1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_NODE_HPP 27 #define SHARE_OPTO_NODE_HPP 28 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 #include "utilities/copy.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 // Optimization - Graph Style 37 38 39 class AbstractLockNode; 40 class AddNode; 41 class AddPNode; 42 class AliasInfo; 43 class AllocateArrayNode; 44 class AllocateNode; 45 class ArrayCopyNode; 46 class BaseCountedLoopNode; 47 class BaseCountedLoopEndNode; 48 class BlackholeNode; 49 class Block; 50 class BoolNode; 51 class BoxLockNode; 52 class CMoveNode; 53 class CallDynamicJavaNode; 54 class CallJavaNode; 55 class CallLeafNode; 56 class CallLeafNoFPNode; 57 class CallNode; 58 class CallRuntimeNode; 59 class CallStaticJavaNode; 60 class CastFFNode; 61 class CastHHNode; 62 class CastDDNode; 63 class CastVVNode; 64 class CastIINode; 65 class CastLLNode; 66 class CastPPNode; 67 class CatchNode; 68 class CatchProjNode; 69 class CheckCastPPNode; 70 class ClearArrayNode; 71 class CmpNode; 72 class CodeBuffer; 73 class ConstraintCastNode; 74 class ConNode; 75 class ConINode; 76 class ConvertNode; 77 class CompareAndSwapNode; 78 class CompareAndExchangeNode; 79 class CountedLoopNode; 80 class CountedLoopEndNode; 81 class DecodeNarrowPtrNode; 82 class DecodeNNode; 83 class DecodeNKlassNode; 84 class EncodeNarrowPtrNode; 85 class EncodePNode; 86 class EncodePKlassNode; 87 class FastLockNode; 88 class FastUnlockNode; 89 class HaltNode; 90 class IfNode; 91 class IfProjNode; 92 class IfFalseNode; 93 class IfTrueNode; 94 class InitializeNode; 95 class JVMState; 96 class JumpNode; 97 class JumpProjNode; 98 class LoadNode; 99 class LoadStoreNode; 100 class LoadStoreConditionalNode; 101 class LockNode; 102 class LongCountedLoopNode; 103 class LongCountedLoopEndNode; 104 class LoopNode; 105 class LShiftNode; 106 class MachBranchNode; 107 class MachCallDynamicJavaNode; 108 class MachCallJavaNode; 109 class MachCallLeafNode; 110 class MachCallNode; 111 class MachCallRuntimeNode; 112 class MachCallStaticJavaNode; 113 class MachConstantBaseNode; 114 class MachConstantNode; 115 class MachGotoNode; 116 class MachIfNode; 117 class MachJumpNode; 118 class MachNode; 119 class MachNullCheckNode; 120 class MachProjNode; 121 class MachReturnNode; 122 class MachSafePointNode; 123 class MachSpillCopyNode; 124 class MachTempNode; 125 class MachMergeNode; 126 class MachMemBarNode; 127 class Matcher; 128 class MemBarNode; 129 class MemBarStoreStoreNode; 130 class MemNode; 131 class MergeMemNode; 132 class MoveNode; 133 class MulNode; 134 class MultiNode; 135 class MultiBranchNode; 136 class NegNode; 137 class NegVNode; 138 class NeverBranchNode; 139 class Opaque1Node; 140 class OpaqueLoopInitNode; 141 class OpaqueLoopStrideNode; 142 class OpaqueMultiversioningNode; 143 class OpaqueNotNullNode; 144 class OpaqueInitializedAssertionPredicateNode; 145 class OpaqueTemplateAssertionPredicateNode; 146 class OuterStripMinedLoopNode; 147 class OuterStripMinedLoopEndNode; 148 class Node; 149 class Node_Array; 150 class Node_List; 151 class Node_Stack; 152 class OopMap; 153 class ParmNode; 154 class ParsePredicateNode; 155 class PCTableNode; 156 class PhaseCCP; 157 class PhaseGVN; 158 class PhaseIterGVN; 159 class PhaseRegAlloc; 160 class PhaseTransform; 161 class PhaseValues; 162 class PhiNode; 163 class Pipeline; 164 class PopulateIndexNode; 165 class ProjNode; 166 class RangeCheckNode; 167 class ReductionNode; 168 class RegMask; 169 class RegionNode; 170 class RootNode; 171 class SafePointNode; 172 class SafePointScalarObjectNode; 173 class SafePointScalarMergeNode; 174 class SaturatingVectorNode; 175 class StartNode; 176 class State; 177 class StoreNode; 178 class SubNode; 179 class SubTypeCheckNode; 180 class Type; 181 class TypeNode; 182 class UnlockNode; 183 class VectorNode; 184 class LoadVectorNode; 185 class LoadVectorMaskedNode; 186 class StoreVectorMaskedNode; 187 class LoadVectorGatherNode; 188 class LoadVectorGatherMaskedNode; 189 class StoreVectorNode; 190 class StoreVectorScatterNode; 191 class StoreVectorScatterMaskedNode; 192 class VerifyVectorAlignmentNode; 193 class VectorMaskCmpNode; 194 class VectorUnboxNode; 195 class VectorSet; 196 class VectorReinterpretNode; 197 class ShiftVNode; 198 class MulVLNode; 199 class ExpandVNode; 200 class CompressVNode; 201 class CompressMNode; 202 class C2_MacroAssembler; 203 204 205 #ifndef OPTO_DU_ITERATOR_ASSERT 206 #ifdef ASSERT 207 #define OPTO_DU_ITERATOR_ASSERT 1 208 #else 209 #define OPTO_DU_ITERATOR_ASSERT 0 210 #endif 211 #endif //OPTO_DU_ITERATOR_ASSERT 212 213 #if OPTO_DU_ITERATOR_ASSERT 214 class DUIterator; 215 class DUIterator_Fast; 216 class DUIterator_Last; 217 #else 218 typedef uint DUIterator; 219 typedef Node** DUIterator_Fast; 220 typedef Node** DUIterator_Last; 221 #endif 222 223 typedef ResizeableResourceHashtable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable; 224 225 // Node Sentinel 226 #define NodeSentinel (Node*)-1 227 228 // Unknown count frequency 229 #define COUNT_UNKNOWN (-1.0f) 230 231 //------------------------------Node------------------------------------------- 232 // Nodes define actions in the program. They create values, which have types. 233 // They are both vertices in a directed graph and program primitives. Nodes 234 // are labeled; the label is the "opcode", the primitive function in the lambda 235 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 236 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 237 // the Node's function. These inputs also define a Type equation for the Node. 238 // Solving these Type equations amounts to doing dataflow analysis. 239 // Control and data are uniformly represented in the graph. Finally, Nodes 240 // have a unique dense integer index which is used to index into side arrays 241 // whenever I have phase-specific information. 242 243 class Node { 244 245 // Lots of restrictions on cloning Nodes 246 NONCOPYABLE(Node); 247 248 public: 249 friend class Compile; 250 #if OPTO_DU_ITERATOR_ASSERT 251 friend class DUIterator_Common; 252 friend class DUIterator; 253 friend class DUIterator_Fast; 254 friend class DUIterator_Last; 255 #endif 256 257 // Because Nodes come and go, I define an Arena of Node structures to pull 258 // from. This should allow fast access to node creation & deletion. This 259 // field is a local cache of a value defined in some "program fragment" for 260 // which these Nodes are just a part of. 261 262 inline void* operator new(size_t x) throw() { 263 Compile* C = Compile::current(); 264 Node* n = (Node*)C->node_arena()->AmallocWords(x); 265 return (void*)n; 266 } 267 268 // Delete is a NOP 269 void operator delete( void *ptr ) {} 270 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 271 void destruct(PhaseValues* phase); 272 273 // Create a new Node. Required is the number is of inputs required for 274 // semantic correctness. 275 Node( uint required ); 276 277 // Create a new Node with given input edges. 278 // This version requires use of the "edge-count" new. 279 // E.g. new (C,3) FooNode( C, nullptr, left, right ); 280 Node( Node *n0 ); 281 Node( Node *n0, Node *n1 ); 282 Node( Node *n0, Node *n1, Node *n2 ); 283 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 284 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 285 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 286 Node( Node *n0, Node *n1, Node *n2, Node *n3, 287 Node *n4, Node *n5, Node *n6 ); 288 289 // Clone an inherited Node given only the base Node type. 290 Node* clone() const; 291 292 // Clone a Node, immediately supplying one or two new edges. 293 // The first and second arguments, if non-null, replace in(1) and in(2), 294 // respectively. 295 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const { 296 Node* nn = clone(); 297 if (in1 != nullptr) nn->set_req(1, in1); 298 if (in2 != nullptr) nn->set_req(2, in2); 299 return nn; 300 } 301 302 private: 303 // Shared setup for the above constructors. 304 // Handles all interactions with Compile::current. 305 // Puts initial values in all Node fields except _idx. 306 // Returns the initial value for _idx, which cannot 307 // be initialized by assignment. 308 inline int Init(int req); 309 310 //----------------- input edge handling 311 protected: 312 friend class PhaseCFG; // Access to address of _in array elements 313 Node **_in; // Array of use-def references to Nodes 314 Node **_out; // Array of def-use references to Nodes 315 316 // Input edges are split into two categories. Required edges are required 317 // for semantic correctness; order is important and nulls are allowed. 318 // Precedence edges are used to help determine execution order and are 319 // added, e.g., for scheduling purposes. They are unordered and not 320 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1 321 // are required, from _cnt to _max-1 are precedence edges. 322 node_idx_t _cnt; // Total number of required Node inputs. 323 324 node_idx_t _max; // Actual length of input array. 325 326 // Output edges are an unordered list of def-use edges which exactly 327 // correspond to required input edges which point from other nodes 328 // to this one. Thus the count of the output edges is the number of 329 // users of this node. 330 node_idx_t _outcnt; // Total number of Node outputs. 331 332 node_idx_t _outmax; // Actual length of output array. 333 334 // Grow the actual input array to the next larger power-of-2 bigger than len. 335 void grow( uint len ); 336 // Grow the output array to the next larger power-of-2 bigger than len. 337 void out_grow( uint len ); 338 // Resize input or output array to grow it to the next larger power-of-2 339 // bigger than len. 340 void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing); 341 342 public: 343 // Each Node is assigned a unique small/dense number. This number is used 344 // to index into auxiliary arrays of data and bit vectors. 