1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef SHARE_OPTO_NODE_HPP
27 #define SHARE_OPTO_NODE_HPP
28
29 #include "libadt/vectset.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/type.hpp"
32 #include "utilities/copy.hpp"
33
34 // Portions of code courtesy of Clifford Click
35
36 // Optimization - Graph Style
37
38
39 class AbstractLockNode;
40 class AddNode;
41 class AddPNode;
42 class AliasInfo;
43 class AllocateArrayNode;
44 class AllocateNode;
45 class ArrayCopyNode;
46 class BaseCountedLoopNode;
47 class BaseCountedLoopEndNode;
48 class BlackholeNode;
49 class Block;
50 class BoolNode;
51 class BoxLockNode;
52 class CMoveNode;
53 class CallDynamicJavaNode;
54 class CallJavaNode;
55 class CallLeafNode;
56 class CallLeafNoFPNode;
57 class CallLeafPureNode;
58 class CallNode;
59 class CallRuntimeNode;
60 class CallStaticJavaNode;
61 class CastFFNode;
62 class CastHHNode;
63 class CastDDNode;
64 class CastVVNode;
65 class CastIINode;
66 class CastLLNode;
67 class CastPPNode;
68 class CatchNode;
69 class CatchProjNode;
70 class CheckCastPPNode;
71 class ClearArrayNode;
72 class CmpNode;
73 class CodeBuffer;
74 class ConstraintCastNode;
75 class ConNode;
76 class ConINode;
77 class ConvertNode;
78 class CompareAndSwapNode;
79 class CompareAndExchangeNode;
80 class CountedLoopNode;
81 class CountedLoopEndNode;
82 class DecodeNarrowPtrNode;
83 class DecodeNNode;
84 class DecodeNKlassNode;
85 class EncodeNarrowPtrNode;
86 class EncodePNode;
87 class EncodePKlassNode;
88 class FastLockNode;
89 class FastUnlockNode;
90 class HaltNode;
91 class IfNode;
92 class IfProjNode;
93 class IfFalseNode;
94 class IfTrueNode;
95 class InitializeNode;
96 class JVMState;
97 class JumpNode;
98 class JumpProjNode;
99 class LoadNode;
100 class LoadStoreNode;
101 class LoadStoreConditionalNode;
102 class LockNode;
103 class LongCountedLoopNode;
104 class LongCountedLoopEndNode;
105 class LoopNode;
106 class LShiftNode;
107 class MachBranchNode;
108 class MachCallDynamicJavaNode;
109 class MachCallJavaNode;
110 class MachCallLeafNode;
111 class MachCallNode;
112 class MachCallRuntimeNode;
113 class MachCallStaticJavaNode;
114 class MachConstantBaseNode;
115 class MachConstantNode;
116 class MachGotoNode;
117 class MachIfNode;
118 class MachJumpNode;
119 class MachNode;
120 class MachNullCheckNode;
121 class MachProjNode;
122 class MachReturnNode;
123 class MachSafePointNode;
124 class MachSpillCopyNode;
125 class MachTempNode;
126 class MachMergeNode;
127 class MachMemBarNode;
128 class Matcher;
129 class MemBarNode;
130 class MemBarStoreStoreNode;
131 class MemNode;
132 class MergeMemNode;
133 class MoveNode;
134 class MulNode;
135 class MultiNode;
136 class MultiBranchNode;
137 class NarrowMemProjNode;
138 class NegNode;
139 class NegVNode;
140 class NeverBranchNode;
141 class Opaque1Node;
142 class OpaqueLoopInitNode;
143 class OpaqueLoopStrideNode;
144 class OpaqueMultiversioningNode;
145 class OpaqueNotNullNode;
146 class OpaqueInitializedAssertionPredicateNode;
147 class OpaqueTemplateAssertionPredicateNode;
148 class OuterStripMinedLoopNode;
149 class OuterStripMinedLoopEndNode;
150 class Node;
151 class Node_Array;
152 class Node_List;
153 class Node_Stack;
154 class OopMap;
155 class ParmNode;
156 class ParsePredicateNode;
157 class PCTableNode;
158 class PhaseCCP;
159 class PhaseGVN;
160 class PhaseIdealLoop;
161 class PhaseIterGVN;
162 class PhaseRegAlloc;
163 class PhaseTransform;
164 class PhaseValues;
165 class PhiNode;
166 class Pipeline;
167 class PopulateIndexNode;
168 class ProjNode;
169 class RangeCheckNode;
170 class ReductionNode;
171 class RegMask;
172 class RegionNode;
173 class RootNode;
174 class SafePointNode;
175 class SafePointScalarObjectNode;
176 class SafePointScalarMergeNode;
177 class SaturatingVectorNode;
178 class StartNode;
179 class State;
180 class StoreNode;
181 class SubNode;
182 class SubTypeCheckNode;
183 class Type;
184 class TypeNode;
185 class UnlockNode;
186 class VectorNode;
187 class LoadVectorNode;
188 class LoadVectorMaskedNode;
189 class StoreVectorMaskedNode;
190 class LoadVectorGatherNode;
191 class LoadVectorGatherMaskedNode;
192 class StoreVectorNode;
193 class StoreVectorScatterNode;
194 class StoreVectorScatterMaskedNode;
195 class VerifyVectorAlignmentNode;
196 class VectorMaskCmpNode;
197 class VectorUnboxNode;
198 class VectorSet;
199 class VectorReinterpretNode;
200 class ShiftVNode;
201 class MulVLNode;
202 class ExpandVNode;
203 class CompressVNode;
204 class CompressMNode;
205 class C2_MacroAssembler;
206
207
208 #ifndef OPTO_DU_ITERATOR_ASSERT
209 #ifdef ASSERT
210 #define OPTO_DU_ITERATOR_ASSERT 1
211 #else
212 #define OPTO_DU_ITERATOR_ASSERT 0
213 #endif
214 #endif //OPTO_DU_ITERATOR_ASSERT
215
216 #if OPTO_DU_ITERATOR_ASSERT
217 class DUIterator;
218 class DUIterator_Fast;
219 class DUIterator_Last;
220 #else
221 typedef uint DUIterator;
222 typedef Node** DUIterator_Fast;
223 typedef Node** DUIterator_Last;
224 #endif
225
226 typedef ResizeableHashTable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable;
227
228 // Node Sentinel
229 #define NodeSentinel (Node*)-1
230
231 // Unknown count frequency
232 #define COUNT_UNKNOWN (-1.0f)
233
234 //------------------------------Node-------------------------------------------
235 // Nodes define actions in the program. They create values, which have types.
236 // They are both vertices in a directed graph and program primitives. Nodes
237 // are labeled; the label is the "opcode", the primitive function in the lambda
238 // calculus sense that gives meaning to the Node. Node inputs are ordered (so
239 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
240 // the Node's function. These inputs also define a Type equation for the Node.
241 // Solving these Type equations amounts to doing dataflow analysis.
242 // Control and data are uniformly represented in the graph. Finally, Nodes
243 // have a unique dense integer index which is used to index into side arrays
244 // whenever I have phase-specific information.
245
246 class Node {
247
248 // Lots of restrictions on cloning Nodes
249 NONCOPYABLE(Node);
250
251 public:
252 friend class Compile;
253 #if OPTO_DU_ITERATOR_ASSERT
254 friend class DUIterator_Common;
255 friend class DUIterator;
256 friend class DUIterator_Fast;
257 friend class DUIterator_Last;
258 #endif
259
260 // Because Nodes come and go, I define an Arena of Node structures to pull
261 // from. This should allow fast access to node creation & deletion. This
262 // field is a local cache of a value defined in some "program fragment" for
263 // which these Nodes are just a part of.
264
265 inline void* operator new(size_t x) throw() {
266 Compile* C = Compile::current();
267 Node* n = (Node*)C->node_arena()->AmallocWords(x);
268 return (void*)n;
269 }
270
271 // Delete is a NOP
272 void operator delete( void *ptr ) {}
273 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
274 void destruct(PhaseValues* phase);
275
276 // Create a new Node. Required is the number is of inputs required for
277 // semantic correctness.
278 Node( uint required );
279
280 // Create a new Node with given input edges.
281 // This version requires use of the "edge-count" new.
282 // E.g. new (C,3) FooNode( C, nullptr, left, right );
283 Node( Node *n0 );
284 Node( Node *n0, Node *n1 );
285 Node( Node *n0, Node *n1, Node *n2 );
286 Node( Node *n0, Node *n1, Node *n2, Node *n3 );
287 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
288 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
289 Node( Node *n0, Node *n1, Node *n2, Node *n3,
290 Node *n4, Node *n5, Node *n6 );
291
292 // Clone an inherited Node given only the base Node type.
293 Node* clone() const;
294
295 // Clone a Node, immediately supplying one or two new edges.
296 // The first and second arguments, if non-null, replace in(1) and in(2),
297 // respectively.
298 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
299 Node* nn = clone();
300 if (in1 != nullptr) nn->set_req(1, in1);
301 if (in2 != nullptr) nn->set_req(2, in2);
302 return nn;
303 }
304
305 private:
306 // Shared setup for the above constructors.
307 // Handles all interactions with Compile::current.
308 // Puts initial values in all Node fields except _idx.
309 // Returns the initial value for _idx, which cannot
310 // be initialized by assignment.
311 inline int Init(int req);
312
313 //----------------- input edge handling
314 protected:
315 friend class PhaseCFG; // Access to address of _in array elements
316 Node **_in; // Array of use-def references to Nodes
317 Node **_out; // Array of def-use references to Nodes
318
319 // Input edges are split into two categories. Required edges are required
320 // for semantic correctness; order is important and nulls are allowed.
321 // Precedence edges are used to help determine execution order and are
322 // added, e.g., for scheduling purposes. They are unordered and not
323 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1
324 // are required, from _cnt to _max-1 are precedence edges.
325 node_idx_t _cnt; // Total number of required Node inputs.
326
327 node_idx_t _max; // Actual length of input array.
