp, Sub, 0) 784 DEFINE_CLASS_ID(FastLock, Cmp, 0) 785 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 786 DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2) 787 788 DEFINE_CLASS_ID(MergeMem, Node, 7) 789 DEFINE_CLASS_ID(Bool, Node, 8) 790 DEFINE_CLASS_ID(AddP, Node, 9) 791 DEFINE_CLASS_ID(BoxLock, Node, 10) 792 DEFINE_CLASS_ID(Add, Node, 11) 793 DEFINE_CLASS_ID(Mul, Node, 12) 794 DEFINE_CLASS_ID(ClearArray, Node, 14) 795 DEFINE_CLASS_ID(Halt, Node, 15) 796 DEFINE_CLASS_ID(Opaque1, Node, 16) 797 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0) 798 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1) 799 DEFINE_CLASS_ID(Opaque4, Node, 17) 800 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18) 801 DEFINE_CLASS_ID(Move, Node, 19) 802 DEFINE_CLASS_ID(LShift, Node, 20) 803 DEFINE_CLASS_ID(Neg, Node, 21) 804 805 _max_classes = ClassMask_Neg 806 }; 807 #undef DEFINE_CLASS_ID 808 809 // Flags are sorted by usage frequency. 810 enum NodeFlags { 811 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 812 Flag_rematerialize = 1 << 1, 813 Flag_needs_anti_dependence_check = 1 << 2, 814 Flag_is_macro = 1 << 3, 815 Flag_is_Con = 1 << 4, 816 Flag_is_cisc_alternate = 1 << 5, 817 Flag_is_dead_loop_safe = 1 << 6, 818 Flag_may_be_short_branch = 1 << 7, 819 Flag_avoid_back_to_back_before = 1 << 8, 820 Flag_avoid_back_to_back_after = 1 << 9, 821 Flag_has_call = 1 << 10, 822 Flag_has_swapped_edges = 1 << 11, 823 Flag_is_scheduled = 1 << 12, 824 Flag_is_expensive = 1 << 13, 825 Flag_is_predicated_vector = 1 << 14, 826 Flag_for_post_loop_opts_igvn = 1 << 15, 827 Flag_is_removed_by_peephole = 1 << 16, 828 Flag_is_predicated_using_blend = 1 << 17, 829 _last_flag = Flag_is_predicated_using_blend 830 }; 831 832 class PD; 833 834 private: 835 juint _class_id; 836 juint _flags; 837 838 #ifdef ASSERT 839 static juint max_flags(); 840 #endif 841 842 protected: 843 // These methods should be called from constructors only. 844 void init_class_id(juint c) { 845 _class_id = c; // cast out const 846 } 847 void init_flags(uint fl) { 848 assert(fl <= max_flags(), "invalid node flag"); 849 _flags |= fl; 850 } 851 void clear_flag(uint fl) { 852 assert(fl <= max_flags(), "invalid node flag"); 853 _flags &= ~fl; 854 } 855 856 public: 857 juint class_id() const { return _class_id; } 858 859 juint flags() const { return _flags; } 860 861 void add_flag(juint fl) { init_flags(fl); } 862 863 void remove_flag(juint fl) { clear_flag(fl); } 864 865 // Return a dense integer opcode number 866 virtual int Opcode() const; 867 868 // Virtual inherited Node size 869 virtual uint size_of() const; 870 871 // Other interesting Node properties 872 #define DEFINE_CLASS_QUERY(type) \ 873 bool is_##type() const { \ 874 return ((_class_id & ClassMask_##type) == Class_##type); \ 875 } \ 876 type##Node *as_##type() const { \ 877 assert(is_##type(), "invalid node class: %s", Name()); \ 878 return (type##Node*)this; \ 879 } \ 880 type##Node* isa_##type() const { \ 881 return (is_##type()) ? as_##type() : nullptr; \ 882 } 883 884 DEFINE_CLASS_QUERY(AbstractLock) 885 DEFINE_CLASS_QUERY(Add) 886 DEFINE_CLASS_QUERY(AddP) 887 DEFINE_CLASS_QUERY(Allocate) 888 DEFINE_CLASS_QUERY(AllocateArray) 889 DEFINE_CLASS_QUERY(ArrayCopy) 890 DEFINE_CLASS_QUERY(BaseCountedLoop) 891 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 892 DEFINE_CLASS_QUERY(Bool) 893 DEFINE_CLASS_QUERY(BoxLock) 894 DEFINE_CLASS_QUERY(Call) 895 DEFINE_CLASS_QUERY(CallDynamicJava) 896 DEFINE_CLASS_QUERY(CallJava) 897 DEFINE_CLASS_QUERY(CallLeaf) 898 DEFINE_CLASS_QUERY(CallLeafNoFP) 899 DEFINE_CLASS_QUERY(CallRuntime) 900 DEFINE_CLASS_QUERY(CallStaticJava) 901 DEFINE_CLASS_QUERY(Catch) 902 DEFINE_CLASS_QUERY(CatchProj) 903 DEFINE_CLASS_QUERY(CheckCastPP) 904 DEFINE_CLASS_QUERY(CastII) 905 DEFINE_CLASS_QUERY(CastLL) 906 DEFINE_CLASS_QUERY(ConI) 907 DEFINE_CLASS_QUERY(CastPP) 908 DEFINE_CLASS_QUERY(ConstraintCast) 909 DEFINE_CLASS_QUERY(ClearArray) 910 DEFINE_CLASS_QUERY(CMove) 911 DEFINE_CLASS_QUERY(Cmp) 912 DEFINE_CLASS_QUERY(Convert) 913 DEFINE_CLASS_QUERY(CountedLoop) 914 DEFINE_CLASS_QUERY(CountedLoopEnd) 915 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 916 DEFINE_CLASS_QUERY(DecodeN) 917 DEFINE_CLASS_QUERY(DecodeNKlass) 918 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 919 DEFINE_CLASS_QUERY(EncodeP) 920 DEFINE_CLASS_QUERY(EncodePKlass) 921 DEFINE_CLASS_QUERY(FastLock) 922 DEFINE_CLASS_QUERY(FastUnlock) 923 DEFINE_CLASS_QUERY(Halt) 924 DEFINE_CLASS_QUERY(If) 925 DEFINE_CLASS_QUERY(RangeCheck) 926 DEFINE_CLASS_QUERY(IfProj) 927 DEFINE_CLASS_QUERY(IfFalse) 928 DEFINE_CLASS_QUERY(IfTrue) 929 DEFINE_CLASS_QUERY(Initialize) 930 DEFINE_CLASS_QUERY(Jump) 931 DEFINE_CLASS_QUERY(JumpProj) 932 DEFINE_CLASS_QUERY(LongCountedLoop) 933 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 934 DEFINE_CLASS_QUERY(Load) 935 DEFINE_CLASS_QUERY(LoadStore) 936 DEFINE_CLASS_QUERY(LoadStoreConditional) 937 DEFINE_CLASS_QUERY(Lock) 938 DEFINE_CLASS_QUERY(Loop) 939 DEFINE_CLASS_QUERY(LShift) 940 DEFINE_CLASS_QUERY(Mach) 941 DEFINE_CLASS_QUERY(MachBranch) 942 DEFINE_CLASS_QUERY(MachCall) 943 DEFINE_CLASS_QUERY(MachCallDynamicJava) 944 DEFINE_CLASS_QUERY(MachCallJava) 945 DEFINE_CLASS_QUERY(MachCallLeaf) 946 DEFINE_CLASS_QUERY(MachCallRuntime) 947 DEFINE_CLASS_QUERY(MachCallStaticJava) 948 DEFINE_CLASS_QUERY(MachConstantBase) 949 DEFINE_CLASS_QUERY(MachConstant) 950 DEFINE_CLASS_QUERY(MachGoto) 951 DEFINE_CLASS_QUERY(MachIf) 952 DEFINE_CLASS_QUERY(MachJump) 953 DEFINE_CLASS_QUERY(MachNullCheck) 954 DEFINE_CLASS_QUERY(MachProj) 955 DEFINE_CLASS_QUERY(MachReturn) 956 DEFINE_CLASS_QUERY(MachSafePoint) 957 DEFINE_CLASS_QUERY(MachSpillCopy) 958 DEFINE_CLASS_QUERY(MachTemp) 959 DEFINE_CLASS_QUERY(MachMemBar) 960 DEFINE_CLASS_QUERY(MachMerge) 