345 // The value of _idx can be changed using the set_idx() method. 346 // 347 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 348 // Therefore, it updates the value of the _idx field. The parse-time _idx is 349 // preserved in _parse_idx. 350 node_idx_t _idx; 351 DEBUG_ONLY(const node_idx_t _parse_idx;) 352 // IGV node identifier. Two nodes, possibly in different compilation phases, 353 // have the same IGV identifier if (and only if) they are the very same node 354 // (same memory address) or one is "derived" from the other (by e.g. 355 // renumbering or matching). This identifier makes it possible to follow the 356 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 357 NOT_PRODUCT(node_idx_t _igv_idx;) 358 359 // Get the (read-only) number of input edges 360 uint req() const { return _cnt; } 361 uint len() const { return _max; } 362 // Get the (read-only) number of output edges 363 uint outcnt() const { return _outcnt; } 364 365 #if OPTO_DU_ITERATOR_ASSERT 366 // Iterate over the out-edges of this node. Deletions are illegal. 367 inline DUIterator outs() const; 368 // Use this when the out array might have changed to suppress asserts. 369 inline DUIterator& refresh_out_pos(DUIterator& i) const; 370 // Does the node have an out at this position? (Used for iteration.) 371 inline bool has_out(DUIterator& i) const; 372 inline Node* out(DUIterator& i) const; 373 // Iterate over the out-edges of this node. All changes are illegal. 374 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 375 inline Node* fast_out(DUIterator_Fast& i) const; 376 // Iterate over the out-edges of this node, deleting one at a time. 377 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 378 inline Node* last_out(DUIterator_Last& i) const; 379 // The inline bodies of all these methods are after the iterator definitions. 380 #else 381 // Iterate over the out-edges of this node. Deletions are illegal. 382 // This iteration uses integral indexes, to decouple from array reallocations. 383 DUIterator outs() const { return 0; } 384 // Use this when the out array might have changed to suppress asserts. 385 DUIterator refresh_out_pos(DUIterator i) const { return i; } 386 387 // Reference to the i'th output Node. Error if out of bounds. 388 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 389 // Does the node have an out at this position? (Used for iteration.) 390 bool has_out(DUIterator i) const { return i < _outcnt; } 391 392 // Iterate over the out-edges of this node. All changes are illegal. 393 // This iteration uses a pointer internal to the out array. 394 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 395 Node** out = _out; 396 // Assign a limit pointer to the reference argument: 397 max = out + (ptrdiff_t)_outcnt; 398 // Return the base pointer: 399 return out; 400 } 401 Node* fast_out(DUIterator_Fast i) const { return *i; } 402 // Iterate over the out-edges of this node, deleting one at a time. 403 // This iteration uses a pointer internal to the out array. 404 DUIterator_Last last_outs(DUIterator_Last& min) const { 405 Node** out = _out; 406 // Assign a limit pointer to the reference argument: 407 min = out; 408 // Return the pointer to the start of the iteration: 409 return out + (ptrdiff_t)_outcnt - 1; 410 } 411 Node* last_out(DUIterator_Last i) const { return *i; } 412 #endif 413 414 // Reference to the i'th input Node. Error if out of bounds. 415 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 416 // Reference to the i'th input Node. null if out of bounds. 417 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); } 418 // Reference to the i'th output Node. Error if out of bounds. 419 // Use this accessor sparingly. We are going trying to use iterators instead. 420 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 421 // Return the unique out edge. 422 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 423 // Delete out edge at position 'i' by moving last out edge to position 'i' 424 void raw_del_out(uint i) { 425 assert(i < _outcnt,"oob"); 426 assert(_outcnt > 0,"oob"); 427 #if OPTO_DU_ITERATOR_ASSERT 428 // Record that a change happened here. 429 debug_only(_last_del = _out[i]; ++_del_tick); 430 #endif 431 _out[i] = _out[--_outcnt]; 432 // Smash the old edge so it can't be used accidentally. 433 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 434 } 435 436 #ifdef ASSERT 437 bool is_dead() const; 438 static bool is_not_dead(const Node* n); 439 bool is_reachable_from_root() const; 440 #endif 441 // Check whether node has become unreachable 442 bool is_unreachable(PhaseIterGVN &igvn) const; 443 444 // Set a required input edge, also updates corresponding output edge 445 void add_req( Node *n ); // Append a NEW required input 446 void add_req( Node *n0, Node *n1 ) { 447 add_req(n0); add_req(n1); } 448 void add_req( Node *n0, Node *n1, Node *n2 ) { 449 add_req(n0); add_req(n1); add_req(n2); } 450 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 451 void del_req( uint idx ); // Delete required edge & compact 452 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 453 void ins_req( uint i, Node *n ); // Insert a NEW required input 454 void set_req( uint i, Node *n ) { 455 assert( is_not_dead(n), "can not use dead node"); 456 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 457 assert( !VerifyHashTableKeys || _hash_lock == 0, 458 "remove node from hash table before modifying it"); 459 Node** p = &_in[i]; // cache this._in, across the del_out call 460 if (*p != nullptr) (*p)->del_out((Node *)this); 461 (*p) = n; 462 if (n != nullptr) n->add_out((Node *)this); 463 Compile::current()->record_modified_node(this); 464 } 465 // Light version of set_req() to init inputs after node creation. 466 void init_req( uint i, Node *n ) { 467 assert( (i == 0 && this == n) || 468 is_not_dead(n), "can not use dead node"); 469 assert( i < _cnt, "oob"); 470 assert( !VerifyHashTableKeys || _hash_lock == 0, 471 "remove node from hash table before modifying it"); 472 assert( _in[i] == nullptr, "sanity"); 473 _in[i] = n; 474 if (n != nullptr) n->add_out((Node *)this); 475 Compile::current()->record_modified_node(this); 476 } 477 // Find first occurrence of n among my edges: 478 int find_edge(Node* n); 479 int find_prec_edge(Node* n) { 480 for (uint i = req(); i < len(); i++) { 481 if (_in[i] == n) return i; 482 if (_in[i] == nullptr) { 483 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); ) 484 break; 485 } 486 } 487 return -1; 488 } 489 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr); 490 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 491 // null out all inputs to eliminate incoming Def-Use edges. 492 void disconnect_inputs(Compile* C); 493 494 // Quickly, return true if and only if I am Compile::current()->top(). 495 bool is_top() const { 496 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), ""); 497 return (_out == nullptr); 498 } 499 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 500 void setup_is_top(); 501 502 // Strip away casting. (It is depth-limited.) 503 Node* uncast(bool keep_deps = false) const; 504 // Return whether two Nodes are equivalent, after stripping casting. 505 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 506 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 507 } 508 509 // Find out of current node that matches opcode. 510 Node* find_out_with(int opcode); 511 // Return true if the current node has an out that matches opcode. 512 bool has_out_with(int opcode); 513 // Return true if the current node has an out that matches any of the opcodes. 514 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 515 516 private: 517 static Node* uncast_helper(const Node* n, bool keep_deps); 518 519 // Add an output edge to the end of the list 520 void add_out( Node *n ) { 521 if (is_top()) return; 522 if( _outcnt == _outmax ) out_grow(_outcnt); 523 _out[_outcnt++] = n; 524 } 525 // Delete an output edge 526 void del_out( Node *n ) { 527 if (is_top()) return; 528 Node** outp = &_out[_outcnt]; 529 // Find and remove n 530 do { 531 assert(outp > _out, "Missing Def-Use edge"); 532 } while (*--outp != n); 533 *outp = _out[--_outcnt]; 534 // Smash the old edge so it can't be used accidentally. 535 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 536 // Record that a change happened here. 537 #if OPTO_DU_ITERATOR_ASSERT 538 debug_only(_last_del = n; ++_del_tick); 539 #endif 540 } 541 // Close gap after removing edge. 542 void close_prec_gap_at(uint gap) { 543 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 544 uint i = gap; 545 Node *last = nullptr; 546 for (; i < _max-1; ++i) { 547 Node *next = _in[i+1]; 548 if (next == nullptr) break; 549 last = next; 550 } 551 _in[gap] = last; // Move last slot to empty one. 552 _in[i] = nullptr; // null out last slot. 553 } 554 555 public: 556 // Globally replace this node by a given new node, updating all uses. 557 void replace_by(Node* new_node); 558 // Globally replace this node by a given new node, updating all uses 559 // and cutting input edges of old node. 560 void subsume_by(Node* new_node, Compile* c) { 561 replace_by(new_node); 562 disconnect_inputs(c); 563 } 564 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 565 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 566 // Find the one non-null required input. RegionNode only 567 Node *nonnull_req() const; 568 // Add or remove precedence edges 569 void add_prec( Node *n ); 570 void rm_prec( uint i ); 571 572 // Note: prec(i) will not necessarily point to n if edge already exists. 