328
329 // Output edges are an unordered list of def-use edges which exactly
330 // correspond to required input edges which point from other nodes
331 // to this one. Thus the count of the output edges is the number of
332 // users of this node.
333 node_idx_t _outcnt; // Total number of Node outputs.
334
335 node_idx_t _outmax; // Actual length of output array.
336
337 // Grow the actual input array to the next larger power-of-2 bigger than len.
338 void grow( uint len );
339 // Grow the output array to the next larger power-of-2 bigger than len.
340 void out_grow( uint len );
341 // Resize input or output array to grow it to the next larger power-of-2
342 // bigger than len.
343 void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing);
344
345 public:
346 // Each Node is assigned a unique small/dense number. This number is used
347 // to index into auxiliary arrays of data and bit vectors.
348 // The value of _idx can be changed using the set_idx() method.
349 //
350 // The PhaseRenumberLive phase renumbers nodes based on liveness information.
351 // Therefore, it updates the value of the _idx field. The parse-time _idx is
352 // preserved in _parse_idx.
353 node_idx_t _idx;
354 DEBUG_ONLY(const node_idx_t _parse_idx;)
355 // IGV node identifier. Two nodes, possibly in different compilation phases,
356 // have the same IGV identifier if (and only if) they are the very same node
357 // (same memory address) or one is "derived" from the other (by e.g.
358 // renumbering or matching). This identifier makes it possible to follow the
359 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
360 NOT_PRODUCT(node_idx_t _igv_idx;)
361
362 // Get the (read-only) number of input edges
363 uint req() const { return _cnt; }
364 uint len() const { return _max; }
365 // Get the (read-only) number of output edges
366 uint outcnt() const { return _outcnt; }
367
368 #if OPTO_DU_ITERATOR_ASSERT
369 // Iterate over the out-edges of this node. Deletions are illegal.
370 inline DUIterator outs() const;
371 // Use this when the out array might have changed to suppress asserts.
372 inline DUIterator& refresh_out_pos(DUIterator& i) const;
373 // Does the node have an out at this position? (Used for iteration.)
374 inline bool has_out(DUIterator& i) const;
375 inline Node* out(DUIterator& i) const;
376 // Iterate over the out-edges of this node. All changes are illegal.
377 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
378 inline Node* fast_out(DUIterator_Fast& i) const;
379 // Iterate over the out-edges of this node, deleting one at a time.
380 inline DUIterator_Last last_outs(DUIterator_Last& min) const;
381 inline Node* last_out(DUIterator_Last& i) const;
382 // The inline bodies of all these methods are after the iterator definitions.
383 #else
384 // Iterate over the out-edges of this node. Deletions are illegal.
385 // This iteration uses integral indexes, to decouple from array reallocations.
386 DUIterator outs() const { return 0; }
387 // Use this when the out array might have changed to suppress asserts.
388 DUIterator refresh_out_pos(DUIterator i) const { return i; }
389
390 // Reference to the i'th output Node. Error if out of bounds.
391 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
392 // Does the node have an out at this position? (Used for iteration.)
393 bool has_out(DUIterator i) const { return i < _outcnt; }
394
395 // Iterate over the out-edges of this node. All changes are illegal.
396 // This iteration uses a pointer internal to the out array.
397 DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
398 Node** out = _out;
399 // Assign a limit pointer to the reference argument:
400 max = out + (ptrdiff_t)_outcnt;
401 // Return the base pointer:
402 return out;
403 }
404 Node* fast_out(DUIterator_Fast i) const { return *i; }
405 // Iterate over the out-edges of this node, deleting one at a time.
406 // This iteration uses a pointer internal to the out array.
407 DUIterator_Last last_outs(DUIterator_Last& min) const {
408 Node** out = _out;
409 // Assign a limit pointer to the reference argument:
410 min = out;
411 // Return the pointer to the start of the iteration:
412 return out + (ptrdiff_t)_outcnt - 1;
413 }
414 Node* last_out(DUIterator_Last i) const { return *i; }
415 #endif
416
417 // Reference to the i'th input Node. Error if out of bounds.
418 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
419 // Reference to the i'th input Node. null if out of bounds.
420 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
421 // Reference to the i'th output Node. Error if out of bounds.
422 // Use this accessor sparingly. We are going trying to use iterators instead.
423 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
424 // Return the unique out edge.
425 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
426
427 // In some cases, a node n is only used by a single use, but the use may use
428 // n once or multiple times:
429 // use = ConvF2I(this)
430 // use = AddI(this, this)
431 Node* unique_multiple_edges_out_or_null() const;
432
433 // Delete out edge at position 'i' by moving last out edge to position 'i'
434 void raw_del_out(uint i) {
435 assert(i < _outcnt,"oob");
436 assert(_outcnt > 0,"oob");
437 #if OPTO_DU_ITERATOR_ASSERT
438 // Record that a change happened here.
439 DEBUG_ONLY(_last_del = _out[i]; ++_del_tick);
440 #endif
441 _out[i] = _out[--_outcnt];
442 // Smash the old edge so it can't be used accidentally.
443 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
444 }
445
446 #ifdef ASSERT
447 bool is_dead() const;
448 static bool is_not_dead(const Node* n);
449 bool is_reachable_from_root() const;
450 #endif
451 // Check whether node has become unreachable
452 bool is_unreachable(PhaseIterGVN &igvn) const;
453
454 // Set a required input edge, also updates corresponding output edge
455 void add_req( Node *n ); // Append a NEW required input
456 void add_req( Node *n0, Node *n1 ) {
457 add_req(n0); add_req(n1); }
458 void add_req( Node *n0, Node *n1, Node *n2 ) {
459 add_req(n0); add_req(n1); add_req(n2); }
460 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
461 void del_req( uint idx ); // Delete required edge & compact
462 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
463 void ins_req( uint i, Node *n ); // Insert a NEW required input
464 void set_req( uint i, Node *n ) {
465 assert( is_not_dead(n), "can not use dead node");
466 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
467 assert( !VerifyHashTableKeys || _hash_lock == 0,
468 "remove node from hash table before modifying it");
469 Node** p = &_in[i]; // cache this._in, across the del_out call
470 if (*p != nullptr) (*p)->del_out((Node *)this);
471 (*p) = n;
472 if (n != nullptr) n->add_out((Node *)this);
473 Compile::current()->record_modified_node(this);
474 }
475 // Light version of set_req() to init inputs after node creation.
476 void init_req( uint i, Node *n ) {
477 assert( (i == 0 && this == n) ||
478 is_not_dead(n), "can not use dead node");
479 assert( i < _cnt, "oob");
480 assert( !VerifyHashTableKeys || _hash_lock == 0,
481 "remove node from hash table before modifying it");
482 assert( _in[i] == nullptr, "sanity");
483 _in[i] = n;
484 if (n != nullptr) n->add_out((Node *)this);
485 Compile::current()->record_modified_node(this);
486 }
487 // Find first occurrence of n among my edges:
488 int find_edge(Node* n);
489 int find_prec_edge(Node* n) {
490 for (uint i = req(); i < len(); i++) {
491 if (_in[i] == n) return i;
492 if (_in[i] == nullptr) {
493 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
494 break;
495 }
496 }
497 return -1;
498 }
499 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
500 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
501 // null out all inputs to eliminate incoming Def-Use edges.
502 void disconnect_inputs(Compile* C);
503
504 // Quickly, return true if and only if I am Compile::current()->top().
505 bool is_top() const {
506 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
507 return (_out == nullptr);
508 }
509 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
510 void setup_is_top();
511
512 // Strip away casting. (It is depth-limited.)
513 Node* uncast(bool keep_deps = false) const;
514 // Return whether two Nodes are equivalent, after stripping casting.
515 bool eqv_uncast(const Node* n, bool keep_deps = false) const {
516 return (this->uncast(keep_deps) == n->uncast(keep_deps));
517 }
518
519 // Find out of current node that matches opcode.
520 Node* find_out_with(int opcode);
521 // Return true if the current node has an out that matches opcode.
522 bool has_out_with(int opcode);
523 // Return true if the current node has an out that matches any of the opcodes.
524 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
525
526 private:
527 static Node* uncast_helper(const Node* n, bool keep_deps);
528
529 // Add an output edge to the end of the list
530 void add_out( Node *n ) {
531 if (is_top()) return;
532 if( _outcnt == _outmax ) out_grow(_outcnt);
533 _out[_outcnt++] = n;
534 }
535 // Delete an output edge
536 void del_out( Node *n ) {
537 if (is_top()) return;
538 Node** outp = &_out[_outcnt];
539 // Find and remove n
540 do {
541 assert(outp > _out, "Missing Def-Use edge");
542 } while (*--outp != n);
543 *outp = _out[--_outcnt];
544 // Smash the old edge so it can't be used accidentally.
545 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
546 // Record that a change happened here.
547 #if OPTO_DU_ITERATOR_ASSERT
548 DEBUG_ONLY(_last_del = n; ++_del_tick);
549 #endif
550 }
551 // Close gap after removing edge.
552 void close_prec_gap_at(uint gap) {
553 assert(_cnt <= gap && gap < _max, "no valid prec edge");
554 uint i = gap;
555 Node *last = nullptr;
556 for (; i < _max-1; ++i) {
557 Node *next = _in[i+1];
558 if (next == nullptr) break;
559 last = next;
560 }
561 _in[gap] = last; // Move last slot to empty one.
562 _in[i] = nullptr; // null out last slot.
563 }
564
565 public:
566 // Globally replace this node by a given new node, updating all uses.
567 void replace_by(Node* new_node);
568 // Globally replace this node by a given new node, updating all uses
569 // and cutting input edges of old node.
570 void subsume_by(Node* new_node, Compile* c) {
571 replace_by(new_node);
572 disconnect_inputs(c);
573 }
574 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
575 void set_req_X(uint i, Node *n, PhaseGVN *gvn);
576 // Find the one non-null required input. RegionNode only
577 Node *nonnull_req() const;
578 // Add or remove precedence edges
579 void add_prec( Node *n );
580 void rm_prec( uint i );
581
582 // Note: prec(i) will not necessarily point to n if edge already exists.