961 DEFINE_CLASS_QUERY(Mem) 962 DEFINE_CLASS_QUERY(MemBar) 963 DEFINE_CLASS_QUERY(MemBarStoreStore) 964 DEFINE_CLASS_QUERY(MergeMem) 965 DEFINE_CLASS_QUERY(Move) 966 DEFINE_CLASS_QUERY(Mul) 967 DEFINE_CLASS_QUERY(Multi) 968 DEFINE_CLASS_QUERY(MultiBranch) 969 DEFINE_CLASS_QUERY(Neg) 970 DEFINE_CLASS_QUERY(NegV) 971 DEFINE_CLASS_QUERY(NeverBranch) 972 DEFINE_CLASS_QUERY(Opaque1) 973 DEFINE_CLASS_QUERY(Opaque4) 974 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate) 975 DEFINE_CLASS_QUERY(OpaqueLoopInit) 976 DEFINE_CLASS_QUERY(OpaqueLoopStride) 977 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 978 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 979 DEFINE_CLASS_QUERY(Parm) 980 DEFINE_CLASS_QUERY(ParsePredicate) 981 DEFINE_CLASS_QUERY(PCTable) 982 DEFINE_CLASS_QUERY(Phi) 983 DEFINE_CLASS_QUERY(Proj) 984 DEFINE_CLASS_QUERY(Reduction) 985 DEFINE_CLASS_QUERY(Region) 986 DEFINE_CLASS_QUERY(Root) 987 DEFINE_CLASS_QUERY(SafePoint) 988 DEFINE_CLASS_QUERY(SafePointScalarObject) 989 DEFINE_CLASS_QUERY(SafePointScalarMerge) 990 DEFINE_CLASS_QUERY(Start) 991 DEFINE_CLASS_QUERY(Store) 992 DEFINE_CLASS_QUERY(Sub) 993 DEFINE_CLASS_QUERY(SubTypeCheck) 994 DEFINE_CLASS_QUERY(Type) 995 DEFINE_CLASS_QUERY(Vector) 996 DEFINE_CLASS_QUERY(VectorMaskCmp) 997 DEFINE_CLASS_QUERY(VectorUnbox) 998 DEFINE_CLASS_QUERY(VectorReinterpret) 999 DEFINE_CLASS_QUERY(CompressV) 1000 DEFINE_CLASS_QUERY(ExpandV) 1001 DEFINE_CLASS_QUERY(CompressM) 1002 DEFINE_CLASS_QUERY(LoadVector) 1003 DEFINE_CLASS_QUERY(LoadVectorGather) 1004 DEFINE_CLASS_QUERY(LoadVectorMasked) 1005 DEFINE_CLASS_QUERY(LoadVectorGatherMasked) 1006 DEFINE_CLASS_QUERY(StoreVector) 1007 DEFINE_CLASS_QUERY(StoreVectorScatter) 1008 DEFINE_CLASS_QUERY(StoreVectorMasked) 1009 DEFINE_CLASS_QUERY(StoreVectorScatterMasked) 1010 DEFINE_CLASS_QUERY(ShiftV) 1011 DEFINE_CLASS_QUERY(Unlock) 1012 1013 #undef DEFINE_CLASS_QUERY 1014 1015 // duplicate of is_MachSpillCopy() 1016 bool is_SpillCopy () const { 1017 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 1018 } 1019 1020 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 1021 // The data node which is safe to leave in dead loop during IGVN optimization. 1022 bool is_dead_loop_safe() const; 1023 1024 // is_Copy() returns copied edge index (0 or 1) 1025 uint is_Copy() const { return (_flags & Flag_is_Copy); } 1026 1027 virtual bool is_CFG() const { return false; } 1028 1029 // If this node is control-dependent on a test, can it be 1030 // rerouted to a dominating equivalent test? This is usually 1031 // true of non-CFG nodes, but can be false for operations which 1032 // depend for their correct sequencing on more than one test. 1033 // (In that case, hoisting to a dominating test may silently 1034 // skip some other important test.) 1035 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 1036 1037 // When building basic blocks, I need to have a notion of block beginning 1038 // Nodes, next block selector Nodes (block enders), and next block 1039 // projections. These calls need to work on their machine equivalents. The 1040 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 1041 bool is_block_start() const { 1042 if ( is_Region() ) 1043 return this == (const Node*)in(0); 1044 else 1045 return is_Start(); 1046 } 1047 1048 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 1049 // Goto and Return. This call also returns the block ending Node. 1050 virtual const Node *is_block_proj() const; 1051 1052 // The node is a "macro" node which needs to be expanded before matching 1053 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 1054 // The node is expensive: the best control is set during loop opts 1055 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; } 1056 // The node's original edge position is swapped. 1057 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; } 1058 1059 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1060 1061 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1062 1063 // Used in lcm to mark nodes that have scheduled 1064 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1065 1066 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1067 1068 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)? 1069 static bool may_be_loop_entry(Node* n) { 1070 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate(); 1071 } 1072 1073 //----------------- Optimization 1074 1075 // Get the worst-case Type output for this Node. 1076 virtual const class Type *bottom_type() const; 1077 1078 // If we find a better type for a node, try to record it permanently. 1079 // Return true if this node actually changed. 1080 // Be sure to do the hash_delete game in the "rehash" variant. 1081 void raise_bottom_type(const Type* new_type); 1082 1083 // Get the address type with which this node uses and/or defs memory, 1084 // or null if none. The address type is conservatively wide. 1085 // Returns non-null for calls, membars, loads, stores, etc. 1086 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1087 virtual const class TypePtr *adr_type() const { return nullptr; } 1088 1089 // Return an existing node which computes the same function as this node. 1090 // The optimistic combined algorithm requires this to return a Node which 1091 // is a small number of steps away (e.g., one of my inputs). 1092 virtual Node* Identity(PhaseGVN* phase); 1093 1094 // Return the set of values this Node can take on at runtime. 1095 virtual const Type* Value(PhaseGVN* phase) const; 1096 1097 // Return a node which is more "ideal" than the current node. 1098 // The invariants on this call are subtle. If in doubt, read the 1099 // treatise in node.cpp above the default implementation AND TEST WITH 1100 // -XX:VerifyIterativeGVN=1 1101 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1102 1103 // Some nodes have specific Ideal subgraph transformations only if they are 1104 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1105 // for the transformations to happen. 