573 void set_prec( uint i, Node *n ) { 574 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 575 assert(is_not_dead(n), "can not use dead node"); 576 assert(i >= _cnt, "not a precedence edge"); 577 // Avoid spec violation: duplicated prec edge. 578 if (_in[i] == n) return; 579 if (n == nullptr || find_prec_edge(n) != -1) { 580 rm_prec(i); 581 return; 582 } 583 if (_in[i] != nullptr) _in[i]->del_out((Node *)this); 584 _in[i] = n; 585 n->add_out((Node *)this); 586 Compile::current()->record_modified_node(this); 587 } 588 589 // Set this node's index, used by cisc_version to replace current node 590 void set_idx(uint new_idx) { 591 _idx = new_idx; 592 } 593 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 594 void swap_edges(uint i1, uint i2) { 595 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 596 // Def-Use info is unchanged 597 Node* n1 = in(i1); 598 Node* n2 = in(i2); 599 _in[i1] = n2; 600 _in[i2] = n1; 601 // If this node is in the hash table, make sure it doesn't need a rehash. 602 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 603 // Flip swapped edges flag. 604 if (has_swapped_edges()) { 605 remove_flag(Node::Flag_has_swapped_edges); 606 } else { 607 add_flag(Node::Flag_has_swapped_edges); 608 } 609 } 610 611 // Iterators over input Nodes for a Node X are written as: 612 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 613 // NOTE: Required edges can contain embedded null pointers. 614 615 //----------------- Other Node Properties 616 617 // Generate class IDs for (some) ideal nodes so that it is possible to determine 618 // the type of a node using a non-virtual method call (the method is_<Node>() below). 619 // 620 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 621 // the type of the node the ID represents; another subset of an ID's bits are reserved 622 // for the superclasses of the node represented by the ID. 623 // 624 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 625 // returns false. A.is_A() returns true. 626 // 627 // If two classes, A and B, have the same superclass, a different bit of A's class id 628 // is reserved for A's type than for B's type. That bit is specified by the third 629 // parameter in the macro DEFINE_CLASS_ID. 630 // 631 // By convention, classes with deeper hierarchy are declared first. Moreover, 632 // classes with the same hierarchy depth are sorted by usage frequency. 633 // 634 // The query method masks the bits to cut off bits of subclasses and then compares 635 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 636 // 637 // Class_MachCall=30, ClassMask_MachCall=31 638 // 12 8 4 0 639 // 0 0 0 0 0 0 0 0 1 1 1 1 0 640 // | | | | 641 // | | | Bit_Mach=2 642 // | | Bit_MachReturn=4 643 // | Bit_MachSafePoint=8 644 // Bit_MachCall=16 645 // 646 // Class_CountedLoop=56, ClassMask_CountedLoop=63 647 // 12 8 4 0 648 // 0 0 0 0 0 0 0 1 1 1 0 0 0 649 // | | | 650 // | | Bit_Region=8 651 // | Bit_Loop=16 652 // Bit_CountedLoop=32 653 654 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 655 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 656 Class_##cl = Class_##supcl + Bit_##cl , \ 657 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 658 659 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 660 // so that its values fit into 32 bits. 661 enum NodeClasses { 662 Bit_Node = 0x00000000, 663 Class_Node = 0x00000000, 664 ClassMask_Node = 0xFFFFFFFF, 665 666 DEFINE_CLASS_ID(Multi, Node, 0) 667 DEFINE_CLASS_ID(SafePoint, Multi, 0) 668 DEFINE_CLASS_ID(Call, SafePoint, 0) 669 DEFINE_CLASS_ID(CallJava, Call, 0) 670 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 671 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 672 DEFINE_CLASS_ID(CallRuntime, Call, 1) 673 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 674 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 675 DEFINE_CLASS_ID(Allocate, Call, 2) 676 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 677 DEFINE_CLASS_ID(AbstractLock, Call, 3) 678 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 679 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 680 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 681 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 682 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 683 DEFINE_CLASS_ID(Catch, PCTable, 0) 684 DEFINE_CLASS_ID(Jump, PCTable, 1) 685 DEFINE_CLASS_ID(If, MultiBranch, 1) 686 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 687 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 688 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 689 DEFINE_CLASS_ID(RangeCheck, If, 1) 690 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 691 DEFINE_CLASS_ID(ParsePredicate, If, 3) 692 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 693 DEFINE_CLASS_ID(Start, Multi, 2) 694 DEFINE_CLASS_ID(MemBar, Multi, 3) 695 DEFINE_CLASS_ID(Initialize, MemBar, 0) 696 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 697 698 DEFINE_CLASS_ID(Mach, Node, 1) 699 DEFINE_CLASS_ID(MachReturn, Mach, 0) 700 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 701 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 702 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 703 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 704 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 705 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 706 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 707 DEFINE_CLASS_ID(MachBranch, Mach, 1) 708 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 709 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 710 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 711 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 712 DEFINE_CLASS_ID(MachTemp, Mach, 3) 713 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 714 DEFINE_CLASS_ID(MachConstant, Mach, 5) 715 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 716 DEFINE_CLASS_ID(MachMerge, Mach, 6) 717 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 718 719 DEFINE_CLASS_ID(Type, Node, 2) 720 DEFINE_CLASS_ID(Phi, Type, 0) 721 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 722 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 723 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 724 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 725 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 726 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 727 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 728 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6) 729 DEFINE_CLASS_ID(CastHH, ConstraintCast, 7) 730 DEFINE_CLASS_ID(CMove, Type, 3) 731 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 732 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 733 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 734 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 735 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 736 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 737 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 738 DEFINE_CLASS_ID(Vector, Type, 7) 739 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 740 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 741 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 742 DEFINE_CLASS_ID(ShiftV, Vector, 3) 743 DEFINE_CLASS_ID(CompressV, Vector, 4) 744 DEFINE_CLASS_ID(ExpandV, Vector, 5) 745 DEFINE_CLASS_ID(CompressM, Vector, 6) 746 DEFINE_CLASS_ID(Reduction, Vector, 7) 747 DEFINE_CLASS_ID(NegV, Vector, 8) 748 DEFINE_CLASS_ID(SaturatingVector, Vector, 9) 749 DEFINE_CLASS_ID(MulVL, Vector, 10) 750 DEFINE_CLASS_ID(Con, Type, 8) 751 DEFINE_CLASS_ID(ConI, Con, 0) 752 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 9) 753 DEFINE_CLASS_ID(Convert, Type, 10) 754 755 756 DEFINE_CLASS_ID(Proj, Node, 3) 757 DEFINE_CLASS_ID(CatchProj, Proj, 0) 758 DEFINE_CLASS_ID(JumpProj, Proj, 1) 759 DEFINE_CLASS_ID(IfProj, Proj, 2) 760 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 761 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 762 DEFINE_CLASS_ID(Parm, Proj, 4) 763 DEFINE_CLASS_ID(MachProj, Proj, 5) 764 765 DEFINE_CLASS_ID(Mem, Node, 4) 766 DEFINE_CLASS_ID(Load, Mem, 0) 767 DEFINE_CLASS_ID(LoadVector, Load, 0) 768 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 769 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1) 770 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2) 771 DEFINE_CLASS_ID(Store, Mem, 1) 772 DEFINE_CLASS_ID(StoreVector, Store, 0) 773 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 774 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1) 775 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2) 776 DEFINE_CLASS_ID(LoadStore, Mem, 2) 777 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 778 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 779 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 780 781 DEFINE_CLASS_ID(Region, Node, 5) 782 DEFINE_CLASS_ID(Loop, Region, 0) 783 DEFINE_CLASS_ID(Root, Loop, 0) 784 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 785 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 786 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 787 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 788 789 DEFINE_CLASS_ID(Sub, Node, 6) 790 DEFINE_CLASS_ID(Cmp, Sub, 0) 791 DEFINE_CLASS_ID(FastLock, Cmp, 0) 792 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 793 DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2) 794 795 DEFINE_CLASS_ID(MergeMem, Node, 7) 796 DEFINE_CLASS_ID(Bool, Node, 8) 797 DEFINE_CLASS_ID(AddP, Node, 9) 798 DEFINE_CLASS_ID(BoxLock, Node, 10) 799 DEFINE_CLASS_ID(Add, Node, 11) 800 DEFINE_CLASS_ID(Mul, Node, 12) 801 DEFINE_CLASS_ID(ClearArray, Node, 14) 802 DEFINE_CLASS_ID(Halt, Node, 15) 803 DEFINE_CLASS_ID(Opaque1, Node, 16) 804 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0) 805 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1) 806 DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2) 807 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17) 808 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18) 809 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19) 810 DEFINE_CLASS_ID(Move, Node, 20) 811 DEFINE_CLASS_ID(LShift, Node, 21) 812 DEFINE_CLASS_ID(Neg, Node, 22) 813 814 _max_classes = ClassMask_Neg 815 }; 816 #undef DEFINE_CLASS_ID 817 818 // Flags are sorted by usage frequency. 