583 void set_prec( uint i, Node *n ) {
584 assert(i < _max, "oob: i=%d, _max=%d", i, _max);
585 assert(is_not_dead(n), "can not use dead node");
586 assert(i >= _cnt, "not a precedence edge");
587 // Avoid spec violation: duplicated prec edge.
588 if (_in[i] == n) return;
589 if (n == nullptr || find_prec_edge(n) != -1) {
590 rm_prec(i);
591 return;
592 }
593 if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
594 _in[i] = n;
595 n->add_out((Node *)this);
596 Compile::current()->record_modified_node(this);
597 }
598
599 // Set this node's index, used by cisc_version to replace current node
600 void set_idx(uint new_idx) {
601 _idx = new_idx;
602 }
603 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
604 void swap_edges(uint i1, uint i2) {
605 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
606 // Def-Use info is unchanged
607 Node* n1 = in(i1);
608 Node* n2 = in(i2);
609 _in[i1] = n2;
610 _in[i2] = n1;
611 // If this node is in the hash table, make sure it doesn't need a rehash.
612 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
613 // Flip swapped edges flag.
614 if (has_swapped_edges()) {
615 remove_flag(Node::Flag_has_swapped_edges);
616 } else {
617 add_flag(Node::Flag_has_swapped_edges);
618 }
619 }
620
621 // Iterators over input Nodes for a Node X are written as:
622 // for( i = 0; i < X.req(); i++ ) ... X[i] ...
623 // NOTE: Required edges can contain embedded null pointers.
624
625 //----------------- Other Node Properties
626
627 // Generate class IDs for (some) ideal nodes so that it is possible to determine
628 // the type of a node using a non-virtual method call (the method is_<Node>() below).
629 //
630 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
631 // the type of the node the ID represents; another subset of an ID's bits are reserved
632 // for the superclasses of the node represented by the ID.
633 //
634 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
635 // returns false. A.is_A() returns true.
636 //
637 // If two classes, A and B, have the same superclass, a different bit of A's class id
638 // is reserved for A's type than for B's type. That bit is specified by the third
639 // parameter in the macro DEFINE_CLASS_ID.
640 //
641 // By convention, classes with deeper hierarchy are declared first. Moreover,
642 // classes with the same hierarchy depth are sorted by usage frequency.
643 //
644 // The query method masks the bits to cut off bits of subclasses and then compares
645 // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
646 //
647 // Class_MachCall=30, ClassMask_MachCall=31
648 // 12 8 4 0
649 // 0 0 0 0 0 0 0 0 1 1 1 1 0
650 // | | | |
651 // | | | Bit_Mach=2
652 // | | Bit_MachReturn=4
653 // | Bit_MachSafePoint=8
654 // Bit_MachCall=16
655 //
656 // Class_CountedLoop=56, ClassMask_CountedLoop=63
657 // 12 8 4 0
658 // 0 0 0 0 0 0 0 1 1 1 0 0 0
659 // | | |
660 // | | Bit_Region=8
661 // | Bit_Loop=16
662 // Bit_CountedLoop=32
663
664 #define DEFINE_CLASS_ID(cl, supcl, subn) \
665 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
666 Class_##cl = Class_##supcl + Bit_##cl , \
667 ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
668
669 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
670 // so that its values fit into 32 bits.
671 enum NodeClasses {
672 Bit_Node = 0x00000000,
673 Class_Node = 0x00000000,
674 ClassMask_Node = 0xFFFFFFFF,
675
676 DEFINE_CLASS_ID(Multi, Node, 0)
677 DEFINE_CLASS_ID(SafePoint, Multi, 0)
678 DEFINE_CLASS_ID(Call, SafePoint, 0)
679 DEFINE_CLASS_ID(CallJava, Call, 0)
680 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
681 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
682 DEFINE_CLASS_ID(CallRuntime, Call, 1)
683 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
684 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0)
685 DEFINE_CLASS_ID(CallLeafPure, CallLeaf, 1)
686 DEFINE_CLASS_ID(Allocate, Call, 2)
687 DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
688 DEFINE_CLASS_ID(AbstractLock, Call, 3)
689 DEFINE_CLASS_ID(Lock, AbstractLock, 0)
690 DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
691 DEFINE_CLASS_ID(ArrayCopy, Call, 4)
692 DEFINE_CLASS_ID(MultiBranch, Multi, 1)
693 DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
694 DEFINE_CLASS_ID(Catch, PCTable, 0)
695 DEFINE_CLASS_ID(Jump, PCTable, 1)
696 DEFINE_CLASS_ID(If, MultiBranch, 1)
697 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0)
698 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0)
699 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1)
700 DEFINE_CLASS_ID(RangeCheck, If, 1)
701 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
702 DEFINE_CLASS_ID(ParsePredicate, If, 3)
703 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
704 DEFINE_CLASS_ID(Start, Multi, 2)
705 DEFINE_CLASS_ID(MemBar, Multi, 3)
706 DEFINE_CLASS_ID(Initialize, MemBar, 0)
707 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
708
709 DEFINE_CLASS_ID(Mach, Node, 1)
710 DEFINE_CLASS_ID(MachReturn, Mach, 0)
711 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
712 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
713 DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
714 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
715 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
716 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
717 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
718 DEFINE_CLASS_ID(MachBranch, Mach, 1)
719 DEFINE_CLASS_ID(MachIf, MachBranch, 0)
720 DEFINE_CLASS_ID(MachGoto, MachBranch, 1)
721 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2)
722 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2)
723 DEFINE_CLASS_ID(MachTemp, Mach, 3)
724 DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
725 DEFINE_CLASS_ID(MachConstant, Mach, 5)
726 DEFINE_CLASS_ID(MachJump, MachConstant, 0)
727 DEFINE_CLASS_ID(MachMerge, Mach, 6)
728 DEFINE_CLASS_ID(MachMemBar, Mach, 7)
729
730 DEFINE_CLASS_ID(Type, Node, 2)
731 DEFINE_CLASS_ID(Phi, Type, 0)
732 DEFINE_CLASS_ID(ConstraintCast, Type, 1)
733 DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
734 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
735 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
736 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
737 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
738 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
739 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6)
740 DEFINE_CLASS_ID(CastHH, ConstraintCast, 7)
741 DEFINE_CLASS_ID(CMove, Type, 3)
742 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
743 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
744 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
745 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
746 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
747 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
748 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
749 DEFINE_CLASS_ID(Vector, Type, 7)
750 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
751 DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
752 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
753 DEFINE_CLASS_ID(ShiftV, Vector, 3)
754 DEFINE_CLASS_ID(CompressV, Vector, 4)
755 DEFINE_CLASS_ID(ExpandV, Vector, 5)
756 DEFINE_CLASS_ID(CompressM, Vector, 6)
757 DEFINE_CLASS_ID(Reduction, Vector, 7)
758 DEFINE_CLASS_ID(NegV, Vector, 8)
759 DEFINE_CLASS_ID(SaturatingVector, Vector, 9)
760 DEFINE_CLASS_ID(MulVL, Vector, 10)
761 DEFINE_CLASS_ID(Con, Type, 8)
762 DEFINE_CLASS_ID(ConI, Con, 0)
763 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 9)
764 DEFINE_CLASS_ID(Convert, Type, 10)
765
766
767 DEFINE_CLASS_ID(Proj, Node, 3)
768 DEFINE_CLASS_ID(CatchProj, Proj, 0)
769 DEFINE_CLASS_ID(JumpProj, Proj, 1)
770 DEFINE_CLASS_ID(IfProj, Proj, 2)
771 DEFINE_CLASS_ID(IfTrue, IfProj, 0)
772 DEFINE_CLASS_ID(IfFalse, IfProj, 1)
773 DEFINE_CLASS_ID(Parm, Proj, 4)
774 DEFINE_CLASS_ID(MachProj, Proj, 5)
775 DEFINE_CLASS_ID(NarrowMemProj, Proj, 6)
776
777 DEFINE_CLASS_ID(Mem, Node, 4)
778 DEFINE_CLASS_ID(Load, Mem, 0)
779 DEFINE_CLASS_ID(LoadVector, Load, 0)
780 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
781 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
782 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
783 DEFINE_CLASS_ID(Store, Mem, 1)
784 DEFINE_CLASS_ID(StoreVector, Store, 0)
785 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
786 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
787 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
788 DEFINE_CLASS_ID(LoadStore, Mem, 2)
789 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
790 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
791 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
792
793 DEFINE_CLASS_ID(Region, Node, 5)
794 DEFINE_CLASS_ID(Loop, Region, 0)
795 DEFINE_CLASS_ID(Root, Loop, 0)
796 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1)
797 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0)
798 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1)
799 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
800
801 DEFINE_CLASS_ID(Sub, Node, 6)
802 DEFINE_CLASS_ID(Cmp, Sub, 0)
803 DEFINE_CLASS_ID(FastLock, Cmp, 0)
804 DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
805 DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2)
806
807 DEFINE_CLASS_ID(MergeMem, Node, 7)
808 DEFINE_CLASS_ID(Bool, Node, 8)
809 DEFINE_CLASS_ID(AddP, Node, 9)
810 DEFINE_CLASS_ID(BoxLock, Node, 10)
811 DEFINE_CLASS_ID(Add, Node, 11)
812 DEFINE_CLASS_ID(Mul, Node, 12)
813 DEFINE_CLASS_ID(ClearArray, Node, 14)
814 DEFINE_CLASS_ID(Halt, Node, 15)
815 DEFINE_CLASS_ID(Opaque1, Node, 16)
816 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0)
817 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1)
818 DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2)
819 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17)
820 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18)
821 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19)
822 DEFINE_CLASS_ID(Move, Node, 20)
823 DEFINE_CLASS_ID(LShift, Node, 21)
824 DEFINE_CLASS_ID(Neg, Node, 22)
825
826 _max_classes = ClassMask_Neg
827 };
828 #undef DEFINE_CLASS_ID
829
830 // Flags are sorted by usage frequency.