1106 bool has_special_unique_user() const; 1107 1108 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1109 Node* find_exact_control(Node* ctrl); 1110 1111 // Results of the dominance analysis. 1112 enum class DomResult { 1113 NotDominate, // 'this' node does not dominate 'sub'. 1114 Dominate, // 'this' node dominates or is equal to 'sub'. 1115 EncounteredDeadCode // Result is undefined due to encountering dead code. 1116 }; 1117 // Check if 'this' node dominates or equal to 'sub'. 1118 DomResult dominates(Node* sub, Node_List &nlist); 1119 1120 protected: 1121 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1122 public: 1123 1124 // See if there is valid pipeline info 1125 static const Pipeline *pipeline_class(); 1126 virtual const Pipeline *pipeline() const; 1127 1128 // Compute the latency from the def to this instruction of the ith input node 1129 uint latency(uint i); 1130 1131 // Hash & compare functions, for pessimistic value numbering 1132 1133 // If the hash function returns the special sentinel value NO_HASH, 1134 // the node is guaranteed never to compare equal to any other node. 1135 // If we accidentally generate a hash with value NO_HASH the node 1136 // won't go into the table and we'll lose a little optimization. 1137 static const uint NO_HASH = 0; 1138 virtual uint hash() const; 1139 virtual bool cmp( const Node &n ) const; 1140 1141 // Operation appears to be iteratively computed (such as an induction variable) 1142 // It is possible for this operation to return false for a loop-varying 1143 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1144 bool is_iteratively_computed(); 1145 1146 // Determine if a node is a counted loop induction variable. 1147 // NOTE: The method is defined in "loopnode.cpp". 1148 bool is_cloop_ind_var() const; 1149 1150 // Return a node with opcode "opc" and same inputs as "this" if one can 1151 // be found; Otherwise return null; 1152 Node* find_similar(int opc); 1153 1154 // Return the unique control out if only one. Null if none or more than one. 1155 Node* unique_ctrl_out_or_null() const; 1156 // Return the unique control out. Asserts if none or more than one control out. 1157 Node* unique_ctrl_out() const; 1158 1159 // Set control or add control as precedence edge 1160 void ensure_control_or_add_prec(Node* c); 1161 1162 // Visit boundary uses of the node and apply a callback function for each. 1163 // Recursively traverse uses, stopping and applying the callback when 1164 // reaching a boundary node, defined by is_boundary. Note: the function 1165 // definition appears after the complete type definition of Node_List. 1166 template <typename Callback, typename Check> 1167 void visit_uses(Callback callback, Check is_boundary) const; 1168 1169 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses 1170 // (Load and range check CastII nodes). 1171 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication). 1172 virtual Node* pin_array_access_node() const { 1173 return nullptr; 1174 } 1175 1176 //----------------- Code Generation 1177 1178 // Ideal register class for Matching. Zero means unmatched instruction 1179 // (these are cloned instead of converted to machine nodes). 1180 virtual uint ideal_reg() const; 1181 1182 static const uint NotAMachineReg; // must be > max. machine register 1183 1184 // Do we Match on this edge index or not? Generally false for Control 1185 // and true for everything else. Weird for calls & returns. 1186 virtual uint match_edge(uint idx) const; 1187 1188 // Register class output is returned in 1189 virtual const RegMask &out_RegMask() const; 1190 // Register class input is expected in 1191 virtual const RegMask &in_RegMask(uint) const; 1192 // Should we clone rather than spill this instruction? 1193 bool rematerialize() const; 1194 1195 // Return JVM State Object if this Node carries debug info, or null otherwise 1196 virtual JVMState* jvms() const; 1197 1198 // Print as assembly 1199 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1200 // Emit bytes using C2_MacroAssembler 1201 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const; 1202 // Size of instruction in bytes 1203 virtual uint size(PhaseRegAlloc *ra_) const; 1204 1205 // Convenience function to extract an integer constant from a node. 1206 // If it is not an integer constant (either Con, CastII, or Mach), 1207 // return value_if_unknown. 1208 jint find_int_con(jint value_if_unknown) const { 1209 const TypeInt* t = find_int_type(); 1210 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1211 } 1212 // Return the constant, knowing it is an integer constant already 1213 jint get_int() const { 1214 const TypeInt* t = find_int_type(); 1215 guarantee(t != nullptr, "must be con"); 1216 return t->get_con(); 1217 } 1218 // Here's where the work is done. Can produce non-constant int types too. 1219 const TypeInt* find_int_type() const; 1220 const TypeInteger* find_integer_type(BasicType bt) const; 1221 1222 // Same thing for long (and intptr_t, via type.hpp): 1223 jlong get_long() const { 1224 const TypeLong* t = find_long_type(); 1225 guarantee(t != nullptr, "must be con"); 1226 return t->get_con(); 1227 } 1228 jlong find_long_con(jint value_if_unknown) const { 1229 const TypeLong* t = find_long_type(); 1230 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1231 } 1232 const TypeLong* find_long_type() const; 1233 1234 jlong get_integer_as_long(BasicType bt) const { 1235 const TypeInteger* t = find_integer_type(bt); 1236 guarantee(t != nullptr && t->is_con(), "must be con"); 1237 return t->get_con_as_long(bt); 1238 } 1239 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1240 const TypeInteger* t = find_integer_type(bt); 1241 if (t == nullptr || !t->is_con()) return value_if_unknown; 1242 return t->get_con_as_long(bt); 1243 } 1244 const TypePtr* get_ptr_type() const; 1245 1246 // These guys are called by code generated by ADLC: 1247 intptr_t get_ptr() const; 1248 intptr_t get_narrowcon() const; 1249 jdouble getd() const; 1250 jfloat getf() const; 1251 1252 // Nodes which are pinned into basic blocks 1253 virtual bool pinned() const { return false; } 1254 1255 // Nodes which use memory without consuming it, hence need antidependences 1256 // More specifically, needs_anti_dependence_check returns true iff the node 1257 // (a) does a load, and (b) does not perform a store (except perhaps to a 1258 // stack slot or some other unaliased location). 1259 bool needs_anti_dependence_check() const; 1260 1261 // Return which operand this instruction may cisc-spill. In other words, 1262 // return operand position that can convert from reg to memory access 1263 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1264 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1265 1266 // Whether this is a memory-writing machine node. 1267 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1268 1269 // Whether this is a memory phi node 1270 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; } 1271 1272 //----------------- Printing, etc 1273 #ifndef PRODUCT 1274 public: 1275 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1276 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1277 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const; 1278 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty 1279 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr) 1280 class DumpConfig { 1281 public: 1282 // overridden to implement coloring of node idx 1283 virtual void pre_dump(outputStream *st, const Node* n) = 0; 1284 virtual void post_dump(outputStream *st) = 0; 1285 }; 1286 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; 1287 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const; 1288 void dump() const; // print node with newline 1289 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node. 1290 void dump(int depth) const; // Print this node, recursively to depth d 1291 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1292 void dump_comp() const; // Print this node in compact representation. 1293 // Print this node in compact representation. 1294 void dump_comp(const char* suffix, outputStream *st = tty) const; 1295 private: 1296 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info 1297 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info 1298 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info 1299 public: 1300 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1301 // Print compact per-node info 1302 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1303 1304 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1305 1306 // This call defines a class-unique string used to identify class instances 1307 virtual const char *Name() const; 1308 1309 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1310 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call 1311 #endif 1312 #ifdef ASSERT 1313 void verify_construction(); 1314 bool verify_jvms(const JVMState* jvms) const; 1315 1316 Node* _debug_orig; // Original version of this, if any. 1317 Node* debug_orig() const { return _debug_orig; } 1318 void set_debug_orig(Node* orig); // _debug_orig = orig 1319 void dump_orig(outputStream *st, bool print_key = true) const; 1320 1321 uint64_t _debug_idx; // Unique value assigned to every node. 1322 uint64_t debug_idx() const { return _debug_idx; } 1323 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; } 1324 1325 int _hash_lock; // Barrier to modifications of nodes in the hash table 1326 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1327 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1328 1329 static void init_NodeProperty(); 1330 1331 #if OPTO_DU_ITERATOR_ASSERT 1332 const Node* _last_del; // The last deleted node. 1333 uint _del_tick; // Bumped when a deletion happens.. 1334 #endif 1335 #endif 1336 }; 1337 1338 inline bool not_a_node(const Node* n) { 1339 if (n == nullptr) return true; 1340 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1341 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1342 return false; 1343 } 1344 1345 //----------------------------------------------------------------------------- 1346 // Iterators over DU info, and associated Node functions. 1347 1348 #if OPTO_DU_ITERATOR_ASSERT 1349 1350 // Common code for assertion checking on DU iterators. 1351 class DUIterator_Common { 1352 #ifdef ASSERT 1353 protected: 1354 bool _vdui; // cached value of VerifyDUIterators 1355 const Node* _node; // the node containing the _out array 1356 uint _outcnt; // cached node->_outcnt 1357 uint _del_tick; // cached node->_del_tick 1358 Node* _last; // last value produced by the iterator 1359 1360 void sample(const Node* node); // used by c'tor to set up for verifies 1361 void verify(const Node* node, bool at_end_ok = false); 1362 void verify_resync(); 1363 void reset(const DUIterator_Common& that); 1364 1365 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1366 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1367 #else 1368 #define I_VDUI_ONLY(i,x) { } 1369 #endif //ASSERT 1370 }; 1371 1372 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1373 1374 // Default DU iterator. Allows appends onto the out array. 1375 // Allows deletion from the out array only at the current point. 