819 enum NodeFlags { 820 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 821 Flag_rematerialize = 1 << 1, 822 Flag_needs_anti_dependence_check = 1 << 2, 823 Flag_is_macro = 1 << 3, 824 Flag_is_Con = 1 << 4, 825 Flag_is_cisc_alternate = 1 << 5, 826 Flag_is_dead_loop_safe = 1 << 6, 827 Flag_may_be_short_branch = 1 << 7, 828 Flag_avoid_back_to_back_before = 1 << 8, 829 Flag_avoid_back_to_back_after = 1 << 9, 830 Flag_has_call = 1 << 10, 831 Flag_has_swapped_edges = 1 << 11, 832 Flag_is_scheduled = 1 << 12, 833 Flag_is_expensive = 1 << 13, 834 Flag_is_predicated_vector = 1 << 14, 835 Flag_for_post_loop_opts_igvn = 1 << 15, 836 Flag_for_merge_stores_igvn = 1 << 16, 837 Flag_is_removed_by_peephole = 1 << 17, 838 Flag_is_predicated_using_blend = 1 << 18, 839 _last_flag = Flag_is_predicated_using_blend 840 }; 841 842 class PD; 843 844 private: 845 juint _class_id; 846 juint _flags; 847 848 #ifdef ASSERT 849 static juint max_flags(); 850 #endif 851 852 protected: 853 // These methods should be called from constructors only. 854 void init_class_id(juint c) { 855 _class_id = c; // cast out const 856 } 857 void init_flags(uint fl) { 858 assert(fl <= max_flags(), "invalid node flag"); 859 _flags |= fl; 860 } 861 void clear_flag(uint fl) { 862 assert(fl <= max_flags(), "invalid node flag"); 863 _flags &= ~fl; 864 } 865 866 public: 867 juint class_id() const { return _class_id; } 868 869 juint flags() const { return _flags; } 870 871 void add_flag(juint fl) { init_flags(fl); } 872 873 void remove_flag(juint fl) { clear_flag(fl); } 874 875 // Return a dense integer opcode number 876 virtual int Opcode() const; 877 878 // Virtual inherited Node size 879 virtual uint size_of() const; 880 881 // Other interesting Node properties 882 #define DEFINE_CLASS_QUERY(type) \ 883 bool is_##type() const { \ 884 return ((_class_id & ClassMask_##type) == Class_##type); \ 885 } \ 886 type##Node *as_##type() const { \ 887 assert(is_##type(), "invalid node class: %s", Name()); \ 888 return (type##Node*)this; \ 889 } \ 890 type##Node* isa_##type() const { \ 891 return (is_##type()) ? as_##type() : nullptr; \ 892 } 893 894 DEFINE_CLASS_QUERY(AbstractLock) 895 DEFINE_CLASS_QUERY(Add) 896 DEFINE_CLASS_QUERY(AddP) 897 DEFINE_CLASS_QUERY(Allocate) 898 DEFINE_CLASS_QUERY(AllocateArray) 899 DEFINE_CLASS_QUERY(ArrayCopy) 900 DEFINE_CLASS_QUERY(BaseCountedLoop) 901 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 902 DEFINE_CLASS_QUERY(Bool) 903 DEFINE_CLASS_QUERY(BoxLock) 904 DEFINE_CLASS_QUERY(Call) 905 DEFINE_CLASS_QUERY(CallDynamicJava) 906 DEFINE_CLASS_QUERY(CallJava) 907 DEFINE_CLASS_QUERY(CallLeaf) 908 DEFINE_CLASS_QUERY(CallLeafNoFP) 909 DEFINE_CLASS_QUERY(CallRuntime) 910 DEFINE_CLASS_QUERY(CallStaticJava) 911 DEFINE_CLASS_QUERY(Catch) 912 DEFINE_CLASS_QUERY(CatchProj) 913 DEFINE_CLASS_QUERY(CheckCastPP) 914 DEFINE_CLASS_QUERY(CastII) 915 DEFINE_CLASS_QUERY(CastLL) 916 DEFINE_CLASS_QUERY(CastFF) 917 DEFINE_CLASS_QUERY(ConI) 918 DEFINE_CLASS_QUERY(CastPP) 919 DEFINE_CLASS_QUERY(ConstraintCast) 920 DEFINE_CLASS_QUERY(ClearArray) 921 DEFINE_CLASS_QUERY(CMove) 922 DEFINE_CLASS_QUERY(Cmp) 923 DEFINE_CLASS_QUERY(Convert) 924 DEFINE_CLASS_QUERY(CountedLoop) 925 DEFINE_CLASS_QUERY(CountedLoopEnd) 926 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 927 DEFINE_CLASS_QUERY(DecodeN) 928 DEFINE_CLASS_QUERY(DecodeNKlass) 929 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 930 DEFINE_CLASS_QUERY(EncodeP) 931 DEFINE_CLASS_QUERY(EncodePKlass) 932 DEFINE_CLASS_QUERY(FastLock) 933 DEFINE_CLASS_QUERY(FastUnlock) 934 DEFINE_CLASS_QUERY(Halt) 935 DEFINE_CLASS_QUERY(If) 936 DEFINE_CLASS_QUERY(RangeCheck) 937 DEFINE_CLASS_QUERY(IfProj) 938 DEFINE_CLASS_QUERY(IfFalse) 939 DEFINE_CLASS_QUERY(IfTrue) 940 DEFINE_CLASS_QUERY(Initialize) 941 DEFINE_CLASS_QUERY(Jump) 942 DEFINE_CLASS_QUERY(JumpProj) 943 DEFINE_CLASS_QUERY(LongCountedLoop) 944 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 945 DEFINE_CLASS_QUERY(Load) 946 DEFINE_CLASS_QUERY(LoadStore) 947 DEFINE_CLASS_QUERY(LoadStoreConditional) 948 DEFINE_CLASS_QUERY(Lock) 949 DEFINE_CLASS_QUERY(Loop) 950 DEFINE_CLASS_QUERY(LShift) 951 DEFINE_CLASS_QUERY(Mach) 952 DEFINE_CLASS_QUERY(MachBranch) 953 DEFINE_CLASS_QUERY(MachCall) 954 DEFINE_CLASS_QUERY(MachCallDynamicJava) 955 DEFINE_CLASS_QUERY(MachCallJava) 956 DEFINE_CLASS_QUERY(MachCallLeaf) 957 DEFINE_CLASS_QUERY(MachCallRuntime) 958 DEFINE_CLASS_QUERY(MachCallStaticJava) 959 DEFINE_CLASS_QUERY(MachConstantBase) 960 DEFINE_CLASS_QUERY(MachConstant) 961 DEFINE_CLASS_QUERY(MachGoto) 962 DEFINE_CLASS_QUERY(MachIf) 963 DEFINE_CLASS_QUERY(MachJump) 964 DEFINE_CLASS_QUERY(MachNullCheck) 965 DEFINE_CLASS_QUERY(MachProj) 966 DEFINE_CLASS_QUERY(MachReturn) 967 DEFINE_CLASS_QUERY(MachSafePoint) 968 DEFINE_CLASS_QUERY(MachSpillCopy) 969 DEFINE_CLASS_QUERY(MachTemp) 970 DEFINE_CLASS_QUERY(MachMemBar) 971 DEFINE_CLASS_QUERY(MachMerge) 972 DEFINE_CLASS_QUERY(Mem) 973 DEFINE_CLASS_QUERY(MemBar) 974 DEFINE_CLASS_QUERY(MemBarStoreStore) 975 DEFINE_CLASS_QUERY(MergeMem) 976 DEFINE_CLASS_QUERY(Move) 977 DEFINE_CLASS_QUERY(Mul) 978 DEFINE_CLASS_QUERY(Multi) 979 DEFINE_CLASS_QUERY(MultiBranch) 980 DEFINE_CLASS_QUERY(MulVL) 981 DEFINE_CLASS_QUERY(Neg) 982 DEFINE_CLASS_QUERY(NegV) 983 DEFINE_CLASS_QUERY(NeverBranch) 984 DEFINE_CLASS_QUERY(Opaque1) 985 DEFINE_CLASS_QUERY(OpaqueNotNull) 986 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate) 987 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate) 988 DEFINE_CLASS_QUERY(OpaqueLoopInit) 989 DEFINE_CLASS_QUERY(OpaqueLoopStride) 990 DEFINE_CLASS_QUERY(OpaqueMultiversioning) 991 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 992 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 993 DEFINE_CLASS_QUERY(Parm) 994 DEFINE_CLASS_QUERY(ParsePredicate) 995 DEFINE_CLASS_QUERY(PCTable) 996 DEFINE_CLASS_QUERY(Phi) 997 DEFINE_CLASS_QUERY(Proj) 998 DEFINE_CLASS_QUERY(Reduction) 999 DEFINE_CLASS_QUERY(Region) 1000 DEFINE_CLASS_QUERY(Root) 1001 DEFINE_CLASS_QUERY(SafePoint) 1002 DEFINE_CLASS_QUERY(SafePointScalarObject) 1003 DEFINE_CLASS_QUERY(SafePointScalarMerge) 1004 DEFINE_CLASS_QUERY(Start) 1005 DEFINE_CLASS_QUERY(Store) 1006 DEFINE_CLASS_QUERY(Sub) 1007 DEFINE_CLASS_QUERY(SubTypeCheck) 1008 DEFINE_CLASS_QUERY(Type) 1009 DEFINE_CLASS_QUERY(Vector) 1010 DEFINE_CLASS_QUERY(VectorMaskCmp) 1011 DEFINE_CLASS_QUERY(VectorUnbox) 1012 DEFINE_CLASS_QUERY(VectorReinterpret) 1013 DEFINE_CLASS_QUERY(CompressV) 1014 DEFINE_CLASS_QUERY(ExpandV) 1015 DEFINE_CLASS_QUERY(CompressM) 1016 DEFINE_CLASS_QUERY(LoadVector) 1017 DEFINE_CLASS_QUERY(LoadVectorGather) 1018 DEFINE_CLASS_QUERY(LoadVectorMasked) 1019 DEFINE_CLASS_QUERY(LoadVectorGatherMasked) 1020 DEFINE_CLASS_QUERY(StoreVector) 1021 DEFINE_CLASS_QUERY(StoreVectorScatter) 1022 DEFINE_CLASS_QUERY(StoreVectorMasked) 1023 DEFINE_CLASS_QUERY(StoreVectorScatterMasked) 1024 DEFINE_CLASS_QUERY(SaturatingVector) 1025 DEFINE_CLASS_QUERY(ShiftV) 1026 DEFINE_CLASS_QUERY(Unlock) 1027 1028 #undef DEFINE_CLASS_QUERY 1029 1030 // duplicate of is_MachSpillCopy() 1031 bool is_SpillCopy () const { 1032 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 1033 } 1034 1035 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 1036 // The data node which is safe to leave in dead loop during IGVN optimization. 1037 bool is_dead_loop_safe() const; 1038 1039 // is_Copy() returns copied edge index (0 or 1) 1040 uint is_Copy() const { return (_flags & Flag_is_Copy); } 1041 1042 virtual bool is_CFG() const { return false; } 1043 1044 // If this node is control-dependent on a test, can it be 1045 // rerouted to a dominating equivalent test? This is usually 1046 // true of non-CFG nodes, but can be false for operations which 1047 // depend for their correct sequencing on more than one test. 1048 // (In that case, hoisting to a dominating test may silently 1049 // skip some other important test.) 1050 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 1051 1052 // When building basic blocks, I need to have a notion of block beginning 1053 // Nodes, next block selector Nodes (block enders), and next block 1054 // projections. These calls need to work on their machine equivalents. The 1055 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 1056 bool is_block_start() const { 1057 if ( is_Region() ) 1058 return this == (const Node*)in(0); 1059 else 1060 return is_Start(); 1061 } 1062 1063 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 1064 // Goto and Return. This call also returns the block ending Node. 1065 virtual const Node *is_block_proj() const; 1066 1067 // The node is a "macro" node which needs to be expanded before matching 1068 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 1069 // The node is expensive: the best control is set during loop opts 1070 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; } 1071 // The node's original edge position is swapped. 