831 enum NodeFlags {
832 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift
833 Flag_rematerialize = 1 << 1,
834 Flag_needs_anti_dependence_check = 1 << 2,
835 Flag_is_macro = 1 << 3,
836 Flag_is_Con = 1 << 4,
837 Flag_is_cisc_alternate = 1 << 5,
838 Flag_is_dead_loop_safe = 1 << 6,
839 Flag_may_be_short_branch = 1 << 7,
840 Flag_avoid_back_to_back_before = 1 << 8,
841 Flag_avoid_back_to_back_after = 1 << 9,
842 Flag_has_call = 1 << 10,
843 Flag_has_swapped_edges = 1 << 11,
844 Flag_is_scheduled = 1 << 12,
845 Flag_is_expensive = 1 << 13,
846 Flag_is_predicated_vector = 1 << 14,
847 Flag_for_post_loop_opts_igvn = 1 << 15,
848 Flag_for_merge_stores_igvn = 1 << 16,
849 Flag_is_removed_by_peephole = 1 << 17,
850 Flag_is_predicated_using_blend = 1 << 18,
851 _last_flag = Flag_is_predicated_using_blend
852 };
853
854 class PD;
855
856 private:
857 juint _class_id;
858 juint _flags;
859
860 #ifdef ASSERT
861 static juint max_flags();
862 #endif
863
864 protected:
865 // These methods should be called from constructors only.
866 void init_class_id(juint c) {
867 _class_id = c; // cast out const
868 }
869 void init_flags(uint fl) {
870 assert(fl <= max_flags(), "invalid node flag");
871 _flags |= fl;
872 }
873 void clear_flag(uint fl) {
874 assert(fl <= max_flags(), "invalid node flag");
875 _flags &= ~fl;
876 }
877
878 public:
879 juint class_id() const { return _class_id; }
880
881 juint flags() const { return _flags; }
882
883 void add_flag(juint fl) { init_flags(fl); }
884
885 void remove_flag(juint fl) { clear_flag(fl); }
886
887 // Return a dense integer opcode number
888 virtual int Opcode() const;
889
890 // Virtual inherited Node size
891 virtual uint size_of() const;
892
893 // Other interesting Node properties
894 #define DEFINE_CLASS_QUERY(type) \
895 bool is_##type() const { \
896 return ((_class_id & ClassMask_##type) == Class_##type); \
897 } \
898 type##Node *as_##type() const { \
899 assert(is_##type(), "invalid node class: %s", Name()); \
900 return (type##Node*)this; \
901 } \
902 type##Node* isa_##type() const { \
903 return (is_##type()) ? as_##type() : nullptr; \
904 }
905
906 DEFINE_CLASS_QUERY(AbstractLock)
907 DEFINE_CLASS_QUERY(Add)
908 DEFINE_CLASS_QUERY(AddP)
909 DEFINE_CLASS_QUERY(Allocate)
910 DEFINE_CLASS_QUERY(AllocateArray)
911 DEFINE_CLASS_QUERY(ArrayCopy)
912 DEFINE_CLASS_QUERY(BaseCountedLoop)
913 DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
914 DEFINE_CLASS_QUERY(Bool)
915 DEFINE_CLASS_QUERY(BoxLock)
916 DEFINE_CLASS_QUERY(Call)
917 DEFINE_CLASS_QUERY(CallDynamicJava)
918 DEFINE_CLASS_QUERY(CallJava)
919 DEFINE_CLASS_QUERY(CallLeaf)
920 DEFINE_CLASS_QUERY(CallLeafNoFP)
921 DEFINE_CLASS_QUERY(CallLeafPure)
922 DEFINE_CLASS_QUERY(CallRuntime)
923 DEFINE_CLASS_QUERY(CallStaticJava)
924 DEFINE_CLASS_QUERY(Catch)
925 DEFINE_CLASS_QUERY(CatchProj)
926 DEFINE_CLASS_QUERY(CheckCastPP)
927 DEFINE_CLASS_QUERY(CastII)
928 DEFINE_CLASS_QUERY(CastLL)
929 DEFINE_CLASS_QUERY(CastFF)
930 DEFINE_CLASS_QUERY(ConI)
931 DEFINE_CLASS_QUERY(CastPP)
932 DEFINE_CLASS_QUERY(ConstraintCast)
933 DEFINE_CLASS_QUERY(ClearArray)
934 DEFINE_CLASS_QUERY(CMove)
935 DEFINE_CLASS_QUERY(Cmp)
936 DEFINE_CLASS_QUERY(Convert)
937 DEFINE_CLASS_QUERY(CountedLoop)
938 DEFINE_CLASS_QUERY(CountedLoopEnd)
939 DEFINE_CLASS_QUERY(DecodeNarrowPtr)
940 DEFINE_CLASS_QUERY(DecodeN)
941 DEFINE_CLASS_QUERY(DecodeNKlass)
942 DEFINE_CLASS_QUERY(EncodeNarrowPtr)
943 DEFINE_CLASS_QUERY(EncodeP)
944 DEFINE_CLASS_QUERY(EncodePKlass)
945 DEFINE_CLASS_QUERY(FastLock)
946 DEFINE_CLASS_QUERY(FastUnlock)
947 DEFINE_CLASS_QUERY(Halt)
948 DEFINE_CLASS_QUERY(If)
949 DEFINE_CLASS_QUERY(RangeCheck)
950 DEFINE_CLASS_QUERY(IfProj)
951 DEFINE_CLASS_QUERY(IfFalse)
952 DEFINE_CLASS_QUERY(IfTrue)
953 DEFINE_CLASS_QUERY(Initialize)
954 DEFINE_CLASS_QUERY(Jump)
955 DEFINE_CLASS_QUERY(JumpProj)
956 DEFINE_CLASS_QUERY(LongCountedLoop)
957 DEFINE_CLASS_QUERY(LongCountedLoopEnd)
958 DEFINE_CLASS_QUERY(Load)
959 DEFINE_CLASS_QUERY(LoadStore)
960 DEFINE_CLASS_QUERY(LoadStoreConditional)
961 DEFINE_CLASS_QUERY(Lock)
962 DEFINE_CLASS_QUERY(Loop)
963 DEFINE_CLASS_QUERY(LShift)
964 DEFINE_CLASS_QUERY(Mach)
965 DEFINE_CLASS_QUERY(MachBranch)
966 DEFINE_CLASS_QUERY(MachCall)
967 DEFINE_CLASS_QUERY(MachCallDynamicJava)
968 DEFINE_CLASS_QUERY(MachCallJava)
969 DEFINE_CLASS_QUERY(MachCallLeaf)
970 DEFINE_CLASS_QUERY(MachCallRuntime)
971 DEFINE_CLASS_QUERY(MachCallStaticJava)
972 DEFINE_CLASS_QUERY(MachConstantBase)
973 DEFINE_CLASS_QUERY(MachConstant)
974 DEFINE_CLASS_QUERY(MachGoto)
975 DEFINE_CLASS_QUERY(MachIf)
976 DEFINE_CLASS_QUERY(MachJump)
977 DEFINE_CLASS_QUERY(MachNullCheck)
978 DEFINE_CLASS_QUERY(MachProj)
979 DEFINE_CLASS_QUERY(MachReturn)
980 DEFINE_CLASS_QUERY(MachSafePoint)
981 DEFINE_CLASS_QUERY(MachSpillCopy)
982 DEFINE_CLASS_QUERY(MachTemp)
983 DEFINE_CLASS_QUERY(MachMemBar)
984 DEFINE_CLASS_QUERY(MachMerge)
985 DEFINE_CLASS_QUERY(Mem)
986 DEFINE_CLASS_QUERY(MemBar)
987 DEFINE_CLASS_QUERY(MemBarStoreStore)
988 DEFINE_CLASS_QUERY(MergeMem)
989 DEFINE_CLASS_QUERY(Move)
990 DEFINE_CLASS_QUERY(Mul)
991 DEFINE_CLASS_QUERY(Multi)
992 DEFINE_CLASS_QUERY(MultiBranch)
993 DEFINE_CLASS_QUERY(MulVL)
994 DEFINE_CLASS_QUERY(NarrowMemProj)
995 DEFINE_CLASS_QUERY(Neg)
996 DEFINE_CLASS_QUERY(NegV)
997 DEFINE_CLASS_QUERY(NeverBranch)
998 DEFINE_CLASS_QUERY(Opaque1)
999 DEFINE_CLASS_QUERY(OpaqueNotNull)
1000 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate)
1001 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate)
1002 DEFINE_CLASS_QUERY(OpaqueLoopInit)
1003 DEFINE_CLASS_QUERY(OpaqueLoopStride)
1004 DEFINE_CLASS_QUERY(OpaqueMultiversioning)
1005 DEFINE_CLASS_QUERY(OuterStripMinedLoop)
1006 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
1007 DEFINE_CLASS_QUERY(Parm)
1008 DEFINE_CLASS_QUERY(ParsePredicate)
1009 DEFINE_CLASS_QUERY(PCTable)
1010 DEFINE_CLASS_QUERY(Phi)
1011 DEFINE_CLASS_QUERY(Proj)
1012 DEFINE_CLASS_QUERY(Reduction)
1013 DEFINE_CLASS_QUERY(Region)
1014 DEFINE_CLASS_QUERY(Root)
1015 DEFINE_CLASS_QUERY(SafePoint)
1016 DEFINE_CLASS_QUERY(SafePointScalarObject)
1017 DEFINE_CLASS_QUERY(SafePointScalarMerge)
1018 DEFINE_CLASS_QUERY(Start)
1019 DEFINE_CLASS_QUERY(Store)
1020 DEFINE_CLASS_QUERY(Sub)
1021 DEFINE_CLASS_QUERY(SubTypeCheck)
1022 DEFINE_CLASS_QUERY(Type)
1023 DEFINE_CLASS_QUERY(Vector)
1024 DEFINE_CLASS_QUERY(VectorMaskCmp)
1025 DEFINE_CLASS_QUERY(VectorUnbox)
1026 DEFINE_CLASS_QUERY(VectorReinterpret)
1027 DEFINE_CLASS_QUERY(CompressV)
1028 DEFINE_CLASS_QUERY(ExpandV)
1029 DEFINE_CLASS_QUERY(CompressM)
1030 DEFINE_CLASS_QUERY(LoadVector)
1031 DEFINE_CLASS_QUERY(LoadVectorGather)
1032 DEFINE_CLASS_QUERY(LoadVectorMasked)
1033 DEFINE_CLASS_QUERY(LoadVectorGatherMasked)
1034 DEFINE_CLASS_QUERY(StoreVector)
1035 DEFINE_CLASS_QUERY(StoreVectorScatter)
1036 DEFINE_CLASS_QUERY(StoreVectorMasked)
1037 DEFINE_CLASS_QUERY(StoreVectorScatterMasked)
1038 DEFINE_CLASS_QUERY(SaturatingVector)
1039 DEFINE_CLASS_QUERY(ShiftV)
1040 DEFINE_CLASS_QUERY(Unlock)
1041
1042 #undef DEFINE_CLASS_QUERY
1043
1044 // duplicate of is_MachSpillCopy()
1045 bool is_SpillCopy () const {
1046 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
1047 }
1048
1049 bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
1050 // The data node which is safe to leave in dead loop during IGVN optimization.