1376 // Usage: 1377 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1378 // Node* y = x->out(i); 1379 // ... 1380 // } 1381 // Compiles in product mode to a unsigned integer index, which indexes 1382 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1383 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1384 // before continuing the loop. You must delete only the last-produced 1385 // edge. You must delete only a single copy of the last-produced edge, 1386 // or else you must delete all copies at once (the first time the edge 1387 // is produced by the iterator). 1388 class DUIterator : public DUIterator_Common { 1389 friend class Node; 1390 1391 // This is the index which provides the product-mode behavior. 1392 // Whatever the product-mode version of the system does to the 1393 // DUI index is done to this index. All other fields in 1394 // this class are used only for assertion checking. 1395 uint _idx; 1396 1397 #ifdef ASSERT 1398 uint _refresh_tick; // Records the refresh activity. 1399 1400 void sample(const Node* node); // Initialize _refresh_tick etc. 1401 void verify(const Node* node, bool at_end_ok = false); 1402 void verify_increment(); // Verify an increment operation. 1403 void verify_resync(); // Verify that we can back up over a deletion. 1404 void verify_finish(); // Verify that the loop terminated properly. 1405 void refresh(); // Resample verification info. 1406 void reset(const DUIterator& that); // Resample after assignment. 1407 #endif 1408 1409 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1410 { _idx = 0; debug_only(sample(node)); } 1411 1412 public: 1413 // initialize to garbage; clear _vdui to disable asserts 1414 DUIterator() 1415 { /*initialize to garbage*/ debug_only(_vdui = false); } 1416 1417 DUIterator(const DUIterator& that) 1418 { _idx = that._idx; debug_only(_vdui = false; reset(that)); } 1419 1420 void operator++(int dummy_to_specify_postfix_op) 1421 { _idx++; VDUI_ONLY(verify_increment()); } 1422 1423 void operator--() 1424 { VDUI_ONLY(verify_resync()); --_idx; } 1425 1426 ~DUIterator() 1427 { VDUI_ONLY(verify_finish()); } 1428 1429 void operator=(const DUIterator& that) 1430 { _idx = that._idx; debug_only(reset(that)); } 1431 }; 1432 1433 DUIterator Node::outs() const 1434 { return DUIterator(this, 0); } 1435 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1436 { I_VDUI_ONLY(i, i.refresh()); return i; } 1437 bool Node::has_out(DUIterator& i) const 1438 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1439 Node* Node::out(DUIterator& i) const 1440 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1441 1442 1443 // Faster DU iterator. Disallows insertions into the out array. 1444 // Allows deletion from the out array only at the current point. 1445 // Usage: 1446 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1447 // Node* y = x->fast_out(i); 1448 // ... 1449 // } 1450 // Compiles in product mode to raw Node** pointer arithmetic, with 1451 // no reloading of pointers from the original node x. If you delete, 1452 // you must perform "--i; --imax" just before continuing the loop. 1453 // If you delete multiple copies of the same edge, you must decrement 1454 // imax, but not i, multiple times: "--i, imax -= num_edges". 1455 class DUIterator_Fast : public DUIterator_Common { 1456 friend class Node; 1457 friend class DUIterator_Last; 1458 1459 // This is the pointer which provides the product-mode behavior. 1460 // Whatever the product-mode version of the system does to the 1461 // DUI pointer is done to this pointer. All other fields in 1462 // this class are used only for assertion checking. 1463 Node** _outp; 1464 1465 #ifdef ASSERT 1466 void verify(const Node* node, bool at_end_ok = false); 1467 void verify_limit(); 1468 void verify_resync(); 1469 void verify_relimit(uint n); 1470 void reset(const DUIterator_Fast& that); 1471 #endif 1472 1473 // Note: offset must be signed, since -1 is sometimes passed 1474 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1475 { _outp = node->_out + offset; debug_only(sample(node)); } 1476 1477 public: 1478 // initialize to garbage; clear _vdui to disable asserts 1479 DUIterator_Fast() 1480 { /*initialize to garbage*/ debug_only(_vdui = false); } 1481 1482 DUIterator_Fast(const DUIterator_Fast& that) 1483 { _outp = that._outp; debug_only(_vdui = false; reset(that)); } 1484 1485 void operator++(int dummy_to_specify_postfix_op) 1486 { _outp++; VDUI_ONLY(verify(_node, true)); } 1487 1488 void operator--() 1489 { VDUI_ONLY(verify_resync()); --_outp; } 1490 1491 void operator-=(uint n) // applied to the limit only 1492 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1493 1494 bool operator<(DUIterator_Fast& limit) { 1495 I_VDUI_ONLY(*this, this->verify(_node, true)); 1496 I_VDUI_ONLY(limit, limit.verify_limit()); 1497 return _outp < limit._outp; 1498 } 1499 1500 void operator=(const DUIterator_Fast& that) 1501 { _outp = that._outp; debug_only(reset(that)); } 1502 }; 1503 1504 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1505 // Assign a limit pointer to the reference argument: 1506 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1507 // Return the base pointer: 1508 return DUIterator_Fast(this, 0); 1509 } 1510 Node* Node::fast_out(DUIterator_Fast& i) const { 1511 I_VDUI_ONLY(i, i.verify(this)); 1512 return debug_only(i._last=) *i._outp; 1513 } 1514 1515 1516 // Faster DU iterator. Requires each successive edge to be removed. 1517 // Does not allow insertion of any edges. 1518 // Usage: 1519 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1520 // Node* y = x->last_out(i); 1521 // ... 