1072 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; } 1073 1074 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1075 1076 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1077 1078 // Used in lcm to mark nodes that have scheduled 1079 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1080 1081 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1082 bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; } 1083 1084 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)? 1085 static bool may_be_loop_entry(Node* n) { 1086 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate(); 1087 } 1088 1089 //----------------- Optimization 1090 1091 // Get the worst-case Type output for this Node. 1092 virtual const class Type *bottom_type() const; 1093 1094 // If we find a better type for a node, try to record it permanently. 1095 // Return true if this node actually changed. 1096 // Be sure to do the hash_delete game in the "rehash" variant. 1097 void raise_bottom_type(const Type* new_type); 1098 1099 // Get the address type with which this node uses and/or defs memory, 1100 // or null if none. The address type is conservatively wide. 1101 // Returns non-null for calls, membars, loads, stores, etc. 1102 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1103 virtual const class TypePtr *adr_type() const { return nullptr; } 1104 1105 // Return an existing node which computes the same function as this node. 1106 // The optimistic combined algorithm requires this to return a Node which 1107 // is a small number of steps away (e.g., one of my inputs). 1108 virtual Node* Identity(PhaseGVN* phase); 1109 1110 // Return the set of values this Node can take on at runtime. 1111 virtual const Type* Value(PhaseGVN* phase) const; 1112 1113 // Return a node which is more "ideal" than the current node. 1114 // The invariants on this call are subtle. If in doubt, read the 1115 // treatise in node.cpp above the default implementation AND TEST WITH 1116 // -XX:VerifyIterativeGVN=1 1117 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1118 1119 // Some nodes have specific Ideal subgraph transformations only if they are 1120 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1121 // for the transformations to happen. 1122 bool has_special_unique_user() const; 1123 1124 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1125 Node* find_exact_control(Node* ctrl); 1126 1127 // Results of the dominance analysis. 1128 enum class DomResult { 1129 NotDominate, // 'this' node does not dominate 'sub'. 1130 Dominate, // 'this' node dominates or is equal to 'sub'. 1131 EncounteredDeadCode // Result is undefined due to encountering dead code. 1132 }; 1133 // Check if 'this' node dominates or equal to 'sub'. 1134 DomResult dominates(Node* sub, Node_List &nlist); 1135 1136 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1137 public: 1138 1139 // See if there is valid pipeline info 1140 static const Pipeline *pipeline_class(); 1141 virtual const Pipeline *pipeline() const; 1142 1143 // Compute the latency from the def to this instruction of the ith input node 1144 uint latency(uint i); 1145 1146 // Hash & compare functions, for pessimistic value numbering 1147 1148 // If the hash function returns the special sentinel value NO_HASH, 1149 // the node is guaranteed never to compare equal to any other node. 1150 // If we accidentally generate a hash with value NO_HASH the node 1151 // won't go into the table and we'll lose a little optimization. 1152 static const uint NO_HASH = 0; 1153 virtual uint hash() const; 1154 virtual bool cmp( const Node &n ) const; 1155 1156 // Operation appears to be iteratively computed (such as an induction variable) 1157 // It is possible for this operation to return false for a loop-varying 1158 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1159 bool is_iteratively_computed(); 1160 1161 // Determine if a node is a counted loop induction variable. 1162 // NOTE: The method is defined in "loopnode.cpp". 1163 bool is_cloop_ind_var() const; 1164 1165 // Return a node with opcode "opc" and same inputs as "this" if one can 1166 // be found; Otherwise return null; 1167 Node* find_similar(int opc); 1168 1169 // Return the unique control out if only one. Null if none or more than one. 1170 Node* unique_ctrl_out_or_null() const; 1171 // Return the unique control out. Asserts if none or more than one control out. 1172 Node* unique_ctrl_out() const; 1173 1174 // Set control or add control as precedence edge 1175 void ensure_control_or_add_prec(Node* c); 1176 void add_prec_from(Node* n); 1177 1178 // Visit boundary uses of the node and apply a callback function for each. 1179 // Recursively traverse uses, stopping and applying the callback when 1180 // reaching a boundary node, defined by is_boundary. Note: the function 1181 // definition appears after the complete type definition of Node_List. 1182 template <typename Callback, typename Check> 1183 void visit_uses(Callback callback, Check is_boundary) const; 1184 1185 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses 1186 // (Load and range check CastII nodes). 1187 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication). 1188 virtual Node* pin_array_access_node() const { 1189 return nullptr; 1190 } 1191 1192 //----------------- Code Generation 1193 1194 // Ideal register class for Matching. Zero means unmatched instruction 1195 // (these are cloned instead of converted to machine nodes). 1196 virtual uint ideal_reg() const; 1197 1198 static const uint NotAMachineReg; // must be > max. machine register 1199 1200 // Do we Match on this edge index or not? Generally false for Control 1201 // and true for everything else. Weird for calls & returns. 1202 virtual uint match_edge(uint idx) const; 1203 1204 // Register class output is returned in 1205 virtual const RegMask &out_RegMask() const; 1206 // Register class input is expected in 1207 virtual const RegMask &in_RegMask(uint) const; 1208 // Should we clone rather than spill this instruction? 1209 bool rematerialize() const; 1210 1211 // Return JVM State Object if this Node carries debug info, or null otherwise 1212 virtual JVMState* jvms() const; 1213 1214 // Print as assembly 1215 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1216 // Emit bytes using C2_MacroAssembler 1217 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const; 1218 // Size of instruction in bytes 1219 virtual uint size(PhaseRegAlloc *ra_) const; 1220 1221 // Convenience function to extract an integer constant from a node. 1222 // If it is not an integer constant (either Con, CastII, or Mach), 1223 // return value_if_unknown. 1224 jint find_int_con(jint value_if_unknown) const { 1225 const TypeInt* t = find_int_type(); 1226 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1227 } 1228 // Return the constant, knowing it is an integer constant already 1229 jint get_int() const { 1230 const TypeInt* t = find_int_type(); 1231 guarantee(t != nullptr, "must be con"); 1232 return t->get_con(); 1233 } 1234 // Here's where the work is done. Can produce non-constant int types too. 1235 const TypeInt* find_int_type() const; 1236 const TypeInteger* find_integer_type(BasicType bt) const; 1237 1238 // Same thing for long (and intptr_t, via type.hpp): 1239 jlong get_long() const { 1240 const TypeLong* t = find_long_type(); 1241 guarantee(t != nullptr, "must be con"); 1242 return t->get_con(); 1243 } 1244 jlong find_long_con(jint value_if_unknown) const { 1245 const TypeLong* t = find_long_type(); 1246 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1247 } 1248 const TypeLong* find_long_type() const; 1249 1250 jlong get_integer_as_long(BasicType bt) const { 1251 const TypeInteger* t = find_integer_type(bt); 1252 guarantee(t != nullptr && t->is_con(), "must be con"); 1253 return t->get_con_as_long(bt); 1254 } 1255 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1256 const TypeInteger* t = find_integer_type(bt); 1257 if (t == nullptr || !t->is_con()) return value_if_unknown; 1258 return t->get_con_as_long(bt); 1259 } 1260 const TypePtr* get_ptr_type() const; 1261 1262 // These guys are called by code generated by ADLC: 1263 intptr_t get_ptr() const; 1264 intptr_t get_narrowcon() const; 1265 jdouble getd() const; 1266 jfloat getf() const; 1267 jshort geth() const; 1268 1269 // Nodes which are pinned into basic blocks 1270 virtual bool pinned() const { return false; } 1271 1272 // Nodes which use memory without consuming it, hence need antidependences 1273 // More specifically, needs_anti_dependence_check returns true iff the node 1274 // (a) does a load, and (b) does not perform a store (except perhaps to a 1275 // stack slot or some other unaliased location). 1276 bool needs_anti_dependence_check() const; 1277 1278 // Return which operand this instruction may cisc-spill. In other words, 1279 // return operand position that can convert from reg to memory access 1280 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1281 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1282 1283 // Whether this is a memory-writing machine node. 1284 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1285 1286 // Whether this is a memory phi node 1287 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; } 1288 1289 bool is_div_or_mod(BasicType bt) const; 1290 1291 bool is_pure_function() const; 1292 1293 bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const; 1294 1295 //----------------- Printing, etc 1296 #ifndef PRODUCT 1297 public: 1298 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1299 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1300 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const; 1301 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty 1302 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr) 1303 class DumpConfig { 1304 public: 1305 // overridden to implement coloring of node idx 1306 virtual void pre_dump(outputStream *st, const Node* n) = 0; 1307 virtual void post_dump(outputStream *st) = 0; 1308 }; 1309 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; 1310 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const; 1311 void dump() const; // print node with newline 1312 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node. 1313 void dump(int depth) const; // Print this node, recursively to depth d 1314 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1315 void dump_comp() const; // Print this node in compact representation. 