1051 bool is_dead_loop_safe() const;
1052
1053 // is_Copy() returns copied edge index (0 or 1)
1054 uint is_Copy() const { return (_flags & Flag_is_Copy); }
1055
1056 virtual bool is_CFG() const { return false; }
1057
1058 // If this node is control-dependent on a test, can it be
1059 // rerouted to a dominating equivalent test? This is usually
1060 // true of non-CFG nodes, but can be false for operations which
1061 // depend for their correct sequencing on more than one test.
1062 // (In that case, hoisting to a dominating test may silently
1063 // skip some other important test.)
1064 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1065
1066 // When building basic blocks, I need to have a notion of block beginning
1067 // Nodes, next block selector Nodes (block enders), and next block
1068 // projections. These calls need to work on their machine equivalents. The
1069 // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1070 bool is_block_start() const {
1071 if ( is_Region() )
1072 return this == (const Node*)in(0);
1073 else
1074 return is_Start();
1075 }
1076
1077 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1078 // Goto and Return. This call also returns the block ending Node.
1079 virtual const Node *is_block_proj() const;
1080
1081 // The node is a "macro" node which needs to be expanded before matching
1082 bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1083 // The node is expensive: the best control is set during loop opts
1084 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1085 // The node's original edge position is swapped.
1086 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1087
1088 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1089
1090 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1091
1092 // Used in lcm to mark nodes that have scheduled
1093 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1094
1095 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1096 bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; }
1097
1098 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1099 static bool may_be_loop_entry(Node* n) {
1100 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1101 }
1102
1103 //----------------- Optimization
1104
1105 // Get the worst-case Type output for this Node.
1106 virtual const class Type *bottom_type() const;
1107
1108 // If we find a better type for a node, try to record it permanently.
1109 // Return true if this node actually changed.
1110 // Be sure to do the hash_delete game in the "rehash" variant.
1111 void raise_bottom_type(const Type* new_type);
1112
1113 // Get the address type with which this node uses and/or defs memory,
1114 // or null if none. The address type is conservatively wide.
1115 // Returns non-null for calls, membars, loads, stores, etc.
1116 // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1117 virtual const class TypePtr *adr_type() const { return nullptr; }
1118
1119 // Return an existing node which computes the same function as this node.
1120 // The optimistic combined algorithm requires this to return a Node which
1121 // is a small number of steps away (e.g., one of my inputs).
1122 virtual Node* Identity(PhaseGVN* phase);
1123
1124 // Return the set of values this Node can take on at runtime.
1125 virtual const Type* Value(PhaseGVN* phase) const;
1126
1127 // Return a node which is more "ideal" than the current node.
1128 // The invariants on this call are subtle. If in doubt, read the
1129 // treatise in node.cpp above the default implementation AND TEST WITH
1130 // -XX:VerifyIterativeGVN=1
1131 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1132
1133 // Some nodes have specific Ideal subgraph transformations only if they are
1134 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1135 // for the transformations to happen.
1136 bool has_special_unique_user() const;
1137
1138 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1139 Node* find_exact_control(Node* ctrl);
1140
1141 // Results of the dominance analysis.
1142 enum class DomResult {
1143 NotDominate, // 'this' node does not dominate 'sub'.
1144 Dominate, // 'this' node dominates or is equal to 'sub'.
1145 EncounteredDeadCode // Result is undefined due to encountering dead code.
1146 };
1147 // Check if 'this' node dominates or equal to 'sub'.
1148 DomResult dominates(Node* sub, Node_List &nlist);
1149
1150 bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1151 public:
1152
1153 // See if there is valid pipeline info
1154 static const Pipeline *pipeline_class();
1155 virtual const Pipeline *pipeline() const;
1156
1157 // Compute the latency from the def to this instruction of the ith input node
1158 uint latency(uint i);
1159
1160 // Hash & compare functions, for pessimistic value numbering
1161
1162 // If the hash function returns the special sentinel value NO_HASH,
1163 // the node is guaranteed never to compare equal to any other node.
1164 // If we accidentally generate a hash with value NO_HASH the node
1165 // won't go into the table and we'll lose a little optimization.
1166 static const uint NO_HASH = 0;
1167 virtual uint hash() const;
1168 virtual bool cmp( const Node &n ) const;
1169
1170 // Operation appears to be iteratively computed (such as an induction variable)
1171 // It is possible for this operation to return false for a loop-varying
1172 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1173 bool is_iteratively_computed();
1174
1175 // Determine if a node is a counted loop induction variable.
1176 // NOTE: The method is defined in "loopnode.cpp".
1177 bool is_cloop_ind_var() const;
1178
1179 // Return a node with opcode "opc" and same inputs as "this" if one can
1180 // be found; Otherwise return null;
1181 Node* find_similar(int opc);
1182
1183 // Return the unique control out if only one. Null if none or more than one.
1184 Node* unique_ctrl_out_or_null() const;
1185 // Return the unique control out. Asserts if none or more than one control out.
1186 Node* unique_ctrl_out() const;
1187
1188 // Set control or add control as precedence edge
1189 void ensure_control_or_add_prec(Node* c);
1190 void add_prec_from(Node* n);
1191
1192 // Visit boundary uses of the node and apply a callback function for each.
1193 // Recursively traverse uses, stopping and applying the callback when
1194 // reaching a boundary node, defined by is_boundary. Note: the function
1195 // definition appears after the complete type definition of Node_List.
1196 template <typename Callback, typename Check>
1197 void visit_uses(Callback callback, Check is_boundary) const;
1198
1199 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses
1200 // (Load and range check CastII nodes).
1201 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication).
1202 virtual Node* pin_array_access_node() const {
1203 return nullptr;
1204 }
1205
1206 //----------------- Code Generation
1207
1208 // Ideal register class for Matching. Zero means unmatched instruction
1209 // (these are cloned instead of converted to machine nodes).
1210 virtual uint ideal_reg() const;
1211
1212 static const uint NotAMachineReg; // must be > max. machine register
1213
1214 // Do we Match on this edge index or not? Generally false for Control
1215 // and true for everything else. Weird for calls & returns.
1216 virtual uint match_edge(uint idx) const;
1217
1218 // Register class output is returned in
1219 virtual const RegMask &out_RegMask() const;
1220 // Register class input is expected in
1221 virtual const RegMask &in_RegMask(uint) const;
1222 // Should we clone rather than spill this instruction?
1223 bool rematerialize() const;
1224
1225 // Return JVM State Object if this Node carries debug info, or null otherwise
1226 virtual JVMState* jvms() const;
1227
1228 // Print as assembly
1229 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1230 // Emit bytes using C2_MacroAssembler
1231 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const;
1232 // Size of instruction in bytes
1233 virtual uint size(PhaseRegAlloc *ra_) const;
1234
1235 // Convenience function to extract an integer constant from a node.
1236 // If it is not an integer constant (either Con, CastII, or Mach),
1237 // return value_if_unknown.
1238 jint find_int_con(jint value_if_unknown) const {
1239 const TypeInt* t = find_int_type();
1240 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1241 }
1242 // Return the constant, knowing it is an integer constant already
1243 jint get_int() const {
1244 const TypeInt* t = find_int_type();
1245 guarantee(t != nullptr, "must be con");
1246 return t->get_con();
1247 }
1248 // Here's where the work is done. Can produce non-constant int types too.
1249 const TypeInt* find_int_type() const;
1250 const TypeInteger* find_integer_type(BasicType bt) const;
1251
1252 // Same thing for long (and intptr_t, via type.hpp):
1253 jlong get_long() const {
1254 const TypeLong* t = find_long_type();
1255 guarantee(t != nullptr, "must be con");
1256 return t->get_con();
1257 }
1258 jlong find_long_con(jint value_if_unknown) const {
1259 const TypeLong* t = find_long_type();
1260 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1261 }
1262 const TypeLong* find_long_type() const;
1263
1264 jlong get_integer_as_long(BasicType bt) const {
1265 const TypeInteger* t = find_integer_type(bt);
1266 guarantee(t != nullptr && t->is_con(), "must be con");
1267 return t->get_con_as_long(bt);
1268 }
1269 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1270 const TypeInteger* t = find_integer_type(bt);
1271 if (t == nullptr || !t->is_con()) return value_if_unknown;
1272 return t->get_con_as_long(bt);
1273 }
1274 const TypePtr* get_ptr_type() const;
1275
1276 // These guys are called by code generated by ADLC:
1277 intptr_t get_ptr() const;
1278 intptr_t get_narrowcon() const;
1279 jdouble getd() const;
1280 jfloat getf() const;
1281 jshort geth() const;
1282
1283 // Nodes which are pinned into basic blocks
1284 virtual bool pinned() const { return false; }
1285
1286 // Nodes which use memory without consuming it, hence need antidependences
1287 // More specifically, needs_anti_dependence_check returns true iff the node
1288 // (a) does a load, and (b) does not perform a store (except perhaps to a
1289 // stack slot or some other unaliased location).