1522 // } 1523 // Compiles in product mode to raw Node** pointer arithmetic, with 1524 // no reloading of pointers from the original node x. 1525 class DUIterator_Last : private DUIterator_Fast { 1526 friend class Node; 1527 1528 #ifdef ASSERT 1529 void verify(const Node* node, bool at_end_ok = false); 1530 void verify_limit(); 1531 void verify_step(uint num_edges); 1532 #endif 1533 1534 // Note: offset must be signed, since -1 is sometimes passed 1535 DUIterator_Last(const Node* node, ptrdiff_t offset) 1536 : DUIterator_Fast(node, offset) { } 1537 1538 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1539 void operator<(int) {} // do not use 1540 1541 public: 1542 DUIterator_Last() { } 1543 // initialize to garbage 1544 1545 DUIterator_Last(const DUIterator_Last& that) = default; 1546 1547 void operator--() 1548 { _outp--; VDUI_ONLY(verify_step(1)); } 1549 1550 void operator-=(uint n) 1551 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1552 1553 bool operator>=(DUIterator_Last& limit) { 1554 I_VDUI_ONLY(*this, this->verify(_node, true)); 1555 I_VDUI_ONLY(limit, limit.verify_limit()); 1556 return _outp >= limit._outp; 1557 } 1558 1559 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1560 }; 1561 1562 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1563 // Assign a limit pointer to the reference argument: 1564 imin = DUIterator_Last(this, 0); 1565 // Return the initial pointer: 1566 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1567 } 1568 Node* Node::last_out(DUIterator_Last& i) const { 1569 I_VDUI_ONLY(i, i.verify(this)); 1570 return debug_only(i._last=) *i._outp; 1571 } 1572 1573 #endif //OPTO_DU_ITERATOR_ASSERT 1574 1575 #undef I_VDUI_ONLY 1576 #undef VDUI_ONLY 1577 1578 // An Iterator that truly follows the iterator pattern. Doesn't 1579 // support deletion but could be made to. 1580 // 1581 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1582 // Node* m = i.get(); 1583 // 1584 class SimpleDUIterator : public StackObj { 1585 private: 1586 Node* node; 1587 DUIterator_Fast imax; 1588 DUIterator_Fast i; 1589 public: 1590 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1591 bool has_next() { return i < imax; } 1592 void next() { i++; } 1593 Node* get() { return node->fast_out(i); } 1594 }; 1595 1596 1597 //----------------------------------------------------------------------------- 1598 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1599 // Abstractly provides an infinite array of Node*'s, initialized to null. 1600 // Note that the constructor just zeros things, and since I use Arena 1601 // allocation I do not need a destructor to reclaim storage. 1602 class Node_Array : public AnyObj { 1603 friend class VMStructs; 1604 protected: 1605 Arena* _a; // Arena to allocate in 1606 uint _max; 1607 Node** _nodes; 1608 ReallocMark _nesting; // Safety checks for arena reallocation 1609 1610 void grow( uint i ); // Grow array node to fit 1611 public: 1612 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1613 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1614 clear(); 1615 } 1616 Node_Array() : Node_Array(Thread::current()->resource_area()) {} 1617 1618 NONCOPYABLE(Node_Array); 1619 Node_Array& operator=(Node_Array&&) = delete; 1620 // Allow move constructor for && (eg. capture return of function) 1621 Node_Array(Node_Array&&) = default; 1622 1623 Node *operator[] ( uint i ) const // Lookup, or null for not mapped 1624 { return (i<_max) ? _nodes[i] : (Node*)nullptr; } 1625 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1626 Node** adr() { return _nodes; } 1627 // Extend the mapping: index i maps to Node *n. 1628 void map( uint i, Node *n ) { grow(i); _nodes[i] = n; } 1629 void insert( uint i, Node *n ); 1630 void remove( uint i ); // Remove, preserving order 1631 // Clear all entries in _nodes to null but keep storage 1632 void clear() { 1633 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1634 } 1635 1636 uint max() const { return _max; } 1637 void dump() const; 1638 }; 1639 1640 class Node_List : public Node_Array { 1641 friend class VMStructs; 1642 uint _cnt; 1643 public: 1644 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1645 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1646 1647 NONCOPYABLE(Node_List); 1648 Node_List& operator=(Node_List&&) = delete; 1649 // Allow move constructor for && (eg. capture return of function) 1650 Node_List(Node_List&&) = default; 1651 1652 bool contains(const Node* n) const { 1653 for (uint e = 0; e < size(); e++) { 1654 if (at(e) == n) return true; 1655 } 1656 return false; 1657 } 1658 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1659 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1660 void push( Node *b ) { map(_cnt++,b); } 1661 void yank( Node *n ); // Find and remove 1662 Node *pop() { return _nodes[--_cnt]; } 1663 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1664 void copy(const Node_List& from) { 1665 if (from._max > _max) { 1666 grow(from._max); 1667 } 1668 _cnt = from._cnt; 1669 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1670 } 1671 1672 uint size() const { return _cnt; } 1673 void dump() const; 1674 void dump_simple() const; 1675 }; 1676 1677 // Definition must appear after complete type definition of Node_List 1678 template <typename Callback, typename Check> 1679 void Node::visit_uses(Callback callback, Check is_boundary) const { 1680 ResourceMark rm; 1681 VectorSet visited; 1682 Node_List worklist; 1683 1684 // The initial worklist consists of the direct uses 1685 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) { 1686 Node* out = fast_out(k); 1687 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1688 } 1689 1690 while (worklist.size() > 0) { 1691 Node* use = worklist.pop(); 1692 // Apply callback on boundary nodes 1693 if (is_boundary(use)) { 1694 callback(use); 1695 } else { 1696 // Not a boundary node, continue search 1697 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1698 