1316 // Print this node in compact representation. 1317 void dump_comp(const char* suffix, outputStream *st = tty) const; 1318 private: 1319 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info 1320 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info 1321 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info 1322 public: 1323 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1324 // Print compact per-node info 1325 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1326 1327 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1328 1329 // This call defines a class-unique string used to identify class instances 1330 virtual const char *Name() const; 1331 1332 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1333 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call 1334 #endif 1335 #ifdef ASSERT 1336 void verify_construction(); 1337 bool verify_jvms(const JVMState* jvms) const; 1338 1339 Node* _debug_orig; // Original version of this, if any. 1340 Node* debug_orig() const { return _debug_orig; } 1341 void set_debug_orig(Node* orig); // _debug_orig = orig 1342 void dump_orig(outputStream *st, bool print_key = true) const; 1343 1344 uint64_t _debug_idx; // Unique value assigned to every node. 1345 uint64_t debug_idx() const { return _debug_idx; } 1346 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; } 1347 1348 int _hash_lock; // Barrier to modifications of nodes in the hash table 1349 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1350 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1351 1352 static void init_NodeProperty(); 1353 1354 #if OPTO_DU_ITERATOR_ASSERT 1355 const Node* _last_del; // The last deleted node. 1356 uint _del_tick; // Bumped when a deletion happens.. 1357 #endif 1358 #endif 1359 }; 1360 1361 inline bool not_a_node(const Node* n) { 1362 if (n == nullptr) return true; 1363 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1364 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1365 return false; 1366 } 1367 1368 //----------------------------------------------------------------------------- 1369 // Iterators over DU info, and associated Node functions. 1370 1371 #if OPTO_DU_ITERATOR_ASSERT 1372 1373 // Common code for assertion checking on DU iterators. 1374 class DUIterator_Common { 1375 #ifdef ASSERT 1376 protected: 1377 bool _vdui; // cached value of VerifyDUIterators 1378 const Node* _node; // the node containing the _out array 1379 uint _outcnt; // cached node->_outcnt 1380 uint _del_tick; // cached node->_del_tick 1381 Node* _last; // last value produced by the iterator 1382 1383 void sample(const Node* node); // used by c'tor to set up for verifies 1384 void verify(const Node* node, bool at_end_ok = false); 1385 void verify_resync(); 1386 void reset(const DUIterator_Common& that); 1387 1388 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1389 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1390 #else 1391 #define I_VDUI_ONLY(i,x) { } 1392 #endif //ASSERT 1393 }; 1394 1395 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1396 1397 // Default DU iterator. Allows appends onto the out array. 1398 // Allows deletion from the out array only at the current point. 1399 // Usage: 1400 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1401 // Node* y = x->out(i); 1402 // ... 1403 // } 1404 // Compiles in product mode to a unsigned integer index, which indexes 1405 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1406 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1407 // before continuing the loop. You must delete only the last-produced 1408 // edge. You must delete only a single copy of the last-produced edge, 1409 // or else you must delete all copies at once (the first time the edge 1410 // is produced by the iterator). 1411 class DUIterator : public DUIterator_Common { 1412 friend class Node; 1413 1414 // This is the index which provides the product-mode behavior. 1415 // Whatever the product-mode version of the system does to the 1416 // DUI index is done to this index. All other fields in 1417 // this class are used only for assertion checking. 1418 uint _idx; 1419 1420 #ifdef ASSERT 1421 uint _refresh_tick; // Records the refresh activity. 1422 1423 void sample(const Node* node); // Initialize _refresh_tick etc. 1424 void verify(const Node* node, bool at_end_ok = false); 1425 void verify_increment(); // Verify an increment operation. 1426 void verify_resync(); // Verify that we can back up over a deletion. 1427 void verify_finish(); // Verify that the loop terminated properly. 1428 void refresh(); // Resample verification info. 1429 void reset(const DUIterator& that); // Resample after assignment. 1430 #endif 1431 1432 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1433 { _idx = 0; debug_only(sample(node)); } 1434 1435 public: 1436 // initialize to garbage; clear _vdui to disable asserts 1437 DUIterator() 1438 { /*initialize to garbage*/ debug_only(_vdui = false); } 1439 1440 DUIterator(const DUIterator& that) 1441 { _idx = that._idx; debug_only(_vdui = false; reset(that)); } 1442 1443 void operator++(int dummy_to_specify_postfix_op) 1444 { _idx++; VDUI_ONLY(verify_increment()); } 1445 1446 void operator--() 1447 { VDUI_ONLY(verify_resync()); --_idx; } 1448 1449 ~DUIterator() 1450 { VDUI_ONLY(verify_finish()); } 1451 1452 void operator=(const DUIterator& that) 1453 { _idx = that._idx; debug_only(reset(that)); } 1454 }; 1455 1456 DUIterator Node::outs() const 1457 { return DUIterator(this, 0); } 1458 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1459 { I_VDUI_ONLY(i, i.refresh()); return i; } 1460 bool Node::has_out(DUIterator& i) const 1461 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1462 Node* Node::out(DUIterator& i) const 1463 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1464 1465 1466 // Faster DU iterator. Disallows insertions into the out array. 1467 // Allows deletion from the out array only at the current point. 1468 // Usage: 1469 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1470 // Node* y = x->fast_out(i); 1471 // ... 1472 // } 1473 // Compiles in product mode to raw Node** pointer arithmetic, with 1474 // no reloading of pointers from the original node x. If you delete, 1475 // you must perform "--i; --imax" just before continuing the loop. 1476 // If you delete multiple copies of the same edge, you must decrement 1477 // imax, but not i, multiple times: "--i, imax -= num_edges". 1478 class DUIterator_Fast : public DUIterator_Common { 1479 friend class Node; 1480 friend class DUIterator_Last; 1481 1482 // This is the pointer which provides the product-mode behavior. 1483 // Whatever the product-mode version of the system does to the 1484 // DUI pointer is done to this pointer. All other fields in 1485 // this class are used only for assertion checking. 1486 Node** _outp; 1487 1488 #ifdef ASSERT 1489 void verify(const Node* node, bool at_end_ok = false); 1490 void verify_limit(); 1491 void verify_resync(); 1492 void verify_relimit(uint n); 1493 void reset(const DUIterator_Fast& that); 1494 #endif 1495 1496 // Note: offset must be signed, since -1 is sometimes passed 1497 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1498 { _outp = node->_out + offset; debug_only(sample(node)); } 1499 1500 public: 1501 // initialize to garbage; clear _vdui to disable asserts 1502 DUIterator_Fast() 1503 { /*initialize to garbage*/ debug_only(_vdui = false); } 1504 1505 DUIterator_Fast(const DUIterator_Fast& that) 1506 { _outp = that._outp; debug_only(_vdui = false; reset(that)); } 1507 1508 void operator++(int dummy_to_specify_postfix_op) 1509 { _outp++; VDUI_ONLY(verify(_node, true)); } 1510 1511 void operator--() 1512 { VDUI_ONLY(verify_resync()); --_outp; } 1513 1514 void operator-=(uint n) // applied to the limit only 1515 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1516 1517 bool operator<(DUIterator_Fast& limit) { 1518 I_VDUI_ONLY(*this, this->verify(_node, true)); 1519 I_VDUI_ONLY(limit, limit.verify_limit()); 1520 return _outp < limit._outp; 1521 } 1522 1523 void operator=(const DUIterator_Fast& that) 1524 { _outp = that._outp; debug_only(reset(that)); } 1525 }; 1526 1527 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1528 // Assign a limit pointer to the reference argument: 1529 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1530 // Return the base pointer: 1531 return DUIterator_Fast(this, 0); 1532 } 1533 Node* Node::fast_out(DUIterator_Fast& i) const { 1534 I_VDUI_ONLY(i, i.verify(this)); 1535 return debug_only(i._last=) *i._outp; 1536 } 1537 1538 1539 // Faster DU iterator. Requires each successive edge to be removed. 1540 // Does not allow insertion of any edges. 1541 // Usage: 1542 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1543 // Node* y = x->last_out(i); 1544 // ... 