1290 bool needs_anti_dependence_check() const;
1291
1292 // Return which operand this instruction may cisc-spill. In other words,
1293 // return operand position that can convert from reg to memory access
1294 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1295 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1296
1297 // Whether this is a memory-writing machine node.
1298 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1299
1300 // Whether this is a memory phi node
1301 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1302
1303 bool is_div_or_mod(BasicType bt) const;
1304
1305 bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const;
1306
1307 //----------------- Printing, etc
1308 #ifndef PRODUCT
1309 public:
1310 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1311 Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1312 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr = nullptr) const;
1313 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1314 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1315 void dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const;
1316 class DumpConfig {
1317 public:
1318 // overridden to implement coloring of node idx
1319 virtual void pre_dump(outputStream *st, const Node* n) = 0;
1320 virtual void post_dump(outputStream *st) = 0;
1321 };
1322 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1323 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1324 void dump() const; // print node with newline
1325 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1326 void dump(int depth) const; // Print this node, recursively to depth d
1327 void dump_ctrl(int depth) const; // Print control nodes, to depth d
1328 void dump_comp() const; // Print this node in compact representation.
1329 // Print this node in compact representation.
1330 void dump_comp(const char* suffix, outputStream *st = tty) const;
1331 private:
1332 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info
1333 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info
1334 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info
1335 public:
1336 virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1337 // Print compact per-node info
1338 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1339
1340 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1341
1342 // This call defines a class-unique string used to identify class instances
1343 virtual const char *Name() const;
1344
1345 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1346 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1347 #endif
1348 #ifdef ASSERT
1349 void verify_construction();
1350 bool verify_jvms(const JVMState* jvms) const;
1351
1352 Node* _debug_orig; // Original version of this, if any.
1353 Node* debug_orig() const { return _debug_orig; }
1354 void set_debug_orig(Node* orig); // _debug_orig = orig
1355 void dump_orig(outputStream *st, bool print_key = true) const;
1356
1357 uint64_t _debug_idx; // Unique value assigned to every node.
1358 uint64_t debug_idx() const { return _debug_idx; }
1359 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1360
1361 int _hash_lock; // Barrier to modifications of nodes in the hash table
1362 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1363 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1364
1365 static void init_NodeProperty();
1366
1367 #if OPTO_DU_ITERATOR_ASSERT
1368 const Node* _last_del; // The last deleted node.
1369 uint _del_tick; // Bumped when a deletion happens..
1370 #endif
1371 #endif
1372 };
1373
1374 inline bool not_a_node(const Node* n) {
1375 if (n == nullptr) return true;
1376 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
1377 if (*(address*)n == badAddress) return true; // kill by Node::destruct
1378 return false;
1379 }
1380
1381 //-----------------------------------------------------------------------------
1382 // Iterators over DU info, and associated Node functions.
1383
1384 #if OPTO_DU_ITERATOR_ASSERT
1385
1386 // Common code for assertion checking on DU iterators.
1387 class DUIterator_Common {
1388 #ifdef ASSERT
1389 protected:
1390 bool _vdui; // cached value of VerifyDUIterators
1391 const Node* _node; // the node containing the _out array
1392 uint _outcnt; // cached node->_outcnt
1393 uint _del_tick; // cached node->_del_tick
1394 Node* _last; // last value produced by the iterator
1395
1396 void sample(const Node* node); // used by c'tor to set up for verifies
1397 void verify(const Node* node, bool at_end_ok = false);
1398 void verify_resync();
1399 void reset(const DUIterator_Common& that);
1400
1401 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1402 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1403 #else
1404 #define I_VDUI_ONLY(i,x) { }
1405 #endif //ASSERT
1406 };
1407
1408 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
1409
1410 // Default DU iterator. Allows appends onto the out array.
1411 // Allows deletion from the out array only at the current point.
1412 // Usage:
1413 // for (DUIterator i = x->outs(); x->has_out(i); i++) {
1414 // Node* y = x->out(i);
1415 // ...
1416 // }
1417 // Compiles in product mode to a unsigned integer index, which indexes
1418 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate
1419 // also reloads x->_outcnt. If you delete, you must perform "--i" just
1420 // before continuing the loop. You must delete only the last-produced
1421 // edge. You must delete only a single copy of the last-produced edge,
1422 // or else you must delete all copies at once (the first time the edge
1423 // is produced by the iterator).
1424 class DUIterator : public DUIterator_Common {
1425 friend class Node;
1426
1427 // This is the index which provides the product-mode behavior.
1428 // Whatever the product-mode version of the system does to the
1429 // DUI index is done to this index. All other fields in
1430 // this class are used only for assertion checking.
1431 uint _idx;
1432
1433 #ifdef ASSERT
1434 uint _refresh_tick; // Records the refresh activity.
1435
1436 void sample(const Node* node); // Initialize _refresh_tick etc.
1437 void verify(const Node* node, bool at_end_ok = false);
1438 void verify_increment(); // Verify an increment operation.
1439 void verify_resync(); // Verify that we can back up over a deletion.
1440 void verify_finish(); // Verify that the loop terminated properly.
1441 void refresh(); // Resample verification info.
1442 void reset(const DUIterator& that); // Resample after assignment.
1443 #endif
1444
1445 DUIterator(const Node* node, int dummy_to_avoid_conversion)
1446 { _idx = 0; DEBUG_ONLY(sample(node)); }
1447
1448 public:
1449 // initialize to garbage; clear _vdui to disable asserts
1450 DUIterator()
1451 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); }
1452
1453 DUIterator(const DUIterator& that)
1454 { _idx = that._idx; DEBUG_ONLY(_vdui = false; reset(that)); }
1455
1456 void operator++(int dummy_to_specify_postfix_op)
1457 { _idx++; VDUI_ONLY(verify_increment()); }
1458
1459 void operator--()
1460 { VDUI_ONLY(verify_resync()); --_idx; }
1461
1462 ~DUIterator()
1463 { VDUI_ONLY(verify_finish()); }
1464
1465 void operator=(const DUIterator& that)
1466 { _idx = that._idx; DEBUG_ONLY(reset(that)); }
1467 };
1468
1469 DUIterator Node::outs() const
1470 { return DUIterator(this, 0); }
1471 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1472 { I_VDUI_ONLY(i, i.refresh()); return i; }
1473 bool Node::has_out(DUIterator& i) const
1474 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1475 Node* Node::out(DUIterator& i) const
1476 { I_VDUI_ONLY(i, i.verify(this)); return DEBUG_ONLY(i._last=) _out[i._idx]; }
1477
1478
1479 // Faster DU iterator. Disallows insertions into the out array.
1480 // Allows deletion from the out array only at the current point.
1481 // Usage:
1482 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1483 // Node* y = x->fast_out(i);
1484 // ...
1485 // }
1486 // Compiles in product mode to raw Node** pointer arithmetic, with
1487 // no reloading of pointers from the original node x. If you delete,
1488 // you must perform "--i; --imax" just before continuing the loop.
1489 // If you delete multiple copies of the same edge, you must decrement
1490 // imax, but not i, multiple times: "--i, imax -= num_edges".
1491 class DUIterator_Fast : public DUIterator_Common {
1492 friend class Node;
1493 friend class DUIterator_Last;
1494
1495 // This is the pointer which provides the product-mode behavior.
1496 // Whatever the product-mode version of the system does to the
1497 // DUI pointer is done to this pointer. All other fields in
1498 // this class are used only for assertion checking.
1499 Node** _outp;
1500
1501 #ifdef ASSERT
1502 void verify(const Node* node, bool at_end_ok = false);
1503 void verify_limit();
1504 void verify_resync();
1505 void verify_relimit(uint n);
1506 void reset(const DUIterator_Fast& that);
1507 #endif
1508
1509 // Note: offset must be signed, since -1 is sometimes passed
1510 DUIterator_Fast(const Node* node, ptrdiff_t offset)
1511 { _outp = node->_out + offset; DEBUG_ONLY(sample(node)); }
1512
1513 public:
1514 // initialize to garbage; clear _vdui to disable asserts
1515 DUIterator_Fast()
1516 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); }
1517
1518 DUIterator_Fast(const DUIterator_Fast& that)
1519 { _outp = that._outp; DEBUG_ONLY(_vdui = false; reset(that)); }
1520
1521 void operator++(int dummy_to_specify_postfix_op)
1522 { _outp++; VDUI_ONLY(verify(_node, true)); }
1523
1524 void operator--()
1525 { VDUI_ONLY(verify_resync()); --_outp; }
1526
1527 void operator-=(uint n) // applied to the limit only
1528 { _outp -= n; VDUI_ONLY(verify_relimit(n)); }
1529
1530 bool operator<(DUIterator_Fast& limit) {
1531 I_VDUI_ONLY(*this, this->verify(_node, true));
1532 I_VDUI_ONLY(limit, limit.verify_limit());
1533 return _outp < limit._outp;
1534 }
1535
1536 void operator=(const DUIterator_Fast& that)
1537 { _outp = that._outp; DEBUG_ONLY(reset(that)); }
1538 };
1539
1540 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1541 // Assign a limit pointer to the reference argument:
1542 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1543 // Return the base pointer:
1544 return DUIterator_Fast(this, 0);
1545 }
1546 Node* Node::fast_out(DUIterator_Fast& i) const {
1547 I_VDUI_ONLY(i, i.verify(this));
1548 return DEBUG_ONLY(i._last=) *i._outp;
1549 }
1550
1551
1552 // Faster DU iterator. Requires each successive edge to be removed.
1553 // Does not allow insertion of any edges.
1554 // Usage:
1555 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1556 // Node* y = x->last_out(i);
1557 // ...
1558 // }
1559 // Compiles in product mode to raw Node** pointer arithmetic, with
1560 // no reloading of pointers from the original node x.