Node* out = use->fast_out(k); 1699 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1700 } 1701 } 1702 } 1703 } 1704 1705 1706 //------------------------------Unique_Node_List------------------------------- 1707 class Unique_Node_List : public Node_List { 1708 friend class VMStructs; 1709 VectorSet _in_worklist; 1710 uint _clock_index; // Index in list where to pop from next 1711 public: 1712 Unique_Node_List() : Node_List(), _clock_index(0) {} 1713 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1714 1715 NONCOPYABLE(Unique_Node_List); 1716 Unique_Node_List& operator=(Unique_Node_List&&) = delete; 1717 // Allow move constructor for && (eg. capture return of function) 1718 Unique_Node_List(Unique_Node_List&&) = default; 1719 1720 void remove( Node *n ); 1721 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } 1722 VectorSet& member_set(){ return _in_worklist; } 1723 1724 void push(Node* b) { 1725 if( !_in_worklist.test_set(b->_idx) ) 1726 Node_List::push(b); 1727 } 1728 void push_non_cfg_inputs_of(const Node* node) { 1729 for (uint i = 1; i < node->req(); i++) { 1730 Node* input = node->in(i); 1731 if (input != nullptr && !input->is_CFG()) { 1732 push(input); 1733 } 1734 } 1735 } 1736 1737 void push_outputs_of(const Node* node) { 1738 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) { 1739 Node* output = node->fast_out(i); 1740 push(output); 1741 } 1742 } 1743 1744 Node *pop() { 1745 if( _clock_index >= size() ) _clock_index = 0; 1746 Node *b = at(_clock_index); 1747 map( _clock_index, Node_List::pop()); 1748 if (size() != 0) _clock_index++; // Always start from 0 1749 _in_worklist.remove(b->_idx); 1750 return b; 1751 } 1752 Node *remove(uint i) { 1753 Node *b = Node_List::at(i); 1754 _in_worklist.remove(b->_idx); 1755 map(i,Node_List::pop()); 1756 return b; 1757 } 1758 void yank(Node *n) { 1759 _in_worklist.remove(n->_idx); 1760 Node_List::yank(n); 1761 } 1762 void clear() { 1763 _in_worklist.clear(); // Discards storage but grows automatically 1764 Node_List::clear(); 1765 _clock_index = 0; 1766 } 1767 void ensure_empty() { 1768 assert(size() == 0, "must be empty"); 1769 clear(); // just in case 1770 } 1771 1772 // Used after parsing to remove useless nodes before Iterative GVN 1773 void remove_useless_nodes(VectorSet& useful); 1774 1775 // If the idx of the Nodes change, we must recompute the VectorSet 1776 void recompute_idx_set() { 1777 _in_worklist.clear(); 1778 for (uint i = 0; i < size(); i++) { 1779 Node* n = at(i); 1780 _in_worklist.set(n->_idx); 1781 } 1782 } 1783 1784 #ifdef ASSERT 1785 bool is_subset_of(Unique_Node_List& other) { 1786 for (uint i = 0; i < size(); i++) { 1787 Node* n = at(i); 1788 if (!other.member(n)) { 1789 return false; 1790 } 1791 } 1792 return true; 1793 } 1794 #endif 1795 1796 bool contains(const Node* n) const { 1797 fatal("use faster member() instead"); 1798 return false; 1799 } 1800 1801 #ifndef PRODUCT 1802 void print_set() const { _in_worklist.print(); } 1803 #endif 1804 }; 1805 1806 // Unique_Mixed_Node_List 1807 // unique: nodes are added only once 1808 // mixed: allow new and old nodes 1809 class Unique_Mixed_Node_List : public ResourceObj { 1810 public: 1811 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {} 1812 1813 void add(Node* node) { 1814 if (not_a_node(node)) { 1815 return; // Gracefully handle null, -1, 0xabababab, etc. 1816 } 1817 if (_visited_set[node] == nullptr) { 1818 _visited_set.Insert(node, node); 1819 _worklist.push(node); 1820 } 1821 } 1822 1823 Node* operator[] (uint i) const { 1824 return _worklist[i]; 1825 } 1826 1827 size_t size() { 1828 return _worklist.size(); 1829 } 1830 1831 private: 1832 Dict _visited_set; 1833 Node_List _worklist; 1834 }; 1835 1836 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1837 inline void Compile::record_for_igvn(Node* n) { 1838 _igvn_worklist->push(n); 1839 } 1840 1841 // Inline definition of Compile::remove_for_igvn must be deferred to this point. 1842 inline void Compile::remove_for_igvn(Node* n) { 1843 _igvn_worklist->remove(n); 1844 } 1845 1846 //------------------------------Node_Stack------------------------------------- 1847 class Node_Stack { 1848 friend class VMStructs; 1849 protected: 1850 struct INode { 1851 Node *node; // Processed node 1852 uint indx; // Index of next node's child 1853 }; 1854 INode *_inode_top; // tos, stack grows up 1855 INode *_inode_max; // End of _inodes == _inodes + _max 1856 INode *_inodes; // Array storage for the stack 1857 Arena *_a; // Arena to allocate in 1858 ReallocMark _nesting; // Safety checks for arena reallocation 1859 void grow(); 1860 public: 1861 Node_Stack(int size) { 1862 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1863 _a = Thread::current()->resource_area(); 1864 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1865 _inode_max = _inodes + max; 1866 _inode_top = _inodes - 1; // stack is empty 1867 } 1868 1869 Node_Stack(Arena *a, int size) : _a(a) { 1870 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1871 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1872 _inode_max = _inodes + max; 1873 _inode_top = _inodes - 1; // stack is empty 1874 } 1875 1876 void pop() { 1877 assert(_inode_top >= _inodes, "node stack underflow"); 1878 --_inode_top; 1879 } 1880 void push(Node *n, uint i) { 1881 ++_inode_top; 1882 grow(); 1883 INode *top = _inode_top; // optimization 1884 top->node = n; 1885 top->indx = i; 1886 } 1887 Node *node() const { 1888 return _inode_top->node; 1889 } 1890 Node* node_at(uint i) const { 1891 assert(_inodes + i <= _inode_top, "in range"); 1892 return _inodes[i].node; 1893 } 1894 uint index() const { 1895 return _inode_top->indx; 1896 } 1897 uint index_at(uint i) const { 1898 assert(_inodes + i <= _inode_top, "in range"); 1899 return _inodes[i].indx; 1900 } 1901 void set_node(Node *n) { 1902 _inode_top->node = n; 1903 } 1904 void set_index(uint i) { 1905 _inode_top->indx = i; 1906 } 1907 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1908 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1909 bool is_nonempty() const { return (_inode_top >= _inodes); } 1910 bool is_empty() const { return (_inode_top < _inodes); } 1911 void clear() { _inode_top = _inodes - 1; } // retain storage 1912 1913 // Node_Stack is used to map nodes. 