1545 // } 1546 // Compiles in product mode to raw Node** pointer arithmetic, with 1547 // no reloading of pointers from the original node x. 1548 class DUIterator_Last : private DUIterator_Fast { 1549 friend class Node; 1550 1551 #ifdef ASSERT 1552 void verify(const Node* node, bool at_end_ok = false); 1553 void verify_limit(); 1554 void verify_step(uint num_edges); 1555 #endif 1556 1557 // Note: offset must be signed, since -1 is sometimes passed 1558 DUIterator_Last(const Node* node, ptrdiff_t offset) 1559 : DUIterator_Fast(node, offset) { } 1560 1561 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1562 void operator<(int) {} // do not use 1563 1564 public: 1565 DUIterator_Last() { } 1566 // initialize to garbage 1567 1568 DUIterator_Last(const DUIterator_Last& that) = default; 1569 1570 void operator--() 1571 { _outp--; VDUI_ONLY(verify_step(1)); } 1572 1573 void operator-=(uint n) 1574 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1575 1576 bool operator>=(DUIterator_Last& limit) { 1577 I_VDUI_ONLY(*this, this->verify(_node, true)); 1578 I_VDUI_ONLY(limit, limit.verify_limit()); 1579 return _outp >= limit._outp; 1580 } 1581 1582 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1583 }; 1584 1585 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1586 // Assign a limit pointer to the reference argument: 1587 imin = DUIterator_Last(this, 0); 1588 // Return the initial pointer: 1589 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1590 } 1591 Node* Node::last_out(DUIterator_Last& i) const { 1592 I_VDUI_ONLY(i, i.verify(this)); 1593 return debug_only(i._last=) *i._outp; 1594 } 1595 1596 #endif //OPTO_DU_ITERATOR_ASSERT 1597 1598 #undef I_VDUI_ONLY 1599 #undef VDUI_ONLY 1600 1601 // An Iterator that truly follows the iterator pattern. Doesn't 1602 // support deletion but could be made to. 1603 // 1604 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1605 // Node* m = i.get(); 1606 // 1607 class SimpleDUIterator : public StackObj { 1608 private: 1609 Node* node; 1610 DUIterator_Fast imax; 1611 DUIterator_Fast i; 1612 public: 1613 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1614 bool has_next() { return i < imax; } 1615 void next() { i++; } 1616 Node* get() { return node->fast_out(i); } 1617 }; 1618 1619 1620 //----------------------------------------------------------------------------- 1621 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1622 // Abstractly provides an infinite array of Node*'s, initialized to null. 1623 // Note that the constructor just zeros things, and since I use Arena 1624 // allocation I do not need a destructor to reclaim storage. 1625 class Node_Array : public AnyObj { 1626 protected: 1627 Arena* _a; // Arena to allocate in 1628 uint _max; 1629 Node** _nodes; 1630 ReallocMark _nesting; // Safety checks for arena reallocation 1631 1632 // Grow array to required capacity 1633 void maybe_grow(uint i) { 1634 if (i >= _max) { 1635 grow(i); 1636 } 1637 } 1638 void grow(uint i); 1639 1640 public: 1641 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1642 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1643 clear(); 1644 } 1645 Node_Array() : Node_Array(Thread::current()->resource_area()) {} 1646 1647 NONCOPYABLE(Node_Array); 1648 Node_Array& operator=(Node_Array&&) = delete; 1649 // Allow move constructor for && (eg. capture return of function) 1650 Node_Array(Node_Array&&) = default; 1651 1652 Node *operator[] ( uint i ) const // Lookup, or null for not mapped 1653 { return (i<_max) ? _nodes[i] : (Node*)nullptr; } 1654 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1655 Node** adr() { return _nodes; } 1656 // Extend the mapping: index i maps to Node *n. 1657 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; } 1658 void insert( uint i, Node *n ); 1659 void remove( uint i ); // Remove, preserving order 1660 // Clear all entries in _nodes to null but keep storage 1661 void clear() { 1662 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1663 } 1664 1665 uint max() const { return _max; } 1666 void dump() const; 1667 }; 1668 1669 class Node_List : public Node_Array { 1670 uint _cnt; 1671 public: 1672 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1673 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1674 1675 NONCOPYABLE(Node_List); 1676 Node_List& operator=(Node_List&&) = delete; 1677 // Allow move constructor for && (eg. capture return of function) 1678 Node_List(Node_List&&) = default; 1679 1680 bool contains(const Node* n) const { 1681 for (uint e = 0; e < size(); e++) { 1682 if (at(e) == n) return true; 1683 } 1684 return false; 1685 } 1686 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1687 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1688 void push( Node *b ) { map(_cnt++,b); } 1689 void yank( Node *n ); // Find and remove 1690 Node *pop() { return _nodes[--_cnt]; } 1691 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1692 void copy(const Node_List& from) { 1693 if (from._max > _max) { 1694 grow(from._max); 1695 } 1696 _cnt = from._cnt; 1697 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1698 } 1699 1700 uint size() const { return _cnt; } 1701 void dump() const; 1702 void dump_simple() const; 1703 }; 1704 1705 // Definition must appear after complete type definition of Node_List 1706 template <typename Callback, typename Check> 1707 void Node::visit_uses(Callback callback, Check is_boundary) const { 1708 ResourceMark rm; 1709 VectorSet visited; 1710 Node_List worklist; 1711 1712 // The initial worklist consists of the direct uses 1713 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) { 1714 Node* out = fast_out(k); 1715 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1716 } 1717 1718 while (worklist.size() > 0) { 1719 Node* use = worklist.pop(); 1720 // Apply callback on boundary nodes 1721 if (is_boundary(use)) { 1722 callback(use); 1723 } else { 1724 // Not a boundary node, continue search 1725 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1726 Node* out = use->fast_out(k); 1727 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1728 } 1729 } 1730 } 1731 } 1732 1733 1734 //------------------------------Unique_Node_List------------------------------- 1735 class Unique_Node_List : public Node_List { 1736 VectorSet _in_worklist; 1737 uint _clock_index; // Index in list where to pop from next 1738 public: 1739 Unique_Node_List() : Node_List(), _clock_index(0) {} 1740 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1741 1742 NONCOPYABLE(Unique_Node_List); 1743 Unique_Node_List& operator=(Unique_Node_List&&) = delete; 1744 // Allow move constructor for && (eg. capture return of function) 1745 Unique_Node_List(Unique_Node_List&&) = default; 1746 1747 void remove( Node *n ); 1748 bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; } 1749 VectorSet& member_set(){ return _in_worklist; } 1750 1751 void push(Node* b) { 1752 if( !_in_worklist.test_set(b->_idx) ) 1753 Node_List::push(b); 1754 } 1755 void push_non_cfg_inputs_of(const Node* node) { 1756 for (uint i = 1; i < node->req(); i++) { 1757 Node* input = node->in(i); 1758 if (input != nullptr && !input->is_CFG()) { 1759 push(input); 1760 } 1761 } 1762 } 1763 1764 void push_outputs_of(const Node* node) { 1765 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) { 1766 Node* output = node->fast_out(i); 1767 push(output); 1768 } 1769 } 1770 1771 Node *pop() { 1772 if( _clock_index >= size() ) _clock_index = 0; 1773 Node *b = at(_clock_index); 1774 map( _clock_index, Node_List::pop()); 1775 if (size() != 0) _clock_index++; // Always start from 0 1776 _in_worklist.remove(b->_idx); 1777 return b; 1778 } 1779 Node *remove(uint i) { 1780 Node *b = Node_List::at(i); 1781 _in_worklist.remove(b->_idx); 1782 map(i,Node_List::pop()); 1783 return b; 1784 } 1785 void yank(Node *n) { 1786 _in_worklist.remove(n->_idx); 1787 Node_List::yank(n); 1788 } 1789 void clear() { 1790 _in_worklist.clear(); // Discards storage but grows automatically 1791 Node_List::clear(); 1792 _clock_index = 0; 1793 } 1794 void ensure_empty() { 1795 assert(size() == 0, "must be empty"); 1796 clear(); // just in case 1797 } 1798 1799 // Used after parsing to remove useless nodes before Iterative GVN 1800 void remove_useless_nodes(VectorSet& useful); 1801 1802 // If the idx of the Nodes change, we must recompute the VectorSet 1803 void recompute_idx_set() { 1804 _in_worklist.clear(); 1805 for (uint i = 0; i < size(); i++) { 1806 Node* n = at(i); 1807 _in_worklist.set(n->_idx); 1808 } 1809 } 1810 1811 #ifdef ASSERT 1812 bool is_subset_of(Unique_Node_List& other) { 1813 for (uint i = 0; i < size(); i++) { 1814 Node* n = at(i); 1815 if (!other.member(n)) { 1816 return false; 1817 } 1818 } 1819 return true; 1820 } 1821 #endif 1822 1823 bool contains(const Node* n) const { 1824 fatal("use faster member() instead"); 1825 return false; 1826 } 1827 1828 #ifndef PRODUCT 1829 void print_set() const { _in_worklist.print(); } 1830 #endif 1831 }; 1832 1833 // Unique_Mixed_Node_List 1834 // unique: nodes are added only once 1835 // mixed: allow new and old nodes 1836 class Unique_Mixed_Node_List : public ResourceObj { 1837 public: 1838 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {} 1839 1840 void add(Node* node) { 1841 if (not_a_node(node)) { 1842 return; // Gracefully handle null, -1, 0xabababab, etc. 1843 } 1844 if (_visited_set[node] == nullptr) { 1845 _visited_set.Insert(node, node); 1846 _worklist.push(node); 1847 } 1848 } 1849 1850 Node* operator[] (uint i) const { 1851 return _worklist[i]; 1852 } 1853 1854 size_t size() { 1855 return _worklist.size(); 1856 } 1857 1858 private: 1859 Dict _visited_set; 1860 Node_List _worklist; 1861 }; 1862 1863 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1864 inline void Compile::record_for_igvn(Node* n) { 1865 _igvn_worklist->push(n); 1866 } 1867 1868 // Inline definition of Compile::remove_for_igvn must be deferred to this point. 