1561 class DUIterator_Last : private DUIterator_Fast {
1562 friend class Node;
1563
1564 #ifdef ASSERT
1565 void verify(const Node* node, bool at_end_ok = false);
1566 void verify_limit();
1567 void verify_step(uint num_edges);
1568 #endif
1569
1570 // Note: offset must be signed, since -1 is sometimes passed
1571 DUIterator_Last(const Node* node, ptrdiff_t offset)
1572 : DUIterator_Fast(node, offset) { }
1573
1574 void operator++(int dummy_to_specify_postfix_op) {} // do not use
1575 void operator<(int) {} // do not use
1576
1577 public:
1578 DUIterator_Last() { }
1579 // initialize to garbage
1580
1581 DUIterator_Last(const DUIterator_Last& that) = default;
1582
1583 void operator--()
1584 { _outp--; VDUI_ONLY(verify_step(1)); }
1585
1586 void operator-=(uint n)
1587 { _outp -= n; VDUI_ONLY(verify_step(n)); }
1588
1589 bool operator>=(DUIterator_Last& limit) {
1590 I_VDUI_ONLY(*this, this->verify(_node, true));
1591 I_VDUI_ONLY(limit, limit.verify_limit());
1592 return _outp >= limit._outp;
1593 }
1594
1595 DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1596 };
1597
1598 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1599 // Assign a limit pointer to the reference argument:
1600 imin = DUIterator_Last(this, 0);
1601 // Return the initial pointer:
1602 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1603 }
1604 Node* Node::last_out(DUIterator_Last& i) const {
1605 I_VDUI_ONLY(i, i.verify(this));
1606 return DEBUG_ONLY(i._last=) *i._outp;
1607 }
1608
1609 #endif //OPTO_DU_ITERATOR_ASSERT
1610
1611 #undef I_VDUI_ONLY
1612 #undef VDUI_ONLY
1613
1614 // An Iterator that truly follows the iterator pattern. Doesn't
1615 // support deletion but could be made to.
1616 //
1617 // for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1618 // Node* m = i.get();
1619 //
1620 class SimpleDUIterator : public StackObj {
1621 private:
1622 Node* node;
1623 DUIterator_Fast imax;
1624 DUIterator_Fast i;
1625 public:
1626 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1627 bool has_next() { return i < imax; }
1628 void next() { i++; }
1629 Node* get() { return node->fast_out(i); }
1630 };
1631
1632
1633 //-----------------------------------------------------------------------------
1634 // Map dense integer indices to Nodes. Uses classic doubling-array trick.
1635 // Abstractly provides an infinite array of Node*'s, initialized to null.
1636 // Note that the constructor just zeros things, and since I use Arena
1637 // allocation I do not need a destructor to reclaim storage.
1638 class Node_Array : public AnyObj {
1639 protected:
1640 Arena* _a; // Arena to allocate in
1641 uint _max;
1642 Node** _nodes;
1643 ReallocMark _nesting; // Safety checks for arena reallocation
1644
1645 // Grow array to required capacity
1646 void maybe_grow(uint i) {
1647 _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1648 if (i >= _max) {
1649 grow(i);
1650 }
1651 }
1652 void grow(uint i);
1653
1654 public:
1655 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1656 _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1657 clear();
1658 }
1659 Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1660
1661 NONCOPYABLE(Node_Array);
1662 Node_Array& operator=(Node_Array&&) = delete;
1663 // Allow move constructor for && (eg. capture return of function)
1664 Node_Array(Node_Array&&) = default;
1665
1666 Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1667 { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1668 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1669 Node** adr() { return _nodes; }
1670 // Extend the mapping: index i maps to Node *n.
1671 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; }
1672 void insert( uint i, Node *n );
1673 void remove( uint i ); // Remove, preserving order
1674 // Clear all entries in _nodes to null but keep storage
1675 void clear() {
1676 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1677 }
1678
1679 uint max() const { return _max; }
1680 void dump() const;
1681 };
1682
1683 class Node_List : public Node_Array {
1684 uint _cnt;
1685 public:
1686 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1687 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1688
1689 NONCOPYABLE(Node_List);
1690 Node_List& operator=(Node_List&&) = delete;
1691 // Allow move constructor for && (eg. capture return of function)
1692 Node_List(Node_List&&) = default;
1693
1694 bool contains(const Node* n) const {
1695 for (uint e = 0; e < size(); e++) {
1696 if (at(e) == n) return true;
1697 }
1698 return false;
1699 }
1700 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1701 void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1702 void push( Node *b ) { map(_cnt++,b); }
1703 void yank( Node *n ); // Find and remove
1704 Node *pop() { return _nodes[--_cnt]; }
1705 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1706 void copy(const Node_List& from) {
1707 if (from._max > _max) {
1708 grow(from._max);
1709 }
1710 _cnt = from._cnt;
1711 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1712 }
1713
1714 uint size() const { return _cnt; }
1715 void dump() const;
1716 void dump_simple() const;
1717 };
1718
1719 // Definition must appear after complete type definition of Node_List
1720 template <typename Callback, typename Check>
1721 void Node::visit_uses(Callback callback, Check is_boundary) const {
1722 ResourceMark rm;
1723 VectorSet visited;
1724 Node_List worklist;
1725
1726 // The initial worklist consists of the direct uses
1727 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1728 Node* out = fast_out(k);
1729 if (!visited.test_set(out->_idx)) { worklist.push(out); }
1730 }
1731
1732 while (worklist.size() > 0) {
1733 Node* use = worklist.pop();
1734 // Apply callback on boundary nodes
1735 if (is_boundary(use)) {
1736 callback(use);
1737 } else {
1738 // Not a boundary node, continue search
1739 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1740 Node* out = use->fast_out(k);
1741 if (!visited.test_set(out->_idx)) { worklist.push(out); }
1742 }
1743 }
1744 }
1745 }
1746
1747
1748 //------------------------------Unique_Node_List-------------------------------
1749 class Unique_Node_List : public Node_List {
1750 VectorSet _in_worklist;
1751 uint _clock_index; // Index in list where to pop from next
1752 public:
1753 Unique_Node_List() : Node_List(), _clock_index(0) {}
1754 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1755
1756 NONCOPYABLE(Unique_Node_List);
1757 Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1758 // Allow move constructor for && (eg. capture return of function)
1759 Unique_Node_List(Unique_Node_List&&) = default;
1760
1761 void remove( Node *n );
1762 bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; }
1763 VectorSet& member_set(){ return _in_worklist; }
1764
1765 void push(Node* b) {
1766 if( !_in_worklist.test_set(b->_idx) )
1767 Node_List::push(b);
1768 }
1769 void push_non_cfg_inputs_of(const Node* node) {
1770 for (uint i = 1; i < node->req(); i++) {
1771 Node* input = node->in(i);
1772 if (input != nullptr && !input->is_CFG()) {
1773 push(input);
1774 }
1775 }
1776 }
1777
1778 void push_outputs_of(const Node* node) {
1779 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) {
1780 Node* output = node->fast_out(i);
1781 push(output);
1782 }
1783 }
1784
1785 Node *pop() {
1786 if( _clock_index >= size() ) _clock_index = 0;
1787 Node *b = at(_clock_index);
1788 map( _clock_index, Node_List::pop());
1789 if (size() != 0) _clock_index++; // Always start from 0
1790 _in_worklist.remove(b->_idx);
1791 return b;
1792 }
1793 Node *remove(uint i) {
1794 Node *b = Node_List::at(i);
1795 _in_worklist.remove(b->_idx);
1796 map(i,Node_List::pop());
1797 return b;
1798 }
1799 void yank(Node *n) {
1800 _in_worklist.remove(n->_idx);
1801 Node_List::yank(n);
1802 }
1803 void clear() {
1804 _in_worklist.clear(); // Discards storage but grows automatically
1805 Node_List::clear();
1806 _clock_index = 0;
1807 }
1808 void ensure_empty() {
1809 assert(size() == 0, "must be empty");
1810 clear(); // just in case
1811 }
1812
1813 // Used after parsing to remove useless nodes before Iterative GVN
1814 void remove_useless_nodes(VectorSet& useful);
1815
1816 // If the idx of the Nodes change, we must recompute the VectorSet
1817 void recompute_idx_set() {
1818 _in_worklist.clear();
1819 for (uint i = 0; i < size(); i++) {
1820 Node* n = at(i);
1821 _in_worklist.set(n->_idx);
1822 }
1823 }
1824
1825 #ifdef ASSERT
1826 bool is_subset_of(Unique_Node_List& other) {
1827 for (uint i = 0; i < size(); i++) {
1828 Node* n = at(i);
1829 if (!other.member(n)) {
1830 return false;
1831 }
1832 }
1833 return true;
1834 }
1835 #endif
1836
1837 bool contains(const Node* n) const {
1838 fatal("use faster member() instead");
1839 return false;
1840 }
1841
1842 #ifndef PRODUCT
1843 void print_set() const { _in_worklist.print(); }
1844 #endif
1845 };
1846
1847 // Unique_Mixed_Node_List
1848 // unique: nodes are added only once
1849 // mixed: allow new and old nodes
1850 class Unique_Mixed_Node_List : public ResourceObj {
1851 public:
1852 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1853
1854 void add(Node* node) {
1855 if (not_a_node(node)) {
1856 return; // Gracefully handle null, -1, 0xabababab, etc.