1914 Node* find(uint idx) const; 1915 1916 NONCOPYABLE(Node_Stack); 1917 }; 1918 1919 1920 //-----------------------------Node_Notes-------------------------------------- 1921 // Debugging or profiling annotations loosely and sparsely associated 1922 // with some nodes. See Compile::node_notes_at for the accessor. 1923 class Node_Notes { 1924 friend class VMStructs; 1925 JVMState* _jvms; 1926 1927 public: 1928 Node_Notes(JVMState* jvms = nullptr) { 1929 _jvms = jvms; 1930 } 1931 1932 JVMState* jvms() { return _jvms; } 1933 void set_jvms(JVMState* x) { _jvms = x; } 1934 1935 // True if there is nothing here. 1936 bool is_clear() { 1937 return (_jvms == nullptr); 1938 } 1939 1940 // Make there be nothing here. 1941 void clear() { 1942 _jvms = nullptr; 1943 } 1944 1945 // Make a new, clean node notes. 1946 static Node_Notes* make(Compile* C) { 1947 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1948 nn->clear(); 1949 return nn; 1950 } 1951 1952 Node_Notes* clone(Compile* C) { 1953 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1954 (*nn) = (*this); 1955 return nn; 1956 } 1957 1958 // Absorb any information from source. 1959 bool update_from(Node_Notes* source) { 1960 bool changed = false; 1961 if (source != nullptr) { 1962 if (source->jvms() != nullptr) { 1963 set_jvms(source->jvms()); 1964 changed = true; 1965 } 1966 } 1967 return changed; 1968 } 1969 }; 1970 1971 // Inlined accessors for Compile::node_nodes that require the preceding class: 1972 inline Node_Notes* 1973 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 1974 int idx, bool can_grow) { 1975 assert(idx >= 0, "oob"); 1976 int block_idx = (idx >> _log2_node_notes_block_size); 1977 int grow_by = (block_idx - (arr == nullptr? 0: arr->length())); 1978 if (grow_by >= 0) { 1979 if (!can_grow) return nullptr; 1980 grow_node_notes(arr, grow_by + 1); 1981 } 1982 if (arr == nullptr) return nullptr; 1983 // (Every element of arr is a sub-array of length _node_notes_block_size.) 1984 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 1985 } 1986 1987 inline bool 1988 Compile::set_node_notes_at(int idx, Node_Notes* value) { 1989 if (value == nullptr || value->is_clear()) 1990 return false; // nothing to write => write nothing 1991 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 1992 assert(loc != nullptr, ""); 1993 return loc->update_from(value); 1994 } 1995 1996 1997 //------------------------------TypeNode--------------------------------------- 1998 // Node with a Type constant. 1999 class TypeNode : public Node { 2000 protected: 2001 virtual uint hash() const; // Check the type 2002 virtual bool cmp( const Node &n ) const; 2003 virtual uint size_of() const; // Size is bigger 2004 const Type* const _type; 2005 public: 2006 void set_type(const Type* t) { 2007 assert(t != nullptr, "sanity"); 2008 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 2009 *(const Type**)&_type = t; // cast away const-ness 2010 // If this node is in the hash table, make sure it doesn't need a rehash. 2011 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 2012 } 2013 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 2014 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 2015 init_class_id(Class_Type); 2016 } 2017 virtual const Type* Value(PhaseGVN* phase) const; 2018 virtual const Type *bottom_type() const; 2019 virtual uint ideal_reg() const; 2020 #ifndef PRODUCT 2021 virtual void dump_spec(outputStream *st) const; 2022 virtual void dump_compact_spec(outputStream *st) const; 2023 #endif 2024 }; 2025 2026 #include "opto/opcodes.hpp" 2027 2028 #define Op_IL(op) \ 2029 inline int Op_ ## op(BasicType bt) { \ 2030 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 2031 if (bt == T_INT) { \ 2032 return Op_## op ## I; \ 2033 } \ 2034 return Op_## op ## L; \ 2035 } 2036 2037 Op_IL(Add) 2038 Op_IL(Sub) 2039 Op_IL(Mul) 2040 Op_IL(URShift) 2041 Op_IL(LShift) 2042 Op_IL(Xor) 2043 Op_IL(Cmp) 2044 2045 inline int Op_ConIL(BasicType bt) { 2046 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2047 if (bt == T_INT) { 2048 return Op_ConI; 2049 } 2050 return Op_ConL; 2051 } 2052 2053 inline int Op_Cmp_unsigned(BasicType bt) { 2054 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2055 if (bt == T_INT) { 2056 return Op_CmpU; 2057 } 2058 return Op_CmpUL; 2059 } 2060 2061 inline int Op_Cast(BasicType bt) { 2062 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2063 if (bt == T_INT) { 2064 return Op_CastII; 2065 } 2066 return Op_CastLL; 2067 } 2068 2069 inline int Op_DivIL(BasicType bt, bool is_unsigned) { 2070 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2071 if (bt == T_INT) { 2072 if (is_unsigned) { 2073 return Op_UDivI; 2074 } else { 2075 return Op_DivI; 2076 } 2077 } 2078 if (is_unsigned) { 2079 return Op_UDivL; 2080 } else { 2081 return Op_DivL; 2082 } 2083 } 2084 2085 inline int Op_DivModIL(BasicType bt, bool is_unsigned) { 2086 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2087 if (bt == T_INT) { 2088 if (is_unsigned) { 2089 return Op_UDivModI; 2090 } else { 2091 return Op_DivModI; 2092 } 2093 } 2094 if (is_unsigned) { 2095 return Op_UDivModL; 2096 } else { 2097 return Op_DivModL; 2098 } 2099 } 2100 2101 #endif // SHARE_OPTO_NODE_HPP