1869 inline void Compile::remove_for_igvn(Node* n) { 1870 _igvn_worklist->remove(n); 1871 } 1872 1873 //------------------------------Node_Stack------------------------------------- 1874 class Node_Stack { 1875 protected: 1876 struct INode { 1877 Node *node; // Processed node 1878 uint indx; // Index of next node's child 1879 }; 1880 INode *_inode_top; // tos, stack grows up 1881 INode *_inode_max; // End of _inodes == _inodes + _max 1882 INode *_inodes; // Array storage for the stack 1883 Arena *_a; // Arena to allocate in 1884 ReallocMark _nesting; // Safety checks for arena reallocation 1885 void grow(); 1886 public: 1887 Node_Stack(int size) { 1888 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1889 _a = Thread::current()->resource_area(); 1890 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1891 _inode_max = _inodes + max; 1892 _inode_top = _inodes - 1; // stack is empty 1893 } 1894 1895 Node_Stack(Arena *a, int size) : _a(a) { 1896 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1897 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1898 _inode_max = _inodes + max; 1899 _inode_top = _inodes - 1; // stack is empty 1900 } 1901 1902 void pop() { 1903 assert(_inode_top >= _inodes, "node stack underflow"); 1904 --_inode_top; 1905 } 1906 void push(Node *n, uint i) { 1907 ++_inode_top; 1908 grow(); 1909 INode *top = _inode_top; // optimization 1910 top->node = n; 1911 top->indx = i; 1912 } 1913 Node *node() const { 1914 return _inode_top->node; 1915 } 1916 Node* node_at(uint i) const { 1917 assert(_inodes + i <= _inode_top, "in range"); 1918 return _inodes[i].node; 1919 } 1920 uint index() const { 1921 return _inode_top->indx; 1922 } 1923 uint index_at(uint i) const { 1924 assert(_inodes + i <= _inode_top, "in range"); 1925 return _inodes[i].indx; 1926 } 1927 void set_node(Node *n) { 1928 _inode_top->node = n; 1929 } 1930 void set_index(uint i) { 1931 _inode_top->indx = i; 1932 } 1933 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1934 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1935 bool is_nonempty() const { return (_inode_top >= _inodes); } 1936 bool is_empty() const { return (_inode_top < _inodes); } 1937 void clear() { _inode_top = _inodes - 1; } // retain storage 1938 1939 // Node_Stack is used to map nodes. 1940 Node* find(uint idx) const; 1941 1942 NONCOPYABLE(Node_Stack); 1943 }; 1944 1945 1946 //-----------------------------Node_Notes-------------------------------------- 1947 // Debugging or profiling annotations loosely and sparsely associated 1948 // with some nodes. See Compile::node_notes_at for the accessor. 1949 class Node_Notes { 1950 JVMState* _jvms; 1951 1952 public: 1953 Node_Notes(JVMState* jvms = nullptr) { 1954 _jvms = jvms; 1955 } 1956 1957 JVMState* jvms() { return _jvms; } 1958 void set_jvms(JVMState* x) { _jvms = x; } 1959 1960 // True if there is nothing here. 1961 bool is_clear() { 1962 return (_jvms == nullptr); 1963 } 1964 1965 // Make there be nothing here. 1966 void clear() { 1967 _jvms = nullptr; 1968 } 1969 1970 // Make a new, clean node notes. 1971 static Node_Notes* make(Compile* C) { 1972 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1973 nn->clear(); 1974 return nn; 1975 } 1976 1977 Node_Notes* clone(Compile* C) { 1978 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1979 (*nn) = (*this); 1980 return nn; 1981 } 1982 1983 // Absorb any information from source. 1984 bool update_from(Node_Notes* source) { 1985 bool changed = false; 1986 if (source != nullptr) { 1987 if (source->jvms() != nullptr) { 1988 set_jvms(source->jvms()); 1989 changed = true; 1990 } 1991 } 1992 return changed; 1993 } 1994 }; 1995 1996 // Inlined accessors for Compile::node_nodes that require the preceding class: 1997 inline Node_Notes* 1998 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 1999 int idx, bool can_grow) { 2000 assert(idx >= 0, "oob"); 2001 int block_idx = (idx >> _log2_node_notes_block_size); 2002 int grow_by = (block_idx - (arr == nullptr? 0: arr->length())); 2003 if (grow_by >= 0) { 2004 if (!can_grow) return nullptr; 2005 grow_node_notes(arr, grow_by + 1); 2006 } 2007 if (arr == nullptr) return nullptr; 2008 // (Every element of arr is a sub-array of length _node_notes_block_size.) 2009 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 2010 } 2011 2012 inline Node_Notes* Compile::node_notes_at(int idx) { 2013 return locate_node_notes(_node_note_array, idx, false); 2014 } 2015 2016 inline bool 2017 Compile::set_node_notes_at(int idx, Node_Notes* value) { 2018 if (value == nullptr || value->is_clear()) 2019 return false; // nothing to write => write nothing 2020 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 2021 assert(loc != nullptr, ""); 2022 return loc->update_from(value); 2023 } 2024 2025 2026 //------------------------------TypeNode--------------------------------------- 2027 // Node with a Type constant. 2028 class TypeNode : public Node { 2029 protected: 2030 virtual uint hash() const; // Check the type 2031 virtual bool cmp( const Node &n ) const; 2032 virtual uint size_of() const; // Size is bigger 2033 const Type* const _type; 2034 public: 2035 void set_type(const Type* t) { 2036 assert(t != nullptr, "sanity"); 2037 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 2038 *(const Type**)&_type = t; // cast away const-ness 2039 // If this node is in the hash table, make sure it doesn't need a rehash. 2040 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 2041 } 2042 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 2043 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 2044 init_class_id(Class_Type); 2045 } 2046 virtual const Type* Value(PhaseGVN* phase) const; 2047 virtual const Type *bottom_type() const; 2048 virtual uint ideal_reg() const; 2049 #ifndef PRODUCT 2050 virtual void dump_spec(outputStream *st) const; 2051 virtual void dump_compact_spec(outputStream *st) const; 2052 #endif 2053 }; 2054 2055 #include "opto/opcodes.hpp" 2056 2057 #define Op_IL(op) \ 2058 inline int Op_ ## op(BasicType bt) { \ 2059 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 2060 if (bt == T_INT) { \ 2061 return Op_## op ## I; \ 2062 } \ 2063 return Op_## op ## L; \ 2064 } 2065 2066 Op_IL(Add) 2067 Op_IL(And) 2068 Op_IL(Sub) 2069 Op_IL(Mul) 2070 Op_IL(URShift) 2071 Op_IL(LShift) 2072 Op_IL(Xor) 2073 Op_IL(Cmp) 2074 Op_IL(Div) 2075 Op_IL(Mod) 2076 Op_IL(UDiv) 2077 Op_IL(UMod) 2078 2079 inline int Op_ConIL(BasicType bt) { 2080 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2081 if (bt == T_INT) { 2082 return Op_ConI; 2083 } 2084 return Op_ConL; 2085 } 2086 2087 inline int Op_Cmp_unsigned(BasicType bt) { 2088 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2089 if (bt == T_INT) { 2090 return Op_CmpU; 2091 } 2092 return Op_CmpUL; 2093 } 2094 2095 inline int Op_Cast(BasicType bt) { 2096 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2097 if (bt == T_INT) { 2098 return Op_CastII; 2099 } 2100 return Op_CastLL; 2101 } 2102 2103 inline int Op_DivIL(BasicType bt, bool is_unsigned) { 2104 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2105 if (bt == T_INT) { 2106 if (is_unsigned) { 2107 return Op_UDivI; 2108 } else { 2109 return Op_DivI; 2110 } 2111 } 2112 if (is_unsigned) { 2113 return Op_UDivL; 2114 } else { 2115 return Op_DivL; 2116 } 2117 } 2118 2119 inline int Op_DivModIL(BasicType bt, bool is_unsigned) { 2120 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2121 if (bt == T_INT) { 2122 if (is_unsigned) { 2123 return Op_UDivModI; 2124 } else { 2125 return Op_DivModI; 2126 } 2127 } 2128 if (is_unsigned) { 2129 return Op_UDivModL; 2130 } else { 2131 return Op_DivModL; 2132 } 2133 } 2134 2135 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify 2136 // a customized BFS. 2137 class BFSActions : public StackObj { 2138 public: 2139 // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this 2140 // method to provide a custom filter. 2141 virtual bool should_visit(Node* node) const { 2142 // By default, visit all inputs. 2143 return true; 2144 }; 2145 2146 // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further 2147 // but the BFS will continue to visit all unvisited nodes in the queue. 2148 virtual bool is_target_node(Node* node) const = 0; 2149 2150 // Defines an action that should be taken when we visit a target node in the BFS traversal. 2151 virtual void target_node_action(Node* target_node) = 0; 2152 }; 2153 2154 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which 2155 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes. 2156 class DataNodeBFS : public StackObj { 2157 BFSActions& _bfs_actions; 2158 2159 public: 2160 explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {} 2161 2162 // Run the BFS starting from 'start_node' and apply the actions provided to this class. 2163 void run(Node* start_node) { 2164 ResourceMark rm; 2165 Unique_Node_List _nodes_to_visit; 2166 _nodes_to_visit.push(start_node); 2167 for (uint i = 0; i < _nodes_to_visit.size(); i++) { 2168 Node* next = _nodes_to_visit[i]; 2169 for (uint j = 1; j < next->req(); j++) { 2170 Node* input = next->in(j); 2171 if (_bfs_actions.is_target_node(input)) { 2172 assert(_bfs_actions.should_visit(input), "must also pass node filter"); 2173 _bfs_actions.target_node_action(input); 2174 } else if (_bfs_actions.should_visit(input)) { 2175 _nodes_to_visit.push(input); 2176 } 2177 } 2178 } 2179 } 2180 }; 2181 2182 #endif // SHARE_OPTO_NODE_HPP