1857 }
1858 if (_visited_set[node] == nullptr) {
1859 _visited_set.Insert(node, node);
1860 _worklist.push(node);
1861 }
1862 }
1863
1864 Node* operator[] (uint i) const {
1865 return _worklist[i];
1866 }
1867
1868 size_t size() {
1869 return _worklist.size();
1870 }
1871
1872 private:
1873 Dict _visited_set;
1874 Node_List _worklist;
1875 };
1876
1877 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1878 inline void Compile::record_for_igvn(Node* n) {
1879 _igvn_worklist->push(n);
1880 }
1881
1882 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1883 inline void Compile::remove_for_igvn(Node* n) {
1884 _igvn_worklist->remove(n);
1885 }
1886
1887 //------------------------------Node_Stack-------------------------------------
1888 class Node_Stack {
1889 protected:
1890 struct INode {
1891 Node *node; // Processed node
1892 uint indx; // Index of next node's child
1893 };
1894 INode *_inode_top; // tos, stack grows up
1895 INode *_inode_max; // End of _inodes == _inodes + _max
1896 INode *_inodes; // Array storage for the stack
1897 Arena *_a; // Arena to allocate in
1898 ReallocMark _nesting; // Safety checks for arena reallocation
1899
1900 void maybe_grow() {
1901 _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1902 if (_inode_top >= _inode_max) {
1903 grow();
1904 }
1905 }
1906 void grow();
1907
1908 public:
1909 Node_Stack(int size) {
1910 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1911 _a = Thread::current()->resource_area();
1912 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1913 _inode_max = _inodes + max;
1914 _inode_top = _inodes - 1; // stack is empty
1915 }
1916
1917 Node_Stack(Arena *a, int size) : _a(a) {
1918 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1919 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1920 _inode_max = _inodes + max;
1921 _inode_top = _inodes - 1; // stack is empty
1922 }
1923
1924 void pop() {
1925 assert(_inode_top >= _inodes, "node stack underflow");
1926 --_inode_top;
1927 }
1928 void push(Node *n, uint i) {
1929 ++_inode_top;
1930 maybe_grow();
1931 INode *top = _inode_top; // optimization
1932 top->node = n;
1933 top->indx = i;
1934 }
1935 Node *node() const {
1936 return _inode_top->node;
1937 }
1938 Node* node_at(uint i) const {
1939 assert(_inodes + i <= _inode_top, "in range");
1940 return _inodes[i].node;
1941 }
1942 uint index() const {
1943 return _inode_top->indx;
1944 }
1945 uint index_at(uint i) const {
1946 assert(_inodes + i <= _inode_top, "in range");
1947 return _inodes[i].indx;
1948 }
1949 void set_node(Node *n) {
1950 _inode_top->node = n;
1951 }
1952 void set_index(uint i) {
1953 _inode_top->indx = i;
1954 }
1955 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
1956 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
1957 bool is_nonempty() const { return (_inode_top >= _inodes); }
1958 bool is_empty() const { return (_inode_top < _inodes); }
1959 void clear() { _inode_top = _inodes - 1; } // retain storage
1960
1961 // Node_Stack is used to map nodes.
1962 Node* find(uint idx) const;
1963
1964 NONCOPYABLE(Node_Stack);
1965 };
1966
1967
1968 //-----------------------------Node_Notes--------------------------------------
1969 // Debugging or profiling annotations loosely and sparsely associated
1970 // with some nodes. See Compile::node_notes_at for the accessor.
1971 class Node_Notes {
1972 JVMState* _jvms;
1973
1974 public:
1975 Node_Notes(JVMState* jvms = nullptr) {
1976 _jvms = jvms;
1977 }
1978
1979 JVMState* jvms() { return _jvms; }
1980 void set_jvms(JVMState* x) { _jvms = x; }
1981
1982 // True if there is nothing here.
1983 bool is_clear() {
1984 return (_jvms == nullptr);
1985 }
1986
1987 // Make there be nothing here.
1988 void clear() {
1989 _jvms = nullptr;
1990 }
1991
1992 // Make a new, clean node notes.
1993 static Node_Notes* make(Compile* C) {
1994 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1995 nn->clear();
1996 return nn;
1997 }
1998
1999 Node_Notes* clone(Compile* C) {
2000 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
2001 (*nn) = (*this);
2002 return nn;
2003 }
2004
2005 // Absorb any information from source.
2006 bool update_from(Node_Notes* source) {
2007 bool changed = false;
2008 if (source != nullptr) {
2009 if (source->jvms() != nullptr) {
2010 set_jvms(source->jvms());
2011 changed = true;
2012 }
2013 }
2014 return changed;
2015 }
2016 };
2017
2018 // Inlined accessors for Compile::node_nodes that require the preceding class:
2019 inline Node_Notes*
2020 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
2021 int idx, bool can_grow) {
2022 assert(idx >= 0, "oob");
2023 int block_idx = (idx >> _log2_node_notes_block_size);
2024 int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
2025 if (grow_by >= 0) {
2026 if (!can_grow) return nullptr;
2027 grow_node_notes(arr, grow_by + 1);
2028 }
2029 if (arr == nullptr) return nullptr;
2030 // (Every element of arr is a sub-array of length _node_notes_block_size.)
2031 return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
2032 }
2033
2034 inline Node_Notes* Compile::node_notes_at(int idx) {
2035 return locate_node_notes(_node_note_array, idx, false);
2036 }
2037
2038 inline bool
2039 Compile::set_node_notes_at(int idx, Node_Notes* value) {
2040 if (value == nullptr || value->is_clear())
2041 return false; // nothing to write => write nothing
2042 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
2043 assert(loc != nullptr, "");
2044 return loc->update_from(value);
2045 }
2046
2047
2048 //------------------------------TypeNode---------------------------------------
2049 // Node with a Type constant.
2050 class TypeNode : public Node {
2051 protected:
2052 virtual uint hash() const; // Check the type
2053 virtual bool cmp( const Node &n ) const;
2054 virtual uint size_of() const; // Size is bigger
2055 const Type* const _type;
2056 public:
2057 void set_type(const Type* t) {
2058 assert(t != nullptr, "sanity");
2059 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
2060 *(const Type**)&_type = t; // cast away const-ness
2061 // If this node is in the hash table, make sure it doesn't need a rehash.
2062 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
2063 }
2064 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
2065 TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
2066 init_class_id(Class_Type);
2067 }
2068 virtual const Type* Value(PhaseGVN* phase) const;
2069 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
2070 virtual const Type *bottom_type() const;
2071 virtual uint ideal_reg() const;
2072
2073 void make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str);
2074 #ifndef PRODUCT
2075 virtual void dump_spec(outputStream *st) const;
2076 virtual void dump_compact_spec(outputStream *st) const;
2077 #endif
2078 void make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str);
2079 void create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const;
2080 };
2081
2082 #include "opto/opcodes.hpp"
2083
2084 #define Op_IL(op) \
2085 inline int Op_ ## op(BasicType bt) { \
2086 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
2087 if (bt == T_INT) { \
2088 return Op_## op ## I; \
2089 } \
2090 return Op_## op ## L; \
2091 }
2092
2093 Op_IL(Add)
2094 Op_IL(And)
2095 Op_IL(Sub)
2096 Op_IL(Mul)
2097 Op_IL(URShift)
2098 Op_IL(LShift)
2099 Op_IL(RShift)
2100 Op_IL(Xor)
2101 Op_IL(Cmp)
2102 Op_IL(Div)
2103 Op_IL(Mod)
2104 Op_IL(UDiv)
2105 Op_IL(UMod)
2106
2107 inline int Op_ConIL(BasicType bt) {
2108 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2109 if (bt == T_INT) {
2110 return Op_ConI;
2111 }
2112 return Op_ConL;
2113 }
2114
2115 inline int Op_Cmp_unsigned(BasicType bt) {
2116 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2117 if (bt == T_INT) {
2118 return Op_CmpU;
2119 }
2120 return Op_CmpUL;
2121 }
2122
2123 inline int Op_Cast(BasicType bt) {
2124 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2125 if (bt == T_INT) {
2126 return Op_CastII;
2127 }
2128 return Op_CastLL;
2129 }
2130
2131 inline int Op_DivIL(BasicType bt, bool is_unsigned) {
2132 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2133 if (bt == T_INT) {
2134 if (is_unsigned) {
2135 return Op_UDivI;
2136 } else {
2137 return Op_DivI;
2138 }
2139 }
2140 if (is_unsigned) {
2141 return Op_UDivL;
2142 } else {
2143 return Op_DivL;
2144 }
2145 }
2146
2147 inline int Op_DivModIL(BasicType bt, bool is_unsigned) {
2148 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2149 if (bt == T_INT) {
2150 if (is_unsigned) {
2151 return Op_UDivModI;
2152 } else {
2153 return Op_DivModI;
2154 }
2155 }
2156 if (is_unsigned) {
2157 return Op_UDivModL;
2158 } else {
2159 return Op_DivModL;
2160 }
2161 }
2162
2163 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify
2164 // a customized BFS.
2165 class BFSActions : public StackObj {
2166 public:
2167 // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this
2168 // method to provide a custom filter.
2169 virtual bool should_visit(Node* node) const {
2170 // By default, visit all inputs.
2171 return true;
2172 };
2173
2174 // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further
2175 // but the BFS will continue to visit all unvisited nodes in the queue.
2176 virtual bool is_target_node(Node* node) const = 0;
2177
2178 // Defines an action that should be taken when we visit a target node in the BFS traversal.
2179 virtual void target_node_action(Node* target_node) = 0;
2180 };
2181
2182 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which
2183 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes.
2184 class DataNodeBFS : public StackObj {
2185 BFSActions& _bfs_actions;
2186
2187 public:
2188 explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {}
2189
2190 // Run the BFS starting from 'start_node' and apply the actions provided to this class.
2191 void run(Node* start_node) {
2192 ResourceMark rm;
2193 Unique_Node_List _nodes_to_visit;
2194 _nodes_to_visit.push(start_node);
2195 for (uint i = 0; i < _nodes_to_visit.size(); i++) {
2196 Node* next = _nodes_to_visit[i];
2197 for (uint j = 1; j < next->req(); j++) {
2198 Node* input = next->in(j);
2199 if (_bfs_actions.is_target_node(input)) {
2200 assert(_bfs_actions.should_visit(input), "must also pass node filter");
2201 _bfs_actions.target_node_action(input);
2202 } else if (_bfs_actions.should_visit(input)) {
2203 _nodes_to_visit.push(input);
2204 }
2205 }
2206 }
2207 }
2208 };
2209
2210 #endif // SHARE_OPTO_NODE_HPP